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                        ABSTRACT 

 

The purpose of localization and tracking technology in indoor application is to extract 

moving object parameters accurately and precisely. This thesis investigates the 

problem of how to utilize RFID technique for the accurate and precise extraction of 

indoor 2D moving object position parameters. Firstly, a framework named RFID-Loc 

with three modules: RFID-Loc Infrastructure, RFID-Loc Data Filter and RFID-Loc 

Localisation Algorithm, is established from a theoretical perspective. This framework 

can guide the research and design of methods used in an RFID based object 

localisation system with enhanced localisation accuracy and precision. Secondly, from 

practical perspective, few methods are proposed in RFID-Loc framework to improve 

the localisation accuracy and precision. A sparse RFID Tag Arrangement strategy is 

proposed in this RFID-Loc framework, aiming at reducing the impacts of regular 

false reading error from RFID infrastructure level on localisation precision. The 

efficiency of this methods and the assumptions upon which it relies, are investigated 

empirically. A rectangle-based feature selection method is justified as the major RFID 

Data Filter algorithm, with the capability of maximally reducing regular false reading 

errors. The possibility to resist unexpected false reading error in an RFID-Loc system 

is investigated by discussing and comparing several RFID-based localisation 

algorithms. A dynamic localisation algorithm for RFID-Loc system is proposed to 

accurately and precisely extract moving object position parameters overtime in an 

RFID-Loc system. This algorithm is shown to have a better capability of resisting 

unexpected false reading error than conventional localisation algorithms used in 

RFID-based localisation systems, while having a higher computational complexity. 

By following the theoretical guidelines in RFID-Loc framework and implementing 

the proposed methods, the experimental results demonstrate that the localisation 

accuracy and precision can be significantly improved, up to 10 centimetres and 3 

centimetres under current RFID devices.  
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NOMENCLATURE 

Moving Object Localisation System: The system is to establish the spatial and 

temporal relationships between moving objects and stationary objects. 

RFID-Loc: RFID object Localisation Framework. 

RFID-Loc System: the localisation system based on RFID-Loc framework. 

Accuracy: the accuracy of an object localisation or tracking system is to measure how 

correct the object localisation or tracking system is.  

Precision: the precision of an object localisation or tracking system is to show how 

consistently close the further measurements to the ideally accurate result over a period 

of time.  

RFID (Radio Frequency identification): is an automatic identification technology 

that relies on remotely storing and retrieving data using tags and readers.  

SLAM:  Simultaneous Localisation and Mapping. 

EKF : Extended Kalman Filter  

False Reading: a phenomenon is that many RFID based systems have to generate 

incorrect or uncompleted RFID tag detections due to the tags or readers collision 

problem.  

False Reading Error: errors made from false reading in an RFID based system. 

Regular False Reading Error: refers to some error regularly occurring in a RFID 

system, which is mainly from characteristic limitations of RFID devices.   

Unexpected False Reading Error: refers to some causal error causing by accident 

event, which is from changeable environment or erratic movement motion. 

False Negative Readings: refers the case that RFID tags within an effective RFID 

reader detection area may not be detected due to RF collision occurring or signal 

interfering with each other RFID tags.  

False Positive Readings: refers to the case that unexpected RFID tags detections are 

generated.  

Repeated Readings: refers to repeated detection of RFID tags by a RFID reader in a 

short time. 
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System Reading Efficiency: the ratio of the number of successful reads of RFID Tags 

to the total number of read attempts of RFID Tags in a RFID system.  

Global Tag Density: refers to the whole number of RFID tags placing in an efficient 

detection area of RFID antenna.  

Directional Tag Density: refers to the number of RFID tags placing on individual 

row or column directions in an efficient detection area of RFID antenna.  
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Chapter 1:   

Introduction 

Localisation and tracking technology is one of the most important aspects in many 

applications, from mobile computing to robotics, particularly on the application of 

indoor mobile object localisation and tracking area. In indoor moving object 

localisation and tracking applications, the purpose of localisation and tracking 

technology is to accurately and precisely establish the spatial relationships between 

the moving object and its corresponding sensors. In order to reach this goal, there are 

various sensor based localisation and tracking technologies being delivered, such as 

optical sensor, radar and laser range finders, electromechanical sensors. However, for 

indoor moving object applications, they all suffer from various demerits resulting in 

the loss on accuracy and robustness, such as high-dependence on feature visibility, 

uncertain measurements, time-consuming calibration procedures or drift. Therefore, it 

is worthwhile to explore new localisation and tracking technologies to substitute those 

conventional ones for indoor moving object localisation applications. RFID (Radio 

Frequency Identification) is recently a popular technique, which has been widely 

deployed on a large-scale of industrial applications, particularly on object tracking 

and localisation (Weinstein, 2005). This thesis aims to investigate the possibility of 

optimally utilizing RFID technique to achieve accurate and precise moving object 

localisation and tracking in an indoor environment. This chapter briefly gives an 

introduction of the research work outline, including the background, motivation, 

research issues, aim and objectives, and knowledge contributions.  
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1.1 Background 

Indoor location awareness technology has become a popular research topic during the 

last several decades. In the field of mobile computing, by providing the location 

information of a user, it can be applied to build a context-aware application, e.g. a 

wearable computer providing in-door localisation incorporating other reactive 

technology. In such systems, localisation has been of central importance, as it 

provides the information that the mobile robots or moving objects need for navigation 

or location. In a typical indoor moving objects or mobile robots application, 

localisation is the process of establishing the spatial relationships between the robot 

and stationary objects, which aims to solve a static problem: “where am I ?”; the 

tracking is the process of establishing the spatial and temporal relationships between 

moving objects and the robot or between moving objects and stationary objects, 

which involves the use of a model and history of measurement for mobility problem: 

“what is my trajectory ?”. As for different applications, the location information can 

be classified into different types, such as physical location, symbolic location, 

absolute location, and relative location. For most of indoor moving object location 

applications, the localisation information mainly considers the absolute location of 

targeted moving objects. Liu et al has provided us with a description of the 

performance benchmarking of localisation and tracking techniques in mobile robots or 

moving objects applications, as below (Liu et al, 2007):  

 

Accuracy: The accuracy of a localisation and tracking system is to measure how 

correct the localisation and tracking system is. Usually, mean distance error is adopted 

as the performance metric, which is the average Euclidean distance between the 

estimated location and the true location. Accuracy is the fundamental requirement in 

most localisation and tracking systems. The higher the accuracy is, the better the 

localisation and tracking system is.  

 

Precision: The precision of a localisation and tracking system is to show how 

consistently close the further measurements to the ideally accurate result over a period 

of time. Accuracy only considers the value of mean distance errors. However, 

location precision considers how consistently the localisation and tracking system 
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works, i.e., it is a measure of the robustness of the positioning technique as it reveals 

the variation in its performance over many trials.  

 

Complexity: Complexity of a localisation and tracking system can be attributed to 

hardware, software, and operation factors. If the computation of the localisation 

algorithm is performed on a centralized server side, the localisation could be 

calculated quickly due to the powerful processing capability and the sufficient power 

supply. Usually, it is difficult to derive the analytic complexity formula of different 

positioning techniques; thus, the computing time is considered.  

 

Robustness: The robustness of a localisation and tracking system reflects the ability 

of coping with errors during the tracking process and operating in an abnormal input 

data. In an indoor sensing environment, there are some uncertainty issues; sometimes, 

the signal from a transmitter unit is totally blocked; or sometimes, some measuring 

units could be out of function or damaged in a harsh environment. The localisation 

and tracking system should be resistant to these error sources.  

 

Scalability: The scalability of a localisation and tracking system refers to whether the 

localisation and tracking system can be easily deployed and configured in an indoor 

environment. An indoor location and tracking system may need to scale on two axes: 

geography and density. Geographic scale means that the area or volume is covered. 

Density means the number of units located per unit geographic area/space per time 

period. 

 

Cost: The cost of a localisation and tracking system may depend on many factors. 

Important factors include money, time, space, weight, and energy. The time factor is 

related to installation and maintenance. Mobile units may have tight space and weight 

constraints. Measuring unit density is considered to be a space cost. 
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1.2 Motivation 

The existing indoor localisation and tracking techniques can be mainly classified into 

two categories, which are the sensor-based tracking techniques and the wireless 

indoor localisation techniques (Liu et al, 2007).  The sensor-based tracking 

techniques reply on one or more than one particular sensor to track the movement of 

objects. The typical sensors include mechanical sensor (Sutherland et al, 1968), 

inertial sensor (Song et al 2011), magnetic sensor (Chao et al, 2010) and optical 

sensor (Rolland et al, 2001). Also, some hybrid tracking technologies which combine 

two or more types of sensor tracking technologies, have been developed for indoor 

moving object localisation. Nevertheless, these hybrid tracking or localisation 

technologies are still expensive and require complicated calibration and setup 

procedure (Auer et al, 1999). The advantage of sensor based tracking techniques is 

that they normally can track either the position or the orientation of targeted moving 

objects with a higher accuracy than the wireless indoor localisation techniques, but 

with a lower flexibility and scalability. The wireless indoor localisation techniques 

localize or position the indoor moving object by using some wireless technologies 

(Liu et al, 2007), such as GPS-basd (Engee, 1994), Cellular-based (Caffery et al, 

1998), UWB-based (Gezici et al, 2005), WLAN-based (Bahl, 2000) and 

Bluetooth-based (Kotanen et al, 2003). The wireless indoor localisation techniques are 

usually highly flexible and scalable, but have lower localisation accuracy than 

sensor-based tracking techniques since the wireless transmission signal is easily 

interfered. Moreover, the wireless indoor localisation technologies usually need more 

intelligent algorithms to compensate for the low accuracy of the measured metrics, 

which would increase the complexity of localisation systems.  

 

While the above localisation and tracking technologies have been practically used into 

indoor moving object localisation applications, each one of them has its specific 

limitations. It is necessary to explore the new possible localisation and tracking 

techniques to replace the conventional ones in indoor moving objects localisation 

applications. The increasing widely application of RFID (Radio Frequency 

Identification) technique (Foster et al, 2007) attracts many researcher‟s attentions. 
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Some of them (Lim et al, 2006) have attempted to utilize RFID technology for objects 

tracking in supply chain applications. Compared with the existing identification 

technologies such as barcode technology (Gao et al, 2007), RFID technique owns a 

longer working distance and faster reading ability. Also, due to the cost effectiveness 

and scalability of RFID technique, its applications are normally implemented with 

highly flexibility and practicality. As for the localisation and tracking applications, 

RFID based localisation and tracking technology has no problems of drift on inertial 

sensors tracking technology and high-dependence on feature visibility of optical 

sensor tracking technology.  Considering the above potential benefits, it is valuable 

to investigate the possibility of using RFID technique instead of the conventional 

localisation and tracking technologies to achieve a feasible solution in indoor moving 

object applications.  

 

However, as reviewed the performance benchmarking of localisation and tracking 

techniques in mobile robots or moving objects applications in the last section, the 

utilization of RFID technology as a new localisation and tracking solution also faces 

many challenges. Firstly, the fundamental requirements of indoor localisation or 

tracking technologies require a high accuracy, for instance: the optical sensor tracking 

technology and the inertial sensor tracking technology both have a very high accuracy, 

up to 1 millimetre. But the currently available RFID based localisation technologies 

cannot reach this accuracy. Most of RFID based localisation system with higher 

accuracy would distribute RFID tags as landmarks in the tracking environment; so the 

localisation accuracy is directly determined by the distance between adjacent RFID 

tags. To improve the physical size and shape of RFID tags to millimetres level is a 

challenging task in terms of the nowadays start-of-the-art of RFID devices 

manufacturer. Secondly, the high precision is needed for indoor localisation and 

tracking technologies, but is hardly achieved by current RFID based localisation 

technology. The main reason is that the radio signal can be easily affected by various 

factors such as absorption, attenuation, diffraction, space loss and interference; 

therefore over a period of time, the RFID reader might miss the detection of desired 

RFID tags or detect the unexpected RFID tags, so that the precision of RFID based 

localisation system is influenced. Additionally, normally there is a trade-off between 

accuracy and precision in RFID based localisation and tracking technologies, thus it is 

hard to get a both highly accurate and precise localisation performance for RFID 
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based localisation systems. It is because the high accuracy of RFID based localisation 

system needs a high density of RFID tags distribution, but this would seriously 

increase the influence of RFID tag and reader collisions on localisation precision. 

Thirdly, the conventional tracking techniques can accurately localise and track the 

moving objects in 3 dimensions, but it is a hard task for RFID based localisation 

technologies. Using RFID technologies to localise moving object, the moving object 

is normally attached to a RFID reader so that the height of moving object is fixed in 

order to keep the effective detection area of RFID reader‟s antenna unchanged. The 

accuracy and precision of RFID based localisation technologies here actually refers to 

a 2 dimensions localisation application. If it expects to extend RFID based 

localisation technologies into a 3 dimensions localisation application, the number of 

RFID readers and RFID tags both have to be increased, then the accuracy and 

precision of 2 dimensions localisation can be influenced due to a increasing collision 

problem. Finally, the requirement of low complexity and strong robustness in indoor 

localisation or tracking technologies might be a difficulty for RFID based localisation 

technology. In order to enhance the tracking accuracy and keep the scalability of 

object movement, the number of RFID tags and RFID readers might increase; it 

makes the deployment and configuration of a RFID based localisation system difficult. 

Meanwhile, more RFID tags mean more raw data to process, more shading effect for 

tag collision, and more time for communication, with potentially leading to either 

longer latency of system response or high complexity of algorithms.  

 

Consequently, the motivation of this research work is to investigate the possibility of 

using RFID technique instead of the conventional localisation and tracking 

technologies to achieve a feasible solution in indoor moving object applications. 

Typically, the idea localisation and tracking techniques in mobile robots or moving 

objects applications requires high accuracy and precision, low complexity, 

cost-effective and good scalability. While RFID technology has been widely 

recognized as cost-effective and good scalability, the current state-of-the-art of RFID 

technology is difficult to achieve both highly accuracy and precision in indoor moving 

object localisation applications with 3 dimensions. So this work would primly 

consider the problem on how to use RFID technique to accurately and precisely 

extract the 2 dimensional position parameters of moving object in an indoor 

environment. Figure 1.1 illustrates the conceptual mode of RFID localisation.  
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Figure 1. 1 The conceptual illustration of a RFID based 2D moving object localisation 

system in an indoor environment.   

 

In Figure 1.1, many RFID tags spread on the floor under a predefined rectangular grid 

pattern. The RFID reader attached with the moving object to observe RFID tags over 

time. The moving object localisation system can calculate the position of moving 

object by processing the captured RFID data on some prior knowledge such as where 

the tags are located.  
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1.3 Aim and Objectives of Research 

The aim in this thesis is to investigate the possibility of using RFID technique to 

achieve a feasible solution in indoor moving object applications. In order to reach this 

goal, the research will focus on the accurate and precise extraction of 2D position 

parameters of moving object in an indoor environment by using RFID technique. This 

involves research into RFID hardware infrastructure design and configuration, RFID 

data filter and processing, tracking and localisation technology.     

 

The objectives of this research are: 

 To review the literature of localisation and tracking techniques for indoor 

moving object applications, and investigate RFID techniques and its 

applications.  

 To study the theoretical framework of RFID based localisation system from 

hardware to software level, and propose a work flow of the RFID based 

localisation system. 

 To investigate the RFID hardware devices, and choose the suitable RFID 

infrastructure and configuration to improve the localisation accuracy and 

precision.  

 To analyse the captured RFID data, and propose some solution to filter the raw 

data with more reliable features.  

 To examine the localisation algorithms and use them to process the RFID data 

to estimate the position of moving object, analyse and compare the localisation 

accuracy and precision.  

 To propose a localisation algorithm to improve the accuracy and precision of 

an RFID localisation system.  

 To validate the RFID localisation system in an indoor moving object 

application.   
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1.4 Contribution to Knowledge 

To summarize, the main knowledge contributions are:  

 

1. A formal framework is proposed for investigating the problem of use of RFID 

technique to accurately and precisely localize the moving object in an indoor 

environment. The framework provides a coherent and consistent solution with 

three modules, which are RFID infrastructure module, RFID data filter module 

and RFID localisation algorithm module; to study the factors impacting the 

performance of an RFID based 2D localisation technology in a indoor moving 

object application. Also, this framework can guide the research and design of the 

optimization methods used in an RFID based 2D localisation technology with 

enhanced accuracy and precision.  

 

2. There is an investigation into the factors of an RFID infrastructure component 

influencing the localisation accuracy and precision of moving object 2D position. 

A sparse RFID Tag Distribution is proposed for the RFID infrastructure module, 

with the capability of enhancing the system reading efficiency from RFID 

infrastructure level, so as to improve the accuracy and precision of the 2D RFID 

based moving object localisation.   

 

3. A comparison is given of the date filter methods to remove the regular false 

reading errors from RFID infrastructure level. A rectangle-based feature selection 

method is selected and justified as the major algorithm in RFID data filter module, 

with the capability of maximally reducing the regular false reading errors from 

RFID infrastructure level.   

 

4. A discussion and comparison of localisation algorithms is addressed to evaluate 

their performance in precisely and accurately localising moving object position. A 

dynamic localisation algorithm for an RFID localisation algorithm module is 

proposed, which can accurately and precisely extract 2D position parameters of a 

moving object over time, also with the resilience to unexpected false reading error 

in indoor environments.  
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1.5 Organization of the thesis 

This thesis is divided into eight major chapters. The first chapter is the introduction to 

this research work, motivation and knowledge contribution. Chapter two begins with 

an introduction to moving object tracking techniques in the indoor, and reviews 

various types of sensor tracking techniques, as well as RFID-based localisation 

techniques. Then it introduces the state-of-the-art nature of localisation algorithms, 

which can potentially be used in this work. Chapter three proposes a formal 

theoretical framework RFID-Loc for investigating the optimal use of RFID techniques 

in moving object position localisation systems for indoor applications. Chapter four 

represents the experimental configuration and procedure which are required by each 

module in RFID-Loc framework. Chapter five investigates the relationship between 

RFID tag arrangement and localisation accuracy or precision. An optimal RFID Tag 

Distribution design strategy is suggested in this chapter under this framework with the 

capability of enhancing the system reading efficiency, so as to improve the moving 

object localisation precision. Chapter six investigates the research issues in feature 

selection and localisation algorithms, which contains the selection of features from 

RFID raw data and the comparison of localisation algorithms. Chapter seven 

illustrates the experimental results and compare the performance of proposed 

solutions on accuracy and precision with current RFID based localisation solutions. 

The final chapter gives a conclusion to the research work. Possible future 

development work and enhancements are also discussed in this chapter. 
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Chapter 2:  

Literature Review 

The purpose of this chapter is threefold: first, it tries to give an outline of the areas of 

research influencing this thesis. These include the survey of various localisation and 

tracking techniques for indoor moving object or mobile robots application, the review 

of RFID technique and RFID-based localisation applications. It discusses what the 

limitations of conventional localisation and tracking techniques in indoor applications 

are, and why an RFID technique can potentially be of use for localising the moving 

object position. The second part of this chapter gives a survey of current 

start-of-the-art of RFID-based localisation techniques and their performance. Also, the 

issues of hardware choices and configurations in an RFID-based localisation system 

are analyzed. The final part of this chapter reviews the probabilistic localisation and 

relevant techniques, which includes SLAM, particle filter and kalman filter. 

 

2.1 State of the Art in Indoor Localization and 

Tracking 

The theory and techniques of localization in the early literature are mostly concerning 

about robotics. In a typical indoor moving objects or mobile robots application, 

localisation is the process of establishing the spatial relationships between the robot 

and stationary objects, which aims to solve a static problem: “where am I ?”; the 

tracking is the process of establishing the spatial and temporal relationships between 

moving objects and the robot or between moving objects and stationary objects, 

which involves the use of a model and history of measurement for mobility problem: 

“what is my trajectory ?”. As for different applications, the location information can 

be classified into different types, such as physical location, symbolic location, 
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absolute location, and relative location. For most of indoor moving object location 

applications, the localisation information mainly considers the absolute location of 

targeted moving objects. Localization and tracking have been under active 

development during the past several decades, whose design paradigm has been 

dramatically changed. The sensor-based tracking techniques and the wireless indoor 

localisation techniques are two major categories of approaches used in indoor 

localisation applications. Considering that the accuracy and precision is the essential 

requirement of indoor localisation and tracking technique, the sensor based tracking 

techniques would be mainly reviewed and discussed.  

 

2.1.1 Mechanical Tracking Technique    

The mechanical sensor based tracking technique relies on electromechanical sensors, 

which are capable of detecting and recording 3D motion of a moving object. 

Mechanical tracking technology is based on the physical connection between the 

objects to be tracked and a reference point. The inertial sensor typically used in 

mechanical based moving object tracking methods, makes this method suitable for 

indoor camera tracking for augmented reality applications. Typically, it consists of 

accelerometers recording lateral accelerations and gyroscopes recording rotational 

accelerations; inertial tracking systems do not record the moving object position and 

orientation directly, but record acceleration and deceleration in all six degrees of 

freedom. EI-Sheimy (EI-Sheimy et al, 2008) has analysed the properties of inertial 

sensor based navigation system, which can provide high-accuracy position, velocity 

and attitude information. However, the accuracy of inertial sensor based navigation 

system degrades rapidly with time, which named as drift error. Zainab (Zainab et al, 

2008) also has proposed an inertial sensor based microelectromechanical tracking 

system which consists of three gyros and three accelerometers. This system keeps a 

high tracking accuracy as conventional inertial sensor based tracking system, but also 

is capable of resisting the effect of misalignment errors by using the partial IMU with 

nonholonomic constraint.  

 

To sum up, the key advantage of mechanical sensor based tracking techniques is its 
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high accuracy, which can be up to 1,000,000 divisions per 360 degrees of movement. 

Also, mechanical sensor based tracking technique can reasonably be used only in very 

special circumstances, and are simple to build, provide high accuracy and update rates. 

However, there are some disadvantages. Firstly, mechanical sensors suffer from drift 

with time, and thus become imprecise and imprecise. Secondly mechanical sensors 

need a relatively complicated calibration and set-up procedure, and also are very 

expensive. This would restrict the moving object‟s movement massively. 

 

2.1.2 Magnetic Tracking Technique   

The magnetic tracking technique is actually based on an electromagnetic sensor. A 

transmitter is mounted at a fixed location and is emitting a magnetic field. Mobile 

receivers are moved within this magnetic field and measurements are used to 

determine both position and orientations. Hashi (Hasi et al, 2007) has implemented a 

wireless magnetic motion capture system using an LC resonant magnetic marker. This 

system use a compensatory process in consideration of the mutual inductance has 

been employed for positional calculation in order to improve the positional accuracy. 

The absolute positional accuracy of this system is less than 2 mm within 140 mm of 

the pickup coil array. Fang and Son (Fang & Song, 2011) also presents an optimized 

method of measuring magnetic fields to estimate orientation and position of a moving 

object including a magnet in 3D space. This method can effectively characterize the 

magnetic fields and computer position or orientation, which offers a number of 

advantages in real-time measurement and control applications. But it has some 

difficulties in designing and optimizing sensor configurations. Additionally, Ma (Ma 

et al, 2) has proposed a magnetic hand motion tracking system for human-machine 

interaction. The advantage of this system is that it does not require wire connections 

and can be used conveniently and unobstructively. However, it is hardly to track the 

moving object in a large or wide area. To sum up, the magnetic tracking technique 

can track the 6DOF position and orientation of a moving object in its magnetic field, 

but it suffers from the magnetic field being distorted in the vicinity of metallic objects 

(Chao et al, 2010). Also, the disadvantages of magnetic field sensing tracking system 

are that calibration procedures are extensive and time-consuming, and it is expensive. 
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2.1.3 Optical Tracking Technique   

The optical sensor based tracking technique is based on image information; to track 

the 3D pose of a moving object actually is equivalent to track the 3D pose of a 

moving camera by using the information contained in images sequences, such as 

fiducial markers or feature points. Nonetheless, the process of tracking the 3D 

position and orientation of a camera by using image sequence information is 

challenging; the difficulty is that small errors in the calculation of 2D motion in image 

sequences have a tremendous influence on the estimated camera position and 

orientation parameters.  

 

In the early stage, the optical sensor based tracking techniques (Cornelis et al, 2001) 

(Prince et al, 2002) were mainly designed for off-line use on pre-recorded image 

sequences. This kind of approaches can approximately estimate the camera pose in 

terms of a large amount of image information, but it is computationally demanding, so 

is not appropriate for use in real-time, time-critical applications. So, many researchers 

have considered the possibility of tracking camera in a continuous mode, in which the 

camera tracking system must run in parallel with the image acquisition. It is referred 

to as the real-time optical tracking mode. The approaches in a real-time optical 

tracking mode are to process the image sequences in a continuous way, estimating the 

camera 3D motion on the current image frame by the past image frames. Beardsley & 

Zisserman were among the first to attempt to extract camera 3D motion in a 

continuous way (Beardsley et al, 1997), estimating the camera position and 

orientation parameters from the recovered 3D structure. This kind of approach can 

successfully calculate the matrix containing the camera position and orientation 

parameters by recovering the 3D scene, however the computational efficiency is 

challenging because the task of recovering 3D scene from continuous 2D image 

sequences is highly time-consuming. In order to enhance the computational efficiency, 

some researchers have thought of methods to avoid 3D scene recovery procedure or 

limit the camera motion in simple way. For instance, Avidan and Shashua (Avidan & 

Shashua, 2001) have proposed a method to calculate the consistent projective camera 

matrices, but without the need to reconstruct the 3D scene. Prince (Prince, Ke, & 

Cheok, 2002) also proposed a robust real time camera rotation tracking algorithm for 
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augmented reality applications. While those sets of approaches have enhanced the 

efficiency of camera tracking algorithms in real-time mode, they just simplify the 

process of estimating camera position and orientation parameters, without solving the 

fundamental problems that influence the robustness and accuracy of optical based 

camera tracking, such as the visibility of features.  

 

The key problem of the optical tracking technique is how to observe enough persistent 

and reliable features from 2D image sequences while the camera is moving. 

Depending on the types of features, real-time optical tracking methods can be 

generally classified into marker-based tracking approaches (Azuma, 1999) or 

Marker-less tracking approaches (Comport et al, 2006). Marker-less tracking 

approaches are generally used to perform tracking and recognition task of the real 

environment without using any special placed markers. They do not require particular 

fiducial markers or other special infrastructure in the environment, to estimate the 

camera moving (Davison, 2007) (Davison & Murray, 2002). Their features of image 

are casual and of unlimited viewpoint-invariance, so that the task of robust and 

accurate optical tracking becomes challenging. Marker-based tracking approaches 

(Madritsch & Gervautz, 1996) utilize the fiducial markers to track the camera 3D pose. 

The various geometric markers can be considered as the image features, such as 

points (Dementhon & Davis, 1995) segments (Dhome et al, 1990), and straight lines 

(Kumar & Hanson, 1994). For instance, typical camera tracking software packages 

such as ARToolkit (Fiala, 2005a) and ARTag (Fiala, 2005b) are both based on the 

fiducial markers, which have been particularly developed for augmented reality 

applications.  

 

To sum up, the main advantage of optical tracking techniques for indoor moving 

object applications is relatively high accuracy. Given an indoor environment with 

well-visible marker or features, optical sensor tracking technology can deliver a 

highly accurate and precise localisation performance for moving object. However, 

optical sensor tracking technology fails when the referenced features of the image 

sequences in some environments are out of focus, occluded or even out of view. Also, 

the price of implementing an optical tracking system is high computational cost.  
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2.1.4 Hybrid Tracking Technique   

Researchers have also looked into the hybrid tracking technique for achieving better 

object pose estimation (Danette et al, 2001) (Schwann, 2001). Hybrid tracking 

technique combines the strengths of at least two tracking technologies. Many 

combinations (Lobo & Dias, 2003) (Lee et al, 2002) (Roetenberg et al, 2007) are 

possible; examples are inertial and optical tracking, or magnetic and vision-based 

tracking. Auer and Pinz (Auer & Pinz, 1999) present a hybrid tracking system that 

combines a standard magnetic tracker and an optical tracking system; data from the 

magnetic tracker is used to predict feature locations for the optical tracking system. 

You et al. (You et al, 1999a) (You et al, 1999b) have developed a hybrid tracking 

system which combines inertial and optical tracking technologies. In this system, 

optical tracking technology is used solely for image stabilization and thus for 

correcting the inertial tracking system. Roetenberg (Roetenberg et al, 2007) attempted 

to design a porTable magnetic system combined with miniature inertial sensors, for 

ambulatory 6 degrees of freedom human motion tracking. With a suitable sensor 

fusion filter, the hybrid tracking system can solve some of the problems of the 

individual tracker and get more accurate and robust results. Nevertheless, each 

individual tracker has different characteristics; the hybrid tracking technique might 

increase the complexity and redundancy of the tracking system and lead to the 

problem of asynchrony. Additionally, the hybrid tracking systems for indoor moving 

object tracking applications are normally expensive and involve a complicated 

calibration and setup procedure. 

 

2.1.5 Wireless Indoor Localization Technique  

The wireless indoor localization technologies can be mainly classified into two basis 

approaches. The first one is based on the location positioning algorithm, which makes 

use of various types of measurement of the signal, such as Time of Flight, signal 

strength or angle. The second one is based on the physical layer of sensor networking 

infrastructure, which localize the moving objects by communicating information with 

stationary server. Lin (Lin et al, 2006) has reviewed the current available wireless 

indoor localisation techniques in terms of the type of wireless signal, which can be 
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classified into GPS-Based, Radio Frequency-based, Cellular-Based, UWB based, 

WLAN and Bluetooth. GPS-based localisation system is mostly famous as the 

successful positing systems in outdoor systems. The poor coverage of satellite signal 

for indoor environment makes a difficulty on maintaining accuracy in an indoor 

application. However, some companies such as SnapTrack (SnapTrack, 2010), Atmel 

(Atmel, 2010), U-Blox (U-Blox, 2010), have already considered to overcome this 

limitations by using some wireless assisted technology to support the indoor GPS 

localisation. The achieved accuracy of these systems is up to 5-50m. Radio Frequency 

based localisation system is actually the pioneer of RFID based localisation 

technology, so it would be reviewed in next section. Celluar-Based localisation 

system uses global system of mobile/code/division multiple access mobile cellular 

network to estimate the location of outdoor mobile clients. This localisation technique 

is also originally designed for outdoor tracking usage, but extended by some 

researchers to indoor localisation system. Otsaen et al. (Otsaen, 2005) presented a 

GSM based indoor localisation system, which can achieve accuracy as low as 2.5 

meter.  UWB based localisation system is based on sending ultrashort pulses 

(typically < 1ns) with a low duty cycle. So far, several UWB based localisation 

systems (Fontana et al, 2003) have been developed, such as Ubisense system. This 

system is a unidirectional UWB location platform with a conventional bidirectional 

time division multiple access control channel. The achieved accuracy of UWB 

localisation system can be up to 20 cm. The WLAN (wireless local area network) 

based localisation system is to use an existing WLAN infrastructure for indoor 

location.  The well-known WLAN based indoor localisation system is RADAR, 

which proposed by Bahl (Bahl, 2000) for in-building user location and tracking 

system. This system adopts the nearest neighbours in signal space technique, with 

accuracy up to 2-3m. The blue tooth based localisation system has a similar basis of 

WLAN localisation system, just with a lower gross bit rate (1Mbps) and the shorter 

range (10-15m). Tadlys (Tadlys, 2010) has developed a local position solution based 

on Tadly‟s Bluetooth infrastructure and accessory products. The system can provide 

localisation accuracy up to 2 meters with 95% reliability. However, it usually has a 

positing delay about 15-30s. Apart from these, ultrasonic sensors also can be used for 

indoor localisation application. The famous time of flight localisation technique for 

indoor localisation and tracking application is ultrasonic sensor based localisation 

system (Lin et al, 2008) (Bank, 2002). Ultrasonic sensor based localisation system is 
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flexible and cost-effective, but the localisation accuracy is easily to be influenced by 

ambient noise, multipath reflections and variations in the speed of sound. In terms of 

Lin‟s review (Lin et al, 2006), Table 2.1 summarized the performance of current 

wireless indoor position system and solution.  

Table 2. 1 Comparison of wireless indoor localisation techniques (Lin et al, 2006).  

