The Effect of Human Capital on Inwards FDI: Evidence from European transition economies

Artane RIZVANOLLI

A thesis submitted in partial fulfilment of the requirements of Staffordshire University for the degree of Doctor of Philosophy

July 2012

Abstract

A country's human capital has been neglected as a potential determinant of inwards foreign direct investment (FDI), both in theory and empirical research. When human capital has been included in models of the determinants of FDI, it appears simply as a control variable or one of the variables in a "kitchen sink" approach, usually without any theoretical rationale for its inclusion or critical discussion of the measures used. The mis-specification that may result from this is advanced as one of the potential explanations for the very diverse findings in previous literature and the failure of the meta-regression analysis (MRA) reported in this thesis to find an 'authentic' effect of human capital on inwards FDI. Accordingly, this research seeks to fill this gap, by identifying the mechanisms through which human capital is expected to attract FDI to European transition economies and drawing conclusions about the most appropriate measures of human capital given the characteristics of the former communist (education) system. The 'productivity-enhancing' skills and traits that (foreign) investors are likely to value in such economies are identified and the manner in which these skills are developed is analysed. In the light of this analysis the conventional human capital measures used in empirical analyses are critically assessed. These contributions are used to develop an empirical model for estimating the effect of human capital on inwards FDI at country-, sector- and industry-level in 12 European transition economies during the period 1995-2008. Consistent with the results of previous studies, as suggested by the MRA, no significant effect of traditional volume measures of human capital on FDI inflows/stocks is found. However, some evidence is presented in this thesis indicating that the quality dimension of human capital as measured by cognitive skills proxies may affect inwards FDI in the manufacturing sector. Accordingly, several potential explanations for the findings and some of their implications for future macro-level research focusing on the effects of human capital are explored.

Table of contents

Table of contents	3
Tables	8
Figures	9
Abbreviations	10
Acknowledgements	12
PREFACE	13

CHAPTER 1

FOREIGN DIRECT INVESTMENT AND THE WORKFORCE IN EUROPEAN TRANSITION ECONOMIES: AN INTRODUCTION

1.1 Introduction	20
1.2 Why should European transition economies seek to attract FDI?	21
1.2.1 The (potential) benefits of FDI for the host economy	22
1.2.2 Inwards FDI and its effects on European transition economies	29
1.2.2.1 A statistical overview of inwards FDI and its contribution to financing investment	29
1.2.2.2 The effects of inwards FDI in the context of European transition economies	35
1.3 Human capital formation in European transition economies	
1.3.1 Educational attainment of the workforce	40
1.3.2 The mix of occupations and types of skills provided	42
1.3.3 The quality of education provision	45
1.4 Labour markets in European transition economies	51
1.4.1 Labour costs	51
1.4.2 The legacy of communism and labour productivity: structural change, workforce skills, la (im)mobility and cultural factors	abour 55
1.5 Conclusion	63

CHAPTER 2

DETERMINANTS OF FDI AND HUMAN CAPITAL: THEORY

2.1 Introduction	67
2.2 Theories of foreign direct investment	68
2.2.1 Early FDI theories	68
2.2.1.1 The neoclassical approach	68
2.2.1.2. Theories of market failure	70

2.2.2 The OLI paradigm	72
2.2.3 New trade theory	75
2.2.3.1 Vertical models	75
2.2.3.2 Horizontal models	77
2.2.3.3 Knowledge-capital (KK) models	78
2.2.4 Other approaches	78
2.2.4.1 Policy competition models	78
2.2.4.2 Game theory	79
2.2.4.3 Agglomeration economies	80
2.3 Human capital and the attraction of FDI	81
2.3.1 The role of human capital in economic growth theory	81
2.3.2 Potential endogeneity in the relationship between human capital and inward FDI	92
2.4 Conclusion	95

CHAPTER 3

THE EFFECT OF HUMAN CAPITAL ON FDI: A META-REGRESSION ANALYSIS

3.1 Introduction	98
3.2 The effect of human capital on FDI: A review of literature	99
3.2.1 Evidence from mixed country samples	99
3.2.2 Evidence from developed economies	102
3.2.3 Evidence from developing economies	103
3.2.4 Evidence from transition economies	107
3.2.5 Evidence from China	109
3.3 A meta-regression analysis of the effect of human capital on FDI	130
3.3.1 The meta-regression model	131
3.3.2 Empirical results	139
3.4 Conclusion	144

CHAPTER 4

SPECIFYING A MODEL TO ESTIMATE THE EFFECT OF HUMAN CAPITAL ON INWARDS FDI IN EUROPEAN TRANSITION ECONOMIES

4.1 Introduction	147
4.2 The relationship between human capital and labour productivity growth in a modern economy .1	148
4.3 Explaining inward FDI in transition economies1	157
4.3.1 Choosing appropriate human capital measures1	157
4.3.2 An extended empirical framework for transition1	165
4.4 Conclusion	169

CHAPTER 5

THE EFFECT OF HUMAN CAPITAL ON FDI IN EUROPEAN TRANSITON ECONOMIES: NEW EMPIRICAL EVIDENCE

5.1 Introduction	
5.2 Specification of the variables and data	
5.2.1 The independent variable(s): FDI measures	
5.2.2 Human capital measures	
5.2.3 Control variables	
5.3 Empirical approach	
5.4 Estimated results	
5.4.1 Diagnostic testing: Choosing the appropriate estimators	
5.4.2 Estimated results	
5.5 Robustness check: A FDI stock adjustment model	
5.6 Conclusion	

CHAPTER 6

A SECTOR STUDY OF THE EFFECT OF HUMAN CAPITAL ON FDI IN EUROPEAN TRANSITION ECONOMIES

6.1 Introduction	222
6.2 The sectoral composition of FDI stocks in European transition economies	223
6.3 Assessing the importance of human capital for different economic sectors/types of FDI	226
6.4 Related empirical studies	228
6.5 Evidence from aggregate manufacturing data	233
6.6 Evidence from disaggregated industry-level manufacturing data	241
6.6.1 The empirical model(s)	241
6.6.2 Generalised Method of Moments (GMM) estimators and their suitability for this particular empirical investigation	246
6.6.3 Instruments and specification tests in (System) GMM estimators	252
6.6.4 Estimation results	256
6.7 Conclusion	271

CHAPTER 7

CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH

7.1 Introduction	
7.2 Main findings	
7.2.1 Analysing the results of the previous empirical literature	

7.2.2 Does human capital affect total inwards FDI in European transition economies?	277
7.2.3 Does human capital affect inwards FDI in manufacturing activities in European transition economies?	278
7.2.4 Does the effect of human capital vary according to the level of technological intensity of inv FDI?	vards 280
7.2.5 Can the largely insignificant results be (partly) attributed to transition-specific factors?	280
7.3 Contributions to knowledge	281
7.3.1 Establishing the underlying theoretical rationale for a human capital-FDI relationship and choosing appropriate measures of human capital	281
7.3.2 Synthesising the results from the previous empirical literature	285
7.3.3 Modelling the relationship between human capital and inwards FDI in European transition economies	285
7.3.4 Estimating the effect of human capital on inwards FDI in European transition economies	286
7.3.5 Limitations of this research	288
7.4 Implications of the findings for further research: challenging conventional thinking?	290
7.4.1 Do foreign investors necessarily require/prefer highly-skilled labour?	290
7.4.2 How much of a location-bound factor is a highly-skilled workforce?	292
7.4.3 Do the human capital measures used accurately reflect the workforce skills/characteristics m relevant to foreign investors?	10st 293
7.4.4 Are foreign investors interested in the characteristics of the <i>whole</i> workforce?	293
7.4.5 Are foreign investors attracted by (only) the quality of human capital?	294
7.4.6 Possible extensions of this research	294
7.5 Conclusion	296
REFERENCES	.296
APPENDIX 1: Professional development	.328

APPENDIX 3

Appendix 3.1: Initial sensitivity analysis	335
Appendix 3.2: Summary statistics and correlations	338
Appendix 3.3: Bivariate MRA (Model 3.2) results and diagnostics	343
Appendix 3.4: Full multivariate MRA (Model 3.3) results and diagnostics	344
Appendix 3.5: Testing down procedure	346
Appendix 3.6: Parsimonious multivariate MRA (Model 3.3) results and diagnostics	353

APPENDIX 5

Appendix 5.1: Descriptive statistics	356
Appendix 5.2: Between-to-within ratios	358
Appendix 5.3: Diagnostic tests and raw correlations	
Appendix 5.4: Initial specifications	371
Appendix 5.5: Testing down procedure	376
Appendix 5.6: Model 5.1 results	
Appendix 5.7: Models 5.2-5.4 results	
Appendix 5.8: Models 5.5-5.7 results	
Appendix 5.9: Stock-adjustment Models 5.15-5.17 results	

APPENDIX 6

Appendix 6.1: Descriptive statistics and raw correlations	409
Appendix 6.2: Models 6.1-6.3 results	413
Appendix 6.3: Technological intensity classification	425
Appendix 6.4: Unit root tests and initial specification tests	426
Appendix 6.5: Testing the instrument validity	448
Appendix 6.6: Model 6.4 results	460
Appendix 6.7: Different GMM estimators and options	467
Appendix 6.8: Reducing the instrument count	483
Appendix 6.9: Model 6.5 results	492
Appendix 6.10: Model 6.6 results	501
Appendix 6.11: Model 6.7 results	508
Appendix 6.12: Model 6.8 results	515
Appendix 6.13: Model 6.9 results	522
Appendix 6.14: Model 6.10 results	530
Appendix 6.15: Model 6.11 results	537
Appendix 6.16: Model 6.12 results	544
Appendix 6.17: Model 6.13 results	551
Appendix 6.18: Adding GDP per capita to Models 6.10-6.11	558

Tables

Chapter 1

Table 1.1: Distribution of FDI stocks, 2010	32
Table 1.2: Average* FDI/GFCF and GFCF/GDP ratios, 1992-2009	34
Table 1.3: Average years of education in the working age population, 1990	41
Table 1.4: Emphasis of vocational/technical education, 1990 and 2008*	43
Table 1.5: Performance of top students in reading, PISA 2009	49
Table 1.6: Labour costs in European transition economies, 1995	52
Table 1.7: Comparison of wages with selected Western European economies, 2008	54
Table 1.8: Time required to fill a vacancy for a skilled worker, 2005	61
Table 1.9: Working age population educated after the fall of communism (%), 2008	63

Chapter 3

Table 3.1: Empirical studies estimating the effect of human capital on FDI	112
Table 3.2: Definitions of MRA variables	137
Table 3.3: Bivariate MRA results (dependent variable: tstat)*	140
Table 3.4: Multivariate MRA results (dependent variable: tstat)*	141

Chapter 5

Table 5.2: Human capital measures for European transition economies	78
Table 5.3: Variable names, definitions and sources1	95
Table 5.4: Model 5.1 results (dependent variable: lnfdiflow)	10
Table 5.5: Models 5.2-5.4 results	12
Table 5.6: Models 5.5-5.7 results (dependent variable: lnfdiflow)	13
Table 5.7: Models 5.15-5.17 results (dependent variable: Infdistock)	18

Chapter 6

Table 6.1: Distribution of FDI stocks according to economic activity (2007)	224
Table 6.2: Distribution of manufacturing FDI stocks (2007)*	225
Table 6.3: Sector/industry level FDI studies	230
Table 6.4: Variable names, definitions and sources	236
Table 6.5: Models 6.1-6.3 results (dependent variable: lnmanFDIstock)	240
Table 6.6: Model 6.4 results (dependent variable: lnindFDIstock)	
Table 6.7: Model 6.5 results (dependent variable: lnindFDIstock)	
Table 6.8: Models (6.6-6.8) results (dependent variable: lnindFDIstock)	
Table 6.9: Model (6.9-6.11) results (dependent variable: lnindFDIstock)	
Table 6.10: Model (6.10) and (6.12) (dependent variable: lnindFDIstock)	
Table 6.11: Model (6.11) and (6.13) (dependent variable: lnindFDIstock)	270

Figures

Chapter 1

Figure 1.1: Volatility of global FDI inflows, 2003-2010	22
Figure 1.2: FDI inflows into European transition economies, 1992-2010 (Billion USD)*	30
Figure 1.3: FDI stocks in European transition economies, 1993-2010 (Billion USD)*	31
Figure 1.4: FDI stocks as a share of GDP, 2010 (%)	33
Figure 1.5: Educational attainment of the workforce, 1990 (%)	42
Figure 1.6: Monthly wages in European transition economies (EUR), 2000-2008	53

Abbreviations

- ALL Adult Literacy and Lifeskills Survey
- **BEEPS** Business Environment and Enterprise Survey
- CEE Central and Eastern Europe
- CEEC Central and Eastern European Country
- EBRD European Bank for Reconstruction and Development
- EFI Economic Freedom Index
- EU European Union
- FDI Foreign Direct Investment
- FE Fixed Effects
- FEVD Fixed Effects Vector Decomposition
- FIMS First International Mathematics Study
- FISS First International Science Study
- GDP Gross Domestic Product
- GMM Generalised Method of Moments
- HAC Heteroskedasticity and Autocorrelation Consistent
- IALS International Adult Literacy Survey
- i.i.d independent and identically distributed
- ICT Information and Communication Technology
- ISCED International Standard Classification of Education
- IV Instrumental Variable
- LSDV Least Squares Dummy Variable
- LSDVC Corrected Dynamic Least Squares Dummy Variable
- NACE Nomenclature Générale des Activités Économiques dans les Communautés Européennes
- OECD Organisation for Economic Co-operation and Development
- OLI Ownership-Location-Internalisation

OLS - Ordinary Least Squares

PIAAC - Programme for the International Assessment of Adult Competencies

- PISA Programme for International Student Assessment
- R&D Research and Development
- RE Random Effects
- **RESET Regression Equation Specification Error Test**

SBTC - Skill-Biased Technological Change

- SE Standard Error
- SEE South-Eastern Europe
- SIMS Second International Mathematics Study
- SISS Second International Science Study
- TIMSS Third International Mathematics and Science Study
- UNCTAD United Nations Conference on Trade and Development
- UNESCO United Nations Educational, Scientific and Cultural Organization
- UNICEF United Nations Children's Fund
- VIF Variance Inflation Factor
- wiiw Vienna Institute for International Economic Studies

Acknowledgements

First and foremost, I would like to thank my principal supervisor, Professor Nick Adnett, for his continuous support, dedication and encouragement throughout my studies. His insightful comments and ideas, and the interesting discussions, have made my Ph.D. experience productive and stimulating. The advice, support and friendship of my second supervisor, Dr. Ardiana Gashi, have been invaluable at both an academic and a personal level, for which I am very grateful.

My empirical research has benefited from insightful feedback and suggestions from Professor Geoff Pugh, to whom I am sincerely thankful for always being willing to share his knowledge and expertise.

Last but not least, I am deeply grateful to my parents, Drita and Neshet, and my boyfriend, Shkëlqim, for their endless support and encouragement in all my pursuits.

Preface

From having virtually no inwards foreign direct investment (FDI), over the two decades of transition the formerly centrally planned European economies have managed to attract a share of global foreign direct investment (FDI) stock nearly three times larger than their share of global output. This FDI has been an important source of external capital, but it also played a crucial role in modernising and restructuring these economies at firm- and economy- level, and facilitating their overall transformation to a market economy. However, the success of individual European transition economies in attracting inwards FDI has been far from equal, which has motivated extensive empirical research on the locational factors that drive inwards FDI in this group of countries. This research has, by and large, neglected the quality of the labour force as a factor that may affect foreign investors' choice of investment destinations, which is somewhat surprising as at the outset of transition this was considered one of European transition economies key advantages in the global competition for FDI. A few studies include human capital as a control variable, but the choice of measures often appears to be arbitrary and lacks a theoretical rationale based on an underlying relationship between human capital and FDI. This neglect reflects the lack of attention that human capital receives in FDI theory and empirical research in general.

Accordingly, this thesis seeks to address these gaps in the literature by: analysing the reasons why, theoretically, countries with relatively larger human capital endowments are expected to attract higher volumes of FDI; utilising the insights gained, as well as the results of a meta-regression analysis, to inform the choice of human capital measures to be used in empirical investigations in European transition economies, considering the specific characteristics of their (pre-transition) education systems; and empirically estimating the relationship between human capital and FDI in a sample of 12 European transition economies for which data is available: Albania, Bulgaria, Croatia, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, the Slovak Republic and Slovenia.

Following most empirical research on locational determinants of FDI, the hypotheses developed in this thesis are initially tested using country-level data. However, recognising that the relative weight attached by foreign investors to different host country characteristics is likely to vary according to their motivation for undertaking FDI, the relationship between human capital and FDI is further investigated using sector- and industry-level manufacturing FDI data. The industry-level analysis is considered of particular interest in this research because the size of the elasticity of FDI to human capital is likely to depend on the technological intensity of the activity they intend to undertake in the host economy. Accordingly, the sector/industry level analysis, which appears to be the first of this kind to investigate the effect of human capital on FDI, can be considered as one of the most important contributions of this thesis to the empirical literature on FDI determinants in European transition economies and beyond.

An empirical investigation at firm-level was also considered, but later dismissed due to lack of availability of, and access to, usable firm-level data. The severe limitations of firm-level FDI data availability across Europe appears to be the main reason why there has been limited micro-level research on (the determinants) FDI to date (CEPR, 2012). The availability (and accessibility) of data for the purpose of such research appears to be particularly limited for European transition economies. An initial research into firm-level data sources identified four databases which provide comparable data on firms from several European economies to European transition economies, none of which appear to be publicly available. The first two, EBRD's foreign investment survey used by Smarzynska-Javorcik (2002) and the PECODB database (Alessandrini, 2000, cited in Resmini, 2000, p. 666) used by Resmini (2000) and Altomonte and Resmini (2001), were dismissed because they cover investment decisions only in the first years of transition. This was considered a major limitation in the context of transition which is characterised by quick and major changes in the business environment, and in the economy/society overall. The other two databases, Amadeus and Zephyr by Bureau Van Dijk, appear to be suitable for this analysis because they provide up to date information regarding the investment decisions of a large number of European firms, but the high financial cost of accessing this data has prevented the inclusion of a firm-level investigation in this thesis.

This thesis is structured as follows. The first question addressed in **Chapter 1** of this thesis is "Why should European transition economies seek to attract foreign direct investment (FDI)?". The list of benefits from inwards FDI conventionally cited in literature is initially assessed to establish the importance of FDI for host countries, followed by an examination of the characteristics of European transition economies which are argued to make FDI even more important in the context of transition from a centrally planned to a market economy. Subsequently, the analysis focuses on the characteristics of European transition economies' level and quality of human capital development that may affect the desirability of their workforce to foreign investors. Accordingly, the next two questions addressed in this chapter are: "What is the (relative) volume and quality of European transition economies' human capital?" and "How do European transition economies differ from other economies in terms of their human capital formation and labour market structure?". To answer these, an overview of traditional measures of educational attainment and direct measures of cognitive skills is provided, as well as an assessment of some key characteristics of these economies' education systems and labour markets that directly affect the formation of their human capital. The final question addressed in Chapter 1 is "How successful have European transition economies been at attracting FDI since the fall of communism". To address this question, a statistical overview of FDI patterns in the sample and in individual economies is provided.

The initial question addressed in **Chapter 2** of this thesis is "How are FDI flows explained in economic theory?". A review of different approaches to explaining the determinants of FDI is used to examine the conditions that must be satisfied for a firm to decide to undertake FDI, in the first place, and the factors that are expected to affect its location decision. To inform the empirical investigations of this thesis, a question that is of particular interest in this review was "Does availability/quality of human capital in potential investment destinations affect a firm's choice of location?". Having found very few references to human capital in FDI theory, an underlying theoretical rationale for a relationship between human capital and inwards FDI is sought in macroeconomic growth theory, where human capital has gained a central role in recent decades. Accordingly, the question "How does human capital affect labour- and total factor-productivity (growth) at macroeconomic level?" is next addressed in this chapter in an attempt to draw conclusions on the

mechanisms through which it may affect the profitability, and hence location decisions of, foreign investors. Finally, having established in Chapter 1 that foreign investors may affect the skills of the host country workforce, the final question addressed in this chapter "Is there likely to be an endogeneity problem in the empirical analyses in this thesis due to reverse causation in the relationship between human capital and FDI?".

Having previously provided a theoretical rationale for a relationship between human capital and inwards FDI, the next question addressed in **Chapter 3** is "*Does the current empirical evidence support the hypothesis that inwards FDI is attracted by higher levels of human capital?*". A critical review of previous studies shows no apparent consensus: positive, insignificant, and even negative effects of human capital on FDI have been reported. Therefore, a meta-regression analysis (MRA) is estimated as a means of quantitatively analysing the results of previous literature. The first question addressed by the MRA is "*Is an 'authentic' effect of human capital on inwards FDI evident in previous research?*". MRA estimates provide an "average" of the estimated empirical effects which synthesises the results of previous research. In this context, a second important question to be addressed by the MRA is "*Can the contradictory results be explained by different characteristics of the original studies?*". The conclusions drawn from the MRA warrant a deeper analysis of how human capital is likely to affect labour productivity (and FDI) and whether the conventionally used measures are appropriate.

The analysis in **Chapter 4** builds on the discussion in Chapter 2 on the channels through which human capital is expected to affect inwards FDI by addressing the question "What are the specific productivity-enhancing characteristics of human capital that (foreign) investors value and where/how are these developed?". To address this question, some key assumptions of human capital theory and growth theory are critically appraised and implications for the measurement of human capital in empirical research are developed. A list of cognitive and non-cognitive skills that are expected to be valued in a market economy is identified and the manner in which these are formed is researched as a matter of importance both from a policy perspective and for informing the choice of appropriate human capital measures in applied research. This generic discussion is further contextualised to European transition economies, utilising the specific characteristics of their human

capital identified in Chapter 1. Accordingly, the next research question to be addressed in Chapter 4 is "What are the appropriate measures of human capital when estimating its effect on inwards FDI in European transition?". It is argued in this research that there are transition-specific factors beyond those related to human capital that need to be accounted for and the theoretical framework provided in Chapter 2 needs to be extended accordingly. Hence, the final question addressed in Chapter 4 is "Which are the transition-specific factors that can affect inwards FDI in European transition economies and how should they be controlled for in empirical investigations?".

Drawing upon the analyses in Chapter 2 and 4, a baseline model was specified in order to address the key question of Chapter 5: "Do European transition economies with higher levels of human capital manage to attract more inwards FDI?". Initially, the effect of different human capital measures on FDI inflows is estimated using a panel-robust Fixed Effect (FE) estimator, Driscoll-Kraay estimator and two-way cluster robust estimator. However, since the human capital variables used here change slowly over time, the Fixed Effect Vector Decomposition (FEVD) estimator which also utilises cross-country variation is favoured on the grounds of higher efficiency. Accordingly, the estimations are also carried out using a FEVD estimator. Finally, considering arguments in favour of using FDI stocks as the dependent variable, the effect of human capital on FDI is estimated in a stock-adjustment framework using the Corrected Dynamic Least Squares Dummy Variable (LSDVC) estimator. The other question addressed in this chapter is "Do the transition-specific characteristics of human capital affect the level of inwards FDI received by European transition economies?". To answer this the baseline model is augmented with proxies to account for the extent to which the workforce of these economies has been affected by the characteristics of human capital formation during communism analysed in Chapters 1 and 4.

Chapter 6 extends the empirical investigation of the previous chapter to a sectorand industry-level. The first question addressed in Chapter 6 is "*In which economic activities is any relationship between inwards FDI and human capital expected to be stronger?*". To answer this, a classification of economic sectors is first provided based on their association with different types of FDI and the manufacturing sector is identified as the sector where inwards FDI is likely to be more sensitive to the measures of human capital. Accordingly, the next question addressed in this chapter is "Do European transition economies with higher levels of human capital manage to attract more inwards FDI to their manufacturing sector?". To answer this question, the effect of different human capital variables on manufacturing FDI is estimated in a stock-adjustment framework using the LSDVC and System GMM (Generalised Method of Moments) estimators using, respectively, aggregate manufacturing FDI stocks and country-industry pairs of FDI stocks as an independent variable. Next, drawing from the skill-biased technical change hypothesis, it is hypothesised that the effect of human capital on FDI is likely to be stronger in more technology-intensive manufacturing industries. Accordingly, the last question to be addressed in this chapter is "Is there a (stronger) effect of human capital on FDI in medium- and high-technology manufacturing industries compared to that in low-technology industries in European transition economies". Similar to the approach above, a System GMM estimator is used on country-industry pairs of FDI stocks to address this question.

Chapter 7 synthesises the main findings of this thesis and lists its main contributions to knowledge and identifies its main limitations. The first question addressed in this chapter is "How can the (largely insignificant) findings of this thesis be explained?". After having examined alternative potential explanations, the final question to be addressed is "(How) do the findings of the empirical investigation challenge the conventional view on the relationship between human capital and FDI at theoretical level and the way in which this is investigated empirically?". This chapter concludes with suggestions for further research and explores some wider implications of this thesis' findings for future macro-level research involving measures of human capital.

Chapter 1

FOREIGN DIRECT INVESTMENT AND THE WORKFORCE IN EUROPEAN TRANSITION ECONOMIES: AN INTRODUCTION

Contents

1.1 Introduction	20
1.2 Why should European transition economies seek to attract FDI?	21
1.2.1 The (potential) benefits of FDI for the host economy	22
1.2.2 Inwards FDI and its effects on European transition economies	29
1.2.2.1 A statistical overview of inwards FDI and its contribution to financing investment.2	29
1.2.2.2 The effects of inwards FDI in the context of European transition economies	35
1.3 Human capital formation in European transition economies	39
1.3.1 Educational attainment of the workforce	40
1.3.2 The mix of occupations and types of skills provided	42
1.3.3 The quality of education provision	45
1.4 Labour markets in European transition economies	51
1.4.1 Labour costs	51
1.4.2 The legacy of communism and labour productivity: structural change, workforce skill labour (im)mobility and cultural factors	ls, 55
1.5 Conclusion	53

1.1 Introduction

This chapter seeks to provide the context for the research conducted in this thesis by answering three questions. First, this chapter will provide arguments as to why inwards foreign direct investment (FDI) is expected to be beneficial from a host country's perspective, with special reference to European transition economies. Second, this chapter will present the trends of inwards FDI in European transition economies since the beginning of transition and its distribution among individual economies. The importance of FDI for these economies is then discussed in terms of its contribution to capital accumulation and beyond and it is argued that the positive effects of FDI in the context of transition can exceed those in other economies. After arguing that inwards FDI can be highly beneficial for European transition economies, the chapter will assess human capital formation in these economies as one of the factors that may attract FDI. In particular, this chapter will investigate how the (legacy of) communist education systems and labour markets have affected the workforce of these economies, seeking to answer the third question: why and how this workforce is likely to differ from that of developed economies?

Although the aim of this chapter is to provide a context for the analyses in the rest of this thesis, the analysis is kept narrow and tightly based on the research questions to be investigated. Namely, this chapter does not seek to provide inclusive discussions on the process of transition from a centrally-planned to a market- economy, their education systems and labour markets in European transition economies, or general patterns of FDI and its effects in these economies, topics which have been analysed extensively in previous literature on transition economies. Rather, this chapter seeks to identify and analyse the key aspects of these topics that are argued to be directly related to the potential relationship between human capital and FDI and in this specific context and, as such, will inform the investigations that are undertaken in the rest of this research.

The rest of this chapter is organised as follows. Section 1.2 explains why European transition economies should seek to attract FDI and assesses how successful they have been at this over the last two decades. More specifically, Sub-section 1.2.1 examines the nature of FDI and its potential benefits for the host economy, whilst Sub-section 1.2.2 extends and contextualises this discussion for European transition economies and provides a statistical overview of inwards FDI in these economies.

Sections 1.3 analyses measures of the quantity and quality of human capital formation in European transition economies. In particular, it discussed the type of skills that their (pre-transition) education systems tended to emphasise. Section 1.4 continues to analyse the dimensions of labour markets in these economies that may determine their attractiveness to foreign investors. In particular, it examines the level of labour costs in these economies and emphasises the importance of considering how the (legacy of) specific characteristics of pre-transition labour markets have shaped the skills and attitudes of the workforce. Section 1.5 summarises the findings and explains how these motivate the key research questions that will be addressed in the rest of this research.

1.2 Why should European transition economies seek to attract FDI?

This section seeks to establish the importance of inwards FDI for European transition economies and to illustrate the extent to which these countries have managed to attract FDI over the last two decades since the fall of communism. Sub-section 1.2.1 starts with a more generic discussion focusing on the nature of FDI and the ways in which host economies can benefit from it, whilst Sub-section 1.2.2 identifies and analyses key dimensions of the transition process that are argued to make FDI even more important in this context. In presenting this analysis the focus of this subsection is on dimensions of European transition economies that are considered to be closely related to the focus of this research programme. More general discussions on various aspects of the transition process and these countries' overall economic development during transition can be found, among others, in Lipton et al. (1990), World Bank (1996), Blanchard (1997), Roland (2000), Blejer and Skreb (2001), Filer et al. (2001), Campos and Coricelli (2002), Jeffries (2002), World Bank (2002) Winiecki and Kondratowicz (2005), Bandelj (2007), Lieberman and Kopf (2008), EBRD (various years) and UNECE (various years). General patterns of FDI inflows into European transition economies and their effects have also been extensively documented and analysed by previous studies, among which are: Lankes and Stern (1998), Kaminski and Riboud (2000), Hunya (2000a,b; 2004), UNECE (2001), Sohinger, 2005, Kalotay (2001; 2010), FIAS (2007), UNCTAD (various years) and EBRD (various years).

1.2.1 The (potential) benefits of FDI for the host economy

Foreign direct investment (FDI) accounts for the largest share of external capital flows into developing and transition economies (UNCTAD, 2011). From a host country's perspective, FDI is considered to be more attractive compared to other forms of international capital flows, i.e. portfolio investment and other investments such as commercial loans or trade credits, partly because it is (largely) non-debt creating and relatively more stable (UNECE, 2001; Albuquerque, 2003). UNCTAD (2011) shows that the volatility of FDI inflows as measured for each year by the relative standard deviation (i.e. coefficient of variation) for the preceding ten years has been considerably lower compared to that of portfolio and other investment during the period 2001-2010 (Figure 1.1 below). The Figure below further suggests that, despite experiencing higher volatility compared to other types of investment during the latest financial crisis.

Source: World Investment Report 2011 (UNCTAD, 2011)

One of the reasons why FDI is less volatile compared to financial investment lies in the nature of 'direct' investment and the duration of the commitment it involves. The commitment of the investment when undertaking foreign *direct* investment is, by definition, considered to be of a long-term nature. According to IMF and OECD definitions (IMF, 1993, 2009; OECD, 1996, 2008), direct investment is an

investment made by a resident entity of one economy (the 'direct investor') aimed at establishing a *lasting interest* in an enterprise that is resident in another economy (the 'direct investment enterprise'), including the reinvestment of any profits made by the direct investment enterprise. According to this definition, the 'lasting interest' involves the acquisition of at least 10% of the shares or voting power of the direct investment enterprise by the foreign investor. The 'lasting interest' is considered to imply a strategic long-term relationship between the entities and a significant degree of influence by the direct investor in the management of the direct investment enterprise. This distinguishes FDI from portfolio investment which typically involves a lower share of ownership/voting power held by the foreign investor and generally no influence in the management of the direct investment enterprise.

The long-term nature of FDI and the involvement of the foreign investors in the management of the enterprise are argued to make the investors more prone to transfer both technology in the form of capital goods, and technological and managerial know-how to the direct investment enterprise. De Mello (1997, p. 9), for instance, argue that this is because direct investment allows the foreign investor to retain "formal control of the technology and knowledge transferred". The association of FDI with the purchase or in kind transfer of capital goods is argued to make it less reversible because fixed assets are more difficult to liquidate (UNECE, 2001). Moreover, together with the transfer of know-how, this appears to represent the single most important reason why FDI is argued to benefit the host economies more than any other type of foreign investment or domestic fixed capital formation, a proposition examined in the rest of this sub-section. Considering that, as Blomström and Kokko (2003, p. 3) point out, multinational enterprises (MNE) "undertake a major part of the world's private R&D efforts and produce, own, and control most of the world's advanced technology", the scope for transfer of advanced capital goods and technological know-how to the host country through the foreign investment they undertake appears to be large. Consistent with the arguments above, FDI is widely recognised as one of the most powerful channels for the transmission of technology and know-how across countries, especially from developed to developing and transition economies (e.g. Blomström et al., 1996; World Bank, 2008a). The association of FDI with such transmission in turn is the starting point for most arguments that link FDI to numerous benefits for the host economy, discussed

below, and ultimately faster economic growth (de Mello, 1997; Blomström and Kokko, 2003; Ozturk, 2007; Deng et al., 2009; Weber, 2010).

According to orthodox FDI theory which is reviewed in Section 2.2, foreign investment will occur only under the condition that an MNE (believes it) has, or will gain, a firm-specific advantage by locating production in a foreign country. The possession of this firm-specific advantage, usually in the form of superior technology and/or knowledge, is what is expected to more than offset the inherent difficulties of operating on foreign soil, allowing MNE's to compete successfully with domestic firms and those in the countries they may wish to export to from the investment destination (Blomström and Kokko, 2003; Ford et al., 2008). With this argument as a starting point, foreign investment enterprises are inherently expected to have higher (labour and) total factor productivity compared to their domestic counterparts in the same sector. Thus, the mere operation of MNE affiliates in the host economy is expected to be associated with technological progress and increased productivity (UNECE, 2001; Uzagalieva et al., 2010). By increasing the competitiveness of the industries in which they enter, MNE's will influence the structure of production and employment in the host economy. If inwards FDI is predominantly directed towards high-technology and high-skill intensive sectors and/or stages of production, it can drive the host economy towards greater specialisation in high value-added activities (Resmini, 2000; UNECE, 2001; UNCTAD, 2002). Similarly, FDI can increase competitiveness, and by implication, the size, of exports, improving the host country's external financial position. In addition, FDI can affect the composition of the host country's exports, potentially towards goods and services with a higher R&D content, thereby helping the host economy to move up the global value chain (UNCTAD, 2002; Sohinger, 2005). The development of higher value added (stages of) production in the host country, i.e. the production of more valuable products, in turn, generate more income (and profits for the companies) and create higher-skill and higher paying jobs which are relatively more sustainable because they are less wage-elastic.

In the process of production, MNE's can also affect the skills of the host countries' workforce and enhance their R&D capabilities. In order to be able to successfully perform their jobs in the foreign affiliate enterprises, local employees and managers

are expected to learn from the parent firms or expatriate staff based in the host country. Regardless of the form of this transfer of knowledge, i.e. whether this is done through formal training or just learning by doing, the MNE will this way augment the knowledge and skills of the host country's workforce (de Mello, 1997; Blomström and Kokko, 2003). Furthermore, FDI can enhance the technological capacity of the host country by financing and undertaking R&D there. The World Bank (2008a) argues that although this is not a common in the case of developing and transition economies, there is an increasing trend of MNE's undertaking R&D in these countries. Finally, in addition to the direct effect of MNE's through the transfer of knowledge to their local employees, they may also affect the skills of the host country's workforce indirectly. Namely, to the extent that MNE's seek skilled labour, their presence in the host market may encourage individuals to upgrade their skills, e.g. through education and training, in order to secure a job in these firms which, evidence suggests, tend to pay higher wages compared to their domestic counterparts (Onaran and Stockhammer, 2008; Andrews et al., 2009; Eriksson and Pytlikova, 2011).

The potential effects of FDI discussed above refer to the transfer or development of technological and managerial know-how by the foreign investors, directly, i.e. under the control of the parent company, or through the provision of appropriate incentives for this to occur. However, know-how can also leak, or 'spill over', to the host economy through multiple channels, with or without the foreign affiliates' will or intention. These 'spillovers' of technological and organisational know-how from the foreign investment enterprise can affect the whole industry where the enterprise operates, as well as to other related industries through forward and backward linkages.

First, firms in the MNE's own industrial sector may be affected by positive spillovers in several ways. Just by observing the operation of the MNE, domestic firms can learn about new products, production techniques, inputs, and management and marketing practices, which they can replicate or modify in order to improve their productivity (UNECE, 2001; World Bank, 2008a; Vahter, 2010 Fu, 2012). Managers and employees who have gained direct knowledge and experience in the foreign investment enterprises can subsequently quit, transferring their new skills to other

employers or using them to establish their own firms (Blomström and Kokko, 2003; World Bank, 2008a; Fu, 2012). Moreover, even the mere increase in competition from the MNE's can be beneficial for the host market. Namely, the entry of MNE's can reduce the market power of existing firms and introduce new and/or better products or services in the market and, by doing so, it may 'force' its competitors to introduce new products and production techniques and to increase their investment in human capital (Blomström et al., 2000). Finally, FDI may encourage the formation of industrial clusters in the host economy, creating a self-reinforcing effect by attracting further FDI, i.e. the 'agglomeration economies' effect to be discussed in Section 2.3.

Second, MNE's may affect the firms in upstream and downstream industries in the recipient country. The upstream industries may benefit simply because MNEs may increase the demand for intermediate products. In addition, local suppliers to the foreign investment enterprise may be trained and advised by the MNE in order to improve their production standards and/or design to the level required by the MNE (World Bank, 2008a). The MNE's supplier can then deploy this new know-how more broadly, i.e. in the production of other products and/or products for other clients. Similarly, positive spillovers can occur in downstream industries. Namely, the buyers of the MNE's products may receive technical assistance or training from the MNE; and they can benefit from the higher competition between the suppliers in terms of lower prices and/or introduction of new varieties of intermediate goods by the MNE.

The potential effects of FDI discussed above have direct implications for the way FDI is expected to ultimately affect economic growth in the host country, as explained later in this section. However, first it is important to note that the positive spillovers from FDI do not occur automatically and the size of spillovers depends on the type of activities that are undertaken in the host economy by the MNE's as well as the "absorption" capacities of the domestic firms and other business environment and institutional factors, as explained later in this section.

The positive spillovers are going to be limited if MNE's intentionally limit the affiliates' access to the technology adopted and the R&D they undertake, for instance if they fear that intellectual property rights are not protected (Dunning, 1994;

UNECE, 2001). In this case the scope for technical advancement and technological learning in the host country would be limited, regardless of the absorptive capacities of the host economy. By the same token, the spillovers to downstream industries will be limited if the foreign affiliate only buys low value-added intermediate products from local suppliers (and importing higher value-added products or producing them in-house). Moreover, FDI may also have negative effects on the host country's economy, although these appear to taken into consideration relatively rarely in academic research and in policy-making. This can occur if MNE's deploy too few, or the "wrong" kind of technological capabilities (Dunning, 1994; UNECE, 2001), for instance if the host country is relatively well endowed with cheap low-skilled labour. If the level of technology deployed is low and the production of foreign affiliates in the host country is restricted to low value-added activities, even the direct positive effects (i.e. within the control of the foreign affiliate), such as increased productivity, export competitiveness and improvement of a country's position in the global value chain, may not occur or may even be negative. Further, the 'competition effect' of an MNE's entry does not necessarily improve competition and encourage incumbent firms to innovate and/or increase their productivity. On the contrary, its entry can reduce competition in the domestic market by 'crowding out' incumbent firms, i.e. forcing them out of the market because they may not be able to invest in upgrading their technology and know-how in order to compete with the MNE (UNECE, 2001). Finally, concerns have also been raised about potential negative effects of inwards FDI related to host countries' national security (e.g. if foreign investors have excessive control over strategic industries that are important defence capabilities) and excessive influence of foreign investors in host countries' policy-making (Golub, 2003).

The potential effects of FDI on the host economy discussed above, both direct and through spillovers, have implications for the way FDI is treated in growth theory. In a neoclassical growth framework (e.g. Solow, 1956) long-term economic growth is determined by technological change which is assumed to grow exogenously at a constant rate. In this setting, there is no scope for FDI to influence the rate of technological change through the channels discussed earlier; therefore FDI can be treated as merely a means of funding capital accumulation in the host economy. Foreign capital is essentially equivalent to domestic capital and, as such, it can only

have a short-term impact on the host country's output growth. In an endogenous growth framework, on the other hand, knowledge and technological advancement are endogenously determined and they are of crucial importance in explaining long-term growth (Section 2.3 provides a more detailed discussion). In this framework, the growth-enhancing potential of FDI is much greater than that predicted by neoclassical models (e.g., Balasubramanyam et al., 1996). As explained earlier, FDI is likely to be associated with the introduction/development of new technology and know-how, both directly and through spillovers. In endogenous growth models, to the extent that FDI causes or encourages human capital development and technical change in the host economy, it can be treated as an "engine of growth", affecting not only short-term output movements, but also long-term economic growth.

