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Executive Summary 
 
This report presents the results of a project funded by the Environment Agency which 
builds on the previous creation of two software systems to diagnose and predict river 
health from biological and environmental data, namely the River Pressure Diagnostic 
System (RPDS) and the River Pressure Bayesian Belief Network (RPBBN).  RPDS is a 
pattern recognition system to diagnose likely pressures at a river site. RPBBN is a 
reasoning system that can diagnose chemical concentrations from a biological 
community, or predict likely changes in a biological community from changes in 
chemical concentrations. 
 
 An early aim of our project was to use the RPDS database to define chemical 
standards needed to protect ecological quality. This was achieved by developing 
Thresholder, a software application which searches the 1995 river survey database to 
determine the chemical concentrations needed to support the invertebrate fauna 
predicted by RIVAPCS (River Invertebrate Prediction and Classification System) at all 
general quality assessment sites.  A second early objective was to use the same 
database to help determine potential reference sites to act as targets for temporal 
trajectories in RPDS. 
 
The main aims of the project were to enhance the software systems RPDS and 
RPBBN. The specific objectives were as follows: 
 

• Substantially extend the dataset on which the data models are based. 
• Revise and test the data models on which the systems are based. 
• Extend the functionality of the two systems and combine into one 

‘integrated system’. 
 
Extending the dataset took much longer than originally anticipated and affected the 
progress of the remaining work.  In particular, the integrated system could not be 
developed in the remaining time (the third objective), and the two software systems 
have been kept separate. 
 
The dataset has been substantially extended temporally, geographically and in terms of 
the variables included.  The new dataset covers the ten-year period 1995-2004 instead 
of the single year 1995.  The dataset covers Scotland as well as England and Wales.  
Variables relating to flow (except for Scotland), geology, land cover and land risk have 
been added to the chemistry and stress as diagnostic variables.  The resulting spring 
and autumn datasets contain over five times more biological samples than the original 
systems. 
 
To reflect increasing interest in linking changes in the biological community with the 
physical flow of rivers, two measures of flow were included in the new diagnostic 
variables.  The first was the percentage impact (at 95 per cent exceedence probability) 
from LowFlows2000.  To complement this, a second measure was developed to 
estimate the flow condition at each site at the time the sample was taken.  This was 
based on interpolation from thirty years of monthly flow records at gauged sites in 
England and Wales. The ecological significance of this measure was demonstrated by 
the fact that that those taxa more likely to occur in wet conditions were more sensitive, 
and those more likely to occur in dry conditions were more tolerant, according to their 
revised biological monitoring working party (BMWP) scores. 
 
Following preliminary tests, new MIR-max models were produced for the full dataset for 
both spring and autumn.  In all cases, the number of bins (clusters of samples with 
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similar biological composition) was kept the same as in the original models, namely 
250.  The original spring and autumn models contained more than 6,000 samples each 
(with an average of 24 samples in each bin), whereas the new spring model contains 
32,100 samples and the new autumn model 31,400 (with averages of 128 and 126 
samples in each bin respectively).  The sample data in the original spring and autumn 
models was from 6,000 sites in England and Wales, whereas the sample data in the 
new spring and autumn models cover 9,100 and 8,800 sites respectively in England, 
Wales and Scotland. 
 
The new spring and autumn cluster models were ordered by MIR-max to produce 
hexagonal output maps with the same side-length (10, 15 and 20 bins) as the original 
models.  Each map was rotated to align it as closely as possible with the originals to 
ease comparison.  After adding the new diagnostic variables to the spring and autumn 
models, RPDS 2.0 was revised to RPDS 3.0 by streamlining the operations involving 
database queries and including Scotland on the geographical map panel.  The output 
maps in RPDS 3.0 for particular variables are qualitatively similar to those of the same 
variables in RPDS 2.0, demonstrating that the clustering and ordering in the new 
models are similar to those of the original models despite the large increase in data.  
From this we conclude that the models are sound and represent reality rather than an 
artefact of the sample data, and that the models contain sufficient data: more data is 
unlikely to affect the overall models.  The geographic locations of the samples in 
clusters occupying similar positions in the hexagonal output map are also similar in 
RPDS 2.0 and RPDS 3.0.   
 
Preliminary evaluation of the new flow variables shows that the percentage impact at 
95-percentile flow (flow exceeded 95 per cent of the time) is negatively correlated with 
distance from source, as might be expected.  Preliminary evaluation of the flow 
condition variable, on the other hand, shows a relationship with the taxa as the clusters 
containing samples taken in wetter years tend to be those with higher average score 
per taxon (ASPT), while those taken in drier years tend to be those with lower ASPT.   
 
As with the MIR-max models, the new Bayesian Belief Network (BBN) model was 
derived from a substantially larger quantity of data.  The original BBN model was based 
on 3,600 spring and autumn matched samples, whereas the new spring and autumn 
models are based on 16,200 and 15,800 matched samples respectively.  Several other 
changes were made.  The structure of the model was modified. The larger dataset 
meant that chemical statistics could be based on percentile values over three years 
prior to sampling (the chemical statistics that are used to manage water quality) rather 
than mean values over the preceding three months, and that five states could be used 
for the taxonomic variables instead of four.   
 
Dependent testing of the network including all of these changes against the original 
indicated major improvements in the predictions of total ammoniacal nitrogen and 
dissolved oxygen.  The prediction of the flow condition variables was poor, but this was 
not unexpected given the far fewer connections to the taxonomic variables.  
Independent testing to assess the impact of each of the changes suggested that the 
use of percentile statistics, permitted by the increased dataset, was the factor 
contributing to the greatest improvements. 
 
Following meetings with potential users, new versions of the RPDS and RPBBN 
software have been produced which incorporate several modifications designed to 
optimise them for operational use.  Their usability has been improved and additional 
functionality has been incorporated to meet the requirements of the Water Framework 
Directive. 
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1 Introduction 
 
This project’s work packages relate to the following three original objectives: 
 

1. To help the Environment Agency’s work for the Water Framework Directive 
(WFD). 

2. To develop diagnostics and modelling for river basin planning and 
programmes of measures. 

3. To develop an ecological quality classification scheme (if the regulatory 
authorities were unable to develop RIVPACS (Moss et al., 1987)). 

 
The third objective provided an insurance against any problems that would have 
prevented the Environment Agency from developing RIVPACS (River Invertebrate 
Prediction and Classification System) to meet the needs of the WFD river invertebrate 
classification of ecological quality.  Previous work (Walley et al., 1998) showed that 
artificial intelligence (AI) technology was able to deliver a good classification based on 
average score per taxon (ASPT) and number of taxa that could be related back to 
predictions of reference, as required by the WFD.  Had it not been possible to develop 
RIVPACS, work packages to develop an AI-based classification would have been 
implemented.  This explains the original title of the project (Development of an 
Integrated Classification System for Rivers and Lakes).  This option was not taken up.  
RIVPACS was used as a basis for classification largely because it had proved 
adequate and its statistical basis (including its shortcomings) was already well 
understood by ecologists in the regulatory agencies. 
 
Two early activities in our project were designed to help with the first objective, as 
follows: 
 

• Use the original project database to determine chemical thresholds for 
General Quality Assessment (GQA) monitoring sites at good ecological 
status to help establish chemical standards to protect invertebrates. 

• Determine potential reference sites using River Pressure Diagnostic 
System (RPDS) software to help identify targets for temporal trajectories. 

 
The work undertaken on these two aims is described in Sections 2 and 3 respectively.   
 
The main core of the project addressed the second aim, in which the work undertaken 
in previous projects (Walley et al., 2002 and Walley et al., 1998 respectively) was 
extended.  Two computer systems based on artificial intelligence techniques had been 
developed in the most recent of those projects: RPDS (River Pressure Diagnostic 
System, formerly River Pollution Diagnostic System, based on pattern recognition), and 
RPBBN (River Pressure Bayesian Belief Network, formerly River Pollution Bayesian 
Belief Network, based on plausible reasoning).  Both systems were based on a dataset 
of biological (macroinvertebrate) and environmental samples taken in the spring and 
autumn of 1995 at over 6,000 sites in England and Wales, for which there was 
matched chemical data for 3,600 sites.  The main objectives of this phase of the project 
were as follows:  
 

• Substantially extend the dataset on which the systems were based. 
• Revise and test the data models on which the systems were based. 
• Extend the functionality of the two systems and combine them into an 

‘integrated’ system. 
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The dataset was extended in the following ways: 
 

• Biological, chemical and environmental data was included from the national 
river surveys in 1995-2004.  

• Data for Scotland was included as well as for England and Wales. 
• Additional biological, chemical and environmental data was included. 

 
Data from other surveys was considered but data from the River Habitat Survey (RHS) 
was rejected because it was not standardised, and experience from the previous 
project suggested that only 15 per cent commonality would be achieved with the rest of 
the data.  Data from the Countryside Survey 2000 (Centre for Ecology and Hydrology, 
Dorset) included matched RHS data (invertebrate samples and some limited 
chemistry), but this was rejected too.  Although the data may have been useful (the 
Countryside Survey has a different distribution of sites, usually headwaters, which 
complement the GQA survey sites which are predominantly at the downstream end of 
streams and rivers), information about the location of sites would have to be withheld (a 
condition of using the data) thus requiring the data to be excluded from display on 
maps, for example.  Although data for lakes was not expected to be included, the 
project was anticipated to act as a feasibility study for lakes.  
 
Construction of the extended dataset from national survey data became a major task 
and delayed the rest of the project.  The initial approach was to add to the biological 
and chemical datasets for 1995 and 2000 incrementally with annual summaries 
supplied by the Environment Agency.  However, the extent of inconsistencies and 
incompatibility between the annual increments made this approach unviable.  The 
inconsistencies probably arose from the use of different queries to the main 
Environment Agency database or from ‘snapshots’ taken as the database evolved over 
time.  Consequently, new requests were made for both biological and chemical data for 
the entire period 1993-2004 to ensure a dataset of reliable integrity.  Construction of 
the biological dataset thereafter was an extensive and time-consuming task, largely 
because tools within the Environment Agency’s biological database to extract family 
data had not been developed; the process is described in Section 4.  
 
Additional biological variables in the original project scope included diatom, macrophyte 
and phytoplankton data. Fish data was considered but rejected as being too different.  
The inclusion of other data was investigated but delays in the availability of diatom and 
macrophyte data, limitations in the coverage of phytoplankton data, and delays in 
collating the macroinvertebrate data led to a decision to restrict biological data to 
macroinvertebrates only.   
 
Environmental parameters associated with the biological samples and chemical sample 
data are described in Section 5.  Matching the biological and chemical samples 
required both sets of spatial coordinates to be validated (because the biological and 
chemical data are sampled at different sites). Procedures for this and subsequent 
matching are also described.   
 
Section 6 describes the updated stress data from 2003 (the original RPDS dataset 
included stress data from 1995), as well as additional land cover and soil risk data 
derived from geographical information systems (GIS) that may be indicative of 
pressures. 
 
Flow data was included as statistics based on long-term averages (from LowFlows 
2000) and as the relative flow condition before the biological samples were collected 
(based on time series data).  This data could only be included for sites in England and 
Wales (not Scotland).  The procedure developed for estimating flow condition and 
subsequent evaluation of its ecological significance in terms of macroinvertebrates are 
described in Section 7.   
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The databases constructed here are among the largest of their kind, and have already 
been used for a variety of purposes outside this project.  However, because of delays 
caused by some of the tasks required to construct the databases, the goal of producing 
an ‘integrated system’ had to be abandoned in favour of redeveloping the two separate 
systems.   
 
Section 8 documents the revised MIR-max models produced from the new datasets, 
while preliminary evaluation of the new models and modifications to RPDS software 
are covered in Sections 9 and 10 respectively.  Section 11 deals with the revised BBN 
model and some preliminary testing, while modifications to RPBBN software are 
presented in Section 12.  The project is summarised in Section 13. 
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2 Determination of chemical 
thresholds for GQA sites  

 

Introduction 
 
The work described in this section was undertaken early in the project and was 
designed to inform the development of regulatory standards for protecting 
macroinvertebrates in rivers. The initial stages of this work began as part of a previous 
project and culminated in the production of software called the Rivers Intercalibration 
Project or R.I.P. The purpose of the R.I.P was to establish the relationship between 
biological quality measures and chemical parameters, and to translate biological quality 
standards into chemical standards.  
 
This work fed directly into the design of a work package in which the biological 
community rather than a biological quality score was used as the basis for obtaining 
chemical standards.  
 
In this section, R.I.P software is described and the outcomes of the work discussed to 
provide some background. Following this, the work undertaken in this project is 
described, namely the development of the Thresholder software. 
 

Chemical thresholds 
 
For WFD, it is necessary to define chemical quality standards for rivers, that is, 
chemical concentrations that support the ecological quality status.  This would permit 
rivers to be monitored for conformance to chemical quality. The problem with defining 
quality is that it is a subjective concept and the concentrations that correspond to ‘good’ 
or ‘poor’ quality are somewhat meaningless unless the impact of the chemicals on 
some other aspect of the river, such as the biology, is used as a yardstick. 
 
Biological quality is a key aspect of river management and the WFD, and quality 
standards already exist based on ecological quality indices (EQIs). Therefore, using 
biological quality standards in the definition of chemical thresholds would appear to be 
a sensible approach, providing the necessary yardstick and automatically calibrating 
the two sets of standards. 
 

Rivers Intercalibration Project (R.I.P.) 
 
The purpose of R.I.P. was to study the relationship between biological and chemical 
parameters and use this information to define a set of chemical quality standards. This 
process in turn would provide crisper and more easily measurable targets for the 
analysis of rivers based on chemical concentrations, rather than the more subjective 
criteria of ‘quality’. At the outset of the project, the intention was to derive a set of 
suggested chemical standards from analysis of the project database, which contained 
the combined biological and chemical sample data from the 1995 River Survey of 
England and Wales. However, it quickly became apparent from the initial analysis that 
the relationships between biology and chemistry were insufficiently clear-cut to allow a 
set of standards to be easily identified. This meant that some degree of expert 
interpretation would be required when selecting values to be used as standards. As a 
result, the outputs of the project changed from producing a set of suggested standards 
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to producing software that would help experts to define a set of standards, by analysing 
the 1995 River Survey database. 
 
The software produced was known as R.I.P. At its core, R.I.P. is simply a scatter-
plotting program that allows the relationships between variables to be shown quickly. 
R.I.P also incorporates tools to define potential standard boundary values. The 
definition of the ranges of values that define the standard simply involves drawing a 
box on the scatter plot with the sides of the box on the x-axis and y-axis defining the 
upper and lower bounds. For example, when drawing the quality bounds for ecological 
quality index for ASPT, ‘good’ quality lies in the range of 0.9 to 1.0, therefore the sides 
of the box on this axis occur at these values. The report information provided by R.I.P. 
includes bounds drawn on the x- and y-axes, correlation coefficient for the whole 
scatter plot and sets of points that fall within the bounding boxes.  
 

R.I.P. software 
 
R.I.P. software allows the user to load delimited text files, which are files in which all 
the values are stored as text and each variable/field is separated by a special delimiting 
character. Any pair of continuous variables within the file can be plotted against each 
other. 
 
 

 
 
Figure 2.1  Plot options panel of R.I.P software. 
 
 
Figure 2.1 shows the plot options panel of R.I.P, which lists the variables in the 
currently loaded file and provides a facility to modify the parameters of the plotted axis. 
Once two variables have been selected they are plotted on the plot panel, along with 
the number of samples and the r correlation coefficient, as shown in Figure 2.2. 
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Figure 2.2 Plot panel showing scatter plot of ASPT against alkalinity and two 
user-defined range boxes. 
 
This plot can then be used to define boundary values for the different quality classes. 
This is achieved by the user choosing to ‘add category’, then drawing a box on the plot. 
As the user draws the category box, information on the high and low values it 
encompasses on both axes, the number and percentage of points and the r correlation 
coefficient for these points are automatically updated in the report beneath the plot (see 
Figure 2.2). R.I.P. also allows the plotted points to be coloured by a ‘quality’ variable, 
the variable must be categorical and have seven states or less. The purpose of this 
feature is to allow the spread of samples to be easily identified in terms of quality. 
 
Once a set of categories/boundaries have been defined, R.I.P. has the option to print 
the plot and the accompanying category information to provide a hard copy of the work.  
 

Outcomes of R.I.P. 
 
The main outcome of  R.I.P. was that it showed that the relationships between 
biological quality measure and chemical pressures were not as strong as anticipated. 
When plots of quality measures against chemicals were produced, instead of the 
desired diagonal line of points indicating a strong, clear and identifiable relationship, 
the majority were simply clouds of points, like those shown in Figure 2.2. This meant 
that defining chemical standards by this method would be difficult because it would 
inevitably involve some element of expert opinion so any decisions could be 
contentious, leaving standards open to criticism and potentially difficult to enforce. 
Ultimately, R.I.P. showed that using natural breaks in the distribution of ecological 
quality and chemical variables was not a practical solution and a more systematic and 
objective approach was required. 
 
This approach was based principally on data analysis. The key differences from the 
R.I.P approach were firstly, the biological component of the analysis would be 
multivariate, with a community rather than a single quality value, and secondly, 
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selection of the threshold values would be based on an automated scan of the 
available data rather than manual selection. The source of the data was the pollution 
sensitivities of taxa database, which was used as the source of the ‘Pollution 
Sensitivities of Taxa’ website.    
 
‘Pollution Sensitivities of Taxa’ website 
 
The data produced in the 1995 River Survey of England and Wales contained a wealth 
of information on the macroinvertebrate fauna and chemical and environmental 
parameters at more than 6,000 sampling sites. As part of a previous project (Walley et 
al., 2002), some preliminary analysis of the pollution sensitivity of the taxa was 
undertaken and the results published in 1999 on the ‘Pollution Sensitivities of Taxa’ 
website, shown in Figure 2.3, at http://www.soc.staffs.ac.uk /research/groups/cies2/. 
The focus was primarily on the ranges of chemical and environmental parameters at 
which the taxa were found with different levels of abundance. The website displayed 
the results for each of the chemicals for every taxon for which there was data. 
However, this work was a spin-off from the development of the original RPBBN, and no 
further activity was undertaken once the project was complete. 
 
 

 
 
Figure 2.3.  Pollution Sensitivities of Taxa website.  Horizontal bars show 
distribution of taxon (Asellidae in this example) against concentration of chemical (BOD 
in this example).  Green, orange and red indicate range of quartiles, fifth and 95th 
percentiles and range of all data.  Top bar represents presence regardless of 
abundance and four bars below represent distributions for different log10 abundance 
categories of the taxon. 
 
Subsequent feedback from the Environment Agency and others suggested the need for 
further development. The main requirement was for a more flexible and powerful 
method of manipulating and presenting the underlying data, in particular the ability to 
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derive results for combinations of taxa and/or chemicals. Such functionality would 
enable predictions to be obtained of the abundance levels of taxa or threshold 
concentrations for chemical parameters at a sample site.  This would help us to 
determine chemical standards to protect ecological quality by defining the chemical 
concentrations that support the invertebrate fauna predicted by RIVPACS at all GQA 
sites.  The specific objectives were as follows: 
 

• Determine the target invertebrate fauna at each site using RIVPACS 
predictions of the probabilities of occurrence and abundances of families. 

• Scan the ‘Pollution Sensitivities of Taxa’ website to determine the 
concentrations (range and percentile statistics) of each chemical that 
supports the predicted taxa at their predicted abundances. 

• Pool the concentration ranges (and statistics) for each chemical at each 
site.  These are the thresholds for the site.  Include an indication of the 
reliability of the thresholds, such as the number or proportion of predicted 
taxa on which they are based. 

 
The original intention was to achieve these aims by redeveloping the ‘Pollution 
Sensitivities of Taxa’ website.  However, difficulties with this approach led to the 
development of stand-alone software call ‘Thresholder’, the steps to which are 
described below. 
  

First phase of development 
 
Data 
 
The ‘MChm95’ database contained individual tables comprising the environmental, 
chemical and macroinvertebrate data for each sample site in England and Wales. A 
composite data table ‘CreatureStats’ was created from the original data to record the 
maximum, minimum, mean, medium, standard deviation, 5th, 25th, 75th and 95th 
percentiles of each environmental or chemical parameter for every taxon at each of the 
sampled abundance levels1. For example, the database contained each of the 
statistical values of chloride for Gammaridae at the abundance levels at which it was 
recorded. The table contained 11,500 records for 44 environmental and chemical 
parameters and 76 taxa at up to six different abundance levels. The data in the 
‘CreatureStats’ table provided the basis for the ‘Pollution Sensitivities of Taxa’ website, 
with individual pages representing a record in the table. 
 
Design of the original website 
 
When the ‘Pollution Sensitivities of Taxa’ website was originally constructed, 
consideration was given to providing a means to manipulate elementary information in 
the ‘CreatureStats’ table and so enable the user to extract data for different 
combinations of taxa or chemical and environmental parameters. However, this was 
abandoned because of practical problems. The key difficulty was representation of all 
the possible combinations of variables on the website. If the website was static, this 
would involve storing hundreds of thousands of pages to cover all possible 
combinations.  On the other hand, if the site was dynamic the pages would not be 
stored but created in response to a query using some form of Common Gateway 
Interface (CGI) programming2. At the time, the effort required to develop either option 
was considered to be unjustified. 

                                                      
1 Abundance levels were log10 categories 0= 0, 1-9 = 1, 10-99 = 2, 100-999 = 3, 1,000-9999 = 4 and 
10,000+ = 5. 
2 A loose definition of CGI is a program whose output is a web page. This means that the web page can 
include dynamic information extracted from a database or produced by some algorithm.      
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Design of the new website 
 
In designing the new ‘Pollution Sensitivities of Taxa’ website, the first decision was 
whether it would be static or dynamic. Many pages would need to be stored for a static 
website, and it would be difficult and time-consuming to modify. A dynamic website, on 
the other hand, would offer a readily expandable way to present the threshold data. 
However, development of a dynamic site would have its own problems. Enabling CGI 
programs to run on the web server would increase security risk and crashes of the CGI 
programs could potentially disable the entire web server3. In addition, CGI programs 
would be more difficult to test and debug than normal applications: firstly, because the 
inputs and outputs would be transmitted between web browser and server across a 
network; and secondly, because the code would be run remotely on the server rather 
than on the computer on which the system would be developed. The potential for 
problems when creating the final web-based system (such as serious delays in 
development or major difficulties associated with maintenance of the server) would be 
increased by the need for several cycles of re-development and modification.  
 
Creating a prototype system as a Windows application 
 
An obvious way to reduce the likelihood of a serious problem was to undertake the 
initial development of the final system as a Windows® application, and subsequently 
rewrite it as a web application. An additional benefit of this strategy was less 
development time for the prototype because the skills to develop the Windows® 
application as a Visual Basic® project were readily available. This approach was 
adopted and the resulting ‘Thresholder’ software was developed as a prototype.  
Thresholder received taxon abundance values as inputs and produced an output report 
of thresholds (maximum and minimum values) for chemical and environmental 
variables based on samples whose taxonomic parameters match those of the input 
values. 
 
The system was designed to identify the ranges of chemical concentrations or values 
at which a predefined set of taxa at specified abundance levels were found to exist in 
the MChem95 database. Options for the input taxa data were designed to be biological 
sample data, RIVPACS community predictions or values entered manually for single 
taxa or assemblages. The screenshot in Figure 2.4 shows abundance values loaded 
from a file containing part of the 1995 River Survey data, while Figure 2.5 shows the 
user manually inputting abundance values.  A report of the output is shown in Figure 
2.6. 
  
Once the abundance values for the taxa were set, the database was queried to extract 
the range for each chemical at which all taxa at the specified abundance level had 
been recorded. The ranges produced in the report (see Figure 2.6) represented the 
union of values produced for the individual taxa, rather than values based on the 
combination representing the entire assemblage.  For example the maximum-minimum 
range for alkalinity based on Asellidae at abundance level 3 and Gammaridae at 
abundance level 1, was based on the maximum-minimum range for Asellidae (all 
records where Asellidae occur at abundance level 3) joined with the range for 
Gammaridae (all records at level 1), rather than the maximum-minimum range based 
on the combination of Asellidae at level 3 and Gammaridae at level 1. This approach 
was adopted to maximise the range of queries for which the system could produce a 
result. 
 

                                                      
3 This was a particular problem because Staffordshire University hosts the website and its web-based 
resources are extremely important to its function. Therefore, security breaches and/or crashes on the web 
server would represent a threat to the day-to-day workings of the university and its business.  
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Figure 2.4 Screenshot of Thresholder software with abundance values for taxa 
loaded from external file containing part of 1995 River Survey data. 
 

 
Figure 2.5  Screenshot of Thresholder software showing user defining 
abundance values manually. 
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Figure 2.6 Screenshot of Thresholder software showing report detailing results 
of a query. 
 

Second phase of development 
 
Following delivery of the prototype to the Environment Agency for evaluation, the 
software was refined in response to users’ suggestions. The main improvements 
requested were: 
 

• A facility to import RIVPACS results and predictions to derive the ranges of 
expected chemical concentrations.  

 
• Inclusion of seasonal as well as annual concentration values (a feature 

missing in the original ‘Pollution Sensitivities of Taxa’ database) and 
inclusion of information on the 90th and 10th percentiles (to permit 
compatibility with regulatory thresholds and environmental standards). 

 
These required the creation of a new database, as well as modification to the 
prototype.  
  
Importing RIVPACS data 
 
Production of the RIVPACS target invertebrate fauna predictions4 involved firstly 
converting the 1995 GQA sample data into the RIVPACS input file format. Two of the 
RIVPACS prediction functions were used for this: Option 1. BMWP families and BMWP 
indices, which produced predictions of the probability of capture of each of the BMWP 
(biological monitoring working party) families and; Option 2. Abundance for all families 

                                                      
4 Only BWMP-family taxa can be used as the basis for chemical threshold predictions because these are 
the only taxa for which there is data in the ‘pollution sensitivities of taxa’ database. 
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and abundance index, which produced predictions of the abundance of the BMWP 
families.  
 
A method of combining probabilistic information on the likelihood of capture with 
predicted abundance values needed to be defined.  Following consultation with the 
Environment Agency, it was proposed that prediction of target fauna would only include 
those taxa for which the probability of capture exceeded a predefined level. A 
probability of 50 per cent was proposed as the suggested cut-off level, given that it had 
already been used by the Environment Agency to predict abundance-related LIFE 
index for CAMS (catchment abstraction management system) environmental weighting. 
 
Modification to the software 
 
The ‘Pollution Sensitivities of Taxa’ database was modified to incorporate seasonal 
values and additional percentile values. In order to scan the database, the Thresholder 
software was modified to incorporate: 
 

• A facility for the user to change aspects of the scanning process by simply 
altering parameters in the software. 

 
• A prototype Windows® application that could be redeveloped as a web 

application for inclusion in the revised ‘Pollution Sensitivities of Taxa’ 
website. 

 
By providing the user with the ability to change parameters of the scanning process 
such as composition of biological community and abundances of taxa (see next 
section), it was hoped that further modifications to the ‘Pollution Sensitivities of Taxa’ 
database or adjustments to the threshold capture probability would only require 
adjustments to the options provided in the user interface, and not changes to the 
underlying application code. In the longer term, developing the system to 
accommodate different types of scans at this stage would reduce the amount of 
development required later for publication on the internet. 
 
To calculate chemical thresholds for the input target invertebrate fauna, the 
Thresholder software performed two processes. Firstly, it scanned the ‘Pollution 
Sensitivities of Taxa’ database and extracted the records corresponding to each taxon 
at the abundance level specified in the input vector. Secondly, it compared the 
maximum/minimum and percentile range data of each chemical in all the extracted 
records. The aim of this process was to identify the range of concentrations/values of 
chemicals common to each taxon. This involved finding the lowest maximum/upper 
percentile value and the highest minimum/lower percentile value. Once complete, 
these values were then output to provide an idea of the range of chemical 
concentrations within which all taxa in the input vector would be likely to be found. 
 

Using the Thresholder software 
 
As the software initialises, it loads the ‘Pollution Sensitivities of Taxa’ database which 
contains the statistics for each taxon at different levels of abundance.  The main user 
interface window is displayed in Figure 2.7 and has four separate regions:  
 

• Commands – containing buttons that start the main functions of the 
application. These functions are File Input and Manual Input for inputting 
invertebrate fauna data, Run Query and Run Batch Query5 for initiating a 

                                                      
5 The terms ‘query’ and ‘scan’ are used synonymously in the discussion of the Thresholder software.    
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scan of the database and Options for modifying the parameters for the scan 
and report.   

 
• Loaded Sample Data – displays all the sample data loaded from an input 

file. 
 
• Sample Query Parameters – displays abundance values of the invertebrate 

fauna of the current sample. 
 
• Report – displays the results of the query. 

 
The user is then given the option of manually entering abundance values of 
invertebrate fauna or loading sample data from a file. The file formats accepted at the 
time of writing are: 
 

• Comma-delimited (.csv)6.  
• Report files produced by the Abundance for all families and abundance 

index prediction option of RIVPACS. (If a RIVPACS abundance prediction 
file is loaded the user is also presented with the option to load a file that 
contains corresponding probabilities of capture, produced by the BMWP 
families and BMWP indices prediction option of RIVPACS.) 
 

 
Figure 2.7  Screenshot of main Thresholder window, showing abundance values 
for invertebrate fauna of selected sample, and corresponding query report. 

 
If sample data is loaded from a file, all samples in the file are displayed in the Loaded 
Sample Data section of the main screen. By simply clicking on the appropriate sample 
identifier, the user can select its invertebrate fauna data as the basis of a query. At this 
point, the Sample Query Parameters list box is populated with invertebrate data from 
the relevant sample.    
 

                                                      
6 Comma delimited files need to meet file format requirements before they can be loaded by the system. 
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The Sample Query Parameters section of the main window provides the user with the 
option of removing individual taxa from the query or modifying their values (Figure 2.8). 
Once satisfied with the abundance values and the invertebrate taxa to be used in the 
query, the Run Query button can be clicked to provide the user with a report on the 
expected maximum, minimum and percentile statistics for a range of chemical 
parameters.  Alternatively, once a sample input file has been loaded, the Run Batch 
Query can be selected to produce a comma-delimited (.csv) file containing the 
predicted chemical statistics for each of the samples in the input file. 
 
The user is also provided with several options that change the operation of the 
Thresholder software. These options are split into two sections: the first modifies the 
format of the on-screen report, while the second modifies aspects of the query (number 
of samples on which statistics for individual taxa need to be based for consideration in 
the final results, and the cut-off level for the probability of capture, if applicable) (Figure 
2.9). 
 

 
Figure 2.8  Screenshot of Modify Sample/Manual Input dialogue box. 
 

    
 
Figure 2.9 Screenshot of Thresholder Options dialogue box, showing report and 
query parameters available to user. 
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Derivation of chemical threshold values 
 
The chemical threshold results based on the target invertebrate fauna predicted by 
RIVPACS were delivered to the Environment Agency in February 2005. The 
Thresholder software produced two sets of results: the first based on the statistics of all 
taxa regardless of the size of the sample from which the statistics were derived; and 
the second based solely on taxa whose statistics were based on 36 records or more7, 
the larger sample size ensuring greater reliability. 
 
The probabilities of capture and predicted abundances of the target invertebrate fauna 
were loaded directly from the RIVPACS output files. The Run Batch Query command 
was then used to produce the final results, which include maximum-minimum, 90th-10th 
and 75th-25th percentile ranges for each the target invertebrate communities.  
 
The validity of using either set of results as the sole basis to derive chemical threshold 
values is questionable.  It might be argued that they are based on poorly substantiated 
statistics, or on only a subset of the total amount of information potentially available. 
The results are probably best used as a guide for experts with the ability to interpret the 
data to arrive at better-informed decisions on the chemical thresholds finally imposed. 
 

Future work 
 
Because of the demands of the other phases of the project, it was not possible to 
implement Thresholder as a web application, and this must be left for future work.   
 
 
 

                                                      
7 The figure of 36 records was set in consultation with the Environment Agency, as this was roughly the 
minimum number of records required to obtain a reasonable estimate of the 90th percentile value. 
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3 Determine potential 
reference sites 

 

Introduction 
Objectives 
 
Following the derivation of chemical thresholds to support invertebrate fauna, two 
further aims of the project related to the task of identifying unstressed river sites which 
could be used to define reference conditions.  Specific objectives were as follows: 
   

• Search the RPDS database for sites which could be used for this purpose.  
Such sites could then be used to identify clusters in the data model to act 
as target clusters when improvements in quality are tracked over time.   

• Assist in the screening and confirmation of the current set of reference sites 
used by RIVPACS.   

 
The work undertaken to meet these aims is described below. 
 

Generate list of proposed reference sites from RPDS 
database 
 
Introduction 
 
The River Pressure Diagnostic System (RPDS) is based on a cluster model created 
using the Mutual Information and Regression maximisation (MIR-max) algorithm (a 
review of the algorithm can be found in Section 8 of this report). This algorithm is an 
unsupervised clustering method, meaning that the criteria used to perform the 
clustering and assign samples to clusters are not imposed beforehand. Although this 
method has the advantages of being objective and being able to operate without any 
further information, the final model does not include any indication of the set of criteria 
used to construct the clusters or the types of pattern that they represent. Hence the 
clusters in the model need to be examined, their ‘type’ identified and a name or label 
assigned to them. This examination process is known as ‘interpreting’ the model. 
 
One of the main outstanding tasks to enable full use to be made of RPDS was to 
interpret the model in terms of river quality.  Such an analysis would enable an 
estimate of the quality of a new input sample to be made by simply identifying the 
quality band of the cluster that it was classified to. In an operational setting, this would 
provide a quick and sophisticated multivariate method of assigning a quality rating to a 
new sample.  This method would also provide a means of evaluating the quality ratings 
assigned to samples using other methods. This would allow RPDS to be used as a 
screening tool to provide further assurance for quality assessments. 
 
Interpreting the RPDS model 
 
The initial objective was to interpret the model to identify clusters that were of reference 
quality. This involved the following two-stage process. 
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• An initial screening - in which existing information and techniques for 
assessing quality were used to identify candidate reference samples and 
clusters. 

• A detailed analysis of candidate samples/clusters - in which samples and 
clusters received closer inspection by expert biologists to assess the 
appropriateness of the initial classification. 

 
To perform the initial screening, each of the samples in the original RPDS training data 
set (the N2R database) was assessed using four different criteria where possible: 
 

1. A biological GQA grading of A or B. 
2. A chemical GQA grading of A. 
3. No perceived stresses at the site. 
4. All recorded chemical concentrations within 90th percentile range. 

 
The biological and stress data needed for this was available for all 12,078 samples in 
the data set. However, because of the paucity of matched chemical and biological 
sites, the necessary chemical data was available for only 7,230 of the samples, so only 
about 60 per cent of the samples could be assessed using all four criteria - the 
remainder were screened using the biological GQA and stress data. 
 
The initial screening identified 1,234 candidate reference samples.  Of these, 526 had 
chemical data and so met all four criteria.  The remaning 708 samples met the 
biological and stresses criteria only, in the absence of chemical data. 
 
The next stage of the process was a more detailed analysis of the candidate reference 
sites by expert biologists.  The candidate samples were extracted from the database 
and were sent to John Murray-Bligh (Environment Agency) and John Davy-Bowker 
(CEH) for this. 
 

Summarise status of current reference sites according 
to RPDS 
 
Introduction 
 
Implementation of the Water Framework Directive (WFD) requires information on a 
range of sites that are of high quality and are representative of the different types of 
rivers found in the UK. The purpose of collecting this information is to develop a 
‘reference’ model capable of predicting, for any site in the UK, the composition of the 
macroinvertebrate community to be expected if environmental conditions were in WFD 
reference condition (subject to minimal human pressure or pristine, see REFCOND, 
2003). The quality of a particular site can then be expressed as the extent to which the 
community observed at the site deviates from that expected in reference state.  
 
The collection of a large amount of ‘reference’ sample data had already been 
undertaken as part of the development of RIVPACS.  However, not all reference 
samples used for RIVPACS were of WFD reference quality: they were the best 
available and for some types of stream there were no examples where human 
influences were minimal or absent.  Also, whereas RIVPACS sites were chosen 
according to their chemical water quality, a much broader range of pressures were 
encompassed by WFD including flow, morphology and alien species.  As the 
developers of RIVPACS, the Centre for Ecology and Hydrology (CEH, Dorset) 
screened the sample data (Davy-Bowker et al., 2007).  However to complement this 
process it was proposed that RIVPACS reference data be classified by the River 
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Pollution and Diagnostic Systems (RPDS) to indicate any potential stresses on these 
reference sites.  
 
Diagnosis using the River Pressure Diagnostic System (RPDS) 
 
The principal purpose of the River Pollution and Diagnostic System (RPDS) is to 
diagnose stresses that may be affecting a sample taken from a site, by classifying the 
sample solely on the basis of its macroinvertebrate community and a few 
environmental parameters. The diagnosis is based on the degree of similarity between 
the new sample and the cluster(s) that it is assigned to. The RPDS database includes a 
wide variety of data and so RPDS is able to provide predictions for a range of 
environmental parameters, including chemical concentrations and perceived stresses. 
 
Making predictions of environmental parameters using RPDS 
classifications 
 
Like any model that classifies rivers into types, RPDS essentially partitions a 
continuous distribution, with clusters representing areas of the distribution. The mean 
values calculated from all the samples assigned to the cluster are taken to represent 
the ‘centre point’ of the cluster.  This centre point represents the set of values that is 
most indicative of the cluster as a whole. Membership of the cluster is defined by 
similarity to the centre point.  New samples can be classified according to their position 
in relation to the centre points of different clusters.  These classification membership 
values reveal a great deal about the sample, its position in relation to the clusters and 
within the model itself. However, to generate a predicted value for a variable from a set 
of classification results requires all information in the results to be condensed into a 
single value, which creates problems.  
 
The following two methods were used to make predictions of environmental 
parameters using the results of the classification of RIVPACS sites using RPDS. 
 

1. Predictions based on the values of environmental parameters within the 
cluster that is the best match. This is the simplest method of deriving 
predictions for a sample, because the values are taken directly from the 
best matching cluster. 

 
2. The weighted mean method, which uses the membership values and the 

mean values of environmental variables for the cluster to calculate a 
predicted value. The method is defined by the general formula: 

∑

∑

=

== N

i
i

N

i
ii

w

w

xw
X

1

1  

where: 
N = number of clusters 
wi = weightings (in this case similarity values = membership values: in 
RPDS's case the change in mutual information). 
xi = cluster values (in this case the mean of the chemical concentration for 
the samples in that cluster).  

 
Only clusters with positive values of the membership function were used, ensuring 
that the weighted mean was based on clusters that were genuinely similar to the 
sample. The weightings are negative if adding the sample to a cluster changes the 
mutual information (MI) value for the model for the worse. 

 

18 Refinement of AI-based systems for diagnosing and predicting river health  



The key problem with the best matching cluster method is that it takes no account of 
the other cluster membership values. Even if a sample has several cluster membership 
values that are almost identical, only the highest value will be considered and the 
information held within the similarity that it shares with the others clusters is lost. The 
weighted mean method, on the other hand, suffers from ambiguity introduced when 
values are combined and the difficulty of interpreting fractional predicted values for 
discrete parameters (see Figure 3.1). On the other hand, the weighted mean is 
relatively easy to implement as an initial form of analysis and provides valuable 
information on the result of classification. 
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Figure 3.1 Three different membership value distributions that could give the 
same weighted mean result.  
 
Ranking of sites using seasonal and mean total stress values 
 
Three different types of analysis were performed on the best matching cluster and 
weighted mean results. The sites were ranked using seasonal and mean total stress 
values, analysis of the correlation of ranking results and by the identification of 
predicted values that may indicate the impact of a stress.   
 
The total stress value is the total of all the predicted stress values. Predictions for 
individual stresses will not be whole numbers because they are derived from the stress 
values for the cluster, which are the mean of the sample values in that cluster. The total 
of all the stress values will therefore also tend to be fractional. 
 
Values predicted by the best matching cluster and weighted mean methods were 
‘noisy’ because of the use of mean cluster values. This was the case even for best 
matching cluster predictions, where even the high quality potential ‘reference’ clusters 
had low values for some stresses. This limited the information that could be derived 
from the results without undertaking more detailed analyses.  Because of this, the initial 
results simply took the form of a ranking of sites in terms of total stresses. These 
results assumed that the distribution of noise was reasonably consistent and the more 
‘significant’ predicted stress values would influence the rankings. Tables 3.1-3.3 and 
3.4-3.6 show the 20 least and most stressed sites respectively, according to the 
criteria: best matching cluster, weighted mean predictions and the mean of the two. 
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Table 3.1 Top 20 least stressed sites ordered by mean spring/autumn ranking.  
Rankings based on mean predicted stress, predicted using best matching 
cluster method. 

SiteID Site River 
Spring 
Rank 

Autumn 
Rank 

Mean 
Rank 

5619 Bredwardine Wye 3 6.5 4.75 
CL04 Mainholm Ford Ayr 31.5 6.5 19 
3409 Gainford Tees 31.5 16 23.75 
SEPA_N4
5 Syre Naver/Mudale/Meadie 

31.5 16 23.75 

20301601 Glarryford Bridge Main/Clogh River 4.5 69.5 37 
4203 Moffat Annan 48.5 29.5 39 
3407 Barnard Castle Tees 31.5 48 39.75 
3509 Bardon Mill South Tyne 31.5 48 39.75 
3703 Laighlands Teith 31.5 48 39.75 
4211 Brydekir Annan 31.5 48 39.75 

20100701 Killymore Bridge 
Owenkillew 
River/Broughderg Water 

31.5 48 39.75 

SW07 
Mether-uny-Mill 
Bridge Gweek River 

80.5 22 51.25 

HI10 Moy Bridge Conon/Bran 123.5 6.5 65 
SEPA_E0
7 Haugh of Kercock 

Tay/Dochart/Fillan/Cononi
sh 

123.5 6.5 65 

3101 Langdale End Derwent 4.5 127.5 66 
SEPA_N5
4 Rhisalach Kirkaig/Ledbeg 

58 86.5 72.25 

SEPA_N5
5 d/s Loch Borralan Ledmore/Loin Duibh 

58 86.5 72.25 

6105 
Nuns Bridge, 
Thetford Thet 

19.5 127.5 73.5 

4905 Kingledores Tweed 72.5 86.5 79.5 
3603 Middleton Wansbeck 65 101 83 
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Table 3.2 Top 20 least stressed sites ordered by mean spring/autumn ranking. 
Rankings based on mean predicted stresses, predicted using weighted mean 
method. 

SiteID Site River 
Spring 
Rank 

Autumn 
Rank 

Mean 
Rank 

1207 Fawler Evenlode 9 4 6.5 
23601401 Tullyreagh Cross Colebrooke River 20 12 16 
313 Flowerpot Exe 2 37 19.5 
8521 Middle Bere Bere Stream 26 18 22 
1807 Ketford Leadon 57 1 29 
3704 Blackdub Teith 27 31 29 

SEPA_N01 Brouster 
Shetland: Upper Loch of 
Brouster 

50 39 44.5 

23601501 Wattle Bridge Finn River 67 26 46.5 
1901 Perry Farm Perry 78 19 48.5 
601 Patney Avon 60 47 53.5 
2103 Colston Bassett Smite 77 34 55.5 
6801 Grange Wood Middlemarsh Stream 21 90 55.5 
6005 Temple Balsall Blythe 103 10 56.5 
1081 Carter's Lodge Hammer's Pond Tributary 35 81 58 
1301 Wotton Tilling Bourne 79 38 58.5 
NI_3 B84 Road Bridge Owenreagh River 73 55 64 

8309 
Whitehouse Farm 
Ford Bure 

113 17 65 

2005 Field Blithe 72 65 68.5 
3144 Newgate Foot Long Gill 53 86 69.5 
2905 Ouse Bridge Derwent 133 8 70.5 
 
Table 3.3 Top 20 least stressed sites ordered by mean of best matching cluster 
and weighted mean rankings. 

SiteID Site River 
Total Mean 

Rank 
203 Oathill Farm Axe 101.125 
23601501 Wattle Bridge Finn River 105.125 
5619 Bredwardine Wye 131.625 
8521 Middle Bere Bere Stream 134.375 
5383 Bratley Bratley Water 134.875 
20100701 Killymore Bridge Owenkillew River/Broughderg Water 137.125 
5713 Crickhowell Usk 143.5 
7122 King's Farm Moors/Crane 151.25 

20101101 Ballynahatty 
Drumragh River/Ballynahatty 
Water/O 

157.875 

3101 Langdale End Derwent 165 
ST02 Isle Of Bicton Severn 167.625 
3509 Bardon Mill South Tyne 174.625 
5864 Mordiford Lugg 178.25 
20301601 Glarryford Bridge Main/Clogh River 179.75 
6801 Grange Wood Middlemarsh Stream 182 

SEPA_N60 Poolewe 
Ewe/Kinlochewe River/Abhainn 
Bruach 

184.25 

3407 Barnard Castle Tees 186.875 
6840 Gasper Unnamed 188 
605 Bulford Avon 193.25 
3704 Blackdub Teith 194 
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Table 3.4 Top 20 most stressed sites ordered by mean spring/autumn ranking. 
Rankings based on mean predicted stresses using best matching cluster 
method. 

SiteID Site River 
Spring 
Rank 

Autumn 
Rank 

Mean 
Rank 

2621 Earlham Yare/Blackwater 834.5 835 834.75
6921 Runnymede Thames/Isis 819 801 810 
3317 Acaster Malbis Ouse/Ure 809.5 801 805.25
1203 Evenlode Evenlode 787.5 821.5 804.5 
20301801 Rock Bridge Kells Water 797 811.5 804.25
20200501 Corick Bridge Roe 785 816.5 800.75
3111 Thorganby Derwent 744.5 832.5 788.5 
SEPA_N0
7 Stackhoull 

Unst: Burn of 
Mailand/Caldback 

760.5 811.5 786 

1605 Pont Gogoyan Teifi 797 773 785 
1611 Llechryd Teifi 797 773 785 
4983 Chesterfield Ford Whiteadder Water 797 773 785 

20100001 Donnelly's Bridge 
Foyle/Mourne/Strule/Camow
en 

797 773 785 

8421 Lower Brook Test 739 829.5 784.25
1409 Meadgate Lee 744.5 820 782.25
2619 North of Barford Yare/Blackwater 822 735.5 778.75
2303 d/s Hedingham  Colne 832 710.5 771.25
1209 Cassington Evenlode 830 710.5 770.25
23600301 Killynoogan Termon River 812.5 727 769.75
1405 Panshanger Mimram 734.5 797 765.75
1307 Tilford Wey 779.5 749.5 764.5 
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Table 3.5 Top 20 most stressed sites ordered by mean spring/autumn ranking. 
Rankings based on mean predicted stresses, using weighted mean method. 

SiteID Site River 
Spring 
Rank 

Autumn 
Rank 

Mean 
Rank 

SEPA_W02 d/s Cattadale Islay:Laggan/Barr 806 830 818 
20100801 Clougherny Bridge Glenelly River 830 791 810.5 
HI08 Strathan Arkaig/Dessarry 818 798 808 
SEPA_N27 Leachd Thuilm Skye:Brittle 803 812 807.5 

SO03 Nr. Southwick House 
Southwick Burn/Boreland 
Burn 

808 789 798.5 

4901 Fingland Tweed 816 776 796 
SEPA_N21 Sourin Rousay:Suso Burn 777 809 793 
NI_33 Kilnasaggart Bridge Kilnasaggart 732 835 783.5 
4203 Moffat Annan 799 767 783 
HI07 Shiel Bridge Shiel 748 817 782.5 

NH07 
u/s Balderhead 
Reservoir Balder 

774 787 780.5 

NI_2 Broughderg Bridge 
Owenkillew 
River/Broughderg Water 

793 761 777 

SEPA_W07 Monyquil Arran: Machrie Water 781 773 777 
ST01 Llandinam Severn 747 806 776.5 

7305 
Ariundle Oakwood 
NNR Strontian 

710 831 770.5 

SEPA_E01 u/s Auchinner Bridge Water of Ruchill 826 707 766.5 

2901 
Grange-in-
Borrowdale Derwent 

706 825 765.5 

SEPA_W34 A8003 Bridge Ruel 744 783 763.5 
SEPA_N36 Meavaig North Harris: Meavaig River 770 755 762.5 
20500101 Glynn Glynn River/Glenoe Water 784 732 758 

 
Table 3.6 Top 20 most stressed sites ordered by mean of best matching cluster 
and weighted mean rankings. 

SiteID Site River 
Total Mean 

Rank 
20200501 Corick Bridge Roe 765.125 
3111 Thorganby Derwent 680.5 
SEPA_N43 Strathmore Hope 673.25 
6693 u/s Dowles Manor Dowles Brook 661.75 
4305 Fionn-Abhainn Fionn Abhainn 658 
3007 Braystones Ehen/Liza 654 
NH07 u/s Balderhead Reservoir Balder 654 
FO03 Pitcruvie Castle Boghall Burn/Keil Burn 653 
2513 Marston Trussel Welland 645.875 
23601201 Drumkeenagh Black River 643.125 
NI_28 Gortin Bridge Gortin Water 641.125 
6847 Farrington Unnamed 635.875 
4105 d/s Barr Stinchar 632.875 
3301 Keld Swale 625.5 
SEPA_W12 u/s Gaodhail Mull:Forsa 625.5 
107 Brocton Camel 624.375 
3003 u/s Keekle Ehen/Liza 623.125 
23600501 Ederny Kesh River/Glendurragh River 623.125 
20601701 Forkhill Lower Bridge Kilcurry River/Forkhill River 621.25 
3005 d/s Keekle Ehen/Liza 618.625 
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The sets of results for the best matching cluster and weighted mean were markedly 
different, for no site appeared in the lists of 20 least stressed or 20 most stressed sites 
based on both criteria. This result was disappointing and indicated that the inclusion of 
the additional clusters used by the weighted mean method had swamped the values of 
the best matching cluster.  
 
Another notable feature of the results was that although the sites identified by the 
weighted mean method were all from different rivers, some rivers re-occurred in the 
best matching cluster results.  For example, the Tees re-occurs in the 20 least stressed 
sites and the Yare/Blackwater, Evenlode and Teifi all re-occur in the 20 most stressed 
sites. 
 
The combined mean results generally contain sites that occur in either of the other sets 
of results. In particular the list of 20 least stressed sites contains seven sites 
(Brewardine, Langdale End, Bardon Mill, Glarryford Bridge, Barnard Castle, Grange 
Wood and Blackdub) which appear in both the other two lists. The division of the sites 
between the lists is uneven, with the five that appear first in the list coming from the 
best matching cluster results and the remaining two coming from the weighted mean 
results. In the list of 20 most stressed sites, Corick Bridge and Thorganby appear from 
the best matching cluster results; and u/s Balderhead Reservoir from the weighted 
mean results. These results are reassuring because they indicate that there was some 
commonality between the sets. 
 
Analysis of correlation of ranking results 
 
Additional analysis was undertaken using a rank correlation test. Rankings were 
compared between spring and autumn seasons for the same method and between 
methods in the same season.  Seasonal correlations for each method were low, with r 
values of 0.27 and 0.33 for the spring and autumn rankings for the best matching 
cluster and weighted mean methods respectively. However, the correlations between 
the rankings for the same season were much higher, with r values of 0.65 and 0.66 for 
spring and autumn respectively. This indicated that the main source of disparity 
between the individual sets of rankings was the season rather than the method used.   
 
Identification of predicted values that may indicate the impact of a 
stress 
 
As mentioned earlier, background ‘noise’ in the weighted mean results made it difficult 
to identify predicted stress values that might have indicated the impact of a stress. This 
was a key aspect of the study, because although the ranking of sites was useful, it did 
not indicate the factors that made one site worse than another. 
 
One possible method for identifying the stresses impacting on a site was to identify the 
predicted stress values that deviated sufficiently from the baseline noise to be 
considered significantly different. This was done by calculating the mean value for each 
of the stresses based on all the samples and identifying values that were different by 
more than two standard deviations from the mean. All values nearer than two standard 
deviations from the mean were considered to be primarily the product of noise and 
were assigned a ‘zero’ and all those above were considered to be a ‘true’ stress and 
assigned a ‘one’. As before, the number of stresses for a site was totalled to provide a 
ranking, but in addition, the stresses responsible for that ranking could also be 
identified. 
 
The 20 most stressed sites in both spring and autumn are shown in Tables 3.7 and 3.8 
respectively. Like the best matching cluster and weighted mean predictions, the 
seasonal results show few similarities: in fact only one site appears in both lists 
(Sordale on the Thurso River).  As before, there were discernable differences between 
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the spring and autumn results.  A further list of sites considered to be stressed in both 
seasons was produced by matching sites with stresses in both spring and autumn.  
Table 3.9 lists the 20 most stressed sites according to this list.   
 
Table 3.7 Top 20 most stressed sites in spring, with stress identified as predicted 
stress value greater than two standard deviations from mean value for all 
samples. 
SiteID Site River Total Stresses 
20303101 Airport Bridge Crumlin River 9 
4111 Ballantrae Stinchar 6 
5305 Millyford Bridge Highland Water 6 
2211 Monk's Bridge Dove 5 
5607 Marlbrook Lugg 5 
20303401 Caledon Bridge Blackwater 5 
207 Whitford Bridge Axe 4 
229 Gammons Hill Yarty 4 
411 Great Torrington Town Mills Torridge 4 
1603 Tregaron Bog Teifi 4 
2513 Marston Trussel Welland 4 
3381 Hubberholme Wharfe 4 
3704 Blackdub Teith 4 
4807 Sordale Thurso 4 
5695 Folly Farm Arrow 4 
6801 Grange Wood Middlemarsh Stream 4 
9703 Glassoch Bridge Bladnoch 4 
20100801 Clougherny Bridge Glenelly River 4 
20301601 Glarryford Bridge Main/Clogh River 4 
23600301 Killynoogan Termon River 4 

 
Table 3.8  Top 20 most stressed sites in autumn, with stress identified as 
predicted stress value greater than two standard deviations from mean value for 
all samples. 
SiteID Site River Total Stresses
NI_33 Kilnasaggart Bridge Kilnasaggart 8 
2507 Banthorpe Lodge Glen 6 

20400201 Iderown Bridge 
Dervock River/Stracam 
River/Dougher 

6 

2607 Worthing Wensum 5 
2721 Ribchester Bridge Ribble/Gayle Beck 5 
2911 Workington Derwent 5 
3007 Braystones Ehen/Liza 5 
NI_24 Carrols Bridge Crew Burn 5 

SEPA_N09 Bouster 
Yell: Easter Burn of 
Bouster 

5 

SEPA_W02 d/s Cattadale Islay: Laggan/Barr 5 
SEPA_W06 Drochaid Bheag Islay: Duich/Torra 5 
2505 Little Bytham Glen 4 
4807 Sordale Thurso 4 
5003 Bidwell Farm Otter 4 
5005 Monkton Otter 4 
5381 Vereley Ober Water 4 
5856 Leominster Main Ditch 4 
6201 u/s Brackley Unnamed 4 
6242 Nine Wells Nine Wells Spring 4 
6413 Tootle Bridge Brue 4 
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Table 3.9 Top 20 sites identified as having stresses in both seasons ranked by 
mean number of stresses. 

SiteID Site River 
Autumn 
Stresses

Spring 
Stresses 

Mean 
Stresses

20303101 Airport Bridge Crumlin River 1 9 5 

NI_33 
Kilnasaggart 
Bridge Kilnasaggart 8 1 4.5 

4111 Ballantrae Stinchar 2 6 4 
2211 Monk's Bridge Dove 3 5 4 
4807 Sordale Thurso 4 4 4 

20400201 Iderown Bridge 

Dervock 
River/Stracam 
River/Dougher 

6 2 4 

20303401 Caledon Bridge Blackwater 2 5 3.5 
2513 Marston Trussel Welland 3 4 3.5 
2721 Ribchester Bridge Ribble/Gayle Beck 5 2 3.5 
3007 Braystones Ehen/Liza 5 2 3.5 
SEPA_W02 d/s Cattadale Islay: Laggan/Barr 5 2 3.5 
23600301 Killynoogan Termon River 2 4 3 

TA04 
u/s Tay 
Confluence Braan 2 4 3 

5401 Hadman's Place Beult 3 3 3 
9711 Spittal Bladnoch 3 3 3 
20302101 Dundermot Bridge Killagan Water 3 3 3 

SEPA_W04 
u/s Duich 
confluence Islay: Laggan/Barr 3 3 3 

5381 Vereley Ober Water 4 2 3 
6413 Tootle Bridge Brue 4 2 3 
7311 Anaheilt Strontian 4 2 3 
 
Feedback 
 
It was pointed out (by John Davy-Bowker, CEH) that many of the most stressed sites 
(Tables 3.4-3.6, 3.7-3.9) were from Scotland or Northern Ireland.  The likely reason for 
this was that RPDS was based on data from England and Wales, which generally has 
a less harsh climate and hence richer biological communities. Although the Scottish 
Environmental Protection Agency (SEPA) and EANI reference sites are of good quality 
for their environment, they appear to have been identified as of a lower quality 
compared to the reference sites for England and Wales, which are naturally richer.  
The inclusion of SEPA data in the current project should alleviate this problem if the 
exercise is repeated. 
 
Conclusions 
 
Preliminary lists of RIVPACS reference sites that may be stressed have been 
produced. Of the three lists, the one based on values that differ from the mean by more 
than two standard deviations is probably the most useful.  This analysis includes an 
attempt to remove the impact of noise on the results and it identifies particular stresses 
that may affect the sample sites.  The classification values on which this is based are 
the same as those used to produce the best matching cluster and weighted mean 
results, which provide alternative perspectives and additional information on 
classifications made by RPDS. 
 
The main differences in the sets of predictions are caused by season rather than 
method of analysis.  This provides reassurance that the classifications made by the 
seasonal RPDS models are consistent. However, the difference between the 
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predictions made by the seasonal models is of interest and requires further analysis to 
determine its implications. 
 
Finally and most importantly, the results should only be considered as part of an interim 
analysis.  Screening of the clusters in the RPDS model is vital to obtaining a more 
complete and consistent set of predictions and analyses.  Attention should be focussed 
on the new RPDS model, which includes sites from Scotland as well as England and 
Wales, the data validation for which is described in the next sections of this report. 
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4 Construction of project 
database: biological data 

 

Introduction 
 
The biological database was fundamental to the project and ensuring the quality of its 
data was of paramount importance.  As mentioned in Section 1, construction of the 
dataset was a major task which severely impacted the time available for the rest of the 
project.  However, the dataset that was produced is one of the largest of its kind ever to 
be assembled.  The stages required in its development are described below. 
 