 Accuracy Precision Scalability Robustness Complexity 

GPS-based 5-50m 50% Good/2D,3D Poor High 

Cellular-based  7-7.5m 50% Good/2D Good Medium 

UWB-based  0.3m 50% Good/2D,3D Poor Real-Time 

WLAN-based 3-5m 50% - 90% Good/2D, 3D Good Moderate 

Bluetooth-based 2 m 95% Nodes placed 

every 2-15m 

Poor Delay 15-30s 

Ultrasonic 2-15cm 50% Good/2D,3D Good Medium 

RFID 10cm – 2m 50% - 70% Good/2D,3D Poor Medium 

 

 

2.2 RFID Technology and Applications 

None of the above-mentioned conventional localisation and tracking techniques is a 

completed solution with high standard performance for indoor moving object 

applications. The sensor based tracking techniques can track either the position or the 

orientation of targeted moving objects with a higher accuracy than the wireless indoor 

localisation techniques, but with a lower flexibility and scalability. The wireless 

indoor localisation techniques are usually highly flexible and scalable, but have lower 

localisation accuracy than sensor-based tracking techniques since the wireless 

transmission signal is easily interfered. Recently, within the various wireless indoor 

localisation techniques, due to the low-cost, RFID technology (Glover & Bhatt, 2006) 

is a hot topic in industry, stimulating the desire for RFID-supported applications such 

as product tracking, supply chain optimization, asset and tool management. This 

section will review the history of RFID technology development and its typical 

applications, especially RFID technology for localisation. 
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2.2.1 Introduction of RFID Technology  

RFID (Radio Frequency identification) is an automatic identification technology that 

relies on remotely storing and retrieving data using tags and readers. The first 

application of RFID (radio frequency identification) technology can be traced back to 

World War II. The foundation of this technology is that radio waves with a spectrum 

of frequencies are used to transfer the identification information between two 

communication devices. In 1973, Cardullo received the first patent for a passive, 

read-write RFID tag, and Walton received a patent for a passive transponder used to 

unlock a door without a key. After that, a group of scientists began to investigate its 

application in facilities security (Ding, Li, & Feng, 2008) (Tadayoshi, 2008) (Juels, 

2006). Today, RFID techniques are used to replace existing identification technologies 

such as the barcode (Gao, Prakash, & Jagatesan, 2007). Compared with barcode 

technology, the advantages of RFID technology are that there is no need for a direct 

line of sight, it has much greater working distances, a much faster reading ability, and 

a read and write capability. Meanwhile, due to the rapid development of integrated 

circuit design, the gradually enhanced functionality of RFID readers and tags could 

make RFID technology support a wide spectrum of applications, from tracking cattle 

to tracking trillions of consumer products worldwide. 

 

2.2.2 Typical RFID Technology Applications  

The typical applications of RFID technology are listed as:  

 

Asset tracking: This includes tracking of assets everywhere, such as in offices, labs, 

warehouses, and libraries. For instance, Bhanage et al. (Bhanage et al, 2007) proposed 

an RFID-based inventory tracking system to support low-cost, long-lived and 

continual tracking of assets. 

 

Automated toll collection system: The RFID reader on the highway toll booth and a 

tag attached to the vehicle‟s windshield facilitate automatic charging to the car 

owner‟s account and eliminate the need for the driver to stop and manually pay the 

toll. Ren & Gao (Ren & Gao, 2009) have developed an electronic toll collection 
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system with a new RFID authentication and authorization protocol model, which has 

the advantages of lower cost, small size and high reliability.   

 

Supply chain tracking: This includes tracking items through the supply chain and 

managing inventory. The supply chain filed is the key early adopter of RFID 

technology. Many researchers have studied how to utilize RFID technologies 

efficiently in supply chain areas. Lin and Bin (Lin & Bin, 2009) developed a 

methodology for exploring and mapping supply chain networks by the methods of 

RFID-enabled capturing and sharing of the information throughout supply networks.  

 

Health care applications: This includes positively identifying and tracking patients in 

a health care facility or a hospital, linking a patient with the right medicine and doctor. 

Many industrial companies provide RFID healthcare solutions, such as PDC‟s RFID 

Wristband System (PDC, 2007).  

 

Tracking in warehouse: This includes real-time inventory tracking and management in 

a warehouse or storeroom by tracking items inside, coming in and going out. For 

instance, Zhen et al. (Zhen et al, 2009) developed an RFID-based logistics resources 

management system for formulating and suggesting the appropriate material handling 

solutions in a warehouse environment.  

 

These typical RFID-based applications show that RFID technology can localize or 

track any object or people in a particular area. Moreover, owing to the gradually 

reduced cost of RFID tags and readers, it becomes possible to employ a large number 

of RFID devices in a dense environment. As a result, RFID technology has recently 

become more widely used in object identification, mobile robots tracking and 

navigation, and wearable computing. These successful applications illustrate that 

RFID has been recognized as a new popular tracking technology by researchers and 

engineers. 
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2.3 RFID for Indoor Localisation 

2.3.1 State of the Art in RFID Indoor Localisation  

Aimed at different goals, the design and implementation of an RFID system are 

dissimilar. RFID techniques are suitable for localisation because of their cost-effective 

and scalability. In this section, it might be useful to review the RFID technology for 

localisation tasks, for instance, using RFID for localisation of indoor mobile objects.  

 

The first task of the RFID-based object localisation approach was to analyze the 

radio-frequency signal strength to estimate the distance so that moving objects could 

be localized. A radio-frequency system based on RADAR (Bahl & Padmanabhan, 

2000) was firstly proposed to locate and track users in an indoor environment. Radar 

operates by reading and processing radio frequency signal strength information at 

multiple based stations to estimate user location with accuracy of up to 2 meters. 

Later on, Hightower et al. (Hightower et al, 2000) proposed a 3D location-sensing 

technology based on RF signal strength analysis, called SpotON. The SpotOn system 

can operate standalone SpotOn tags with location-sensing technology, achieving a 

localisation accuracy of up to 1 metre. Similarly, there are other methods (Priyantha et 

al, 2001) (Harder et al, 2005) (Fukujiet et al, 2003) developed on the same basis. 

Although the above RF signal based systems may achieve the task of localisation by 

analyzing the strength of the radio frequency signals to estimate the distance, they do 

not strictly use the concept of RFID techniques. Moreover, due to scattering and 

reflection of the transition signal, radio-frequency signals are easily interfered with, so 

accuracy of these systems is imprecise, usually limited to meter level. 

 

In order to enhance the accuracy of the RFID-based localisation system, some 

methods attempt to study the localisation of a mobile robot using RFID tags with 

unique ID as landmarks in the environment (Hahnel et al, 2004) (Tuttle, 1997) (Roy et 

al, 1999). Due to the long effective sensing distance, active RFID tags are firstly used 

as landmarks for localisation. A typical example is the LANDMARC system (Ni et al, 

2003), which is a location-sensing prototype system that uses RFID technology for 

locating objects inside buildings. The researchers installed a number of RFID readers 
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in the building. Each reader has a pre-determined power level, thus defining a certain 

range in which it can detect RFID tags. By properly placing the readers in known 

locations, the whole region can be divided into a number of sub-regions, where each 

sub-region can be uniquely identified by the subset of RFID readers that cover that 

sub-region. Given an RFID tag, based on the subset of readers that can detect it, it 

should be able to associate that tag with a known sub-region. The major advantage of 

LANDMARC is that it improves the overall accuracy of object location by utilizing 

the concept of reference tags. Additionally, Yamano (Yamano et al, 2004) proposed a 

new method of self-localising mobile robots with an RFID system by using a Support 

Vector Machine (SVM) algorithm. Chae and Han (Chae & Han, 2005) presented an 

algorithm for mobile robots, which is to divide the space into separate and individual 

regions, and weight active tags by their distance. Although methods using RFID 

active tags could achieve better accuracy than the earlier methods using signal 

analysis, the key drawback is that RFID active tags would continuously send radio 

signals so that the RFID reader might detect some unexpected RFID tags. On the 

other hand, the long latency and variation of the behavior of tags limits the increased 

accuracy and localisation range. Consequently, passive RFID technology has been 

utilized to recognize and localize the position of the moving object (Tsukiyama, 2002) 

(Tsukiyama, 2005). Zhang et al. (Zhang et al, 2007) firstly examined the applicability 

of direction-of-arrival estimation methods to the localisation and localising problems 

of passive RFID tags. Later on, Park & Hashimoto (Park & Hashimoto, 2009) 

presented an efficient localisation algorithm for mobile robots based on RFID; the 

system reads the RFID tags and computes the absolute position of tags on the floor to 

localize the mobile robot. Similarly, by distributing RFID passive tags on the floor, an 

absolute location scheme (Lim et al, 2006) was designed to localize the mobile robot‟s 

position and orientation. Beyond that, Han et al (Han et al, 2007) proposed a new 

RFID passive tag arrangement pattern for a driving mobile robot, with precision up to 

6 centimetres. The utilization of high density RFID passive tags distribution could 

possibly enhance the localising accuracy, but it would also increase the tag collisions 

due to the long latency and variation of the behaviour of tags. Higher tag collisions 

would lead to the failure of some passive tags being detected. Compared to active tags, 

passive RFID tag-based localising technology would result in increased accuracy of 

the RFID-based object localisation system, but also reduced precision. 
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While the RFID technique is widely applied in object localisation, the achievable 

accuracy and precision in indoor moving object localisation are still very low and 

instable. In order to improve the accuracy and precision, it is necessary to review 

some literature on the different layers of a typical RFID localisation system, which 

includes RFID infrastructure, data processing and some localisation algorithms. Table 

2.2 summarized the performance of current state of art in RFID indoor localisation 

solutions.  

       Table 2. 2 Comparison of RFID indoor localisation solutions  

 Accuracy Precision Robustness Complexity 

RF Signal Analysis 1-2m 50%-100% Poor High 

Active RFID based  0.5-1m 50% Good Medium 

Passive RFID based  0.1-0.3m 50% Poor Simple 

 

2.3.2 RFID Infrastructure  

This section briefly presents some issues in RFID infrastructure that need to be 

considered. Due to the rapid development of RFID manufacture, review does not 

emphasis current physical limitation of RFID hardware devices, but focus on the 

analysis of a theoretical basis.  

 

RFID systems can generate and radiate electromagnetic waves that fall along the radio 

frequency spectrum. The requirements of an RFID system‟s application significantly 

restrict the suitable operating frequency ranges for RFID systems, because 

interference and noise vary between different application environments. It is 

important to ensure that these environments are not disrupted or impaired by RFID 

systems. According to the common RFID ISO standards (Sanghera, 2007), the 

operating frequency of an RFID system can be classified into four ranges: low 

frequency (30-300KHZ), high frequency (3-30 MHz), ultra-high frequency (300MHz 

– 3GHz), and microwave frequency (1-300 GHz).  The effective reading distance of 

the RFID system varies according to the frequency range, as shown in Table 2.2 

(Sanghera, 2007). 
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     Table 2. 3 Radio Frequency Ranges in RFID systems  

 

Name  Frequency Range Effective Read Range for Passive 

Tags 

Low Frequency  30-300KHZ <50cm 

High Frequency 3-30MHZ <3m 

Ultrahigh Frequency  

 

300MHZ-3GHZ <9m 

Microwave Frequency 

 

3GHZ- 300GHZ >10m 

 

Table 2.3 shows the effective reading range of passive tags corresponding to each 

frequency range. Active tags can have a read range of up to 100 meters. For example, 

active tags used on large assets such as cargo containers, rail cars, and large reusable 

containers, which usually operate at 455 MHz, 2.45GHz, or 5.8GHz, typically have a 

read range of 20 meters to 100 meters.  

 

Designing an RFID-based moving object localisation system with highly accuracy 

and precision, it is mandatory to consider at which frequencies RFID devices will 

operate in an indoor environment. The LF (low frequency) range is more robust to 

external influences, and is generally used in access control, animal and personnel 

tracking. Benelli et al. (Benelli et al, 2009) developed an LF RFID-based system for 

the underwater tracking of pebbles on artificial coarse beaches. Due to the low level 

of interference from the surrounding environment, the LF RFID-based system could 

work in abominable environmental conditions. The HF range provides greater options 

for data transfer speed, compared to LF, and is usually used in building access control, 

item-level tracking, including baggage handling. Jain et al. (Jain et al, 2009) presented 

a custom low-cost HF RFID system for hand washing compliance monitoring. The 

UHF range has a higher reading speed and longer read distance, which makes it 

suitable for automated toll collection and warehouse management. For instance, Lehto 

et al. (Lehto et al, 2009) discuss the application of passive UHF RFID systems in the 

paper industry. The microwave range offers a high data transfer rate, and is suitable 

for use in long-range vehicle identification (Kaleja et al, 1999) and supply chain.  

 

The selection of feasible RFID tags and RFID reader in a RFID based localization 

system is also an important issue. There are two major types of RFID tag, which are 
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passive tag and active tag (Sanghera, 2007). The passive tag does not have its own 

battery, so cannot initiate communication. The active tag has its own battery and can 

initiate communication by sending its own signal. In terms of this characteristic, 

passive tags are usually physically small in size and have a longer lifespan, but lower 

read range and smaller memory. Regarding the RFID reader (Sanghera, 2007), it is an 

interrogator which collects the information from tags and sends it to a host system. 

Types of RFID reader are generally categorized into read-only and read-write, which 

is the operation ability to deal with RFID data. Meanwhile, some RFID readers have 

the ability to read multiple tags at the same time, which is named as anti-collision 

ability. Having mentioned anti-collision ability, it is necessary now to explain the 

collision problem (Engels & Sarma, 2002) in RFID systems. In an RFID system, there 

are two main communication techniques that the RFID readers and tags use to 

communicate with one other, which are coupling and backscattering. The coupling 

process is to transfer energy from one circuit to another through a shared magnetic 

field. The backscattering process is to collect the RF signal, change the signal with 

carried data, and reflect it back to readers. Both of these two communication 

techniques in an RFID system use a physical medium to transfer signals, so there is a 

high likelihood of a collision problem. RFID reader collision (Kin et al, 2005) means 

that when the interrogation zone of one reader overlaps with the interrogation zone of 

another reader, the problem of multiple reads and signal interference occurs. RFID tag 

collision (Sanghera, 2007) means that when two or more tags try to respond to one 

RFID reader at the same time, the RFID reader misses or ignores some tags. The 

collision problem is a challenging issue in any RFID system, particularly in a highly 

dense environment. Many researchers (Myung et al, 2006) (Choi et al, 2007) (Shin & 

Kim, 2009) have studied the possibility of reducing the collision problem from both 

RFID infrastructure level and RFID software level. Due to the collision problem, 

many RFID based systems have to generate incorrect or uncompleted RFID tag 

detections; this phenomenon is usually called false reading in an RFID based system. 

The errors made from false reading in an RFID based system is called false reading 

error.  

 

Once RFID readers and tags have been selected, the next task is to work out how to 

deploy them as a feasible RFID infrastructure to satisfy the requirements of an indoor 

moving object application. In a dense environment, tag collision would easily lead to 
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false reading errors of RFID readers, further impacting on the precision of the 

RFID-based localisation system. While it is impossible to eliminate completely the 

impacts of false reading from the RFID infrastructure, it is possible to utilize the 

optimal design and configuration of RFID hardware devices to reduce the impact of 

false reading on the precision of the RFID-based localisation system. For instance, 

Mo et al. (Mo et al, 2009) use the EPCglobal Network to design and implement a 

large-scale RFID infrastructure for two Australian national RFID projects with 

improved performance.  

 

2.3.3 RFID Data Processing  

RFID data processing technology is discussed in this section, which is related to the 

methods of processing the RFID data for generating the moving object position. The 

first goal of RFID data processing in an RFID-based localisation system is to remove 

noise and false reading errors from a continuous high volume set of RFID raw data 

captured by RFID readers, called RFID Data Filter. Secondly, it aims to use some 

localisation algorithms to process the RFID data for extracting the targeted parameters, 

such as moving object position. The first goal has been achieved by some RFID data 

filtering techniques. For instance, in a number of RFID middleware systems (Hoag & 

Thompson, 2006), RFID data filtering is supported to process a large volume of 

real-time RFID data streams, in order to provide accurate data used for RFID-based 

applications. Additionally, conventional data stream processing and continuous query 

optimization (Chawathe et al, 2004) (Jeffery et al, 2006) are adopted to filter the 

RFID raw data for achieving accurate stream sources. In this research work, the first 

goal is to select the reliable features from RFID raw data, and to reduce the impacts of 

noise and false reading interference.  

 

The second goal mainly refers to the tracking and localisation algorithms, which deal 

with the selected features to extract the moving object position. Localisation deals 

with the problem of trying to locate the moving object, given a map and some sensor 

reading data. The theory and techniques of localisation have been under active 

development during the past several decades, and their design paradigm has been 

dramatically changed. In the 1970s, it was focused on path planning and control 
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problems (Thrun, 2002). Normally this paradigm is called model-based. Seeing the 

drawbacks of the model-based paradigm, researchers sought to find some other way; 

one in particular that became popular in the 1980s was Brooks‟ behaviour-based 

architecture (Brooks, 1989). In addition to the above two paradigms, another 

paradigm which has emerged since the mid 1990s, and is still developing, is usually 

termed probabilistic based localisation (Thrun, Fox, Burgard, & Dellaert, 2001) 

(Degroot & Schervish, 2002) (Doucet, Freitas, Murphy, & Russell, 2000). Since the 

world model is not perfect, the sensor measurement can be unreliable, control input 

can be full of noise, and even the environment can be highly dynamic. The 

probabilistic method describes all the information in a probabilistic way, unlike the 

above methods which are deterministic.  

 

Since then, the localisation algorithms most commonly used in RFID-based location 

systems are the ones which use the RFID data collected at some time interval to 

calculate the output position parameters. For instance, an absolute localisation scheme 

(Lim et al, 2006) is proposed by using RFID passive tags arranged on the floor to 

obtain robustly the position of a moving object. Han (Han et al, 2007) proposed an 

efficient localisation scheme by using a triangular tag pattern, which is based on the 

average mean method, for enhancing the tracking accuracy and precision. However, 

these methods are all using a static process to deal with the RFID data, which means 

the data is only processed from the current time interval. It may be unable to avoid 

occasional sudden unexpected false reading errors. Therefore, rather than trying to use 

„static‟ solutions, by integrating some probabilistic processes, the dynamic algorithm 

attempts to „estimate‟ the moving object position by using data from previous time 

intervals in a dynamic process.  Consequently this has a potentially stronger ability 

to resist sudden errors. 

 

The probabilistic localisation method aims to estimate the state of the mobile object 

and its environment from some sensor measurements. Since all the states are 

uncertain, Bayes filtering (Degroot & Schervish, 2002) is a classical mathematical 

representation which can help to represent and calculate the estimations. Currently, 

the most popular form of probabilistic localisation is SLAM (Simultaneous 

Localisation and Mapping).  
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2.4 Probabilistic Localisation Algorithm and 

SLAM   

The theory and techniques of localisation and SLAM are both original from the field 

of robotics. Localisation deals with the problem of trying to find the location of the 

robot, given a map and some sensor reading data. A robust localisation system is 

arguably the most fundamental component for autonomous systems (Williams 2001), 

and is the basis for navigation and mission planning. Mapping is the process of 

building and maintaining a model of the surrounded environments. Although in some 

circumstances, the creation of an accurate map of the environment may be a goal in 

itself, most of the time it is served as an input to the localisation component. 

 

2.4.1 Bayes Filtering  

Most of the localisation and mapping techniques have gone probabilistic since then, 

almost all the state-of-the-art robotic system are based on probabilistic techniques, not 

only on the level of motion modelling and observation modelling, but also on decision 

making (Thrun 2002). A probabilistic tracking or localisation system can cope with 

both “Position tracking” problem and “Global localisation” (where the initial states is 

not given) problem, or even “Robot kidnapping”. In a probabilistic tracking system, 

the aim of localisation is to estimate the state of the mobile object and its environment, 

from some sensor measurement. Since all the states are uncertain, Bayes filtering 

(Degroot & Schervish, 2002) is a mathematical representation which can help to 

represent and calculate the estimations. The key idea of Bayes filtering is to estimate a 

probability density (by a posterior density function, or pdf ) over the state space 

conditioned on the given sensor data. It is often called the belief. In our research work, 

let us denote the state of the moving object at time t by ts , and the RFID observed data 

from time 0 to t by 0:td . The belief of state S at time t can be written as:  

 

 0:( ) Pr( | )t t tBel s s d                        (2.1) 
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The state ts
 
typically consists of the location information of the moving object, 

which are the coordinates in a two dimensional Cartesian space. While d is the 

measurement, it depends on the RFID sensors equip on the moving object. Here, the 

RFID sensors have some difference from the other typical sensors. Usually in typical 

mobile robots application, the sensors are some relative range and bearing measurer, 

e.g., laser range finder, ultrasonic transmitter or even moving objects, etc. However, 

the RFID sensors would only recognize the RFID tag ID, but possibly matching with 

position or range information. 

 

Before go into the details of Bayes Filtering, it first needs to revise the Bayes 

Theorem, as shown in Appendix A,  which is the fundamental theory for 

probabilistic estimation problem. Bayes Theorem can calculate the probability of 

event iB , when A is observed. In probabilistic localisation area, it helps to determine 

when given the measured data, what is the current state of the mobile object and its 

environment. Additionally, there is another important assumption, called Markov 

Assumption. It refers that in a stochastic process, the Markov assumption means that 

the future states of the process, given the present state, depends on only upon the 

current state. Backing to Bayesian filtering, it assumes that the initial belief of the 

state ( )tBel s  is given as the prior distribution. In the case of global localisation, the 

initial belief is unknown and is normally initialized as a uniform distribution over all 

allowable positions (Dellaert et al, 1998). Then the estimation of ( )tBel s can be 

obtained in two steps: the prediction step and the update step. Firstly, it applies Bayes 

Theorem onto Equation 2.1:  

 

           

: 1

0: 1 0: 1

0: 1

0: 1 0: 1
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Pr( | , ) Pr( | )

Pr( | )

Pr( | , ) Pr( | )

t t t o t

t t t t t

t t

t t t t t

Bel s s d d

d s d s d

d d

d s d s d

              (2.2) 

 

Where 1

0: 1Pr( | )t td d  is a normalizing constant relative to tS , which is 

determined by the observation model and system noise.   
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Here it assumes the evolution process of the states is a Markov process. In practice, 

this assumption implies that the current state of the mobile object is the only element 

in the environment that will affect sensor reading, or in other words we do not need to 

take into account the past data but only the most current data. After applying Markov 

assumption, i.e. 0: 1Pr( | , ) Pr( | )t t t t td s d d s , Equation 2.2 becomes :  

 

0: 1

1 0: 1 1 0: 1 1

1 1 0: 1 1

1 1 1

( ) Pr( | ) Pr( | )

Pr( | ) Pr( | , ) Pr( | )

Pr( | ) Pr( | ) Pr( | )

Pr( | ) Pr( | ) ( )

t t t t t

t t t t t t t t

t t t t t t t

t t t t t t

Bel s d s s d

d s s s d s d ds

d s s s s d ds

d s s s Bel s ds

   (2.3) 

 

In order to calculate the Equation 2.3, it needs to specify 1Pr( | )t ts s  and Pr( | )t td s . 

The former is the system‟s motion model, which represents how likely a state of the 

moving object will be, given the previous state. The later one is the observation model, 

which tells the possibility of obtaining a particular sensor reading given a particular 

state. Also the Equation 2.3 reveals the recursive nature of Bayes Filters, belief 

( )tBel s at time t is calculated based on the belief 1( )tBel s  at the time t-1. At each 

time interval, the calculation of Equation 2.4 involves two stages: first by 

incorporating the motion model and previous belief, it 

obtains
1 1 1Pr( | ) ( )t t t ts s Bel s ds . This stage is often referred to as the prediction step, 

where the current state is predicted. When the most recent sensor reading becomes 

available, Pr( | )t td s  is calculated and multiplied by the product 

of
1 1 1Pr( | ) ( )t t t ts s Bel s ds . And this is called the update step, where the current belief 

is updated according to the sensor reading to refine the prediction. Using the recursive 

approach, and together with the initial belief, Bayes Filter iteratively estimates every 

state of the mobile object along its trajectory.  

 

Bayes filter is the basic Equation for most probabilistic localisation system. It is, 

however, only a theoretical framework to this estimation problem. The integration in 

Equation 2.3 is a vital problem. If the state space is continuous, the implementation of 

Equation 2.3 requires memory storage for the representation of the whole posterior 
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distribution, which is an infinite dimensional vector. In cases where the state space is 

discrete and high dimensional, the integration is still extremely complicated and not 

practical to implement. Only in some cases where strong assumptions and constraints 

are applied can this implantation be computationally feasible. There are two major 

solutions to the Bayesian filtering, which are Kalman Filter and Particle Filter.  

 

2.4.2 Kalman Filter Localisation 

Kalman filter is the most common and well-known approach for implementing the 

Bayesian filters in continuous state space, which assumes that the initial state is given 

as a Gaussian distribution, and both the motion and the observation model are also 

linear with Gaussian noise. By exploiting the linear relationship, system models in the 

Bayesian Filter can then be written as a Kalman Filter‟s way as shown in Appendix B.  

 

Kalman filter recursively computes the covariance and mean which fully describes the 

posterior Gaussian distribution ( )tBel s , whose mode yields the current state of the 

mobile object, and the state covariance represents the object's uncertainty. If, in 

addition, the noise variables are drawn from normal distributions, then the Kalman 

Filter produces the optimal minimum-variance Bayesian estimate, which is equal to 

the mean of the a posterior conditional density function of state ts , given the prior 

statistics of 1ts and the statistics of the measurement tz . No non-linear estimator can 

produce estimates with smaller mean-square errors. If the noise does not have a 

normal distribution, then the Kalman Filter is not optimal, but produces the optimal 

linear estimate (Smith et al. 1990). However, localisation approaches using Kalman 

filters require that the initial position of the mobile object is given or within certain 

error range, and that features in the environment can be uniquely identified (the 

observation model is unimodal). Therefore they are not able to solve the “Global 

localisation” and “Robot kidnapping” problems where the pdf might be bimodal or 

multimodal.  
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2.4.3 Particle Filter Localisation  

Another important family that implements Bayesian filters is based on sampling 

techniques. It approximates the posterior distribution by a (random) set of samples. 

Besides, the observation and motion model can also be represented by a set of random 

samples. This method is particularly suitable for nonlinear estimation problems. More 

specifically the sample technique is often called Particle Filter. But in different field 

Particle filter have some other names, e.g. SIR (Sampling Importance Resampling) in 

statistics, Sequential Monte Carlo (SMC), Bootstrap Filtering (Gordon et al. 1993), 

Monte Carlo Localisation (MCL) in robotics, and Condensation Algorithm in 

computer graphics (Isard & Blake 1998). Doucet (1998) presents a comprehensive 

review of Particle Filter and includes them into a unified framework. In fact, they are 

all based on the theory of SIS (Sequential Importance Sampling) which was first 

introduced by statisticians dating back to 1950s. Most likely the reason that it was not 

being actively researched in the field of robotics and mobile computing is the limited 

computational speed at that time. To solve the integration in Equation 2.3, the basis of 

Particle filters is to perform a Monte Carlo simulation, i.e. the desired posterior 

distributions is represented by a set of randomly chosen samples (particles) with 

importance sampling (weighting), and then compute the required estimation based on 

these samples with regard to associated weights. As the number of the particles 

becomes large enough, these particles will become an equivalent representation of the 

posterior distribution. 

 

After applying the sampling, the belief of the moving object at time interval t 

becomes: 

 

               ( ) , 1 , . . . . . . ,i i

t t t tBel s S s w i m  (2.4) 

 

Here m is the number of the particles, i

tw  is the importance factor and i

ts  is the state 

of the moving objects. In terms of the “global localisation” problem, the initial belief 

can be represented by a uniformly distributed particle set of size m (the particles are 

“spread” uniformly in the whole state space) and each particle has a weights of 1/m. If 

the initial state of the robot is given, the initial belief can then be initialized by 
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samples drawn from a narrow Gaussian centered on the correct pose (Thrun et al. 

2001b). In both cases, each particle i

ts  stands for a possible state of the moving 

object (i.e. a possible location in a room), while the associated importance factor i

tw  

indicates the probability that the robot is in this state. The importance factor i

tw  

should be non-negative and sum up to 1. 

 

The principal algorithm of Particle Filter can be described as Figure 2.1 

 

     1 0tS  and tS  is a set of particles of previous belief 

     For i = 1 to m  

     Generate a random particle i

ts  from particle set tS  according to 1,..., m

t tw w  

     Generate a particle 
1

i

ts  form i

ts  based on 1Pr( | )t ts s  

     Generate a weight 
1 1 1Pr( | )i

t t tw d s  

     Add 
1 1{ , }i i

t ts w  to 1tS  

     Normalize all importance factors 1tw  in 1tS   

     Return 1tS  as the new belief  

 

        Figure 2. 1 Algorithm of a standard particle filter 

 

There are two steps in this algorithm, the first one is the sampling step, given the 

previous belief tS , particles are generated randomly from particle set tS , based on 

their weights (Hence a particle with high weight may be picked multiple times whilst 

those with low weight might never be picked). Then for each picked particles, new 

particles are generated based on the motion model 1Pr( | )t ts s , which gives a 

proposal distribution (from Thrun et al. 2001b) denoted as 1 1Pr( | ) ( )t t t tq s s Bel S , 

we can see that this step implements the prediction step of basic Bayesian filter. 

Figure 2.2 illustrates an example of this propagation process: the solid line indicates 

the motion of the robot, the particle “cloud” is the proposal distribution. We can see 

that as the mobile object keeps moving, the particles become “spreading out”, which 

is a sign of the uncertainties of the motion model due to imperfect motion control. The 

proposal distribution is not the desired posterior distribution since it does not take into 
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account the sensor measurement. This can be done by assigning the importance factor 

1 1 1Pr( | )i

t t tw d s  to the i particle 
1

i

ts , using the observation model. This step is 

called the weighting step, which implements the update step in basic Bayesian filters.  

 

 

        

       Figure 2. 2 The proposed distribution of particle filter (Fox et al. 1999) 

 

Moreover, Figure 2.3 (Delaert et al. 1998) shows the basic working process of particle 

filters. Here we assume the initial position is roughly known (represented by the 

picture in row 1, column A, denoted A1), and the state space is two dimensional. A2 

is the initia particle set. Firstly the mobile object (moving object or human carrying a 

mobile computer) moves, for example, one meter away from the initial position. 

Therefore B1 is the motion model which gives the proposal distribution in B2. When 

the sensor reading becomes available (assume we are using range finder, e.g. 

ultrasonic transmitter), C1 is the observation model, say the likelihood of observing 

the sensor at a certain position. After incorporating the sensor reading we then update 

the weights of the particles. And this gives the new particle set, shown by C2, where 

the particles with darker grey level indicated a highly possible state. 
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        Figure 2. 3 A working process of particle filter (Delaert et al. 1998) 

 

The above algorithm is identical to the SIS algorithm, which, however, has a common 

problem that significantly affects its accuracy on approximating the true posterior: 

usually after some recursive steps, some weights will become very large and 

concentrate on only a few particles, while the other particles‟ weight decrease or even 

become negligible. This is called the degeneracy problem. Kong et al. (1994) present 

a way to measure the degeneracy, as follows: 

 

       

1

1
t m

i

t

i

Deg

w

  ( t is the time interval, m is number of particles )  (2.5) 

 

The feature of Equation 2.5 is that if all weights concentrate, say, to one particle, then 

Deg = 1. If the weights are distributed uniformly, then tDeg m . Therefore this 

Equation can be used to measure how serious the degeneracy is. There have been 

several approaches in the literature dedicated to solve this problem, based on the idea 

of resampling, which according to Bolic (Bolic, 2004), was first introduced by Rubin 

et al (Rubin, 1988). Its basic idea is to eliminate those particles with low weights and 

multiply those with high heights, while at the same time maintain the sum of all 

weights unchanged), see the following Figure 2.4 (Merwe et al. 2000). 
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            Figure 2. 4 Resampling process (Merwe et al. 2000) 

 

After applying resampling, the recursive step of particle filter becomes: 

 

1, sampling step (same as above) 

2, weighting step (same as above) 

3, resampling step 

 

In fact most state-of-the-art implementations of particle filter algorithm involve the 

resampling step. They differ mainly on how to implement the motion model and the 

resampling algorithm. In the context of localisation, there is another problem of 

particle filters. Although in theory the Particle Filter can handle the “robot 

kidnapping” problem, in practice when the robot is moved to a random position, it 

might happen that there are no particles near that position, hence it will take a long 

time for the robot to re-localize itself (if the number of particles is too small this 

process can be very long). Possible solution to this problem includes sensor resetting 

(Lenser & Veloso 2000), Mixture Monte Carlo localisation (Thrun et al. 2001b), and 

another simple approach by Fox (Fox, 1999) where they add a small number of 

uniformly distributed, random samples after each iteration. 
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The last issue about particle filter, concerns about its computational load. As the 

number of particles increased, in general the performance will decrease dramatically. 