Accordingly, with endogenous growth models (Romer, 1990; Grossman and Helpman, 1991) as a starting point, Borenzstein et al. (1998) develop a theoretical model in which FDI as a channel of technology advancement is the main determinant of economic growth in developing economies. In this model, MNEs due to their superior 'knowledge', i.e. what is referred to as the 'ownership advantage' in FDI theory reviewed in the next chapter, can introduce new capital goods at a lower cost compared to domestic firms. Therefore, FDI can increase the rate at which advanced technology is introduced, therefore increasing economic growth in the long run. However, Borenzstein et al. argue that the effect of FDI on growth depends on the level of human capital in the host economy. According to these authors, the level of human capital (measured by the average years of secondary schooling for males in their model) determines the size of the effect of FDI on growth because it affects the ability of a country's workforce to understand, adopt, and adapt, the new technologies embodied in FDI. This argument is consistent with the Nelson-Phelps hypothesis (discussed further in Section 2.3) according to which human capital facilitates technology diffusion.

Consistent with the theoretical arguments that suggest the effects of FDI can be diverse and depend on host country characteristics, empirical evidence on the benefits of FDI has been mixed (De Mello, 1997; Blomström and Kokko, 2003; Lipsey and Sjöholm, 2004; Ozturk, 2007; Smarzynska-Javorcik, 2008; Smeets, 2008). There appears to be some evidence of positive spillovers, from foreign

affiliates to domestic firms, regardless of domestic firm characteristics (Jensen, 2009; Havranek and Irsova, 2010; Vahter, 2010); and of a positive effect of FDI on growth at a macro level, unconditional of host country characteristics (Campos and Kinoshita, 2002; Nath, 2009; Ekanayake and Ledgerwood, 2010). However, the literature at large does not appear to come to clear conclusions. Rather, as Lipsey and Sjöholm (2004, p. 25) conclude in their review of studies addressing FDI and economic growth, "the main lesson might be that the search for a universal relationship is futile". Accordingly, the consensus view that seems to emerge currently from the empirical literature, consistent with the theoretical arguments discussed earlier in this section, is that a positive impact of FDI is not automatic and it depends crucially on the absorptive capacity of the host economy and/or its firms. Different authors have identified different determinants of the absorptive capacity of the host economy. The most widely cited appears to be the level of human capital, as hypothesised by Borenzstein et al. (1998) above and empirically supported by the same study as well many others (e.g. Xu, 2000; Ford et al., 2008; Wang and Wong, 2009). Other factors determining the (size of) FDI effects in terms of positive spillovers and economic growth at country level have been found to be: wellfunctioning markets (Balasubramanyam, et al. 1996), a higher technological level of the host economy's firms (Pessoa, 2008; Havranek and Irsova, 2010), strong safeguarding of intellectual property rights (Smarzynska-Javorcik, 1999), benevolent financial systems and financial market regulations (Hermes and Lensink, 2003; Alfaro et al., 2004; Durham, 2004; Wang and Wong, 2009) and high level of host country openness (Basu et al., 2003; Havranek and Irsova, 2010; Weber, 2010).

1.2.2 Inwards FDI and its effects on European transition economies 1.2.2.1 A statistical overview of inwards FDI and its contribution to financing investment

Until the beginning of the 1990s, European transition economies had negligible stocks of FDI due to previous restrictive policies that had been implemented primarily for doctrinal reasons (UNCTAD, 2008a). However, beginning in the 1990s these countries implemented extensive reforms: they liberalised trade, implemented privatisations of state-owned enterprises and made efforts to improve their macroeconomic performance. In hand with these, European transition economies created regulatory frameworks that were favourable to FDI. They have removed most barriers to foreign investment, provided them 'national treatment' (i.e. the same treatment as domestically-owned firms) and protection of their investment, including protection from expropriation, the right to transfer profits abroad and to repatriate any invested capital (Witkowska, 2007; UNCTAD, 2008b). In addition, most of these countries provided various incentive packages for foreign investors in the form of tax exemptions for varying periods (up to ten years), duty-free imports of (high-tech) equipment, job creation benefits, training grants, etc. (UNCTAD, 2008b). Partly reflecting these policy changes, European transition economies managed to attract increasingly larger FDI inflows until the beginning of global financial crisis, reaching a record of USD 75 billion in 2007. Figure 1.2 shows the aggregate FDI inflows into European transition economies which, as explained in the Preface, refer to the sixteen Central and Eastern European (CEE) and Baltic economies: Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, the Former Yugoslav Republic (FYR) of Macedonia, Montenegro, Poland, Romania, Serbia, Slovak Republic and Slovenia.

Source: Own calculations based on UNCTADStat (UNCTAD, 2012) *FDI inflows were aggregated for the whole sample of European transition economies. They are measured in US Dollars at current prices and current exchange rates.

Despite the large drop in FDI inflows in 2008-2010, FDI stocks in European transition economies have seen a generally rising trend since the beginning of transition (Figure 1.3 below). Similarly, during the transition period these economies managed to attract an increasing share of global FDI stock from 0.7 in 1994 to a peak of 4.3 percent in 2008 which is high relative to their share of global population (1.8 percent) and output (1.5 percent), calculated based on data from WDI (2010). The European transition economies' share of global FDI, however, experienced a slight decline in the following years, which corresponds with the global financial crisis.

Source: Own calculations based on UNCTADStat (2012) *FDI inflows were aggregated for the whole sample of European transition economies. They are measured in US Dollars at current prices and current exchange rates.

The volume of FDI into European transition economies has been highly concentrated (Table 1.1 below), with the four top destinations, Poland, Czech Republic, Hungary and Romania, accounting for around three quarters of their FDI stock in 2010.

Country	Share of FDI (%)
Poland	27.0
Czech Republic	18.1
Hungary	12.8
Romania	9.8
Slovak Republic	7.1
Bulgaria	6.7
Croatia	4.8
Serbia	2.9
Estonia	2.3
Slovenia	2.1
Lithuania	1.9
Latvia	1.5
Bosnia and	
Herzegovina	1.0
Montenegro	0.8
Macedonia, FYR	0.6
Albania	0.6
Total	100.0

Table 1.1: Distribution of FDI stocks, 2010

Source: Own calculations based on UNCTADStat (UNCTAD, 2012)

However, once the size of their economies is accounted for, a different picture appears (see Figure 1.4 below). From the Central and Eastern European countries (CEECs) above, only the Czech Republic, Slovak Republic and Hungary seem to stand out in terms of their success in attracting FDI stocks, suggesting that Poland and Romania are top destinations mainly due to the size of their market. Other top performers, having accounted for the size of their economy, are Montenegro, Estonia and Bulgaria, followed by Croatia, Macedonia and Serbia. An initial glance at the characteristics of the top performers suggests that some of other factors driving the FDI distribution within European transition economies, in addition to the size of the size of the speed of reform and transformation to a market economy, privatisation opportunities, (prospects of) EU accession and availability of natural resources. For instance:

Czech Republic, Slovak Republic, Hungary and Estonia are renowned for being fast reformers among European transition economies (OECD, 2001; Sohinger, 2005)

The major share of Bulgaria's inward FDI has been accumulated in the wake of its accession to the EU and in years after that (Kalotay, 2008; UNCTAD, 2011)

Both Bulgaria and Croatia have undergone large-scale privatisations in the recent years (EBRD, various years; UNCTAD, various years). The domination of privatisation-related FDI appears to be indicated by the unusually high FDI inflows in these countries in the years when these privatisations took place (UNCTAD, 2012).

Montenegro has experienced considerable FDI inflows in the tourism sector and, related to this, its coastal real estate sector (e.g. ESI, 2012).

The importance of FDI is perhaps most clearly indicated by its contribution to gross fixed capital formation (GFCF) in the host economy. A review of the (unweighted) average shares of FDI in European transition economies in their GFCF indicates that FDI has played a significant role in supplementing domestic investment since the beginning of the transition period. Table 1.2 below shows that all European transition economies with the exception of Slovenia have had average shares of FDI in GFCF in excess of 13 percent in the period 1992-2009. Slovenia also appears to

Source: UNCTADStat (UNCTAD, 2012)

^{*}FDI stocks measured in US Dollars at current prices and current exchange rates.

be an exception in that it has managed to achieve very high investment rates in this period (its average being ranked fourth in the sample), despite the limited contribution of FDI. On the other hand, those relying more heavily on FDI are Bulgaria with an FDI/GFCF ratio of almost 40 percent, Estonia and Hungary at ratios of over 25 percent, and Macedonia and Slovak Republic at a ratio exceeding 20 percent. Overall, the shares of FDI in GFCF in European transition economies, with the exception of Slovenia, appear to be high by international standards: almost all the countries' averages (by far) exceed the average shares of around 9 and 11 percent for the group of developed and developing economies, respectively, in the same period (UNCTAD, 2012).

Country	FDI/GFCF (%)	GFCF/GDP (%)
Bulgaria	38.9	18.9
Estonia	27.5	28.0
Hungary	25.6	21.7
Slovak Republic	21.0	28.3
Macedonia, FYR	20.8	17.7
Czech Republic	19.4	27.3
Latvia	19.3	22.7
Croatia	18.2	20.8
Serbia and Montenegro***	17.3	15.0
Bosnia and Herzegovina**	16.5	22.6
Poland	16.3	20.1
Romania	16.1	22.2
Albania	13.9	21.5
Lithuania	13.9	22.5
Slovenia	6.6	24.0

 Table 1.2: Average* FDI/GFCF and GFCF/GDP ratios, 1992-2009

Source: Own calculations based on UNCTADStat (UNCTAD, 2012); WDI (2010) *The reported figures refer to unweighted averages

**Data covers the period up to the break up of Serbia and Montenegro (until 2007)

***Data for Bosnia and Herzegovina covers only the period after the war (from 1996)

A note of caution seems to be is in order when interpreting the shares of FDI in domestic investment. This ratio implicitly assumes that FDI contributes to gross capital formation, i.e. either in kind transfers physical capital or the provision of the funding necessary for its purchase. However, the definition of FDI does not specify the use of the funding: FDI may involve investment in physical capital, but also mergers and acquisitions, i.e. a change in ownership which does not necessary contribute to fixed capital formation. This concern has been previously raised by Lipsey (2000) who fails to find empirical support for the hypothesis that FDI has a positive effect on capital formation in developing economies. Accordingly, various studies have argued that this could especially be a cause for concern in transition economies where, as discussed later, a considerable share of FDI has involved enterprise acquisitions in the form of privatisations (Krkosa, 2001; UNECE, 2001). However, despite these concerns, Krkosa's (2001) empirical investigation suggests a positive relationship between FDI and GFCF in Central and Eastern European (CEE) economies. The results of this study further suggest that the impact of FDI on capital formation in these economies is substantially higher than other sources of finance such as domestic credit and capital market financing. One reason why a significant relationship is found between FDI and domestic investment in these CEE economies, despite the high share of FDI related to privatisation, may be that the old vintage of the capital in the formerly state-owned companies made it necessary for foreign investors to invest in physical capital upon acquisition. Kalotay (2001) and Meyer and Estrin (2001), for instance, note a tendency of privatisations made by foreign investors in these economies to be followed by new investment in physical capital, often exceeding the size of the initial investment. However, the importance of FDI for transition economies may be best illustrated by the effects it has had on the real economy, discussed next.

1.2.2.2 The effects of inwards FDI in the context of European transition economies

At the outset of transition high levels of inward FDI were considered as essential for the successful and speedy transformation of the formerly centrally-planned economies (Lipton et al., 1990; Donges and Wieners, 1994; Sachs, 1997). Therefore, it is no surprise that virtually all European transition economies appear to have put the attraction of FDI high in their policy agendas during the transition period. In terms of "financial flow effects", revenues from privatisation-related FDI have served as a means for some of the European transition to finance their budget deficits, reduce their external debt and/or boost their foreign reserves (UNECE, 2001). However, as explained above, the potential for FDI to (positively) affect the economy by far exceeds any improvement in the external financial positions, and it is argued here to be greater in these economies compared to that in other economies due to the specific nature of the transition. At the outset of transition, European transition economies were left with deep structural distortions inherited from the previous system. In communist economies the structure of the economy did not necessarily correspond to the demands of the market or the comparative advantages of regions and countries (Filer et al., 2001). The structure of production and employment reflected the priorities of the central planners: industrialisation of the production structures formerly focused mainly on agriculture and development of military power (e.g. Brunello et al., 2011). Accordingly, their resources were mainly channelled towards heavy industry, while the production of consumptions goods and the service sector was not considered as important (e.g. Lipton et al., 1990; Filer et al., 2001; Campos and Coricelli, 2002). Moreover, their manufacturing sectors were extremely biased toward heavy industry and once the communist system collapsed they faced chronic excess demand because "they produced goods...without benefits...for consumption" (Lipton et al., 1990, p.79). On the other hand, these economies had price distortions and shortages of consumption goods inherited from the previous system which contributed to macroeconomic imbalances such as hyperinflation and high current account deficits (Kalotay, 2001). In this respect, foreign enterprises through their day-to-day operations, i.e. their production and pricing practices, contributed to the amelioration of the price distortions inherited from the previous system; the elimination of shortages of goods and services that were demanded in the market and the reduction in host countries' trade deficits (Kalotay, 2001).

In addition to these structural problems, the ex-communist economies were also characterised by inefficient technologies and obsolete physical assets in their existing industries (Filer et al., 2001; Orts et al., 2005). Under these conditions, considerable resources were needed to fund required fixed investment for restructuring at the level of the enterprise and the economy overall. However, the European transition economies had limited domestic resources to finance this investment and, given their low domestic savings rates (Demekas et al., 2005; Sohinger, 2005), it was very important for these economies to be able to rely on foreign capital for this purpose. Given that developed economies represent the largest source of greenfield project in transition economies (UNCTAD, 2011) and most research and development (R&D) takes place in MNEs located in the developed economies, it is reasonable to expected that FDI can provide the advanced technology and know-how needed. Accordingly,
FDI has recognised as an important source of technological progress in transition economies (Campos and Coricelli, 2002; Campos and Kinoshita, 2002; Uzagalieva and Kocenda, 2010). Foreign investment companies have also been documented to introduce new products, and management, marketing and organisational practices not previously used in these economies (Kalotay, 2001; Pavlínek, 2002); promote a new work ethic (Filer et al., 2001); improve (labour) productivity, value added of their products and export competitiveness (Smith et al., 1997; UNECE, 2001; Hunya, 2000a, 2002; UNCTAD, 2003); and, consistent with knowledge spillover, to FDI has been found to positively affect process innovation in incumbent firms in the industry it enters (Vahter, 2010).

In the previous sub-section it was argued that FDI can affect the industrial specialisation of the host country and its position in the global value chain. Resmini (2000) argues that these effects can be especially large in the context of transition where major changes are occurring in the structure of the economy and export patterns. However, these effects have not been uniform across European transition economies. Significant structural changes due to FDI have been argued to have taken place in those European transition economies which accessed into the European Union (EU) in 2004 and 2007 (Kalotay, 2010). The most successful countries in materialising these effects are those countries of the CEE which are considered as early reformers, e.g. Hungary, the Czech Republic and Estonia (Hunya, 2000a; UNCTAD, 2003). On the other hand, Kalotay (2010) points out that the economies of South-East Europe (SEE) (except Bulgaria and Romania which accessed into the EU in 2007) benefited from FDI-induced structural changes to a much smaller extent.

Finally, the effects of FDI in the context of transition are argued to extend beyond those that would be expected in a context of a mature market economy. Transition economies, with the partial exception of ex-Yugoslavia, Hungary and Poland, had no recent experience with private business or markets, which made them poorly equipped to (successfully) operate private enterprises and integrate them into the world market (Kalotay, 2001; Mihalyi, 2000). In these circumstances, FDI has been argued to have a crucial role in strengthening the emerging private sector and establishing the institutions necessary for the efficient operation of the market

(Kalotay, 2001; Sohinger, 2005). This appears to be particularly the case when it comes to privatisation-related FDI, as discussed next.

FDI has played a major role in the privatisation of formerly state-owned industries in European transition economies (Kalotay and Hunya, 2001; UNCTAD, various years; EBRD, various years). Privatisation to foreign investors has been shown to be associated with superior post-privatisation performance relative to other types of privatisation (Smith et al., 1997; Kocenda and Svejnar, 2002; Lizal et al., 2002; Kocenda and Svejnar, 2003). Some of the likely reasons for their superior performance can be related to: the relatively poor skills of domestic owners to operate in a market economy (Harvylyshyn and McGettigan, 1999); the dispersed ownership structure created by other methods such as mass privatisation and insider privatisation (Claessens et al., 1997; Kocenda and Svejnar, 2002); and, in the case of the latter, the likely resistance to restructuring by the managers/employees (Carlin and Landesmann, 1997). Perhaps the most important role of privatisation-related FDI can be attributed to the privatisation of services such as fixed and mobile telecommunications, utilities, banking and insurance, all of which, according to Kalotay (2001), have been rapidly upgraded as a result. Here it is argued that FDI in these services is particularly important in a transition context. The reliable supply of (innovative) services in the telecommunications and utilities industries can directly encourage the development of the emerging private sector by decreasing the operating costs of private enterprises. Involvement of foreign investors in banking and insurance, on the other hand, in addition to helping stimulate an improvement in the quality of the services (Kalotay, 2001) and facilitation of financial deepening (Schwaiger and Liebeg, 2007), is likely to have a positive effect in terms of increasing trust in the financial sector and improving businesses' perception of the business environment.

In a similar manner, Kalotay (2001) argues that all privatisation-related FDI, regardless of the industry, has played a role in increasing the transparency of economic transactions, a key feature distinguishing a market economy from the previous system. He finds a positive correlation between the share of sales to foreign-owned companies and the level of perception of transparency, as measured by Transparency International. On the other hand, the correlation between insider

privatisation and state ownership and the degree of transparency is found to be negative, which, Kalotay argues, is indicative of this type of privatisation leading to a similar way of enterprise management with that practiced under the previous system. However, privatisations to foreign investors can also be argued to send a signal that the host country's government is genuinely committed to establishing a market economy. Consistent with this argument, Sohinger (2005) argue that the (speed of) market-based and growth-inducing reforms in transition economies have been partly driven by the desire of their governments to attract FDI.

Further, considering the limited domestic resources in European transition economies, it is not clear that some of the larger privatisations could have been carried out without the involvement of strategic foreign investors. If these privatisations could have been undertaken by domestic private investors, it is unclear that they could have successfully restructured and managed, considering the lack of knowledge and experience in operating enterprises in a market economy.

Considering the theoretical arguments and empirical evidence discussed above, arguments that FDI has contributed greatly to the amelioration of structural and macroeconomic distortions in European transition economies, as well as the speed and success of their transformation (Bevan and Estrin, 2004) appear to be warranted. In fact, these arguments may explain why FDI has been found to be a significant determinant of economic growth in European transition economies (Campos and Kinoshita, 2002; Nath, 2009), unconditional of the level of human capital or other factors in the host economy, a finding not common for other samples of countries, as explained in the previous sub-section.

1.3 Human capital formation in European transition economies

The previous section has documented very large disparities in inward FDI within European transition economies, even after accounting for the size of their economies/population. The different degrees of success in attracting FDI have motivated numerous empirical investigations on the factors that drive FDI into (European) transition economies (Lansbury et al. 1996; Smarzynska-Javorcik, 2002; Kinoshita and Campos, 2003; Serbu, 2005; Bellak et al., 2009; Riedl, 2010; Kudriavceva, 2011). These studies have identified various generic- and transition

specific- determinants of FDI, but, by-and-large, they tend not to investigate the effect that stocks of human capital in these countries may have played in attracting FDI. This is somewhat surprising considering that, at the outset of transition, the high level of human capital in these economies was expected to represent one of their key advantages in competing for FDI (e.g. UNECE, 2001; Kinoshita and Campos, 2003; Bevan and Estrin 2004), especially in combination with the relatively lower wages compare to Western Europe (Magda et al., 2011), as discussed in the next section. The rest of this section will analyse some key dimensions of human capital formation in European transition economies that may be relevant to foreign investors when choosing their investment location. Namely, the level of educational attainment of their workforce is discussed in Sub-section 1.3.1, followed by an examination of the mix of occupations and type of skills emphasised in Sub-section 1.3.2. Finally, Sub-section 1.3.3 provides an assessment of the quality of European transition economies' education systems and the extent to which they develop skills that are considered relevant in a dynamic market economy. More general discussions of the characteristics of these economies pre-transition education systems and the skills they developed have been provided, among others, by World Bank (1996), EBRD (1997), Micklewright (1999), Berryman (2000), Pe'teri (2000), Mertaugh and Hanushek (2005), Marks and Tesar (2005) and Lamo et al. (2010).

1.3.1 Educational attainment of the workforce

Conventionally in the economic literature a country's human capital endowment is measured by rates of educational participation and levels of attainment. Based on such quantitative educational outcomes, the formerly planned economies were believed to be well-endowed with human capital. In the first decade after transition, literacy rates in European transition economies ranged between 96.7 and 99.7 percent, with a calculated (unweighted) average of 98.1 percent (WDI, 2010). With an average of approximately 8.9 years of schooling in the population aged 15-65 in 1990, they were ranked much closer to advanced economies than to developing economies in this respect (Table 1.3 below).

Country	Average years of schooling
Czech Republic	10.8
Slovak Republic	10.5
Advanced economies	9.6
Romania	9.3
Estonia	9.2
Albania	9.0
Lithuania	8.9
Hungary	8.8
Bulgaria	8.8
Poland	8.5
Slovenia	8.0
Latvia	8.0
Serbia	7.9
Croatia	7.8
Developing economies	5.2

|--|

Source: Extracted from Barro and Lee (2010)

However, a breakdown of educational attainment figures according to the level of education completed shows that the gap between European transition economies and developed economies increases significantly at tertiary education level (Figure 1.4 below). Namely, whilst the percentage of the working age population who had completed secondary education was 28% higher in 1990 in the developed economies than in the European transition economies, the percentage of those who had completed tertiary education was 123% higher¹.

¹ The figures for the percentage of population who have completed secondary education were calculated based on Barro and Lee (2010) by adding the share of population who have completed tertiary education to the original figures. This was because the original Barro and Lee (2010) data refer to the share of population who have completed secondary education as the *highest* level of education, so it automatically excludes the share of the population who have completed secondary education and *have continued* to complete tertiary education.

Figure 1.5: Educational attainment of the workforce, 1990 (%)

Source: Own calculations based on Barro and Lee (2010)

However, the most important differences with regard to human capital between transition economies and developed economies appear to be related not to the quantity, but to the quality of education. Despite the apparently relatively high levels of educational attainment of transition economies, serious concerns have been raised with regard to the quality and relevance of the mix of skills developed under the previous system in a market economy, as discussed below.

1.3.2 The mix of occupations and types of skills provided

In the previous system, the centrally planned production meant that the mix of occupations needed in the economy could be planned and developed accordingly. These economies were focused on the manufacturing sector and largely neglected the service sector (Filer et al., 2001; Campos and Coricelli, 2002; Rutkowski et al., 2005) and their education systems were geared towards producing the mix of occupations appropriate for this structure. They tended to develop highly specialised, occupation- or even firm-specific skills to be used in production, often through vocational education (World Bank, 1996; Filer et al., 2001). Table 1.4 below illustrates the emphasis of these education systems on vocational/technical upper-secondary education at the outset of transition. Estonia and Lithuania appear to be exceptions in having, respectively, around a fifth and a third of students enrolled in this type of education in 1990. In the other economies for which data is available the

unweighted average share of vocational/technical enrolments is 60 percent, ranging from 47.2 in Bulgaria to 78.4 percent in Romania. By 2008, however, the emphasis on vocational/technical education has declined considerably in most of these countries, whilst remaining the same or increasing to a lesser extent in other ones². This appears to indicate that the centrally planned economies over-valued and over-emphasised this type of education.

	Share of vocational/technical enrolm	nents (%)
Country	1990	2008
Romania	78.4	60.0
Poland	68.4	24.7
Czech Republic	63.9	69.1
Slovak Republic	63.2	15.0
Slovenia	61.0	59.7
Croatia	58.0	63.1
Hungary	55.7	63.7
Albania	55.3	8.9
Latvia	48.1	36.8
Bulgaria	47.2	47.1
Lithuania	34.5	28.4
Estonia	20.5	33.0

Table 1.4: Emphasis of vocational/technical education, 1990 and 2008*

Source: Own calculations based on TransMONEE (UNICEF, 2010)

*Figures for Croatia and Slovenia refer to 1991 and 1993 instead of 1990, respectively,

whilst those for the Slovak Republic refer to 2007 instead of 2008.

Moreover Marks and Tesar (2005, pp. 26-27) argue that even the universities of centrally planned economies had "an explicit orientation towards enhancing production", being focused on vocational education and the advancement of technical and scientific knowledge. Subjects such as business and social sciences, on the other hand, were largely neglected in the centrally planned economies (World Bank, 1996; Mertaugh and Hanushek, 2005). Such a composition of human capital in terms of the types of skill and the occupational mix raises serious questions of its adequacy in a market economy for two reasons. First, there was a lack of qualified individuals in subjects such as economics, management, marketing and law, each of these areas being crucial to the efficient functioning of a market economy. Second,

 $^{^2}$ In some of the countries the share of vocational enrolments remains surprisingly large, however the composition and content of these courses are likely to have changed to reflect the demands of the new market economy, e.g. expansion of the business education at the expense of technical education (Jeong et al., 2008)

vocational training which was emphasised in these systems tended to develop specific skills which were relatively more valuable for operating specific technology (Krueger and Kumar, 2004). This approach may have been appropriate for a centrally planned economy where technological change was slow and it was customary for individuals to be prepared for a specific occupation and to remain in the same job throughout their lives. On the other hand, general, conceptual-based, education is superior in developing more general skills (Krueger and Kumar, 2004; Filer et al., 2001) which are transferable across jobs and occupations. In particular, Bowles and Gintis (1976) argue, academic education enhances creativity and problem-solving skills, compared to vocational training which promotes specific skills. However, the education systems of the centrally planned economies appear to have been generally less successful, or even less interested, in developing these skills and traits conventionally attributed to general education.

Reflecting the desire to keep the established social order, education systems in the centrally planned economies were prone to promoting conformity, whilst largely discouraging individual initiative and critical thinking (Mertaugh and Hanushek, 2005). This approach was reflected throughout the education system, e.g. in the lack of autonomy for educational institutions (Marks and Tesar, 2005) and their detailed, centrally-prescribed, curricula, textbooks and teaching methods (Micklewright, 1999). However, perhaps most importantly, this approach was reflected in the instruction and evaluation methods adopted in the classroom, as they directly contributed to the mix of skills and behavioural traits that were developed/promoted under this system. Marks and Tesar (2005), for instance, argue that the instruction and evaluation methods adopted by universities under central planning "stressed familiarity with lecture materials and facts rather than independent studies and a capacity for analytical thinking which could lead to innovative thought" (p. 27). This is line with the arguments of other studies which hold that the education systems of these economies emphasised mastery, or memorisation, of knowledge and facts rather than critical thinking and problem-solving skills (World Bank, 1996; EBRD, 1997; Berryman, 2000). Indeed, rather than not promoting critical thinking and creativity, the previous educational systems actively discouraged these due to their potential to undermine the established order. By virtue of enforcing conformity to rules and authority, these education systems promoted docility, discouraged selfinitiative and suppressed individuals' sense of self-efficacy. These latter personal

traits represent additional characteristics of human capital which are especially relevant in dynamic market economy, as discussed in Chapter 4 of this thesis.

1.3.3 The quality of education provision

In addition to the distinctive features of the human capital formation process discussed above, more general concerns have been raised about the quality of education provided. There was no national system of quality assurance (World Bank, 1996; Micklewright, 1999). The guaranteed employment provided for all graduates in the centrally planned economy meant that there was no evaluation feedback from the market, either in terms of the needed skills, or in terms of the quality and relevance of the skills provided to graduates (World Bank, 1996; Filer et al., 2001; Marks and Tesar, 2005). Marks and Tesar (2005) also argue that universities under central planning were in essence focused on certification rather than knowledge creation and transfer. On the other hand, educational institutions, like other (stateowned) enterprises, were led by a central plan and had to meet their targets of "production". In the absence of mechanisms of quality control, this meant that they could adjust their academic standards in order to achieve the required numbers of professionals in specific fields (Pe'teri, 2000). This argument is in line with the relatively low repetition rates found in many transition countries and evidence of human capital stock overvaluation compared to countries with comparable levels of development and efficiency of their education systems (Beirne and Campos, 2007).

The deficiencies of the centrally-planned education systems described above appear to be consistent with quality measures of their human capital derived from standard international test scores. Although these measures are not available for all European transition economies and for long time-spans, these results are indicative of the types and quality of skills their education systems develop. An observation that is immediately visible when reviewing the results of different cross-country tests is the diversity in the (relative) performance levels, both across European transition economies, and of the same economies in different tests and/or different points in time. The following paragraphs briefly summarise these results and identify some stylised facts from an assessment of three relevant international studies of cognitive skills in which different European transition economies participated in one or more rounds. The first two tests discussed here cover students in compulsory education (usually at the 8^{th} grade), whilst the last one covers the countries' working age population.

The first two tests, the Third International Mathematics and Science Study (TIMSS; IEA, 2000a,b; 2008), and the Programme for International Student Assessment (PISA; OECD, 2004, 2007, 2010a) differ in two ways. TIMSS measures students' academic competence in mathematics and science and it was administered in four rounds (1995, 1999, 2003, 2007). PISA, on the other hand, focuses on three themes, alternating between in each round: reading, mathematics and science; therefore, its results may not necessarily be comparable across years or with TIMSS. Second, whilst TIMSS tests academic competence and can be regarded as a measure of success of education systems at imparting knowledge, PISA seeks to measure functional competence, i.e. ability to use knowledge to solve real-life problems rather than mastering curriculum. As such, PISA can be considered to measure competences that are more general in nature and, as argued above, can be viewed to be more relevant in a dynamic modern economy and in the process of transition

A review of TIMSS results (IEA, 2000a,b; 2008) shows that some of the European transition economies achieved satisfactory scores, especially in the earlier rounds (e.g., the Czech Republic, the Slovak Republic, Hungary, Slovenia and Bulgaria have scores that were significantly above the average of the participating countries in the 1999 round). A few of the European transition economies tend to have average scores (e.g. Lithuania and Latvia), and the rest have scores significantly below the average (e.g. Romania and Macedonia in 1999, and the new participating countries in 2007, Bosnia and Herzegovina and Serbia). The performance of these countries, however, does not always remain similar across years, as discussed later in this section.

Although the TIMSS and PISA results are not strictly comparable because they refer to different points in time and the same countries are not always covered in different tests, the overall performance of European transition economies in PISA again cannot be considered as satisfactory. In the second and/or third rounds of PISA in 2003 and 2006 (OECD, 2004, 2007) which focused on mathematics and science respectively, Estonia, Slovenia and the Czech Republic and Slovak Republic achieve scores that are significantly above the OECD average. Similar to its performance in TIMSS, Hungary stands in the middle, with a score that is not significantly different from the OECD average, and almost all other countries consistently have significantly lower scores (Croatia, Poland, Latvia, Lithuania, Montenegro, Romania and Serbia). Two striking difference are noted when comparing differences between their TIMSS and PISA performance: Bulgaria which was a top performer in TIMSS 1999 has a score significantly lower than the OECD average in PISA 2006, whilst Poland which was a bottom performer in the former test manages to achieve a score that is not significantly different from the OECD average in the latter test. These differences may be partially explained by the fact that the tests were conducted at different points in time, meanwhile the education systems in these economies appears to have been changing. The improved performance of Poland appears to be as a result of successful reforms that this country has undertaken starting from 1999 (OECD, 2010a) and it is consistent with the major improvement of this country's performance in PISA reading tests between 2000 and 2009, discussed below. The fall in Bulgaria's performance also seems to reflect a general deterioration of its education system. This country's results are consistent with TIMSS 2007 (IEA, 2008) that reports this country experienced the largest deterioration in TIMSS performance since 1995.

The performance of European transition economies in the PISA tests focused on readings appear to be even weaker than that in mathematics and science. In PISA 2000, all participating economies from this group (the Czech Republic, Hungary, Poland and Latvia) scored significantly lower than the OECD average. In PISA 2009 (OECD, 2010a), only Poland from this group managed to reach a score that is significantly higher than the OECD average, joined by Estonia which is a new participant and also performs above average. Hungary reaches the OECD average score, similar to other tests, leaving all the other European transition economies (except for Bosnia and Herzegovina that does not participate) with significantly lower scores.

However, transition economies also appear to differ from other economies in terms of the types of skills they develop. PISA measures and analyses the student performance in terms of different types of skills. PISA 2009, for instance, analyses three different aspects of reading: accessing and retrieving information, integrating and interpreting it, and reflection and evaluation. The results of this analysis appear to support the arguments above, according to which educations systems in European transition economies focused on imparting knowledge rather than developing the ability to critically evaluate information. Here, all the countries which PISA 2009 (OECD, 2010a, p. 71) lists as being significantly lower on the 'reflect and evaluate' subscale compared to one or two of the other subscales are European transition economies (Azerbaijan, Bulgaria, Czech Republic, Kazakhstan, Kyrgyzstan, Montenegro, the Russian Federation, Serbia, Slovak Republic, and Slovenia), suggesting that this is a specific characteristic of these particular education systems³.

PISA also provides information on the distribution of student scores within countries and disaggregates student performance according to six proficiency levels. The students reaching the highest proficiency level in reading, according to OECD (2010a), are those that are able to comprehend, thoroughly analyse and evaluate, both explicit information and unstated implications provided in the text. The share of students performing at this level is argued by OECD (2010a, p. 49) to be particularly important because these skills are "...greatly valued in knowledge economies, which depend on innovation and nuanced decision making that draw on all the available evidence". Like in the case of previous indicators, most European transition economies perform poorly in this respect (see Table 1.5 below). The percentage of students reaching level 6 proficiency is lower that the OECD average of 0.8 percent in all European transition economies. Poland and Estonia are, again, the best performers among these economies, approaching the OECD shares of 0.7 and 0.6 percent, respectively, followed by Hungary, Slovak Republic and Slovenia with shares of 0.3 percent. Albania, Montenegro, Romania and Serbia, on the other hand, have no students performing at the highest level of proficiency. The mean scores of the top 5 percent of the students appear to follow the same pattern as the number of students reaching proficiency level 6: Poland and Estonia leading, followed by the more advanced CEE and Baltic countries, Croatia and Bulgaria, leaving the other four SEE countries behind with significantly lower scores. The only exception in these patterns appears to be Bulgaria, with an unusually high share of students who

³ On the other hand, countries performing significantly better on the 'reflect and evaluate' subscale compared to one of two of the others are Hong Kong-China and all the English-speaking countries, with the exception of Ireland (Australia, Canada, New Zealand, the United Kingdom and the United States).

reach the highest proficiency in comparison to its relative performance of in terms of top students' mean score.

Country	Top 5% of students (average score)	Students with proficiency level 6 (%)
Poland	640	0.7
OECD average	637	0.8
Estonia	633	0.6
Czech Republic	627	0.4
Hungary	623	0.3
Slovenia	623	0.3
Slovak Republic	621	0.3
Croatia	611	0.1
Latvia	610	0.1
Lithuania	608	0.1
Bulgaria	603	0.2
Serbia	572	0.0
Romania	564	0.0
Montenegro	558	0.0
Albania	538	0.0

Table 1.5: Performance of top students in reading, PISA 2009

Source: Extracted from PISA 2009 (OECD, 2010a)

Finally, the relatively poor performance of European transition economies also extends to the International Adult Literacy Survey (IALS; OECD, 2000) which, in contrast to the previous tests, measures the cognitive skills of the working age population. The IALS seeks to measure individuals' ability to understand concepts and apply them effectively in practice. Although few transition economies participated in this test, the results indicate a similar pattern with PISA and TIMSS whereby Czech Republic stands out as the top performer of this group and is ranked relatively well, whereas the other countries, Hungary, Slovenia and Poland are ranked at the bottom.

Overall, the performance of European transition economies in international tests of cognitive skills can be summarised as follows.

European transition economies, on average, perform worse than developed economies, consistent with concerns regarding educational quality that have been raised by various authors, discussed at the beginning of this sub-section. These economies perform relatively better in tests of mathematics and science compared to those in reading. This is may be partially explained by the structure of their economies and employment, discussed in the previous section.

The education systems of European transition economies appear to be significantly better at imparting knowledge (i.e. developing skills of retrieving and interpreting) information, than at developing the ability of students to reflect on and evaluate this new information.

The top performers in this group appear to be from Central and Eastern Europe: Estonia, the Czech Republic, and, to a lesser extent, the Slovak Republic, Slovenia, and Hungary. These are also some of the countries that have been most successful at attracting FDI, as explained in the previous section.

Like overall performance, top students' performance and the share of the most able students varies significantly within European transition economies. The ranking of the countries in terms of best-performing students tends to follow their mean performance.

The economies of South-Eastern Europe appear to be among the weakest performers in all the tests in which they participate (with the exception of Bulgaria in earlier years). Similarly, these countries tend to be, on average, less successful at attracting FDI.

The performance trends of countries such as Bulgaria and Poland suggest that, despite expectations that education systems are likely to be prone to inertia, educational performance is not "written in stone". The experience of Poland, in particular, suggests that, if appropriately designed and implemented successfully, educational reforms can have significant effects within a relatively short period of time.

The level of educational attainment, and especially the quality and mix of skills provided by (pre-transition) education systems, in turn, is likely to have implications for the quality of the labour force in European transition economies and their attractiveness to foreign investors. These and other characteristics of these economies' labour markets which can affect foreign investors' decisions are discussed in the next section.

1.4 Labour markets in European transition economies

The development of the European transition economies labour markets after the fall of communism has been documented and analysed extensively, among others, by Svejnar (1999), Boeri, (2000), Filer et al. (2001), Campos and Coricelli (2002), Havlik (2005), Barr (2005), Rutkowski et al. (2005), Commander and Kollo (2008), Flabbi et al. (2008) and Brunello et al. (2011). The focus of this section is narrower: it seeks to identify and examine some key dimensions of the labour markets that may affect the desirability of these countries' workforce to foreign investors. The first sub-section examines the levels, and trends, of labour costs in European transition economies. The second sub-section focuses on other characteristics of these labour markets inherited from the communist system: the mix of occupations and labour (im)mobility, skill shortages in the labour market, and a low level of labour productivity and prevailing work ethics.

1.4.1 Labour costs

At the outset of transition, low labour costs compared to the rest of Europe (combined with high educational attainment, discussed earlier) were considered to be a key factor that could attract foreign investors (e.g. Kinoshita and Campos, 2003; Serbu, 2005; UNCTAD, 2008a). The first part of this sub-section provides a statistical overview of wage levels and trends in European transition economies, and then continues to assess other aspects of labour markets which are argued to challenge and/or augment this conventional view.

Table 1.6 below presents the average level of gross monthly wages in European transition economies in 1995, a few years into the transition period. The definition of gross wages varies in different data sources, but Bellak et al. (2008, p. 22) explain that in the database by the Vienna Institute for International Studies (WIIW, 2010) used here, gross wages refer to "net wages plus personal income tax and social security contributions of employees, fringe benefits, bonuses, vouchers, etc.". Bellak et al. argue that this measure is imperfect for FDI studies because, among other problems, it does not include non-wage labour costs, and therefore does not represent the total cost of labour (i.e. including employers' contributions to social security and benefit plans) which would be a more relevant measure to be taken into consideration by the foreign investors. However, the gross wage is used here as it appears to be the only one for which data is available for the sample of European

transition economies under consideration here (excluding Serbia and Montenegro). Table 1.6 reveals diversity in the level of average wages in the sample in the early years of transition which does not appear to be necessarily related to the level of advancement in transition. Two ex-Yugoslav republics, Croatia and Slovenia appear to stand out with average wages that are around twice as high as the (unweighted) average of the sample, followed by the more advanced transition economies of CEE, Czech Republic, Hungary, Poland, Slovak Republic, with notably lower figures. The Baltic economies which were also considered more advanced in the process of transition, Estonia, Latvia, Lithuania, have lower wages that the average, together with the less-advanced economies of SEE, Romania, Bulgaria and Albania.

