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Abstract 
Colour is an important property in image and video processing; it is used for the segmentation, 

classification, and recognition of objects. The observed colour of a surface, as captured by an 

imaging sensor, can be affected by factors such as specular reflection, illumination variation and 

shadows which can lead to erroneous colour identification. This creates a need for techniques that 

are able to extract an illumination invariant descriptor of the surface reflectance of an object, such 

techniques would enable the development of image and video processing systems which are able 

to identify the actual colour of an object, independent of illumination variations. Thus achieving 

what is referred to as colour constancy.   
 

This research aims to investigate the effectiveness of applying blind signal separation integrated 

with a physical model of image formation into a framework for achieving colour constancy. The 

particular model considered in this study is the dichromatic reflection model. This model has been 

used in approaches to colour constancy developed by other researchers. However, most of these 

approaches use mixed image components (i.e. composed of specular and diffuse components) in 

order to estimate illumination and consequently achieve colour constancy. In addition, most of 

these approaches require the segmentation of the image into regions which correspond to different 

colours on the multi-coloured surfaces, in high specular reflection (highlight) areas of the image. 

Correct segmentation of multi-coloured surfaces is difficult to achieve. This thesis proposes an 

alternative approach embodied in a framework which integrates blind signal separation and 

dichromatic model of image formation. Unlike the conventional approaches, by using blind signal 

separation, the illumination can be estimated more accurately using the explicitly separated 

specular image component and colour constancy is achieved by utilising the explicitly separated 

diffuse image component only. In addition, by using the blind signal separation the multi-coloured 

surfaces segmentation problem can be avoided. The research questions addressed by this research 

are “how should blind signal separation be integrated with the dichromatic model?” and “how 

does the proposed framework perform in the context of achieving colour constancy?”  
 

A novel colour constancy framework is developed in this thesis, and experimental findings about 

the performance of the framework are reported. Unlike the existing work, the proposed 

framework includes a new method to estimate the illumination spectral power distribution (ISPD) 

by using an explicitly extracted specular component of images. Furthermore, the proposed 

framework includes a new method for estimating the surface spectral reflectance using an 

explicitly extracted diffuse component, instead of mixed image components which are used by 

other researchers. The framework consists of three stages which are: the separation of image 

components, the ISPD estimation and the estimation of surface spectral reflectance.  
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The methodology exploited to evaluate the performance of the framework involves the 

development of algorithms, their implementation in software, and their assessment using well-

designed experiments anchored on quantitative performance measurement methods. The 

goodness-of-fit coefficient (GFC) is used to evaluate the performance of the framework, by 

measuring the degree of similarity between the estimated spectral distribution and a known 

reference. Values of GFC range between 0 and 1; a higher value representing a higher degree of 

similarity. 
 

Using an image data set generated by the author, compared to the manufacturer’s specifications, 

the estimated ISPD has an average GFC value equal to 0.9830 and 0.9215 for two light sources 

with colour temperature of 5500 K and 2900 K, respectively. The average GFC of the estimated 

ISPD improves significantly by 2.9% when the explicit specular image component is used instead 

of mixed image components. Furthermore, using Foster et al’s image data set (a set of 

hyperspectral images of natural scenes which was collected by Foster, Nascimento, and Amano), 

the ISPD is estimated using the mixed image components for other light sources with different 

colour temperatures. The results show that the estimated ISPD has an average value of the GFC 

equal to 0.9986 compared to the measured illumination.    
 

 Using the data set collected by the author of this thesis, the surface spectral reflectance is 

estimated at individual pixels of an object illuminated by two alternative light sources with colour 

temperatures of 5500 K and 2900 K. A comparative assessment shows that the spectral 

reflectance, estimated for each given surface, has almost the same spectral signature for the two 

light sources. The comparison between the surface spectral reflectance estimates corresponding to 

the two light sources gives an average GFC value which ranges from 0.9611 to 0.9887, depending 

on the type of the blind separation technique that is used (i.e. the spatially constrained FastICA 

technique and the technique developed by Umeyama and Godin). Given that the surface spectral 

reflectance is the output of the last stage of the framework, which depends on the output of the 

previous two stages, therefore the GFC measured for surface spectral reflectance reflects the 

performance of the whole framework. The high GFC values mean that the estimates of surface 

reflectance under the two light sources are very similar, despite the differences between the two 

illuminants. This similarity implies that the extracted surface reflectance is significantly 

independent of illumination characteristics, hence showing that the proposed framework achieved 

a significant degree of colour constancy. Moreover, the observed results show a statistically 

significant improvement in the accuracy of the estimated surface spectral reflectance by 2.6% in 

terms of average GFC value when the explicitly extracted diffuse image component is used 

instead of the mixed image components. Compared to the surface spectral reflectance 

measurements included in Foster et al’s image data set, the surface spectral reflectance estimated 

using the mixed image components has an average GFC value equal to 0.9608.
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1 Introduction  

1 
Introduction  
 
 

This chapter aims to present the context of the research, and highlight the research 

problem, and the contribution to knowledge of the conducted research. The chapter 

starts with explaining briefly the concepts of blind signal separation and physical 

model of image formation. The research problem and motivations of this work are 

then clarified followed by the objectives and methodology of the research. Finally, the 

contributions of the research are given, followed by a thesis outline.  

1.1 Background Concepts 

Blind signal separation, which was originally used in the communication area and 

then was extended to be used in image processing, seeks to separate sources from 

mixed signals with no knowledge about the mixing and the mixed sources. In the 

image processing area, blind signal separation has been used to extract watermarks or 

to separate reflections from the image seen through glass, for example. The process of 

blind signal separation depends on estimating the mixing matrix that is used to mix 

the sources. The estimation of the mixing matrix is achieved using a number of 

observed or mixed signals that are captured by sensors in order to separate the 

sources. Blind signal separation can be applied for various types of mixtures which 

have different ways for mixing the sources.   

 The physical model of image formation explains the relation between an imaging 

sensor (typically a camera), the light source, and the surface of an object. The image 

of an object is formed due to the reflection of light from the surface of the object, 

which is captured by the camera. The light reflected off an object can be described as 

an interaction of the spectral power distribution of the incident light and the surface
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spectral reflectance of an object. According to the dichromatic reflection model [1], 

the image of an object made of a dielectric material is formed due to two types of 

reflections which are: specular and diffuse reflection as seen in Figure 1-1. The image 

produced by the camera is considered to be an additive mixture of two components 

which are the diffuse and specular components.  

Considering the image as a mixture of two components, blind signal separation can be 

used to separate these components, which are embedded in an image captured by a 

camera. Each of these components has different spectral characteristics which can be 

utilised to get information about the characteristics of the spectral power distribution 

of the light source and the surface spectral reflectance, in order to achieve colour 

constancy.    
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Figure 1-1 General physical image formation model for an inhomogeneous opaque surface of 
dielectric material [1]. 

1.2 Research Problem and Motivations 

The colour appearance of an object is often not the actual colour of the object. Several 

factors play significant roles in forming the appearance of the colour of an object, 

mainly illumination and intrinsic properties or reflectance of an object surface. The 

effect of illumination can easily be observed in many occasions in daily life, for 

example, during the evening an outdoor scene may look redder than at midday 

because of changes to the colour of the illumination emanating from the sun. That is 

also true for artificial light sources. For example, Figure 1-2 shows how the same ball 

in front of the green background appears different under two types of illumination. 

Although the change of illumination can modify the colour appearance of an object or 

a scene, human beings still have the ability to identify the actual colour of an object or 
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scene at a certain level of accuracy, whereas a machine or visual system cannot match 

this ability as yet. This capability, which is known as colour constancy or illumination 

invariant colour description, is innate in human perception and one of the important 

aspects of the object recognition processes [2]. The terms ‘colour constancy’ or 

‘illumination invariant colour description’ are used interchangeably throughout the 

thesis to refer to the same meaning. There are two ways reported  in the literature [3] 

by which the visual system can achieve colour constancy. These ways are  colour 

invariant and illumination estimation procedures [3]. In the colour invariant 

procedures, which is so called by Steven D. Hordley in [3], colour constancy is 

achieved without explicit estimation of illumination. This is done by generating 

quantities that are invariant to the scene illumination colour. These quantities are 

produced by algebraic manipulation of the image data. In some cases this 

manipulation modifies the spatial structure of the image and the image is represented 

by few invariant quantities.  

On the other hand, in illumination estimation procedures, colour constancy is 

achieved through two stages. First the scene illumination is estimated using the 

recorded image data of that scene. Then the estimated illumination is used to correct 

the recorded image data by discounting the illumination colour of the scene and thus 

achieve image colour constancy or illumination invariant colour description. The 

illumination estimation procedures are preferred by many researchers because there is 

no need for algebraic manipulation which may change the image spatial structure [3]. 

The work presented in this thesis adopts illumination estimation procedures in order 

to achieve colour constancy.  

  

Figure 1-2 The image on the left was taken under tungsten illumination. The image on the right is the 
same scene taken with artificial deep blue sky illumination [4]. 
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 In machine vision, colour constancy  is  considered  as a crucial prerequisite for 

various applications, which mainly depend on colour, such as colour-based object 

recognition, colour based-image retrieval [3], colour reproduction [5] and so on. 

Unfortunately, how humans achieve colour constancy is not yet fully understood. This 

means that it is not yet possible to replicate human perception of colour constancy in 

machine vision. This challenge has led to the development of several algorithmic 

approaches  to achieve  colour constancy using illumination estimation procedures                                                                     

[6-27]. Although there are many approaches which have been developed to address 

the problem of obtaining colour constancy, the solution to this problem has still not 

been fully answered. Some of these approaches are based on the dichromatic 

reflection model. However, these approaches use mixed image components (i.e. 

composed of specular and diffuse components) in order to estimate illumination and 

consequently achieve colour constancy. In addition most of these approaches require 

segmentation of image regions which correspond to multi-coloured surfaces in high 

specular reflection (highlight) areas of the image; correct segmentation of multi-

coloured surfaces is difficult to achieve. 

This thesis proposes an alternative approach embodied in a framework which 

integrates blind signal separation and the dichromatic model of image formation. By 

using blind signal separation, the estimation of illumination can be achieved more 

accurately from the explicitly separated specular component unlike the conventional 

approaches that use mixed image components. Moreover, the explicitly separated 

diffuse image can be used to achieve colour constancy instead of mixed image 

components that is used by conventional approaches. In addition, by using blind 

signal separation the challenge of segmenting multi-coloured surfaces in images can 

be avoided. The research questions addressed by this research are “how should blind 

signal separation be integrated with the dichromatic model?” and “how does the 

proposed framework perform in the context of achieving colour constancy?”  

1.3 Aim and Objectives 

The aim of this research is to investigate the effectiveness of applying blind signal 

separation, integrated with a physical model of image formation into a framework for 

achieving colour constancy. The particular model considered in this study is the 

dichromatic reflection model.  
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The objectives of this research project can be summarised as follows:  

 Gain a solid understanding of the dichromatic model of image formation, of 

illumination estimation methods, of colour constancy frameworks and of 

illumination invariant colour descriptor methods.  

 Review the literature on blind signal separation techniques, and on image 

component separation methods. 

 Devise a blind signal separation technique, coupled to the dichromatic model 

of image formation, to separate the diffuse and specular components of an 

image. 

 Use the separated specular component of an image to estimate the illumination 

spectral power distribution. 

 Estimate the surface spectral reflectance using the estimated ISPD and the 

separated diffuse component of an image. 

 Evaluate the proposed framework stages and hence evaluate the whole 

framework.  

1.4 Methodology 

The investigation presented in this thesis is based on the combination of blind signal 

separation with the dichromatic model of image formation. The investigation involves 

the development of algorithms, their implementation in software (using MATLAB 

and its relevant Toolboxes), and their assessment using well-designed experiments 

anchored on quantitative performance measurement methods. Methodological details 

about the experiments are given in the relevant thesis chapters (experiment map is 

presented in Appendix A). The research phases are as follows: 

o The first phase includes gaining a solid understanding of the dichromatic 

model of image formation, and of the characteristics of the diffuse and 

specular image components.  

o The second phase is a systematic and comprehensive study, based on a 

literature review, of illumination estimation methods, colour constancy 
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frameworks, illumination invariant colour descriptors and blind signal 

separation techniques.   

o In the third phase, two blind signal separation techniques are used (one 

suggested by the author and the other developed by Umeyama and Godin 

in [28]) to separate the specular and diffuse components.  

o In the fourth phase, an appropriate method is implemented to estimate the 

ISPD using the extracted specular component. Subsequently, the 

performance of the illumination estimation is evaluated using a suitable 

error measure. 

o In the fifth phase, a technique is developed to estimate the surface 

reflectance using the previously estimated illumination and the diffuse 

component extracted from the original image. Then, the performance of 

the estimation of surface reflectance, for achieving colour constancy, is 

assessed quantitatively.  

The evaluation of the framework is done by evaluating Stage 2 and 3, of the 

framework, individually. The effect of Stage 1 on Stage 2 and 3 is also considered. 

The reason for evaluating different stages of the framework independently is to 

investigate how each stage ultimately affects the overall performance of the 

framework. The performance of the whole framework can be deduced from 

integrating the performance evaluation of the framework stages. 

1.5 Contribution to Knowledge         

The main contribution of this work is the development of a novel colour constancy 

framework, and experimental findings about the performance of the framework. The 

novelty of this framework is the coupling of the estimation of surface spectral 

reflectance to input image data explicitly separated into a specular component and a 

diffuse component, which are obtained using blind signal separation underpinned by 

the dichromatic reflection model. The specular image component is used to estimate 

the spectral power distribution of the illumination, and the diffuse component is used 

thereafter with the estimated illumination to recover the spectral reflectance of the 

surface. The framework consists of three stages which include supplementary 
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contributions to knowledge. The contributions of these stages can be summarised as 

follows: 

• First, a new method to estimate the ISPD using the separated specular 

component is proposed. Unlike the state of art, this method uses an explicitly 

extracted specular component to estimate the ISPD while the other researchers 

[12], [18], [29] use mixed image components, where each pixel is a blend of 

specular component and diffuse component, to estimate illumination 

chromaticity. 

• Second, the thesis proposes a new method to estimate the surface spectral 

reflectance from an explicitly extracted diffuse component, with aid of the 

estimated ISPD (i.e. achieved in first supplementary contribution). Compared 

to existing methods [26], this method uses an explicitly extracted diffuse 

component instead of mixed image components. 

1.6 Thesis Outline 

 In this thesis, existing blind signal separation techniques and methods for 

illumination estimation and illumination invariant colour description are reported. 

Moreover, the concepts of the physical image formation model are studied. 

Furthermore, the combination of blind signal separation with the dichromatic model 

of image formation are investigated to separate the image components and 

consequently estimate illumination spectral power distribution and ultimately surface 

spectral reflectance (thereby achieving colour constancy).  

The thesis is organised as follows: 

Chapter 1 is an introduction to the work including, the statement of the research 

problem and motivations, the aim and the objectives of the research, the methodology 

used in the research, and the contribution to knowledge. Finally, the contents of the 

different chapters are presented. 

In Chapter 2, an overview of colour constancy related topics is presented including 

the physical model of image formation, illumination model, and surface reflectance 

model. Moreover, the methods for separating light reflection components, the 

illumination estimation methods, the illumination invariant descriptor methods, and 

the colour constancy frameworks are reviewed. 
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Chapter 3 includes a literature review of blind signal separation techniques for 

different types of mixing signals. The definition and the different approaches of 

independent component analysis are described. Finally, the Fast Independent 

Component Analysis technique and its modified version are presented. 

Chapter 4 starts with presenting the proposed colour constancy framework. After 

that, the chapter presents the embodiment of the framework which is evaluated in this 

thesis. The image capture setting, the techniques used for image component 

separation (first stage of the framework), the proposed method for the estimation of 

ISPD (second stage of the framework) and the proposed method for the estimation of 

surface spectral reflectance (third stage of the framework) are described in detail.  

In Chapter 5, an experimental investigation is carried out, including a series of 

experiments to evaluate the second stage of the proposed colour constancy 

framework. 

In Chapter 6, an experimental investigation is conducted; it consists of a series of 

experiments to assess the third stage of the developed colour constancy framework. 

Finally, Chapter 7 discusses the conclusions of the present work and offers 

suggestions for future work. 



 

 9 

2 Survey of Colour Constancy Approaches 

2 
Survey of Colour Constancy 
Approaches 
 
 

2.1  Introduction  

This chapter presents an overview of colour constancy related topics. In this chapter 

the physical model of image formation is reviewed, including the illumination model, 

the surface reflectance model and the dichromatic reflection model. The image 

component separation methods are then explored. The three categories of existing 

illumination estimation methods used in approaches to colour constancy are 

discussed. First, the methods based on diffuse reflection are explored. A 

comprehensive study of the methods based on dichromatic reflection is then 

introduced. Moreover hybrid methods are presented which are combinations of 

diffuse and dichromatic methods. Furthermore, related work for illumination 

estimation is reviewed. Methods to obtain illumination invariant descriptors of an 

image captured under unknown illumination are then explored. Finally the existing 

colour constancy frameworks are presented, and are followed by the chapter 

summary.  

2.2 Physical Image Formation Model 

The physical image formation model considers an image as being the result of the 

interaction between the illumination of the light source, reflectance of the surface, 

imaging sensor, and the medium between them. The image is formed when light 

coming from a light source hits a surface and is then reflected in the direction of 

camera. There are two types of reflected light; they are: interface reflected light (also 

known as specular reflection) and body reflected light (also called diffuse reflection)
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[1]. These two types of reflections will be explained later in this section. Moreover 

due to the importance of the illumination and the surface reflectance in order to 

achieve colour constancy, the following subsection will include a review of the 

illumination model, and the surface reflectance model.  

2.2.1 Light Spectral Power Distribution 

Light at the atomic scale is formed from packets of energy called photons; it is 

divided into visible and invisible light spectral power distribution categories. The 

visible light wavelengths range approximately between 380 nm and 760 nm. In 

practice, the range used is between 400 nm and 700 nm; this is the range of 

wavelengths which is considered in calculations in this thesis. The colour of visible 

light is determined from its spectral power distribution. There are many types of light 

sources, and they emit dissimilar spectral power distributions [30]. The spectral power 

distribution of illumination can be expressed as a linear model of illumination basis 

functions which can be expressed by [9]:                                                      

∑
µ

=

λε≈λ
1i

ii )(b)(E  (2-1) 
 

where bi(λ) is an illumination basis function; λ is wavelength; εi is a basis function 

coefficient; μ is the number of basis functions.  

Judd et al  [31]  show that most of the daylight ISPD can be modelled by using only 

three basis functions, as seen in Figure 2-1. In [32], Slater et al. claimed that to 

represent different outdoor illumination spectral power distributions, using seven 

basis functions is more dependable than using only three basis functions. However, 

the three basis functions suggested in [31] can still be applied  in several colour 

applications [30].  

Alternatively, ISPD can also be modelled by using a blackbody radiator. The 

blackbody radiator is defined as an object that absorbs all light falling on it, and with 

no light reflected or transmitted. Hence, the re-radiated energy depends only on the 

characteristics of the radiating object and not on the incident light. Blackbody 

radiation can be expressed by using Planck’s formula. This formula shows the relation 
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between the temperature, wavelength and spectral power distribution of emitted light 

(for a unit solid angle) as follows [17]:                                            

[ ] 1
2

5
1 1T)/exp(CλC)E( −− −= λλ  (2-2) 

  Wm103.74182hcC 2-16
1 ×==  (2-3) 

mK  101.4388hc/C -2
2 ×=ρ=  (2-4)   

where h is Planck’s constant (6.62606896×10-34 Joules. second), c is the speed of light 

(3×108 meter/second), ρ is Boltzmann’s constant (1.3806504 ×10-23 Joules/ Kelvin), 

and T is the colour temperature in Kelvin. Most light sources can be explained by 

using Planck’s formula since they roughly follow the blackbody radiator mechanism. 
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Figure 2-1 The mean and the first two basis functions of daylight illuminants estimated by Judd  [31]. 
 

2.2.2 Surface Spectral Reflectance  

The ability of an object to reflect various spectral distributions when several types of 

light are incident on its surface is called surface spectral reflectance. Moreover, it is 

considered as the ratio between the reflected spectral power distributions to the 

incident spectral power distribution. The spectral reflectance is dissimilar for different 

surface materials. In the case of a surface, spectral reflectance can be represented by a 

finite linear model of reflectance basis functions  [9], [33]: 

( ) ( )λψϕ≈λ ∑
α

=1j
jjS  (2-5) 
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where ψj(λ) is a reflectance basis function; φj  is a basis function coefficient; α is the 

number of basis functions. The derivation of the basis functions has been done by 

using various colours of Munsell chips [33], [34].  

To the knowledge of the author, Cohen [34] is the first researcher who calculated 

reflectance basis from a data set containing 150 measured reflectance curves from 

various colours of Munsell chips. After that Maloney [33] repeated the same 

calculation but using a larger number of samples, which are 465 samples. Then 

Parkkinen et al [33] showed that the 1257 surface spectral reflectance curves in the 

existing  database, which are measured from the Munsell colour chips, can be covered 

by using eight basis functions. 
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Figure 2-2 The first three reflectance basis functions estimated  by Parkkinen [33]. 
 

However it is found by Parkkinen et al [33] that the average error will be negligible 

when only the first three basis functions are used. Compared with other researchers, 

Parkkinen examined a larger number of samples, with sample interval two times the 

interval used by others. As a result, Parkkinen’s basis functions are considered to be 

more accurate in representing the surface spectral reflectance. The first three basis 

functions, which are presented by Parkkinen et al, as seen in Figure 2-2, are useful for 

several colour constancy applications [30].  
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2.2.3  Specular Reflection 

Specular reflection is a process in which the incident light on a surface is reflected 

directly at the air-surface interface [1]. This process can be considered as perfect as 

mirror reflection [28] . Consequently, the characteristics of the specular reflection can 

be considered as the same as the incident light. The behaviour of the specular 

reflection can follow the reflection law which states that the angles of the incident and 

reflected light with respect to the surface normal are equal.  

Specular reflection is characterized by a high intensity of light. Moreover it has a high 

degree of light polarization and it is highly view dependent. The amount of specular 

reflection depends mainly on the structure and type of the surface material. Optically, 

most of the objects can be classified in two categories which are: homogenous and 

non-homogenous objects. Objects which have a uniform refractive index, such as 

metals, glass and crystals are referred to as homogenous; otherwise they are known as 

inhomogeneous for example plastics, ceramics, and carpets etc. A homogeneous 

object (i.e. with  smooth or polished  surface) reflects only the specular reflection 

component and a inhomogeneous object reflects diffuse and specular reflection 

components [35]. In most of the inhomogeneous surfaces the amount of specular 

reflection on an average surface is small compared to the diffuse reflection. The 

specular reflection can be modelled by using the Torrance-Sparrow model [36], one of 

the most popular models of specular reflection in computer vision. This model is 

based on the assumption that a surface is like the integration of a distribution of 

randomly oriented mirror–like microfacets.  

2.2.4  Diffuse Reflection 

Unlike specular reflection, diffuse reflection is generated due to the interaction 

between the incident light and the surface of the object (inhomogeneous opaque 

surface with dielectric material). This interaction can occur when the incident light 

penetrates the surface of the object and refracts and reflects inside the object body and 

then it reflects back out to the air [36]. Moreover the interaction can occur due to 

multiple reflection of the incident light caused by surface roughness. Diffuse 

reflection is view independent and has negligible degree of light polarization [28]. 

The difference between the specular and diffuse reflections can be explicitly 
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explained by matte and glossy paint. Although both display a mixture of specular and 

diffuse reflection, matte paints have a larger amount of diffuse reflection and glossy 

paints have a higher proportion of specular reflection. In addition, there are various 

models that represent the diffuse reflection and the most commonly used is the 

Lambertian model which is described by Lambert’s law when the angle of the 

incident light is not large [28]. 

2.2.5 Image Formation for the Dichromatic Reflection Model 

The reflected light from the surface of an object with different types of material or 

structure can be formulated mathematically as: 

)(S)(E)(R λλ=λ  (2-6) 

Where R(λ) is the spectral power distribution of the reflected light; E(λ) is the spectral 

power distribution of the incident light; S(λ) is the surface spectral reflectance. 

Different types of material have different reflection mechanisms such as (specular 

reflection and diffuse reflection). The reflected light of an inhomogeneous opaque 

surface with dielectric material can be described by the dichromatic reflection model 

which is a linear combination of diffuse and specular reflections [1]: 

)(E)(S)(w)(E)(S)(w)(R ssdd  ,,,,, λλ+λλ=λ  (2-7) 

Where R(λ,ℓ) is the reflected light from the object; ℓ  is the position of a surface point; 

wd(ℓ) is the geometric scale factor for diffuse reflection (depends on the position of 

light source and camera with respect  to  location ℓ);  ws(ℓ) is the geometric scale 

factor for specular reflection (depends on the geometric viewing at  location ℓ); The 

value of the geometric scale factor ranges from 0 to 1 [1];  Sd (λ,ℓ) is the diffuse 

spectral reflectance function; Ss (λ,ℓ) is the specular spectral reflectance function; 

E(λ,ℓ) is the spectral power distribution of the illumination. Most reflection models 

assume that the specular reflection component has the same spectral composition as 

the incident light, whereas the diffuse reflection component has spectral composition 

which is different from the incident light [30], [37]. This assumption is based on the 

behaviour of the specular reflection process which is explained in Section 2.2.3. This 

assumption is known as Neutral Interface Reflection (NIR), which is achieved by 

setting the specular spectral reflectance function Ss(λ,ℓ) as constant scalar with respect 
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to wavelength, i.e. Ss(λ,ℓ) = Ss(ℓ)  [37]. The NIR is considered as a fundamental 

assumption that is used for the dichromatic model [18], [38], [29], so the model 

equation can be modified as:             

)(E)(w)(E)(S)(w)(R sndd  ,,,, λ+λλ=λ  (2-8) 

 where wsn(ℓ) is  modified specular geometrical scale factor which is equal to: 

)(S)(w)(w sssn  =  (2-9) 

In addition, assuming that there is only one light source and its illumination spectral 

power distribution E(λ,ℓ) is uniform over the object surface, therefore E(λ,ℓ) becomes 

independent of position (ℓ). Thus, the image formation for an inhomogeneous object 

captured by a camera can be formed as a linear summation of two parts. The first part 

is the diffuse image component denoted as 

∑
λ

λ=λ

λλλ=
H

L

)(q)(E)(S)(w)( d kkd,  ,I  (2-10) 

where k = R, G, or B is each of the three primary colours, qk(λ) is the imaging sensor 

response for each colour component, which covers part of the visible light spectrum 

(i.e. ranging from λL = 400nm to λH = 700 nm), as shown in Figure 2-3, Id,k  is  the 

diffuse component  for each of  the three primary colours (R, G, B). The second part 

is the specular image component which can be represented as follows [39]: 

∑
=

=
H

L

kks

λ

λλ

λλ )(q)(E)(w)( sn, I  (2-11) 

where Is,k  is the specular image component for each of the three primary colours.So 

the image formation for the dichromatic reflection model can be simply expressed as: 

kskdk ,, III +=  (2-12) 

The position of the surface point (ℓ) is removed for simplicity of notation. 



Ch.2                                                                                           Survey of Colour Constancy Approaches 

 16 

4.5 5 5.5 6 6.5 7

x 10
-7

0

0.2

0.4

0.6

0.8

1

wavelength(in meter)

R
el

at
iv

e 
R

es
po

ns
e

 

 

Red Sensor
Green Sensor
Blue Sensor

 

Figure 2-3 Sensor response of camera DFK 21F04 [40]. 
 

2.3 Methods for Separating Light Reflection Components  

As mentioned previously in Section 2.2.3, the specular reflection is characterised by 

high intensity. Therefore, in the recorded image, the specular reflection can hide 

useful information about the object surface such as colour, roughness etc. The 

existence of the specular reflection in the recorded image can cause problem to 

machine vision algorithms such as stereo mismatch, false segmentation, and pattern 

recognition error. Due to these problems the separation of the specular reflection from 

the diffuse reflection is considered as an important issue for some machine vision 

algorithms.   

Most of the methods used for separating specular reflection from diffuse are based on 

the dichromatic reflection model which was proposed by Shafer [1]. In this model, the 

colour of the image pixel can be described as a linear combination of specular 

reflection colour and the underlying diffuse reflection colour. The methods used for 

separating specular reflection from the diffuse reflection can be classified into three 

categories [41]. The first category has methods which use only a single colour image 

[1], [39], [41-46]. The methods in the first category are more practical compared with 

methods in the second and third categories, which are explained later in this section. 

However colour segmentation of different objects is an essential requirement for the 

success of methods in the first category; effective colour segmentation is a challenge.  
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The second category  involves methods which  use more than one input image 

generated by changing the illumination direction [47], [48] or camera viewpoint [49]. 

The methods in the second category are considered as less practical than the methods 

in the first category given that in practice multiple images captured under particular 

conditions are not always available [44].  