Also, the particle number cannot be too small since it also influences the accuracy 

(depends on true problem). To avoid such a trade-off, there is solution called adaptive 

sampling scheme (Koller & Fratkina 1998), which determines the number of particles 

during the localisation process: when the robot is sure where it is, it reduce the 

particle numbers to save computational load; while uncertainties arises, it increase the 

particle numbers.   

 

2.5 Summary 

To summarize, this section has reviewed various conventional moving object tracking 

techniques in indoor productions and discussed their limitations in section 2.1. The 

review in section 2.2 shows that the RFID technique has recently been a hot topic for 

various industrial applications, particularly in the areas of object tracking and 

localisation. However, so far there are no research works successfully delivering an 

accurate and precise RFID based localisation solution for indoor use. The first 

difficulty is that wireless indoor localisation technique (RFID is one of wireless 

indoor localisation technique) is not widely recognized by most researchers as a 

sufficiently accurate and precise tracking technology in section 2.2. Secondly, the 

high precision of moving object position localisation in an indoor production is not 

really achievable by using RFID technology in section 2.4. Many factors can easily 

make the RFID reader incorrectly detect or fail to detect RFID tags, so that it is 

difficult to remove or manage false reading error in an indoor environment. In order 

to investigate the possibility of using RFID techniques for accurate and precise 

moving object localisation in indoor applications, the next chapter will give a detailed 

analysis of the optimal usage of RFID techniques for moving object localisation by 

designing a formal framework. 
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Chapter 3:  

RFID-Loc Framework and Investigation 

Procedure 

In order to find how to accurately and precisely localize moving object in an indoor 

environment by using RFID technique, the prime task is to design a theoretical 

framework for clearly understanding the process of RFID based localisation system. 

In a concise manner, this framework is named as RFID-Loc. In this chapter, it firstly 

presents the components and work flow of RFID-Loc framework. The framework 

consists of three components, which are RFID-Loc infrastructure module, RFID-Loc 

data filter module, RFID-Loc localisation algorithm module. Secondly, the issues and 

investigation procedure of each module in RFID-Loc framework are defined and 

classified in this chapter. Following the investigation procedures, each module in 

RFID-Loc framework can potentially deliver a solution to improve accuracy and 

precision of a RFID based indoor moving object localisation application.   

 

3.1 Design Goals 

Considering the performance benchmarking of indoor moving object localisation 

listed in Chapter one, a discussion of the goals that lead the design of RFID-Loc 

framework is presented in this section.  
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Ability of delivering a practicable solution: The primary goal of this framework is 

to be capable of delivering a practicable RFID based moving object localisation 

solution for indoor use.  

 

Ability of enhancing localisation accuracy and precision: The accuracy and 

precision are two critical issues to evaluate the performance of a localisation solution 

or system. The practicable solution proposed from an RFID-Loc framework has to 

provide a higher accuracy and precision than traditional RFID based localisation 

solutions.  

 

Analyticity and Guidance: The analyticity and guidance of RFID-Loc framework 

refers that the framework can not only offer a practically optimal use of RFID 

technique solution with enhanced localisation accuracy and precision, but also 

provide the investigation procedure to guide how to achieve this solution. Through 

investigation procedures, users can flexibly conduct their required RFID-Loc based 

system.   

 

Feasibility and Generic:  The feasibility and generic of RFID-Loc framework 

means that the framework cannot be limited on a particular type of RFID device or 

RFID infrastructure. It would avoid particular constraints of RFID hardware devices 

under current state-of-the-art of manufacture. The dissimilar requirements of 

applications would utilize it wholly.  

 

3.2 Fundamentals 

As reviewed in section 2.3.1, passive RFID localisation solutions can reach the 

highest accuracy within the current start-of-the-art in RFID localisation techniques. 

So the fundamental of RFID based 2D moving object localisation in an indoor 

environment in this thesis is from typical passive RFID object localisation solutions. 

In a typical passive RFID object localisation solution, RFID tag is used to mark a 

preliminary defined position point; RFID reader is usually attached to a mobile object, 

such as vehicles, humans and animals. Localisation technique is expected to enable 
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the RFID reader to efficiently gather information and understand the context of the 

environment by using RFID tag‟s location as well as stored information. As RFID 

reader moving, its position value can be calculated by using a number of stored RFID 

passive tags‟ information with a localisation algorithm.  

 

In an indoor environment, the targeted moving object position is denoted as ( , , )C x y z , 

which is equal to the position ( , , )R x y z  of a mobile RFID reader. A set of passive 

RFID tags with predefined position X and Y are defined as 1 2( , ) { , ,...... }N nT x y T T T . Z 

represents the height of RFID reader, which is equal to the distance HR  from 

antenna plane of a RFID reader to RFID tags plane. A set of number N of passive 

RFID tags with predefined position X and Y is defined as 
1 2{ , ,... }N nT T T T . M 

represents the number of passive RFID tags 1 2{ , ,... }M mT T T T having been detected 

by RFID reader at each time interval t. 1 1 2 2{ , },{ , },...{ , }m mx y x y x y represents the 

coordinates of passive RFID tags being detected. At each time interval t , there is a 

spatial relationship between them as shown in Equation 3.1, where 
xf  and 

yf   

respectively represent localisation algorithms to calculate the position of the targeted 

object ( , , )C x y z  from captured RFID data.  

 

          
( , , ) ( ( , , . . . , ) , ( , , . . . , ) , )

1 2 1 2m mC x y z C f x x x f y y y Rx y H    (3.1)  

 

Figure 3.1 illustrates that the indoor object moves in a passive RFID localization 

system. RFID reader in Figure 3.1 is assumed to read one passive tag at each moving 

step, in terms of Equation 3.1, the moving object trajectory in Figure 3.1 could be 

from t1 to t5.  
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     Figure 3. 1 The fundamentals of a passive RFID localisation system 

 

 

3.3 RFID-Loc Framework 

RFID-Loc framework is built to describe the whole work flow of passive RFID 

localisation system in Figure 3.1. The framework consists of three modules, which are 

RFID-Loc Infrastructure, RFID-Loc Data Filter, and RFID-Loc Localisation 

Algorithm. As shown in Figure 3.2, as the indoor object moving, a sequence of raw 

RFID tag IDs is firstly observed from a RFID-Loc Infrastructure module; and then 

RFID-Loc Data Filter module would match the sequence of raw RFID tag IDs with 

corresponding position information; also select the reliable features from these raw 

data; finally RFID-Loc Localisation Algorithm module would process selected 

features to generate a sequence of moving object position. 
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       Figure 3. 2 Work flow diagram of RFID-Loc Framework  

 

 

3.3.1 RFID-Loc Infrastructure 

RFID-Loc Infrastructure module contains the selection of RFID hardware devices and 

the configuration of RFID hardware devices, such as specification of RFID readers 

and tags, number and type of RFID readers and tags, RFID tags distribution pattern. 

This information can be represented as some fundamental parameters in an RFID-Loc 

Infrastructure module. The choice of these parameters would influence the whole 

performance of an RFID-Loc system. A benchmark naming system reading efficiency 

(SRE) is defined in an RFID-Loc framework to measure the performance of an 

RFID-Loc infrastructure module, which is the ratio of the number of successful reads 

to the total number of read attempts, as follows:  

 



43 

 

 

Practical number of success reading tags

Ideal number of expected reading tags
System Reading Efficiency (SRE)     (3.2) 

 

Where:            0 < SRE < 1 

 

Theoretically, the value of system reading efficiency in an RFID-Loc Infrastructure 

module is expected to be one, which explores that practical number of success reading 

RFID tags is equal to ideal number of reading RFID tags. However, practically, due to 

unavoidable environment noise and interference, it is impossible to achieve such a 

perfect value of system reading efficiency. The practical value of system reading 

efficiency is usually below 1. High value of system reading efficiency in an RFID-Loc 

system explores its strong ability on successfully detecting RFID passive tags. Thus, 

System Reading Efficiency is a very important bench marker to evaluate the efficiency 

of selecting and configuring RFID hardware components in an RFID-Loc 

Infrastructure module. RFID-Loc Infrastructure module aims to study how 

fundamental parameters in an RFID-Loc infrastructure module impacting on the value 

of system reading efficiency, and propose some approaches to enhance the value of 

system reading efficiency. 

 

3.3.2 RFID-Loc Data Filter 

RFID-Loc data filter module is to choose useful and reliable features from a set of 

practically captured RFID raw data. While optimal design of RFID-Loc infrastructure 

can possibly enhance the reliability of practical RFID output data by improving the 

value of system reading efficiency, the practically captured RFID raw data is still 

vague since the value of system reading efficiency is impossible to be perfect. 

Therefore, we call those regular noises and interferences leading to imperfect system 

reading efficiency of an RFID-Loc system as regular false reading errors. Due to 

these regular false reading errors, the practically captured RFID data is usually 

inaccurate and uncertain. Most of current passive RFID based localisation systems 

directly process RFID raw data to generate a target position, instead of using the 

filtered RFID data or the selected features. It is because they believe the completeness 
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and large-volume of RFID data can contain more useful and reliable information. 

However, there is an ignored issue that the completeness and large-volume of RFID 

raw data would also contain more false reading information, which can enlarge its 

impacts on the accuracy and precision of localisation results. The goal of RFID Data 

Filter module is to explore the problem on how to select useful and reliable features 

from the set of RFID raw data.  

 

3.3.3  RFID-Loc Localisation Algorithm 

RFID-Loc Localisation Algorithm module would process the selected features from 

RFID-Loc Data Filter module, for generating moving object position over time. 

Typical RFID-based localisation algorithm is to process RFID data from current time 

interval, for calculating the position value of moving object. This type of algorithms 

can be named as static localisation algorithm. Average mean method and weight 

average mean method are simply adapted into static localisation algorithms. While 

static localisation algorithm can successfully generate the moving object position 

most of time, it has a weak ability to resist some unexpected false readings errors. For 

instance at some time interval, if the value of selected features from RFID data filter 

module is zero, or equal with the value of selected features at the latest previous time 

interval; since the outcome of static algorithm merely relies on the data of the current 

time interval; static localisation algorithm would output the incorrect moving object 

position. In order to solve this problem, the possibility of other possible localisation 

algorithms has to be examined in this work. Dynamic localisation algorithm based on 

the probabilistic localisation, is possibly a potential candidate. The original idea of 

dynamic localisation algorithm in this research work takes its source at SLAM 

(Simultaneous localisation and mapping) techniques. The chapter 2 reviewed that 

there are two major dynamic localisation algorithms to solve the SLAM problem, 

which are Extended Kalman Filter and Particle Filter. The RFID-Loc localisation 

algorithm module would evaluate and justify the performance of those two techniques 

in RFID-Loc framework and attempt to propose a new dynamic localisation algorithm 

for improving the accuracy and precision of indoor moving object localisation.  
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3.4 Localisation Accuracy and Precision in 

RFID-Loc framework  

Typically as defined in section 1.1, accuracy refers to the ability of a measurement to 

match the actual value of the quantity being measured; precision refers to the ability 

of a measurement to be consistently reproduced. In a RFID-Loc framework, accuracy 

and precision are clearly defined in the following:  

 

Accuracy: The accuracy is the ability of the solution or system being able to measure 

the minimum moving distance of an object. In a RFID-Loc framework, accuracy is 

normally limited to the minimum distance between two adjacent tags of a passive 

RFID tag distribution pattern. For instance, if the distance between each two adjacent 

tags is 5 centimetre, the maximum achievable accuracy of this passive RFID 

localisation solution can be 5 centimetres.    

 

Precision: The precision is the ability of the solution or system being able to reach 

how closely and consistently the further measurements can be performed to obtain the 

ideal accurate result. Accuracy only considers the value of mean distance errors. 

However, location precision considers how consistently the localisation solution or 

system works, i.e., it is a measure of the robustness of the positioning technique as it 

reveals the variation in its performance over many trials. In a RFID-Loc framework, 

precision would be influenced by many factors in RFID infrastructure, such as 

environment noise, signal strength, tag collision etc.  

 

Thus, the measurements of a RFID-Loc based system can include the value, an error 

term and the units in Equation 3.3, for example 10 centimeters + /- 2.56 centimeters. 

Here, accuracy is up to 10 centimeters, precision is within 2.56 centimeters.  

  

           Measurement = Value × Units + Error           (3.3) 

 

  Where:   Units refer to Accuracy, Error refers to Precision.  
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In order to analyse the issues affecting accuracy and precision in a RFID-Loc 

framework, Figure 3.3 illustrates a diagram to explore the major potential issues 

affecting localisation accuracy and precision in three defined modules of a RFID-Loc 

framework. The evaluation of localisation accuracy and precision in a RFID-Loc 

system is based on a comparison between real object moving trajectory and estimated 

moving object position sequence. The difference between real object trajectory and 

estimated moving object position sequence reflects how accurate RFID-Loc system 

can be. However, there are some issues potentially leading to a difference between 

real object moving trajectory and estimated moving object position sequence. The 

first issue is false reading comes from RFID-Loc infrastructure module. The concept 

of false reading has been reviewed and defined in section 2.3. Due to the limitations 

of radio frequency signal, false reading is a typical reason leading to some errors in 

most of RFID based system, especially on multiple passive RFID tags detection 

situations. In a RFID-Loc framework, false reading error directly comes from 

RFID-Loc infrastructure module, which has been classified into two categories: 

regular and unexpected. Regular false reading error refers to some error regularly 

occurring at every time interval of indoor object moving in a RFID-Loc based 

localisation system, which is mainly from characteristic limitations of RFID-Loc 

infrastructure. Unexpected false reading error refers to some causal error causing by 

accident event, which is usually from changeable environment or erratic motion of 

moving object. Regular false reading error and unexpected false reading error are 

fundamental issues affecting accuracy and precision in an RFID-Loc based system, 

because they are directly from system hardware level and environment, which are 

unavoidable and unpredicTable. The second and third issues are Feature Selection 

Method and Localisation Algorithm. These two issues are separately delivered from 

RFID-Loc Data Filter module and RFID-Loc Localisation Algorithm module. 

Actually, for many RFID-based localisation systems, these two issues are considered 

together as a localisation algorithm in a calculation process. The impractical choice of 

them might affect some accuracy and precision of an RFID-Loc system, but they are 

not the fundamental issues causing error to localisation accuracy and precision. 
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   Figure 3. 3 Issues affecting Accuracy and Precision in RFID-Loc Framework 

 

Figure 3.3 show that all three modules of a RFID-Loc framework have some impacts 

on localisation accuracy and precision. Some benchmarks in each individual module 

has to be conducted to measure their impacts on accuracy and precision of an 

RFID-Loc system. In a RFID-Loc Infrastructure module, Tag Distance and System 

Reading efficiency can used to be benchmarks, as discussed in last section. System 

reading efficiency can reflect the ability of RFID-Loc infrastructure module on 

reducing regular false reading error. In RFID-Loc Data Filter and RFID-Loc 

Localisation Algorithm modules, methods they delivered are mainly used in 

calculation process, which probably cannot reduce regular false reading error directly; 

but the suitable use of them probably can indirectly reduce the impact of regular false 

reading error on localisation accuracy and precision in a RFID-Loc based localisation 

system, also potentially resist unexpected false reading error. While it is hard to give 

a benchmark to measure their performance, moving object position sequences can be 

directly used to measure how well the performance of RFID-Loc Data Filter module 

and RFID-Loc Localisation Algorithm are. Table 3.1 illustrates the benchmarks on 

how to measure the impacts of each module in a RFID-Loc framework on localisation 

accuracy and precision.       

 

Table 3.1 Benchmarks for measuring the impact of modules in a RFID-Loc 
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framework on accuracy and precision.   

 

  

   Hardware Level 

 

                   

                 Software Level 

 

 RFID-Loc 

Infrastructure  

 

RFID-Loc Data Filter RFID-Loc Localisation 

Algorithm 

 

Accuracy Tag Distance 

 

Moving object position 

sequence    

 

Moving object position sequence   

Precision System Reading 

Efficiency 

 

Moving object position 

sequence   

 

Moving object position sequence   

 

 

The noticeable thing here is that while the performance of RFID-Loc infrastructure on 

accuracy and precision can be measured directly by Tag Distance and System reading 

efficiency, it is better to also evaluate accuracy and precision on an given localisation 

algorithm. Regarding as measuring the performance of RFID-Loc Data Filter and 

Localisation Algorithm modules, a known RFID-Loc infrastructure must be known.  

 

3.5 Investigation Procedures  

In this section, various impacted issues of each module under RFID-Loc framework 

have to be discussed and classified. It defines and analyses the issues and 

investigation procedure of each module in terms of Table 3.1. Considering that 

RFID-Loc Data Filter and Localisation Algorithm both have to be measured by 

moving object position sequence, this thesis would put them together in one chapter to 

discuss.  

 

3.5.1 RFID-Loc Infrastructure Module 

The key point of this module is to study how to get a high system reading efficiency, 

with some strategies on selecting and configuring RFID hardware. RFID hardware 

device selection is to select the suitable specification of RFID tags or readers, such as 

operating frequency, tag size and types. RFID hardware configuration is to determine 
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how to setup those devices, such as RFID tags distribution, RFID reader sensing 

range. The investigation work in this module is summarized into several stages in 

Figure 3.4.  

 

     

       

Figure 3. 4 Investigation Procedure of RFID-Loc Infrastructure Module 

 

The issues impacting on system reading efficiency, is related to many basic RFID 

parameters in the selection of RFID devices and the configuration of RFID devices. 

The selection of RFID hardware devices includes Operating Frequency, Tag type, Tag 

read rang, Tag form and size, Tag quantity, Reader type, Reader sensing range, Reader 

quantity. The type of tag is generally classified into passive and active. The utility of 
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placing passive RFID tags can potentially reach a higher accuracy than active RFID 

tags. RFID reader is to collect data from tags and send it to an RFID system 

application. Theoretically, it is possible to install multiple RFID readers in an indoor 

environment to collect the moving object moving data. However, as considering the 

reader mobility and the collision of multiple readers, single RFID reader with 

anti-collision ability is selected to attach with the moving object, ideally using 

wireless technology to communication the captured Data. RFID hardware devices 

configuration is particularly on the arrangement of RFID passive tags. The 

fundamental of RFID-Loc system illustrates that the density of a RFID Tag 

Arrangement would determine the accuracy of RFID-Loc system, which is directly 

related to the distance between two adjacent tags. So an assumption of RFID Tag 

Arrangement as a well-proportioned grid pattern was setup, in the later chapter; other 

possible RFID Tag Arrangements would be discussed. As for the variable parameters, 

the first one is RFID tag distance of a well-proportioned grid pattern; the second one 

is the number of RFID tags placing in a well-proportioned grid pattern. Both of those 

two variable parameters can be evaluated by some experimental methods. Relying on 

the experimental findings and results analysis, a strategy can be proposed as a 

guideline on how to select and conFigure the RFID hardware devices under an 

unknown specification, with a high system reading efficiency. The explicit 

investigating tasks in this module are shown in Table 3.2. 

Table 3. 2 Explicit investigating tasks in a RFID-Loc Infrastructure Module 

 

Tasks Contents 

1 Analyse and identify the considerable issues in RFID-Loc infrastructure module  

2 Determine the controllable items and uncontrollable items in those issues 

3 Design the experimental approach to explore the relationship between those uncontrollable 

items and system reading efficiency 

4 Evaluation of RFID devices characteristics and Tag arrangement in terms of experimental 

approach 

5 Analyse and discuss the experimental findings and results 

6 Propose a strategy to design the RFID infrastructure.   

 

 



51 

 

3.5.2 RFID-Loc Data Filter Module 

Many RFID localisation solutions consider RFID data filter process as a feature 

selection stage in a particular localisation algorithm. However, RFID-Loc framework 

would consider RFID data filter as an individual module for deep investigation; the 

investigation work in this module can be summarized in Figure 3.5.  

 

      

 

     Figure 3. 5 Investigation Procedure of RFID-Loc Data Filter Module 

 

The practically captured RFID data contains some incorrect and incomplete 

information due to regular false reading error from an RFID-Loc infrastructure. 
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However, if the fundamental infrastructure of an RFID-Loc based system is 

determined, the influence of noise and interference from external indoor environment 

would be regular and stable in a period time. While regular false reading error is 

possibly variable in single time frame, it would follow some principles to occur in a 

continuous time period. Thus, the trail-and-error experiment approach can be used to 

build a false reading error estimation function. Based on false reading error estimation 

function, the different feature subsets can be evaluated and compared. In terms of the 

evaluation results, the justified feature selection method can be used to generate the 

reliable features in an RFID-Loc data filter module. The explicit investigating tasks in 

this module are shown in Table 3.3. 

Table 3. 3 Explicit investigating tasks in a RFID-Loc Data Filter Module 

 

Tasks Contents 

1 Analyze and identify the considerable issues in RFID-Loc Data Filter module  

2 Design the experimental approach to explore the false reading error distribution  

3 Capture the experimental dataset 

4 Evaluate several feature selection methods on the above dataset 

5 Analyze and discuss the experimental findings and results 

6 Propose a feature selection method   

 

 

3.5.3 RFID-Loc Localisation Algorithm Module 

RFID-Loc Localisation module is to generate moving object position by using a 

localisation algorithm to process features from an RFID-Loc data filter module. The 

goal of this module is to look for a feasible localisation approach achieving high 

accuracy and precision of an RFID-Loc system. In most RFID based localisation 

approaches, static algorithms are widely used. This research work would investigate 

dynamic localisation algorithm on processing the reliable features, and compare its 

performance to static algorithms. The investigation work in this module is 

summarized in Figure 3.6. 

 



53 

 

 

  Figure 3. 6 Investigation Procedure of RFID-Loc Localisation Algorithm Module 

Static localisation algorithm has been proved by many researchers that it is capable of 

locating object in a RFID based localisation system, but it has a weak ability on 

resisting unexpected false reading error. The crucial point in RFID-Loc Localisation 

Algorithm module would be the examination of dynamic localisation algorithm, 

whether being capable of delivering a better accurate and precise localisation 

algorithm in an RFID-Loc based system. Literature review in Chapter 2 appears that 

particle filter technique is highly recommended as a solution to deal with dynamic 

localisation problem. Hence, the investigation of dynamic localisation approaches 

would focus on particle filters based localisation approaches. The explicit 

investigating tasks in this module are shown in Table 3.4. 
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Table 3. 4 Explicit investigating tasks in a RFID-Loc Localisation Algorithm Module 

 

Tasks Contents 

1 Analyse and identify the considerable issues in RFID-Loc localisation algorithm module  

2 Analyse and compare the static tracking algorithm and dynamic tracking algorithm   

3 Simulate those algorithms and discuss the findings 

4 Propose a novel localisation algorithm for RFID-Loc use 

5 Analyse and discuss the experimental findings and results 

6 Address the limitations   

 

3.6 Summary 

In this chapter, a formal RFID-Loc framework has been built to describe the 

procedure of extracting moving object position in an indoor environment by using 

RFID technique. The design goal of this framework is to identify and analyse the 

factors impacting on the accuracy and precision of passive RFID based moving object 

position localisation system in indoor applications, further to offer some solutions to 

improve localisation accuracy and precision. The framework is addressed in details 

from three modules, which are RFID-Loc infrastructure, RFID-Loc Data Filtering, 

and RFID-Loc Localisation Algorithm. The investigation procedure and purpose of 

each module with diagram and Table has been illustrated and discussed in section 3.4 

and 3.5. Due to the requirement of experimental platform in the investigation 

procedures, chapter 4 would address the setup and configuration of experimental 

platform. Then, chapter 5 would follow the investigation procedure of RFID-Loc 

Infrastructure module, aiming to provide a design strategy of RFID Tag Distribution 

to enhance localisation accuracy and precision from RFID hardware level; chapter 6 

would follow the investigation procedure of RFID-Loc Data Filter module and 

RFID-Loc Localisation Algorithm module, aiming to propose a localisation algorithm 

to enhance localisation accuracy and precision from RFID software level.  
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Chapter 4:  

Experimental Configuration and Procedure 

In RFID-Loc Infrastructure 

4.1 Introduction 

This chapter represents the experimental configuration and procedure which are 

required by each module in RFID-Loc framework. Section 4.2 firstly examines the 

characteristics of RFID devices widely being used in passive RFID localisation 

systems. Section 4.3 would conduct the experimental platform used in this research 

work, which is based on the examination results from section 4.2. Section 4.4 outlines 

the experimental procedures which include the design of experimental approaches in 

both RFID-Loc infrastructure module and RFID-Loc data filtering module, and the 

experimental verification of proposed solutions.  

 

4.2 Characteristic Examination of RFID Device    

4.2.1 Impacted Factors in RFID-Loc Infrastructure 

The characteristic examination of RFID devices is actually one investigation 

procedure of RFID-Loc infrastructure module. The performance of an RFID-Loc 

based system is relevant to many influencing issues, i.e. the type, position, and 

direction of tags; the moving speed of moving object; the type, position and angle of 

antenna; the power, type, gain, frequency range, and number of antenna; the work 

environment. Of those issues, some are controllable factors which can be adjusted or 
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selected in the process of RFID hardware configuration; while some are 

uncontrollable factors which are already determined by RFID hardware manufactures. 

The impacted factors in RFID-Loc infrastructure module have been summarized in 

Table.3.2 and Fig.3.4. Here, a completely considerate version of Table 3.2 is extended 

in Table.4.1. The issues in Table 4.1 are classified as controllable factors and 

uncontrollable factors.  

    Table 4. 1 Impacted Factors in RFID-Loc Infrastructure Module 

 

Factors Items Available Choices  

Operating Frequency (UC) Frequency Band and Typical RFID 

Applications 

LF, HF, UHF, Microwave 

Tag Selection (UC) Kinds of Tag (Type and Class), Form 

and Size of Tag, 

Passive and Active; RO and 

WORM, Card and Button Tag; 

Reader Selection (UC) Type of Reader, Detection Ability, 

Effective Detection Area. 

Single or Multiple Detection; 

Fixed or Mobile.  

Tags Arrangement (C) Number of Tags, Tag Distance, Tag 

Pattern.  

Grid Pattern, Triangle Pattern, 

Hybrid Pattern.  

Reader Arrangement (C) Number of Readers, Position of 

Reader, Angle of Antenna 

Single or Multiple; Parallel to 

Ground.  

Environment Condition 

(C) 

Object Moving Speed, Compatibility 

and Interoperability.  

Slow Speed, Compatible with 

other Components in VR 

Notice: C is Controllable; UC is Uncontrollable.  

 

Operating Frequency: There are four major available used radio frequency ranges: 

Low Frequency (30-300KHz), High Frequency (3-30MHz), Ultra-high Frequency 

(300Mhz-3GHz), and Microwave Frequencies (1-300GHz) (Foster, Jaeger, 2007). 

Low Frequency RFID systems have a short read range (less than half a meter) and 

lower reading speed. Due to the less absorption, LF systems are more robust to 

external influences; but the bandwidth available at low frequency is limited, which 

leads to very slow data transfer rate (5kbits/second in the case ISO18000). So the Low 

Frequency RFID system is not suitable for indoor applications because it would 

impact on the RFID data transfer speed of a RFID-Loc system. Oppositely, Ultra High 

Frequency RFID systems possess a smaller wavelength, and have a higher reading 

speed and longer read distance (up to 8 meters). The high reading speed would 
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increase the probability of error detection; as a result that RFID reader would detect 

some unexpected RFID tags placed in the indoor environment from any directions. In 

this case, the object position is hardly to be identified by a unique set of RFID Ids. So 

the Ultra High Frequency RFID system is not suitable for indoor applications. 

Similarly, Microwave range RFID system is also not suitable for indoor applications 

due to its even much higher operating frequency. Consequently, High Frequency 

range can only be selected as an operating frequency for indoor applications, since it 

has a reasonable accuracy and read speed, feasible reading distance, and data transfer 

speed comparing to others frequency range.  

 

RFID Tag: Regarding the selection of RFID Tags, as reviewed in Chapter 2, due to 

the smaller sensing range, the utility of placing a high density of passive tags would 

potentially reach higher localisation accuracy than the utility of placing active tags in 

RFID-based localisation system. So RFID passive tags can be chosen as a major 

hardware component in RFID-Loc infrastructure. As for the class of RFID tag class, 

RFID-Loc system merely needs RFID tags to store a unique identifier of position; so 

RO (read only) or WORM (write once and read many) tags can be used (Sanghera, 

2007). The form and size of RFID tag must be compatible with the indoor 

environment. The card and button shape passive tags are most commonly available in 

industry application. Considering the availability of space in a indoor environment, 

the size of a RFID tag is expected as small as possible; so that RFID tag distribution 

can be as dense as possible.  

 

RFID Reader: The selection of RFID reader concerns some characteristics of RFID 

reader. RFID reader could typically support one, four or eight antenna ports (Sanghera, 

2007). In an indoor moving object localisation application, moving object is the only 

target aiming to be localized; so the position of moving object, the position of RFID 

reader and its antenna must be consistent. RFID reader in this case should be chosen 

as a single RFID reader containing one plane antenna, attached to a moving object. 

RFID reader must be anti-collision and mobile so that it can observe a large volume 

of RFID data over time as object is moving.  
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The uncontrollable factors in a RFID-Loc infrastructure module can follow guidance 

in Table 4.2:  

     Table 4. 2  Uncontrollable Factors Guidance in a RFID-Loc Infrastructure  

 

Factors Suggested Choices  

Operating Frequency (UC) High Frequency 

Tag Selection (UC) Passive, Read only, Button or Card Tag 

Reader Selection (UC) One Plane Antenna, Multiple Detection, Mobile.  

 

Thus, in terms of Table 4.2, the current widely used RFID devices are examined, 

which are normal passive Button and Card tags, and an anti-collision RFID reader 

with one plane antenna.  

 

4.2.1 Characteristic of Single Tag Operating  

In this experiment, the characteristic of single tag operating is examined. An RFID 

reader was provided for each RFID tag. Tags were attached to the front or sides of a 

moving object. The antenna of RFID reader sent the power and signal to an RFID tag, 

and the tag returned a response signal to the RFID reader. The assumption is that 

Ratio of the number of RFID reader to the number of RFID tag: 1:1; Effect of tag‟s 

orientation is ignored; Effects from metallic substances are eliminated.  

                           

a) Effect of tag size on operating range 

A tag was attached to a wheel, and the effective operating range was measured while a 

researcher pushed the wheel in front of the RFID reader at a natural speed. The testing 

results are shown in Table 4.3:      
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        Table 4. 3 Effect of RFID tag size on efficient sensing range 
 

 Button Tags  Card Tags 
Tag dimensions  3 cm (R) 

 
 5.5 (w) × 8.5 (d) cm 

Tag surface area  
 

 7.065 cm
2
  46.75 cm

2
 

Operating range 
 

1-3 cm  0 – 18 cm  

 

 

b) Effect of tag orientation 

The orientation of RFID tag would also affect the efficient operating range. The 

operating range varied as the angle of the RFID reader antenna coil relative to the tag 

antenna coil changed. This effect is referred to as the tag‟s orientation characteristic. 

When the angle of inclination from the Y-axis (parallel to the plane of the RFID 

reader antenna coil) is ,  

 

        = 0 (parallel)                        : Maximum operating range 

        = 90 (parallel)                       : Minimum operating range 

 

RFID tags were attached to the front (0) and sides (90) of a cube, and the operating 

range was tested. The operating characteristic was also checked with values of 0, 30, 

60 and 90 degrees. The test was conducted with the cube at various angles, and the 

effect of the tag angle on the operating range was measured in Table 4.4. It can be 

seem that when the card tag angle was 90, the operating range decreased by 30%.  

 

               Table 4. 4 Effect of RFID tag orientation  

 

 Button Tags  Card Tags 
Tag angle  0      30      60      90  

     
 0       30       60        90  

Operating range 
 

1cm   1cm     1cm     1cm 18cm     14cm    14cm     12cm 
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4.2.2 Characteristic of Single Reader Operating  

The antenna of RFID reader is a plane with 31 × 62 cm
2
, which can be calibrated 

approximately as a number of gird (3cm × 4cm). RFID tags were located into 

different positions in Figure 4.1.         

 

 

       Figure 4. 1 Testing a effective detection area of RFID reader antenna 

 

The test was conducted with attached tags of various sizes, and the effect of the tag 

size on the range was measured. The results are shown in Figure 4.2 and Table 4.5. 

 

           Table 4. 5 Effect of RFID Reader Operating Range 

 

 Button Tags  Card Tags 
Antenna dimensions  31 × 62 cm

2 

 

 31 × 62 cm
2 

Antenna effective area  
 

470 cm
2 

 1800 cm
2 

Operating range 
 

1cm   14cm  

 

Operating range          

RFID 

Tag 

 

 

Effective  

Area of a 

RFID 

Reader 

Antenna 
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Figure 4. 2 Effective detection area of a RFID reader antenna for button and card tags.  