Country	Average gross monthly wage (EUR)*
Croatia	518
Slovenia	467
Czech Republic	294
Hungary	291
Poland	267
Slovak Republic	239
Estonia	194
Latvia	159
Romania	127
Lithuania	113
Bulgaria	106
Albania	75

 Table 1.6: Labour costs in European transition economies, 1995

Source: Own calculations using WIIW (2010) data

*EUR conversion using exchange rate data from Penn World Tables (PWT, 2009)

The level of wages in European transition economies has increased rapidly during the years since 1995. Figure 1.6 presents the trends of (unweighted) average gross wages for two groups of transition economies: the CEE and Baltic economies that have accessed into the EU in 2004 (Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Slovak Republic and Slovenia) and the rest, i.e. the SEE economies (Albania, Bulgaria, Croatia and Romania). The data presented in Figure 1.6 below shows an increase in wages during 2000-2008 which appears to follow a similar trend in the two groups of economies, regardless of their level of development and EU accession. In both groups, the average level of wages has more than doubled during these nine years, this change being slightly more pronounced in the SEE group. However, there are significant differences in the average level of wages in these groups throughout the period. In 2000, the level of monthly wages in the economies that have accessed into the EU is around EUR 400, which is 80% higher than that in the SEE, EUR 220. As wages in the SEE have since increased at faster rate, the difference between the two had declined by 2008, by which time wages in the more advanced group of transition economies were 63% higher compared to the SEE.

Source: Extracted from WIIW (2010)

Despite the rapid increases in labour costs illustrated above, on average, absolute labour costs have remained considerably lower in European transition economies compared to other European countries. Table 1.7 below presents the average gross monthly wage in European transition economies and in selected European economies for comparison. In 2008, the (unweighted) mean value of monthly wage in the selected European economies⁴ is approximately four times as high as that in European transition economies. The country with the highest average wage among these economies is Slovenia, with a wage that is equal that in Portugal, the country which, according to Eurostat (2012), has the lowest average wage among these selected Western European economies. The pattern of wages within the transition

⁴ The selected Western European countries include those with the highest and the lowest wages in Europe.

economies in 2008 remains similar to that in 1995, with Slovenia, Croatia and the CEE and Baltic economies being ranked the highest and the SEE economies at the bottom.

Country	Average gross monthly wage (EUR)
Switzerland	3924
Germany	3450
Finland	3162
Sweden	3132
France	2798
Austria	2732
Spain	2101
Portugal	1391
Selected Western European economies (average)	2836
Slovenia	1391
Croatia	1044
Czech Republic	903
Poland	834
Estonia	824
Hungary	788
Slovak Republic	723
Latvia	680
Lithuania	623
Montenegro	609
Bosnia and Herzegovina	569
Serbia	560
Romania	477
Macedonia, FYR	428
Bulgaria	268
Albania	227
European transition economies (average)	684

Table 1.7: Comparison of wages with selected Western European economies, 2008

Source: Own calculations using data from WIIW (2010) for European transition economies and Eurostat (2012) for the Western European economies

Finally, it should be noted that a comparison of absolute labour costs, both in terms of the gross wage measure used here and in terms of total labour costs, is still insufficient for providing full information on the attractiveness of a country's workforce in FDI studies. The assessment of an investment location according to this type of measure would have to assume that the quality, and productivity, of the workforce that can be attained in different locations is homogeneous. Therefore, (real) unit labour costs which measure labour costs accounting for differences in labour productivity have been argued to convey much more relevant information to foreign investors (Holland and Pain, 1998; Bellak et al., 2008). Accounting for productivity differences has been argued to be of particular importance in the context of transition economies where, empirical evidence suggests, labour productivity attained is likely to be significantly lower compared to developed economies (Bellak et al., 2008, p. 23). Unfortunately, as there appear to be no (publicly) available data for unit labour costs for the European transition economies, the analysis in this section has to be restricted to absolute wage costs and, as such, it should be interpreted with caution. The rest of this section continues to examine other specific characteristics of labour markets in European transition economies which may partly explain why labour productivity here tends to be lower compared to developed economies, and hence may affect the attractiveness of these economies to foreign investors. As these characteristics are inherited from, or mainly arise as a result of, the previous system, a contextual discussion of the relevant characteristics of the communist labour markets and the major developments during the transition period are provided first.

1.4.2 The legacy of communism and labour productivity: structural change, workforce skills, labour (im)mobility and cultural factors

In the former communist economies of Europe and the Soviet Union education, employment and wages were centrally planned and regulated, just like the structure of economy. As explained in the previous section, these economies were overlyfocused on manufacturing, and largely ignored services. The priorities of the state were reflected beyond the relative size of the sectors in terms employment. Wages were set based on a centrally determined administrative grid which favoured the manufacturing sector. The level of wages in this sector was higher than that in the services, regardless of employees in services being, on average, more educated (Flanagan, 1998; Brunello et al., 2011). More generally, the wage grids were argued to have favoured physical work to intellectual work because they kept narrow differences between the wages of skilled and unskilled workers (e.g. Newell, 2001). This was supported by empirical studies that find low wage returns to education during the communist system compared to those found in developed economies coupled with significant increases in the education premium once the wages were market-determined during the transition period (Flanagan, 1998; Newell and Reilly, 1999; Orazem and Vodopivec, 1997; Campos and Jollife, 2003; Andren et al., 2005; Fleisher et al, 2005; Munich et al., 2005; Flabbi et al., 2008; Hung, 2008).

After the fall of communism the situation in the (labour) market changed drastically and rapidly. The liberalisation of the market combined with changes in external trade patterns, previously focused (exclusively) on the Soviet Union and other communist economies meant that a major reallocation of resources, including labour, was required. The size of sectors such as mining, manufacturing and utilities decreased, both in terms of their contribution to GDP and to employment, whilst that of the service sector increased significantly (Newell, 2001; UNECE, 2001; World Bank, 2002; Boeri and Terrell, 2002; Rutkowski et al., 2005; Brunello et al., 2011). There were also changes within the manufacturing sector, the share of consumer goods increasing at the expense of heavy industry (e.g. UNECE, 2001). The share of agriculture, another major sector during communism, either remained the same, or increased (e.g. in Poland and Romania) as individuals turned to agriculture in response to the loss of jobs in industrial jobs (Rashid et al., 2005; Rutkowski et al., 2005).

The reallocation of resources throughout the economy meant that the demand for workers of different occupations changed during transition. Traditional industries declined or disappeared altogether, whereas previously small industries and completely new ones were flourishing, thus requiring a large share of the workforce to change occupations if they were to find a job. In Estonia, for instance, it is estimated that between 35 and 50 percent of the employed individuals changed their occupations in the first five years of the transition period (Campos and Dabušinkas, 2003). In accordance with the structural changes described above, it was occupational groups such as plant and machine operators, clerks, professionals and craft and related trade workers that contracted in Estonia, whereas that those in service industries increased. Also consistent with the expansion of the service sector, Newell (2001) shows that in European transition economies there was an increase in the employment of non-manual workers, especially in managerial, professional and technical occupations.

The reallocation of employment between industries in European transition economies was coupled, and partially driven, by the contraction and/or privatisation

of (formerly) state-owned enterprises and the creation of new jobs mainly in the emerging private sector (e.g. Boeri and Terrell, 2002). The reallocation of employment to the private sector and the abolition of the wage grids meant that the price of labour would be allowed to reflect labour market conditions and worker productivity. Accordingly, the market valuation of different types of skills replaced the distortions of wages and incentives enforced by the previous system (Magda et al., 2011), namely the undervaluation of highly-skilled labour and the overvaluation employees working in the manufacturing sector. Consistent with a decompression of wages, empirical evidence documents a rise in the returns to education throughout ex-communist European economies during the process of transition, as explained earlier in this section. The increase in returns to education have been argued to be at least partly driven by the expansion of skill-intensive services such as finance, insurance, real estate, tourism, consulting and information services (Orazam and Vodopivec, 1997). Consistent with this view, there was a rise of relative wages in the service sector and a fall of those in agriculture and production sectors (Newell, 2001).

However, studies of individual earnings appear to provide valuable information on more than merely changes in the labour market due to wage decompression and rising demand for skilled labour. Many of these studies tend to find that returns to education during the transition period depend on the type of education: whilst rates of return to general education, both tertiary and secondary, are found to have increased, those to vocational/technical secondary education were found to have either decreased or remained the same compared to the communist period (Flanagan, 1998; Chase, 1998; Campos and Jollife, 2007). Whilst previous wage decompression and the rising demand for skilled labour can explain the rising education premium for tertiary- and general secondary- education, it does not explain the apparent differences between the labour market outcomes of vocational and general secondary education graduates during transition. These differences appear to be consistent with the differences in the type of skills imparted by general vs. vocational education, discussed in the previous section. Namely, it appears that the skills imparted by general education equipped workers to respond (more easily) to changes in the labour market, whereas the occupation- and/or technology-specific skills imparted by vocational education frequently became obsolete with the technological and/or

structural changes in these economies. Accordingly, many studies have argued that the specificity of skills of the labour force played a significant role in the manifestation of skill-shortages, low worker adaptability and high levels of (long-term) unemployment in European transition economies (Flanagan, 1998; Boeri, 2000; Rutkowski et al., 2005; Rutkowski, 2007; Commander and Kollo, 2008).

With the above arguments as a starting point, Lamo et al. (2010) investigate the effect of skill specificity on labour mobility in two European transition economies, Estonia and Poland. These economies went through major reallocation shocks at the same time, but Poland's education system was characterised by a much greater emphasis on vocational secondary education during the communist period. The empirical investigation in Lamo et al. suggests that, in both countries, holding a general degree is associated with better labour market outcomes during the transition period: individuals with vocational degrees suffered from longer unemployment spells. Similarly, older individuals holding such degrees were more likely to leave the labour force through early retirement schemes, indicating that the labour market offered relatively more/better opportunities for general secondary education graduates. Further, Lamo et al. develop a theoretical model to analyse the effect of initial education skill-specificity on labour market adjustments when sectoral demand shifts require the reallocation of workers across firms and industries. According to their model, over-specialisation has led to much higher and persistent unemployment in Poland compared to Estonia. Furthermore, the effect of skillspecificity on unemployment is higher compared to labour market institutions such as wage rigidity and employment protection. The conclusion of this analysis, thus, appears to strongly support the hypothesis that the emphasis on specific skills developed through vocational education represented an obstacle to labour mobility in early transition where labour market flexibility was especially important due to the rapid technical and structural changes in the economy.

A potential problem with the empirical evidence above could be that individuals might self-select into different types of education, in which case the labour market outcomes would reflect their personal characteristics (e.g. innate intelligence or social status) and not necessarily their educational experience. However, considering that in the communist system the structure of incentives was such that students were encouraged to select vocational curricula and employees with vocational education

were overvalued in the labour market, Lamo et al. (2010) argue that self-selection is unlikely to significantly affect the results of these labour market studies. On the contrary, they argue, if there would be any self-selection, it would be that more rather than less-able individuals would choose vocational education. Based on this it is argued that the relatively lower returns to vocational education are due to the specificity of skills this type of education imparts which in turn limits the mobility of workers across occupations.

However, the problem of labour (im)mobility in European transition economies cannot be attributed exclusively to skill-specificity. Other characteristics of their labour markets and education system characteristics as well as cultural factors inherited from the communist system, discussed in the previous section, are also likely to have inhibited mobility of labour during the transition period. The certification received from formal education essentially secured an individual a job in the occupation he/she was qualified for. Then individuals typically stayed in the occupations they were qualified for through this initial education, often without even changing their workplace, and thus they were not accustomed to changing jobs or occupations. Similarly, having worked in the same jobs throughout their careers, moreover in an environment where technical change was slow, workers did not have to, and were not used to, learning new skills after having completed initial education. These factors, along with a high incidence of skill-specificity, have also been argued to have to have slowed down the process of labour market adjustment in European transition economies (e.g. Filer et al., 2001).

Another factor restricting labour mobility has been argued to be lack of training which would provide individuals new skills and prepare them to perform the new jobs being created (in the newly emerging industries). During the previous system lifelong learning virtually did not exist, largely because it was unnecessary since workers did not change jobs and technical change was not frequent. The legacy appears to continue as even the most advanced European transition economies which are now EU members, with the exception of Slovenia, lag far behind the rest of EU in this respect. Rutkowski (2007), for instance, point out that the percentage of adults participating in some form of education and training in the best-performing countries in the EU is 25 percent, which is five times higher than that in the transition economies which have joined the EU in 2004 and 2007.

Finally, there are other characteristics of communist labour markets in addition to the level of skills and occupational mobility which may affect the attractiveness of their workforce to foreign investors. In the communist system employment was considered a guaranteed right and accordingly a zero unemployment rate was sought. Seeking to guarantee the right to have a job, it was common for enterprises which were state-owned to employ more employees than needed (Boeri and Garonna, 1993); indefinite contracts were normally offered, regardless of employee- or firmperformance (Rashid et al., 2005; Munich et al., 2005). The almost complete job security provided by the state meant that workers did not have incentives to provide effort at work in order to keep their jobs. Similarly, there were no performancerelated wage- or other- incentives which would motivate workers to work harder or to further develop their skills after initial schooling. These employment arrangements are exactly the opposite of those expected to increase labour productivity. In addition, the desire to keep wage differentials between individuals low despite differences in their qualification has been argued to be another factor which kept employee productivity low (e.g. Commander and Kollo, 2008). The (lack of) work ethics and culture promoted in this system is unlikely to have changed instantaneously once labour markets were liberalised, especially if workers on average had already spent a large part of their career under the communist system.

Considering the apparent deficiencies of the workforce in transition economies, in terms of both (mix of) skills and cultural factors, it is not surprising to see that firms operating in these economies tend to report skill shortages and increasingly saw inadequate workforce skills as a key obstacle to doing business. The Business Environment and Enterprise Survey (BEEPS, 2005) conducted in the economies covered in this research suggests that filling vacancies for skilled workers is time consuming. Table 1.8 below summarises the number of weeks it took the surveyed firms in BEEPS (2005) to fill a vacancy for skilled worker, averaged across the economy. As in every other indicator analysed in this chapter, the data reveals disparities across European transition economies. The countries with the highest skill shortages, where it took a firm over a month to hire a skilled worker, are Slovakia, Croatia and the three Baltic economies, Latvia, Estonia and Lithuania.

Country	Number of weeks*
Slovakia	6.1
Latvia	5.6
Estonia	5.4
Croatia	4.7
Lithuania	4.4
Slovenia	3.5
Hungary	3.4
Czech R	3.2
Albania	3.0
Serbia and Montenegro	2.8
Macedonia	2.5
Poland	2.4
Bulgaria	2.4
Romania	2.4
Bosnia and Herzegovina	1.9

Table 1.8: Time required to fill a vacancy for a skilled worker, 2005

Source: Own calculations based on BEEPS (2005)

*Averages of the figures reported by firms across the country

However, it should be noted that these figures are not strictly comparable across countries because they may reflect different labour market conditions. These figures are expected to depend on the number of available skilled workers in the economy, especially those that are not currently employed. On the other hand, they also reflect the demand for skilled workers, which, in turn, depends (partly) on the structure of the economy, and particularly on the technological level and the added value in activities/stage of production carried out. Therefore, it may not be surprising that counter-intuitive positive (though low) correlations were found between the length of time it takes to fill a vacancy and the percentage of population who have completed secondary/tertiary education in a country.

Rutkowski et al. (2007, pp. 20-26) summarise further evidence suggesting labour and skill shortages in European transition economies during the previous decade in terms of growing vacancy rates, particularly in construction and manufacturing and increasing dissatisfaction with the level of workforce skills. Rutkowski et al. argue that these difficulties arise largely as a result of skill mismatches, rather than mere labour shortages. They show that in virtually all transition economies that have joined the EU there are high levels of "excess supply" of unskilled workers who cannot fill the emerging vacancies because they do not possess the required skills.

Further, Rutkowski et al. document increases in unit labour costs, i.e. increases in labour costs exceeding the increases in labour productivity in some of these economies, which they argue are a result of pressures on wages caused by skill shortages.

Taken together, the evidence presented in this section challenges the conventional argument that European transition economies should expect to attract FDI primarily through lower of labour costs. This argument seems over-simplistic for two main reasons. Firstly, any advantages that these economies may have with regard to labour costs are expected to wither, especially if the skill shortages they face are not overcome. Secondly, this section and the previous one have shown that most of these economies are not doing enough to overcome the skill shortages/mismatches by providing high-quality initial education and further training. Moreover, whereas skill formation can be affected by public policy or private sector investment, the cultural factors which cause the workforce in these economies to have lower productivity compared to other economies with longer market economy experience are likely to be highly prone to inertia and may take more time to change. Namely, it could be argued that the behavioural traits and/or (lack of) work culture and labour mobility promoted in the communist education systems and labour markets can only be significantly diluted as new cohorts who have been raised/educated after the fall of this system enter the labour market. Therefore, it is argued here that the age structure of the workforce may be another relevant labour-related factor affecting foreign investment in European transition economies.

Table 1.9 below presents data on the share of working age population that has been educated in a post-communist system from age 14 or younger, the share of the labour force aged 30 years or younger in 2008. In this respect, Albania appears to stand out with half of its working age population younger than 30, which is considerable higher than the rest of the sample where it ranges from 28 to 37 percent, with an (unweighted) average of 33 percent.

Country	Working age population aged 16-30 (%)
Albania	51
Estonia	37
Latvia	36
Lithuania	36
Bosnia and	
Herzegovina	35
Macedonia, FYR	35
Poland	34
Romania	34
Slovak Republic	33
Bulgaria	31
Croatia	30
Hungary	29
Czech Republic	28
Slovenia	28

Table 1.9: Working age population educated after the fall of communism (%), 2008

Source: Own calculations based on World Development Indicators (WDI, 2001)

*Figures refer to the share of population aged 0-14 at the outset of transition (year 1992) in the total working age population in 2008

in the total working age population in 2008

In conclusion, this section has argued that in addition to conventional measures of the level of educational attainment of the workforce and labour costs, there are additional dimensions of post-communist economies which can significantly affect the level of (labour) productivity that foreign investors can achieve in these economies and which should be taken into account in empirical investigations of FDI determinants.

1.5 Conclusion

The first part of this chapter has provided arguments in favour of the importance of attracting inwards FDI from the perspective of the host economies, in general, and European transition economies, in particular. First, it was argued that its contribution is likely to extend far beyond the improvement of host countries' external financial positions and capital accumulation. *Primarily due to its association with the transfer of technology and know-how, FDI was argued to potentially affect productivity growth in the host country in many ways, directly and through spillover effects.* For instance, inwards FDI was argued to be able to increase firm productivity and export competitiveness, develop labour force skills, and improve a country's position in the global value chain. Further, *it was argued that in the ex-*

communist European economies, in particular, the potential for the benefits of FDI is even greater due to the specific context of transition with, among others, inherited structural distortions, obsolete human and physical capital, insufficient domestic savings to fund investment and lack of "market behaviour" experience. This chapter has also provided a statistical overview of FDI flows and stocks during the transition period. This appears to suggest that, overall, European transition economies have been relatively successful at attracting FDI over the last two decades. However, the distribution FDI stocks within in this group of countries is far from even, even after accounting for the size of their economies/population.

The second part of this chapter has discussed some key aspects of human capital formation and labour markets in European transition economies which may be relevant in foreign investors' decision-making. An initial statistical overview has shown that these economies had similar levels of primary and secondary education attainment to those of developed economies, but they lagged behind at the level of tertiary education. Compared to developed economies, human capital formation in these economies was argued to be different in terms of the type of skills it developed, e.g. through over-emphasising vocational education, but also in terms of the lower quality of education provided, as measured by international tests of cognitive skills. However, these economies are not homogeneous in terms of human capital endowments: there appear to be significant differences across European transition economies in both the quantity, and the quality, of human capital. The differences in human capital, in turn, are likely to affect the attractiveness of host countries' labour markets to foreign investors. This motivates the key research question of this thesis: "To what extent can the differences between the volumes of inward FDI across European transition economies be explained by the differences in their human capital quantity and quality of human capital?"

Further (specific) characteristics of labour markets in European transition economies were argued to affect their attractiveness to foreign investors. In particular, *it was argued that excessive job security, wage compression and lack of performancerelated incentives kept employee motivation and productivity low during communism, and this (lack of) work culture could be difficult to change quickly. As a result,* indicators of labour costs are likely to be particularly imperfect for conveying information on the relative attractiveness of a country's labour market in the context of transition, whilst other indicators related to *the age structure of the population may become especially relevant*. Finally, it was argued that these context-specific characteristics of European transition economies' labour force should be taken into consideration when investigating the relationship between human capital and FDI in these countries. The potential relationship between these characteristics and foreign investment, as well as their implications for the measuring human capital are discussed further in Chapter 4, after providing a theoretical framework to link human capital to inwards FDI and a meta-regression of studies that empirically investigate this relationship in Chapters 2 and 3, respectively.

Chapter 2

DETERMINANTS OF FDI AND HUMAN CAPITAL: THEORY

Contents

2.1 Introduction
2.2 Theories of foreign direct investment
2.2.1 Early FDI theories
2.2.1.1 The neoclassical approach
2.2.1.2. Theories of market failure
2.2.2 The OLI paradigm
2.2.3 New trade theory
2.2.3.1 Vertical models
2.2.3.2 Horizontal models
2.2.3.3 Knowledge-capital (KK) models
2.2.4 Other approaches
2.2.4.1 Policy competition models
2.2.4.2 Game theory
2.2.4.3 Agglomeration economies
2.3 Human capital and the attraction of FDI
2.3.1 The role of human capital in economic growth theory
2.3.2 Potential endogeneity in the relationship between human capital and inward FDI92
2.4 Conclusion

2.1 Introduction

Having provided in Chapter 1 an introduction to the nature of FDI and its potential benefits for the host country, this chapter aims to provide a critical appraisal of the theoretical literature on FDI and the underlying theory of the FDI-human capital relationship. There is a vast and diverse literature which comprehensively analyses FDI from different perspectives; however, there appear to be very few studies that recognise the different conceptual and theoretical approaches or try to reconcile these with the approach they take. Similarly, there appear to be no inclusive reviews which present, classify, discuss and appraise the merits of different approaches or attempt to bring them together⁵. Whilst it is beyond the scope of this thesis to provide an exhaustive and comprehensive review of all the different approaches, this chapter aims to partly fill this gap in the literature by providing a brief, but concise, critical review of the main arguments and models associated with the major approaches to FDI in economic theory. This review of theory will be used to identify the potential determinants of inwards FDI and thus inform the specification of the models for the empirical analyses of this thesis.

Another major gap in FDI theory is the relatively rare inclusion of the host country's human capital as a relevant factor in the decisions of foreign investors. Even when human capital is present in an FDI study, it is not accompanied by an explicit theoretical framework within which its relationship with FDI is addressed. This chapter aims to fill this gap by explicitly discussing mechanisms through which a host country's human capital can affect inward FDI based on human capital theory and contemporary growth theories. Inferences from this theoretical framework, together with the results of a meta-regression analysis which is presented in the next chapter, will inform the choice of human capital measures for the later empirical analysis. Finally, this chapter will discuss the possibility of reverse causation: the effect that FDI can have on human capital development in the host economy.

The rest of this chapter is organised as follows. Section 2.2 reviews the different approaches to FDI in economic theory and identifies and discusses the instances

⁵ Faeth (2009) represents a partial exception because it classifies and examines a large number of theories, though not all approaches are included (e.g. game theoretic approach and agglomeration economies). Dunning's OLI paradigm and review of literature (Dunning, 1988; Dunning and Lundan, 2008) also represents another partial exception because it brings together a number of different theories, but again not all of the major approaches are included.

where human capital is, implicitly or explicitly, referred to. Early FDI theories, both neo-classical and market failure-based, are discussed in sub-section 2.2.1; the OLI paradigm and new trade theory models are discussed in sub-sections 2.2.2 and 2.2.3, respectively, while other recent approaches such as that of game theory, policy competition and agglomeration economies are discussed in sub-section 2.2.4. Section 2.3 discusses the relationship between a host country's human capital and inward FDI. Sub-section 2.3.1 draws on a comprehensive analysis of the growth-effects of human capital in economic growth theory to provide arguments as to why human capital should be expected to attract inward FDI. The potential reverse causation in this relationship, i.e. the effects of foreign investors on the development of human capital in the host country, is discussed in Section 2.3.2 and the findings of the chapter are summarised in Section 2.4.

2.2 Theories of foreign direct investment

2.2.1 Early FDI theories

2.2.1.1 The neoclassical approach

Prior to the 1960s, capital transfers between countries were explained using the theory of portfolio capital movements, according to which international capital flows are driven by differences in interest rates across countries (Nurkse, 1933; Ohlin, 1933; Iversen, 1935). Similar neoclassical models which share the limitations of portfolio capital movement theory were developed in the 1960's by Heckscher-Ohlin, MacDougall-Kemp and Aliber. The Heckscher-Ohlin (H-O) model of trade theory explains FDI in a comparative advantage framework. At it is simplest form, this general equilibrium model involves two countries, two factors of production (labour and capital) and two goods. The model is based on some key underlying assumptions: perfect competition, absence of transaction costs, homogeneity and differing factor intensities of the two goods and factor endowments of the two countries, leading to differing factor prices. According to this model, under an assumption of factor immobility, countries will specialise in the production of commodities which are intensive in factors they are comparatively well endowed with and export them in return for commodities which are intensive in factors they are comparatively poorly endowed with, hence leading to price equalisation. Thus, under factor immobility, this model predicts that comparatively capital-abundant

countries will export capital-intensive commodities. If, on the other hand, this assumption is replaced by that of capital mobility, then capital will move to capital-scarce countries where returns to capital are higher until the price of capital is equalised across countries. Hence, the H-O model, like portfolio capital movement theory predicts that capital will respond to interest rate differentials. This outcome is, in essence, shared by the MacDougall-Kemp model (MacDougall, 1960; Kemp, 1964) and Aliber's (1970) exchange rate theory, which represent extensions of the neoclassical approach to FDI. The first model introduces the possibility of host countries manipulating returns to capital, and hence cross-border capital movements, by introducing taxes. The second model introduces failures in exchange rate markets which allows firms from countries with strong currencies to raise capital more cheaply than their counterparts from countries with weak currencies, hence enabling them to finance foreign activities more cheaply.

Trying to explain the failure of the neoclassical approach to explain the small FDI flows to labour-abundant developing countries, Lucas (1990) provides another extension of this approach which includes human capital and political risk as further determinants of FDI. In this model, Lucas replaces labour with 'effective labour', i.e., labour adjusted for human capital differences across countries, to show that rate of return differentials across countries almost disappear once these differences are accounted for. Although Lucas does not model FDI flows directly, it represents one of the few examples in theoretical discussions of FDI that points out the importance of human capital and explicitly identifies labour productivity as the mechanism for its influence on FDI. The other determinant of capital flows into developing countries that Lucas introduces, 'political risk', is presented as a form of capital market imperfection which may cause the absence of capital flows predicted by neoclassical theory. If capital flows are viewed as borrowings (FDI), with capital flowing from the developed (capital-abundant) to the developing (capital-scarce) countries in the first period, and then interest payment (repatriated profits) flowing in the reverse direction in the next period, then developing countries can gain by terminating the contract when the repayment period begins. Lucas argues that developed countries will foresee the possibility that developing countries will choose to act in this manner and this will cause them not lend capital (i.e., invest) in the first place.

In summary, the theories discussed above have some common features. They all approach capital flows from a macroeconomic perspective, ignoring the individual firm, and they explain international capital flows in terms of relative factor prices. However, as explained in the previous chapter, FDI differs from portfolio capital flows in two important aspects. When making a foreign investment, multinational enterprises (MNE) are typically expected to retain control of the resources or rights transferred to the subsidiary. Further, unlike mere financial capital flows, FDI typically involves a transfer of a bundle of resources, including technology and managerial know-how. This implies that firms invest in a foreign country expecting to earn an economic rent on this combination of resources, including their organising ability (Hymer, 1976). Moreover, the neoclassical models above are based on strong assumptions which limit their ability to explain FDI in the real world. Assumptions of perfect competition, free and instantaneously transferable technology, constant returns to scale, homogeneity of inputs and absence of transaction costs have been heavily criticised and modified in subsequent theories which are discussed in the rest of this section.

2.2.1.2. Theories of market failure

In contrast to the macro-level neoclassical models discussed above, various theories were developed that put the firm, rather than a country's capital availability, at the centre of the FDI analysis. These theories recognise that markets are not perfect and assert that it is the very existence of market imperfections that induces a firm to engage in multinational production. Hymer (1976) and Kindleberger (1969) argue that in order for firms to engage in FDI, they must possess some kind of advantage specific to their ownership which is sufficient to compensate for the inherent disadvantages they face in competing with domestic firms. Such disadvantages, Faeth (2009) explains, arise due to foreign investors having less information, higher uncertainty and the physical distance from their affiliates and differences in culture, business ethics, the legal system and regulations. Such ownership-specific, non-financial, advantages imply the presence of structural market imperfections such as product differentiation (an imperfection of commodity markets), managerial expertise, new technology or patents (an imperfection of factor markets) or government intervention.

Linking the ownership advantages with factor endowment distribution, Vernon (1966) develops a theory of product cycles which explains FDI as a decision between exporting and investing in foreign production. According to him, the ability of firms to innovate depends on the structure of their country's factor endowments, institutions and markets, giving firms of certain countries advantages relative to others. According to this theory, the innovatory product is initially produced in the home country for both the domestic and foreign markets. However, as the product becomes 'standardised' and consumers' demand becomes more price-elastic, the innovating firms turn to foreign production seeking cost-efficiency by reducing their labour costs.

While the above theories explain what enables a firm to become an MNE, internalisation theory focuses on another key dimension of FDI. Namely, it aims to address the question of why should cross-country value-added activities be organised by hierarchies instead of being left to market forces, i.e., why should a firm own production facilities in a foreign country instead of trading intermediate products through the market. According to Buckley and Casson (1976), there is high risk and uncertainty in intermediate product markets which causes high transaction costs and it is the balance between these and the cost of ownership that determine whether a firm will engage in FDI. The choice ultimately depends on firm-, industry- and country-specific factors. Other reasons for internalising transactions are the appropriability problem that arises as a result of the public good nature of technology (Magee, 1977) and reputation concerns (Hennart 1982, 1991). However, the internalisation approach is limited in its ability to explain the pattern of FDI because it does not take into account locational factors, i.e. why a firm chooses a certain location for its foreign production activities.

In summary, the theories discussed in this sub-section do recognise FDI as a distinct form of capital flows beyond that of mere financial capital. They put the firm at the centre of the analysis and rely on market imperfections that arise in the real world to explain the existence of FDI. Separately, they address different aspects of MNE activity: why some firms become MNEs (the ownership advantages), why they choose to organise cross-country transactions within the firm (internalisation theory) and, to a limited extent, why firms turn to foreign production (product cycle theory). However, individually, they do not provide a complete framework for analysing all FDI or an agreed basis for estimating equations of its determinants. That is what Dunning (1988) with his OLI paradigm aimed at providing a holistic and general explanation which could more fully address the extent and pattern of FDI.

2.2.2 The OLI paradigm

Dunning's (1980) eclectic paradigm of international production 'envelopes' the explanations of different macroeconomic and industrial organisation theories which are complementary and context specific (Dunning, 2000a). As such, it (at least partially) accepts, and builds on, the different theories of FDI discussed in the previous section. For instance, it accepts that traditional trade theory can explain the production of some types of products (where production and trade can be explained solely by the spatial distribution of factors of production), but that this theory fails to address the ownership of governance of their production activities (Dunning and Lundan, 2008). Production of other products requires resources or capabilities with which not all firms are equally endowed, in which case the factor endowments theory with perfect markets is not applicable. In such cases, Dunning and Lundan (2008) argue, in order for firms to engage in FDI, two types of market failure must be present: a structural market failure which enables firms of a foreign country to have, or gain, an advantage over domestic firms in their home market (termed above as the ownership-specific advantage), and the inherent failure of markets to trade intermediate products at a lower transaction cost compared to a hierarchical organisation (as the internalisation theory asserts). According to Dunning's paradigm, the nature of MNE activities can only be explained if all three elements are brought together. The cross-border characteristic of international production is explained by the ownership (O) advantages of a country's firms and the spatial distribution of resources of the home and host countries (locational advantages - L). However, the ownership of these activities is explained only when the internalisation advantage (I) is brought in, i.e. the firms' (own perception of) superiority in governing the combination of O and L assets compared to market forces and/or the ability to exercise monopoly power over the assets by governing them. Hence the OLI paradigm's main hypothesis is that the level and structure of firm's foreign value-added activities depend on the following conditions being satisfied simultaneously: the extent of the presence of an ownership-specific (O) advantage
(1); the extent to which the firm believes it is in its best interest to internalise (I) the use of its O advantages rather that to sell them or their rights of use to other firms (2); the extent to which the firm believes it is in its best interest to utilise its O advantages in foreign locations, the choice of which, in turn, depends on each country's competitive advantage (3). Finally, provided that the above conditions are satisfied, foreign value-added activities depend on the extent to which the firm believes foreign production is consistent with its stakeholders' long-term objectives (4) (Dunning and Lundan, 2008, pp. 99-100).

In the OLI framework (Dunning and Lundan, 2008), the **ownership advantage** may be asset-specific (Oa) – the ownership of intangible assets such as technology, managerial, marketing and entrepreneurial skills – or (formal or informal) institutional assets (Oi) such as the firms' organisational systems, norms and incentive structures. Alternatively, it may refer to transaction-cost minimising (Ot) advantages which lower transaction costs due to the common governance of assetspecific and complementary assets. These may include advantages such as exclusive or more favourable access to inputs or product markets which arise in established firms (as opposed to their *de novo* counterparts), or in terms of the ability of MNEs (as opposed to other firms) to diversify risk and make use of the international distribution of resources. Ownership advantages are affected by the cultural, legal and institutional environment in the firms' home country.

Location-specific advantages within the OLI framework (Dunning and Lundan, 2008) are very diverse and affect both home and host countries. They are related to the spatial distribution of natural and created resources and the cost, quality and productivity of inputs (including labour).⁶ Further, they are related to the size of markets, communication and trade costs related to transportation, and artificial barriers to trade. The legal and regulatory framework, economic system, government policies, and investment incentives and disincentives can also affect the country of both source and destination of FDI, as can the cross-country differences with regard to language, culture, business ethics and politics. Finally, the destination of FDI may

⁶ The quality and productivity of labour appears to implicitly refer also to a high level of human capital. However, it may also refer simply to quality and productivity of labour in economic activities that do not necessarily require highly-skilled labour. Namely, it may refer to lower levels or skill or simply a sort of "physical productive capacity" which is in line with some of the empirical literature on FDI (discussed in Chapter 4) which uses health indicators as measures of human capital.

be affected by agglomeration economies and spillovers, as well as by the infrastructural provisions in the host country (including that of education).

Internalisation advantages in the OLI paradigm arise either as a means of avoiding transaction costs that arise due to market failure or for exploiting market failure. Through internalisation, firms are able to avoid search, negotiation and contract enforcement costs; they are more easily able to control the quality of intermediate and final products and supplies of inputs. Alternatively, they can engage in (anti)competitive activities such as transfer pricing, cross-subsidisation and tax liability minimisation.

In conclusion, the value that the OLI paradigm adds to FDI theories is the argument that it is not the presence of an advantage *per se*, but *combination(s)* with other advantages that determine FDI flows. For instance, it argues that it is not the just the possession of managerial experience or technology, but the also the gains from internalising their use which gives a firm an advantage over its domestic competitors (in the foreign country). Hence, the unique argument of the OLI paradigm is that the value of the combination of the OLI variables as a whole exceeds that of the sum of its parts (Dunning, 2001).

Building on previous work by Behrman (1972), Dunning and Lundan (2008) distinguish between four types of FDI according to the investors' motives: market seeking, efficiency seeking, natural resource seeking, and strategic asset or capability seeking. ⁷ Market-seeking FDI refers to investments that are made for the purpose of supplying the market of the destination country or those of countries adjacent to it. Efficiency-seeking FDI refers to rationalisation of FDI in a way that allows firms to benefit from geographically dispersed activities due to factor-endowment differences or economies of scale and scope. Interestingly, Dunning and Lundan includes the availability and, by implication, cost of highly-motivated unskilled and semi-skilled labour in their third category of 'natural resource-seeking'. Like most FDI literature, they make no reference here to the importance of labour skills or productivity related

⁷ Even though Dunning and Lundan (2008) term this category as *natural resource* seeking originally this is not restricted to natural (or 'physical') resources and therefore it is referred to in this discussion as resource seeking.

to skills⁸, implicitly assuming these to be irrelevant and restricting the focus only to labour costs. Labour skills are only identified in the next category, strategic assetseeking FDI. This type of FDI refers to investment that is undertaken for the purpose of protecting or advancing the firm's long-term competitiveness, e.g. through mergers to gain strength over competitors or acquiring its suppliers. The motivation for this type of FDI, according to Dunning and Lundan (2008, p. 69) is "...to acquire technological capability, management or marketing expertise and organisational skills" (Dunning and Lundan, 2008, p.69). This is the only instance where skilled labour appears as a determinant of FDI in Dunning's paradigm; however, this argument is too limited because it appears to apply exclusively to inwards FDI in technologically-advanced, countries and exclusively to the facilitation of innovation. However, in this thesis it is argued that, theoretically, human capital is also likely to be a relevant factor in foreign investors' decisions through other mechanisms and this should apply across countries, types of FDI and sectors of economic activity (even though the level of relevance may vary).

2.2.3 New trade theory

New trade theory provides an alternative framework for analysing FDI, integrating OLI's firm-based approach into general equilibrium models. This industrial organisation approach to trade theory introduces features of product differentiation, imperfect competition and economies of scale. Within the new trade theory, two strands of models have been developed: models of vertical firms, which combine the OLI approach with the factor endowments theory, and models of horizontal firms, which combine this approach with proximity and concentration advantages. These two strands of previously mutually exclusive models have been recently integrated into the knowledge-capital (KK) model. The following sub-sections discuss the vertical, horizontal and KK model, respectively.

2.2.3.1 Vertical models

Helpman (1984) attempts to explain international trade using a general equilibrium model where firms' decisions to become multinational play a central role. Helpman's model integrates features such as economies of scale, product differentiation and monopolistic competition into traditional factor endowment theory to examine the

⁸ Note that the characterisation of labour force as 'highly-motivated' implicitly relates to its productivity, but not to its level of skills.

location choices of MNEs' production. Firms are assumed to have an ownership advantage in terms of management, marketing and/or R&D, a firm-specific input which Helpman terms as 'general purpose input' (H), the use of which is assumed to be internalised by the firm. Differentiated products are produced using labour and the H factor, both of which are immobile across countries, but the latter is assumed to be able to serve production activities without being located in the production plant. The optimal factor-proportions (and prices) differ between countries and, provided that the differences are so high that prices cannot be equalised by trade of goods, firms producing differentiated products will wish to geographically fragment their production. The country with relatively higher endowments of H will be the firms' choice for the parent country, hosting headquarters and their activities, while the other one will host the production plant. The presence of economies of scale in production, an assumption of this model, induces firms to have a single production plant. In addition, trade costs and tariffs are assumed to be zero in this model, leaving no further motivation to have plants in other countries, therefore excluding the possibility of horizontal MNEs which are discussed in the next sub-section. This type of model implies that skilled-labour intensive headquarter activities will be carried out in the parent country, while production activities will be located in unskilled-labour intensive countries. However, as Zhang and Markusen (1999) point out, this prediction does not match FDI patterns in practice as the most (unskilled) labour abundant countries receive very little FDI. Like Lucas (1990), Zhang and Markusen turn to the (un)skilled workforce to explain the failure of theory to predict FDI flows. They posit that, notwithstanding that unskilled-labour intensive activities are undertaken abroad, foreign investors still have direct requirements for skilled workers in the host country in terms of engineers, technicians and managers, as well as indirect requirements in terms of infrastructure and legal institutions. Focusing on the direct requirements, Zhang and Markusen's model predicts that as the differences in skilled-labour endowments between the parent and host country increase, i.e. the latter become sufficiently skilled-labour scarce, inward FDI will fall to zero. While this model, unlike the majority of FDI theories, does point out the requirements of foreign investors for human capital explicitly, it does not go further to address the rationale as to why human capital is relevant; it appears implicitly. It appears that Zhang and Markusen are referring to human capital's productivity-enhancing effects

and possibly to adoption and/or adaption of technology (discussed in the next section), since they point out the importance of engineers in particular.

2.2.3.2 Horizontal models

The horizontal models strand is relatively more developed, perhaps because this type of FDI, which seeks to supply foreign markets, is more prevalent in practice (Markusen, 1995, 2002). Unlike the vertical models of FDI discussed above, horizontal models are typically based on one of the following assumptions: the use of only one factor of production, symmetric factor endowments across countries, therefore excluding the motivation for splitting different stages of production activity. On the other hand, they recognise the existence of trade costs and tariffs, hence the motivation for foreign production as a means of avoiding these costs or gaining access to markets which can only be served locally. Similar to vertical models, Markusen's (1984) horizontal model incorporates knowledge-based ownership advantages due to R&D, marketing, scientific and technical workers, product differentiation and product newness and complexity. These knowledgebased assets have two features which facilitate FDI: they can be transferred more easily between production plants and they often are of a joint-input nature because they can be used in multiple production plants without diminishing in value. The joint-input nature of knowledge capital gives rise to firm-level economies of scale because, like a public good, it can be supplied to additional plants at a very low cost. Under these circumstances, MNEs arise because they are more cost-efficient, i.e. a multi-plant firm, compared to individual single-plant firms, has to make only one investment in knowledge capital.