Standardising Environment Agency and SEPA data 
 
The Environment Agency data came principally from the Environment Agency’s 
BIOSYS database, which contains an extensive amount of macroinvertebrate data 
recorded at various taxonomic levels using the National Biodiversity Network (NBN) 
coding system and structured according to the NBN Data Model (see www.nbn.org.uk 
for details).  Whilst the sophistication of this data model makes the database able to 
deal with different types of data recorded using different species dictionaries, it can 
make extraction and modification of the data awkward.  The SEPA database, on the 
other hand, is at a much earlier stage of development. Unlike the Environment Agency, 
however, chemical and biological data is kept in the same database. The majority of 
macroinvertebrate data in SEPA’s database is recorded using the latest versions of the 
modified Furse-Maitland Code and identified only to family level. 
 
In order to standardise the biological data provided by the Environment Agency and 
SEPA for inclusion in a unified database, it was first necessary to obtain a match 
between the codes or names used to identify taxa in each dataset. The Environment 
Agency used the NBN (National Biodiversity Network) system to encode samples, and 
this has the advantage of enabling cross-referencing with other taxonomic checklists 
and codes through a ‘Taxon Dictionary’. As a result, the sample data supplied by the 
Environment Agency had a ‘SORT_CODE’ field that contained the revised Furse-
Maitland Code (Maitland, 1977)8 version 1.1 for each taxon. The SEPA sample data 
also contained the Maitland Code for each taxon; however the codes were from version 
3.1 of the checklist published on 2 July 2003. An attempt to produce a match based on 
the checklists produced 777 unmatched codes and 332 mismatches where the codes 
were the same but either the taxon or spelling of the taxon’s name differed. 
 
To obtain a better match, the process focused initially on only the taxa that appeared in 
the SEPA sample data and names of the taxa were used as the match criteria instead 
of codes. The reason for matching by names was that they appeared to be modified 
less frequently than the codes and the problem of mismatches caused by the swapping 
of codes was removed. Modifications to the matching process led to all but 16 taxa 
being matched, and after consultation with the Environment Agency the problems with 
these were resolved. 
 

                                                      
8 Although referred to as the Maitland Code for historical reasons, taxonomic codes used by the 
Environment Agency and SEPA are revised versions of the original Maitland Code published in 1977. The 
revised code was originally published in 1989 and was developed by Mike Furse (Centre for Ecology and 
Hydrology, CEH), Ian McDonald (Thames Water Authority) and Bob Abel (Department of the Environment) 
and has been maintained by Mike Furse. A copy of the most recent version of the code is available from 
the CEH website (http://science.ceh.ac.uk/subsites/eic/ddc/furselist/ index.htm).      

28 Refinement of AI-based systems for diagnosing and predicting river health  

http://www.nbn.org.uk/
http://science.ceh.ac.uk/subsites/eic/ddc/furselist/%20index.htm


To produce a more robust solution to matching Environment Agency and SEPA data, a 
Maitland Code look-up database was constructed. Following the principles of the NBN 
Taxon Dictionary, this permitted cross-referencing between different versions of the 
Maitland Code. 
 

Duplicate sample data 
 
Analysis of datasets from the Environment Agency and SEPA revealed they both 
contained duplicated sample data. In the majority of cases, duplicate data was simply a 
copy; that is, the site, sample, and abundance value for the particular taxon were 
identical. However, there were cases in which the site and sample information was the 
same but recorded abundance differed. Whilst the problems of copied records could be 
rectified by simply deleting all but one of the copies, the problem of the same samples 
having different abundance recorded could not because there was no way to identify 
which was the ‘correct’ value. 
 
The reason for the duplicate data in both cases was simplification of the structure of 
BIOSYS data to supply all the data in one table. In the BIOSYS database, each sample 
could have several records in other tables associated with it. When the multiple table 
structure was collapsed into one, each record from the related table was assigned a 
copy of the sample data that it was associated with.  
 
The copied records were caused by collapsing the relationship in the BIOSYS 
database between the B4W_REASONS and B4W_SAMPLES tables, so for each 
sample with several ‘reasons for sampling’ there was a corresponding number of 
copies of the sample data. The solution to this problem was simply to group all the 
records on all fields other than ‘Reason’, which effectively removed all the copied 
records.  
 
The same samples having different abundance values was caused by collapsing the 
relationship between the B4W_SAMPLES and B4W_ANALYSIS_TAXA tables. Again, 
the information associated with the original sample was the same but the recorded 
abundance differed when more than one laboratory analysis was performed on a 
sample and the results of those analyses differed. In this case, there was no easy way 
to remove the duplicates because the dataset lacked the extra information associated 
with the individual analyses that would enable them to be distinguished. The only 
resolution to this problem was to have the biological data re-extracted from BIOSYS 
with the additional ‘analysis’ fields included. Once this data had been acquired, it was 
necessary to reduce the analysis result for each sample to just one. The ‘initial primary 
laboratory analysis’ results were used because this was the main analysis performed 
on the majority of samples (other analyses checked the quality of this main analysis for 
audit or analytical quality control).  
 

Project taxonomic groupings list for Environment 
Agency database 
 
The processes involved in the construction of the Environment Agency and SEPA 
databases were very different. The main difference was that the abundance values 
recorded for higher taxonomic groupings were inclusive in the SEPA database, that is, 
the abundance recorded for a family included the abundances of all the species that 
were recorded; in the Environment Agency’s BIOSYS database the abundance values 
were exclusive, that is, the abundance recorded for a family did not include the 
abundances recorded for its constituent species. To extract the SEPA biological data, 
all that was needed was a list of required family identifiers. However, for the 
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Environment Agency, a list of all the required taxonomic groupings and all the 
taxonomic levels below that grouping against which data had been recorded had to be 
produced, validated and maintained. This task was the most time-consuming part of 
constructing the biological database and the difficulties encountered are discussed 
here.    
 
To construct family level biological sample records, a method for combining species 
level data at a higher taxonomic level was required. As the database software used at 
CIES lacked the ability to perform recursive queries and thereby directly exploit parent 
links in the NBN Code System database, it was necessary to write bespoke software to 
do the job. The software was called NBNTree. 
 
NBNTree software derived results based on predefined taxonomies, with the flexibility 
to amend or redefine taxonomical relationships. This meant that the project database 
could be updated without requiring further data requests for the Environment Agency 
when taxonomic errors were identified. One of the incidental benefits of this software 
was that, during validation of results produced using the Environment Agency’s 
implementation of the NBN system, it was able to identify some missing relationships. 
This information was fed back to the Environment Agency and resulted in changes to 
the BIOSYS database.  Although BIOSYS now has the capacity to do this, NBNTree 
provides much greater flexibility and could be useful to those without access to 
BIOSYS and those who wish to use different taxonomies. 
 
NBNTree software loaded all the information about the taxa and their relationships in 
the form of a network that could be traversed to identify ancestor and descendent links. 
The software was used to construct a list of recorded taxa and their associated 
taxonomic grouping(s), which was used in the process of combining the data to ‘family’ 
records.  The construction of this taxa list involved the following four stages. 
 

1. Identification of all taxa recorded in the BIOSYS data (this initial list 
included macroinvertebrates, plants, algae and diatoms). 

2. Traversal of the ‘parent’ relationships to identify all ancestors and thus all 
taxonomic groupings involved, including those that may not have been 
recorded explicitly, for example when a species had been recorded but 
there were no records containing that species’ family. 

3. Revision of the family list, to remove all unwanted families. 
4. Traversal of the ‘child’ relationships to identify and label all taxa associated 

with a selected family/group. 
 
Ensuring that the final list was accurate and well maintained was vital to the accurate 
reconstruction of sample data. Unfortunately, taxonomy is dynamic and not necessarily 
consistent, making this task difficult and time-consuming, not least because 
implementation of the NBN Code System by the Environment Agency included errors 
and inconsistencies.  Producing the biological data for the ‘intercalibration’ exercise 
and for the revision of BMWP scores (Paisley et al., 2007) required the process to be 
repeated several times. 
 
Missing family links 
 
Vital to the success of the process was the presence of all relevant parent links in the 
NBN Code System, otherwise it might not have been possible to identify the 
appropriate grouping for a taxon. During an inspection of one of the draft ancestor lists 
in stage two, it became apparent that a small number of taxa lacked parental links to a 
family grouping. There were two reasons for this: either the parent relationships 
stopped before family level or they skipped it. Identification of all taxa affected required 
a modification to NBNTree so that it checked for the occurrence of a particular 
taxonomic level amongst the ancestors of a taxon. This not only required additional 
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functionality but also for the ‘taxon ranking’ details in the data to be imported. Once the 
affected taxa were identified, they were sent to the Environment Agency to validate the 
broken links, to amend the NBN Code where necessary and to supply the missing 
taxonomic groupings for the project’s list.  The link between non-native Pacificastacus 
and native Astacidae was broken intentionally, to ensure that only native crayfish were 
included in the calculation of BMWP indices. 
 
‘Sub-family’ groupings 
 
Further problems with the identification of family groupings related to the NBN Code 
System for ranking of taxa and inconsistencies in the definition of parent links. In the 
BIOSYS database, some families shared the same ‘taxon ranking’ as tribes. As 
mentioned previously, the taxon ranking value was used to check whether a taxon had 
a ‘family level parent’ and this led to some taxa that only had links to a tribe being 
validated as having a family level parent. This was not too great a problem, but it 
highlighted the inconsistency in the recording of parental links, with some taxa in the 
same family being linked to tribe and not to the family and vice versa. The majority of 
these problems were associated with Chironomidae, and to achieve consistency it was 
decided to record all chironomids at tribe level, and allow them to be considered 
separately or combined to family level. It was therefore necessary to send the list of 
chironomids whose parent was Chironomidae to the Environment Agency, so that they 
could be assigned to tribes. This revised list was then incorporated into the master 
taxonomic groupings list. 
 
Removal of unwanted sites 
 
The data supplied from BIOSYS included data from a range of different categories of 
water bodies, some of which were artificial (dykes, ditches and canals) and were 
excluded from our study. The BIOSYS site data contained a field for ‘water body type’, 
which enabled the majority of these unwanted samples to be removed from the project 
database. The remaining samples were then analysed to ensure that this process had 
successfully identified all such samples. This was done by scrutinising the description 
field of the site. First, a list of all the words used in the description field along with their 
frequency of occurrence was created. This list, containing 7,357 words, was then 
checked for words that might indicate a category of water body not included in this 
study and these were recorded in a secondary list. All the site records that contained 
one or more of the words on this secondary list were then extracted. This dataset, 
containing 935 records, was checked to ascertain whether the sites were truly located 
in unwanted water body categories. This check was necessary to ensure that the 
words referred to the actual water body category at the site and were not simply part of 
the description, for example ‘River X near Dyke Y’ or ‘River X at Canal Street.’ This 
process revealed 548 sites which appeared to be located on one of the unwanted 
categories of water body. This list of ‘problem’ sites was sent to the Environment 
Agency for validation.   
 

Validation by checking for errors 
 
Errors in the data are of three basic types: value type errors (that is, values in the 
wrong format or of the wrong type, such as text instead of a number); ‘implausible’ 
erroneous values, where a value has been input incorrectly and is implausibly large or 
small; and ‘plausible’ erroneous values, where a value has been input incorrectly but 
the erroneous value is still plausible. Of these three types of errors the first two are the 
easiest to identify.  Value type errors simply require a format/type check to be 
performed, which can usually be done by the database software itself; and ‘implausible’ 
errors which more often than not can be revealed using basic statistical techniques 
designed to identify outlying values.  
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Plausible errors are much more difficult to identify because they will not be identified as 
outlying. The only way they can be identified is by checking whether the potentially 
erroneous value is consistent with the pattern of values for other variables in the 
sample. This requires a more sophisticated method of analysis (using neural networks, 
for example – see Walley et al. 1998) able to generate expected patterns of values 
against which the sample data can be , 

Since the late 1990s when data was compiled for the preceding project (Walley et al. 
2002), the centralisation and investment in the storage and handling of data in the 
Environment Agency has greatly improved the quality of data held. Simple analysis 
revealed no value type errors and only a small proportion could statistically be 
considered outliers with a reasonable degree of confidence. However, none of the 
outlying values identified were extreme and although high, were still plausible. This 
suggested that the Environment Agency had already performed some validation on the 
data. 

 

Validation by using BMWP assessment data 
 
Once the taxonomic groupings list had been constructed and checked, it was used to 
extract the raw sample data and combine the records to produce family level data. A 
list of families common to both the Environment Agency and SEPA was used to extract 
the equivalent data from the SEPA database and produce records in a common format 
in one unified database.  
 
Validation of the biological data was discussed with the Environment Agency project 
management team, when it was suggested that expert opinion could be used to identify 
values that could be erroneous. It was agreed that the 50 highest abundance values for 
each taxon would be sent to the Environment Agency for evaluation. Values identified 
as potentially erroneous were then checked against lab records to confirm they were 
correct. Only a few such values were identified and queries about these were sent to 
the laboratories. 

Because individual abundance values recorded for each taxon had been combined into 
a single record for each family, it was possible to confirm that records in the project 
database were a true representation of what was originally sampled.  Both the SEPA 
and Environment Agency samples had BMWP-indices associated with them, and by 
calculating these indices from our constructed records, it was possible to perform some 
degree of validation. The assurances provided by this validation process differed for 
the SEPA and Environment Agency dataset and were dealt with as follows: 
 
Validation of SEPA dataset 
 
The majority of SEPA data lacked any sample BMWP values. Fortunately, a process of 
using existing and calculated BMWP assessment data to validate the sample data in 
the SEPA database had already been undertaken. It was therefore possible to 
compare our calculations against the SEPA assessment to provide some degree of 
validation.  However, because both sets of results would be based on values from the 
database, the validation process would not be able to identify erroneous sample data, 
only discrepancies in the way that the data was handled.  
 
An initial comparison of BMWP values produced over 30 differences. The variation was 
caused by a difference in the method used to check for the presence of a BMWP 
taxon. In this project abundance was important and so the criterion for ‘presence’ was a 
check for a valid abundance value - if an abundance value was invalid or missing the 
taxon was ignored. The criterion used by SEPA, on the other hand, was simply the 
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occurrence of a taxon identifier. Therefore, a difference indicated records that 
contained invalid abundance values. 
 
Records with differences were analysed further to identify erroneous values and their 
causes. By far the biggest problem was that the abundance value was simply missing, 
although there were cases where errors were simply syntactical and the correct value 
could be recovered. Because this project required abundance values for every taxon in 
a sample, the 22 records with missing or unrecoverable values were removed from the 
dataset. 
 
Validation of Environment Agency dataset 
 
The Environment Agency supplied a complete list of BMWP values for all samples. 
However, these values were the result of calculations made by the BIOSYS database 
and so were based on the recorded sample data. Therefore, as with the SEPA 
validation process, the results only indicated how closely the BMWP sample 
constructed from the project database replicated that held on BIOSYS. Again, as with 
SEPA, the difference between sets of BMWP result would indicate only discrepancies 
in the way in which the original sample data was manipulated to derive the BMWP 
scores, and not errors in the recorded sample data. 
 
Initial validation tests produced thousands of differences between the project and the 
Environment Agency’s BMWP values, in one case up to 16,000. However, the source 
of most of these errors was traced to project values and omissions in the sets of taxa 
that were combined to form the BMWP ‘families’. Once the missing taxa had been 
identified and included in the relevant composition lists, the number of differences 
dropped to just 353. The cause of the remaining differences was not so easy to detect. 
A small subset of samples was selected for closer analysis, which involved extracting 
the raw sample data, checking it and then calculating the BMWP values manually. 
When the results of the manual calculations agreed with those of the project results, 
the full set of 353 samples were sent to the Environment Agency to establish if BIOSYS 
was responsible for the differences. 
 
The Environment Agency analysis identified the following reasons for the remaining 
discrepancies between BIOSYS and project results. 
 

1. Changes in the classification of species considered to belong to BMWP 
families.  

2. BIOSYS counting scores that were associated with genera. 
3. Errors in data entry, where there had been a failure to record an abundance 

value. 
 
Reasons 1 and 2 relate to the way in which the BMWP-score had been calculated, 
therefore any records that differed for these reasons were still valid and could remain in 
the dataset. However, the records that contained data entry errors had to be removed. 
 

Completed biological database 
 
The final stage in the construction of the biological database was to combine the 
validated Environment Agency and SEPA datasets. This was done by using a look-up 
table in which the names and codes used to identify taxa in the two datasets had been 
matched together.   
 
The 82 BMWP taxa used are given in Table 4.1.  Advances in taxonomy since Maitland 
(1977) have caused some taxa to be removed from several of the families listed in 
Table 4.1 and placed in new families.  Table 4.2 lists the contributing taxa to eleven of 
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the BMWP taxa.  Contributing taxa to two further BMWP taxa, Chironomidae and 
Oligochaeta, are listed in Table 4.3.  Data assigned to Chironomidae that had not been 
allocated to one of the sub-families or tribes listed here contributed to the BMWP taxon 
Chironomidae.   
 
The Environment Agency and SEPA biological sample data is summarised by region 
for spring and autumn for the years 1995 to 2004 in Tables 4.4 and 4.5 respectively.  
Table 4.6 summarises the sites from which the samples were taken for each season.  
Not all of this data could be used in the models.  MIR-max models required 
environmental data in the input vector in addition to biological data, which reduced the 
number of samples that could be used.  BBN models required matched chemical data 
as well, resulting in a further reduction.  The steps required to produce the final 
datasets are described in the next three sections. 
 
Although the work needed to produce the datasets was considerable, they are amongst 
the largest of their type ever to have been compiled, and have formed the basis for 
several other projects in addition to the development of the AI systems described in this 
report.  They have been used for the WFD ‘Intercalibration’ exercise, revision of BMWP 
scores (Paisley et al., 2007), research into ecological impacts (De Zwart et al., 2008, 
Kapo et al., 2008), chemical investigations (Comber and Georges, 2007) and for the 
MEM (Macro-Ecological Model) Project (Holzkämper et al., 2008, Kumar et al., 2008). 
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Table 4.1  The eighty-two BMWP taxa. 
TRICLADA PLECOPTERA COLEOPTERA 
Planariidae Perlidae Gyrinidae
Dendrocoelidae Chloroperlidae Scirtidae
MOLLUSCA Taeniopterygidae Dryopidae
Neritidae Perlodidae Elmidae
Viviparidae Capniidae Hydrophilidae
Ancylidae Leuctridae Dytiscidae
Unionidae Nemouridae Haliplidae
Hydrobiidae ODONATA (Damsel flies) Hygrobiidae
Sphaeriidae_Pea_mussels Calopterygidae MEGALOPTERA 
Lymnaeidae Lestidae Sialidae
Planorbidae Platycnemididae TRICHOPTERA (Caseless)
Valvatidae Coenagriidae Philopotamidae
Physidae ODONATA (Dragon flies) Polycentropodidae
OLIGOCHAETA Cordulegasteridae Rhyacophilidae
Oligochaeta Aeshnidae Psychomyiidae
HIRUDINA Libellulidae Hydropsychidae
Piscicolidae Corduliidae TRICHOPTERA (Cased)
Glossiphoniidae Gomphidae Odontoceridae
Erpobdellidae HEMIPTERA Lepidostomatidae
Hirudinidae Aphelocheiridae Goeridae
CRUSTACEA Hydrometridae Brachycentridae
Astacidae Gerridae Sericostomatidae
Corophiidae Mesoveliidae Beraeidae
Gammaridae Nepidae Molannidae
Asellidae Naucoridae Leptoceridae
EPHEMEROPTERA Pleidae Phryganeidae
Siphlonuridae Notonectidae Limnephilidae
Heptageniidae Corixidae Hydroptilidae
Ephemeridae DIPTERA 
Leptophlebiidae Simuliidae
Ephemerellidae Tipulidae
Potamanthidae Chironomidae
Caenidae
Baetidae  
 
Table 4.2  Taxa contributing to the eleven composite BMWP families. 
BMWP Taxon 
Name Contributing Taxa 
Ancylidae Ancylidae, Acroloxidae 
Dytiscidae Dytiscidae, Noteridae 
Gammaridae Gammaridae, Crangonyctidae, Niphargidae 
Hydrobiidae Hydrobiidae, Bithyniidae 
Hydrophilidae Hydrophilidae, Hydraenidae 
Limnephilidae Limnephilidae, Apatania 
Planariidae Planariidae, Dugesiidae 
Psychomyiidae Psychomyiidae, Ecnomidae 
Rhyacophilidae Rhyacophilidae, Glossosomatidae 
Siphlonuridae Siphlonuridae, Ameletus 
Tipulidae Tipulidae, Cylindrotomidae, Pediciidae, Limoniidae 
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Table 4.3  Taxa contributing to BMWP taxa Chironomidae and Oligochaeta. 
BMWP Taxon 
Name Contributing Taxa 
Chironomidae Chironomini, Diamesinae, Orthocladiinae, 

Podonominae, Prodiamesinae, Tanytarsini   
Oligochaeta Enchytraeidae, Glossoscolecidae, Haplotaxidae, 

Lumbricidae, Lumbriculidae, Naididae, Tubificidae   
 
Table 4.4  Summary of biological samples by year and agency for spring. 

 Grand
Year ANG NE NW MID SO SW TH WEL Total E N W Total Total
1995 724 727 864 1266 476 1123 563 812 6555 168 251 16 435 6990
1996 806 319 303 1057 268 320 113 83 3269 76 123 16 215 3484
1997 729 344 303 800 284 427 229 22 3138 144 250 16 410 3548
1998 629 409 485 1090 325 254 297 64 3553 169 162 20 351 3904
1999 640 519 511 675 450 255 367 20 3437 226 238 20 484 3921
2000 528 868 867 1160 521 1193 559 830 6526 215 234 21 470 6996
2001 23 67 26 117 146 27 122 12 540 242 196 11 449 989
2002 456 444 441 768 456 455 382 314 3716 268 279 26 573 4289
2003 463 444 477 588 357 421 350 365 3465 726 498 22 1246 4711
2004 422 420 504 457 276 384 319 309 3091 689 459 504 1652 4743
Total 5420 4561 4781 7978 3559 4859 3301 2831 37290 2923 2690 672 6285 43575

SEPAEA

 
 
Table 4.5  Summary of biological samples by year and agency for autumn. 

 Grand
Year ANG NE NW MID SO SW TH WEL Total E N W Total Total
1995 736 811 852 1493 470 1119 539 811 6831 131 170 4 305 7136
1996 728 380 155 808 259 213 195 36 2774 78 133 0 211 2985
1997 739 330 413 1161 304 196 102 16 3261 121 140 0 261 3522
1998 693 404 319 1017 353 263 294 12 3355 183 98 19 300 3655
1999 508 499 562 623 351 245 378 29 3195 223 78 20 321 3516
2000 564 619 589 851 377 1016 556 725 5297 197 156 16 369 5666
2001 285 324 202 716 363 220 181 58 2349 428 159 18 605 2954
2002 451 419 458 532 396 400 338 336 3330 257 155 25 437 3767
2003 447 432 448 573 346 389 341 332 3308 698 421 20 1139 4447
2004 400 381 496 456 289 341 310 322 2995 620 369 419 1408 4403
Total 5551 4599 4494 8230 3508 4402 3234 2677 36695 2936 1879 541 5356 42051

EA SEPA

 
 
Table 4.6  Summary of sampling sites by agency and season. 

Grand
ANG NE NW MID SO SW TH WEL Total E N W Total Total

Spring 1025 1354 1330 2205 1419 1901 1084 1063 11381 900 778 503 2181 13562
Autumn 1007 1357 1275 2156 1351 1780 1013 1110 11049 893 727 436 2056 13105

EA SEPA
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5 Construction of project 
database: environmental and 
chemical data 

 
Introduction 
 
The biological dataset described in Section 4 was combined with other datasets to 
produce the databases on which the revised MIR-max and BBN models were based.  
The input vector for the MIR-max models required the addition of environmental 
variables, whereas the BBN model required the addition of both environmental and 
chemical variables.  The procedures used to achieve this are described in this Section. 
 

Sample environmental data 
 
The 13 environmental variables used in the previous project were linked with the 
biological data and are reproduced in Table 5.1.  These were recorded for every 
invertebrate site by SEPA and Environment Agency and were also used by RIVPACS 
as predictor variables. 
 
Table 5.1 List of 13 environmental variables used in previous project. 
Variable Description Variable Description 
X Global northing of NGR DISCH Discharge Category 
Y Global easting of NGR BLDS Boulders (% of substrate) 
ALT Altitude (m) PBLS Pebbles (% of substrate) 
LDIST Log10 distance from source SAND Sand (% of substrate) 
LSLOPE Log10 slope (m/km) SILT Silt (% of substrate) 
WIDTH Average width of river (m) ALK Alkalinity (mg/l of CACO3) 
DEPTH Average depth of river (m)   
 
All of these, with the exception of X and Y, were used in the input vector for the original 
pattern recognition system.  It was anticipated that a similar set of variables would be 
used in the extended models, with the possible exception of alkalinity.  Alkalinity is no 
longer measured regularly by the Environment Agency, but given its importance in 
determining the composition of the biological community, alternative options were 
sought.   
 
Because the value of alkalinity changes little with time, a straightforward option was to 
calculate the mean value for a site based on the recorded values contained in samples 
taken at the site.  The mean value could then be used for all samples taken at that site, 
whether a value had been recorded or not.  While the advantage of this was simplicity, 
the disadvantage was that no value would be available for samples taken at sites for 
which no values had ever been recorded.  The same would apply to samples taken at 
new sites, for which historical records would be unavailable.  The second option was to 
use the proportion of calcareous geology in the upstream catchment as a surrogate for 
alkalinity.  The advantage would be that, in principle, a value would be available for all 
sites, with the disadvantage that, being the output of a GIS task, it might be difficult for 
a biologist to obtain a value for a new site.   
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The corresponding dataset for the BBN required matched chemical data, in addition to 
the biological and environmental data discussed so far.  This required a number of 
further steps, starting with validation of the chemical dataset.  It was then necessary to 
validate the spatial coordinates of the biological and chemical sites before finally 
producing the set of matched biological and chemical samples.  These steps are 
described in the rest of this section. 
 

Chemical data 
 
As mentioned in Section 1, inconsistencies and incompatibilities in the data obtained 
from the Environment Agency in year-by-year increments resulted in the entire 
chemical (as well as biological) data for the period 1993-2004 being obtained again in a 
single retrieval from the Environment Agency’s databases.  The construction of the 
project’s chemical database was completed more quickly than its biological 
counterpart, given the absence of time-consuming problems associated with taxonomy, 
although it was not without its own difficulties. 
 
Data preparation and validation 
 
The Environment Agency dataset contained over 24 million records and 5,500 
determinands while the SEPA dataset contained over 180,000 records and 82 
determinands.  Given the large size of the Environment Agency database and the 
length of time required to run even simple queries, the Environment Agency database 
was rationalised by removing all redundant sites, determinands and samples. Both 
databases were then compared to define a common set of determinands with the same 
measurement units to produce a unified database. 
 
To derive a list of chemical variables for the project, tables of sampling frequencies 
were produced for the Environment Agency and SEPA datasets. Based on the overall 
frequency of sampling, 42 determinands were then selected, as defined in Table 5.2. 
The frequencies of occurrence varied from roughly 90 per cent of samples down to five 
per cent.  
 
Unwanted sites were eliminated by removing those that did not have the ‘sample 
material’ code recorded as ‘river/running surface water’, and as a result the number of 
sites in the list dropped from 6,662 to 6,062. 
 
Potentially erroneous samples values were identified by producing the ‘top 50’ values 
for each variable that were then scrutinised by the Environment Agency project team 
(as had been done for the biological data).  The consensus in the feedback was that 
although some values were anomalous, of greater concern was whether the sites were 
actually river sites.  Additional data was supplied from the Environment Agency on the 
sample sites, which included a ‘site type’ field that enabled genuine river sites to be 
identified.  Because some river sites may have been omitted from the original data 
retrieval, the entire chemical dataset was retrieved again, including this information, 
and the steps described above were repeated. 
 

38 Refinement of AI-based systems for diagnosing and predicting river health  



Table 5.2  Definition of chemical variables. 
CIES EA SEPA

Description Description Description
Alkn AlkalinityTotal 162 ALKALINITY PH 4.5 - as CACO3 200200 Alkalinity mg/L

AmNI 119 AMMONIA UN-IONISED (CALCULATED) 250220 NonionNH3 mg/L

AmTN 111 AMMONIA - AS N 250200 Ammonia mg/L

AsTl Arsenic Total 6046 ARSENIC - AS AS 300250 As µg/L
BOD5 BOD 5 85 BOD ATU as O2 220200 BOD (ATU) mg/L
CaDs Calcium Dissolved 239 CALCIUM DISSOLVED - AS CA 300125 Ca < 0.45?m mg/L
CaTl Calcium Total 241 CALCIUM - AS CA 300120 Ca mg/L
CdDs Cadmium Dissolved 106 CADMIUM DISSOLVED - AS CD 300195 Cd < 0.45?m µg/L
CdTl Cadmium Total 108 CADMIUM - AS CD 300190 Cd µg/L
Chlo Chloride Ion 172 CHLORIDE ION - AS CL 250400 Chloride mg/L
Cond Conductivity at 25 C 77 CONDUCTIVITY @25C 200160 ElecCond-25 µS/cm
CrDs Chromium Dissolved 3409 CHROMIUM DISSOLVED - AS CR 300205 Cr < 0.45?m µg/L
CrTl Chromium Total 3164 CHROMIUM - AS CR 300200 Cr µg/L

CuDs Copper Dissolved 6450 COPPER DISSOLVED - AS CU 300215 Cu < 0.45?m µg/L
CuTl Copper Total 6452 COPPER - AS CU 300210 Cu µg/L
FeDs Iron Dissolved 6460 IRON DISSOLVED - AS FE 300165 Fe < 0.45?m µg/L
FeTl Iron Total 6051 IRON - AS FE 300160 Fe µg/L
Hard Hardness Total 158 HARDNESS TOTAL - as CACO3 201100 Hardness mg/L
HgTl Mercury Total 105 MERCURY - AS HG 310400 Hg µg/L
KTl Potassium Total 211 POTASSIUM - AS K 300110 K mg/L

MgDs Magnesium Dissolved 235 MAGNESIUM DISSOLVED - AS MG 300135 Mg < 0.45?m mg/L
MgTl Magnesium Total 237 MAGNESIUM - AS MG 300130 Mg mg/L
MnTl Manganese Total 6050 MANGANESE - AS MN 300180 Mn µg/L
NaTl Sodium Total 207 SODIUM - AS NA 300100 Na mg/L
NiDs Nickel Dissolved 3410 NICKEL DISSOLVED - AS NI 300225 Ni < 0.45?m µg/L
NiTl Nickel Total 6462 NICKEL - AS NI 300220 Ni µg/L

NO2N Nitrite 118 NITRITE - as N 250240 Nitrite mg/L
NO3N Nitrate 117 NITRATE - as N 250250 Nitrate mg/L
OPhos Orthophosphate 180 ORTHOPHOSPHATE - as P 250300 o-Phosphate mg/L
OxDs Oxygen Dissolved 9924 210100 O2 - DO mg/L

Oxsa Oxygen % Saturation 9901 210200 O2 -%sat %

PbDs Lead Dissolved 52 LEAD DISSOLVED - AS PB 300235 Pb < 0.45?m µg/L
PbTl Lead Total 50 LEAD - AS PB 300230 Pb µg/L
Phos Phosphate 192 PHOSPHATE 250320 P mg/L
pHVl pH 61 PH - AS PH UNITS 200100 pH 

p
units

SiO2 Silicate 182 250430 Silicate mg/L

SO4 Sulphate 183 SULPHATE - AS SO4 250410 Sulphate mg/L
SusS Suspended Solids 135 SOLIDS SUSPENDED @105C 140100 SuspSolids mg/L
Temp Temperature 76 TEMPERATURE WATER 110104 SampleTemp °C
TOxN 116 250230 TON mg/L

ZnDs Zinc Dissolved 3408 ZINC DISSOLVED - AS ZN 300245 Zn < 0.45?m µg/L
ZnTl Zinc Total 6455 ZINC - AS ZN 300240 Zn µg/L

Total Oxidised Nitrogen NITROGEN TOTAL OXIDISED - AS N

Ammoniacal Nitrogen 
Non-ionised 

Ammoniacal Nitrogen 
Total 

SILICATE REACTIVE DISSOLVED - AS 
SIO2

CIES 
Code

EA 
Code

OXYGEN DISSOLVED (INSTRUMENTAL - 
IN SITU) - AS O

OXYGEN DISSOLVED (INSTRUMENTAL) - 
AS % SATN

UnitSEPA 
Code
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Spatial matching 
 
Methodology 
 
Validation of the map coordinates supplied with the sample sites was extremely 
important. Once the biological and chemical databases were finalised, the biological 
and chemical sample sites had to be paired or matched with geographically close 
counterparts on the same stretch of water.  
 
Spatial validation of grid references  
 
The grid references of each site were plotted on the 1:50,000 digital river network base 
map supplied and information on location provided with the sample, such as an ID 
number or river name, was matched to a feature on the base map. The more specific 
the location of the feature, the more accurate the validation.  For example, in most 
cases matching the river name of the plotted point to a river on the map would give a 
greater degree of confidence than simply matching by region or county.   
 
SEPA sites 
 
The 3,400 sites in the SEPA biological and chemical database contained a river ID.  
ArcGIS was used to match these with the river ID of the nearest section of the base 
map, provided the nearest section was within 100 m.  Of the 3,400 SEPA sites 
processed, just 17 produced mismatches. Of these, the location of one site was out of 
position, ten corresponded to a meeting of two rivers where the site was closer to the 
‘incorrect river’, and six corresponded to sites which were closer to a nearby ’incorrect’ 
river than to the ’correct’ river.  
 
Environment Agency sites 
 
Both biological and chemical sites had information on the water body name, region and 
a site description. Although the description offered valuable information, the range of 
entities used to define the location was too great and inconsistent between samples 
(names of towns, farms, streets and roads were commonly used). Obtaining this type 
of base map data and finding out which was relevant for each sample would have been 
expensive and impractical. Environment Agency regions were too broad spatially to 
offer any real confidence in the accuracy of the validation. This left only the information 
on the water body name as a viable means of validating the location of the sites. Even 
this had limitations, because matching a site to a river would not necessarily mean that 
the position along that river was correct.  
 
However, a further method of spatial validation was provided by the 1:50,000 river 
network base map supplied by the Environment Agency. Each stretch of river on the 
base map included information on the chemical and biological site used to assess it. 
The sites were plotted on the map, matched to the nearest stretch of river (a process 
called ‘snapping’) and the ID of the site checked against the corresponding assessment 
ID for the stretch. This form of validation provided a higher degree of confidence in the 
accuracy of the map coordinates of the site because the stretches were much smaller 
geographic features than rivers or regions. The drawback was that the river network 
only had information on a subset of sites, which meant that matching by river name 
was the only option for the remaining sites.     
 
ArcGIS software was used for the spatial matching of sample sites to river stretches. 
The result of this process was the joining of each of the sample site records with data 
from the closest stretch on the river network base map, along with a field giving the 
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distance between the two in metres. This dataset was used as the basis for the 
validation process.  
 
As well as validating sites by matching an ID or name, a maximum limit of 100 metres 
was set for the distance between the site and stretch for the join to be valid. Of the 
original biological sites, about a quarter matched to the stretch for which they were 
named as the assessment site and were within the 100 metres limit.  The remainder 
were matched by name. 
 
The main difficulty when matching a site to a stretch by a water body name was that 
the names had to be identical. The names of water bodies were usually in the form of a 
‘distinctive’ name followed by a word describing the type of water body, such as 
‘Lambwath Stream’ or ‘Hooton Brook’. Differences in spelling tended to be variations in 
the ‘distinctive’ name or the abbreviations of the category of water body, for example 
‘Brook’, ‘Brk’ or ‘Bk’. There was no way to deal with variations in the spelling of the 
‘distinctive’ names other than checking them manually. It was possible to try and 
eliminate the problems associated with the water body category by removing these 
words from the description. The match was then made on the remaining ‘distinctive’ 
name words, resulting in a percentage match value.  
 
All names of records that were within the 100 metres limit were checked, but the 
amount of effort put into this varied depending on the percentage match value and the 
distance. Those with 100 per cent match and a small distance between them were 
scanned mainly to check if the removed water body words matched.  As the 
percentage dropped or the distance increased, the amount of effort put into the 
checking process increased.  The greatest amount of effort was put into those with 
zero match because, though the water body names differed, they were still 
geographically close, so these records were those most likely to have variations in the 
spelling of the ‘distinctive’ name. The whole process was laborious and time-
consuming but resulted in approximately 12,000 validated biological sites.   
 
The same process was conducted on the chemical sites, resulting in approximately 
6,000 validated chemical sites. 
 

Matching biological and chemical sites 
 
SEPA sites 
 
Around 330 of the 3,400 sites were common chemical and biological sites.  A search 
was made through the remainder to identify biological and chemical sites with matching 
river IDs that were within a threshold distance of 400 m, resulting in a total of 830 
matched sites. 
 
Environment Agency sites 
 
The validated biological and chemical sites were matched according to stretch 
information, and using a threshold distance of 400 m.  The resulting matches were 
checked with the locations of sewage treatment works and any pairs discarded when 
one was located upstream and the other downstream.  This resulted in 5,300 pairs of 
matched sites. 
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Derivation of chemical statistics 
 
Following the spatial matching of the chemical and biological samples, the chemical 
statistics required for each variable were derived.  The diagnostic information for the 
pattern recognition system could accommodate a variety of statistics for each of the 42 
chemical variables, with the impact on performance the only constraint - the more data 
that was included, the slower the application was likely to be.  The key statistic for the 
majority of variables was the mean value over the three years prior to the sample date, 
with exceptions being the fifth percentile for PHVL, 10th for OXDS and OXSA, 90th for 
AMNI, AMTN and BOD5, 95th for SUSS and 98th for TEMP (matching the statistics 
used for chemical environmental standards).  Other statistics could be included in the 
pattern recognition system if desired, following the results of performance tests. The 
Bayesian Belief Network, on the other hand, used a relatively small subset of the 42 
chemical variables, and the model would be based on key statistics from the 
specification given above.  Hence, for each of the 42 chemical variables, a range of 
statistics (mean, median, standard deviation, 5th, 10th, 90th, 95th, 98th percentiles) 
was generated for five different time periods prior to the sample date (three months, six 
months, one year, two years and three years).   
 
The percentile values were initially estimated from the mean and standard deviation of 
the recorded values and the appropriate point of the normal distribution curve.  The 
reliability of the values obtained was clearly dependent on the number of recorded 
values, especially for the more extreme percentile values, and a minimum threshold of 
N samples for a (100/N)th percentile statistic was adopted (that is, a minimum of 20 
samples for a fifth percentile, for example).  However, the values obtained were prone 
to distortion by the presence of outliers.  To avoid this, an alternative was adopted 
based on simply ranking the values from smallest to greatest.  The coverage of key 
statistics derived over a three-year period prior to the sample date is given for each 
chemical variable in Table 5.3 
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Table 5.3  Number of samples containing each chemical determinand for three-
year sample period as minimum required sample population is increased.  
Determinands with asterisks are required in BBN model. 

MEAS EA DETERMINAND SAMPLE COUNT
CODE DESCRIPTION >0 >4 >9 >14 >19 >24 >29

162 ALKALINITY PH 4.5 - as CACO3* 40470 37774 34258 30401 29169 27390 20805
111 AMMONIA - AS N* 44218 44128 43842 43397 42645 41544 34871
119 AMMONIA UN-IONISED (CALCULATED) 43707 42259 41613 40554 39020 36926 29998

6046 ARSENIC - AS AS 4041 3508 2935 2188 1995 1752 1443
85 BOD ATU as O2* 44213 44123 43827 43371 42597 41230 34164
108 CADMIUM - AS CD 11592 9686 8234 7202 6600 5693 4562
106 CADMIUM DISSOLVED - AS CD 6751 5120 4041 3289 2818 2211 1708
241 CALCIUM - AS CA 26377 24942 22794 20181 18383 15916 11144
239 CALCIUM DISSOLVED - AS CA 5566 4322 4214 3638 3011 2691 2089
172 CHLORIDE ION - AS CL 36831 36567 35917 34991 33909 31982 26208

3164 CHROMIUM - AS CR 10490 8613 7499 6636 6053 5303 4193
3409 CHROMIUM DISSOLVED - AS CR 8408 6798 5669 4785 4148 3515 2715
77 CONDUCTIVITY @25C 15044 14922 14821 14331 13750 13047 11385

6452 COPPER - AS CU 12641 10756 9754 8827 8103 7181 5961
6450 COPPER DISSOLVED - AS CU 31708 30440 28563 26327 24389 21903 16755
158 HARDNESS TOTAL - as CACO3 32332 31291 29760 27447 25345 23009 17029

6051 IRON - AS FE 7227 6378 5625 4777 4317 3731 3052
6460 IRON DISSOLVED - AS FE 6225 5376 4675 3850 3394 2867 2249
50 LEAD - AS PB 10557 8668 7570 6709 6135 5269 4166
52 LEAD DISSOLVED - AS PB 8514 6879 5756 4890 4276 3558 2783
237 MAGNESIUM - AS MG 26355 24933 22781 20173 18375 15903 11139
235 MAGNESIUM DISSOLVED - AS MG 5584 4360 4244 3667 3034 2710 2103

6050 MANGANESE - AS MN 3880 3272 2673 2149 1919 1399 1122
105 MERCURY - AS HG 4149 3893 3658 3128 2878 2640 2234

6462 NICKEL - AS NI 10664 8749 7661 6839 6272 5592 4284
3410 NICKEL DISSOLVED - AS NI 8756 7080 5932 5032 4397 3735 2751
117 NITRATE - as N 29570 27980 25196 23560 22349 21105 18126
118 NITRITE - as N 31851 30379 27879 26335 24984 23743 20578
116 NITROGEN TOTAL OXIDISED - AS N* 44197 43857 42999 41726 40111 38609 32629
180 ORTHOPHOSPHATE - as P* 42887 42012 40901 40046 39081 37708 31463

9924 OXYGEN DISSOLVED (INSTRUMENTAL - IN SITU) - AS O 33071 31233 30085 28814 27227 25415 20088
9901 OXYGEN DISSOLVED (INSTRUMENTAL) - AS % SATN* 39440 37575 36215 34700 33056 31101 25401
61 PH - AS PH UNITS* 44214 44128 43840 43405 42643 41489 34738
192 PHOSPHATE 5412 4753 4247 3846 3515 3054 2582
211 POTASSIUM - AS K 7319 6239 3801 3167 2702 2044 1457
182 SILICATE REACTIVE DISSOLVED - AS SIO2 6134 5588 4993 4548 4124 3210 2632
207 SODIUM - AS NA 2711 2411 2199 1883 1754 1457 1243
135 SOLIDS SUSPENDED @105C 32292 30060 27156 25032 22234 20279 16811
183 SULPHATE - AS SO4 4188 3757 3430 3102 2856 2154 1794
76 TEMPERATURE WATER 44216 44123 43821 43351 42601 41371 34758

6455 ZINC - AS ZN 34527 33321 31702 29623 27459 25280 19946
3408 ZINC DISSOLVED - AS ZN 8039 6114 4957 4182 3602 2907 2300  

 

Acid-neutralising capacity 
 
ANC (acid-neutralising capacity) was not included because of insufficient coverage of 
data. 

 

Use of toxicity data 
 
The feasibility of using toxicological data in the pattern recognition and plausible 
reasoning systems was investigated as an alternative to using survey data for 
chemicals with scant data.  The study was undertaken by Veronique Adriaenssens of 
the Environment Agency.  A short summary of the work is provided here and the full 
report is given in Appendix A. 
 

• A literature review was presented on the links between macro-invertebrates 
and pesticides which might be relevant to the development of an impact 
response model such as a Bayesian Belief Network.  Summaries of the 
results of both field-based and knowledge-based studies were given, with 
the conclusion that although there is plenty of information, clear causal 
relationships are difficult to define. 
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• A review of work on the impact of pesticides on macro-invertebrates 

undertaken by the Environment Agency and others was presented with the 
conclusion that current datasets are inadequate for detailed analysis and 
modelling, and that further work is required to develop methods for 
detecting stress caused by pesticides. 

  
• Approach A.  A general model with several areas of complexity was 

discussed.  Relevant data sources were identified for estimating pesticide 
concentration (affected by land use, pesticide usage, soil type and leaching 
capacity) and toxic effect (affected by flow conditions, concentration of 
suspended solids, pH and dissolved organic carbon).  Bayesian Belief 
Networks are suggested as a suitable approach because they can 
incorporate the causal links and model the interactions using data or other 
kinds of knowledge.  

 
• Approach B.  The use of species sensitive distributions (SSD) is proposed 

for determining the toxic effect on taxa.  The SSD can be used to calculate 
the concentration at which a specified proportion of a species will be 
affected, and a community response can be estimated by extrapolation.  
Insufficient data is available to create the SSD, however. 

 
• Approach C.  The use of ms-PAF (Multiple Substance – Potentially Affected 

Fraction of species) is proposed to overcome the limitations of using SSD.   
 
The feasibility study concluded that ms-PAF analysis would be a viable approach for 
incorporating pesticide data in the AI tools.  Although it was outside the scope of the 
current project, further investigation is planned.   
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6 Construction of project 
database: stress and GIS 
data 

 
Stress data 
 
Stress data was used in the previous project as part of diagnostic information in the 
pattern recognition system.  The data was based on the 1995 survey of rivers in 
England and Wales, and was summarised in Martin and Walley (2000), henceforth 
known as the “1995 Report”. Updated stress data were collected but problems in 
entering and returning the data led to delays. Analysis of the partial data that had been 
returned by November 2003 was reported in Martin et al. (2005), henceforth known as 
the “Interim Report”. 
 
The 1995 Report detailed the results of the first systematic collation of types of 
environmental stresses that Environment Agency biologists believed were affecting the 
rivers of England and Wales in 1995. This was followed by the Interim Report, based 
on a partial return of similar data collected during autumn 2003.  All the stress data 
which was collected and returned by Environment Agency biologists during 2003-05, 
including the data used in producing the Interim Report (referred to as the 2003 data), 
were analysed in the current project. The data were based on perceived stresses in 
2003, with notes indicating any differences in stresses between 2000 and 2003. The 
data is summarised Martin and Paisley (2005) 
 
The 1995 Report recommended a number of actions for improving the quality and 
reliability of data collection. After incorporating several modifications and additions, a 
revised Stress Recording System (SRS) was supplied to the Environment Agency in 
October 2001. However, for various reasons, the first set of data was not returned to 
CIES until September 2003. After the remaining stress data had been returned (the last 
in March 2005) a programme of validation and analysis was undertaken.  
 
The number of GQA sites for which stress data was requested and from which data 
were eventually received, and the completeness of the returned data is shown in Table 
6.1. Three regions (Southern, Thames and North East) returned stress data for all the 
requested GQA sites, and five other areas in four regions also returned stress data for 
all sites. The remaining areas returned partial data and only four areas returned less 
than 90 per cent, namely Southern Area of North West Region (85%), Eastern Area of 
Anglian Region and Upper Trent Area of Midlands Region (each 77%) and North 
Wessex Area of South West Region (70%). The overall average was 95 per cent of the 
GQA sites. 
 
The complete dataset of roughly 16,700 perceived stress records from the 6,600 sites 
has been analysed to determine the abundance of stress intensity levels for each 
stress type (Appendix E of Martin and  Paisley, 2005). Table 6.2, a summary table of 
this analysis, shows the forty most abundant stresses, ranked by decreasing 
abundance. The percentages in the table are the number of records that each specified 
stress represents as a percentage of the total in the stress dataset 
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Table 6.1  Completeness of stresses database. 

Number of Sites with stress data Matched 1995 & 2003 Region  Area GQA sites Number % Number % 
Anglian Central 256 253 98.8 246 96.1 

  East 306 237 77.5 221 72.2 
  191 191 100.0 186 97.4 North 

Dales 203 203 100.0 153 75.4 North East 
249 249 100.0 208 83.5   Northumbria 

  Ridings 396 396 100.0 359 90.7 
North West Central* 252 248 98.4 232 92.1 

  North 278 272 97.8 238 85.6 
  South 357 305 85.4 289 81.0 

Midlands Upper Severn 260 259 99.6 223 85.8 
  Lower Severn 319 319 100.0 239 74.9 
  280 217 77.5 212 75.7 Upper Trent 
  Lower Trent 419 419 100.0 388 92.6 

Southern Hampshire 139 139 100.0 132 95.0 
  Isle of Wight 21 21 100.0 19 90.5 
  Kent 240 240 100.0 238 99.2 
  Sussex 138 138 100.0 128 92.8 

South West Cornwall 320 320 100.0 275 85.9 
  Devon 317 315 99.4 301 95.0 
  North Wessex 367 258 70.3 246 67.0 
  South Wessex 175 166 94.9 146 83.4 

Thames North East 160 160 100.0 114 71.3 
  South East 123 123 100.0 118 95.9 
  West 289 289 100.0 280 96.9 

Wales North 212 212 100.0 207 97.6 
  South East 350 349 99.7 335 95.7 
  South West* 299 281 94.0 272 91.0 

Totals   6916 6579 95.1 6005 86.8 
* Two areas submitted data using the original 2000 sites file, not the updated 2003 sites 

 
The maps and other information produced from this latest survey provide an update to 
the stresses on aquatic invertebrates in English and Welsh rivers in 2003. Although 
regarded as an improvement on the 1995 survey, a number of actions are 
recommended to improve the quality and reliability of future surveys.  Attention to these 
should generate a better appreciation of the effects of stresses on the distribution of 
aquatic fauna in England and Wales.  For further details see Martin and Paisley (2005). 
 
The Environment Agency has changed the way that stresses are recorded. Stresses 
have been re-categorised into sectors activities, and pressures to align them with 
systems for managing rivers under the Water Framework Directive. See Section 10 
and Appendix E of this report. 
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Table 6.2  Abundance of most commonly perceived stresses for 2003. 
Stress Category and Type Unkn Light Mod. Sver

e Total % 

STW to river - treated STW effluent  676 698 260 1,634 9.78
Run-off (non-agric.)/Leachate - urban/suburban  573 562 167 1,302 7.79
STW to river - combined sewer overflow (CSO)  297 336 89 722 4.32
Farming – fertilisers  310 280 18 608 3.64
No perceived stress* 578    578 3.46
Channel at the site - canalised stream/river (non-
navigable)  134 252 162 548 3.28

Farming - other (specify)  203 320 21 544 3.26
Agricultural run-off - intensive arablisation  128 307 80 515 3.08
Eroded material in channel - inert siltation  139 238 102 479 2.87
Run-off (non-agric.)/Leach. - highway (incl. de-icing 
salt)  223 154 20 397 2.38

Agricultural run-off - livestock slurry  290 87 12 389 2.33
Eutrophication – agriculture  90 192 49 331 1.98
Bank practices at site - livestock 
poaching/overgrazing 

 196 115 14 325 1.95

Run-off (non-agric.)/Leachate - light 
industry/commercial  100 138 56 294 1.76

Other indicators – Cladophora  95 136 54 285 1.71
Flow-related - regulated flow (lake/reservoir u/s)  116 117 47 280 1.68
Flow-related – weirs  90 135 48 273 1.63
Artificial bank at site - consolidated 
(stone/brick/concrete)  87 114 60 261 1.56

Channel at the site – bridge  144 90 12 246 1.47
Eutrophication – sewage  63 97 59 219 1.31
Channel at the site - choked channel (>33% plant)  60 111 47 218 1.30
Sampling difficulty - access to one bank only* 205    205 1.23
STW to river - storm sewer overflow (SSO)  61 105 33 199 1.19
Flow-related - other (specify)  71 92 33 196 1.17
Industrial discharge - light industry/commercial  81 82 25 188 1.13
Farming – insecticides  60 118 9 187 1.12
Bank practices at site - mown/managed riparian 
zone 

 73 71 26 170 1.02

Farming – herbicides  52 110 3 165 0.99
STW to river - other (specify)  44 71 41 156 0.93
Flow-related - river abstraction  69 63 21 153 0.92
Other indicators – ochre  70 57 25 152 0.91
Mines, quarries & extractions - coal mine drainage  68 66 17 151 0.90
Sampling difficulty - dredge* 148    148 0.89
Natural features – drought  49 78 15 142 0.85
Sampling difficulty - bouldery site  46 72 15 133 0.80
Mines, quarries & extractions - metal mine drainage  69 44 20 133 0.80
STW to river - septic tank  87 27 13 127 0.76
Flow-related - groundwater abstraction  58 51 17 126 0.75
No information* 126    126 0.75
Natural features - moorland drainage  48 63  111 0.66
Total number of perceived stresses in 2003  16,707 

*Indicates that the stress type does not require an intensity level to be included. 
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Data from geographical information systems 
 
The environmental data associated with the biological samples and the diagnostic 
stress data was supplemented by data derived from GIS.  Land cover and simple 
geological data was available for both Environment Agency and SEPA sites, and land 
risk data for Environment Agency sites only.   
 
Land cover and geology data comprised the percentage cover of types of land cover 
and geology in the catchment upstream from the site.  The accurate generation of such 
data clearly required a reliable estimate of upstream catchment area.  Some 
preliminary work was undertaken early in the project to validate estimated upstream 
catchment areas for some 6,800 Environment Agency GQA sites prior to the 
generation of the GIS data.   
 
Using simple checks, such as the known relationship of monotonically decreasing 
upstream catchment area with increasing altitude for sites on the same water course, 
the upstream catchment areas for nearly 500 sites were identified as being potentially 
in error.  Subsequent investigation by Environment Agency staff confirmed a problem in 
up to half of these cases, identified as a ‘snapping error’, where a site might be 
‘snapped’ to a tributary rather than the main river, underestimating the upstream 
catchment area, or a modelling error, where a site was associated with a canal or loop 
linked to an artificial drainage grid, neither of which could be accurately represented by 
the hydrological model used to generate catchment areas. 
 
LowFlow2000 data provided upstream catchment areas for nearly 5,700 GQA sites, 
and these were compared with the areas for the 6,800 GQA sites provided by the 
Environment Agency.  Removing the 500 potentially erroneous Environment Agency 
data yielded 5,180 common sites with two estimated values.  The criterion used 
elsewhere, that two values of catchment area were inconsistent if they differed by more 
than 15 per cent and their absolute difference was greater than three km2 (to remove 
many discrepancies for small catchment areas), showed inconsistencies for 483 of the 
5,180 sites.  The Environment Agency project manager reported that comparison of 
these 483 with a third set produced agreement with one or other value in about half of 
cases. 
 
This preliminary work was superseded by the spatial validation exercise described in 
Section 5, which was carried out for both GQA and non-GQA sites, and for both 
Environment Agency and SEPA.  In this exercise, locations were confirmed to within 
100 m of the river network, checks were carried out on river names, and sites were 
screened for unwanted water bodies such as dykes, ditches and canals.  The complete 
list of validated biological sites was sent to the Environment Agency and SEPA and the 
GIS data generated.  This was not completely straightforward, however.  It transpired 
that the digital river network used to generate the GIS data was a simplified version 
compared with the network used to validate the data.  Hence the threshold of 100 m 
could not be applied to all the sites, and in such cases GIS data was not generated. 
 
The geology, land cover and land risk data are described in more detail below. 
 
Geology  
 
The data for Environment Agency and SEPA sites relate to the percentage cover of the 
geological categories given in Table 6.3 in the catchment upstream. 
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Table 6.3  Geology categories. 
Calcareous 
Salt 
Siliceous 
Peat 
 
To asses how good a proxy calcareous geology was for alkalinity, MIR-max models 
using both were produced and evaluated - see Section 8. 
 
Land cover 
 
The land cover data included is a mapping generated by Land Cover Map 2000 
(LCM2000), a thematic classification of spectral data recorded by satellite images, with 
external datasets used to add context to help refine the spectral classification.  The 
categories are based on the classifications used in the Countryside Survey 2000 (Fuller 
et al., 2002) and the coverage for the Environment Agency and SEPA sites is given in 
Table 6.4. 
 
Table 6.4  Land cover categories. 
Land Cover Category Class EA SEPA 
Broad leaved/mixed woodland 1.1 Yes Yes 
Coniferous woodland 2.1 Yes Yes 
Arable cereals 4.1 
Arable horticulture 4.2 Mostly 

separate Combined 
Non-rotational arable 4.3 
Improved grassland 5.1 Yes Yes 
Setaside grass 5.2 Yes Yes 
Neutral grass 6.1 Yes Yes 
Calcareous grass 7.1 Yes Yes 
Acid grass 8.1 Yes Yes 
Bracken 9.1 Yes Yes 
Dense dwarf shrub heath 10.1 
Open dwarf shrub heath 

Mostly 
separate Combined 10.2 

Fen marsh swamp 11.1 No Most 
Bogs 12.1 Yes Yes 
Inland water 13.1 Yes Yes 
Montane 15.1 No Most 
Inland bare ground 16.1 Yes Yes 
Suburban 17.1 Yes Yes 
Continuous urban 17.2 Yes Yes 
Supra littoral rock 18.1 No Most 
Supra littoral sediment 19.1 No Most 
Littoral rock 20.1 No Most 
Littoral sediment 21.1 No Most 
Saltmarsh 21.2 Yes Yes 
Sea/estuary 22.1 No Most 
 
Land risk scores 
 
Land risk data (available only for Environment Agency sites) comprises indices 
quantifying the risk associated with the six categories shown in Table 6.5.  The scores 
represent the perceived risk based on a land use categorisation at the resolution of 
one-km grid squares.  Higher scores represent greater risks. 
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Table 6.5  Land risk categories. 
Sheep 
Sediment 
Pollution 
Pesticide 
Phosphorus 
Nitrogen 
 
The main datasets used to generate these scores were:  
 

• Department for Environment, Food and Rural Affairs (Defra) agricultural 
census data on land use (2000, which was the last 'full' census available, of 
160,000 farmers).  

• IACS (Integrated Administration and Control System) register data, 
including grassland (2004, of 72,000 farmers). 

 
Other supplementary datasets consisted of the following:  
 

• Groundwater vulnerability. 
• Nitrate Vulnerable Zone (NVZ) areas. 
• Joint Environment Agency/English Nature priority areas for diffuse pollution, 

developed for Defra’s Catchment Sensitive Farming (CSF) Programme.  
• Proximity of the land to surface watercourses.  
• Soil erosion and slope. 
• Nutrient, pesticide and sheep dip usage. 
• Pollution data from the Environment Agency’s National Incident Recording 

System (NIRS II).  
 