 

4.2.3 Characteristics of Multiple Tags Operating  

The multiple passive tags are distributed on the floor in different numbers, and then 

testing the success detection rates for different numbers of tags. For this test, the 

movement velocity of RFID reader was relative low, and communication data volume 

was also low. The results are shown in Table 4.6, when the number of RFID tags was 

10 or more, operating failures occurred. If the movement velocity or data volume 

were increased, the operating success rate would decrease further. Meanwhile, the 

card tags perform a higher success detection rate than the button tags in multiple tags 

operating condition.  

   Table 4. 6 Characteristics of Multiple Tags Operating  

 

 Button Tags  Card Tags 
Number of Tags  5        10       15    20  

     
 5        8        10        15  

Operating 
successful rate 
 

60%      50%     40%   30%    100%     100%     100%      93% 

RFID antenna 

effective detection 

area for card tag  

 

 

 

RFID antenna 

effective detection 

area for button tag 

8 cm 

3 cm 
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4.3 Experimental Configuration     

By examining the characteristics of RFID devices, passive RFID card tags have a 

longer effective sensing distance than passive RFID button tag; it may because RFID 

card tag has a larger area to reflect the radio frequency signal. However, due to a 

smaller size of button tags, the density of passive RFID button tags distributing in an 

assumed grid pattern can be higher than the card tags, which potentially lead to 

smaller tag distance and higher object localisation accuracy. Considering this issue, 

passive RFID button tags are more feasible to be used in RFID-Loc infrastructure 

with providing potential higher localisation accuracy. Also, the results show that the 

orientation of RFID tags has a slight influence on the successful detection of RFID 

reader within an effective sensing range. The reason is that passive RFID tags cannot 

send signals continuously and RFID reader communicates with passive RFID tags by 

coupling techniques; so if passive RFID tags within an effective sensing zone of 

RFID reader, the distance between RFID tags and RFID readers has stronger impacts 

on the successful detection than the angle of RFID tags. As for the characteristics of 

multiple tags operating, RF wave travels from the transmitter to the receiver, it can be 

affected by various factors, i.e. absorption, attenuation, dielectric effect, diffraction, 

free space loss, interference, reflection, refraction, scattering. Both passive RFID card 

tags and button tags cannot be detected completely in practical, which means that the 

collision of passive RFID tags occurs and cannot be removed. The experiment of 

multiple tags operating is based on a dense RFID tags environment; the collision 

between passive RFID tags is sensitive and uncertain. False reading error in an 

RFID-Loc infrastructure is an indefensible issue.  

 

Therefore, the parameters of RFID devices configuration in the experiment platform 

of this thesis are as follow: 
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Operating frequency:     13.56 MHz  

Antenna:   directional rectangle panel of size 66 × 30 cm
2
  

Number of RFID reader: One 

Type of RFID tag:  Passive  

RFID reader: mobile and anti-collision  

RFID Tag Arrangement pattern: A non-overlap grid pattern  

RFID Tag form and size: Card Tag, 8.5×5.5cm
2
 

                      Button Tag, 3cm 

Height of RFID reader :  Card Tag Pattern, 10cm  

                       Button Tag Pattern, 1cm  

  Effective reading area of an RFID reader’s antenna : Card Tag, 35 × 65 cm2 

                                             Button Tag, 31 × 58 cm2 

 

4.4 Experimental Procedure 

4.4.1 RFID-Loc Infrastructure Module 

As mentioned in Chapter 3, system reading efficiency can be used as a benchmark to 

evaluate the design of an RFID-Loc infrastructure. The successful design of an 

RFID-Loc infrastructure can deliver a stably high system reading efficiency over time, 

resulting in a precise indoor object localisation. An experimental approach is designed 

in this section to explore the influence of the controllable factors on system reading 

efficiency in an RFID-Loc infrastructure. The proposed experimental approach would 

focus on a comprehensive study of RFID Tag Arrangement. A qualitative study on the 

relationship between Global Tag Density and System Reading Efficiency is firstly 

carried out in this part. Secondly, a qualitative study on the relationship between 

Directional Tag Density and System Reading Efficiency is done. The specific content 

of this experimental approach is listed in the Table 4.7  
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   Table 4. 7 Experimental procedure in an RFID-Loc Infrastructure module 

 

Parts Contents Items  

Study on  

RFID Tag 

Distribution 

Global Tag Density and System 

Reading Efficiency  

Reduced Tag number   

Directional Tag Density and 

System Reading Efficiency  

Reduced Columns of Tag Pattern  

Reduced Rows of Tag Pattern  

Reduced Both Rows and Columns of Tag 

Pattern  

 

4.4.2 RFID-Loc Data Filter Module 

In this module, the experimental approach is designed to explore how regular false 

reading errors influencing on RFID raw data under a given RFID-Loc infrastructure. 

The experimental approach is designed into two parts. The first part is to collect the 

required RFID data; the second part is the analysis of RFID data and discussion. Data 

collection aims to observe RFID raw data from varied situations in order to analyse a 

distribution of regular false reading error. Most of RFID devices in the RFID-Loc 

infrastructure are fixed and unchangeable; so the moving trajectory of indoor object is 

an issue to be considered in this experiment. Indoor object moving trajectory in this 

experiment is assumed to be three types: moving along X axis; moving along Y axis; 

randomly moving in the area. Another concerned issue is time period of each time 

interval. RFID reader requires a time period to collect a sufficient RFID raw data; if 

time period is too short, RFID reader cannot observe a fulfilled data; if time period is 

too long, time gap between two steps of localising a moving object is not satisfied 

with indoor requirements. By testing some time intervals (2 minutes, 1 minute, 40 

seconds, 20 seconds and 10 seconds), 40 seconds at each time interval is an 

acceptable time period to observe a sufficient RFID data. The number of time interval 

sequence is given as 25. As for the RFID data analysis, the first step is to investigate 

the occurring possibility of the type‟s regular false-error reading in terms of collected 

RFID data. The second step is to conduct an evaluation function by distribution of 

these occurring possibilities of regular false-error reading. The conducted evaluation 

function can be used to justify feature selection methods.  
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4.4.3 Experimental Verification of RFID-Loc Framework 

The experimental verification of RFID-Loc mainly includes three parts, which are:  

a): verification of new strategies of RFID Tag Arrangement delivered from RFID-Loc 

infrastructure module on improving accuracy and precision.  

b): verification of new localisation algorithms from RFID-Loc localisation algorithm 

module on improving accuracy and precision.  

c): verification of the whole solution from RFID-Loc framework on improving 

accuracy and precision 

The experimental data would be from three moving object trajectories, which are X 

(vertical direction) axis moving, Y (horizontal direction) axis moving and both X axis 

and Y axis moving.   

 

4.5 Summary 

This chapter represents the experimental configuration and procedure which are 

required by the investigation procedure of each module in RFID-Loc framework. The 

characteristics of RFID devices widely used in passive RFID localisation systems are 

examined in section 4.2, passive RFID card and button tag, HF based anti-collision 

RFID reader are selected as the major experimental devices in this thesis. Section 4.3 

conducts the experimental platform used in this research work. The relevant 

experimental procedures which are used in RFID-Loc framework are explained and 

outlined in section 4.4 including the design of experimental approaches in both 

RFID-Loc infrastructure module and RFID-Loc data filtering module, and the 

experimental verification of potentially proposed solutions. The next chapter focuses 

on how to design an RFID Tag Arrangement strategy to improve the localisation 

accuracy and precision.  
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Chapter 5:  

RFID Tag Arrangement 

5.1 Introduction 

Section 4.2 has addressed that RFID-Loc infrastructure module includes the 

uncontrollable factors of selecting RFID hardware devices and the controllable factors 

of their deployment. Under a given experimental configuration with known 

uncontrollable factors in Chapter 4, this chapter would focus on how to arrange RFID 

tags distribution for improving localisation accuracy and precision in a RFID-Loc 

framework. Section 5.3 defines a model of measuring accuracy and precision from 

RFID-Loc infrastructure level for indoor object localisation system. Then, by carrying 

on the experimental procedures defined in last chapter, section 5.4 conducts a function 

to reflect the relationship between RFID Tag Distribution and localisation precision. A 

sparse RFID Tag Distribution is proposed for an RFID-Loc solution in section 5.5, 

with the capability of enhancing system reading efficiency from RFID infrastructure 

level, so as to improve precision of RFID-Loc solution.  

 

5.2 Fundamental Concept   

RFID tags arrangement is to study how to distribute RFID passive tags as a pattern. 

Typically, RFID Tag Arrangements can be classified into four types by two criterions 

in Figure 5.1, i.e. Random Distribution and Regular Distribution, Overlap distribution 

and Non-overlap Distribution.  
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Random Distribution                  Regular Distribution 

     

Non-Overlap Distribution              Overlap Distribution           

Figure 5. 1 Typical classification of Tag Arrangement patterns  

 

RFID tag pattern can be also consisted of multiple types‟ tags, which are named as 

Uniform Distribution and Hybrid Distribution in Figure 5.2. The pattern of Uniform 

Tag Distribution refers that the distributed passive tags are uniformly made from the 

same type. The pattern of Hybrid Tag Distribution means that the distributed passive 

tags are mixed by various types.  



68 

 

    

Uniform Distribution                   Hybrid Distribution 

     Figure 5. 2 Complemented classification of Tag Arrangement patterns  

 

As mentioned in Chapter 1, 2D localisation system for an indoor moving object 

application demands a precise and homogeneous accuracy. Random tag distribution 

cannot ensure a homogeneous accuracy in a 2D space, because tags in this pattern are 

placed in a random and inhomogeneous manner. Overlap tag distribution would 

enhance the tag collision due to the shadowing affect between adjacent tags. So the 

RFID passive tag pattern in an RFID-Loc infrastructure can be initially assumed as a 

regular, non-overlap and well-proportioned grid pattern. As illustrated in Figure.5.3, a 

well-proportioned Grid Pattern can be presented by denoting four parameters C p , 

Rp , Dx  and Dy  in an effective detection area of RFID reader antenna, where C p  

is the number of grid point placing on each column of the Grid pattern; Rp  is the 

number of grid point placing on each row of the Grid pattern; Dx  is the distance 

between each two neighbouring grid points along the row direction of the Grid pattern; 

Dy  is the distance between each two neighbouring gird points along the column 

direction of the Grid pattern. Regarding to this Grid pattern, most of passive RFID 

based object localisation system would make RFID Tag Distribution fully cover each 

grid point of the Grid pattern, where Cg  and Rg  represent the number of passive 

RFID tag placing on column and row direction of the Grid pattern respectively.  
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Figure 5. 3 Typical Grid Pattern fully covered by passive RFID Tag Distribution 

 

And then the relationship between C p , Rp  and Cg , Rg can be written as:  

 

           
C Cp g

R Rp g
                               5.1 

 

Given the above assumption, the firstly controllable factors in an RFID-Loc 

infrastructure include that tags distance and size, tags density, the column and row of 

the pattern. The secondly controllable factors in an RFID infrastructure involve the 

effective reading area of RFID reader, the size of Antenna, the height of RFID reader 

and the angle of antenna. These controllable factors are highly sensitive and relevant 

to the state-of-the-art of current RFID manufactures. Table 5.1 shows a list of 

parameters relevant to the controllable factors in an RFID-Loc Infrastructure and 

mathematical symbolization in this thesis.  
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Table 5. 1 Mathematical Symbolization of parameters 

 

Factors Mathematical Symbolization of Parameters 

Tag 
Arrangement 
(C) 

N:   Number of grid points placing in an effective detection area of RFID reader  

Antenna,  

C p :  Number of grid point placing on each column of the Grid pattern. 

Rp :  Number of grid point placing on each row of the Grid pattern.  

x
D :  Distance of tags on X axis in the RFID reader detection area. 

y
D :  Distance of tags on Y axis in the RFID reader detection area.  

M:   Number of passive RFID tags distributing in an effective detection area of 

  RFID reader antenna  

Cg :   Number of RFID Tags placing on each column of the Grid pattern. 

Rg :   Number of RFID Tags placing on each row of the Grid pattern.  

Reader 
Arrangement 
(C) 

H :    Height of RFID reader effective detection 

W_R :  Width of the RFID reader effective detected elliptical area.  

L_R :   Length of the RFID reader effective detected elliptical area.  

 :   Angle of Antenna to the tag pattern. 

 

 

5.3 Measure for Localisation Accuracy and 

Precision  

This section defines a model of measuring accuracy and precision from RFID-Loc 

infrastructure level for indoor object localisation system. This model contains two 

Equations, which are used to separately measure the accuracy and precision in a 

RFID-Loc based system. With a given RFID tag distribution based on Grid pattern 

shown in Figure. 5.3, the number of grid points placing in an effective detection area 

of RFID reader antenna has been denoted as N , the number of passive RFID tags 

distributing in an effective detection area of RFID reader antenna has been denoted 

as M , where N and M satisfy Equation 5.2.  
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N C Rp p

M C Rg g
                                  5.2 

 

Typically, the accuracy and precision are relevant to many influencing issues, i.e. the 

type, position, and direction of tags; the moving speed of object; the type, position 

and angle of antenna; the power, type, gain, frequency range, and number of antenna; 

the work environment; localisation algorithm. This chapter merely focuses on the 

impacted factors of RFID Tag Arrangement on localisation accuracy and precision in 

a passive RFID object localisation system. But, the localisation algorithm used in our 

verification is initially assumed as an effective and simple localisation method 

proposed by Han (Han, 2007), as follows:  

 

( , ,... ) ( , ,... )1 2 1 2
2

( , ,... ) ( , ,... )1 2 1 2
2

Min x x x Max x x xm mfx

Min y y y Max y y ym mf y

               
 5.3 

 

 

Here, 1 1 2 2{ , },{ , },...{ , }m mx y x y x y represents the coordinates of passive RFID tags 

being detected at each time interval t ; 
xf  and 

yf  respectively represent localisation 

algorithms to calculate the position of the targeted position of object from captured 

RFID data. Regarding to the description of Grid pattern in Figure.5.3 and Table 5.1, 

the parameters C p  and Rp  has determined a density of Grid pattern, so the 

localisation accuracy would be decided by the parameters xD  and 
yD . Then the first 

Equation of this model to measure the localisation accuracy can be written as:  

 

                  A c c u r r a c y :
A Dx x

A Dy y
                       5.4 

 

In order to quantitively evaluate the impacts of RFID Tag Distribution on localisation 

precision, a benchmark named as system reading efficiency (defined in Chapter 3) is 

used to reflect the successful detection ability from RFID-Loc infrastructure level in a 

RFID-Loc based system.  
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If RFID reader can successfully detect any passive tags within its effective detection 

area, the value of SRE would be “1”, which means all readings have been successfully 

attempted. Practically, it is impossible to consistently get all attempted RFID tag 

detections, the practical value of SRE can be a value between “0” and “1”. As for 

RFID Tag Distribution, the value of SRE would be relevant to the number of passive 

RFID tags distributing in an effective detection area of RFID reader antenna M . Then 

the impacts of RFID Tag Distribution on system reading efficiency can be initially 

conducted into a function, which is relevant to the parameters M ; this function can be 

written as:  

  

( ) ( , )F f M f C Rg gSRE
                               5.5 

 

Expect system reading efficiency, considering the localisation algorithm in Equation 

5.3, localisation precision is also determined by two factors of RFID Tag Distribution, 

which are Cg  and Rg . Practically, the value of system reading efficiency in a dense 

RFID tag environment is not high due to tag collision. Considering that passive RFID 

tags producing from one manufacturer, here the detection ability of individual passive 

RFID tag within an effective reading area of RFID reader can be approximately 

assumed as equivalent, so the value of SRE can be recognized as the probability of an 

individual passive RFID tag being detected within an effective reading area of RFID 

reader. The successful process of localisation algorithm in Equation 5.3 has to 

guarantee a condition that at each time interval, RFID reader is capable of detecting at 

least one RFID tag along each border of the effective reading area of RFID reader, 

with respectively representing the feature value of ( , , ... )
1 2

Min x x x
m

, ( , , ... )
1 2

Max x x x
m

 

and ( , , ... )
1 2

Min y y y
m

, ( , , ... )
1 2

Max y y y
m

. Consequently, localisation precision here can 

be recognized as the possible number of RFID tag being detected along each border of 

effective reading area of RFID reader. If the value of possible number is higher, it 

means that localisation precision is smaller. Then the second Equation of this model 

to measure localisation precision can be written as:  

 

( )
Precision :

( )

P R F R f Mx g gSRE

P C F C f My g gSRE

                        5.6 
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In order to measure the practical value of system reading efficiency, an evaluation 

function is defined to measure it in the experiments. Theoretically, if an indoor 

environment was not interfered, the value of system reading efficiency in an 

RFID-Loc infrastructure can be approximately stable as object is moving. Practically, 

there are some uncertain issues potentially influencing the value of system reading 

efficiency at individual measurement, i.e. the changeable moving speed, variable 

environment interference. Therefore, an average mean method is used to calculate the 

value of system reading efficiency over a number of time intervals as the practical 

value of system reading efficiency. An evaluation function for system reading 

efficiency in this experiment is defined to measure the practical value of system 

reading efficiency.  

       

       Figure 5. 4 Practical Setup for measuring SRE by Equation 5.7 

 

Figure 5.4 illustrate s a diagram of a RFID-Loc infrastructure setup with a given experiment 

platform. From Figure 5.4, it can be seen that a grid pattern of RFID tags is placed on the floor 

with tag distance of 
x

D  on X axis and 
y

D on Y axis. The number of RFID tags placing in an 

effective detection area is 10; the number of Column and Row in an effective detection area of 

RFID antenna is separately 5 and 2. RFID reader can only move along the X direction in a time 

intervals of T. At each individual time interval, e.g. Tm, RFID reader is assumed to practically 

detect a certain number of passive RFID tags 
t

M . Practical value of System Reading Efficiency 

(SRE) can be calculated by using Equation 5.7. 
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1 1

T T

t t

g g

m m

SRE
M T C R T

                             5.7 

 

Where :    

SRE : Value of System Reading Efficiency  

T  :  Number of time steps  

M :  Number of passive RFID tags distributing in an effective detection area of RFID 

reader antenna 

tm : Number of RFID tags being practically detected at time step t.  

Cg  : Number of passive RFID tag placing on column direction of the Grid pattern  

Rg  : Number of passive RFID tag placing on row direction of the Grid pattern  

 

Additionally, considering the parameters of experiments configuration in Chapter 4.3, 

RFID reader has to wait a sufficient time period until as many as RFID tags within a 

effective detection area of RFID antenna are scanned and their data being processed. 

Regarding as the experimental testing, the feasible period is tested by 20 seconds, 40 

seconds, 60 seconds and 120 seconds. The testing results show that the period of 40 

seconds can approximately get a system reading efficiency up to 50%, and the period 

of 60 seconds and 120 seconds cannot obviously improve a value of system reading 

efficiency, which is about 52% and 55%. So in this experiment, the period of every 

time interval is given as 40 seconds.  
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5.4 Investigation of RFID Tag Distribution  

This section would mainly consider Global tags density and RFID tags arrangement in 

a RFID infrastructure as the key influencing factors. RFID tags density is normally a 

value relating to the size of an effective detection area of RFID reader and the number 

of passive RFID tags in this area. Considering that the size of an effective detection 

area of RFID reader is already fixed once the uncontrollable factors in Section 4.2 

have been determined, global tag density directly depends on the number of tags in 

the effective RFID reading area: M . If RFID tags are placing on the floor, the 

effective operating range of RFID tag would be the height of RFID antenna, and the 

effective reading area of RFID antenna is normally affected by the height of RFID 

antenna. So the investigation in this section would use the number of RFID tags in an 

effective RFID reading area to instead of the representation of tag density. The angle 

of RFID reader antenna is parallel to the plane placing passive RFID tags. Ideally, 

RFID reader would be expected to detect sufficient RFID tags within an effective 

sensing area at each time interval, which is 40 seconds.  

 

5.4.1 Global Tag Density and System Reading Efficiency  

Global Tag Density refers to the whole number of RFID tags placing M  in an 

efficient detection area of RFID antenna. Under the given experimental platform, if 

RFID tags are chosen as button tag or card tag, height of RFID reader would be 

determined by an effective sensing range of RFID tags, so that an effective detection 

area of RFID antenna would be known as a constant value. The investigation of 

relationship between Global Tag Density and System Reading Efficiency is actually to 

study the impact of total number of RFID tags in an efficient detection area M  on 

system reading efficiency. Therefore, in this experiment, it carries out a procedure of 

regularly reducing M  in a given constant effective reading area, and analyzes its 

impacts on system reading efficiency. The procedure of reducing M  in this section 

is to regularly make a reduction in both columns and rows of different RFID tags 

pattern.  
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The first tested pattern is based on RFID button tags. RFID Button tags are placed in a 

highly dense grid pattern, with 11×4 number of RFID tags. Then gC  and gR  in 

this grid pattern would be reduced regularly in 5 steps, with the number of RFID card 

tags as: 6×4, 6×2, 4×2, 3×2, 3×1, as shown in Figure 5.5. The explicit information of 

RFID button tag patterns in Figure 5.5 is shown in Table 5.2. 

     

Figure 5. 5 Experiment process of reducing Global Tag Density of RFID Button Tags 

from Step 1 to Step 6  

 

     Table 5. 2 Explicit Value of RFID Button Patterns in Figure 4.6 

 

 Step 1 
 

Step2 Step 3 Step 4 Step 5 Step 6 

M 
 

44 24 12 8 6 3 

gR  

 

11 6 6 4 3 3 

gC  4 4 2 2 2 1 

 

x
D (cm) 

 

 
5 

 
10 

 
10 

 
15 

 
30 

 
30 

y
D (cm) 

 

8 8 16 16 16 32 
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From Table 5.2, it appears that M has reduced from 44 to 3. And the value of system 

reading efficiency at different value of M is measured and drawn in Figure 5.6.  

    

 

Figure 5. 6 SRE evaluation on reducing M on RFID Button tag patterns  

 

Figure 5.6 illustrates that as the reduction of M, the value of system reading efficiency 

would gradually increase. However, the increasing speed of this line in Figure 4.8 is 

not consistently constant. On the condition that RFID Button tag pattern is under a 

low-level tag density, the value of system reading efficiency would sharply increase; 

oppositely, on the condition that RFID Button tag pattern is under a high-level tag 

density, the value of system reading efficiency would not dramatically increase.  

 

The second tested pattern is based on RFID Card tags. RFID Card tags are placed in a 

seamless non-overlap grid pattern, with 12×5 number of RFID tags. Then gC  and 

gR  in this seamless non-overlap grid pattern would be reduced regularly in 7 steps, 

with the number of RFID card tags as: 9×3, 6×3, 3×3, 3×2, 2×2, 2×1, as shown in 

Figure 5.7. The explicit information of RFID card tag patterns in Figure 5.7 is shown 

in Table 5.3. 
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Figure 5. 7 Experiment process of reducing Global Tag Density of Card Tags from 

Step 1 to Step 7 

 

     Table 5. 3 Explicit Value of RFID Card Tag Patterns in Figure 5.7 

 

 Step 1 
 

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 

M 
 

60 36 18 9 6 4 2 

gR  

 

12 12 6 3 3 2 2 

gC  5 3 3 3 2 2 1 

 

x
D (cm) 

 

 
5.5 

 
5.5 

 
11 

 
22 

 
22 

 
32 

 
32 

y
D (cm) 

 

8 16 16 16 32 32 64 

 

 

From Table 5.3, it appears that M has reduced from 60 to 2. And the value of system 

reading efficiency at each M is measured and drawn in Figure 5.8. 



79 

 

 
      Figure 5. 8 SRE evaluation on reducing M on RFID Card tag patterns.  

 

Figure 5.8 indicates that as the reduction of M, the value of system reading efficiency 

would also gradually increase. The increasing speed of this line in Figure 5.8 is not 

consistently constant, as similar as the phenomenon in RFID button tags pattern in 

Figure 5.6.  

 

The experimental results in Figure 5.6 and 5.8 explore that on both passive RFID 

button and card tag pattern conditions, System Reading Efficiency can be reduced as 

M increasing. The results also reflect that the value of SRE can be continuously 

enhanced by global tag density in a grid RFID tag pattern, which means that the 

precision of RFID object localisation system can be improved. However, as the 

reduction of global tag density in a grid RFID tag pattern, Tag distance 
x

D  and 
y

D  

would be increased, which leads to the loss of accuracy in an RFID object localisation 

system. Oppositely, in order to achieve a high accuracy of RFID based object 

localisation system, RFID tag pattern has to be highly dense with a small Tag distance, 

but this action would reduce the value of system reading efficiency and lead to a lower 

localisation precision. Additionally, Figure 5.6 and 5.8 also shows that given a similar 

tag distance, RFID button tags can offer a higher system reading efficiency than RFID 
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card tags. Consequently, the recommended RFID tag pattern in a passive RFID object 

localisation system has to be based on a balance of global tag density, system reading 

efficiency and tag distance.  

 

5.4.2 Directional Tag Density and System Reading Efficiency  

Experiments in last section are under an assumption that the reduction of global tag 

density is regular. While passive RFID tags are manufactured from the uniform 

industrial standard, behaviour of each individual RFID tag in this grid pattern is 

usually not equivalent. This section gives a qualitative research on exploring the 

relationship between directional tag density and system reading efficiency (SRE). 

Directional tag density refers to the number of RFID tags placing on individual row or 

column directions in an efficient detection area. The effect of system reading 

efficiency can be examined by merely reducing gC  in a RFID tag pattern, or merely 

reducing gR  in a RFID tag pattern.  

 

Impact of merely reducing Column’s number on SRE 

 

In this experiment, it evaluates the impact of merely reducing gR in a given grid tag 

pattern on system reading efficiency. As for RFID card tags, it starts from a seamless 

grid tag pattern of Step 1 in Figure 5.5. Then it gradually reduces gR  in this pattern 

from 12 to 6, 3,2, , with a unchangeable gC  = 5 and 
y

D = 8cm. As for RFID button 

tags, Figure 5.9 reflects that under a pattern with highly-dense global tag density, 

system reading efficiency of RFID button tags does not change dramatically, it begins 

from a grid based button tag pattern with gR = 4 and 
x

D = 5cm, gC = 4 and 
y

D = 

8cm. Then it gradually reduces gR  in this pattern from 4 to 3, 2,1, with a 

unchangeable gC  = 4 and 
y

D = 8cm. The explicit value of experiments Pattern is 

shown in Table 5.4. The experiment results are illustrated in Figure 5.9.  
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    Table 5. 4 Explicit Value of RFID Pattern in merely reducing gR  

 

 Pattern  
Information 

Step 1 
 

Step2 Step3 Step4 

Card  
Tag 
 

M 60 30 20 10 

gR  12 6 4 2 

gC  5 5 5 5 

x
D (cm) 5.5 11 16 32 

y
D (cm) 8 8 8 8 

Button  
Tag  

M 16 12 8 4 

gR  4 3 2 1 

gC  4 4 4 4 

x
D (cm) 5 10 10 15 

y
D (cm) 8 8 8 8 

 

 
 

    Figure 5. 9 SRE evaluation on merely reducing gR  on grid tag pattern 

 

From Figure 5.9, it appears that as the reduction of gR , the general trend of SRE is 

increasing. The reason is that the total number of RFID tags in an effective detection 

area M is reduced so that the impact of RFID passive tag collision is less. On card 
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tags situations, with the reduction of column‟s number, the value of SRE initially 

increases to a maximum peak, and then reduces bit. On button tag situations, with the 

reduction of column‟s number, the value of SRE firstly decreases to a peak, and then 

increases rapidly.  

 

Impact of merely reducing Row’s number on SRE 

 

In this experiment, it evaluates the impact of merely reducing gC  in a given grid tag 

pattern on system reading efficiency. As for RFID card tags, it starts from a seamless 

tag pattern of Step 1 in Figure 5.7. Then it gradually reduces gC  in this pattern from 

5 to 4, 3,2,1, with a unchangeable gR  = 12 and 
x

D = 5.5 cm. As for RFID button 

tags, it has a smaller size with 3 centimeters radius so this time it begins from a grid 

tag pattern with smaller tag distance 
y

D = 5cm, then it gives a higher value of gC = 7, 

also with gR = 6 and 
x

D = 10cm.In the following steps, it gradually reduces gC  in 

this pattern from 7 to 4, 3, 2,1, with a unchangeable gR = 6 and 
x

D = 10cm. The 

explicit value of experiments Pattern is shown in Table 5.5. The experiment results are 

illustrated in Figure 5.10.  

 

Table 5. 5 Explicit Value of RFID Pattern in Merely reducing gC  

 

 Pattern  
Information 
 

Step 1 Step 2 Step 3 Step 4 Step 5 

Card  
Tag 
 

M 60 48 36 24 12 

gR  12 12 12 12 12 

gC  5 4 3 2 1 

x
D (cm) 5.5 5.5 5.5 5.5 5.5 

y
D (cm) 8 15 20 30 50 

Butt
on  
Tag  

M 42 24 18 12 6 

gR  6 6 6 6 6 

gC  7 4 3 2 1 

x
D (cm) 10 10 10 10 10 

y
D (cm) 5 8 10 15 20 
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Figure 5. 10 SRE evaluation on reducing Rows‟ number gC on grid tag pattern.  

 

Figure 5.10 illustrates the impact of reducing gC  in a grid tag pattern on SRE is 

similar as the reduction of gR  in last section. As the reduction of row‟s number, the 

trend of SRE is also increasing. However, the growth of SRE in Figure 5.10 is not 

monotone, even with some points out of the expectation.  

 

Actually, the value of SRE is a ratio related to both the practical number of success 

reading tags and desired number of reading tags. As the reduction of column‟s number 

or the reduction of row‟s number in a grid tag pattern, both the desired number of 

reading tags and practical number of success reading tags are actually reduced. The 

value of SRE is merely to reflect their ratio of change, so the ratio of change is not 

always monotone. Additionally, comparing to button tag, the circuit area of card tag is 

larger, so the SRE of card tags pattern are less impacted by the reduction of rows or 

columns than the SRE of button tags pattern.  
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Comparison of Directional and Global tag density’s Impact on SRE  

 

The impact of directional and global tag density on SRE are compared by respectively 

reduce both the columns‟ number and rows‟ number on card tags pattern in this 

section. Card tag curve of reducing rows‟ number in Figure 5.10 is selected as a case, 

if on this case, the value of given gC  is reducing from 12 to 6 and 4, the Card tag 

curve of reducing rows‟ number in Figure 5.11 is drawn by the same experimental 

procedure in Table 5.5, Figure 5.11 shows their performance on gC  = 12, 6 and 3.  

 
            

Figure 5. 11 SRE on reducing both Row and Column‟s number of Card Tag Pattern  

 

Figure 5.11 indicates that as the reduction of columns „number in a RFID card tag 

grid pattern, the curve describing SRE with the reduction of row’s number would 

clearly move upward, without any collisions. It implies that the major issue impacting 

on SRE is the total number of tags placing in RFID reader effective detection area, not 

directional tag density of a RFID grid pattern. The number of rows and columns on 

grid tag pattern also are some issues influencing on SRE, but they are not the key 

issues. Regarding to the assumption in part A, the influence of global tag density in 
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this experiment can be equal to the influence of the number of tags M in an effective 

RFID antenna reading area. In other words, global tag density on a grid tag pattern is 

the key issue influencing the value of SRE. The directional tag density on tag pattern 

is the secondary issue influencing the value of SRE.  

 

5.4.3 RFID Reader Moving Direction and System Reading 

Efficiency  

The impact of moving direction of RFID reader on System Reading Efficiency (SRE) 

is investigated in this section. Typically, a RFID reader can move along either its 

antenna‟s width or length directions, as shown in Figure 5.12. 

 

 

         Figure 5. 12 Two typical RFID reader‟s moving directions 

 

The antenna of RFID reader used in the experiment is rectangle. Theoretically, RFID 

reader can move forward from any degree, but for the sake of simplicity, it initially 

considers RFID reader moves along the direction of its length axis A or its width axis 

B. From Figure 5.12, it illustrates two directions of RFID reader‟s moving, one is 

moving along the length direction of antenna of RFID reader, the other is moving 

along the width direction of antenna of RFID reader.  
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Firstly, RFID card tag pattern is used to test the impact of RFID reader‟s moving 

directions on system reading efficiency. Under given experimental platform, if five 

card tag patterns are initially used with 
x

D = 
y

D = 8cm, 10cm, 20cm, 30cm, 40cm; 

the corresponding number of  row and columns on RFID reader moving direction A 

and B can be shown in Table 5.6. 

 

Table 5. 6 Explicit Value of Card Tag Pattern on Testing impacts of RFID moving 

directions A and B.  