Extensions of Markusen (1984) include Horstmann and Markusen (1987) and Markusen and Venables (1998, 2000). Horstmann and Markusen (1987) further develop a model where, as in the original one, there are assumed to be trade costs and tariffs and firm-level economies of scale (due to knowledge capital) which provide motivation to have multiple production plants. On the other hand, there are also assumed to be plant-level economies of scale which provide motivation for producing only domestically and exporting goods to foreign markets. The existence of MNEs then depends on the trade-off between the advantages of directly accessing foreign markets and those of scale economies in production, hence the term proximity-concentration hypothesis. The model predicts that, in equilibrium, MNEs will arise in industries where transportation costs, tariffs and firm-specific fixed costs representing knowledge capital are high relative to plant-level fixed costs. Markusen and Venables (1998, 2000) extend the general equilibrium models to explicitly consider the lack of symmetry in country size and factor endowments. Their models predict that that the importance of MNEs relative to trade increases as countries become more similar in size and relative factor endowments.

2.2.3.3 Knowledge-capital (KK) models

Integrating the horizontal and vertical models above, Markusen et al. (1997) develop the knowledge-capital (KK) model which simultaneously incorporates features of both models, therefore permitting both types of MNEs to arise endogenously. In particular, the assumptions of trade costs and differences in factor intensities are combined, providing motivation for both horizontal and vertical FDI. The KK model, like the vertical model, assumes that knowledge-based activities can contribute to production activities without being at the same location. Like the horizontal model, it assumes that these activities can be applied simultaneously in multiple production plants (at low marginal cost). In the KK model with two countries, two factors (skilled and unskilled labour) and two goods (one homogeneous with constant returns to scale and one with firm- and plant-level economies of scale), predictions about MNE activity vary with parameter values. Horizontal MNEs dominate when transportation costs are high and the host and destination countries are similar in size and relative endowments. Intuitively, if market size differs, the bigger market is favoured and, if factor endowments differ, vertical fragmentation is favoured unless transportation costs are high.

2.2.4 Other approaches

2.2.4.1 Policy competition models

This approach to FDI addresses the incentives that governments provide to attract FDI. The location choice of MNEs in these models depends on various factors that can be affected by government policy such as wages, taxes, subsidies and labour market flexibility. These models suggest that firms choose a location based on a combination of wages and level of taxes (Black and Hoyt, 1989; Haaparanta, 1996). However, Haufler and Wooton's (1999) model predicts that fiscal incentives are typically relatively less important than market size and therefore small countries find it hard to attract FDI even with lower taxes. According to Haaland and Wooton

(1999), firms gain from agglomeration effects and hence government subsidies should have the role of attracting the first investor which is needed in order to create a modern sector, i.e. to introduce a new, more technologically advanced, sector in the domestic economy. In Haaland and Wooton (2001a) there is a trade-off between initial subsidies and labour market flexibility, but, according to their model, only the latter has long-term effects on inward FDI. Another variable which is predicted to be relevant in this approach is the unemployment level; locations with flexible labour markets and high unemployment (and therefore low opportunity cost of employment) attract FDI (Haaland and Wooton, 2001b). It appears that the term 'labour' in this model refers to unskilled labour because high unemployment in a country does not necessarily lower the price of skilled labour; the latter is more likely to depend on the unemployment rate of skilled labour, a distinction which this model, like most FDI literature, does not consider.

2.2.4.2 Game theory

The game theoretic approach (Jacquemin, 1989; Veugelers, 1995; Graham, 1998) explains the decision to engage, or not, in FDI as a firm's (perceived) optimal move based on the action, or likely response, of other 'players'. Like Hymer (1976) and other market-failure theories, this approach argues that MNEs arise in markets with concentrated power. In such markets, the actions of one firm affect the market price and the actions of other firms. Graham (1998) develops a model which addresses FDI decisions in a world with two countries and two firms, each of them a monopolist in their home market, to show that the presence of a cost-advantage (or O-advantage in Dunning's paradigm) is neither a necessary nor a sufficient condition to explain FDI. When each of these firms enters the other's market, it causes the incumbent firm to lose a share of its monopoly profits. In this setting, a firm may enter the foreign market even though it may not have the cost-advantage: this becomes the best response to the entrance of the foreign firm in its own market, causing a reduction of its monopoly profits. The foreign firm, on the other hand, takes this likely response into account when making the decision to enter the market initially, and may decide not to enter the foreign market despite its cost-advantage, weighting the profits gained in that market against the profits lost in their domestic market due to the other firms 'punishment'. This approach, however, appears to deal with horizontal FDI which aims to supply the foreign market, and it is not clear to

what extent it applies to vertical FDI which does not necessarily involve entrance into a market as a seller.

2.2.4.3 Agglomeration economies

Based on the 'new economic geography' approach (Krugman, 1991) FDI is argued to be prone to 'agglomeration forces', as a result of which FDI in a host country can increase even without any changes in other locational determinants. This selfreinforcing effect can arise if foreign investors cluster in specific locations because they benefit from positive externalities arising from the presence of previous foreign investors, e.g. due to the possibility of technological and knowledge spillover, the presence of a specialised workforce, or linkages to suppliers/customers of specialised intermediate products. Evidence consistent with the presence of agglomeration effects as a locational determinant of FDI has been found, among others, by: Cheng and Kwan (2000), Blattner (2006), Bobonis and Shatz (2006) and Riedl (2010).

In conclusion, the review of FDI theory in this section suggests that human capital is largely ignored in FDI analyses. The theories that do consider human capital do not directly model the relationship between human capital and FDI or explicitly address its theoretical foundation(s) which implicitly mostly appears to stem from the effect of human capital on productivity and/or its ability to affect the incidence and speed of the adoption of new technology. Further, this literature does not elaborate the relevant skills that foreign investors seek in terms of the level and type of human capital and, by implication, the relevant measures of human capital in relation to FDI. As will be seen in Chapter 3, a similar gap in literature is also manifested in the empirical studies which address the role of human capital as a determinant of FDI; in most of the empirical literature the choice of the human capital measure is not even discussed and often appears to be a result of data availability rather than a specific theoretical rationale. This thesis aims to fill these gaps in the current literature by explicitly considering the theoretical rationale for human capital as a determinant of FDI and, based on this and recent developments in growth theory, to derive a model with appropriate measures for empirically testing this relationship in the subsequent chapters.

2.3 Human capital and the attraction of FDI

Although generally insufficiently recognised and inappropriately addressed in FDI theory, human capital has gained a central focus in economic growth literature in the last two decades (Temple, 2001; Sianesi and Van Reenen, 2003; Goldin and Katz, 2008; Jones and Romer, 2010; Breton, 2012; Hanushek and Woessmann, 2011a). The relationship between human capital and economic growth, discussed in the first sub-section below, can inform the analysis of human capital in relation to FDI. However, in the previous chapter it was argued that causation in the human capital-inward FDI relationship can also work in the opposite direction: foreign enterprises can develop the skills of the workforce in the host country. Such feedback effects from FDI to human capital pose a potential problem in the empirical estimations to be undertaken in the subsequent chapters because they may cause the key regressor(s), i.e., human capital variable(s), to be endogenously determined. The second sub-section below explores the possibility of reverse causation by assessing the theoretical arguments and, where available, empirical evidence, linking FDI to human capital development in the host economy.

2.3.1 The role of human capital in economic growth theory

From a theoretical viewpoint, the rationale for human capital being a factor that determines the location of firms' value-added activities can be derived from human capital theory and theories of economic growth. In the former (neoclassical) theory (Schultz, 1961; Becker 1964; Mincer, 1974) human capital is considered a means of production; investment in human capital through schooling, training or work experience enhances the skill level of individuals and hence their productive capacity. Their productive capacity in turn determines their wage level, i.e. returns to schooling. Hence, according to this view, human capital obtained through education translates into productivity and productivity translates into the wage level; in the simplest neoclassical labour market, the observed wages perfectly reflect productivity.

The human capital theory approach was incorporated in theories of growth after the 1980s (e.g. Lucas, 1988; Mankiw et al, 1992). Mankiw et al. (1992), for instance, incorporate human capital into the standard neoclassical growth model developed by

Solow (1956).⁹ Instead of assuming a homogeneous labour input, Mankiw et al. distinguish between uneducated and educated labour, the latter being proxied by the share of labour force that has completed secondary education. In line with human capital theory, an increase in educational attainment (assumed to be highly correlated with human capital investment) enhances the productivity of the workforce and hence the level of output produced in the economy. In this augmented Solow model, the accumulation of human capital is one of the determinants of the steady-state growth paths of economies. However, despite the impact of human capital on the steady-state level of output, i.e. the height of the steady-state path, its impact on growth rates is only transitional. Once the growth of human capital ceases (i.e. the increase in the proportion of the population with secondary education in Mankiw et al., 1992 ceases, which is inevitable), its effect on the growth rate of output will cease. Steady-state growth rates in this model, as in the traditional neoclassical ones, are determined by the rate of technological advancement which may take the form of new products, markets and processes. However, despite the crucial role of technological change recognised by neoclassical models, this component is not modelled but rather assumed to be growing constantly at an exogenous rate. New growth theories discussed next go further and attempt to endogenise growth, either by modelling the economic forces underlying technological change, as in Romer (1990), or by allowing long-run growth to be determined by human capital accumulation, as in Lucas (1988).

Lucas's (1988) contribution in endogenous growth theory, like the human capital augmented Solow model above, treats human capital as one of the inputs in the process of production. However unlike Mankiw et al. (1992) who define human capital simply as the proportion of population who have attained a certain level of education, in Lucas' model (part of) human capital is not necessarily tied to individuals. Human capital in this model is acquired by schooling as well as by experience (i.e. 'learning-by-doing') and it does not display diminishing returns to scale, which allows it to become an 'engine of growth'. This feature of the model is obtained by the presence of "inheritance of human capital within families of goods as

⁹ In a simple neoclassical growth accounting framework, output is a function of factor inputs: capital and labour which is assumed to be homogeneous (hence human capital is not a relevant factor). The part of growth that cannot be explained by factor accumulation, referred to in the literature as the 'Solow residual', represents the total factor productivity in the economy which in the neoclassical growth theory is assumed to grow exogenously at a constant rate.

well as within families of people" (p. 28). The first is obtained when the skills previously acquired for producing goods is, at least to some extent, useful in learning to produce new ones which are continuously being introduced (even though diminishing returns to acquiring skills for existing goods apply); the second is achieved by applying the technology of acquiring human capital to families rather than individuals, allowing for the initial human capital of new family member to be dependent on that attained by older members of the family, i.e. by allowing for a inter-generational transfer of human capital. An implication of Lucas's model is that human capital accumulation, and thus growth of output, can continue even after that of educational attainment of the current population in the economy ceases. In this model (implicitly at least) the mechanism through which education affects growth is by increasing the productivity of the workforce and it is the change in, rather than. or in addition to, the stock of, human capital that affects growth.

Also with Solow's model as a starting point, Romer (1990) develops an alternative approach to endogenising growth by addressing the economic factors underlying technological progress. In Romer's model technological change arises largely as a result of an intentional search for new 'ideas' on the part of profit-maximising firms or inventors. 'Ideas' refer to the advancement of the technology of production, allowing "...a given bundle of inputs to produce more or better output" (Jones, 1998, p.72); they range from the instructions for designing an engine and the formula for creating a drug to new approaches to retailing (e.g. e-commerce) or human resource management (e.g. paying an efficiency wage). The difference between 'ideas' and 'objects' is central to Romer's model and to the mechanism through which human capital affects growth. Ideas are inherently different from other economic goods because they are non-rivalrous but in this setting they must be only partly excludable, i.e. their use by one firm or person does not preclude or in any way limit their use by others, though the inventor/firm can prevent their use by other firms for the purpose of production.¹⁰ Ideas are intertwined with human capital because they

¹⁰ Because of their non-rivalrous nature, ideas need to be produced only once and thus their producers incur only a fixed cost and no (or trivial) marginal cost. In this case, marginal cost pricing which is a feature of perfect markets would result in negative profits. Hence, ideas must be at least to some extent excludable in order for market incentive to exist for inventors/ inventing firms to develop ideas and for technologic to progress in this model. Partial excludability in Romer (1990) is defined as the inventor/inventing firm having a property right over its use in production but not in future research for the purpose of designing new ideas. In this way, the creators of new ideas can benefit from the stock of the existing ideas in the economy.

are largely developed as a result of research and development (R&D) activities which are human capital intensive in nature. The difference between human capital and ideas is that the former is inherently tied to a physical individual (i.e. 'an object') which makes it rivalrous, while the latter is not¹¹, and thus can be used by anyone with knowledge of it once it has been created. The non-rivalrous nature of ideas in Romer's model has the implication that they can be accumulated infinitely, regardless of the individuals who invented them. The non-excludability of ideas, on the other hand, has the implication that the stock of ideas is an input in the production of new ideas and in Romer's model it increases the productivity of human capital in their production. These two features allow ideas, and thus human capital, to have a lasting effect on growth rates in the long-run. In this model, like in Lucas's, human capital has a central role in explaining long-term growth rates but the (main) mechanism of its influence is less direct. The crucial role of human capital in this model stems from its intensive use in the creation of knowledge (ideas) which is added to its traditionally recognised role as an enhancer of productivity in the production of the final output. The new mechanism through which growth is affected by human capital also implies that, unlike Lucas's and Mankiw et al.'s models above, Romer's model relates a country's long-term growth rate to the stock of human capital rather than *changes* in the stock.

Though the idea of human capital having a central role in the process of economic growth became influential only in the late 1980s, its distinctive nature beyond a simple factor of production was recognised much earlier by Nelson and Phelps (1966). Their approach to human capital is in some respects very similar, and can be considered as complementary, to that of Romer (1990). Both models link human capital, technology and economic growth: Romer focuses on innovations, while Nelson and Phelps focus on the diffusion of frontier technology, both recognising the respective processes to be conditional on the level of human capital and having a crucial role on economic growth. Nelson and Phelps argue that the main role of the human capital¹² is not to provide individuals with the ability to perform current tasks

¹¹ In reality ideas are usually tied to physical objects (e.g. a formula is tied to a piece of paper and software is tied to a CD-Rom), but the cost of replicating them is negligible compared to the cost of producing the original so it is reasonable to assume these costs away.

¹² In their original paper, Nelson and Phelps use the term education which is implicitly assumed to be synonymous with human capital. In this research, however, it is recognised that equating educational

more effectively, but to enable them to adapt to change, i.e. to perform, or learn to perform, different tasks. According to them, because education enhances individuals' ability to receive, understand and process information, it prepares workers to adapt to the new technology more quickly, but it also enables managers to better follow, understand, assess and discriminate between new technologies, thus reducing the risk (and increasing likelihood) of introducing new technology earlier rather than waiting to inform their decision on the experience of other firms. For these two reasons, the quantity and quality of human capital is argued to determine the gap between frontier technology and actual technology used in practice at the economy level. Technology, thus, is not transferred instantaneously in this model and it is actual technology, made of both new and old technologies, that determines total factor productivity and thus economic growth. The Nelson-Phelps approach has been subsequently extended to incorporate "domestic" innovation (Benhabib and Spiegel, 2005; Vandenbussche et al., 2006), a threshold level of human capital as a condition for technological catch-up (Benhabib and Spiegel, 2005) and concern with the composition of human capital in terms of skill level and type of education (Vandenbussche et al., 2006 and Krueger and Kumar, 2004, respectively). This approach has also been embedded into a general equilibrium model (Cosar, 2011) in which skilled workers enhance productivity at firm level by adopting new techniques from a growing stock of world knowledge. In the Nelson-Phelps approach, like in Romer (1990), it is the levels of human capital rather than changes in it that are important. Hence, to some extent the approaches of Romer and Nelson and Phelps to human capital can be thought of as variations of the same idea in essence, complementing each other in explaining innovation and technology diffusion within the setting of developed economies, and the diffusion of technology from these to developing economies. Another feature which these two models and that of Lucas share is the presence of externalities which give rise to increasing returns to scale with respect to human capital either because skills are (partly) transferrable to the production of new goods and to the next generation (as in Lucas, 1988), or because innovators and imitators benefit from the existing stock of knowledge (as in Romer, 1990 and Nelson and Phelps, 1966, respectively).

attainment to human capital attainment is an over-simplification of the relationship between the two, an issue which is to be discussed in Chapter 4.

The consensus which persists in economic growth theory regarding the positive role of human capital in the growth process appears to be largely, though not universally¹³, shared by the empirical literature. Despite the difficulties of measuring human capital which are discussed in detail in Chapter 4, the relationship between human capital (typically proxied by quantity of educational attainment) and economic growth has been supported by various empirical analysis, including Barro (1991, 1997), Mankiw et al. (1992), Sala-i-Martin et al. (2004) and Hanushek and Woessmann (2008). As far as the specific approaches discussed above are concerned, attempts have been made to empirically discriminate between the effects of human capital stocks and its accumulation on growth but, as Hanushek and Woessman (2008, p.632) conclude in their review, "it is beyond the scope of current data to draw strong conclusions about the relative importance of different mechanisms". Both hypotheses have received empirical support by various studies. Benhabib and Spiegel (1994, 2005), Hojo (2003), Di Liberto et al. (2011) find support for the effect of stocks of human capital, while Mankiw et al. (1992), Temple and Woessmann (2006), de la Fuente and Domènech (2006), Cohen and Soto (2007) find support for the effect of human capital accumulation on economic growth. However, here it should be noted that, theoretically, there is no reason for these models to be considered as mutually exclusive, which would explain the lack of conclusiveness in their empirical results. Empirically, evidence consistent with the coexistence of both these mechanisms is found by Ciccone and Papaioannou (2005), Sunde and Vischer (2011) and, indirectly, by Hanushek and Woessmann (2009a, 2011a). In accordance with this line of thought, the endogenous growth model of Vandenbussche et al. (2006) which is discussed later in this section recognises the importance of human capital as a determinant of both productivity enhancement and innovation/technology adoption.

Consistent with the original idea of Nelson and Phelps (1966) regarding the importance of human capital to the adoption of new technologies is the skill-biased

¹³ The relationship between human capital and growth is not considered as proven by some studies. For instance, Bils and Klenow (2000) argue that the relationship between education and growth could be caused by reverse causation or by omitted factors that are related to both human capital and growth, while Pritchett (2006) argues that cross-country differences that are found in the growth effects of human capital may be due to differences in the institutional environment which induce different types of activities, some of which are productive and some counterproductive from a social perspective.

technical change (SBTC) hypothesis (Machin, 2004). The starting point of this hypothesis is the empirical observation of improvement in employment outcomes for tertiary education graduates since the 1980s in developed economies, despite their increasing numbers. The rising relative wages and employment of skilled workers that have accompanied the continuous increase in their supply appear to be contrary to predictions of a simple supply-demand model. These simultaneous changes in the composition of human capital and labour market outcomes may be explained by a model in which these outcomes are determined by a 'race' between the demand and supply of skilled and unskilled labour (Manning and Manacorda, 1998), in which the relative demand for skilled workers increases more than their relative supply. According to the skill-biased technical change hypothesis, the persistent shift in the demand for skilled workers can be attributed to the new productivity-enhancing technologies that are being introduced into workplaces, which can be operated only by individuals who have the necessary skills (which are implicitly assumed to stem from their education).

Consistent with the skill-complementary nature of technology maintained by this hypothesis, Caselli and Coleman (2006) maintain that countries may choose the technology which is best suited to their relative factor endowments; thus, unskilledlabour abundant countries may choose technologies to take advantage of this factor. Similarly, Acemoglu and Zilibotti (2001) develop a model where, due to the deficiencies in skilled labour, technologically less-advanced countries may choose local technologies rather than the more advanced skill-complementary ones developed in the advanced countries, even when the latter are available. When these arguments are applied to FDI, it follows that host country skills affect not only foreign investors' decisions to invest in a country, but also the level and type of technology that is transferred. Similar arguments have been made previously by de Mello (1997, p. 30) who argues that foreign investors may select technologies to transfer to the recipient countries depending on their specific productive and institutional characteristics. The importance of human capital in determining the choice of technology has also been confirmed by case studies presented in UNCTAD (1999) and Ritchie (2002). Another relevant implication of the skill-biased technical change hypothesis is the increasing importance of skills over time to firms, which has found support in literature (Murnane et al., 1995; Katz and Autor, 1999; Goldin

and Katz, 1998, 2008) and may also apply to the influence of human capital on FDI. Accordingly, Miyamoto (2003) argues that global shifts in labour demand towards more highly skilled labour due to the skilled-biased technical change explain, at least partially, the increasing importance of human capital as a FDI determinant indicated by some empirical studies discussed in Chapter 3 of this thesis (e.g. Noorbakhsh et al., 2001).

A final implication of this approach is the importance of the composition of human capital, and tertiary education graduates in particular, for technology adoption which, as previously discussed, is maintained to be directly linked with economic growth. In this respect, the skill-biased technological change hypothesis is consistent with the arguments of (mostly) recent growth models, discussed next, which emphasise the importance of the composition of human capital in terms of levels of education, types of skills and mix of occupations.

Vandenbussche et al. (2006) develop an endogenous growth model in which technological progress depends on both innovation and imitation. Under the (reasonable) assumption that innovation is a relatively more skill-intensive activity compared to technology adoption, this model predicts that returns to high-skilled human capital rise as economies approach the technological frontier and rely more on innovation. In this model, (the share of) high-skilled human capital contributes to total factor productivity growth (TFP) through innovation in advanced countries. In countries farther away from the technological frontier, however, it is (the share of) low-skilled human capital that mainly contributes to TFP growth through the adoption of technologies developed in the advanced countries¹⁴. The different growth-enhancing effects of different levels of human capital predicted by this model have been empirically supported by Vandenbussche et al. (2006) and Di Liberto et al. (2011) who use tertiary and lower level educational attainment as proxies for high and low skill levels, respectively, and by Soukiazis and Cravo (2008) who use patent ratios and average years of schooling as such proxies. However, Hanushek and Woessmann (2009a, 2011b), investigating the growth-enhancement effects of the

¹⁴ This model is, to some extent, consistent with the argument of Aghion and Howitt (1998) who posit that secondary and tertiary education attainment best reflects the number of potential researchers/developers in the economy and should be expected to be associated with an increase in innovation.

quality of schooling on growth (as measured by international test scores) find evidence that is inconsistent with this view. The effect of the share of students who have achieved basic literacy on economic growth does not vary with the level of development, but the effect of the share of top performers is significantly larger in countries with initial lower levels of output. Hanushek and Woessmann (2009a) argue that basic literacy captures the effect of human capital as predicted by neoclassical theory, while top performance in these tests captures the effect of human capital as predicted by the Nelson-Phelps approach. The findings of Hanushek and Woessmann imply that, contrary to one of the predictions of Vandenbussche et al. (2006), it is high-skilled human capital that is required for technology adoption in less developed economies and accelerates convergence with the advanced economies.

Another view on the composition of human capital and growth points out the relevance of the specific type of skills, both in terms of general vs. specific skills and the mix of occupational skills. Krueger and Kumar (2004), for instance, posit that general skills provided by general education are more suitable for operating new technologies, while specific skills provided by vocational education are more suitable for operating old technologies. They develop a model with endogenous technology adoption by firms which shows that when the rate of technological progress increases, countries with initially similar growth rates can diverge. Countries with conceptual-based education experience higher growth rates compared to those that focus of skill-specific education. Similarly, Goldin and Katz (2008) argue that the focus of the American education system on general skills based on formal education (as opposed to specific on-the-job training) may be a key dimension in explaining the 'exceptionalism' of this education system which they see as a driver of the country's economic success in the twentieth century.

Cosar (2011) points out that it is not appropriate to aggregate human capital when analysing technology adoption. Because not all graduates are equally suitable for this activity, he posits that the share of tertiary graduates in sciences and engineering in the workforce is a more appropriate measure when measuring the capacity for technology adoption in a country. In this line of thought, but focusing on technological improvement instead of adoption, Murphy et al. (1991) argue that the

allocation of talent across occupations can influence economic growth. Here it is argued that when able (or 'talented') individuals engage in productive activities, they improve the technology and create positive spillovers as others learn from them, increasing productivity and ultimately output. However, when the able engage in rent-seeking activities¹⁵ which merely redistribute wealth, they improve and expand these activities. As a result, the returns to productive activities decreases, further discouraging talent from entering the latter and ultimately depressing growth. To test these hypotheses, Murphy et al. investigate the growth effects of the share of college enrolments in engineering and law as proxies for productive and rent-seeking activities, respectively, and find evidence consistent with their theory: the share of engineering in total enrolments has a positive effect on growth while that of law enrolments has a negative effect. Finally, recent economic growth research emphasises the quality, rather than just the quantity, of education as a determinant of economic growth. Schoellman (2009), Soto (2010) and Hanushek and Woessmann (2009a,b; 2011) find evidence of a positive relationship between the quality of education and economic growth. Consistent with this, Lavy (2010) finds that the effect of instructional time on the level of cognitive skills (as measured by PISA scores) in much larger in developed economies than in developing economies.

In contrast to the theories discussed above, Acemoglu and Autor (2012) propose a novel approach to explaining 'what human capital does' and how it affects a country's economic growth. In a critique and extension of Goldin and Katz's skillbiased technical change hypothesis, Acemoglu and Autor (2012) argue that the orthodox human capital view underlying this hypothesis, i.e. that human capital increases productivity by augmenting effective units of labour, is an over-simplification. Instead, they propose a task-based approach where it is not the skills of the workers *per se* that produces the higher output, but the application of these to the tasks needed in production. Accordingly, the effect of human capital varies depending on the complexity of tasks that are undertaken. Acemoglu and Autor test the complementarity of skill complexity and human capital using a state-level panel model for the USA in which economic growth is explained by the changes in human capital, as well as the initial level of task complexity (as measured by the share of

¹⁵ Rent-seeking activities, according to Murphy et al. refer to employment in government bureaucracy, army, organised religion and law and financial services.

employees in professional, managerial and technical occupations), and the interaction term between the two. The most notable finding of this investigation is that the effect of the level of human capital, as measured by average years of education, is conditional on the level of complexity of the tasks on use. Perhaps most relevant for this thesis is the finding that the gains from higher levels of schooling, as measured by the growth of average years *tertiary* education attained by the population, are higher in states with a higher level of initial task complexity. The growth of average years of *lower-than-tertiary* education attained, on the other hand, is a positive and significant predictor of economic growth, but its effect is not conditional on the complexity of tasks performed.

A conclusion that follows from the discussion in this section is that there is a strong theoretical framework linking human capital to economic growth through three potential mechanisms, namely: enhancement of workforce productivity, facilitation of innovative activities, and adoption of new technologies in the production process. Returning to the initial focus of this thesis which motivated this discussion, the relationship between human capital and FDI, it is argued here that all these three mechanisms are potentially relevant to foreign investors. The first mechanism, labour productivity, may appear more obvious and has been relatively more recognised by the FDI literature (though more often implicitly than explicitly, as argued in Section 2.2). As discussed in Section 2.2, Hanushek and Woessmann (2009a) find that the share of students achieving basic literacy, which they argue to represent the 'labour productivity' effect, is a significant determinant of growth regardless of a country's level of development. Similarly, Acemoglu and Autor (2012) find that levels of lower-than-secondary educational attainment have a positive effect on growth regardless of the level of skill complexity. Based on these findings of growth studies, it can be argued here that the 'productivity effect' is likely to be important for inwards FDI regardless of the destination country. The second mechanism, facilitation of innovations, is referred to by Dunning and Lundan (2008) in a particular type of resource-seeking FDI which relates to highly skilledlabour in technologically advanced countries, but appears largely irrelevant elsewhere. Indeed, since foreign value-added activities in transition economies are likely to involve later stages in the product life cycle and not be geared towards product innovation, this mechanism becomes relevant only once the idea of formal

R&D activities is replaced with a more inclusive one, e.g. when considering innovations of an organisational and/or marketing nature (Jones, 1998), or process innovations on the factory floor or the introduction of new inputs to production (Cosar, 2011).¹⁶ The third mechanism through which human capital can affect inward FDI is through facilitating adoption of technology developed by the parent firm in the production process of a subsidiary. This mechanism can be argued to be the most important one from the perspective of the host economy because it may affect not only the volume of FDI, but also the level of technology employed by foreign investors (UNCTAD, 1999; Ritchie, 2002).

2.3.2 Potential endogeneity in the relationship between human capital and inward FDI

In Section 1.2 it was argued that one of the potential benefits that it conventionally associated with inward FDI is the development of the workforce skills. The rest of this section provides a critical review of the theoretical arguments and empirical evidence on this issue, seeking to establish whether there is likely to be an endogeneity problem in the empirical analyses of the relationship between human capital and inward FDI which will be presented in the next chapters.

FDI has been argued to develop the skills of the workforce in numerous ways. In the short-term, foreign affiliates tend to provide training for their employees. The evidence available, although scarce, suggests that MNEs perform significant training, and they are more likely to provide training than their domestic counterparts (Ritchie, 2002). The effects on workforce skills can extend beyond the firm's domain, as explained in the previous section, if the MNE trains their suppliers or buyers, or if the staff of the MNE leave the firm and start another business or work for another firm. However, the scope for workforce development by the MNE has been argued to be overestimated considering the share and profile and of workers that are trained and the type and level of skills that they receive in training. Reviewing evidence of MNE training activities in South-East Asia, Ritchie (2002) points out that not all employees receive training and those that are more educated, younger and in management positions tend to receive more training. Moreover, Kapstein (2002) and Ritchie (2002) argue that foreign investors provide higher-level

¹⁶ Though, in the case of FDI, the latter may refer to adaption of technology by a subsidiary.

training only to the relatively more skilled and/or educated employees, whereas less skilled employees are only provided with the skills necessary to carry out the specific processes and operate the specific equipment necessary to perform their jobs. In a similar manner, Slaughter (2002) argues that, like any other private firm, MNEs are more likely to develop skills that are firm-specific rather than general skills such as numeracy, literacy and problem-solving. Taken together, the arguments above seem to suggest that MNEs' training activities do supplement the skills of the workforce in the host country, but they should not be expected to substitute for domestically-provided education and training.

In the short-term foreign investors can affect skill formation indirectly through (voluntarily) supporting local educational institutions (te Velde, 2002), or influencing their curriculum choices and the quality and quantity of the vocational training they provide (Slaughter, 2002). An example of the latter would be the agreement of Costa Rica to expand secondary education in electronics and English in order to secure a large investment on an assembly and testing facility by Intel. However, in cases such as this one it can be argued that FDI has merely served as an incentive to develop (a certain type of) skills and the direction of the relationship is not clear-cut. In this spirit, Michie (2002, p. 369) concludes that "human resources have more often been developed not so much by the MNEs…but rather by the domestic governments themselves as a way of attracting that inward investment. Thus...the causal process has been the enhancement of human capital to attract inward investment".

Over a longer time span, FDI has been argued to increase human capital in the host country by providing more employment opportunities and higher wages for skilled workers, thus providing greater incentives for individuals to acquire skills through education and/or training (Blomström and Kokko, 2003; Eriksson and Pytlikova, 2011; Wang, 2011). Here, te Velde (2002) distinguishes between the 'composition' effect and 'skill-bias' effect that foreign investors can have on the local labour market. The first, according to te Velde, happens if the operations and/or industries that foreign investors engage in are relatively more skill-intensive than those in which domestically-owned firms do. The second effect refers to 'skill-bias' within the firm or the sector, i.e. due to foreign investors possessing relatively more

advanced technology (and physical capital) than their domestic competitors, and therefore requiring more skilled workers to adopt these technologies (and operate more advanced equipment).

These arguments are implicitly based on a key underlying assumption of complementarity between skills and (foreign) capital, an assumption which is stated explicitly in what appears to be the only theoretical model linking inward FDI to human capital formation in the host country, developed by Egger et al. (2005). In Egger et al.'s model, FDI inflows represents a key link through which capital market integration affects economic growth in the host country. Similar to the studies above, these authors argue that capital inflows provide individuals with an incentive to acquire higher education by raising the relative marginal productivity, and thus relative wage, of high-skilled to low-skilled labour. Consistent with this, their model predicts that capital market integration leads to higher participation in higher education in the country receiving foreign capital, which in turn promotes economic growth.

The other key assumption for the arguments above is that foreign investors pay employees higher wages than domestic firms, a proposition which appears to be widely documented and accepted in economic research, as discussed in Section 1.2. The reason(s) why relatively higher wages are observed in foreign-owned firms is less clear. This differential may represent a 'foreign premium' *per se* or be due to foreign investors achieving higher labour productivity and/or specific employee-, firm- and industry- characteristics (Fosfuri et al., 2001; Budd et al., 2006; Heyman et al., 2006). However, this appears to be of little importance for the purpose of this analysis because as long as foreign investors provide more employment opportunities for relatively skilled employees and they pay them relatively higher wages, they will provide more incentive for individuals in the host country to invest in human capital.

Empirical evidence on the effect of FDI on human capital development in the host country is scarce. In a panel study of 87 countries in the period 1960-2000, controlling for endogeneity, Egger et al. (2005) find a positive and robust effect of FDI inflows on the educational attainment of the host countries' population as measured by average years of tertiary schooling attained or by the share of

population who have completed tertiary education. Similarly, Wang (2011) investigates the effect of inward FDI in different industries on the educational attainment of the population in the USA. The results of this study suggest that there are significant differences in the effects of FDI depending on the industry where investment is undertaken. Namely, Wang finds that FDI in the information industry increases the average years of tertiary education attained, whilst FDI in manufacturing industries has the opposite effect, and that other industries do not have any effect.

The theoretical arguments and empirical evidence above appear to suggest that there is potential for endogeneity due to reverse causation in the relationship between a host country's human capital and the volume of FDI it receives. However, the ways in which FDI may affect human capital development and the time span for these effects to take place is less clear, and the presence of endogeneity is likely to depend on the choice of measures that are ultimately used in the empirical analysis. Therefore, this issue is further discussed in the empirical chapters of this thesis.

2.4 Conclusion

This chapter has provided a critical review of different theories which have been developed to explain FDI. The review has identified a considerable number of potential determinants of inward FDI and it has shown that human capital is not taken into account by most of these theories. Further, the few studies that do recognise human capital do not to provide arguments as to why it may attract FDI. Having found no clear and explicit rationale(s) for a relationship between human capital and inward FDI in FDI theory, the chapter sought to explore these through an analysis of the role of human capital in economic growth theory. Accordingly, three mechanisms through which human capital could affect inward FDI were identified: productivity enhancement, facilitation of technology adoption and facilitation of innovation. Finally, it was argued that there may be reverse causation in this relationship, an issue which should be treated with caution in the empirical analyses conducted in the rest of this research.

The theory discussed in this chapter, however, does not yet provide a suitable theoretical framework for analysing FDI in transition economies. Relevant

transition-specific factors that may influence the relationship between human capital and FDI will be discussed in Chapter 4 of this thesis after a review of empirical evidence on the relationship between human capital and FDI in the next chapter.

Chapter 3

THE EFFECT OF HUMAN CAPITAL ON FDI: A META-REGRESSION ANALYSIS

Contents

3.1 Introduction	
3.2 The effect of human capital on FDI: A review of literature	
3.2.1 Evidence from mixed country samples	
3.2.2 Evidence from developed economies	
3.2.3 Evidence from developing economies	
3.2.4 Evidence from transition economies	
3.2.5 Evidence from China	
3.3 A meta-regression analysis of the effect of human capital on FDI	
3.3.1 The meta-regression model	
3.3.2 Empirical results	
3.4 Conclusion	144

3.1 Introduction

Having established the importance of FDI in the context of European transition economies in Chapter 1 and the reasons why a country's human capital may be a factor affecting their level FDI inflows in Chapter 2, this chapter analyses previous studies that have estimated the effect of human capital on the FDI. A cursory examination suggests that the empirical literature is unable to provide conclusive results about the effect of a country's quantity and quality of human capital on its ability to attract inward FDI. Though the number of studies which control for human capital in FDI studies is relatively small, these studies provide a wide range of results, sometimes contradictory within studies and inconsistent with the results expected from orthodox economic theory. Further, within this limited number of studies there is a wide variety of samples of countries analysed, model specifications and measures of human capital and FDI used, making it very difficult to come to a conclusion regarding the impact of human capital on FDI. Alternatively it may be that this ambiguity of empirical results stems from the lack of a 'universal relationship' between human capital and FDI across different countries since the attractions of different levels of human capital development may differ between countries with different characteristics and different types of FDI. In this setting, meta-regression analysis (MRA) provides a convenient means of quantitatively analysing and estimating the influence of alternative model specifications and data characteristics that shape these results. It provides a quantitative summary of the results found in different studies, enabling the identification and quantification of a genuine underlying effect, beyond the publication bias that may arise as a result of researchers searching for significant results that are in line with economic theory (Stanley 2005 and 2008). MRA also provides an assessment of the sensitivity of estimated results to different characteristics of the studies (Stanley and Jarrell, 1989). Therefore, this analysis can potentially provide explanations as to why the empirical results appear to be "contradictory or overly varied" (Stanley 2005, p. 132). To date, meta-regression methods do not appear to have been applied in this area of human capital and FDI research.

The rest of this chapter is organised as follows. Section 3.2 provides a critical review of studies that estimate the effect of human capital on FDI. Sub-section 3.2.1 reviews studies that estimate this relationship in mixed samples, whilst Sub-sections 3.2.2,

3.2.3 and 3.2.4 reviews studies that focus on developed, developing, and transition economies, respectively. The several studies focusing on (regional) FDI determinants in China are reviewed in Sub-section 2.5. Section 3 reports on the meta-regression investigation performed on studies of the human capital-FDI relationship. The MRA model and the results of its estimation are presented in sub-sections 3.1 and 3.2, respectively. Section 4 considers the implications of the findings for the empirical analyses undertaken in the following chapters of this thesis.

3.2 The effect of human capital on FDI: A review of literature

In the previous chapter it was argued that the mechanism(s) through which a host countries' human capital is expected to affect inward FDI may differ depending on the foreign investors' motivations for undertaking FDI, which in turn may be related to the host countries' level of development and other characteristics. Seeking to identify any such patterns that may exist, empirical evidence on the relationship between human capital and FDI is analysed separately depending on the country, or sample of countries, that this evidence comes from. Accordingly, evidence from mixed samples of countries is first reviewed, followed by that for developed- and developing- economies. Evidence from transition economies is reviewed separately both because of their special relevance to this research programme and their specific characteristics that extend beyond the level of development, discussed partly in Chapter 1. Finally, evidence from China is reviewed in a separate sub-section, even though this is also a transition economy. This is done for two reasons: first, China differs in many ways from other transition economies (as well as from developedand developing- economies), and, second, a significant portion of the literature on the human capital-FDI relationship comes from studies of regional FDI in that country. The complete list of identified studies that have estimated the effect of human capital on FDI to date, and a summary of study characteristics and results, is presented in Table 3.1 at the end of this section.

3.2.1 Evidence from mixed country samples

The evidence on the human capital-FDI relationship from studies using mixed samples of countries appears to be far from conclusive. In a cross-section analysis, Kucera (2002) finds a positive effect of both literacy rates, and average years of education in the population aged 15 and over, on (average) net FDI inflows during

the period 1993-1999. A similar result is found by Shatz (2003) in a large sample of 109 developing, developed and transition economies. He finds a positive effect of human capital on FDI as measured by the value of sales of MNE affiliates (excluding banking) in the host country. Estimating a Tobit regression using data from 1995, he finds FDI to be positively affected by the average years of education in the population aged 15 and over. The author reports that the same result is found when a similar measure is used, that is the proportions of the population with completed primary, secondary and tertiary education. The average years of schooling in the population is also used by Alfaro et al. (2004) in their study of determinants of total capital inflows (i.e. FDI and portfolio capital) in a similar sample of 47 economies. In this study, cross-section analysis is employed to explain the average of FDI inflows per capita across the period 1970-2000 in terms of the initial level of human capital endowment and averages of other determinants. The average years of schooling in the population is found to have a positive effect on per capita capital inflows, but its level of significance varies in different specifications and turns insignificant when different measures are used for capital flows (e.g. gross capital inflows). It is not clear how the effect of human capital on capital inflows estimated by Alfaro et al. (2004) relates to its effect on just FDI inflows, but considering the long-term commitment that FDI involves compared to portfolio investment, it is reasonable to expect that human capital would be a relatively more important determinant of the former. Another weakness of both this study and Shatz (2003) and Kucera (2002) is their failure to exploit the temporal variation in the data, a weakness that is likely to be especially relevant in the case of human capital, the importance of which as a determinant of FDI is considered to have increased over time (e.g. Noorbakhsh et al., 2001). In this respect, studies that use panel data appear to be superior.