The third category consists of methods that utilize a polarizer filter [50-52]. By using 

the polarizer, the colour segmentation problem that is found in the first category can 

be solved. However the use of polarizer raises another problem which is finding the 

minimum and maximum degree of polarization for the same scene. This may make 

the use of a polarizer impractical [41]. This problem can be reduced and the use of a 

polarizer can be made more practical if there is no specific need to identify the 

minimum and maximum degree of polarization for separation purposes. In other 

word, degrees of polarization other than minimum and maximum can be used to 

separate the specular and diffuse component from an image. In the following chapter 

a comprehensive study of other methods that are used for separating different types of 

signals will be explained. Moreover the following subsection will discuss different 

methods of illumination estimation. 

2.4 Classification of Illumination Estimation Methods  

Illumination estimation is considered as an important stage towards obtaining colour 

constancy. There are several illumination estimation methods; these are categorized 

by Finlayson [18] into two categories which are: statistics based methods and physics 

based methods.  

In the statistics based method, the illumination is estimated based on statistical 

assumptions about the distribution of colour in the scene. Conversely, in the physics 

based methods, the illumination is estimated based on the physical process that 

provides the relation between the scene and the formed image. In other words, the 

methods in this category are based on the understanding of the physical process of 

light reflection. However, since all illumination estimation methods are founded on 

some kind of physical model of image formation they can be considered, to a certain 

extent as physics based. Moreover the physics-based method can also make use of 

statistical knowledge or calculation.  
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In this chapter, another classification of illumination estimation methods is presented. 

This classification consists of three categories, based on the reflection model 

considered in the illumination estimation method. These categories are (see Figure 

2-4): methods based on diffuse reflection, methods based on dichromatic reflection, 

and hybrid methods. The methods based on the diffuse reflection model are founded 

on the assumption that the input image consists of diffuse reflection only. Conversely, 

methods based on the dichromatic reflection model are based on the assumption that 

the input image involves both the specular and the diffuse reflection component. The 

hybrid methods are a combination of methods based on diffuse and dichromatic 

reflections.  

The research presented in this thesis uses blind signal separation combined with a 

dichromatic image formation model in order to estimate ISPD, and consequently 

achieve colour constancy. Therefore, the following sub-sections will highlight the 

methods based on dichromatic reflection and provide a summary of the methods that 

relate to the other two categories. 

2.4.1 Methods Based on Diffuse Reflection  

The main feature of the methods based on diffuse reflection is that they use the diffuse 

reflection as input for their analysis. This is based on the assumption that the image is 

formed primarily due to the diffuse reflection [21]. However, the existence of 

highlights or specularities in the input image can affect the illumination estimation 

accuracy of these methods. As the amount of the specularities in the input image 

increases, the accuracy of the estimation decreases. In the following subsections [4], 

[20] different methods based on the aforementioned assumption are discussed.  

2.4.1.1 Gray–World Methods 
The gray–world methods are considered the oldest, and simplest, methods in the area 

of colour constancy [23]. The idea of these methods is to compute a single statistic 

(mean) of the RGB image components that is used to estimate illumination (which is 

assumed to be uniform over the scene). This is achieved based on the assumption that 

the spatial average of surface reflectance in the scene is achromatic, which is referred 

to as gray. An achromatic surface changes the reflected light equally over the entire 

wavelength. As a  result, the colour of the incident light is equal to the spatial average 
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of the reflected light [16]. Based on the gray-world assumption, different methods 

have been proposed by various authors in different forms.  

Buchsbaum [6] was the first to make use of the gray-world assumption with low 

dimensional linear models which describe the lights and surface in order to estimate 

the ISPD [16]. In this method, the estimation of illumination is achieved using a fixed 

spatial average of the surface reflectance (standard) as gray colour reference. 

Gershon et al [26] improved Buchsbaum’s method [6] by calculating the reflectance 

basis functions from a real reflectance database, and using the average from a real 

reflectance database as the reference gray colour. Moreover, they realized that a 

segmentation of the image pixels into different groups corresponding to different 

object materials should be considered. This is  because  the performance of the 

method reduces when segmentation  is inaccurate [23].  

Gijsenij in [27] proposed a method based on low level image features (such as the 

mean value of image pixels) using image regions to avoid the effect of biased pixel 

values (e.g a large portion of blue sky) which may decrease the performance of 

illumination estimation. Most of the gray-world methods, which have been stated 

previously, identify the achromatic surface by averaging the surface reflectance in the 

scene. However there are some methods, for example max-RGB, gray-edge, higher 

order gray-edge [53], [54] and shade of gray [22], which use a different hypothesis to 

identify the achromatic surface (for more details about the different hypotheses, see 

[53]).  

2.4.1.2 Gamut Mapping Methods 
The first gamut mapping illumination estimation method was proposed by Forsyth 

[55]  and improved by Finlayson [56]. The estimation in this method is achieved 

through two stages. First, the set of all possible illumination is recovered. This set 

corresponds to a set of mapping matrices which take the image colours (image gamut) 

captured under an unknown illumination to the gamut of all colours observed under a 

known canonic illumination (canonic colour gamut). Second, one illumination is 

selected as an estimate of the unknown scene. 

The first form of gamut mapping, which was introduced by Forsyth [55],was 

implemented using the three dimensional (3-D) RGB space. Although this form of 

gamut mapping produced good results, it has a number of problems. For instance, it 
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cannot handle images containing specularities. Furthermore it is difficult to implement 

and it is computationally intensive [15]. 

Finlayson [56] improved the Forsyth method by proposing a new version working in 

the two dimensional (2-D) chromaticity space. The reasons for using chromaticity 

space are to discard the effect of specularities on the illumination estimation method 

and to reduce the computational complexity. However, it was found that by 

comparing the performance of the 3-D and 2-D methods, the 3-D method delivered a 

better estimate of illumination [15]. Moreover, Finlayson combined a helpful 

constraint related to the set of feasible illumination with the basic 2-D gamut 

mapping. The idea is based on the fact that some of the illumination is not found in 

the real world so these should be excluded when estimating illumination. 

In addition, Arjanin et al in [57] tried to improve the performance of gamut mapping 

for estimating the illumination of the scene by proposing a gamut mapping method  

which used image derivative structures instead of pixel values.  

2.4.1.3 Bayesian Methods   
The Bayesian decision theory was initially used  by Freeman and Brainard [14] and 

extended by others [58], [59] in order to solve the  illumination estimation problem. 

The Bayesian methods are based on the assumption that prior knowledge about the 

probability of occurrence of particular illuminations and surfaces in reality are known. 

The estimation of illumination in these methods can be achieved using Maximum a 

posteriori [58], Minimum Mean-Squared-Error estimation [60], or Minimum Local 

Mass estimator  [14].  

2.4.1.4 Colour by Correlation Methods 
The first version of colour by correlation methods was introduced by Finlayson [61] 

as an improvement for the gamut mapping method in [56]. The main idea of colour by 

correlation is to pre-calculate a correlation matrix that is used to estimate illumination 

colour of the scene. The pre-calculation of the correlation matrix is based on 

information that consists of the probability of occurrence of the surfaces and 

illuminations and how their interaction affects the occurrence probability of the 

observed camera responses. In [16], [56] the correlation matrix describes the relation 

between the suggested illuminations and the occurrence of the image chromaticity 

using (r-g chromaticity space). On the other hand, Barnard [62] modifies the colour by 
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correlation approach to work in three dimensional colour space. The argument for 

doing this modification is that the information about the pixel intensity is ignored in 

chromaticity space. Moreover the intensity of the pixel is useful even if only the 

illumination chromaticity is considered.  

2.4.1.5 Neural Networks Methods  
By using neural networks in the area of colour constancy, a good estimation of the 

illumination chromaticity has been obtained [63-65]. The authors in these works 

trained the neural network on synthetic images generated randomly from a database of 

illumination and reflectance. Moreover, the neural network shows good results when 

applied to estimate illumination of images when the origin of the images is 

unavailable and when it has no knowledge about the illumination [66], [67]. 

Furthermore, Cardei et al in  [68] present a novel neural network method which used 

the image chromaticity information. This method estimates the unknown illumination 

of the scene by learning the relationship between image colour appearance and the 

scene illumination. A good performance is achieved by testing this method on real 

images and the error is lower than that obtained by gray-world and retinex methods. 

Chin et al [69] proposed a method to estimate the illumination of an image using a 

chromaticity histogram and a neural network. The neural network is trained by the 

back propagation method to identify the relationship between the chromaticity 

histogram and the coefficients of illumination basis functions. After that, the trained 

neural network is used to estimate the illumination spectral power distribution. 

However it is difficult to generalize the neural network and make it able to estimate 

scene illumination in previously unseen images. In addition to the neural network 

there are other machine learning methods that are used for illumination chromaticity 

estimation such as support vector regression [70], ridge regression, and kernel 

regression [71].   

2.4.1.6 Retinex Methods 
 A great contribution was added to the  colour constancy area when Land proposed  

[72], [73] the retinex or lightness method to estimate the illumination colour. The 

retinex method is  based on the assumption that small spatial variations in pixels 

values on an object surface are caused only by changes in illumination, while large 

changes are related to surfaces changes [23]. The aim of retinex is to calculate the 
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lightness of a surface by applying a logarithmic-differentiation operation for pixel 

values. The calculation of lightness eliminates the effect of the illumination colour on 

the object surface and consequently the colour of the surface is extracted. The retinex 

work of Land is developed and extended by Land and others  [8], [74-76]. All the 

published versions of the retinex method share the same basic principle which is 

lightness computation, but they are different in computation methods of the lightness  

[74], [77]. The Max-rgb or white patch is the most famous version of these methods; 

this is due to its simplicity in implementation. 

2.4.1.7 Combined Methods 
In the combined methods, researchers try to combine different methods based on 

diffuse reflection or these methods with other theories in order to improve the 

illumination estimation accuracy.  

Cardei [66] presents the committee method which  combines  different methods based 

on diffuse reflection. The goal of this combination is to achieve more accurate 

estimates of illumination chromaticity than any of the methods taken individually. 

The test for the committee of gray-world, retinex (white patch), and neural network is 

done; the committee gives better results than any of these methods provides 

separately.  

In [24], Finlayson et al proposed a method that combines the chromagenic approach 

with the conventional gamut mapping method. In this method, a chromagenic colour 

filter is used to capture two images for the same scene with and without a filter. This 

method exploits the relation between unfiltered and filtered image as additional 

information for gamut mapping to estimate the illumination. This means that the 

filtered and unfiltered RGBs change with and depend strongly on illumination. This 

method performs significantly better than gray-world, retinex, and colour by 

correlation using real and synthetic images. 

For the sake of improving the illumination estimation accuracy, recently some 

researchers proposed different approaches for automatic selection and combination of 

illumination estimation methods. These approaches are mainly based on image 

content which is used to extract features. These features are then used by a classifier 

to do the selection and the combination decision. Different approaches use various 

classifiers such as Classification And Regression Tree [78], [79], Mixture of 
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Gaussians [80], Ride Regression [81] (other approaches and more detail about these 

approaches can be found in [78], [80], [82]). 

It was reported [21], [30] that most of the methods based on the diffuse reflection 

have some drawbacks. For achieving efficient estimation of illumination, these 

methods require many colour observations on the surface of an object and complex 

computation [21]. Moreover, in most of the methods, the existence of the specular 

reflection can reduce accuracy of illumination estimation. According to the nature of 

problems that afflict the methods based on the diffuse reflection model, in reality, 

these problems  are difficult to control and it remains as an open question to be 

solved. In the following section, methods which use less surface colours, have less 

computational complexity and are robust against the specular reflections are 

highlighted.  

2.4.2 Methods Based on Dichromatic Reflection   

 The colour image responses of an object surface captured under uniform illumination 

will fall in a plane in RGB colour space if the surface follows a dichromatic reflection 

model [1]. This is because the colour responses are a combination of two reflection 

colours which are diffuse reflection, and specular reflection. In most dielectric 

materials, the interface reflectance function is constant, so this means that the colour 

of the incident illumination is the same as specular reflection. On the other hand, the 

diffuse reflection depends on the colour of the object surface and incident 

illumination; as a result, different surfaces can be identified by different diffuse 

reflection. Many researchers [12], [18], [21], [29], [83], [84] have proposed methods 

for estimating illumination that depend on the dichromatic reflection model and most 

of these methods utilize specular reflection as the main part to be analyzed in order to 

extract information about incident illumination. Most of them use the original image 

which is a mixture of specular and diffuse image components to estimate illumination 

by analyzing the mixed components in different colour spaces. In this thesis the 

original image is refered to as ‘mixed image components’ to clearly distinguish the 

methods that operate on both components.  

The idea of using colour space to estimate illumination chromaticity is that the RGB 

components of different surfaces will fall into different planes and the intersection of 

these planes will be a good indication about the illumination characteristics. A number 
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of researchers [12], [18], [29], [83], [84] proposed methods using these ideas to 

estimate the illumination chromaticity. 

Klinker et al in [12] proposed a method to estimate illumination chromaticity from a 

uniform coloured surface using RGB space. It was found that in this space, the 

uniformly coloured surfaces with highlight form a T-shape distribution. Then the 

colour of the illumination and body reflection can be found by extraction and 

decomposition of this T-shape. Unfortunately, due to the noise which is commonly 

present in real images, the extraction of the T-shape becomes quite difficult. As a 

result, the final estimation of the colour of illumination and body reflection become 

undependable.  

By using the highlight of at least two surface colours, Lee  [29] proposed a method to 

estimate illumination chromaticity. This is achieved by determining the intersection of 

dichromatic lines of the surface colours in r-g chromaticity space. This method has 

some limitations [30]. First, the segmentation of the surface colour underneath the 

highlight is required to generate a dichromatic line for each surface colour. 

Furthermore, the colour segmentation of highly textured objects is a complex process. 

Second, surfaces with the same colour will form nearly parallel dichromatic lines and 

this makes the intersection sensitive to noise. As a result, the estimation for similar 

surface colours becomes unsteady in real images where noise is commonly found. 

Finally, the method is not applicable to uniformly coloured surfaces. Other 

researchers have extended and developed upon Lee’s method  [18], [83], [84].  

In [83], a robust method to create dichromatic lines in chromaticity space is proposed. 

This method makes the assumption that the colour surface in the highlight is uniform. 

Unfortunately, this method fails when it is applied to multipart textured surfaces 

which include more than one surface colour in the highlighted regions.   

Researchers in [84-86] tackle the second limitation of Lee’s method, which is 

instability in obtaining the intersection of dichromatic lines. In [84], and [85]  it is 

obtained by imposing constraints on colours of illumination using the statistics of 

natural illumination colours. In [86] the second limitation of Lee’s method is  

addressed by applying pre-processing for highlight pixels to avoid the noise generated 

by the CCD camera  using a method based on Mahalanobis distance. 
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In addition, Finlayson et al [18] proposed a method to estimate illumination from a 

uniform surface colour using Planck’s locus as a constraint on the illumination 

chromaticity. This method is more robust in estimating the illumination particularly 

for real images and this occurred due to the use of the Planckian constraint. 

Nevertheless, this method suffers from the requirement of colour segmentation for 

multicolour surfaces in the highlight area [30]. 

One of the limitations of the previous dichromatic methods [84], [85], [18] is that it is  

difficult to classify image pixels in terms of scene materials. In order to overcome this 

problem, Javier and Brian [87] proposed a multi-linear constraint on the illumination 

colour of the scene. 

Tan [21] proposed a new method to estimate illumination colour without using colour 

segmentation of image regions which correspond to multi-coloured surfaces in the 

highlight areas. This method estimates illumination from single- or multi-coloured 

surface. The method uses highlights as the main source to be processed and analyzed 

in a new colour space. This space is called inverse intensity colour space. The space 

describes the correlation between image chromaticity and illumination chromaticity. 

The proposed method has many advantages over the previous dichromatic based 

methods. The colour segmentation which is needed in the previous methods is not 

required at all in this method. As a result, this method can be applied even for highly 

textured surfaces. Moreover, accurate estimation of the highlight regions is not 

required for this method. The highlight regions can be achieved by simple 

thresholding of the intensity values. Furthermore, as no assumptions are made about 

the illumination chromaticity, the method is applicable for all possible illumination 

colours. Moreover, in this method, the intrinsic camera characteristics are not needed. 

However this method is very complex and time consuming on detecting highlight area 

and on calculating intersections by the Hough transform [88]. 

Li in  [88] tried to reduce the complexity of Tan’s method by using  a voting method  

to detect the highlight areas. Then the pixels in highlight areas are projected to the 

Inverse-Intensity colour space, which was proposed by Tan [21]. Finally by applying 

a line fitting method to all projected pixels in Inverse-Intensity colour space, 

illumination chromaticity can be estimated. In [89] Javier  proposed a method to 

estimate illumination without a need for pre-segmentation of the highlight area in an 
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image into a region of uniform surface reflectance. In this method, the colour of the 

illumination is obtained based on optimizing a cost function.  

Long Yang et al [90] proposed a method to estimate spectral power distribution based 

on the dichromatic reflection model and a finite dimensional linear model. In this 

method, the illumination chromaticity is estimated from the intersection of two-colour 

signals of two inhomogeneous surfaces. Then from the illumination chromaticity the 

ISPD is estimated adopting Judd’s illumination basis functions and assuming that the 

surface reflectance is 1. This method gives suitable results when it is tested on colour 

chip images. However this method may not give the same result if it is applied to a 

real image because it will require colour segmentation of image regions which 

correspond to multi-coloured surfaces in the highlight areas, which is a problem for 

most of the methods which are based on the dichromatic model   

In summary, from the above survey, it can be noticed that the methods based on the 

dichromatic model utilize the original image which is a mixture of specular and 

diffuse components and try to estimate illumination chromaticity by analyzing it in 

different colour spaces. Moreover, most of the methods in this category suffer from 

either the problem of segmenting image regions which correspond to multi-coloured 

surfaces in the highlight areas or face the problem of computational complexity. 

However, the estimation of illumination using an explicitly separated specular image 

component has not been reported in the literature and one way to extract the specular 

image component is to use blind signal separation as it will be discussed in Chapter 3. 

As the spectral characteristics of specular reflection component are similar to spectral 

characteristics of illumination, estimating illumination based on this component is 

likely to give more accurate results. Moreover work in separated specular image 

component has potential to avoid the complicated segmentation that is needed in the 

conventional methods.    

2.4.3 Hybrid Methods 

In the hybrid methods, researchers try to combine methods based on diffuse reflection 

with methods based on dichromatic reflection to improve the performance of 

illumination estimation.  
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To the knowledge of the author, Schaefer et al [91] present the first method which 

combines a method based on diffuse reflection  and a method based on the 

dichromatic reflection. The aim of this combination is to integrate the advantages of 

the colour by correlation method with those of methods based on the dichromatic 

reflection model. The combined method outperforms the methods based purely on 

diffuse or dichromatic reflection. The illumination estimation in the combined method 

is achieved by combing the estimation results for two combining methods (correlation 

and dichromatic).  

The estimation of the illumination is a very important factor not only for colour 

constancy but also for other research areas. In the following section, a summary of 

related illumination estimation methods is reviewed. 

2.4.4 Related Work on Illumination Estimation for Computer 

Graphics  

Parallel to colour constancy research, the problem of illumination estimation, which is 

considered as an ill posed problem, is important for computer graphics applications 

such as augmented reality and lighting reproduction. In these applications, researchers 

[92-95] deal with the illumination estimation problem in a different manner, using 

various types of additional information as a guide for the estimation process. The 

additional information can be given by shading, shadows, or specular reflection. 

Some researchers exploit the specular reflection cue that is obtained by inserting a 

calibration device such as a mirrored ball [96] or sphere [97], [98], [92] into the scene 

in order to estimate illumination locations and intensity. There are many methods 

which use the shading cue to estimate the illumination of a single light source or 

multiple light sources. Most of these methods use the shading cue to estimate the 

illumination of a single light source [95], [99]. However, in order to estimate multiple 

light sources, several methods have been proposed [100], [101], [93]. The cast 

shadow is useful information which can be used to recover the light directions and 

intensities. Sato et al [102], [94]  proposed methods to estimate complex illumination 

distribution in a real scene by utilizing the brightness values within shadows cast on 

an object. 
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Although, the illumination estimation methods which are based on using the shading, 

shadow, or specular reflection provide some success, they have limitations. For 

example, they have difficulties in detecting the critical points for shading, frontal 

illumination for shadow, and the need for using a special calibration device for 

specular reflection. To overcome these limitations, some researchers have proposed 

methods which combine the use of shading and shadow [103], while others integrate 

the use of shading, shadow and specular reflection [95] cues.   

2.5 Illumination-Invariant Colour Descriptor Methods 

As explained earlier in this thesis, the aim of computational colour constancy 

techniques is to obtain illumination invariant colour descriptors of a scene from an 

image captured under unknown illumination. This is typically achieved through two 

stages. In the first stage the estimation of the illumination parameters are obtained 

using one of the illumination estimation methods which are reviewed in the previous 

sections (2.4.1 and 2.4.2). Then the estimated illumination parameters are used to 

calculate illumination invariant colour descriptors; colour constancy is thus achieved. 

The illumination invariant colour descriptors can be represented by an image of a 

scene as if it is captured under known illumination, or by the spectral reflectance of 

the object surfaces in the scene. The two forms of the illumination invariant colour 

descriptors can be obtained by two methods of transformation mapping. These 

methods are diagonal mapping and linear (general) mapping which will be explained 

in the following subsections. 

2.5.1 Diagonal Transformation Method 

 The diagonal transformation method is mainly based on the assumption that the 

camera sensor sensitivity is narrowband and follows Dirac delta function. Most of the 

illumination estimation methods reviewed in this chapter are combined with the 

diagonal transformation method in order to produce illumination invariant colour 

descriptors. This is due to the simplicity of this transformation method. By using this 

transformation method, the illumination invariant colour descriptors are obtained by 

taking the dot product of the diagonal matrix and the image captured under unknown 

illumination. The diagonal matrix consists of values which represent the ratio between 

known and unknown (estimated) illumination. However, the assumption that this 
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method is based on can be quite poor for certain cameras which have broad-band 

sensor sensitivity. As a result, to improve the computational colour constancy based 

on the diagonal transformation, Finlayson [104] and Barnard [105] proposed a method 

called “sensor sharpening”. The idea behind this method is to use an appropriate 

linear transformation to map the data into a new space where the narrow-band sensor 

sensitivity assumption can reliably apply. After that, the diagonal transformation is 

applied to the new data (new space). Then the result of the diagonal transformation is 

mapped back to the original RGB space using the inverse of the linear transformation. 

The sensor sharpening method improves some of the computational colour constancy 

techniques which are based on diagonal transformation but it has a negative effect on 

others [105]. Moreover, identifying the appropriate linear transformation is not a clear 

task because it requires some knowledge about the illumination and scene surfaces.  

2.5.2 Linear Transformation Method 

In this transformation method, most of the researchers consider 3×3 matrices for 

linear mapping of image pixels values. Moreover, a finite dimensional linear model is 

used to represent the illumination spectral power distribution and the spectral surface 

reflectance. To the knowledge of the author, Buchsbaum [6] is one of the early 

researchers to use linear transformation to extract spectral surface reflectance. 

Moreover, to improve the accuracy of the surface reflectance estimation of 

Buchsbam’s method, Gershon [26] proposed another method to estimate the spectral 

surface reflectance based on the linear transformation. The common element in these 

two methods is that the illumination is estimated based on the gray world assumption 

(explained in Section 2.4.1.1). 

Furthermore,  Maloney and Wandell [9] proposed a  method for estimating the surface 

spectral reflectance of objects in a scene based on  a linear transformation. This 

method includes two different limitations on the recovery of the surface reflectance. 

First, if the ISPD is known, then the surface reflectance can be estimated only under 

the condition that the number of surface reflectance basis functions is equal to the 

number of image sensors. Second, if the ISPD is unknown, the surface reflectance can 

be obtained if and only if the number of surface reflectance basis functions is less than 

the number of image sensors (which is commonly equal to 3) [30]. Theoretically, the 

previous assumption is correct, but this method performs badly when it is applied to 
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real images because the failure of this assumption will decrease the surface spectral 

accuracy [19], [60], [106].  

To increase the efficiency of the Maloney-Wandell method, Drew et al [11] use the 

RGB values in the mutual reflection region due to the combination of the reflected 

lights from each surface. These values are used as extra information, as well as sensor 

measurement from each surface separately, to recover the surface reflectance.  

2.6 Review of Colour Constancy Frameworks  

To the knowledge of the author, the first colour constancy framework was proposed 

by Finlayson and et al [16].  

Finlayson et al [16] proposed a general correlation framework. This framework allows 

many of the illumination estimation methods (i.e. methods based on the diffuse 

reflection which are previously stated in Section 2.4.1) such as gray-world, gamut 

mapping, Bayesian, and neural network to be used within the framework. In this 

framework, the illumination is estimated through three steps. First, the generation of 

the correlation matrix is obtained by the determination of the image colours which can 

occur under each set of possible lights. Then the colour information which is provided 

by a particular image (i.e. the image from which it is required to estimate the 

illumination) is correlated with the previously generated information (correlation 

matrix). The result of this operation gives the probability that each of the possible 

lights was the scene illuminant. Finally, an estimate of the scene illumination is 

recovered using these probabilities. Although the framework is able to achieve 

reasonable colour constancy accuracy, it has some drawbacks. The framework is 

based on complex methods with high computational cost. The framework needs a 

large image data set with known illuminations, for more accurate illumination 

estimation [53].  

Van de Weijer et al [53] developed a framework which allows the use of some of the 

existing illumination estimation methods which are less complex compared to the 

methods used in the framework developed by Finlayson et al in [16]. The methods 

used by Joost et al in [53], which are based on low level image features, are gray-

world, max –RGB, shade of the gray, gray-edge, and higher order gray-edge (Section 

2.4.1.1). Although the framework is simple and fast in computation, it requires a high 
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number of observed colour surfaces in a scene, for more accurate colour constancy 

estimation.  

Rei [107] proposed a framework to estimate surface colour based on changing the 

colour of the illumination. In this framework, two images of the same scene are 

captured under two different illuminations with different colour temperatures. Then 

the illumination chromaticity and the surface colour of the scene objects are 

calculated in the chromaticity space using pixels values of the two images. Moreover, 

in [108] the shadow and non-shadow regions in images are used in the framework (i.e. 

proposed in [107] ) to estimate the illumination and colour of the surface. 

A common limitation which is deduced from the frameworks, which are mentioned in 

this section, is that these frameworks base their analysis on the assumption of no 

specular reflection content within the images. However, in reality the presence of 

specular reflection within the images cannot be neglected in some cases. Specular 

reflection can cause the failure of the process or reduce the accuracy of these 

frameworks to achieve colour constancy. 

 The frameworks which are mentioned in this section use the approach in which the 

illumination is explicitly estimated in order to be used to achieve colour constancy. 

On the other hand, there are some frameworks which achieve colour constancy 

without explicit estimation of illumination [109]. 

2.7 Summary 

In this chapter, a survey of colour constancy related topics is discussed. The survey 

highlighted that illumination estimation methods have been used in approaches to 

colour constancy developed by other researchers. The illumination estimation 

methods are considered as a key stage towards achieving illumination invariant colour 

descriptors or colour constancy. Then invariant colour descriptor methods are 

reviewed, followed by colour constancy frameworks.  

Most of the methods based on the dichromatic reflection model utilize the original 

image which is a mixture of specular and diffuse components and try to estimate 

illumination chromaticity by analyzing it in different colour spaces. Moreover, most 

of the methods based on the dichromatic reflection model suffer from the problem of 

segmenting image regions which correspond to multi-coloured surfaces in the 

highlight areas while the others face the problem of computational complexity. The 
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estimation of illumination using an explicitly separated specular image component has 

not been reported in the literature and one way to extract the specular image 

component is to use blind signal separation as it will be discussed in Chapter 3. As the 

spectral characteristics of the specular reflection component are similar to the spectral 

characteristics of illumination, estimating illumination based on this component is 

likely to give more accurate results. Moreover, work with an explicitly separated 

specular image component has the potential to avoid the complicated segmentation 

which is needed in the conventional methods. 

The next chapter presents a survey of blind signal separation techniques, which are 

combined with the physical model of image formation (i.e. which assumes 

dichromatic reflection) in the colour constancy framework proposed in this thesis. 
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3.1 Introduction 

This chapter presents a survey of the blind signal separation techniques which are 

pertinent to this research on colour constancy. The chapter discusses blind signal 

separation techniques for additive mixed signals and convolutive mixed signals. The 

survey includes a comprehensive study of Independent Component Analysis (ICA) 

which is used to solve the problem of blind signal separation. A description of ICA is 

given; it includes the ICA model, the assumptions, and the ambiguities of the model, 

and the principle of estimating the ICA model. Subsequently, one of the least complex 

and efficient ICA techniques, which is named FastICA, is explored. Finally, the 

spatially constrained FastICA, which is a modified version of FastICA, is presented, 

followed by the chapter summary.  

3.2 Blind Signal Separation 

Blind signal separation is the ability to extract the unobserved signals or sources from 

several observed mixtures. The observed mixtures are obtained at the output of a set 

of sensors and each sensor output is a combination of the sources or signals. This 

process is called ‘blind’ because the separation of the sources occurs without 

knowledge about the sources or signals and the corresponding mixtures. Blind signal 

separation is used for various types of applications, with different types of mixing 

processes. The possible types of mixtures are the additive and the convolutive
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 mixtures  [110]. In the additive mixing, the mixtures are generated as a weighted sum 

of the individual sources or signals without time delay. This means that the sources 

reach the sensor at the same time. However, in the convolutive mixing, the mixture 

contains a  time delay due to the fact  that the sources reach the sensor at the different 

times [111]. According to the mixing condition, blind signal separation techniques can 

be classified into two categories which are: techniques for additive mixed signals and 

techniques for convolutive mixed signals, as seen in Figure 3-1. 