 

 Pattern  
Information 

 Step 1 Step 2 Step 3 Step 4 Step 5 

  
Directions 

Num 40 24 12 6 1 

x
D (cm) 8 10 20 30 40 

y
D (cm) 8 10 20 30 40 

A gR  8 6 4 3 1 

gC  5 4 3 2 1 

B gR  5 4 3 2 1 

gC  8 6 4 3 1 

 

 

The previous sections have conducted that global tag density is the major issue 

affecting the value of system reading efficiency, so while two directions give different 

value of gR  and gC  on the same RFID grid pattern, M has not changed yet. So M 

is used as the index of X axis for evaluation.  The evaluation results of system 

reading efficiency on above five RFID card tag rectangle patterns are shown in Figure 

5.13. 
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Figure 5. 13 SRE evaluation with different RFID reader moving directions on RFID 

Card Tag Pattern. 

 

Figure 5.13 firstly has proved the argument in previous section that global tag density 

on a grid tag pattern is the key issue influencing the value of SRE. Also, under an 

identical RFID card tag grid pattern, RFID reader moving directions A and B can give 

an approximately identical value of system reading efficiency on a middle-level or 

high-level global tag density conditions. However, on a low-level global tag density 

conditions, RFID reader moving direction B get a much higher value of system 

reading efficiency than RFID reader moving direction A.   

 

Secondly, RFID Button tag pattern is used to test the impact of RFID reader‟s moving 

directions on system reading efficiency. Under given experimental platform, if four 

button tag patterns are initially used with 
x

D = 
y

D = 5cm, 10cm, 20cm, 30cm; the 

corresponding number of  row and columns on RFID reader moving direction A and 

B can be shown in Table 5.7. 
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Table 5. 7 Explicit Value of Button Tag Pattern on Testing impacts of RFID moving 

directions A and B.  

 

 Pattern  
Information 

 Step 1 
 
 

Step 2 Step 3 Step 4 

 Directions Num 84 24 6 2 

x
D (cm) 5 10 20 30 

y
D (cm) 5 10 20 30 

A gR  12 6 3 2 

gC  7 4 2 1 

B gR  7 4 2 1 

gC  12 6 3 2 

 

 

The evaluation results of system reading efficiency on above four RFID button tag 

rectangle patterns are shown in Figure 5.14.  

 

 
 

Figure 5. 14 SRE evaluation with different RFID reader moving directions on Button 

Tag Pattern. 
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Figure 5.14 illustrates a similar affect as Figure 5.12. On an identical RFID Button tag 

grid pattern, RFID reader moving directions A and B can give an approximately 

identical value of system reading efficiency on a middle-level or high-level global tag 

density conditions. However, on a low-level global tag density conditions, RFID 

reader moving direction B get a much higher value of system reading efficiency than 

RFID reader moving direction A.   

 

The results in Figure 5.14 and 5.12 explore that the moving direction of RFID reader 

is definitely influencing on the value of SRE on both RFID card tag and button tag 

grid pattern. Regarding as most of RFID reader‟s antenna, power gains are not equal 

along the four edges of antenna, so that the measured value of SRE would be different 

when RFID reader moves along different directions. However, on the condition that 

global tag density of a grid RFID pattern is in a middle or high level, this influence is 

slight to affect the value of system reading efficiency of a passive RFID localisation 

system. It is probably because on a middle or high global tag density, the topology of 

RFID distribution in a pattern does not change the effect of tag collision too much. On 

the other hand, Figure 5.14 and 5.12 also prove the argument of previous sections that 

global tag density on a grid tag pattern is the key issue influencing the value of SRE. 

Additionally, Figure 5.14 and 5.12 shows that given a similar tag distance, RFID 

button tags can offer a higher system reading efficiency than RFID card tags. 

 

5.4.4 Findings and Discussion 

The experimental findings of above sections can be concluded as follow:  

(1) Global tag density is a major factor impacting on system reading efficiency in a 

passive RFID objective localisation system. Directional tag density is the secondary 

issue influencing system reading efficiency. The effect of directional tag density is 

merely obvious on the condition with a low global tag density.  

 

(2) The impact of an increasing number of RFID tags in an effective reading area M 

on the value of system reading efficiency approximately follows a decreasing trend. It 

means that with the reduction of global tag density in a RFID grid pattern, system 

reading efficiency of a passive RFID localisation system would be enhanced.  
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(3) The direction of RFID reader moving has some impacts on system reading 

efficiency in a passive RFID objective localisation system. But this impact only 

obviously appears in a RFID tag pattern with low-level global tag density. On a 

middle or high level global tag density, the effect of RFID moving directions on 

system reading efficiency can be ignored.  

 

(4) On a similar experimental platform and given a similar tag distance, RFID button 

tag has a higher system reading efficiency than RFID card tag. 

 

Based on above experimental findings, it implies that there is a difficulty to get both 

high accuracy and precision of a passive RFID object localisation system. High 

accuracy in a passive RFID object localisation system requires a high global density 

of tag pattern, which would increase the number of tags in an effective reading area so 

that the value of system reading efficiency would be reduced. The low value of system 

reading efficiency would lead to a loss of localisation precision in a RFID based 

localisation system. The possible solution to get both feasible accuracy and precision 

in a passive RFID localisation system is to achieve a balance choice on global tag 

density of a RFID tag pattern and system reading efficiency in a RFID localisation 

system.  

 

In order to explore solution, we would primarily attempt to construct a mathematical 

function to describe the impacts of M on system reading efficiency. The experimental 

finding 2 summarizes that the relationship between system reading efficiency and M 

can approximately follow a decreasing trend. Curving fitting techniques can be used 

to find the best fit to their data. Regarding to the results shown in Figure.5.6 and 5.8, a 

mathematical function can be conducted to describe the impacts of M  on SRE by 

Curve Fitting techniques. Power function fitting and polynomial fitting and 

exponential function fitting can be all used to fit a non-linear monotonic decreasing 

function. However, considering the less utilization of estimated parameters and the 

fact that the value of SRE is within a range from 0 to 1, the exponential function with 

one estimated parameter is conducted to describe Equation 5.8, as below: 

 

                     ( ) g ga C Ra M

SREF f M e e         5.8 
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In this experimental platform, the times of measurement is not sufficiently large so the 

less number of parameters of Equation can give a better fitting. Additionally, the value 

of System Reading Efficiency is a ratio, which has to be below the value “1”. If M is 

assumed as unlimited massive, the value of System Reading Efficiency should be 

nearly equal to the value “0”. Oppositely, if M is as small as one, the value of System 

Reading Efficiency has to be nearly equal to the value “1”. Thus Equation 5.8 can be 

formally represented as in Equation 5.9.  

 

( ) g ga C Ra M

SREF f M e e                      5.9 

 

Where:  

 

SRE : Value of System Reading Efficiency  

M :  Number of passive RFID tags distributing in an effective detection area of 

RFID reader antenna 

gC  : Number of passive RFID tag placing on column direction of the Grid pattern  

gR :  Number of passive RFID tag placing on row direction of the Grid pattern  

a:   Estimated parameter.  

 

 

Considering the experimental findings 3, RFID button tag is more feasible to be 

applied into our case than RFID card tag. Thus we would focus on conducting an 

explicit function for RFID button tag to describe a qualitative relationship between 

localisation precision and its relevant parameters 
gC  and gR . In order to reach this 

aim, it has to estimate the value of parameter a in Equation 5.9 by using Least Squares 

Fitting of observed data. The sample data are measured by 25 pairs of the value of 

SRE and its corresponding parameters 
gC  and gR  of RFID Tag Distribution, 

which includes the data in Figure.5.6, 5.8 and 5.10, and also some data being 

observed randomly. Therefore, SRE Curve of RFID button tag distribution can be 

estimated in Equation 5.10.  

 
 Button Tag Case :  

-0.0543 -0.0543 ( ) g gC RM

SREF f M e e                 5.10 

 

The Equation 5.4 and 5.6 of proposed model to measure localisation accuracy and 

precision in an passive RFID button tag based localisation system can be written as 
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below :  

 

Accurracy :
A Dx x

A Dy y
                                     5.11 

 

0.0543

0.0543
Precision :

g g

g g

C R

C R

P R ex g

P C ey g

                            5.12  

 

5.5 Sparse RFID Tag Arrangement 

Experiment finding in last section indicates that with a passive RFID grid tag pattern, 

it is hard to achieve both high accuracy and precision in a passive RFID based object 

localisation system. Yet, experimental finding also implies that the reduction of M can 

enhance system reading efficiency of an RFID localisation system. Consequently, the 

basic idea of sparse RFID Tag Arrangement strategy is to study the possibility of 

using an sparse RFID tag distribution pattern to reach a higher system reading 

efficiency, but not leading to loss of localisation accuracy in an RFID localisation 

system.  

 

For a passive RFID based localisation system, if RFID Tag Distribution fully fills 

Grid Pattern in Figure 5.2, as the number of RFID tags M increases, localisation 

accuracy can be improved as the distance xD  and 
yD  are reduced; but localisation 

precision would loss as the system reading efficiency are reduced in terms of 

Equation 5.6. It implies that there is a difficulty to get both high accuracy and 

precision of a passive RFID object localisation system with a full RFID Tag 

Distribution. Actually, the distance xD  and yD merely depends on the parameters 
pC  

and 
pR   of Grid pattern, not determined by the parameters 

gC  and gR  of RFID 

Tag Distribution. Thus, if RFID Tags Distribution covers Grid Pattern with a sparse 

covering way not fully covering way, the distance xD  and yD is not changed so that 

localisation accuracy can be kept as unchangeable, but localisation precision has a 

potent to increase due to a higher system reading efficiency. Figure 5.15 illustrates a 
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comparison of localisation accuracy and precision with M between full RFID Tag 

Distribution and Sparse RFID Tag Distribution. 

 

 
,C C R Rp g p g                         ,C C R Rp g p g  

 

 
 

Figure 5. 15 Comparison between Two Types RFID Tag Distribution 

 

There is another noticeable issue in sparse RFID Tag Distribution, which is to 

consider Equation 5.6 of proposed model to measure localisation precision. In terms 

of Equation 5.6, the best choice of sparse RFID tag distribution can make the 

precision in Equation 4.6 get the maximum value. This section would use our given 

experimental platform to seek out one sparse RFID Tag Distribution with improved 

localisation precision. Regarding as the experimental findings, RFID button tags have 

a better performance than RFID card button, so if we give localisation accuracy as 10 

centimeters, then 10
x y

D D  cm, 4g pC C  and 6g pR R , a full RFID Button 

Tag Distribution over grid pattern is shown in Figure 5.16.           
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        Figure 5. 16 Fully Covered RFID Button Tags Distribution 

 

Here, the accuracy Equation 5.11 can be written as:  

 

10cm
Accurracy :

10cm

Ax

Ay
                                   5.11 

 

With a given unchangeable parameters xD  and yD of a Grid Pattern, the localisation 

accuracy can be not influenced by the changeable parameters 
gC  and gR   in RFID 

Tag Distribution. As for the localisation precision, it has to evaluate the value of 

parameters 
gC  and gR  with the largest value of precision by Equation 5.11. 

Considering that the parameters 
gC  and gR  cannot be changed independently, it 

would use M , which is the practical number of passive RFID tags distributing in an 

effective detection area of RFID reader antenna, to take replace of some parts in the 

Equation 5.12, as below:   

 



95 

 

0.0543 0.0543

0.0543 0.0543
Precision :

g g

g g

C R M

C R M

P R e R ex g g

P C e C ey g g

            5.13 

 

Then, we separately measure the precision X with the value of 
gR  given 6,5,4,3,2, 

the value of  M  would be respectively 24, 20, 16, 12, 8;  the precision Y with the 

value of 
gC  given 4,3,2,1, the value of  M  would be respectively 24, 18, 12, 6. 

Figure 5.17 illustrates the Precision Value of Equation 5.13 with different value of 

parameters 
gC  and 

gR   in RFID Tag Distribution 

 

Figure 5. 17 Comparison of different 
gC  and gR  in RFID Tag Distribution 

Figure 5.17 illustrates that when 3gC , the Precision X curve marked by solid line 

can reach a largest value; when 4 or 5gR , the Precision Y curve marked by dash line 

can reach the largest value. Therefore, it means that in Figure 5.17, we can reduce one 

RFID button tag on each column of grid pattern, so that the parameter 3gC and the 

parameter 18M . Additionally, in order to ensure the accuracy, it has to guarantee that 

there are no rows of Grid pattern with non RFID Tag being placed. Therefore, the 

sparse RFID Tag Arrangement strategy can be summarized below: 
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(1) To check the possibility of sparse RFID Tag Arrangement: If the extracted value 

of 
gC  and 

gR
 
can satisfy the condition ,g p g pC C R R , the possibility exists.  

(2) To determine the direction of reducing tags: if ( ) ( )p g p gC C R R , reducing tags 

from column direction of tag pattern, the reduced number of tags on each column 

is ( )p gC C ; otherwise, reducing tags from row direction, the reduced number of 

tags on each row is ( )p gR R   

(3) To produce the sparse RFID Tag Arrangement: start from original grid pattern, if 

( ) ( )p g p gC C R R , from the first column, reduce ( )p gC C tags; however, the 

reduction of each column has to avoid the same row position of tag with its 

neighbour  

(4) To recheck the sparse RFID Tag Pattern to ensure there is at least one tag on each 

row or column direction.  

We would use a simple V-shape reduction method to produce a kind of improved 

RFID button Tag Distribution, shown in Figure 5.18.  

 

 
 

Figure 5. 18 Sparse RFID Button Tags Distribution 
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5.6 Summary 

In this chapter, the major impacted issues in RFID Tag Arrangement of RFID-Loc 

with high accuracy and precision have been investigated. A model to evaluate the 

localisation accuracy and precision of a RFID-Loc solution, particularly on the use of 

RFID tag distribution pattern is proposed in section 5.3. By identifying the 

influencing factors of RFID Tag Distribution, an experimental solution is designed to 

explore the relationship between global tag density, tag distance and system reading 

efficiency. The experimental results in section 5.4 show that it is challenging task to 

get both high accuracy and precision in a passive RFID localisation solution; and 

there is a balance between distributing a suitable density of RFID tags so that the 

localisation solution can achieve a reasonable object localization accuracy and 

precision. The impact of RFID tag distribution and pattern design on accuracy and 

precision in a passive RFID localisation solution is defined and verified as an 

exponential based function. A spare RFID tag distribution pattern is proposed in 

section 5.5 for RFID-Loc infrastructure, which can enhance system reading efficiency 

with better localisation precision, but not reduce localisation accuracy of an 

RFID-Loc solution.  
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Chapter 6:  

Feature Selection and Localisation 

Algorithm  

6.1 Introduction 

Chapter 5 mainly concerns the problem of how to design an effective RFID Tag 

Arrangement for an RFID-Loc system to enhance system reading efficiency for 

reducing regular false reading error from RFID hardware level. However, 

experimental results in Chapter 5 proves that system reading efficiency of an RFID 

infrastructure is impossible to be one in practical environment, which means that 

regular false reading error of an RFID-Loc system can be merely reduced but not 

completely removed by an optimal designed RFID Tag Arrangement. In this chapter, 

it focuses on exploring the possibility of reducing the impacts of false reading error 

on localisation accuracy and precision by using some approaches from RFID software 

level. Section 6.2 addresses the possibility of selecting features from RFID-Loc Data 

Filter module to remove the regular false reading error, so that improve the 

localisation accuracy and precision. Section 6.3 studies the possibility of improving 

localisation algorithm from RFID-Loc localisation algorithm module to improve the 

localisation accuracy and precision.  
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6.2 Feature Selection  

6.2.1 Classification of False-Reading in RFID-Loc Data   

Investigation in Chapter 5 illustrates that under current experimental platform, the 

practical value of system reading efficiency in an optimized RFID-Loc infrastructure 

is usually in a range from 40% to 60%. For the reason that system reading efficiency is 

impossible to be 100%, RFID data being observed at each time frame are raw and 

unornamented. These data are a set of RFID tag identifiers over time, and do not carry 

much information. While these identifiers can be corresponding to some position, 

they are still inaccurate and uncertain. Additionally, the observation process of RFID 

data is spatial and temporal, which can be dynamically variable over time. On this 

condition, RFID data at each time interval cannot be completely equivalent. The 

usage of RFID-Loc data filter module is to filter some useless information from RFID 

raw data, and select reliable features to feed localisation algorithm.  

 

Inaccuracy and uncertainty of RFID raw data are two major challenging 

characteristics in a RFID-Loc system. Regular false readings in RFID raw data can be 

classified into three types: false negative readings, false positive readings, and 

repeated readings. 

 

False negative readings: It mainly refers the case that RFID tags within an effective 

RFID reader detection area may not be detected due to RF collision occurring or 

signal interfering with each other RFID tags. These problems are common in most 

RFID applications and usually happen in a situation of low-cost and low-power 

hardware, which result in frequently dropped reading.  

 

False positive readings: It mainly refers to the case that unexpected RFID tags 

detections are generated. The reasons leading to this problem are that RFID tags 

outside a normal reading scope of a RFID reader are captured by the RFID reader. For 

instance, while reading items from a case, a RFID reader may read items from an 

adjacent case.  
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Repeated readings: It mainly refers to repeated detection of RFID tags by a RFID 

reader in a short time. This problem is typically recognized as redundant reading issue 

in some RFID and sensor networks. Redundancy can happen at two different levels, 

redundancy at reader level and redundancy at data level. Repeated reading is a 

phenomenon that redundancy at data level occurred as data streams.  

 

Of the above three type‟s regular false reading, effect of repeated reading can be 

ignored in a RFID-Loc system. It is because RFID raw data does not have any 

meaningful information before RFID raw data being stored in a database. Repeated 

data can be automatically eliminated in a corresponding process of position 

information. The definition of an effective RFID reading area here refers to a robustly 

stable detection area, which is a limited zone surround RFID antenna. It is not similar 

to some impression that once RFID tags can be detected in a certain area; this area 

would be considered as an effective RFID reading area. Figure 6.1 illustrates some 

difference of false-negative readings, false-positive readings and repeated readings.    

 

 

                                                      RFID Tags  

 

                                                      RFID Effective  

Reading Area 

 

a) False-negative reading Sample ID : {1,5,6,7,8} {2,3,5,6,7,8}….  

b) False-positive reading Sample ID : {5,6,7} {6,7,8} {5,7}….. 

c) Repeated readings Sample ID : {5,5,5,5,6} {6,6,6,7,7,7,8}… 

 

Figure 6. 1 Difference of false-negative readings, false-positive readings and repeated 

readings.  

 

 

2 1 

6 5 8 7 

4 3 
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6.2.2 Experimental Analysis   

Given the classifications, experimental approach is designed to explore how regular 

false reading errors influencing on RFID raw data under an optimal RFID-Loc 

infrastructure. The experimental approach is designed into two parts. The first part is 

to collect the required RFID data; the second part is the analysis of RFID data and 

discussion. 

6.2.2.1 Data Collection  

RFID data is observed on a recommended optimal RFID-Loc infrastructure from 

chapter 4, which consists by a single RFID reader: anti-collision, antenna dimensions 

65×31 cm
2
; multiple RFID passive button tags: radius 3 cm; effective sensing height 

of RFID reader: 1-2cm; operating frequency: 13.56 MHz. The distance between tags 

is 10 centimetres; and the total number of tag in an effective RFID detection area is 18; 

RFID passive tag pattern is shown in Figure 6.2, which reflects that the practically 

desired number of RFID tags in an effective RFID detection area is 18.  

 

   

            

           Figure 6. 2 Experimental Platform for Data Collection  
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Data collection aims to observe RFID raw data from varied situations in order to 

analyse a distribution of regular false reading error. Most of RFID devices in the 

RFID-Loc infrastructure are fixed and unchangeable; so object moving trajectory is 

an issue to be considered in this experiment. Object moving trajectory in this 

experiment is assumed to be three types: moving along X axis; moving along Y axis; 

randomly moving in the area. Another concerned issue is time period of each time 

interval. RFID reader requires a time period to collect a sufficient RFID raw data; if 

time period is too short, RFID reader cannot observe a fulfilled data; if time period is 

too long, time gap between two steps of localising a object is not satisfied with indoor 

requirements. By testing some time intervals (2 minutes, 1 minute, 40 seconds, 20 

seconds and 10 seconds), 40 seconds at each time interval is an acceptable time period 

to observe a sufficient RFID data. The number of time interval sequence is given as 

25.  

 

6.2.2.2 Experimental Results  

The first step is to investigate the occurring possibility of three type‟s regular 

false-error reading. The occurring times of each kind of false-error reading are 

recorded, so a qualitative result on which type of false reading error occurs mostly 

can be displayed in Table 6.1.  

Table 6. 1 Regular false reading error occurring results in an RFID-Loc infrastructure 

 

Times  X axis Y axis Randomly  

False Positive Reading 1 1 0 

False Negative Reading 25 25 25 

Repeated Reading 22 23 23 

Overall Times 25 25 25 

 

In Table 6.1, false-negative reading and repeated reading both have a high occurring 

probability; oppositely, false-positive reading has a very low occurring probability. 
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The results obey the discussion of choosing operating frequency on Chapter 4, which 

reflects that High Frequency radio signal has a short sensing range so false-negative 

reading more probably occurs than false-positive reading in this case. A frequent 

occurrence of repeated reading may be because that slow speed of object moving 

makes some RFID tags being frequently detected. Consequently, the key challenging 

of regular false reading error in an RFID-Loc system is false-negative reading. 

Regarding Equation 5.8 in Chapter 5, if the total number of RFID tags in an efficient 

RFID reader detection area is 18, the estimated system reading efficiency would be 

approximately 38%. Considering environment noise and experimental operational 

errors, system reading efficiency can be within a reasonable range from 30% to 40%. 

Table 6.2 shows that practical measurements of system reading efficiency from those 

three trajectories roughly fall into the range.   

            Table 6. 2 Evaluation of System Reading Efficiency 

 

System Reading Efficiency  X axis Y axis  Randomly 

Estimated Range 30%-40% 30%-40% 30%-40% 

Practical Measurement  28.2% 33.76% 28.6% 

 

In the above three trajectories, system reading efficiency can reflect a general 

continuous detectable ability of RFID-Loc system. However, it does not illustrate the 

sensing ability of different position in effective RFID reader detection area. 

Theoretically, the sensing ability in effective RFID reader detection area is related to 

the design of RFID antenna and signal strength over distance. In this case, the sensing 

range between RFID tags and RFID antenna is very short to 1 centimetre. Within this 

range, the signal strength of RFID reader could be considered as a well distribution 

over antenna area so that it is not the primary issue leading to the false-negative 

reading. The more possible reason is the collision between tags, due to the high dense 

tag distribution. While for each individual time interval, the regular false reading error 

occurs on the varied position of an effective RFID detection area. Nevertheless, for a 

sequence of time intervals, the regular false reading error should obey some rules 

since the physical environment and RFID infrastructure are fixed and unchanged. 

Consequently, if the effective RFID reading area is divided into some small parts by 
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the tag pattern in Figure 6.2, and accumulate the times of tags successfully detected in 

each small part, a rough distribution of false reading occurring probability could be 

concluded, as shown in Figure 6.3. 

 

    

(a) X axis                (b) Y axis               (c) Random  

Where: 4/24 at some position means that RFID Tag at this position can be 

successfully detected 4 times in a total 24 times of Tag detection. 

 

Figure 6. 3 Distribution of regular false negative reading occurring probability 

through experiments.  

 

6.2.2.3 Analysis and Findings   

Figure 6.3 shows that the probability of each RFID passive tag being detected on the 

pattern varied as its location. Additionally, the trajectory of object moving could have 

some impacts on the distribution of regular false reading occurring. While there are so 

many variations here, the distribution of regular false reading occurring probability 

indeed obeys some disciplines. For instance, each bottom-line of the pattern has not 

detected any tags over time; the middle part of top-line of the pattern has a higher 

detection probability. In terms of the varied range of those probabilities, we can define 

a simple Equation to classify the tag detection ability over different regions of an 
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effective RFID detection area, as shown in Equation 6.1. The occurring probability of 

regular false reading is averagely divided into zero, low, middle and high. With this 

Equation, the effective RFID reading area could be divided into different zone with 

zero, low, mid, high probability detecting tags. Meanwhile, if we separately use 

Yellow, Green, Blue, Red colour to identify them, the Figure 6.3 could be replaced by 

Figure 6.4.    

 

          

( 0)

( (0,4 / 24))
( )

( (5 / 24,12 / 24))

( (13 / 24,1))

Zero if P

Low if P
f p

Mid if P

High if P

             (6.1) 

 

Where:  

 

      P : the probability of RFID tags being detected at some position 

 

 

     

(a) X axis                 (b) Y axis            (c) Random  

Figure 6. 4 Distribution of regular false negative reading occurring probability with 

evaluation Function.  

 

Figure 6.4 clearly shows that the majority of effective RFID reader area is within the 

low and middle range of detection probability, with blue and green colour. The bottom 
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line of RFID effective reader area has very weak detection abilities so that it could be 

avoided consideration as selected features. There are few high range detection 

probability points on each trajectory, whose position is nearly similar. Meanwhile, by 

using this Equation 6.1, it explores that the regular false reading error distribution is 

not closely influenced by the object moving trajectory. While the regular false reading 

error distribution is varied from individual RFID tag samples‟ behaviour, it 

continuously follows some disciplines about low, middle, high range of detection 

probability. Thus, a simple distribution of regular false reading occurring probability 

diagram is concluded in Figure 6.5. This diagram is based on the Equation 6.1, but 

has some slight adjustment on some points with some rules as follow:  

 

(a)  If the points on the same position of these three distributions have the same 

colours, the generic distribution would make the same position point as this 

colour.  

 

(b) If the points on the same position of these three distributions have different 

colours; but two of them have the same colours, the generic distribution would 

make the same position point as the colour of those two.  

 

(c) If the points on the same position of these three distributions have different 

colours; and none of them have the same colours, the generic distribution 

would make the same position point as the colour of the middle range one.  
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Figure 6. 5 Generic Estimated Distribution of regular false negative reading occurring 

probability for particular RFID reader in this experiment platform. 

In Figure 6.5, the generic distribution of regular false negative reading occurring 

probability is nearly symmetrical along the length side of RFID antenna. In terms of 

this diagram, it should roughly estimate that the regular false reading occurring 

probability of different positions on RFID effective detection area.  

 

6.2.3 Feature Selection Method   

Feature selection method is to choose reliable features from RFID raw data for a 

localisation algorithm. The reliable features are some data, which can reduce the 

impact of regular false reading error on accuracy and precision of an RFID-Loc 

localisation algorithm. Experimental findings in section 6.2.2 show that some regions 

in an effective RFID detection area have a high range of detection probability. The 

straightforward feature selection method can directly select RFID data in these 

regions as points based features. However, the features selected by this method may 

be not the most reliable ones for an RFID-Loc system. The primary reason is that 

points based features are not fixed over time and symmetric distributed, so direct 

utilization of these features would probably generate some errors on localisation 

accuracy. Secondly, the concept of features in RFID-Loc data filter does not merely 
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refer to points. Lines, edges or graphs in a passive RFID tag pattern can also be 

recognized as features in RFID-Loc data filter. This section attempts to evaluate 

methods of selecting different types of features, and justify them. Localisation 

algorithm of generating object position would use a simple centroid method here; 

other possible localisation algorithms would be discussed in section 6.3.  

 

6.2.3.1 Set of Points Method 

The set of point‟s based feature selection method relies on choosing points as the 

features. The centroid of a finite set of points 1 2, ,..., kx x x  in nR  is :  

                    1 2 ... kx x x
C

k                  

(6.2) 

 

The challenge of this method is which kinds of points can be chosen for use. 

Conventionally, on a hypothesis that each point owning the equivalent probability of 

being detected, whole set of points at each time interval can be averaged to get the 

centroid as target position. In this case, points are located into regions of different 

levels of false reading occurring probability. Regarding to Equation 6.1, points based 

features can be selected from RFID data by using four types of way, which are Set A 

(Zero, Low, Mid, High), Set B (Low, Mid, High), Set C (Mid, High), Set D (High). At 

each time interval, features can be abstracted regardless of the colour zone in Figure 

6.5. Nevertheless, there is an important issue in a points based feature selection 

method, which is that the number of chosen features has to guarantee sufficiency for 

localisation algorithm to process at each time interval. For instance, given that points 

in Set D being chosen as features; but on some time intervals, there are no RFID data 

in Red zone of Figure 6.5; then localisation algorithm would calculate a incorrect 

value of position. Considering the sufficiency of number of features, it would mainly 

evaluate Set A, Set B and Set C in X axis, Y axis and Random trajectories. 

Localisation results of using these three set of points based feature selection methods 

are shown in Figure 6.6, 6.8 and 6.10. The localisation errors on X and Y axis in each 

trajectory are shown in Figure 6.7, 6.9 and 6.11. 
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Figure 6. 6 Localisation Results on X Trajectory by using Different Set of Points 

based feature selection methods 

 

  

(a) Error on X axis                 (b) Error on Y axis 

Figure 6. 7 Accuracy Errors on X Trajectory by using Different Set of Points based 

feature selection methods 
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Figure 6. 8 Localisation Results on Y Trajectory by using Different Set of Points 

based feature selection methods  

    

(a) Error on X axis                 (b) Error on Y axis 

Figure 6. 9 Accuracy Errors on Y Trajectory by using Different Set of Points based 

feature selection method  
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Figure 6. 10 Localisation Results on Random Trajectory by using Different Set of 

Points based feature selection methods  

   

(a) Error on X axis              (b) Error on Y axis      

Figure 6. 11 Accuracy Errors on Random Trajectory by using Different Set of Points 

based feature selection methods 
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The results illustrate that feature selection method by choosing Set A points can 

achieve a smaller absolute accuracy error than feature selection method by choosing 

Set C points. While Set C owns more number of stable points being detected than Set 

A, Set A has more number of available points being used than Set C. Object position 

is a average mean of the position data of those features. Thus, localisation accuracy of 

object position does not merely rely on the selected features from RFID data with a 

high detection probability, but also depends on the number of selected features being 

used over time. Figures also reflects that features in a zero level region actually are 

none, so feature selection method by choosing Set A is absolutely identical to feature 

selection method by choosing Set B. Feature selection method by choosing Set A 

points can reach an approximately equal accuracy as feature selection method by 

choosing Set B. Consequently, among those three points based feature selection 

methods, feature selection method by choosing Set A is a method with the best 

localisation accuracy.   

 

6.2.3.2 Polygon Method 

Polygon method relies on choosing some certain area or region in a RFID tag pattern 

as features. The advantage of this method is that it can include a finite set of points. 

The centroid of a non-overlapping closed polygon defined by n vertices ( , )i ix y  can 

be calculated as follows. The area of the polygon is :   

 

                   
1

1 1

0

1
( )

2

n

i i i i

i

A x y x y          (6.3) 

 

And its centroid is C = ( , )x yC C where:  
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In our case, feature in a polygon based feature selection method can be a special graph; 

edge of this special graph is important to the calculation of centroid of this polygon. 

Figure 5.12 shows that difference between points based feature and polygon area 

based feature.  

 

                  

         (a) Points Set Feature            (b) Polygon Area Feature       

    

Figure 6. 12 Difference between points based feature and polygon area based feature  

 

In order to evaluate the performance of polygon based feature selection method, 

points based feature selection method by choosing Set A method is choose as a 

comparable solution. Localisation results of using these two methods in X axis, Y axis 

and Random trajectory are shown in Figure 6.13, 6.15 and 6.17. The localisation 

errors on X and Y axis in each trajectory are shown in Figure 6.14, 6.16 and 6.18. 
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      Figure 6. 13 Localisation Results on X Trajectory by using Polygon Method  

 

   

(a) Error on X axis                  (b) Error on Y axis 

     Figure 6. 14 Accuracy Errors on X axis Trajectory by using Polygon Method 
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      Figure 6. 15 Localisation Results on Y Trajectory by using Polygon Method  

 

   

(a) Error on X axis                 (b) Error on Y axis 

    Figure 6. 16 Accuracy Errors on Y axis Trajectory by using Polygon Method 
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  Figure 6. 17 Localisation Results on Random Trajectory by using Polygon Method  

 

  

(a) Error on X axis             (b) Error on Y axis 

   Figure 6. 18 Accuracy Errors on Random Trajectory by using Polygon Method 
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The comparison shows that either polygon based feature selection method or pointed 

based feature selection method by using Set A can be effective on some trajectory. On 

X axis trajectory, polygon based feature selection method has a better localisation 

performance than feature selection method by choosing Set A method, with a smaller 

accuracy error on object position. On Y axis trajectory, polygon based feature 

selection method has an equivalent localisation performance as feature selection 

method by choosing Set A method, causally on some point with larger accuracy error. 