However, the results of panel studies also, do not provide conclusive evidence on the effect of human capital on FDI. Blanton and Blanton (2007) and Alsan et al. (2006) both find that FDI inflows were not significantly affected by human capital in the 1980s and 1990s, as measured by (female) enrolment rate in secondary education and the percentage of population who have completed secondary schooling, respectively. In a slightly more recent period, Chousa et al. (2008) do find a significant effect of literacy rates on FDI flows into 17 developed and developing

economies in South-East Asia, as does Al-Sadig (2009) for a larger sample of 117 of developed, developing and transition economies. Similarly, in an industry-level dynamic panel analysis covering nearly the same period (1995-2004), Bellak et al. (2009) find FDI flows in 10 developed and transition economies to be positively affected by human capital, here measured as the share of (medium and high) skilled hours worked in total hours worked in each industry. Finally, contrary to theoretical predictions, the effect of human capital on FDI has also been found to be negative. At firm level, Urata and Kawai (2000) investigate the determinants of Japanese FDI in manufacturing in 117 developed and developing economies during the period 1980-1994. The results of their logit estimation suggest that higher enrolment rates in secondary education in a host country decreases its probability of being chosen as a location for investment.

A common weakness of the studies reviewed above, but also other empirical studies addressing human capital, is the inability to control for the quality of education. Choi (2007) attempts to overcome this weakness by including international test scores of primary and secondary school student achievement in maths and science as a measure of cognitive achievement and a proxy for education quality (at primary and secondary level). In this study a panel estimation is employed to investigate the effect of education quality on the intensity of bilateral foreign-owned firms' business activity (measured by affiliate sales) between the US and 32 partner countries in the period 1985-2004. After controlling for differences in quantity of human capital (measured by the share of skilled labour 17), Choi finds that an increase in the quality of education in the partner country leads to an increase in the intensity of bilateral foreign affiliates' business activity. While this analysis does not provide evidence that education quality affects *inward* FDI in particular, it does suggest that this may be a relevant dimension when measuring human capital in relation to FDI. However, it should be noted that the effect of education quality does not appear to be robust, as it is only significant in one of the specifications reported and it is not clear why this specification is the preferred one.

The use of mixed samples of countries for the purpose of analysing the effect of human on FDI may be inappropriate because the importance of human capital as an

¹⁷ Skilled labour share is defined by the ratio of skilled occupation categories (as defined by the International Labour Organization) in the total employment.

attractor is likely to be different in different groups of countries. For instance, if developing countries tend to receive relatively more FDI in the primary sector where the demand for local labour can be expected to be largely for lower-skilled workers, the effect of human capital on inwards FDI is expected to be small, or even insignificant. For this reason, studies with samples of countries of similar level of development, reviewed in the following sections, may be more informative.

3.2.2 Evidence from developed economies

Evidence from developed economies appears to almost uniformly support the hypothesis that relatively high levels of human capital is a locational advantage for attracting FDI. Nicoletti et al. (2003) estimate a dynamic panel to analyse the determinants of inward FDI in 19 OECD countries in the period 1980-2000. This study finds that human capital, as measured by average years of schooling in the working age population exerts a positive effect on stocks of inward FDI in these countries, a result which is robust across their different specifications. Another variable which may be related to human capital, R&D intensity which is measured as a country's business expenditure on R&D as a percentage of GDP, also appears to exert a robust positive effect on the stocks of inward FDI in these OECD countries. Also in a dynamic panel analysis, Agiomirgianakis (2006) find the secondary school enrolment ratio to positively affect FDI inflows (as a share of GDP) in 20 developed economies in the period 1975-1997.

From the US, evidence in favour of the human capital-FDI relationship comes from studies at state, industry, and firm level which use a variety of different human capital and FDI measures. In a cross section analysis for US states for the years 1987-1992, Nachum (2000) finds that the share of population enrolled in tertiary education has a positive effect on the number of foreign investors in professional and financial services, having controlled for labour productivity. Axarloglou (2005) investigates the determinants of annual FDI flows in 20 manufacturing industries in 10 US states using panel data for the period 1974-1994. Controlling for unit labour costs (or separately labour productivity and labour costs at industry level), they find a state's per capita spending on higher education positively affects the level of FDI inflows it receives. At firm level, Woodward (1992) uses a logit model to estimate the probability of US counties being chosen by Japanese investing firms in a twenty year period starting from 1980. Controlling for the wage and value-added created in

manufacturing, the study finds that the median year of schooling in the population aged 25 and older increases a county's probability of being chosen as a location.

Evidence from the European countries on the human capital-FDI relationship is not as strong. Majocchi and Presutti (2009) fail to find an effect of the percentage of the workforce with secondary and tertiary education, or the number of research institutions, on the value of foreign investment in their cross-section data from nearly four thousand foreign affiliates in Italian regions in 2004. Rodriguez and Pallas (2008) estimate the effect of human capital on inflows of FDI at regional level in Spain. Their panel estimation which covers the period 1993-2002 suggests that the percentage of employees who have completed secondary education (or over) affects regional FDI positively, but the results are not robust across specifications. In this analysis, the difference between labour productivity and cost per employee is also found to have a positive effect on FDI inflows.

3.2.3 Evidence from developing economies

The evidence from developing economies tends to suggests that human capital endowment exerts a positive effect on the level of FDI an economy receives. One of the key studies in this field is that of Noorbakhsh et al. (2001), one of the few studies that actually have human capital as the primary focus of their FDI analysis. Noorbakhsh et al. employ a panel estimation to investigate the impact of human capital on FDI flows into 36 developing economies in the period 1980-1994. For human capital, they use secondary school enrolment ratios as well as two stock variables: the number of accumulated years of secondary education present in the working age population and number of accumulated years of secondary and tertiary education in the working age population. The results of this study suggest that, controlling for labour cost and availability of labour, all three measures of human capital are significant determinants of net FDI inflows as a percentage of GDP. According the magnitude of coefficients, human capital appears to be one of the most important determinants, but it is interesting to note that it only becomes significant when more recent years (after 1991) are included in the estimation, suggesting that human capital only became a significant determinant in this period.

In accordance with the findings of Noorbakhsh et al. (2001) the average years of schooling in the population has also been found to positively affect FDI into

developing economies in the panel studies by Jaumotte (2004 – dynamic panel), Faini (2004) and Desbores and Azémar (2008). Also using a panel estimation, Checci et al. (2007) find that net FDI inflows (as a percentage of GDP) are positively influenced by the share of population who have attained secondary education (or above). However, the share of population with tertiary education attainment does not appear to affect FDI inflows into their sample of 63 developing countries in the period 1985-2000. The authors note that the absence of a significant relationship between the share of population with tertiary education and FDI inflows may be attributed to the inability to control for the sectoral differences of FDI in different geographical regions, but make no attempt to address this problem indirectly by controlling for regional differences. Other panel studies covering samples of developing economies either do not find any evidence in favour of a positive human capital-FDI relationship, or find evidence of a negative relationship. In an earlier study covering the period 1975-1988, Narula (1996) finds an insignificant effect of enrolment rates in tertiary education on inward FDI stocks. Taken together, these results may be interpreted to suggest that tertiary education attainment in particular does not attract FDI to developing economies. However, in the case of Narula (1996), it can be also be argued that another reason for the lack of a positive effect could be due to the (relatively) early period which this study covers, to the extent that human capital has become a (more) important FDI determinant over time, in accordance with Noorbakhsh et al.'s findings above. Majeed and Ahmad (2008) also find an insignificant effect of illiteracy rates of the population on FDI inflows (as a percentage of GDP) in 23 developing countries in the period 1970-2004. Mina (2007) on the other hand, is the only panel study (1980-2002) that finds a negative effect of a human capital measure on FDI inflows in developing economies. This finding may be partly explained by the atypical economies of the Gulf Cooperation Council (GCC) which is Mina's sample. Since these six countries are oil-producing economies, to the extent that FDI is primarily resource-driven, it is less likely to be affected by human capital. However, this explanation does not explain a negative effect on FDI. One reason for this may be the choice of the human capital variable adopted by this study. Measuring human capital merely in terms of the share of secondary education in total education may be very misleading because this measure can be high due to low enrolments in tertiary education and/or low coverage in the level of primary education. In this case, high values of this measure would in fact

reflect low levels of human capital formation and therefore give rise to the negative effect which is observed in this study.

Nunnenkamp (2002) takes a different approach from the conventional macro-models and analyses FDI using microeconomic data as well as indicators he develops from data obtained through three surveys (1992, 1996 and 1999) of institutions of 28 developing countries. Simple correlations suggest that the per capita FDI stock is only significantly correlated with average years of schooling in the population in 1999 but not earlier – consistent with the conclusion of Noorbakhsh et al. (2001) that human capital has become more important in more recent years. When correlations of this variable with FDI inflows per capita are estimated, however, they are significant in all four periods. Nunnenkamp also includes other variables from the survey related to human capital quality and cost; (1) availability of trained people, education and quality of apprentice schemes and (2) trade unions' power and labour market legislation are included in the as components of indicators termed as "complementary factors of production" and "factor costs", respectively. The first component is mainly found not to be significantly correlated to either of the FDI measures, while the second is negatively correlated to both. However, no conclusion can be drawn from this because these indicators are comprised of many components, those regarding labour being merely a few of them.

The evidence from single (developing) country studies is even less conclusive. Two studies using cross-section Vietnamese data and secondary education human capital measures, Pham (2001) and Nguyen and Nguyen (2007), both find human capital to significantly affect FDI at regional level. In a OLS estimation for (averaged) data covering the period (1988-1998), Pham (2001) find the percentage of population enrolled in secondary education to positively affect the level of committed, as well as implemented, FDI inflows in Vietnamese regions. Similarly, Nguyen and Nguyen (2007) find the number of high school graduates in a region to positively affect both FDI in 2006 and cumulative FDI in the period 1988-2006 as measured by value of inflows (in an OLS estimation) as well as by the number of projects (in a negative binomial estimation). However, this study does not control for the size of the population/cohort, therefore the effect of the human capital variable may be merely reflecting the age structure of the population. Bouoiyour (2003) also finds a positive

effect of enrolment rates in secondary schools on the FDI flows that Morocco received in the period 1960-2000. Ismail and Yussof (2003), on the other hand, find no effect of the number of professionals and technical workers in time-series estimations of FDI inflows in Thailand and the Philippines between 1985 and 1999, controlling for the average wage in manufacturing. Moreover, this measure is found to negatively affect Malaysian FDI during this period, while also in a time-series estimation, Tsen (2005) finds that another human capital measure - federal government expenditure on education as a percentage of GDP – has a positive effect on the value of foreign investment in the country's manufacturing industry. However, it is not clear that expenditure on education is a good measure of human capital in FDI studies for two reasons. First, there appears to be no evidence that cross-country expenditure on education determines student performance (Woessmann, 2006). Second, it could be argued that the coefficient on human capital in cross-country studies could be prone to (upward) omitted variable bias if variables that affect both expenditure on education and inward FDI are not included in the model.

Finally, two studies from developing economies follow an innovative approach in measuring human capital. Deichmann et al. (2003) use the student-teacher ratio as an (inverse) measure of education quality. In a logit estimation aiming to explain the decision of 293 foreign firms who invested in Turkey in 1995, they find that the student-teacher ratio (which represents lower quality) exerts a negative effect on the probability of a Turkish region being chosen by foreign investors. However, this proxy chosen for education quality is prone to serious criticism: in addition to only measuring only one (potential) aspect of education quality, research seems to find little evidence of a significant effect of class size on student attainment (Hanushek, 2003; Woessmann, 2006). Mody et al. (1999) on the other hand develop a measure of human capital which is not explicitly related to educational attainment. In their 1993 survey, they ask 173 Japanese firms who are engaged in FDI to rate different qualities, including labour costs and labour quality, in seven Asian countries. These variables are then used to explain the firms' prior as well as future investment in these countries. The cross-section analysis of this data suggests that firms' perceived labour quality in Asian countries is a significant determinant of the both their current shares of investment and their declared likelihood of expected investment in these

countries in the next three years, but this is not the case with their perceptions of labour cost. However, as Mody et al. note, firms' perceptions of labour quality may be more related to the experience of workers gained in industry and not necessarily related to formal educational attainment. While this study's reliance solely on subjective perceptions and lack of explicit control for educational attainment may be considered a weakness, its results challenge the appropriateness of the conventional usage of formal educational attainment as a measure for human capital in relation to FDI.

3.2.4 Evidence from transition economies

While the empirical evidence from developing and developed economies tend to provide evidence of a positive relationship between human capital and FDI, even though not conclusive, evidence from transition economies appears to be very mixed and contradictory. The measures of human capital most used in studies covering these economies are those concerning tertiary education. Using stock measures of tertiary education, Majocchi and Strange (2007) and Broadman and Recanatini (2001) fail to find a positive relationship between human capital and FDI in Central and Eastern European Countries (CEEC) and Russia, respectively. The first study estimates a logit estimation using data on 272 Italian investors in seven CEECs in the period 1990-2003 and finds that a country's percentage of the labour force that with higher education attainment does not significantly affect their probability of being chosen as an investment location. In an OLS estimation using Russian regional data for the period 1995-1999, Broadman and Recanatini (2001) find that the percentage of currently employed persons with higher education attainment does not have a significant effect on cumulative FDI. However, when the annual net inflows are considered, the effect of the human capital variable becomes significant in the last two years of the period. Using a similar human capital measure, Serbu (2005) estimates a panel model of (bilateral) FDI stocks from OECD countries to three CEECs (Hungary, Slovakia and Romania) in the period 1997-2000. Controlling for unit labour costs relative to source country which appears not to exert a significant effect, Serbu finds that the share of the economically active population with tertiary education has a negative effect on the stocks of FDI they receive. However, these results appear not to apply to all three countries: in Romania and Slovakia the effect of both human capital and relative unit labour costs is negative, while in Hungary the

former affects FDI positively and the latter does not have a significant effect. The author explains the differences as being caused by the different "quality" of FDI in these countries, i.e. Hungary receiving FDI in high-value added sectors (Ernst & Young, 2011), while Romania and Slovakia predominantly received FDI in low-technology manufacturing. In another panel study of six CEECs for the period 1996-2000, Görg and Greenaway (2002) find a negative effect of tertiary level enrolment rate on the stocks of FDI received from the UK. They argue that could possibly be a result of FDI in this region being predominantly vertical and, as a result, being primarily driven by labour cost considerations (which are not controlled for in their regression analysis). Tøndel (2001), on the other hand, finds both secondary and tertiary education enrolment rates to have an insignificant effect on total annual FDI inflows in 25 Central Eastern European and Baltic countries (CEEB) and Commonwealth of Independent States (CIS), as well as in these groups separately.

Similarly, there appears to be little evidence of secondary education measures affecting FDI in transition economies. Kinoshita and Campos (2003) investigate the determinants of FDI using a panel of 25 transition economies between 1990 and 1998. Their findings suggest that per capita FDI stock can be explained by labour costs and availability of natural resources, but not by the quality of labour which is represented by the enrolment rate in general secondary education. The authors provide two potential explanations for this: FDI in these countries is not directed towards the more technologically sophisticated industries or there is lack of crosscountry variance as most countries in the sample have similar high rates of secondary school enrolment. When the sample is divided into CEEB and CIS countries in an attempt to control for sectoral differences in FDI, results suggest different determining factors. Labour costs become insignificant for both groups while human capital turns significant but negative in the latter. The negative significant coefficient on human capital is contrary to theoretical expectations and it appears to be related to sectoral effects because the effect of natural resources turns positive (and significant) in this sub-sample. These results appear to suggest that FDI in the primary sector is deterred by higher levels of human capital, a result which appears to be consistent with that of Mina (2007) for oil-producing countries.
Unlike the studies above which use secondary and tertiary level education data, Fung et al. (2008) use the illiteracy rate of the population as a measure for human capital. Their static and dynamic estimations for 15 CEECs in the period 1990-2004 suggest that, controlling for the level of wages in manufacturing, a lower illiteracy rate of the population (i.e. higher human capital endowment) positively affects FDI inflows. Finally, Carstensen and Toubal (2004) use gross enrolment in tertiary and secondary education relative to gross enrolment in all levels of education (i.e. including primary education) as a proxy for the fraction of medium and higher-educated workers in the workforce. In a dynamic panel using bilateral flows to seven CEECs from OECD countries (1993-1999), they find this measure of human capital to affect FDI inflows positively, controlling for unit labour costs relative to the host country. However, as discussed in the previous section, such relative measures may give a misleading picture of human capital endowment. Though, it could be argued that this effect is likely to be smaller in the case of this particular study because it includes both secondary and tertiary education, and because enrolment rates in primary education are more likely to be similar across countries.

3.2.5 Evidence from China

To date, China is the country where the relationship between human capital and FDI has been most studied. In this context, a variety of estimation techniques and human capital measures have been used, which allows for comparisons to be made among studies and potential patterns in results to be identified. These studies investigate the distribution of FDI among Chinese provinces using mostly panel and cross-section regional data as well as logit estimations using firm level data of foreign investors across China.

A wide range of both stock and flow human capital measures are used, starting from literacy rates to numbers of scientists and engineers. One of the most frequently used measure of human capital in Chinese studies of FDI is the (il)literacy rate of the population. Lower levels of illiteracy rate (i.e. higher levels of human capital) were found to have a positive effect on provincial FDI by Broadman and Sun (1997) in an OLS cross-section estimation, Cheng (2007) in a logit of firm-level Japanese investors' data and Coughlin and Segev (2000) in a panel model. On the other hand, the same measure is found to have the opposite effect or no effect on provincial FDI in another panel study by Zhang and Fu (2008). Another measure of human capital

which may be considered analogous to the literacy rate, the percentage of population (above age 6) with primary education or above, is found to have an insignificant effect in panel studies when its current values are used (Cheng and Kwan 2000a; Gao, 2005) but a positive one when lagged values are used (Gao, 2005). The same effect is observed for analogous measures of junior and senior secondary education (Cheng and Kwan 2000a; Gao 2005) and tertiary education (Gao, 2005). The measure for human capital in these studies (and in Cassidy and Andreosso-O'Callaghan 2006), however, has the weakness of covering very young, school-age population; as a result, it may be distorted by different age structures across regions. Similar stock variables of education are also found to have a positive effect on FDI in other studies. Using firm-level data of Japanese and South Korean investors, respectively, Cheng (2006) and Kang and Lee (2007) find the percentage of adult population with secondary education to have a positive effect on FDI inflows, whilst Cassidy and Anderosso-O'Callaghan (2006) find a positive effect of the population aged 6 or over with tertiary education on provincial levels of Japanese FDI stock. Other studies use stock human capital variables, but are more specific in the types of skills they measure, e.g. the number of scientists and researchers in the workforce (Wei et al. 1999), number of engineers, scientists and technicians as a percentage of total employees (Sun et al. 2002), or the percentage of technical or skilled workers (Hong and Chin 2006, and Hong 2007, respectively). These studies, too, find a positive effect of human capital on inward FDI.

Studies of FDI in China that choose flow measures of human capital, on the other hand, appear to give less conclusive results. The percentage of population that is enrolled in secondary education appears to have a positive effect on FDI in one study that uses this measure (Zhang, 2001). However, when the same measure is considered at tertiary level, both positive (Fung et al. 2002; Fung et al. 2003) and insignificant results (Fung et al. 2006; Li et al. 2008; Hong et al. 2008) have been found. Finally, Cheng and Kwan (2000b) use the number of teachers and staff (per 10,000 population) in universities and secondary education as well as the ratio of farming to non-farming population, but finds no significant effect of these measures on FDI.

Finally, Lin (2011) and Du et al. (2012) investigate the effect of labour quality at firm-level and finds a positive effect of their education measures, however the methodology of these studies appears to be seriously flawed. First, they use data from a survey of firms that are already operating in China and, as such, it cannot examine the factors that affect the whole population of potential investors' location decisions. Further, in Lin (2011) the educational level of firms' current employees is used as a proxy for human capital, therefore the positive effect of labour quality on FDI that this study finds appears to be consistent with the explanation that foreign investors employ higher-qualified employees.

Table 3.1 below summarises the characteristics of studies that have estimated the effect of human capital on FDI to date and their empirical findings.

Study	Sample	Period	Data/ Estimation technique	Dependent variable	Human capital measure (result*)	Independent variables related to human capital (results*)	Comments
	1 - MIXED						
Urata and Kawai (2000)	Japanese manufacturing FDI in 117 developing and developed economies	1980-1994	Logit	Dummy, 1 if the country is the chosen as the location for investment	Enrolment rate in secondary education (-)	Wage (-)	When sample is divided in developing and developed economies, the results stay the same for the first group, but the human capital becomes positive and wage becomes insignificant for the latter group

Table 3.1: Empirical studies estimating the effect of human capital on FDI* In this table, 'singificant' refers to coefficients significant at 5% level or less

Kucera (2002)	85 developed and developing economies	1993-1999	Cross- section OLS	Annual FDI inflows, averaged over a seven year period.	Literacy rate (+)	The effect of human capital is not found to be robust across specifications. However, authors report that the average years of educational attainment for population aged 15 has a higher level of significance.
Shatz (2003)	109 developed, developing and transition economies	1995	Tobit	Sales of US MNE affiliates in the host country (excluding banks)	Average years of total education in the population age 15 and over (+) Average years of primary education in the population age 15 and older (+) Average years of secondary education in the population age 15 and older (+) Average years of total education in the population age 25 and older (+)	The absolute sizes of the education coefficients and their t-statistics are highest for total and primary education, while they fall with the increase of the level of education

Alfaro et al. (2004)	47 developing, developed and transition economies	1970-2000	Cross- section OLS	Inflows of capital (FDI + portfolio capital) per capita, averaged across the sample	Average years of schooling in the population, initial value (+)		Effect of human capital is not robust across specifications
Alsan et al. (2006)	75 developed and developing economies	1980-2000	Panel	Annual gross FDI inflows	Percentage of population aged 25 or above who have completed secondary schooling (insignificant)		
Blanton and Blanton (2007)	Developing and developed economies	1980-1997	Panel	Annual net FDI inflows as a percentage of GDP	Female enrolment rate in secondary education (insignificant)		
Bellak et al. (2009)	10 developed and transition economies	1995-2004	Dynamic panel	Total stock of inward FDI in each industry	Low-skilled hours worked in each industry as a share of total hours worked (-)	Labour cost (insignificant), labour productivity (insignificant); Government- financed R&D as a percentage of GDP (+)	Effect of human capital is robust across specifications
Al-Sadig (2009)	117 developed, developing and transition economies	1984-2004	Panel	Annual net FDI inflows per capita	Illiteracy rate (-) Enrolment rate in secondary education (+)		

	2 - DEVELOPED				L		
Woodward (1992)	Survey of 540 Japanese investing firms in US counties	1980-1989	Logit	Dummy, 1 if the region is the chosen as the location for investment	Median year of schooling completed in the population age 25 and older (+)	Value-added per manufacturing hour (insignificant); Hourly wage in manufacturing (insignificant)	Effect of human capital is not robust across specifications
Nachum (2000)	US states	1987 and 1992	Cross- section OLS	Number of foreign investors in financial and professional services	Share of population in higher education (+)	Labour productivity (insignificant)	
Nicoletti et al. (2003)	10-19 developed economies	1980-2000	Dynamic panel	Total stock of inward FDI	Average years of schooling in the working age population (+)	R&D intensity: country's business expenditure on R&D as a percentage of GDP (+)	Effect of human capital is robust across specifications
Agiomirgianakis (2006)	20 developed economies	1975-1997	Dynamic panel	Annual FDI inflows as a percentage of GDP	Secondary school enrolment ratio (+)		
Rodriguez and Pallas (2008)	Spanish regions	1993-2002	Dynamic panel	Gross inflow of FDI	Percentage of employees who have completed upper secondary education or over (+)	Difference between labour productivity and average cost per employee (+)	Effect of human capital is not robust across estimation techniques

Narula (1996)	Developed economies	1975-1988	Panel	Stock of inward FDI per capita	Gross enrolment rate in tertiary education (+)		
Axarloglou (2005)				Annual FDI inflows	Real per capita state spending on higher education (+)	Average hourly earnings in each industry in each state (-); Labour productivity (insignificant)	
	20					(insignificant)	
	manufacturing industries in 10 US states	1974-1994	Panel	Annual FDI inflows relative to the total of the states in the sample	Real per capita state spending on higher education, relative to the other states in the sample (+)	Average hourly earnings in each industry in each state (insignificant); Labour productivity (+) Unit labour costs (insignificant)	-
Majocchi and Presutti (2009)	3984 foreign investors in Italian regions	2004	Cross- section OLS	Value of foreign investment	Percentage of workforce with secondary and tertiary education (insignificant)	Number of research institutions (insignificant)	
	3 - DEVELOPING						
Narula (1996)	Developing economies	1975-1988	Panel	Inward FDI stock per capita	Gross enrolment rate in tertiary education (insignificant)		

Mody et al. (1998)	6 developing	1002	Cross- section OLS	Share of their foreign investment in Asia	Perceived labour quality (+)	Labour costs (insignificant)	
	(Asia)	1995	Logit	Likelihood of expected investment in Asia	Perceived labour quality (insignificant)	Labour costs (-)	
					Secondary school enrolment ratio (+)	Labour cost (insignificant); growth rate of labour force (+)	Human capital is one of the most important
Noorbakhsh et al. (2001)	36 developing economies	1980-1994	Panel	Net FDI inflows/GDP	Number of accumulated years of secondary education present in the working age population (+)	Growth of labour force (+)	determinants, but not statistically significant when
					Number of accumulated years of secondary <i>and</i> tertiary education in the working age population (+)	Growth of labour force (+)	estimated for the periods 1983-1988 and 1983-1991
Pham (2001)	Vietnamese provinces	1988- 1998/1991- 1998	Cross- section OLS	Committed/Implemented FDI inflows	Percentage of population in middle secondary school (+)		
Bouoiyour (2003)	Morocco	1960-2000	Time- series	FDI inflows (excluding privatisation)	Secondary school enrolment ratio (+)	Unit labour costs in industry (insignificant)	

Deichmann et al. (2003)	293 foreign investors in Turkish regions	1995	Logit	Dummy, 1 if the region is chosen as the location for investment	student/teacher ratio (-)		
Ismail and Yussof (2003)	Malaysia, Thailand and the Philippines	1985-1999	Time- series	Annual FDI inflows	Number of professional and technical workers in the country (- in Malaysia, insignificant in Thailand and the Philippines)	R&D intensity: country's business expenditure on R&D as % of GDP (- in Malaysia, insignificant in Thailand and the Philippines); Average manufacturing wage (insignificant)	
Faini (2004)	92 developing economies	1980-2000	Panel	FDI stock/GDP	Average years of schooling in the population (+)		
Jaumotte (2004)	71 developing economies	1980-1999	Dynamic panel	Annual FDI inflows	Average years of schooling in population (+)		
Tsen (2005)	Malaysia	1980-2002	Time- series	Value of foreign investment in approved projects in the manufacturing industry	Federal government expenditure on education as a percentage of GDP (+)		

			1				
Checci et al. (2007)	63 developing economies	1985-2000	Panel	Net FDI inflows/GDP	Population share with secondary education attainment (+) and with tertiary attainment (insignificant)		
			Cross-	Cumulative FDI inflows (1988-2006)	Number of high school graduates (+)	Wage (+)	
NT	Vi du cura d	1000	OLS	Annual FDI inflows (2006)	Number of high school graduates (insignificant)	Averag wage (insignificant)	
Nguyen (2007)	provinces	2006/2006	Negative	Cumulative number of projects (1988-2006)	Number of high school graduates (+)	Averag wage (+)	
				Number of projects (2006)	Number of high school graduates (+)	Averag wage (insignificant)	
Mina (2007)	6 developing economies (Asia)	1980-2002	Panel	Annual FDI inflows	Secondary school enrolment as a percentage of total school enrolment (-)		The sample consists of oil producing countries of the Gulf Cooperation Council (GCC)
Chousa et al. (2008)	17 South and East Asian economies	1996-2005	Panel	Annual net FDI inflows per capita	Literacy rate (-)		
Desbores and Azemar (2008)	28 developing countries (Africa)	1985-2004	Panel	Annual net FDI inflows	Average years of schooling in the population over age 15 (+)		

Majeed and Ahmad (2008)	23 developing countries	1970-2004	Panel	Annual FDI inflows as a percentage of GDP	Illiteracy rate of the population (insignificant)		
	4 - TRANSITION						
	4.1 - European and Commonwealth of Independent States						
Broadman and	Russian regions	1995-1999	Cross-	Cumulative net FDI inflows	Percentage of currently employed persons that have completed higher education in the initial period (insignificant)	Average wage at initial period (insignificant)	
Recanatini (2001)		1775 1777	OLS	Annual net FDI inflows	Percentage of currently employed persons that have completed higher education in the initial period (insignificant/+)	Average wage at initial period (insignificant)	The human capital variable becomes significant in 1998 and 1999.

Tondel (2001)	25 CEEB and CIS countries	1994-1997	Panel	Annual FDI inflows	general secondary enrolment rate (insignificant) and tertiary gross enrolment rate (insignificant)	Average wage (positive)	Human capital variables remain insignificant when sample is divided in CEEB and CIS countries.
Kinoshita and Campos (2003)	25 CEEB and CIS economies	1990-1998	Panel	Cumulative net FDI inflows per capita	general secondary education enrolment rate (insignificant)	Nominal wage rate (negative)	When sample is divided in CEEB and CIS countries, labour costs become insignificant for both groups while human capital becomes negative in the CIS sample

	4.2 - Central and Eastern Europe						
Gorg and Greenaway (2002)	6 CEECs	1996-2000	Panel	Stock of inward FDI from the UK	Enrolment ratio in tertiary education (-)		Authors report that similar results are found for enrolment in secondary education.
Carstensen & Toubal (2004)	7 CEECs	1993-1999	Dynamic panel	Annual bilateral FDI inflows	fraction of medium and higher-educated workers in labour force (gross enrolment in tertiary+secondary education divided by gross enrolment in total enrolments (+)	ULC relative to source country (negative)	The effect of human capital is found to be robust across specifications.

Serbu (2005)	3 CEECs	1997-2000	Panel	Bilateral FDI stocks	Economically active population with tertiary education (-)	ULC relative to source country (insignificant)	Interactions of human capital with country dummies reveal differences between countries: RULC exert a negative effect in Romania and Slovakia but no significant effect in Hungary, while human capital exerts a negative effect in the first two and a positive one in the latter.
Majocchi and Strange (2007)	272 Italian foreign investors in 7 CEECs	1990-2003	Logit	Dummy, 1 if the country is chosen as the location for investment	Percentage of labour force with higher education (insignificant)		
Fung et al. (2008)	15 CEECs	1990-2004	Panel (static and dynamic)	FDI inflows	Illiteracy rate of population over 15 (-)	Average wage in manufacturing (insignificant)	

	4.3 - China						
Broadman and Sun (1997)	Chinese provinces	1992	Cross- section OLS	FDI stock in end of 1992	Illiteracy rate (-)	Average wage (insignificant)	
Coughlin and Segev (2000)	Chinese provinces	1990-1997	Panel	Sum of FDI inflows	Illiteracy rate in the population over 15 (-)	Average wage (-); Labour productivity (+)	
Wei et al. (1999)	Chinese provinces	1986-1995	Panel	Annual flows of pledged/realised FDI	Number of scientists and researchers in the workforce (+)		
Cheng and Kwan (2000a)	Chinese provinces	1985-1995	Dynamic panel	Cumulative of FDI inflows	Percentage of population 6 years or older with Senior high education or above (insignificant) Percentage of population 6 years or older with Junior high education or above (insignificant) Percentage of population 6 years or older with Primary education or above (insignificant)		

Cheng and Kwan (2000b)	Chinese provinces	1985-1995	Dynamic panel	Cumulative FDI inflows from 1979 to the reporting year	Number of teachers and staff in universities per 10,000 population (insignificant) Number of teachers and staff in secondary education per 10,000 population (insignificant)		
					Ratio of farming to non- farming population (insignificant)		
Zhang (2001)	Chinese provinces	1987-1998	Cross- section OLS/panel		Percentage of population in secondary education (+)	Average wage in manufacturing (insignificant)	When the sample is divided in sub- samples covering shorter time periods, the significance of human capital is found to be increasing over time.
Fung et al (2002)	Chinese provinces	1990-1999	Panel	Annual FDI inflows from the US/Hong Kong	Ratio of students enrolled in tertiary education to total population (+)	Average wage (-)	Human capital (wage) has a stronger (weaker) influence on US FDI than Hong Kong FDI

Sun et al. (2002)	Chinese provinces	1986-1998	Panel	Annual FDI inflows	Number of research engineers, scientists and technicians as % of total employees (+)	Average wage (-)	
Fung et al (2003)	Chinese provinces	1990-2000	Panel	Annual FDI inflows from Japan/Hong Kong	Ratio of students enrolled in tertiary education to total population (+)	Average wage (- for Hong Kong, insignificant for Japan)	
Gao (2005)	Chinese provinces	1996-1999	Panel	Annual FDI inflows as a percentage of country's total FDI	Percentage of population 6 years or older with primary education or above, measured in current period (insignificant) and in 1990 (+) Percentage of population 6 years or older with junior secondary education or above, measured in current period (insignificant) and in 1990 (+) Percentage of population 6 years or older with senior secondary education or above, in current period (insignificant) and in 1990 (+)	Average wage in industry (-)	When the sample is divided according to source country, all human capital variables are found to positively affect FDI from developed economies, but not that from developing economies.

					Percentage of population 6 years or older with tertiary education or above, measured in current period (insignificant) and in 1990 (+)		
Cassidy and Anderosso- O'Callaghan (2006)	Chinese provinces	1996	OLS	Japanese FDI stock in 1996 (cumulative 1990- 1996)	Percentage of population 6 years or older with tertiary education or above (+)	Average wage divided by labour productivity (+)	
Cheng (2006)/Cheng and Stough (2006)	764 Japanese investors in Chinese provinces	1997-2002	Logit	Dummy, 1 if the province is chosen as the location for investment	Percentage of adult population with Junior high education or above (+)	Average wage in manufacturing (+)	Effect of human capital is significant in either group
Fung et al. (2006)	Chinese provinces	1990-2002	Panel	Annual FDI inflows	Ratio of students enrolled in tertiary education to total population (insignificant)	Average wage (insignificant)	
Hong and Chin (2006)	1775 foreign logistics firms in Chinese cities	1992-2001	Logit	Dummy, 1 if the city is chosen as the location for investment	Percentage of skilled workers (+)	Average wage (-)	

Cheng et al. (2007)	764 Japanese investors in Chinese provinces	1997-2002	Logit	Dummy, 1 if the province is chosen as the location for investment	Illiteracy rate of adults (-)	Average wage in manufacturing (+)	Effect of human capital is insignificant in all sub-samples
Kang and Lee (2007)	10167 South Korean investors in Chinese provinces	1988-2002	Logit	Dummy, 1 if the province is chosen as the location for investment	Percentage of high school graduates in the population (+)	Average wage (-)	
Hong (2007)	1775 foreign logistics firms in Chinese cities	1992-2001	Logit	Dummy, 1 if the city is chosen as the location for investment	Percentage of technical workers in a city (+)	Average wage rate (-)	
Li et al. (2008)	Chinese provinces	1993-2005	Panel	Annual FDI inflows	Ratio of students enrolled in tertiary education to total population (insignificant)	Average wage in industry (insignificant)	
Hong et al. (2008)	Chinese provinces	1990-2003	Dynamic panel	Annual FDI inflows	Percentage of population in higher education (insignificant)	Host country's unit labour costs as a percentage of that of the source country (insignificant)	

Zhang and Fu (2008)	Chinese provinces	1999-2003	Panel	Annual FDI inflows as a percentage of GDP/population	Illiteracy rate (+ or insignificant)	Productivity of foreign funded industrial enterprises (insignificant); Average wage in	
------------------------	----------------------	-----------	-------	--	--------------------------------------	---	--

3.3 A meta-regression analysis of the effect of human capital on FDI

A search of studies was conducted in order to identify relevant papers for the purpose of this MRA. Search in electronic databases such as EconLit and Social Science Research Network (SSRN) as well as the Internet (using Google and Google Scholar), were conducted with the key words "FDI + human capital", "foreign direct investment + human capital", "FDI + skill", "foreign direct investment + skill", "FDI + education", "foreign direct investment + education", "FDI + labo(u)r quality", "foreign direct investment + labo(u)r quality". Additional studies were identified from the references in the literature. A total of 62 econometric analyses, both published and working papers, were identified which empirically estimate the effect of different measures of human capital on inward FDI. The studies were not assessed for quality before being selected for inclusion in this MRA. Some of these, however, were excluded because of not having reported their estimated effects of human capital on FDI (Bengoa and Sanchez-Robles, 2003; Hong et al., 2008; Dutta and Yeboah, forthcoming); entering only a squared human capital term (Hanson 1996); having reported the same regression results in another paper (Cheng 2006) or analysing FDI and portfolio flows jointly (Alfaro et al. 2004). Of the regressions reported in the remaining studies, only preferred regressions are included in this MRA. If the authors do not explicitly state their preferred regression(s), all regressions are included except for those which are reported as clearly inferior (e.g., random-effects estimation if Hausmann test favours fixed-effects, or regular panel estimation when system GMM is used in the case of dynamic panels). The resulting sample of 341 regressions from 56 studies was initially used to estimate the metaregression. An initial examination of a leverage plot indicated the presence of several observations with very large squared standardised residuals and one high-leverage observation. After a further investigation using Cook's distances and DFFIT statistics (Belsley et al., 2004), the observations from Kang and Lee (2007) were identified as problematic (see Appendix 3.1 for printouts and explanations). The peculiarity of these regressions appears to arise from the unusually large sample of over 17,000 observations which is many times larger than the typical macro-level studies, and even other firm-level studies included in this analysis. Perhaps partly as a result, the t-statistics in this study

3.3.1 The meta-regression model

The starting point of modelling MRA in economics is a simple model which regresses a study's reported effect (such as estimated coefficients or elasticities) on an intercept and its standard error (Stanley 2008). As the literature on the effect of human capital on FDI uses a variety of measures, scales and estimating techniques, the estimated effects must be standardised in order for them to be comparable across studies. For this purpose, the partial correlation coefficient between the dependent variable, the FDI measure, and the explanatory variable of interest, the human capital measure, in the original studies is calculated¹⁸. In the simplest MRA, the calculated partial correlation coefficients (PCC) are regressed on an intercept (α) and a measure of precision (the standard error of the PCC):

$$PCC_{i} = \alpha + \beta_{0} \cdot SE_{i}^{PCC} + \varepsilon_{i}$$
(3.1)

However since the original studies included in the MRA differ with regard to data, sample-size and specification, the variances of the original estimates are likely to vary, and therefore the errors in the meta-regression ($\hat{\varepsilon}_i$) are likely to suffer from heteroskedasticity (Stanley 2005, p. 321). As a remedy for this potential problem, the method of weighted least squares (WLS) can be used in order to obtain efficient estimates. Accordingly, Equation (1) is divided by the standard errors of the partial correlation coefficient, SE_i^{PCC} , (Stanley 2008), giving a dependent variable which is the t-statistic of the estimated effect in the original studies¹⁹:

$$t_i^{\text{Reg}} = \alpha \frac{1}{SE_i^{PCC}} + \beta_0 + u_i$$
(3.2)

$$PCC_{yz} = \left(\sqrt{\frac{t_z^{2,\text{Re}g}}{t_z^{2,\text{Re}g} + dof^{\text{Re}g}}}\right) \left(\frac{t_z^{\text{Re}g}}{\left|t_z^{\text{Re}g}\right|}\right)$$

¹⁹ According Fisher (1954, p.194), the standard error of the PCC is calculated using the formula $SE_i^{PCC} = \frac{PCC_i}{t_i^{\text{Reg}}}$ Hence, dividing the partial correlation coefficient by its standard error yields

the t-statistic from the original regression
$$t_i^{\text{Reg}} = \frac{PCC_i}{SE_i^{PCC}}$$

¹⁸ Following Greene (2008, pp. 29-31), the partial correlation coefficient between a dependent variable y and the independent variable of interest z (*PCC_{yz}*) is calculated using the t-statistic of variable z, t^{Reg}, and the degrees of freedom, dof^{Reg}, from the original regressions:

The bivariate equation provides the basis for estimating the "FAT-PET", tests which are used to indicate the presence of publication bias and the genuine effect in the reviewed literature, corrected for such bias. The Funnel Asymmetry Test (FAT) examines the hypothesis H₀: $\beta_0 = 0$ which, if not rejected, indicates the presence of publication bias, its sign identifying the direction of the bias (Egger et al., 1997; Stanley, 2005 and 2008). Referring back to Equation (1), in the absence of publication bias, the observed effects should vary randomly around the true value, independent of the standard error and thus no relationship between the original estimated coefficients and their standard errors are observed (i.e. $\beta_0 = 0$). A significant relationship, on the other hand, may be considered as evidence of publication bias in the literature. Card and Krueger (1995) explain that publication bias may arise when editors are predisposed to accept papers consistent with the conventional view, when researchers consider such results as a means of model selection and when editors and reviewers favour significant results as opposed to insignificant ones. Under estimation bias, the average effect found in the literature may be overestimated and this bias can be identified and quantified using MRA.