The mixed signals that are considered in this research project are images, which are 

created mainly based on the dichromatic reflection model. This model assumes that 

the image is formed due to two components which are additively mixed. Due to this 

assumption, the survey will focus on the additive mixed signals techniques including a 

brief summary of techniques for convolutive mixed signals.   

3.2.1 Techniques for Additive Mixed Signals  

 Blind signal separation can be achieved using two types of separating methods which 

are linear and nonlinear. The linear separating method is used when the number of 

sources is less than or equal to the number of mixed signals and the nonlinear 

separating method is used when the number of sources is greater than the number of 

mixed signals [112]. Moreover, using nonlinear separating method requires 

assumptions such as sparseness of the sources, which is not found in the sources 

considered within the context of this research. This chapter is mainly concerned with 

techniques that use a linear separating method, and it gives some examples of 

techniques that use the nonlinear separating method. The procedures of the blind 

separation process in the additive mixed signals techniques depend on what is 

assumed about the sources [113]. According to the assumptions made about the 

sources, there are two types of procedures, one type uses the spatial independence and 

non-Gaussianity of the sources, and the other uses the spatial decorrelation and 

temporal correlation assumption [113]. 

3.2.1.1   Techniques Based on Spatial Independence of Sources  

In this class of blind signal separation techniques, each source is assumed to be 

statistically independent of the other sources. Moreover, the probability density
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Figure 3-1 Classification of blind signal separation techniques [111], [113].
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functions of all sources must be non-Gaussian except that one at most must be 

Gaussian.The separation in this class of techniques relies on some knowledge of the 

higher-order or lower-order statistics of the source signals. Blind signal separation 

techniques which assume spatial independence can follow two different approaches 

which use the density matching of sources or the contrast function optimization  

[110]. 

The density matching blind signal separation techniques are based mostly on concepts 

from information theory. These techniques mainly include entropy maximization for 

each source and mutual information minimization between sources. Information 

theory supports these techniques by the amount of information that is shared in a set 

of signals. The separation of sources in this class of techniques occurs when no 

common information can be found between any two output sources. Researchers 

formulate the density-matching techniques in different ways [110] for sharing 

information from various signals. 

Bell and Sejnowski are the first researchers who used information theory to perform 

blind signal separation [114]. They developed an information maximization technique 

which is called the ‘infomax technique’. The proposed technique is an adaptive 

learning technique which works by maximizing the information passed through a 

neural network. This technique shows how the neural network is capable of separating 

independent components in the input, which means that the neural network can 

perform independent component analysis. The technique proves that the minimization 

of mutual information among the output components can be approximately achieved 

by maximizing the joint entropy of the output of the neural network. Although the 

technique was shown to be able to separate up to ten sources, it is limited to separate 

sources with super-Gaussian distribution [115].   

In order to separate the  sources with variant distributions, [116] extends the infomax 

technique. The extended technique provides a simple and general learning rule with 

fixed nonlinearity to separate sources with either sub- or super-Gaussian distributions. 

Although Amari et al [117] proposed a different technique; the learning rule outcome 

was the same as the Bell and Sejnowski learning rule. The technique was then 

extended by performing a descent on the natural gradient. As the starting point in this 
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technique derivation, the Kullback-Leibler distance was used to measure the similarity 

of the probability density functions. The output components are independent if the 

joint entropy of the outputs is the same as the product of the individual entropies. This 

is achieved by minimizing the Kullback-Leibler distance between the probability 

density function of the output components and the product of the probability density 

function of the individual output components.  

In the contrast function optimization blind signal separation techniques, an 

introductory concept of contrast function for blind signal separation was initially 

presented by Comon [118]. The contrast function can be applied directly because it is 

non quadratic and mainly depends on a single extracted output source. Such functions 

are used as constraints over the demixing matrix elements to separate independent 

sources from their linear mixture. The common characteristics between density 

matching techniques and the contrast function techniques is that they both depend on 

the spatial independence and non-Gaussianity of the source signals to perform the 

separation. However, density matching techniques entail a significant knowledge 

about the nature of the source signal, the probability density functions, in order to 

perform separation which is different to the contrast function techniques. There are 

different techniques in this class which differ in the definition of the contrast function. 

Comon [118] proposed a technique which provides a precise definition of the 

independent component analysis problem within an applicable mathematical 

framework based on the contrast function. It was shown that, in Comon’s ICA 

technique, the sources are separated from their mixture when the contrast function is 

maximized. The main feature of this technique is that the contrast function is mainly 

dependent on the fourth order cumulant of the source. The principles of ICA and 

further detail about it will be explained in detail later in this chapter (Section 3.3).   

Burel presented in [119] a technique based on the multilayer neural network which is 

used to construct the contrast function. Such a contrast function is designed to make 

each output source to have zero mean and unity variance and make sources 

independent. The source separation in this technique is achieved due to minimizing 

the contrast function by updating the neural network weights. Subsequently, by using 

the natural gradient method, an information backpropagation technique by Burel was 

developed [120]. Moreover, Yang et al in [121] proposed a radial basis function 
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neural network described by a contrast function which is defined by the mutual 

information.  

Cardoso proposed a technique which was closely related to Comon’s technique, called 

serial updating [115]. Like Comon’s technique, the update of the serial updating 

technique is derived in two steps which are: whitening of the observed signal, and the 

rotation until the contrast function is minimized (the case of the serial updating 

technique) or maximized (the case of the Comon’s technique). On the other hand, the 

serial updating technique used the fourth-order moments of the output signal to define 

the contrast function while Comon’s technique uses fourth-order-cumulants. 

Moreover Cardoso proposed another important technique which is known as joint 

approximate diagonalization of eigenmatrices (JADE) [122]. The main feature of this 

technique is that the cumulant tensor eigenvalue decomposition is considered as pre-

processing. The contrast function of JADE effectively measures the mutual 

information between the cross cumulants. The separation of sources is found when the 

mutual information or contrast function is minimized. 

In [123] the fixed-point technique, named FastICA, was introduced using kurtosis and 

then it was modified for a general contrast function using negentropy approximation 

[124]. The FastICA technique has many advantages over the other contrast function 

techniques, which make it a good candidate to be combined with the physical image 

formation model (i.e. assumed to be dichromatic model) in order to achieve colour 

constancy (the framework proposed in this thesis). These advantages and further 

details of the FastICA technique will be discussed later in this chapter (Section 3.3.2 ) 

[124].   

3.2.1.2  Techniques Based on Temporal Correlation of Sources  

 The techniques of this class depend on a set of source properties such as spatial and 

temporal properties. Unlike the previous techniques, the spatial independence of the 

sources is not needed. However, the sources need to be spatially uncorrelated and 

temporally correlated. The main advantage of blind signal separation techniques 

which use temporal correlation is that the source separation is achieved by using 

second-order statistics. Much research has been done using the temporal properties of 

the sources for blind signal separation [110].  



Ch.3                                                                                 Survey of Blind Signal Separation Techniques 

 40 

 Jutten and Huerault found the earliest solution for blind signal separation using a 

neural network that was based on the temporal correlation of sources [115]. The 

separation of sources is achieved by cancelling the non-linear cross-correlation of the 

sources, which means obtaining independent sources. The disadvantage of this 

technique, known as the Jutten-Huerault technique, is  that it converges slowly under 

a severe restriction due to computation of matrix inversion [125].  

Moreover, researchers in [126] proposed another technique based on cancelling the 

non-linear cross-correlation, which is called the equivariant adaptive separation via 

independence (EASI) technique. In this technique, the researchers try to overcome the 

disadvantages of Jutten-Huerault’s technique by decreasing the calculation process 

which is achieved by avoiding any matrix inversion and improving the stability of the 

technique.  

Furthermore, [127] presented a new blind signal separation technique for temporally 

correlated sources, known as second order blind identification (SOBI). This technique 

uses joint diagonalization of an arbitrary set of covariance matrices [128]. Unlike the 

higher order cumulant technique, this technique allows for separation of sources with 

Gaussian distribution and also depends only on the second-order statistics of the 

received signals. 

3.2.2 Techniques for Convolutive Mixed Signal  

There are several techniques which are proposed to separate sources from a 

convolutive mixture. Based on the separation domain, these techniques can be 

grouped into three categories, which are: time based techniques, frequency based 

techniques, and time–frequency based techniques [129]. The separation in these 

categories is achieved based on the assumption that the sources are statistically 

independent or at least decorrelated. Moreover, the separation criteria in both the 

time-based technique and frequency-based technique can be divided into methods 

based on higher-order statistics, and second-order statistics (SOS) [111]. 

In the higher order statistics based techniques; there are many researchers who dealt 

with the problem of separation using different categories of techniques.  
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• The first category, which is known as the techniques based on fourth order 

statistics, is based on minimizing the second and fourth order dependence 

between the sources. In this category, researchers tackled the problem of 

separation by using fourth order cumulant [129-133], second and third order 

cumulants [134], kurtosis [135-137], and negentropy [138].  

• In the second category, which is the set of techniques based on non-linear 

cross moments, researchers indirectly applied higher-order statistics to solve 

the problem of the convolutive mixture separation by using odd non-linear 

functions [111], [115], [139].  

• In the third category, the techniques based on information theory, probability 

density functions are used as an indication of the statistical independence of 

the sources. Based on information theory, there are many techniques derived 

using the maximization of entropy [140], [141] the Maximum Likelihood, 

Maximum a Posteriori [111], Bayesian formulation, and Hidden Markov 

Model [111],  [142], [143].  

On the other hand, the techniques based on second-order statistics need only non-

correlated sources instead of higher-order statistical independence [127]. Unlike the 

higher-order statistical techniques, these techniques make alternative assumptions 

such as the non-stationarity of the source [144-146] or a minimum phase mixing 

system, and non whiteness [111]. The separation using these techniques depends 

mainly on minimizing the cross correlation of separated sources. The main advantages 

of the techniques based on the SOS are that they are less sensitive to noise and 

outliers, and consequently require less data for their estimation [147]. 

As declared previously in Section 3.2.1, it is difficult to extract more sources than 

there are sensors with a linear separating system. Researchers try to address this 

problem, of extracting more sources than sensors, using the sparseness assumption 

[112], a nonlinear system, and a Bayesian formulation [111]. The sparse assumption is 

considered when the source signals are not overlapped in the time-frequency  domain, 

which increases  the possibility of separating the sources [112].  
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3.3  Independent Component Analysis (ICA) 

 ICA is one of the blind signal processing techniques used to represent random 

variables as linear combinations of statistically independent components. The simple 

model of ICA can be defined by a linear relationship between the observed random 

variables and the unknown independent components in matrix form as follows: 

ASX =  (3-1) 

where X represents the matrix of the observed random variables (e.g observed image 

data) and each row in the matrix contains the random variable vector, X = (x1, x2,… 

xp)T ; S is an independent component matrix (e.g specular and diffuse image 

components) and each row includes an independent component, S = (s1, s2,…, sn )T; A 

is an unknown (p x n) matrix of full rank, which is known as the mixing matrix. The 

ICA model  is considered as a generative model which describes how the observed 

signals are generated from the mixing matrix and components [118].   

For example, in the work presented in this thesis, different instance images (X) are 

created.  ICA techniques are then applied to these images in order to extract the image 

sources or the components (S) that contribute in the reconstruction of these images. 

The number of the created images depends on the number of components which need 

to be extracted.  

The main issue of the ICA technique is to estimate the original independent 

components or the mixing matrix, which are equivalent, from observed variables 

(signals). This estimation is based on some assumptions about the observed signals 

and the independent components. These assumptions can be listed as follows [113]: 

• The number of observed signals is greater than or equal to the number of the 

independent components (p ≥ n). 

• The independent components must be mutually statistically independent, with 

a zero mean. 

• All independent components must have a non-Gaussian distribution with an 

exception of one component which can have a Gaussian distribution; 

otherwise the estimation of components will fail. 
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• The mixing matrix must be full column rank. 

After the estimation of the mixing matrix A is obtained, the demixing matrix 

W=(w1,…,wn)T which is the inverse of A, is calculated. Where wi are the rows of the 

inverse of the mixing matrix (A) and also are equal to the columns of the mixing 

matrix according to the property of an orthogonal matrix: A-1 = AT. Then the 

independent components S can be simply computed by the following formula [148]. 

WXS =  (3-2) 

There are uncertainties in the ICA model. These uncertainties are: 

• The energies (variance) and the sign of the independent components 

cannot be identified. This is due to the fact that, both independent 

components(S) and mixing matrix (A) are unknown. 

• The order of the independent components cannot be defined. This is 

also because no knowledge about the S and A is used and the 

estimation is randomly obtained [125].  

ICA has been selected for the proposed project because it has been shown to give 

good results for recovering scenes degraded by reflections off a semi-reflecting 

medium such as a glass window, by decomposing the image which contains a mixture 

of the original image and the reflected scene image [149-151]. This is similar in 

principle to the problem of separating additive mixed components of the image, which 

are specular and diffuse components. Furthermore, ICA achieved good results on 

blind signal separation tasks [149-157].   

ICA is mostly used for blind source separation and it achieves good results on this 

task. Moreover, ICA has been used in different applications of image and signal  

processing, such as embedding [158-160] and extracting watermarks [161, 162], 

image retrieval [163-165], pattern recognition (face [166-170], iris [171], fingerprint 

pre-processing [172]), image restoration and enhancement [173], medical imaging 

[152], [174] ,signal processing [153], [155], [175], speech recognition [176], removal 

of reflections from an image [149-151] and separating the image components [28]. 

ICA has been successfully implemented in different applications as mentioned above 

[149-157], and especially for separating components of an additive mixture of signals. 
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The image formation in the framework presented in this thesis is based on the 

dichromatic reflection model which means that the image is formed due to an additive 

mixture of the diffuse and specular components. Hence, ICA techniques are suggested 

to be used for the separation of the diffuse and specular components of an image in 

this framework. 

3.3.1 Estimation Principle of the ICA model  

Non-Gaussianity is considered as a key issue for estimating the ICA model and the 

estimation will be impossible without it. The estimation principle of the ICA model is 

based on the central limit theorem. The central limit theorem states that the sum of 

independent random variables has a distribution which is closer to the Gaussian 

distribution than any of the original random variables [148]. The principle of the ICA 

model is to determine the vector w, which maximizes non-Gaussinaty of the linear 

combination which is denoted by y = wT x=∑i wi xi. This linear combination actually 

equals one of the independent components. There are different techniques for ICA 

estimation based on several criteria such as: maximization of non-Gaussianity, 

minimization of mutual information, and maximization of likelihood. The technique 

that is used in this project, to estimate the ICA model, is based on the maximization of 

the non-Gaussianity of the independent components. This is because this technique 

does not require additional information about the nature of the separated source, while 

the others need such information. 

In most of the ICA techniques, the preprocessing of the data is considered as an 

important and useful stage. The preprocessing makes the estimation of the ICA model 

simpler in computational terms and makes it perform better in estimating the 

independent components. In ICA, the preprocessing is done by two procedures which 

are data centring or ‘sphering’ and whitening. The data centring is achieved by 

removing the mean of the data vector which sets the mean of the variable to zero. The 

whitening is achieved by using the eigenvalue decomposition of the covariance matrix 

of the centred observed data [177]. The goal of whitening is to transform the observed 

vector linearly to the new vector where its components are uncorrelated and have unit 

variance. This means that the new vector covariance matrix is an identity matrix. 

Moreover, the whitening transforms the mixing matrix A into a new mixing matrix 

which is orthogonal. The effect of the whitening is to reduce the complexity of the 
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ICA model by decreasing the number of parameters to be estimated. The following 

section explains an efficient and simple ICA technique which uses a contrast function; 

its estimation is based on maximization of non-Gaussianity. 

3.3.2 FastICA Technique 

This technique is based on a very simple and efficient fixed-point iteration scheme to 

estimate the non Gaussian independent components using the kurtosis contrast 

function. The kurtosis, which is also called as the fourth-order cumulant, is the 

classical measure of non-Gaussianity. Although kurtosis calculation is 

computationally simple, it is not robust for non-Gaussianity measurement. The 

estimated value for the kurtosis is sensitive to outliers; this is due to the degree of the 

kurtosis equation. 

On the other hand, the negentropy is considered as the optimal estimator of non-

Gaussianity in some sense. However, the drawback of using negentropy is the 

difficultly of its computation. This difficulty is due to the need to estimate the density 

function of the random variable. Therefore, simpler approximations of negentropy are 

introduced [125], [148]. These approximations, which are considered as one-unit 

contrast functions, are characterised by simplicity, speed of computation, and 

addressing the problem of robustness. These approximations of negentropy provide 

FastICA with a general contrast function.  

Also, the FastICA is considered as a general technique because it is used to optimize 

one-unit or multi-unit contrast function. The one-unit FastICA is used to estimate only 

one of the independent components. However multi-unit FastICA is used to estimate 

several independent components. This is achieved by running the one-unit FastICA 

technique using several units with the weight vectors w1,…, wn. The estimation of 

these components can be achieved in two different ways. These ways are a sequential 

(one by one), which is called a deflation scheme, or a parallel (all at the same time), 

which is known as a symmetric scheme.   

Compared with current techniques for ICA, the FastICA technique and the 

fundamental contrast functions have a number of essential properties. 
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• The FastICA convergence is very fast because its convergence is cubic (or 

at least quadratic) under the assumption of the ICA data model. In gradient 

descent methods the convergence is just linear.  

• The FastICA is easy to use because it does not require selecting proper 

step size parameters while the gradient-based techniques do.  

• In the FastICA technique, the independent component of any non-

Gaussian distribution can be estimated directly using any nonlinearity 

functions. However in many ICA techniques, the nonlinearity function is 

selected corresponding to the estimated probability distribution. 

• By selecting a suitable nonlinearity function, the performance of the 

FastICA in terms of robustness can be optimized. 

• The FastICA has most of the advantages of the neural-network techniques 

such as simplicity in computation and little memory space requirements.   

3.3.3 Spatial Constraints on the Mixing Matrix 

In  blind signal separation and ICA, there are different types of generic mixing matrix 

constraints, such as orthonormality, orthogonality, non-negativity, sparsity, and 

symmetry which are commonly used [177]. These types of constraints control the 

mixing matrix to satisfy certain conditions without specific prior knowledge of the 

mixing matrix coefficients. On the other hand, the spatial constraints on the mixing 

matrix consider specific prior knowledge or assumptions about the coefficients of 

certain columns of the mixing matrix. There are two types of spatial constraints on the 

mixing matrix. The first one is the parametric constraint in which the space of the 

component coefficients is restricted by a generative model which imitates geometrical 

and physical properties of the source (component) mixing and the signal generating 

process [178]. The second one, which is called reference or constraint topographies, 

considers that some component coefficients (mixing matrix columns) are 

approximately known. Constraint topographies can be manually determined by the 

selection of components extracted from previous data using an unconstrained ICA 

model, or generated from a mathematical model of the signal mixing process [178]. 

Moreover, the way of determining constraint topographies depends on the application. 
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For constraint topographies, the spatially constrained mixing matrix A contains two 

types of columns as follow:   

[ ]uc aaA =  (3-3) 

Where ac are the spatially constrained columns and au are the spatially unconstrained 

columns. For various accuracies of the predetermined constraint topographies, there 

are different spatial constraints severities which are defined as hard, soft, and weak 

spatial constraints. Determination of the spatial constraint severity depends on the 

degree of confidence about the constraint topographies [179]. In the following section, 

the spatially constrained FastICA will be explained. 

3.3.4 The Spatially Constrained FastICA 

This technique is considered as a modified version of conventional FastICA. This 

modification is achieved by using spatial constraints on the mixing matrix of the  

conventional FastICA [179]. The goal of this technique is to estimate the mixing 

matrix coefficients and a set of sources including both independent components and 

spatial components. This is achieved by maximizing the statistical independence of 

unconstrained sources while minimizing the divergence between the spatially 

constrained source projections and their corresponding reference topographies [178]. 

Similar to the conventional FastICA, the preprocessing of the observed signals and the 

selection of an appropriate non-linearity function for the FastICA contrast function are 

necessary for the spatially constrained FastICA. However the ICA and the 

conventional FastICA are not able to differentiate between the separated components. 

On the other hand, the spatially constrained FastICA is able to make the 

differentiation between the components clearer and easier than the conventional 

FastICA. In the proposed colour constancy framework, the differentiation of separated 

components (specular and diffuse components) is necessary in order to achieve an 

accurate estimation of illumination and surface reflectance. For this reason, the 

spatially constrained FastICA becomes a good candidate to be used for blind signal 

separation within the proposed colour constancy framework. The steps of the 

separation process of the specular and diffuse components from an image, using the 

spatially constrained FastICA, are explained in detail in Chapter 4.  Moreover, a brief 

description of the ICA technique, which was developed by Umeyama and Godin [28] 
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for separating the specular and diffuse image is provied in Chapter 4. The technique 

developed by Umeyama and Godin [28] and the spatially constrained FastICA are 

used for testing  the colour constancy framework proposed in this thesis.    

3.4 Summary 

In this chapter, a survey of blind signal separation techniques for two types of mixed 

signals is presented. A critical study of these techiqunies is conducted. This study 

reflects that the spatially constrained FastICA technique is characterised by some 

properties. These properties support the selection of the spatially constrained FastICA 

technique to be used for blind image separation within the colour constancy 

framework proposed in this thesis. Further justification for choosing the spatially 

constrained FastICA technique is given in Section 4.3.2. Moreover, the ICA technique 

which was developed by Umeyama and Godin [28], for separating the specular and 

diffuse image, is used within the colour constancy framework proposed in this thesis. 

The next chapter explains in detail the proposed colour constancy framework and the 

methods used for each of its stages.  
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4 Proposed Colour Constancy Framework 

4 
Proposed Colour Constancy 
Framework 
 
 

4.1 Introduction   

This chapter presents a novel framework to address the challenge of achieving colour 

constancy. The proposed framework is based on the combination of blind signal 

separation and a physical model of image formation, chosen to be a dichromatic 

reflection model. The chapter starts with presenting the proposed colour constancy 

framework. After that, the chapter presents the embodiment of the framework which 

is evaluated in this thesis. The image capture setting is also explained, and then the 

methods used within the framework are described in detail. The chapter concludes 

with a summary.  

4.2 Description of the Framework 

In the colour constancy framework proposed in this thesis, the image is assumed to be 

formed by an imaging process which can be represented by the dichromatic reflection 

model. This model represents the light reflected by an object as a linear combination 

of diffuse and specular reflections, as explained in Section 2.2.5. The framework is 

designed to achieve colour constancy by recovering the spectral reflectance of 

surfaces from the diffuse component, with the help of characteristics of the 

illumination which are estimated from the specular reflection component. This surface 

colour recovery process requires the separation of images into specular and diffuse 

components. The proposed colour constancy framework thus consists of three 

significant stages, as shown in Figure 4-1.  
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Figure 4-1 The proposed colour constancy framework



Ch.4                                                                                                          Proposed Colour Constancy Framework 

 51 

The three stages respectively perform: (i) the extraction (using blind signal separation) of 

separate specular and diffuse components of the pictured scene, (ii) the estimation of the 

spectral power distribution of the illumination incident onto the scene, and (iii) the estimation 

of the spectral reflectance of surfaces which make up the scene. There are many possible 

choices of techniques and algorithms which can be used for implementing this generic 

framework. The particular embodiment of the framework which is evaluated in this thesis is 

presented in the next section. The section begins by presenting the image capture setting, 

which explains how the set of images that have been used as input for the evaluated 

embodiment of the proposed framework were generated. 

Moreover, the stages of the proposed framework, implemented for experimental evaluation, 

are explained in detail individually, including the input data and methods used for each stage. 

4.3 Embodiment of the Framework Evaluated in the Thesis 

4.3.1 The Image Capture Setting  

The image capture setting, which is used in the embodiment of the framework evaluated in 

this research, uses a polarizer in front of the camera and assumes free air as the medium 

between the light source, object surface, and camera. The polarizer has a significant effect on 

polarized light whereas it has no impact on unpolarized light. This means that the amount of 

polarized light which passes through the polarizer varies according to the rotation angle of the 

polarizer, but the amount of unpolarized light is constant.  

The specular reflected light is highly polarized; hence, the intensity of specular reflection 

which reaches the camera changes with different polarizer angles. In contrast, diffuse 

reflection has a small amount of polarization; hence, the polarizer has a negligible effect on 

the diffuse reflection which reaches the camera. As a result, it can be assumed that the 

polarizer has a significant effect only on the specular reflected light. The polarizer has 

previously been used, by other researchers, to separate the specular and the diffuse 

components [28], and it has been used to achieve colour constancy by representing the 

specular and the diffuse components in colour space [52]. In this research, based on the 

dichromatic reflection model, the first stage of the framework uses the effect of a polarizer on 

the captured images in order to separate the specular and diffuse image components. The 

separation of these components is achieved using a blind signal separation technique. These 

components have special characteristics which are used in this research to estimate the ISPD 



Ch.4                                                                                                          Proposed Colour Constancy Framework 

 52 

and subsequently the surface reflectance, in order to achieve colour constancy. In the image 

capture model used in the implemented framework, the impact of the polarizer on the 

observed images for different polarizer orientation angles can be expressed by extending 

Equation (2-12) into: 
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  (4-1) 

 where p is the number of observed images which corresponds to the number of polarizer 

orientation angles; Ф(τ)
 
is a function that depends on the orientation angle of the polarizer and 

the relative specific geometrical configuration of the light source, object surface, and camera; 

τ is the angle between the specular reflection plane and the orientation of the polarizer. When 

the light source is far away from an object, the local angle (incident angle) of the incident 

light is almost equal for all image pixels. Consequently, specular planes of all pixels are 

nearly parallel to each other, and the polarizer has approximately the same effect on the 

specular reflection corresponding to these pixels [28]. As it can be noticed in Equation (4-1), 

all the images observed through a polarizer are linear combination of approximately the same 

diffuse component and different specular components which depend on the orientation angle 

of the polarizer.  

4.3.2   Separation of Image Components  

In the first stage of the framework, after capturing the same scene with different angles of 

polarization to produce p observed images (Ip,k), the separation of specular and diffuse 

components of an image is achieved using the spatially constrained FastICA technique, as one 

of the options. The choice of this technique is mainly based on the number and the 

characteristics of the sources of the mixed signals that are considered in this research. The 

number of sources, which are considered in this research, is two. These sources are the 

specular component and the diffuse component. For simplicity and accuracy of applying the 

linear separation method, the number of mixed signals used in this research can be increased 

using a polarizer (Section 3.2.1). The probability density functions of specular and diffuse 

components, which represent the sources that are considered in this research, are unknown. 

This means that density matching techniques are not suitable to perform the separation in the 
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framework proposed in this research (Section 3.2.1.1). In real images, there is some spatial 

correlation between the specular and the diffuse component [28]. This means that the 

properties of the sources which need to be separated in this research do not satisfy the 

requirements (i.e the sources have to be spatially uncorrelated and temporally correlated) of 

the techniques based on temporal correlation of sources (Section 3.2.1.2). On the other hand, 

signal separation by techniques based on the contrast function optimization (e.g. ICA 

techniques) depends on the spatial independence and non-Gaussianity of the sources. ICA 

techniques have been used successfully to solve a kind of separation problem that is similar to 

the one dealt with in this research. One of the common ICA techniques is the spatially 

constrained FastICA. The spatially constrained FastICA technique can be explained as 

follows:   

The p observed images (Ip, k) are converted to row vectors (ip,k). 

AS
i
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X =

















=

kp,
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  (4-2) 

Then, centring the image row vectors and generating the whitening matrix (V), using 

eigenvalue decomposition of the data covariance matrix [177], are performed. The whitened 

image rows (Z) (which have unit variance) are calculated using the following equation. 

VXZ =  (4-3) 

After that, the constrained mixing matrix (A), which contains constrained and unconstrained 

columns (ac, au), is constructed. Constrained column refers to coefficients that do not change 

significantly for different observations. These coefficients can therefore be determined and 

are therefore known. Unconstrained column refers to coefficients that can change for different 

observations and therefore need to be estimated. According to the behaviour of the polarizer 

on the diffuse and specular reflection components, the constrained column (ac) is related to 

the coefficients of the diffuse component. These coefficients are set to 1 (as seen in Equation 

(4-1)). The unconstrained column (au) is related to the coefficients of the specular component 

which are initialized randomly for all experiments that are performed in this research using 

this technique. 