On Random trajectory, polygon based feature selection method has an essentially 

equivalent localisation performance as feature selection method by choosing Set A 

method on each time interval. The reason causing to differences may be an 

unsymmetrical distribution of false reading error due to the RFID antenna design on 

width and length. The set of points in a polygon feature is straightforward determined 

by Equation 6.1. In some cases, it may overuse or underuse edge points of a polygon. 

These unsymmetrical issues would affect calculating the centriod of a polygon. 

However, generally speaking, polygon based feature selection method has a similar 

localisation results as feature selection method by choosing Set A points based 

method.  

 

6.2.3.3 Rectangle Method 

The discussion in previous section reflects that polygon area is not a symmetric graph 

so localisation algorithm of calculating its centroid usually can generate some errors. 

This section would use a rectangle area substitutes a polygon area for balancing the 

problem of asymmetry of features. To choosing a rectangle area can enhance the 

symmetry of features, since its shape is only decided by some maximum or minimum 

value of point‟s position. Figure 6.19 shows difference of choosing features by using 

Polygon and Rectangle method. 
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(a) Points Set Feature   (b) Polygon Area Feature  (c) Rectangle Area Feature 

        

           Figure 6. 19 Comparison between three different features 

 

By using rectangle area, four edge features 
ynypxnxp

FFFF ,,, are used, which are the 

minimum and maximum values on X and Y axis among the position value of all 

detected RFID tag at a time interval t, as shown in Equation 6.1. Assuming at current 

time interval t, object position ),( c

t

c

t YX
 
can be obtained through a set of position 

information from RFID data ( , )N N

T TX Y , where N represents Number of RFID tags 

being detected by RFID reader, and ( , )N N

T TX Y  represents position information of 

those RFID data; edge features can be represented in Equation 6.5. 

 

     ),,......,( 21 N

TTTxp
xxxMaxF               ),,......,( 21 N

TTTxn
xxxMinF  

 

       ),,......,( 21 N

TTTyp
yyyMaxF                ),,......,( 21 N

TTTyp
yyyMinF         (6.5) 

 

Localisation results of using rectangle and polygon based feature selection methods 

are compared in Figure 6.20, 6.22 and 6.24. The localisation errors on X and Y axis in 

each trajectory are shown in Figure 6.21, 6.22 and 6.23. 
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 Figure 6. 20 Localisation Results on X Trajectory by using Rectangle based Method 

 

   

(a) Error on X axis                 (b) Error on Y axis 

 Figure 6. 21 Accuracy Error on X Trajectory by using Rectangle based Method 
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 Figure 6. 22 Localisation Results on Y Trajectory by using Rectangle based Method  

 

 

(a) Error on X axis              (b) Error on Y axis 

 Figure 6. 23 Accuracy Errors on Y Trajectory by using Rectangle based Method 
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Figure 6. 24 Localisation Results on Random Trajectory by using Rectangle based 

Method  

 

(b) Error on X axis             (b) Error on Y axis 

Figure 6. 25 Accuracy Errors on Random Trajectory by using Rectangle based method 
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Based on the experiments, the comparison between Rectangle based feature selection 

method and Polygon based feature selection method reflects that Rectangle feature 

selection method apparently has a lower localisation accuracy error than Polygon 

based feature selection method. On X axis trajectory, Rectangle based feature 

selection method has a better localisation performance than Polygon based feature 

selection method, with nearly no error on Y value of object position. On Y axis 

trajectory, Rectangle based feature selection method has a smaller localisation 

accuracy error on both X value and Y value of object position than Polygon based 

feature selection method. On Random trajectory, while it is not obvious as the 

previous X and Y trajectory, the sequence of object position producing by Rectangle 

based feature selection method is more close to the original real trajectory than the 

sequence of object position producing by polygon based feature selection method. 

Consequently, Rectangle method is more suitable as a feature selection method than 

polygon method in a RFID-Loc Data Filter module.   

 

6.2.4 Comparison of Feature Selection methods 

In order to compare the performance of above feature selection methods in a 

RFID-Loc Data Filter module, section 3.4 has pointed out that it has to directly 

evaluate localisation accuracy and precision with a given RFID-Loc infrastructure. 

Section 5.3 has proved that experiments in this section are based on an spares RFID 

Tag Arrangement in RFID-Loc infrastructure from last chapter. Moreover, localisation 

accuracy of these above three feature selection has been given as 10 centimetres, since 

Tag distance is already given as : 

 

10
x y

D D  cm                    

 

Localisation precision can be compared by mean of precision in Table 6.3 and range 

of precision in Table 6.4. The mean of precision can be calculated by Standard 

Deviation in Equation 6.6.  
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Standard Deviation Equation:   

 

                     
2

1

1
( )

N

i

i

x
N

 (6.6) 

 

    Table 6. 3 Comparison of Feature Selection Methods by mean of precision 

 

Methods         X Trajectory  

X value      Y value    

       Y Trajectory   

X value      Y value    
   Random Trajectory   

X value        Y value  

   

A set  

Method 

6.686 cm 5.353 cm 3. 356 cm 7. 854 cm 0. 289 cm 7. 220 cm 

C set  

Method 

5.427 cm 6. 075 cm 0. 905 cm 8. 891 cm 0. 481 cm 9. 936 cm 

Polygon 

Method 

1.066 cm 5. 441 cm 4. 052 cm 6. 594 cm 0. 611 cm 5. 566 cm 

Rectangle 

Method 

0.833 cm 5. 000 cm 2. 083 cm 2. 500 cm 0.0000 cm 4. 615 cm 

 

    Table 6. 4 Comparison of Feature Selection Methods by range of precision 

 

Methods       X Trajectory   

X value        Y value 

    

     Y Trajectory   

X value        Y value    
   Random Trajectory   

X value      Y value    

A set  

Method 

(-2.8, 9) cm (-13, 1) cm (-3, 8.3) cm (-10, 16.7) 

cm 

(-6.7, 5) cm (0, 13) cm 

C set  

Method 

(-5, 4.5) cm (-5, 1.5) cm (-5, 5) cm (-5, 25) cm (-5, 5) cm (3, 25) cm 

Polygon 

Method 

(-5.5, 9.1) 

cm 

(1, 9) cm (-0.5, 9.1) cm (1.6, 13.3) 

cm 

(-10, 5) cm (-1, 10) cm 

Rectangle 

Method 

(-5, 10) cm (5, 5) cm (-5, 10) cm (-10, 5) cm (-5, 5) cm (0, 10) cm 

 

From Table 6.3 and 6.4, it appears that rectangle based feature selection method can 

give a better precision than other feature selection methods, particularly on X axis 

value of moving object position. On X trajectory situation, average precision of 

rectangle based feature selection method can reduce to 0.8 centimetres on X axis 

value of moving object position, 5 centimetres on Y value of moving object position. 

While there are no apparent enhancements on Y axis value of moving object position 

by choosing rectangle based feature selection method.  
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6.3 Localisation Algorithm  

6.3.1 Algorithms Comparison and Analysis  

Chapter 2 has reviewed many RFID-based localisation algorithms. Some of them are 

designed for RFID reader localisation, some of them are proposed for RFID tag 

localisation. Table 6.5 lists some major algorithms‟ performance. (Sanpechuda, 2008).  

Table 6. 5 Comparison of RFID-based localisation algorithms (Sanpechuda, 2008) 

Solution  Accuracy 

&Precision 

RFID 

infrastruct

ure 

Merits Demerits Algorithms 

Lee& 

Lee  

0.026m Reader 

Localisatio

n 

Both Position and 

Orientation, 

Reduce the error by 

the boundary tag of 

read range 

Requires a large 

number of tags 

Weighted 

Average& 

Hough 

Transform 

Han&Li

m 

0.016m Reader 

Localisatio

n 

Both Position and 

Orientation, 

Reduce the number 

of tags with the same 

accuracy as Lee&Lee 

More computation 

at the server 

Triangular tag 

arrangement 

instead of 

grid tag 

pattern 

Yamano 

&Tanaka 

80% Reader 

Localisatio

n 

Self-localisation, no 

tag pattern need.  

Propagation 

environment 

independent, optimal 

number of tags 

Requires the reader 

with signal 

intensity output 

No orientation  

Support 

Vector 

Machine 

Xu& 

Gang 

1.5m Reader 

Localisatio

n 

Fewer sample 

number 

Insensitive to NLOS 

Depend on 

movement 

probabilistic model 

Bayesian  

Technique   

SpotON Depend on 

Cluster Size 

Tag 

Localisatio

n 

3D localisation 

No fixed 

infrastructure 

Low cost 

Attenuation less 

accurate than time 

of Flight 

Need special tag 

Ad hoc 

lateration 

LANDM

ARC 

1-18m Tag 

Localisatio

n 

Use off the self active 

tag 

Accuracy with less 

Reader and low cost 

Dense 

configuration of 

references tags  

Require the reader 

with signal 

intensity output 

K nearest 

neighboring + 

weighting   
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RFID-Loc system is similar to RFID reader localisation by using passive RFID tags, 

since they both target on localising position of a single mobile RFID reader. The 

available localisation algorithms can be classified into two types. The first type can be 

named as static localisation algorithms, which produce position of a RFID reader by 

using RFID data merely from current time interval. During the process of static 

localisation algorithm, computation of target‟s position at each time interval is 

independent to other time frames, so that there is no drift error on target‟s position. 

However, static localisation algorithm has weak resilience ability to error motion of 

target. The second type can be named as dynamic localisation algorithms, which 

produce the target position by not merely using RFID data from current time frame, 

but also employing RFID data from previous time frames as a supplement. In a 

dynamic localisation process, algorithm usually includes prediction and update 

processes, so as to computation of a target‟s position at each time frame can be highly 

relevant to other time frames. The merit of this algorithm is that it is more robust and 

resilience to error motion than static localisation algorithms, since dynamic 

localisation process is usually a probabilistic basis. However, dynamic localisation 

algorithms might suffer with drift errors due to the dependence of current target‟s 

position on previous target‟s positions. In order to explore the feasibility of those two 

types of solutions in an RFID-Loc system, a typical static localisation algorithm and 

some dynamic localisation algorithms are selected to do a theoretical comparison. The 

chosen static localisation algorithm is Arithmetic Average Mean method. The chosen 

dynamic localisation algorithms are based on EKF (Extended Kalman Filter) (Welch 

& Bishop, 1995) and Particle Filter (Doucet, Freitas, Murphy, & Russell, 2000). 

 

Those two types of algorithms can be evaluated in terms of accuracy, robustness and 

computational efficiency. High accuracy requirement of a object position tracking 

system in indoor application is the fundamental principle for a RFID-Loc localisation 

algorithm module. It would determine the degree of compositing for high realism, and 

exact mixing results in indoor applications. Accuracy is the primary assessment index 

of comparison among these two types of localisation algorithms. Secondly, the 

robustness of localisation algorithm is a considerable issue, since localisation 

algorithm has to process a large amount of feature with uncertain errors. How well a 

localisation algorithm can robustly against with unexpected false reading errors and 

noise in a RFID-Loc system is important. Robustness may also have to consider 



126 

 

convergence rate, which measures the speed of localisation algorithms arrives at a 

stable localisation status. Thirdly, computational efficiency is a benchmark to judge 

the performance of localisation algorithms. RFID-Loc system deserved to extract 

object position parameters with a low latency. The efficiency of localisation 

algorithms have to support this demand. Advanced computational efficiency and low 

algorithm complexity can ensure localisation algorithm in an RFID-Loc system to 

achieve low latency.    

 

6.3.1.1 Static Localisation 

Typical static localisation algorithms are arithmetic mean and weighted mean. In an 

RFID-Loc system, arithmetic mean based localisation algorithm is to average the 

value of selected features on X axis and Y axis from RFID-Loc data filter for 

producing moving object position over time. Weighted mean based localisation 

algorithm is similar to arithmetic mean, where instead of each of features points 

contributing by different weights to moving object position. If weights of features 

points are equal, weighted mean based localisation algorithm is equal to arithmetic 

mean localisation algorithm. If object position is denoted as ( , )c cx y ; at each time 

frame, RFID reader can obtain 

position data of RFID tags 1 1( , )t tx y , 2 2( , )t tx y , 3 3( , )t tx y ,……, ( , )N N

t tx y ; and N 

represents number of RFID tags detected by RFID reader at some time interval, t 

represents current time interval; ( , )N N

t tx y represents position information of RFID tag 

n; then we can get the values of selected features by using rectangle based feature 

selection method from section 6.2.  
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     Rectangle feature selection (6.2) 

 

Where:  

 

xpF  is features‟ value along X positive axis of RFID reader antenna          

xnF  is features‟ value along X negative axis of RFID reader antenna  

 
ypF  is features‟ value along Y positive axis of RFID reader antenna  

 
ynF  is features‟ value along Y negative axis of RFID reader antenna  

 
( , )N N

t tx y
 
represents the coordinate‟s information of RFID tags.  

 N  represents number of RFID tags detected by RFID reader at some time interval  

  t   represents current time interval.  

 

The position of moving object can be calculated by using arithmetic mean in Equation 

6.7:  

           

 

                       

2

2

x p x n

c

y p y n

c

F F
x

F F
y

                (6.7) 

 

Results of Chapter 5 illustrate that, under recommended RFID-Loc infrastructure 

design and rectangle based feature selection method, arithmetic mean based 

localisation method can reach 10 centimetres accuracy with up to 4.6 centimetres 

precision. The key barriers on enhancing the accuracy of an RFID-Loc system are 

from the limitations of current RFID hardware devices; these limitations are 

extremely likely to be overcome in future as rapid development of high quality 

materials and manufactures; so it is highly possible for an RFID-Loc system to satisfy 
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accuracy requirement of a indoor application in future with advanced RFID hardware 

devices.  

 

Robustness of localisation algorithm is also of concern. Due to the constraints of 

RFID hardware limitations, RFID data captured over time would contain some 

regular false reading information. While regular false reading error can be 

impossible to completely remove, they are controlled and filtered regularly by 

optimizing RFID-Loc infrastructure and RFID-Loc data filter as so to manage 

localisation precision into an acceptable level. However, except regular false reading 

error, there are some unexpected false reading errors possibly affecting accuracy and 

precision of an RFID-Loc system, as discussed in section 3.4. There are two typical 

poor localisation results resulting by unexpected false reading error. The first one 

refers to a phenomenon that RFID reader fails detection any RFID tag on some time 

intervals, called dead reading error. The occurrence of dead reading is usually due to 

fast speed of object moving, erratic moving motion of object or some sudden 

environmental changes. The second one is a phenomenon that RFID reader detects the 

same amount of RFID tags in continuous time intervals, called repeated reading error. 

It happens when object moving too slow or keeping stable. Taking an example of 

random moving trajectory in Chapter 5, if it assumes that above two type of 

unexpected false reading error occur at some time intervals in this trajectory, accuracy 

and precision of localisation would be influenced, as shown in Figure.6.26.  

  

(a) Error on X axis               (b) Error on Y axis 

   Figure 6. 26 Unexpected false reading errors occurring on Random Trajectory  
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In Figure 6.26, circle marker highlights a point on the occurrence of dead reading 

error. Rectangle marker points out a point on the occurrence of repeated reading 

error.  

 

The results appear that static localisation algorithm has a weak ability to robustly 

localize object and recover object position from unexpected false reading errors. The 

first reason is that unexpected false reading error in an RFID-Loc system is irregular 

and hardly controlled, which is different with regular false reading errors. Regular 

false reading error in an RFID-Loc system is mainly from the constraints of RFID 

hardware devices. The characteristic of RFID hardware devices would be not changed 

as indoor object moves, so that it can follow some principles to manage regular false 

reading errors. On dealing with regular false reading errors, static localisation 

algorithm can localize moving object position efficiently. However, unexpected false 

reading error in an RFID-Loc system comes from changeable environment, or sudden 

erratic motion. Those issues are hardly controlled and managed, which can 

significantly influence the accuracy and precision of an RFID-Loc system. Secondly, 

regarding characteristics of static localisation algorithm, object position at each time 

interval is dependently calculated by features at current time interval. There are no 

connections with known features at pervious time intervals. Once some sudden error 

reading occurs at certain step, static localisation algorithm cannot utilize previous 

relevant features to correct them. The major limitation of static localisation algorithm 

is no capacity to resist unexpected false reading error in an RFID-Loc system.  

Response time of RFID reader sensing RFID passive tags is varied and irregular, 

possibly recognizing multiple RFID tags in some time frame, or possibly sensing no 

tags in some time frame. Unexpected false reading error can possibly frequently 

occur in an RFID-Loc system. These unexpected false reading error might 

continuously come about in continuous time frames, as shown in Figure 6.2. Static 

localisation algorithm is unable to overcome those errors.  
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(a) Error on X axis                (b) Error on Y axis 

Figure 6. 27 Continuous occurrence of unexpected false reading errors on Random 

Trajectory  

 

As for computational efficiency, arithmetic average based localisation algorithm does 

not require a long time to generate the value of object position since it is a simple 

mathematical computation for current available computer. So the impact of its 

computational efficiency on latency of an RFID-Loc system does not need to be 

concerned.  

 

6.3.1.2 Dynamic Localisation 

The idea of dynamic localisation comes from probabilistic localisation algorithm. 

During a probabilistic localisation process, it contains the prediction and updating 

processes, which is potentially benefited for overcoming some problem on resisting 

unexpected regular false reading error in static localisation algorithm. Currently, 

SLAM (Simultaneous Localisation and Mapping) technique is one of the most 

popular solutions for probabilistic localisation algorithm. As reviewed in Chapter 2, 

there are two major approaches to implement SLAM, which are Extended Kalman 

Filter and Particle Filter. In this section, the possibility of those two approaches 

applying into an RFID-Loc framework is discussed.   
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Extended Kalman Filter:  

Before looking into the details of EKF, it firstly needs to specify some mathematical 

terms. Unlike localisation problem which aims to estimate location state, the 

objective of SLAM is to estimate the system state which includes the location state 

and feature state, as shown in Equation 6.3:  

                   

              

1,

2,

,

...

t

t

tt

n t

s

m

mx

m

                                   (6.3) 

 

Where :        tx
 
is the system state at time t,  

               ts
 
is the location state  

               
,n tm

 
is the feature state       

               n  is the number of features  

               t  is the time interval.   

 

 

Here, a feature is a specific object of surrounding environment, e.g. a door or a 

window in a room. In literature, this kind of SLAM is often called feature-based 

SLAM. If object is assumed to move on a 2D Cartesian map, then location state of 

object can be denoted as position ( , )x y  and orientation of object  relative to a 

global reference frame, as shown in Equation 6.4.  

                 

                      t

x

s y                          (6.4) 

 

Each feature‟s state is commonly represented by a point in map by Equation 6.5.  

         

                     ,n t

r
m                   (6.5) 
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The mathematical framework of EKF approach includes two models that operate on 

the above system state. The first model is the system transition model that describes 

the relationships of system states at different time t:  

 

                  1 ( )t tx f x v            (6.6) 

 

Here v is a mutually independent zero-mean white Gaussian noises with noise 

covariance Q, and ()f  is a non-linear function.  

 

If the map is assumed to be static, i.e. the position of features will stay constant over 

time. This gives:  

 

                    
, 1 ,n t n tm m                  (6.7) 

 

After applying Equation 6.7 into Equation 6.1, the system state is simplified into only 

the location state, hence the system transition model becomes:  

 

                                              

 

      1 1( ) ( )t t t tx f x v s f s v                  (6.8) 

 

Hence, it is obvious the system transition model only operates on the location state.  

 

The other model is the observation model:  

 

                  1 1( )k kz h x w                             (6.9) 

 

Where : w is a mutually independent zero-mean white Gaussian noises with noise 

covariance R, and (.)h is a non-linear function that gives the relationship between the 

moving object and a certain feature. Given the above two models, following the 

notation of Kalman Filter Localisation, the each iteration of EKF (Welch & Bishop, 

1995) is given by Appendix B:  
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In accordance with above EKF Equations, Newman (Newman, 2006)‟s code is used to 

simulate EKF based localisation. Figure 6.28 shows the trajectory of an assumed 

moving object though a field of random point features. There are 30 random point 

features distributed as landmarks in an object moving area. At the each time frame, 

object would observe a point feature with its distance and angle. However, when no 

observations are made, object would move with increasing error; when features are 

re-observed, error would be reduced.  

     

 

       Figure 6. 28 EKF Feature Based Localisation (Newman, 2006) 

 

From the above discussion, EKF is a popular dynamic localisation algorithm in wide 

applications. The major reason is that it is easy to implement, and is capable of 

providing accurate non-linear estimation in some practical problems. However, EKF 

localisation algorithm is not a feasible solution in an RFID-Loc system. The first one 

is difference of features‟ type on EKF based localisation algorithm and RFID-Loc 

localisation algorithm. In a typical EKF based localisation algorithm, features are 

measured by polar coordinates, distributing with a large number in moving area. 
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However, in an RFID-Loc system, features are selected as four rectangle coordinate 

values through an RFID-Loc data filter. The transformation between polar coordinates 

and rectangle coordinates is hardly to handle, and the reduction on number of features 

might impact accuracy and precision of EKF based localisation algorithm. Therefore, 

if we simulated EKF based localisation algorithm with reduced number of features, on 

a same moving trajectory, localisation results would show in Figure 6.29.   

 

   

  

Figure 6. 29: EKF Feature Based Localisation with reduced number of features by 

using Newman Code (Newman, 2006).  

 

Figure 6.29 shows that EKF feature based localisation algorithm requires a sufficient 

number of feature points, with appropriate distribution. If the number of feature points 

is not sufficient, or the positions of feature are not distributed appropriately, EKF 

based localisation algorithm would have a low accuracy and precision. This is a 
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widely-recognized problem called Data Association Problem (or Correspondence 

problem, see Cox, 1993). EKF based localisation algorithm is based on an assumption 

that the moving object can identify each feature. For example, if the equipped sensor 

is a range detector, we assume at each observation, the moving object knows its 

distance to a unique feature. This is impossible to achieve in an RFID-Loc system, 

since RFID reader is impossible to ensure the correct identification of each feature 

every time. Especially when RFID tag pattern is highly dense, it is extremely difficult 

to properly identify each feature. Another issue of EKF is the linear approximation of 

motion and observation model. The errors produced by the linear approximation can 

affect the map consistency. In an indoor environment, object moving trajectory is 

highly non-linear and random, which is not suitable to use EKF based localisation 

algorithm.  

 

Particle Filter:  

Particle Filter has been shown to be more robust than Kalman Filter for Localisation. 

The robustness is a key demerit of static localisation algorithm in an RFID-Loc 

tracker. In light of this point, Particle Filter is more appropriate to be investigated in 

RFID-Loc localisation algorithm module than EKF. Meanwhile, particle filter has no 

limitations on linear approximation of motion model of EKF, which is more suitable 

in a indoor environment. In this section, it explores the possibility of particle filter 

method for an RFID-Loc system.  

 

Recently, a typical particle filter algorithm is proposed for SLAM by Montemerlo 

(Montemerlo.etal, 2003), called FastSLAM. It is typically used for ranged based 

sensor localisation. The observed features at that each time frame is distance or angle. 

Like Particle Filter Localisation techniques reviewed in Chapter 2, FastSLAM is 

based on the probabilistic framework. Recall that in localisation the goal is to estimate 

the system states belief representing the posterior probability of the location state ts , 

conditioned on the sensor distance measurement 0:td :  

 

                    0:( ) Pr( | )t t tBel s s d
   

     (6.10) 
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In the context of SLAM, it requires to estimate both location state and feature state. If 

we denote the whole map containing N features as M, and each features as nm  then 

the belief of system states becomes:  

 

             0:( , ) Pr( , | )t t tBel s M s M d                 (6.11)          

        

   Where:                     

                         
,n t

d
m                    

 

In FastSLAM, it is not momentary location states, but the entire path is estimated. 

Based on the fact that each feature can be estimated independently given the path, the 

belief is then:  

 

             

0 : 0 : 0 :

0 : 0 : 0 : 0 :

0 : 0 : 0 : 0 :

1

( , ) P r ( , | )

P r ( | ) P r ( | , )

P r ( | ) P r ( | , )

t t t

t t t t

N

t t n t t

n

B e l s M s M d

s d M s d

s d m s d

            (6.12) 

 

Equation 6.12 is the basic math for FastSLAM. It divides the SLAM problem into a 

location path estimation problem along with N feature estimation problem 

(Montemerlo 2002). We use FastSLAM to carry out a simulation, which has four 

assumed features in the map, with the following states: A(10,10), B(21.92, -0.65), 

C(-11.95,-16.6), D(-5,15). In particular, a Gaussian with zero mean and a standard 

deviation of 0.6 is used as the noise in the observation model. Figure 6.30 shows the 

simulation result from the dataset. At the beginning the path estimation is not correct, 

and neither do the feature estimations. This is due to the fact that there are a lot of 

ambiguities about each feature. For instance, at time interval 3, there are several 

estimations to feature C, which are distributed quite depressively (the grey circles). 

These ambiguities cause the path estimation to be „twisted‟ (the blue line). However 

as the object keeps moving, at time interval 60, both the feature estimations and path 

estimation converge to the real ones. 
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Figure 6. 30: An simulation result by using FastSLAM with 150 particles:  

 

The black dashed line is the real path (begins from the origin) while the blue line is 

the estimated path from the particle filter SLAM algorithm. The square, triangle, 

circle and star represent the estimation to feature A, B, C and D respectively. In these 

feature estimations the grey ones are the results at time interval 3 while the black ones 

are the results at time interval 60. The initialization method for the first observed 

feature (here it is feature A) is to pick a random point as its state, hence the estimation 

to feature A will remain constant. Also in this experiment feature A is initialized to be 

overlapped with its real feature state so that the estimated path will have the same 

orientation with the real one.    

 

The above Figure appears that particular filter can potentially be a dynamic 

localisation algorithm in an RFID-Loc localisation algorithm. However, there are still 

some key barriers on this attempt, which would be discussed and solved in next 

section.  

 

 



138 

 

6.3.2.3 Discussion 

 

The first key barrier of typical Particle Filter localisation algorithms is the high 

computational complexity of Particle Filter. Since in localisation, the state space 

usually has just 3 or 4 dimensions (e.g. three Cartesian coordinates and possibly one 

orientation), while in SLAM the number of features can easily be an order of 

hundreds. In order to get a satisfactory result with Particle Filter, the number of 

particles needs to rise rapidly with the dimension of the state space (Gordon et.al. 

1993). Actually, In FastSLAM, the posterior over location path is estimated by 

particle filter, and each particle maintains its own map with N features. These features 

are estimated by Extended Kalman Filter (each EKF for one feature) using the same 

techniques. Thus if there are M particles, then there will be N×M EKFs in total. 

Compared with standard particle filter, far fewer particles are required. And because 

each EKF only estimate one single feature, a high-dimensional SLAM problem is 

then factorized into a product of low-dimensional estimation problems, which yields a 

much improved efficiency. The algorithm used by FastSLAM is actually an 

instantiation of the Rao-Blackwellised Particle Filter (Murphy 1999), which uses a 

combination of particle representation and parametric representation for a 

high-dimensional Bayes estimation problem. For a complete derivation and proof of 

this factorization, refer to (Thrun et al 2004). FastSLAM absorbs the advantage of 

both Kalman Filter and Particle Filter. As a result it can be applied into highly 

non-linear SLAM problems while at the same time maintains efficiency and accuracy. 

For the sake of clarity, we carried out some more simulations in Figure 6.31 with 

different number of particles, to examine the programming running time and error of 

estimation. Figure 6.6 demonstrates the relationship between the number of particles 

and the running time of simulation program and the error of estimation. From the 

Figure 6.6, it shows that the more number of particles would have a higher accurate 

estimation, but with a longer running time. Oppositely, if the number of particles 

reduced, it is possible to reduce the running time, but with some loss on accuracy. In 

an RFID-Loc system, long running time of localisation algorithm would lead to a time 

delay, thus it is necessary to balance running time and error of estimation of Particular 

Filter based localisation algorithm.  
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         Figure 6. 31: The influence of the number of particles  

 

Secondly, the sensor environment and features of an RFID-Loc system are different 

with the typical FastSLAM applications. It is critical to identify their differences so 

that we can adopt particular filter technique in an RFID-Loc system. The conventional 

FastSLAM particle filters algorithm is to deal with several fixed or unfixed feature 

points, which in practical presents the range-measurement sensors, to measure the 

distance information at each time intervals. The observation is distance information. 

However, in an RFID-Loc system, features are extracted by RFID-Loc data filter, 

which are position information. The impacts of features on object position are not 

equal. In a conventional FastSLAM algorithm, features would impact on localisation 

of both X axis and Y axis of moving object. In an RFID-Loc system, two features on 

X axis impacts on X value of object position, another two features on Y axis impacts 

on Y value of object position. Considering those differences on sensor environment 

and features, FastSLAM particle filter algorithm cannot be directly applied into an 

RFID-Loc system. The aim of FastSLAM is to accurately localize the mobile object 

by using range sensor with the environment of unknown start position and feature 

position. It contains the feature based estimation for mapping and localisation. But in 

an RFID-Loc system, although the features extracted by RFID-Loc data filter have 

some uncertainty and errors, the mapping between features and object position is clear 

and explicit. Strictly speaking, dynamic localisation process for an RFID-Loc system 

is solely a localisation process without mapping process. In light of those differences 

between RFID-Loc environment and typical FastSLAM applications, it is necessary 

to propose a new particle filter based localisation algorithm for an RFID-Loc system. 

In a typical FastSLAM algorithm, by using the observation model and motion model, 

it would estimate the position information of moving object. The whole localisation 
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process contains initializing, applying model, weighting, and resampling. It can use 

some range-only measurement sensors in that for mobile objects localisation, and 

most sensors are easily to observe the distance information rather than position 

information. As for an RFID-Loc application, dynamic localisation process can also 

contain initializing, applying model, weighting and resampling process. However, 

since RFID reader observes position value of RFID tags instead of distance value, the 

proposed dynamic localisation algorithm would rebuild different observation model, 

motion model, and define feature points, weighting process, resampling process. The 

comparison of a proposed dynamical localisation approach and conventional 

FastSLAM approach is shown in Table 6.6. 

 

   Table 6. 6  Comparison of RFID-Loc Dynamic Localisation and SLAM 

 

 RFID-Loc Dynamic Localisation  FASTSLAM 

Feature 
points  

Position information,  
Mobile.  

Distance information,  
Nearly fixed.  

Initialization  Known start position,  
Known start features.  

Unknown start position, 
Unknown start features position.  

Sensor Data Position information 
 

Distance information 

Applying 
motion 
model 

Gaussian model, but the radius is 
determined by known accuracy ( tag 
distance ) 
 

Gaussian model, the radius could be any 
value.  

Observation 
model and 
weighting 

Observation model is based on the 
position difference between predicted 
value and observed value.  
 

Observation model is based on the 
distance difference between predicted 
value and observed value.  

Feature 
Impacts 

Two features on X axis impacts on 
output X value, another two features 
on Y axis impacts on output Y value.  

Four features impacts on both output X 
and Y value.  

Resampling Directly use the particles with largest 
weight.  

Those particles with large weight will be 
duplicated while those with small weight 
will be deleted.  

Aim Accurately localize the object by using 
position sensor with the environment 
of known start position and feature 
position. 
 

Accurately localize the mobile object by 
using range sensor with the 
environment of unknown start position 
and feature position.  

Performance No strict convergence, the accuracy at 
each time interval is  only determined 
by the closeness of predicted features 
to observation features. 

With increasing time intervals, the 
position has a convergence with high 
accuracy.  
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6.3.3 System State and Model Definitions 

In this section, it proposes a new particle filter based dynamic localisation algorithm 

for an RFID-Loc system. This section provides a comprehensive description of the 

implementation of system states, system models and the particle filter in this 

algorithm.  

6.3.3.1 System state  

Hence all features as well as the location of the object can be represented by Cartesian 

coordinates. The chosen four feature points 
ynypxnxp

FFFF ,,, are the minimum and 

maximum values on X and Y axis among all the detected RFID tag position value at 

time interval t, as shown in Equation 5.1 in Chapter 5. If current time interval is 

denoted as t, object position ),( c

t

c

t
YX

 
can be obtained through the position data of 

RFID tags ( , )N N

T TX Y , where N represents the number of tags detected by the reader, 

and ( , )N N

T TX Y  represents the coordination information of the tags. Then the chosen 

feature points are represented in the following Equation 6.13 
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      Feature State    (6.13) 

 

After defining the state of four feature points, it requires to define a system state to 

represent the localisation process. The location state represents the position of object, 

is defined as S in Equation 6.14, where n is index of feature points, t is the time 

interval.  