In this MRA, as explained earlier, it is not identifying publication bias, but the potential genuine effect in the literature that is of main interest. Stanley (2005, p. 309) explains that MRA can be utilised to "see through the murk of random sampling error and selected misspecification bias to identify the underlying statistical structures that characterise genuine empirical effect...beyond publication bias". Stanley proposes the precision-effect test (PET) as an indication of a "genuine underlying effect" in the sampled empirical literature, referring to the effect net of publication bias (controlled for by β_0 in this equation). PET consists of testing the hypothesis H₀: $\alpha = 0$ in Equation (2), $\hat{\alpha}$ being the estimate of the genuine effect corrected for selection bias. Hence, if the null hypothesis is not rejected, this is considered as evidence of a genuine effect.

The bivariate models presented above are commonly used to quantify publication bias in empirical literature and estimating the underlying genuine effect in the literature but, like any economic research, these tests can be biased when relevant variables are omitted (Stanley 2005). The systematic heterogeneity of the estimated effect of human capital on inward FDI in the literature may reflect differences in these studies in their choice of model specification, data and estimation technique, and these should be accounted for explicitly in the MRA model. Further, when there is a large amount of unexplained heterogeneity and large publication bias, the precision-effect test can be biased in favour of rejecting H₀: $\alpha = 0$, i.e. not finding a genuine effect (Stanley, 2008). Accordingly, following Stanley (2005), a more general meta-regression model is developed which has FAT-PET embedded in it. This model will serve as a means of exploring the sources of heterogeneity in the empirical literature which investigates the effect of human capital on FDI and their influence on the size of the estimated effects in the original literature. Following standard applications of MRA (Stanley 2001; Stanley 2005; Doucouliagos and Stanley 2009; Efendic et al., 2011) additional independent variables are included which relate to characteristics of the original studies with regard to the data, estimation techniques and model specification. These additional explanatory variables augment Equation (2) above:

$$t_{i}^{\text{Re}g} = \alpha \frac{1}{SE_{i}^{PCC}} + \beta + \sum_{1}^{K} \lambda_{k} \frac{1}{SE_{i}^{PCC}} Z_{ki} + u_{i}$$
(3.3)

where Z_{ki} are k=1,2,....,K are the explanatory variables, each weighted are as large as 65, compared to an average of less than 2 in the sample. Considering the above, the regressions from Kang and Lee (2005) were excluded from the sample and the results in the rest of this chapter were estimated using a sample of the remaining 335 observations from 55 studies²⁰. The studies included in the meta-regression are indicated by an asterisk in the list of references.

by $\frac{1}{SE_i^{PCC}}$ and $\hat{\lambda}_k$ are their estimated coefficients which measure their respective

impacts on the underlying empirical effect.

The explanatory variables to be included in this MRA analysis are presented in Table 3.2 below, whilst their summary statistics and correlations between them are presented in Appendix 3.2. These include the characteristics of the dependent variable and independent variable of interest for this study, human capital, used in

²⁰ Initial results suggested a genuine effect in the literature, however the sensitivity analysis suggested that this result is driven by the presence of the outliers in Kang and Lee's (2007) data and it disappears once this study is excluded.

the original studies. The measures of FDI were classified as stock, *fdistock*, or flow (the reference category).²¹ The measures of human capital were classified as flow, *hcflow*, and stock, the reference category (i.e. enrolment rates vs. educational attainment)²². The measures of human capital were further classified according to the level of education they refer to: average/median year(s) of schooling, *avgyred*; secondary education, *secondary*; tertiary education, *tertiary*; or secondary and tertiary education combined, *sectert*; and primary education²³, the reference category. An additional variable is included in the MRA model for input-based human capital variables, such as expenditure on education, number of staff employed in education and student-teacher ratio. Other variables, discussed next, include characteristics of data used and estimation techniques.

In the previous section it was argued that the effect of human capital may vary according to the (sample of) countries included in the empirical investigation. Accordingly, dummy variables were created which indicate the groups of countries in the original studies: *developed*, for developed economies; *transition*, for transition economies; *mixed*, for mixed samples including countries from more than one group; and *china*, for regional studies from China. This leaves samples of developing countries as the reference category.

As noted above, there are indications in the literature that the importance of human capital in relation to FDI has become greater through time (Noorbakhsh et al., 2001), implying that the period of time in which the effect of human capital on FDI is investigated may influence the estimated effect of human capital; the median year, (*ln*)*medianyr*, of the period covered in the study is used as a proxy for the recentness of the data. To the extent that studies published in refereed journals are of a higher quality, their estimates may be considered more reliable than those from working

²¹ The value of foreign-funded projects and the decision of a firm to invest in a country (in qualitative dependent variable models) were classified as flow measures because they refer to a one-off investment. The number of foreign affiliates in a host economy and the value of their sales were classified as stock measures.

²² Perceptions of labour quality by foreign investors, number of research institutes and number/proportion of population with certain qualifications were classified as stock measures of human capital because they refer to the quality of the current stock of labour in a country. Perception of quality was classified with the measures that do not specify the level of education (average/median years of schooling), while the other measures were classified as tertiary and secondary and tertiary, respectively.

²³ Measures of (il)literacy are included in the 'primary education' category. Illiteracy is made comparable to literacy (and primary education) by multiplying its (coefficient and) t statistic by -1.

papers. Accordingly, a dummy variable, *published*, is included to distinguish between published and unpublished papers, though it was not possible to identify whether each journal used external referees. Assuming that data collection methods and econometric techniques improve over time, it can be expected that more recent studies are likely to provide more reliable estimates. In order to account for this effect, the year of publication of a study, *(ln)pubyr*, is included.²⁴ The length of the period covered in the analysis, *(ln)period*, also enters the equation as a further measure of the reliability of the original study's estimates (Stanley and Jarrell, 1989). Finally, the more explanatory variables are included, i.e. controlled for, in the original model, the more reliable the estimated effect of human capital on FDI can be considered. Hence, the total number of explanatory variables in the model, *(ln)tnoexp*, is also included in the MRA²⁵.

Potential differences that may arise due to different types of data and estimation technique are captured by classifying the studies into those that use: cross-section OLS estimations, crosssection; time-series estimations; timeseries; limited dependent variable models (logit, tobit, negative binomial), *qualdy*; dynamic panel models, *dynamic*, and static panel ones, the reference category. As discussed in Section 2.2, FDI inflows are likely to be (in part) determined by previous activity of foreign investors in the country, i.e. values of lagged FDI should be controlled for, making the distinction between static and dynamic panel estimation particularly important. Hence, static and dynamic panels are coded accordingly in the MRA model. Another issue related to modelling the relationship between human capital and FDI is potential endogeneity, as discussed in Section 2.3. Endogeneity may affect the size of the estimated coefficient on human capital, therefore any attempt made to control for endogeneity in the original study is coded and controlled for in this MRA using a dummy, *endogeneity*. Finally, the presence of relevant control variables related to labour such as unadjusted cost, *labcost*, and productivity or unit labour costs, *labprod*, is coded.

²⁴ For published papers, the year of the publication of the working paper is used in order to achieve comparability between published and working papers. In case there is no information on the year the working paper is published, this is assumed to be two years earlier than the journal publication.

²⁵ Time and country dummies in fixed-effects panel models are also included because they too may account for the explanatory power of the model.

However, not every study characteristic can be coded and analysed since, in the words of Stanley (2001, p. 137), "the number of studies is limited and most studies entail a unique combination of techniques, independent variables, data, time periods and other research choices".

Variable	Description			
tstat	t-statistic of the original human capital estimate.			
invsepcc	Precision measure of the original human capital estimates, $\frac{1}{SE_i^{PCC}}$. (see FAT-PET above).			
fdirel	Dummy, 1 if flow measures are used for FDI, 0 otherwise.			
fdirel	Dummy, 1 if FDI is measured relative to population/GDP/total regional or country FDI, 0 otherwise.			
hcinput	Dummy, 1 if input-based human capital measure is used, 0 otherwise.			
hcflow	Dummy, 1 if flow measures used for human capital, 0 otherwise.			
primary	Dummy, 1 if primary education attainment or enrolment rate, or (il)literacy rate is used for human capital, 0 otherwise.			
secondary	Dummy, 1 if secondary education attainment or enrolment rate is used for human capital, 0 otherwise.			
tertiary	Dummy, 1 if tertiary education attainment or enrolment rate is used for human capital, 0 otherwise.			
sectert	Dummy, 1 if secondary and tertiary education attainment or enrolment rate combined are used for human capital, 0 otherwise.			
qualdv	Dummy, 1 if a limited dependent variable model is used, 0 otherwise.			
crosssection	Dummy, 1 if cross-sectional sample is used, 0 otherwise.			
timeseries	Dummy, 1 if time-series sample is used, 0 otherwise.			

Table 3.2: Definitions of MRA variables

dynamic	Dummy, 1 if a dynamic panel is used, 0 otherwise.
panel	Dummy, 1 if a panel model is used, 0 otherwise.
mixed	Dummy, 1 if data from mixed samples is used, 0 otherwise.
developed	Dummy, 1 if data from developed economies is used, 0 otherwise.
transition	Dummy, 1 if data from transition economies are used, 0 otherwise.
china	Dummy, 1 if regional data from China is used, 0 otherwise.
published	Dummy, 1 if study is published in a journal
Inpubyr	(Natural logarithm of) the year of publication of working paper.
Inmedianyr	(Natural logarithm of) the median year of the period of time covered in the original study.
Inperiod	(Natural logarithm of) the number of years the study covers.
Intnoexp	Total number of explanatory variables in the original model (including dummies in FEM panel models)
labcost	Dummy, 1 if cost-related variables such as wage are present in the model, 0 otherwise.
labprod	Dummy, 1 if productivity or unit labour costs are present in the model, 0 otherwise.
endogeneity	Dummy, 1 if an attempt was made to control for endogeneity, 0 otherwise.

3.3.2 Empirical results

As explained in the previous section, the starting point of MRA is to test for publication bias and the presence of a genuine effect in the literature. Publication bias arises in the literature when researchers and/or their reviewers and editors prefer statistically significant results and results that are in line with the theoretical expectations (Card and Krueger 1995; Stanley 2005). Under such circumstances, research that does not provide the preferred results is either less likely to be submitted or published, and the existing literature provides a biased estimate of the effects. Meta-regression analysis provides a means for detecting and controlling for publication bias based on the assumption that smaller samples, having fewer degrees of freedom and hence larger standard errors of estimated coefficients, are inherently disadvantaged in finding significant results. Hence, researchers using small samples have to "search" harder to find the "preferred" significant results by trying different specifications, measures, estimation techniques, etc. However, in this particular MRA, finding publication bias appears to be unlikely for the simple reason that few of these studies have human capital as their main variable of interest. When present in the model, human capital is in most cases entered simply as a control variable, so it is less likely that researchers have been preoccupied with finding a significant effect on this variable. Empirically, the presence of publication bias is tested by estimating Equation 3.2, which has the FAT-PET tests embedded in it.

Since there is usually more than one regression included from each study in the MRA, observations from the same study are expected to be correlated, and therefore a cluster-robust estimation is used for estimating this MRA model. Also, in order for each study to have an equal weight in the estimation, despite their differences in the number of regressions, a weighted regression is estimated (the weight attached to each observation being equal to the inverse value of the number of regressions included in the study it comes from). Hence, both the bivariate, and the multivariate, MRA results reported in Tables 3.2 and 3.3 are obtained from weighted, clusterrobust, estimations.

Table 3.2 below presents the results of the bivariate MRA Model (3.3), the printouts and diagnostics for which are presented in Appendix 3.3. The positive and significant estimated intercept of the MRA model suggests that there is publication

bias in the human capital-FDI literature. The estimated coefficient of the precision measure, the standard error of the PCC, is statistically insignificant, suggesting that there is no 'genuine effect' in the literature. A potential explanation for this finding could be that the empirical literature which has addressed the effect of human capital on inward FDI generally does not appear to base the choice of the human capital measure on theoretical considerations. As such, the empirical models found in this literature may be mis-specified. Such explanations may, to some extent, be tested by augmenting the bivariate MRA to include study characteristics so as to explore the heterogeneity of results in the literature, as discussed next.

 Table 3.3: Bivariate MRA results (dependent variable: tstat)*

	(1)
VARIABLES	Model (3.2)
Constant	2.066***
	(0.404)
Invsepcc	-0.0202
	(0.0139)
Observations	335
R-squared	0.023

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

*Results from a weighted, cluster-robust, estimation.

The multivariate MRA Model (3.3) was initially specified to include all the variables identified as potential sources of heterogeneity in the estimated effect of human capital on FDI, however this model appears to be mis-specified and suffers from severe multicollinearity (see Appendix 3.4 for printouts and explanations). Accordingly, a testing down procedure is followed whereby variables with the highest estimated p-values are excluded from the model two by two if they are found to be jointly insignificant (see Appendix 3.5 for the testing down procedure). The results and diagnostic tests of this parsimonious version of Model (3.3) are presented in Table 3.4 below, whilst Appendix 3.6 presents the printouts for these. According to the Ramsey RESET test, the null hypothesis that the functional form is correct cannot be rejected at the 1% level, although it can be at the 5% level. The level of multicollinearity has decreased significantly relative to the full model. The normality test suggests that the model suffers from non-normality which appears to be a result of outliers because the histogram of residuals appears to be bell-shaped. As this is a fairly large sample, it is assumed that the non-normality will not invalidate statistical

inference. According to the F-test, the null hypothesis that regressors are jointly insignificant can be strongly rejected.

		(1)
VARIABLES		Model (3.3)
Constant		-2.378
		(1.475)
Invsepcc		0.0159
		(0.0456)
Dynamic		0.0554
		(0.0343)
Mixed		0.103**
		(0.0462)
transition		-0.0980**
		(0.0393)
china		0.0620*
		(0.0331)
hcstock		0.0394
		(0.0342)
secondary		-0.123**
		(0.0523)
tertiary		-0.0225
		(0.0227)
agvyred		-0.0707
		(0.0552)
labcost		-0.102***
		(0.0353)
labprod		0.0958***
		(0.0307)
Inmedianyr		0.872***
		(0.313)
published		-0.0443
-		(0.0376)
Observations		335
R-squared		0.344
		0.011
F-test	F(10, 54) =	16.55
	Prob>F	0.00
Ramsey RESET test	F(3, 321) =	3.41
,	- (-,)	0.01
Variance Inflation Factor (VIF)	Max	24.3
	Mean	6 11
Skewness	chi2(10) =	54 22
UKUW HUDD	$cm_2(10) =$	J 4 .22

 Table 3.4: Multivariate MRA results (dependent variable: tstat)*

	Prob>chi2 =	0.00
Kurtosis	chi2(10) =	12.32
	Prob>chi2 =	0.00

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

*Results from a weighted, cluster-robust, estimation.

The multivariate regression appears to be able to explain some of the diversity in results that characterises the human capital-FDI literature in terms of study characteristics with regard to the sample covered, vintage of data, measure of human capital, and presence of certain control variables in the model.

According to the multivariate MRA results, the estimated effect of human capital on FDI appears to be larger in studies that control for labour productivity (or unit labour costs) in the host country. Controlling for the level of unadjusted labour costs alone, on the other hand, appears to yield lower estimated effects, in accordance with expectations.

A larger effect of human capital appears to be found in studies that cover more recent data, as suggested by the positive sign on the median year covered in the study. This result is consistent with the hypothesis that importance of human capital as an attractor of FDI is increasing over time (Noorbakhsh et al., 2001), as well as with increasing demand for skilled labour in the market in general as posited by the skill-biased technological change hypothesis (Machin, 2004).

In accordance with the expectations, the estimated effect of human capital variables on inwards FDI depends on the sample of countries included in the original studies. Compared to studies of developed and developing economies, the estimated effect of human capital is found to be, on average, higher in studies using mixed samples of countries and regional level studies from China. Perhaps the most striking result is the highly significant negative sign of the transition dummy, suggesting that the estimated effect of human capital on FDI in samples consisting of transition economies is smaller compared to that in all other samples. This finding could be considered consistent with the arguments in Chapter 1 that transition economies are inferior in terms of the mix, quality and appropriateness of human capital in a market economy context, which would make this human capital relatively less attractive to foreign investors.

The choice of the human capital measure also appears to affect the size of its estimated effect on FDI inflows. Namely, using secondary education measures decreases the size of the estimated effect of human capital on FDI compared to using measures referring to other levels of education, or those not specifying the level of education. From a theoretical point of view, there appears to be no explanation as to why foreign investors would value secondary education relatively more than other levels of education (including primary education). However, one potential explanation could be that lower human capital estimates are obtained when using this measure because secondary education is relatively more heterogeneous across countries, especially compared to primary education (Altonji, 2010). To the extent that human capital formation during secondary education is relatively more diverse across countries in terms of the skills offered (e.g. mix of general vs. vocational education), quality and length of education (i.e. number of years of secondary schooling and/or level of compulsory schooling), secondary education measures may be less likely to provide a comparable measure for cross-country analyses. In addition, there are differences in the exact level of education that the original studies use, i.e. lower-, upper- or both levels of secondary education.

The results of the multivariate MRA with regard to publication bias are not consistent with those of the bivariate MRA. Namely, once other study characteristics have been controlled for, the apparent publication bias suggested in the bivariate regression disappears. Considering that the bivariate regression is likely to suffer from omitted variable bias and its problems with its functional form and low R-squared, the results from the multivariate MRA are argued to more reliable. The results with regard to the (non)existence of a genuine effect in the literature, on the other hand, remains the same in the multivariate MRA. Despite the attempt to control for a wide range of study characteristics that were hypothesised to potentially explain the diversity of results found, there appears to be no genuine effect of human capital on FDI. A possible explanation for this finding may be the genuine lack of what was referred to as a 'universal relationship' between human capital and FDI in the introduction to this chapter. Namely, it is reasonable to expect that the (size of) the

effect of human capital on inward FDI depends on the type of foreign investor activity, activities in higher value added sectors or stages of production being more affected by human capital compared to lower value added ones. For instance, resource-seeking and market-seeking FDI are likely to be less affected by a host country's human capital. If FDI in the primary sector and services sectors (excluding the information and computer technologies, ICT, sector) are assumed to correspond to these types of FDI, respectively, it follows that a large share of inward FDI is expected to be little affected by human capital. More specifically, resource- and market-seeking FDI still account for approximately 55% of world inward FDI stock in 2006-2008, even after excluding the business activities sector which can be argued to be partly efficiency-seeking because it includes ICT services (UNCTAD, 2010a). Considering that the vast majority of existing studies does not account for such differences and simply estimates the effect of human capital on total inward FDI flows/stocks, it is perhaps not surprising that the empirical evidence is so diverse.

3.4 Conclusion

This chapter has reviewed studies which estimate the effect of a country's human capital on FDI inflows. The review finds that there is a surprisingly wide range of results reported and that studies differ in respect to their measures of human capital, estimation techniques, specifications, and countries and time periods covered. Therefore, a meta-regression analysis was applied with the aim of quantitatively summarising the effect of human capital on FDI and explaining the diversity of results that are found in the existing literature. The results of this analysis suggested that there is no 'authentic effect' of human capital on inwards FDI in the literature and that the heterogeneity in results can be partially explained by different characteristics of the original studies. Notably, the size of the estimated effect of human capital measures of inwards FDI appears to significantly lower in samples of transition economies compared to other samples.

It has been argued that the lack of a 'genuine effect' in the literature could partly be attributed to the lack of attention that human capital receives in the FDI literature in general, which may lead to mis-specification of (at least some of) the models in the existing literature. Accordingly, Chapter 4 will examine the relationship between human capital and productivity at a micro level, using the insights to identify the
most appropriate human capital measures which will be used in the empirical analyses for European transition economies in the following chapters. However, the failure to find a 'genuine effect' is also consistent with a lack of 'universal relationship' between human capital and FDI, i.e. the attracting effect of human capital being conditional on the type of activity that the foreign investors seeks to undertake in a location. This hypothesis will be further developed and empirically investigated in Chapter 6.

SPECIFYING A MODEL TO ESTIMATE THE EFFECT OF HUMAN CAPITAL ON INWARDS FDI IN EUROPEAN TRANSITION ECONOMIES

Contents

4.1 Introduction	. 147
4.2 The relationship between human capital and labour productivity growth in a modern economy	148
4.3 Explaining inward FDI in transition economies	157
4.3.1 Choosing appropriate human capital measures	157
4.3.2 An extended empirical framework for transition	165
4.4 Conclusion	169

4.1 Introduction

The empirical evidence reviewed in Section 3.2 and the results of the metaregression analysis in Section 3.3 does not appear to provide (conclusive) evidence in support of the hypothesis that high levels of human capital exert a positive influence on inward FDI, especially in the case of transition economies. In Chapter 3 it was argued that one reason for these findings may be the human capital measures used in previous research, which usually tend to be arbitrarily chosen. This, in turn, reflects the absence of a sound theoretical argument to relate inwards FDI to a country's stock of human capital. Section 2.3 of this thesis has previously argued that human capital should influence inward FDI positively based on its effect on future productivity growth derived from macroeconomic growth theories. However, the growth literature does not address the question of how human capital affects productivity growth and what the specific types of knowledge and skills are that enhance individuals' productivity. As such, growth theory does not provide clear guidelines as to the appropriate measures that should be used in empirical analyses to represent human capital as a determinant of aggregate growth and future firm profitability. Section 2.3 has identified the broad channels through which human capital affects a country's productivity growth: increasing individuals' productive capacity and their capacity to adopt/adapt and advance technology. However, the theories discussed in Section 2.3 and economic research in general do not explain what the specific skills that facilitate these processes are, or how/where these are developed. These are both important issues when considering the influence of human capital on FDI, both from a policy perspective and for the measurement of human capital in empirical research. This has been recently recognised, for instance, by Altonji (2010) who stresses the multidimensionality of ability and skills and Hanushek (2010) who proposes an agenda for "new Human capital" research that would advance the level of knowledge on "how skills are produced...and...the effects of skills on individual and societal outcomes" (p. 2). It is argued in this thesis that these issues may be particularly important in the case of transition economies and their stock of human capital which, as discussed in Sections 1.3 and 1.4, differ from those of market economies in many respects. This chapter aims to inform the choice of appropriate human capital measures for investigating the effect of human capital on

FDI by analysing the relationship between human capital and (labour) productivity growth from the perspective of microeconomics and labour economics research.

Chapter 2 of this thesis also provided a review of the theoretical framework to identify the determinants of inward FDI with an emphasis on the potential influence of human capital. The currently espoused theory, however, is limited in its ability to explain FDI in transition economies because it does not capture the specific features of these economies and the process of transition itself. A second aim of this chapter, building on the discussions in Section 2.2, is to fill this gap by providing theoretical grounds for the inclusion of other determinants of inwards FDI which may be particularly relevant in a transition context. In particular, the chapter analyses how key features of transition economies and their education systems may have shaped the relationship between human capital and productivity (and, by implication, FDI) in this specific context. Based on these analyses and the theory reviewed in Chapter 2, this chapter provides a rationale for the choice of appropriate human capital measures and transition-specific controls that an empirical model for explaining inwards FDI in transition should include.

The rest of this chapter is organised as follows. Section 4.2 analyses the relationship between human capital and productivity: in particular it identifies the productivity-enhancing characteristics that human capital encompasses and how these are developed. Section 4.3 provides an extended theoretical framework for estimating the effect of human capital on FDI in the context of transition economies. A critical analysis of alternative available measures of human capital in this context and a theoretical discussion of transition-specific characteristics that should be incorporated in empirical analyses are provided in sub-sections 4.3.1 and 4.3.2, respectively. Section 4.4 summarises the findings of the chapter and their implications for the specification of the empirical models to be used in the following chapters.

4.2 The relationship between human capital and labour productivity growth in a modern economy

The macroeconomic growth literature reviewed in Section 2.3 sought to establish the relationship between human capital and labour productivity growth largely based on

two key assumptions stemming from human capital theory (Becker, 1964; Schultz, 1974). First, by using educational attainment to measure human capital (e.g. Lucas, 1988; Romer, 1990; Cosar, 2011), it is assumed that human capital is (primarily) developed through formal education. Second, it is implicitly, or explicitly in the case of Hanushek and Woessmann (2009a,b; 2011), assumed that the productivity-enhancing role of human capital is related to the development of cognitive skills. These assumptions are critically appraised in the rest of this section with the aim of providing a better understanding of how human capital increases productivity both at firm and country level.

As discussed in Section 2.3, in a conventional human capital framework individuals acquire skills through formal education and training. The acquired skills enhance the individual's productivity and, as a result, the wages which they are paid in a competitive labour market. In this simplistic view, human capital is equated to the years of education (and training) an individual has acquired and their earned wage perfectly reflects their productivity. Accordingly, the effect of human capital on productivity at a micro level is estimated using a so-called Mincerian regression (Mincer, 1974) in which (the logarithm of) individuals' hourly wages is regressed on a set of explanatory variables that includes years of education as a measure of investment in human capital. The positive relationship between the wage and attained education which has been estimated in this manner is usually interpreted as evidence of the productivity-enhancing effect of human capital acquired through education (Psacharopoulos and Patrinos, 2004; Blundell et al., 2005; Checci, 2005; Hartog and Oosterbeek, 2007; Colclough et al., 2010; Manacorda et al., 2010; Warunsiri and McNown, 2010). From this it follows that firms seeking to gain a competitive advantage through higher productivity would prefer workers with more human capital, i.e. higher levels of education, to the extent that they do not have to reward them fully for the value of their higher marginal product. However, estimates based on this simplistic human capital approach are limited in their ability to provide reliable information on the causal effect of human capital on productivity. In addition to the concerns about using wages as a measure of productivity discussed in the next section, human capital theory has been heavily criticised for its assumption that it is formal education that actually develops skills and increases productivity.

A key problem with estimating the effect of education on productivity and/or wages is the potential bias that can result if there are systematic differences between individuals who choose to acquire different levels of education. For instance, it is reasonable to expect that both individuals' choices of acquired level of education and their success in the labour market are affected by unobserved differences, a key example of which is innate ability. This idea forms the starting point of the signalling/screening approach to human capital (Arrow 1973; Spence, 1973) which in its extreme form maintains that education does not enhance, but merely signals an individual's productivity or any other productivity-related qualities that are valued by employers. This signal is necessary because asymmetric information means that employers cannot (easily and cheaply) observe an employee's actual productivity²⁶. In this framework, employers use education as a screening device and they are willing to pay higher wages for educated employees even though this is not related to the effect of education per se, thus giving rise to a positive relationship between education and wages, just as predicted by human capital theory. The validity or otherwise of the signalling approach does not appear to change significantly predictions about the desirability of educated workers. At the micro level, firms should still prefer a more educated labour force because the resulting signalling facilitates the identification of relatively more productive workers. Even though educational attainment now only signals *relative* ability, under this framework it is still reasonable to expect a positive relationship between educational attainment and inwards FDI to hold since the quality of the matching of workers to jobs is likely to be higher in countries with higher and more diffuse levels of educational attainment.

Empirically, it has proved difficult to distinguish between the signalling and productivity-enhancing effects because, as Weiss (1995) points out, in many cases results may be interpreted to be consistent with both frameworks. However, empirical investigations by and large appear to lend support to human capital theory or the coexistence of these two effects²⁷. For the purpose of this thesis, it is sufficient

²⁶ In order for education to be an effective signal, however, the (reasonable) assumption is made that the costs of obtaining education are sufficiently negatively related to an individual's innate ability so as to make the signalling costs too high for those with low ability. This way, firms' inference of unobserved ability is confirmed by individuals' choices of the quantity of education they acquire, and the inefficiency caused by imperfect information is overcome.

²⁷ Empirical analyses in this field include Riley (1979), Boissiere et al. (1985), Ashenfelter and Krueger (1994), Ashenfelter and Rouse (1998), Behrman and Rosenzweig (1999), Angrist and

to note that the signalling and productivity-enhancing effects of education are likely to coexist (Blundell et al., 2005; Hussey, 2011), and that there appears to be no convincing evidence from wage equations to undermine the assumption that human capital is (partially) developed through formal education. However, as argued above, even if the signalling critique is valid, more investment in education is likely to increase overall productivity by facilitating the process of matching of high productivity workers with high productivity jobs.

Relatively little appears to be known about the nature of the specific productivityenhancing characteristics of human capital and explanation of how education develops them. Welch (1970) argues that human capital enhances individuals' ability to adjust to changing economic conditions. By the same token, Schultz (1975) defines the relevant human capital as an 'ability to deal with disequilibria'. Schultz emphasises the role of education in enhancing of the ability to perceive new classes of problems and the skills needed to solve them. More specifically, Schultz (1975) argues that the skills that students acquire in education for solving problems within the classroom "appear to have general properties that contribute to their performance as economic agents in perceiving and solving problems..." (p. 835). Welch (1970) identifies another type of skill that enhances productivity. According to him, in addition to enhancing the ability of individuals to accomplish more with given resources, i.e. the 'worker effect', education enhances the ability to acquire and decode information about the prices and characteristics of new potential inputs, i.e. the 'allocative effect'. According to Welch, education increases productivity by virtue of developing the ability to critically evaluate new inputs prior to their use and to identify and evaluate their productivity effects as they use them. In terms of the discussion of growth theory in Section 2.3, Schultz's 'worker effect' would correspond to the 'productivity-enhancing effect' of education as recognised in the neoclassical framework. The 'allocative effect', or Welch's 'ability to deal with disequilibria', on the other hand, appears to be related to the 'technology development and adoption effect' as maintained by the Nelson-Phelps hypothesis and endogenous growth theories²⁸. Accordingly, Nelson and Phelps (1966), Welch

Krueger (1991), Aakvik et al. (2003), Chevalier et al. (2004), Herault and Zakirova (2011), Wallace and Jack (2011) and Hussey (2012).

²⁸ Welch (1970) posits that the 'allocative effect' includes, but is not limited to, the 'innovation effect' identified by Nelson and Phelps (1966).

(1970) and Schultz (1975) all underscore the increasing importance of education when the rate of technological change is high, an argument consistent with the observed rises in the education wage premia as the modern knowledge-based economy develops (Machin, 2004).

Because agricultural production has undergone great technical change over time, it is argued to be a convenient setting for investigating the human capital-productivity relationship (Welch, 1970; Foster and Rosenzweig, 1995; Foster and Rosenzweig, 1996; Rosenzweig, 2010). The self-employment status of most farmers is another key feature which makes agriculture a convenient sector for this purpose (Schutlz, 1975). Being self-employed, farmers do not have the incentive to acquire education to signal their ability in the labour market and they can be assumed to supply their maximum effort because they themselves claim the full reward for it, i.e. their productivity level is not prone to shirking due to the labour market imperfections such as incomplete contracts. Agriculture is also atypical in that it encompasses diverse activities which are usually not differentiated according to the level of education of the farmer as they are for workers in other sectors, which makes it easier to isolate the effect of human capital on productivity (Welch, 1970). Moreover, because of the diversity of activities involved, Welch argues that farming requires continuous allocative decisions which directly affect productivity. Hence, compared to other economic sectors, the more complex 'allocative effect' of education is likely to dominate over the 'worker effect' in determining the output eventually achieved.

Empirical evidence from the agricultural sectors suggests that there is indeed a positive relationship between the level of educational attainment and productivity. Welch (1970) finds education to have a positive effect on the income of educated farmers relative to uneducated ones. Foster and Rosenzweig (1995, 1996) investigate the effect of education under circumstances of exogenous technical change in the agricultural sector in India. They, too, find a positive effect of farmers' level of education on the profitability of using new technology embodied in imported high-yielding variety seeds. This evidence supports the Nelson-Phelps hypothesis, discussed in Section 2.2, according to which human capital (measured by the level educational attainment) enhances productivity by increasing the capacity for

technology adoption. Foster and Rosenzweig (1995) go further and empirically distinguish the precise mechanism through which education affects the success of using the new technology by accounting for farmers' length of experience with it. Accordingly, they distinguish between two potential channels: the improvement of access to external sources of information (e.g. newspapers or instruction manuals) and the ability to obtain and decipher information from their own experience with new technology. In the former case the effect of education on productivity would be immediate, whilst in the latter the effect would increase with time. The empirical results suggest that education has virtually no effect on the immediate use of the new technology, but it increases the rate of productivity growth as farmers gain experience from using it. In line with these findings, Rosenzweig and Schultz (1989) find similar results for the effect of education on the effectiveness of contraceptive use. They find that education has a very small effect on the (self-reported) understanding of, and effectiveness in the use of, contraceptive methods which are 'easy' in terms of the information necessary for their use and a limited scope for misuse. On the other hand, education increases understating and effectiveness of methods which are more complex, i.e. methods for which there is a large scope for misuse and no external information, requiring individuals to decipher information gained with experience. The empirical evidence, thus, appears to support the ideas of Welch (1970) and Schultz (1975), according to which education enhances productivity through the capacity to perceive new problems and acquire and decipher relevant information which are used to solve them. However, it should be noted that the extent to which the findings discussed above can be generalised for different economic sectors is not clear. Also, since these studies do not control for ability, the possibility that the observed positive relationship arises due to individuals with higher innate ability choosing to acquire more education cannot be ruled out. More evidence on human capital formation and the role of education in determining productivity, in particular are discussed later in this section.

The studies reviewed above and in Section 2.3 suggest that the development of cognitive skills is the key productivity-enhancing characteristic of human capital. According to this, employers (including foreign investors) should value only cognitive skills. However, there is considerable economic research that indicates that employers also value other characteristics in employees, even though they do not

appear to be directly linked to productivity. Bowles and Gintis (1976) and Edwards (1976) report evidence that behavioural traits such as docility, dependability, consistency and persistence are frequently valued more than cognitive skills in low-skill employees. Kuhn and Weinberger (2005) cite more recent evidence from US survey data which finds communication skills, motivation/initiative, teamwork skills and leadership skills as the four most highly-valued skills, followed by academic achievement in the fifth place. Other non-cognitive skills/traits valued by employers are found to be interpersonal skills, flexibility, honesty/integrity and "work ethic". These findings are consistent with data from Britain, where a higher percentage of employers who report skill shortages claim this to be because of workers' "poor attitude, motivation or personality" as opposed to their lack of technical skills (Green et al., 1998).

Theoretically, Bowles et al. (2001a) argue that behavioural traits that are seemingly unrelated to an individual's productivity may actually influence it under conditions of economic disequilibrium and contract incompleteness. In a dynamic economy, they argue, non-cognitive traits such as the degree of risk-aversion, self-directedness and efficacy (i.e. belief that one's actions can determine the outcomes one experiences) can influence the ability of individuals to capture disequilibrium rents. Whilst this combination of behavioural traits, risk-aversion in particular, appears to be especially related to the entrepreneurial ability of individuals, there are also other productivity-enhancing traits which are more relevant to contractual employment under contract incompleteness. Examples of these traits are a low time-discount rate, i.e. attaching a higher value to retaining one's job in the future; high efficacy, i.e. attaching a higher weight to the one's behaviour as a determinant of the probability of retaining one's job; high utility from having a job relative to being unemployed, e.g. experiencing shame from being fired or receiving unemployment benefits. Bowles et al. (2001a,b) develop a model to explain how such behavioural traits, which they refer to as 'incentive-enhancing preferences', cause employees to supply more effort on the job, all others equal. In conditions of incomplete (employment) contracts where the level of employee effort is endogenously determined, employers value these traits and are willing to pay a premium for them. Empirically, the importance of non-cognitive skills for labour market success is supported by Heckman et al. (2006). Accounting for reverse causation, Heckman et al. find that individuals' perception of control they have over their lives (i.e., degree of efficacy) and their perception of self-worth to be positively related to the amount of education an individual acquires and, controlling for the level of their education, also the wages they receive given their schooling decisions. Finally, Brunello and Schlotter (2011) summarise evidence that non-cognitive skills/traits (e.g. motivation) can affect cognitive test scores and therefore argue that these skills are likely to account for part of the effect of cognitive skills on individual labour market success and country level economic growth that has been found in most economic research, as discussed in Section 2.3.

The research analysed above provides information on the types of skills and traits that may affect productivity at individual, firm and economy level. However, this research does not analyse where or how these skills are developed, although frequently it is assumed that the cognitive ones are developed through formal education. Challenging to some extent the role of education, is recent research which suggests that skill-formation is a life-long process which begins from the time when the child is in the womb and it is prone to multiplier effects, making earlier stages in life crucial (Cunha et al., 2006). This view points to a relatively greater role for the family than formal education, and to earlier stages of education compared to later ones. From a policy perspective, however, it may still be the role of formal education that should be particularly analysed because it is this stage where policy interventions are relatively easier and morally justifiable. Hence, it is important to stress that, in addition to the evidence for the relationship between the level of individuals' education and their ultimate productivity reviewed earlier in this section, there is further evidence to suggest that education develops both cognitive skills (Boissiere et al., 1985; Moll, 1998; Heckman et al., 2006) and non-cognitive skills (Heckman et al., 2006) specifically. The precise manner in which schooling develops these skills, however, has been largely neglected by economic research. As discussed earlier, Schultz (1975) hypothesises that schools develop market-relevant critical evaluation and problem-solving skills due to the general properties of the problems that are solved in the classroom. Market-rewarded behaviours, on the other hand, are believed to be reinforced in schools by their virtue of subjecting students to interactions and systems of reward that are similar to those of the workplace (Bowles et al., 2001a). Consistent with this hypothesis, Edwards (1976) has found that the

same behavioural traits that are rewarded with higher grades in high schools are also related to the higher positive ratings by supervisors in the workplace.

In summary, the research reviewed in this section suggests that (foreign) firms seeking high productivity advantages rather than cost advantages are likely to be attracted by economies with superior human capital stocks. This market-relevant human capital is comprised of both cognitive and non-cognitive skills which appear to be at least partially developed through formal education. The nature of these skills appears to be related to both the quality and type of education, rather than just the amount of time that individuals spend in formal schooling. As explained in Section 2.3 the development of cognitive skills appears to depend on the quality of the education system, and not just the amount of instructional time. Further, it was argued in this section that individuals who have pursued general education pathways and/or those that possess problem-solving (as opposed to mere knowledge) may be more attractive to (foreign) firms. Skills of problem-solving and critical thinking and traits of self-directedness and efficacy were stressed to be particularly important in a dynamic market economy with constantly changing conditions and high rates of technological change. The value of these skills can be argued to be even greater in the process of transition towards a market economy which involves major and rapid changes throughout the economy. They are also likely to be particularly important to foreign investors who are expected to predominantly employ high productivity strategies. Namely, the ownership-specific advantage which, as discussed in Section 2.2, is considered a precondition for FDI to take place, can be in the form of their ability to raise capital more easily and cheaply than the indigenous firms and/or in the form of advanced technological know-how. To the extent that the foreign investors engage in more capital-intensive production and/or posses more advanced technology, more highly-educated workers increase their affiliates' productivity. On the other hand, as discussed in Section 1.3, it is unclear whether, and to what extent, education under central planning developed the skills that appear to be valued in a market economy which, in turn, has implications for the measures that are appropriate to be used in this context. The next section aims to address this latter question by critically evaluating measures of human capital used in previous FDI research as well as investigating potential new measures based on the theoretical

arguments presented in this section and the specific features of human capital in transition economies discussed in Sections 1.3 and 1.4.

4.3 Explaining inward FDI in transition economies

4.3.1 Choosing appropriate human capital measures

Previous empirical research on FDI determinants has used a variety of measures for a country's human capital. The measures most often used in this literature include expenditure on education, wages, labour productivity, unit labour costs, and different measures of the quantity of educational participation or attainment. However, inputbased measures of human capital such as expenditure on formal education (per student) or class size appear to be inferior to other direct measures of output (e.g. completion of education) because empirical analyses do not appear to indicate a consistent relationship between the quantity and quality of educational inputs and student achievement (Hanushek, 2003, 2006; Woessmann, 2006). Therefore, the rest of this section focuses on the remaining measures and proposes new ones which have not been previously used in FDI studies.