The component datasets were combined to assess each square kilometre of land. 
Where 'high risk' combinations occur frequently, the area was designated with a higher 
risk classification and vice versa for ‘low risk’ combinations. An example of a high risk 
score in the ‘Nitrogen’ category could be: “High dairy cattle and fodder maize density, 
within an NVZ in a eutrophic river catchment”. 
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7 Construction of project 
database: flow data 

 
Introduction 
 
Factors relating to the physical flow of water in a river are known to be among the 
important parameters that determine the composition of the benthic biological 
community.  For example, the flow velocity is a key factor in determining the nature of 
the substrate of the river bed.  Although flow velocity is not recorded directly at 
sampling sites and so could not be included in the datasets, it has a clear relationship 
with the slope of the site, which is recorded.  The inclusion of slope of the site as one of 
the physical parameters in the input vector to the clustering models (see Section 8) 
enables some of the likely effects of flow velocity to be accounted for.  
 
The quantity of flow is also likely to have an impact on the community, especially at the 
lower end of the range.  Water in a river with low flow is likely to be less oxygenated 
and of generally poorer quality compared to water in the same river in higher flow 
conditions.  In turn, this would make the presence of sensitive taxa less likely in low 
flow conditions and the presence of tolerant taxa more likely.  Because flow was not 
accounted for in the previous pattern recognition or reasoning models, one of the 
objectives of the project was to include one or more measures related to flow and to 
investigate their effects.   
 
Two measures of flow were included. The first is based on estimated duration curves of 
natural and influenced flow derived from long-term averaged data by LowFlows 2000.  
The second attempts to quantify directly the condition of the river, prior to the sampling 
date, compared to a 30-year average, and is derived from time series data.  Both 
measures overcome the difficulty that GQA sampling sites are located in catchments 
with no measured flow data, and are described in this section. 
 

LowFlows 2000 
 
An Environment Agency contract was set up with Wallingford HydroSolutions Ltd. to 
model flow data at all GQA sites using LowFlows Enterprise (an update of LowFlows 
2000, Young et al., 2003), a suite of modelling techniques designed to estimate natural 
and artificially influenced river flow at sites that are ungauged.  To obtain these 
estimates, it was necessary to define the boundary of the catchment that drains 
through the site of interest.   
 
For the natural flow, the ungauged catchment is characterised using the Met Office 
standard average annual rainfall (SAAR), annual average run-off (ARRO) and the 
fractional extent of the hydrology of soil types classification (HOST).  The long-term 
standardized natural flow duration curve is then estimated from a group of ten similar 
catchments from a reference source pool of gauged catchments and taking a weighted 
mean of observed flow statistics for the selected catchment.  The flow duration curve 
expresses the frequency distribution of flows at a point on the river, and defines the 
relationship between flow of a given magnitude and the probability of exceeding it.  Low 
flows are exceeded frequently (a high percentage), whilst high flows are exceeded 
rarely (a low percentage). For example the Q95 value is the flow that will be equalled or 
exceeded 95 per cent of the time.    
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The catchment boundary is used to query a geo-referenced database of influence 
features, including surface and groundwater abstractions, impounding reservoirs and 
discharges from which the corresponding influenced flow duration curve is estimated. 
 
Because of the large margins of error in flow estimates, there is greater confidence in 
measures that normalize with respect to flow rather than use absolute flow or influence 
directly.  The recommended statistic is the percentage impact (at 95 per cent 
exceedence probability) defined as:  
 

100
Flow Natural

Flow Influenced-Flow Natural
×  

 
This was adopted as a measure of the extent of pressure on the river flow for 
classification into WFD class intervals.   
 

Development of a method for estimating flow condition 
 
Introduction 
 
Additional efforts were made to acquire actual flow records to determine the flow 
regime in the river before each biological sample was collected.  This would help to 
indicate whether the sample was taken when conditions were wetter than in an 
average year, average or drier than average, which in turn would enable links between 
the biology and flow to be investigated.   
 
Sampling sites were not spatially matched to gauging stations, so there was some 
discussion of how best to relate the gauging data to the sampling sites.  Staff from the 
Environment Agency Hydrology Team were consulted about the best method to 
provide reasonable accuracy while keeping the task manageable.  The Hydrology 
Team agreed to provide average monthly flow records over at least a 30-year period 
for one site in each of the 125 Catchment Abstraction Management Strategy (CAMS) 
River Basin Districts.   
 
The proposed method was based on ranking the monthly time-series flow data from 
driest to wettest for each gauging station, and then estimating conditions at GQA 
assessment points using spatial interpolation.  The exercise was treated as a feasibility 
study and was confined to sites in England and Wales.  Refining the method and 
extending the analysis to cover Scotland (which would require the use of other data to 
act as a surrogate for flow, such as rainfall) were left for a future project. 
 
Data 
 
Time series data of varying historical lengths were supplied for 217 gauging stations in 
England and Wales.  In 164 cases, the data covered at least the 30-year period 
January 1976 to December 2005.  Of these 164 cases, the data for 81 stations 
contained complete monthly flow records with no gaps or absences.  It was felt 
desirable to use an additional 43 stations for which the proportion missing was less 
than five per cent (corresponding to less than 18 records missing from the total of 360) 
to maximise the amount of data available for spatial interpolation.  The grid references 
were verified and the somewhat uneven distribution of the locations plotted, as shown 
in Figure 7.1. 
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Figure 7.1  Distribution of 124 gauging stations with complete monthly flow 
records or less than five per cent missing for January 1976 - December 2005. 
 
Data quality 
 
Among the 81 gauging stations with complete data, two stations labelled Drove Lane 
and River Alre were geographically close together (within 60 m).  When the flows were 
ranked from driest to wettest (see later) quite different rankings were produced.  Both 
rankings were compared with those of the nearest neighbours and the worst in 
agreement was discarded from the analysis.  A further case was found among the 43 
stations with missing values (two stations labelled Fullerton and River Anton, 150 m 
apart). 
 
The gauged data covered the dry summer of 1976, which was useful for screening 
potential anomalies.  According to the ranking produced, Oakley Park on River Dove 
(of the 43 sites with missing values) experienced its third wettest summer in 1976.  This 
seemed unlikely and this record was removed from the analysis. 
 
The five flow records mentioned above were returned to the Hydrology Team for further 
investigation, and the analyses proceeded, based on 121 records (80 with complete 
data, and 41 with less than five per cent missing values).  
 
Each monthly flow value was accompanied by a quality code.  Although most of the 
121 records had a significant number of months with a quality code other than G 
(‘good’) the data were used regardless.   
 
Analysis of data 
 
For each of the 80 gauging stations with complete data, the flow (m3/s) in each of the 
12 months was ranked over the 30-year period from one (driest) to 30 (wettest) and a 
ranking score given of (rank-1)/29, ranging from zero (driest) to one (wettest).  The 
data for the 41 stations with missing values were ranked similarly and the ranking score 
given, with the total for months containing missing values adjusted appropriately. 
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The viability of spatial interpolation depends on the extent of spatial variation in the 
ranking score for any particular month.  This was quantified by determining the 
standard deviation in ranking scores across gauging stations for that month and 
averaging over the 30 years.  The 30-year averages show that overall, spatial variation 
in the ranking score is least in the winter months, with a minimum in February, and 
most in the summer months, with a maximum in July, Table 7.1. 
 
Table 7.1  Extent of spatial variation in ranking score across 121 gauging 
stations for each month, averaged over 30 years. 
  Average St Dev 

in Rank Score Month 
0.184 Jan 
0.172 Feb 
0.196 Mar 
0.178 Apr 
0.198 May 
0.211 Jun 
0.222 Jul 
0.209 Aug 
0.219 Sep 
0.183 Oct 
0.192 Nov 
0.194 Dec 

 
This variation over the year can be explained in terms of meteorology and soil moisture 
deficit.  Rainfall in the winter months is driven by large scale Atlantic fronts covering 
large portions of the country, while rainfall in the summer months may be influenced 
more by localised events such as thunderstorms.  Soil moisture deficit (a measure of 
dryness in the soil) is likely to be least, and most uniform, in months towards the end of 
winter such as February, whereas greater variation is expected in the summer months. 
 
An indication of how spatial variation varied in a particular month for dry and wet years 
is provided by plotting the standard deviation the ranking score against mean ranking 
score for all stations in the analysis.  Figures 7.2 and 7.3 show such plots for February 
and August. 
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Figure 7.2  Variation in ranking score against mean ranking score across 121 
stations for February. 
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Figure 7.3  Variation in ranking score against mean ranking score across 121 
stations for August. 
 
Two observations can be drawn from these plots.  Firstly, there is as little spatial 
variation during a wet February (ranking score close to one) as in a dry August (ranking 
score close to zero).  The meteorology explains this, because conditions in February 
and August both tend to be driven by large-scale events (Atlantic fronts in February 
and high pressure in August).  Secondly, however, there seems to be less spatial 
variation in a dry February (ranking score close to zero) than in a wet August (ranking 
score close to one).  This is also explained by the drivers for each set of conditions; 
even in a dry February, rain is still provided by large scale Atlantic fronts, while in a wet 
August, rain is more likely to result from more local events such as thunderstorms. 
 
Given these observations, it was likely that spatial interpolation would be most accurate 
in conditions resembling a wet February or a dry August.  Taking the months as a 
whole, spatial interpolation was likely to be more accurate in February than in August.  
This was confirmed by the next part of the analysis. 
 
Assessment of validity of spatial interpolation 
 
The validity of spatial interpolation was quantified by predicting the ranking statistic at 
each point by interpolating from neighbouring points, and comparing the prediction with 
the actual value.  The interpolation was implemented using a ‘gravity model’, where the 
ranking statistic  at station n was predicted from the ranking statistic at all other 
stations according to 
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where  is the Euclidian distance from station n to station i.  The algorithm can be 
modified so that the calculation includes only those within a certain radius, or a certain 
number of nearest neighbours, although the results derived were obtained using all 
possible stations. 

nir

 
This is illustrated in Table 7.2 for a typical gauging station, where the actual and 
predicted ranks are given, along with the magnitude of the difference , the 
mean of which over the 30 months was 0.09.  An indication of the accuracy of the 
prediction is also given in terms of whether the site represents wetter, drier or average 
conditions.  For this, the ranking statistic was broken down into the ranges [0,1/3], 
[1/3,2/3] and [2/3,1] to represent drier than average, average and wetter than average 

|ˆ| nn SS −
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conditions.  Changes in the predicted condition compared to the actual condition are 
highlighted in bold.  For this station there were ten changes, mostly bunched around 
the two boundaries separating the three ranges. 
 
The results of repeating this procedure for the 121 stations in a particular month, and 
then for all twelve months is shown in Table 7.3.  For each month, Table 7.3 gives the 
average and maximum number of changes at a typical station when taken over the 30 
years.  The grand average number of changes in condition taken over the twelve 
months was 7.46, representing 25 per cent of the total. 
 
The mean and maximum deviation in the ranking score, and correspondingly the mean 
and maximum number of changes, is least in the winter months, notably February, and 
greatest in the summer months, notably July and August.  This concurs with the lesser 
amount of spatial variation in the data noted earlier in February compared with the 
summer months. 
 
Table 7.2  Actual and predicted ranking scores and conditions for August record 
for  typical gauging station.    
 Rank Condition 
 Actual Predicted |Error| Actual Predicted Change 
01-Aug-85 1.00 0.89 0.11 Wet Wet No 
01-Aug-04 0.97 0.90 0.06 Wet Wet No 
01-Aug-88 0.93 0.82 0.11 Wet Wet No 
01-Aug-80 0.90 0.82 0.08 Wet Wet No 
01-Aug-02 0.86 0.79 0.07 Wet Wet No 
01-Aug-79 0.83 0.75 0.08 Wet Wet No 
01-Aug-82 0.79 0.59 0.21 Wet Ave Yes 
01-Aug-86 0.76 0.73 0.03 Wet Wet No 
01-Aug-98 0.72 0.67 0.05 Wet Wet No 
01-Aug-93 0.69 0.60 0.09 Wet Ave Yes 
01-Aug-78 0.66 0.73 0.08 Ave Wet Yes 
01-Aug-87 0.62 0.68 0.06 Ave Wet Yes 
01-Aug-01 0.59 0.61 0.02 Ave Ave No 
01-Aug-92 0.55 0.57 0.02 Ave Ave No 
01-Aug-96 0.52 0.28 0.24 Ave Dry Yes 
01-Aug-94 0.48 0.47 0.01 Ave Ave No 
01-Aug-77 0.45 0.45 0.00 Ave Ave No 
01-Aug-00 0.41 0.55 0.13 Ave Ave No 
01-Aug-89 0.38 0.31 0.07 Ave Dry Yes 
01-Aug-91 0.34 0.29 0.06 Ave Dry Yes 
01-Aug-81 0.31 0.45 0.14 Dry Ave Yes 
01-Aug-05 0.28 0.35 0.07 Dry Ave Yes 
01-Aug-99 0.24 0.46 0.22 Dry Ave Yes 
01-Aug-90 0.21 0.15 0.05 Dry Dry No 
01-Aug-03 0.17 0.29 0.12 Dry Dry No 
01-Aug-97 0.14 0.28 0.14 Dry Dry No 
01-Aug-84 0.10 0.18 0.07 Dry Dry No 
01-Aug-83 0.07 0.22 0.15 Dry Dry No 
01-Aug-95 0.03 0.07 0.04 Dry Dry No 
01-Aug-76 0.00 0.05 0.05 Dry Dry No 
   0.09   10 
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Table 7.3  Summary for 121 stations with averages etc taken over 30 years. 
  Summary of averages over the 30 years 
  Mean Ave Max Ave Mean No Max No 
Month Deviation Deviation Changes Changes 
Jan 0.093 0.237 6.9 18 
Feb 0.086 0.214 6.4 16 
Mar 0.094 0.255 7.1 19 
Apr 0.089 0.226 5.9 16 
May 0.098 0.241 6.9 18 
Jun 0.118 0.342 8.4 19 
Jul 0.137 0.365 9.9 23 
Aug 0.120 0.360 8.5 23 
Sep 0.129 0.372 9.0 22 
Oct 0.10 0.26 6.9 16 
Nov 0.096 0.230 6.6 18 
Dec 0.097 0.203 7.1 17 
Average 0.105 0.276 7.46 18.8 
 
The comparison between the actual and predicted flow condition was broken down 
further in Table 7.4 to show the proportion of changes in each category for each month.  
For each table, the percentage of predicted conditions (horizontal) was given for each 
actual flow condition (vertical).  In each case, the greatest proportion (around 25 per 
cent) represents no change in the predicted condition compared with the actual.  The 
next largest proportion (five to 11 per cent) represents a change to ‘average’ from 
either ‘dry’ or ‘wet’, while a smaller proportion (three to five per cent) represents a 
change from ‘average’ to either ‘dry’ or ‘wet’.  The smallest proportion (under one per 
cent) represents a change of two categories, from ‘dry’ to ‘wet’ or vice versa.  Although 
only a small proportion, this represents serious error. 
 
The same data is averaged over the twelve months in Table 7.5, where the effects of 
the misclassifications are to swell the ‘average’ category by around a fifth (from 33 to 
40 per cent) and shrink the ‘dry’ and ‘wet’ categories by around a tenth each (from 33 
to 30 per cent).   
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Table 7.4  Actual (vertical) and predicted (horizontal) flow condition by month. 
 Jan    Feb    Mar  
% Dry Ave Wet  % Dry Ave Wet  % Dry Ave Wet 
Dry 25.5 7.7 0.2  Dry 27.3 5.9 0.2  Dry 25.9 7.3 0.2 
Ave 3.0 25.0 5.1  Ave 5.4 23.8 4.0  Ave 3.9 25.0 4.2 
Wet 0.2 7.1 26.2  Wet 0.1 5.7 27.6  Wet 0.2 7.9 25.4
              
              
 Apr    May    June  
% Dry Ave Wet  % Dry Ave Wet  % Dry Ave Wet 
Dry 27.0 6.2 0.2  Dry 26.1 7.1 0.2  Dry 24.0 9.0 0.5 
Ave 3.7 25.4 3.9  Ave 4.9 24.6 3.4  Ave 4.8 23.2 5.0 
Wet 0.2 5.5 27.9  Wet 0.2 7.2 26.1  Wet 0.7 8.3 24.5
              
              
 July    Aug    Sept  
% Dry Ave Wet  % Dry Ave Wet  % Dry Ave Wet 
Dry 21.5 11.1 0.9  Dry 23.7 9.0 0.7  Dry 22.8 10.0 0.7 
Ave 4.1 24.0 5.1  Ave 4.3 23.9 4.9  Ave 4.3 24.2 4.6 
Wet 0.9 11.0 21.6  Wet 0.8 8.7 24.0  Wet 0.9 9.7 23.0
              
              
 Oct    Nov    Dec  
% Dry Ave Wet  % Dry Ave Wet  % Dry Ave Wet 
Dry 26.0 7.2 0.2  Dry 26.4 6.9 0.2  Dry 26.3 6.9 0.2 
Ave 6.1 23.0 3.9  Ave 4.5 25.0 3.5  Ave 4.2 24.1 4.8 
Wet 0.4 5.2 27.9  Wet 0.2 6.9 26.4  Wet 0.4 7.2 25.9

 
Table 7.5  Actual (vertical) and predicted (horizontal) flow condition averaged 
over all months. 
 Year Average  

% Dry Ave Wet Total 
Dry 25.2 7.8 0.4 33.4 
Ave 4.4 24.3 4.4 33.1 
Wet 0.4 7.5 25.5 33.4 

Total 30.0 39.6 30.3  
 
The locations of stations with greatest number of serious prediction errors (that is a 
prediction of ‘wet’ when the actual condition is ‘dry’ or vice versa) were examined to 
determine the extent to which the density of coverage might be a factor.  The stations 
are plotted with an indication of the number of serious errors in Figure 7.4.  The density 
of coverage does not seem to be a factor, because the seven stations with more than 
ten serious errors (represented by “+”) are not located where the data is sparsest.  On 
the contrary, they tend to be relatively near to other data points, and this is the source 
of the difficulty.  
 
Examination of the ranking scores of these seven stations show some large differences 
compared to the ranking scores of stations around them, particularly in July and 
August, and hence predictions using neighbouring stations agree poorly with actual 
values.  There are two possible reasons for this.  Either flow records really are 
indicative of large spatial variation in flow rankings over short distances in these 
locations, or flow records at these stations are somewhat unreliable.  If the former, 
there is little that can be done, whereas if the latter, these stations could be removed 
from the data, as others were removed at an earlier stage.   
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Figure 7.4  Locations of gauging stations and indication of number of serious 
errors (that is, wet to dry or vice versa). 
 
Analysis of impact of flow condition on taxa 
 
To assess the impact of flow condition on taxa, values of flow condition were calculated 
for each biological sample for one, two, three, six, 12 and 24 months before the sample 
date, achieved by interpolation from the ranking statistic given at 121 gauging stations, 
and averaging over the appropriate number of previous months.  As before, values in 
the ranges [0,1/3], [1/3,2/3] and [2/3,1] were considered 'dry', 'average' and 'wet' 
respectively. 
  
The data were then split by season into spring and autumn, and by site type into riffles 
(substrate contained over 70 per cent boulders and pebbles), pools (substrate 
contained over 70 per cent sand and silt), and riffle/pools (neither riffle nor pool).  The 
abundance distributions (absent and abundance categories 1-4) for each taxon for 
'dry', 'average' and 'wet' were then deduced from frequencies of occurrence in the data.  
Taxa exhibiting a significant change in the probability of absence (greater than 0.05 in 
magnitude) when the distribution in ‘dry’ conditions was compared with ‘wet’ were 
identified.   
 
Taxa for which the change was positive (that is, the likelihood of absence was greater 
in 'wet' conditions than 'dry') for riffle sites in spring are given in able 7.6 for a range of 
‘wet’ and ‘dry’ periods prior to the sampling date, from one month to two years.  In 
general, the change in probability increases with increasing time period.  These taxa 
clearly prefer drier conditions, where the water may be less oxygenated and of poorer 
quality.  The revised BMWP scores (Paisley et al., 2007) are also given in Table 7.6, 
and the relatively low scores in general confirm the tolerant nature of these taxa.   
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Table 7.6  Taxa for which probability of absence was generally greater in ‘wet’ 
conditions than ‘dry’, for riffle sites in spring. 

 
 Change in Absence Prob (W to 

D) 
Prior to Sample Date (Months)   

Taxon Score 1 3 6 12 24 
Glossiphoniidae 3.2 0.00 0.04 0.11 0.11 0.18 
Lymnaeidae 3.3 0.06 0.09 0.12 0.20 0.12 
Asellidae 2.8 0.02 0.07 0.08 0.11 0.12 
Planorbidae 3.1 0.02 0.07 0.09 0.10 0.12 
Erpobdellidae 3.1 0.01 0.04 0.08 0.08 0.11 
Sphaeriidae_Pea_mussels 3.9 0.00 0.06 0.09 0.07 0.08 
Hydrobiidae 4.2 0.01 0.03 0.04 0.02 0.07 
Sialidae 4.3 0.00 0.00 0.02 0.04 0.07 
Valvatidae 3.2 0.01 0.02 0.04 0.05 0.06 
Coenagriidae 3.5 0.00 0.01 0.02 0.04 0.06 
Haliplidae 3.6 0.02 0.02 0.02 0.05 0.06 
Ancylidae 5.8 0.01 0.02 0.06 0.06 0.02 
Caenidae 6.5 0.05 0.08 0.04 0.06 -0.02 
Dytiscidae 4.7 0.08 0.02 -0.01 0.06 0.02 
Psychomyiidae 5.9 0.02 0.07 0.06 0.05 0.03 
 
Taxa for which the change was negative (that is, the likelihood of absence is less in 
'wet' conditions than 'dry') for riffle sites in spring are given in Table 7.8 for the same 
range of ‘wet’ and ‘dry’ periods prior to the sampling date.  For these taxa too, the 
change in probability generally increases with increasing time period.  These taxa 
clearly prefer wetter conditions, where the water may be more oxygenated and of 
higher quality, and their more sensitive nature is confirmed by their revised BMWP 
scores which are higher in general than those for the taxa in Table 7.7.   
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Table 7.7  Taxa for which probability of absence was generally less in ‘wet’ 
conditions than ‘dry’, for riffle sites in spring. 
  Change in Absence Prob (W to D) 

Prior to Sample Date (Months)   
Taxon Score 1 3 6 12 24 
Rhyacophilidae 8.2 -0.04 -0.13 -0.16 -0.21 -0.22 
Leuctridae 10.0 -0.02 -0.07 -0.14 -0.23 -0.22 
Heptageniidae 9.7 -0.02 -0.10 -0.14 -0.15 -0.20 
Ephemerellidae 8.2 -0.04 -0.02 -0.10 -0.16 -0.19 
Sericostomatidae 9.1 -0.01 -0.06 -0.06 -0.08 -0.17 
Perlodidae 10.8 0.00 -0.12 -0.15 -0.15 -0.17 
Goeridae 8.8 -0.05 -0.10 -0.05 -0.11 -0.16 
Lepidostomatidae 10.1 0.00 0.00 -0.02 -0.11 -0.16 
Elmidae 6.6 0.03 -0.05 -0.06 -0.06 -0.15 
Taeniopterygidae 11.3 0.00 -0.13 -0.13 -0.10 -0.14 
Leptophlebiidae 8.8 0.02 -0.02 -0.07 -0.08 -0.14 
Baetidae 5.5 -0.05 -0.08 -0.10 -0.14 -0.14 
Hydrophilidae 7.4 0.05 -0.01 -0.05 -0.05 -0.14 
Gyrinidae 8.2 0.03 -0.09 -0.08 -0.05 -0.13 
Nemouridae 9.3 0.00 -0.16 -0.16 -0.14 -0.13 
Simuliidae 5.8 -0.04 -0.07 -0.07 -0.13 -0.11 
Planariidae 5.0 -0.02 -0.06 -0.03 -0.11 -0.11 
Chloroperlidae 11.6 -0.01 -0.02 -0.06 -0.11 -0.10 
Hydroptilidae 6.2 0.07 0.13 0.07 0.07 -0.10 
Hydropsychidae 6.6 0.01 -0.03 -0.04 -0.04 -0.09 
Limnephilidae 6.2 -0.07 -0.12 -0.09 -0.11 -0.09 
Tipulidae 5.9 0.03 -0.02 -0.05 -0.07 -0.08 
Polycentropodidae 8.1 0.02 -0.03 -0.05 -0.05 -0.08 
Odontoceridae 11.0 -0.01 -0.01 -0.01 -0.06 -0.06 
Ephemeridae 8.4 0.00 0.00 0.00 -0.01 -0.06 
Leptoceridae 6.7 0.02 0.02 0.03 0.04 -0.06 
Gammaridae 4.5 0.00 -0.05 -0.06 -0.03 -0.04 
 
Corresponding tables summarising the same analysis for riffle sites in autumn, and for 
the pool sites in both seasons are given in Appendix B. 
 
Summary 
 
The records of 80 gauging stations containing complete data for 30 years, January 
1976 to December 2005, were analysed along with a further 41 stations containing less 
than five per cent of missing data.  For each of the twelve months, the 30 flow values 
for each station were ranked and given a score ranging from zero (driest) to one 
(wettest). 
 
The standard deviation of the ranking score indicated that the overall spatial variation 
was less in winter months, and in particular February, than in summer months such as 
July and August.  The spatial variation was least in a wet February or a dry August, and 
less in a dry February than a wet August.  These observations are consistent with 
explanations based on meteorological drivers and soil moisture deficit. 
 
The validity of the spatial interpolation was assessed by comparing the predicted value 
of the ranking statistic at each station with the actual value.  When the ranking statistic 
was banded so that [0,1/3], [1/3,2/3] and [2/3,1] represented dry, average and wet 
conditions, the overall average number of changes in condition for a typical station over 
30 years was 7.46, or approximately 25 per cent of cases.  The number of changes 
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was least in the winter months, notably February, and greatest in the summer months, 
consistent with the spatial variation found in the data. 
 
This level of accuracy is likely to be reflected in predictions of flow condition at a 
sampling site by interpolation from the gauged data used here.  That is, an assessment 
of whether the site was dry, average or wet is likely to be correct in about 75 per cent of 
cases, with greater accuracy in the winter months and less in the summer.  If the same 
characteristics applied, it might be assumed that, on average, an assessment of 
average conditions would be incorrect in about 20 per cent of cases, and an 
assessment of dry or wet conditions incorrect in around 10 per cent of cases, with the 
true condition one category removed.  It would be possible for an assessment of dry or 
wet conditions to be in serious error (that is, dry condition when it should be wet or vice 
versa), but only in less than one per cent of cases. 
 
The interpolation scheme used was the simplest possible, and the effect of alternative 
schemes could be investigated.  Increasing the number and uniformity of the gauging 
stations may also be beneficial, although an investigation of locations of stations with 
the greatest number of serious prediction errors suggested that this was not a major 
factor.   
 
Despite the flaws in the method that was adopted, when effects on taxa were examined 
it was found that the results accorded entirely with expectation.  Taxa more likely to be 
absent in wet periods compared to dry were those which tolerate poorer quality 
conditions, confirmed by their generally lower revised BMWP scores.  Conversely, taxa 
less likely to be absent in wet periods compared to dry were those sensitive to poorer 
quality conditions, confirmed by their generally higher revised BMWP scores.  The 
results confirm the importance of flow condition prior to sampling date as a factor in 
determining the composition of the community, and suggest it may be a useful addition 
to variables in pattern recognition and reasoning systems, alongside the percentage 
impact statistic from LowFlows Enterprise. 
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8 Revision and testing of MIR-
max models 

 
Review of MIR-max 
 
The original River Pollution Diagnostic System (RPDS) was based on the Mutual 
Information and Regression maximisation (MIR-max) pattern recognition system 
developed in a previous project (Walley et al., 2002, Walley and O’Connor, 2002, 
O’Connor, 2004).  The MIR-max system comprises two parts: the clustering procedure 
(MI-max) and the ordering procedure (R-max).  The main features of each are briefly 
reviewed prior to description of the work undertaken to produce new models based on 
the new data.  Further details can be found in the User Guide in Appendix D. 
 
Clustering procedure (MIR-max) 
 
The idea behind the clustering procedure is to randomly move samples from one class 
(or bin) to another provided that the move results in an increase in mutual information 
between classes and the attributes (the 82 biological taxa and 11 environmental 
variables) of the data.  The starting point is an initial allocation to a pre-defined number 
of classes (bins).   
 
Suppose attribute Xj (j = 1 to m) occurs in one of s states (k = 1 to s), and the 
distribution of the total number of samples (T) between n classes (C) is as shown in 
Figure 8.1: 
 

1 2 …. s Tot
 

 
 Total T

State k (k = 1 to s)

C
lu

st
er

 i 
(i 

= 
1 

to
 n

)

al

 

C1 

qi pijk Ci 

Cn 
rjk 

 
Figure 8.1  Illustration of distribution of sample data for attribute Xj among n 
classes. 
 
where: 

ijkp = number of samples in class Ci with attribute Xj in its kth state 

 = number of samples in class Ci iq
 = number of samples with attribute Xj in its kth state jkr
 = total number of samples. T
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Then the mutual information between C and Xj is given by: 
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where:    ijkα = probability of finding attribute Xj in its kth state in class Ci 
  iβ = prior probability of class Ci 
 jkλ = prior probability of finding attribute Xj in its kth state. 
 
These probability values are estimated from the current distribution of the sample data 
between classes (see Figure 8.1) as follows: 
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Summing mutual information values over m attributes gives: 
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and the average value of mutual information between classes and attributes is given 
by: 

./),( mGXCM =  
 
The aim of the clustering process is to maximise G – see references above for further 
details. 
 
Although no changes were made to the clustering procedure, the concept of entropy 
was used.  Entropy is a measure of uncertainty and is closely related to mutual 
information.  Mutual information can be given in terms of the reduction in uncertainty by 
an alternative formula as follows: 
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and  is the conditional entropy of the attribute Xj (that is, the remaining 
uncertainty given knowledge of the classes): 
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)( iCH  is a measure of the quality of the class.  Its maximum value would be obtained 
when all states were equally likely (and uncertainty was greatest), and a large value 
would represent a ‘poor quality’ class that contained disparate samples.  The minimum 
value (of zero) would be obtained if the attribute occupied a single state for all samples 
in the class (and uncertainty was least).  A small value would represent a ‘good quality’ 
class in which all samples were similar (although care has to be taken – a zero value 
would also be given for a class containing just a single sample). 
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Ordering procedure (R-max) 
 
The ordering procedure arranges the output bins (or classes) so that neighbouring bins 
represent similar patterns (biological communities) and well-separated bins represent 
different ones.  This is achieved by maximising the correlation coefficient between 
distances in output space (that is, the distances between the bins), and the distances in 
data space. 
 
 

Review of variables in input vector 
 

MIR-max requires relatively few input parameters in order to begin training, but these 
parameters have a strong influence on the model that is eventually produced.  Once 
the set of training variables has been chosen, the bands or states assigned to each 
training variable need to be defined. This can be straightforward for discrete variables, 
such as the macro-invertebrates, where the states are already defined (RIVPACS 
abundance categories). However, for continuous variables it is a more involved 
process, requiring judgements to be made on the ranges encompassed by each of the 
bands and the distribution of training samples amongst them. 

For the development of a new version of RPDS, the categories used in the old model 
could have been retained. However, it was decided that the definition of states for the 
training variables should be revised for the following reasons: 

 
• This approach was recommended in the final report of the previous project 

(Walley et al., 2002).  Although this issue was more closely tied to the 
definition of states for the Bayesian Belief Network (BBN) element of that 
project, it would also have an impact on the MIR-max models. 

 
• The new data set differed from the old.  It was much larger because it 

covered a ten-year instead of one-year time period, and included data from 
Scotland as well as England and Wales.  The range of the new data may 
have required the bands to be updated anyway. 

 
• The availability of Geographical Information System (GIS) data meant that 

there was the potential to include further environmental training variables, 
such as upstream catchment characteristics, geology and land cover. 
Inclusion of any of these would require states to be defined for them. 

 
• The fact that alkalinity is a potential pollutant and was no longer analysed 

regularly called into question its continued use as a training and 
classification parameter. However, because the ‘natural baseline’ alkalinity 
is such an important factor in river ecology, it was deemed necessary to 
investigate alternative or surrogate variables. 

 

Reproducing original models based on 1995 data 
 
As a starting point, a model based on the new spring 1995 data was produced and 
compared to the existing spring RPDS model (also based on data from 1995).  It was 
realised that these models would not be identical because of variations in the training 
data and the random element inherent in the training algorithm.  The difference in the 
training data was largely because, although the value for alkalinity was based on an 
average (as described in Section 5), values of other environmental variables were 
those recorded with individual biological samples.  This practice differed from that used 
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for the original 1995 models, where established values of environmental parameters for 
each site were used for samples taken in spring and autumn.  For this reason, the 
number of samples in the new model was slightly less than the original (there were 
6,039 samples in the original model and 5,339 in the ‘clone’).  However, the two 
models were expected to share similar characteristics.  Although training of the original 
RPDS models had taken several days, training time for new models of comparable size 
had reduced to about half a day, thanks to advances in the power of the PC. 
 
Table 8.1 gives the mutual information values between the 87 input variables and the 
output classes in the original spring RPDS model, listed in rank order.  The two 
greatest influences on the clustering are the taxa Elmidae and Heptageniidae, followed 
by the environmental variables alkalinity and the percentage of boulders and cobbles in 
the substrate. Of the ten highest ranked variables, five are biological and five are 
environmental (in the corresponding autumn model four are biological and six are 
environmental).  The rest of the environmental parameters are spread throughout the 
ranking.  The strong influence exerted by the macro-invertebrates on the clustering was 
considered ideal, because the model aims to use the assemblage of the community as 
the primary means of diagnosing potential pressure.   
 
Table 8.2 gives the corresponding ranking for the ‘clone’ of the spring RPDS model 
based on the ‘new’ 1995 data. The results are not identical but they do show a high 
degree of consistency.  Despite some differences in the order of the rankings, the ten 
highest ranked variables were the same, with five in the same positions.  Furthermore, 
the top twenties differ by only two variables and the top thirties by only one. The degree 
of consistency was reassuring and confirmed that the processes used and types of 
models produced were comparable to those of the earlier project. 

 

Criteria for discretising the continuous variables 
 
Each environmental variable in the original RPDS model was discretised by splitting 
the range of values into five bands of equal width, regardless of frequency of 
occurrence in each band.   
 
The distribution of samples between the five equally sized bands is shown in Table 8.3 
for each of the 11 environmental variables. For some variables (log slope, boulders and 
cobbles, pebbles and gravel, and average alkalinity), the distribution of samples 
between the states is reasonably even, whereas for others, such as width and depth, it 
is very uneven.  Table 8.3 shows a clear tendency for variables with more even 
distributions to achieve higher rankings.  
 
It was clear that the equal-sized banding scheme could lead to unevenness in the 
distribution of samples between states, and that this unevenness directly impacted the 
influence of each variable in the clustering process.  Based on these findings, an 
alternative banding scheme was investigated in which the boundaries of the bands 
were based on percentiles of the distribution of each variable. An even spread of 
percentiles was chosen, that is, 20th, 40th, 60th and 80th to produce an even distribution 
of samples within the bands for each variable regardless of its underlying distribution. 
 
Both models (original RPDS and ‘clone’) were tested using these bandings and the 
results are shown in Tables 8.4 and 8.5.   There was a high degree of consistency 
between the two models, as expected, but in each case the environmental variables 
now dominated the clustering, with environmental variables occupying the first seven 
places in each case, and the remaining four environmental variables in much higher 
positions than before.  The bias to environmental variables in the model meant that the 
clustering represented an ‘environmental typology’, with the characteristics of the 
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macro-invertebrate community having a lesser impact on the clustering than in 
previous models. Given that the aim is to produce models which are able to diagnose 
problems primarily from the biological community, a model biased too much towards 
environmental variables would be unsuitable.  It would be possible to split the biological 
variables into five abundance levels based on percentage frequency in the dataset.  
The difficulty with this approach is that it is divorced from practical application because 
the abundance categories would be different for each taxon.  Any changes to the 
model should represent improvement while retaining practicality. 
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Table 8.1  Ranking of variables in original spring RPDS model. 
Rank Variable MI RankVariable MI 

1 Elmidae 0.6209 45 Corixidae 0.2385
2 Heptageniidae 0.609 46 Planariidae 0.2375
3 ALKALINITY 0.588 47 Gyrinidae 0.2343
4 BOULDERS 0.5618 48 Coenagriidae 0.2031
5 Baetidae 0.5395 49 Calopterygidae 0.1965
6 SLOPE 0.5391 50 Dytiscidae 0.1954
7 PEBBLES 0.5373 51 Sialidae 0.1823
8 Hydropsychidae 0.5137 52 DEPTH 0.1802
9 Rhyacophilidae 0.5058 53 WIDTH 0.1802

10 DISCHARGE 0.4945 54 Polycentropodidae 0.1744
11 Perlodidae 0.4855 55 Haliplidae 0.1693
12 Leuctridae 0.4742 56 Psychomyiidae 0.1604
13 Sphaeriidae 0.4718 57 Physidae 0.1573
14 SILT 0.4588 58 Neritidae 0.1299
15 Gammaridae 0.4584 59 Brachycentridae 0.115 
16 Asellidae 0.4494 60 Piscicolidae 0.1074
17 DISTANCE FROM SOURCE 0.4322 61 Unionidae 0.0975
18 Leptoceridae 0.4146 62 Perlidae 0.0961
19 Caenidae 0.412 63 Aphelocheiridae 0.0889
20 Nemouridae 0.4006 64 Odontoceridae 0.0871
21 Sericostomatidae 0.4003 65 Dendrocoelidae 0.0856
22 Ephemerellidae 0.398 66 Scirtidae 0.0821
23 Hydrobiidae 0.3889 67 Notonectidae 0.0786
24 Chironomidae 0.3814 68 Molannidae 0.0684
25 Oligochaeta 0.374 69 Viviparidae 0.0577
26 Limnephilidae 0.3655 70 Corophiidae 0.0494
27 Simuliidae 0.3647 71 Platycnemidae 0.049 
28 Chloroperlidae 0.3622 72 Cordulegasteridae 0.0386
29 Lepidostomatidae 0.3577 73 Philopotamidae 0.0382
30 Erpobdellidae 0.3379 74 Gerridae 0.0373
31 Glossiphoniidae 0.3337 75 Beraeidae 0.0312
32 Taeniopterygidae 0.3184 76 Capniidae 0.0271
33 Tipulidae 0.3167 77 Astacidae 0.0212
34 Planorbidae 0.3037 78 Hydrometridae 0.0205
35 ALTITUDE 0.2959 79 Naucoridae 0.0141
36 Goeridae 0.289 80 Phryganeidae 0.0138
37 Hydroptilidae 0.288 81 Aeshnidae 0.0126
38 Ancylidae 0.2817 82 Libellulidae 0.0116
39 Hydrophilidae 0.2587 83 Hirudinidae 0.0114
40 SAND 0.2562 84 Nepidae 0.0099
41 Valvatidae 0.2544 85 Dryopidae 0.0092
42 Lymnaeidae 0.245 86 Siphlonuridae 0.0084
43 Leptophlebiidae 0.2441 87 Potamanthidae 0.006 
44 Ephemeridae 0.242     

      Totals   
    Model MI (Training Variables) 21.638
    Taxa MI 17.114
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Table 8.2  Ranking of variables in ‘clone’ spring RPDS model. 
Rank Variable MI Rank Variable MI 

1 Elmidae 0.6517 48 Coenagriidae 0.2307 
2 Heptageniidae 0.6308 49 Calopterygidae 0.2052 
3 LOG_SLOPE 0.5945 50 Dytiscidae 0.2039 
4 BOULDERS_COBBLES 0.5674 51 Sialidae 0.1907 
5 Baetidae 0.5585 52 Polycentropodidae 0.1863 
6 AVERAGE_ALKALINITY 0.5562 53 Physidae 0.1739 
7 PEBBLES_GRAVEL 0.5550 54 Haliplidae 0.1736 
8 Rhyacophilidae 0.5260 55 Psychomyiidae 0.1667 
9 DISCHARGE_CATEGORY 0.5121 56 Neritidae 0.1439 

10 Hydropsychidae 0.5087 57 DEPTH 0.1281 
11 Sphaeriidae_Pea_mussels 0.4887 58 Piscicolidae 0.1196 
12 LOG_DISTANCE_FROM_SOURCE 0.4825 59 Unionidae 0.1039 
13 Perlodidae 0.4737 60 Brachycentridae 0.1038 
14 Leuctridae 0.4737 61 Aphelocheiridae 0.1033 
15 Asellidae 0.4712 62 Dendrocoelidae 0.1008 
16 Gammaridae 0.4537 63 Odontoceridae 0.1004 
17 Caenidae 0.4442 64 Perlidae 0.0937 
18 SILT_CLAY 0.4274 65 Scirtidae 0.0835 
19 Sericostomatidae 0.4258 66 Notonectidae 0.0809 
20 Ephemerellidae 0.4229 67 Molannidae 0.0729 
21 Leptoceridae 0.4150 68 Corophiidae 0.0636 
22 Oligochaeta 0.3922 69 WIDTH 0.0627 
23 Simuliidae 0.3901 70 Viviparidae 0.0602 
24 Nemouridae 0.3873 71 Platycnemididae 0.0506 
25 Chironomidae 0.3859 72 Cordulegasteridae 0.0438 
26 Hydrobiidae 0.3795 73 Gerridae 0.0397 
27 Lepidostomatidae 0.3772 74 Philopotamidae 0.0379 
28 Limnephilidae 0.3760 75 Beraeidae 0.0341 
29 Chloroperlidae 0.3659 76 Astacidae 0.0240 
30 Glossiphoniidae 0.3578 77 Hydrometridae 0.0234 
31 Erpobdellidae 0.3571 78 Capniidae 0.0206 
32 Tipulidae 0.3322 79 Phryganeidae 0.0166 
33 Taeniopterygidae 0.3250 80 Aeshnidae 0.0135 
34 Planorbidae 0.3201 81 Naucoridae 0.0129 
35 ALTITUDE 0.3074 82 Nepidae 0.0126 
36 Ancylidae 0.3025 83 Libellulidae 0.0111 
37 Hydroptilidae 0.2912 84 Dryopidae 0.0107 
38 Goeridae 0.2897 85 Pleidae 0.0099 
39 Valvatidae 0.2752 86 Hirudinidae 0.0092 
40 Ephemeridae 0.2701 87 Potamanthidae 0.0086 
41 Hydrophilidae 0.2641 88 Siphlonuridae 0.0061 
42 Corixidae 0.2579 89 Gomphidae 0.0060 
43 Gyrinidae 0.2523 90 Mesoveliidae 0.0060 
44 Leptophlebiidae 0.2511 91 Hygrobiidae 0.0041 
45 Lymnaeidae 0.2501 92 Corduliidae 0.0012 
46 Planariidae 0.2497 93 Lestidae 0.0000 
47 SAND 0.2464     

      Totals   
    Model MI (Training Variables) 22.2486
    Taxa MI 17.8090
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Table 8.3 Distribution of samples between five equally sized bands for each 
environmental variable, ordered according to ranking in Table 8.2 (shown in 
brackets). 

  State 
Variable 1 2 3 4 5 
LOG SLOPE (3) 399 1,328 2,330 1,182 100 
BOULDERS COBBLES (4) 2,452 1,156 925 557 249 
AVERAGE ALKAILINTY (6) 1787 2,135 1,394 20 3 
PEBBLES GRAVEL (7) 916 1,384 1,658 996 385 
DISCHARGE CATEGORY (9) 3,340 1,190 529 226 54 
LOG DIST FROM SOURCE (12) 6 52 1,457 3,285 539 
SILT CLAY (18) 3,733 784 265 166 427 
ALTITUDE (35) 3,892 1,147 233 50 17 
SAND (47) 3,708 1,231 293 84 23 
DEPTH (57) 5,113 181 40 3 2 
WIDTH (69) 5,231 100 6 1 1 
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Table 8.4  Results for original RPDS data using equal percentile bandings. 
Rank Variable MI Rank Variable MI 

1 DISTANCE FROM SOURCE 0.7657 45 Gyrinidae 0.2387 
2 DISCHARGE 0.7085 46 Corixidae 0.2383 
3 ALKALINITY 0.6953 47 Lymnaeidae 0.2348 
4 WIDTH 0.6840 48 Leptophlebiidae 0.2316 
5 SLOPE 0.6637 49 Planariidae 0.2288 
6 BOULDERS 0.6616 50 Coenagriidae 0.2035 
7 SILT 0.6308 51 Calopterygidae 0.1910 
8 Elmidae 0.6184 52 Dytiscidae 0.1877 
9 Heptageniidae 0.6142 53 Sialidae 0.1757 

10 DEPTH 0.5522 54 Haliplidae 0.1689 
11 PEBBLES 0.5500 55 Polycentropodidae 0.1679 
12 Baetidae 0.5204 56 Physidae 0.1647 
13 ALTITUDE 0.5143 57 Psychomyiidae 0.1509 
14 Rhyacophilidae 0.5106 58 Neritidae 0.1342 
15 Hydropsychidae 0.4991 59 Piscicolidae 0.1161 
16 Perlodidae 0.4711 60 Brachycentridae 0.1084 
17 SAND 0.4687 61 Perlidae 0.0960 
18 Sphaeriidae 0.4642 62 Unionidae 0.0927 
19 Leuctridae 0.4613 63 Odontoceridae 0.0897 
20 Asellidae 0.4445 64 Aphelocheiridae 0.0883 
21 Gammaridae 0.4328 65 Dendrocoelidae 0.0849 
22 Caenidae 0.4137 66 Notonectidae 0.0801 
23 Leptoceridae 0.4062 67 Scirtidae 0.0786 
24 Sericostomatidae 0.3975 68 Molannidae 0.0673 
25 Ephemerellidae 0.3857 69 Viviparidae 0.0573 
26 Nemouridae 0.3694 70 Platycnemidae 0.0471 
27 Hydrobiidae 0.3634 71 Corophiidae 0.0450 
28 Chironomidae 0.3619 72 Gerridae 0.0389 
29 Simuliidae 0.3605 73 Cordulegasteridae 0.0386 
30 Chloroperlidae 0.3601 74 Philopotamidae 0.0366 
31 Lepidostomatidae 0.3577 75 Beraeidae 0.0309 
32 Oligochaeta 0.3433 76 Capniidae 0.0271 
33 Limnephilidae 0.3432 77 Hydrometridae 0.0203 
34 Erpobdellidae 0.3343 78 Astacidae 0.0202 
35 Glossiphoniidae 0.3183 79 Naucoridae 0.0149 
36 Taeniopterygidae 0.3085 80 Phryganeidae 0.0134 
37 Tipulidae 0.3081 81 Aeshnidae 0.0124 
38 Planorbidae 0.3018 82 Libellulidae 0.0118 
39 Ancylidae 0.2957 83 Hirudinidae 0.0112 
40 Goeridae 0.2755 84 Nepidae 0.0104 
41 Hydroptilidae 0.2710 85 Dryopidae 0.0091 
42 Hydrophilidae 0.2614 86 Siphlonuridae 0.0083 
43 Ephemeridae 0.2456 87 Potamanthidae 0.0055 
44 Valvatidae 0.2444      

    Totals  
    Model MI (Training Variables) 23.6363
    Taxa MI 16.7415
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Table 8.5  Results for RPDS 'clone' using equal percentile bandings. 
Rank Variable MI Rank Variable MI 

1 LOG_DISTANCE_FROM_SOURCE 0.7718 48 Leptophlebiidae 0.2468 
2 AVERAGE ALKALINITY 0.7572 49 Corixidae 0.2450 
3 DISCHARGE_CATEGORY 0.7356 50 Coenagriidae 0.2165 
4 WIDTH 0.7141 51 Dytiscidae 0.2033 
5 LOG_SLOPE 0.6787 52 Calopterygidae 0.2024 
6 SILT_CLAY 0.6749 53 Sialidae 0.1855 
7 BOULDERS_COBBLES 0.6632 54 Haliplidae 0.1849 
8 Elmidae 0.6187 55 Polycentropodidae 0.1838 
9 Heptageniidae 0.6074 56 Physidae 0.1674 

10 DEPTH 0.5830 57 Psychomyiidae 0.1510 
11 PEBBLES_GRAVEL 0.5601 58 Neritidae 0.1494 
12 SAND 0.5451 59 Piscicolidae 0.1203 
13 ALTITUDE 0.5327 60 Brachycentridae 0.1034 
14 Baetidae 0.5303 61 Unionidae 0.1022 
15 Rhyacophilidae 0.5166 62 Aphelocheiridae 0.0981 
16 Hydropsychidae 0.5003 63 Dendrocoelidae 0.0968 
17 Sphaeriidae_Pea_mussels 0.4674 64 Odontoceridae 0.0953 
18 Perlodidae 0.4642 65 Perlidae 0.0916 
19 Leuctridae 0.4629 66 Scirtidae 0.0911 
20 Gammaridae 0.4569 67 Notonectidae 0.0789 
21 Asellidae 0.4476 68 Molannidae 0.0707 
22 Ephemerellidae 0.4347 69 Viviparidae 0.0576 
23 Caenidae 0.4254 70 Corophiidae 0.0558 
24 Leptoceridae 0.4207 71 Platycnemididae 0.0478 
25 Sericostomatidae 0.4129 72 Cordulegasteridae 0.0457 
26 Nemouridae 0.3709 73 Gerridae 0.0396 
27 Lepidostomatidae 0.3686 74 Philopotamidae 0.0381 
28 Oligochaeta 0.3682 75 Beraeidae 0.0347 
29 Chloroperlidae 0.3679 76 Hydrometridae 0.0222 
30 Limnephilidae 0.3563 77 Capniidae 0.0208 
31 Hydrobiidae 0.3477 78 Astacidae 0.0207 
32 Erpobdellidae 0.3448 79 Phryganeidae 0.0158 
33 Chironomidae 0.3443 80 Naucoridae 0.0128 
34 Simuliidae 0.3427 81 Nepidae 0.0126 
35 Glossiphoniidae 0.3311 82 Aeshnidae 0.0126 
36 Taeniopterygidae 0.3138 83 Libellulidae 0.0109 
37 Planorbidae 0.3106 84 Dryopidae 0.0106 
38 Tipulidae 0.3037 85 Pleidae 0.0103 
39 Goeridae 0.2915 86 Hirudinidae 0.0095 
40 Ancylidae 0.2861 87 Potamanthidae 0.0071 
41 Hydroptilidae 0.2737 88 Mesoveliidae 0.0065 
42 Valvatidae 0.2661 89 Siphlonuridae 0.0059 
43 Lymnaeidae 0.2574 90 Gomphidae 0.0055 
44 Hydrophilidae 0.2550 91 Hygrobiidae 0.0042 
45 Gyrinidae 0.2524 92 Corduliidae 0.0011 
46 Ephemeridae 0.2487 93 Lestidae 0.0000 
47 Planariidae 0.2481      

    Totals  
    Model MI (Training Variables) 24.4248
    Taxa MI 17.2084
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The effect of state boundaries on the clustering is relatively simple to explain.  Suppose 
the selected boundaries for a particular variable result in the majority of samples falling 
in one state.  The impact of that variable on the clustering process will be minimal 
because of the inability to discriminate between samples, and therefore between 
clusters, based on that variable.  The clustering algorithm will instead rely on other 
variables with states that vary more widely between clusters and that provide greater 
scope for discrimination. The use of equal percentile bandings produced distributions of 
samples between bands that were practically even, thereby maximising the amount of 
variation between sample set and clusters.  Variables discretised in this way were ideal 
candidates for good discrimination, and were likely to be variables contributing most to 
the clustering process. 
 
This posed a difficulty for revision of the RPDS model.  A method was required that 
prevented the environmental variables from dominating the clustering when included 
with equal percentile banding.  The environmental variables needed to be included in a 
sub-optimal configuration to allow the macro-invertebrates to operate on a ‘level 
playing field’.  Two options were suggested: 
 

• Ensure that the distribution of samples between the states was as uniform 
as possible for all training variables. This would essentially mean modifying 
the bandings for states of environmental variables until the distribution of 
samples was ‘similar’ to that of the macro-invertebrate variables.  This was 
basically what had happened with the original RPDS models, albeit 
somewhat fortuitously.  Although this option had some scope (see below), it 
was considered to be too ad hoc and rejected. 

 
• Reduce the number of environmental variables used in training, many of 

which were strongly correlated anyway, to allow the macro-invertebrate 
variables to exert a greater influence.  This was considered the more 
appropriate option. 

 

Modifying bandings for environmental variables   
 
Modifying the bandings is a rather crude method of reducing the influence of 
environmental variables and it was decided that, in general, this should not be pursued. 
However, some modification was undertaken to improve the fit to sample distributions 
and achieve boundary values of more practical use. This would almost certainly 
weaken the influence of some environmental variables, but as a side effect rather than 
a goal. 
 
Modifications were made using a piece of software developed for the Bayesian Belief 
Network in the previous project, designed to show the distribution of samples according 
to a set of user-defined states. Initially, the user would be able to automatically define a 
number of equally sized bands, and by using this feature with a larger numbers of 
states it would be possible to gain some idea of the characteristic of the sample 
distribution.  
 
Figure 8.2 shows a screenshot of this process for the variable average alkalinity, 
chosen specifically because the distribution appears to be bipolar with a peak around 
0-60 mg/l and another around 180-240 mg/l.  Bandings based on both equal sub-
ranges and equal percentile-banding methods are unsuitable for this kind of feature, 
and it is more appropriate to define the bandings manually. 
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Figure 8.2  Screenshot of division of sample distribution of average alkalinity 
into nine equally sized bands.          
 

Rationalising environmental variables used in training 
 
The set of environmental variables was reviewed to identify any redundancy, which 
would allow the set to be reduced with minimal loss of information from the sample. 
The four variables describing the substrate composition were reduced to two, firstly by 
combining the values for percentages boulders and cobbles with percentage pebbles 
and gravel to give a single coarse substrate variable referred to as boulders and 
pebbles combined; and secondly by removing the percentage sand variable. The 
reasoning behind this was that the main habitats for the majority of macroinvertebrates 
are associated with coarse or very fine substrates. Although the removal of sand was a 
major change, it was reasoned that, being part of a composite value, information on the 
percentage sand would be represented indirectly in the values of remaining substrate 
variables. Log distance from source was also selected for removal, given its likely 
correlation with other variables.   
 
Further reductions were based on rankings derived by three different methods.  The 
first two were the mean of the results of pair-wise testing for correlation and mutual 
information respectively. The third set of results was the mutual information rankings 
for environmental variables in an RPDS ‘clone’ model produced using only the 
macroinvertebrate variables in training (this would indicate the influence on 
‘communities typology’ defined by the model, rather than a statistic based on tests with 
individual taxa as in the other tests).  The rankings are given in Table 8.6.  
 

74 Refinement of AI-based systems for diagnosing and predicting river health  



 Refinement of AI-based systems for diagnosing and predicting river health 75 

Table 8.6  Three rankings (based on the mean of pair-wise correlation, MI tests 
and MI values based on a MIR-max model using only macroinvertebrate taxa) 
and their mean.    

 Ranking 
for mean 

correlation

Ranking 
for mean 

MI 

Ranking 
for MIs 

for taxa-
only 

model 

Mean of 
rankings 

AVERAGE ALKALINITY 1 2 1 1.33 
LOG_SLOPE 2 5 4 3.67 
BOULDERS_PEBBLES_COMBINED 4 3 7 4.67 
DEPTH 3 8 3 4.67 
LOG_DISTANCE_FROM_SOURCE* 7 10 2 6.33 
SILT_CLAY 5 6 10 7.00 
ALTITUDE 8 9 5 7.33 
WIDTH 10 11 6 9.00 
DISCHARGE_CATEGORY 9 12 12 11.00 
BEDROCK 13 13 13 13.00 
* Log distance from source is shown because although it was removed from this phase of testing, it was 
returned later. 
 
Spring 1995 models were produced with all the environmental variables, and with 
seven, five, four, three and none.  Each model was produced initially with average 
alkalinity in the dataset, and then reproduced with calcareous geology in its place.  So 
that a fair comparison could be made between the two, the training data was reduced 
from the original RPDS ‘clone’ dataset of 5,339 samples to a subset of 4,349 samples 
that contained a value for both variables.  The results of the tests of models that 
included alkalinity in the training set are shown in Table 8.7, and for those that included 
calcareous geology in Table 8.8.  For brevity, only the 30 highest ranked variables are 
shown, and in each list, the environmental variables that were excluded from the input 
vector are italicised. 
 
Taking the tests with average alkalinity first, Table 8.7, the first column represents the 
equivalent model to the RPDS ‘clone’ of Table 8.5, but for the reduced dataset.  The 
highest rankings are dominated by environmental variables, as before.  The other 
columns in Table 8.7 give the rankings for the models with seven, five, four and three 
environmental variables.  It is clear that macroinvertebrates are not in the majority in 
the top ten or top three rankings until environmental variables have been reduced to 
just four. 
 
The corresponding results for models with alkalinity replaced by calcareous geology, 
Table 8.8, show that calcareous geology performs a similar role in the models to that of 
alkalinity.  Changes in the rankings and MI values achieved for each model are similar.