[ ]ua1A =  (4-4) 
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Then, the whitened constrained mixing matrix (H), which is an orthogonal matrix, is 

calculated using   

[ ]uc hhVAH ==  (4-5) 

Gram-Schmidt orthonormalization is applied to the whitened constrained mixing matrix, 

followed by updating and normalizing hu, using  

T
1iu,

T
1iu,

T
1iu,iu, −−− −= hZhZhZh )}({)}({ 'gEgE xx  (4-6) 

and  

iu,

iu,
iu, h

h
h =  (4-7) 

where Ex , g , i ,and g’ are the expectation, nonlinear function, iterative index, and derivative 

of a nonlinear function; g can be formulated as (for further details about  g see [123]): 

( ) ( )uug tanh= ,     ( ) 3uug =  , or   ( ) ( )2uuug 2 /exp −=  (4-8) 

The updating and normalizing of hu are iterative until convergence occurs as specified by 

1hh iu,
T

1iu, ≅−  (4-9) 

At that time, the separation of the specular and diffuse components can be achieved by  

ZHS T=  
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 (4-10) 

and the mean of the observed image row vectors is added to each of the separated 

components. The spatially constrained FastICA technique is repeated for the R, G and B 

image components to separate the specular and diffuse components for each of them. The 

process of image component separation is applied for the whole image. The flowchart in 
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Figure 4-2 summarizes the steps of the separation of the specular and diffuse components for 

RGB images, using the spatially constrained FastICA technique. 
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Figure 4-2 Separation of the specular and diffuse components for RGB images, using the spatially constrained 
FastICA algorithm. 

 

As an alternative to the spatially constrained FastICA technique, the technique developed by 

Umeyama and Godin [28] is used for separating the specular and diffuse image in the 

proposed colour constancy framework in this thesis. To the author’s knowledge, the  

technique developed by Umeyama and Godin in [28] is the only one which used blind signal 

separation for specular and diffuse components. In brief, this technique is also applied to two 

images produced by a polarizer. The estimation of the mixing matrix and the separated 

components in the technique reported in [28] is found by using singular value decomposition 

of the observed images with an arbitrary matrix. The task of the arbitrary matrix is to guide 

the separation process; different arbitrary matrices give different separated components. The 

arbitrary matrix values are controlled by one parameter varied in the range from 0 to π (in 

radians). The desired arbitrary matrix is the matrix that gives separated components which 

have minimum mutual information (for more detail about the technique see [28]). 



Ch.4                                                                                                          Proposed Colour Constancy Framework 

 56 

4.3.3 Estimation of ISPD 

The method proposed for estimating the ISPD in the second stage of the framework is based 

on the dichromatic reflection model, in order to utilize the specular image component to 

estimate the illumination. In the proposed method, the ISPD is estimated using an explicitly 

extracted specular component instead of mixed image components (i.e. composed of specular 

and diffuse components) which are used by other researchers [12], [18], [29]. Moreover, in 

the illumination estimation method used in the developed framework, the illumination is 

modelled by a linear model of basis functions. The estimation of the ISPD is achieved by 

calculating the linear combination coefficients of the illumination basis functions. The 

calculation of these coefficients is done by using the specular component, some illumination 

basis functions, and the spectral sensitivities of camera sensors, for each of the RGB image 

channels, as follows. The specular component of the RGB channels, which are represented by 

Equation (2-11), can be expressed as: 

 

( )kks, qEI   wsn .=

  
(4-11) 

where (.) is dot product operation, k=R, G, B  is the subscript of RGB imaging sensor 

response and wsn is a modified specular geometrical scale factor,  its value is in the interval 

(0-1) but for simplicity it is assumed to be 1. Note that the illumination spectral power 

distribution (E) and the imaging sensor response (qk) are functions of wavelength which is 

omitted for simplicity of notation, in the rest of this chapter. Equation (4-11) can be 

formulated by modelling the illumination spectral power distribution as a linear model of 

basis functions using Equation (2-1) as: 

ik
i

iks, ,Qε
3

1
∑
=

=I
 

 

(4-12) 

where  

kiik, qb  Q .=  (4-13) 

where bi are the illumination basis functions, εi  are the illumination basis function 

coefficients, i=1, 2, 3 is the subscript of the illumination basis functions. Note that the 

illumination basis functions are functions of wavelength which is omitted for simplicity of 

notation, in the rest of this chapter. It was  reported in [30] that the last value of the index  ‘i’ 
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can be set to 3 because,  if ‘i’ is greater than 3, the complexity of the estimation increases and 

also the accuracy of the estimation increases negligibly (See Section 2.2.1). Hence, the 

specular component for RGB channels can be represented in matrix form as:   
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(4-14) 

 

Then by applying matrix inversion to the previous formula, the illumination basis function 

coefficients can be calculated as: 
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(4-15) 

 

In the illumination estimation method used within the implemented framework and used for 

all experiments in this thesis, the illumination is modelled by using Judd’s basis functions 

which are shown in Figure 2-1. By using Judd’s basis functions most of the daylight 

illumination can be reconstructed from a mean of daylight illuminations and two basis 

functions which are derived from a data set of daylight illuminations. Judd’s basis functions 

are pertinent to be applied in several colour applications [30]. A further justification of the 

choice of these basis functions is given in Sections 2.2.1. The spectral range of these basis 

functions is from 400nm to 700 nm, with spectral step of 1nm as seen in Figure 2-1. 

By using Judd’s basis functions the specular component represented by Equation (4-11) is 

modified by  

( ) kks qbbmI  . 2211, εε ++=

 

(4-16) 

where m is the mean of the Judd’s basis functions; b1 and b2 are first two Judd’s basis 

functions; ε1 and ε2  are the coefficients of these basis functions. Note that the mean (m), and 

the basis functions (b1, b2) are functions of wavelength which is omitted for simplicity of 

notation. Equation (4-16) implies that two coefficients need to be estimated instead of three. 

The coefficients will be estimated from specular pixels. Pixels considered as predominantly 

specular will be selected by applying a suitable threshold to the specular component extracted 

from the input image by blind signal separation. The calculation of the coefficients is 

performed as follows. 
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(4-17) 

where 

,.,. ,, kkkk qbqb   Q  Q 2211 ==

 

(4-18) 

(+) and (-1) respectively represent pseudo-inverse and inverse operation. The estimation of 

the coefficients can be achieved using the pseudo-inverse of the i,kQ  matrix for the R, G and 

B colour components, or the inverse i,kQ  matrix for (any two of R, G, and B) colour 

components. Then two coefficients (ε1, ε2) from each selected specular pixel are calculated 

using Equation (4-17). The coefficient ‘ε1’ from all selected specular pixels are averaged; 

similarly ‘ε2’ is also averaged. The spectral power distribution of the illumination can then be 

calculated using the mean and the other two illumination basis functions, together with the 

estimated average coefficients, in Equation (4-19).  

22av11av bbmE ε+ε+=  

where 

)(mean)(mean f22avf11av ,, , ε=εε=ε  

f is the number of specular pixels used to calculate the average coefficients.

 

(4-19) 

The derivation of the full spectrum of the illumination from only 3 or 2 values (i.e. R, G, and 

B or any two of R, G, and B) per pixel is thus achieved with aid of the basis functions. The 

basis functions are considered as additional information in order to achieve the estimation of 

more than 3 values from only 3 or 2 input values (under the constraints of the estimation 

problem). The flowchart in Figure 4-3 summarises the illumination estimation method used 

within the implemented framework. 
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Figure 4-3 Flowchart of the illumination estimation method. 

 

4.3.4 Estimation of Surface Spectral Reflectance  

The proposed method used for estimating the surface spectral reflectance in the third stage of 

the developed framework is based on a linear mapping of the pixels values of the diffuse 

image component (see Section 2.5.2). In the proposed method, the surface spectral reflectance 

is estimated using an explicitly extracted diffuse component, instead of mixed image 

components which are used by other researchers [26]. Moreover, in the surface reflectance 

estimation method used in the implemented framework, the surface reflectance is modelled by 

a linear model of basis functions.  

The estimation of the surface spectral reflectance is performed by calculating the coefficients 

of the surface reflectance basis functions. The calculation of these coefficients is done by 

using the RGB diffuse components, the illumination spectral power distribution, the surface 

reflectance basis functions, and camera sensor sensitivities, for each of the RGB image 

channels, as follows. The diffuse component of the RGB channels, which are represented by 

Equation (2-10), can be formulated 

( )( )kk    qESI ., dd w=  (4-20) 



Ch.4                                                                                                          Proposed Colour Constancy Framework 

 60 

where wd is diffuse geometrical scale and its value is in the interval (0-1) but for simplicity it 

is assumed to be 1. The surface spectral reflectance (S) is a function of wavelength which is 

omitted for simplicity of notation, in the rest of this chapter. Equation (4-20) can be 

formulated by modelling the surface reflectance as a linear combination of basis functions 

using Equation (2-5) as 

j,

3

1j
j kkd, P∑

=

= ϕI  (4-21) 

where  

 ( ) kk qE ψ   P jj ., =  (4-22) 

φj  are the reflectance basis function coefficients, j=1, 2, 3 is the subscript of the reflectance  

basis functions. ψj  represents the surface reflectance basis functions. The surface reflectance 

basis functions are functions of wavelength which is omitted for simplicity of notation, in the 

rest of this chapter. It was reported in [33]  that the last value of the index ‘j’ can be set to 3 

because, if ‘j’ is greater than 3, the complexity of the estimation will increase with negligible 

decrease of the average error of the estimation (see Section 2.2.2). The diffuse components for 

RGB channels can be represented in matrix form as   
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Then by applying matrix inversion to the previous formula, the coefficient for each surface 

reflectance basis function can be calculated. Hence, the coefficients of the surface reflectance 

basis functions are found using the following equation. 
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(4-24) 

Then, after the surface reflectance basis function coefficients are calculated, the spectral 

surface reflectance is calculated using the linear model of surface reflectance which is 

represented by Equation (2-5). The flowchart in Figure 4-4 summarises the surface reflectance 

estimation method which is used within the implemented framework.  
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Figure 4-4 Flowchart of the surface reflectance estimation method 

4.4 Summary  

This chapter presents the colour constancy framework developed in the research reported in 

the thesis. The framework consists of 3 stages; it is based on the combination of a blind signal 

separation technique with a physical model of image formation (assumed to be the 

dichromatic model).  

In the first stage of the framework, the spatially constrained FastICA technique and the 

technique developed by Umeyama and Godin [28] are used as individual alternatives to 

separate the input images into specular and diffuse components. In the second stage of the 

framework, the proposed illumination estimation method is based on the dichromatic 

reflection model, in order to use the explicitly extracted specular image component to 

estimate the spectral power distribution of the illumination. In the third stage of the 

framework, the proposed method for estimating surface spectral reflectance is based on a 

linear mapping of the diffuse image component pixels values (Section 2.5.2).  

The next chapter presents the experimental investigation of the second stage of the colour 

constancy framework; this stage performs the estimation of the spectral power distribution of 

the illumination. Moreover, this investigation assesses how two different separation 

techniques, which are used in first stage of the framework for extracting the specular 

component, affect the estimation accuracy of the ISPD. 
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Estimation of the Illumination 
Spectral Power Distribution  
 
 

5.1 Introduction  

 The aim of this chapter is to investigate and explore how the proposed method for estimating 

the illumination spectral power distribution (ISPD) in the second stage of the developed 

framework performs in terms of the goodness-of-fit coefficient (GFC). The reason for 

investigating the second stage separately is to explore how the different separation results (i.e. 

achieved in first stage of the developed framework) and other factors (i.e the thresholding 

method used for selecting the significantly specular pixels and the chosen illumination basis 

functions) affect the performance of the illumination estimation method in terms of GFC. The 

experimental investigation in this chapter is conducted by estimating ISPD for different light 

sources with different colour temperatures. Then the estimated ISPD for these different light 

sources are compared either with manufacturer’s specifications or the measured ISPD of these 

light sources. This chapter starts with a section on the creation of a test data set. Then it 

presents a section on the performance evaluation for the ISPD estimation; the section includes 

a description of the experimental method, and the presentation and discussion of the results. 

The chapter concludes with a summary.  

5.2 Creation of the Data set  

To the knowledge of the author, no other public domain image data set is available which 

consists of pairs of images of the same scene captured using a polarizer (as required by the 

ICA model used for signal separation) and a camera with known sensor sensitivity (as 
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required for estimating parameters of the physical model). Hence the need to create a data set 

which can be used to test the framework is required.   

The equipment used by the author to create the data set of RGB colour  images are two 

artificial light sources, a CCD camera, a light polarizer, and objects of different materials (see 

Appendix B). The two light sources used to create the author’s image data set have two types 

of lamps: a 55W Kino KF55 Compact and a 55W Kino KF29 Compact [180]. The colour 

temperatures of these lamps are 5500 and 2900 Kelvin, respectively. There are two reasons 

for using these two lamps. The first reason is to determine the effect of the different light 

sources, which emit different colours of illumination, on the performance of the developed 

framework. Second, the spectral distribution curves for these lamps have been released by the 

respective manufacturer [180]; these curves will be used for the evaluation of the illumination 

estimation stage within the developed framework (see Sections 5.3.2.1 and 5.3.2.2).  

The type of camera which was used for creating the data set is a FireWire camera (DFK 

21F04) with known sensor characteristics (see Section 2.2.5) [40]. Gamma correction was set 

to ‘off’ for all captured images in the data set. This was done to ensure the linearity between 

the flux of the incident light and the camera output. Furthermore, a linear polarizer (1.25 inch-

PR032-30.5) was used to create the data set. The images in the data set were captured for 

different scenes consisting of various objects of different materials such as plastic, ceramic 

and fruits. These types of materials were selected because their atomic structure allows 

specular and diffuse reflections (see Section 2.2.3). These two types of reflection are required 

for the validation of the developed framework. Particularly, images without a specular 

component are not considered for the validation of illumination estimation and consequently 

surface reflectance estimation. 

 The data set generated by the author consists of two sets of image pairs of the same object 

captured under two artificial light sources with different colour temperature (2900 K and 5500 

K). Each pair contains two images for the same scene but with different polarization angles.  

In order to capture the two images of different polarization angle, the two orientation angles, 

which give an amount of specular reflection between its maximum and minimum, are chosen. 

The reason for creating pairs of images for the same scene with different polarization angles is 

that two images are required to separate two components, which is one of the assumptions of 

the ICA model (see Section 3.3). Appendix B shows some examples of the created data set 

and the corresponding results of the separation of diffuse and specular components, using the 
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two ICA techniques (i.e the spatially constrained FastICA technique and the technique 

developed by Umeyama and Godin [28]). The pixel value range for each R, G and B colour 

component of the images is between 0 and 1, for all experiments throughout this thesis.  

The images are stored in uncompressd raw data format, using a double precision (32-bit) 

number representation of the pixel value. Compression is avoided in order to preserve the full 

information content.  

5.3 Performance Evaluation of the ISPD Estimation 

In this section, the performance of the ISPD estimation (second stage of the developed colour 

constancy framework) is evaluated in four experiments. The aims of these experiments are to 

investigate the performance of the proposed method for estimating ISPD and to explore the 

factors which affect its estimation performance in terms of GFC and error values (formulas 

are given in Appendix F), within the colour constancy framework. The ISPD is estimated 

using the specular components of images which are captured under artificial light sources 

with colour temperature of 5500 K and 2900 K, respectively in Experiment 1 and Experiment 

2. The estimated illumination is then compared with the manufacturer’s specifications of the 

artificial light source. Experiment 3 compares the illumination estimated using an explicit 

specular image component and the illumination estimated using mixed image components 

(where each pixel is a blend of a specular component and a diffuse component). Experiment 4 

uses a public-domain set of hyperspectral images (i.e. Foster et al’s data set [181]); the 

illumination is estimated using mixed image components captured under different natural day 

light sources with different colour temperatures. Expereimnt 4 is conducted to validate the 

proposed method for estimating ISPD of different light sources.  The estimated illumination is 

then compared with the illumination measurements provided with the hyperspectral images 

by Foster et al [181]. In Experiment 4, the ISPD is estimated without utilizing the output of 

the first stage. In the following sub-sections, the experimental settings are stated, followed by 

the experimental procedure, results and a discussion. 

5.3.1 The Experimental Setting   

This section discusses the experimental setting for all experiments in this chapter including 

the data set, camera sensor sensitivity, thresholding technique, normalization process, matrix 

inversion operation, nonlinear function (i.e. used in SCFICA separation technique) and 

statistical significance test which have been used. 
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1) Experiments 1, 2, and 3 use the image data set, described in Section 5.2. The reason for 

using this  data set  is that it is suitable for applying blind signal separation (the first stage of 

the framework) in order to extract the specular component, which is used in the  estimation of 

the ISPD. Foster et al’s data set is used in Experiment 4, it contains 8 images of various 

scenes captured under different natural day light sources with different colour temperatures 

[181]. The reason for using Foster et al’s data set in this experiment is the availability of the 

measured ISPD for each image, which can be used to evaluate the proposed method for 

estimating ISPD. 

2) The manufacturer sensor spectral sensitivity curves which are used in Experiments 1, 2, 3 

and 4 are shown in Figure 2-3 [40]. The curves have spectral range from 400 nm to 700nm 

with spectral step of 1nm. These curves represent the sensor responses of the camera which 

captured the image data set used in Experiments 1, 2 and 3. However, they are not the sensor 

responses of the camera used to capture the data set used in Experiment 4. The sensor 

response curves of the camera used to capture Foster et al’s data set were not available.  

3) In Experiments 1 and 2, the estimation of ISPD is achieved using selected pixels of the 

specular component which are considered as predominantly specular. The illumination 

estimation depends upon the selection of an optimal threshold for identifying these pixels. 

The threshold is used to generate the mask for extracting the significantly specular pixels, 

which are assumed to contain most of the characteristics of the light source. Although the 

automatic selection of the threshold is not the focus of this research, an automatic selection 

process has been tested based upon two methods (maximum likelihood and intermodes 

threshold [182]) from which the maximum value of the two threshold values is chosen. 

However, the automatic selection of the threshold does not provide a suitable threshold value 

for all the test images. In these cases, an empirical threshold determination is used whereby 

the automatic threshold is increased or decreased until the estimated illumination curve is the 

best approximation of the measured illumination curve. In Experiments 3 and 4, the empirical 

threshold determination is used directly (without an automatic threshold selection pass) to 

identify the threshold which gives the best illumination estimation. In Experiment 4, the 

threshold is used to identify the high intensity pixels which are assumed to be mostly 

composed of specular reflection, with a negligible amount of diffuse reflection. 
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4) In Experiments 1, 2, 3 and 4, the estimation of the illumination coefficients is obtained 

from the normalised version of Equation (4-16); the normalisation makes the ranges for both 

sides of the equation between 0 and 1. The formula used for normalisation is expressed as:  
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The left hand side of Equation   (5-1) represents the specular image component. This 

component is normalised (0-1) assuming that the maximum value of (Is,R,  Is,G,  Is,B) represents 

the pixel reflecting the highest illumination intensity in the image. The formula used for 

normalisation is expressed as:  

( )
BGRk

Bs,Gs,Rs,Bs,Gs,Rs,

Bs,Gs,Rs,ks,
ks, ,,,

,,min,,max
,,min

=
−

−
=

)()(
)(

IIIIII
IIII

IM  

 

(5-2) 

The right handside of Equation   (5-1) represents the specular component estimated using the 

dichromatic image formation model and normalised against the maximum of the camera 

response for different daylight sources, where max(E.qk) is a normalised factor which is 

represented as: 

)  ,,  max()  max( kkk qEqEqE 51 ... =  (5-3) 

where E1,…,E5  are the ISPD for light sources with colour temperatures of 4800 K, 5500 K, 

6500 K, 7500 K and 10000 K, respectively. The normalisation factor represents the maximum 

value of the dot product of the camera sensor responses and different natural day light sources 

with different colour temperatures. The reason for using only these day light sources with 

these colour temperatures is that these are the light sources with known coefficients as 

provided by Judd[31]. Hence, by using these coefficients with the mean and the two basis 

functions, the spectral characteristics of these light sources are recovered and used in the 

normalisation as in Equation (5-3). Moreover, in line with other researchers [31], the 

estimated illumination spectrum is normalised by dividing its values by the value at the 

wavelength of 560 nm. 

5) In all experiments in this chapter, it was noticed that using the inverse operation gives 

better estimation results than using pseudo-inverse operation (Section 4.3.3, Equation (4-17)). 

There is no clear reason for this observation. Moreover, no difference was observed between 
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the estimation results obtained from any pair of R, G, and B colour components. In all 

experiments in this chapter the inverse of the i,kQ  matrix for the R and G colour components 

is used to estimate the illumination coefficients.   

6) For applying SCFICA separation technique, all nonlinear functions (g) (Section 4.3.2, 

Equation (4-8)) are tested but there is no significant difference in the separation results. For 

all experiments in this thesis g(u) = u3 is considered.  

7) The results of Experiments 1, 2 and 3 have been tested to be statistically significant at 

confidence level of 95% using the independent two-sample t-test (Appendix E). 

The implementation of the software used in all experiments in this thesis is done by using 

Matlab version 7.2 and the Image Processing Toolbox. 

5.3.2 Experimental Procedure, Results, and Discussion 

This section consists of the procedure, results and discussion for each individual experiment. 

5.3.2.1 Experiment 1: Estimation of ISPD from the specular component of 
images captured under an artificial day light source with colour 
temperature of 5500 K. 

a) Procedure 

The aim of this  experiment is to investigate how the proposed illumination estimation 

method, used within the developed colour constancy framework, performs for estimating the 

illumination of the artificial day light source with colour temperature of 5500 K, when the 

method is coupled to one of two alternative blind signal separation techniques. These 

techniques are the Spatially Constrained FastICA (SCFICA) and the technique developed by 

Umeyama and Godin (UGICA)  in  [28], each separation technique provided a set of RGB 

specular components. 

Each set of RGB specular components corresponding to the separation technique, is used 

separately to estimate the illumination spectral power distribution. Moreover, for each set, a 

different threshold has been selected to generate a pixel mask used to identify the significantly 

specular pixels. These pixels are then used to estimate the coefficients of the illumination 

basis functions. In order to determine the effect of the separation techniques and the pixel 

masks on the illumination estimation accuracy, the pixel mask generated for each set of RGB 

specular components is used on both sets of RGB specular components (i.e. achieved using  
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blind signal separation techniques (SCFICA and UGICA in [28])). Four different significant 

pixel sets have been constructed from the two pixel masks (Mask-UGICA and Mask-

SCFICA) and two sets of RGB specular components (Specular-SCFICA, Specular-UGICA). 

These four sets of significantly specular pixels are used to estimate four possible 

illuminations.  

Moreover, to observe the effect of the automatic and empirical threshold, this experiment is 

repeated twice for the two different thresholds. The GFC measurement and other errors (Root 

Mean Square (RMS), median, mean, and angular error) measurements, which are commonly 

used by other researchers [3], [183], [184], are calculated between the four possible 

illumination estimation and the manufacturer’s specifications. The advantage of the GFC 

measurement over the other errors measurements is that it is not affected by amplitude scaling 

[184]. Because of this advantage, it has been selected as base measurement to be used for all 

comparison in this thesis. GFC is a measure of the degree of similarity between an estimated 

and a known reference. The value of GFC ranges between 0 and 1; a higher value 

representing higher degree of similarity. 

b) Results and discussion 

The results for the four possible illumination estimations of artificial day light source with 

colour temperature of 5500 K using automatic and empirical threshold are shown in Figure 

5-1 and Figure 5-2. These figures represent illumination estimation for one example of the 

tested images. Appendix C (Figures C.1 to C.6) shows the illumination estimation for more 

examples. Figures C.7 to C.14 in Appendix C illustrate the selected pixels used for 

illumination estimation, by showing the two sets of RGB specular components and the 

corresponding mask using the automatic and empirical threshold for all tested images in this 

experiment. The automatic and corresponding empirical threshold values that are selected for 

each set of RGB specular components of each test image are shown in Table C.1 in Appendix 

C. The values of the GFC for automatic and empirical threshold for all tested images in this 

experiment are summarised in Table 5-1, while the other error measurements are shown in 

Appendix C (Tables C.2 to C.5). The average and standard deviation of the GFC values and 

the error measurements using two types of thresholds (i.e. automatic and empirical) are 

calculated and summarised in Table 5-2. These calculations are based on the values found in 

Table 5-1 and Tables C.2 to C.5 in Appendix C. 
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Figure 5-1  The four possible illumination estimations using significantly specular pixels selected from the two 
sets of the specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (mask-SCFICA and mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for a plastic blue ring illuminated with a light source of colour temperature of 5500 K. 
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Figure 5-2 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of the specular components (i.e. extracted using SCFICA and UGICA techniques) using the two 
corresponding masks (mask-SCFICA and mask-UGICA) interchangeable with each of the two sets, after 
empirical thresholding for a plastic blue ring illuminated with a light source of colour temperature of 5500 K. 
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In Figure 5-1 and Figure 5-2, it is found that the illumination estimation is achieved with 

some difference in spectral charatreistics compared with manufacturer’s specification. Table 

5-2 shows that the illumination is estimated with an average GFC value of 0.9830 when the 

empirical threshold is used (i.e. to select significantly specular pixels which are used in the 

estimation) and with a GFC value of 0.9447 when the automatic threshold is used. This means 

that the illumination estimation accuracy is improved by 3.8% when the emprical threshold is 

used instead of the automatic threshold. This improvement is statistically significant, with 

confidence level of 95%. The statistical test is based on the GFC values given in Table 5-1 

and the results of the test are reported in Appendix E, Table E.1. 

 
Table 5-1 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the similarity between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with colour temperature of 5500 K. The similarity has been calculated using 
GFC. 

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly 

specular pixels 

Plastic 
blue ring 

Ceramic 
violet  
cup 

Plastic 
green 
ring 

Red  
apple 

Colour 
temperature: 

5500 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

0.9758 0.9824 0.8836 0.9739 

Mask-
UGICA 

  0.9480 0.9796 0.9434 0.9688 

Empirical 
selection 

Mask-
SCFICA 

0.9880 0.9839 0.9845 0.9879 

Mask-
UGICA 

0.9879 0.9829 0.9676 0.9759 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

0.9723 0.9847 0.7545 0.9877 

Mask-
UGICA 

0.9435 0.9847 0.8462 0.9865 

Empirical 
selection 

Mask-
SCFICA 

0.9874 0.9872 0.9653 0.9786 

Mask-
UGICA 

0.9874 0.9878 0.9880 0.9880 

 
 
Table 5-2 The average and the standard deviation of GFC and error measurements using automatic and 
empirical thresholds for artificial day light source with colour temperature of 5500 K. 

 GFC RMS 
error 

Median 
error 

Mean 
error 

Angular error 
(in degree) 

Automatic 
threshold 

Average 0.9447 21.58×10-2 4.26×10-2 10.12×10-2 7.87 
Standard deviation ±0.0644 ±11.02×10-2 ±6.45×10-2 ±8.97×10-2 ± 5.88 

Empirical 
threshold 

Average 0.9830 13.15×10-2 3.09×10-2 3.61×10-2 2.70 
Standard deviation ±0.0074 ±2.96×10-2 ±2.40×10-2 ±3.80×10-2 ± 1.67 

 

The results show that there is no statistically significant difference in the estimation accuracy 

of the ISPD using the specular components extracted by each of the two blind signal 

separation techniques (SCFICA and UGICA in [28]) compared to the manufacturer’s 

specifications. This statement is supported by the statistical significance test based on the 
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GFC values which correspond to the two blind signal separation techniques (Table 5-1). The 

results of the statistical significance test are reported in Appendix E (Table E.2).  

As it is observed in all figures in this experiment and also in Experiment 2 (Section 5.3.2.2), 

the manufacturer’s illumination specification curves include some spikes. To the knowledge 

of the author, these spikes are due to the nature of materials used to produce this type of 

artificial light source [185]. These spikes cannot be achieved in the estimated illumination. 

This is because the basis functions used in the estimation are smooth and generated from 

natural day light sources samples. The peak values of theses spikes reach maximum amplitude 

of 2.25 and 5.5 for the two lights (i.e with with colour temperature of 5500 K and 2900 K 

respectively) as shown in this experiment (Figure 5-1 and Figure 5-2) and in Experiment 2 

(Figure 5-3 and Figure 5-4 ).  

5.3.2.2 Experiment 2: Estimation of ISPD from the specular component of 
images captured under an artificial light source with colour temperature 
of 2900 K. 

a) Procedure 

The aim of this  experiment is to investigate how the proposed illumination estimation 

method, used within the colour constancy framework, performs for estimating the 

illumination of the artificial source with colour temperature of 2900 K,  when the estimation 

is coupled to two alternative blind signal separation techniques. In Experiment 2, the 

illumination is estimated using the specular components of the pair of images captured under 

an artificial light source with colour temperature of 2900 K. The same steps and calculation 

used in Experiment 1 (Section 5.3.2.1) are followed in Experiment 2. 

b) Results and discussion 
The results for the four possible illumination estimations of artificial light source with colour 

temperature of 2900 K using automatic and empirical threshold are shown in Figure 5-3 and 

Figure 5-4. These figures show the illumination estimation results for one example of the 

tested images (illumination estimation results for more examples are shown in Appendix C 

(Figures C.15 to C.20)). Figures C.21 to C.28 in Appendix C demonstrate the selected pixels 

used for illumination estimation by showing the two sets of RGB specular components and 

the corresponding mask using the automatic and empirical threshold for all tested images in 

this experiment. The automatic and corresponding empirical threshold values which are 

selected for each set of RGB specular components of each test image are shown in Table C.6 

(Appendix C). The values of the GFC for automatic and empirical threshold for all tested 
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images in this experiment are summarised in Table 5-3 while the other error measurements 

are shown in Appendix C (Tables C.7 to C.10). The average and standard deviation of the 

GFC values and the error measurements using two types of thresholds (i.e. automatic and 

empirical) are calculated and summarised in Table 5-4. These calculations are based on the 

values found in Table 5-3 and Tables C.7 to C.10 in Appendix C.  