 

         ( , )t t tS x y          Location state                         (6.14) 

 



142 

 

Having defined the feature states and location states, the system state, at time t, the 

system state 
t

ST  is shown as Equation 6.15:  
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      System State                  (6.15) 

 

Given the above overview of system state, the specific objective of this dynamic 

localisation algorithm is : the object starts moving from an initial position 
0

S  with 

prior knowledge of the feature points:
0 0 0 0, , ,xp xn yp ynF F F F . As the object keeps moving 

it receives different features‟ data from the RFID readers. The value of feature points 

would change as the object moving.  

 

6.3.3.2 System models 

Besides system states, there are two models that need to be defined, namely the 

observation model and motion model. Their specific implementation is characterized 

by the nature of the RFID sensor system and the motion of object moving.  

 

The observation model tells the probability of obtaining a object position at a certain 

location state. Recalling the theory of Bayes Filter, this is defined as a probabilistic 

distribution:  

                       

                 )|),,,(P r ( tt SypynxpxnF
           

 

Where:  ),,,( ypynxpxnFt   
and

 tS   are the RFID reading and location state, 

respectively.  
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Unlike most other SLAM problems in literature that uses range-bearing sensors. The 

characteristic of RFID reader is that it can only provide relative position information, 

but not distance or bearing information. This will bring a lot of differences on the 

initialization and observation process in the proposed dynamic localisation. Also 

RFID tag position information will contain some noise which is caused by 

environment. Therefore, the straight observation model would be in Equation 6.16:  
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                    (6.16)

 

 

Where:    , , ,xp xn yp yn

t t t td d d d
 
are the observations of features at time interval t. 

                   is the noise of measurement each time interval. 
 

 

 

At each time interval, RFID reader will receive observation information from all 

features. Figure 6.32 is an example showing an RFID-Loc system measuring the 

position information from four features at the same time. While in practice, RFID 

reader may receive observation of each RFID tag one by one, a time gap is given to 

collect enough RFID raw data, etc, 20 seconds in Chapter 4 case. And then the four 

features can be treated as simultaneously extracting from RFID raw data. 
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                  ( )tF yp
                       

 

 

 

 

 

( )tF xn  

                                                              ( )tF xp  

                                                                    

                                                              ( )tF yn  

 

                Figure 6. 32: The Observation Model  

 

The straight observation model gives the relationship between the object position and 

the features value. But it is not enough as we need another model which can provide 

the feature states given the location state of the object and the observation information. 

The inverse observation model offers such functionality.  

 

The motion model is used to characterize the moving object location states over time. 

It helps to predict the next moving object location state given the most current one. In 

a real indoor environment, moving object is possibly human carrying or wheel driving. 

Moving object might change its direction or speed of the movement randomly. So the 

targeted moving object trajectory is assumed to be associated with direction or speed 

of the movement that is random. To cope with the randomness of the motion moving, 

a 2D Gaussian model is used to approximate the motion. More specifically, when 

given the location state 
t

S at the time interval t, to predict the location state  at 

the time t+1, a number of particles are drawn randomly from a 2D Gaussian 

distribution with zero-mean. These particles will be distributed in a circle with origin 

at 
t

S  and its radius is determined by the standard deviation of the 2D Gaussian 

distribution. For instance, if moving object position start from position (0, 0), and 

localisation accuracy in a RFID-Loc system would reach 5 centimeters, so the next 

step of position possibly is on the circle which is on the centre (0,0), with the radius 

2*5 , and draw 200 particles, the diagram is shown in Fig 6.33  
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                       Figure 6. 33: The Motion Model 

 

Figure 6.33 shows an example of the motion model using 200 particles. Notice that in 

practice it is not necessary to use so many particles. Usually around 100 particles are 

enough to obtain satisfactory results. But using more particles can improve the 

accuracy for the estimation of location states.  

 

The main advantage of using a 2D Gaussian to approximate the motion model is its 

ability to cover all possible motion directions. In order to predict location state 

accurately, the standard deviation of this 2D Gaussian has to be carefully specified. 

However, this motion model also has two limitations which may significantly affect 

the efficiency of the dynamic localisation algorithm in certain circumstances. The first 

problem arises because it simply draws particles from a 2D Gaussian randomly and 

consequently there will be some particles being “wasted” since they may be placed at 

positions with low observation likelihood. The other drawback is a direct consequence 

of the particle-wasting problem. If the total number of the particle is not big enough 

then there will be too few particles placed at the high observation likelihood area and 

therefore the prediction accuracy will be significantly affected. There two problems 

are from the nature of the resampling process of standard particle filter and have been 
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broadly recognized by researchers. In order to overcome this problem, we would 

employ a simple method, which only select the biggest weight particle for generating 

the location states.  

 

6.3.4 Dynamic Localisation Algorithm for RFID-Loc 

After defining the system state and observation model, it requires clearing the 

structure of each particle. The conventional particle filter structure only contains the 

localisation state and feature states without including weight issues. But in this 

algorithm, we would put the weight state into particle state. Each particle has a 

mathematical way in Equation 6.17.  

 

   
, , , , , , , ,

{ , , , , , , , , , }M M M M M M M M M M M

t t x p t x n t y p t y n t x p t x n t y p t y n t t
S T S F F F F W W W W U         (6.17) 

 

Where:   

                    M  is the index of the particle,  

                     t     is the time interval. 

                    
m

ts
 is the location of the object  

                   
m

tnf ,   represents feature points.  

                    M

tn
W

,
 represents the weight of each feature.  

                    M

t
U   is the updated location of object.  

 

The particle filter algorithm is then operating on a set of particles. Each iteration of 

the algorithm can be divided into the following stages:  

 

           (a)      Initialization: 

           (b)      Applying motion model: 

           (c)      Apply observation model and weight all the particles 

           (d)      Resampling   

 

Note that the initialization stage is required only one in the first iteration.  
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6.3.4.1 Initialization 

 

Initialization is an important stage in all conventional SLAM algorithms. In EFK 

based SLAM, its task is to initialize the mean and covariance matrix for the state 

vector. In the typical particle filter algorithm, it is to initialize the location state and 

feature states in each particle. Most of times, the start position of target and features 

are unknown, so that the errors at the beginning stage is big. However, in RFID-Loc 

case, the RFID sensor could provide the position information initially; it could start at 

a known position and feature points. Hence, according to the theoretical model, the 

start position is zero, radius as the accuracy of localisation required, feature points 

position are calculated as the RFID reader detection area. (Length as Y axis, Width as 

X axis).  

 

           )0,0(
0

S   ,    Accuracy r    ,     1
0,

M

n
W

 

 

     )(
0,1

Ln e a rf m ,  )(
0,2

Wnearf m ,    )(
0,3

Lnearf m ,  )(
0,4

Wnearf m   

                                               Initialization   (6.18) 

 

     Where : Near () : the nearest tag in the RFID reader detection edge area 

 

6.3.4.2 Applying Model and Weighting 

 

After the initialization, the motion model is applied to all particles. More specifically, 

the location state of each particle will be replaced with a new predicted one generated 

from the motion model, and the predicted feature state of each particle will be updated 

as well. The process is as followed:  

 

At the time intervals t : Once applying motion model to Equation 6.9, the M particles 

get M numbers of different predicted position state M

t
S

1
, which are allocated in the 

circle of centre point M

t
S , radius as Accuracy  

 

             
1P r e d i c t _ M o t i o n _ M o d e l ( )M M

t tS S                    (6.19) 
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Then due to the known RFID reader detection area, it could estimate the position of 

predicted features:  

 

                , 1 1P r e d i c t _ P r e d i c t _ ( )M M

xp t tF S near W  

                , 1 1P r e d i c t _ P r e d i c t _ ( )M M

xn t tF S near W  

                , 1 1P r e d i c t _ P r e d i c t _ ( )M M

yp t tF S near L  

                , 1 1P r e d i c t _ P r e d i c t _ ( )M M

yn t tF S near L             (6.20) 

 

Here, each particle has its estimation to the location state and feature states. Then we 

define predicted location state as the location state after being applied the motion 

model. And define predicted observation as the features‟ value. Then the weight of 

each particle should be determine by the difference of the predicted observation and 

real observation. If the predicted location state and feature state is very close to the 

real states. Then the predicted observation will be very close to the real observation. 

Hence this particle will have a high weight. In a probabilistic math form, the weight 

of each particle is given by:  

 

           0 : 1 0 : 1P r ( | , ) P r ( | , )m m m

t n t n t t nW d f s f s d d f
              (6.21) 

 

Where the superscript m is the index of the particle, subscript t is time interval,  

 

Equation 6.21 is implemented by calculating the real observation under a Gaussian 

with mean and standard deviation determined by the observation noise. More 

specifically, the weight of each particle is calculated using the following Equation 

6.22. Meanwhile, it already got the four predicted feature points value at time 

intervals 1t , it could apply the observation model by using the observed feature 

points date to calculate the weight of each particles.  
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                (6.22) 

 

Currently, it already got all the weights, the next stage is to use these weights and get 

the update object position.  

 

6.3.4.3 Resampling 

 

This step is similar as the one in particle filter localisation. In a conventional particle 

filter localisation process, those particles with large weight will be duplicated while 

those with small weight will be deleted. And all the weight would accumulate to 

impact on the position value. However, in this dynamic algorithm, the situation varies 

the traditional one in that the four features weight would separately influence the X 

and Y axis value by two parts, which is that M

txp
W

1,
 and M

txn
W

1,
would determine the X 

position value, M

typ
W

1,
 and M

tyn
W

1,
 would determine the Y position value. 

Consequently, it would pick up the largest weight to calculate the updated object 

position, since it means that the possibility of object position at that predicted location 

is the largest. If it is denoted the particle number of largest weight on X positive, X 

negative, Y positive and Y negative directions are _i xp , _i xn , _i yp , _i yn , 

then  

 



150 

 

          

1 2

, 1 , 1 , 1

1 2

, 1 , 1 , 1

1 2

, 1 , 1 , 1

1 2

, 1 , 1 , 1

_ _ ( , ,..., )

_ _ ( , ,..., )

_ _ ( , ,..., )

_ _ ( , ,..., )

M

xp t xp t xp t
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i yn Max index W W W

          (6.23) 

 

The updated moving object position M

t
U

1
 could be the next step moving object 

position state M

t
S

2
, and the algorithm would continue running to estimate the moving 

object position.     

              

_ _ _ _

1 1 1 1
1

Predict _ Predict _ Predict _ Predict _
,

2 2

i xp i xn i yp i yn
M t t t t
t

S S S S
U   (6.24) 

 

6.3.5 Algorithm Summary  

This section will provide a summary of the whole dynamic localisation algorithm for 

RFID-Loc, as shown in Figure 6.34: 
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          Figure 6. 34: Dynamic Localisation Algorithm Flow Chart 
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6.4 Summary   

In this chapter, how to filter RFID raw data and select reliable features and process 

these features to localize object position in RFID-Loc are discussed. Under a given 

RFID-Loc infrastructure platform, experiment results showed that regular false 

negative reading is the most frequently occurring factor affecting to inaccuracy and 

uncertainty of RFID raw data. Points based, polygon based and rectangle based 

feature selection methods are compared by evaluating accuracy and precision of an 

RFID-Loc system in three different trajectories. The comparison explores that by 

using centroid localisation algorithm, rectangle based feature selection method can 

give higher localisation precision than points and polygon based feature selection 

method, particularly on X axis value of object position. It means that rectangle based 

feature selection method can maximum reduce the impacts of regular false reading 

error on localisation precision from software level, because rectangle area substituting 

a polygon area in a feature selection method can solve the problem of asymmetry of 

features in RFID raw data. While under proposed RFID-Loc infrastructure and feature 

selection method, static localisation algorithm in an RFID-Loc system can localize the 

object position with a good accuracy. But static localisation algorithm has a weak 

ability to resist unexpected false reading error in an RFID-Loc system. Analysis 

shows that RFID-Loc is a simpler case than typical SLAM problem, but with much 

difference. A dynamic localisation algorithm based on particle filter technique is 

proposed and implemented to solve the problem of resisting unexpected false reading 

error in an RFID-Loc system, particularly on dead reading error and repeated 

reading error. Experiments showed that dynamic localisation algorithm has a similar 

accuracy and precision to static localisation algorithm in regular false reading error 

occurring situation, and a better precision than static localisation algorithm in 

unexpected false reading error occurring situation. The robustness of proposed 

dynamic localisation algorithm has to depend on the chosen number of particles and 

initial distributed radius.  
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Chapter 7:  

Results Analysis and Discussion  

7.1 Introduction 

In this Chapter, the application of RFID-Loc framework is discussed, verifying its 

potential use for indoor application, and providing examples of how it can be used in 

different scenarios. In order to verify the framework, several experiments with 

different object moving trajectories are carried out. Section 7.2 focuses on the 

validation of proposed spare RFID Tag Arrangement Strategy on improving 

localisation precision by comparing with conventional grid RFID Tag Arrangement. 

Section 7.3 verifies the performance of proposed dynamic localisation algorithm on 

resisting false-reading error. Section 7.4 illustrates the whole performance of an 

RFID-Loc based system by using proposed RFID infrastructure and algorithms on 

localisation accuracy and precision, with comparison to some traditional RFID based 

localisation systems.  

 

 

7.2 Validation of Sparse RFID Tag Arrangement 

Strategy 

To evaluate the validity of proposed sparse RFID Tag Arrangement strategy for an 

RFID-Loc system, the direct way is to check how much improvement on system 

reading efficiency of RFID-Loc Infrastructure module. Comparing RFID tag pattern 

in Figure 5.18 and 5.3, M has reduced from 28 to 18, as shown in Figure 7.1.  
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   Conventional Grid Tag Pattern            Spare Tag Arrangement Pattern 

       Figure 7. 1 Comparison of two RFID Tag Arrangement patterns  

 

In terms of Equation 4.6, under given experimental platform, system reading 

efficiency of RFID-Loc infrastructure has increased from 30% to 40%, which means 

that proposed sparse RFID Tag Arrangement strategy can reduce regular false reading 

error in an RFID-Loc system.  

 

Apart from evaluating system reading efficiency, as mentioned in section 4.4, it would 

also focus on evaluating localisation accuracy and precision with the proposed sparse 

RFID Tag Arrangement on some object moving trajectories. In both two patterns of 

Figure 7.1, accuracy is given as up to 10 centimetres, then:  

                  

                       10
x y

D D  cm                      

 

So in practical experiment process, the distance of object moving between two time 

intervals is equal to this accuracy, which is 10 centimetres. The testing trajectories are 

to move along X axis, move along Y axis and move along both X and Y axis. Time 

interval of localisation sequence is measured by 12. Localisation algorithm for 

calculating object position is to use Equation 4.3. The experimental results of object 

moving along X axis, Y axis, both X and Y axis, are shown in Figure 7.2, 7.3 and 7.4.  
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These three Figures illustrate that sparse RFID Tag Arrangement can give a better 

localisation performance than original RFID grid Tag Arrangement. This phenomenon 

occurs apparently on object moving along X axis. While on object moving along Y 

axis, new sparse RFID pattern cannot give an apparently improved localisation 

performance than original RFID grid pattern, it reduced localisation precision on 

some time interval in original RFID grid pattern. As for object moving along both X 

and Y axis, original RFID grid pattern produces some significant errors on some time 

intervals, but new sparse RFID pattern gives a roughly better performance than grid 

one.  

 

    

              Figure 7. 2 RFID sensing trajectory along X axis.  
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               Figure 7. 3 RFID sensing trajectory along Y axis. 

  

 
         Figure 7. 4 RFID sensing trajectory along both X axis and Y axis.  
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In terms of the above three trajectories, localisation accuracy and precision of new 

sparse RFID pattern and traditional RFID grid pattern are compared in Table 7.1. 

Also, value of localisation precision over 12 time intervals is averaged into Figure 7.5. 

By using new sparse RFID pattern, the range of localisation precision has been 

reduced from 10 centimetres level to 5 centimetres level.  

 

Table 7. 1 Comparison of Accuracy and Precision Range on two RFID tag patterns 

 
 X Axis  

Trajectory 

Y Axis  

Trajectory 

X and Y   

Trajectory 

 

Accuracy 

 

Grid 

Pattern 

 

 

X and Y value  

of position 

 

10cm 

 

10cm 

 

10cm 

New 

Pattern 

 

X and Y value of 

position 

10cm 10cm 10cm 

 

Precision 

 

Grid 

Pattern 

X value of  

position 

(-8,10) cm (-10,12)cm (-11,10) cm 

 

Y value of  

position 

 

(-5,7) cm 

 

(-6,11) cm 

 

(-8,12) cm 

 

New 

Pattern 

 

X value of  

position 

 

(-5,5) cm 

 

(-4,4.5) cm 

 

(-5,4) cm 

 

Y value of  

Position 

 

 

(-3,2) cm 

 

(-5,4) cm 

 

(-4.5,5) cm 

 

 

Figure 7.5 shows that average localisation precision in continues time intervals has 

also reduced from 10 centimetres to 3 centimetres. So it indicates that compared to 

original RFID grid tag pattern, sparse RFID tag pattern can significantly improve the 

performance of RFID-Loc based object localisation system. While the improvement 

on objective position X and Y is with different degree, comparing to the localisation 

performance of original grid tag pattern, localisation precision of object moving along 

three different trajectories can enhance nearly 50% with the proposed sparse RFID 

pattern. As for localisation accuracy, tag distance between those two patterns is 

equivalent to 10 centimetres, so it means that localisation accuracy is unchanged. To 

the end, the proposed new sparse RFID Tag Arrangement strategy is superior to the 

current RFID Tag Arrangement method in terms of precision. 
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Figure 7. 5 Comparison of Average Precision on two RFID Tag Patterns  

 

7.3 Validation of Dynamic Localisation 

Algorithm 

A number of experiments have been carried out, using different datasets, different 

numbers of particles and other various settings. These experiments are to evaluate the 

performance of particle filter based dynamic localisation algorithm on resisting to 

false reading error, and to investigate if this algorithm has been successfully 

implemented for 2D position estimation and localisation in a RFID-Loc system in 

terms of accuracy, precision and robustness. The datasets in these experiments are 

similarly collected from last section, which includes three object moving trajectories 

along X axis, Y axis and Random motion. Hence, the parameters in these experiments 

are the same as previous chapters.  
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7.3.1 Regular False Reading Error  

To begin with, it compares localisation performance of proposed dynamic localisation 

algorithm with static localisation algorithm on accuracy and precision, with the same 

extracted features. Moving distance of object at each time interval is 10 centimetres, 

which is equal to the assumed localisation accuracy. The radius of circle for 

distributing particles is initialized as 20 centimetres, so that it can potentially cover all 

possible moving directions and positions. As for start position, since every dataset 

started from different position, different ones are selected as start position. The 

number of particles would be assumed as 100 at the beginning.  

Figure 7.6 and Figure 7.7 shows that the performance of static and dynamic 

localisation algorithm on the situation that object only moving along X axis. The start 

position is (0,-2).  

Figure 7.8 and Figure 7.9 shows that the performance of static and dynamic 

localisation algorithm on the situation that object only moving along Y axis. The start 

position is (0,-2).  

Figure 7.10 and Figure 7.11 shows that the performance of static and dynamic 

localisation algorithm on the situation that object only moving along a random 

trajectory. The start position is (0,-2).  
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                 Figure 7. 6 Comparison on X Trajectory  

 

    

(b) Error on X axis                 (b) Error on Y axis 

                 

Figure 7. 7 Errors Comparison on X Trajectory  
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               Figure 7. 8 Comparison on Y Trajectory 

   

(a) Error on X axis               (b) Error on Y axis 

              Figure 7. 9 Errors Comparison on Y Trajectory  
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                Figure 7. 10 Comparison on Random Trajectory  

   

(a) Error on X axis                 (b) Error on Y axis 

              Figure 7. 11 Errors Comparison on Random Trajectory  
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From the above Figures, X and Y trajectory represent that dynamic localisation 

algorithm can get a roughly identical accuracy as static localisation algorithm on 

those two cases. However, in this situation of random trajectory, dynamic localisation 

algorithm generates a bigger error than static localisation algorithm. Theoretically, 

random trajectory can be viewed as a combination of many small moving segments 

on X axis or Y axis. Consequently, if dynamic localisation algorithm can be effective 

on those two cases, it would be also effective on random moving trajectory. The 

possible reason leading to bigger error of dynamic localisation algorithm is the length 

of radius to distribute the particles. If length of radius is not long enough, the particles 

in the circle would be impossible to cover all possible moving directions and positions 

at next step. In order to explore the impact of the length of radius on the performance 

of dynamic localisation algorithm, the length of radius is selected and evaluated by 30 

centimetres, Figure 7.12 and 7.13 shows algorithm performance on random trajectory.  

 

     

        Figure 7. 12 Radius at 30 centimetres on Random Trajectory  
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(b) Error on X axis                 (b) Error on Y axis 

Figure 7. 13 Comparison Errors on Random Trajectory (Radius 30 centimetres) 

 

To summary above localisation precision by using similar criteria in section 5.4.4, 

accuracy has already given as 10 centimetres; precision can be compared by mean of 

precision in Table 7.2 and range of precision in Table 7.3. The mean of precision can 

be calculated by Standard Deviation.  

 Table 7. 2 Comparison of Feature Selection Methods by mean of precision 

Methods         X Trajectory  

X value      Y value    

       Y Trajectory   

X value      Y value    
   Random Trajectory   

X value        Y value  

   

Static 6.686 cm 5.353 cm 3. 356 cm 7. 854 cm 0. 289 cm 7. 220 cm 

Dynamic 5.427 cm 6. 075 cm 0. 905 cm 8. 891 cm 0. 481 cm 9. 936 cm 

 

Table 7. 3 Comparison of Feature Selection Methods by range of precision 

Methods       X Trajectory   

X value        Y value 

    

     Y Trajectory   

X value        Y value    
   Random Trajectory   

X value      Y value    

Static (-2.8, 9) cm (-13, 1) cm (-3, 8.3) cm (-10, 16.7) 

cm 

(-6.7, 5) cm (0, 13) cm 

Dynamic (-5, 4.5) cm (-5, 1.5) cm (-5, 5) cm (-5, 25) cm (-5, 5) cm (3, 25) cm 

 

It appears that as the increased length of radius, dynamic localisation algorithm can 

work effectively on a random trajectory. Also it can reach approximately same 

localisation accuracy as static localisation algorithm. Therefore, it shows that with the 

selected suitable radius and start position, the proposed dynamic localisation 

algorithm can have a similar localisation performance with static localisation 

algorithm.  



165 

 

7.3.2 Unexpected False Reading Error 

This section compares the performance of proposed dynamic localisation algorithm 

with static localisation algorithm on dealing with unexpected false reading error 

situations. Dead reading error and repeated reading error are mainly tested since they 

are serious and typical in unexpected false reading error. Those two kinds of 

unexpected false reading error can possible occur discretely and continuously. 

Therefore, it would evaluate the proposed dynamic localisation algorithm 

performance on those four situations. The results of the proposed dynamic localisation 

algorithm with the conventional static localisation algorithm are compared. The 

dataset is from a object moving trajectory including moving along X axis, moving 

along Y axis and moving random directions.  

 

a) Discrete dead reading error 

On this condition, it assumed that dead reading error discretely occurs at the time 

interval 10, 20, 30; start position (-8.5, -3.5), radius length 30 centimeters. Figure 7.14 

and 6.19 shows the error of estimated value along X axis and Y axis between dynamic 

and static algorithm and real simulated object moving path.  

 

Figure 7. 14: Dynamic algorithm localisation performance on discrete dead-reading 
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(a) Error on X axis                 (b) Error on Y axis 

         Figure 7. 15 Errors Comparison on discrete dead reading error 

 

In comparison to conventional static localisation algorithm, dynamic localisation 

algorithm can effectively improve localisation precision on discrete dead reading error 

situations. It is because particle filter based dynamic localisation algorithm has limited 

the possible object position in a circle with radius 30 centimetres, so that the possible 

localisation errors would also be limited in this range. Once RFID reader observes the 

new features, dynamic localisation algorithm can recover object position immediately.  

 

b) Continuous dead reading error 

On this condition, it assumed that the dead reading error continuously occurs at the 

three time interval 5,6,7; 15,16,17; 25,26,27; start position (-8.5, -3.5), radius length 

30 centimetres. Fig 7.16 and 7.17 shows the error of estimated value along X axis and 

Y axis between dynamic and static algorithm and real simulated object moving path.  
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Figure 7. 16 Dynamic algorithm localisation performance on continuous dead reading 

error 

  

(a) Error on X axis              (b) Error on Y axis 

Figure 7. 17 Errors Comparison on continuous dead reading error in three time 

intervals 

 

During the three time intervals, it appears that in comparison to the conventional static 

localisation algorithm for RFID-Loc, dynamic localisation algorithm can effectively 

improve localisation accuracy on continuous dead reading error situations. However, 
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the period of three continuous time intervals can not represent all the possible 

situations of continuous dead reading error, thus the time intervals are extended to 5 

and 7, then to see their performance, as shown in Figure 7.18 and Figure 7.19. The 

results show that dynamic localisation algorithm can still effectively recover the 

object position from continuous dead reading error situation. The proposed dynamic 

localisation algorithm is better to deal with continuous dead reading error situations 

than static localisation algorithm for an RFID-Loc system.  

  

(a) Error on X axis              (b) Error on Y axis 

Figure 7. 18 Errors Comparison on continuous dead reading error in five time 

intervals 

 

(a) Error on X axis                (b) Error on Y axis 

Figure 7. 19 Errors Comparison on continuous dead reading error in seven time 

intervals 
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c) Discrete repeated reading error 

On this condition, it assumed that repeated reading error discretely occurs at the time 

interval 8, 17, 27; start position (-8.5, -3.5), radius length 30 centimetres. Figure 7.20 

shows the error of estimated value along X axis and Y axis between dynamic and 

static algorithm and real simulated object moving path.  

 

(b) Error on X axis                (b) Error on Y axis 

    Figure 7. 20 Comparison Errors on discrete repeated readings error situation 

 

In comparison to conventional static localisation algorithm, dynamic localisation 

algorithm can have a roughly identical localisation performance on discrete repeated 

reading error situation. It is because on discrete repeated reading error situation, 

RFID reader practically observes some RFID raw data, only with the same value with 

previous time interval. On this condition, if the length of radius is enough to cover the 

object position of previous time interval, dynamic localisation algorithm would 

generate the same object position as static localisation algorithm at this time interval. 

However, due to the limited length of radius, the estimated object position on next 

time interval might have some errors.  
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d) Continuous repeated reading error 

On this condition, it assumed that repeated reading errors continuously occur at the 

four continuous time intervals 8,9,10,11; 17,18,19,20; 27,28,29,30; start position (-8.5, 

-3.5), radius length 30 centimetres. Figure 7.21 shows the error of estimated value 

along X axis and Y axis between dynamic and static algorithm and real simulated 

object moving path.  

  

(c) Error on X axis                (b) Error on Y axis 

 

Figure 7. 21 Errors Comparison on continuous repeated reading errors in three time 

intervals. 

 

From the results, it appears that the in comparison to conventional static localisation 

algorithm, dynamic localisation algorithm can effectively improve localisation 

precision on continuous repeated reading errors situations, especially on X axis.  

 

To summarize four situations, dynamic localisation algorithm has a better 

performance on dealing with unexpected false readings error than conventional static 

localisation algorithm for an RFID-Loc system. The primary reason is that dynamic 

localisation algorithm is based on particle filter methods, which has a strong ability to 

recover the errors in localisation process. Secondly, dynamic localisation algorithm 

seems to be more efficient on dealing with continuous situations than static 

localisation algorithm, subject to a proper length of radius for distributing particles. 
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The reason is that dynamic localisation algorithm has the predicted and updated 

processes to connect continuous time intervals, but static localisation algorithm just 

has the individual processes on each discrete time interval.  

 

7.3.3 Robustness of Algorithm  

Although the proposed particle filter based dynamic localisation algorithm illustrates 

a better localisation performance than static localisation algorithm in an RFID-Loc 

system, the robustness of algorithm is still of importance to be concerned. There are 

two factors impacting the robustness of algorithm, the number of particles and the 

length of radius for distributing particles. Typically, as the increased number of 

particles, the localisation accuracy would be increased. If the environment is more 

complex, it required more particles, which cost much time on calculation. Thus, it is 

necessary to know how to choose the number of particles; the number of particles is 

chosen as 20, 50, 100, 200, 400, 800 to evaluate the robustness of algorithm, and the 

error of X and Y are standard mean. Meanwhile, due to the randomness of distributing 

particles, dynamic localisation algorithm would perform differently on varied 

distributions, so it requires running several times for comparing the difference. Table 

7.4 and 7.5 separately show the results of dynamic localisation algorithm dealing with 

continuous dead-reading (5 time intervals) and discrete dead-reading situations.  

 

Table 7. 4 Standard Error Mean of Different Number of particles on Continuous 

Dead-Readings  

Times Standard 

Error 

mean 

20 

Particles 

50 

Particles 

100 

Particles 

200 

Particles 

400 

Particles 

800 

Particles 

1 X 

Y 

5.7183 

2.836 

3.3887 

11.021 

1.6898 

2.2502 

2.1545 

1.6887 

2.4313 

2.9541 

4.9051 

2.5636 

2 X 

Y 

4.9873 

2.5292 

3.36019 

3.0219 

2.453 

8.5965 

2.802 

1.9256 

5.6722 

2.6206 

3.4605 

2.4889 

3 X 

Y 

3.6204 

10.7526 

6.0376 

8.9907 

3.6389 

1.3014 

5.0026 

5.0975 

1.9846 

5.084 

4.0788 

2.6942 

4 X 

Y 

12.0856 

7.9734 

1.5671 

2.0616 

4.4719 

2.2836 

4.6668 

2.3384 

3.5893 

8.8096 

6.0933 

8.3007 

5 X 

Y 

3.5373 

2.7631 

2.6858 

1.9723 

2.3562 

1.0283 

3.6663 

9.5804 

1.5968 

1.5888 

4.5654 

1.8237 

6 X 

Y 

1.1449 

2.9168 

5.2231 

3.4289 

3.8413 

5.085 

1.5196 

2.4062 

2.2598 

12.777 

4.3468 

5.1622 
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Table 7. 5 Standard Error Mean of Different Number of particles on Discrete 

Dead-Readings 

Times Standard 

Error 

mean 

20 

Particles 

50 

Particles 

100 

Particles 

200 

Particles 

400 

Particles 

800 

Particles 

1 X 

Y 

0.8502 

1.2817 

0.977 

1.7064 

0.5762 

1.2179 

0.6822 

1.0008 

0.6785 

1.4473 

0.5763 

1.3841 

2 X 

Y 

0.8007 

1.1405 

0.6684 

0.673 

0.6878 

2.128 

0.7143 

0.9541 

0.6311 

0.8065 

0.9676 

1.0483 

3 X 

Y 

1.0815 

1.8567 

0.5442 

0.7462 

0.7579 

0.7229 

0.6893 

1.3223 

0.6574 

2.0474 

1.0388 

1.0099 

4 X 

Y 

0.9568 

0.7068 

0.5292 

1.8899 

0.4966 

1.1677 

0.5508 

1.1504 

0.5836 

2.1328 

0.6297 

0.8928 

5 X 

Y 

0.7079 

1.1872 

0.616 

1.208 

1.0103 

1.0125 

0.6045 

0.8271 

0.7037 

1.0106 

0.5608 

1.9764 

6 X 

Y 

0.6959 

1.5173 

0.5874 

1.5643 

0.6139 

1.0058 

0.5555 

0.9411 

0.561 

1.8575 

0.614 

1.0434 

 

The above Tables show that random distribution of particles would lead to varied 

standard error mean, even with the equal number of particles. So we would average 

the error value in the above Tables, and draw the trend in Figure 7.22 and 7.23.  

 

Figure 7. 22 Different number of Particles on continuous dead reading error situation 
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 Figure 7. 23 Different number of particles on discrete dead reading error situation 

 

From above two Figures, it shows that as the number of particles increase, the error of 

dynamic localisation algorithm would initially decrease, but then increase again. The 

reason is that the performance of dynamic localisation algorithm depends on the 

distribution of particles to a large extend. If the number of particles is small, the 

density of distributing particle area is very low, so as to the high probability of object 

position might not be covered. Oppositely, if the number of particle is large, the 

density of distributing particle area is high, although the high probability of object 

position is covered; the probability of covering unexpected false readings position is 

also increased. Consequently, on the condition of unexpected false reading error 

occurring, dynamic-localisation algorithm with a large number of particles would also 

be possible to generate big error. Therefore, the ideal number of particles in this case 

is between 100 and 200. With this number, the particle can be distributed fairly.  
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7.4 Validation RFID-Loc Solution  

This section considers verifying the RFID-Loc framework with both proposed RFID 

Tag Arrangement and localisation algorithm to localize the moving object in a basic 

and simple indoor environment as a case study.  