 Table 8.7  Results for environmental training variables reduction tests using alkalinity. 
  All RPDS Variables   Seven Environmental Variables Five Environmental Variables Four Environmental Variables Three Environmental Variables 
Rank Variable MI Variable MI Variable MI Variable MI Variable MI 
1 LOG_DISTANCE_FROM_SOURCE 0.7600 BOULDERS_PEBBLES_COMBINED 0.7530 BOULDERS_PEBBLES_COMBINED 0.7794 AVERAGE_ALKALINITY 0.7067 AVERAGE ALKALINITY 0.6932
2 DISCHARGE_CATEGORY 0.7394 AVERAGE ALKALINITY 0.6898 SILT_CLAY 0.6966 Heptageniidae 0.6747 Elmidae 0.6737
3 WIDTH 0.7035 LOG_SLOPE 0.6714 AVERAGE ALKALINITY 0.6887 Elmidae 0.6634 Heptageniidae 0.6714
4 BOULDERS_PEBBLES_COMBINED 0.6926 SILT_CLAY 0.6707 Heptageniidae 0.6752 BOULDERS_PEBBLES_COMBINED 0.6520 BOULDERS_PEBBLES_COMBINED 0.6346
5 AVERAGE_ALKALINITY 0.6879 Elmidae 0.6558 Elmidae 0.6525 LOG_SLOPE 0.6485 LOG_SLOPE 0.6197
6 LOG_SLOPE 0.6848 Heptageniidae 0.6516 LOG_SLOPE 0.6451 Baetidae 0.5900 Baetidae 0.6094
7 SILT_CLAY 0.6616 WIDTH 0.6394 Baetidae 0.5657 DEPTH 0.5893 Hydropsychidae 0.5835
8 BOULDERS_COBBLES 0.6566 DEPTH 0.5995 Hydropsychidae 0.5595 Hydropsychidae 0.5622 Rhyacophilidae 0.5505
9 Elmidae 0.6377 Baetidae 0.5630 DEPTH 0.5575 Rhyacophilidae 0.5364 Sphaeriidae_Pea_mussels 0.5337
10 Heptageniidae 0.6371 ALTITUDE 0.5588 Rhyacophilidae 0.5537 Sphaeriidae_Pea_mussels 0.5269 GEO_CALC 0.5239
11 DEPTH 0.5868 Hydropsychidae 0.5513 GEO_CALC 0.5295 GEO_CALC 0.5237 Gammaridae 0.5203
12 ALTITUDE 0.5686 GEO_CALC 0.5479 Sphaeriidae_Pea_mussels 0.5146 Gammaridae 0.5121 Perlodidae 0.5148
13 GEO_CALC 0.5478 Rhyacophilidae 0.5400 Gammaridae 0.5079 Asellidae 0.5092 Asellidae 0.5081
14 PEBBLES_GRAVEL 0.5428 Sphaeriidae_Pea_mussels 0.5102 Perlodidae 0.4984 Perlodidae 0.5039 Leuctridae 0.5021
15 Baetidae 0.5398 DISCHARGE_CATEGORY 0.5028 Leuctridae 0.4956 Leuctridae 0.4966 Caenidae 0.4731
16 Rhyacophilidae 0.5314 LOG_DISTANCE_FROM_SOURCE 0.4974 Asellidae 0.4891 Ephemerellidae 0.4779 Sericostomatidae 0.4702
17 SAND 0.5192 Gammaridae 0.4963 Ephemerellidae 0.4755 SILT_CLAY 0.4677 Ephemerellidae 0.4700
18 Hydropsychidae 0.5139 Leuctridae 0.4961 BOULDERS_COBBLES 0.4750 Caenidae 0.4661 SILT_CLAY 0.4567
19 Sphaeriidae_Pea_mussels 0.4826 Perlodidae 0.4912 Caenidae 0.4735 Sericostomatidae 0.4639 Leptoceridae 0.4460
20 Leuctridae 0.4792 BOULDERS_COBBLES 0.4786 Leptoceridae 0.4582 Simuliidae 0.4413 Simuliidae 0.4343
21 Perlodidae 0.4776 Caenidae 0.4764 Sericostomatidae 0.4479 Leptoceridae 0.4353 Erpobdellidae 0.4269
22 Asellidae 0.4727 Asellidae 0.4677 LOG_DISTANCE_FROM_SOURCE 0.4272 BOULDERS_COBBLES 0.4269 Oligochaeta 0.4237
23 Gammaridae 0.4691 Ephemerellidae 0.4599 DISCHARGE_CATEGORY 0.4148 LOG_DISTANCE_FROM_SOURCE 0.4202 BOULDERS_COBBLES 0.4177
24 Caenidae 0.4443 Sericostomatidae 0.4509 Erpobdellidae 0.4148 WIDTH 0.4191 Chironomidae 0.4117
25 Ephemerellidae 0.4393 Leptoceridae 0.4412 WIDTH 0.4138 Erpobdellidae 0.4141 Lepidostomatidae 0.4034
26 Sericostomatidae 0.4347 Hydrobiidae 0.4193 Lepidostomatidae 0.4100 DISCHARGE_CATEGORY 0.4141 Hydrobiidae 0.4033
27 Leptoceridae 0.4107 Simuliidae 0.4191 Simuliidae 0.4089 Hydrobiidae 0.4124 Nemouridae 0.4031
28 Lepidostomatidae 0.4031 Oligochaeta 0.4100 Hydrobiidae 0.4072 Oligochaeta 0.4083 Limnephilidae 0.4031
29 Oligochaeta 0.4000 Nemouridae 0.4047 Oligochaeta 0.4011 Nemouridae 0.4016 LOG_DISTANCE_FROM_SOURCE 0.3939
30 Simuliidae 0.3961 Lepidostomatidae 0.4023 Chloroperlidae 0.3956 Lepidostomatidae 0.4008 Chloroperlidae 0.3914
  Totals   Totals   Totals   Totals   Totals   
  Model MI (Training Variables)  25.1088 Model MI (Training Variables)  23.137 Model MI (Training Variables)  22.179 Model MI (Training Variables)  21.603 Model MI (Training Variables)  21.154
  Taxa MI 17.9975 Taxa MI 18.554 Taxa MI 18.812 Taxa MI 19.006 Taxa MI 19.207
  Original RPDS Variables MI 25.1088 Original RPDS Variables MI 24.599 Original RPDS Variables MI 24.246 Original RPDS Variables MI 24.131 Original RPDS Variables MI 23.895
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Table 8.8  Results for environmental training variables reduction tests using calcareous geology. 
  All RPDS Variables   Seven Environmental Variables Five Environmental Variables Four Environmental Variables Three Environmental Variables 
Rank Variable MI Variable MI Variable MI Variable MI Variable MI 
1 LOG_DISTANCE_FROM_SOURCE 0.7792 BOULDERS_PEBBLES_COMBINED 0.7459 BOULDERS_PEBBLES_COMBINED 0.7778 GEO_CALC 0.7099 GEO_CALC 0.7068
2 DISCHARGE_CATEGORY 0.7536 GEO_CALC 0.6894 GEO_CALC 0.7037 Heptageniidae 0.6757 Elmidae 0.6884
3 WIDTH 0.7265 Heptageniidae 0.6763 SILT_CLAY 0.6816 Elmidae 0.6661 Heptageniidae 0.6785
4 BOULDERS_PEBBLES_COMBINED 0.6859 LOG_SLOPE 0.6747 Heptageniidae 0.6664 BOULDERS_PEBBLES_COMBINED 0.6521 BOULDERS_PEBBLES_COMBINED 0.6250
5 LOG_SLOPE 0.6842 SILT_CLAY 0.6719 Elmidae 0.6465 LOG_SLOPE 0.6306 LOG_SLOPE 0.6205
6 GEO_CALC 0.6759 Elmidae 0.6630 LOG_SLOPE 0.6393 Baetidae 0.5951 Baetidae 0.5979
7 BOULDERS_COBBLES 0.6576 WIDTH 0.6336 Baetidae 0.5943 Hydropsychidae 0.5755 Hydropsychidae 0.5889
8 Heptageniidae 0.6525 DEPTH 0.6001 DEPTH 0.5641 DEPTH 0.5681 Sphaeriidae_Pea_mussels 0.5423
9 SILT_CLAY 0.6438 Baetidae 0.5769 Hydropsychidae 0.5602 Rhyacophilidae 0.5354 Rhyacophilidae 0.5369
10 Elmidae 0.6376 ALTITUDE 0.5740 AVERAGE ALKALINITY 0.5444 AVERAGE_ALKALINITY 0.5292 AVERAGE ALKALINITY 0.5353
11 DEPTH 0.5811 AVERAGE ALKALINITY 0.5499 Rhyacophilidae 0.5320 Sphaeriidae_Pea_mussels 0.5237 Gammaridae 0.5184
12 AVERAGE_ALKALINITY 0.5547 Hydropsychidae 0.5422 Sphaeriidae_Pea_mussels 0.5137 Asellidae 0.5101 Perlodidae 0.5115
13 Baetidae 0.5456 Rhyacophilidae 0.5347 Perlodidae 0.5108 Gammaridae 0.5086 Leuctridae 0.5043
14 ALTITUDE 0.5421 DISCHARGE_CATEGORY 0.5028 Leuctridae 0.5055 Leuctridae 0.5069 Asellidae 0.4984
15 PEBBLES_GRAVEL 0.5386 Leuctridae 0.5019 Gammaridae 0.4975 Perlodidae 0.4990 Ephemerellidae 0.4832
16 Hydropsychidae 0.5206 LOG_DISTANCE_FROM_SOURCE 0.4980 Asellidae 0.4908 Caenidae 0.4684 Caenidae 0.4708
17 SAND 0.5175 Gammaridae 0.4972 Ephemerellidae 0.4713 Sericostomatidae 0.4675 Sericostomatidae 0.4618
18 Rhyacophilidae 0.5157 Sphaeriidae_Pea_mussels 0.4956 BOULDERS_COBBLES 0.4669 Ephemerellidae 0.4659 SILT_CLAY 0.4487
19 Leuctridae 0.4898 Perlodidae 0.4936 Caenidae 0.4637 SILT_CLAY 0.4521 Leptoceridae 0.4371
20 Sphaeriidae_Pea_mussels 0.4887 Asellidae 0.4875 Sericostomatidae 0.4547 Leptoceridae 0.4341 Oligochaeta 0.4326
21 Perlodidae 0.4800 Caenidae 0.4754 Leptoceridae 0.4343 Simuliidae 0.4340 Hydrobiidae 0.4298
22 Gammaridae 0.4796 BOULDERS_COBBLES 0.4697 LOG_DISTANCE_FROM_SOURCE 0.4320 BOULDERS_COBBLES 0.4334 BOULDERS_COBBLES 0.4273
23 Asellidae 0.4644 Ephemerellidae 0.4634 Simuliidae 0.4295 Erpobdellidae 0.4249 Simuliidae 0.4251
24 Ephemerellidae 0.4485 Sericostomatidae 0.4455 WIDTH 0.4243 LOG_DISTANCE_FROM_SOURCE 0.4230 Erpobdellidae 0.4112
25 Caenidae 0.4473 Leptoceridae 0.4213 Erpobdellidae 0.4201 Hydrobiidae 0.4162 Lepidostomatidae 0.4068
26 Sericostomatidae 0.4324 Simuliidae 0.4175 DISCHARGE_CATEGORY 0.4186 Oligochaeta 0.4139 Chironomidae 0.4012
27 Leptoceridae 0.4144 Erpobdellidae 0.4072 Hydrobiidae 0.4148 Lepidostomatidae 0.4029 Nemouridae 0.3972
28 Nemouridae 0.3966 Oligochaeta 0.4046 Lepidostomatidae 0.4005 WIDTH 0.4003 Limnephilidae 0.3954
29 Lepidostomatidae 0.3945 Hydrobiidae 0.4023 Oligochaeta 0.3999 DISCHARGE_CATEGORY 0.3996 LOG_DISTANCE_FROM_SOURCE 0.3954
30 Hydrobiidae 0.3885 Lepidostomatidae 0.4006 Nemouridae 0.3969 Nemouridae 0.3976 DISCHARGE_CATEGORY 0.3935
  Totals   Totals   Totals   Totals   Totals   
  Model MI (Training Variables)  25.0976 Model MI (Training Variables)  23.141 Model MI (Training Variables)  22.178 Model MI (Training Variables)  21.611 Model MI (Training Variables)  21.121
  Taxa MI 17.9976 Taxa MI 18.551 Taxa MI 18.811 Taxa MI 19.05 Taxa MI 19.169
  Original RPDS Variables MI 24.9764 Original RPDS Variables MI 24.457 Original RPDS Variables MI 24.111 Original RPDS Variables MI 23.899 Original RPDS Variables MI 23.765



Analysis of the models by ranking was complemented by an analysis designed to 
measure the extent of variability of the macroinvertebrate community represented by 
the clusters.  The cluster variability of macroinvertebrates was measured using: 
 

• The mean standard deviation of the clusters (the standard deviation of each 
variable in the cluster then averaged over all the variables). 

• The mean entropy of the clusters (a measure of the uncertainty associated 
with the distribution of each variable in the cluster, and then summed over 
all the variables.  Its theoretical maximum is when all states are equally 
likely for each variable and its theoretical minimum (of zero) when each 
variable occupies a single state). 

 
Variability in the variables themselves was measured using: 
 

• The mean standard deviation of each variable (the standard deviation of 
each variable when averaged over the clusters). 

• The mean entropy of each variable (a measure of the uncertainty 
associated with the distribution of each single variable, summed over the 
clusters.  Its theoretical maximum is when all states are equally likely, and 
its theoretical minimum (of zero) when the variable occupies a single state). 

 
Three models were produced for each set of test parameters and the best model 
chosen.  Table 8.9 shows the results for tests when alkalinity was included and when it 
was replaced by calcareous geology, along with the model based on 
macroinvertebrates alone (‘taxa only’).   
 
As expected, both sets of tests indicated that the summed mutual information for the 
taxa (‘taxa MI’) increases as the number of environmental variables decreases, 
reflecting the ‘optimisation’ of clustering for macroinvertebrates with successive 
removal of environmental parameters. Measures of variability (entropy, standard 
deviation) improved correspondingly with each removal, both within the clusters and 
among the variables themselves.  
 
Models that included alkalinity tended to have marginally higher MI values than their 
counterparts with calcareous geology instead. They also tended to have clusters with 
slightly lower variability as measured by entropy and standard deviation.  These results 
could not confirm that the calcareous geology variable was performing exactly the 
same role as alkalinity, but similar characteristics were certainly displayed. When 
alkalinity was substituted by calcareous geology, the overall quality of the model 
diminished slightly, indicating that it would be better to retain alkalinity if possible, but 
calcareous geology was a viable alternative. 
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Table 8.9 Mean entropy and standard deviation for each cluster and each 
variable based on analysis of macroinvertebrate variables, plus MI for whole 
model. 

  

Mean Cluster 
Entropy 

Mean Variable
Entropy 

Mean Cluster
SD 

Mean 
Variable 

SD 

Taxa MI 

AllEnv_Alk 26.2041 0.3276 21.5875 0.2698 17.9975 
7Env_Alk 25.8940 0.3237 21.4355 0.2679 18.5544 
5Env_Alk 25.6608 0.3208 21.3153 0.2664 18.8120 
4Env_Alk 25.5237 0.3190 21.2148 0.2652 19.0063 
3Env_Alk 25.3680 0.3171 21.1741 0.2647 19.2071 
       
AllEnv_Calc 26.2599 0.3282 21.6151 0.2702 17.9976 
7Env_Calc 25.8243 0.3228 21.3937 0.2674 18.5512 
5Env_Calc 25.6505 0.3206 21.3255 0.2666 18.8112 
4Env_Calc 25.4565 0.3182 21.2517 0.2656 19.0505 
3Env_Calc 25.3957 0.3174 21.2139 0.2652 19.1689 
       
Taxa only 25.1106 0.3139 21.1278 0.2641 19.5279 

 

Final test model 
 
The results of the preliminary tests suggested that a model with four or five 
environmental variables would represent a reasonable compromise between the 
opposing goals of maximising the representation of environmental characteristics of the 
site and maximising the influence of macroinvertebrates in the eventual clusters.   
 
A final test model was adopted with five environmental variables.  The aim was to 
employ environmental variables that covered the widest range of influences on habitat, 
including chemical composition, flow, substrate composition, river dimension and 
temperature. Hence, the final five were alkalinity/calcareous geology (indicative of 
chemical conditions), slope (indicative of flow velocity), boulders and pebbles 
(indicative of substrate composition), distance from source (indicative of river size) and 
altitude (indicative of temperature). 
 
Table 8.10 shows the results of tests undertaken with the final model containing these 
five environmental variables, both with alkalinity and when replaced by calcareous 
geology. Compared to the previous results for five environmental variables (Tables 8.7 
and 8.8), the most noticeable change is the improved ranking of Heptageniidae and 
Elmidae, although Baetidae has dropped. These changes could signify a slight 
improvement in the influence of macroinvertebrates in the model. The fall of boulders 
and pebbles appears to confirm that its previous high ranking was a result of its strong 
correlation with the other substrate training variables, silt and clay.   
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Table 8.10  Results for revised five environmental variables using alkalinity (left) 
and calcareous geology (right). 
Rank Variable MI Rank Variable MI

1 LOG_SLOPE 0.6977 1 LOG_SLOPE 0.7071
2 AVERAGE_ALKALINITY 0.6956 2 GEO_CALC 0.6945
3 Elmidae 0.6661 3 Elmidae 0.6707
4 Heptageniidae 0.6574 4 Heptageniidae 0.6674
5 BOULDERS_PEBBLES_COMBINED 0.6493 5 BOULDERS_PEBBLES_COMBINED0.6401
6 LOG_DISTANCE_FROM_SOURCE 0.6321 6 LOG_DISTANCE_FROM_SOURCE 0.6193
7 ALTITUDE 0.5958 7 Baetidae 0.5828
8 Baetidae 0.5711 8 Hydropsychidae 0.5677
9 Hydropsychidae 0.5587 9 ALTITUDE 0.5630

10 GEO_CALC 0.5445 10 AVERAGE_ALKALINITY 0.5470
11 Rhyacophilidae 0.5378 11 Rhyacophilidae 0.5468
12 Sphaeriidae_Pea_mussels 0.5108 12 Sphaeriidae_Pea_mussels 0.5069
13 Leuctridae 0.5048 13 Perlodidae 0.5064
14 Perlodidae 0.5018 14 Asellidae 0.5020
15 Gammaridae 0.4967 15 Leuctridae 0.5000
16 Asellidae 0.4933 16 Gammaridae 0.4973
17 Ephemerellidae 0.4879 17 DISCHARGE_CATEGORY 0.4691
18 Caenidae 0.4787 18 Caenidae 0.4675
19 DISCHARGE_CATEGORY 0.4770 19 Ephemerellidae 0.4596
20 SILT_CLAY 0.4683 20 Sericostomatidae 0.4589
21 WIDTH 0.4524 21 SILT_CLAY 0.4581
22 Leptoceridae 0.4435 22 WIDTH 0.4528
23 Sericostomatidae 0.4420 23 Simuliidae 0.4400
24 BOULDERS_COBBLES 0.4309 24 Leptoceridae 0.4362
25 Simuliidae 0.4189 25 BOULDERS_COBBLES 0.4255
26 Nemouridae 0.4142 26 Oligochaeta 0.4145
27 Oligochaeta 0.4071 27 Hydrobiidae 0.4073
28 Limnephilidae 0.4069 28 Erpobdellidae 0.4054
29 DEPTH 0.4062 29 Nemouridae 0.4024
30 Lepidostomatidae 0.4044 30 Lepidostomatidae 0.3997

Model MI (Training Variables) 22.1137 Model MI (Training Variables) 22.1276
Taxa MI 18.8432 Taxa MI 18.9036
Original RPDS Variables MI 24.3575 Original RPDS Variables MI 24.2111  

 

Final models with full dataset based on average 
alkalinity 
 
The results of tests obtained with all preliminary models were presented at a meeting 
with the Environment Agency project manager in May 2007, after which it was 
confirmed that the full models should be trained on the basis of the five parameters of 
the final preliminary model.   
 
Spring and autumn models with the five parameters in the input vector were then 
trained using the full dataset, incorporating SEPA data and the years 1995-2004.  Two 
models were produced for each season, one based on average alkalinity and one on 
calcareous geology.   
 
Tables 8.11 and 8.12 show the distribution of samples by region and year in the spring 
and autumn models based on average alkalinity.  As with the preliminary models, 
although the value for alkalinity was based on an average, values of the other four 
environmental variables were those recorded with individual samples, differing from the 
practice used for the original 1995 models.  For this reason, the number of samples in 
the new models was slightly fewer (5,604 in spring, and 5,794 in autumn) than the 
6,039 samples in each season for the original 1995 models.  Virtually none of the 
SEPA samples prior to 2003 could be used because environmental data was missing.   
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Table 8.11  Distribution of samples by region and year for spring MIR-max model 
based on average alkalinity. 

 Grand
Year ANG NE NW MID SO SW TH WEL Total E N W Total Total
1995 679 668 277 1125 435 1098 510 812 5604 0 0 0 0 5604
1996 636 245 2 877 198 190 43 57 2248 0 0 0 0 2248
1997 671 201 29 629 213 376 126 13 2258 0 0 0 0 2258
1998 624 242 262 1023 235 170 202 53 2811 0 0 0 0 2811
1999 627 238 235 572 272 139 282 17 2382 0 0 0 0 2382
2000 505 719 709 1064 472 1128 497 815 5909 0 0 0 0 5909
2001 14 22 13 80 84 10 86 12 321 0 0 0 0 321
2002 374 312 343 622 220 378 242 292 2783 0 54 0 54 2837
2003 366 311 369 552 214 354 227 345 2738 629 262 0 891 3629
2004 338 290 392 415 198 338 208 299 2478 679 456 498 1633 4111
Total 4834 3248 2631 6959 2541 4181 2423 2715 29532 1308 772 498 2578 32110

EA SEPA

 
 
Table 8.12  Distribution of samples by region and year for autumn MIR-max 
model based on average alkalinity. 

Grand
Year ANG NE NW MID SO SW TH WEL Total E N W Total Total
1995 673 671 274 1355 413 1100 497 811 5794 0 0 0 0 5794
1996 669 291 15 657 207 159 108 3 2109 0 0 0 0 2109
1997 630 227 106 980 234 170 83 6 2436 0 0 0 0 2436
1998 641 250 146 954 242 152 197 2 2584 0 0 0 0 2584
1999 496 233 314 539 273 120 282 3 2260 0 0 0 0 2260
2000 541 512 492 802 320 978 484 697 4826 0 0 0 0 4826
2001 231 210 148 581 159 133 105 32 1599 0 0 0 0 1599
2002 374 299 356 477 196 335 217 302 2556 0 43 0 43 2599
2003 367 302 351 527 212 328 238 311 2636 608 234 0 842 3478
2004 330 257 387 423 201 300 195 289 2382 610 365 415 1390 3772
Total 4952 3252 2589 7295 2457 3775 2406 2456 29182 1218 642 415 2275 31457

EA SEPA

 
 
The total number of samples in the spring and autumn models was 32,110 and 31,457 
respectively, representing more than a five-fold increase compared to the original 
model.  Data in the models represent roughly 74 per cent of the total number of 
biological samples available (Tables 4.4 and 4.5) for spring and autumn.  The 
corresponding number of sites in each season at which samples were taken is shown 
in Table 8.13, representing 67 per cent of the total number of sites available (Table 4.6) 
for spring and autumn. 
 
Table 8.13  Distribution of sites for spring and autumn MIR-max models based on 
average alkalinity. 

Grand
ANG NE NW MID SO SW TH WEL Total E N W Total Total

Spring 697 797 859 1424 593 1397 540 966 7273 716 620 496 1832 9105
Autumn 698 823 836 1469 571 1342 547 918 7204 711 526 407 1644 8848

EA SEPA

 

 

Final models with full data based on calcareous 
geology 
 
Although the new version of RPDS was to incorporate the model above based on 
average alkalinity, the corresponding model based on calcareous geology is 
summarised in Tables 8.14-8.16.  Geological data was acquired as part of the GIS 
data, and this was only requested for biological sites with spatial locations validated 
using the procedures described in Section 5.4.  The number of samples and the 
number of sites represented in this model is therefore slightly less than in the model 
based on average alkalinity. 
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Table 8.14  Distribution of samples by region and year for spring MIR-max model 
based on calcareous geology. 

Year ANG NE NW MID SO SW TH WEL E N W Total
1995 507 548 202 876 389 958 432 723 0 0 0 4635
1996 513 243 2 646 170 175 70 59 0 0 0 1878
1997 518 265 23 499 194 307 160 13 0 0 0 1979
1998 461 307 182 768 210 156 195 28 0 0 0 2307
1999 465 326 174 440 240 157 260 19 0 0 0 2081
2000 378 640 516 844 430 987 402 727 0 0 0 4924
2001 11 48 9 53 76 18 83 11 0 0 0 309
2002 298 334 265 534 193 352 239 271 0 7 0 2493
2003 287 304 287 432 187 337 250 300 329 85 0 2798
2004 266 304 318 333 178 285 232 263 333 197 176 2885
Total 3704 3319 1978 5425 2267 3732 2323 2414 662 289 176 26289

EA SEPA

 
 
Table 8.15  Distribution of samples by region and year for autumn MIR-max 
model based on calcareous geology. 

Year ANG NE NW MID SO SW TH WEL E N W Total
1995 515 607 200 971 373 967 408 721 0 0 0 4762
1996 509 295 11 486 189 117 127 14 0 0 0 1748
1997 501 255 73 731 205 112 84 6 0 0 0 1967
1998 487 298 101 725 216 145 196 4 0 0 0 2172
1999 375 308 226 431 249 147 253 15 0 0 0 2004
2000 404 460 364 623 286 847 406 646 0 0 0 4036
2001 184 222 108 463 136 155 120 30 0 0 0 1418
2002 295 320 277 385 174 315 219 291 0 6 0 2282
2003 288 296 278 425 196 306 263 279 320 79 0 2730
2004 269 252 314 338 188 254 226 261 292 145 149 2688
Total 3827 3313 1952 5578 2212 3365 2302 2267 612 230 149 25807

EA SEPA

 
 
Table 8.16  Distribution of sites for spring and autumn MIR-max models based on 
calcareous geology. 

Grand
ANG NE NW MID SO SW TH WEL Total E N W Total Total

Spring 587 905 656 1093 522 1276 675 849 6563 347 212 176 735 7298
Autumn 588 892 638 1112 512 1226 637 881 6486 345 173 146 664 7150

EA SEPA

 
 

82 Refinement of AI-based systems for diagnosing and predicting river health  



9 Revision and evaluation of 
RPDS (River Pressure 
Diagnostic System) 

 
 

Introduction 
 
The original scope of the project anticipated incorporating the new MIR-max and BBN 
models into the existing RPDS and RPBBN systems respectively, and then developing 
a combined system with new functionality for each component.  However, because of 
the time taken to construct the project database, the combined system was abandoned 
and the systems were developed as separate entities.  As a result, both software 
systems were modified to incorporate their respective new model, and some limited 
testing and evaluation was completed.  It was not possible to implement the additional 
functionality for either system within the original project because of the severely 
shortened timescales.  This section describes the modifications made to the RPDS 
system to upgrade it to RPDS 3.0, the quantitative evaluation undertaken and the 
additional functionality required in the future. 
 
 

Development of RPDS 3.0 software 
 
Following the generation of clusters from the spring and autumn datasets described in 
the previous section, the MIR-max algorithm was used to order the clusters for each 
season in two-dimensional space to produce hexagonal output maps of side-length 10, 
15 and 20 clusters.  Each map was rotated to align as closely as possible with the 
originals in RPDS 2.0, for easy comparison.  
 
A number of modifications were made to the MIR-max output, project database and 
RPDS 2.0 software to accommodate the new spring and autumn models: 
 

• Data for the diagnostic variables (chemical statistics, stresses, GIS and 
flow data) was appended to the clustered spring and autumn datasets. 

 
• The datasets and MIR-max model data required modification to fit into the 

RPDS 2.0 database. 
 
• Streamlining of the database querying operations was required to reduce 

excessive response times. 
 
• The geographical map panel was revised to incorporate Scotland as well 

and England and Wales. 
 

Qualitative evaluation of RPDS 3.0 
Qualitative evaluation of RPDS 3.0 was undertaken firstly by visual comparison with 
RPDS 2.0 of the output maps for several variables in the spring and autumn models, 
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secondly by examination of the geographic locations of samples in particular clusters, 
and thirdly by interpreting the output maps for the new variables.   
 
 
Comparison with RPDS 2.0 
 
Figure 9.1(a) shows the hexagonal output maps (known as Hex 10 because of the 10 
locations on each edge) of RPDS 2.0 for three of the variables in the spring model: 
number of families, BOD and Elmidae.  The corresponding maps of RPDS 3.0 are 
shown in Figure 9.1(b). Comparing the shapes of the two sets of maps, it is 
immediately clear that the ordering produced for the new model is almost identical to 
the old, with the ‘gaps’ appearing in virtually identical locations.  From the colouring of 
the maps it is also evident that the distribution of the three variables across the new 
clusters is also similar to the distribution across the old.  Note that the scales adopted 
in RPDS 3.0 are different to those used in RPDS 2.0.  Different ranges have been used 
for the linear scales for number of families and BOD, while for taxa the logarithmic 
abundance scale used in RPDS 2.0 has been replaced by a nonlinear scale indicating 
actual counts.  Comparison of the maps shows that variation across the ‘quality’ 
gradient in the models of RPDS 2.0 has been reproduced in the new models of RPDS 
3.0.   
 
The models in RPDS 2.0 also exhibited variation across a ‘site type’ gradient, and 
Figure 9.2(a) shows the Hex 10 output maps from the autumn model for the three 
variables: ASPT, pH and Heptageniidae.  Their counterparts in RPDS 3.0 are shown in 
Figure 9.2(b).  A high degree of similarity is again apparent between the ordering of 
clusters in the two models.  After allowing for changes in scale, the colouring of the 
maps indicates that the distributions of these three variables across the clusters have 
also been reproduced well. 
 
Examination of geographical locations 
 
Because the dataset for the new model contained samples from SEPA as well as the 
Environment Agency, the geographic map panel in RPDS 3.0 was amended to 
incorporate Scotland as well as England and Wales.  The map panels of RPDS 2.0 and 
RPDS 3.0 are shown in Figure 9.3(a) and (b) respectively.  The Hex10 output map 
displays number of families for the spring model in each case, and a cluster has been 
chosen in a similar location in each that contains samples with a low number of 
families.  The geographical distribution of the sites is illustrated in each map panel, 
from which it is clear that samples in the old model are an approximate subset of those 
in the new.  This is more apparent from Figures 9.4(a) and (b), where ASPT is 
displayed on the Hex10 maps and the clusters chosen contain samples with high ASPT 
values.  The high altitudes of the corresponding sites are clearly shown on each map 
panel, with a large proportion of Scottish sites evident in the map panel of RPDS 3.0. 
 
Interpretation of maps of new variables 
 
Simple geology (Section 6), land cover (Section 6) and flow variables (Section 7) were 
incorporated in the new models and some qualitative evaluation is given in Figures 9.5-
9.9.   
 
Figure 9.5 shows output maps for the geological variables (percentage of upstream 
catchment categorised as calcareous, siliceous, peat or salt) for the spring model.  
Only maps for the spring model are shown because maps for the autumn model are 
similar.  Calcareous and siliceous geology dominate the categories, with over 90 per 
cent occurring in many clusters for calcareous and a few clusters for siliceous.  
Comparison of the output map for calcareous geology with that of pH (Fig 9.2(b)(i)) 
indicates a good correlation between the percentage of calcareous geology and 
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alkaline conditions.  There is a similarly good correlation between the percentage of 
peat (up to around 15 per cent) and acidic conditions.  The percentage categorised as 
salt is usually very low and reaches a maximum of around one per cent in only a few 
clusters. 
 
The new dataset includes percentage cover in the upstream catchment of more than 
twenty land cover categories. Output maps for a selection of six of the categories in the 
autumn model are shown in Figure 9.6.  Only maps for the autumn model are shown 
because maps for the spring model are similar.  Catchments with a high proportion of 
urban (up to around 7.5 per cent) and suburban (up to around 15 per cent) cover tend 
to be those with poorer quality water; there is a good correlation with maps of the 
number of taxa (Figure 9.1(b)(1)), BOD5 (Fig 9.1(b)(ii)) and ASPT (Fig 9.2(b)(i)).  
Catchments with a high proportion of arable land (up to around 60 per cent) tend to be 
those with calcareous geology (Figure 9.5(i)) rather than any other.  The map of 
improved grassland shows some clear structure, but further investigation is needed to 
identify correlations.  While the map of broad-leaved and mixed woodland shows little 
structure, the map of coniferous woodland shows clear correlation with those for 
siliceous (Fig 9.5(ii)) and peaty (Fig 9.5 (iii)) geology. 
 
Figures 9.7 to 9.9 provide qualitative information about the two flow variables 
incorporated in the new model.  Figures 9.7(a) and (b) show Hex10 maps for 
percentage impact at Q95 in the spring and autumn models respectively.  Percentage 
impact at Q95 is defined as  
 

100
Flow Natural

Flow Influenced-Flow Natural
× , 

 
so that positive values imply a reduction from natural flow (for example by abstraction), 
while negative values imply an increase (for example from discharges).  Preliminary 
interpretation of both maps suggests a weak negative correlation with distance from 
source, which would be expected because abstractions are likely to occur nearer the 
source than discharges. 
 
While the percentage impact at Q95 provides information about the site, being based 
on long-term average data, the other flow variable incorporated into the new model was 
designed to provide information about flow conditions at the time of sampling. Based 
on 30 years’ monthly flow data at a network of gauged sites, flow condition was 
calculated on a scale of [0,1] with zero for driest and one for wettest, based on a time 
period preceding the sample of one, two, three, six, 12 or 24 months.  The distributions 
of the cluster averages of these values are shown for the spring and autumn models in 
the Hex10 output maps of Figures 9.8 and 9.9.  Increasing structure is evident in both 
sets of maps for time periods of more than two months prior to the sample date.  
Preliminary interpretation suggests a positive correlation with ASPT: for comparison 
see Figure 9.2(b)(i).  This would be expected following the analysis in Section 7, which 
indicated the increased prevalence of high scoring taxa in wetter conditions and low 
scoring taxa in drier conditions.   
 
An initial qualitative evaluation suggests that of the two flow variables incorporated, 
quantification of flow condition may have a stronger relationship to biology than 
percentage impact at Q95. 
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    (i) (ii) (iii) 
 
Figure 9.1(a)  Output maps from RPDS 2.0 (spring 1995 model): (i) Number of 
families, (ii) BOD and (iii) Elmidae. 
 
 

 
 
    (i) (ii) (iii) 
 
Figure 9.1(b)  Output maps from RPDS 3.0 (spring model): (i) Number of families, 
(ii) BOD and (iii) Elmidae. 
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    (i) (ii) (iii) 
 
Figure 9.2(a)  Output maps from RPDS 2.0 (autumn 1995 model):  (i) ASPT,  
(ii) pH and (iii) Heptageniidae. 
 
 

 
 
    (i) (ii) (iii) 
 
Figure 9.2(b)  Output maps from RPDS 3.0 (autumn model):  (i) ASPT, (ii) pH, (iii) 
Heptageniidae. 
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Figure 9.3(a) Geographic map panel on RPDS 2.0 showing spatial locations of 
samples in cluster containing least diverse sites. 
 
 

 
Figure 9.3(b) Geographic map panel in RPDS 3.0 showing locations of samples in  
cluster corresponding closely to that illustrated in Figure 9.3 (a). 
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Figure 9.4(a) Geographic map panel on RPDS 2.0 showing spatial locations of 
samples in cluster containing samples with high ASPT values. 
 
 

 
Figure 9.4(b) Geographic map panel in RPDS 3.0 showing locations of samples in 
cluster corresponding closely to that illustrated in Figure 9.4(a). 
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 (i) (ii) 
 
 

 
 
 (ii) (iv) 
 
Figure 9.5  New geological variables in RPDS3.  Shown are maps of percentage of 
upstream catchment area in spring model categorised as (i) calcareous; (ii) siliceous; 
(iii) peat; and (iv) salt. 
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    (i) (ii) (iii) 
 
 

 
 
    (iv) (v) (vi) 
 
 
Figure 9.6 New land cover variable in RPDS3.  Shown are maps of percentage of 
upstream catchment area in autumn model categorised as (i) urban; (ii) suburban; (iii) 
arable; (iv) improved grassland; (v) broadleaved woodland; and (vi) coniferous 
woodland. 
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 (i) (ii) 
(a) 
 
 

 
 
 (i) (ii) 
(b) 
 
Figure 9.7  (a) Output maps in spring model for (i) percentage impact at Q95 and 
(ii) distance from source.  (b) Output maps in autumn model for (i) percentage 
impact at Q95 and (ii) distance from source.  (Note that a positive value of 
percentage impact at Q95 corresponds to a reduction from natural flow, and a negative 
value corresponds to an increase from natural flow). 
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    (i) (ii) (iii) 
 
 

 
 
    (iv) (v) (vi) 
 
 
Figure 9.8 Flow condition variable in RPDS 3.0 spring model.  On a scale of zero to 
one (where zero is driest and one is wettest) over a time period prior to the sample 
date of: (i) one month; (ii) two months; (iii) three months; (iv) six months; (v) 12 months; 
and (vi) 24 months. 
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    (i) (ii) (iii) 
 
 

 
 
    (iv) (v) (vi) 
 
 
Figure 9.9 Flow condition variable in RPDS 3.0 autumn model.  On a scale of zero 
to one (where zero is wettest and one is driest) over a time period prior to the sample 
date of: (i) one month; (ii) two months; (iii) three months; (iv) six months; (v) 12 months; 
and (vi) 24 months. 
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Extensions to RPDS functionality 
 
Following a meeting with potential users, a list of requirements was drawn up (Table 
9.1).  Some requirements relate to easier use of the software while others refer to 
additional functionality needed for the Water Framework Directive.  Following 
refinement, these requirements (and a corresponding set for RPBBN) were 
implemented during two extensions to the original project.  The subsequent work to 
modify RPDS is described in the next section. 
 
Table 9.1  List of requirements for additional functionality to RPDS. 
Deliverable 
1. Include a batch mode option – batch input and output.  In the output report, the 

stresses with highest occurrence at a given probability. Standard format for data 
files (to link with RIVPACS & BIOSYS). 

2. Needs an indicator confidence based on amount of data within the cluster, and 
the relative certainty of the classification of a sample to the cluster. 

3. Add high, good, moderate, fair and poor ecological WFD Status. 
4. Include a one-line summary of pressures in the output (along with bin label).  
5. Include predictions of both new and old BMWP scores. 
6. Include LIFE score in the diagnostic info for RPDS, calculated as abundance-

related ASPT. 
7. Include the Flow Q95 statistic for the six months prior to the sample date in the 

diagnostic info. 
8. Under the hexagon, expand the key to say exactly what is displayed (this may 

repeat information in indicators description box).  For example, where a taxon is 
shown in the hexagons, the wording under the scale bar should say the name 
of the taxa and that the value is the average abundance category of samples in 
that cluster as this isn’t clear at the moment.  I’ve found that people have no 
idea what is being represented so need it being spelt out to them! 

9. Facility to output bitmaps into Word and to copy/paste screens. 
10. Comparisons between years via tabbing facility. 
11. Include crayfish as stress. 
12. Populate image windows in the indicators tab. 
13. Make the expansion button work so screen is filled. 
14. User Guide amended and to include worked examples.  
15. In template please include an explanation of what the number is at the end of 

the graphs (e.g. that the ‘4’ is the scale of the graph, that it is the maximum 
abundance category present). 

16. Put a scale bar under each graph – at least little dashes to show where the 
values are. 

17. We’re not including any RHS data or ANC values. 
18. Keep Hex 10 as the default. 
19. Define a default template (not just a blank one). 
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10 Modifications to RPDS 
software 

Introduction 
This section covers work undertaken to enhance the functionality of RPDS based on 
the list of requirements given in Table 9.1.  These tasks and the corresponding work on 
RPBBN (Section 12) were undertaken during two extensions to the main project, 
following some refinement of the requirements. The sections below reflect the revised 
work items.. 
 

Data Tasks 
Add LIFE, BMWP, WHPT and EQI/EQRs from the new version of RIVPACS (RIVPACS 
IV, as implemented in the River Invertebrate Classification Tool (RICT) software for 
WFD classification) to the database. Generate diagnostic information for clusters (high, 
good, moderate, fair and poor WFD ecological status). 
 
The LIFE (Lotic-invertebrate Index for Flow Evaluation), BMWP and WHPT (Walley 
Hawkes Pailsley Trigg index) values for the samples could be generated relatively 
easily because they only required the existing biological sample data and list of indices. 
As a result, these values were generated in-house using a generalized score-
calculating algorithm. As values were associated with each of the existing database 
samples, generation of the diagnostic information was simplified because it could be 
achieved using existing algorithms. 
 
For WFD, RIVPACS IV (implemented in River Invertebrate Classification Tool software, 
RICT) and the WFD classification of ecological status replaced RIVPACS III and the 
GQA biological classification.  The river invertebrate classification of ecological status 
was not finalised until late 2007 and so it could not be incorporated in RPDS and 
RPBBN before this extension. 

Predictions from RIVPACS IV differ slightly from RIVPACS III because of the addition 
of reference sites from the highlands and islands modules to the GB module and the 
removal of reference samples from about 40 reference sites deemed to be of 
insufficient environmental quality.  These changes are reported in Davy-Bowker et al. 
(2008), based on analyses reported in Davy-Bowker et al. (2007).  

Whereas the GQA classification is based on EQIs, the WFD classification is based on 
ecological quality ratios (EQRs).  EQIs are simply the raw predictions of the 
classification metric (ASPT or N-taxa) from RIVPACS divided by the value observed in 
samples collected from the site.  EQRs are based on predictions of the classification 
metric at WFD reference state.  WFD reference state is the value of the classification 
metric at the site if it was in WFD reference state, in which there are no more than 
minor ecological changes caused by human activity.  Reference values of the 
classification metric are those observed at reference sites that are in reference state.  
In the UK, reference values were based on RIVPACS predictions.  These were 
adjusted, to remove variations caused by the varying quality of RIVPACS reference 
sites, so that the predictions and EQIs related to the quality represented by the 
boundary between WFD high and good status.   This was then converted to a 
reference value by multiplying by a factor based on the median value of the 
classification metric at all RIVPACS reference sites and the subset in WFD reference 
condition.  RIVPACS reference sites that were also in WFD reference condition were 
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identified by screening them against the criteria for defining reference devised by pan-
European Geographical Intercalibration Groups. 

Bias (systematic error caused by laboratory analysis of samples) was taken into 
account for N-taxa, but not for ASPT (other than the default that RICT implements) 
because it was also taken into account in the WFD classification of ecological status. 
 
In order to obtain the EQR data from RICT, it was first necessary to extract the sample 
input data from the project database. This data consisted of several environmental 
parameters for each site, such as altitude, slope, discharge category, distance from 
source, width, depth alkalinity and substrate composition, and the biological sample 
data to provide the means of generating the observed sample values. The main 
problem faced in supplying this data was ensuring that all the necessary input values 
were present and that there was a spring and an autumn sample in each year, which 
could be combined to produce the ‘annual’ sample used for WFD classification. These 
data requirements meant that a fifth of samples of the project database were ineligible 
for inclusion in the RICT input dataset. The total number of samples containing the full 
range of parameters and having both spring and autumn samples within a year was 
just under 52,000, which produced roughly 26,000 combined season samples. 
 
This input dataset was reclassified using RICT.  This was the first time that a large 
number of sites was classified using RICT in batch mode, which had not been released 
for general use at the time.  Mark Caulfield (RICT programmer) copied RICT to a fast 
internet server and made numerous modifications to the input and output files and user 
interface during the course of this work.  These changes are listed below. 

• Filenames of input CSV files generated by RICT were altered so that the 
year followed rather than preceded the rest of the name.  This enabled 
large batches of input files to be ordered sensibly rather than by year. Input 
files with the same bias could then be listed together in Windows 
directories, making it easier to set up each run (each analysis of each pair 
of input files comprising data for up to 50 samples).   

• The batch process was modified so that the user could chain runs together 
(RICT would start to analyse data for the run (from a pair of input files) as 
soon as it had completed the analysis of the previous run).  This enabled 
multiple runs to be loaded into RICT (up to 20) without overloading the 
programme.  

• The time and date that RICT completed each batch run was added to 
RICT's run menu, so that the user could track the progress of each run.   

• The display for setting up each run was modified to indicate the bias value 
that would be used – this gave a quick visual check that bias had been 
altered from the default.   

• The probability of the site belonging to each of the five WFD ecological 
status classes was added to the output. 

The EQRs and WFD classification added to the project database were derived in an 
identical manner to those used by the UK’s regulatory agencies for WFD classification.  
The only minor difference was that, in England and Wales, WFD classification 
accidentally ignored Pediciidae (a component of Tipulidae) in classifications to date 
(2009), although this error is expected to be corrected soon. 

The results from RICT and those produced by the Environment Agency contained 
matches for 50,945 of the 63,565 samples in the RPDS database. RICT produced 
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values for Biological Monitoring Working Party score (BMWP)9, Average Score Per 
Taxon (ASPT), Number of Taxa (NTaxa) and the WFD status class based on the 
minimum of NTaxa and ASPT (MINTA). Several values were produced for each 
parameter including basic observed and expected values, the values adjusted for 
sample bias and confidence measures for both the predicted values and the quality 
classification. From this range of values, the observed, the reference-adjusted 
expected and the most common face value bias EQI were included for BMWP, ASPT 
and NTaxa. The class and class confidence was included for MINTA. 
 
Once these results were created, it was then relatively straightforward to match them to 
their original RPDS samples and use existing algorithms to generate the necessary 
diagnostic information for RPDS.      
 
Replace stress categories with revised categories used in river basin management and 
described in PISCES database 

Stress categories were simplified and split into sector, activity, and pressure for use in 
biological outcomes (predicting WFD ecological status at the end of the six-year river 
basin management cycle for WFD) and stored on the Environment Agency’s PISCES 
(Pressure Information Supporting Classification Elements for the Water Framework 
Directive) database.  The PISCES codes for sector, activity and pressure are given in 
Appendix E.  Because these categories were more familiar to Environment Agency 
staff, stress data in the project database were converted to the new categories. 
 
The closest match between stress categories and new categories was identified in a 
meeting between the Environment Agency project manager (John Murray-Bligh) and 
PISCES database manager (Graeme Storey) in early 2009 and is reproduced in 
Appendix F. This table provided the means to convert existing project stress data to the 
new PISCES codes. Because the existing 1995 stress data had been converted to the 
2000 stress codes when it was incorporated into the project database, it was also 
converted to the PISCES codes.  
 
The change in data format, however, raised the issue of what data should be included 
in the RPDS samples. In the 2000 stresses survey, stresses were categorised by 
source, category and type. With over 130 types of stresses, it was impractical to 
include ‘type’ data as this would require the addition of hundreds of extra fields to the 
samples. Therefore only 25 stress category fields were included in the original RPDS. 
Analysis revealed that in the revised data there were 47 different types of activity and 
26 types of pressure. Despite the fact that including both activity and pressure would 
require 73 fields, an additional 48 fields from the original 25, it was felt that the benefits 
of including the additional information would outweigh the drawbacks of increased 
database size and complexity of outputs. 

 
Changes to the user interface 
 
Replace displays of GQA classification by WFD classification  

References to the GQA classification were replaced by references to the WFD 
classification in reporting of the diagnostic information for clusters.  Other references to 
GQA were replaced on the Sites tab and in the printed output available under the Print 
Options of the System tab. 
 
Under the hexagon, expand the key to say exactly what is displayed 

                                                      
9 The Biological Monitoring Working Party score is a method of quantifying biological quality. The quality 
for a sample is denoted by the sum of the scores for each macroinvertbrate taxon in the sample. 
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An indicator description box was added under the hexagon to provide information on 
the selected indicator.  This is shown in Figure 10.1 for the indicator ‘total ammoniacal 
nitrogen’.  
 
Populate Image windows in the Indicators tab 

Where the chosen indicator is taxonomic, a coloured image of the taxon is displayed.  
Descriptive text providing details of distinguishing features, habitat and life cycle were 
added.  This is illustrated in Figure 10.2 for the indicator Caenidae. 

Add scale bar to graphs   

Scale bars were added to make it easier to interpret data on the indicators selected in 
the Template panel.   
 
Figure 10.3 illustrates this for indicators in the current cluster (blue dot in the hexagon 
and corresponding blue bars).  Similar scales are displayed in two other cases: firstly, 
when comparing data in the current cluster to that of an archive sample in the model 
(Figure 10.4, red dot on the hexagon and red bars); secondly, when comparing data in 
the current cluster to that of a input sample (Figure 10.5, green dot in hexagon and 
green bars). 
 
The ranges of the scale in the bar depend on the minimum and maximum values in the 
selected cluster, and are defined automatically. 
 

 
 
Figure 10.1 Description box below hexagon for indicator ‘total ammoniacal 
nitrogen’. 
 

 Refinement of AI-based systems for diagnosing and predicting river health 99 



 
Figure 10.2  Image and descriptive text for indicator Caenidae. 
 
   

 
Figure 10.3  Range of scale values for selected indicators on current cluster only. 
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Figure 10.4 Range of scale values for selected indicators on current cluster and 
archive sample data. 
 
 

 
Figure 10.5 Range of scale values for selected indicators when comparing 
current cluster and input sample data. 
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Batch Mode 
Introduction 
In the existing version of RPDS, it was possible to load new samples from a file, 
classify a single selected sample and check the results within the application. Although 
this feature enables the diagnostic capabilities of RPDS to be used on new sample 
data, the fact that only one sample could be processed at a time made the analysis of 
multiple samples time-consuming. To solve this problem, a ‘batch mode’ was added to 
RPDS to enable large numbers of samples to be classified and potential pressures 
reported quickly in a single operation.   
 
The main issue in creating the ‘batch mode’ was to standardise and automate the 
analysis and interpretation. In the interactive mode of RPDS, the user interprets the 
results. Typically, the user would analyse the data for the cluster to which the new 
sample had been classified to identify potential pressures. To implement the batch 
mode, it was necessary to develop an algorithm capable of mimicking this process. To 
provide a clear understanding of ‘batch mode’, how batch mode functions and the 
range of parameters available to the user, a brief description of the process of 
identifying potential pressures is provided.  
 
The fundamental premise of the pattern recognition and diagnosis in RPDS is that a 
subset of parameters is sufficient to identify a particular type and that, given an existing 
body of knowledge about that ‘type’, it is possible to infer information about additional 
parameters from this knowledge. So for example, given a set of symptoms a doctor 
may be able to identify a particular disease based on the body of knowledge of 
diseases that occurred when similar symptoms were found in the past.  Using 
knowledge of that disease, the doctor is able to infer the type of infection, how the 
disease will progress and potential cures.  
 
In RPDS, the initial subset of classifying parameters consists of biological and 
environmental sample parameters. The ‘body of knowledge’ is chemical and stress 
data collected along with biological and environmental data used to create the model. 
The inferred parameters are the chemical, flow and stress values typical of a cluster. 
Analysis and interpretation involves identifying the inferred parameters that are ‘normal’ 
and those that are ‘potentially problematic’. To do so, it is necessary to have an idea of 
what is ‘normal’ and what constitutes sufficient deviation from this norm to be 
considered ‘potentially problematic’. 
 
Deriving the predicted values 
 
The first stage of the batch mode process is to classify the new sample data, and two 
methods have been provided for this (selected under the System tab): mutual 
information or Mahalanobis distance. 
 
In simple terms, classification by mutual information is done by iteratively adding the 
sample to each of the clusters and recording the change in the mutual information 
value for the whole model. Any addition that results in an improvement of the model is 
highlighted as a potential classification and these are scaled from best to worst.  
 
Mahalanobis distance is a natural measure for quantifying the ‘distance’ between a 
new sample and samples in a particular cluster.  The inversion and storage of large 
covariance matrices is difficult for data management (since it needs to be done for 
each cluster), and this is circumvented by assuming that each of the attributes used for 
clustering is independent so that covariances are zero. The Mahalanobis distance then 
simplifies to the Euclidian distance Dj between the site and the centre of the cluster 
(after each attribute has been normalised to unit variance).   
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Both methods identify one potential classification as the best, although neither method 
produces a definitive answer because there may be several other clusters to which the 
sample might feasibly belong. In the original RPDS application, the full set of results 
was simply shown to the user and it was left to them to analyse the results and draw 
their own conclusions. For a batch mode though, it would be necessary to derive a 
single definitive solution on which the rest of the analysis could be based. 
 
In previous projects, two methods of obtaining predicted values from a classification 
have been used.  Having selected the approach to use (mutual information or 
Mahalanobis distance), predicted values can be derived from the best cluster or 
weighted mean of several clusters. The batch mode offers the user the option of either 
method to derive predictions. 
 

• Best cluster – in this method the ‘best’ cluster solution is taken to be the 
definitive answer and all parameter values of that cluster are considered to 
be the predictions for the new sample. 

 
• Weighted value – in this method, pseudo-probabilities of belonging to each 

cluster are derived and predicted values are then calculated as a weighted 
mean with the pseudo-probabilities used as the weights. In the case of 
mutual information, the pseudo-probabilities are given by MI values 
(normalised by their sum) of all clusters where addition of the new sample 
improved the MI (that is, the change in MI was positive).  In the case of 

Euclidian distance, they are given by the quantities (normalised 
by their sum).  A similar approach is adopted in RIVPACS, where distance 
is used to determine the probabilities of group membership. 

2/2
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Confidence in the predicted values 
 
Both of these methods provide predicted values for new sample data, generated using 
the cluster values for the variable. However, the following issues affect the reliability of 
the values. 
 

• Amount of source data – the sparseness of data for particular variables 
means that some values may be based on few actual values, making bias a 
potential problem. 

 
• Effects of data distillation – the cluster values are mean values. The mean 

is used because it is representative of all sample values assigned to the 
cluster. However, it does not contain information on the spread and skew of 
the sample set. Measures of spread and skew are important parameters for 
evaluating cluster values because they indicate whether the underlying 
sample values are consistent or more random and widely spread. Providing 
an indication of how representative the distilled values are is important. 

 
Identifying outlying values 
 
To mimic the analysis and interpretation, the ‘batch mode’ algorithm can use one of two 
methods based on simple statistic measures: standard deviation and percentiles. Using 
these measures of distribution, it is possible to identify ‘outlying’ values that deviate 
from the norm by more than a predefined threshold value. The standard deviation 
method allows the user to define the number of standard deviations a value must 
deviate by. The percentile method provides two predefined levels, 10th/90th percentiles 
and 5th/95th percentiles.          
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Sources of the statistical data 
 
To identify outliers, it is necessary to derive values for the mean, standard deviation 
and percentiles. Two potential sources of data could provide these values, the sample 
data itself and cluster values, which are the values generated to describe the cluster 
from the sample data assigned to it. In RPDS, these are mean values. The mean, 
standard deviation and percentile were generated using both sources of data and the 
option to use either is provided. 
 
Activating the batch mode 
 
The batch mode is activated by clicking the ‘Start Batch Mode’ button at the bottom of 
the New Sites tab.  A dialogue box asks the user to select the options described above, 
see Figure 10.6. 
 
Report 
Following a run in batch mode, a .csv file is generated with a report, Figure 10.7.  Each 
line of the report gives details of the sample and its outlying attributes (if any) according 
to the user-specified criteria described above. 

 

 
Figure 10.6 Activation of batch mode with dialogue box for selecting options. 
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Figure 10.7 Report from run in batch mode. Fields will depend on options selected. 
This example shows best cluster and outliers defined by 90th and 10th percentiles; 
columns G & L show total number of samples in best cluster and number of values for 
that variable. 
 

User feedback workshop 
A user feedback workshop was held at Staffordshire University on 7 May 2009.  Six 
staff from the Environment Agency were present: Dr John Murray-Bligh (project 
manager), Christine Moore (project administrator), Caroline Howarth, Ian Humpheryes, 
Ben McFarland and Collette Sales.  Progress made in the project was presented 
followed by testing of the new RPDS and RPBBN systems.  Feedback on the new 
version of RPBBN is dealt with in Section 12 while feedback on RPDS is reported here.  
A similar workshop was held with David Colvill and Mark Hallard, Scottish 
Environmental Protection Agency, on 9 July 2009. 
 
The following suggestions for improvements were received: 
 
Data 

• Use the same colour coding and number scale as used for WFD. 
 

Interface 
• The scale bar is helpful but some of the percentages need checking (there 

are instances where silt/clay is over 100 per cent). 
• Text explanations are needed for the land risk scores. 
• Text explanations are needed for indices and WFD classification (MINTA, 

LIFE). 
• In the report page, proportions in WFD classes are headed by ‘GQA 

Classification’. 
• Sites tab has a field entitled ‘RIVPACS GQA Class’. 
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• When printing the contents of a cluster, classification data output is GQA 
not WFD. 

 
Batch mode and reporting 

• When setting up the batch mode, suggest a default option and an edit 
facility for advanced users. 

• Need to consider how much data formatting needs to be done to BIOSYS 
reports before being suitable for input to the system (the most simple and 
straightforward way is needed for the average ecologist). 

• I need to be able to upload multiple sites together.  Is there a way of 
uploading biological and environmental data directly from BIOSYS into 
RPDS?  This would save an enormous amount of time, which from my 
previous experience of using the system is a fundamental barrier. 

• Need to make the choices (such as stats elements) as straightforward as 
possible for the average ecologist.  If it is overly complicated, the average 
ecologist won’t have the time or confidence to use it.  It’s a great source of 
information, so I want as many ecologists as possible to be happy using it. 

• Good guidance is needed, including how to interpret data. 
• Present the number of samples with data/number of samples in cluster as a 

percentage. 
• Maybe replace ‘count’ by ‘number of samples in cluster’. 
• For most parameters ‘value’ is a ‘mean value in cluster’. 
• Suggested cluster statistics: n, 10 per cent, 90 per cent, units. 
• Maybe alter the descriptions of some of the chemicals (average alkalinity = 

three-year average alkalinity (CaCO3, mg/l) and maybe provide information 
in a text box. 

• The estimated time to completion is somewhat haphazard. 
 
The more straightforward suggestions for improvement were implemented quickly, 
while some of the others such as compatibility of data formatting need coordination 
with other project teams.  A suggested data format is given in Appendix C. 
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11 Revision and testing of 
Bayesian Belief Network 
Model 

 

 

Review of the original network 
 
An introduction to Bayesian Belief Networks (BBN) can be found in Walley et al. 
(2002).  Briefly, a BBN is composed of two components: a network of cause-effect (or 
parent-child) links between variables and a set of conditional probability matrices that 
define the relationship of each variable to its causal variables.  Each variable in the 
network has two or more possible states, and the conditional probability matrices 
define the probability of a variable being in each of its possible states, given the states 
of each of its causal variables.  The probability matrices for variables that have no 
causal variables are just vectors of prior probabilities.   

Both the causal network and probability values can be derived by expert opinion or 
objectively by analysing data.  However, experts are generally more competent in 
understanding causality than in estimating the probabilities of a large number of 
combined events.  Therefore, when developing the RPBBN model, expert advice was 
usually used to develop the causal structure and sample data was used to derive 
probabilities.  The data requirement for probabilities was the limiting factor when 
building the model and only the most frequently sampled variables could be included in 
the final model, Figure 11.1.  The prior and conditional probabilities were derived from 
the 1995 survey of rivers in England and Wales, consisting of spring and autumn 
samples for 3,615 sites with biological, environmental and chemical data.   

 

 
 

Figure 11.1  Causal belief network of original model. 
 

After imposing a general cause-effect structure to the data, which assumed that the 
environmental and chemical variables are causal factors (parent nodes) of the states of 
biological variables (child nodes), the strengths of relationships between variables were 
assessed using multiple linear regression and mutual information.  The strongest 
relationships with chemical variables were found to be those with total ammoniacal 
nitrogen (AMTN), dissolved oxygen (OXSA), phosphorus ( PHOS ), pH (PHVL) and 
total oxidised nitrogen (TOXN), all of which were well represented in the database in 
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terms of frequency of occurrence. The environmental variables were combined into one 
variable, site type, as in Walley et al. (1998), and together with season, these seven 
parameters formed the set of causal variables. 

Before the construction of the network, several constraints were imposed on the 
variables: 
 

1.   Each child node (biological family) would have five parent nodes (causal 
factors). 

2.   Each chemical variable would have five possible states, with boundaries 
defined by the 15th, 35th, 65th and 85th percentiles of its distribution. 