The results in Table 5-4 show that the illumination is estimated with an average GFC value of 

0.9215 when the empirical threshold is used (i.e. to select significantly specular pixels, which 

are used in the estimation) and with an average GFC value 0.8921 when the automatic 

threshold is used. This means that the illumination estimation accuracy is improved by 2.9% 

when the empirical threshold is used instead of the automatic threshold. The obverved 

improvement is statistically significant with a confidence level of 95%. The statistical test is 

based on the GFC values given in Table 5-3 and the results of the test are reported in 

(Appendix E, Table E.3).  

Although there is an improvement in the results by the use of an empirical threshold, the 

curves of the estimated illumination are not close to the manufacturer’s specifications curve 

as compared with the results from Experiment 1 (Section 5.3.2.1). In Experiment 2, the 

average GFC and the average of error measurements (Table 5-4) are respectively less and 

greater than the corresponding values found in Experiment 1 (Section 5.3.2.1, Table 5-2). The 

reason for the performance degradation observed in Experiment 2, compared to Experiment 1, 

can possibly be deduced from the use of Judd’s basis functions to estimate the illumination of 

the artificial light source with colour temperature of 2900 K. More specifically, these 

illumination basis functions are not able to capture the characteristics of this light source. This 

is because these basis functions are generated from daylight source samples with colour 

temperatures, which do not include the colour temperature of the light source used in this 

experiment. Therefore, it is concluded that the performance of the illumination estimation 

method measured in terms of GFC and curve-difference error can possibly be affected by the 

selection of suitable illumination basis functions.   

Compared to the manufacturer’s specifications, the results show that there is no statistically 

significant difference in the estimation accuracy of the ISPD using the specular components 

extracted by each of the two blind separation techniques (SCFICA and UGICA in [28]). This 

statement is supported by the statistical significance test based on the GFC values which 

correspond to the two blind signal separation techniques (Table 5-3). The results of the 

statistical significance test are reported in Appendix E (Table E.4). 
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Figure 5-3 The four possible illumination estimations using significant specular pixels selected from the two 
sets of the specular components (i.e. extracted using SCFICA and UGICA techniques) using the two 
corresponding masks (mask-SCFICA and mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for a plastic blue ring illuminated with light source of colour temperature of 2900 K.   
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Figure 5-4 The four possible illumination estimations using significant specular pixels selected from the two 
sets of the specular components (i.e. extracted using SCFICA and UGICA techniques) using the two 
corresponding masks (mask-SCFICA and mask-UGICA) interchangeable with each of the two sets, after 
empirical thresholding for a plastic blue ring illuminated with a light source of colour temperature of 2900 K. 
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Table 5-3 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the similarity between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with colour temperature of 2900 K. The similarity has been calculated using 
GFC. 

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green 
ring  

Green 
apple 

Colour 
temperature: 

2900 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

0.9060 0.9105 0.8557 0.8785 

Mask-
UGICA 

0.9091 0.9371 0.8483 0.8649 

Empirical 
selection 

Mask-
SCFICA 

0.9139 0.9402 0.9010 0.9006 

Mask-
UGICA 

0.9131 0.9416 0.9109 0.9122 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

0.9310 0.9001 0.8749 0.8750 

Mask-
UGICA 

0.9259 0.9277 0.8676 0.8614 

Empirical 
selection 

Mask-
SCFICA 

0.9332 0.9309 0.9185 0.9131 

Mask-
UGICA 

0.9341 0.9323 0.9282 0.9201 

 
 
Table 5-4 The average and standard deviation of the GFC and error measurements using automatic and 
empirical thresholds for an artificial light source with colour temperature of 2900 K. 

 

GFC RMS  
error 

Median 
error 

Mean error Angular error  
(in degree) 

Automatic 
threshold 

Average 0.8921 34.06×10-2 8.78×10-2 15.83×10-2 18.19 
Standard deviation ±0.0296 ± 6.77×10-2 ± 6.16×10-2 ±10.72×10-2 ±  5.73 

Empirical 
threshold 

Average 0.9215 26.89×10-2 3.42×10-2 5.58×10-2 13.87 

Standard deviation ±0.0131 ± 1.35×10-2 ±2.65×10-2 ±3.54×10-2 ±1.49 

 

5.3.2.3 Experiment 3: A comparison between the illumination estimation 
accuracy achieved by using the specular image component and the mixed 
image components.  

a) Procedure 

The aim of this experiment is to measure the improvement in the illumination estimation 

accuracy arising from using an explicitly extracted specular image component compared to 

using the original image which can be seen as a mixture of specular and diffuse image 

components. 

This experiment uses the same images and the same empirical threshold values (i.e. used to 

generate pixels masks (Mask-SCFICA and Mask-UGICA), which were used in Experiment 1. 

In Experiment 3, the illumination is estimated from the specular component of the 

significantly specular pixels and from the corresponding mixed pixels (i.e. high intensity 

pixels) of the polarised Image 2 (or mixed image components). The reason for using polarised 
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Image 2 instead of Image 1 is that polarised Image 2 consists of higher intensity pixels (i.e. 

more information about the characteristics of the illumination) than image1.  

b) Results and discussion 

The results of the illumination estimation using the two alternative sets of the RGB specular 

components (i.e. achieved using the blind separation techniques SCFICA and UGICA in [28]) 

and polarised Image 2 are shown in Figure 5-5 and Figure 5-6. These figures show the 

illumination estimation results for two examples of the tested images (illumination estimation 

results for more examples are shown in Appendix C (Figure C.29 and Figure C.30)). 

Compared to the manufacturer’s specification, the GFC values of the estimated illumination 

(i.e using specular component and mixed image component) for all tested images in this 

experiment are summarised in Table 5-5, while the others error measurements are shown in 

Appendix C (Tables C.2 to C.5). The average and the standard deviation of the GFC values 

and the error measurements for illumination estimation (i.e using specular component and 

mixed image component) are calculated and summarised in Table 5-6. These calculations are 

based on the values found in Table 5-5 and Tables C.2 to C.5 in Appendix C. 

 The results show that there is a statistically significant difference between the illumination 

estimation accuracy (measured using the GFC) arising from using the specular image 

component and the accuracy obtained for mixed image components (Table 5-6). This 

statement is supported by the t-test for statistical significance applied to the GFC values 

shown in Table 5-5. The results of the statistical significance test are reported in Appendix E 

(Table E.5).  

To conclude, the average GFC value of the estimated illumination is significantly improved 

by 2.9% when the specular component is used instead of mixed image components.  
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Figure 5-5 The illumination estimations from the specular component and mixed image components for a plastic 
blue ring illuminated with a light source of colour temperature of 5500 K, using empirical thresholding to select 
the significantly specular pixels.  
 
 

4.5 5 5.5 6 6.5 7

x 10
-7

-1

-0.5

0

0.5

1

1.5

2
Illumination Estimation for Light Source with Colour Temperature of 5500 K

wavelength (in meter)

R
el

at
iv

e 
S

pe
ct

ra
l R

ad
ia

nc
e

 

 

Illumination-(Specular Component-SCFICA&Mask-SCFICA)
Illumination-(Mixed Image Components&Mask-SCFICA)
Illumination-(Specular Component-UGICA&Mask-UGICA)
Illumination-(Mixed Image Component&Mask-UGICA)
Manufacturer's Specifications

 
Figure 5-6 The illumination estimations from the specular component and mixed image components for a 
ceramic violet cup illuminated with a light source of colour temperature of 5500 K, using empirical thresholding 
to select the significantly specular pixels. 
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Table 5-5 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the similarity between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with colour temperature of 5500 K. The similarity has been calculated using 
GFC. 

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly 

specular pixels 

Plastic 
blue ring 

Ceramic 
violet 
cup 

Plastic 
green 
ring 

Red  
apple 

Colour 
temperature: 

5500 K 

Spatially 
constrained 
FastICA 
Technique 
(SCFICA) 

Empirical 
selection 

Mask-
SCFICA 

0.9880 0.9839 0.9845 0.9879 

Mask-
UGICA 

0.9879 0.9829 0.9676 0.9759 

Umeyama 
and Godin 
ICA 
Techniques 
(UGICA) 

Empirical 
selection 

Mask-
SCFICA 

0.9874 0.9872 0.9653 0.9786 

Mask-
UGICA 

0.9874 0.9878 0.9880 0.9880 

None Empirical 
selection 

Mask-
SCFICA 

0.9582 0.9394 0.9605 0.9434 

Mask-
UGICA 

0.9574 0.9756 0.9288 0.9662 

 
 
Table 5-6 The average and the standard deviation of GFC and error measurements for illumination estimation 
using specular component and Image 2 (mixed image component). 

 GFC RMS  
error 

Median  
error 

Mean  
error 

Angular  error 
 (in degree) 

Specular Image 
Component 

Average 0.9830 13.15×10-2 3.09×10-2 3.61×10-2 2.70 
Standard deviation ±0.0074 ±2.96×10-2 ±2.40×10-2 ±3.80×10-2 ± 1.67 

Mixed Image 
Component 

Average 0.9537 22.02×10-2 6.62 ×10-2 9.45×10-2 8.52 
Standard deviation ±0.0153 ±4.23×10-2 ±5.93×10-2 ± 5.28×10-2 ±3.22 

 

5.3.2.4 Experiment 4: Estimation of ISPD from mixed image components (i.e 
highlight area) captured under natural day light sources with different 
colour temperatures. 

a) Procedure 

The aim of this experiment is to investigate how the method used in the second stage of the 

implemented framework performs for estimating ISPD for different natural day light sources 

with different colour temperatures in comparison with measured illumination.  

This experiment used the same illumination estimation method as in Experiments 1, 2 and 3 

in this chapter. The test is performed on Foster et al’s data set [181]. The blind signal 

separation techniques (i.e. used in the first stage of developed framework) are not applicable 

to this data set because these techniques require a pair of images for the same scene in order 

to separate the specular and diffuse components of the image. Therefore, the specular 

components of these images (Foster et al’s data set [181]) cannot be obtained as output of the 

first stage of the developed framework. However, this experiment is not about testing the 
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effect of the separation techniques on the performance of the illumination estimation method; 

hence, the estimation of illumination is done without applying signal separation techniques. 

This means that the output of the first stage of the developed framework is not used in this 

experiment. 

 The investigation is done based on the assumption that the selected mixed pixels (i.e. high 

intensity pixels), which are used for illumination estimation, consist predominantly of a 

specular component and a negligible diffuse component. The selection of predominantly 

specular pixels is done by empirical thresholding because it gives better results than automatic 

thresholding in the previous three experiments (Sections 5.3.2.1, 5.3.2.2, and 5.3.2.3); 

moreover, defining an optimum automatic threshold is not the focus of this research.  

b) Results and discussion 

The results of the illumination estimation for some examples of images in this data set are 

shown in Figure 5-7 to Figure 5-10. Moreover, to show the selected mixed pixels used in the 

illumination estimation, these figures also show the masks used to extract the predominantly 

specular pixels. The results of the illumination estimation for more examples of images in 

Foster et al’s data set are shown in Appendix C (Figures C.31 to C.34).   

Furthermore, the illumination estimated from each image is compared to the measured 

illumination which is provided with the Foster et al’s data set [181]. This comparison is 

achieved by calculating the GFC and others curve-matching error measurements which are 

given in Table 5-7. Table 5-7 also contains the threshold values used to generate the pixel 

masks, and the corresponding number of pixels extracted by this mask for each image in 

Foster et al’s date set [181]. The average and standard deviation of the GFC values and the 

error measurements are calculated and summarised in Table 5-8. These calculations are based 

on the values obtained in Table 5-7. All figures in this experiment show that the estimated 

illumination results are very similar to the illumination measured by Foster et al [181].  

Compared with average GFC values and error measurements for the illumination estimated in 

Experiments 1 and 2 (5.3.2.1 and 5.3.2.2), it is found that the average GFC is better, and the 

average errors are less, in Experiment 4 (Table 5-8). However, this comparison is not valid 

because the data set used in Experiment 4 is different from the data sets used in Experiments 

1 and 2. The ISPD estimated from mixed image components for different natural day light 

sources with different colour temperatures has an average GFC value equal to 0.9986, 

measured over Foster et al’s data set. 
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Figure 5-7 The illumination estimation from the first image of Foster et al’s data set [181]. 
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Figure 5-8 The illumination estimation from the third image of Foster et al’s data set [181]. 
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Figure 5-9 The illumination estimation from the fourth image of Foster et al’s data set [181]. 
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Figure 5-10 The illumination estimation from the seventh image of Foster et al’s data set [181]. 
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Table 5-7 The GFC measurement, the error measurements, and the threshold value with the corresponding 
number of pixels for illumination estimation of Foster et al’s data set [181].  

   Image 
 

GFC RMS 
error 

Median 
error 

Mean 
error 

Angular 
error 

Threshold 
( number of pixel) 

The first image 0.9982 11.94×10-2 10.95×10-2 10.67×10-2 1.44 0.55 (4039) 

the second image 0.9994 4.20×10-2 3.35  ×10-2 2.54×10-2 0.06 0.55 (3713) 

the third image 0.9951 16.62×10-2 12.88×10-2 14.35×10-2 1.60 0.50 (4436) 

the fourth image 0.9986 5.30×10-2 2.10×10-2 2.74×10-2 1.50 0.42 (4273) 

the fifth image 0.9996 3.41×10-2 2.48×10-2 2.18×10-2 0.27 0.50 (2581) 

the sixth image 0.9996 3.55×10-2 2.47×10-2 2.34×10-2 0.25 0.60 (14437) 

the seventh image 0.9987 6.56×10-2 3.53×10-2 4.47×10-2 1.44 0.65 (15883) 

the eighth image 0.9992 4.28×10-2 2.25×10-2 1.90×10-2 0.61 0.55 (12248) 

 
 
Table 5-8 The average of GFC and error measurements for different day light sources with different colour 
temperatures. 

 GFC RMS  
error 

Median 
error 

Mean  
error 

Angular error 
(in degree) 

Average 0.9986 6.98×10-2 5.00×10-2 5.15×10-2 0.90 
Standard deviation ±0.0015 ±4.78×10-2 ±4.33×10-2 ±4.71×10-2 ±0.66 

 

5.4 General Discussion 

The GFC values obtained in all experiments in this chapter as shown in tables (Table 5-2, 

Table 5-4 and Table 5-8) demonstrate that the proposed illumination estimation method 

provides a reasonably accurate estimation, even when compared with measured values. It 

should be noted that in these experiments the proposed illumination estimation methods 

include some sources of error. These sources are the normalisation process, the specular 

geometrical scale factor (wsn) (Equation (4-11)), and the use of camera sensor sensitivity 

characteristics for estimating illumination from image which is captured with different camera 

sensor sensitivity characteristics. The effects of these errors are discussed as follows. 

 The normalisation process, which introduces loss of information, is required in these 

experiments to find a common reference as explained in Section 5.3.1. However, in 

these experiments, the double precision (32 bit number representation) of pixel values 

was used in order to minimise the effect of this error. Furthermore, this error 

predominantly affects the absolute value of the estimated illumination and has an 

insignificant effect on the accuracy of the estimation of the relative illumination 

spectral power distribution, which is estimated by the proposed illumination 

estimation method.   
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 Due to the difficulty in calculating the specular geometrical scale factor (wsn) for each 

pixel in the image [1], in these experiments this factor is considered to be 1 for 

simplicity. This assumption will affect the absolute value of the estimated 

illumination; however it will not affect the relative illumination spectral power 

distribution. The proposed method estimates the relative spectral power distribution; 

hence the value of the geometrical scale factor does not significantly affect the 

accuracy of the estimation process. 

 The same camera sensor sensitivity characteristics are used for all experiments. 

Although these camera characteristics are not the ones used to create Foster et al’s data 

set however, the results in Experiment 4 (Section 5.3.2.4), in which the illumination is 

estimated from Foster et al’s data set, show reasonable estimation accuracy with an 

average GFC value of 0.9986. This could be due to the similarity between different 

camera sensitivity characteristics which can be inferred from the observation that the 

sensor sensitivity characteristics have minimum effect on the estimation process. 

The proposed method for illumination estimation requires simple two-level thresholding, 

which can be done empirically or automatically, to identify the significant specular pixels that 

are used in the estimation. The illumination estimation proposed method, however, avoids 

multi-coloured surface segmentation, the problem that is being faced by the existing 

illumination methods (Section 2.4.2).    

5.5 Summary 

This chapter presents an experimental assessment of factors which affect the performance of 

the second stage of the proposed colour constancy framework. This stage estimates the 

spectral power distribution of the illumination, using the specular component of the images 

which display the scene under observation. The performance of the proposed illumination 

estimation method is evaluated quantitatively in two ways. The evaluation consists of four 

experiments. The aim of these experiments is to investigate the performance of the proposed 

method for estimating ISPD and to explore the factors which affect the estimation 

performance, measured in terms of GFC, within the proposed colour constancy framework. 

Experiments 1 and 2 investigate the performance of the proposed illumination estimation 

method when estimating the illumination of artificial light sources with colour temperatures 

of 5500 K and 2900 K, respectively for Experiments 1 and 2. The investigation is done for 
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two blind signal separation techniques. The results for each of the two light sources show no 

significant difference in the accuracy of estimation using the specular components extracted 

by each of the two blind separation techniques (SCFICA and UGICA in [28]). When 

compared to the manufacturer’s specification, the illumination estimated for the 5500 K light 

source has average GFC values equal to 0.9447 and 0.9830, using automatic and empirical 

thresholding (i.e used for the selection of the significant specular pixels that have been used 

for illumination estimation) respectively. The corresponding GFC values for the 2900 K light 

source are 0.8921 and 0.9215. There is a statistically significant improvement in the 

illumination estimation accuracy (measured in terms of average of GFC) by 3.8% and 2.9% 

when the empirical threshold is used instead of the automatic threshold for the 5500 K light 

source and the 2900 K light source respectively. The selection of illumination basis functions 

has an impact on the accuracy of the illumination estimation method used within the colour 

constancy architecture, measured in terms of GFC value. 

Experiment 3 measures the improvement in the illumination estimation accuracy, measured in 

terms of GFC value, arising from using an explicitly extracted specular image component 

instead of mixed image components (i.e. composed of unseparated specular and diffuse 

components). It is found that there is a statistically significant improvement by 2.9% in the 

average GFC value of the estimated ISPD when the specular component is used instead of 

mixed image components. 

Experiment 4 compares illumination measurements, which are provided with a public-domain 

set of hyperspectral images (i.e. Foster et al’s data set), with the illumination estimated by the 

proposed method. It is shown that the ISPD estimation for natural day light sources with 

different colour temperature is achieved with average GFC value equal to 0.9986 compared 

with the measured illumination. 

The next chapter presents the experimental evaluation of the estimation of the surface spectral 

reflectance (which represents the last stage of the framework) using the estimated ISPD. In 

particular, the chapter explores to what extent the image component separation results 

achieved by using two different separation techniques (in the first stage of the framework) and 

the estimated ISPD (in the second stage of the framework) affect the accuracy of the surface 

spectral reflectance estimation. 
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6 Experimental Investigation of the Estimation of 
the Surface Spectral Reflectance 

6 
Experimental Investigation of the 
Estimation of the Surface Spectral 
Reflectance 
 
 

6.1 Introduction 

The aim of this chapter is to investigate the performance of the method proposed for 

estimating the surface spectral reflectance in the third stage of the framework. The 

investigation of the third stage will explore how the different separation results (i.e. achieved 

in the first stage of the framework) and the estimated illumination (i.e. achieved in the second 

stage of the framework) influence the estimation of the surface spectral reflectance. The 

investigation in this chapter is done by estimating the surface spectral reflectance from images 

of different objects captured under different light sources with different colour temperatures. 

The evaluation of the estimated surface spectral reflectance is conducted in three ways. First, 

the evaluation is performed by comparing the two surface reflectance estimates which are 

obtained using the estimated illumination and the illumination specifications given by the 

light source manufacturer, for the same object illuminated by the same light source. Second, 

the evaluation is performed by comparing the two surface reflectance estimates for the same 

object illuminated by two different light sources. Third, the evaluation is performed by 

comparing the estimated surface reflectance with either the measured surface reflectance or a 

reference produced by the author from the diffuse-only pixels. This chapter is organised as 

follows. First, it presents a performance evaluation for surface spectral reflectance estimation; 

including the experimental method, results and discussion. This is followed by a summary. 
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6.2 Performance Evaluation of the Estimation of Surface Spectral 
Reflectance  

In this section, the performance of the surface spectral reflectance estimation (the third stage 

of the colour constancy framework) is evaluated in four experiments. The aims of these 

experiments are to investigate the performance of the proposed method for estimating surface 

reflectance and to explore the factors which affect its estimation accuracy in terms of GFC 

and error, within the colour constancy framework.  

In Experiment 1, the surface spectral reflectance is estimated from the diffuse components of 

images which are captured under two different artificial light sources with two colour 

temperatures (5500 K and 2900 K). The estimation of the surface spectral reflectance from the 

diffuse pixel is obtained using the four possible illuminations estimated in the second stage 

(see Sections 5.3.2.1 and 5.3.2.2). Then the surface reflectance, estimated using the four 

possible estimated illuminations, is compared with the surface reflectance estimated using the 

specification of illumination for each light source as given by its manufacturer. In Experiment 

2, the comparison between surface reflectance estimated from the diffuse component for the 

same object illuminated by two different artificial lights with two different colour 

temperatures (5500 K and 2900 K), is executed. Experiment 3 carries out a comparison 

between the surface spectral reflectance estimated using the explicitly extracted diffuse 

component and mixed image components (where each pixel is a blend of a specular 

component and a diffuse component). In Experiment 4, the surface spectral reflectance is  

estimated using mixed image components (i.e. Foster et al’s data set [181]) captured under 

different natural day light sources with different colour temperatures. Then the estimated 

surface reflectance is compared with the reflectance which was measured by Foster et al 

[181]. In Experiment 4, the surface reflectance estimation method does not utilise the output 

of the first stage of the developed framework. In the following sub-sections, the experimental 

settings are stated followed by the experimental procedure, results and discussion.   

6.2.1 The Experimental Setting  

This section discusses the experimental setting for all experiments in this chapter including 

the data set, camera sensor sensitivity, surface reflectance basis functions, normalization 

process, and statistical siginificance test which have been used. 
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1) The first three experiments reported in this chapter use the data set collected by the author. 

More details about the data set are found in Section 5.2. The reason for using this data set in 

the first three experiments is that it is suitable (as described in Section 5.2) for applying blind 

signal separation (the first stage of the developed framework), in order to extract the diffuse 

component, which is used in the estimation of the surface spectral reflectance in these 

experiments. The data set used in Experiment 4 was collected by Foster et al [181] (more 

details are found in Section 5.3.1). The reason for using Foster et al’s data set in Experiment 4 

is the availability of the measured surface spectral reflectance for each pixel, which can be 

used in evaluating the method proposed for estimating surface spectral reflectance. 

2) The sensor spectral sensitivity curves which are used in all experiments in this chapter are 

shown in Figure 2-3. More details about these sensor spectral sensitivity curves are found in 

Section 5.3.1. 

3) In all experiments in this chapter, the reflectance basis functions, which are used for 

surface spectral reflectance estimation, are Parkkinen’s basis functions [33] which are shown 

in Figure 2-2. An explanation of the choice of these basis functions is given in Section 2.2.2. 

The spectral range of these basis functions is from 400 nm to 700 nm with spectral step of 

1nm, as seen in Figure 2-2.  

4) In all experiments in this chapter, the estimation of the surface reflectance coefficients is 

obtained from the normalised version of Equation (4-21), to make the ranges for both sides of 

the equation between 0 and 1, which is expressed as: 

k
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The left hand side of Equation (6-1) (IMd,k) represents the diffuse image component which is  

normalized (0-1) assuming that the maximum value of (Id,R,  Id,G,  Id,B) represents a white 

object on the scene which is  expressed as:  
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The right handside of equation equation (6-1) represents the diffuse component estimated 

using the dichromatic image formation model and normalised against a white object (i.e. the 
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surface spectral reflectance (S) is equal to 1). Nk is a normalisation factor which is represented 

as: 

kk qE   N .=  (6-3) 

5) The results of Experiments 2 and 3 have been tested to be statistically significant at 

confidence level of 95% using the independent two-sample t-test (Appendix E).  

6.2.2 Experimental Procedure, Results and Discussion 

This section provides the procedure, results, and discussion for each individual experiment.  

6.2.2.1 Experiment 1: Comparison between surface spectral reflectance estimated 
from the diffuse component of images using the estimated illumination 
and the illumination specifications provided by manufacturer.   

a) Procedure 

The aim of this experiment is to investigate how the estimated illumination (i.e. extracted in 

the second stage of the framework) affects the performance of the proposed method for 

estimating surface spectral reflectance, in comparison with the estimate derived from 

illumination specifications given by the manufacturer of the light source. 

In this experiment, the estimation of surface reflectance is achieved from the RGB diffuse 

components. The RGB diffuse components are extracted by one of two alternative separation 

techniques, which are the SCFICA technique and the UGICA technique [28], used in the first 

stage of the framework. Each separation technique provides a set of RGB diffuse components. 

The estimation of the surface reflectance is found by first estimating the linear combination 

coefficients of surface reflectance basis functions from each random selected pixel of the 

diffuse components. The surface spectral reflectance is then calculated by the addition of the 

multiplication of the estimated coefficients and the corresponding basis functions.  

The aim of this experiment is achieved by comparing, for the same diffuse pixel, the estimate 

of surface reflectance obtained using the estimated illumination against the surface reflectance 

estimate obtained using the illumination specification provided by the manufacturer of the 

light source. This comparison is done using the four possible illumination estimations for each 

of the two light sources with colour temperatures of 5500 K and 2900 K (i.e. achieved using 

empirical thresholding in Experiments 1, and 2 (Section 5.3.2.1, and Section 5.3.2.2)). Table 

6-1 shows which set of RGB specular components and masks are used to estimate the four 
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possible illuminations. To make it easy for the reader the four possible illumination 

estimations are labelled as ‘illumination-1’, ‘illumination-2’, ‘illumination-3’, and 

‘illumination-4’.   

Moreover, the comparison is conducted for the two sets of RGB diffuse components extracted 

using the two separation techniques (first stage of the framework). For simplicity of 

understanding the figures, each set of RGB diffuse components is called by its corresponding 

techniques as ‘Diffuse-SCFICA’ and ‘Diffuse-UGICA’. The GFC measurement and other 

error (RMS, median, mean, and angular error) measurements, which are commonly used by 

other researchers  [3], [183], [184], are calculated between the estimated surface reflectance 

using the four possible estimated illuminations and the reflectance estimated using the 

illumination measured by the manufacturer. The GFC and the error measurements are 

calculated for each object considering a randomly selected set of pixels, which were 

empirically chosen to be 100 after performing a number of exploratory experiments. 

 
Table 6-1 The combinations used for estimating the four possible illuminations. 

Estimated illumination Combination used for estimation 

Illumination-1 Specular-SCFICA    Mask-SCFICA 

Illumination-2 Specular-UGICA    Mask-SCFICA 

Illumination-3 Specular-SCFICA Mask-UGICA 

Illumination-4 Specular- UGICA  Mask-UGICA 

 

b) Results and discussion  

Figure 6.1 shows illustrative examples of polarized images, the two sets of RGB diffuse 

image components (i.e extracted using two separation techniques), and surface reflectance 

estimates using the four possible estimated illumination and the specification provided by the 

light source manufacturer. In this figure, the surface reflectance estimate has been calculated 

using the same pixel (with same coordinate) for each set of RGB diffuse components for the 

plastic blue ring illuminated by a light source which has a colour temperature of 5500 K. The 

same examples have been repeated with the light source of colour temperature of 2900 K, as 

shown in Figure 6.2. Further illustrative examples using different objects illuminated with 

light sources of colour temperatures of 5500 K and 2900 K are shown in Appendix D (Figures 

D.1 to D.4).  
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The calculation of the GFC using the two separation techniques for the artificial light sources 

with colour temperature of 5500 and 2900 K are summarised in Table 6-2 and Table 6-4 

respectively, for all test images in this experiment. The other error measurements are shown 

in Appendix D (Tables D.1 to D.8). The average and standard deviation of GFC and the other 

error measurements, over all test images in this experiment, for the two artificial light sources 

with two colour temperatures (i.e. 5500 K and 2900 K) are calculated and summarised in 

Table 6-3 and Table 6-5. These calculations are based on the values found in Table 6-2, Table 

6-4 and Tables D.1 to D.8. 