In a human capital theory framework, discussed in the previous section, an individual's wage level can be used as a proxy for their level of skills. Based on this view, the average level of wages in the destination country has been used as a proxy for the quality of human capital in empirical studies of FDI in transition economies (Resmini, 2000; Rasciute and Pentecost, 2008). However, this simplistic view is based on the assumption of perfectly competitive labour markets with perfect information and complete contracts where, in equilibrium, each worker is rewarded according to her/his marginal productivity. In reality, the wages of workers are affected by a range of factors that are not related to their productivity. The level of wages (across countries) may differ according to other employee-, firmcharacteristics, as well as overall labour market characteristics such as the power of trade unions, employment laws, working conditions and non-pecuniary benefits (Eriksson and Pytlikova, 2011; Magda et al., 2011). Moreover, to the extent that wages are market-determined, they are affected by changes in the supply and demand for different types and levels of skill and the differing patterns of employment by occupation and sector reflecting differences in the technological and capital intensity of production (Freeman, 1986). Therefore not only is the average

level of wages an imperfect measure of individuals' productivity, it also is unlikely to provide relevant information to foreign investors who are interested in the availability and wages of employees with the specific types of skills they need. In the case of transition economies, especially in the early phase of transition, the effect of labour market changes is likely to be even stronger because of the mismatch between demand and supply for different types of skills as structural change has proceeded, discussed in Section 1.4.

In the theoretical framework reviewed in Sections 2.2 and 4.2, human capital is argued to affect FDI through the enhancement of labour productivity. Apparently based on this proposition, labour productivity in the destination country has been included as a determinant of FDI which may be considered to reflect its human capital. Labour productivity in the FDI literature has either been included in addition to labour costs (Holland and Pain, 1998), or combined with these and included as (real) unit labour costs²⁹ (Lansbury et al., 1996; Bevan and Estrin, 2004; Carstensen and Toubal, 2004; Serbu, 2005; Bellak et al., 2007). While such an approach is superior to the inclusion of labour costs alone, it remains limited as a means of analysing the effect of human capital on FDI for several reasons. Firstly, labour productivity depends on the quantity and quality of other factors and their combination with labour in the production process. Transition economies, as discussed in Chapter 1, are particularly deficient with regard to the vintage of their capital, level of technology employed and the quality of management, which implies that economy-level measures of labour productivity are even more unlikely to reflect the underlying level and quality of their human capital. Secondly, foreign investors, due to the introduction of advanced technology, new organisational structures and human resource management policies, etc., are likely to be able to raise labour productivity relative to that in indigenous firms. Consistent with this argument, empirical evidence reviewed in UNCTAD (2007, pp. 150-152) suggests that foreign affiliates tend to have higher labour- and total factor- productivity compared to their domestic counterparts. For the reasons explained above, a more direct measure of human capital is to be preferred when analysing its possible effect on FDI. Thirdly,

²⁹ Bellak (2008, p. 24) explains that "*Real unit labour costs* reflect the wage share in value added; a positive growth in real unit labour costs indicates a decrease in the share of employers' profit in the value added", whereas "*Nominal unit labour costs* are a measure of inflationary pressures caused by rising wages...and (their) increase...does not reflect *per se* a decrease in profitability as this depends on the possibility to shift an increase in wage costs on output prices".

even if productivity would perfectly and solely reflect human capital, from a policy perspective it is more important to analyse what the productivity-enhancing characteristics of human capital are, and how and where they are developed. Given these weaknesses, FDI studies, like empirical research in labour economics in general, have tended to focus mostly on enrolment rates in education (a flow measure), or measures of educational attainment of the population (a stock measure), as shown in the review of studies in Table 3.1. The appropriateness of using such measures in the context of European transition economies is critically appraised in the rest of this section.

The previous section has provided theoretical arguments and empirical evidence on the productivity-enhancing effects of education through the development of cognitive and non-cognitive skills which are valued in the labour market. Hence relatively high levels of educational participation and attainment of the workforce in a country are expected to attract FDI (in higher-value added sectors where a skilled workforce is needed). As discussed in Section 1.3, transition economies were initially considered to be relatively well-endowed with human capital, but there were major concerns raised as transition proceeded about the relevance and quality of the skills acquired and the composition of human capital in terms of the mix of vocational and general schooling. The deficiencies of these education systems discussed previously may have implications for the level and type of FDI that transition economies can attract. In particular, the lack of qualified employees in the field of management and marketing, discussed in Section 1.3 may deter foreign investors, even if there is a highly qualified workforce in general. In a survey of expatriate managers of foreign affiliates operating in transition economies, Suutari and Riusala (2000) find that foreign investors are faced with severe difficulties in recruiting management-level employees and, as a result, relatively expensive expatriate staff may have to be hired. Foreign investors, especially those in sectors that were not developed in the previous system, may also face difficulties hiring technical staff because of the problems of low skill transferability and labour mobility discussed in Section 1.4. These problems, in turn, were argued to be partly caused by the focus of these education systems on vocational rather than general education, discussed in Section 1.3. Their historically greater emphasis on vocational education is also likely to represent a further reason why education systems in

transition economies are generally inferior in the development of skills which appear to be valuable in modern dynamic markets. In the previous section it was argued that the productivity-enhancing cognitive skills developed by education are those general skills that allow individuals to perceive and solve new problems based on the ability to acquire and analyse relevant information. Such skills were argued to be particularly important in a dynamic economy by virtue of enhancing ability to adopt new technology and they are likely to be especially important in the context of European transition economies, considering the rapidly changing economic conditions and their outdated technology. However, education systems in these economies, as discussed in Section 1.3, have neglected precisely skills such as independent critical thinking and problem-solving. A deficiency in these skills may be partly attributed to the focus on vocational education (Bowles and Gintis, 1976), but it appears to start even from primary education, as suggested by the PISA scores reviewed in Section 1.3.

The workforce in transition economies is also likely to differ from that of developed economies with regard to their endowment of the market-relevant behavioural traits that were identified in the previous section. Considering that individuals in the centrally planned system had secure jobs and were unlikely to have been subjected to any performance monitoring, this system is less likely to have enforced productivityenhancing traits such as efficacy and a low time-discount rate. Suutari and Riusala (2000) and Meyer (2001) argue that the lack of performance-related incentives in the previous system left a legacy of low motivation and high shirking among both managers and employees. In addition, this system is also likely to have enforced conformity and docility, traits which would presumably have previously been rewarded in the workplace and more generally in society. Self-directedness, critical thinking and creativity that were stressed in the previous section as traits that enhance productivity in a market economy, on the other hand, were likely to be inhibited or actively discouraged in a planned economy. Consistent with this, expatriate managers in transition economies report that local employees tend to have little self-initiative and are not innovative or willing get involved in planning (Suutari and Riusala, 2000). The education systems of these economies are likely to have played a role in creating this mix of non-cognitive skills. Discussing the role of education in a market economy, Bowles and Gintis (1976) argue that vocational

education enforces adherence to rules compared to critical thinking and creativity. However, in the centrally-planned economies such behaviour appears also to have been enforced throughout formal education. In particular, the emphasis on memorising factual knowledge, traditional instruction methods and the authoritarian teaching style adopted, discussed in Section 1.3, are likely to have contributed to the "preparation" of individuals for the workplace of the centrally-planned economy. Regardless of how/where they were formed, the characteristics of the workforce inherited from the centrally-planned economy have implications for the costs of operations in a country borne by foreign investors. Namely, it appears that relatively more time and resources are required for employee monitoring and control; in addition, less autonomy can be given to local employees and more management involvement is required to run an organisation, further increasing labour costs (especially since highly-paid expatriate managers are likely to be hired). Thus, it appears that education systems under central planning neglected the development of productivity-enhancing skills and traits which in a market economy are typically associated with formal education. Moreover, they are likely to have inhibited such characteristics and developed others which in a market economy can have a 'productivity-constraining' effect. The apparent differences between the human capital developed under central planning and that of market economies is likely to have implications the choice of human capital measures in the context of transition, as discussed below.

The initial discussion above appears to suggest that, from a theoretical viewpoint, quantitative measures of educational participation or attainment represent superior measures of human capital in FDI studies compared to wages, labour productivity or unit labour costs. However, the later discussion in this section suggests that the issue of what specific educational measure(s) should be used is more complex.

Some of the contributions in growth theory, discussed in Section 2.2, have provided suggestions about the specific type and/or level of educational qualifications that are more relevant to technology adoption. Suitable measures of the size of technology-supporting human capital have been argued to be the share of tertiary education graduates in sciences and engineering in the workforce (Cosar, 2011) or of graduates of general rather than vocational education (Krueger and Kumar, 2004).

Alternatively, Vandenbussche et al., 2006 argue that the share of the population who have completed less than tertiary education as sufficient for 'imitation', as opposed to innovation, activities, though this does not make these secondary education graduates superior in terms of technology adoption to tertiary education graduates who are expected to possess higher-level skills. This view appears to be consistent with the empirical evidence presented in Acemoglu and Autor (2012), according to which tertiary education attainment is complementary to higher task complexity. A further implication of the task-based approach of Acemoglu and Autor (2012) for this empirical analysis is that the level of task complexity required should be taken into account in addition to volume and quality measures of human capital. Though, it is not clear how this could be could be (appropriately) operationalised in a macrolevel empirical study of inwards FDI in European transition countries. The measures of current skill complexity in the country similar to those used by Acemoglu and Autor for the host economy appear to be flawed in this context because they do not necessarily reflect the complexity of tasks that foreign investors intend to carry out. The most appropriate way to account for skill complexity would appear to be in a firm-level setting where proxies from the parent firm could be used. For aggregated FDI measures, on the other hand, the best way to control for the effect of task complexity appears to be by using industry-level inwards FDI data and investigating the effect of human capital conditional on the level of an industry's technological intensity. This approach is taken in the empirical investigations presented in Chapter 6 of this thesis.

A deeper analysis of the nature of "market-relevant human capital" and its formation provided in the previous section, on the other hand, appears to suggest that the education measure of human capital should be more concerned with the quality and type of skills offered than the actual level of education. In this respect, it appears to be very important to control for the quality of education by the use of direct measures of cognitive skills, as discussed later in this section, or for the type of education provided. Namely, consistent with Krueger and Kumar's (2004) arguments, it appears that, to the extent that general education is superior to vocational education in providing the generic cognitive skills, enhancing creativity and enforcing critical thinking, it provides a more appropriate measure of the stock of human capital. This especially appears to be the case in transition economies where, because of the large, rapid and persistent structural changes in the economy, vocation-specific skills are likely to be depreciating rapidly.

However, the deficiencies of education systems under central planning identified above also raise questions about the appropriateness of using educational measures in general in European transition economies. Namely, if the previous section stressed critical thinking, creativity and efficacy as the valuable 'productivity-enhancing' output of education, these education systems appear to have promoted precisely the opposite: acceptance of knowledge as factual, adherence to rules, and lack of self-directedness. In this sense, education under central planning can be argued to have developed traits that appear to be in practice 'productivity-constraining' in a modern market economy. This may partly explain the frequent failure of firm-level empirical studies from ex-communist economies to find a positive effect of the level of workforce formal qualifications on firms' productivity or innovation (Czarnitzki, 2005; Steffen and Stephan, 2008; Nazarov and Akhmedjonov, 2010).

The (in)adequacy of human capital developed under the previous system suggests that the vintage of the stock of human capital should be taken into account when analysing the effect of human capital on FDI. In particular, this would imply that potential foreign direct investors would be more attracted by younger cohorts of graduates that were educated during the transition period in education systems undergoing reform (and presumably more responsive to the market needs) and by the speed of market-based reforms in public education. This argument appears to be in line with the superior performance of young educated employees compared to older ones reported by expatriate managers of foreign affiliates operating in transition economies (Suutari and Riusala, 2000). In addition, foreign investors may be more flexible with regard to working culture, which would enable easier and more effective introduction of new working practices and organisational structures. This is especially likely to be the case in transition economies, considering their prevailing work norms and culture (discussed in Section 1.4 and in the next section).

Considering the imperfections of quantitative measures of human capital in transition economies discussed above, it would desirable to use other measures of skills in empirical investigations of FDI. These would ideally be measures of cognitive skills of the workforce, i.e. the quality of human capital, rather than just its quantity as measured by educational attainment. The former could be provided by (countryaverage) scores of international tests such as TIMMS, IALS and PISA, discussed in Section 1.3. Information on the level of functional competence, i.e. ability to apply concepts effectively in practice and to solve real-life problems, measured by IALS and PISA, appear to likely to be especially relevant when measuring productivityenhancing human capital according to the discussions in this and the previous section. Such direct measures of cognitive skills have the additional advantage of capturing these skills regardless of where and how they are formed. IALS scores, which are based on a sample of the working-age population, can be argued to proxy for the quality of the stock of human capital in a country; however, data on these are only available for a few of the countries covered in this analysis. On the other hand, PISA scores have the disadvantage of only being measured for primary education/secondary education students and do not necessarily reflect the skills of the current workforce, as explained in Section 1.3. Breton (2009) is particularly critical of using this measure in high-income economies with stocks of education expenditure above \$40,000 per adult, where most of the investment in formal education occurs in post-compulsory schooling levels. However, this critique is considered to be less relevant to the empirical analyses presented in this thesis for two reasons. First, as explained in Section 4.2, earlier stages of skill development are argued to remain the most important due to multiplier effects. Second, European transition economies are unlikely to have reached the high level of expenditure stock above which, Breton argues, measures of cognitive skills at compulsory schooling level should not be used.

Another, arguably more direct, way to measure the level and quality of skills in an economy is in terms of the actual availability of employees with relevant skills reported by the firms operating there. As discussed further in Section 5.2, such information for transition economies can be proxied by averaging firm-level survey data on the length of the period required to fill a vacancy for a skilled worker. However, it should be noted that this measure, too, has its limitations: using country-average from a sample of existing firms in the economy reflects the current structure and technological level of the economy and as such it does not necessarily provide

relevant information for potential foreign investors who may have different employee needs.

In conclusion, this section has argued that the specific characteristics of European transition economies' education systems may make their stocks of human capital relatively less valuable in a market economy and these should to be taken into account when investigating its effect on inward FDI. The effect of the over-emphasis on narrowly-defined vocational training can be accounted for by proxies related to the proportion of the population who have completed vocational, as opposed to general, upper-secondary education. Some of the other deficiencies in terms of the type of skills and traits developed in the pre-transition systems can be partially accounted for by proxies of the vintage of the stock of human capital. Finally, the differences between the education systems of transition economies and those of market economies make it especially important to have other measures of human capital in addition to quantitative educational attainment ones. Accordingly, innovative measures based on international test scores and availability of skilled labour were argued to provide valuable information which could be used to empirically investigate the effect of human capital on inward FDI.

4.3.2 An extended empirical framework for transition

Section 2.2 provided a review of the main theories that aim to explain the patterns of inward FDI. This review identified an extensive range of factors that have been hypothesised to determine the level and type of FDI that a country receives. The most widely-cited determinants include: the level of, or differences in, factor endowments, including that of capital, skills and natural resources; the size of the host market and its access to other markets; communication and trade costs related to transportation as well as artificial barriers to trade; agglomeration economies; distance between the home and host country; common language and culture. However, the generic theoretical framework that can be drawn from these theories fails to reflect some of the specifics of transition from a centrally planned to a market economy³⁰. This proposition is supported by the observation that the empirical

³⁰ Dunning's OLI paradigm (Dunning and Lundan, 2008) represents an exception in that it recognises some of the factors that relate to transition economies more specifically. However, this taxonomy of FDI determinants tends not to provide theoretical justification for many of the determinants. In addition, the relative importance of these determinants is likely to vary with the context of the host and host country, which the OLI paradigm also does not discuss.

literature on transition economies has identified additional determinants of FDI specific to this context, partly through drawing on the literature for developing economies. However, this latter literature also does not provide a coherent and comprehensive theoretical framework for explaining FDI in transition. The rest of this section extends the theoretical framework from Section 2.2 by providing theoretical arguments for the inclusion of transition-specific factors that have been identified in previous empirical research. In addition, the section provides a discussion of FDI determinants identified in the generic FDI theory, discussed in Section 2.2, which could have a relatively more important role to play in the context of transition.

Following the work of Lucas (1990) and Jun and Singh (1996) on developing economies, the literature on transition economies has recognised high levels of political and macroeconomic risk as potential determinants of FDI (Bandelj, 2002; Kinoshita and Campos, 2003; Carstensen and Toubal, 2004; Fung et al., 2008; Furceri and Borelli, 2008; Leibrecht and Scharler, 2009). The former could deter foreign investors from investing in a country because of a potential failure to reap the returns on their investment due to disruption of their activities in the case of political instability. The latter could deter foreign investors because it increases uncertainty, making it more difficult for them to plan long-term and predict the market demand for their goods. However, in addition to the uncertainty stemming from macroeconomic factors which can affect FDI, there is additional inherent uncertainty in transition economies. Transition is associated with changes in the legal and regulatory framework (e.g. labour market regulation and property rights), government policies (e.g. pattern and level of taxation) and fundamental changes in the whole economic system, i.e. the establishment of new institutions appropriate for a market economy.

This uncertainty effect appears to be one of the reasons why the speed of reform needs to be taken into account when investigating FDI in this group of economies. As discussed in Section 2.2, the importance of the quality of the economic system and its institutions, policies and legal environment as crucial location factors is stressed by Dunning's OLI paradigm (Dunning and Lundan, 2008). The empirical literature on FDI in transition has tended to contextualise these factors in terms of the

extent of the rule of law (Kinoshita and Campos, 2003; Kaditi, 2010); progress in institutional and legal reform towards a market economy (Carstensen and Toubal, 2004); or level of regulatory quality, government effectiveness and control of corruption (Kaditi, 2010). Underlying this approach is the argument of North (1990) about the importance of a clear and business-friendly legal framework and the institutions which ensure the rule of law lays in facilitating economic interactions by "setting out the rules of the game" of a market economy. Lack of these, on the other hand, increase uncertainty and contract enforcement costs (Meyer, 2001). In addition, weak institutions can be associated with corruption which is conventionally argued to further increase uncertainty and the costs of foreign investors in the country (Schleifer and Vishny, 1993) and hence deter them from investing. Nevertheless, corruption has been argued to potentially be less of a deterrent in the transition context if it serves to bypass regulations and institutions from the previous system which are not appropriate for a market economy, even though it still increases costs and uncertainty (Meyer, 2001). More generally, in addition to the quality of institutions and speed of reform, foreign investors are likely to be influenced by the level of economic liberalisation a country has reached (Heriot et al., 2008). Namely, they are likely to prefer countries where the government both protects the freedom of economic agents (e.g. free movement of goods and capital, property rights), and refrains from distorting it (e.g. through corruption and excessive bureaucracy). Related to this is another factor specific to transition: the extent of privatisation of state/socially-owned enterprises, especially that of state-owned monopolies. As discussed in Section 1.2, government policies with regard to the method and speed of privatisation may be able to influence FDI both directly through determining the opportunities for foreign investment to take place (e.g. sale vs. management and employee buy-out), and through signalling to foreign investors the level of commitment to establishing a market economy.

Finally, FDI theories reviewed in Chapter 2 recognise language and institutional and cultural proximity as factors that facilitate communication, decreasing transaction costs and hence positively influencing inward FDI. In this context there are likely to be differences between market economies and transition economies specifically due to historical reasons. Firms in the centrally-planned system operated in an environment where the availability and price of production resources, the type and

level of output supplied and the price and buyer of this output were set by a stateestablished central plan. In such an environment, the role of the managers was quite different from that of their counterparts in a market economy and there was little incentive to provide quality products and ensure customer satisfaction (Suutari and Riusala, 2000). Therefore, once the market reforms began, local businesses and their managers lacked the experience and knowledge required to operate effectively in a market economy. This can deter foreign investment in transition economies because, among others, it increases the negotiation costs of the foreign affiliate (Meyer, 2001). This type of uncertainty, however, is expected to decrease as transition progresses as managers/employees of indigenous firms gain knowledge of operating in a market economy, both through formal business education and on-the-job experience and due to spillovers from foreign investors. Another major type of uncertainty related to investment in transition economies, Benacek et al. (2000) argue, is that which stems simply from foreign investors' lack of experience in operating in these economies, considering that the majority of them had virtually no FDI prior to the transition process. This type of uncertainty is, too, likely to be reduced with time, the speed of this process depending on level of investment undertaken in earlier periods. Hence, in this sense, the effect of previous FDI in the country, discussed in Section 2.2, is likely to be stronger in the context of transition economies compared to other countries, which makes it especially important to control for previous foreign investment in the country.

Another related determinant of FDI that can be argued to be especially relevant in European transition economies is the presence of ethnic networks. Recent economic research suggests that the presence of migrants from the host country (i.e. foreign investor's destination) in the source country (i.e. source of foreign investment) has a positive effect on the host country's level of FDI inflows (Kugler and Rapoport, 2007, 2011; Javorcik et al., 2011). Based on the international trade literature, this research argues that the presence of ethnic networks serves to overcome informal barriers such as those related to language and culture, and to reduce information asymmetry that the foreign investor faces when investing abroad (e.g. regarding consumer preferences, contract negotiation and enforcement). Similar to the arguments about agglomeration economies, it is argued here that the presence of ethnic networks can be especially relevant in the case of European transition

economies. First, foreign investors, which tend to be from developed countries, are faced with a higher level of information asymmetry because they have had no, or little, economic relations with European transition economies during the previous system. Second, foreign investor are faced with different (or lack of) business experience of local firms, different work norms of employees, and a different- and changing- institutional framework, as a result of which more local knowledge is likely to be required.

Finally, the level of infrastructural development, which appears to be "taken for granted" in developed economies, is frequently included as determinant of FDI in empirical studies of developing and transition economies (Urata and Kawai, 2000; Campos and Kinoshita, 2003; Palit and Nawani, 2007; Bellak et al., 2009). Bellak et al. (2008) argue that the level of development of transport and communication infrastructure is typically lower in transition economies than in developed economies and it can directly affect the level of productivity that foreign investors can achieve in a host country. As such, the extent and quality of the infrastructure affects the potential profitability of locating in a host country and should be taken into account in empirical analyses of FDI in transition countries.

Thus, empirical studies of FDI in transition economies, in additional to generic FDI determinants, should take into account the political and economic risk associated with operating in these countries and institutional factors such as the legal framework and rule of law, corruption, the speed of the reform, the method and speed of privatisation, and the level of economic freedom. Also, the business experience of indigenous firms and the experience of foreign investors in operating in a transition economy should reduce the latter firms' transaction costs, so FDI should be expected to increase with time and with the level of previous FDI. Finally, the level of physical infrastructure, both in terms of transportation and communication, can affect the profitability of foreign investment and should be taken into account.

4.4 Conclusion

This chapter has argued that firms seeking to gain a competitive advantage through higher productivity should prefer employees with more human capital, and this is especially likely to apply to foreign investors. However, the productivity-enhancing effect of human capital is likely to attract FDI only to the extent that it is translated into firm profitability, i.e. it is not fully paid for. The human capital valued in the labour market appears to consist of both cognitive- and non-cognitive skills, at least partly developed through formal education. Further, this chapter has argued that the characteristics of human capital that are productivity-enhancing in a market economy are likely to be even more important in a transition context. On the other hand, it has been argued that education under central planning differed in many respects to that of market economies and is likely to have produced inadequate and inappropriate skills for such economies. Hence, it was argued that measures of human capital in transition economies should take into account the proportion of general vs. vocational educational attainment and the vintage of the human capital stocks of transition economies. For the same reasons, the chapter has argued that, in transition economies, it is the participation rates of younger cohorts in education and the quality of that schooling that are likely to be relatively more important to foreign investors. Further, considering the imperfections of measures of education in these economies in particular, the chapter proposes additional measures of human capital which measure directly the level of cognitive skills and the availability of skilled labour. Finally, the chapter has identified FDI determinants which are either specific to transition, or likely to have a more pronounced effect in this context: economic and political risk, institutional factors, physical infrastructure and previous FDI in the country. The analyses in this chapter will be used to specify the models for the empirical investigations to be undertaken in Chapters 5 and 6.

Chapter 5

Contents

5.1 Introduction	172
5.2 Specification of the variables and data	172
5.2.1 The dependent variable(s): FDI measures	172
5.2.2 Human capital measures	177
5.2.3 Control variables	184
5.3 Empirical approach	197
5.4 Estimated results	
5.4.1 Diagnostic testing: Choosing the appropriate estimators	
5.4.2 Estimated results	
5.5 Robustness check: A FDI stock adjustment model	214
5.6 Conclusion	219

5.1 Introduction

Chapter 2 of this thesis provided an overview of theory which has served to identify country-specific locational factors that are expected to determine inward FDI and assessed theoretical arguments (based on growth theory) for human capital being one of them. However, a review of empirical studies in Chapter 3 found only limited support for the hypothesis that a country's human capital endowment positively affects the levels of FDI it receives. The review of empirical evidence in Section 3.2 revealed inconclusive results, whilst the meta-regression analysis presented in Section 3.3 failed to find an overall 'genuine' effect of human capital on FDI. One potential explanation for these findings has been argued to be the lack of a sound theoretical framework to link human capital to FDI, resulting in potentially misspecified empirical models in many of the previous studies. Accordingly, the discussion presented in Section 4.2 analysed in more detail the possible mechanisms underlying the relationship between human capital and FDI with the aim of providing guidelines for an empirical investigation and Section 4.3 provided a contextualisation of this discussion for European transition economies. Based on the analyses presented in Chapters 2 and 4, this chapter specifies an empirical model to estimate the effect of human capital on FDI in European transition economies and reports the results from various panel estimators, using different human capital and FDI measures.

The rest of this chapter is organised as follows. Section 5.2 provides a critical discussion of the choice of measures for the empirical specification which draws on the analyses undertaken in Chapters 2 and 4. Section 5.3 discusses the choice of estimation techniques to be used in this investigation. The diagnostic tests and empirical findings from different estimators are presented in Section 5.4, while a robustness check of these models estimated in a stock adjustment framework is conducted in Section 5.5. The last section summarises the results and provides guidelines for the further empirical work presented in Chapter 6.

5.2 Specification of the variables and data 5.2.1 The dependent variable(s): FDI measures

The theoretical analyses in Sections 2.4 and 4.3 provided a number of potential determinants of inward FDI to be used in this empirical investigation. In the

empirical analyses presented later in this chapter, both FDI flows and stocks are used as the dependent variable. The definitions of these measures and the appropriateness of using each of them in this empirical investigation are discussed in the rest of this sub-section.

The initial dependent variable in the investigation is the level of net annual FDI inflows (measured in current USD)³¹ provided by UNCTAD (2010b), based on IMF's Balance of Payments Manual 5 (IMF, 1993) and OECD Detailed Benchmark Definition of FDI (OECD, 1996). As explained in Section 1.2, according to this definition FDI inflows recorded in the balance of payments include both the initial transaction as well as subsequent transactions between the foreign investor and its affiliates. Accordingly, the FDI inflow data used here include the following components: new equity capital of the enterprise purchased by the foreign investor; the part of the affiliate's reinvested earnings accruing to the foreign investor; and intra-company loans between the foreign investor and its affiliate (UNCTAD, 2010b). Bellak et al. (2008) argue that a flow measure of FDI is more appropriate for empirically investigating FDI determinants in European transition economies because: a stock measure may change due to changes in valuation of already existing stock; a flow measure typically includes reinvested earnings; and the role of local financing (which would be reflected in the stock measure) is typically low in host European transition economies.

Data on FDI inflows in UNCTAD (2010b) is presented on a net basis, i.e. as the difference between credits and debits in the capital transactions between the foreign investor and its affiliate enterprise (IMF, 2009, pp. 107-8). Effectively this means that divestment in the form of repatriated profits, loans to parent enterprises or repayment of inter-company loans are deducted from new FDI inflows³². As the purpose of this analysis is to explain investment decisions in terms of locational factors, and these forms of divestment are unlikely to be explained by such factors

³¹ The use of USD is not expected to affect the results because any changes in the valuation of stocks that may exist due to exchange rate variability are picked up by the time dummies since they are expected to be universal across countries. The 'universality' of ER shocks is automatic in the case of the countries that have the same currency, i.e. Euro, and those whose currencies are pegged against the Euro; and it is expected to hold also for countries with floating exchange rates assuming that their exchange rates with the Euro and US Dollar will move together due to arbitrage effects.

 $^{^{32}}$ In the case of banks, however, deposits, bills and short-term loans between the direct investor and its affiliate are excluded (UNCTAD, 2010b).

except for the share of reinvested profits, *gross* FDI inflows appear to be the more appropriate measure. However, this measure could not be used because it is not reported by UNCTAD. Other concerns related to the FDI measure are those related to the comparability and overall quality of FDI data are discussed below.

Comparability of FDI data can be hampered if there is discrepancy between the reporting practices of individual countries or the threshold for distinguishing direct investment from other investment, i.e. if the 10% threshold recommended by IMF and OECD is not adopted (Duce, 2003). The first type of problem usually happens due to lack of data on reinvested earnings, since these do not involve cross-border transactions and FDI data is usually collected primarily from foreign exchange records of central banks (Zhan, 2006). However, this appears to be less of a problem for the sample of countries used in this investigation. Fujita (2008, p.112) records that in 2006 all the countries included in this sample report all components of FDI, except for Albania which does not report reinvested earnings. Another concern with FDI inflow data is the overestimation that may result from the so-called 'roundtripping' or 'trans-shipping' which is not translated into economic activity in the host country, but is channelled either back to its originating country or to a third country through special purpose entities (UNCTAD, 2006). UNCTAD (2006, 2007 and 2010a) provides examples of countries where round-tripping is believed to be account for a significant portion of FDI, among which are transition economies such as China and Russia but none of the European transition economies included in this empirical analysis.

Dunning and Lundan (2008) further note that FDI (stock and flow) data merely represent a proxy for the direct activities of foreign investors, because their foreignbased affiliates also use financing from other sources and are involved in nonownership-based activities. Though in the case of transition economies which, as discussed in Sections 1.2 and 4.3, were/are relatively capital-scarce and where local firms do not have the experience of operating in a market economy, these factors are likely to be relatively less distorting. A bigger concern in this study, however, is the use of aggregate measures of FDI. In Chapter 2 it was argued that the determinants of FDI vary depending on foreign investors' motivation and/or sector of economic activity. Hence, use of aggregated FDI data at country level is likely to be the single most important limitation of macro-level studies of FDI determinants. Therefore, in empirical analyses presented in this chapter proxies are used to control for FDI in the primary and financial sectors where, as argued in Section 6.3, the effect of human capital is likely to be relatively small.

Finally, some empirical studies of FDI determinants use stock data in a partial stock adjustment framework where foreign investors adjust their stock of investment towards their equilibrium or desired level (Jun and Singh, 1995; Cheng and Kwan, 2000a; Kinoshita and Campos, 2006; Riedl, 2010). Similarly, Bajo-Rubio and Montero-Muñoz (1999) and Martinez-Martin (2009) argue that stocks are a better measure of FDI, based on the assumption that foreign investors' strategies are long-run phenomena which may not be properly captured by (relatively volatile) annual investment.

Cheng and Kwan (2000a) also favour stocks as a better measure of FDI, though on the grounds that profitability of investment depends on "the marginal return to capital, which is generally a decreasing function of the stock of capital" (p. 382). However, considering the agglomeration effects that are expected in the case of FDI, discussed in Section 2.2, and the potential effect of the experience of foreign investors gained in a transition context, discussed in Section 4.3, it is also plausible that, in the time period under discussion, the marginal return to (foreign) capital is an increasing function of the previous stock. Thus, whilst not necessarily in the manner originally proposed by Cheng and Kwan, previous FDI stock is likely to be relevant for current investment.

Another argument in favour of using FDI stocks as the dependent variable is provided by Dewit et al. (2009). According to these authors, stock measures of FDI are preferable to flow measures when estimating the effect of independent variables that "adjust only in the medium or long run" because flows are short-run measures which tend to fluctuate heavily (Dewit et al., 2009, p. 102). This argument appears to be particularly relevant for the empirical investigations in this thesis, considering that the human capital measures used are likely to change slowly over time, as explained in the rest of this chapter.

Based on the above arguments in favour of a stock measure, both types of measures of FDI are used in this chapter's empirical analysis. Before undertaking this analysis, however, the correlation between stock and flow measures was checked both across countries and for each country individually across time. Across countries, current flows of FDI appear to be very highly correlated with both current and lagged stocks of FDI³³, as suggested by the (average) correlation coefficients of 0.9 and 0.85, respectively. These correlations appear to suggest that there are increasing short-run marginal rates of return to capital, as inflows appear to be larger in countries that already have large stocks of FDI. This is also suggested by the positive correlation between flows and (current and lagged) stocks of FDI across time, though the magnitude varies in different countries (Table 5.1 below).³⁴

	Stocks	Lagged stocks
Across countries	0.9	0.85
(average 1994-2008)		
Within countries		
(1994-2008)		
Albania	0.97	0.96
Bosnia and Herzegovina	0.73	0.54
Bulgaria	0.94	0.97
Croatia	0.88	0.91
Czech Republic	0.51	0.39
Estonia	0.88	0.84
Hungary	0.67	0.48
Latvia	0.66	0.48
Lithuania	0.78	0.72
Macedonia, FYR	0.73	0.62
Poland	0.87	0.68
Romania	0.97	0.89
Slovak Republic	0.44	0.31
Slovenia	0.55	0.4

Table 5.1: Correlation between FDI flows and stoci	on between FDI flows a	Correlation	e 5.1:	Table
--	------------------------	--------------------	--------	-------

Source: Own calculations based on UNCTAD (2010b)

³³ Correlations of FDI inflows with the previous year's stock is also estimated because of expected agglomeration economies (discussed in Section 2.2)

³⁴ In countries such as Albania, the correlation is exceptionally high, partly because the initial stock of FDI is very low.

In the following empirical analysis, specifications with FDI stocks as a dependent variable are estimated as a robustness check and the results presented in Section 5.5.

5.2.2 Human capital measures

The results of the meta-regression analysis presented in Section 3.3 suggest that the estimated effect of human capital on inward FDI is smaller in transition economies compared to any other sample. It was argued there that this finding may be due to a lower quality and/or relevance of the skills developed under communism in a market economy (discussed in Sections 1.4 and 4.3) or alternatively by the choice of human capital measures employed in FDI studies in transition economies. Therefore the rest of this section provides a critical review of the human capital measures for which comparable data is available to inform the choice of measure(s) in this empirical analysis. The possible ways to control for the characteristics of education provided under communism that may affect an expected conventional relationship between human capital and FDI are also considered.

Table 5.2 below presents the measures of human capital available for European transition economies. Measures referring to literacy rates and enrolment and completion rates at primary/compulsory education level are unlikely to be able to discriminate between levels of human capital in European transition economies because these are universally high across countries and across the period covered in this study (see Appendix 5.1 for the descriptive statistics). Therefore, measures related to non-compulsory, i.e. upper-secondary and tertiary, education appear to be more appropriate in this context. The choice of secondary education variables appears to be in contradiction with the MRA results (Section 5.3) which suggests that the use of such measures yields lower estimated effects on FDI. However, as argued in Section 5.3, this may be due to differences in the exact education level (e.g. lower-, upper-, or all secondary education) or differences in the type of secondary education provided (e.g. quality, mix of general-vocational education, or duration of studies) and there seem to be no theoretical rationale for secondary education being less valued by foreign investors compared to other levels of education.

Table 5.2: Human capital measures for European transition economies

Source/Measure

WDI (2010)

Literacy rate

UNESCO (2010)

Gross- and net- enrolment rate in primary education (ISCED 1) Gross- and net- enrolment rate in secondary education (ISCED 2+3) Gross- and net- enrolment rate in tertiary education (ISCED 5+6)

UNICEF (2010)

Gross enrolment rates in compulsory education (ISCED 1+2) Gross enrolment rates in upper-secondary education (ISCED 3) Gross enrolment in general upper-secondary education Gross enrolment in vocational/technical upper-secondary education Students enrolled in tertiary education (ISCED 5+6) Students enrolled in tertiary education per 100,000 inhabitants

Barro and Lee (2010)

Percentage of population who have completed primary education Percentage of population who have completed secondary education Percentage of population who have completed tertiary education Average number of years of schooling attained by population

Hanushek and Woessmann (2009a)

Level of students' cognitive skills Share of top-performers in cognitive skill tests

Note: UNESCO's (2006) International standard classification of education (ISCED) classifies levels of education as follows: pre-primary (0); primary (1); lower-secondary (2); upper-secondary (3); post-secondary non-tertiary (4); tertiary, first stage (5); and 6 tertiary, second stage (6).

As discussed in Section 3.2, previous studies tend to represent a country's human capital by only one measure of human capital, however this does not appear theoretically justified. The inclusion of different measures can identify the relative importance of different types/quality/levels of skills to foreign investors. For instance, following the work of Hanushek and Woessmann (2009a), the effect of direct measures of cognitive skills vs. level of education attained can be compared. Similarly, following the work of Vandenbussche et al. (2006), Soukiazis and Cravo (2008), Di Liberto et al. (2011), Cosar (2011) and Acemoglu and Autor (2012) in economic growth theory, the (relative) effect of specific levels of education can be compared. Accordingly, in the empirical analyses presented in this thesis two volume

measures of human capital are included in the baseline model, which is later augmented with other measures, as discussed in the rest of this chapter. Following the contribution of Acemoglu and Autor (2012), the level of task complexity can be argued to be an additional human capital variable in the empirical analyses in this thesis. However, a proxy for task complexity similar to Acemoglu and Autor's does not appear to be available for European transition economies. Moreover, as argued previously in Section 2.3, it is not clear that such a task-based approach is appropriate in a macro-level FDI study.

As for the choice between stock measures which refer to the population residing in a country and flow measures which refer to (annual) enrolments in education, it appears that the former provide a more appropriate measure for human capital endowment because they provide information on the total amount of formal education (i.e. human capital) that is potentially available for employment (Le et al., 2005; Islam, 2009) and not just the cohorts that are currently being educated. Considering the arguments above, the human capital measures considered in this study are the percentage of population (aged over 15) who have completed secondary education, and the percentage of population (aged over 15) who have completed tertiary education (**TERTedu**), as their highest level of education³⁵. However, first it should be noted that this secondary education measure as defined in the original Barro and Lee (2010) appears to be an imperfect measure of the percentage of population who have completed secondary education because it excludes the portion of population who have completed secondary education and have continued to complete tertiary education. In this case, a *higher* value of share of population with secondary education in a country could arise merely because a smaller percentage of the population have completed also tertiary education, thus actually representing a *lower* level of human capital. Accordingly, a new measure is calculated as the sum of the percentage of population who have completed secondary education and that of the population who have completed tertiary education which

³⁵ As this measure refers to the highest level of education attained, the use of the percentage of population who have completed primary education as a human capital measure would be very misleading in the case of European transition economies where educational attainment is generally high. Namely, in this context where the proportion of population without any education is uniformly low (Barro and Lee, 2010), a higher percentage of population who have completed primary education would actually mean that a smaller proportion of the population have completed higher levels of education, i.e. it would represent a lower level of human capital.

will be used to measure *the total share of population who have completed secondary education* (*SECedu*). However, further problems/limitations remain with the Barro and Lee education data.

First, they do not provide data on the development of human capital outside of formal schooling, which is expected to account for a significant proportion of human capital for two reasons. As explained in Section 4.2, research argues that skill formation starts early in childhood and this age is important because skill formation exhibits multiplier effects. In addition, evidence suggests that formation of both cognitive, and non-cognitive, skills continues after formal schooling (Heckman et al., 1999; Brunello and Schlotter, 2011), which appears to represent a major limitation of these measures. This limitation could be overcome to some extent by adding a proxy for the level of at least formal training, but such data do not appear to be available for the sample of European transition economies investigated here.

Second, education data presented in Barro and Lee (2010) are not (necessarily) observed values of the variables, but estimates of these through backward or forward extrapolation based on benchmark data available from censuses/surveys and enrolment data. As a result, the data suffers from measurement error, which introduces a new component into the error term. The correlation of the error term and the explanatory variables, in turn, can cause biased and inconsistent estimates (Gujarati, 2004, pp. 526-27; Baum, 2001, pp. 216-17). Accordingly, the use of (previous versions of) Barro and Lee data have been argued to cause bias in economic growth regressions, especially when differenced values are used (Krueger and Lindahl, 2001; de la Fuente and Doménech, 2006; Cohen and Soto, 2007; Portela et al. 2010). However, in the most recent version of the data this measurement error has been reduced and the reliability of the data, both in levels and in changes, has been shown to have improved (Barro and Lee, 2010, p. 4, 12-13). Considering this, and the lack of other (superior) sources of stock education variables for the sample of countries covered in this sample, the data of Barro and Lee (2010) appears to be the best available dataset for the purpose of this empirical analysis.