3. Each biological family would have four possible states (zero for absent, 1, 2 
and 3+, except for two highly abundant families which were zero, 1+2, 3 
and 4+). 

4.   Site type would have three possible states. 
5.  Season would have two possible states. 

 
Season and site type were considered to be such key causal variables that they should 
be two of the five parents of each biological family, leaving three of the five chemical 
variables to be the remaining three parents.  This resulted in a maximum size of the 
joint probability matrices of 3,000 (that is 4×2×3×5×5×5×5), with the values to be 
derived from 7,230 samples.  The ratio of sizes of the dataset and joint probability 
matrices was an important consideration, and experience with earlier models 
suggested that it should not be less than 4:1.  However, given that around 50 per cent 
of the combinations of states were highly improbable, a ratio of 2:1 was thought to be 
justified for RPBBN.  

Although no restriction was placed on the number of child nodes that a parent variable 
can have (this doesn’t affect the size of the conditional probability matrices required), 
the choice of which three of the five chemical variables to link to each biological family 
was not straightforward.  Optimising the capabilities for diagnostic reasoning favoured 
connecting each chemical node to the 60 per cent of biological families with which the 
relationships were strongest.  Optimising predictive reasoning, on the other hand, 
favoured connecting each biological family to the three chemical nodes with which the 
relationships were strongest. These two objectives were not compatible, for allocation 
on the basis of diagnostic capability resulted in some biological families being 
connected to all five chemical parents (and thereby breaking the limit on the number of 
connections permitted), while others were connected to none at all.  The solution was 
based on a compromise, where the biological families were ranked separately for each 
chemical, based on the strength of the relationship between them, and the allocations 
made on the basis of the three highest rankings. 

 

BBN Creator 
 
BBN Creator is a software system created to automate some of the tasks involved in 
the construction of Bayesian Belief Networks and works in collaboration with the 
HUGIN Bayesian Belief Network development software. The application itself is a more 
refined version of software used as part of an early research project concerning river 
pollution in England and Wales.  
 
The original software was used to produce a general pollution diagnostic BBN, which is 
the basis for the software package RPBBN (River Pressure Bayesian Belief Network). 
The software consisted of a number of VBA (Visual Basic for Applications) functions 
that were designed specifically to be used with the project data, Microsoft® Excel® and 
the HUGIN API (Application Programmers Interface). These functions automated 
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construction, data analysis and testing tasks, and significantly reduced network 
development time. 
 
The need to use these functions on other data sets and third party interest led to the 
functions being made generic and grouped into a module. This BBN creation module 
could be imported into an Excel® workbook and used in conjunction with the data. 
Although the module was efficient and robust, it did require some familiarity with 
computer programming. Therefore, the next step in this development process was to 
provide a graphical user interface to simplify interaction with the existing module. The 
result is the BBN Creator application, which provides the benefits of the BBN creation 
module without the need for computer programming skills. Further details are given in 
the User Guide in Appendix G. 

 

Revisions to causal network 
 
In the course of this project, we anticipated making improvements to both the causal 
structure and the conditional probability matrices.  The main constraint in the design of 
RPBBN was the limitation of 7,230 samples in the 1995 database.  A database of five 
times that size would permit the probabilities of the current network to be estimated 
more accurately, or a further parent node to be added to each child node.  Tests with 
the flow condition data (Section 7) showed significant effects on presence/absence 
probabilities, and its inclusion as a causal factor could improve the performance of the 
network. 

During meetings with the Environment Agency project board, several improvements to 
the structure of the original causal belief network were suggested.  The network agreed 
upon is shown in Figure 11.2, and the improvements are discussed below. 
 
 

 
 
Figure 11.2  Revised causal belief network. 
 
 
Addition of flow condition node 
 
The addition of flow condition as a sixth parent node was possible because of the 
greater amount of data.  As described earlier in this report, a value for flow condition 
was assigned to each sample by interpolation from monthly gauged flow records 
ranked over a thirty-year period from zero (driest) to one (wettest).  A value was 
produced for periods of one, three, six, 12 and 24 months prior to the sample date.  
Values in the ranges [0,1/3], [1/3,2/3] and [2/3,1] were denoted ‘dry’, ‘average’ and ‘wet’ 
respectively.   
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Two solutions for adding flow to the network were considered. 
 

1. Add a single flow node, which would be a parent to all taxa. 
2. Add multiple flow nodes and connect each taxon to the one with which it 

has the strongest relationship.  
 
There were two main areas in which these solutions differed; complexity of 
implementation and main beneficiaries from the relationships that would be introduced. 
The addition of any node would increase the complexity of the RPBBN causal network 
and the range of evidence required to fully exploit the model. Adding multiple nodes 
would therefore be the most complex option and would require more evidence to use 
them.  
 
The prediction of a variable/node would benefit from having its strongest relationships 
modelled. A model with flow conditions for just one time period would mean all the 
taxa, including those with which it has the strongest relationships, would be linked to 
that node. This would be beneficial for prediction of the flow node, but not all taxa. The 
multiple flow node option, by contrast, would benefit the taxa, since they could be 
linked to the flow node with which they have the strongest relationship. However, 
prediction of individual flow variables would be expected to be worse than for their 
single node equivalents. The range of flow conditions that could be predicted would, of 
course, be much wider. 
 
Both options had their advantages and disadvantages, so selecting an option became 
dependent on the initial criterion for including flow condition in the model. In our case, 
flow was introduced to provide additional supporting information when making 
predictions. Therefore, the impact of flow condition on the prediction of other variables 
is more important than on the prediction of the variable itself. Given this criterion, the 
multiple node option would be the better choice. It would be more complicated to 
implement but would provide better predictions for taxa, and other nodes in the network 
as a result.   
 
Introduction of BOD and improved modelling of dissolved oxygen 
 
The weakest variable in RPBBN, in terms of its predictive ability, was the dissolved 
oxygen, percentage saturation node (OXSA), and several changes were made to 
improve the performance of this variable.  BOD was introduced and incorporated as a 
parent to AMTN and OXSA.  TOXN and PHOS were also made parents of OXSA to 
account for the effects of eutrophication.  One problem was that OXSA at night-time 
was thought to be the most important for invertebrates, whereas the data relates to 
measurements made during the daytime. However the extent of diurnal variation in 
oxygen concentration is determined partially by flow.  In conditions of high flow, the 
effects of turbulence attenuate the variation through aeration (raising the concentration 
when low) and release (lowering when high), whereas in conditions of low flow these 
effects are much reduced.  For this reason, flow condition was included as a parent of 
OXSA.  The availability of at least three years’ data prior to sampling enabled the use 
of the 10th percentile value for OXSA, which was also expected to improve 
performance.  This was not possible with the original RPBBN, when all chemical values 
were based on mean values over the three months preceding the sample. 
 
Site type and effect on pH 
 
The environmental characteristics at a sampling site have a profound effect on the 
biological community found there, and they need to be taken into account to ensure 
that classifications of water quality from biological data are accurate.  The modelling of 
site type in RPBBN was taken from Walley et al. (1998), where a value of unpolluted 
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ASPT was derived for each of the 1995 GQA sites and the range split into five roughly 
equal bands (1-5), where site type 5 represented fast flowing upland stream and site 
type 1 slow flowing lowland rivers.  The classification was based upon the consensus 
of four different methods.   
 
Three environmental variables dominated the prediction of ASPT: alkalinity, altitude 
and the percentage sand+silt.  Once the 1995 GQA sites had been classified, the 
dataset was used to derive conditional probability matrices for a BBN version of the site 
type classifier, with the three variables as parent nodes.  This was then used as an 
integral part of RPBBN. 
 
It was proposed that the ‘site type’ variable in the new BBN should be based on the 
same method, with unpolluted ASPT generated by the new RIVPACS model based on 
the recently revised BMWP scores (Paisley et al., 2007).  Once the site types had been 
defined, a BBN model of site type could be derived using the three variables as the 
parent nodes, as before.  However, delays in agreeing the revised scores in SEPA and 
Environment Agency meant this approach could not be adopted in the time available, 
and so the previous model was used. 
 
The ‘site type’ node was made a parent to the ‘pH’ node to account for the causal 
relationship between the two variables (upland sites are often characterised by thinner, 
peaty soils which are more acidic).  The use of the fifth percentile over the preceding 
three years for pH rather than its mean over three months was also expected to 
improve performance. 
Inclusion of land cover 
 
Although this was to be included in the improved model, land cover was omitted from 
the final model because of the constraints of time.  The effects on the model were likely 
to be of secondary importance, and given the difficulties of defining variables and 
states, we decided that this aspect of the model required further research and should 
be left for future work. 
 

Summary of dataset used 
 
The original BBN model was based on a dataset of matched biological and chemical 
samples taken from 3,615 sites in the spring and autumn of 1995.  Following the 
matching procedures required for chemical data, as well as the three environmental 
variables used as the basis for the ‘site type’ node, corresponding data for the revised 
spring and autumn BBN models is summarised in Tables 11.1 and 11.2.  Note that the 
models include no SEPA data because of incorporation of the flow node, for which data 
was available for Environment Agency only.   
 
The totals of 16,244 and 15,856 samples represent around 44 and 43 per cent of the 
total Environment Agency biological samples available (Tables 4.4 and 4.5), although 
the NW region seems particularly under-represented before 2000.  The amount of data 
is more than four times that used in the original model. Table 11.3 summarises the 
corresponding number of sites at which samples were taken in each season.  The 
totals are 56 and 57 per cent of those available (Table 4.6). 
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Table 11.1  Distribution of matched biological and chemical sample data by 
region and year available for revised BBN model, spring. 
 Environment Agency  
Year ANG NE NW MID SO SW TH WEL Total 
1995 431 176 10 345 283 628 322 638 2833 
1996 413 123 1 425 122 83 25 33 1225 
1997 440 106 0 390 131 161 72 2 1302 
1998 410 134 1 668 155 61 117 7 1553 
1999 411 131 9 357 164 43 173 5 1293 
2000 287 343 265 598 315 623 305 615 3351 
2001 7 4 4 30 43 5 49 2 144 
2002 220 145 179 392 125 196 130 218 1605 
2003 219 146 211 356 125 197 123 206 1583 
2004 211 148 202 252 117 158 54 213 1355 
Total 3049 1456 882 3813 1580 2155 1370 1939 16244 
 
Table 11.2  Distribution of matched biological and chemical sample data by 
region and year available for revised BBN model, autumn. 
 Environment Agency  
Year ANG NE NW MID SO SW TH WEL Total 
1995 426 260 12 548 282 635 315 638 3116 
1996 435 148 0 387 136 60 69 2 1237 
1997 419 114 1 603 141 64 52 0 1394 
1998 421 136 0 648 150 60 112 1 1528 
1999 250 125 90 66 165 45 173 0 914 
2000 224 242 167 492 206 547 268 430 2576 
2001 122 74 63 344 76 57 61 11 808 
2002 208 146 156 289 112 170 101 216 1398 
2003 219 145 200 305 124 183 112 212 1500 
2004 205 131 219 252 124 159 80 215 1385 
Total 2929 1521 908 3934 1516 1980 1343 1725 15856 
 
Table 11.3  Distribution of sites for matched biological and chemical sample data 
for revised BBN. 
 Environment Agency  
Season ANG NE NW MID SO SW TH WEL Total
Spring 451 369 442 799 352 695 328 672 4108
Autumn 451 378 437 798 347 692 328 664 4095
 

Derivation of conditional probability matrices 
 
Conditional probability matrices were derived from the datasets described in Tables 
11.1 and 11.2.  However, two potential difficulties can arise if raw values are used: they 
generally contain some zero-valued probabilities which need to be eliminated and the 
distributions can be ‘lumpy’ if the total number of cases in the dataset is not large 
compared to the number of elements in the matrix. 
 
Zero-valued probabilities correspond to states that are impossible, and in the worst 
case can prevent the BBN algorithm from functioning.  It was found previously that, 
even when the algorithm continued to function, its performance improved when the 
value of the probability for such states was set to a small non-zero value.  This was 
achieved in the original BBN model by the addition of small residual values, and this 
technique was used again here.   
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Probability distributions were smoothed in the original BBN model by adjusting the 
parameters of a redistribution algorithm so that the predictive performance of the model 
was optimised.  Although a similar technique was tested for the new model, the use of 
smoothed distributions consistently resulted in worse performance so the raw 
distributions were used instead.  The most likely reason for this is that, as well as 
reducing inconsistencies, smoothing also diminishes the characteristics of the 
distribution and the distribution flattens out as the amount of smoothing increases.  It is 
likely that the greater amount of data produced better original distributions that only 
deteriorated when smoothed.   
 
Testing and evaluation 
 

RPBBN 2.0 differed from the original RPBBN 1.0 in several respects, namely: 
 

• Conditional probability matrices were based on more than four times as 
much data. 

• Chemical statistics were based on percentile values over the three years 
prior to the sample date rather than mean values over the prior three 
months. 

• The structure of the model was changed. 
• Five states were used for the taxonomic variables rather than four. 

 
Preliminary dependent testing 
 
Tables 11.4-11.6 present the results of preliminary dependent tests of RPBBN 2.0, 
incorporating all the changes outlined above, against the original RPBBN 1.0.  
Dependent testing refers to testing based on the use of the same dataset used to build 
the model, whereas independent testing refers to testing based on a separate dataset.  
Although these results give an indication of the combined impact of the changes, 
independent testing was used to evaluate the impact of each separately, and these 
results are described later. 
 
Spearman rank correlation coefficients in Table 11.4 indicate major overall 
improvements in the performance of the network for total ammoniacal nitrogen and 
dissolved oxygen, a lesser but notable deterioration for total oxidised nitrogen, and 
minor changes for phosphorus and pH.  Predictions of BOD5, which was not present in 
the earlier network, are not as good as any of the other variables in the new network, 
but are still better than predictions of total ammoniacal nitrogen in the earlier version.  
Predictions of flow condition variables are all much poorer than those for the chemical 
variables, but this is unsurprising given that each flow condition node is connected to 
much fewer biological taxa. 
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Table 11.4 Results of dependent tests on RPBBN 2.0 against RPBBN 1.0 
expressed in terms of Spearman rank correlation coefficients between predicted 
and recorded values of chemical variables.  Note that BOD5 and flow condition 
nodes were not included in RPBBN 1.0. 

RPBBN 1.0 RPBBN 2.0 Change
Total Ammoniacal Nitrogen 0.5620 0.6629 0.1009

Phosphorus 0.7008 0.6947 -0.0061
Dissolved Oxygen 0.6794 0.7409 0.0615

pH 0.6889 0.6992 0.0103
Total Oxidised Nitrogen 0.7412 0.6991 -0.0421

BOD5 - 0.5843 -
Flow Condition (3 months) - 0.2542 -
Flow Condition (6 months) - 0.3248 -

Flow Condition (12 months) - 0.2330 -
Flow Condition (24 months) - 0.3374 -

 
 
Tables 11.5 and 11.6 provide further quantitative data on performance.  Table 11.5 
quantifies the accuracy and certainty of the predictions and should be interpreted with 
reference to the bandings of variables and their prior probabilities given in Table 11.6.  
This indicates that prior probabilities are approximately evenly distributed for all 
variables except flow condition, for which the distributions are increasingly biased 
toward the middle of the three bands as the time period prior to sampling increases.   
 
Table 11.5 indicates that for five of the chemical variables (those in the previous 
network) the predicted band with highest probability agrees with the actual band in 
more than half the cases, while for BOD (not in the previous network) agreement is 
achieved in more than a third of cases.  The match is best for the flow condition nodes, 
although this is as a result of the bias toward one state (‘average’) in the prior 
probabilities, which increases as the time period prior to sampling increases. 
 
Table 11.5  Performance characteristics of RPBBN 2.0. 

Spearman's % with Correct Mean SD 
Rank Highest Prob Highest Prob Highest Prob

Total Ammoniacal Nitrogen 0.6629 52.17 0.6748 0.2253
Phosphorus 0.6947 54.33 0.6943 0.2194

Disolved Oxygen 0.7409 56.64 0.7239 0.1954
pH 0.6992 52.80 0.6824 0.2097

Total Oxidised Nitrogen 0.6991 53.89 0.7029 0.2170
BOD5 0.5843 36.76 0.3867 0.1081

Flow Condition (3 months) 0.2542 56.04 0.6214 0.1700
Flow Condition (6 months) 0.3248 60.66 0.7140 0.1827
Flow Condition (12 months) 0.2330 74.43 0.7944 0.1438
Flow Condition (24 months) 0.3374 79.38 0.8763 0.1366
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Table 11.6  States of variables in Tables 11.4 and 11.5 together with their prior 
probabilities. 

Total Ammoniacal Nitrogen 0-0.09 0.09-0.17 0.17-0.29 0.29-0.6 0.6-43.89
  0.2737 0.2256 0.1900 0.1664 0.1444

Phosphorus 0-0.05 0.05-0.16 0.16-0.43 0.43-1.2 1.2-15
  0.2549 0.2108 0.1959 0.1784 0.1600

Disolved Oxygen 0-67 67-78 78-86 86-92 92-119.2
  0.1682 0.2142 0.2704 0.2280 0.1192

pH 0-7 7-7.4 7.4-7.65 7.65-7.85 7.85-9.3
  0.0874 0.2239 0.2594 0.2537 0.1756

Total Oxidised Nitrogen 0-2 2-5 5-7.5 7.5-10.5 10.5-28.06
  0.1727 0.2452 0.2261 0.2032 0.1528

BOD5 0-1.85 1.85-2.45 2.45-3 3-4.15 4.15-154
  0.1459 0.2476 0.2238 0.2042 0.1785

Flow Condition (3 months) 0-0.3333 0.3333-0.6666 0.6666-1
0.2583 0.5043 0.2373

Flow Condition (6 months) 0-0.3333 0.3333-0.6666 0.6666-1
0.2445 0.5414 0.2142

Flow Condition (12 months) 0-0.3333 0.3333-0.6666 0.6666-1
0.1735 0.7056 0.1208

Flow Condition (24 months) 0-0.3333 0.3333-0.6666 0.6666-1
  0.1379 0.7441 0.1181

 
 
Independent testing 
 
For the independent tests, the dataset was split so that 90 per cent of the data was 
used to produce the models while the remaining tenth was used as a test dataset.  
Tests with the original network with the original dataset, original chemical statistics and 
four states for the biological variables provided baseline data (Test 1).  Following this, 
three further sets of tests were undertaken designed to quantify changes caused by the 
greater amount of data (Test 2); varying the chemical statistics used (Test 3) and 
increasing the number of states (from four to five) for biological variables (Test 4).  
Details of the tests are provided in Table 11.7. 
 
Table 11.7  Description of independent tests. 
Test Purpose Network Dataset Chemical 

Statistics 
No of 
Bio 

States 
1 Baseline 

 
Original Original Three-month 

means 
4 

2 Effect of increased 
dataset 
 

Original New Three-month 
means 

4 

3 Effect of increased 
dataset and new 
chemical statistics 

Original New Three-year 
percentiles 

4 

4 Effect of increased data, 
new chemical statistics 
and five biological states 

Original New Three-year 
percentiles 

5 

 
The results of each test are given in Table 11.8.  The apparent deterioration between 
the results of Test 1 with those for RPBBN 1.0 in Table 11.4 is typical of the difference 
obtained when employing independent and dependent testing.  Compared to the 
results of Test 1, on the other hand, the results of Tests 2, 3 and 4 indicate that each of 
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the changes outlined in Table 11.7 produced an overall increase in predictive 
performance of the network.   
 
Changes caused by the greater amount of data (Test 2) are relatively modest; the 
largest is an increase of 0.0338 in the prediction of phosphorus (although there is a 
decrease for total ammoniacal nitrogen, the change is so small as to be insignificant).   
 
Two of the changes caused by variation in the chemical statistics used (Test 3), on the 
other hand, are much more significant, the largest of which is an increase of 0.2413 for 
dissolved oxygen.  Predictions of dissolved oxygen in the original network were the 
poorest of the five chemicals, whereas in the new network they appear to be among 
the best.  A large factor is likely to be that the statistic used in the new network (value 
of the 10th percentile over the three years prior to sampling) is of much greater 
ecological significance than that used in the original network (mean value over the 
preceding three months).  In addition, the new network has more relationships with 
OXSA, and with the connection to BOD there are more pathways for the propagation of 
evidence.  The smaller but significant increase for total ammoniacal nitrogen of 0.1203 
is also likely to be caused by the change in statistic used, now the value of the 90th 
percentile rather than the mean value, as well as the connection with BOD.  
 
Another factor may explain the improved performance of these two chemicals over the 
other three. This is the way that connections are made from biological families.  The 
strength of the relationship between each chemical variable and each taxon is 
quantified by mutual information, and each taxon is then linked to the three chemicals 
with which it has the strongest relationships, based on ranking.  A modification to the 
algorithm used for this resulted in dissolved oxygen and ammoniacal nitrogen being 
allocated links from more taxa than the other chemicals.  A further test is required to 
quantify this effect. 
 
By contrast, changes caused by greater numbers of bands for the biological families 
(Test 4) are rather modest, with the largest change of 0.0347 recorded for phosphorus. 
 
Table 11.8  Results of independent tests on RPBBN 1.0 expressed in terms of 
Spearman rank correlation coefficients between predicted and recorded values 
of chemical variables. 
Test Total 

Ammon. 
Nitrogen 

Phosphorus Dissolved 
Oxygen 

pH Total 
Oxid. 
Nitrogen 

1 0.4720 0.6058 0.3824 0.4825 0.5848 
0.4662 0.6397 0.4029 0.4844 0.6002 2 

Difference -0.0058 0.0338 0.0205 0.0020 0.0155 
0.5865 0.6463 0.6442 0.5284 0.6168 3 

Difference 0.1203 0.0067 0.2413 0.0440 0.0165 
0.6157 0.6810 0.6506 0.5585 0.6444 4 

Difference 0.0291 0.0347 0.0064 0.0301 0.0276 
 

Extensions to functionality of RPBBN 
 
Table 11.9 lists requirements drawn up following consultation with potential users of the 
system.  As with the additional functionality required for RPDS (Table 9.1), some of the 
requirements relate to easier use of the software while others refer to tasks needed for 
the Water Framework Directive.  These requirements (along with those for RPDS) were 
implemented during two extensions to the original project.  The work relating to the 
modification of the RPBBN software is described in the next section. 
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As well as improvements to the functionality of the software, there is considerable 
scope for the future development of the model itself.  Initial steps have been taken to 
include a variable indicative of flow, but further research is needed to optimise the use 
of this variable, as well as other variables such as land cover. 
 
Table 11.9  List of requirements for additional functionality to RPBBN. 
Deliverables 
1. Changes to the chemical bands to cover the WFD and River Ecosystem 

classification boundaries.  The suggested bands have been included in a 
table at the end of this document. 

2.  Include a list of predicted taxa (plus their predicted abundance category) 
as an extra page in RPBBN.  Predicted taxa list need to be exportable 
either as CSV or Excel format. Below each list, output the calculated 
biotic indices. Headers to include sample ID/date and possibly 
waterbody/catchment.  The report screen could have the option to 
include environmental parameters alongside the predicted taxon.   

3. Batch input and output processing – particularly batch input.  It would be 
a massive help to be able to re-input a site quickly (by downloading from 
an input file) without having to go through all the charts every time.   
Similarly, when reporting predicted indices (such as WFD class) to batch, 
output these – so you can get a list of, say, 30 sites with their predicted 
class.  Standard format for data files (to link with RIVPACS, BIOSYS). 

4.  Show the changes graphically in taxon and physical/chemical plots from 
default position of probabilities to new predicted values. It would be 
better if the report screen showing the predicted list of taxa/abundance 
and indices could do the same, comparing the change in score and taxa. 

5.  Helpful to be able to toggle views between the report screen or taxon 
probabilities view panes when adjusting environmental data. 

6. Include confidence of predictions based on the number of samples used 
to generate the probabilities. 

7.  Change the abundance categories from a four group system to at least a 
five (0, 1, 2, 3, 4+). 

8.  Include predictions of both new (WHPT) and old BMWP scores.  Also 
calculate Number of scoring taxa, average score per taxon, and family 
LIFE scores. These scores need to be validated against observed scores 
derived from the taxon samples held in BBN.  

9.  Allow the user to input a predicted single season score from RIVPACS 
so RPBBN can produce an EQI, and a predicted ‘classification’ - using 
high, good, moderate, fair and poor ecological WFD status.  For scenario 
testing. 

10. At end of March produce a stand-alone CD that will run on a non-agency 
laptop of the RPBBN program and associated runtime modules. This will 
initially form an important component of the Water Quality Toolkit 
developed in Southern Region and produce test bed for future 
development. 

11. Add WFD classification so that effect physical and chemical changes on 
WFD class can be observed.  This will require a field for entering 
reference values (predictions) for classification metrics ASPT, N-taxa 
and WHPT and a facility to specify the classification metrics (swap from 
ASPT to WHPT) and to change the class boundaries – maybe via a 
configuration page. 

12. A one-day workshop to explain the systems developed in this project 
and the EMCAR project to managers in water resources, river basin 
planning and monitoring policy. 
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12 Modifications to RPBBN 
software 

 

Introduction 
This section covers work to enhance the functionality of RPBBN, the requirements for 
which are given in Table 11.9.  Some were modified during the project. Further 
refinements were implemented during two extensions to the main project.  The sections 
below reflect the revised work items. 
 

Changes to RPBBN model  
These work items dealt mainly with changing the underlying RPBBN model to improve 
the range of its predictive abilities. In both the previous Environment Agency R&D 
project (E1-056) and the original EMCAR project, one definitive version of the RPBBN 
model was envisaged. However, whilst a single model might have the broadest appeal, 
it is not well suited to performing any one task. Therefore, when an application for the 
RPBBN system is found it is often necessary to adapt the RPBBN model to improve 
performance.   
 
This section covers modification work in the two extension projects. Due to the creation 
of additional RPBBN models, a model-naming scheme is introduced to simplify and 
clarify the referencing of models. The following are names and descriptions of the 
models referred to: 
 

1. RPBBN-P1 (Project 1): Model developed in the initial Environment Agency 
R&D project (E1-056).  

2. RPBBN-P2 (Project 2): Initial model developed for this project, EMCAR 
Project EMC/WP06/077.  

3. RPBBN-S (Southern Region): Model developed for the Environment 
Agency’s Southern Region to help in their assessment of the impacts of 
developments in Ashford, Kent. 

4. RPBBN-A (Annual): Model developed to produced annual, combined 
seasonal (spring/autumn) predictions compatible with values used to derive 
WFD quality classifications.   

 
In what follows, note that RPBBN-(number) refers to a version of the software, whereas 
RPBBN-(letter) refers to a version of the model. Hence, software versions RPBBN1.x 
(created during project E1-056) all use model RPBBN-P1, whereas software versions 
RPBBN 2.x (created during this project) all use models RPBBN-P2, RPBBN-S 
and RPBBN-A.  
 
Changes to abundance categories 
The RPBBN-P1 and early versions of RPBBN-P2 used just four abundance categories: 
absence and three categories of abundance, which differed between taxa depending 
on the ranges of abundances in which they usually occur. In the revised versions used 
in the first extension project, the number of abundance states for each taxa were 
increased to five. These five states were zero or absent, 1-9, 10-99, 100-999 and 
1,000-99,999, which correspond to the abundance categories 0,1, 2, 3 and 4+. 
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As with the changes in the number of states for chemical variables, there were 
concerns about the effect of this increase in states on the quality of probabilities. 
However, it was felt that with the sevenfold increase in amount of data available, it was 
possible to make these changes and retain some confidence in the quality of generated 
probability values. 
 
Changes to chemical bands 
BBNs are limited in their ability to represent continuous variables so all the variables in 
the RPBBN model need to be discretised, that is, to have a set of discrete states 
defined. In RPBBN-P2 states were defined using percentiles to ensure that samples in 
the project database were well distributed over the selected states. The aim of this 
approach was to ensure the quality of probabilities derived from the sample data. A 
drawback to this approach was that the boundary values chosen for the RPBBN model 
did not correspond to chemical boundaries of WFD or River Ecosystem (RE) 
classifications used for river management. 
 
The purpose of this work was to assess the feasibility of using WFD and RE chemical 
bands and if possible, modify the states of relevant chemical variables. Before 
modifying the states of chemical variables, it was necessary to check there would be 
sufficient numbers of samples within the new bands to maintain an adequate precision 
in the probability estimates that would be derived. 
 
Table 12.1 shows the chemical bands that were suggested initially and the distribution 
of samples in the project database across them. There are wide variations in the 
distribution of samples of orthophosphate, oxygen percentage saturation and biological 
oxygen demand (five-day), all having around 18,000 samples in one of the bands, 
usually at one end of the distribution, and much fewer samples in the remaining bands. 
The distribution of samples for total ammonia is a little better but there are still over 
10,000 samples in the 0.1-0.199 band. Samples of total oxidised nitrogen appear to 
have the best distribution, despite the variation in the size of first four bands, which 
causes a fluctuation in the values.  
 
The main problem with using the initial sets of states was that there were simply too 
many. In a BBN, probability values are required for every possible combination of 
states of the variable itself and all its causal/parent variables. Any increase in the 
number of states and/or parent variables leads to a corresponding geometric increase 
in the number of probabilities.  
  
Table 12.1 Chemical bands suggested initially and distribution of samples across 
them; red are WFD limits and yellow are RE boundaries beyond WFD bands. 

Orthophosphate 
(OPhos) 

Total ammonia 
(AmTN) 

Oxygen percentage 
saturation (OxSa) 

Five-day biological 
oxygen demand 

(BOD5) 

Total oxidised 
nitrogen (TOxN) 

Bands No. of 
Samps 

Bands No. of 
Samps

Bands No. of 
Samps

Bands No. of 
Samps 

Bands No. of 
Samps

0 –19.99 3,158 0 – 0.049 3,703 0 – 19.99 22 0 -2.49 16,701 0 – 0.99 3,240 
20 -29.99 1,972 0.05 – 0.099 7,655 20 – 49.99 1,227 2.5 – 2.99 7,684 1 – 2.49 5,242 
30 -39.99 1,815 0.1 – 0.199 11,029 50 – 59.99 1,557 3 – 3.99 8,501 2.5 - 2.99 1,577 
40 – 49.99 1,516 0.2 – 0.249 3,530 60 – 69.99 3,526 4 – 4.99 3,981 3 – 3.99 3,101 
50 – 79.99 3,209 0.25 – 0.299 2,669 70 – 74.99 3,004 5 – 5.99 2,114 4 – 4.99 3,110 
80 – 99.99 1,611 0.3 – 0.599 6,777 75 – 79.99 4,058 6 – 7.99 1,606 5 – 7.49 8,851 

100 -119.99 1,526 0.6 – 1.299 3,526 80 – 119.99 18,559 8 – 14.99 761 7.5 - 9.99 6,880 
120 – 199.99 4,117 1.3 – 2.499 1,540 120 + 0 15 – 49.99 60 10 - 24.99 7,033 

200+ 18,989 2.5 – 4.99 716   50+ 9 25 - 99.99 12 
  5 – 9.99 219     100+ 0 
  10+ 101       

 
In RPBBN-P2, chemical variables only have five states and the number of possible 
states for macroinvertebrate families is 37,000 (AmTN (5 states) x TOxN (5) x OPhos 
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(5) x site type (5) x season (4) x flow (3) x taxon (5) = 37,000). Using the states 
suggested, the smallest number of possible probability values required for a 
macroinvertebrate variable would be 297,000 (AmTN (11 states) x TOxN (10) x OPhos 
(9) x site type (5) x season (4) x flow (3) x taxon (5) = 297,000). This is eight times as 
many as that of the existing model and eight times the number of samples in the 
database that would be needed as the source of their values. We therefore decided 
that the number of suggested states would need to be reduced. 
 
Table 12.2 gives a list of modified bands used in the revised model. The number of 
states was reduced by merging bands, usually those at the extremes. All variables 
were reduced to seven states, except total ammonia, which was reduced to eight. This 
process removed a total of 11 bands; of which two were WFD limits for orthophosphate 
and three were RE boundaries for total ammonia, oxygen percentage saturation and 
BOD5. The merged bandings tended to be those with lower numbers of samples and 
so would be those that generate probability values with the lowest confidence. 
 
The reduction in the number of states meant that the new maximum number of 
probability values had reduced to 117,600, still three times as many as those in the 
current model and requiring three times more than the total number of samples in the 
project database.  Although this was far from ideal, it offered a reasonable compromise 
between providing some confidence in the probabilities generated and its operational 
usability. These changes, however, imply a greater possibility of inconsistent 
probabilistic predictions in extreme conditions. Smoothing the probability distributions 
may resolve some of the problems with inconsistency as it did in the development of 
the RPBBN-P1 model (see Environment Agency R&D Technical Report E1-056/TR). 
However, there was insufficient time to investigate this.   
 
Table 12.2 Chemical bands used in RPBBN-S and distribution of samples across 
them; red are WFD limits and yellow are RE boundaries beyond WFD bands. 

Orthophosphate 
(OPhos) 

Total ammonia 
(AmTN) 

Oxygen percentage 
saturation (OxSa) 

Five-day biological 
oxygen demand 

(BOD5) 

Total oxidised 
nitrogen (TOxN) 

Bands No. of 
Samps 

Bands No. of 
Samps

Bands No. of 
Samps

Bands No. of 
Samps 

Bands No. of 
Samps

0 – 29.99 5,130 0 - 0.1 11,358 0 - 49.99 1,249 0 - 2.49 16,701 0 - 0.99 3,240 
30 - 49.99 3,331 0.1 - 0.199 11,029 50 - 59.99 1,557 2.5 - 2.99 7,684 1 - 2.49 5,242 
50 - 79.99 3,209 0.2 - 0.249 3,530 60 - 69.99 3,526 3 - 3.99 8,501 2.5 - 4 4,678 
80 - 99.99 1,611 0.25 - 0.299 2,669 70 - 74.99 3,004 4 - 4.99 3,981 4 - 4.99 3,110 

100 - 199.99 5,643 0.3 - 0.599 6,777 75 - 79.99 4,058 5 - 5.99 2,114 5 - 7.49 8,851 
200 - 299.99 3,194 0.6 - 1.299 3,526 80 - 99.99 18,513 6 - 7.99 1,606 7.5 - 9.99 6,880 

300+ 15,795 1.3 - 2.499 1,540 100+ 46 8 + 830 10+ 7,045 
  2.5 + 1,036       

 
The principle motivation for making changes was to make RPBBN better suited for 
setting ecological standards, initially for use in the Environment Agency Southern 
Region’s work on a major development in Ashford, Kent. As a result, the network 
became known as the ‘Southern Region’ or just ‘Southern’ RPBBN model and was 
named RPBBN-S. 
 
Two-season BBN 
Environment Agency staff had been asked to predict the biological outcomes of 
programmes of measures and other activities on the WFD ecological status during the 
implementation of the first river basin management cycle.  A preliminary exercise to 
predict ecological status in 2015 was undertaken in 2008, based on measures and 
activities identified in the first draft River Basin Management Plans.  This was repeated 
in 2009 for the definitive River Basin Management Plan. 
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The quality classification of rivers in the UK is based on two samples taken in spring 
and autumn. These samples are combined to produce a pooled composite, two-season 
or ‘annual’ sample, which is used for classification. The RPBBN model, on the other 
hand, is based on individual samples and may include several samples taken from a 
site during a year. These differences between the two data sources meant that the 
existing RPBBN model was unable to predict the appropriate ‘annual’ value10, and that 
a two-season version was required. 
 
The two-season BBN was based on RPBBN-P2, with five categories for most 
environmental variables. This better matched the precision of predictions of chemical 
concentrations.  Also, for biological outcomes, predictions for a few thousand sites 
would need to be generated and the RPBBN-P2 model was much quicker than the 
RPBBN-S model.  Data from many sites would normally be input into this model in a 
table and the output would also be a table.  
 
To enable the RPBBN system to predict two-season values, the existing project data 
needed to be revised to produce two-season samples and the probabilities for a 
revised, ‘seasonless’ RPBBN model generated from them. Fortunately, much of the 
necessary data preparation had already been completed during the creation of the 
RICT classification dataset (see the ‘Data Tasks’ section of Section 10). This dataset 
contained individual spring and autumn samples for sites sampled in both seasons. 
The following procedures were carried out to modify the existing dataset into that 
needed to create the two-season model. 
 

• For every site, for each year that there was data, the maximum abundance 
value over the two seasons was calculated for each taxon.  

• The autumn chemistry values were attached to annual biology data. 
• Finally, existing annual and fixed values, like mean annual substrate, 

stresses survey data and environmental parameters were also attached. 
 
The final dataset contained over 15,200 records for 4,100 sites.  Biological data, 
including abundances and biotic indices, were based on two-season combined 
samples. 
 
The main change required to the causal structure of the model was removal of the 
season variable. Flow categories were also reduced to the two longest periods 
(conditions over previous 12 and 24 months) to simplify and speed up the model, but 
all remaining biological and environmental variables were retained.  The revised model 
was then populated with probabilities taken from the two-season dataset. Although the 
two-season dataset contained a little less than half the number of samples in the 
original dataset, removal of the season variable halved the size of probability matrices 
of biological variables. This maintained the ratio of probability matrix size to training 
samples and confidence in the quality of the resulting probability distributions. Once the 
new probability distributions had been generated, the two-season RPBBN was 
packaged with the RPBBN 2.2 software.  This version of the RPBBN model was named 
RPBBN-A, with the ‘A’ standing for annual11.     
 

Changes to the user interface  
The aim of these changes was to organise the information produced by the RPBBN 
model more effectively and to simplify interaction with the model. The original RPBBN 
software lacked any reporting facilities other than on-screen bar charts. Introduction of 
                                                      
10 The existing RPBBN model can predict ‘annual’ values, by simply excluding evidence on season. 
However, the predictions would still be based on the ‘wrong’ underlying data.  
11 The suffix 2S for two-season was considered but it was felt that this might be confused with RPBBN-S, 
the acronym for the southern RPBBN model. 
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additional report information and a report panel were therefore key developments for 
the new version. 
 
Include a list of predicted taxa  
Producing a list of predicted taxa and predicted biological indices are two different 
processes and both raise different types of problems. However, they are both caused 
by the outputs of a BBN being probability distributions, which are multi-valued and do 
not provide a prediction of the value of any parameter. Reporting this information in an 
accessible and easy to understand format was one of the main challenges in producing 
outputs for the RPBBN 2.1.  
 
One of the first problems in generating a list of predicted taxa was how to reduce the 
information output from RPBBN 2.1 into a more manageable format. The RPBBN 
model can output up to 500 probability values every time it is updated and it was clear 
early in the project that the number would have to be reduced to keep the report 
succinct and not to overwhelm the user with information.  
 
The solution that was chosen was to reduce each probability distribution to the most 
likely state. This was perhaps the most important probability value, and this approach 
had been used in the evaluation of the original RPBBN model (see Environment 
Agency R&D Technical Report E1-056/TR). Obviously, this considerably reduced the 
amount of available information being reported, but it made the report more succinct 
and accessible. Reporting only the most likely state reduced the number of values that 
had to be output from a maximum of 500 to 97. 
 
Include predictions of biological indices 
Predicting values of biological indices raised a different set of problems, as they 
required the probability distributions to be converted into a set of biotic index values. 
Initially, we considered simply using the most likely state as the predicted state for the 
taxa. Problems justifying the selection of this state as a firm prediction when its 
probability was low led to this approach being abandoned. 
 
The solution eventually chosen was to use a weighted value, similar to that used in 
testing the original RPBBN model (see Environment Agency R&D Technical Report E1-
056/TR).  A weighted mean of the values for each state was calculated and the 
probabilities were used as the weights as follows: 
 
 

∑
=

=
N

i
ii vp

1
valuepredicted_   

where: 
 N = number of states of variable 
 pi = probability of variable being in ith state 
 vi = value of ith state. 
 
To calculate predicted index/score values, the term v was substituted by the presence 
or abundance-related score for the taxon. One of the main benefits of this approach 
was that the whole probability distribution was used to produce the final values. 
However, this method does affect the results and how the indices function. For 
example, the ‘score’ for an individual taxon might vary from sample to sample and the 
value tends to be fractional. Another consequence is that, because every taxon has 
some probability of occurring, every taxon contributes to the generation of the final 
sample score. 
 
In addition to generating index scores, it was necessary to predict the number of taxa 
that might occur. As this value would be used alongside predictions of index/score, a 
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modified version of the weighted value was thought to be best. Hence, the predicted 
number of taxa for a sample is the sum of the probability of states associated with each 
taxon being present. 
 
These methods of deriving index values and numbers of taxa are thus able to 
accurately reproduce assessment values based on actual data (evidence derived from 
a sample). 
 
Include a report panel 
The report panel is one of the three main panels in RPBBN 2.1 software, the others 
being charts and records. The report panel, shown in Figure 12.1, is a rich text format 
document that can display a list of predicted states and, where applicable, indices for 
each node in the RPBBN models. It can also provide a ‘sample’ summary, which 
consists of index values and other information based on the current state of all taxa. In 
addition to the on-screen display, a hard copy of the report can be obtained by using 
the ‘Print Reports …’ option in ‘File’ menu. 
 
RPBBN 2.1 provides several options for customizing the report through the ‘Properties 
…’ option under ‘Report’ menu. These options include removing parts or the entire 
header, including the probability of the most likely state, and removing from the list all 
taxa predicted as absent (shown in Figure12.1).   
 

 
Figure 12.1  Screen-hot of report display panel showing information on 
predictions and index values for individual variables and summary for whole 
network. 
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Show the changes from default to new predicted values 
 
The RPBBN 1.2 had no inbuilt method of tracking changes when evidence in the model 
was modified. It was left to the user to note probabilities before the change was made. 
In RPBBN 2.1, this is no longer necessary, as it includes a ‘Store Current State’ option 
under the ‘Charts’ menu. Selecting this causes the current states to be stored and they 
appear both graphically, as thin dark green bars displayed alongside the current 
probability bars and as text, as values in brackets to the left of the current probabilities 
(see Figure 12.2). 
 

 
Figure 12.2 Screenshot of charts display panel with current and stored states. 
 

Batch mode  
In  RPBBN 1.2, it was only possible to enter evidence manually, one sample at a time. 
This meant that obtaining predictions for several samples was a long process, which 
limited the usefulness of RPBBN as an operational tool. The batch-mode processing 
tool aimed to alleviate this problem.  
   
Batch mode is designed to process multiple samples, update evidence for a user-
defined set of variables and report the results. The process involves the following 
series of dialogues designed to collect the information necessary to run the batch 
process. 
 

Stage 1 - Selecting a data source. Batch mode is currently designed only to 
operate external files, not its own database. The first stage involves 
opening an input file.  
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Stage 2 - Selecting the input variables. The next stage involves selecting 
fields in the file that will be used as evidence (see Figure 12.3). Variables 
can be added and removed individually or as predefined groups of 
variables, ‘Taxon’ and ‘Environmental’ variables can be added using the 
add group button.   
 
Stage 3 - Selecting an output file. This involves selecting an output file 
name to which the results of the batch process will be saved.  
 
Stage 4 - Batch processing. The final stage is actual batch processing of 
samples from the selected data source. The batch progress dialogue box 
shows the progress of the batch job, giving an estimate of the time 
remaining and the current record being input. The dialogue box, Figure 
12.4, also allows the user to cancel the batch job. Cancelling causes the 
application to quit the current job after completing the current sample. The 
results for each sample are saved as soon as it has been processed, so 
even if ‘Cancel’ is selected, the current set of results is retained.     

 

  
Figure 12.3 Batch mode 'Input Variable Selection' dialogue box. 

 

 
Figure 12.4 Batch progress dialogue box. 

   
To reduce input file compatibility problems, RPBBN 2.1 accepts comma-delimited files, 
which can be generated easily by many databases and other applications such as 
Excel. In addition, the file loading mechanism uses header names to identify the 
relevant input information. Although this makes RPBBN 2.1 quite prescriptive in terms 
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of headings that have to be used in the input file, it does allow columns to be included 
in any order and additional unused columns to be included alongside the input data. 
 
For future versions of RPBBN, there are plans to use input specification files to help 
streamline the file loading process. This would include information such as a look-up 
table containing the input file field names and the corresponding RPBBN variable 
name. This should reduce and in many cases remove the need to modify files 
generated by other applications before being loaded into RPBBN.  
 

Items not undertaken in the first extension project 
 
The first extension project was delayed because of problems with availability of data 
and as a result began in February instead of January 2009. Three weeks or 30 man-
days had been lost so there was insufficient time to complete all work tasks and 
produce an updated version of RPBBN before the end of financial year deadline. After 
consultation, it was decided that some work items would have to be dropped so that an 
updated version of RPBBN could be created. However, the time lost would be made up 
after the project deadline, to carry out important software post-delivery tasks such as 
debugging, minor enhancements suggested by users and documentation. 
 
The work items dropped had to be self-contained and not essential. Desirable 
upgrades that were not crucial to improving the RPBBN’s usability were considered 
non-essential. For example, the reporting and batch mode work items were not 
considered for removal because they were deemed fundamental to making RPBBN 2.1 
a more useful and usable tool. 
      
In the end, the following work items were dropped: 
 

• Include confidence of predictions based on the number of samples used to 
generate the probabilities. 

 
• Allow the user to input a predicted reference value from RIVPACS so that 

RPBBN can produce an EQR. 
 
• Add WFD classification so that the effect of physical and chemical changes 

on WFD status can be observed.  In addition to requiring a field for entering 
predicted reference values (work item above) for the classification metrics 
ASPT, N-taxa and WHPT it requires a facility to specify the classification 
metrics (swap from ASPT to WHPT) and to change the class boundaries 
because the boundaries for WHPT, which is to replace ASPT from the 
second River Basin Management Plan in 2012 have not been set yet – 
maybe via a configuration page. 

 
The first item was dropped because, although it would be informative, it was not 
considered essential and it required 20 man-days to complete and so was the largest 
work item. The second and third were dropped because they were closely related and 
the third required the second to function. Although the automatic calculation of EQRs 
and class would be extremely useful, users can calculate them outside the programme 
with little difficulty. 
 
Removal of these work items reduced development time by a total of 45 man-days. 
This freed an extra 15 man-days that was used to make enhancements to the 
functionality of RPBBN 2.1 software and to implement user-requested features as 
described in the next section.  
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Additional work 
 
Both extension projects included ‘additional’ unforeseen work that had to be completed 
to produce the final systems. The first project, however, involved much more work due 
to the need to fill the 45 man-days freed after the revision of work following the late 
start. This section covers the following six additional tasks undertaken in both 
extension projects: 
 

• group templates; 

• a report bar; 

• manual propagation; 

• documentation and help file; 

• a domain manager; 

• bug removal and feature enhancement. 

 
The first four tasks were completed during the first project and the fifth task, a domain 
manager, during the second extension. Bug removal and feature enhancement was 
performed in both projects and all this work is presented together.  
  
Group templates 
 
One of the key issues with the RPBBN v.1 software is organising the large amounts of 
information.  The RPBBN models have about a hundred nodes with, collectively, 
around five hundred states. The user interacts with the system in the following three 
ways: 1) displaying the states of the nodes, 2) entering evidence data and 3) reporting 
the predictions.  
 
In RPBBN 1.2, these interactions were simplified by dividing the nodes into two groups, 
‘Environmental’ and ‘Biological’, and introducing features that operated on these 
groups. The key benefits of this approach were that it helped to organise the 
information and enabled operations to be performed on several nodes simultaneously.  
 
This approach was expanded in RPBBN version 2.1, to allow different ‘group 
templates’ to be used to organise the nodes. The templates themselves basically 
consist of a series of groups, with a simple or hierarchical structure. These groups are 
little more than named containers in which certain types of nodes are placed. The 
original concept was to allow users to construct their own templates, which would allow 
them to impose their own organisation on the nodes and then operate RPBBN 2.1 
using these groups to speed up interaction with the model. The ability to organise the 
data would be particularly useful when displaying information on the screen or in a 
report because the user could control which nodes were displayed together and the 
type of information provided, that is, a full report, a summary or nothing at all. The 
group interactions would be useful in many different ways, but easing the burden of 
entering evidence would, perhaps, be one of the most beneficial.  This approach also 
provided the opportunity to define task-orientated templates. These would allow users 
to set up predefined display configuration, list of evidence nodes and report 
configuration to tackle one task, such as prediction of organic pollutants. Then when 
the user needed to run one of these tasks, they would simply load the templates and 
the system would instantly be configured correctly.  

 
Although the benefits of including user-defined templates in the RPBBN 2.1 were 
immediately apparent, upon trying to implement some of the necessary features it 
became clear that they would be too difficult to implement. The main problem was that 
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it would have a fundamental affect on the way RPBBN operates, which would require 
large-scale changes and managing the templates would require an additional layer of 
functionality, making it more complex to use. Figure 12.5 shows a screenshot of one of 
the new screens that would have to be added to RPBBN, to handle the templates.  
 

 
Figure 12.5  Screenshot of prototype ‘Group Manager’ application, designed to 
allow users to construct and modify templates. 
 
While it would be impractical to fully implement group templates in RPBBN 2.1, it was 
possible to include a much more limited version. The main change to the templates 
was the removal of persistent state information, that is, state information saved with the 
template. The type of ‘state information’ that would be stored related to how variables 
would be displayed, reported and whether data associated with them would be used 
during evidence entry. The decision to remove persistent state information was taken 
because the storage and editing of states within the templates was the source of most 
of the complexity. The result of this was to reduce the role of the template to a 
definition of the arrangement of variables in groups. 
 
The facility to allow users to create and edit their own templates was also abandoned. 
There was insufficient time to implement such a potentially complex feature. Without it, 
the types of templates that could be used were limited to pre-defined templates 
supplied with the software. These are described in Table 12.3. However, the facility for 
using any template for the display, reporting and evidence entry purposes was fully 
implemented in RPBBN 2.1. This makes the inclusion of new pre-defined templates 
relatively straightforward.   
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Table 12.3 Different types of groups in templates. 

 
The difficulty of writing software to introduce the added complication of templates in a 
user friendly way, in the limited time available, meant that their role in RPBBN 2.1 is 
limited. Their main application is to help manage the display, where all three templates 
are available to help organise the arrangement of bar charts. Only the ‘basic groups’ 
template is used to organise information in the report and can be used to input 
evidence for multiple nodes in one action. 
 
Despite the limited way in which templates are implemented in RPBBN 2.1, this 
method of handling information within RPBBN has great potential and will become a 
key part of future releases of the software.  
 
Report bar 
 
The report bar was suggested in feedback given after a viewing of an early 
developmental version of RPBBN 2.1. During the demonstration, users commented 
that it was inconvenient to have to constantly flick between the chart and report panels 
to see how changes in the model affected predictions of biological indices. To resolve 
this problem, a report bar was added to the bottom of the charts panel display. This bar 
provides instant updates on the prediction of biological indices, as evidence in the 
RPBBN model is changed, see Figure 12.6.   
 
The report bar itself was relatively easy to include in the interface. The majority of time 
was spent rewriting and optimising the code that calculates the biological indices and 

Template  
Name 

No. of 
Groups 

RPBBN feature in which 
they appear Group Names 

No Groups  None Display – Charts 
arrangement 

 
 

Basic 
Groups Two 

Display – Charts 
arrangement 
Report – Report 
organisation 
Batch Mode – Group 
evidence entry 

Taxonomical 
Environmental 
 

Ordered 
Groups 

Five main 
groups 
 
Fifteen 
subgroups 

Display – Charts 
arrangement 

Taxonomical 
Dragonflies 
Leeches 
Mayflies 
Crustaceans 
True flies 
Beetles 
Damselflies 
Alderflies 
True bugs 
Worms  
Caddis-flies 
Limpets & 
Mussels 
Stoneflies 
Flatworms 
Snails 

Environmental 
Season 
Flow 
Chemical 
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taxon count, as the previous version, designed solely for updating the report panel, was 
too slow.  
 

 
Figure 12.6 Chart panel and report bar. 
 
Manual propagation 
 
Propagation is the act of updating the probability of states of variables within a 
Bayesian Belief Network (BBN), usually as a result of evidence being entered or 
withdrawn. The term propagation is used because the process of updating the network 
starts with one variable and then propagates or ripples out to the other variables. 
 
The most common approaches to initiating propagation available in BBN software are: 

1. Automatic propagation – propagation is initiated every time evidence is 
updated.  

2. Manual propagation – propagation is initiated only upon a user request. 
 
Automatic propagation is usually the most convenient and 'responsive' option, with 
probabilities being instantly updated after any change. This tends to make comparisons 
and investigations easier to perform as evidence can quickly be modified and the 
results of these changes are available instantly. However, updating the probabilities in 
a BBN is not a trivial operation and potentially involves millions of calculations. 
Therefore, the size of the BBN model and specification of the PC on which the software 
is installed affects responsiveness of the automatic propagation.  
 
In RPBBN 2.1 (beta test version) released before the end of the first extension, the 
automatic propagation was hard-coded. Only automatic propagation was used because 
the RPBBN-P1 model was sufficiently small to make updates almost instant, which 
negated the need to offer any alternative. The models released with RPBBN 2.1 (beta) 
were much larger.  The RPBBN-P2 model is ten times the size of its predecessor and 
the RPBBN-S model is twenty-seven times larger. However, whilst the increased size 
of RPBBN-P2 seemed only to introduce a delay of a few tenths of a second to the 
duration of propagation, the much larger RPBBN-S model took approximately two and 
a half minutes to update on the development PC. Although two and a half minutes is 
not a prohibitively long time to update the model, automatic propagation means that 
updates occur every time a variable is changed, which makes using this RPBBN 
laborious. 
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There were two solutions to reducing propagation delays with RPBBN-S. The first was 
to optimize the BBN inference engine code, thereby reducing the duration of 
propagation operations.  The second was to introduce a manual propagation option, 
which would enable changes to be made without propagation taking place until the 
user requested it. Given that the first option was likely to take more than 20 days to 
complete, we decided that the second option was better for this project. 
 
‘Manual Propagation’ appears as an option under the ‘Evidence’ menu. Once selected, 
evidence can be modified but no update will occur until the ‘Propagate’ option (also 
found in the ‘Evidence menu’) is selected. When evidence has been modified and an 
update is required, the bars of the charts change colour to grey, to indicate the values 
they display no longer correspond to the evidence that has been entered, see Figure 
12.7. Once the propagation option has been selected and the update performed, the 
bars for the predicted probabilities return to green to show that they now reflect the 
effect of the current evidence. 
 
Introducing the manual propagation option took about five man-days to complete, 
leaving 25 man-days for remaining work. 
 

 
Figure 12.7  Sreenshot of RPBBN with ‘Manual Propagation’ option selected, 
prior to update of model after entry of new evidence. Red bar denotes new 
evidence and grey bars that an update is required. 
 
Documentation 
 
RPBBN v.1 was a prototype and was a relatively simple piece of software with few 
features. As a result, the documentation was also quite simple, consisting of an eight-
page manual. In updating the RPBBN software, both the interface and how the system 
operates underwent major changes, making it much more sophisticated. The 
improvements have made the RPBBN 2.1 system a much more useful and usable tool, 
making it attractive to a wider audience. This made good documentation in the form of 
a help file essential, to provide new users with adequate support when using the 
software for the first time.  
 
The original project specification focused on updating existing features and introducing 
new ones, and documentation was limited. The time freed by the work items that were 
dropped provided an opportunity to resolve this by producing new help files. 
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Creating the help file was a laborious task that took approximately 20 man-days. The 
help file contains over 30 pages of information split into three sections: 
 

Getting Started provides a general introduction to the RPBBN 2.0 interface 
covering its main features - charts, reports and records. 
  
Using RPBBN describes how to use RPBBN to make predictions. 
 
RPBBN 2.0 systematically describes each of the options in RPBBN’s 
menus. 

 
The help file was produced after the original deadline and is packaged with the final 
release version of RPBBN 2.1. This help file supersedes that provided with the beta 
version of RPBBN 2.1 released within the original extension, which only gave a terse 
description of the software and its features.   
 
Domain manager 
 
The first version of the RPBBN software was designed to work with the RPBBN-P1 
model. Creation of the RPBBN-S model, in the first extension, broke this one-to-one 
relationship. However, because it was intended for a specialized audience, this 
problem was resolved by simply packaging both networks and a database for each in 
the installation software. This solution would be less practical if several models were to 
be packaged and released more widely. The main reason for this is the size of the 
RPBBN database; it occupies approximately one gigabyte, and having several different 
versions of the database included in the software would make both the installation 
package and the installation itself impractically large. 
 
Fortunately, only a small amount of information ties an RPBBN database to an RPBBN 
model, with the core of the data remaining the same. Therefore, it was possible to 
revise the database structure to allow a set of models to function with the same 
database. However, this set of models would be limited to those that consist of a 
complete set or a subset of the nodes in the RPBBN-P2 model. These limitations are 
the result of specialization of RPBBN software and the information it requires to 
perform its task. For example, RPBBN is able to predict biological assessment values 
such as BMWP, but to do this the BBN model needs to contain a recognizable set of 
BMWP taxon nodes. Changes to the database consisted of introducing a new table 
called ‘Domain’, which contains information about the name, location and version of 
associated RPBBN networks, and inclusion of a DomainID field to existing Node and 
NodeState tables, so that data on these attributes for different Domains could be 
stored. 
 
The final requirement was to introduce a way for the user to manage various versions 
of the RPBBN model. This took the form of the Domain Manager dialogue box, in 
Figure 12.8. 
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Figure 12.8  Domain manager dialogue box. 
 
The domain manager provides a facility for changing the network being used by the 
RPBBN 2.2 software, an option to add or remove existing models and the option to 
change the network that loaded by default when starting RPBBN 2.2. The domain 
manager can be accessed during initialization by clicking the link on the splash screen 
or afterward by selecting the ‘Domain Manager …‘ option from the ‘File’ menu. 
 
Introduction of the domain manager provided the following benefits: 
 

• Limited growth of the installation size, by allowing several versions of the 
RPBBN model to be packaged with just one database. 

• Ability to upgrade the model without changing the database or upgrading 
software. 

• Ability to change models without having to reload the software.   
 
Bugs and improvements 
 
First extension project  
 
During the course of the first extension project, two ‘beta’ versions of the RPBBN 2.1 
software were produced and stand-alone installation CDs were dispatched to the 
Environment Agency. Following a period of development, a final release version of 
RPBBN 2.1 was produced. This version contained many minor improvements, 
particularly to batch mode, bug fixes and improved error catching.  
 
The beta versions provided users with an opportunity to test RPBBN 2.1 in an 
operational setting. This ‘day to day’ usage quickly revealed some non-fatal errors that 
were difficult to detect because they did not crash the program, and some 
enhancements that were needed to improve how RPBBN 2.1 operated and thus 
increase productivity. The remaining five man-days development time were spent 
removing these errors and improving features. 
 
The majority of these enhancements were made to the batch mode. The following is a 
list of improvements made to batch mode. 
 