The average GFC values for the two light sources show that the surface reflectance estimated 

using the estimated illumination and using the manufacturer’s illumination specifications are 

almost the same. Based on these averages, it can be said that the illumination is estimated 

with accuracy corresponding to an average GFC equal to 0.9830 (Experiment 1 in Section 

5.3.2.1, Table 5-2) gave a surface reflectance estimate with accuracy corresponding to an 

average GFC equal to 0.9974. Moreover, illumination estimation with accuracy 

corresponding to an average GFC equal to 0.9215 (Experiment 2 in Section 5.3.2.2, Table 

5-4) gave a surface reflectance estimation with accuracy corresponding to an average GFC 

equal to 0.9942. These observations give evidence that the surface reflectance estimation 

method evaluated within the framework is significantly tolerant of illumination estimation 

error. It can therefore be concluded from this experiment that the illumination estimated in the 

second stage of the framework is appropriate to be used for estimating surface spectral 

reflectance within the proposed framework. This conclusion is based on the observation that 

the difference between the surface reflectance estimated using the estimated illumination and 

using the manufacturer’s illumination specifications is not significant. 
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Polarised Images Extracted Diffuse Component Surface Reflectance Estimates 
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Figure 6-1 Illustrative examples of polarised images, two RGB diffuse image components (i.e extracted using two separation techniques), and surface reflectance estimates. 
These estimates are obtained from  RGB diffuse image components  for a pixel located at image position (185, 250) for the plastic blue ring illuminated by a light source 
which has a colour temperature of 5500 K, using the four possible illumination estimates  and light source specifications provided by the manufacturer. 
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Figure 6-2 Illustrative examples of polarised images, two RGB diffuse image components (i.e extracted using two separation techniques), and surface reflectance estimates. 
These estimates are obtained from  RGB diffuse image components  for a pixel located at image position (185, 250) for the plastic blue ring illuminated by a light source 
which has a colour temperature of 2900 K, using the four possible illumination estimates  and light source specifications provided by the manufacturer. 
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Table 6-2 Results of the experimental assessment of the effect of: the extraction of the diffuse image component, 
the four possible illumination estimates, and the material of the reflecting object. The table entries represent the 
similarity between the surface reflectance estimates obtained using  the four possible  illumination estimates and 
surface reflectance estimate obtained using the illumination specification provided by the manufacturer of the 
light source with a colour temperature of 5500 K. The spectral similarity has been calculated using the goodness-
of-fit coefficient (GFC). 

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 0.9999 1.0 0.9992 

Illumination 2 0.9998 0.9886 0.9861 

Illumination-3 0.9999 0.9999 0.9955 

Illumination-4 0.9998 1.0 1.0 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
 

0.9999 
 

0.9999 
 

0.9992 
Illumination 2 0.9998 0.9881 0.9867 

Illumination-3 0.9999 0.9998 0.9956 

Illumination-4 0.9998 0.9999 1.0 

 
 
Table 6-3 The average of GFC and other error measurements for the estimated surface reflectance for objects 
illuminated by artificial day light source with a colour temperature of 5500 K. 

 GFC RMS 
error 

Median 
error 

Mean 
error 

Angular error 
(in degree) 

Average 0.9974 3.07×10-2 1.64×10-2 2.17×10-2 2.02 
Standard deviation ±0.0048 ±4.22×10-2 ±1.55×10-2 ±2.65×10-2 ±2.41 

 

 
Table 6-4 Results of the experimental assessment of the effect of: the extraction of the diffuse image component, 
the four possible illumination estimates, and the material of the reflecting object. The table entries represent the 
similarity between the surface reflectance estimates obtained using  the four possible  illumination estimates and 
surface reflectance estimate obtained using the illumination specification provided by the manufacturer of the 
light source with a colour temperature of 2900 K. The spectral similarity has been calculated using the goodness-
of-fit coefficient (GFC). 

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 0.9949 0.9919 0.9959 

Illumination 2 0.9962 0.9919 0.9955 

Illumination-3 0.9967 0.9962 0.9993 

Illumination-4 0.9973 0.9961 0.9993 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
 

0.9938 
 

0.9915 
 

0.9813 

Illumination 2 0.9949 0.9916 0.9803 

Illumination-3 0.9950 0.9960 0.9968 

Illumination-4 0.9957 0.9960 0.9968 

 
 
Table 6-5 The average of GFC and other error measurements for the estimated surface reflectance for objects 
illuminated by artificial day light source with a colour temperature of 2900 K. 

 GFC RMS 
error 

Median 
error 

Mean 
error 

Angular error 
(in degree) 

Average 0.9942 6.07×10-2 2.22×10-2 2.88×10-2 4.01 
Standard deviation ±0.0046 ±2.81×10-2 ±1.35×10-2 ±1.13×10-2 ±1.51 
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6.2.2.2 Experiment 2: Comparison between the surface reflectance estimated 
from the diffuse image component for the same object illuminated by two 
artificial light sources with different colour temperatures. 

a) Procedure 

The aim of this experiment is to investigate how the proposed method for estimating surface 

spectral reflectance performs, within the proposed colour constancy framework, in terms of 

the similarity (measured using the GFC) between two spectral reflectance curves obtained for 

the same object illuminated alternatively by two artificial light sources with different colour 

temperatures. 

This experiment uses the same test images, same number of pixels and estimated illumination 

for each light source, as in Experiment 1 (Section 6.2.2.1). In this experiment, the measured 

GFC of the estimated surface spectral reflectance indicates the performance of the last stage 

of the framework. The results of last stage depend on the extracted diffuse component and 

estimated illumination from the previous two stages. This means that the GFC measured in 

this experiment reflects the performance of the whole framework. The GFC and error 

measurements, between the surface spectral reflectance estimates correspond to the two light 

sources, are calculated for each object considering a randomly selected set of pixels, which 

are empirically chosen to be 100 after performing a number of exploratory experiments. 

The aim of this experiment is achieved by comparing the surface reflectance estimated for the 

same object illuminated by two different artificial light sources. The experiment compares the 

surface reflectance calculated from two estimates of the diffuse component extracted by the 

same signal separation technique, at the same pixels coordinates, for the same object captured 

under two different artificial light sources.  

b) Results and discussion 

The results for this comparison are shown in Figure 6-3 and Figure 6-4. These figures show 

the comparision for one object (plastic blue ring) while more comparison results for different 

objects are given in Appendix D (Figures D.5 to D.8).  Ideally the surface spectral 

reflectances for the same pixel of an object illuminated by different light sources have to be 

similar. However, in this experiment, the comparison of the surface spectral reflectance, 

estimated for the same pixel of an object illuminated by two light sources with colour 

temperatures of 5500 K and 2900 K, shows that the estimated curves have almost the same 

spectral signature for the two light sources but there is a shift in amplitude between them. 
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This shift represents change in the amplitude ratio between the two surface spectral 

reflectances and it does not represent change in spectral characteristics (i.e. identified the 

material colour). This means that the surface reflectance estimation method used within the 

developed framework is able to extract from images the same material colour for an object 

illuminated by different light sources.  For example, as seen in Figure 6-3 and Figure 6-4, the 

blue component (ranges from 400 nm to 500 nm) in the surface spectral refelcatnce estimates 

is dominant; this reflects the colour of the object under investigation (plastic blue ring). 

The GFC and error measurements, between the surface spectral reflectance estimates 

corresponding to the two light sources for all the test images, are given in Table 6-6 and Table 

6-7. From these tables, it is found that the comparison between the surface spectral reflectance 

estimates corresponding to the two light sources gives an average GFC value (over all test 

images) equal to 0.9887 by using the UGICA separation technique and 0.9611 by using the 

SCFICA separation technique. This means that the performance (in terms of GFC) of the 

proposed method for estimating surface spectral reflectance depends on the type of blind 

separation technique that is used. The results show that there is an improvement in the 

performance of the proposed surface reflectance method by 2.8% in terms of average GFC 

value when the UGICA separation technique is used instead of SCFICA. This improvement is 

statistically significant, with a significance level of 95%. The results of the statistical 

significance test are reported in Appendix E (Table E.6). The high GFC value means that the 

estimates of surface reflectance under the two light sources are very similar, despite the 

differences between the two illuminants. This similarity implies that the extracted surface 

reflectance is significantly independent of illumination characteristics, hence showing that the 

proposed framework achieved colour constancy. 
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Figure 6-3 The surface reflectance, for a pixel located at image coordinates (185, 250), estimated from the 
‘Diffuse-SCFICA’ image component for a plastic blue ring illuminated by two artificial light sources with colour 
temperatures of 2900  and  5500  K. 
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 Figure 6-4 The surface reflectance for a pixel located at image coordinates (185, 250), estimated from the 
‘Diffuse-UGICA’ image component for a plastic blue ring, and illuminated by two artificial light sources with 
colour temperatures of 2900 and 5500 K. 
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Table 6-6 The GFC and error measurements between surface reflectance estimates from pixels of ‘Diffuse-
SCFICA’, at the same pixel coordinate for the same object illuminated by two artificial light sources with colour 
temperatures of 2900   and 5500 K.  

Object GFC RMS 
error 

Median 
error 

Mean 
error 

Angular error 
(in degree) 

Plastic blue ring  0.9808 11.33×10-2 10.89×10-2 8.82×10-2 11.22 
Ceramic violet cup 0.9799 18.94×10-2 9.72×10-2 14.71×10-2 8.99 
Plastic green ring  0.9227 18.70×10-2 0.7×10-3 5.34×10-2 13.18 
Average  0.9611 16.32×10-2 6.89×10-2 9.62×10-2 11.13 
Standard deviation ±0.0333 ±4.33×10-2 ±5.94×10-2 ±4.74×10-2 ±2.09 

 
 
Table 6-7 The GFC and error measurement between surface reflectance estimates for pixels of ‘Diffuse-
UGICA’, at the same pixel coordinate for the same object illuminated by two artificial light sources with colour 
temperatures of 2900   and 5500 K.  

Object GFC RMS 
error 

Median 
error 

Mean 
error 

Angular error 
(in degree) 

Plastic blue ring  0.9939 8.47×10-2 3.33×10-2 3.98×10-2 5.03 
Ceramic violet cup 0.9972 17.72×10-2 13.21×10-2 15.90×10-2 3.32 
Plastic green ring  0.9749 14.15×10-2 1.19×10-2 3.87×10-2 7.61 
Average  0.9887 13.45×10-2 5.91×10-2 7.92×10-2 5.32 
Standard deviation ±0.0120 ±4.66×10-2 ±6.41×10-2 ±6.91×10-2 ±2.16 

 

6.2.2.3 Experiment 3: A comparison between the surface spectral reflectance 
estimated using the diffuse image component and mixed image 
components. 

a) Procedure 

The aim of this experiment is to measure the improvement in the surface reflectance 

estimation accuracy (measured using the GFC) arising from using an explicitly extracted 

diffuse image component instead of the original image which is effectively a mixture of 

specular and diffuse image components. 

Due to the lack of a reference for the surface spectral reflectance of the material in high 

specular reflection areas (i.e. highlight areas) of images, the surface spectral reflectance of 

neighbouring pixels (slightly or not affected by specular refelctions) will be taken as a 

reference. This reference is then compared with surface spectral reflectance estimates of 

pixels located in the high specular reflection areas of the mixed image components and the 

corresponding pixels in the diffuse image component. In this experiment, a set of randomly 

selected pixels (i.e assumed to be diffuse-only pixels) has been chosen to create three spectral 

reflectance references. The number of pixels in this set is 100 and this number was chosen 

empirically after performing a number of exploratory experiments. To rely on one reference, a 

set of 100% diffuse-only pixels is required. However, this set is unavailable and therefore 

three different references are created from three sets of pixels with different accuracy of 

diffuse-only pixels. The locations of the selected pixels (reference pixels) are chosen from the 

pixels neighbouring the high specular reflection areas. The three spectral reflectance 
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references are estimated from the mixed image components and the two diffuse image 

components, which are extracted using the two separation techniques (SCFICA and UGICA) 

considered in the experiments. The creation of the spectral reflectance references is based on 

the assumption that these references represent the invariant characteristic colour of the 

material in the test image. Each surface spectral reflectance reference is obtained by averaging 

the surface spectral reflectance estimates, which are estimated from the selected pixels 

corresponding to each image component. In this experiment, to make it easy for the reader the 

three reflectance references are labelled as ‘reflectance reference-1’, ‘reflectance reference-2’, 

and ‘reflectance reference-3’. Table 6-8 shows which image component is used to generate 

the corresponding reflectance reference.  

  
Table 6-8 The three extracted reflectance references and their corresponding images. 

Surface reflectance Reference 
(pixels neighbouring the high specular reflection areas) 

Image component 

Reflectance Reference-1 Mixed image components- polarised image2 
Reflectance Reference-2 Diffuse image component-SCFICA    
Reflectance Reference-3 Diffuse image component-UGICA    

The test pixels are from another set of pixels which is selected from the high specular 

reflection area of the mixed image components, and the corresponding two diffuse image 

components which are extracted using the two separation techniques (SCFICA and UGICA). 

The number of pixels in this set is 20 which is also been chosen empirically after performing 

a number of exploratory experiments. The pixels corresponding to each image component are 

used to estimate surface spectral reflectances. The surface spectral reflectance estimates from 

pixels corresponding to each image component are then averaged. The resulting three spectral 

reflectances of the surface under the specular reflection area are labelled as ‘highlight-

reflectance-1’, ‘highlight reflectance-2’, and ‘highlight reflectance-3’. Table 6-9 shows which 

image component is used to generate the corresponding surface spectral reflectance of the 

surface under the specular reflection areas.   

Table 6-9 The three extracted highlight-reflectances and their corresponding images. 
Highlight-Surface Reflectance        

 (pixels in specular reflection areas or highlight areas) 
Image component 

Highlight-Reflectance-1 Mixed image components-polarized image2 
Highlight-Reflectance-2 Diffuse image component -SCFICA    
Highlight-Reflectance-3 Diffuse image component -UGICA   

 

The aim of this experiment is achieved by comparing the three highlight-reflectances (Table 

6-9) with each spectral reflectance reference (Table 6-8). The number of pixels considered in 

creating the highlight-reflectance has to be equal to the number of pixels considered in 
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creating reflectance references to ensure robust comparison. However, in this experiment the 

number of pixels in the highlight area is small. To avoid this limitation and to ensure the 

validity of comparison, the pixels in highlight area are selected randomly and the experiment 

is repeated a number of times. All these comparisons gave similar results.  

The experiment uses the same images and the two light sources with colour temperatures of 

5500 K and 2900 K as used in Experiments 1 and 2, in this chapter. The illumination 

specifications given by light source manufacturers are used in estimating the reflectance 

reference and the highlight reflectance. This is because it has been shown in Experiment 1 

(Section 6.2.2.1) that the difference between the estimated surface reflectance using the 

manufacturer’s illumination specifications and the estimated illumination is not significant. 

Moreover, the effect of the estimated illumination in the estimation of the surface reflectance 

is not a target in this experiment. 

b) Results and discussion 

 The results of the comparison of the highlight-reflectance for each image component with 

each reflectance reference are shown in Figure 6-5 to Figure 6-10, for the two light sources. 

These Figures show the comparison results for one example of the test images while more 

comparison results for other test images are shown in Appendix D (Figures D.9 to D.20). 

Compared to all reflectance references, highlight-reflectance-2 and highlight-reflectance-3 

(i.e. estimated using diffuse image components) show, on average, better similarity than 

highlight-reflectance-1 (i.e. estimated using mixed image component). This is shown by the 

GFC value between each highlight-reflectance and each reflectance reference, which is given 

in Table 6-10, for the two light sources. The higher GFC value means higher similarity, 

shown by the results of comparing either highlight-reflectance-3 (i.e. diffuse image 

component–UGICA) or highlight-reflectance-2 (i.e. Diffuse Image Component–SCFICA) 

with all reflectance references. The average GFC value of the estimated surface spectral 

reflectance is improved by 1.1 % when the ‘Diffuse Image Component–SCFICA’ is used and  

by 4.1 % when ‘Diffuse Image Component–UGICA’ is used instead of the ‘Mixed Image 

component’(Table 6-10).  To conclude, the average GFC value of the estimated surface 

spectral reflectance is improved by 2.6 % when the diffuse image component is used instead 

of the mixed image component. This improvement is statistically significant, with a 

confidence level of 95%. The results of the statistical significance test are reported in 

Appendix E (Table E.7). 
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Figure 6-5 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-3) 
estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-1) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic blue ring illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the polarised image, without extracting the 
diffuse image component. 
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Figure 6-6 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-3) 
estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-2) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic blue ring illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the diffuse image component-SCFICA. 
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Figure 6-7 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-3) 
estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-3) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic blue ring illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the diffuse image component-UGICA. 
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Figure 6-8 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-3) 
estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-1) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic blue ring illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the polarised image, without extracting the 
diffuse image component. 
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Figure 6-9 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-3) 
estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-2) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic blue ring illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the diffuse image component-SCFICA. 
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Figure 6-10 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-3) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic blue ring illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the diffuse image component-UGICA. 
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Table 6-10 The GFC comparison between the surface reflectance (Highlight-Reflectance-1, Highlight-
Reflectance-2, and Highlight-Reflectance-3) estimated from pixels in image regions which have a strong 
specular component, and the surface reflectance (reflectance reference-1, reflectance reference-2, reflectance 
reference-3) estimated from pixels in image regions which have a weak specular component. The test and 
reference pixels are from images of different objects illuminated by light sources with colour temperature of 
5500 K and 2900 K. The reference pixels are respectively from the polarised image (without extracting the 
diffuse image component), the ‘diffuse image component-SCFICA’, and ‘diffuse image component-UGICA’. 
 

Light source Object    Highlight-
Reflectance-1 

Highlight-
reflectance-2 

Highlight-
reflectance-3 

Colour 
Temperature 

5500 K 

Plastic blue  
ring 

Reflectance 
Reference-1 0.9481 0.9388 0.9872 

Reflectance 
Reference-2 0.9031 0.9740 0.9944 

Reflectance 
Reference-3 0.9199 0.9643 0.9967 

Ceramic 
violet cup 

Reflectance 
Reference-1 

0.9730 0.9998 0.9829 

Reflectance 
Reference-2 

0.9701 0.9988 0.9821 

Reflectance 
Reference-3 

0.9487 0.9961 0.9948 

Plastic 
green ring  

Reflectance 
Reference-1 

0.9754 0.9965 0.9911 

Reflectance 
Reference-2 

0.8987 0.9546 0.9738 

Reflectance 
Reference-3 

0.9249 0.9714 0.9904 

Colour 
Temperature 

2900 K 

Plastic blue  
ring 

Reflectance 
Reference-1 

0.9330 0.9868 0.9995 

Reflectance 
Reference-2 

0.9649 0.9546 0.9909 

Reflectance 
Reference-3 

0.9357 0.9856 0.9997 

Ceramic 
violet cup 

Reflectance 
Reference-1 

0.9818 0.9265 0.9947 

Reflectance 
Reference-2 

0.9504 0.9718 0.9971 

Reflectance 
Reference-3 

0.9674 0.9499 0.9993 

Plastic 
green ring  

Reflectance 
Reference-1 

0.9601 0.9098 0.9822 

Reflectance 
Reference-2 

0.9897 0.9003 0.9980 

Reflectance 
Reference-3 

0.9625 0.9204 0.9876 

Average  0.9504 0.9611 0.9912 
Standard Deviation ±0.0264 ±0.0316 ±0.0074 

 
 

6.2.2.4 Experiment 4: Estimation of the surface spectral reflectance from mixed 
image components captured under natural day light sources with 
different colour temperatures. 

a) Procedure 

The aim of this experiment is to investigate how the proposed method for the third stage of 

the framework performs for estimating the surface spectral reflectance of different objects 

illuminated by natural day light sources with different colour temperatures, in terms of 
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similarity (measured as a GFC value) between the estimated and measured spectral 

reflectance curves.  

The investigation in Experiment 4 is done based on the assumption that the selected pixels are 

mostly composed of diffuse reflection with a negligible amount of specular reflection. The 

selection of these pixels is done by the author based on empirical observation. In  Experiment 

4, the same surface reflectance estimation method used in previous experiments in this 

chapter is tested on Foster et al’s data set [181].  

b) Results and disscusion 

Figure 6-11 shows illustrative examples for some  images of the Foster et al’s data set [181], 

it also displays the pixel position (white square marker) for each image at which surface 

reflectance was estimated. In this Figure, the surface reflectance estimated at these pixels is 

shown in comparison with the measured surface reflectance. More illustrative examples for 

other images of Foster et al’s data set are shown in Appendix D (Figure D.21).  

As seen in Figure 6-11, the surface spectral reflectance is estimated well from the non-

specular pixels for different images illuminated by natural day light illuminations with 

different colour temperatures.  The estimated surface spectral reflectance has almost the same 

signature as the reflectance measured by Foster et al [181], which means the estimated 

reflectance effectively captures the colour of the surface material, but with a shift in 

amplitude. As explained in Experiment 2 (Section 6.2.2.2), this shift represents a change in 

the amplitude ratio between the two surface spectral reflectances, and it does not represent a 

change in the spectral characteristics which identify the colour of the material.  

Furthermore, the surface reflectance estimates from a set of randomly selected pixels for each 

image are compared to the measured surface reflectances which are provided by Foster et al 

[181]. The number of pixels in this set is 100 and this number was chosen empirically after 

performing a number of exploratory experiments. This comparison is achieved by calculating 

the GFC and other error measurements which are shown in Table 6-11. The entries of Table 

6-11 consist of the average of GFC and other error measurements over the set of pixels 

considered for each image in Foster et al’s data set. This table also includes the average of the 

GFC value and of the other error measurements, for all images considered in the experiment.  
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 RGB Image no.1
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Figure 6-11 Illustrative examples for some images of the Foster et al’s data set [181], with a white  square 
marker to display the pixel position at which surface reflectance was estimated. The estimated surface 
reflectance of that pixel is shown in comparison with the measured surface reflectance. 
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In conclusion, compared to the measured surface reflectance, the estimated surface reflectance 

for different objects illuminated by different natural day light sources with different colour 

temperatures is obtained with an average GFC of 0.9608. This shows a close similarity 

between the estimated and the measured surface reflectances for different objects illuminated 

by natural day light sources with different colour temperatures. This average GFC cannot be 

compared to the ones achieved in Experiment 2 (Section 6.2.2.2). This is because different 

data sets are used in these two experiments. 
  
 
Table 6-11 The averaged GFC measurement and other error measurements for surface reflectance estimated on 
the Foster et al’s data set [181].  

Image 
 

GFC RMS 
error 

Median 
error 

Mean 
error 

Angular 
error (in degree) 

The first image 0.9701 9.96×10-2 5.03×10-2 1.82×10-2 8.74 

The second image 0.9095 37.81×10-2 39.97×10-2 27.86×10-2 5.40 

The third image 0.9519 13.19×10-2 3.49×10-2 6.22×10-2 8.31 

The fourth image 0.9850 24.83×10-2 24.22×10-2 15.56×10-2 6.35 

The fifth image 0.9326 34.11×10-2 34.51×10-2 28.04×10-2 7.54 

The sixth image 0.9775 24.38×10-2 23.38×10-2 19.88×10-2 8.66 

The seventh image 0.9810 10.62×10-2 8.27×10-2 2.98×10-2 8.04 

The eighth image 0.9788 17.79×10-2 13.94×10-2 13.50×10-2 5.65 
Average 0.9608 21.59×10-2 19.10×10-2 14.48×10-2 7.34 

Standard Deviation ±0.0272 ±10.55×10-2 ±13.64×10-2 ±10.39×10-2 ±1.35 

 

6.3 General Discussion 

The GFC values obtained in all experiments in this chapter, as given in tables (Table 6-6, 

Table 6-7, Table 6-10, and Table 6-11 ), show that the proposed surface reflectance estimation 

method provides reasonably accurate estimates. Noting that in these experiments the proposed 

surface reflectance estimation method includes some sources of error. These sources are the 

normalisation process, the diffuse geometrical scale factor (wd) (Equation (4-20)), and the use 

of camera sensor sensitivity characteristics for estimating surface reflectance from image 

which is captured with different camera sensor sensitivity characteristics. The effects of these 

errors are discussed below. 

 The normalisation process, which introduces loss of information, is required in these 

experiments to produce a common reference as explained in Section 6.2.1. However, 

in these experiments, the double precision (32-bit number representation) of pixel 

values was used in order to minimise the effect of this error. Furthermore, this error 

predominantly affects the absolute value of the estimated surface refelectance and 

have insignificant effect on the accuracy of the estimation of the relative spectral 
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surface reflectance, which is estimated by the proposed surface reflectance  estimation 

method.   

 Due to the difficulty in calculating the diffuse geometrical scale factor (wd) for each 

pixel in the image [1], in these experiments this factor is considered to be 1 for 

simplicity. This assumption will affect the absolute value of the estimated surface 

reflectance; however it will not affect the relative spectral surface reflectance. The 

proposed method estimates the relative spectral surface reflectance, hence the value of 

the geometrical scale factor does not significantly affect the accuracy of the estimation 

process. 

 The same camera sensor sensitivity characteristics are used for all experiments. 

Although these camera characteristics are not the ones used to create Foster et al’s 

data set however, the results in Experiment 4 (Section 6.2.2.4), in which the surface 

reflectance estimated from Foster et al’s data set, show reasonable estimation 

accuracy, yielding an average GFC value of 0.9608. This could be due to a fortunate 

similarity between camera sensitivity characteristics, which can be inferred from the 

results of Experiment 4 which show that the sensor sensitivity characteristics have a 

minimal effect on the estimation. 

In addition, some of the test images look grainy which means that random noise is included in 

the pixel values. As seen in the results which correspond to these images in Chapters 5 and 6, 

this noise does not affect the estimation process. This is because the estimates of the 

illumination and the surface reflectance are calculated separately from a number of pixels and 

then averaged. Hence the averaging process reduces the effect of the noise.  

The proposed framework has been tested initially using an in-house data set of 16 images 

containing two light sources and 4 objects, all images were taken using camera sensor 

sensitivity characteristics shown in Figure 2-3. In order to test whether the framework can be 

extended to be used for more lights sources and objects, the experiments for illumination 

estimation and surface reflectance estimation have been repeated using Foster et al’s data set 

(Experiment 4 (Section 5.3.2.4) and Experiment 4 (Section 6.2.2.4)). The results obtained in 

these experiments confirm this proposition as shown in Table 5-8 and Table 6-11. 

 Moreover, the performance assessment of the proposed framework is based on the 

embodiments (i.e specific implementations) which are considered in this thesis (Chapter 4). 
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Nevertheless, it is possible to use other embodiments of the proposed framework. Further 

research is required in order to find the optimum embodiments for the framework.  

Moreover, the use of blind signal separation and the dichromatic reflection model in the 

proposed framework give two advantages compared to existing colour constancy frameworks. 

Firstly, the achievement of colour constancy does not depend on the number of observed 

colour surfaces in the scene; it therefore can deal robustly with real images. Secondly, the 

proposed framework does not require computationally expensive operations such as 

generating a correlation or gamut matrix and a training process, which are needed in existing 

frameworks. 

The results show that colour constancy is achieved with reasonable accuracy.  The data set 

required for the evaluation of the proposed framework is not standard data set as polarised 

images are needed. However, the results were evaluated on its own as it has been compared 

with manufacturer’s specifications and measured values. While the inspection and discussion 

of the results reported in the relevant literature is used to gain an insight into how the 

proposed framework performs relative to others, a side-by-side comparison is not possible 

due to inavailability of a common data set and lack of a common reference. 

6.4 Summary 

This chapter assesses the performance of the estimation of the surface spectral reflectance 

using the extracted diffuse image component. This estimation is performed by the last stage of 

the framework. The performance is evaluated quantitatively in three ways. The evaluation is 

conducted through four experiments. These experiments aim to investigate the performance of 

the proposed method to estimate surface reflectance and to explore the factors which affect its 

estimation accuracy, measured in terms of GFC value, within the colour constancy 

framework.  

Experiment 1 investigates how the estimated illumination affects the performance of the 

proposed method for estimating surface spectral reflectance, in comparison to the reflectance 

estimated using the illumination specification provided by the manufacturer. It is shown that 

there is no significant difference between the surface reflectance estimated using the 

estimated illumination or using the manufacturer’s illumination specification. Hence, the 

estimated illumination is a valid input for estimating surface spectral reflectance within the 

framework.  
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Experiment 2 further assesses the proposed method for estimating surface spectral reflectance 

by comparing the surface spectral reflectance estimated for the same pixel of an object 

illuminated by two alternative light sources, one with colour temperature of 5500 K and the 

other with colour temperature of 2900 K. It is observed that the estimated surface spectral 

reflectance has almost the same spectral signature for the two light sources. The comparison 

between the surface spectral reflectance estimates corresponding to each of the two light 

sources gives an average GFC value which ranges from 0.9611 to 0.9887, depending on the 

type of blind separation technique that is used. The results show that there is a statistically 

significant improvement in the performance of the proposed surface reflectance method by 

2.8%, in terms of the average GFC value, when the UGICA separation technique is used 

instead of SCFICA. Given that the surface spectral reflectance is the output of the last stage of 

the framework, which depends on the output of the previous two stages, it follows that the 

measured GFC indicates the performance of the whole framework. The observed high GFC 

value means that the estimates of surface reflectance under the two light sources are very 

similar, despite the differences between the two illuminants. This similarity implies that the 

extracted surface reflectance is significantly independent of illumination characteristics, hence 

showing that the proposed framework achieves colour constancy. 

In Experiment 3, the improvement in the estimation accuracy for surface reflectance is 

measured in terms of GFC value between the surface reflectance obtained by using an 

explicitly extracted diffuse image component instead of the mixed image components (i.e. 

composed of blended specular and diffuse components). Depending on the type of the blind 

separation technique which is used to extract the diffuse component, the average GFC value 

of the estimated surface spectral reflectance improves in the range from 1.1 % to 4.1 % when 

the diffuse component is used instead of the mixed image component. The observed results 

show a statistically significant improvement in the accuracy of the estimated surface spectral 

reflectance by 2.6% in terms of average GFC value when the diffuse image component is 

used instead of the mixed image component. 