The first issue needs to be verified is the predictive capacity on accuracy and 

precision of an RFID-Loc framework by using proposed RFID infrastructure and 

algorithms. The traditional passive RFID tags based localisation system relies on 

highly dense grid tag pattern and static localisation algorithms. RFID-Loc framework 

in this thesis has provided an optimal RFID button tag arrangement pattern, a 

rectangle based feature selection method and a dynamical particle filter based 

localisation algorithm. The accuracy and precision delivered by proposed RFID-Loc 

framework has to be compared with the accuracy and precision of traditional RFID 

based localisation system, to see if it has a better performance than traditional RFID 

based localisation system. 

Secondly, moving speed of object has to be concerned in an indoor environment. In 

this thesis, Chapter 2 has reviewed that in a dense RFID tag environment, RFID 

reader needs a sufficient response time to observe a basically enough RFID data for 

processing. On this case, the time period of object keeping on one step T, which is 

defined in Chapter 4, is more important than object moving speed to accuracy and 

precision delivered by an RFID-Loc framework. Therefore, the experiment also has to 

verify the impacts of different value of T on the accuracy and precision delivered by a 

localisation solution based on RFID-Loc framework. 

 

7.4.1 Localisation Accuracy and Precision  

For verifying the predictive capacity on accuracy and precision of an RFID-Loc 

framework by using proposed RFID infrastructure and algorithms, two typical passive 

RFID based localisation solutions are compared. The typical RFID localisation 

solution is based a regular grid passive RFID tag pattern, as shown in Figure 7.24. 

Localisation algorithm in this solution is usually a simple average method in Equation 
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4.7 in Chapter 4. The second RFID-Loc localisation solution is based a triangular 

passive RFID tag pattern, as shown in Figure 7.25. Localisation algorithm in this 

solution is usually a simple average method in Equation 4.8 in Chapter 4. The 

proposed RFID-Loc based localisation system is to use a sparse RFID tag pattern, as 

shown in Figure 7.26. The localisation algorithm is to use the methods proposed in 

Chapter 6.  

 

         

 

Figure 7. 24 Grid based passive RFID localisation solution  
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       Figure 7. 25 Triangle based passive RFID localisation solution  

 

 

 

Figure 7. 26 Sparse RFID tag pattern delivered by an RFID-Loc framework 

 



177 

 

Of above three patterns, RFID tag distance is already assumed as 10 centimetres, thus 

localisation accuracy in the above three solution would be identical. As for 

localisation precision, these three solutions are validated into two typical objects 

moving trajectories in an indoor environment, which are Truck (along X axis), Dolly 

(along Y axis). In each experiment, time intervals of object moving are assumed as 50, 

which is larger than the assumed time intervals in Chapter 6. Standard Error of Mean 

is adapted to measure localisation precision, by Equation 5.6 in Chapter 5.  

       Table 7. 6 Comparison by mean of localisation precision 

Methods     RFID-Loc Solution 
Error on X     Error on Y    

      Grid Solution  
Error on X     Error on Y    

   Triangle Solution   
Error on X    Error on Y    

Truck 
Movement 

0.92 cm 4.35 cm 6.95 cm 5.63 cm 8.15 cm 6.68 cm 

Dolly 
Movement 

2.23 cm 2.38 cm 3.42 cm 7.63 cm 4.12 cm 8.36 cm 

 

        Table 7. 7 Comparison by range of localisation precision 

Methods     RFID-Loc Solution 
Error on X     Error on Y    

      Grid Solution  
Error on X     Error on Y    

   Triangle Solution   
Error on X    Error on Y    

Truck 
Movement 

(-5,10) cm (4,5) cm (-3,9) cm (-14,2) cm (-5,10) cm (0, 8) cm 

Dolly 
Movement 

(-5,10) cm (-10,5) cm (-4,9) cm (-10,17) cm (-6,12) cm (-12, 8) cm 

 

Table 7.7 and 7.8 show that the accuracy and precision of an RFID-Loc framework by 

using proposed RFID infrastructure and algorithms can give a higher precision than 

two typical RFID based localisation solutions, particularly on X axis value of object 

position. On Truck movement, precision of RFID-Loc system can reduce to 0.92 

centimetres on X axis value of object position, 4.35 centimetres on Y value of object 

position. On Dolly movement, precision of RFID-Loc system can reduce to 2.23 

centimetres on X axis value of object position, 2.38 centimetres on Y value of object 

position. The precision is obviously improved than the other typical RFID based 

localisation system. Apart from that, according to practically observed RFID data, it 

illustrates that unexpected false reading error mentioned in Chapter 6 sometimes 

occurs on each trajectory. However, frequency of their occurrence within 50 time 

intervals is very low, which is 2 or 3 times for each trajectory. The occurrence of 

unexpected false reading error is all discrete, not continuous. Figure 7.27 and 7.28 

illustrates the truck, dolly and movement of object trajectory separately.  
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               Figure 7. 27 Comparison on Truck Movement  

 

         

 
 

              Figure 7. 28 Comparison on Dolly Movement  
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From Figure 7.27 and 7.28, the red dash line represents the performance of a 

localisation solution based on RFID-Loc framework; the blue line represents the real 

object movement trajectory. It can conduct that compared to typical RFID based 

localisation system, the localisation solution based on proposed RFID-Loc framework 

can resist unexpected false reading error to some extent, so that improve localisation 

precision of an RFID-Loc system. Although the occurrence of unexpected false 

reading error in an indoor environment is rare, the impact of its occurrence is 

obviously fatal to the performance of the localisation solution based on proposed 

RFID-Loc framework. To sum up the results in Table 7.7 and 7.8, the localisation 

solution based on proposed RFID-Loc framework can offer localisation accuracy up 

to 10 centimetres, with an approximate precision 2 centimetres on X position of object 

and 3 centimetres on Y position of object.  

 

7.4.2 Impact of time period T 

This section verifies the impact of time period of object keeping on one step T on 

localisation accuracy and precision delivered by the localisation solution based on 

proposed RFID-Loc framework. As mentioned in Chapter 4, under given 

experimental platform, T is assumed as 40 seconds per each time interval, because 

system reading efficiency of a given RFID-Loc infrastructure cannot improve 

obviously when T is over 40 seconds. So it means that at each time interval, moving 

object has to keep in a position for 40 seconds so that RFID reader can observe a 

sufficient RFID data to localize its position. In this section, it would verify the 

performance of RFID-Loc system on assuming different value of T as 60, 40, 20, 10, 

5 seconds. And localisation accuracy has been assumed as 10 centimetres, so mean of 

localisation precision is used as a Figure to verify the impact of T. Figure 7.29 

illustrates mean of localisation precision in a RFID-Loc system with different time 

period T.  
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Figure 7. 29 Mean of localisation precision in the localisation solution based on 

proposed RFID-Loc framework with different time period T. 

 

From Figure 7.29, it represents that time period of object keeping on one step T has a 

tremendous impacts on the performance of the localisation solution based on 

proposed RFID-Loc framework. Based on a given RFID-Loc infrastructure platform, 

object localisation precision would be only achieved as the object moving speed is 

quite slow, approximately 5 centimetres per minute. If the object moving speed is 

beyond it, the tracking error will obviously increase due to the lack of adequate RFID 

data observation.  

 

7.5 Discussion 

While the previous sections have carried out a few experiments to validate the 

predictive capacity on accuracy and precision of an RFID-Loc framework into a 

indoor object localisation environment, the results show that under given RFID 

experiment devices, it can basically reach localisation accuracy up to 10 centimetres 

and precision up to 3 centimetres.  
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The primary reason impacting the improvement of the predictive capacity on accuracy 

and precision of an RFID-Loc framework is that current RFID hardware devices 

cannot remove regular false reading error completely. So it leads to a lower system 

reading efficiency of RFID based localisation system, which cannot ensure the 

reliability of observed RFID data. Regarding to our validating results, with a given 

system reading efficiency up to 50%, localisation precision is approximately up to 3 

centimetres, with 2 pixels error on a 1024×768 output images. If we would like to 

reduce pixels error to 0.5, localisation precision has to be reduced to at least 7mm, 

which can basically satisfy an object position requirement in indoor applications. On 

other words, the relative value of system reading efficiency in an RFID-Loc 

infrastructure module probably has to be improved up to 80% or 90%. It is a 

challenging task in terms of current RFID manufacture state of art.  

 

Secondly, the distance of RFID tag limits the improvement of the predictive capacity 

on accuracy of an RFID-Loc framework. It is possible to achieve localisation 

accuracy up to 10 centimetres in an indoor application. The improvement of 

localisation accuracy depends on the distance between RFID tags; also, passive RFID 

tag pattern has to been a non-overlapped pattern. Thus, to satisfy these conditions 

requires the area of passive RFID tag as smaller as possible. However, current two 

popular passive RFID tags (button and card) both have an area over 10 centimetres 

square, which is too larger than 1 mm. The future development of RFID devices can 

provide a feasible passive RFID tags to use in an RFID-Loc system.  

 

Thirdly, the time period of collecting RFID data is also a key barrier to limit the 

application of RFID-Loc framework into indoors. In terms of the experimental 

validation, the suggested time period of collecting RFID data is 40 seconds. However, 

the ideal requirement of object tracking system indoor is expected to work in a 

real-time mode, which means to response object position parameters at least 24 

frames per second. It is a hard task for current localisation solution based on 

RFID-Loc framework to achieve because the time period of collecting RFID data 

cannot ensure to observe sufficient RFID data to localize moving object position 

within 1/24 second.  
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7.6 Summary 

In this Chapter, the application of a RFID-Loc framework in indoor environment is 

discussed and verified. The proposed sparse RFID Tag Arrangement and dynamic 

localisation algorithm in RFID-Loc framework are both verified by using available 

RFID hardware device with different object moving trajectories in an indoor. The 

results show that under current RFID devices, the RFID-Loc system with proposed 

solutions can reach accuracy up to 10 centimetres, with a precision up to 3 

centimetres. However, the time period of object keeping on one step T would 

significantly influence the performance of localisation solution based on RFID-Loc 

framework, since the increased time period would reduce the loss of RFID raw data.  
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Chapter 8:  

Conclusions and Future Works 

By now, it has reached the end of our investigation into the optimal use of RFID 

technique for accurate and precise object position localisation in an indoor 

environment. In this chapter, it would give a brief discussion about the merits and 

demerits of the methodologies developed in this thesis, and some ideas for future 

directions in RFID-Loc tracking indoor.  

 

8.1 Conclusions  

As reviewed in chapter 2, localization and tracking technique is a hot topic in indoor 

application. However, due to the various limitations, none of the current localization 

and tracking technique perfectly satisfies the ideal requirements of indoor moving 

object localisation application. For instance, the existed electromechanical tracking 

systems in indoor applications suffer from jitter and drift, such as electromechanical, 

infrared sensors. And the optical tracking systems suffer from the problems that the 

referenced feature points are out of focus, occlude or even out of view. The wireless 

indoor localisation techniques are mostly with a low and instable accuracy. The 

motivation of this research work is to investigate the possibility of utilizing RFID 

technique as an accurate and precise indoor moving object localisation solution.  

 

In order to reach this goal, it is firstly necessary to investigate the issues which would 

potentially influence the performance of RFID technique based object position 

localisation system. A formal framework named RFID-Loc in Chapter 3 offers a 

coherent and consistent solution with three modules: RFID-Loc Infrastructure, 

RFID-Loc Data Filter and RFID-Loc Localisation Algorithm, to study the factors 

impacting the performance of RFID based moving object localisation in an indoor 



184 

 

environment application. This framework can guide the research and design of 

methods used in a passive RFID based object localisation system with enhanced 

localisation accuracy and precision.  

 

Meanwhile, the issues of each module and the investigation procedure of them are 

analyzed and defined. In Chapter 4 of RFID-Loc infrastructure module, by carrying 

on an empirical and theoretical evaluation on RFID hardware device characteristic, 

the high radio frequency range and regular passive RFID tag pattern are initially 

determined by the preliminary RFID infrastructure. Later on, experiment findings 

show that global tag density has a major impact on system reading efficiency of RFID 

Infrastructure. A sparse RFID Tag Arrangement is proposed in Chapter 5 aiming at 

reducing the impacts of regular false reading error from RFID hardware level on 

localisation precision. The efficiency of this methods and the assumptions upon which 

it relies, are investigated empirically. While sparse RFID Tag Arrangement strategy 

can reduce the impacts of regular false reading error on localisation accuracy and 

precision from RFID-Loc hardware level, it is impossible to eliminate it completely. 

Subsequently, in section 6.2 of RFID-Loc Date Filtering module, it attempts to use a 

feature selection method to reduce the impact of regular false reading error from 

RFID-Loc software level. An explicit comparison of RFID Date Filter algorithms to 

remove regular false reading errors from RFID software level has been carried out. A 

rectangle-based feature selection method is justified as the major RFID Data Filter 

algorithm, with the capability of maximally reducing regular false reading errors. 

Also, the possibility to resist unexpected false reading error in an RFID-Loc system is 

investigated in section 6.3 by discussing and comparing several RFID-based 

localisation algorithms. Due to the complexity and randomness of unexpected false 

reading error, it is hard to manage them from RFID hardware level. A detailed 

discussion and comparison of localisation algorithms is addressed to evaluate their 

performance on robustly and accurately localising object. A dynamic localisation 

algorithm for RFID-Loc system is proposed to accurately and precisely extract object 

position parameters overtime in an RFID-Loc system. This algorithm is shown to 

have a better capability of resisting unexpected false reading error than conventional 

localisation algorithms used in RFID-based localisation systems, while having a 

higher computational complexity.  
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The verification of RFID-Loc framework in Chapter 7 illustrates that with proposed 

RFID infrastructure and algorithms, the RFID-Loc framework can offer localisation 

accuracy up to 10 centimetres, with a localisation precision up to 3 centimetres. This 

accuracy and precision is superior to the current state-of-art RFID based localisation 

techniques. The main contributions are:  

1. A formal framework is proposed for investigating the problem of use of RFID 

technique to accurately and precisely localize the moving object in an indoor 

environment. This framework can guide the research and design of the 

optimization methods used in an RFID based 2D localisation technology with 

enhanced accuracy and precision.  

2. A sparse RFID Tag Distribution is proposed for the RFID infrastructure module, 

with the capability of enhancing the system reading efficiency from RFID 

infrastructure level, so as to improve the accuracy and precision of the 2D RFID 

based moving object localisation.   

3. A rectangle-based feature selection method is selected and justified as the major 

algorithm in RFID data filter module, with the capability of maximally reducing 

the regular false reading errors from RFID infrastructure level. 

4. A dynamic localisation algorithm for an RFID localisation algorithm module is 

proposed, which can accurately and precisely extract 2D position parameters of a 

moving object over time, also with the resilience to unexpected false reading error 

in indoor environments. 

 

8.2 Future Directions  

The main contributions of this research work are simply in paying significant 

attention to the improvement of accuracy and precision on applying RFID techniques 

for indoor moving object localisation. There are still a lot of work needs to do in next 

stage.  

 

Firstly, RFID-Loc framework requires overcoming false reading problem and 

localising moving object in a stable performance. While the dynamic tracking 

algorithm can solve some uncertainty detection problem by using other observation 
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model or resampling method, it cannot deal with false reading problem completely. It 

is necessary to evaluate more methods from hardware level to software level to 

manage and reduce false reading problem. 

 

Secondly, the problem of object orientation tracking requires a method to solve. The 

monocular anti-collision RFID reader can possibly achieve the object orientation 

tracking to some extent. However, due to the limitation of the shape of the effective 

detection area shape from RFID reader, the accuracy of object orientation tracking is 

very low. Thus, it would extend RFID-Loc framework into multiple reader situations. 

By estimating the relative position moving of each reader, it could achieve the object 

orientation tracking, with a potential higher accuracy.  

      

Finally, the proposed RFID-Loc localisation solution merely solves the problem of 2D 

moving object localisation and tracking. In future, it can be extended into 3D 

environment, but the RFID-Loc framework is still valid to be used.   
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Appendix A : Bayes Theorem 

Bayes Theorem: (See DeGroot 2002) Let 1 2, ......, kB B B  from a partition of space 

S such that Pr( ) 0jB , for 1,......,j k  and A is an event such that Pr( ) 0A , 

Then, for 1,......,i k  :  
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Pr( ) Pr( | )
Pr( | )
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Appendix B : Kalman Filter  

              Motion model: 1 1 1t t t ts F s v      

         Observation model: t t t td H s w       

 

Where ts  is the system state, 1tv  and tw  are mutually independent zero-mean 

with white Gaussian noises (Ristic et al. 2004) with noise covariance tQ  and tR , 

1tF  and tH  are known matrices, specifying the linear relationships of motion 

model and observation model. And t is time interval. This two Equation implements 

the 1Pr( | )t ts s and Pr( | )t td s respectively in Bayes Filter.  

 

The iteratively calculation of Kalman Filter has two phases: predict and update, which 

exactly reflect the same stages of Bayes Filter, as shown below: 

 

Prediction:  

           
| 1 1 1 | 1t t t t ts F s               State Prediction 

           | 1 1 1 | 1

T

t t t t t t k tP Q F P F        Covariance Prediction 

 

Update:  

           
| 1t t t t ty z H s               State Innovation 

           | 1

T

t t t t t tS H P H R            Covariance Innovation 

           
1

| 1

T

t t t t tK P H S               Kalman Gain 

           
| | 1t t t t t ts s K y              State Update 

           | | 1

T

t t t t t t tP P K S K            Covariance Update 
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Appendix C : MatLab Code 

Motion Model Prediction file: Motion.m  
 

function Predict_M = Motion(Location, rad, numParticle); 
P = numParticle; 
P_s = rand(P,1); 
PI = 3.1415926; 

  
for i = 1:P 
   P_s(i,1) = P_s(i,1)*2*PI; 
end 
r = rad ; 

  
P_predict(P,2)=0; 

  
x = Location(1,1); 
y = Location(1,2); 

  
for i = 1:P 
   %P_predict(i,1)= x + 2*cos(P_s(i,1)); 
   %P_predict(i,2)= y + 2*sin(P_s(i,1)); 
   P_predict(i,1)= x + sqrt(2)*r*rand()*cos(P_s(i,1)); 
   P_predict(i,2)= y + sqrt(2)*r*rand()*sin(P_s(i,1)); 
end 

  
Predict_M = P_predict ;  
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Particle Filter Localisation algorithm file: PF_Main_Function.m  
 

function S = PF(numParticle, Trajectory, steps, rad, noise, f1); 

  
% Trajectory means the input data trajectory (X axis, Y axis or Random) 
% The start point would be varied 

  
%Initialize and Define the features and position 
t_s = steps ; 
state_location(t_s,2) = 0 ; 
feature_predict(t_s,4) = 0; 
f_ob(t_s,4) = 0; 
r = rad; 
num = numParticle; 
length = 4 ; 
width = 3 ; 
n = noise ; % noise usually 0 - 1 
PI = 3.1415926 ; 

  
for i = 1:t_s 
     f_ob(i,:) = f1(i,:); 
end 

  
%Apply motion estimation into location state on step 1 
if(Trajectory == 2)  % random trajectory 
location = [2.5,-3]; 
end 
if (Trajectory == 1)  % Y trajectory 
location = [-2.5,-3.5]; 
end 
if (Trajectory == 0) 
location = [-7.5,-3.5];  % X trajectory 
end 

  
Predict_M = Motion(location, r, num); 

  
%Estimate the feature position on step 1 
 f_pre_particle(num,4)= 0 ; 
for i = 1:num 
    f_pre_particle(i,1) = Predict_M(i,2)+ length; 
    f_pre_particle(i,2) = Predict_M(i,1)+ width; 
    f_pre_particle(i,3) = Predict_M(i,2)- length; 
    f_pre_particle(i,4) = Predict_M(i,1)- width; 
end 

  
%Calcuate the weight of observation 
%Weight(num,4)= 1; 
for i = 1:num 
    Weight(i,1) = sqrt(2*PI*n^2)* 

exp((-(f_ob(1,1)-f_pre_particle(i,1))^2)/(2*n^2)); 
    Weight(i,2) = sqrt(2*PI*n^2)* 

exp((-(f_ob(1,2)-f_pre_particle(i,2))^2)/(2*n^2)); 
    Weight(i,3) = sqrt(2*PI*n^2)* 

exp((-(f_ob(1,3)-f_pre_particle(i,3))^2)/(2*n^2)); 
    Weight(i,4) = sqrt(2*PI*n^2)* 

exp((-(f_ob(1,4)-f_pre_particle(i,4))^2)/(2*n^2));    
    Local_Weight(i,1) = 

(Weight(i,1)+Weight(i,2)+Weight(i,3)+Weight(i,4)); 
end 
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%Resampeling to delete some weight which are not useful, and get the largest 

weight. 
Weight_high = 0 ; 
Weight_low = 0 ; 
Weight_left = 0 ; 
Weight_right = 0 ; 
Weight_Large1 = 0 ;  % max weight for feature 1 
Weight_Large2 = 0 ; 
Weight_Large3 = 0 ; 
Weight_Large4 = 0 ; 

  
for i = 1:num 
    %Weight_high = Weight_high + Weight(num,1); 
    %Weight_low = Weight_low + Weight(num,2); 
    %Weight_left = Weight_left + Weight(num,4); 
    %Weight_right = Weight_right + Weight(num,3); 
    if(Weight(i,1) >= Weight_Large1) 

        
            Weight_Large1 = Weight(i,1) ; 
            Max_number_1 = i   ;     
    end; 

     
    if(Weight(i,2) >= Weight_Large2) 

         
            Weight_Large2 = Weight(i,2); 
            Max_number_2 = i    ;    
    end;         
    if(Weight(i,3) >= Weight_Large3) 

         
            Weight_Large3 = Weight(i,3); 
            Max_number_3 = i     ;   
    end;         
    if(Weight(i,4) >= Weight_Large4) 

         
            Weight_Large4 = Weight(i,4); 
            Max_number_4 = i       
    end; 
end; 

     
%using weight and Max number 
state_location(1,1)= (Predict_M(Max_number_2,1)+ 

Predict_M(Max_number_4,1))/2; 
state_location(1,2)= (Predict_M(Max_number_1,2)+ 

Predict_M(Max_number_3,2))/2; 

  
%start_loop 
for j = 2:t_s  
location(1,1) = state_location(j-1,1); 
location(1,2) = state_location(j-1,2); 

  
Predict_M = Motion(location, r, num); 

  
%Estimate the feature position on step 1 
 f_pre_particle(num,4)= 0 ; 
for i = 1:num 
    f_pre_particle(i,1) = Predict_M(i,2)+ length; 
    f_pre_particle(i,2) = Predict_M(i,1)+ width; 
    f_pre_particle(i,3) = Predict_M(i,2)- length; 
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    f_pre_particle(i,4) = Predict_M(i,1)- width; 
end 

  
%Calcuate the weight of observation 
%Weight(num,4)= 0; 
for i = 1:num 
    Weight(i,1) = Weight(i,1) * sqrt(2*PI*n^2)* 

exp((-(f_ob(j,1)-f_pre_particle(i,1))^2)/(2*n^2)); 
    Weight(i,2) = Weight(i,2) * sqrt(2*PI*n^2)* 

exp((-(f_ob(j,2)-f_pre_particle(i,2))^2)/(2*n^2)); 
    Weight(i,3) = Weight(i,3) * sqrt(2*PI*n^2)* 

exp((-(f_ob(j,3)-f_pre_particle(i,3))^2)/(2*n^2)); 
    Weight(i,4) = Weight(i,4) * sqrt(2*PI*n^2)* 

exp((-(f_ob(j,4)-f_pre_particle(i,4))^2)/(2*n^2));    

     
    %Weight(i,1) = sqrt(2*PI*n^2)* 

exp((-(f_ob(j,1)-f_pre_particle(i,1))^2)/(2*n^2)); 
    %Weight(i,2) = sqrt(2*PI*n^2)* 

exp((-(f_ob(j,2)-f_pre_particle(i,2))^2)/(2*n^2)); 
    %Weight(i,3) = sqrt(2*PI*n^2)* 

exp((-(f_ob(j,3)-f_pre_particle(i,3))^2)/(2*n^2)); 
    %Weight(i,4) = sqrt(2*PI*n^2)* 

exp((-(f_ob(j,4)-f_pre_particle(i,4))^2)/(2*n^2));   
end 

     
%Resampeling to delete some weight which are not useful, and get the largest 

weight. 
Weight_high = 0 ; 
Weight_low = 0 ; 
Weight_left = 0 ; 
Weight_right = 0 ; 
Weight_Large1 = 0;  % max weight for feature 1 
Weight_Large2 = 0 ; 
Weight_Large3 = 0 ; 
Weight_Large4 = 0 ; 

  
for i = 1:num 
    %Weight_high = Weight_high + Weight(num,1); 
    %Weight_low = Weight_low + Weight(num,2); 
    %Weight_left = Weight_left + Weight(num,4); 
    %Weight_right = Weight_right + Weight(num,3); 
    if(Weight(i,1) >= Weight_Large1)        
            Weight_Large1 = Weight(i,1);  
            Max_number_1 = i   ;     
    end; 

             
    if(Weight(i,2) >= Weight_Large2) 

         
            Weight_Large2 = Weight(i,2); 
            Max_number_2 = i    ;    
    end; 

     

             
    if(Weight(i,3) >= Weight_Large3) 

         
            Weight_Large3 = Weight(i,3); 
            Max_number_3 = i     ;   
    end; 

     



202 

 

    if (Weight(i,4) >= Weight_Large4) 

         
            Weight_Large4 = Weight(i,4); 
            Max_number_4 = i      ;       
    end; 
end; 

  

  
weight1 = 0 ; 
f1_x = 0; 
f1_y = 0; 
weight2 = 0 ; 
f2_x = 0 ; 
f2_y = 0 ; 
weight3 = 0 ; 
f3_x = 0; 
f3_y = 0; 
weight4 = 0 ; 
f4_x = 0 ; 
f4_y = 0 ; 

  
for i = 1:num  
   if(Weight(i,1) > 0.75 * Weight_Large1) 
     f1_x = f1_x + Predict_M(i,1) * Weight(i,1); 
     f1_y = f1_y + Predict_M(i,2) * Weight(i,1); 
     weight1 = weight1 + Weight(i,1); 
   end; 
   if(Weight(i,2) > 0.75 * Weight_Large2) 
     f2_x = f2_x + Predict_M(i,1) * Weight(i,2); 
     f2_y = f2_y + Predict_M(i,2) * Weight(i,2); 
     weight2 = weight2 + Weight(i,2); 
   end; 
   if(Weight(i,3) > 0.75 * Weight_Large3) 
     f3_x = f3_x + Predict_M(i,1) * Weight(i,3); 
     f3_y = f3_y + Predict_M(i,2) * Weight(i,3); 
     weight3 = weight3 + Weight(i,3); 
   end; 
   if(Weight(i,4) > 0.75 * Weight_Large4) 
     f4_x = f4_x + Predict_M(i,1) * Weight(i,4); 
     f4_y = f4_y + Predict_M(i,2) * Weight(i,4); 
     weight4 = weight4 + Weight(i,4); 
   end; 
end; 

  
Dec1 = 0 ; 
Dec2 = 0 ; 
Dec3 = 0 ; 
Dec4 = 0 ; 

  
for i = 1:num 

  
    Dec1 = Dec1 + Weight(i,1) ; 
    Dec2 = Dec2 + Weight(i,2) ; 
    Dec3 = Dec3 + Weight(i,3) ; 
    Dec4 = Dec4 + Weight(i,4) ; 

     
end 

  
i  
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Dec1 = 1/ Dec1  
Dec2 = 1/ Dec2 
Dec3 = 1/ Dec3 
Dec4 = 1/ Dec4 

  
%using weight and Max number 
if(Weight_Large2 ~= 0 && Weight_Large4 ~= 0 ) 
%if(Weight_Large2 >=1 && Weight_Large4 >= 1 ) 
state_location(j,1) = (f2_x / weight2 + f4_x / weight4)/2 ;     
%state_location(j,1)= (Predict_M(Max_number_2,1)+ 

Predict_M(Max_number_4,1))/2; 
else  
state_location(j,1)= (f_ob(j,2)+ f_ob(j,4))/2; 
for i = 1: num  
   Weight(i,2) = 1 ; 
   Weight(i,4) = 1 ; 
end; 

  
end; 

  
if(Weight_Large1 ~= 0 && Weight_Large3 ~= 0 ) 
%if(Weight_Large1 >= 1 && Weight_Large3 >= 1 ) 
state_location(j,2)= (Predict_M(Max_number_1,2)+ 

Predict_M(Max_number_3,2))/2; 
state_location(j,2) = (f1_y / weight1 + f3_y / weight3)/2 ; 
else  
state_location(j,2)= (f_ob(j,1)+ f_ob(j,3))/2; 
for i = 1: num  
   Weight(i,1) = 1 ; 
   Weight(i,3) = 1 ; 
end; 
end; 

     
end; 

  
S = state_location; 
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Error Generation file: ErrorGeneration.m  

 
function MeasureError = ErrorGeneration(S, R_Rec, or, t_s); 

  
MeasureError(3,4) = 0; 

  
% Mean Error  
Rec_ME_x = 0 ; 
Rec_ME_y = 0 ; 
Dx_ME_x = 0 ; 
Dy_ME_y = 0 ; 
for i = 1:t_s 
Rec_ME_x = Rec_ME_x + or(i,1) - R_Rec(i,1) ; 
Rec_ME_y = Rec_ME_y + or(i,2) - R_Rec(i,2) ; 
Dx_ME_x = Dx_ME_x + or(i,1) - S(i,1) ; 
Dy_ME_y = Dy_ME_y + or(i,2) - S(i,2) ; 
end 

  
Rec_ME_x = Rec_ME_x /t_s ; 
Rec_ME_y = Rec_ME_y /t_s ; 
Dx_ME_x = Dx_ME_x /t_s ; 
Dy_ME_y = Dy_ME_y /t_s ; 

  
MeasureError(1,1) = Rec_ME_x ; 
MeasureError(1,2) = Rec_ME_y ; 
MeasureError(1,3) = Dx_ME_x ; 
MeasureError(1,4) = Dy_ME_y ; 

  
% Mean Absolute Error  
Rec_MAE_x = 0 ; 
Rec_MAE_y = 0 ; 
Dx_MAE_x = 0 ; 
Dy_MAE_y = 0 ; 
for i = 1:t_s 
Rec_MAE_x = Rec_MAE_x + abs(or(i,1) - R_Rec(i,1) ) ; 
Rec_MAE_y = Rec_MAE_y + abs(or(i,2) - R_Rec(i,2) ) ; 
Dx_MAE_x = Dx_MAE_x + abs(or(i,1) - S(i,1) ) ; 
Dy_MAE_y = Dy_MAE_y + abs(or(i,2) - S(i,2) ) ; 
end 

  
Rec_MAE_x = Rec_MAE_x /t_s ; 
Rec_MAE_y = Rec_MAE_y /t_s ; 
Dx_MAE_x = Dx_MAE_x /t_s ; 
Dy_MAE_y = Dy_MAE_y /t_s ; 

  
MeasureError(2,1) = Rec_MAE_x ; 
MeasureError(2,2) = Rec_MAE_y ; 
MeasureError(2,3) = Dx_MAE_x ; 
MeasureError(2,4) = Dy_MAE_y ; 

  
% Root-Mean-Squared Error  
Rec_RMSE_x = 0 ; 
Rec_RMSE_y = 0 ; 
Dx_RMSE_x = 0 ; 
Dy_RMSE_y = 0 ; 
for i = 1:t_s 
Rec_RMSE_x = Rec_RMSE_x + (or(i,1) - R_Rec(i,1))^2 ; 
Rec_MRMSE_y = Rec_RMSE_y + (or(i,2) - R_Rec(i,2))^2 ; 
Dx_RMSE_x = Dx_RMSE_x + (or(i,1) - S(i,1))^2 ; 
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Dy_RMSE_y = Dy_RMSE_y + (or(i,2) - S(i,2))^2 ; 
end 

  
Rec_RMSE_x = sqrt(Rec_RMSE_x /t_s) ; 
Rec_RMSE_y = sqrt(Rec_RMSE_y /t_s) ; 
Dx_RMSE_x = sqrt(Dx_RMSE_x /t_s) ; 
Dy_RMSE_y = sqrt(Dy_RMSE_y /t_s) ; 

  
MeasureError(3,1) = Rec_RMSE_x ; 
MeasureError(3,2) = Rec_RMSE_y ; 
MeasureError(3,3) = Dx_RMSE_x ; 
MeasureError(3,4) = Dy_RMSE_y ; 

 

 

  