1. Improvement to file loading routines. In the version released before the 
original deadline, it was necessary to include headings in the CSV file for all 
the variables in the RPBBN model. The updated version removed this 
requirement, so the file only had to contain columns for which there were 
data. 

 
2. The variables listed in the ‘Variable Name’ list box in the input selection 

dialogue box (see Figure 12.3), were restricted to those for which there 
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were data. This change was made in concert with improvement to the load 
routines. Removal of superfluous columns from the input files meant that it 
was possible to list only the variables for which data was available. 

 
3. Improvements to the batch mode dialogue box and process. In the beta 

versions of RPBBN 2.1, little information was provided about the duration of 
the process and there was no way of cancelling it. These issues were 
resolved in the final version. A cancel button was added to the dialogue box 
to stop the process and more detailed information was provided, including 
the current progress through the records and an estimation of the 
remaining processing time (Figure 12.4). 

 
Minor bugs were discovered in the handling of input files, printing and formatting of the 
on-screen report. However, none of the bugs were particularly problematic and they 
could be addressed relatively quickly. 
 
Second extension project 
 
No modifications were requested for the RPBBN software in the second extension 
project. Therefore, apart from the introduction of the domain manager feature, little 
debugging was made to the 2.1 version of RPBBN released at the end of the first 
extension. The only notable change was reformatting of information in the report bar to 
explicitly indicate the average score per taxa (ASPT) and number of taxa (NTaxa). 
 
Changes made to the RPBBN system in the second extension focused on changes to 
the underlying models. As a result most work on ‘bugs’ and improvement related to 
these models.  
 
Revision of the ‘site type’ sub-network 
 
Probabilities for the ‘site type’ variable in the RPBBN-P2 model were derived from the 
environmental data and predictions of site type in the project database. However, 
predictions of site type associated with samples in the project database had been 
generated by a specially created ‘site type predictor’ BBN, which essentially has the 
same structure as the ‘site type’ sub-network in the RPBBN model, Figure 12.9. 
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SiteTpNo
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Figure 12.9  Causal network of the ‘site type predictor’ BBN. 
 
Probabilities for this ‘site type predictor’ BBN were based on the 1995 River Survey 
data and original ‘site type’ values generated using an artificial neural network model 
(see Walley et al. 1998). 
 
Differences in the source data, and therefore probabilities in the RPBBN and ‘site type 
predictor’ BBN, meant that the predictions of site type made by these two models 
differed. This occasionally manifested itself in the RPBBN by the ‘site type’ with the 
highest probability not being the one associated with a training sample. To prevent 
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these ‘anomalous’ results, the site type sub-network in the RPBBN was simply 
replaced with the ‘site type predictor’ BBN. Whilst this meant the probabilities in this 
part of the RPBBN model were now based on the smaller 1995 river survey dataset, 
‘site type’ values in this set would be the product of the original neural network model, 
not ‘secondhand’ predictions generated by a BBN model. 
 
Other minor network modifications  
 
Two other notable modifications were made to the RPBBN models released with the 
beta versions of RPBBN 2.2. The first set of modifications concerned the correction of 
an error made when removing the three- and six-month flow condition nodes. Although 
these flow nodes had been removed from the RPBBN-P2 and RPBBN-S models, the 
26 taxa attached to these nodes had not be reassigned a new flow parent. It was 
therefore necessary to reattach a flow parent to these nodes and produce updated 
versions of the models.  
 
The second set of modifications was made to RPBBN-S. The updated version of the 
RPBBN-S model was created from scratch at the same time as the RPBBN-P2 model 
and the same processes were used to update it. Older models contained direct links 
between BOD5 and the taxa, unlike the new RPBBN-S and RPBBN-P2 models, which 
have ‘indirect’ links through total ammoniacal nitrogen and oxygen saturation. Whilst 
these links are likely to help the prediction of BOD5, the legitimacy of modelling a direct 
causal link between BOD5 and the biology is questionable. Following consultation we 
decided that indirect links between BOD5 and biology modelled in the ‘modified’ 
structure of the new RPBBN-S was more appropriate. 
 
The issues discussed here only affected networks released with beta version of 
RPBBN 2.2, not those packaged with the final release version.             
  

Rewrite updating procedure 
 
RPBBN-S exposed the RPBBN software’s limited ability to handle large BBN models. 
Manual propagation alleviated some of the problems by allowing the user to control 
when an update takes place.  However, it has not resolved the underlying problems 
associated with the inference engine algorithms.  
 
RPBBN uses its own BBN inference engine software, called dBBN. This software 
consists of a single dynamic link library (dll) file, the task of which is to load BBN 
models and perform the necessary inference/calculations to make the model function. 
This software was based on the HUGIN architecture (Jensen et al., 1990) and used 
some of the algorithms suggested by Huang and Darwiche (1996) to implement the 
inference engine. This architecture was chosen because it was known to be quick in 
terms of inference speed. This speed is achieved because the algorithm performs the 
same set of calculations each time, making it possible to store and re-use intermediate 
results. The trade-off for this speed is the need for a larger working memory, as large 
arrays of values have to be maintained to reduce the amount of processing.  
 
An alternative architecture for the inference engine is based on ‘lazy propagation’ 
(Madsen and Jensen 1999). The big difference between this approach and HUGIN is in 
the handling of the updating/propagation calculations. At each stage, ‘lazy’ algorithms 
check that all the combination calculations that are supposed to be performed are 
actually necessary, that is, that they cause some change.  If they are unnecessary, 
they are avoided. This negates much of the benefit of storing intermediate results, as 
done by HUGIN, because there is no guarantee that these calculations will be 
performed again. As a result, the probability distributions in lazy algorithms are 
maintained in a factorized/uncombined form.  
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The benefit of using a ‘lazy’ algorithm is that it can potentially retain much of the speed 
of HUGIN whilst dramatically reducing memory usage. Retaining the probability 
distributions in factorized form and avoiding the large arrays of intermediate values 
required by HUGIN algorithms helps to reduce excessive memory consumption, and 
improves speed by reducing the computation overheads that excessive memory 
consumption incurs. Avoiding ‘unnecessary’ calculations also improves speed by 
reducing the overall number of calculations. The amount of ‘unnecessary’ calculation 
varies, depending on the structure of the network and the evidence that it contains. 
‘Lazy’ propagation algorithms are naturally more processor-intensive than HUGIN, 
because they undertake an additional calculation-checking stage. Therefore, in the 
case of a network that requires limited working memory and with no ‘unnecessary’ 
calculations occurring during propagation, a ‘lazy’ algorithm will update more slowly 
than a HUGIN algorithm.  A more detailed comparison of the performance of HUGIN 
and ‘lazy’ propagation algorithms is given in Madsen and Jensen (1999). 
 
EABBN 
 
In dBBN, the HUGIN architecture is heavily integrated with all the existing code. Ideally, 
the revised version of the code would include both the HUGIN and ‘lazy’ propagation 
methods, with the implementation code for these methods being separated from other 
components. This would involve a major change in the architecture of the existing 
software and an extensive rewrite. Fortunately, many elements of the two propagation 
methods are similar and it became apparent that a simpler solution would be to replace 
the parts of HUGIN algorithm that differed from their ‘lazy’ counterparts. From a design 
perspective, this solution might be the most effective but it does not constitute a major 
change or development of dBBN. Therefore it was decided to ‘fork’ development with 
the proposed ‘lazy’ propagation software being called EABBN and the name dBBN 
retained for further in-house development versions. 
 
Performance 
 
As mentioned previously, Madsen and Jensen (1999) provide a detailed comparison of 
the HUGIN and lazy propagation algorithms for a variety of networks. This section 
focuses on the changes in performance in the RPBBN model. 
 
Implementation of the HUGIN algorithm in dBBN makes use of what Huang and 
Darwiche (1996) refer to as Cluster-Sepset mappings. These are arrays of mappings or 
pointers between probability distribution tables, which allow the corresponding values 
in both tables to be combined more quickly, see Figure 12.10. Cluster-Sepset 
mappings provide a notable improvement in performance but at the expense of a large 
increase in memory consumption, required for the mapping arrays. This technique was 
not, and could not, be used with the lazy propagation algorithm because of variations in 
the combinations of probability tables required with each update. Absence of these 
additional memory demands and storage of probability distributions in a factorized form 
meant that the lazy propagation algorithm was capable of loading and updating 
RPBBN-P2 using only half the memory of the dBBN’s HUGIN algorithm. 
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Figure 12.10 Example of mapping between two probability tables. Adapted from 
Huang and Darwiche (1996). 
 
In terms of the speed, comparison of the HUGIN and lazy algorithms is a little more 
complicated. This is because of variation in the work required by the lazy propagation 
to perform an update, given the evidence entered into the model. One clear area of 
improvement was the initialization, which is the process of setting up tables of 
probabilities and beliefs and other data structures used by the algorithm. The absence 
of combined probability distributions and ‘mapping’ tables used in the HUGIN algorithm 
meant that, on average, the lazy propagation algorithm was able to decrease 
initialization time by at least 75 per cent (see Table 12.4). 
 
Table 12.4 Comparison of times taken by HUGIN and lazy algorithms to initialize 
and perform update on RPBBN-P2, RPBBN-A and RPBBN-S models. 
Network HUGIN (seconds) Lazy (seconds) 

  RPBBN-P2 
Initialize 1.297 0.344 
Update 0.109 0.110 

  RPBBN-A 
Initialize 4.266 0.641 
Update 0.406 0.281 

  RPBBN-S 
Initialize 244.031 1.234 
Update 166.047 0.703 
 
Table 12.4 shows a typical set of results from the HUGIN and lazy algorithms. It shows 
that, for the RPBBN-P2 model, the speed of update performed by the lazy algorithm is 
comparable with that of the HUGIN algorithm. However, given the general speed of the 
updates, it is unlikely that the average user would be able to notice any difference in 
performance between the two versions of the algorithm when used in RPBBN unless 
memory limitations become important. If this happened, the greater memory demands 
of the HUGIN algorithm would cause its performance to degrade much more rapidly 
than that of the lazy algorithm. 
 
This degradation in performance when memory is limited is illustrated in a final test 
using the RPBBN-S model. During this test the memory consumed by the algorithm 
peaked at 1,050 MB (over one gigabyte), whilst the memory consumed by the lazy 
algorithm peaked at 200 MB. The reduced memory demands of the lazy algorithm 
meant that on our test PC it was able to initialize and update the model using only 
working memory. Table 12.4 shows that in a straightforward speed test, the lazy 
algorithm initialized and updated in approximately 0.5 per cent of the time of the 
HUGIN algorithm. Given the similarity in performance recorded during the RPBBN-P2 
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model tests, the dramatic difference recorded in the RPBBN-S test indicates that 
memory limitations can have a severe impact on the updating speed of the models. 
 

User feedback workshop 
The user feedback workshop was described in Section 10, where feedback on the new 
version of RPDS was summarised.  The feedback on RPBBN is reported here and 
consisted of the following comments for improvement: 
 
Modifications to RPBBN model 

• It would help if there was a text description not just a file name in the 
domain manager.  For example: 
Two Seasons, Five Environmental Categories 
Single Season (default) 
Single Season, Multiple Environmental Categories. 

 
Changes to the user interface 
 

• If you save scores it would be handy to save indices too. 
• Need to state that indices in brackets are the numbers of taxa specific to 

the index, and not always N-Taxa (BMWP). 
• The scroll bar is not very obvious for the main window. 
• Good guidance is needed on using the system and interpreting the data. 
• Good guidance on how to use and more importantly how to interpret the 

results. 
 
Batch mode 
 

• Consider the option of multiplying predictions by the regression of observed 
versus predicted values as a short-term solution to the under-prediction of 
extremes. 
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13 Summary and conclusions 
 
Background to the project 
 
This project has built on the successful outcomes of previous projects, in particular 
Project E1-056 (Walley et al., 2002).  In that project, two software systems were 
developed for the diagnosis and prediction of river health from biological and 
environmental data, namely the River Pollution Diagnostic System (RPDS) and the 
River Pollution Bayesian Belief Network (RPBBN).  Although two early objectives of 
this project involved using the RPDS database of matched biological and 
environmental data to determine chemical thresholds and potential reference sites, the 
main aims of the project were to enhance the software systems.  The specific aims 
were as follows: 

 
• Substantially extend the dataset on which the data models are based. 
• Revise and test the data models on which the systems are based. 
• Extend the functionality of the two systems and combine into one 

‘integrated system’. 
 
The new versions of RPDS and RPBBN are known as the River Pressure Diagnostic 
System and the River Pressure Bayesian Belief Network to reflect the fact that they 
respond to a wider range of pertubations than pollution. 
 

Summary of project outcomes 
 
Extending the dataset (the first of the above aims) took much longer than anticipated 
and affected progress of the remainder of the project.  In particular, the integrated 
system could not be developed in the remaining time available (the third aim), and the 
two software systems were kept separate.  The outcomes of the project are 
summarised as follows: 
 

• The dataset was extended substantially. 
• A method was developed for estimating flow condition at the time of 

sampling and this was shown to have the anticipated relationship to taxa. 
• MIR-max models were revised, based on the larger dataset. 
• RPDS software was revised, based on the new MIR-max models and 

incorporating new functionality. 
• The original BBN model was revised, based on the larger dataset, and 

further models developed. 
• RPBBN software was revised, based on the new BBN models, and 

incorporating new functionality. 
 
More details on each of these are provided below. 
 

Extension of the dataset 
 
The dataset has been extended temporally, geographically and in terms of the 
variables contained.  Firstly, the new dataset covers the ten-year period 1995-2004 
instead of the single year 1995.  Secondly, it covers Scotland as well as England and 
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Wales.  Thirdly, flow (except for Scotland), geology, land cover and land risk variables 
have been added to chemistry and stress as diagnostic variables. 

Validation of the biological sample data was time-consuming, as was the validation of 
spatial coordinates of both biological and chemical samples prior to matching. 
However, the resulting spring and autumn datasets contain many more biological 
samples than those used in earlier systems. 

 

Estimation of flow condition and impact on taxa 
 
To reflect increasing interest in linking changes in the biological community with the 
physical flow of water in the river, two measures of flow were included in the new 
diagnostic variables.  The first was the percentage impact (at 95 per cent exceedence 
probability) from LowFlows2000 (LowFlows Enterprise), which quantifies the extent to 
which the natural flow may have decreased or increased because of external 
influences such as abstractions and discharges.  Although this may be useful, the 
values are based on long-term average data and may have little bearing on the 
condition of the river at a particular time.   
 
To complement these values, a second measure was developed to estimate flow 
condition at each site at the time the sample was taken.  This was based on 
interpolation from thirty years’ monthly flow data at 121 gauged sites covering England 
and Wales.  Values on a scale of zero (driest) to one (wettest) were determined for 
time periods of one, two, three, six, 12 and 24 months prior to the sample date.   
 
The effects on the taxa were demonstrated by splitting the flow condition scale into the 
ranges [0,1/3], [1/3,2/3] and [2/3,1], representing ‘dry’, ‘average’ and ‘wet’ respectively, 
and deriving abundance distributions of each taxon for each flow condition from their 
frequencies of occurrence.  This was done separately for spring and autumn, and for 
riffles and pools.  Grouping the taxa based on the change in presence/absence 
probabilities from ‘wet’ to ‘dry’ conditions showed a clear pattern. Those taxa more 
likely to occur in wet conditions were the more sensitive taxa, as indicated by their 
higher revised BMWP scores. Those more likely to occur in dry conditions were the 
more tolerant taxa, as indicated by their lower revised BMWP scores.  Furthermore, 
changes in the presence/absence probabilities became more marked as the time 
period relating to the flow condition lengthened. 
 

Revision of MIR-max models 
 
Preliminary MIR-max models were created with a reduced dataset consisting of 
samples from 1995 only, which reproduced the original MIR-max models to a high 
degree. Bandings used for the biological variables were kept the same as in the 
original model (discrete abundance categories); however, bandings used for 
continuous environmental variables were modified.  Bands in the original model were 
obtained by splitting the range into equal widths, and these were replaced by more 
appropriate bands based on equal numbers of samples in each (as recommended in 
the previous project, Walley et al. 2002).  However, this gave more prominence in the 
clustering to environmental variables, which tended to dominate the biological variables 
when ranked in terms of contribution to the overall mutual information.  Following a 
series of tests, the set of environmental variables was reduced from eleven to five, to 
reach a reasonable compromise between opposing objectives of optimising the 
representation of environmental characteristics of a site and optimising the influence of 
macroinvertebrates in the final clustering.  The five environmental variables adopted 
were chosen to cover the widest range of influences on habitat and were: alkalinity 
(indicative of chemical conditions), slope (flow velocity), boulders and pebbles 
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(substrate composition), distance from source (river size) and altitude (temperature).  
Further tests with calcareous geology in the place of alkalinity indicated that, although 
alkalinity was the preferred variable, calcareous geology would be a viable alternative. 

Following testing with the reduced dataset, models were produced for the full dataset 
covering the years 1995-2004 for both spring and autumn.  In all cases, the number of 
bins was kept the same as in the original models, namely 250.  However, the new 
models were based on more than five times as much data.  The original spring and 
autumn models contained over 6,000 samples each (an average of 24 samples in each 
bin), whereas the new spring model contains over 32,100 samples and the new 
autumn model roughly 31,500 (averages of 129 and 126 samples per bin respectively).  
Sample data in the original spring and autumn models was from 6,000 sites in England 
and Wales, whereas sample data in the new spring and autumn models was from 
9,100 and 8,800 sites respectively in England, Wales and Scotland. 

The new spring and autumn cluster models were ordered by MIR-max to produce 
hexagonal output maps of side-length 10, 15 and 20 clusters, to match the original 
models.  Each map was rotated to align as closely as possible with the originals to 
permit easy comparison. 
 

Revision of RPDS software 
 
After appending the new diagnostic variables to the spring and autumn models, RPDS 
2.0 was revised to RPDS 3.0 by streamlining operations involving database queries 
and including Scotland on the geographical map panel.  The new spring and autumn 
models of RPDS 3.0 showed qualitative similarities with those of RPDS 2.0.  The 
output maps of RPDS 3.0 for particular variables are similar to those of RPDS 2.0, 
demonstrating that the clustering and ordering of new models are similar to the 
originals despite the large increase in volume of data.  The geographic locations of 
samples in clusters occupying similar positions in the hexagonal output map are also 
consistent between RPDS 2.0 and RPDS 3.0.   
 
Preliminary evaluation of new flow variables demonstrates that the percentage impact 
at Q95 is negatively correlated with distance from source, as might be expected, so 
that the influenced flow is usually less than natural flow close to source and greater 
than natural flow close to the mouth.  Preliminary evaluation of the flow condition 
variable, on the other hand, demonstrates a relationship with the taxa in terms of 
ASPT.  The clusters containing samples taken in wetter years tend to be those with 
higher ASPT, while those taken in drier years tend to be those with lower ASPT.   
 
Following meetings with potential users, the RPDS software was modified to improve 
its usability and incorporate additional functionality to meet requirements of the Water 
Framework Directive. 

 

Revision of BBN model 
 
As with the MIR-max models, the BBN model was derived from a much larger quantity 
of data.  The original BBN model was based on 3,600 spring and autumn matched 
samples, whereas the new spring and autumn models are based on roughly 16,200 
and 15,900 matched samples respectively.  In addition, further changes were made: 
the structure of the model itself was modified; the chemical statistics were based on 
percentile values over the previous three years rather than mean values over the 
previous three months; and five states were used for the taxonomic variables instead of 
four.   
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Dependent testing of the network with these changes against the original showed 
major improvements in the predictions of total ammoniacal nitrogen and dissolved 
oxygen.  Prediction of flow condition variables was poor, but this was not unexpected 
given their fewer connections to the taxonomic variables.  Independent testing to 
assess the impact of each of the changes suggested that the use of percentile 
statistics, permitted by the larger dataset, was the greatest factor contributing to the 
improvements. 
 
Two further models have been developed, one based on two-season samples, and the 
other with many more states for chemical variables, based on WFD and RE standards. 
 

Revision of RPBBN software 
 

As with the RPDS software, the RPBBN software was also modified in several ways.  
These modifications make the software easier to use and incorporate new functionality 
to meet requirements of the Water Framework Directive. 

 

Overall conclusions 
 
In this project, major extensions were made to the datasets on which the RPDS and 
RPBBN software systems are based.  Biological and chemical sampling data covering 
the decade 1995-2004 was included, and the geographical extent increased to include 
Scotland as well as England and Wales.  In addition, new variables such as flow, 
simple geology, land cover and land risk were included in RPDS 3.0.  These offer 
enhanced diagnostic capability as well as new links with the macroinvertebrates to be 
explored, for example with flow condition prior to the time of sampling, which was 
shown to have an ecologically significant impact. This project database is useful in its 
own right as a basis for other research. 
 
The MIR-max models were revised, based on the increased dataset with changes in 
the representation of environmental variables.  RPDS 3.0 software was produced 
based on the new MIR-max models, and preliminary evaluation indicates good 
qualitative similarities to the original for variables that they have in common, and the 
possibility of exploring relationships with the new variables.  The BBN model was 
revised, based on the enhanced dataset and with further changes.  Dependent tests 
showed notable improvements in the performance of two of the chemical variables in 
the network.  Further independent tests suggested that the largest contributing factor 
was the use of chemical statistics based on percentile values, permitted by the 
enhanced dataset.   
 
Both RPDS and RPBBN software were revised to optimise them for operational use. 
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Glossary of terms 
 
AMNI CIES code for ammoniacal nitrogen non-ionised, mg/l 
AMTN CIES code for total ammoniacal nitrogen, mg/l 
ANC Acid-neutralising capacity 
ASPT Average BMWP-score per taxon, a biotic index of organic pollution  
B4W Biology for Windows, predecessor of BIOSYS 
BBN Bayesian Belief Network. 
BIOSYS Biological Information System, the Environment Agency’s biological 

database 
BMWP Biological Monitoring Working Party.  BMWP-score is a numerical index 

of river invertebrate quality based on the sum of individual values for 
each family based on their sensitivity to organic pollution. 

BOD Biochemical oxygen demand.  BOD5 is 5-day BOD. 
CAMS Catchment Abstraction Management Strategy 
CEH Centre for Hydrology and Ecology 
CIES Centre for Intelligent Environmental Systems (Faculty of Computing, 

Engineering and Technology, Staffordshire University). 
CGI Common Gateway Interface 
CSF Catchment sensitive farming 
CSV Coma separated value, a file format 
dBBN Dynamic link library (dll) file for RPBBN for its inference engine, based 

on HUGIN  
DO Dissolved oxygen, mg/l. 
d/s Downstream 
EA Environment Agency 
EABBN Environment Agency BBN – an alternative to dBBN, this inference 

engine is based on lazy propogarion 
EQI Ecological quality index (observed/RIVPACS expected) 
EQR Ecological quality ratio (observed/WFD reference value) 
GQA General Quality Assessment 
GIS Geographical information system 
Hex10 Main RPDS display with a hexagon of 10 locations for bins per side 
ID Identifier 
LCM2000 Land Cover Map 2000 
LIFE Lotic-invertebrate Index for Flow Evaluation 
MEM Macro-Ecological Model 
MI Mutual Information. 
MI-max MI Maximisation – a clustering algorithm. 
MINTA Minimum of Number of Taxa and ASPT 
MIR-max MI and Regression maximisation 
ms-PAF Multiple substance potentially affected fraction of species 
NBN National Biodiversity Network 
NTaxa Number of BMWP-scoring taxa, N-taxa 
NVZ Nitrate vulnerable zone 
OXDS CIES code for dissolved oxygen, mg/l 
OXSA CIES code for oxygen percentage saturation. 
PHOS CIES code for phosphorus as phosphate, mg/l. 
PHVL CIES code for pH value 
PISCES  Environment Agency’s Pressure Information Supporting Classification 

Elements for the Water Framework Directive database. 
Q95 Flow exceeded 95 per cent of the time 
r Correlation coefficient (Pearson) 
RE River Ecosystem chemical classification 
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REFCOND Reference Condition – a WFD Common Implementation Strategy 
Working Group 

RHS  River Habitat Survey 
RICT River Invertebrate Classification Tool, software that implements 

RIVPACS IV. 
R.I.P. River Intercalibration Project 
RIVPACS RIVer Prediction And Classification System (Moss et al., 1987). 

RIVPACS III and RIVPACS IV are successive versions of RIVPACS. 
R-max Regression maximisation 
RPBBN River Pressure Bayesian Belief Network, formerly River Pollution 

Bayesian Belief Network (Software developed by CIES). 
RPBBN1 RPBBN software version 1, implementing RPBBN model RPBBN-P1 
RPBBN2 RPBBN software version 2, implementing RPBBN models RPBBN-A, 

RPBBN-P2 and RPBBN-S 
RPBBN-A RPBBN-Annual, RPBBN model based on combined seasonal 

(spring/autumn) biological index values used to derive WFD quality 
classifications 

RPBBN-P1 RPBBN-Project 1, RPBBN model produced in previous project 
RPBBN-P2 RPBBN - Project 2, RPBBN model developed in this project with five states 

for chemical variables 
RPBBN-S RPBBN – Southern, RPBBN model with more than five states for 

chemical variables based on WFD and RE standards  
RPDS River Pressure Diagnostic System, formerly River Pressure Diagnostic 

System (Software developed by CIES). 
rs Rank correlation coefficient (Spearman). 
SEPA Scottish Environment Protection Agency 
SSD Species sensitivity distribution 
SUSS CIES code for suspended solids, mg/l 
TEMP CIES code for temperature, °C 
TOXN CIES code for total oxidised nitrogen, mg/l 
u/s Upstream 
VBA Visual Basic for Applications 
WFD Water Framework Directive 
WHPT Walley Hawkes Paisley Trigg index, a revision of ASPT using revised 

taxonomic sensitivity values 
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Investigation into the potential use 
of toxicity data 
 
 

Introduction and objectives 
 
This work package is a feasibility study reviewing the possibility of using toxicity data 
as part of the Bayesian Belief Network (BBN) models. This study focuses on the toxic 
effects of pesticides on macroinvertebrate populations in rivers. A review of the 
possible use of pesticides as an input parameter in the BBN was needed because the 
current input variables mainly focus on nutrients, organic substances, pH and 
parameters that describe the river type. Because of the lack of pesticide survey data 
from river stretches where we have biological monitoring data, we need to look for 
alternative approaches that can use knowledge instead of survey data or can work in a 
combined data-knowledge way to model pesticide impacts on biota. This approach 
could be part of the current BBN network or separate from it. 

This feasibility study is structured into four sections. The first section is a literature 
review on existing impact-response models for pesticides and macroinvertebrates in 
rivers. The second section is a review of studies within the UK related to pesticide 
impacts on macroinvertebrates. In the third section different model approaches are 
reviewed, and the conclusions of the feasibility study and recommendations for 
implementation are given in section four. 
 

Literature review 
 
This review covers different types of approaches for analysing the effects of pesticides 
on macroinvertebrate communities: field-based research, microcosm-mesocosm 
approaches, laboratory studies and knowledge-based approaches. The focus of this 
review is on evaluating each approach and its possible implementation in the current 
BBN model structure. A few examples are given to illustrate the general ideas and 
outcomes of each approach.  Several of these and other approaches that could be 
used to develop a biological indicator of pesticide contamination are also reviewed in 
Schriever et al. (2008). 
 
Field-based approaches 
 
An example of a field-based approach is the study by Friberg et al. (2003). This study 
investigated the effects of sediment-bound pesticides on macroinvertebrate 
communities in rivers. Some of the outcomes are summarised below: 

• Oligochaeta and leeches increased with pesticide exposure, as found in 
other studies. 

• A drop in the number of amphipod Gammarus pulex is consistent with 
previous findings. 

• A rise in number of Tanypodinae with increasing pesticide concentrations is 
only partly consistent with previous findings. 

• The dipteran family Chironomidae appears to respond differently to 
pesticide exposure.  

• In this study, no single species or taxonomic group within Insecta showed a 
clear negative relationship with pesticide concentration. 
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• Both leeches and Tanypodinae are predators and their increase might 
reflect the increase in prey, as the total number of macroinvertebrates rose 
with greater pesticide concentrations.  

• It is difficult to assess the direct toxicity of all sediment-bound pesticides 
because studies on pesticide toxicity in sediments are scarce. 

• Results confirm what has been found in mesocosm experiments and 
investigations involving only a few streams. 

• It is not possible to separate other impacts from those of pesticides in this 
study. 

 

A number of other field study approaches have been published (such as Schulz and 
Liess, 1999; Probst et al., 2005).  
 
Experimental studies investigating the impacts of a specific substance introduced into 
the field under controlled conditions have also been reported (such as Liess and Von 
Der Ohe, 2005).  
 
Evaluation of field-based approaches 
 
Field studies often provide us with valuable information because they take into account 
the effects of other environmental parameters on the toxic effects of a certain pesticide. 
However, because of the multitude of influencing parameters at any site, caused by the 
difficulty of finding pristine conditions, it is not entirely clear how to separate out the 
pesticide effects on the community of interest. The outcomes of such studies can often 
only be described in a semi-quantitative way, which can make it difficult to integrate 
them into models. To discriminate between real causal effects and statistical 
correlation, large quantities of biotic and abiotic data are needed and this is often not 
available, mainly because of the cost of measuring pesticides and macroinvertebrates. 
 
Microcosm-mesocosm studies 
 
Microcosms and mesocosms are model ecosystems, that is, experimental systems that 
mimic parts of natural ecosystems. The use of microcosms or mesocosms provides a 
bridge between the laboratory and the field, in terms of providing the opportunity to 
perform ecosystem-level research in replicable test systems.  
 
As an example: a study by Schulz et al. (2002) describes the results of a combined 
microcosm and a field approach to evaluate the aquatic toxicity of azinphosmethyl to 
stream macroinvertebrate communities in South-Africa. The results are summarised as 
follows: 
 

• Reduced invertebrate density, attributed mainly to various insect taxa, such 
as Demoreptus sp., Castanophlebia sp., Simuliidae and Chironomidae.  

• In contrast, Aeshna sp., Dugesia sp., Ceratopogonidae and 
Cheumatopsyche sp. were unaffected. 

• Field surveys: comparable results with microcosm. 
• Microcosm studies employing a field-relevant design could be linked to field 

studies. 
 
Evaluation of microcosm/mesocosm studies 
 
There is considerable scope for using microcosm-mesocosm studies to gain insight 
into impact-effect relationships, as they can be linked more easily to the results of field 
studies than laboratory ones. However, they can be expensive and labour-intensive. 
Currently, we do not have enough data to specifically define the cause-effect 
relationships. 
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Laboratory studies 
 
There are numerous examples of laboratory studies on macroinvertebrate species, and 
the main results are compiled in AQUIRE (Aquatic Toxicity Information Retrieval) 
Ecotoxicology Database from US EPA (www.epa.gov/ecotox). The database gives 
lethal concentration (LC50), effective concentration (EC50), no observed effect 
concentration (NOEC) and lowest observed effect concentration (LOEC) values (mean, 
standard deviation and median) for macroinvertebrate taxa at different taxonomic 
levels. Laboratory results are difficult to extrapolate to the field because of the limited 
number of environmental factors taken into account. However, a vast amount of 
laboratory toxicology data is available, although not always at the taxonomic level 
required, but one could try to amalgamate data to obtain more insight into the toxic 
effects (for example by species sensitivity distributions, Section 2.3.4). 
 
Knowledge-based approaches 
 
Results from field, laboratory or mesocosm/microcosm studies can be integrated in 
knowledge-based systems. These systems are often developed to support decisions in 
environmental management.  
 
 
SPEcies At Risk list (SPEAR) 
 
In Liess and Von Der Ohe (2005), species were grouped according to their sensitivity 
to pesticides and life-cycle traits known to influence recovery from toxicant stress. The 
data file with sensitivity values is available at http://www.ufz.de and is called the 
SPEAR list. The sensitivity values defined are based on a literature review. Current 
research projects in the UFZ Centre for Environmental Research in Germany show 
interesting approaches to system ecotoxicology. A British version of SPEAR has been 
produced (Beketov et al., 2008) and is currently being evaluated. The results of this 
evaluation are not expected until mid 2010. 
 
Classification of macroinvertebrates according to their relative 
sensitivities to toxic substances 
 
A classification of macroinvertebrates according to their specific relative sensitivities to 
toxic substances is given in Wogran and Liess (2001), using the order as basic 
taxonomic level. The data evaluated for this purpose, drawn from the literature (via 
AQUIRE from US EPA), comprised LC50 and EC50 values for the exposure of 
macroinvertebrate species to many substances. Their relative sensitivities are 
calculated by comparison with toxicity data for the standard test species Daphnia 
magna, for which a large database is available. Only organic and metal toxicants were 
differentiated in this investigation. Von Der Ohe and Liess (2004) presented a similar 
study but LC50 values were used in contrast to sub-lethal endpoints as used by Wogran 
and Liess (2001). 
 
PERPEST 
 
A number of publications have been published describing the expert model PERPEST 
(Van den Brink et al., 2002, 2006; Van Nes et al., 2003). The Wageningen University 
and Alterra have developed a case-based reasoning method to predict pesticide effects 
on freshwater ecosystems. This method is named Prediction of the Ecological Risks of 
PESTicides (PERPEST) and is incorporated into a user-friendly interface. A literature 
review resulted in a database containing the effects of 22 herbicides and 24 
insecticides. In total 104 experiments were evaluated, resulting in 421 cases. The 
PERPEST model searches for analogous situations in the database based on 
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environmental fate characteristics of the compound, exposure concentration and type 
of ecosystem to be evaluated. A prediction is provided by using weighted averages of 
the effects reported in the most relevant literature references (cases are weighted 
based on the ‘toxic unit’, ‘molecule group’ and ‘substance’). PERPEST results in the 
prediction showing the probability of ‘no’, ‘slight’ or ‘clear’ effects on the various 
grouped endpoints. Further information can be found at www.perpest.alterra.nl. 
 
LIMPACT 
 
LIMPACT is another expert system of interest (Neumann et al., 2003 a,b; Neumann 
and Baumeister, 2005), developed by the Technical University of Braunshweig and the 
University of Wurzburg. This knowledge system estimates pesticide contamination in 
small streams within agricultural catchments using benthic macroinvertebrates as 
biological indicators. The system considers the abundance of 39 macroinvertebrate 
taxa during four time frames within a year. In the knowledge base, selected taxa are 
indentified as a positive or negative indicators. Based on the scores of taxa and 
presence of (at least five) taxa from the list, it gives a diagnosis in one of four classes. 
The four diagnoses ‘not detected’, ‘low’, ‘moderate’ and ‘high’ pesticide contamination 
represent a calculated annual toxic sum without any specification of the chemical 
agents. The required input parameters of LIMPACT are abundance data for any of the 
39 macroinvertebrate taxa in the stream.  Apart from abundance data, LIMPACT 
evaluates nine basic water quality and morphological parameters such as stream size 
or conductivity of the water, to characterise the stream. Further information can be 
found at http://www.limpact.de. 
 
Evaluation of knowledge-based systems 
 
Although these systems are recognised as of great value, one has to take into account 
limitations mainly caused by using the outcomes of studies with different endpoints and 
different conditions to obtain a final result. However, for environmental management, 
they are of particular interest as these knowledge-based systems are able to make 
predictions for the component or community of interest and often integrate the best 
knowledge available. Some restrictions of the approaches are discussed below. 

In the knowledge-based approaches, there is often one general rule that applies to 
different types of ecosystems (such as SPEAR) or the study is only applicable to a 
certain type of stream, for example, LIMPACT is only designed to estimate the 
pesticide contamination of small lowland headwater streams within an agricultural area. 
However, some authors have argued that threshold values and direct effects observed 
for the same compound are similar in different aquatic ecosystems (Brock et al. 2000a; 
Van Wijngaarden et al. 2005).  
 
Some studies (such as LIMPACT) do not distinguish between different groups of 
pesticides. A practical way of specifying the different types of toxic effects caused by a 
group of pesticides is describing them by their toxic mode of action. De Zwart (2003) 
produced a list assigning each pesticide to a different ‘mode of action’ group.  
 
Current knowledge-based systems are not specifically developed to assess the 
ecological risk of a mixture of pesticides. It would therefore be a great improvement if 
systems could estimate the overall ecological risks associated with measured 
concentrations of different pesticides. If one wants to add the effects of different 
pesticide concentrations, one possibility is to use ‘toxic units’ (TU). TU can be 
calculated by different methods, most of which calculate TU values based on the acute 
(48-hour) LC50 of Daphnia magna (such as PERPEST). 
 
The taxonomic resolution of studies is often of concern. None of the knowledge-based 
systems considered work at the same taxonomic level, although there might be 
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opportunities to, given that the information compiled often originates from the species 
level.  Knowledge-based systems are either based on the species level (such as 
LIMPACT, limited number of species) or the order level (such as PERPEST 
distinguishing between macrocrustaceans, microcrustaceans and insects). BMWP 
(Biological Monitoring Working Party) families are used in the Environment Agency’s 
Artificial Intelligence (AI) models.  
 
It is questionable whether sufficient empirical data is available for predictions to be 
made, although the uncertainty linked to predictions is expressed when using the 
knowledge bases. The current shortage of empirical data is reflected in the 95 per cent 
confidence intervals of predictions, which are usually quite large when probabilities 
around 50 per cent are predicted. 
 
It is difficult to combine information from laboratory tests and field studies as they 
represent different conditions for the communities considered. However, 
microcosm/mesocosm studies employing a field-relevant design could be linked 
successfully to field studies. 
 
In all knowledge-based systems, recovery of species is not included as a parameter of 
concern. However, data from the sensitivity list produced by Liess and Von Der Ohe 
(2005) can be used for that purpose. 
 
Conclusions and future approaches 
 
When reviewing the different approaches, there is a trend in favour of 
microcosm/mesocosm studies or field-based (experimental) approaches over 
laboratory-based studies when a prediction of the effect of a pesticide on a biological 
community is required. They show toxic effects on riverine macroinvertebrate 
communities more realistically. There are, however, issues about the reproducibility of 
the results and being able to factor out the pesticide effects in streams where a range 
of pressures interact. Research in this area is growing, which is clear from the range of 
new European approaches, some of them even integrating biological interactions (for 
example, INTERACT - Improving EU risk assessment of toxicants for aquatic 
communities by considering competition on the population and community level).  Liess 
et al. (2005) summarise the findings of a European workshop on the effects of 
pesticides in the field and give a good overview of research in this area. The paper 
focuses on opportunities and limitations of field studies (including 
microcosms/mesocosms) and implications for regulatory risk assessment and 
management. To conclude, there is much valuable data and information available, but 
this doesn’t always lead to more insight into clear cause-effect relationships. 

 

Overview of UK data and studies on pesticide impacts 
on macroinvertebrates  
 
Environment Agency pesticide monitoring network 
 
The Environment Agency monitors pesticides at a number of sites in England and 
Wales. However, this data is limited in the following way:   
 

• Monitoring is driven by statutory requirements to report against standards 
for certain active ingredients. Many of these are no longer approved, such 
as DDT. 

• Most of the measured concentrations are ‘less than the limit of detection’. 
• The number of sampling sites is limited. 
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• Pesticides are often monitored at a different site and time than the 
macroinvertebrate community. 

• Generally, pesticides are only measured by spot samples from the water 
phase rather than from sediment samples. 

• The monitoring programme is not determined centrally and so there is bias 
between regions. 

 
The limitations of this data for determining cause-effect relationships between the 
pesticide pressure and biological communities were highlighted in Crane et al. (2003). 
 
Other sources of data are the Environmental Change Network, Countryside Surveys 
and other  studies, some of which are discussed in the next section. 
 
Crane et al. (2003). Assessing the impact of agricultural pesticides in the aquatic 
environment. A scoping study. 
 
Environment Agency data were analysed as part of this study to assess the impact of 
agricultural pesticides on the aquatic environment. The conclusions of the study were:  
 

• Neither biological nor chemical data collected by the Environment Agency 
were adequate to establish whether pesticides are causing adverse effects 
in UK surface waters. 

• The location and frequency of sampling is insufficient to detect effects. 
• There are insufficient links between samples taken for pesticide analysis 

and biological sampling. 
• The biological monitoring network does not cover all potentially affected 

water bodies and may under-represent small headwater streams that are, 
potentially, most at risk. 

• Any change in the invertebrate assemblage because of pesticides is 
indistinguishable from other changes because of other environmental 
gradients. 

• Results of the analyses, in combination with the literature review, 
suggested that the following invertebrate families could be used to 
discriminate between sanitary and other types of pollution: Gammaridae, 
Asellidae, Coenagriidae and Baetidae.  

• The data did not provide a firm basis for the conclusions made, according 
to the authors (under-representation of headwater streams, BMWP ranking 
bears large uncertainty). 

 
Humpheryes, I. & Bennet, B. (Unpublished MS). The impact of pesticides in the Teise 
catchment leading to the development of a pesticide index. (Contact = Ian 
Humpheryes, Environment Agency). 
 
The main result from this study is a table showing the rank order sensitivity of 
macroinvertebrate BMWP families to pesticides. The ranking of sensitivity to the 
specific group of pesticides investigated is different to the sensitivity to organic pollution 
as defined by the BMWP score system. In a further stage of this project, a pesticide 
index was developed using this ranked list of taxa. To use the index, the sample that is 
under investigation is run through RIVPACS (River Invertebrate Prediction and 
Classification System) to produce a predicted list of taxa in decreasing probability of 
capture. Provided a taxon is on the pesticide index list and was predicted to be in the 
sample but was actually absent, the probability of capture is entered against that taxon 
on the pesticide index database. 
 
A summary of investigations of sheep dip pollution in Southwest Wales 2002-2004 by 
Graham Rutt. Proposal for the assessment of the impact of sheep dip pesticides on 
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watercourses in Wales in 2005 by Jerry Griffiths.  (Contact = Jerry Griffiths, 
Environment Agency)  
 
Extensive use of sheep dip pesticides in the catchment area led to a reduction in the 
abundance or elimination of stoneflies and mayflies whilst other insect species 
remained in reasonable abundance. This is highly characteristic of pollution by 
pyrethroid sheep dip. 
 
C.D. Brown, L. Maltby, J. Biggs, P. Van den Brink, M. Liess. WEBFRAM2: Web-
integrated tools to support higher-tier aquatic risk assessment. 
 
WEBFRAM is a suite of projects funded by Defra to develop a web-integrated model 
framework for the assessment of risks to non-target organisms from pesticides. The 
models include explicit descriptions of variability and uncertainty and provide a toolbox 
to support higher-tier risk assessment with the context of European Directive 
91/414/EC concerning the placing of plant protection products on the market. A 
database of life-history characteristics has been developed for 150 representative 
species and this will be linked to a model to predict within-site recovery of impacted 
populations. 
 
ADAS (2000). The efficacy of no-spray buffer zones in protecting field boundary 
watercourses from pesticide spray drift. Report on Project PS0417 to the Ministry of 
Agriculture, Fisheries and Food, London, UK. 
 
In this study, invertebrate assemblages were monitored at the stream site, using 
Surber samplers and drift nets, so that effects on naturally occurring populations could 
be compared to effects on caged organisms. Application of chlorpyrifos to the edge of 
the stream on two occasions was associated with reduced acetylcholinesterase and 
feeding activity in caged Gammarus pulex. However, there was no strong evidence for 
immediate or long-term effects on the abundance of naturally occurring G. pulex 
populations, or on the overall structure of macroinvertebrate assemblages. 
 
The Ponds Conservation Trust: Policy and Research, c/o Oxford Brookes University. 
Aquatic ecosystems in the UK agricultural landscape. 
 
This project analysed national freshwater datasets to create a characterisation of 
aquatic habitats in the UK agricultural landscape.  Regional field data were collected to 
support and test the findings.  Desk studies were undertaken to review the main factors 
that determine the exposure of, and risk posed to, aquatic species and habitats in 
agricultural areas.  
 
Brown et al. (2006) Assessing the impact of agricultural pesticides in the environment.  
 
This report covers the initial stage of a project to determine whether pesticides used in 
the approved manner cause adverse effects in the aquatic environment.  National risk 
mapping and landscape analysis were used to identify the high risk crop-pesticide 
scenarios and high risk locations.  The highest risk scenario was spray drift from 
orchard crops.  However, on visiting these locations to identify monitoring sites it was 
discovered that these sites were also affected by other stressors (such as saline 
intrusions, canalisation, nutrients).  The project was stopped before monitoring began 
as the authors were not certain that any impacts detected could be attributed to 
pesticide exposure with confidence. 
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Conclusions 
 
An overview of studies to unravel the effects of pesticides on macroinvertebrate 
communities in the UK is given. The main conclusions from this (limited) set of studies 
are: 

• Datasets currently available are not sufficient for detailed analysis and 
modelling. 

• Although a few reports state that any change in the invertebrate 
assemblage caused by pesticides is difficult to distinguish from changes 
caused by other environmental gradients, it seems to be possible to detect 
pesticide stress in a river based on a ranking procedure or a selection of 
macroinvertebrate families. However, the approaches need to be supported 
by research and need to be tested in different types of catchments (ongoing 
in Environment Agency, Ian Humpheryes). 

• Some recent projects, such as WEBFRAM might offer opportunities to 
develop a knowledge-base, bringing data and research conclusions 
together.  

 

Possible approaches for modelling the impact-effect: 
feasibility study 
 
 
A.  General Model Approach 
 
If pesticide concentration data is available along with macroinvertebrate data monitored 
at the same site, the following model structure (Figure A1) could be used as part of the 
overall BBN network to model the toxic effect of pesticides on macroinvertebrate 
communities. 
 
 
 
 
 
 
 
 
 

MEASURED PESTICIDE 
CONCENTRATION 

OTHER BBN MODEL INPUT 
VARIABLES 

MI TAXA 

Figure A1 BBN model structure modelling effect of pesticides on 
macroinvertebrate communities in a river stretch. 
 
Because of the lack of pesticide monitoring data, other opportunities for integrating 
knowledge and/or data that can be used to structure an impact-effect model for 
pesticides need to be analysed.  This can be done by (a) estimating pesticide 
concentrations based on alternative input variables, or (b) using the knowledge from 
studies to model the impact-effect relation between macroinvertebrates and pesticides, 
taking into account the effect of other pressures acting on the biota. 
 
Estimating pesticide concentrations from other (alternative) input 
variables 
 
The model structure required to account for the effect of pesticides on 
macroinvertebrate communities in rivers is shown in Figure A2. 
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Figure A2 Model structure required to estimate toxic effects of pesticides on 
macroinvertebrate communities in a river stretch. 
 
If pesticide concentrations are not available, alternative variables could be used to 
estimate pesticide concentrations in the river. These variables, as given in Figure A2 
are land use, soil, pesticide usage and leaching capacity. To account for the effects of 
other environmental variables that determine the final effect of a pesticide on the 
macroinvertebrate community, data for parameters such as pH, flow suspended solids 
and dissolved organic carbon are required. The environmental fate characteristics of 
the pesticide have to be known as well.  Potential data or information sources available 
for the input variable into the model (from model in Figure A2) are: 
 

• CORINE (Coordination of information on the environment) land cover map 
(EC programme), though this is not very refined towards specific crops. 

• Agricultural census and land cover maps (such as Brown et al., 2006). 
• Soil maps, available from British Geological Survey. 
• Pesticide usage statistics are available from 1990 onwards from pesticide 

usage surveys commissioned by the Advisory Committee on Pesticides. 
Data is collected by Pesticide Usage Survey Teams at the Food and 
Environment Research Agency and the Scottish Agribultural Science 
Agency (http://pusstats.csl.gov.uk/).  Other pesticide usage data are 
available commercially.  

• The Groundwater Ubiquity Score (GUS, Gustafson, 1989) can be used to 
provide an estimate of the leachability of a pesticide active ingredient, or 
can be used to classify pesticides into various categories.   

• DOC and SS: these parameters are indirect predictors of the percentage 
oxygen saturation that is part of the current BBN structure. 

• Time series: a pesticide measurement is only a snapshot in time and the 
survival of macroinvertebrates will mainly be determined by severity 
(concentration) and length of exposure to the pesticide. This is determined 
mainly by flow velocity, fate of the pesticide and recovery potential of the 
taxon itself. Hence, an integrated time series of pesticide concentrations 
would be useful, but is not yet possible. 

• Season, flow: these parameters are available in the current BBN structure. 
• Fate of the pesticide: a pesticide’s fate is described by how and where it 

enters the environment, how long it lasts, and where it goes. A measure of 
how long a pesticide lasts in an environment is given in the Environment 
Agency pesticides handbook. The other components of environmental fate 
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are much more complex, but suspended solids, DOC, pH and flow partly 
determine the fate of a pesticide in a river. 

• Recovery capacity of the macroinvertebrate taxa: these parameters are 
listed by Liess and Von Der Ohe (2005) and are in the public domain. 

 
Conclusions 
 
The parameters required such as season, land use, soil, pesticide usage, leaching 
capacity, season, flow and pH (as given in Figure A2) could be included in the current 
BBN structure, but there is an issue about (a) data quality, (b) data resolution and (c) 
lack of data. The temporal and spatial aspects of the prediction would also need to be 
reviewed. There is potential in using this approach as most of the data are available, 
but a thorough review of all the parameters involved is needed. The BBN can be 
trained to derive the relation between different pesticide components (which could be 
expressed in terms of toxic units) and the macroinvertebrate communities.  
 
An ongoing Environment Agency project to develop a decision support tool is a way of 
modelling pesticide concentrations in rivers without using the BBN structure. It 
incorporates aspects of CatchIS (www.catchis.com, a collaboration between Cranfield 
University and ADAS). Within this there are two surface water models: SWATCATCH 
(Hollis and Brown, 1996) - predictions of concentrations at catchment outlets and 
SWAT (Brown and Hollis, 1996) - predictions of concentrations at the field edge. Both 
models predict pesticide concentrations based on diffuse agricultural inputs. Point 
source inputs of pesticides and inputs from non-agricultural uses of pesticides are not 
considered.  SWATCATCH was also the model used in the Environment Agency's 
previous tool, Prediction of Pesticide Pollution In the Environment (POPPIE). Further 
information can be obtained from Neil Preedy (Environment Agency Science, 
Geosystems) and Anthony Williamson (Environment Agency). 
 
B. Species sensitivity distributions 
 
General 
 
Because the approach using species sensitivity distributions (SSD) is a vast and 
complex area of research, this section starts with some references to key publications 
in this field.  
 
What are species sensitive distributions? 
 
Newman, M.C., Ownby, D.R., Mezin, C.Z. Posell, D.C. Christensen, T.R.L., Lerber, S.B 
and Anderson, B.A. (1999). Applying species-sensitivity distributions in ecological risk 
assessment: assumptions of distribution type and sufficient number of species. 
Environmental Toxicology and Chemistry, 19(2), 508-515. 
 
Van den Brink, P.J., Brown, C.D. and Dubus, I.G. (2006). Using the expert model 
PERPEST to translate measured and predicted pesticide exposure data into ecological 
risks. Ecological Modelling, 191, 106-117.  
 
Species sensitivity distributions are used to calculate concentrations at which a 
specified proportion of species will be affected, referred to as HCp, the hazardous 
concentration for p% of the species. It is a popular method to extrapolate from the 
species to the community level. A statistical distribution is estimated from a sample of 
toxicity data (LC/EC50 or NOEC values) and visualised as a cumulative distribution 
function. Although there is growing evidence that HC5 are indeed protective for the 
aquatic ecosystem, the approach makes a number of assumptions.  
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Concerns with this method can be summarised as follows: 
 

• There is a bias towards mortality data despite the plausibility of non-lethal 
effects. 

• Laboratory-based tests do not represent field conditions. 
• There is no evaluation of function – only diversity loss is evaluated. 
• There is no specific importance to keystone species or on the influence of 

species interactions. 
• Distributions might not be log-normal, as is assumed by this method. 
• The assumption is that the data are from a random sample of species. In 

practice, the species for which data are available are determined in non-
random ways and are likely to be highly non-representative of the 
population (as some species are more widely cultivated for laboratory use 
than others).  

• These studies often rely on data from species not native or indigenous to 
the country where the toxicology data are used. 

 
Some illustrations of applications of SSD in UK studies: 
 
P. Whitehouse, M. Crane, E. Grist, A. O’Hagan and N. Sorokin. (2004) Derivation and 
expression of water quality standards. Opportunities and constraints in adopting risk-
based approaches in EQS setting. Environment Agency R&D Technical Report (P2-
157/TR). Bristol, Environment Agency. 
 
Maltby, L., Blake, N., Brock, T.C.M. and Vanden Brink, P. (2005). Insecticide species 
sensitivity distributions: importance of test species selection and relevance to aquatic 
ecosystems. Environmental Toxicology and Chemistry, 24, 2, 379-388. 
 
Maltby et al. (2005) provide an overview of possible risks of using SSD: 
 

• Test species are not representative of the ecosystem: SSD should select 
data for those species that occur in the ecosystem under consideration. 

• Test species in lab (single species test) can be difficult to extrapolate to 
species in an ecosystem (multispecies). 

• A limited range of species may be tested, and this may mainly include test 
species recommended by OECD, USEPA and other international 
organisations. 

 
Maltby et al. (2005) advise on which taxonomic groups to consider. One of their 
conclusions is that insecticides are more toxic to arthropods than to vertebrates or non-
arthropod invertebrates such as Mollusca, Annelida and Platyhelminthes. 
 
A few conclusions based on case studies evaluated by Maltby et al. (2005) explained: 
 

• SSDs for two insecticides were compared for freshwater arthropods, and 
no evidence of a difference among or within compounds was found 
(comparison of acute lab SSD and mesocosm SSD): similar or related 
species do not have different sensitivities under field or laboratory 
conditions. 

• Acute toxicity data for freshwater arthropods from different geographical 
regions and different freshwater habitats may be combined with a single 
SSD (data from freshwater and saltwater can be combined but one must be 
aware of the effect of differences in taxonomic composition, especially for 
Crustacea). 
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• There is insufficient chronic toxicity data for most chemicals to generate 
appropriate sensitivity distributions and so it is difficult to make any general 
conclusions. 

 
Case study: Developing SSD for macroinvertebrates at family level  
 
In this study, the possibility of defining species sensitivity based on laboratory 
ecotoxicology data by means of the USEPA AQUIRE database was analysed. 
 
Data was abstracted from the AQUIRE database for the following pesticides: 
carbendazim, chlorpyrifos, cypermethrin and diazinon. Features of each pesticide are 
explained below: 
 
Carbendazim 
Carbendazim is a systemic benzimidazole fungicide with a range of agricultural, 
horticultural and home/garden uses. Leaching is transitional between high and low 
(GUS 2.14). Although highly toxic to aquatic organisms, it is unlikely to cause problems 
during normal agricultural practice because of low bioavailability. 
 
Chlorpyrifos 
A broad-spectrum organophosphate insecticide used on a wide variety of horticultural 
and arable crops, but mainly on wheat, grassland and apples. It has very low leaching 
potential (GUS 0.37). As the pesticide adheres to sediments and suspended organic 
matter, concentrations rapidly decline. Volatilisation is probably the primary route of 
loss of chlopyrifos from water. It is very toxic to aquatic invertebrates. 
 
Cypermethrin 
Cypermethrin is a synthetic pyrethroid insecticide used to control many insect pests. 
Usage is mainly on wheat, barley and oilseed rape and (previously) as a sheep dip. 
Leaching is transitional between high and low (GUS 1.97). Cypermethrin is stable to 
hydrolysis and photodegradation. It is very toxic to aquatic invertebrates. 
 
Diazinon 
Diazinon is a broad-spectrum organophosphate insecticide. It is the main component of 
sheep dip. Low application of diazinon on UK farmland is obvious from the pesticide 
usage results as it is mainly used for sheep dip which is not reviewed. The composition 
of sheep dip is as follows: 65 per cent diazinon, 27 per cent cypermethrin, eight per 
cent flumethrin. 
 
The criteria used (and associated references) for selection of these four pesticides are: 
 

• Pesticide usage data from these pesticides were available from the Central 
Science Laboratory: http://pusstats.csl.gov.uk/index.cfm.  

• Toxicology data for these pesticides were available from the EPA database. 
http://www.ega.gov/ecotox/. Available toxicology data of 
macroinvertebrates affected by pesticides (chosen from list of selected 
pesticides Science Pesticide Project). 

• These pesticides were part of the Water Framework Directive (WFD) list of 
pesticides registered in the UK and listed according to their harm to 
algae/invertebrates/fish. 

• Diazinon and cypermethrin are used in sheep dip. There is no good record 
of sheep dip use (it is not taken into account for the programme of pesticide 
usage, but seems to be a major problem as decline in macroinvertebrate 
diversity and abundance is obvious in areas affected by sheep dip 
pollution). Sheep dip used to consist of 65% diazinon, 27% cypermethrin, 
8% flumethrin. Recent data suggest flumethrin is no longer approved and 
the marketing authorisation for cypermethrin was suspended in February 

160 Refinement of AI-based systems for diagnosing and predicting river health  

http://pusstats.csl.gov.uk/index.cfm
http://www.ega.gov/ecotox/


2006, although farmers could still use and buy existing stocks, so the only 
approved active agent for sheep dip is diazinon at the moment. However, at 
the time of the study, the three components were suggested as being of 
importance). 

 
The US AQUIRE database provides NOEC, LOEC, EC50 and LC50 concentrations 
based on results from field studies, laboratory experiments or mesocosm/microcosms. 
 
The objective was to develop a species sensitivity distribution based on NOEC, LOEC, 
EC50 or LC50 values, as the different endpoints for developing a SSD cannot be 
combined. Two problems were encountered: firstly, most of the taxa do not have 
results for all four endpoints and secondly, for most of the macroinvertebrate families 
common in the UK, there are only a few species and these may not be fully 
representative of the family. It may be necessary to consider the family response as 
relatively homogenous in response to pesticides (similar physiology and sensitivity 
because of similar life cycle and life stages). The revised coded checklist of freshwater 
animals in the British Isles (Mike Furse, Centre for Ecology and Hydrology) was used to 
select UK taxa from the AQUIRE database. 

The development of SSDs based on expert knowledge is possible and is partly 
illustrated in O’Hagan et al. (2005). Other knowledge sources could provide valuable 
input for SSDs.  
 
Conclusions 
 
As different endpoints are involved in studies, only some species have enough data to 
create SSDs. The extrapolation of species-level data to the family level is rather difficult 
as the family data are only represented by a few (test) species, which might not include 
the full range of responses towards pesticide toxicity. The data do not include any 
knowledge about recovery capabilities of macroinvertbrate taxa although this 
information is available from Liess and Von Der Ohe (2004). As most of the data from 
the AQUIRE database originated from laboratory studies, we are uncertain about 
extrapolation to the field, although the BBN model could account for influences of the 
main environmental parameters at a river stretch. 