Experiment 4 investigates the performance of the proposed method for estimating the surface 

spectral reflectance of different objects illuminated by natural day light sources with different 

colour temperatures. It is shown that an average GFC of 0.9608 is obtained when comparing 

the surface reflectance measured for a set of hyperspectral images (i.e. Foster et al’s data set) 

to the estimated surface reflectance for different objects illuminated by natural day light 

sources with different colour temperatures.  
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7 
Conclusions and Future Work 
 

7.1 Conclusions 
Colour constancy is considered as one of the most important requirements for various 

applications, which use colour as the main feature in image or video processing. Achieving 

colour constancy is a challenge which has been addressed by other researchers and has also 

been addressed in this thesis. The research presented in this thesis aims to investigate the 

effectiveness of applying blind signal separation integrated with a physical model of image 

formation into a framework for achieving colour constancy. The particular model considered 

in this study is the dichromatic reflection model. The research questions addressed by this 

research are “how should blind signal separation be integrated with the dichromatic model?” 

and “how does the proposed framework perform in the context of achieving colour 

constancy?” 

The colour constancy survey revealed that most illumination estimation methods based on the 

dichromatic model (as used in approaches to colour constancy) utilise  the mixed  image 

components  which is a mixture of specular and diffuse components and try to estimate 

illumination chromaticity by analyzing it in different colour spaces. Moreover, most of the 

methods based on dichromatic reflection suffer from the problem of segmenting image 

regions which correspond to multi-coloured surfaces in the highlight areas. This thesis 

proposed an alternative approach embodied in a framework which integrates blind signal 

separation and the dichromatic model of image formation. By using blind signal separation 

the estimation of illumination can be achieved more accurately from the explicitly separated 

specular component unlike the conventional approaches that use mixed image components. 

Moreover, the explicitly separated diffuse image can be used to achieve colour constancy 

instead of mixed image components that are used by conventional approaches. In addition, by
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 using blind signal separation the challenge of segmenting multi-coloured surfaces in images 

can be avoided. Two suitable blind signal separation techniques have been proposed within 

the developed framework. These two techniques are the spatially constrained FastICA 

technique, which is characterised by its simplicity, efficiency, and ability to differentiate 

between the separated specular and diffuse components and the technique developed by 

Umeyama and Godin, which has successfully been used for separating specular and diffuse 

components in other image processing applications. Moreover, the use of blind signal 

separation and the dichromatic reflection model give two advantages to the proposed 

framework compared to existing colour constancy frameworks. Firstly, the achievement of 

colour constancy does not depend on the number of observed colour surfaces in the scene; it 

therefore can deal robustly with real images. Secondly, the proposed framework does not 

require computationally expensive operations such as generating a correlation or gamut 

matrix and a training process, which are needed in existing frameworks. The developed 

framework consists of three stages, which are: separation of image components (specular and 

diffuse components), estimation of ISPD, and estimation of surface spectral reflectance. 

The methodology used for evaluating the performance of the framework involves the 

development of algorithms, their implementation in software, and their assessment using 

well-designed experiments anchored on quantitative performance measurement methods. The 

GFC is used to evaluate the performance of the framework. GFC is a measure of degree of 

similarity between the estimated spectral distribution and a known reference. GFC values range 

between 0 and 1; a higher value representing a higher degree of similarity. The following 

observations were made in the evaluation of the proposed framework stages, from which the 

performance of the whole framework was deduced. 

Using the image data set generated by the author, the comparison of the manufacturer’s 

specifications of the ISPD, for two light sources with colour temperature of 5500 K and 2900 

K, with the ISPD estimated using the explicitly extracted specular image component, has an 

average GFC value equal to 0.9830 and 0.9215, respectively after empirical thresholding. The 

results also show a statistically significant improvement in the illumination estimation 

accuracy (measured in terms of average of GFC) by 3.8% and 2.9% when the empirical 

threshold is used instead of the automatic threshold for the 5500 K light source and the 2900 

K light source respectively. Moreover, there is no significant difference in the estimation 

accuracy of the ISPD obtained using the specular components extracted by the SCFICA and 

UGICA [28] blind separation techniques, for the images of scenes illuminated with the 
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artificial light sources with colour temperature of 5500 K and 2900 K. The selection of 

illumination basis functions has an impact on the accuracy of the illumination estimation 

method used within the colour constancy framework, measured in terms of the GFC value. 

Furthermore, it is found that there is a statistically significant improvement by 2.9% in the 

average GFC value of the estimated ISPD when the specular component is used instead of 

mixed image components. In addition, experiments using Foster et al’s image data set yielded 

an average GFC of 0.9986 between the illumination measured by Foster et al and the ISPD 

estimated, for different natural day light sources with different colour temperatures, using the 

mixed image components. 

 By using the author’s data set, it was found that the illumination, estimated in the second 

stage of the developed framework, is a valid input for estimating surface spectral reflectance 

within the framework. Comparison of the surface spectral reflectance, estimated for the same 

pixel of an object illuminated by two light sources with colour temperatures of 5500 K and 

2900 K, shows that the estimated surface spectral reflectance has almost the same spectral 

signature for the two light sources. The comparison between the surface spectral reflectance 

estimates corresponding to each of the two light sources gives an average GFC value which 

ranges from 0.9611 to 0.9887, depending on the type of the blind separation technique that is 

used. The results show that there is a statistically significant improvement in the performance 

of the proposed surface reflectance method by 2.8% in terms of average GFC value when the 

UGICA separation technique is used instead of SCFICA. Given that the surface spectral 

reflectance is the output of the last stage of the framework, which depends on the output of 

the previous two stages, it follows that the measured GFC indicates the performance of the 

whole framework. The observed high GFC value means that the estimates of surface 

reflectance under the two light sources are very similar, despite the differences between the 

two illuminants. This similarity implies that the extracted surface reflectance is significantly 

independent of illumination characteristics, hence showing that the proposed framework 

achieves a significant degree of colour constancy. Moreover, the observed results show a 

statistically significant improvement in the accuracy of the estimated surface spectral 

reflectance by 2.6% in terms of average GFC value when the diffuse image component is 

used instead of the mixed image component. Furthermore, compared to the measured surface 

spectral reflectance and using Foster et al’s image data set, the surface spectral reflectance 

estimated using the mixed image components has an average value of the GFC equal to 

0.9608. 
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This thesis shows the applicability of blind signal separation integrated with the dichromatic 

model of image formation into a framework for achieving colour constancy. The proposed 

framework is valid for inhomogeneous opaque surfaces with dielectric materials, whose 

atomic structure follow the dichromatic refelection model. However the proposed framework 

is not valid for the transparent or translucent materials, whose atomic structure does not 

follow the dichromatic refelection model [1]. The proposed framework requires a pair of 

images for same scene, acquired with different polarisation angles. In the proposed 

framework, suitable illumination and surface reflectance basis functions need to be known.  

The ability to obtain an accurate estimate of surface spectral reflectance allows the 

determination of an object actual colour, independent of illumination. This is very useful in a 

wide range of practical applications. In machine vision applications, the work presented in 

this thesis offers a new way for detecting material colour with improved accuracy. In colour 

matching applications such as cinematography and film making, the proposed approach will 

offer a more accurate colour identification capability. In colour reproduction applications such 

as realistic 3-D computer graphics and animation, the proposed approach is likely to help 

improve the realism of computer-generated objects. The accurate estimation of colour 

presented in this thesis has the potential to improve the accuray of automated object detection. 

This is practically useful in video analytics and intelligent surveillance systems. Further, the 

contribution towards improving object detection and segmentation is expected to facilitate 

content-based coding of real images. 

The main contribution of this thesis is the development of a novel colour constancy 

framework, and experimental findings about the performance of the framework. The proposed 

framework consists of a new method to estimate the ISPD by using an explicitly extracted 

specular component instead of mixed image components. Other researchers use a composite 

image representation where each pixel is a blend of a specular component and a diffuse 

component. Furthermore, the proposed framework includes a new method for estimating the 

surface spectral reflectance using an explicitly extracted diffuse component instead of mixed 

image components which are used by other researchers.  

7.2 Future Work 

Although the developed colour constancy framework is able to identify the colour of the 

material (i.e. achieve a significant degree of colour constancy) with accuracy ranging between 

0.9611 and 0.9887 in terms of average GFC value, and  the performance of all stages within 
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this framework have been examined individually, the following issues require further 

investigation. 

• To find out a method that identifies the optimal threshold value automatically, in order 

to avoid the use of empirical selection of the threshold value (i.e. used to extract the 

significant specular pixels that are used in the illumination estimation). The motivation 

of this is to increase the degree of automation of the framework. 

• There is a need to discover the possibility of estimating the sensor response of the 

camera from the specular component with a known ISPD. This is because most of 

camera manufacturers do not release the sensor response of their cameras. By using 

the specular component instead of the diffuse component less number of parameters is 

required to be known in order to estimate the sensor response of the camera.  

• To create a comprehensive standard data set which contains many pairs of images 

captured under more than two different (artificial and natural) light sources, including 

the measured illumination of these lights source, the measured surface reflectance of 

the captured objects, and the sensor response of the camera used to capture images is 

required. The generation of this data set will enable researchers to test and improve 

each stage of the developed framework. Moreover, a robust and trustable reference 

(diffuse or specular component) for these pairs of image is needed, to be made 

available, in order to measure the accuracy of the separation techniques.   

• To generate trustable global illumination basis functions which are valid for most type 

of light sources, together with the values of illumination basis function coefficients 

which correspond to these light sources. The reason for this suggested further work is 

also to increase the degree of automation of the framework. 

• To find out an optimum method to be used in each stage of the framework, in order to 

achieve the best colour constancy. 

• In the evaluation of the proposed framework, uncompressed raw images are used in 

order to avoid any information loss. Now after the hypothesis has been verified, it 

would be useful to investigate the effect of different compression techniques on the 

accuracy of the proposed framework.   
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Chapter 5
Experimental Investigation of the Estimation of the 

Illumination Spectral Power Distribution.
(Second stage of the framework)

The aim of this chapter is to investigate and explore how the 
proposed method for estimating the Illumination Spectral Power 
Distribution (ISPD) in the second stage of the developed 
framework performs in terms of the goodness-of-fit coefficient 
(GFC).

Chapter 6
Experimental Investigation of the Estimation of the 

Surface Spectral Reflectance
(Third stage of the framework)

The aims of these experiments are to investigate the performance 
of the proposed method for estimating surface reflectance and to 
explore the factors which affect its estimation accuracy in terms of 
GFC, within the colour constancy framework. 

Experiment Map

1

2
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Experiment 1 (Section 5.3.2.1): Estimation of ISPD from specular 
component of images captured under an artificial day light source with colour 
temperature of 5500 K.

The aim of this  experiment is to investigate how the proposed illumination 
estimation method, used within the developed colour constancy framework, 
performs for estimating the illumination of the artificial day light source with 
colour temperature of 5500 K, when the method is coupled to one of  two 
alternative blind signal separation techniques.
 

Experiment 3 (Section 5.3.2.3): A comparison between illumination 
estimation accuracy achieved by using the  specular component and the 
mixed image components. 

The aim of this experiment is to measure the improvement in the 
illumination estimation accuracy arising from using an explicitly extracted 
specular image component compared to using the original image which can 
be seen as a mixture of specular and diffuse image components.
 

 Experiment 2 (Section 5.3.2.2): Estimation of ISPD from specular 
component of images captured under an artificial light source with colour 
temperature of 2900 K 

 The aim of this  experiment is to investigate how the proposed illumination 
estimation method, used within the colour constancy framework, performs for 
estimating the illumination of the artificial source with colour temperature of 
2900 K,  when the estimation is coupled to two alternative blind signal 
separation techniques.

Experiment 4 (Section 5.3.2.4): Estimation of ISPD from mixed image 
components captured under natural day light sources with different 
colour temperatures.

The aim of this experiment is to investigate how the method used in the 
second stage of the implemented framework performs for estimating ISPD 
for natural day light sources with different colour temperatures. 
 
 

• The results show that the illumination is estimated with average GFC value 
of 0.9830 when the empirical threshold is used (i.e. to select significant 
specular pixels, which are used in the estimation) and with GFC value of 
0.9447 when the automatic threshold is used. This means that the 
illumination estimation accuracy is improved by 3.8% when the empirical 
threshold is used instead of the automatic threshold. 

• The results show that there is no statistically significant difference in the 
estimation accuracy of the ISPD using the specular components extracted  by 
each of the two blind separation techniques (SCFICA and UGICA  in [28])) 
compared to the manufacturer’s specifications

• The results show that the average GFC value of the estimated ISPD 
is improved by 2.9% when the specular component is used instead 
of mixed image components.

• The results show that the illumination is estimated with average GFC value 
of 0.9215 when the empirical threshold is used (i.e. to select significant 
specular pixels, which are used in the estimation) and with average GFC 
value 0.8921 when the automatic threshold is used. This means that the 
illumination estimation accuracy is improved by 2.9% when the empirical 
threshold is used instead of the automatic threshold.

•  The performance of the illumination estimation method measured in terms 
of GFC and curve-difference error can possibly be affected by the selection 
of suitable illumination basis functions.  

• Compared to the manufacturer’s specifications, the results show that there is 
no statistically significant difference in the estimation accuracy of the ISPD 
using the specular components extracted  by each of the two  blind separation 
techniques (SCFICA and UGICA  in [28])). 

• The ISPD estimated from mixed image components for different 
natural day light sources with different colour temperatures has an 
average GFC value equal to 0.9986, measured over Foster et al’s 
data set. 

Experiment 1 (Section 6.2.2.1): comparison between surface spectral 
reflectance estimated from the diffuse component of images using the 
estimated illumination and the illumination specifications provided by 
manufacturer.  

The aim of this experiment is to investigate how the estimated illumination 
(i.e. achieved in second stage of the developed framework) affects the 
performance the proposed method for estimating surface spectral reflectance 
in comparison with manufacturer’s illumination specifications.

Experiment 3 (Section 6.2.2.3): A comparison between the surface 
spectral reflectance estimated using the diffuse image component and 
mixed image components.

The aim of this experiment is to measure the improvement in the surface 
reflectance estimation accuracy (measured using the GFC) arising from using 
an explicitly extracted diffuse image component instead of the original image 
which is effectively a mixture of specular and diffuse image components

Experiment 2 (Section 6.2.2.2): Comparison between the surface 
reflectance estimated from the diffuse image component for the same 
object illuminated by two artificial light sources with different colour 
temperatures.

The aim of this experiment is to investigate how the proposed method for 
estimating surface spectral reflectance performs, within the proposed colour 
constancy framework, in terms of the similarity (measured using the GFC) 
between two spectral reflectance curves obtained for the same object 
illuminated alternatively by two artificial light sources with different colour 
temperatures.

Experiment 4 (Section 6.2.2.4): Estimation of surface spectral 
reflectance from mixed image components captured under natural day 
light sources with different colour temperatures.

The aim of this experiment is to investigate how the method proposed for the 
third stage of the framework performs for estimating the surface spectral 
reflectance of different objects illuminated by different natural day light 
sources with different colour temperatures, in terms of similarity (measured 
as a GFC value) between the estimated and measured spectral reflectance 
curves. 

• It is concluded from this experiment that the illumination estimated 
in the second stage of the framework is appropriate to be used for 
estimating surface spectral reflectance within the framework

• The average GFC value of the estimated surface spectral 
reflectance is improved by 2.6 % when the diffuse image 
component is used instead of the mixed image component

• It is found that the comparison between the surface spectral 
reflectance estimates corresponding to the two light sources gives 
an average GFC value ( over all tested images) equal to 0.9887 by 
using the UGICA separation technique and 0.9611 by using the 
SCFICA separation technique.

• The results show that there is a  statistically significant  
improvement in the performance of the proposed surface 
reflectance method by 2.8% in terms of average GFC value when 
the UGICA separation technique is used instead of SCFICA

• Compared to the measured surface reflectance, the estimated 
surface reflectance for different objects illuminated by different 
natural day light sources with different colour temperatures is 
obtained with an average GFC of 0.9608

Findings Experiments

1

2
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
 
Figure B.1 The specular and the diffuse components extracted from an RGB colour image for a plastic blue ring 
illuminated with a light source with a colour temperature of 5500 K using the SCFICA technique. 

 
 
 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
Figure B.2 The specular and the diffuse components extracted from an RGB colour image for a plastic blue ring 
illuminated with  a light source with a colour temperature of 5500 K using the UGICA technique [28]. 
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  

Figure B.3 The specular and the diffuse components extracted from an RGB colour image for a plastic blue ring 
illuminated with a light source with a colour temperature of 2900 K using the SCFICA technique. 

 
 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
Figure B.4 The specular and the diffuse components extracted from an RGB colour image for a plastic blue ring 
illuminated with  a light source with a colour temperature of 2900 K using the UGICA  technique [28]. 
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
Figure B.5 The specular and the diffuse components extracted from an RGB colour image for the ceramic violet 
cup illuminated with a light source with a colour temperature of 5500 K using the SCFICA technique. 
 

 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
 
Figure B.6  The specular and the diffuse components extracted from an RGB colour image for the ceramic violet 
cup illuminated with a light source with a colour temperature of 5500 K using the UGICA technique [28].  
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
Figure B.7 The specular and the diffuse components extracted from an RGB colour image for the ceramic violet 
cup illuminated with a light source with a colour temperature of 2900 K using the SCFICA technique. 
 
 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
 
Figure B.8 The specular and the diffuse components extracted from an RGB colour image for the ceramic violet 
cup illuminated with a light source with a colour temperature of 2900 K using the UGICA technique [28].  
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
Figure B.9 The specular and the diffuse components extracted from an RGB colour image for the plastic green 
ring illuminated with a light source with a colour temperature of 5500 K using the SCFICA technique. 
 
 
 
 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
Figure B.10 The specular and the diffuse components extracted from an RGB colour image for the plastic green 
ring  illuminated with a light source with a colour temperature of 5500 K using the UGICA technique [28]. 
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
Figure B.11 The specular and the diffuse components extracted from an RGB colour image for the plastic green 
ring illuminated with a light source with a colour temperature of 2900 K using the SCFICA technique. 
 
 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
 
Figure B.12 The specular and the diffuse components extracted from an RGB colour image for the plastic green 
ring illuminated with a light source with a colour temperature of  2900 K using the UGICA technique [28].  
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
Figure B.13 The specular and the diffuse components extracted from an RGB colour image for the red apple 
illuminated with a light source with a colour temperature of 5500 K using the SCFICA technique. 
 

 
 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
Figure B.14 The specular and the diffuse components extracted from an RGB colour image for the red apple 
illuminated with a light source with a colour temperature of 5500 K using the UGICA technique [28]. 
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
Figure B.15 The specular and the diffuse components extracted from an RGB colour image for the green apple 
illuminated with a light source with a colour temperature of 2900 K using the SCFICA technique. 
 
 

 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
Figure B.16 The specular and the diffuse components extracted from an RGB colour image for the green apple 
illuminated with a light source with a colour temperature of 2900 K using the UGICA technique [28].  
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Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-SCFICA

(d)

Diffuse Component-SCFICA

(c)  
Figure B.17 The specular and the diffuse components extracted from an RGB colour image for the ceramic 
violet cup illuminated with a light source with a colour temperature of 5500 K using the SCFICA technique. 
 

 
 

Polarised Image 1

(a)

Polarised Image 2

(b)
Specular Component-UGICA

(d)

Diffuse Component-UGICA

(c)  
 
Figure B.18 The specular and the diffuse components extracted from an RGB colour image for the ceramic 
violet cup illuminated with a light source with a colour temperature of 5500 K using the UGICA technique [28].
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C.1 Experiment 1 (Section 5.3.2.1):  
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Figure C.1 The four possible illumination estimations using significant specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques), using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for the ceramic violet cup illuminated with a light source of colour temperature of 5500 K. 
 
 
 

4.5 5 5.5 6 6.5 7

x 10
-7

-1

-0.5

0

0.5

1

1.5

2
Illumination Estimation for Light Source with Colour Temperature of 5500 K

wavelength (in meter)

R
el

at
iv

e 
S

pe
ct

ra
l R

ad
ia

nc
e

 

 

Illumination-(Specular-SCFICA&Mask-SCFICA)
Illumination-Sspecular-UGICA&Mask-SCFICA)
Illumination-(Specular-SCFICA&Mask-UGICA)
Illumination-(Specular-UGICA&Mask-UGICA)
Manufacturer's Specifications

 
Figure C.2 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
empirical thresholding for the ceramic violet cup illuminated with a light source of colour temperature of 5500 K. 
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Figure C.3 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for the plastic green ring illuminated with a light source of colour temperature of 5500 K.   
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Figure C.4 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and mask-UGICA) interchangeable with each of the two sets, after 
empirical thresholding for the plastic green ring illuminated with a light source of colour temperature of 5500 K. 
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Figure C.5 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for the red  apple illuminated with a light source of colour temperature of 5500 K.   
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Figure C.6 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using SCFICA and UGICA techniques) using the two corresponding 
masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of  the two sets, after empirical 
thresholding for the red apple illuminated with a light source of colour temperature of 5500 K. 



Appendix C                                                                  Estimates of the Illumination Spectral Power Distribution 

 143 

Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 
 
Figure C.7 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the plastic blue ring illuminated with a light 
source of colour temperature of 5500 K, after automatic thresholding. 
 
 
 
 
 
 

Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.8 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the plastic blue ring illuminated with a light 
source of colour temperature of 5500 K, after empirical thresholding. 
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Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 
 
Figure C.9 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the ceramic violet cup illuminated with a 
light source of colour temperature of 5500 K, after automatic thresholding. 
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Specular Component-UGICA Mask-UGICA

 

Figure C.10 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the ceramic violet cup illuminated with a 
light source of colour temperature of 5500 K, after empirical thresholding. 
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Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 
 
Figure C.11 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the plastic green ring illuminated with a light 
source of colour temperature of 5500 K, after automatic thresholding. 
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Figure C.12 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the plastic green ring illuminated with a light 
source of colour temperature of 5500 K, after empirical thresholding. 
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Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 
 
Figure C.13 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the red apple illuminated with a light source 
of colour temperature of 5500 K, after automatic thresholding. 
 

 
Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.14 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. 
SCFICA and UGICA techniques) and the corresponding masks for the red apple illuminated with a light source 
of colour temperature of 5500 K, after empirical thresholding. 
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 Table C.1 The automatic and the empirical threshold and the corresponding number of pixels in the pixel 
selection mask for the five examples of objects under an artificial day light source with a colour temperature of 
5500 K. 

Separation 
technique 

Object Automatic threshold 
(number of pixels in mask) 

Empirical threshold 
(number of pixels in mask) 

SC
FI

C
A

 

Plastic blue ring 0.59(78) 0.55(252) 
Ceramic violet cup 0. 64(127) 0.65(75) 
Plastic green ring 0.51 (307) 0.63 (121) 
Red apple 0.57(51 ) 0.53(71) 

U
G

IC
A

 

 Plastic blue ring 0.60(175) 0.52(253) 
Ceramic violet cup 0.60(75) 0.59(96) 
Plastic Green ring 0.45(230) 0.55(59) 
Red apple 0.55(49 ) 0.54 (51 ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table C.2 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the RMS error between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with a colour temperature of 5500 K.  

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic 
violet cup 

Plastic 
green 
ring 

Red  
apple 

Colour 
temperature: 

5500 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

16.40×10-2 13.35×10-2 33.78×10-2 16.97×10-2 

Mask-
UGICA 

26.42×10-2 15.15×10-2 23.67×10-2 18.89×10-2 

Empirical 
selection 

Mask-
SCFICA 

11.09×10-2 12.80×10-2 12.65×10-2 11.12×10-2 

Mask-
UGICA 

11.10×10-2 13.43×10-2 20.27×10-2 16.17×10-2 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

17.35×10-2 12.70×10-2 49.51×10-2 11.18×10-2 

Mask-
UGICA 

27.06×10-2 12.56×10-2 38.56×10-2 11.71×10-2 

Empirical 
selection 

Mask-
SCFICA 

11.41×10-2 11.55×10-2 18.94×10-2 15.10×10-2 

Mask-
UGICA 

11.38×10-2 11.12×10-2 11.15×10-2 11.11×10-2 

None Empirical 
selection 

Mask-
SCFICA 

20.88×10-2 24.54×10-2 20.53×10-2 24.10×10-2 

Mask-
UGICA 

21.07×10-2 15.94×10-2 30.04×10-2 19.02×10-2 
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Table C.3 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the Median error between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with a colour temperature of 5500 K.  

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic  
violet cup 

Plastic 
green 
ring 

Red  
apple 

Colour 
temperature: 

5500 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

2.17×10-2 9.9×10-3 8.00×10-2 5.9×10-3 

Mask-
UGICA 

6.89×10-2 3.38×10-2 5.82×10-2 1.91×10-2 

Empirical 
selection 

Mask-
SCFICA 

3.22×10-2 2.0×10-3 8.8×10-3 2.21×10-2 

Mask-
UGICA 

3.29×10-2 2.40×10-2 3.87×10-2 3.1×10-3 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

9.8×10-3 5.59×10-2 20.13×10-2 2.25×10-2 

Mask-
UGICA 

4.00×10-2 5.3×10-3 16.88×10-2 1.77×10-2 

Empirical 
selection 

Mask-
SCFICA 

2.32×10-2 5.08×10-2 8.58×10-2 7.56×10-2 

Mask-
UGICA 

2.30×10-2 7.0×10-3 4.35×10-2 2.18×10-2 

None Empirical 
selection 

Mask-
SCFICA 

14.13×10-2 11.18×10-2 1.48×10-2 1.23×10-2 

Mask-
UGICA 

14.12×10-2 6.06×10-2 5.59×10-2 8.4×10-3 

 
 
 
 
 
 
 
Table C.4 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the Mean error between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with a colour temperature of 5500 K.  

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic 
violet cup 

Plastic 
green 
ring 

Red  
apple 

Colour 
temperature: 

5500 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

7.20×10-2 1.01×10-2 18.69×10-2 6.79×10-2 

Mask-
UGICA 

15.03×10-2 7.11×10-2 11.28×10-2 8.34×10-2 

Empirical 
selection 

Mask-
SCFICA 

8.8×10-3 9.2×10-3 2.69×10-2 8.9×10-3 

Mask-
UGICA 

1.03×10-2 3.98×10-2 12.15×10-2 6.10×10-2 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

6.10×10-2 4.89×10-2 32.30×10-2 6.3×10-3 

Mask-
UGICA 

13.54×10-2 3.13×10-2 25.04×10-2 8.6×10-3 

Empirical 
selection 

Mask-
SCFICA 

1.59×10-2 2.97×10-2 11.33×10-2 8.07×10-2 

Mask-
UGICA 

1.74×10-2 2.0×10-4 2.13×10-2 1.30×10-2 

None Empirical 
selection 

Mask-
SCFICA 

14.56×10-2 15.09×10-2 4.34×10-2 4.38×10-2 

Mask-
UGICA 

14.71×10-2 8.05×10-2 12.04×10-2 2.45×10-2 
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Table C.5 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the angular error (in degrees) 
between the illumination spectral power distribution estimated in the experiment and the distribution provided by 
the manufacturer of the light source with a colour temperature of 5500 K.  

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic  
violet cup 

Plastic 
green 
ring 

Red  
apple 

Colour 
temperature: 

5500 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

5.37 3.44 14.75 6.27 

Mask-
UGICA 

8.97 3.68 9.33 7.08 

Empirical 
selection 

Mask-
SCFICA 

0.88 2.96 2.58 2.19 

Mask-
UGICA 

0.77 3.15 5.58 5.92 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

7.07 1.38 23.01 2.41 

Mask-
UGICA 

10.46 3.31 16.23 3.23 

Empirical 
selection 

Mask-
SCFICA 

3.16 0.40 5.08 2.89 

Mask-
UGICA 

3.07 1.35 1.20 2.08 

None Empirical 
selection 

Mask-
SCFICA 

6.13 8.36 10.58 11.49 

Mask-
UGICA 

6.20 3.66 13.49 8.25 
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C.2 Experiment 2 (Section 5.3.2.2):  
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Figure C.15 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for the ceramic violet cup illuminated with a light source of colour temperature of 2900 K.   
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Figure C.16 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
empirical thresholding for the ceramic violet cup illuminated with a light source of colour temperature of 2900 K.  
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Figure C.17 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (mask-SCFICA and mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for the plastic green ring illuminated with a light source of colour temperature of 2900 K.   
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Figure C.18 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (mask-SCFICA and mask-UGICA) interchangeable with each of the two sets, after 
empirical thresholding for the plastic green ring illuminated with a light source of colour temperature of 2900 K. 
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Figure C.19 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
automatic thresholding for the green apple illuminated with a light source of colour temperature of 2900 K.   
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Figure C.20 The four possible illumination estimations using significantly specular pixels selected from the two 
sets of specular components (i.e. extracted using the SCFICA and UGICA techniques) using the two 
corresponding masks (Mask-SCFICA and Mask-UGICA) interchangeable with each of the two sets, after 
empirical thresholding for the green apple illuminated with a light source of colour temperature of 2900 K.  
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Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.21 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the plastic blue ring illuminated with a light 
source of colour temperature of 2900 K, after automatic thresholding. 

 
 
 
 

Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.22 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the plastic blue ring illuminated with a light 
source of colour temperature of 2900 K, after empirical thresholding. 
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Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.23 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the ceramic violet cup illuminated with a 
light source of colour temperature of 2900 K, after automatic thresholding. 
 
 

 
Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.24 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the ceramic violet cup illuminated with a 
light source of colour temperature of 2900 K, after empirical thresholding. 
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Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 
  
Figure C.25 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the plastic green ring illuminated with a light 
source of colour temperature of 2900 K, after automatic thresholding. 
 
 

 
Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.26 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the plastic green ring illuminated with a light 
source of colour temperature of 2900 K, after empirical thresholding. 
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Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.27 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the green apple illuminated with a light 
source of colour temperature of 2900 K, after automatic thresholding. 

 
 
 
 

Specular Component-SCFICA Mask-SCFICA

Specular Component-UGICA Mask-UGICA

 

Figure C.28 The two sets of RGB specular components extracted using two blind separartion techniques (i.e. the 
SCFICA and UGICA techniques) and the corresponding masks for the green apple illuminated with a light 
source of colour temperature of 2900 K, after empirical thresholding. 
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Table  C.6 The automatic and the empirical threshold, and the corresponding number of pixels in the mask for 
the four examples of objects under an artificial light source with a colour temperature of 2900 K. 

Separation  
technique 

Object  Automatic threshold 
(number of pixels in 
mask) 

Empirical threshold 
(number of pixels in 
mask) 

SC
FI

C
A

 

Plastic blue ring  0.55(158) 0.58(94) 

Ceramic violet cup 0.58(1359) 0.63(761) 
Plastic green ring 0.65(29) 0.53(200) 
Green apple 0.57(116) 0.48(243) 

U
G

IC
A

 

 Plastic blue ring 0.68(60) 0.65(113) 
Ceramic violet cup 0.59(862) 0.61(664) 
Plastic green ring 0.72(25) 0.59(164) 
Green apple 0.59(94) 0.49(212) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table C.7 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the RMS error between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with a colour temperature of 2900 K.  

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic  
violet cup 

Plastic 
green 
ring  

Green 
apple 

Colour 
temperature: 

2900 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

28.37×10-2 29.12×10-2 41.47×10-2 36.69×10-2 

Mask-
UGICA 

29.35×10-2 25.16×10-2 43.09×10-2 39.67×10-2 

Empirical 
selection 

Mask-
SCFICA 

27.82×10-2 24.86×10-2 28.99×10-2 29.30×10-2 

Mask-
UGICA 

27.67×10-2 24.92×10-2 27.85×10-2 27.70×10-2 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

25.68×10-2 30.04×10-2 40.57×10-2 37.98×10-2 

Mask-
UGICA 

28.53×10-2 26.05×10-2 42.26×10-2 40.96×10-2 

Empirical 
selection 

Mask-
SCFICA 

26.28×10-2 25.71×10-2 27.16×10-2 27.67×10-2 

Mask-
UGICA 

25.73×10-2 25.73×10-2 25.98×10-2 26.82×10-2 
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Table C.8 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the median error between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with a colour temperature of 2900 K. 

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic 
violet  
cup 

Plastic 
green ring  

Green 
apple 

Colour 
temperature: 

2900 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

6.0×10-3 8.8×10-3 14.41×10-2 14.41×10-2 

Mask-
UGICA 

4.84×10-2 4.20×10-2 14.41×10-2 14.41×10-2 

Empirical 
selection 

Mask-
SCFICA 

1.52×10-2 6.41×10-2 4.8×10-3 5.02×10-2 

Mask-
UGICA 

1.29×10-2 7.58×10-2 9.4×10-3 5.4×10-3 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

1.72×10-2 3.99×10-2 14.41×10-2 14.41×10-2 

Mask-
UGICA 

8.94×10-2 3.0×10-4 14.41×10-2 14.41×10-2 

Empirical 
selection 

Mask-
SCFICA 

6.69×10-2 3.68×10-2 4.0×10-3 3.9×10-3 

Mask-
UGICA 

6.41×10-2 5.84×10-2 4.42×10-2 3.04×10-2 

 
 
 
 
 
 
 
 
 
 
 
 
Table C.9 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the mean error between the 
illumination spectral power distribution estimated in the experiment and the distribution provided by the 
manufacturer of the light source with a colour temperature of 2900 K. 

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic 
violet cup 

Plastic 
green 
ring  

Green 
apple 

Colour 
temperature: 

2900 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

1.21×10-2 1.36×10-2 25.40×10-2 21.22×10-2 

Mask-
UGICA 

11.64×10-2 6.07×10-2 26.82×10-2 24.00×10-2 

Empirical 
selection 

Mask-
SCFICA 

7.28×10-2 8.09×10-2 2.3×10-3 1.54×10-2 

Mask-
UGICA 

5.19×10-2 10.09×10-2 4.13×10-2 1.97×10-2 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

5.90×10-2 2.83×10-2 28.00×10-2 23.07×10-2 

Mask-
UGICA 

16.07×10-2 4.51×10-2 29.45×10-2 25.72×10-2 

Empirical 
selection 

Mask-
SCFICA 

11.83×10-2 6.50×10-2 1.83×10-2 1.40×10-2 

Mask-
UGICA 

9.78×10-2 8.48×10-2 6.28×10-2 4.74×10-2 
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Table C.10 Results of the experimental assessment of the effect of: the extraction of the specular image 
component, and the material of the reflecting object. The table entries represent the angular error (in degrees) 
between the illumination spectral power distribution estimated in the experiment and the distribution provided by 
the manufacturer of the light source with a colour temperature of 2900 K. 

Illumination 
source 

Extraction of specular image 
component 

 

Material of the reflecting object 

 Signal 
separation 

Selection of 
significantly specular 

pixels 

Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green 
ring  

Green 
apple 

Colour 
temperature: 

2900 K 

Spatially 
constrained 

FastICA 
Technique 
(SCFICA) 

Automatic 
selection 

Mask-
SCFICA 

14.73 9.10 24.29 22.41 

Mask-
UGICA 

18.64 10.71 24.83 23.55 

Empirical 
selection 

Mask-
SCFICA 

16.83 11.45 14.48 12.92 

Mask-
UGICA 

16.05 12.24 15.87 13.95 

Umeyama 
and Godin 

ICA 
Techniques 

(UGICA) 

Automatic 
selection 

Mask-
SCFICA 

12.45 10.54 22.06 22.62 

Mask-
UGICA 

16.57 12.19 22.61 23.71 

Empirical 
selection 

Mask-
SCFICA 

14.71 12.93 12.03 13.10 

Mask-
UGICA 

13.89 13.71 13.44 14.32 
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C.3 Experiment 3 (Section 5.3.2.3) 
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Figure C.29 The illumination estimations from the specular component and mixed image components for the 
plastic green ring illuminated with a light source of colour temperature of 5500 K using empirical thresholding. 
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Figure C.30 The illumination estimations from the specular component and mixed image components for the 
red apple illuminated with a light source of colour temperature of 5500 K using empirical thresholding. 
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C.4 Experiment 4 (Section 5.3.2.4) 
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 Figure C.31 The illumination estimation from the second image of Foster et al’s data set [181] 
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Figure C.32  The illumination estimation from the fifth  image of Foster et al’s data set [181]. 
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 RGB Image no.6 The Mask of Image no.6
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Figure C.33  The illumination estimation from the sixth image of Foster et al’s data set [181]. 
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Figure C.34  The illumination estimation from the eighth image of Foster et al’s data set [181] 
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D.1 Experiment 1 (Section 6.2.2.1) 
 
Table D.1 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the RMS error between the surface reflectance estimates obtained using  the four possible  illumination 
estimates and surface reflectance estimate obtained using the illumination specification provided by the 
manufacturer of the light source with a colour temperature of 5500 K.  

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 8.9×10-3 2.3×10-3 2.02×10-2 

Illumination 2 1.15×10-2 9.46×10-2 6.74×10-2 

Illumination-3 8.6×10-3 1.28×10-2 4.56×10-2 

Illumination-4 1.12×10-2 4.3×10-3 7.2×10-3 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
9.6×10-3 4.6×10-3 2.48×10-2 

Illumination 2 1.25×10-2 18.66×10-2 8.37×10-2 

Illumination-3 
9.3×10-3 2.61×10-2 5.59×10-2 

Illumination-4 1.22   ×10-2 9.0×10-3 8.2×10-3 

 
 
 
 
 
 
 
 
Table D.2 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the median error between the surface reflectance estimates obtained using the four possible  
illumination estimates and surface reflectance estimate obtained using the illumination specification provided by 
the manufacturer of the light source with a colour temperature of 5500 K. 

 
Extraction of 

diffuse  image 
component 

 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 6.3×10-3 2.0×10-3 1.96×10-2 

Illumination 2 8.1×10-3 316×10-2 2.47×10-2 

Illumination-3 5.6×10-3 8.3×10-3 3.75×10-2 

Illumination-4 7.5×10-3 4.2×10-3 6.7×10-3 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
6.5×10-3 4.9×10-3 2.35×10-2 

Illumination 2 
8.1×10-3 6.25×10-2 3.07×10-2 

Illumination-3 
5.9×10-3 1.80×10-2 4.69×10-2 

Illumination-4 7.7  ×10-3 9.1×10-3 8.1×10-3 
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Table D.3 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the mean error between the surface reflectance estimates obtained using the four possible  illumination 
estimates and surface reflectance estimate obtained using the illumination specification provided by the 
manufacturer of the light source with a colour temperature of 5500 K 

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 7.4×10-3 1.2×10-3 1.91×10-2 

Illumination 2 8.0×10-3 5.97×10-2 3.98×10-2 

Illumination-3 7.1×10-3 1.10×10-2 3.91×10-2 

Illumination-4 7.8×10-3 3.4×10-3 7.1×10-3 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
7.7×10-3 3.1×10-3 2.31×10-2 

Illumination 2 
8.6×10-3 11.82×10-2 4.91×10-2 

Illumination-3 
7.4×10-3 2.31×10-2 4.72×10-2 

Illumination-4 8.3×10-3 7.3×10-3 8.1×10-3 

 
 
 
 
 
 
 
 
 
 
Table D.4 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the angular error (in degrees) between the surface reflectance estimates obtained using the four 
possible illumination estimates and surface reflectance estimate obtained using the illumination specification 
provided by the manufacturer of the light source with a colour temperature of 5500 K. 

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 0.70 0.37 1.68 

Illumination 2 0.93 7.28 5.90 

Illumination-3 0.70 0.79 3.16 

Illumination-4 0.92 0.44 0.36 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
0.65 0.69 1.80 

Illumination 2 
0.87 8.81 5.69 

Illumination-3 
0.65 0.97 3.18 

Illumination-4 0.86 0.70 0.44 
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Polarised images Extracted Diffuse Component Surface Reflectance Estimates 
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Figure D.1 Illustrative examples of polarised images, two RGB diffuse image components (i.e extracted using two separation techniques), and surface reflectance estimates. 
These estimates are obtained from each RGB diffuse image component for a pixel located at image position (330, 130) for the ceramic violet cup illuminated by a light source 
which has a colour temperature of 5500 K, using the four possible illumination estimates and a specification of the illumination provided by the manufacturer of the light 
source. 
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Polarised Images Extracted Diffuse Component Surface Reflectance Estimates 
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Figure D.2 Illustrative examples of polarised images, two RGB diffuse image components (i.e extracted using two separation techniques), and surface reflectance estimates. 
These estimates are obtained from each RGB diffuse image component for a pixel located at image position (400,190 ) for the plastic green ring illuminated by a light source 
which has a colour temperature of 5500 K, using the four possible illumination estimates and a specification of the illumination provided by the manufacturer of the light 
source. 
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Table D.5 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the RMS error between the surface reflectance estimates obtained using  the four possible  illumination 
estimates and surface reflectance estimate obtained using the illumination specification provided by the 
manufacturer of the light source with a colour temperature of 2900 K.  

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 7.27×10-2 9.61×10-2 3.26×10-2 

Illumination 2 5.40×10-2 9.61×10-2 3.31×10-2 

Illumination-3 4.40×10-2 4.92×10-2 1.58×10-2 

Illumination-4 3.73×10-2 4.98×10-2 1.54×10-2 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
7.82×10-2 11.38×10-2 9.16×10-2 

Illumination 2 
6.19×10-2 11.37×10-2 9.34×10-2 

Illumination-3 
5.59×10-2 5.81×10-2 4.22×10-2 

Illumination-4 5.08×10-2 5.87×10-2 4.16×10-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table D.6 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the median error between the surface reflectance estimates obtained using the four possible  
illumination estimates and surface reflectance estimate obtained using the illumination specification provided by 
the manufacturer of the light source  with a colour temperature of 2900 K.  

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 3.08×10-2 3.30×10-2 1.59×10-2 

Illumination 2 1.71×10-2 3.52×10-2 1.28×10-2 

Illumination-3 1.33×10-2 1.71×10-2 1.03×10-2 

Illumination-4 8.3×10-3 1.83×10-2 7.9×10-3 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
2.68×10-2 3.92×10-2 4.39×10-2 

Illumination 2 1.77×10-2 4.15×10-2 3.58×10-2 

Illumination-3 
1.37×10-2 2.02×10-2 2.69×10-2 

Illumination-4 4.9×10-3 2.20×10-2 2.02×10-2 

 



Appendix D                                                                                            Estimates of Surface Spectral Reflectance  

 169 

Table D.7 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the mean error between the surface reflectance estimates obtained using the four possible illumination 
estimates and surface reflectance estimate obtained using the illumination specification provided by the 
manufacturer of the light source with a colour temperature of 2900 K.  

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 2.94×10-2 4.79×10-2 2.35×10-2 

Illumination 2 1.50×10-2 4.83×10-2 2.26×10-2 

Illumination-3 5.5×10-3 1.66×10-2 1.27×10-2 

Illumination-4 2.3×10-3 1.72×10-2 1.15×10-2 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
2.14×10-2 5.71×10-2 6.36×10-2 

Illumination 2 
7.6×10-3 5.76×10-2 6.14×10-2 

Illumination-3 
2.6×10-3 2.00×10-2 3.25×10-2 

Illumination-4 9.9×10-3 2.07×10-2 2.94  ×10-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table D.8 Results of the experimental assessment of the effect of: the extraction of the diffuse image 
component, the four possible illumination estimates, and the material of the reflecting object. The table entries 
represent the angular error between the surface reflectance estimates obtained using the four possible  
illumination estimates and surface reflectance estimate obtained using the illumination specification provided by 
the manufacturer of the light source with a colour temperature of 2900 K.  

Extraction of 
diffuse  image 

component 
 

The four possible 
Illumination estimates  

 

Material of the reflecting object 

Signal  
separation 

 Plastic 
blue ring 

Ceramic 
violet  cup 

Plastic 
green ring 

Spatially 
constrained 

FastICA technique 
 (Diffuse -SCFICA) 

Illumination-1 4.33 5.93 2.78 

Illumination 2 3.67 5.86 3.03 

Illumination-3 3.36 3.75 1.05 

Illumination-4 3.05 3.76 1.20 
 

Umeyama and 
Godin ICA 
technique 

(Diffuse-UGICA) 

Illumination-1 
4.84 6.11 6.03 

Illumination 2 4.32 6.03 6.37 

Illumination-3 
4.24 3.85 2.36 

Illumination-4 3.95 3.86 2.45 
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Polarised images Extracted Diffuse Component Surface Reflectance Estimates 
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Figure D.3 Illustrative examples of polarised images, two RGB diffuse image components (i.e extracted using two separation techniques), and surface reflectance estimates. 
These estimates are obtained from each RGB diffuse image component for a pixel located at image position (330,130 ) for the ceramic violet cup illuminated by a light source 
which has a colour temperature of 2900 K, using the four possible illumination estimates and the illumination specification provided by the manufacturer of the light source. 



 

 171 

 

Polarised Images Extracted Diffuse Component Surface Reflectance Estimates 
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Figure D.4 Illustrative examples of polarised images, two RGB diffuse image components (i.e extracted using two separation techniques), and surface reflectance estimates. 
These estimates are obtained from each RGB diffuse image component for a pixel located at image position (400, 190) for the plastic green ring illuminated by a light source 
which has a colour temperature of 2900 K, using the four possible illumination estimates and the illumination specification provided by the manufacturer of the light source. 
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D.2 Experiment 2 (Section 6.2.2.2) 
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Figure D.5 The surface reflectance, for a pixel located at image coordinates (330, 130), estimated from the 
‘Diffuse-SCFICA’ image component for a ceramic violet cup illuminated by two artificial light sources with 
different colour temperatures of 2900  and  5500  K. 
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Figure D.6 The surface reflectance for a pixel located at image coordinates (330, 130), estimated from the 
‘Diffuse-UGICA’ image component for a ceramic violet cup, and illuminated by two artificial light sources with 
different colour temperatures of 2900 and 5500 K. 
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Figure D.7 The surface reflectance, for a pixel located at image coordinates (400, 190), estimated from the 
‘Diffuse-SCFICA’ image component for a plastic green ring illuminated by two artificial light sources with 
different colour temperatures of 2900  and  5500  K. 
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Figure D.8 The surface reflectance for a pixel located at image coordinates (400, 190), estimated from the 
‘Diffuse-UGICA’ image component for a plastic green ring, and illuminated by two artificial light sources with 
different colour temperatures of 2900 and 5500 K. 
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D.3 Experiment 3 (Section 6.2.2.3) 
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Figure D.9 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-3) 
estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-1) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the ceramic violet cup illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the polarised image, without extracting the 
diffuse image component. 
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Figure D.10 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-2) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the ceramic violet cup illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the diffuse image component-SCFICA. 
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Figure D.11 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-3) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the ceramic violet cup illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the diffuse image component-UGICA. 
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Figure D.12 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-1) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the ceramic violet cup illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the polarised image, without extracting the 
diffuse image component. 
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Figure D.13 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-2) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the ceramic violet cup illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the diffuse image component-SCFICA. 
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Figure D.14 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-3) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the ceramic violet cup illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the diffuse image component-UGICA. 
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Figure D.15 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-1) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic green ring   illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the polarised image, without extracting the 
diffuse image component. 
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Figure D.16 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-2) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic green ring   illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the diffuse image component-SCFICA. 
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Figure D.17 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2,  Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-3) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic green ring illuminated by a light source 
with a colour temperature of 5500 K. The reference pixels are from the diffuse image component-UGICA. 
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Figure D.18 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-1) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic green ring illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the polarised image, without extracting the 
diffuse image component. 
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Figure D.19 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-2) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic green ring illuminated by a light source 
with colour temperature of 2900 K. The reference pixels are from the diffuse image component-SCFICA. 
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Figure D.20 The surface reflectance (Highlight-Reflectance-1, Highlight-Reflectance-2, Highlight-Reflectance-
3) estimated from pixels in image regions which have a strong specular component, shown in comparison to the 
surface reflectance (reflectance reference-3) estimated from pixels in image regions which have a weak specular 
component. The test and reference pixels are from images of the plastic green ring illuminated by a light source 
with a colour temperature of 2900 K. The reference pixels are from the diffuse image component-UGICA. 
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D.4 Experiment 4 (Section 6.2.2.4) 
 RGB Image no.2
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 RGB Image no.5
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 RGB Image no.6
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 RGB Image no.8
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Figure D.21 Illustrative examples for some  images of the Foster et al’s data set [181], with a white square 
marker to display the pixel positions at which surface reflectance was estimated. The estimated surface 
reflectance of that pixel is shown in comparison with the measured surface reflectance.  
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In this appendix, the investigation of the statistical significance of measured differences 

between the experimental results is presented. This investigation was performed using the 

SPSS statistical software, version 18 [186]. The independent two-sample t-test [186] is used 

to deteremine the significance of the results. The independent two-sample t-test is performed 

to measure the statistical significance of the difference between the means of two independent 

groups of results. Due to its applicability for a low number of samples (N<30; N- the number 

of the number of observation samples), the t-test has been considered for assessing the 

statistical significance of the differences between the experimental results presented in the 

thesis [187]. The t-test is performed with confidence level of 95%, for all analyses. 

 

The results of the t-test are shown in Tables E.1 to E.7. Each table consists of two parts which 

are (a) group statistics and (b) the independent samples test. The group statistics provide 

information about the number of samples (N), the mean (M), the standard deviation (Std. 

Deviation), and the standard error mean (Std. Error Mean) for each of the two independent 

groups of results. The independent samples test shows the results of two different t-test 

methods which are the ‘equal variance t-test’ and the ‘unequal variance t-test’. These methods 

are based on the assumption that the variances of the two independent groups of results are 

equal or unequal, respectively. The equality of the variance is measured by Levene's Test 

[186]. The result of Levene's Test is presented by an F-value with corresponding significane 

level (sig). The equal variance assumption is valid when the ‘sig’ value in the Levene’s Test 

is greater than 0.05 (i.e. for a 95% confidence level t-test) otherwise the unequal variance 

assumption is applicable. For equal and unequal variance t-test methods there are different 

formulas used for calculating the t-value (t) and the degree of freedom (df) (provided in Table 

E.8).  The selection between these t-test methods is performed based on the validity of the 

variance inequality of the two groups of samples. For significant difference in both methods 

of the t-test, the value of the probability of error (sig. (2-tailed)) has to be less than or equal 

0.05 for a 95% confidenece level.  
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 Experiment 1 (Section 5.3.2.1): 
 
 
Table E.1 The improvements in the illumination estimation accuracy compared to the manufacturer’s 
specification, in terms of GFC, when the empirical threshold is used  instead of the automatic threshold for a 
light source with a colour temperature of 5500 K (Results given in Section 5.3.2.1, Table 5-1 ). 

(a) Group Statistics 
  

N Mean 
Std. 

Deviation 
Std. Error 

Mean 
Groups 

 
empirical_55 16 .98438 .007274 .001819 

automatic_55 16 .94513 .064426 .016106 

(b) Independent Samples Test 

 

Levene's Test 
 for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 
Sig.  

(2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
 Interval of the 

Difference 
Lower Upper 

 Equal variances 
assumed 

11.052 .002 2.422 30 .022 .039250 .016209 .006147 .072353 

Equal variances not 
assumed   2.422 15.382 .028 .039250 .016209 .004777 .073723 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table E.2 The difference in illumination estimation  accuracy compared to the manufacturer’s specification, in 
terms of GFC, using two sets of specular components (i.e extracted using  two different  blind separation 
techniques (SCFICA and UGICA)) for a light source with a colour temperature of 5500 K (Results given in 
Section 5.3.2.1, Table 5-1 ). 

(a) Group Statistics 
 

 N Mean 
Std. 

Deviation 
Std. Error 

Mean 

Groups         
scfica_55 16 .97013 .026470 .006617 

ugica_55 16 .95938 .065291 .016323 

(b) Independent Samples Test 

 

Levene's Test 
for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 
Sig. 

 (2-tailed) 
Mean  

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

 
Equal variances 
assumed 

3.477 .072 .610 30 .546 .010750 .017613 -.025221 .046721 

Equal variances not 
assumed   .610 19.801 .549 .010750 .017613 -.026014 .047514 
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Experiment 2 (Section 5.3.2.2) 
 
 
Table E.3 The improvements in the illumination estimation accuracy compared to the manufacturer’s 
specification, in terms of GFC, when the empirical threshold is used instead of the automatic threshold, for a 
light source with a colour temperature of 2900 K (Results given in Section 5.3.2.2, Table 5-3).  

(a) Group Statistics 
  

N Mean 
Std. 

Deviation 
Std. Error 

Mean 
Groups 

 
empirical_29 16 .92150 .013023 .003256 
automatic _29 16 .89375 .031253 .007813 

(b) Independent Samples Test 

 

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 
Mean 

Difference 
Std. Error 

Difference 

99% Confidence 
Interval of the 

Difference 
Lower Upper 

 Equal variances 
assumed 

27.147 .000 3.278 30 .003 .027750 .008464 .004473 .051027 

Equal variances 
not assumed   3.278 20.057 .004 .027750 .008464 .003673 .051827 

 
 
 
 
 
 
 
 

 

 
 
Table E.4 The difference in illumination estimation  accuracy compared to the manufacturer’s specification, in 
terms of GFC, using two sets of specular components (i.e. extracted using  two different blind separation 
techniques (SCFICA and UGICA)) for a light source with a colour temperature of 2900 K (Results given in 
Section 5.3.2.2, Table 5-3). 

(a) Group Statistics 
  

N Mean 
Std. 

Deviation 
Std. Error 

Mean 

Groups  
ugica_29 16 .90844 .030232 .007558 

scfica_29 16 .90681 .025330 .006333 
(b) Independent Samples Test 

 

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

 
Equal variances 
assumed 

1.049 .314 .165 30 .870 .001625 .009860 -.018513 .021763 

Equal variances 
not assumed   .165 29.108 .870 .001625 .009860 -.018538 .021788 
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Experiment 3 (Section 5.3.2.3): 
 
 
Table E.5 The improvement in the illumination estimation accuracy compared to the manufacturer’s 
specification, in terms of GFC, when the separated specular component (extracted using two different blind 
separation techniques (SCFICA and UGICA)) is used the instead of mixed image components, for a light source 
with a colour temperature of 5500 K (Results given in Section 5.3.2.3, Table 5-5 ). 

(a) Group Statistics 
  

N Mean 
Std. 

Deviation 
Std. Error 

Mean 

Groups  
Specular 16 .98438 .007274 .001819 
Mixed 8 .95363 .015454 .005464 

(b) Independent Samples Test 

 

Levene's Test 
for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

 Equal variances 
assumed 

7.613 .011 6.708 22 .0001 .030750 .004584 .021243 .040257 

Equal variances 
not assumed   5.340 8.588 .001 .030750 .005759 .017627 .043873 

 
 
 
 
 
 
 
 
 
Experiment 2 (Section 6.2.2.2) 
 
 
Table E.6 Comparison between the surface reflectance estimates obtained from the ‘Diffuse-SCFICA’ and 
‘Diffuse-UGICA’ image components, for different objects illuminated by two artificial light sources with 
different colour temperatures of 2900 and 5500 K (Results given in Section 6.2.2.2, Table 6-6 and Table 6-7). 

(a) Group Statistics 

  
N Mean 

Std. 
Deviation 

Std. Error 
Mean 

Groups 

 

Surface_ 
ugica_29_55 

300 .988662 .0195074 .0011263 

Surface_ 
scfica_29_55  

300 .961145 .0399745 .0023079 

(b) Independent Samples Test 

 

Levene's Test 
for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

 Equal variances 
assumed 

112.803 .000 10.715 598 .0001 .0275170 .0025681 .0224735 .0325605 

Equal variances 
not assumed   10.715 433.766 .0001 .0275170 .0025681 .0224696 .0325644 
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Experiment 3 (Section 6.2.2.3) 
Table E.7 A comparison between the surface spectral reflectance estimated using the diffuse image component 
and mixed image components (Results given in Section 6.2.2.3, Table 6-10). 

(a) Group Statistics 

  
N Mean 

Std. 
Deviation 

Std. Error 
Mean 

Groups 
 

diffuse 36 .976178 .0272738 .0045456 
mixed 18 .950411 .0263592 .0062129 

(b) Independent Samples Test 

 

Levene's 
Test for 

Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

Lower Upper 
 Equal 

variances 
assumed 

.001 .978 3.309 52 .002 .0257667 .0077879 .0101390 .0413943 

Equal 
variances not 
assumed 

  
3.347 35.176 .002 .0257667 .0076983 .0101411 .0413922 

 
 
 
 
 
 
 
 

 
Table E.8 The t-value and the degree of freedom formulas for the equal and unequal variance t-test methods.  

 Equal variance t-test method  Unequal variance t-test method 
t-value  
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where 
M1, M2= the means of groups 1and 2 repectively 
V1,V2 = the variances of groups 1and 2 respectively 
N1, N2= the number of observation samples in group 1 and 2, repectively.  
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 Formula 
Goodness-of-Fit Coefficient ( ) ( )

( )( ) ( )( ) 2
1

2
P

2
1

2

P

PP

SS

S S
GFC









λ








λ

λλ
=

∑∑

∑

λλ

λ

ˆ

ˆ
 

 
Where PP S ,S ˆ  are the measured spectral signal and the 

estimated spectral signal respectively; λ is wavelength and 

ranges between λL=400 nm and λH =700 nm with step of 10 

nm [184]. 

 

Root Mean Square Error ( ) ( )( )
 

N

SS
RMSE

2
1

2

s

PP















 λ−λ
=
∑
λ

ˆ
 

Where  1
step

N LH
s +

λ−λ
=  

Mean Error ( ) ( )

s

PP

N

SS
Mean

∑
λ

λ−λ
=

ˆ
 

 

Median Error  Median = middle value of the error values between pP S and S ˆ , 

which are sorted in order of magnitude[187]. 

Angular Error  










=

     
 Cos EA

T
1-

ρρ
ρρ

ˆ
ˆ

.  

Where ρ  represent  a vector  that  contains values of the 
measured signal in the the R , G, B space, [ ]BGR ρρρ=ρ  ; 

ρ̂  is  a vector  which contains values of the estimated signal, 
[ ]BGR ρρρ= ˆˆˆρ̂ [3]. 
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