 

C.  The msPAF approach 
 
General 
 
The Dutch National Institute for Public Health, RIVM, recently developed an approach 
called msPAF: Multiple Substance Potentially Affected Fraction of species. It differs in 
a number of technical respects from the BBN although it has similar aims. Rather than 
the empirical approach used in the BBN, msPAF builds on ecotoxicological principles 
to identify probable causes of local impacts from chemicals and other factors at 
discreet locations. These are presented visually as pie charts denoting the size of 
impact and likely contributing causes.  
 
The focus of much of the work is on toxic chemicals. Species sensitivity distributions 
are used in conjunction with a database of ecotoxicological data to predict the 
proportion of species that would be affected (PAF) by a given chemical concentration. 
This approach is now well established in ecotoxicology, and is gaining increasing 
regulatory acceptance for chemical risk assessment and the setting of environmental 
standards. The method integrates effects of multiple stressors by summing the 
proportion of species predicted to be affected from each individual stressor. Thus, a 
single PAF can be estimated for a single location that can be regarded as a ‘risk ruler’ 
for the level of risk resulting from multiple pressures. It assumes that the stressors 

 Refinement of AI-based systems for diagnosing and predicting river health 161 



interact in an additive fashion (concentration addition for chemicals with the same 
mode of action and response addition for chemicals with different modes of action).  
 
The degree to which impacts can be explained by physical, water quality and toxic 
chemicals is estimated by generalised linear modelling (GLM) in which msPAF 
predictions are used to determine the contribution from toxic chemicals. GLM also 
gives an estimate of unexplained differences between expected and observed biology, 
that is, residual impacts that the selected factors cannot explain.  
 
Further references to the msPAF technique are given below: 
 
De Zwart (2003) Ecological effects of pesticide use in the Netherlands. Modelled and 
observed effects in field ditch. RIVM report 50000203/2003 
 
Leo Posthuma and Dick De Zwart. Diagnostic tools for monitoring data - the power of 
ms-PAF. Environment Agency catchment pressures workshop.  
 
Dick De Zwart. Eco-epidemiology, biodiversity and toxic risk. A case study. 
 
SSD and msPAF methodology 
 
The following paragraph gives a brief overview of the msPAF method. The text is 
based on De Zwart (2003). The illustrations given are based on toxic exposure of a 
field ditch. 
 
The calculated exposure of the field ditch is converted to the estimate of risk by 
applying SSD and theory on mixture toxicity. The risk is expressed in terms of the 
fraction of species that is expected to be exposed to a concentration or a mixture 
exceeding levels where effects are considered negligible. Figure A3 shows an 
exemplar cumulative probability distribution of species sensitivity fitted to observed 
chronic toxicity values (NOEC). 
 
EC50 (acute median effect concentration) and chronic NOEC (no observed effect 
concentration) were log10 transformed before calculating the average log (toxicity) over 
major taxonomic groups and the associated standard deviation. 
 

 
 
Figure A3  Exemplar cumulative probability distribution of species sensitivity 
fitted (curve) to observed chronic toxicity values (NOEC; dots). Arrows indicate 
the inference of a Potentially Affected Fraction of species (PAF-value) and HC5 (from 
De Zwart, 2003). 
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Eighteen different major taxonomic groups were recognised in the study by De Zwart 
(2003) as given in Table A1. 
 
Table A1 Taxonomic groups represented in the toxicity data (De Zwart, 2003). 
Taxonomic group Taxonomic Group 
Insects (larval stage) Amphibians 
Liverworts and Ferns Annelids 
Reed and grasses Mites and spiders 
Molluscs Bacteria 
Nematoda Arrow worms 
Fish Hydroids 
Flatworms Crustaceans 
Protozoa Cyanobacteria 
Rotatoria Algae 
 
The toxic risk per pesticide ingredient is calculated first. Then the toxic risk per gradient 
and per major taxon was averaged over the major taxonomic groups. For ingredients 
with the same toxic mode of action (TMoA), concentration additivity is assumed. The 
weekly calculated concentrations per ingredient are transformed to hazard units per 
taxonomic group. The weekly combined toxic risk per TMoA and per major taxonomic 
group is then calculated. Response addition per major taxonomic group is calculated 
where it is assumed that the species are uncorrelated in their sensitivity for the different 
toxicants. Finally, the average ms-PAF taxonomic group is calculated, assuming equal 
weight of major taxonomical groups. 
 
Validating msPAF (based on de Zwart, 2003) 
 
From de Zwart (2003): The risk scale (PAF) is dimensionless, but based on the 
sensitivity of species under laboratory conditions. In view of these facts, the association 
between risk and changes in biodiversity is not obvious. However, if the calculated 
overall toxic risk of pesticide exposure to aquatic species, expressed as the proportion 
of species expected to suffer effects from exposure, is considerable and properly 
scaled, this should be reflected in species composition in the field. Pesticide toxicity is 
not the only environmental condition governing species composition. A plethora of 
physico-chemical and habitat characteristics, as well as biological interactions, all 
determine the type of community to be expected. The observed species composition in 
the field, in terms of the number and abundance of species, may be related directly to 
the predicted toxic risk of pesticide exposure. This will be easy to determine when the 
driving force of pesticide toxicity has a major influence over other driving forces. 
However, in view of the absence of extreme exposure levels and the expected 
relevance of other driving forces, this approach was considered unlikely to yield 
sufficient explanatory power. To be able to isolate the slight effects of pesticide 
exposure from a dataset on measured biodiversity, other driving forces have to be 
taken into account.  
 
In the study of De Zwart (2003), environmental predictors were taken into account by 
multiple linear regression (GLM), to allow for the environmental impact of other factors 
then pesticides. 
 
Effects of modelled risk: comparison with field data (based on de Zwart (2003)): There 
seems to be a weak relationship between predicted mixture risk values and species 
composition.  
 
Approaches to follow according to de Zwart (2003): (a) attribution of a tolerance score 
to individual species and (b) relate species composition to a reference community.  
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Conclusions 
 
A meeting was organised on 27 February 2006 to discuss the ms-PAF approach and 
its link to the AI project. Attendees from the Environment Agency were Paul 
Whitehouse (PW), Claire Wells (CW) and Veronique Adriaenssens (VA). VA presented 
the outcomes of the feasibility study (including pesticides in BBN) and discussed 
opportunities of msPAF approach and its link with BBN with PW and CW.  
 
Paul Whitehouse summarised the ‘what next’ phase in the Identifying Catchment 
Pressures workshop (Cribbs Lodge, 12 December 2005) taking into account the 
outcomes of the workshop as well as the meeting on 27 February 2006 as follows: 
 
Further development is required before useful methods can be deployed. Two 
opportunities for development are: 
 

1. The influence of toxic chemicals on biology within the BBN is under 
development, but limited by the small quantity of field data. The msPAF 
approach provides a mechanistic way of attributing impacts of such 
stressors, arguably making more effective use of toxicological data to avoid 
relying solely on field data. It would be sensible to examine whether the 
msPAF could be incorporated as a ‘module’ within the BBN (with the BBN 
possibly replacing the GLM regression step). There is an opportunity to 
bring both approaches together in a way that is mutually beneficial.  

 
2. The Environment Agency possesses substantial biology and chemical 

datasets collected for GQA monitoring. These datasets underpin the 
development of the BBN but they could also be used to trial the msPAF 
approach in one or more UK catchments, in a similar way to that described 
for Ohio. For example, a rural catchment where land use and habitat 
factors might dominate impacts could be selected alongside an industrial 
catchment in which toxic impacts might assume greater importance. Data 
on present/absent species will be important given the insensitivity of 
classical biodiversity indices to toxic chemicals. Coincident sampling for 
biology and chemistry will also be important.  

 
We propose a meeting between the Environment Agency (Water Management, 
National Data Unit, Science), RIVM and University of Stafford to determine whether the 
ideas above can (and should) be pursued. The discussion would identify what is 
technically achievable with the data resources at our disposal and current scientific 
understanding, what the realistic benefits might be, the timescale over which these 
benefits could be delivered, and what a suitable mechanism for collaboration might be.  
 
This initiated a scoping project to trial this technique on a dataset collected by the 
Environment Agency that is reported in De Zwart et al. (2008).  Because of the lack of 
measured pesticide data, modelled data from the POPPIE database was used instead.  
The findings suggest that the loss of species from some sites could be attributable to 
pesticide exposure.  It is hoped that the calculated msPAF values that represent total 
pesticide toxicity could be incorporated into the BBN as an input parameter in a future 
project. 
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Final conclusions and recommendations of feasibility 
study 
 
Conclusions 
 
The following issues affect the feasibility of using pesticides in the BBN model 
structure: 
 

• The almost complete lack of pesticide concentration data. 
• The almost complete lack of field data on effects on macroinvertebrate 

communities. 
• The many limitations involved in using laboratory toxicology data to develop 

family or species distributions, although some of these may be overcome 
by the msPAF approach (De Zwart et al., 2008). 

• Estimating pesticide concentration in the river from other input parameters 
is feasible but needs more research. The main issue is the spatial and 
temporal resolution that is different for all the input parameters in the 
potential model. The approach based on the CatchIS model offers 
opportunities (Brown and Hollis, 1996). 

 
Recommendations 
 
A combination of data and knowledge could be used to create a BBN that gives us 
shifts in abundance levels for BMWP families, based on field data, toxicology data and 
knowledge from studies (see literature review).  
 
Field data on pesticide concentrations can be requested from the Environment 
Agency’s data centre at Twerton. These data would be of value as part of the BBN 
network when combined with toxicology data and information from the literature and 
the various knowledge bases mentioned in this study. However, the lack of targeting 
and consistency in the monitoring programme is a drawback in using these data in the 
BBN modelling network.  
 
Toxicology data and knowledge from different studies are mainly at higher taxonomic 
levels than the macroinvertebrate family level. Further discussion is needed on whether 
the taxonomic levels used by Maltby et al. (2005) might be appropriate (Mollusca, 
Annelida, Platyhelminthes, Insecta), but the Environment Agency would certainly be 
interested in family-level impacts as all tools developed so far have been to BMWP 
family level. We do not have enough knowledge to assume the genera or species 
within one family have a different sensitivity towards the impact of pesticides.  Moving 
to a higher resolution would incur a higher cost but if different species react in different 
ways to toxic components we need more specific information at the species level. This 
domain remains open for further research.  
 
As we do not have information to show the effect of each pesticide component on all 
macroinvertebrate families, we can group pesticides based on their toxic mode of 
action or select the ‘priority’ pesticides as was done in this study. The toxic effect can 
be calculated by means of species sensitivity distribution (SSD) approach given by the 
msPAF approach.  
 
Integrating the msPAF approach in the BBN structure (as an alternative to GLM 
modelling by RIVM) would be a good way forward. This would offer us the ability to 
model all the main environmental impacts on macroinvertebrate communities (at the 
family level) at a site and what the expected ‘natural community’ at a certain site would 
look like (based on the reference condition). The combined BBN-msPAF approach 
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would use a valuable source of Environment Agency data and integrate a state-of-the-
art approach of modelling the pesticide impact on macroinvertebrate families. One 
limitation so far is the use of modelled pesticide data, as these are catchment-scale 
predictions.   
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Abbreviations 
 
AI:   Artificial Intelligence 
 
AQUIRE:  Aquatic Toxiciy Information Retrieval  
 
BBN:   Bayesian Belief Network 
 
BMWP:  Biological Monitoring Working Party 
 
CatchIS:  Catchment Information System 
 
DOC:   Dissolved Organic Carbon 
 
EC50:   This term represents the concentration of a compound where 50% of its 

maximal effect is observed.  
 
GLM:   Generalised Linear Modelling 
 
GUS:   Groundwater Ubiquity Score 
 
HCp:   Hazardous concentration for p% of the species. 
 
LC50:   This term represents the concentration where there is 50% mortality of 

the test population. 
 
LOEC:  Lowest Observed Effect Concentration 
 
msPAF:  Multiple Substance – Potentially Affected Fraction of species 
 
NOEC:  No Observed Effect Concentration 
 
PAF:  Potentially Affected Fraction of species 
 
PERPEST:  Prediction of the Ecological Risks of PESTicides 
 
RIVPACS:  River Invertebrate Prediction and Classification System 
 
SPEAR:  SPEcies at Risk  
 
SS:   Suspended Solids 
 
SSD:   Species Sensitivity Distribution 
 
TmoA:   Toxic Mode of Action 
 
US EPA:  United States Environmental Protection Agency 
 
WFD:   Water Framework Directive 
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APPENDIX B 
 

Impact of flow condition on the occurrence of taxa 
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Table B1  Taxa for which probability of absence was generally greater in ‘wet’ 
conditions than ‘dry’, for riffle sites in autumn. 
  Change in Absence Prob (W to D) 
  Prior to Sample Date (Months) 
Taxon Score 1 3 6 12 24 
Sialidae 4.3 0.05 0.08 0.10 0.17 0.12 
Glossiphoniidae 3.2 -0.02 0.02 0.05 0.18 0.07 
Coenagriidae 3.5 0.02 0.03 0.04 0.08 0.07 
Psychomyiidae 5.9 0.01 0.03 0.03 0.06 0.07 
Dytiscidae 4.7 0.16 0.18 0.19 0.13 0.06 
Haliplidae 3.6 0.07 0.10 0.11 0.13 0.05 
Planorbidae 3.1 0.00 0.02 0.03 0.15 0.04 
Corixidae 3.8 0.04 0.06 0.06 0.08 0.04 
Hydrobiidae 4.2 0.05 0.07 0.06 0.07 0.04 
Erpobdellidae 3.1 -0.04 -0.03 -0.01 0.07 0.03 
Sphaeriidae_Pea_mussels 3.9 -0.03 -0.01 -0.01 0.09 0.03 
Asellidae 2.8 -0.09 -0.08 -0.07 0.09 0.03 
Lymnaeidae 3.3 0.09 0.13 0.13 0.11 0.01 
Physidae 2.4 0.00 0.01 0.01 0.06 0.01 
Caenidae 6.5 0.07 0.09 0.12 0.09 0.00 
Valvatidae 3.2 -0.02 0.00 0.01 0.06 -0.01 
Dendrocoelidae 3.0 -0.03 -0.02 -0.01 0.05 -0.03 
Leptoceridae 6.7 0.08 0.11 0.11 0.06 -0.03 
 
Table B2  Taxa for which probability of absence was generally less in ‘wet’ 
conditions than ‘dry’, for riffle sites in autumn. 
  Change in Absence Prob (W to D) 
  Prior to Sample Date (Months) 
Taxon Score 1 3 6 12 24 
Rhyacophilidae 8.2 -0.05 -0.10 -0.12 -0.27 -0.25 
Goeridae 8.8 -0.07 -0.06 -0.07 -0.16 -0.24 
Simuliidae 5.8 -0.08 -0.12 -0.13 -0.19 -0.19 
Ephemerellidae 8.2 0.02 -0.06 -0.06 -0.07 -0.17 
Elmidae 6.6 0.01 0.00 0.00 -0.11 -0.17 
Sericostomatidae 9.1 0.07 0.07 0.04 -0.13 -0.16 
Heptageniidae 9.7 0.03 -0.01 -0.04 -0.21 -0.16 
Limnephilidae 6.2 -0.13 -0.12 -0.13 -0.18 -0.15 
Planariidae 5.0 -0.04 -0.04 -0.06 -0.11 -0.14 
Hydrophilidae 7.4 0.06 0.04 0.03 -0.14 -0.13 
Baetidae 5.5 -0.04 -0.07 -0.08 -0.13 -0.12 
Leptophlebiidae 8.8 0.01 0.00 -0.01 -0.10 -0.12 
Leuctridae 10.0 0.06 0.00 -0.02 -0.19 -0.12 
Lepidostomatidae 10.1 0.05 0.03 0.01 -0.13 -0.11 
Piscicolidae 5.2 -0.02 -0.01 -0.01 -0.04 -0.11 
Hydroptilidae 6.2 0.04 0.02 0.03 -0.02 -0.10 
Ancylidae 5.8 0.03 0.02 0.00 -0.04 -0.10 
Polycentropodidae 8.1 0.08 0.09 0.10 -0.05 -0.09 
Hydropsychidae 6.6 0.02 0.00 0.00 -0.08 -0.09 
Gyrinidae 8.2 0.11 0.13 0.13 -0.02 -0.08 
Ephemeridae 8.4 0.01 0.03 0.03 0.02 -0.08 
Odontoceridae 11.0 -0.02 -0.03 -0.03 -0.07 -0.08 
Tipulidae 5.9 0.01 0.00 -0.01 -0.08 -0.07 
Gammaridae 4.5 -0.05 -0.04 -0.04 -0.01 -0.06 
Perlodidae 10.8 0.05 0.02 0.01 -0.11 -0.06 
Nemouridae 9.3 0.01 0.00 -0.01 -0.12 -0.04 
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Table B3  Taxa for which probability of absence was generally greater in ‘wet’ 
conditions than ‘dry’, for pool sites in spring. 
  Change in Absence Prob (W to D) 
  Prior to Sample Date (Months) 
Taxon Score 1 3 6 12 24 
Coenagriidae 3.5 0.03 0.11 0.13 0.17 0.23 
Haliplidae 3.6 0.00 0.08 0.09 0.13 0.16 
Sialidae 4.3 0.07 0.07 0.09 0.13 0.15 
Dytiscidae 4.7 0.06 0.11 0.10 0.10 0.14 
Planorbidae 3.1 -0.02 0.06 0.08 0.13 0.14 
Lymnaeidae 3.3 0.01 0.06 0.06 0.10 0.13 
Physidae 2.4 0.00 0.02 0.05 0.08 0.13 
Notonectidae 3.4 0.00 0.04 0.07 0.10 0.12 
Corixidae 3.8 0.01 0.05 0.09 0.10 0.12 
Valvatidae 3.2 -0.01 0.05 0.07 0.09 0.12 
Glossiphoniidae 3.2 -0.02 0.00 0.00 0.02 0.06 
Gerridae 5.2 0.00 0.03 0.02 0.04 0.06 
Corophiidae 5.8 0.02 0.03 0.03 0.06 0.02 
Hydrophilidae 7.4 0.08 0.08 0.06 0.06 0.00 
 
Table B4  Taxa for which probability of absence was generally less in ‘wet’ 
conditions than ‘dry’, for pool sites in spring. 
  Change in Absence Prob (W to D) 
  Prior to Sample Date (Months) 
Taxon Score 1 3 6 12 24 
Simuliidae 5.8 -0.09 -0.15 -0.14 -0.15 -0.16 
Hydroptilidae 6.2 -0.06 -0.05 -0.06 -0.12 -0.16 
Leptophlebiidae 8.8 0.00 -0.09 -0.11 -0.15 -0.14 
Calopterygidae 6.0 -0.07 -0.11 -0.10 -0.14 -0.14 
Hydropsychidae 6.6 -0.03 -0.11 -0.11 -0.14 -0.14 
Elmidae 6.6 0.00 -0.06 -0.07 -0.12 -0.12 
Baetidae 5.5 -0.08 -0.10 -0.07 -0.13 -0.12 
Psychomyiidae 5.9 -0.04 -0.08 -0.06 -0.11 -0.10 
Ephemerellidae 8.2 -0.03 -0.05 -0.04 -0.08 -0.10 
Ephemeridae 8.4 0.01 -0.05 -0.06 -0.09 -0.09 
Polycentropodidae 8.1 -0.03 -0.05 -0.03 -0.08 -0.07 
Tipulidae 5.9 -0.01 -0.07 -0.07 -0.10 -0.06 
Nemouridae 9.3 -0.02 -0.07 -0.07 -0.08 -0.06 
Lepidostomatidae 10.1 0.00 -0.02 -0.03 -0.05 -0.05 
Heptageniidae 9.7 -0.02 -0.04 -0.04 -0.06 -0.05 
Sericostomatidae 9.1 0.02 -0.01 -0.02 -0.06 -0.05 
Leuctridae 10.0 -0.01 -0.02 -0.03 -0.06 -0.05 
Ancylidae 5.8 -0.02 -0.04 -0.03 -0.05 -0.02 
Gammaridae 4.5 -0.03 -0.07 -0.05 -0.05 0.00 
Gyrinidae 8.2 -0.02 -0.05 -0.05 -0.05 -0.03 
Limnephilidae 6.2 -0.06 -0.12 -0.09 -0.10 -0.03
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Table B5  Taxa for which probability of absence was generally greater in ‘wet’ 
conditions than ‘dry’, for pool sites in autumn. 

  
 Change in Absence Prob (W to 

D) 
   Prior to Sample Date (Months) 
Taxon Score 1 3 6 12 24 
Coenagriidae 3.5 0.07 0.09 0.10 0.17 0.18 
Haliplidae 3.6 0.07 0.09 0.10 0.16 0.13 
Corixidae 3.8 0.06 0.06 0.06 0.10 0.12 
Sialidae 4.3 0.08 0.09 0.08 0.14 0.11 
Planorbidae 3.1 0.00 0.00 0.02 0.09 0.10 
Lymnaeidae 3.3 0.06 0.06 0.05 0.09 0.10 
Valvatidae 3.2 0.03 0.02 0.03 0.06 0.09 
Notonectidae 3.4 0.04 0.04 0.05 0.09 0.08 
Physidae 2.4 0.00 0.01 0.01 0.06 0.07 
Dytiscidae 4.7 0.10 0.08 0.09 0.10 0.06 
Hydrometridae 4.3 0.04 0.04 0.05 0.06 0.05 
 
Table B6  Taxa for which probability of absence was generally less in ‘wet’ 
conditions than ‘dry’, for pool sites in autumn. 
   Change in Absence Prob (W to D) 
   Prior to Sample Date (Months) 
Taxon Score 1 3 6 12 24 
Limnephilidae 6.2 0.13 -0.16 -0.17 -0.21 -0.21 
Elmidae 6.6 0.03 -0.04 -0.05 -0.14 -0.21 
Simuliidae 5.8 0.14 -0.16 -0.16 -0.21 -0.17 
Calopterygidae 6.0 0.02 -0.03 -0.02 -0.10 -0.15 
Ephemeridae 8.4 0.01 -0.03 -0.03 -0.08 -0.12 
Piscicolidae 5.2 0.04 -0.04 -0.06 -0.10 -0.11 
Hydropsychidae 6.6 0.03 -0.05 -0.03 -0.09 -0.11 
Sericostomatidae 9.1 0.00 -0.01 -0.02 -0.06 -0.10 
Polycentropodidae 8.1 0.03 -0.04 -0.02 -0.06 -0.10 
Psychomyiidae 5.9 0.03 -0.06 -0.06 -0.08 -0.09 
Rhyacophilidae 8.2 0.00 -0.01 -0.02 -0.06 -0.08 
Leptoceridae 6.7 0.01 -0.01 -0.01 -0.04 -0.08 
Ephemerellidae 8.2 0.01 -0.02 -0.02 -0.04 -0.08 
Leptophlebiidae 8.8 0.02 -0.03 -0.03 -0.05 -0.07 
Ancylidae 5.8 0.00 -0.03 -0.02 -0.05 -0.07 
Tipulidae 5.9 0.04 -0.05 -0.04 -0.07 -0.07 
Goeridae 8.8 0.00 -0.01 -0.01 -0.05 -0.07 
Nemouridae 9.3 0.02 -0.03 -0.02 -0.05 -0.06 
Gyrinidae 8.2 0.00 -0.01 0.00 -0.04 -0.06 
Hydrophilidae 7.4 0.01 0.00 0.00 -0.04 -0.05 
Heptageniidae 9.7 0.01 -0.02 -0.03 -0.06 -0.05 
Baetidae 5.5 0.04 -0.08 -0.08 -0.10 -0.05 
Gammaridae 4.5 0.05 -0.06 -0.06 -0.04 -0.04 
Planariidae 5.0 0.03 -0.05 -0.07 -0.05 -0.03 
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Appendix C 
 
Proposed data specification 
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Introduction 
 
This document contains information related to the definition of proposed specification 
for an input file for software that handles ‘water quality’ information, in particular 
RIVPACS/RICT, RPDS and RPBBN. The document is broken up into the following four 
sections. 
 

i) A brief introduction to XML. 
ii) A review of current input files including content and format. 
iii) A discussion of the requirements used to define the proposed specification. 
iv) A description of the proposed format.   

 
The purpose of this document is to obtain comments on and suggestions for the 
improvement to the proposed specification, from those that will be involved in 
producing or consuming files based on it. It is only through feedback from interested 
parties that the specification can be modified to better suit their needs.  
 
 

Extensible Mark-up Language (XML) 
 
This section provides a brief introduction to XML. Those readers already familiar with 
XML might wish to skip this section. XML can be defined as follows: 
 

XML is a meta-language (a language for describing other languages) for 
the design of mark-up languages capable of representing different types of 
data and documents. 

 
and mark-up languages as: 
 

Mark-up languages provide a method of incorporating additional 
information (non-textual) into plain text files.  

 
The rest of this section attempts to expand on these definitions and give some 
background to XML, such as what it does, why it is useful and how it works. This is 
done in the following stages.  
 

i) The definition of ‘plain text files’ and a brief introduction to character 
encoding, along with the reasons why it is so important in the world of 
computing.  

ii) The concept of mark-up is discussed, as is the importance of publication of, 
and conformance to, mark-up language definitions. 

iii) Approaches to the definition of a mark-up language are discussed and XML 
is introduced as a method of defining a mark-up language. 

 
Plain text files 
The contents of a plain text file (created in notepad or vi), in the memory of a computer 
or on a hard disk consist of a series of electrical or magnetic units that correspond to a 
one or a zero (a bit), the same as all other files. The bits contained in the file only 
become letters through the application of a character code, for example ASCII 
(American Standard Code for Information Interchange), which is a code for converting 
groups of eight bits (a byte) into letters, for example 01000001 is an ‘A’ and 01100001 
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is an ‘a’. The ASCII and Unicode12 character encoding standards are particularly 
important because they are globally recognised, accepted and implemented, which 
means that computers worldwide have the ability to interpret files in this format. 
Therefore a file written as text can be sent anywhere in the world as a stream of bytes 
and the original text can then be accurately reproduced by the receiving computer. This 
ability makes plain text files the ideal platform for conveying information that can be 
understood by humans in an ‘electronic’ format anywhere in the world.  
 
Mark-up and mark-up languages 
A problem with character codes is that they only define characters and therefore have 
no intrinsic method of conveying style or meaning in the text other than that contained 
in the words themselves. For example, there is no way to define differences in font for 
sections of text, as the data is simply a stream of characters13. 
 
One method of overcoming this problem is to use ‘mark-up tags’; these are characters 
or words that can be distinguished in some way from the actual text itself and contain 
information on content of the document. It is important to point out that, even though 
the tags are part of the file, they are not meant to be part of the content, that is, the 
text. To illustrate this, consider the following piece of plain text: 
 
<italic>Hello World</italic>. 
 
In the text ‘<italic>’ and ‘</italic>’ are the tags; in this case, the tags are identified by 
being enclosed in right-angled brackets and they indicate the start and end of the text 
with which the information on style is associated. However, the tags are not meant to 
be included in the content of the document when the text is displayed by the application 
that interprets the mark-up. The application should identify the tags, understand what 
they represent, strip them from the text and then apply the information they convey. So 
in our example the text when displayed by an application that interprets the mark-up 
should appear as just ‘Hello World’.  
 
The ability to ‘understand’ what constitutes a tag and what information it conveys are 
extremely important, otherwise the tag may be displayed as a part of text of the 
document or identified but ignored. It is essential then to produce a full definition of a 
mark-up language so that others can understand it and develop software capable of 
interpreting it. In producing the definition, it is imperative that the descriptions are clear, 
understandable and as unambiguous as possible, to prevent misinterpretation. The 
final aspect to the success of a mark-up language is in its publication. The more freely 
and easily available the definition is, the greater the chance of uptake and use by 
others. 
 
Definition of a mark-up language and XML 
 
The traditional approach to creating and promoting a mark-up language is to produce a 
full and complete definition, usually accompanied by the developer’s applications which 
promote the advantages of the language, and then embark on a mass-marketing 
campaign to get the language recognised and accepted as a de facto standard. The 
problem here is that this is no easy undertaking. The definitions of languages such as 
postscript, portable document format (pdf) and TeX are lengthy technical documents 
that describe every aspect from scratch, which is essential to remove ambiguity. As a 
result, they often require a large investment of time and effort for the creator of the 
language to produce the language and for the software developer to read and digest it. 

                                                      
12 Unicode is a more recently produced character coding standard that uses multiple bytes, which allows 
the encoding of different character sets such as Arabic and Chinese. 
13 The font used to display text files is defined by the settings in the application, not in the text file itself. 
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Therefore, whilst this type of approach may be viable for broad and potentially lucrative 
computer application markets like word processing, where the investment of time and 
effort on the behalf of the creator and software developer may be justified, it tends not 
to be in smaller, more specific, application areas.  
 
For example, consider a purchase-order system for a manufacturer. To increase speed 
and efficiency and cut costs, the company wants to integrate with their suppliers and be 
able to send purchase order documents containing product name, product code, 
quantity and price electronically. For example, the values (text) that need to be sent for 
a purchase order may be represented textually as ‘test tube 213 15.00 75’. The 
problem with sending data in this format is identifying which value corresponds to 
which attribute. The use of mark-up offers a solution to this problem as it allows 
information, in this case the names of the attributes, to be embedded in the text, the list 
of values. An example of a simple mark-up solution might be to place each value on a 
separate line and put the attribute name at the start, such as ‘price 15.00’, where ‘price’ 
is the tag. As with other mark-up languages files, the software that reads it will strip the 
tags, their purpose being solely to identify the database field into which the value must 
be copied.  
 
Ensuring that a mark-up language definition is robust is an extremely involved task. 
Consider the mark-up solution of using a separate line for each attribute and then 
putting the name and value just proposed. It would fail immediately because it would 
produce the line ‘product name test tube’ in which the tag and text could not be clearly 
distinguished. This is a rather simplistic example, but the fact that the text and 
information are stored in the same file and use the same character set will always lead 
to problems with ambiguity, unless the mark-up solution has been well designed. As a 
result, in the majority of cases, like that of the manufacturer, the time and effort 
required to implement a mark-up language as a method of exchanging data makes it 
impractical. In this scenario, consideration also needs to be given to the role of the 
supplier, who may have fifty customers all wanting to use their own mark-up 
languages. Developing and maintaining software to handle all fifty of these languages 
would be a huge undertaking.  
 
A solution to these problems is to use a mark-up meta-language, a language to 
describe mark-up languages. A meta-language provides a documented method for 
describing the tags in your mark-up language and how they should be structured in the 
document. The following are the two main benefits that using a meta-language in the 
definition of a mark-up language offer both the creator and consumer. 
 

i) The meta-language usually contains a predefined method for implementing 
tags. This removes the need for the creator to include this often complex 
and technical information in their definition. It also allows the consumer to 
employ a generic parser, designed to the meta-language specification, 
which is able to extract text and tags from a document automatically, 
leaving them free to focus on developing a system that recognises the 
meaning of tags and responds to them. 

 
ii) The meta-language provides a structured and clearly defined method for 

specifying a mark-up language. This should result in the definition being 
clear, well-structured, easy to understand and less ambiguous. In addition, 
the creator should benefit from a more clearly defined approach to creating 
a specification and for the end user, if they are conversant with the meta-
language, it should reduce the time required to get to grips with the ‘new’ 
mark-up language. 

 
As stated in the initial definition, XML is a meta-language for mark-up languages. The 
popularity of XML is probably due to its origins. It is based on Standard Generalized 
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Mark-up Language, the international standard for defining descriptions of the structure 
of different types of electronic document, a meta-language itself and the basis for 
probably the most famous mark-up language, the Hyper Text Mark-up Language 
(HTML), which is the language of the World Wide Web (WWW). As a result, the 
formatting of XML is familiar to millions of web developers worldwide, which has 
certainly been a factor in its uptake. Another factor is that the body that maintains the 
XML specification is the World Wide Web Consortium (W3C), a widely known and 
respected body that is also responsible for maintaining HTML. Whatever the reason is, 
it is reasonable to suggest that XML is currently the de facto method of defining mark-
up languages for the exchange of information between organisations.     
 
Summary 
 
Globally accepted standards for character encoding, such as ASCII and Unicode, have 
paved the way for reliable transmission of text in an electronic format between 
computers. However, these codes do not include any intrinsic methods of defining 
information or meta-data about the text itself. ‘Mark-up’ is a method for including such 
information and involves embedding clearly differentiable, information carrying sections 
of text, called tags, into the main body of text. For a mark-up scheme to work 
successfully it needs to be clearly defined, so that those using the files understand 
what constitutes a tag and the information it conveys. The definition of a robust mark-
up language tends to be both complex and technical, making them difficult to develop 
and learn. Meta-languages offer a method of easing these problems through 
standardisation. Standardisation enables the transfer of existing knowledge and tools 
between mark-up languages produced using a specific meta-language. This reduces 
the cost and effort associated with creating and using a ‘new’ mark-up language. XML 
is currently the de facto mark-up meta-language and is being increasingly adopted by 
business and government organisations to simplify the process of information 
exchange between bodies whose data are held in different formats. 
 

Current data input files 
 
It is hoped that, ultimately, the input file format defined in this document might become 
an accepted standard for the exchange of river quality monitoring data. The short-term 
goals for this format are to be accepted as the standard format for input files for the 
RIVPACS, RPDS and RPBBN applications. To assess how well this goal has been 
achieved and to provide some background to the design and development process, 
this section describes and discusses the content and structure of the input files 
currently used by these systems.   
 
Content 
 
Although the purpose and outputs of RIVPACS, RPDS and RPBBN systems differ, 
they all operate in the same domain. As a result, in the places where systems share 
the same type of input data, the variables they use tend to be the same. The types of 
input variables can be loosely categorised as environmental, biological or chemical. 
However, even when the systems share the same input variables, the uses they are 
put to often differ. In the three systems, variables tend to be input for one of two 
reasons, either to be used by the model as part of the categorisation/prediction process 
or for information/comparison purposes, depending on the underlying model14. Table 

                                                      
14 Inputs to RIVPACS also include instruction and quality band limit files. The purpose of these input files is 
to supply the functional parameters to process within the system. Given that the focus for developing this 
specification was the representation of water quality sample data, these files and the parameters were not 
included.  
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gives an outline of the systems and the types of inputs they use, where the inputs are 
split into the model input and information categories.  
 

Table C2 lists all 173 variables that act as inputs for the three systems and which of the 
systems use them. It is clear that there is a great deal of similarity in the biological and 
environmental inputs used by the systems. The chemical and stress variables are 
mainly used by RPDS for information purposes, the only exceptions being total 
ammoniacal nitrogen, percentage oxygen saturation, phosphate, pH and total oxidised 
nitrogen, which are used by the RPBBN system. RIVPACS uses seven variables that 
the other systems do not. These include five BMWP families15, velocity category and 
sample bias. The variables sample ID, site ID, site name, region and watercourse are 
interesting inclusions because they convey descriptive information rather than data on 
quantifiable attributes. Strictly speaking, these variables are not necessary because 
they are not used by the models in making classifications or predictions, nor are they of 
use in direct comparisons. The information they provide is vital though, helping to 
identify specific samples and set the data into context.   
 

                                                      
15 The reason for the absence of these five taxa from the RPDS and RPBBN was lack of data. These taxa 
occurred in few or no records and as a result, were excluded from the construction of the models on which 
these systems are based.    
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Table C1 Outline of RIVPACS, RPDS and RPBBN systems and their inputs. 
System Type Model Input Info. Input Description 

Classifier Environmental Biological 

RIVPACS’s primary purpose is to predict a 
macroinvertebrate community based on the 
environmental characteristics of a site.  
Biological information is used to compare 
predicted and actual communities. 
 

RIVPACS 

Classifier Environmental 
Biological 

Environmental 
Biological 
Chemical 
Stress 

RPDS’s primary purpose is to diagnose 
potential pressures affecting a site based 
on its environmental and macroinvertebrate 
characteristics. The main output is a report 
detailing the prediction of these pressures. 
However, one of the system’s key features 
is the ability to display and compare 
information from the model and input 
samples on screen. To achieve this, the 
system is capable of inputting data on any 
of the variables that the model contains. 
 

RPDS 

RPBBN’s primary purpose is to predict the 
state of all the variables in the model based 
on whatever input information is available. 
This means that any number, type and 
combination of variables can be used as 
input variables. The inputs can also be used 
for information purposes, permitting the 
comparison of actual and predicted values. 

RPBBN Reasoning 
Environmental 
Biological 
Chemical 

Environmental 
Biological 
Chemical 
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Table C1 List of all input variables and which of the three systems uses them.  
(V = RIVPACS, D = RPDS and B = RPBBN) 

 Asellidae V D B Hydroptilidae V D B Nickel (total) D 

Environmental & Site 
Data Corophiidae V D B Philopotamidae V D B Nitrite D 

SampleID V D B Nitrate D 
Date D 

Psychomyiidae (incl. 
Ecnomidae) V D B Oxygen (dissolved) D 

Season V D B 

Gammaridae (incl. 
Crangonyctidae & 
Niphargidae) 

V DB
Polycentropodidae V D B 

SiteID D Siphlonuridae V D B Hydropsychidae V D B 
Oxygen 
(saturation) D B 

Region D B Baetidae V D B Phyrganeidae V D B Lead (dissolved) D 
Watercourse D B Heptageniidae V D B Brachycentridae V D B Lead (total) D 
SiteName D Leptophlebiidae V D B Lepidostomatidae V D B Phosphate D B 
X V D B Potamanthidae V D B Limnephilidae V D B pH value D B 
Y V D B Ephemeridae V D B Goeridae V D B Suspended Solids D 
Altitude V D B Ephemerellidae V D B Beraeidae V D B Temperature D 
Slope V D B Caenidae V D B Sericostomatidae V D B TON D B 
Discharge V D Taeniopterygidae V D B Odontoceridae V D B Zinc (dissolved) D 
Velocity Category V Nemouridae V D B Molannidae V D B Zinc (total) D 
Distance from Source V D Leuctridae V D B Leptoceridae V D B   

Width V D Capniidae V D B Tipulidae V D B Stresses Sample 
Data 

Depth V D Perlodidae V D B Simuliidae V D B Agri-industry D 
Alkalinity V D B Perlidae V D B Chironomidae V D B Artificial bank D 
Hardness V D Chloroperlidae V D B   Bank erosion D 

Calcium (dissolved) V D Platycnemididae V D B Biological Sample 
Details Channel at site D 

Conductivity V D Coenagrionidae  V D B Sample Bias V Construction D 
Boulders V D Lestidae V Number of Families D Eroded material D 
Pebbles V D Calopterygidae  V D B BMWP score D Eutrophication D 
Sand V D B Gomphidae V ASPT D Farming D 
Silt V D B Cordulegastridae  V D B RIVPACS GQA class D Impoundments D 
SiteType D B Aeshnidae V D B NN GQA class D Industrial D 
  Corduliidae V BOD (mean) D Land use D 

Libellulidae V D B   Leachate D Biological Sample Data 
(Macroinvertebrate) Mesovelidae V Chemical Sample Data Low flow D 

Hydrometridae V D B Ammonia (mean) D Mine D Planariidae (incl. 
Dugesiidae) V D B Gerridae V D B DO (mean) D No flow D 
Dendrocoelidae V D B Nepidae V D B Alkalinity(2) D Oils D 
Neritidae V D B Naucoridae V D B Pesticides D 
Viviparidae V D B Aphelocheiridae V D B

Ammoniacal nitrogen 
(total) D B Reclamation D 

Valvatidae V D B Notonectidae V D B Run-off D 
Pleidae V 

Ammoniacal nitrogen 
(non-ionised) D Salinity D Hydrobiidae (incl. 

Bithyniidae) V D B Corixidae V D B BOD D Sediment D 
Physidae V D B Haliplidae V D B Calcium (total) D 
Lymnaeidae V D B Hygrobiidae V Cadmium (dissolved) D 

Sewage treatment 
works D 

Planorbidae V D B Cadmium (total) D Waste D Dytiscidae (incl. 
Noteridae) V D B Chloride D Ancylidae (incl. 

Acroloxidae) 
V D B 
 Gyrinidae V D B Chromium (dissolved) D 

Water treatment 
works D 

Unionidae V D B Chromium (total) D Other D 
Sphaeriidae V D B 

Hydrophilidae (incl. 
Hydraenidae) V D B Copper (dissolved) D 

Oligochaeta V D B Scirtidae  V D B Copper (total) D 
No perceived 
stress D 

Piscicolidae V D B Dryopidae V D B Iron (dissolved) D   
Glossiphoniidae V D B Elmidae V D B Iron (total) D   
Hirudinidae V D B Sialidae V D B Magnesium (dissolved) D   
Erpobdellidae V D B Magnesium (total) D   
Astacidae V D B 

Rhyacophilidae (incl. 
Glossosomatidae) V D B Nickel (dissolved) D   
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Format 
 
RIVPACS accepts inputs in two different types of file formats, text and dbf database 
files. Optionally, the system requires up to three different input files containing 
environmental, biological and sample error data. 
 
The dbf files must conform to a predefined data table format, which dictates field 
names, data types and field widths. The text input files use a fixed format, that is a line 
defines an entity and within that line, variables have predefined locations, for example 
the characters 1-20 are allocated to the variables sample code. 
 
In the environmental and sample error files, variables are assigned specific locations 
within each line. However, in the biological data file, each line contains multiple 
taxonomic codes, which identify the species in the sample and multiple lines can be 
associated with one sample, by the use of an initial identifier. These may only appear 
to be slight variations in format but they permit the number of variables associated with 
one sample to vary and addition, removal or modification to the biological variables 
used by the system without requiring a change to the file format. This flexibility comes 
at the cost of increased sophistication in the software that reads the files because the 
system has to be able to identify the sample and taxonomic code before copying the 
value to the appropriate place. It may already be obvious that the biological file 
employs a mark-up system, the taxonomic codes being the tags identifying the 
appropriate variable in the software to which the value indicating presence or the 
supplied abundance value must be assigned. 
 
RPDS and RPBBN systems use only one type of input file, in the text format in which 
each line corresponds to an individual record and values in the record are delimited by 
commas. The order in which the variables must be placed in the line is predefined. 
Using a system of delimitation to define variables is more flexible than fixed positioning, 
in that it allows variation in the length of fields. The drawbacks are that it requires every 
character in the line to be searched to find the delimiters and problems can occur when 
the delimiting character appears as part of a value. However, even though the use of 
delimitation adds some flexibility to the file format, the strict ordering of variables in 
each line makes the file format, as a whole, rigid.    
 
Discussion 
 
An overriding feature of data used by the three systems, shown in Table C2, is the 
amount of variation in the 173 variables. The following is a list of some ways in which 
they differ. 
 

i) In types of data, if the data is continuous and discrete, ordinal or nominal.  
ii) In the ranges of values, their respective maximum and minimum values or 

states of a discrete variable. 
iii) In the types of values, whether values are a scientific measure, a count, an 

estimate or a calculated value, like mean or percentile. 
iv) In the methods by which they are defined, that is, does the variable have a 

‘definitive’ definition like chemical compounds or is the definition that of a 
particular authority, like macroinvertebrate families.  

v) In the method by which they are measured, for example milligrams per litre, 
micrograms per litre, centimetres metres, numbers alive, colour, and so on. 

vi) In the methods used for identification and quantification, a few examples of 
methods are: filtration, gas chromatography, kick sample, altimeter or GIS 
query. 

 

182 Refinement of AI-based systems for diagnosing and predicting river health  



It is worth noting that some of these variations may occur in between variables of the 
‘same type’. For example, for ‘distance from source’ for a river, the definitions of the 
location of the source, the method of measurement and units used may all vary, yet 
despite these variations, this group of values may all be considered to be the ‘same’ 
variable.  
 
In addition to the potential for variation in the variables themselves, there is potential 
variation in the structure of data and definition of what constitutes a complete and valid 
record.  In the case of the three systems, the most notable variation is in the 
composition of variables that make up a record. The combination of a diverse range of 
variables from different sources and types of sampling programmes raises the question 
of how closely matched the samples must be, in terms of date and location, for them to 
be considered as part of one unified record. The definition of ‘matching’ criteria is 
ultimately discretionary and thus also a source of variation.    
 
All the potential variation in water quality sample data is an unavoidable consequence 
of the diversity of the data. However, as long as variations in the data are properly 
documented, they should not present a problem. If they are not completely 
documented, they can be a potential source of ambiguity, misinterpretation and error. 
RIVPACS, RPDS and RPBBN have definitions for the variables they use; the problem 
is that this information is contained in the file specifications rather than the data files 
themselves. The name, type, measurement and any other data associated with a 
variable reside in the specification and are conferred to a value by virtue of its location 
in a data file. The main problems with associating information with a value in this way 
are that the file is practically unusable without a copy of the correct file specification, 
and errors in interpreting the specification or use of the wrong specification may lead to 
the information for one variable being incorrectly ascribed to the value of another.  
 

Requirements for a new format 
 
The existing file formats used by RIVPACS, RPDS and RPBBN all have one objective 
and that is to enable new data to be input into their respective systems. They fulfil this 
aim efficiently with only the data that is needed by the system included in the files. For 
a new file format, it is anticipated that the objectives would differ and it would have the 
capacity to permit information on additional, perhaps as yet undefined, variables to be 
included. The purpose of this would be both to ‘future proof’ the file format against 
further development of RIVPACS, RPDS and RPBBN systems and permit the format to 
be used by other developers who might use different suites of variables.   
 
The remit of this file format requires some discussion. However, looking at the problem 
in general terms, the range of potential formats lies between a tightly defined or 
prescribed format, in which each variable is named specifically in the format, and a 
completely generic solution, in which variables can be specified on an ad hoc basis in 
the data itself.  
 
The file format defined in this document is a generic solution, and below are the three 
main reasons for that decision. 
 

1. In the author’s view, a generic design offers a longer-term solution, should 
simplify the task of sharing data and provides an opportunity to increase the 
amount of information on variables in the data, thus decreasing the 
likelihood of incorrect properties being inferred on values. 

 
2. A generic solution would need to be developed from scratch and therefore 

requires more time and effort to develop. In contrast, a prescribed format 
would be relatively straightforward to develop as it would involve combining 
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existing file formats and translating them into XML. Therefore, if the 
decision to pursue a more generic format were taken, at least some of the 
work required would already have been undertaken.   

 
3. The development of a generic file format would facilitate a discussion of 

requirements and specifics of the new file format by demonstrating a 
possible generic solution. As mentioned previously, a prescribed format 
would basically be a reproduction of current formats and so has, to a large 
extent, already been defined in the section on current file formats. In 
producing a generic solution, the hope is to demonstrate an alternative 
solution and introduce some of the ‘generic concepts’, to provide a common 
frame of reference for further discussion. 

 
Costs and benefits of adopting a generic format 
 
The costs and benefits of a generic solution can be reduced to a discussion on 
flexibility and extensibility versus speed, storage requirements and the ease of 
processing. At the simplest level, as solutions become more generic there is an 
increase in the amount and complexity of information stored in the file. The benefits of 
this are the ability to store and clearly define a wide range of variables, which is a 
product of the greater capacity to describe them. The costs are increased demands for 
storing, reading and understanding information in the file. Thus the generic solution 
proposed in this document has the advantage of enabling a variety of variables to be 
included and described in the file format and, as a result, will allow developers to 
modify their software without requiring changes to the input file format. The drawback 
will be the need for more sophisticated ‘parsing’ algorithms to deal with the potential for 
variation in files. To clarify this last point, in the current software values are easy to 
extract and process because of the rigid formatting. In a generic solution the variables 
and their associated attributes are defined in the file itself and may differ form file to file, 
so software that uses the generic file format not only has to be able to read the 
information associated with the variables but also check whether they match the data 
requirements of the system. In terms of demands on hardware, all the extra information 
in the files inevitably leads to increases in storage and processing requirements. 
 

Requirements for a generic format 
 
For a generic solution to be successful it must be able to encapsulate all potential 
variation in the data that it has to hold. The extent of potential variation in the water 
quality sample data files has already been largely addressed. Six types of variation - 
type of data, values, range of values, variable definition, measurement and method of 
identification – were highlighted and any proposed generic file format should at least be 
able to handle these types.  In addition to the variation in individual variables, the 
specification must also be able to handle variation in the time and type of samples that 
can be combined into a single record. 
  

Proposed XML format 
 
Figure C1 shows the entities and relationships that would be defined in the proposed 
generic solution. In the diagram, the entities have been broken down into three groups: 
core entities, variable information entities and sample information entities. 
 
Core entities consist of the ‘record’, ‘result set’ and ‘result’ entities. The ‘record’ entity is 
the equivalent of the complete ‘samples’ that are used by the systems as the basis of 
analysis, that is the set of biological, environmental and chemical variables fed into the 
system as a single entity. As discussed already, ‘samples’ used by the systems are 
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often a combination of data from different sources. To enable the details of these 
different ‘sample’ sources to be recorded in the files, the ‘result set’ sub-component 
was introduced. The ‘result set’ entity’s primary purpose is to act as a container for the 
result entities, which hold individual sample values. In addition, it contains a link to the 
sample information group of entities, in which specific details of the sample(s) or data 
query from which the data was obtained can be stored. At the lowest level of this 
hierarchy is the ‘result’ entity, which contains the individual sample values and has a 
link to the variable information entities, which hold information about the value itself, 
what it represents and how it was obtained.  
 
Variable information entities comprise six entities, each designed to encapsulate the six 
types of data variation identified at the start of the section.  
 

 
Figure C1 Outline of proposed XML specification for river quality data files. 
 
Sample information entities are designed to handle information on the source of the 
value(s) recorded. The term ‘sample’ is perhaps not ideal since the source may be a 
database query. However, it does help encapsulate the concept that a particular set of 
values were obtained in the same process. The term sample is avoided in the 
specification itself in favour of ‘analysis’. Whether this term needs to be changed for 
another, perhaps more meaningful term, is open to discussion. In any case, the 
analysis entity attempts to capture the information about the process to analyse a 
particular aspect of an object, whether it be a river or a database. This is linked to the 
‘body’ entity and is designed to hold information on the object under analysis, which in 
turn has a location entity associated with it. These objects appear to be generic enough 
to capture two different sources of data and in the process make the solution more 
straightforward. They also appear capable of storing additional information about 
particular parameters which may vary between data sources.  This information plays a 
vital role in deciding whether the result sets that comprise a record entity are 
sufficiently similar. However, in striving to produce a generic solution, important source-
specific information may have been missed out. So another issue to consider is 
whether the analysis entity should be split into different entities for different sources of 
data.   
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In the proposed generic solution, shown in Figure C1, the information entities are linked 
to their associated core entity through a key. The association of information via a key 
was used because it allows the information to be re-used rather than embedding it in 
the core entity. This decentralisation of information has its drawbacks because the 
information required to define an element fully is no longer stored in one place. 
However, the potential savings in storage and processing from the reduction in 
repetition was judged to be more beneficial. 
 
The apparent complexity of this specification may be an issue, for there is no doubt that 
it is more sophisticated than the current file formats. However, implementation of the 
specification does not necessarily have to include all entities or information they 
contain. In reality, entities such as data type, category and test may be excluded more 
often than not and in some cases all the information entities may be left out except 
perhaps the variable entity. However in many situations, especially when sharing data, 
omitting the information entities may lead to ambiguity in what values represent. There 
would be circumstances, for example creating files for input into a specific application, 
where the ability to exclude unnecessary information is justifiable. The range of tools 
and supporting technologies available to developers and users of XML should ease the 
complexity of implementing the new specification.  
 

Discussion 
 
The specification outlined in this document is a first attempt at developing a general 
XML based file format for the distribution of river sample data. There is plenty of scope 
for refinement. The following issues concern the specification and its design: 
 

• Are the design requirements sufficient or is something missing? 
• Is the specification too generic or too prescriptive? 
• Is the design too complex or too difficult to implement? 
• Are any elements missing or the structuring of the entities or relationships 

wrong? 
  
On a more general note, are there any issues that have not been addressed in this 
document or are there areas that need more research or explanation? For example the 
role the electronic-Government Interoperability Framework (e-GIF) might play in the 
development of this specification. 
 
The more feedback that can be elicited, the better the final specification should be. 
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Appendix D 
 
MIR-max User Guide 
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1. Introduction 
 
Background 
 
MIR-max (Mutual Information and Regression maximisation) is a method for clustering 
data and arranging the clusters in an output space for user-friendly data analysis and 
visualisation. MIR-max was originally used as part of a research project on river 
pollution in England and Wales, which resulted in the development of a software 
package, RPDS (River Pollution Diagnostic System, later known as the River Pressure 
Diagnostic System). The pattern recognition and data visualisation techniques used by 
RPDS were not specific to river water pollution. It was clear that RPDS could be 
developed into a more generic program that would allow users to take advantage of the 
same techniques for their own data: MIR-max is the result. This document describes 
the free prototype version (0.2), which has a number of restrictions and is intended for 
evaluation purposes only; a fully functional version (1.0) will be available shortly, and it 
is hoped that a more complete pattern recognition and visualisation package (including 
other techniques alongside MIR-max) will be produced in the near future. 
 
 
Pattern recognition and clustering 
 
Experts use two complementary mental processes when interpreting data: plausible 
reasoning based upon scientific knowledge, and pattern recognition based upon 
experience of past cases. MIR-max simulates a pattern recognition approach to data 
interpretation. Essentially, a pattern recognition process separates a set of samples 
into a number of ‘clusters’ such that similar samples are clustered together.  Each 
cluster can then be regarded as being representative of a particular ‘class’ of sample. 
When a new sample is presented to the system, it attempts to find the best-matching 
cluster. It then bases its analysis of the new sample on previous knowledge of other 
samples in the same cluster. The following example illustrates the ideas of pattern 
recognition and clustering, and is based on biological monitoring of river water quality – 
the application for which MIR-max was first developed. Consider river water samples 
containing abundance level data for 12 creatures (taxa). Such a sample can be 
represented by a bar chart (Figure D1.1) to provide a visual ‘profile’ or ‘pattern’. 

 

 
Figure D1.1 Biological sample represented as a bar chart. 
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Assume that 18 such samples are collected from various sites. Each of the samples 
can be represented as bar charts for easier visualisation (Figure D1.2); the bars 
represent the same taxa as in Figure D1.1, although all labels have been removed so 
as to focus on the pattern. 

 

 
Figure D1.2 Eighteen biological samples represented as bar charts. 
 

The sites can now be clustered according to which represent the most similar patterns. 
For this example, three clusters will be used. The patterns from Figure D1.2 are all 
compared, and are grouped into three clusters (Figure D1.3). 

 

 
 

Figure D1.3 Samples grouped into three clusters (A, B, and C). 
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The algorithm used to perform the clustering – that is, the method by which sample 
patterns are compared and grouped together – is MI-max (Mutual Information 
maximisation). 

 

The clusters produced are labelled in Figure D1.3 as A, B, and C, and for each cluster 
a pattern is produced representing the average of samples contained within that 
cluster. This pattern can then be regarded as an exemplar for all samples of type A, B, 
or C; it is referred to as the cluster ‘template’. When a new sample is collected, it can 
be compared with the templates and assigned to one of the clusters A, B, or C (Figure 
D1.4). 

 

 
Figure D1.4 New sample matched with template for cluster A. 
 

Now that the new sample has been classified as belonging to a particular cluster; 
previous knowledge of the samples that were initially used to construct the cluster can 
be used to draw inferences about the state of health of the river from which the new 
sample was taken. In this example, cluster A was formed from six of the original 18 
samples. Although only the 12 taxa were used in cluster formation, other data may be 
available for some or all of the original six samples. So, the cluster template can be 
extended to provide this additional knowledge (Figure D1.5; the values of the additional 
variables, shown as blue bars, have been suitably rescaled so as to be directly 
comparable). 

 

 
Figure D1.5 Extended cluster template. 
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Now, although only the biological data is known for the new input sample, predictions 
of the likely values for the chemical data associated with the new sample are possible 
using the exemplar values for cluster A, based on the known values for the samples 
that originally formed the cluster. 

 
Data visualisation 
 
MIR-max uses a cluster ‘map’ to visualise the clusters. The clusters are each 
represented by a coloured circle, and are arranged on the screen so that the most 
similar clusters are located close together, whilst those that represent very different 
conditions are located far apart. The following example (again based on biological river 
water quality) illustrates the construction of a cluster map. 

Consider 12 clusters, represented (as in Section 1.2. above) by templates and labelled 
A – L (Figure D1.6). 

 

 
Figure D1.6 Cluster templates. 
 

The 12 clusters are arranged in an output space consisting of 19 possible locations that 
form a hexagonal ‘map’, so that the most similar clusters are positioned close together 
(Figure D1.7). The ‘ordering’ process is performed by an algorithm R-max (Regression 
maximisation). This algorithm together with the clustering algorithm MI-max forms the 
basis of MIR-max data analysis. 

 

 
Figure D1.7 Clusters arranged in a hexagonal output space. 
 

The resultant map (Figure D1.7) gives a general impression of the similarities between 
clusters; for example, clusters I and L, represented by similar templates, are positioned 
close together on the map, but are relatively far away from cluster J, which is 
represented by a very different template. The degree to which the map truly represents 
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the relationships (the ‘distances’) between the clusters can be enhanced by using a 
greater number of possible output locations. However, this also affects the utility of the 
map: depending on the user’s intention, a more or less ‘tightly packed’ map may be 
desirable. 

 

Now that the clusters have been arranged, different aspects of the cluster templates 
can be viewed using ‘feature maps’ (Figure D1.8). 

 

 
Figure D1.8 Feature maps. 
 

The different features may be those used in creating the clusters (in this case, the 
abundance levels of the 12 taxa) or any from the ‘extended template’ (for example, in 
Figure D1.8, total oxidised nitrogen (TON) is pictured). The maps are colour-coded and 
can be directly compared; for example, in clusters I and L, where abundance levels of 
the mayfly Heptageniidae are low, the TON is relatively high. 

With a small number of clusters, features and input samples (as in the above example) 
the visual power of the feature maps is perhaps not immediately evident. In RPDS, 250 
clusters are used, formed from 6,039 samples. The resultant maps are consequently 
more informative. In Figure D1.9, for example, the inverse relationship between 
abundance of Heptageniidae and TON is clear. 

 

 
Figure D1.9 RPDS feature maps. 
 
So, there are two main methods that form the basis of data visualisation in MIR-max: 

• Feature maps, which show information for a chosen feature across all the 
clusters. 

• Bar charts (referred to as ‘templates’), which show information for a range 
of features within a chosen cluster. 
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2. Getting Started 
 
 
2.1.  Installing MIR-max 
 
MIR-max is designed for use with 32-bit Windows platforms (Windows 95, 98, NT, and 
2000). To install MIR-max, run the setup.exe program provided on the CD or floppy 
disk, and follow the on-screen instructions. 
 
2.2.  Running MIR-max 
 
Once installation is complete, you can run the main program, MIR-max.exe. You will 
initially be presented with a disclaimer (because this version of the software, 0.1, is a 
prototype). Press ‘OK’ to accept the conditions and start MIR-max. 
 
The ‘File and Number Formats’ screen (Figure D2.1) will be displayed. MIR-max stores 
information in a number of files, which should all be of the same format. The usual (and 
recommended) option is to use comma-delimited files; that is, each set of data is stored 
in a file as a series of plain text lines, with each part of any line of data separated from 
the others by a comma (the ‘delimiter’).   
 

 
Figure D2.1 Options for file and number formats. 
 
For example, a comma-delimited file storing data about regular polyhedra may appear, 
when viewed by a standard text editor, as: 
 

Name,Faces,Vertices,Edges 
Tetrahedron,4,4,6 
Cube,6,8,12 
Octahedron,8,6,12 
Dodecahedron,12,20,30 
Icosahedron,20,12,30 

 
You can choose any single character as the ‘delimiter’; ensure that the chosen 
delimiter will not appear in any of the data items you wish to store (for example if you 
are storing names like ‘Mark O’Connor’, do not choose a space or an apostrophe as 
the delimiter). 
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Because the files are stored as plain text, they can be checked and edited manually 
using a standard text editor such as NotePad. It is often easier, however, to use a 
spreadsheet. Microsoft Excel automatically recognises comma-delimited files with the 
filename extension .csv for viewing and editing, and so this is the recommended option. 
The polyhedra data above would appear in Excel as shown in Figure D2.2. 
 

 
Figure D2.2 File with .csv extension viewed in Excel. 
 
Other standard filename extensions include .txt for plain text files and .skv for 
semicolon-delimited files, or you can specify any other three-letter extension if you 
wish. 
 
You can also choose to store numbers using a decimal point or a comma to separate 
the whole and fractional parts. (If you choose to use a comma, ensure that the files are 
not stored as comma-delimited – in countries where the convention is to use commas 
rather than points, the semicolon-delimited format .skv is commonly used instead of the 
comma-delimited .csv). 
 
When you have selected the required file and number formats, click ‘OK’. The MIR-max 
main menu (Figure D2.3) will be displayed. 
 

 
Figure D2.3 MIR-max main menu. 
 
There are six options, as shown in Figure D2.3. Each is described in Section 3 below.
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3. MIR-max Interface 
 
 
3.1.  Indicators 
 
In order to analyse data samples, MIR-Max needs to know about the variables 
recorded in each sample. The variables are referred to as ‘indicators’, and MIR-Max 
will store knowledge of these in an ‘indicators file’. An indicators file can be created 
from the main data file, which stores a list of samples together with the associated 
values for each indicator. The format for these data files is given in Section 4.2. 
 
To create an indicators file, choose the option Create/edit an indicators file from the 
main menu (Figure D2.3). You will be presented with a further choice – to edit an 
existing file, or create a new file from a data file. Choose the option Use delimited data 
file to construct indicators file. A standard Windows dialogue box then enables you to 
select the appropriate data file. You will be asked to input the number of discrete 
categories for MIR-Max to use in data analysis – MIR-max is based on discrete data, 
so any continuous data needs to be converted into discrete categories first. You should 
not exceed 12 categories. After inputting the number of categories, MIR-max will read 
the chosen file, and display the indicator definition screen (Figure D3.1) 
 

 
Figure D3.1 Indicator definition screen. 
 
Each indicator is listed by name (taken from the first line of the data file) in the 
scrollable area at the top left of the screen. To view and edit the information for an 
indicator, select by clicking the indicator name in the list. The indicator name, a unique 
ID number (allocated by MIR-max), and the minimum and maximum values recorded 
for the indicator in the data file will all be displayed at the top right of the screen. These 
cannot be changed. Also at the top right is a tick-box Use in training - by default, all 
indicators in the data file are used in the training of MIR-max models (unless there is 
data missing); uncheck the box if you do not wish the selected indicator to be used in 
the training process. A small button Units is also available – click this button to input 
the type of units used when recording the data. 
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Two lists at the right of the screen show the ‘category bounds’. These figures 
determine the boundaries for converting ‘raw’ data into discrete categories. The figure 
shown is the upper bound for each category – all data with a recorded value up to the 
figure shown for each category (and greater than the previous category bound) will be 
regarded by MIR-max as belonging to that category. The number defining the bound 
can be included or excluded from the category using the check-box Include upper 
bound value in category at the top right of the screen. There are two sets of bounds, 
one for training categories and one for display categories. The number of training 
categories is fixed (as that number previously defined by the user), but a different set of 
categories may be used for display purposes. To increase or decrease the number of 
display categories, use the left (decrease) and right (increase) arrows at the top of the 
list. 
 
By default, the category bounds are set to equal intervals between the minimum and 
maximum recorded values. A variety of alternative methods can be chosen (at the 
bottom right of the screen) to define the category bounds, such as using a division 
based on the square root or natural logarithm of the data. Another alternative is to set 
the bounds manually, by typing in the required values and selecting the Set category 
bounds manually option. If you decide to change the bounds again, click the Update 
button to confirm the changes. 
 
At the bottom left of the screen is a graph showing the number of data samples from 
the input file that belong to each of the training categories. Below the graph, the value 
of the selected indicator for each individual data sample is displayed as a red dot on a 
panel (scaled between the minimum and maximum values), and red lines show where 
the bounds occur. (These graphs are not available when editing an existing indicators 
file, only when creating an indicators file from a data file.) 
 
Often, you may want to define the same values for a large number of indicators. To 
avoid having to edit each indicator individually, first edit just one of them and click 
Apply current settings to (sub)set of indicators… for the ‘multi-update’ screen (Figure 
D3.2). 
 

 
Figure D3.2 Indicator multi-update screen. 
 
The settings for the indicator you have just edited appear at the left of the screen, and 
a list of all other indicators appears at the right. Select and highlight all the indicators 
you wish to apply these settings to. (Clicking the indicator name in the list selects the 
indicator; to select more than one indicator, hold down the keyboard Ctrl key when 
making each new selection.) Click OK to close the multi-update screen and return to 
the indicator definition screen. 
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When you have completed editing for each of the indicators, click Overview to check 
the values. The indicator overview screen (Figure D3.3) shows a summary of the 
boundary values for each indicator. 
 

 
Figure D3.3 Indicator overview screen. 
 
The boundary values for training or display can be viewed by clicking the appropriate 
tab at the top of the screen. If you wish to accept the values shown, click Create file to 
save the information as an indicators file: a standard Windows dialogue box enables 
you to choose a file name and location. If you wish to change some of the information, 
click Edit individual indicators to continue editing. 
 
Click Return to main menu to exit the indicator definition screen (or indicator overview 
screen) – you will be prompted to confirm this choice, as a reminder to save any 
changes. 
 
 

3.2.  Base map 
 
Part of MIR-max data visualisation is based on ‘feature maps’ – an organisation of data 
clusters in a fixed output space. To define this output space (the ‘base map’), choose 
the option Create a ‘base map’ file from the main menu (Figure D2.1). The base map 
definition screen (Figure D3.4) will appear. Select the topology and shape of the 
required output map, and enter the dimensions in the adjacent boxes. Click Preview to 
see what the chosen map looks like and how many ‘nodes’ (or separate output 
locations) there are. 
 

 
Figure D3.4 Base map definition screen. 
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When you have chosen the map you would like to use, click Create file to store the 
map as a file. A standard Windows dialogue box allows you to choose the file name 
and location. 
 
Click Return to main menu to exit the base map definition screen. 
 

3.3.  MI-max clustering 
 
To analyse the data and create clusters using MI-Max, select the option MI-Max 
clustering from the main menu (Figure D2.1). The MI-Max clustering screen appears 
(Figure D3.5). Enter the number of clusters you would like to use, then click Go. 
 

 
Figure D3.5 MI-max clustering screen. 
 
You will then be asked to select the indicators file and data file, using standard 
Windows dialogue boxes. The files are read by MIR-max; this initialisation may take a 
few seconds, after which you will be asked to input a ‘threshold’ value that determines 
how many training cycles MI-max should perform. MI-max clustering may take a long 
time, especially if there are a lot of indicators, clusters or data samples. The MI-max 
screen keeps the user informed of how many training cycles have passed, and the 
current mutual information value (which it is attempting to maximise). At any stage in 
the training, the user can choose to end the process by clicking Stop. 
 
When training has completed (or has been halted by the user), two files will 
automatically be created. These will be in the same location as the original data file, 
and take the same name but with ‘CLUSTERED’ and ‘CLUSTERS’ added, together 
with the number of clusters used and an index to avoid overwriting any previously 
created files. For example, clustering data from C:\Temp\MyData.csv into 25 clusters 
will produce the two files C:\Temp\MyData_CLUSTERED_25_1.csv and 
C:\Temp\MyData_CLUSTERS_25_1.csv. These are, respectively, the ‘clustered data 
file’ and the ‘clusters file’, and are required for viewing the clusters that have been 
created. 
 
Click Return to main menu to exit the MI-max clustering screen. 
 

3.4.  R-max ordering 
 
To arrange a set of data clusters in an output space, select the option R-Max ordering 
from the main menu (Figure D2.1). The R-Max ordering screen appears (Figure D3.6). 
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Figure D3.6 R-max ordering screen. 
 
Click the Indicators, Base map and Clusters buttons to enter the file names and 
locations of the files, using standard Windows dialogue boxes, then click Go to start the 
R-max ordering process. You will be asked to input the maximum number of cycles for 
which R-max should run, and to define/select a file to store the output (using a 
standard Windows dialogue box). This output file is referred to as the mapping file, and 
simply specifies a mapping between the nodes in the chosen output map and clusters 
from the clusters file; if you are working with files based on the original main data file 
C:\Temp\MyData.csv (for example), you should choose a related ‘meaningful’ filename 
such as C:\Temp\MyData_MAPPING_1.csv. When a mapping file has been chosen, 
the R-max process will begin. R-max ordering may take a long time to complete, 
particularly if there are a large number of indicators or clusters, or if the output map is 
large. The user is kept informed of how many cycles have passed, and the current 
value of the regression coefficient R (which R-Max attempts to maximise) as well as 
the highest value of R so far achieved. Whenever a higher value of R is achieved, a file 
is created (or updated if the file already exists) to store the current mapping between 
clusters and base map locations. The R-Max process can be halted at any time by 
clicking Stop. 
 
Click Return to main menu to exit the R-Max ordering screen. 
 

3.5.  Main data viewer 
 
The results of MIR-Max clustering and ordering can be viewed by selecting View 
clustered and ordered data from the main menu (Figure D2.1). This option requires a 
‘configuration file’ – a plain text file that specifies the locations of the various files 
required by MIR-max (see Section 4.8). Configuration files can be created using the 
Create a configuration file option, which displays the configuration file creation screen 
(Figure D3.7). 
 

 
Figure D3.7 Configuration file creation screen. 
 
Type in the names of the various files (including the full pathname), or click the file 
buttons to select using standard Windows dialogue boxes. When all the information 
has been correctly filled in, click Create configuration file to create the file. Again, a 
standard Windows dialogue box enables you to specify the file name and location. 
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On selecting View clustered and ordered data from the main menu, you are asked to 
choose the appropriate configuration file. MIR-max then reads the files and initialises 
the system. This may take a short while; a series of bars keep the user informed of 
progress. When initialisation is complete, the main data viewer is displayed (Figure 
D3.8). 
 
On the left of the main viewer is the output map. Each cluster is represented as a 
coloured circle showing the average value of the currently selected indicator for that 
cluster. If the circle is grey, there is not enough information for that cluster to provide an 
average value. By default, the first indicator is displayed; to change to a different 
indicator, use the drop-down list below the map. 
 
At the right of the screen is a set of six tabbed panels: About MIR-max, Template, 
Report, Print, Archive samples and Input samples. By default, the About MIR-max 
panel is displayed initially. This gives information about MIR-max, repeating the original 
disclaimer and providing a reference to the CIES website. (In future versions, this panel 
is intended to provide interactive help and information functions for the user.) Each 
panel is selected by clicking its title ‘tab’. 
 

 
Figure D3.8 Main data viewer. 
 
3.5.1. Template panel 
 
The Template panel displays a bar chart or ‘template’, each indicator represented by a 
separate bar. Initially this will be blank, because no cluster has been selected. To 
select a cluster, click the coloured circle on the output map at the left of the screen. The 
cluster is highlighted by a blue circle and becomes the ‘current cluster’. The current 
cluster can be changed at any time by clicking on the output map. The average values 
of each indicator for samples in the current cluster are displayed as blue bars on the 
Template panel, scaled between the minimum and maximum recorded indicator values 
(Figure D3.9). 
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Figure D3.9 Highlighted cluster, and Template panel. 
 
If an archive or input sample has been selected, the actual values recorded for that 
sample can also be displayed on the Template panel for comparison with cluster 
averages (Figure D3.10). Archive samples use a red bar, and input samples use a 
green bar. The key at the bottom of the Template screen shows which cluster, archive 
sample and input sample are currently chosen. 
 

 
Figure D3.10 Template panel with archive sample selected. 
 
3.5.2. Report panel 
 
The Report panel (Figure D3.11) provides a summary of information about the current 
cluster. The unique cluster ID number and coordinates of the cluster on the output map 
are given, together with the total number of samples in the cluster. This information is 
followed by a list of average, minimum and maximum values of each of the indicators 
for the current cluster, and number of samples in the cluster for which information was 
available for that indicator. Below this information is another list, which gives the ID 
numbers and names of all samples in the cluster. 
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Figure D3.11 Report panel. 
 
3.5.3. Archive samples panel 
 
The Archive samples panel (Figure D3.12) enables the user to view information about 
a particular sample that was used in the MIR-max training process. (An ‘archive’ 
sample is one that appeared in the original data file used when training MIR-max.) 
 

 
Figure D3.12 Archive samples panel. 
 
An archive sample is selected using the drop-down list at the top of the panel. The 
sample ID number and name are shown, together with a list of values for each 
indicator, and the ID and coordinates of the cluster to which it belongs. Click Set 
current archive sample to set this sample as the current one (which is displayed on the 
output map and on the Template panel). The cluster to which the current archive 
sample belongs is highlighted on the output map by a red circle. (If this is also the 
current cluster, the red sample highlight overrides the blue cluster highlight.) 
 
3.5.4. Input samples panel 
 
A ‘new’ sample – one that did not appear in the original data file and so was not used in 
the MIR-max training process – is referred to as an ‘input sample’. Input samples are 
entered from comma-delimited files, using the Input new data button on the Input 
samples panel (Figure D3.13). Once the data has been entered, input sample 
information can be viewed in the same way as archive sample information. Click Set as 
current input sample to set the selected sample as the current one (which is displayed 
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on the output map and on the Template panel). As the input samples are ‘new’ to the 
system, MIR-max has to find which is the ‘best matching’ cluster and allocates the 
sample to this cluster. The cluster is highlighted by a green circle (which overrides the 
blue cluster highlight and red archive sample highlight if necessary). The output map 
displays which cluster is considered the ‘best’, and also gives an indication of which 
other clusters provide a possible match: clusters are colour-coded using a grading from 
white (no match) to yellow (best match). 
 

 
Figure D3.13 Input samples panel, with selected sample allocated to cluster. 
 
3.5.5. Other functions 
 
The Print panel enables the user to create a printout of the summary information for the 
current cluster, current archive sample, or current input sample. 
 
The Copy button produces a new window that displays a copy of the current output 
map; this is useful for comparing feature maps. 
 
Click Return to main menu to exit the MIR-max main data viewer. 
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4. File Formats 
 
4.1 General 
 
With the exception of ‘configuration files’, files used by MIR-max are comma-delimited 
files (which take a .csv filename extension). These can be edited using any standard 
text editor (such as Notepad) or spreadsheet (such as Excel). The data files contain the 
‘raw data’ provided by the user; other files are created automatically using MIR-max 
(although they can still be edited using a text editor or spreadsheet). Each file begins 
with a line giving headings for the spreadsheet columns. If the first column heading 
starts with the letters ‘ID’, Excel may throw an error (‘SYLK: File format is not valid’). 
The first heading should instead be ‘Indicator ID’ or ‘Sample ID’, for example, to avoid 
this error. 
 
4.2 Data files 
 
Comma-delimited (.csv) files. 
 
Sample Name/ID, Indicator 1, Indicator 2 …Indicator n. 
 
 

4.3 Indicator files 
 
Comma-delimited (.csv) files. 
 
Indicator ID, Name, Units, Use in training?, Minimum, Maximum, Number of training 
categories, Training category bound 1, Training category bound 2 and so on, Number 
of display categories, Display category bound 1, Display category bound 2 and so on. 
 
 

4.4 Base map files 
 
Comma-delimited (.csv) files. 
 
Node ID, X coordinate, Y coordinate. 
 
 
4.5 Clustered data files 
 
Comma-delimited (.csv) files. 
 
Sample ID, Name, Indicator 1, Indicator 2 …Indicator n, Cluster ID. 
 
 
4.6 Cluster files 
 
Comma-delimited (.csv) files. 
 
Cluster ID, Measure, Indicator 1, Indicator 2 …Indicator n. 
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Each cluster has information on seven ‘measures’ for each indicator, so seven lines are 
used: 
 

Cluster ID, No. of samples,   Ind. 1, Ind. 2, … ,Ind. n 
Cluster ID, Average value,    Ind. 1, Ind. 2, … ,Ind. n  
Cluster ID, Minimum value,    Ind. 1, Ind. 2, … ,Ind. n  
Cluster ID, Maximum value,    Ind. 1, Ind. 2, … ,Ind. n 
Cluster ID, Average category, Ind. 1, Ind. 2, … ,Ind. n 
Cluster ID, Minimum category, Ind. 1, Ind. 2, … ,Ind. n 
Cluster ID, Maximum category, Ind. 1, Ind. 2, … ,Ind. n 

 
4.7 Mapping files 
 
Comma-delimited (.csv) files. 
 
Node ID, Cluster ID. 
 
4.8 Configuration files 
 
Plain text (.txt) files. 
 
Indicator file name/location. 
Archive samples (clustered) file name/location. 
Clusters file name/location. 
Base map file name/location. 
Mapping file name/location. 
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explore our extensive web pages at: 
 

 http://www.cies.staffs.ac.uk 
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Appendix E 
 
PISCES codes for sector, activity and pressure 
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Code Sector 
1 Agriculture (including forestry) 
2 Water industry 
3 Urban (built development) 
4 Navigation (including ports and inland) 
5 Mining, quarrying and aggregate extraction 
6 Industry and business  - other 
7 Industry and business  - power generation 
8 Industry and business  - manufacturing 
9 Industry and business - construction 
10 Transport - roads 
11 Transport - rail 
12 Transport - shipping 
13 Private water treatment 
14 Flood risk management 
15 Natural processes 
16 Waste 
17 Recreation 
18 Fishing (commercial) 
19 Biodiversity/conservation 
20 Unknown 
21 Transport - aviation 
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Code Activity 
1 Abstraction (SW) 
2 Abstraction (GW) 
3 Hydro power flow alterations 
4 Reservoir or augmentation related flow alterations 
5 Water discharge from GW 
6 Water discharge from river transfer 
7 Managed flow regime (e.g. compensation, augmentation) 
8  
9 Intermittent discharge (not CSO or SSO) 
10 STW discharge (SW) - combined sewer overflow 
11 STW discharge (SW) - septic tank 
12 STW discharge (SW) - storm sewer overflow 
13 STW discharge (SW) - treated STW effluent 
14 Water treatment works discharge 
15 Misconnections 
16 Industrial discharge 
17 Pollution incident 
18 Air emissions (atmospheric deposition) 
19 Coal mine drainage 
20 Metal mine drainage 
21 Mine spoil heaps 
22  
23 Livestock bank-side erosion 
24 Rural track run-off 
25 Land drainage 
26 Habitat management 
27 Bank reinforcement 
28 Culverts 
29 Barrages 
30 Weirs, penstocks, locks and sluices 
31 Realignment, re-profiling and re-grading 
32 Shoreline reinforcement 
33 Land claim 
34 Dredging (sediment management) 
35 Dredging (commercial fishing and shellfish) 
36 Aggregate extraction 
37 Quarrying 
38 Cable laying 
39  
40 Farming - arable 
41 Farming - livestock other (e.g. manure management) 
42 Farming - other 
43 Afforestation 
44 Agri-industry - dairy 
45 Agri-industry - food processing 
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46 Agri-industry - other 
47 Water cress beds 
48  
49 Fish stocking 
50 Fishing - commercial (not habitat effect) 
51 Fish farming 
52 Fishing  - recreation 
53  
54 Weed management 
55  
56 Illegal introduction of species 
57 Natural expansion of species distribution 
58  
59 Navigation (e.g. boat traffic/commercial shipping) 
60 Boat moorings 
61  
62 Non-ag diffuse pollution - airport 
63 Non-ag diffuse pollution - roads 
64 Non-ag diffuse pollution - current waste disposal 
65 Non-ag diffuse pollution - historic waste disposal 
66 Non-ag diffuse pollution - contaminated land 
67 Non-ag diffuse pollution - industry 
68 Non-ag diffuse pollution - railway 
69 Non-ag diffuse pollution- urban/sub-urban development 
70  
71 Natural processes e.g. natural mineralisation 
72 Natural bank erosion 
73 Problem with sample 
74  
75 Climate change 
76  
77 Unknown 
78 Construction 
79 Steel making, basic slag 
80 Non-ag diffuse pollution – other 
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Code Pressure 
1 Reduced volume of water 
2 Increased volume of water 
3 Increased flow 
4 Decreased flow 
5  
6 Physical modification 
7 Noise/vibration 
8  
9 Alien species (add specific species) 
10 Fish disease 
11 Fish predation 
12 Biota removal 
13  
14 1,1,1-trichloroethane 
15 1,1,2-trichloroethane 
16 1,2,3-trichlorobenzene 
17 1,2,4-trichlorobenzene 
18 1,2-dichloroethane 
19 1,3,5-trichlorobenzene 
20 2,4 D Esters TOTAL 
21 2,4,6-trichlorophenol 
22 2,4-d (non ester) 
23 2,4-d butyl ester (2,4 dichlorophenoxyacetic acid butyl ester) 
24 2,4-d butylglycol ester (2,4 dichlorophenoxyacetic acid butyl glycol ester)
25 2,4-d iso-octyl ester (2,4 dichlorophenoxyacetic acid iso-octyl ester) 
26 2,4-d methyl ester (2,4 dichlorophenoxyacetic acid methyl ester) 
27 2,4-dichlorophenol 
28 2,5-dichlorophenol 
29 2,5-dimethylphenol 
30 2-chloro-4-nitrotoluene 
31 2-chloro-5-nitrotoluene 
32 2-chloro-6-nitrotoluene 
33 2-chlorophenol 
34 2-methylphenol 
35 3-methylphenol 
36 4-chloro-2-nitrotoluene 
37 4-chloro-3-methylphenol 
38 4-chloro-3-nitrotoluene 
39 Aldrin 
40 Aluminium sulphate 
41 Ammonia 
42 Anthracene 
43 Arsenic 
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Atrazine 44 
45 Azinphos-methyl 
46 Barium 
47 Bentazone 
48 Benzene 
49 Benzo-[A]-pyrene 
50 Benzo-[B]-fluoranthene 
51 Benzo-[K]-fluoranthene 
52 Benzo-ghi-perylene 
53 Biphenyl 
54 BOD 
55 Boron 
56 Cadmium 
57 Carbon tetrachloride 
58 Chloride 
59 Chlorofenvinphos 
60 Chloroform (trichloromethane) 
61 Chloronitrotoluenes total 
62 Chloropyrifos 
63 Chromium 
64 Colour 
65 Conductivity 
66 Copper 
67 Cyanide 
68 Cyfluthrin 
69 Cypermethrin 
70 DDE (pp) (dichlorodiphenyldichloroethylene) 
71 DDT (op) (dichlorodiphenyltrichloroethane) 
72 DDT (pp) (dichlorodiphenyltrichloroethane) 
73 DDT total (dichlorodiphenyltrichloroethane) 
74 Demeton-O 
75 Demeton-O-methyl 
76 Demeton-S 
77 Demeton-S-methyl 
78 Demeton-S-methyl sulphone 
79 Demetons 
80 Detergents anionic synthetic (surfactants) 
81 Detergents non-anionic synthetic (surfactants) 
82 Di(2-rthylhexyl)phthalate 
83 Diazinon 
84 Dichloromethane 
85 Dichlorvos 
86 Dieldrin 
87 Dimethoate 
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Dissolved oxygen 88 
89 Diuron 
90 Drins total (Aldrin, Dieldrin, Endrin, Isodrin) 
91 Endosulphan a 
92 Endosulphan A&B 
93 Endosulphan b 
94 Endrin 
95 Enterovirus 
96 Faecal coliforms (Confirmed) 
97 Faecal streptococci (Confirmed) 
98 Fenitrothion 
99 Flucofuron 
100 Fluoranthene 
101 Fluoride 
102 HCH (hexachlorocyclohexane) 
103 Hexachlorobenzene 
104 Hexachlorobutadiene 
105 Hydrocarbons 
106 Indeno-[1,2,3-CD]-pyrene 
107 Iron 
108 Iron sulphate 
109 Isodrin 
110 Isoproturon 
111 Lead 
112 Linuron 
113 Malathion 
114 Manganese 
115 MCPA 
116 Mecoprop 
117 Mercury 
118 Mevinphos 
119 Microbiology (not specified) 
120 Napthalene 
121 Nickel 
122 Nitrate 
123 Nitrite 
124 Nonylphenol 
125 Octylphenol 
126 Omethoate 
127 PAH total (polycyclic aromatic hydrocarbons) 
128 Parathion 
129 PCBs 
130 PCSDs (polychloro chloromethyl sulphonamido diphenyl ether) 
131 Pentachlorophenol 
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Perchloroethylene (tetrachloroethene) 132 
133 Permethrin 
134 pH 
135 Phenol 
136 Phosphate 
137 Salinity 
138 Salmonella 
139 Sediment (including suspended solids) 
140 Selenium 
141 Silver 
142 Simazine 
143 Sulcofuron 
144 Sulphate as SO4 
145 TDE (pp) (tetrachlorodiphenylethane) 
146 Temperature 
147 Toluene 
148 Total Coliforms (Confirmed) 
149 Triazophos 
150 Tributyltin 
151 Trichlorobenzene total 
152 Trichloroethylene 
153 Trifluralin 
154 Triphenyltin 
155 Vanadium 
156 Xylene 
157 Zinc 
158  
159 Disinfectant 
160 Metals 
161 Nutrients 
162 Organics 
163 Pesticides - sheep dip 
164 Pesticides - other 
165 Sanitary 
166  
167 Unknown 
168 Pesticides - herbicides 
169 Cave 
170 Drought 
171 Flood 
172 Freshwater but tidal 
173 Heavily shaded 
174 Lake or pond close u/s 
175 Moorland drainage 
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Reedbed 176 
177 Winterbourne/non-permanent stream 
187 Other natural feature 
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Appendix F 
 
Stress categories and associated activity, source and 
pressure codes 
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Stress 
code 

Stress 
Source Stress category Stress type 

PISCES 
pressure 
code 

PISCES 
activity 
code 

PISCES 
sector 
code 

AD Pollution Acid Acid deposition  018 007 

EX Pollution Acid Rock exposed by 
construction  078 009 

CF Pollution Agricultural run-
off Forestry (conifer)  043 001 

IA Pollution Agricultural run-
off Intensive arablisation  040 001 

SL Pollution Agricultural run-
off Livestock slurry  041 001 

SI Pollution Agricultural run-
off Silage  042 001 

AO Pollution Agricultural run-
off Other (specify)  042 001 

AB Pollution Agri-industry Abattoir/meat 
processing/rendering  045 006 

BR Pollution Agri-industry Brewery  045 006 
DA Pollution Agri-industry Dairy  044 006 
FL Pollution Agri-industry Flour mill  045 006 
MF Pollution Agri-industry Mushroom farm  042 006 
SU Pollution Agri-industry Sugar refinery  045 006 
TA Pollution Agri-industry Tanning/leather  046 006 
VE Pollution Agri-industry Vegetable processing  045 006 
WO Pollution Agri-industry Wool  046 006 
AI Pollution Agri-industry Other (specify)  046 006 
DF Pollution Farming Disinfectant 159 042 001 
FE Pollution Farming Fertilisers 161 040 001 
FF Pollution Farming Fish farming  051 001 
HE Pollution Farming Herbicides 168 040 001 
IN Pollution Farming Insecticides 164 040 001 
SD Pollution Farming Sheep-dip 163 041 001 
WC Pollution Farming Water cress beds  047 001 
FA Pollution Farming Other (specify)  042 001 

BW Pollution Industrial 
discharge Brick works  016 008 

CE Pollution Industrial 
discharge Cement works  016 008 

DY Pollution Industrial 
discharge Coloration (dye)  016 008 

CW Pollution Industrial 
discharge Cooling water (warm) 146 016 007 

DE Pollution Industrial 
discharge Detergent  016 008 

HI Pollution Industrial 
discharge Heavy industry  016 008 

LI Pollution Industrial 
discharge 

Light 
industry/commercial  016 006 

PM Pollution Industrial 
discharge Paper mill  016 008 

PC Pollution Industrial 
discharge 

Petrochemicals (mfr & 
distribution) 162 016 008 

PL Pollution Industrial 
discharge Plating  016 008 
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ID Pollution Industrial 
discharge Other (specify)  016 006 

CB Pollution Mines, quarries & 
extractions Brick-clay extraction  036 005 

CC Pollution Mines, quarries & 
extractions China-clay extraction  036 005 

CM Pollution Mines, quarries & 
extractions Coal mine drainage  019 005 

MM Pollution Mines, quarries & 
extractions Metal mine drainage  020 005 

QA Pollution Mines, quarries & 
extractions Quarry (acid rock)  036 005 

QB Pollution Mines, quarries & 
extractions 

Quarry 
(limestone/chalk)  036 005 

SG Pollution Mines, quarries & 
extractions Sand & gravel  036 005 

MI Pollution Mines, quarries & 
extractions Other (specify)  079 005 

AF Pollution Run-off (non-
agric.)/Leachate 

Aircraft/airfield de-icing 
(specify)  062 021 

BU Pollution Run-off (non-
agric.)/Leachate 

Building/road 
construction  063 009 

DL Pollution Run-off (non-
agric.)/Leachate Domestic landfill  064 016 

FY Pollution Run-off (non-
agric.)/Leachate Fly tipping  064 016 

HR Pollution Run-off (non-
agric.)/Leachate Heavy industry  067 008 

HY Pollution Run-off (non-
agric.)/Leachate 

Highway (incl. De-icing 
salt) 137 063 010 

LR Pollution Run-off (non-
agric.)/Leachate 

Light 
industry/commercial  067 006 

RU Pollution Run-off (non-
agric.)/Leachate 

Motorway (incl. De-
icing urea) 162 063 010 

RR Pollution Run-off (non-
agric.)/Leachate Railway  068 011 

SY Pollution Run-off (non-
agric.)/Leachate Scrap yard  064 006 

SH Pollution Run-off (non-
agric.)/Leachate Slag heap  079 007 

TI Pollution Run-off (non-
agric.)/Leachate Toxic/industrial landfill  066 016 

TY Pollution Run-off (non-
agric.)/Leachate Tyres  064 006 

UR Pollution Run-off (non-
agric.)/Leachate Urban/suburban  069 003 

RO Pollution Run-off (non-
agric.)/Leachate Other (specify)  080  

GR Pollution STW to aquifer Via groundwater 
recharge  005 002 

CS Pollution STW to river Combined sewer 
overflow (CSO)  010 002 

SE Pollution STW to river Septic tank  011 002 
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SS Pollution STW to river Storm sewer overflow 
(SSO)  012 002 

TS Pollution STW to river Treated STW effluent  013 002 
ST Pollution STW to river Other (specify)  080 002 
AS Pollution WTW Aluminium sulphate 040 014 002 
FS Pollution WTW Iron sulphate 108 014 002 
SW Pollution WTW Swimming pool  014 002 
WT Pollution WTW Other (specify)  014 002 

SB Activities Artificial bank at 
site 

Consolidated 
(stone/brick/concrete) 006 027  

GA Activities Artificial bank at 
site Gabions 006 027  

SP Activities Artificial bank at 
site Metal piling 006 027  

UC Activities Artificial bank at 
site 

Unconsolidated (rip-
rap/boulders) 006 027  

AT Activities Artificial bank at 
site Other (specify) 006 027  

EC Activities Bank erosion at 
site Clay 006 072  

EG Activities Bank erosion at 
site Gravel, boulder 006 072  

ES Activities Bank erosion at 
site Sand 006 072  

BM Activities Bank practices at 
site Boat moorings 006 060 004 

LV Activities Bank practices at 
site 

Livestock 
poaching/overgrazing 006 023 001 

MO Activities Bank practices at 
site 

Mown/managed 
riparian zone 006 054  

BP Activities Bank practices at 
site Other (specify) 006   

DI Activities Channel at the 
site Artificial ditch or dyke 006 025  

BE Activities Channel at the 
site Bedrock 015 071  

BG Activities Channel at the 
site Bridge 006  021 

CN Activities Channel at the 
site 

Canal (artificial 
navigation) 006 027 004 

CA Activities Channel at the 
site 

Canalised stream/river 
(non-navigation) 006 027  

CH Activities Channel at the 
site 

Choked channel 
(>33% plant) 006 071  

BD Activities Channel at the 
site Concrete stream bed 006 027  

CU Activities Channel at the 
site Culvert 006 028  

DN Activities Channel at the 
site Dredging 006 034 004 

RN Activities Channel at the 
site 

River navigation (locks 
etc) 006 030 004 

RA Activities Channel at the 
site River restoration 006 026 019 

WD Activities Channel at the 
site Weed cutting 006 054 014 

AN Activities Channel at the 
site Other (specify) 006   
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GS Activities Eroded material 
in channel Gravel, boulder 139   

IS Activities Eroded material 
in channel Inert siltation 139   

GW Activities Flow-related Augmentation from 
groundwater 002 005 002 

RT Activities Flow-related Augmentation from 
river transfer 002 004 002 

CD Activities Flow-related Cessation of STW 
discharge 001 007 002 

AG Activities Flow-related Groundwater 
abstraction 001 002 002 

HW Activities Flow-related Hypolimnic water  004 002 

PF Activities Flow-related Ponded flow  
(lake/reservoir d/s) 004 007 002 

RF Activities Flow-related Regulated flow 
(lake/reservoir u/s)  007 002 

AR Activities Flow-related River abstraction 001 001 002 
PN Activities Flow-related Summer penning  030 001 
WE Activities Flow-related Weirs  030 002 
FR Activities Flow-related Other (specify)    
RI Activities Reclaimed land Industrial  033 006 
OC Activities Reclaimed land Opencast  033 005 
RL Activities Reclaimed land Other (specify)  033  
CV Natural Natural features Cave 169 071 015 
DT Natural Natural features Drought 170 071 015 
FD Natural Natural features Flood 171 071 015 
FT Natural Natural features Freshwater but tidal 172 071 015 
HS Natural Natural features Heavily shaded site 173 071 015 
LP Natural Natural features Lake or pond close u/s 174 071 015 
MD Natural Natural features Moorland drainage 175 071 015 
RB Natural Natural features Reedbed at the site 176 071 015 

WI Natural Natural features Winterbourne/non-
permanent stream 177 071 015 

LU Natural Natural features Other (specify) 178 071 015 

AC Survey Sampling 
difficulty 

Access to one bank 
only *  073 019 

AL Survey Sampling 
difficulty Air-lift *  073 019 

BO Survey Sampling 
difficulty Bouldery site  073 019 

DR Survey Sampling 
difficulty Dredge *  073 019 

MS Survey Sampling 
difficulty Mobile substrate  073 019 

DS Survey Sampling 
difficulty Other (specify)  073 019 

BS Survey Sorting problem Bank-side sort *  073 019 

PR Survey Sorting problem Poorly preserved 
sample  073 019 

NI Negatives No information  No information *    

NP Negatives No perceived 
stress No perceived stress *    

MY Negatives Stress not 
identified Unknown source 167   
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EF Effects Eutrophication Agriculture 161  001 
EA Effects Eutrophication Angling 161 052 017 
EE Effects Eutrophication Sewage 161  002 
EW Effects Eutrophication Wildfowl 161 071  
EO Effects Eutrophication Other (specify) 161   

TX Effects Historical activity 
(now ceased) Toxic sediment    

DC Effects No flow Dry channel (caused 
by man) 001   

CO Effects Oils, 
petrochemicals Crude 162   

FO Effects Oils, 
petrochemicals Fuel (diesel/petrol) 162   

LO Effects Oils, 
petrochemicals Lubricating 162   

TO Effects Oils, 
petrochemicals Tar/bitumen 162  009 

VO Effects Oils, 
petrochemicals Vegetable 162  006 

OI Effects Oils, 
petrochemicals Other (specify) 162   

CL Effects Other indicators Cladophora    
OH Effects Other indicators Ochre    
SF Effects Other indicators Sewage fungus    
IL Effects Saline Industrial discharge 137 016  
IG Effects Saline Inland geological 137 071 015 

MA Effects Saline Marine or estuarine 
origin 137 071 015 

SA Effects Saline Other (specify) 137   
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1. Introduction 
 

1.1 Background 
 
BBN Creator is a system created to automate some of the tasks involved in the 
construction of Bayesian Belief Network (BBN) and works in collaboration with the 
HUGIN Bayesian Belief Network development software. The application itself is a more 
refined version of pieces of software used as part of a research project concerning river 
pollution in England and Wales.  
 
The original software was used to produce a general pollution diagnostic BBN, which is 
the basis for the software package RPBBN (River Pressure Bayesian Belief Network). 
The software consisted of a number of VBA (Visual Basic for Applications) functions 
that were designed specifically to be used with the project data, Microsoft® Excel® and 
the HUGIN API (Application Programmers Interface). These functions automated 
construction, data analysis and testing tasks and significantly reduced network 
development time. 
 
The need to use these functions on other datasets and third party interest led to the 
functions being made generic and grouped into a module. This BBN creation module 
could be imported into an Excel® workbook and used in conjunction with the data. 
Although the module was efficient and robust, it required some familiarity with 
computer programming. Therefore, the next step in this development process was to 
provide a graphical user interface to simplify interaction with the module. The result is 
the BBN Creator application, which provides the benefits of the BBN creation module 
without the need for computer programming skills. 
 
Short-term development goals of the software will involve improving input and output 
and a move away from using the HUGIN API and toward integration with the dBBN, 
which is CIES’s own implementation of BBN technology developed for RPBBN. In the 
long-term the two packages could be merged fully to provide a full development suite 
with task automation. 
 

1.2 Bayesian Belief Networks 
 
Bayesian Belief Networks (BBN) are a probabilistic reasoning tool. This means that 
given a number of observations they produce likelihood values for the possible states 
of other variables in the network. A simple example of a BBN is the 'Chest Clinic' 
network (see Figure G1.1). Observations about smoking, recent health and/or x-ray 
results can be combined to predict whether a patient is more likely to be suffering from 
tuberculosis or cancer. The strength of BBN technology is the flexibility of the 
reasoning process. Observational data can be entered or retracted from any part of the 
network. The implications of this change propagate in all directions throughout the 
network diagnostically and prognostically.  
 
A BBN comprises of two distinguishable components  
 

• A network structure, consisting of nodes/vertices and relationships/arcs.  
 
• Tables of associated probabilities, consisting of the probability of a state 

occurring given the state of any 'parent' nodes.   
 
Note: The relationships are directed in BBN; causal factors from which the relationship 
arrows originate are often called 'parents', while the affected nodes are called 'children'.  
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Figure G1.1 Chest clinic example network structure.   
 
The structure of the network contains knowledge about the area of expertise. Causes 
and effects are mapped out providing a basis for the reasoning process. Each node in 
the network has an associated table of probability values. Figure G1.2 shows one such 
table, in this case the table associated with the node 'Positive X-ray?' taken from the 
example network. 
 
 

 
 
Figure G1.2 Probability table associated with positive X-ray? 
 
The table is comprised of probability values for states of the variable, for each 
combination of states of the parent(s). For example here 'Positive X-ray' has the states 
'Positive' and 'Negative' shown in the left column. It only has one parent 'Tuberculosis 
or cancer' that also has two states 'yes' and 'no' (the patient either has TB and/or 
Cancer or not). Therefore the number of values needed to complete a child node’s 
probability table is directly linked to the number of states of the child and its parent(s). 
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From the network structure and probability tables, likelihood values can be calculated 
for each state of a node based on that of its parents and any observational data 
entered. The calculations are not complicated; multiplication is used in the causal 
direction as it is used with normal probability calculations. For calculations that go in 
the opposite direction, from effect to cause, the Bayes Theorem and equation is used. 
 
 
Probability of (B given A) = Probability of (A given B) × Probability of (A) 

Probability of (B) 
                                
 
The advantage of using these methods of updating likelihood values is that they are 
mathematically sound. Therefore, unlike some other quasi-probabilistic methods, BBNs 
offer a reliable method of calculating and propagating likelihood values for any of the 
nodes throughout a network, based on new or updated observational data and/or 
likelihood values. 
 

1.3 Using BBN output 
 
The output form of a BBN is the updated likelihood values for the occurrence of a 
specific variable’s states. In the case of the example network, this is the probability of 
the patient having a specific disease. The main difference between a BBN’s output and 
that of a predictive system such as a multiple regression model is that the results are 
only a measure of likelihood and not a predicted value. For example, a BBN model 
designed to predict pH would produce a measure of likelihood of a specific state 
occurring, that is 75 per cent likelihood that the value is between pH 5 and 7. On the 
other hand a multiple regression model will predict an actual pH value, pH 5.67. 
Although this appears to be an obvious point as BBNs are probabilistic reasoning tool, 
it is worth reiterating that the output of BBN systems is distinctly different from 
predictive methods. 
 

 
 Figure G1.3 pH prediction chart. 
 
The output from BBN is usually presented in both graphical and numeric formats. In the 
example illustrated in Figure G1.3 it appears that the pH value is most likely in the 
range 7.7 to 8.0, whilst the other nodes in the network are in their current states, 
although the level of likelihood means that this conclusion is far from certain. 
 
Understanding the output of a BBN is largely dependent on appreciating the form and 
meaning of the results and using this information accordingly. 
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2.  Using BBN Creator 
 
 

2.1  Installing BBN Creator 
 
BBN Creator is a Window 32-bit application and runs on Windows 9.x, NT and 2000. 
The BBN Creator installation program is supplied on a CD-ROM that is configured to 
automatically start installation when the disk is inserted. If it does not, use Windows 
Explorer/My Computer to view the contents of the CD-ROM and then double click 
'setup.exe' 
 
 

2.2  The BBN Creator Interface 
 
The main BBN Creator interface provides the option of performing seven automated 
tasks (see Figure G2.1). Used in conjunction with HUGIN the application is intended to 
act as an aide in the construction process.  
 

 
    Figure G2.1 BBN Creator main screen. 
 
The first four options are intended to simplify and/or automate tasks that are 
cumbersome to perform using the HUGIN interface. The remaining options perform 
more complicated tasks aimed to help the user to improve the BBN design.     
 

2.3 Create BBN Information File 
 
A BBN information file (bif) contains vital information about the variables used in a 
specific BBN, such as name, data type, number and name of states and state mean 
values. This file is used in the majority of tasks that BBN Creator performs and creating 
it is the initial task to be performed in the creation process. On clicking the ‘Create BBN 
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Information File’ link an open file dialogue box is shown, choose the data file on which 
the BBN is to be based. After selecting the appropriate data file the ‘File specification’ 
screen is displayed. 
 

 
Figure G2.2 File specification screen. 
 
The ‘File specification’ screen is used extensively in BBN Creator. Its purpose is to 
obtain information about the formatting of the data file from the user, such as delimiting 
characters and text qualifiers. The effect of specifying these values is shown in the 
‘Data Preview’ box. 
 
Clicking the 'Next' button leads on to the next stage where the data is extracted from 
the file and reformatted. In addition to these processes the program makes a decision 
about whether each variable is discrete or continuous data. The status of this process 
is shown on the processing screen (see Figure G2.3). Again this screen appears 
throughout BBN Creator to give the user feedback on the status and speed of the 
processing.  
 

 
Figure G2.3 Processing status screen. 
 
After all the processing has taken place the final screen in the process is shown (see 
Figure G2.4). 
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Figure G2.4 BBN information definition screen. 
 
The screen has four main purposes: 
 

1. Select variables to be used in the BBN creation process. 
2. Check if the names of these variables can be used as node names or if 

they will have to be changed because they contain invalid characters. 
3. Define the type of data for each variable, either discrete or continuous. 
4. Define the states associated with each variable. 

 

2.3.1 Selecting variables 
 
Selecting and deselecting variables is achieved by clicking the corresponding check 
box.  

2.3.2 Checking names 
 
The range of characters that can be used in node names in HUGIN BBN is basically 
restricted to alphanumeric characters (“a-z”, “A-Z” and “0-9”) and the underscore 
character “_”. When names are loaded or changed they are checked for invalid 
characters. If they are invalid, names are greyed out. A variable with an invalid name 
will not be included in the BBN information file and so can take no part in the creation 
process. By double clicking on the correct box the value can be edited. When the 
editing process is finished, press ‘enter’ to update the name. 

2.3.3 Choosing a data type 
 
On loading the data, the system makes a decision on the data type of a particular 
variable, either discrete or continuous. The user has the option to alter the data type by 
clicking on the appropriate box and selecting the type from the list provided. 
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2.3.4 Defining States 
 
The process of defining states is different depending on the data type 
(discrete/continuous). 
 
Continuous data: states are defined by an upper bound value. These values are 
exclusive; the upper bound value is not part of the state. To help select states the 
maximum, minimum, spread of data and state bounds are shown along with a state 
graph (see Figure G2.4). 
 
States are defined by double clicking the boxes in the ‘Upper Bound’ column, typing a 
value and pressing enter. Additional states are added by clicking the ‘Add State’ button 
and entering a new value. As the state values are updated the numbers of samples in 
each state are shown in red on the graph below, those not yet allocated to a state are 
shown in grey. 
 
A state can be removed by clicking on the column and pressing the ‘Remove State’ 
button. 
 
If a variable has no existing state information it can be automatically initialised with a 
number of states. This is achieved by choosing the ‘Initialise with States’ option and 
specifying the required number of states in the ‘Number of States’ text box. The state 
bounds are derived by equally dividing the total range into the required number of 
states.   
 
Discrete data: the definition of discrete states is a different process and uses different 
methods than the definition of continuous states. A discrete variable produces a display 
similar to the one shown in Figure G2.5. 
 

 
Figure G2.5 Defining discrete states. 
 
 If a variable is defined as discrete, each different value is stored and allocated a state 
number. When a discrete variable is selected the full range of values are shown with an 
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identifying 'State No.'. Due to the nature of the data, the only processes that can be 
performed on discrete states are merging two states or splitting merged states apart.  
 
Unlike continuous variables, the states are altered by changing the 'State No.' to which 
they belong. Changing the 'State No.' to which a discrete value belongs either merges 
discrete values into a state or splits them apart.  
To merge states click on the ‘State No.' of the appropriate discrete value. A drop down 
list is shown with all the current 'State No.' values. By selecting the state number of one 
of the other states, the two will be merged. Using the example in Figure G2.5 the user 
has decided to merge the discrete value '3' with one of the other values. The 
corresponding 'State No.' box has been clicked and a list of other 'State No' values is 
shown. All the user has to do to merge value '3' with value '0' is choose its 'State No' 
value. In this case its 'State No.' value is one.   
 
Splitting variables is just as simple. Normally the drop down list box of 'State No.' 
values only displays the current values, which means a split operation would not be 
possible. However by clicking the 'Add State' button, a new 'State No.' is created 
temporarily in the list. By selecting this new 'State No.' value the discrete value will be 
allocated to this new 'State No.', in effect splitting it into a new state.  
 
When all the required states have been defined, press the 'Finish' button and specify 
the name of the new 'bif' file. 
 

2.4 Add nodes to a new or existing network 
 
The next step in the BBN creation process is to add the nodes defined in the BBN 
information file (bif) to a network. Using a 'bif' file, nodes can be created and 
information on the variable's states entered into these nodes automatically. The 
process can be performed using a data file, but as the data file contains no information 
on the states of variables, the process can only create and name the nodes. 
 
On following the 'Add Nodes to a New or Existing Network' link, an open file dialogue 
box is shown. The default prompt is for a 'bif' file, but other data files can also be 
selected. 
 
If a data file type is selected then the ‘File Specification' screen is shown (see Figure 
G2.2) and so information on the formatting of the file can be obtained. The 'Add Nodes' 
screen is then displayed (see Figure G2.6).  
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Figure G2.6 'Add Nodes' main screen. 
 
The variables defined in the 'bif' file or data file are displayed on the left. If a data file 
has been used as the source of names it is possible that the names cannot be used as 
a node name because they contain invalid characters. In these cases the names are 
displayed in red and the invalid characters edited out before they can be used to create 
a new node. The only information required is which of the variable names are to be 
used to create a node with the corresponding name in the network. Individual or 
multiple selections of names can be moved to and from the 'Node Names' list using the 
'>' import and '<' export button. All the names can be moved by the '>>' import all and 
'<<' export all buttons. 
 
If a 'bif' file has been used, the option to 'Create with State Information' is automatically 
selected, but it can be deselected if just the named nodes are required. In the case of 
data files, this option is not available as no state information exists.      
 
Pressing the 'Finish' button finishes the process. A save dialogue box is shown 
requesting the name of the network to which the nodes are to be added. An existing 
network can be selected or the name of the new network entered.  

 
2.5 Create links between nodes 
 
The next step is to create causal links within a network. Although this is usually 
performed manually, in some cases where a node or nodes need to be linked to a large 
number of other nodes this process can become tedious and time-consuming. 'Create 
Links' automates this process by allowing the user to specify the nodes between which 
a link is required and then creating them automatically. This process does not require a 
'bif' file, just a network.  
 
If the 'Create Links between Nodes' link is open, the Network dialogue box is displayed. 
After the user chooses the network to which the links are to be added, the main 'Create 
Links between Nodes' is displayed (see Figure G2.7). 
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Selection of parent and child nodes between which the links will be created involves 
using the '>' import and '<' export buttons to move names between lists. 
 
Once the selection of parent and child nodes has been made, the user can press 
'Finish' to create the links and save the network. Alternatively if a number of linking 
operations are to be performed, the user can click the 'Create Links' button. This 
creates the currently selected links then resets the screen for further operations. When 
the Linking process is complete the user is prompted for a new file name for the 
updated network.  
 

 
Figure G2.7 Main create links screen. 
 

2.6 Calculate BBN probability values 
 
Calculating the probability values for a network only requires the user to specify the 
network to be updated, the 'bif' associated with the network and the data file from which 
the probability values are to be obtained. In addition to this, the user specifies whether 
the probability values are to be 'raw' or 'zero-eliminated' probabilities and defines a 'M' 
constant if necessary. 
 
The algorithm used to calculate zero-eliminated probabilities is based on the m-
estimate (Cestnik, 1990). In the m-estimate approach, an extra m cases are added to 
the raw data distribution in proportion to the prior probability of (Ai, Bj). 
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Figure G2.8 Main calculate probabilities screen. 
 
All that is required is that the user provides the paths of the network to be updated, plus 
the bif file and data file involved. The user can specify the path by typing the value into 
the box or using the browse button. If the zero-eliminated probabilities option is 
selected, it is possible to supply a 'm' value in the box provided. If not, a default value is 
used.  
 
When the required information has been supplied, the ‘File Specification' screen is 
displayed to obtain information on the formatting of the data file. Clicking 'Finish' on this 
form causes the processing form to be shown displaying the progress of the calculation 
process. The network file selected is simply updated with the probability values so 
there is no 'Save as' prompt. 
 

2.7 Test network 
 
Testing a network requires three separate sets of information. First the input files: 
network, bif and data files for the specific BBN. Second, the test input is required, that 

14 Refinement of AI-based systems for diagnosing and predicting river health  



is, the nodes that are going to have evidence entered from the dataset. Third, the type 
of test output and the output files must be defined.  
 
Again, the process is simple and uses screens similar to those used elsewhere in BBN 
Creator. The form specifying the input file is almost the same as the 'Calculate 
Probabilities' screen. The path names for the files are required and the user can type 
the value in or use the browse button (see Figure G2.9). 
 

 
Figure G2.9 First screen of the test network process. 
 
After pressing 'Next', the ‘File Specification' screen is shown to obtain information on 
the formatting of the data file. The user is then required to enter the nodes that are to 
receive input during testing. This is done in the next screen 'Select Test Input Nodes' 
which uses a similar interface to other screens in BBN Creator. The names of the 
intended input nodes need to be imported into the 'Input Node Names' list. This list can 
be updated and changed via importing and exporting using the '>' and '<' buttons (see 
Figure G2.10).  
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Figure G2.10 Select test input nodes screen. 
 
Once the test input nodes have been selected, the next stage is to specify the types of 
result to record and the files in which to store the output values. 
 

 
Figure G2.11 Specification of output type. 
 
There are three main types of test result: 
 

1. Probability values for each state of the result nodes. 
2. A predicted state based on the highest probability. 
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3. A predicted value created by multiplying the probability value of each state 
by the mean value of the state obtained from the training data. 

 
Note: The predicted value using the Probability × Mean method is only valid for 
continuous type variables.  
 
The name and path of the new output file are then required. When complete, clicking 
'Finish' shows the processing screen with the progress of the testing procedure. 
 

2.8 Calculate mutual information ranking file 
 
Calculating a mutual information ranking file is entirely separate from the BBN creation 
process. Its purpose is to provide a ranking metric by which the value of linking nodes 
can be assessed so that the automated linking algorithm has criteria on which to make 
a decision. As such, any other method which is able to rank the value of relationships 
between variables, that is multiple regression, can be used. The output of this process 
is a matrix of mutual information values for the variables selected for comparison. The 
columns contain the values for 'parent' variables, the rows the values for 'child 
variables. 
 

 
Figure G2.12 Example mutual information ranking file. 
 
The process involves two stages. Firstly, the selection of a 'bif' file (which is used for 
the state data it contains) and a data file and secondly the parent and child variables to 
assess. 
 
The first screen is a standard BBN creator file selection form. Path and file names can 
be typed in or browsed for (see Figure G2.13). 
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Figure G2.13 Calculate mutual information ranking file input screen. 
 
The next screen ‘File Specification' is used to obtain information about the formatting of 
the data file. Moving on again to the 'Next' screen, a standard BBN Creator variable 
selection screen is shown (see Figure G2.14). 
 

 
Figure G2.14 Mutual information ranking variable selection screen. 
 
Values are not removed from the 'Variable Names' list, which allows an overlap 
between the parent and child selection. Pressing the 'Finish' button displays a 'Save 
As' dialogue box asking for a name for the new mutual information ranking file. Finally, 
the processing screen is shown with the progress of the procedure.  
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2.9 Automatically create links between nodes 
 
This process automatically creates links between nodes based on a ranking file. The 
process involves two stages and requires three pieces of information. The first stage is 
specification of the files involved which are network, bif and ranking file. The second 
stage is designed to obtain the three pieces of information required: 
 

1. List of potential parents and children involved in the process. 
2. Number of links to be created between parents and children. 
3. Whether the process should optimise links for predicting parents or 

children. 
 
The first screen displayed is a standard BBN creator file selection form. Path and file 
names can be typed in or browsed for (see Figure G2.15). 
 

 
Figure G2.15 Automatically Create Links file input screen. 
 
Once the files are specified the 'Next' screen displayed is a variation on the standard 
BBN Creator variable selection screen. In this case the parent and child variables 
specified in the ranking file are displayed on the left. Selecting these variables mean 
that the information will be used to link the corresponding parent or child node in the 
network. The screen also provides a box to specify the number of links to be created 
and option boxes for the optimisation of links, whether for predicting the parent or the 
child nodes (see Figure G2.16). 
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Figure G2.16 Specify parameters for Automatically Create Links process. 
 
Clicking on the 'Finish' button shows the processing screen with the progress of 
automatically creating links procedure. There is no 'Save As' dialogue box as the 
network involved is updated and saved.  
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4. File Formats 
4.1 General 
 
All data files created by BBN Creator are comma-delimited files. The files can be 
opened and edited in a text editor (such as Notepad) or a spreadsheet application 
(such as Excel), although editing by hand is not recommended, especially in the case 
of the bif files.  
 

4.2 BBN Information Files (bif) 
 
Comma-delimited (.bif) files. 
 
The format depends on the type of variable, whether it is continuous or discrete. 
 
Continuous format: 
 
Name, Type Name, State Count, Minimum Value, State Bound 1, State Bound 2, … 
State Bound x, Maximum Value, State Mean 1, State Mean 2, … State Mean x, 
State Median 1, State Median 2, … State Median x 
 

 
Discrete format: 
 
Name, Type Name, State Count, State No 1, State No.1 Value Count, Discrete 
Value 1, Discrete Value 2, … Discrete Value x, State No 2, State No.2 Value 
Count, Discrete Value 1, Discrete Value 2, … Discrete Value x, … etc 

 

4.3 Network Files 
 
The system used the HUGIN API to handle BBN. HUGIN uses 'hkb' and 'net' file 
formats. Discrepancies between the proprietary 'hkb' format used by different versions 
of HUGIN had caused problems previously so the 'net' file format was used. This file 
format saves information about the BBN in plain text and appears to be version 
independent, plus plain text format allows manual editing. More information on the 'net' 
format can be obtained from the HUGIN website at http://www.hugin.com. 
 

4.4 Ranking files 
 
Comma-delimited (.csv) files  
 
<Ignored Value>, Parent Name 1, Parent Name 2, Parent Name 3, … Parent Name x 
Child Name 1, Value 1, Value 2, Value 3, … Value x 
Child Name 2, Value 1, Value 2, Value 3, … Value x 
Child Name 3, Value 1, Value 2, Value 3, … Value x 
… 
Child Name x, Value 1, Value 2, Value 3, … Value x 
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Systems 

 
The Centre for Intelligent Environmental Systems is a centre within Staffordshire 
University's School of Computing. The Centre specialises in the application of 
advanced computing techniques, especially Artificial Intelligence (AI), to problems 
affecting the natural environment. Projects to date have concentrated on the 
development of intelligent systems for biological monitoring of river quality. The 
centre’s expertise in this field has grown out of the pioneering work carried out by Bill 
Walley and Bert Hawkes in the early 1990s. Although biomonitoring will remain the 
principal application domain of the group, some diversification into other environmental 
applications is envisaged. To find out more about the Centre, visit and explore our 
extensive web pages at: 
 
http://www.cies.staffs.ac.uk  
 
Or, contact us at: 
 

Centre for Intelligent Environmental Systems 
Staffordshire University 
School of Computing 
The Octagon 
Beaconside  
Stafford ST18 0AD 
UK 
 
Dr Martin Paisley 
m.f.paisley@staffs.ac.uk  
+44 (0)1785 353510 
 
Dr David Trigg 
d.j.trigg@staffs.ac.uk  
+44 (0)1785 35344 
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