Finally, as Barro and Lee (2010) only provide data in 5-year intervals, an estimation of the between-values is needed in order enable the use of the maximum number of possible observations in this empirical investigation. As the "true" missing values are
unlikely to be more related to any other variables than to the actual data points available, interpolation of the data was considered to be more appropriate than multiple imputation based on other variables. Linear interpolation based on the time variable also seems a reasonable solution since *SECedu* and *TERTedu* are stock variables which vary smoothly over time and are typically expected to follow an increasing trend. Hence, constant growth of these variables within the 5-year periods was assumed and the between-values were obtained by linear interpolation³⁶. This practice was previously used with Barro and Lee data by numerous studies (e.g. Chen, 2004; Apergis, 2009; Seck, 2009; Shirotori et al., 2010). However, it is recognised here that this procedure exacerbates the measurement error already present in the Barro and Lee data and the potential endogeneity bias that this could cause.

The analysis in Chapter 4 suggests that general (upper) secondary education is likely to be superior in developing the type of skills that appear to be valuable in a modern market economy. In this sense, it may appear that Kinoshita and Campos (2003) chose an appropriate measure for human capital: the enrolment rate in *general* secondary education. However, in addition to referring only to current students, the use of this measure alone is also unlikely to be a good measure of the total human endowments of a country by virtue of totally disregarding capital vocational/technical enrolments. An overview of the data on upper-secondary enrolments by type of education in Section 1.4 revealed considerable variation in the general-vocational mix of upper-secondary provided both across countries and across time (which is not necessarily related to changes in total enrolments). This means that the use of general (or vocational) secondary measures alone could seriously distort the estimated effect of human capital on FDI. Based on general secondary figures, for instance, Hungary one of the fastest reformers and a country attracting relatively higher-value added FDI (Ernst & Young, 2011) but with a high share of vocational enrolments, is relatively less endowed with human capital compared to Albania which is a relatively poor performer but has drastically expanded general education at the expense of vocational education. This becomes a problem once it is recognised that the mix of education provided is unlikely to be exogenously

³⁶ The interpolation was conducted using the *ipolate* command in Stata, whereby *secedu* and *tertedu* are specified to be a function of the *time* variable. This essentially fits a linear trend between each two observed years, i.e. here between years 1995 and 2000, 2000 and 2005 and 2005 and 2010.

determined. Namely, it is reasonable to expect that the "survival" of vocational education in Hungary is observed because the skills it provides are demanded by the labour market which, in turn, may potentially be attributed to the successful reform of its education system. This is consistent with evidence of changes within vocational education programmes (e.g. substitutions of engineering programmes with business ones) discussed in Section 1.4 in the few European transition countries that have maintained relatively high shares of vocational enrolments. Considering the arguments above, *the general-vocational ratio at the outset of transition* (*genvocratio*), and not throughout the whole period of study, is used here as a control for potential effects of the mix of education. The ratio of general-to-vocational enrolments is calculated using data from the TransMONEE database (UNICEF, 2010).

The analyses in Section 4.3 also suggest that the communist education systems differed from those of developed economies in many ways and they may have developed skills and traits that may be irrelevant or even 'productivity-constraining' in a modern market economy. Therefore, it may be especially important to consider the 'vintage' of human capital stock in the case of European transition economies because foreign investors may value human capital developed under communism relatively less than that developed during transition in a (presumably) reformed and more market-responsive education system. To control for potential vintage effects, two proxies were developed aiming to represent the percentage of the workforce that was (at least partly) educated after the beginning of transition. The first proxy, edutr1, is a time-invariant variable representing the share of population aged 16-30 in a country's working age population in 2008, considering that these generations were educated in the communist system only up to (lower) secondary education (i.e. up to age 14) or less using WDI (2010) data³⁷. The second proxy, edutr2, is a time-variant variable calculated as the share of population who were educated in the communist system only up to age 12 or less in a country's working

³⁷ This variable was calculated by dividing population aged 0-14 at the outset of transition (year 1992) by the population aged 15-64 in 2008. Because data was available for the age group 0-14 as a whole, this variable could not be calculated for earlier years because this would also capture generations educated under the communist education system, e.g. those aged 0-14 in 1986 include individuals who were 14 in 1986 and thus completed education before transition began.

age population in the respective year using Barro and Lee's (2010) and WDI (2010) data³⁸.

Further, it was argued in Chapter 4 that traditional measures of educational attainment are imperfect because they fail to account for differences in the quality of education provided and the formation of cognitive skills that takes place outside formal education. In this respect, it was argued that direct measures of cognitive skills may provide more relevant information on a country's human capital to potential foreign investors. Accordingly, a standardised measure of cognitive skills (cognitive) developed by Hanushek and Woessmann (2009a) from maths and science scores in International Student Achievement Tests (such as PISA and TIMSS discussed in Section 1.4) is also used in this analysis³⁹. This measure was chosen as opposed to individual PISA and TIMSS scores in order to maximise the sample size, since some European transition countries have participated in only one of the studies⁴⁰. As there is only one observation per country available for the standardised measure of cognitive skills, the level of cognitive skills (and quality of education it proxies) is effectively treated as time-invariant. This is a limitation because, as discussed in Section 1.4, there is considerable variation in some of the transition economies' scores (e.g. Bulgaria and Poland), despite the general expectation that educational reform is likely to take considerable time to take affect educational outcomes. From an empirical point of view, the estimation of this variable may become a problem if fixed effects estimators are used, an issue which is addressed later in Section 5.3.

As explained in Chapters 1 and 2, it has been previously argued that the share of students performing at the top end of the distribution in International Student Achievement Tests, i.e. those that can thoroughly evaluate information, is of

³⁸ First, the population in the relevant age groups in years 2000, 2005 and 2010 (15-20, 15-25 and 15-35, respectively) were obtained from Barro and Lee (2010) and divided by the working age population (WDI, 2010) in the respective years. Then linear interpolation was used to obtain the annual values for the period 2000-2010.

³⁹ The international tests used by Hanushek and Woessmann (2009) include: First International Mathematics Study (FIMS); First International Science Study (FISS); Second International Mathematics Study (SIMS); Second International Science Study (SISS); Third International Mathematics and Science Study (TIMMS); Programme for International Student Assessment (PISA). Though, the countries covered in this sample have participated only in (one or both) of the last two.

⁴⁰ The International Adult Literacy Survey (IALS) scores were argued in Chapter 4 to represent an even more appropriate measure of cognitive skills for the purpose of this analysis since it is based on a sample of working-age population, however this could not be used as only four European transition economies were included.

particular importance in a knowledge-based economy. An analogous measure for the workforce of a country may be particularly important to foreign investors to the extent that they are able to attract the most able individuals, an assumption that appears to be reasonable considering that they pay higher wages than their local counterparts, as explained in Sections 1.2 and 2.3, Accordingly, another variable from Hanushek and Woessmann (2009a), the share of top-performers⁴¹ in a country, *top*, is used as an additional measure of human capital which is intended to proxy for the share of individuals at the top of the skill distribution of the workforce.

Finally, as discussed in Chapter 4, a new measure of human capital is proposed in this analysis which provides information on the balance between the demand and supply of skilled workers. This measure, *vacancy*, is calculated as *a country-average* of the length of period required for filling a vacancy for a skilled worker as reported by firms already operating in the economy in EBRD-World Bank's Business Environment and Enterprise Survey (BEEPS, 2002, 2005; interpolated for in-between years in the same manner as the Barro-Lee data on education). Vacancies for skilled workers as opposed to those for managers and professionals were chosen because it was considered that these workers are likely to be more relevant to foreign investors. This argument is based on the assumption that it is relatively easier and/or inexpensive for foreign investors to hire expatriates in the top-management positions which are fewer in number; and that the category of professional workers is likely to be dominated by teachers and doctors, professions which are unlikely to be relevant for a foreign direct investor in the manufacturing sector. However, as explained in Section 4.3, this skilled-worker vacancy duration measure is limited in that it depends crucially on the current structure of the economy and the technological level of the firms currently operating on the economy and may not necessarily reflect the availability of type of skilled employees that foreign investors seek. This problem is partly addressed in the next chapter by calculating specific values of this variable for each industry.

5.2.3 Control variables

The review of generic FDI theories in Chapter 2, in conjunction with the discussion of the transition context in Section 4.3, have identified a range of factors that are

⁴¹ Hanushek and Woessmann take a score of 600 points or one standard deviation above the OECD mean as a threshold for superior performance.

theoretically expected to affect FDI inflows in European transition economies. Drawing on these discussions, a list of key control variables to be included in the model is now provided, together with a critical discussion of the respective measures available. Due to degrees of freedom considerations, an attempt was made to keep the number of controls in the model as small as possible, which has also sometimes affected the choice of controls and/or measures used for them.

The level of labour costs was recognised by many FDI theories reviewed in Section 2.2 as a potential determinant of the profitability, and hence, location decisions of foreign investors⁴². In Section 4.3 it was further argued that the effect of the level and quality of human capital in a host economy is expected to attract foreign investment to the extent that its relative cost is not higher than in other economies. Therefore, the cost of labour is controlled for in this empirical investigation using *the* average gross wage paid in the host country, wage, as reported by WIIW (2011). As explained in Section 1.4, this measure has the disadvantage of excluding non-labour costs (e.g. contributions to social security) and therefore does not account for the whole amount of labour costs borne by the foreign investor. However, in the absence of data for European transition economies on any alternative measures, the average gross wage is used here as a measure for labour costs. In empirical analyses with a focus on the relationship between the availability of *skilled* labour and inward FDI, an average wage measure is imperfect because it does not necessarily reflect the price of skilled labour, particularly if there are skill shortages in a country. The distribution of earnings as measured by the Gini coefficient, gini (UNICEF, 2010), was initially used in this empirical investigation as a proxy for the relative wages of skilled labour. This was done following arguments and empirical evidence according to which the increase in the premium of skill and educational attainment during the transition period, i.e. the decompression of wages discussed in Section 1.4, was the main factor driving the widening of wage differentials in transition economies (Orazem and Vodopivec, 1997). However, upon reflection it was decided that this is an imperfect proxy because higher earnings inequality may reflect the *relative wages* of skilled workers, which it was intended to proxy, but will also reflect the

 $^{^{42}}$ As explained in Section 4.3, labour costs have been sometimes used as a proxy for human capital, however this was argued to be inappropriate and therefore in this analysis it is considered as a control variable.

proportion of skilled workers in the workforce, and therefore it effect is a priori ambiguous.

The size of the host market was identified in Section 2.3 as one of the key determinants of inward FDI, in particular in the case of market-seeking investment. In empirical studies this has been measured either by a country's size of population (Meyer, 1996) or GDP (Furceri and Borelli, 2008), or by market growth, i.e. growth rate of GDP (Agiomirgianakis et al., 2006). Alternatively, or in addition, GDP per capita levels have been used as a measure of purchasing power of the population (Furceri and Borelli, 2008). In the empirical analyses in this thesis, the size of the host market is measured by its level of GDP, *gdp*.

Some authors argue that foreign investors may not be only interested in the host country's market, but also its *access to other markets* (Head and Mayer, 2002; Carstensen and Toubal, 2004). Taking into account the size of the adjoining countries seems to be especially relevant in the empirical analysis presented in this thesis considering that the sample is mostly comprised of small and highly open economies. Carstensen and Toubal (2004) have done this by using the host country's *potential market size*, measured as an average of the host market and its neighbouring markets weighted by the inverse of the costs of transportation between them. A similar measure, but using the distance between countries' capitals in lack of data for transportation costs, has been considered in this empirical analysis. However, the assignment of either of these weights appears to be arbitrary and depends on the way distance/cost is measured; for instance, the adjoining markets are going to have larger weights if miles are used instead of kilometres. Therefore after careful consideration, it was decided to use only the *gdp* measure for market size.

Natural resource endowments were identified in Section 2.3 as potential determinants of FDI. In addition to a country's human capital endowment, which is the focus of investigation, endowment of natural resources is controlled for in this model. The presence of this control is particularly important when estimating the human capital-FDI relationship because, as argued in Sections 6.3, natural resource driven-FDI is likely to be relatively less attracted by the level and quality of host countries' human capital. The availability of natural resources is intended to serve as a control for the level of resource-seeking FDI a country receives. Previous studies

of FDI in transition economies have used different measures of natural resources. For instance, Deichmann et al. (2003) and Kinoshita and Campos (2003) use a measure developed by De Melo et al. (1997) to distinguish between three levels of natural resource endowment (poor, moderate and rich); Shepotylo (2010) uses proven oil and gas reserves by BP (2010); Cuervo-Cazurra (2008) use a dummy variable to indicate oil-producing countries; and Vavilov (2005) uses annual levels of oil production. However, all these measures appear to have drawbacks, especially when considering the rationale for their inclusion in this particular empirical analysis. First, few European transition economies have significant oil/gas reserves; for most of them, other natural resources such as ores and metals are likely to be more important. In addition, for the purpose of this study, i.e. where natural resources are intended to proxy for the (actual) level of resource-seeking FDI, measures of utilisation of natural resources rather than reserves are likely to be more appropriate. Based on these arguments, an alternative measure for natural resources (primexport) is calculated which indicates the share of primary commodities, excluding food items and agricultural raw materials, in total exports (based on UNCTAD, 2010c). A similar measure, exports of raw materials as a share of GDP, has been previously used by Sachs and Warner (1995) and Ali et al. (2010).

In a similar manner, it is argued in Section 6.3 that *FDI in the financial sector* is market-driven and it is less likely to be affected by human capital availability in the host country. To control for this particular type of market-seeking FDI, the share of foreign banks in the economy (*forbank*) as reported by EBRD's Transition Reports (EBRD, various years) is included as a proxy for the level of FDI that a country received in the financial sector. An alternative measure available from EBRD, the market share of foreign banks (as measured by the share of their assets in total bank assets in the country), was considered more appropriate, but significantly fewer observations were available.

Trade costs are another factor which is likely to affect FDI, as suggested by the theory reviewed in Section 2.2. In theory, the effect of trade costs is ambiguous: FDI can provide a substitute for trade in the case of market-seeking FDI, but these two can also be complementary, especially in the case of efficiency seeking FDI where, for instance, intermediate products need to be imported and/or final products

exported. Ideally, the measure of trade costs would include transportation costs, tariff costs and non-tariff barriers. However, data on transportation costs are not available for the sample of countries included in this analysis. Previous FDI studies covering CEECs have used the share of tariff revenues in the total value imports provided by the EBRD Transition Report (EBRD, various years), but have found it to be insignificant and argued this to be because of the generally low tariff rates (Bellak et al., 2008; Leibrecht and Scharler, 2009). Alternatively, the trade freedom component of the Economic Freedom Index (EFI) by Heritage Foundation (2010) can be used. The latter has the advantage of taking into account both tariff and non-tariff restrictions, such as direct government intervention and quantity, price, regulatory and customs restrictions. Because of this, the better availability of data and considering the low variability in the share of tariff revenues in imports across these countries and time period, the trade freedom component of the EFI (tradefree) is used in the empirical analysis presented in this chapter. As explained later in this section, other components of this index (excluding investment freedom) are also used in this analysis as a measure of economic freedom in general. The reason why the component of trade costs in particular is entered as a separate variable is that, as explained above, the effect of trade costs on FDI is a priori ambiguous, which is not the case with economic freedom. First, however, the correlation coefficient between the trade freedom component and the composite index excluding this component was checked to see whether these are sufficiently different to warrant their separation. The partial correlation was found to be relatively low, at 0.53, therefore the two are entered as separate variables in the empirical investigations.

The level (and cost) of physical and communication infrastructure were identified in Section 4.3, as a factor that can affect the level of FDI a country receives. Following, Bellak et al. (2009) a composite measure of information and communication technology (ICT) infrastructure is created by adding the *number of telephone lines and broadband- and cellular- subscriptions per 100 inhabitants (ictinfra)* provided by World Bank (WDI, 2010). This variable provides information on the ease of communication, but given the lack of comprehensive and comparable data on other infrastructure indicators⁴³, similar measures have been previously used as a proxy for

⁴³ WDI (2010) provides data on the road and rail networks of countries, but these are usually not available for the whole period covered in this empirical analysis.

the level of infrastructure development (Kinoshita and Campos, 2003). Thus, the ICT infrastructure measure is used in this analysis as a proxy for both the ease/cost of communication and infrastructural development more generally. This measure can also be considered as a proxy for the level of technological development of the host country.

As discussed in Sections 2.3 and 4.3, foreign affiliates may benefit from 'agglomerating', i.e. locating near other foreign firms, e.g. due to linkages with suppliers and/or customers and availability of a workforce with relevant skills. *Agglomeration economies* have been measured by lagged FDI stock in studies using the stock of FDI as the dependent variable (Kinoshita and Campos, 2003; Nicoletti et al., 2003). Similarly, in studies with FDI flows as the dependent variable, lagged flows have sometimes been used (Agiomirgianakis et al., 2006), though is it not clear that this is appropriate considering that lagged FDI flows do not represent total foreign investor activity in the host country. However, it also not clear that the estimated effect of previous FDI stock necessarily represents agglomeration effects. Namely, in a partial-adjustment setting (discussed in the previous section), the coefficient on previous FDI stock can represent agglomeration effects, but also the speed of adjustment to the optimal level of FDI stock.

Finally, it may be argued that foreign investors 'agglomerate' in destinations where other (successful) firms in their industry or related industries are based, regardless of these firms' ownership. Apparently under this assumption, Resmini (2000) uses the output share of the manufacturing sector in the host country as a measure of agglomeration economies. However, the adequacy of this measure is questionable on the basis of the differences that are likely to exist between the technological levels of foreign investors and the domestic manufacturing sectors of transition economies. In the context of transition where, as discussed in Section 1.2, domestic firms were lagging in terms of product quality and technological level (and thus the small pool of workers with relevant knowledge, skills and experience), it appears unlikely that foreign investors could benefit from 'agglomerating' with domestic firms. Further, it can be argued that in a transition context there are additional benefits from agglomerating with foreign investors in particular, regardless of their sector. This is because, as argued in Sections 1.2 and 4.3, the newly created domestic private sector

in transition economies had no experience of operating in a market economy and there was lack of skills in business management and supporting services. To the extent that existing foreign firms in the market provide such services, contribute to the development of skills and a new business culture more generally, they are likely to attract more foreign investment. Based on the above arguments, *the stock of FDI in the previous year (IIFDIstock)* is used in a partial stock-adjustment framework⁴⁴ (in estimations in Section 5.4 where a robustness check is conducted using stock of FDI as a dependent variable). Finally, the presence of foreign investors may have reinforcing effects, i.e. positively affect the (increase in) stocks of FDI by sending a positive signal to new potential investors and helping to reduce the inherent uncertainty related to lack of information regarding the host economy, a factor which was argued to be especially important in a transition context, as explained in Section 4.3.

Progress in the privatization process and overall progress in transition, i.e. reform towards a market economy, are transition-specific factors which could affect FDI inflows. As explained in Section 4.3, rapid economic reform is likely to be important to foreign investors because it reduces the uncertainty from changes throughout the economy related to transition. Privatisation is a component of this reform which, as argued in Section 4.3, can serve as a signal for the commitment of the government to establishing and supporting a market economy. Accordingly, studies of FDI in transition economies have frequently used measures of the speed/volume or type of privatisation method as a proxy for institutional reform. Holland and Pain (1998) and Bevan and Estrin (2004) use a qualitative measure of privatisation methods according to the opportunities they create for foreign investors (e.g. sale to outside owners has a higher rating than voucher distribution or management-employee buyouts). Lansbury et al. (1996) and Bellak et al. (2008), on the other hand, use the share of private sector output and the value of privatisation revenues, respectively. However, in this analysis it is argued that there are superior measures of institutional quality and reform which can be used; nonetheless, a dummy variable indicating major privatisations is used as a 'shock' variable, as discussed below.

⁴⁴ This variable is not used in the model with FDI inflows as the dependent variable because even though it is a lag, and thus predetermined, it is not strictly exogenous because it is correlated with the time-invariant part of the error term.

In the empirical analyses presented in this chapter, *the overall transition score awarded by the EBRD (various years) in their Transition Report, transition*, is used as a measure of progress in transition. This is a composite index derived from the qualitative assessment of nine areas of reform including: large- and small-scale privatisation, enterprise restructuring, price liberalisation, trade and foreign exchange system, competition policy, banking and non-banking financial institutions, and infrastructure reform (EBRD, 2010, pp. 248-50). A composite index is favoured in this analysis for the following reasons. First, this appears to be the most comprehensive measure of progress in transition, as opposed to the ones related to privatisation discussed above. Second, because the interest here is not to identify any particular areas of reform, but simply control for overall progress, this measure has the advantage of providing sufficient information for the purpose of this analysis while not having to enter additional (potentially correlated) measures. This is an important consideration in this research since the size of sample is relatively small.

However, it is argued here that the *privatisation* of socially- and publicly-owned enterprises itself has to be controlled for in FDI studies focusing on European transition economies. As explained in Section 1.2, privatisation-related FDI has accounted for a significant share of FDI in these countries during (part of) the transition period, but privatisations of enterprises represent one-off opportunities for foreign investors and their timing is not (necessarily) determined by the variation in host country characteristics across time. An initial review of FDI inflow levels of the individual economies in this sample reveals sudden and sharp increases which appear to be explained by major privatisations waves and/or privatisations of large strategic enterprises, which should ideally be controlled for in empirical investigations of FDI determinants. Accordingly, various sources, including UNCTAD's World Investment Reports (UNCTAD, various years), EBRD's Transition Reports (EBRD, various years) and Kalotay and Hunya (2000), were reviewed and checked against the apparent outlier years for each country in an attempt to identify instances when the effect of privatisation-related FDI was particularly large. A dummy variable, privatisation, was subsequently created which indicates years when FDI-related *privatisations of large enterprises and/or large waves of privatisations took place* in each of the host economies⁴⁵.

The EBRD transition score above measures the progress in transition from a centrally-planned to a market economy. However, market economies may differ with regard to their level of economic liberalisation and quality of institution, including rule of law, which, as discussed in Sections 2.2 and 4.3, determine the quality of the business environment and thus can affect the level of FDI a country receives. In this empirical analysis, the *Economic Freedom Index (EFI)* provided by The Heritage Foundation (2010), econfree, is used to indicate the level of business friendliness of an economy. This index is calculated as an (simple) average of 10 indicators based on a wide range of both qualitative and quantitative information (Heritage Foundation, 2010, pp. 457-68). As explained earlier in this section, the indicator of trade liberalisation is used as a separate control variable. Therefore, the index for the purpose of this empirical investigation was recalculated as the average of the rest of the components: business freedom, which measures the ease of starting, operating and closing a business; the magnitude of the tax burden and the share of government spending in GDP; the quality of the property rights laws and their enforcement; the level of corruption; monetary freedom, as indicated by price stability and the presence of price controls; financial freedom, which combines banking security with the extent of regulation/influence imposed by the government; the legal and regulatory framework of the labour market; and investment freedom, i.e. the freedom of individuals to move capital both across activities within the economy, and across borders. The last component draws upon qualitative information on whether there is discrimination against foreign investors, whether there are restrictions on land ownership and investment in any sectors, how common is expropriation of investment without 'fair' compensation, whether there are foreign exchange controls or capital controls (e.g. in repatriation of profits) and the level of transparency and bureaucracy in investment policy implementation. Because this latter component is

⁴⁵ Information to construct this variable comes primarily from UNCTAD and EBRD reports. These reports were reviewed to identify any cases where large privatisations were made by foreign investors in the countries in the sample, in which case the dummy takes the value of one. In addition, the information in Kalotay and Hunya (2000) was used in some instances, with the dummy taking the value of one if the share of privatisation-related FDI in an economy exceeds the threshold of 40% of total FDI inflows.

highly correlated with the composite index (with a correlation coefficient of over 0.7), it is not included here as a separate control variable.

Political- and economic- risk have been identified in Section 4.3 as factors that can potentially affect FDI in developing and transition economies. In studies of transition economics, economic risk is often measured by the inflation rate (Kinoshita and Campos, 2003; Furceri and Borelli, 2008; Leibrecht and Scharler, 2009). Alternatively, political- and economic- risk have often been measured by (components of) the Country Risk Indicator (Euromoney, 2010), the International Country Risk Guide (PRS, 2010), Country Credit Ratings (Institutional Investor, 2010) in Bandelj (2002), Carstensen and Toubal (2004), Fung et al. (2008), and Leibrecht and Scharler (2009). However, as Bandelj (2002) points out, economic conditions usually have a significant weight in the calculation of these indicators and it may not be appropriate to include them in models of FDI determinants which always have a measure of a country's GDP level (total or per capita) or GDP growth rates. Accordingly, after a review of these indicators' methodologies, it was decided not to include any of these indicators because, in addition to economic performance, they tend to include information which is already captured by the Economic Freedom Index (e.g. rule of law, corruption, business environment and FDI restrictions). However, in this sample there are a few years where some of the economies in the sample were harshly affected by political instability, namely, Albania during the social unrest in 1997 during the war in neighbouring Kosovo in 1998-99. Accordingly, a dummy variable, instability, is created to indicate these country-year pairs when these host countries have been affected by an unusually high level of political instability.

Another potential FDI determinant in European transition economies identified in Section 4.3 was the (prospect of) EU accession. Accordingly, the inclusion of a dummy variable for the announcement of EU accession was considered, however ultimately it was decided not to include this variable because it is expected to be highly correlated with, and/or endogenously determined by, other independent variables in the model (e.g. progress in reform or GDP).

Finally, there are other factors which have been identified in Sections 2.2 and 4.3 which could not be included due to data limitations. The level of ethnic networks

between countries which is typically proxied by the stock of migrants could not be included because limited data availability for European transition economies (WDI, 2010), which would significantly reduce the size of the sample. Similarly, factors related to cultural characteristics of European transition economies cannot be controlled for.

Table 5.3 below summarises the variable names, descriptions and data sources used in the empirical investigations, whilst the rest of this chapter discusses the estimation techniques and reports the empirical results for the models based on the discussions in this section.

Variable			
name	Expected sign	Description	Source
FDIflow	dependent var	Inward FDI flows (in current USD)	UNCTAD (2010b)
FDIstock	dependent var	Inward FDI stock (in current USD)	UNCTAD (2010b)
l1FDIstock	+	Inward FDI stock (in current USD), first lag	UNCTAD (2010b)
SECedu	+	Percentage of population over age 15 who have completed secondary education, including those who have completed tertiary education (see section 5.2.1)	Barro and Lee (2010)
TERTedu	+	Percentage of population over age 15 who have completed tertiary education as their highest level of education	Author's calculations based on data from Barro and Lee (2010)
genvocratio	+	The ratio of general to vocational enrolments in upper-secondary education in 1990	Author's calculations based on data from UNICEF (2010)
edutr1	+	Share of population aged 16-30 in a country's working age population in 2008 (population aged 0-14 in 1992/population aged 15-64 in 2008)	Author's calculations based on data from WDI (2010)
edutr2	+	Share of population who were educated in the communist system only up to age 12 or less in a country's working age population in the respective year (see Section 5.2.2 for explanations)	Author's calculations based on data from Barro and Lee (2010) and WDI (2010)
vacancy	-	A country-average of the length of period required to fill a vacancy for a skilled worker	Author's calculations based on data from BEEPS (2002, 2005)
cognitive	+	Standardised measure of cognitive skills derived from maths and science scores in International Student Achievement Tests	Hanushek and Woessmann (2009a)
top	+	Share of top performers (i.e. those achieving a score of 600 points or one standard deviation above the OECD mean) in International Student Achievement Tests	Hanushek and Woessmann (2009a)
wage	-	The average gross wage paid in the host country	WIIW (2011)
l1wage	-	The average gross wage paid in the host country, first lag	WIIW (2011)
l2wage	-	The average gross wage paid in the host country, second lag	WIIW (2011)
gini	-	The distribution of earnings, as measured by the Gini coefficient	UNICEF (2010)

Table 5.3: Variable names, definitions and sources Variable

gdp	+	Size of the host market as measured by its GDP level (in current USD)	WDI (2010)
l1gdp	+	Size of the host market as measured by its GDP level (in current USD), first lag	WDI (2010)
l2gdp	+	Size of the host market as measured by its GDP level (in current USD), second lag	WDI (2010)
forbank	+	Share of foreign-owned banks in the economy (i.e. number of foreign banks/total number of banks)	Author's calculations based on data from EBRD (various years)
primexport	+	Share of primary commodities, excluding food items and agricultural raw materials, in total exports	Author's calculations based on data from UNCTAD (2010c)
l1primexport	+	Share of primary commodities, excluding food items and agricultural raw materials, in total exports , first lag	Author's calculations based on data by UNCTAD (2010c)
l2primexport	+	Share of primary commodities, excluding food items and agricultural raw materials, in total exports, second lag	Author's calculations based on data from UNCTAD (2010c)
tradefree	?	Trade freedom component of the Economic Freedom Index	Heritage Foundation (2010)
econfree	+	Economic Freedom Index, excluding the trade freedom component (i.e. the simple average of all other components)	Author's calculations based on data from Heritage Foundation (2010)
ictinfra	+	Sum of the number of telephone lines, broadband subscriptions, and cellular subscriptions, per 100 inhabitants	Author's calculations based on data from WDI (2010)
transition	+	The overall transition score awarded by the EBRD	EBRD (various years)
privatisation	+	Dummy variable, equals to 1 in years when FDI-related privatisations of large enterprises took place (see Section 5.2.3)	Constructed by the author based on EBRD (various years), UNCTAD (various years) and Kalotay and Hunya (2000)
instability	-	Dummy variable, equals to 1 in years when a country is affected by political unrest, either an internal conflict or one in the region (see Section 5.2.3 for explanation)	Constructed by the author

5.3 Empirical approach

To empirically test the hypotheses developed in this thesis, panel data for 12 European transition economies for the period 1995-2008 is used. Panel data offers the advantage of "more variability, less collinearity among variables, more degrees of freedom and more efficiency" (Baltagi, 1985, p. 4). The choice of countries (within European transition economies) and the time period covered in this empirical analysis were determined by data availability. The countries included are Albania, Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovak Republic and Slovenia⁴⁶. Because there is relatively little variation in human capital measures across time in the sample (see Appendices 5.1 and 5.2 for the descriptive statistics and between-to-within variation ratios), the random effects (RE) estimator which utilises both within-, and between-, country variation appears to be more suitable than a fixed effects (FE) estimator for the purpose of this analysis. By utilising only within country variation, the FE estimator may have a bias towards short-run effects if long-run equilibrium relationships between variables are reflected in between-country variation reflecting long-term national differences. In addition, the use of within variation only means that "the coefficients of variables with small within standard deviations are not well identified" (Baum, 2006, p. 223) in FE estimation. Finally, the RE estimator can accommodate time-invariant variables, it is more efficient and its results can be used for making inferences for a wider population, i.e. not just the countries in the sample (Wooldridge, 2002; Baum, 2006). The possibility of including time-invariant variables makes this model particularly appealing in this analysis because some of the new measures of human capital introduced in this analysis are (assumed to be) time-invariant. Based on these considerations, the initial specification used in this research is the following random effects model:

⁴⁶Bosnia and Herzegovina, FYR Macedonia, Kosovo, Montenegro and Serbia were not included because data for these countries is not available. For Bosnia and Herzegovina and FYR Macedonia there is no data for the main human capital variables (from Barro and Lee, 2010). For Kosovo there is no data for most variables in the model, while the data for Montenegro and Serbia are not always measured consistently, i.e. some variables are measured for these republics separately and others are measured for both of them combined or data for Serbia sometimes includes Kosovo. Considering the political changes in this period however (i.e. the independence of Kosovo from former Yugoslavia and the separation of Serbia and Montenegro), FDI in these countries is unlikely to have been driven (mainly) by economic factors which provides a rationale to exclude them from the sample in any case.

Where β_0 is the overall constant, X_{it} is a vector of control variables discussed in the previous section, and $(u_i + \varepsilon_{it})$ is the composite error term which consists of the individual-specific error component, u_i , and the combined time series and cross-section error component, ε_{it} . In the RE model, the overall constant represents the mean value of all country constants in the sample which the cross-section error component, u_i , represents the (random) deviation of each country's constant from this mean value (Gujarati, 2004, p. 647-48). However, a crucial assumption of this model is that u_i is not correlated with the independent variables in all time periods, in which case they would be correlated with the composite error term and the RE estimator would be inconsistent (Wooldridge, 2002). Therefore, the appropriateness of using RE model(s) in this analysis is tested using the Hausman test (Baum, 2006, p. 212 and 230-1).

If the cross-section country component is found to be correlated with the independent variables, the FE model can be used (Equation 5.1b below) can be used. In contrast to the RE model where the 'individuality' of each country is accounted for by the cross-section error component, u_i , in the FE model this is done by letting the constant vary for each country, as indicated by its subscript *i* added to the constant term (Gujarati, 2004, p. 642) below:

$$FDIflow_{it} = \beta_{0i} + \beta_1 SECedu_{it} + \beta_2 TERTedu_{it} + \beta'_i X_{it} + \varepsilon_{it} \qquad (5.1b)$$

The FE model has an advantage over the RE model because by using only variation within countries (i.e. across time), it resolves omitted variable bias that cross-section estimates tend to suffer from; however, that is, assuming that the omitted variables (i.e. unobserved effects) are constant over time (Wooldridge, 2010).

The baseline specification (5.1b) is further extended to test the transition-specific hypotheses developed in this thesis⁴⁷. First, to the extent that general education is superior to vocational education in providing the generic cognitive skills, enhancing

⁴⁷ As explained in the next section, the Hausman test suggests that the RE estimator is inconsistent or the models estimated in the rest of this chapter, therefore FE models are only specified/reported in the rest of this chapter.

creativity and enforcing critical thinking, as argued in Section 4.3, it would appear necessary to provide a more appropriate measure of the stock of human capital. This especially appears to be the case in transition economies where, because of the rapid and persistent structural changes in the economy, 'traditional' vocational skills are likely to be depreciating rapidly. Therefore, it appears that the relative importance of vocational education should be taken into account when measuring stocks of human capital in these economies. To test the hypothesis that countries that emphasised general education have managed to attract more FDI, the baseline model above is augmented with the *ratio of general to vocational enrolments in secondary education at the outset of transition (genvocratio)*.

$$FDIflow_{ii} = \beta_{0i} + \beta_1 SECedu_{ii} + \beta_2 TERTedu_{ii} + \beta_3 genvocratio_i + \beta'_i X_{ii} + \varepsilon_{ii} \dots (5.2)$$

Second, if the education system and workplace under central planning developed traits that are 'productivity-constraining' in a modern market economy, the vintage of the stock of human capital should be taken into account when analysing the effect of human capital on FDI. Based on this, in Section 1.4 it was argued that potential foreign direct investors would be more attracted by younger cohorts that entered the market and/or were educated during the transition period, in an education system that is reformed or undergoing reform. To test this hypothesis, the baseline specification (Model 5.1) is augmented with proxies for the *percentage of the workforce educated after the collapse of communism (edutr1 and edutr2).*

$$FDIflow_{it} = \beta_{0i} + \beta_1 SECedu_{it} + \beta_2 TERTedu_{it} + \beta_3 edutr2_{it} + \beta'_i X_{it} + \varepsilon_{it} \dots (5.4)$$

Finally, the baseline model is augmented with three alternative measures of human capital, not previously used in investigations of the effect of human capital on FDI, that were introduced in Section 5.2. Accordingly, the following models with the number of weeks required for a firm to fill a vacancy for a skilled worker, *vacancy*, and the standardised measure of students' cognitive skills, *cognitive*, and share of top performers in international student tests, *top*, were estimated:

$$FDIflow_{ii} = \beta_{0i} + \beta_1 SECedu_{ii} + \beta_2 TERTedu_{ii} + \beta_3 cognitive_i + \beta'_i X_{ii} + \varepsilon_{ii} \dots (5.6)$$

$$FDIflow_{it} = \beta_{0i} + \beta_1 SECedu_{it} + \beta_2 TERTedu_{it} + \beta_3 top_i + \beta'_i X_{it} + \varepsilon_{it} \dots (5.7)$$

In the specifications above there is a theoretical possibility of reverse causation in the case of some of the variables. The analysis in Section 2.3 suggested that there is a possibility of reverse causation in the case of the human capital variables, i.e. that FDI can cause an increase in human capital, but it was argued that the presence of this problem is likely to depend on the actual measures of education used in the empirical investigation. In Section 2.3 it was argued that foreign affiliates can develop human capital in the host country directly through training, or indirectly, by increasing the education premium for educated individuals. As the human capital measures SECedu and TERTedu refer to the percentage of population who have already completed a certain level of education, reverse causation is not expected to be a problem in this empirical analysis. First, this measure refers to formal education and, as such, it does not reflect any direct effect of FDI through further (on-the-job) training; in this sense, an actual limitation of the education measures appears to be advantageous. Second, as this measure refers to individuals who have already completed a certain level of education, any potential indirect effect of FDI through increasing the education premium would be realised a time lag of *at least* the length of the period required to complete studies (i.e. typically 3 years for higher education). As such, the education variables are argued to be pre-determined, at the very least, if not strictly exogenous.

As explained in Section 1.2, it can be argued that FDI can affect productivity growth, and thus the level of a country's GDP (*gdp*). FDI can also affect the level of wages paid in the host country (*wage*), as argued in Section 2.3. Finally, it is argued here that the share of primary commodities in total exports (*primexport*) can increase as a result of FDI in extractive industries in the previous period. Ideally, a system-GMM (general method of moments) estimator (Blundell and Bond, 1998) for dynamic panels would be used which accounts for potentially endogenous variables by using lagged levels of endogenous variables and their lagged differences as instrumental variables for current differences and levels, respectively. However, this estimator (as well as other GMM estimators such as Arellano and Bond, 2001 and Arellano and

Bover, 2005) is designed for panels with a large number of cross section units (N) and small number of time periods (T) (Roodman, 2006), which makes it inappropriate for the sample of 12 countries covered in this analysis. Therefore, in an attempt to guard against potential reverse causation lags of the above variables are entered into the model (Baltagi, 1995), as previously used in FDI studies by Bandelj (2002), Bevan and Estrin (2004), Bellak et al. (2009 and 2008) and Furceri and Borelli (2008). Lags of these variables are entered in the model in addition to contemporaneous levels.

Another potential problem which has been recently received attention in panel models is cross-sectional dependence, i.e. dependence of (idiosyncratic) errors across crosssectional units, which may arise due to spatial dependence, omitted unobserved common components (e.g. common shocks) and economic distance (Pesaran, 2004; Sarafidis et al., 2009). Theoretically it is plausible for FDI inflows among European transition economies to be correlated across the sample for any of the reasons above. First, inflows into these countries are likely to be simultaneously affected by global FDI trends (i.e. common shocks) increasing in times of economic expansion and contracting during global financial crises when companies do not have the means or the will to finance investment. Second, there may be spillover effects from foreign investment in neighbouring countries (i.e. economic distance), either due to backward or forward linkages (as described in Section 1.2, only in this case in a cross-country setting) or due to foreign investors' reduction of uncertainty from the experience gained in the region which, in the case of transition economies may be especially relevant due to their isolation during communism (as discussed in Section 4.3.2). On the other hand, the inflows into these economies may also be negatively correlated if these countries are seen as alternative locations (i.e. a form of spatial dependence), competing for a given amount of FDI inflows during a certain period. This and exposure to common shocks related to global economic trends appear to be a type of 'universal time-related shocks' which can be removed from the errors by including time fixed effects, as Roodman (2006, p. 26) suggests. Accordingly, year dummies are added in each of the above specifications, though as Sarafidis et al. (2009, p. 150) note, this will only control for these common effects if they have a homogeneous impact on the cross-sectional units, which is not necessarily the case. In this particular analysis it is plausible that the effect of global FDI trends differ in different European transition economies, depending, for instance, on the countries of origin, sectoral composition of their FDI stock or their (perceived) economic stability. Therefore, tests are conducted for each specification in this analysis to test for any remaining cross-sectional dependence due to heterogeneous impact (Sarafidis et al., 2009) or 'economic distance'.

5.4 Estimated results

5.4.1 Diagnostic testing: Choosing the appropriate estimators

Model (5.1) was initially estimated using the RE- and FE- estimators. The normality test rejects the null hypothesis of normality (based on skewness and kurtosis) of fixed effects errors. Therefore, logarithmic transformation is used and in this formulation, at the 5% level, the null hypothesis of normality cannot be rejected. Although FDI inflows are measured on a net basis and can theoretically take negative values, there are no negative FDI inflows in the dataset which would preclude the use logarithmic transformation. Accordingly, all specifications presented in this research are estimated in natural logarithms.

Subsequently, other diagnostic tests for the log-log version of Model (5.1) and raw correlations between the variables are examined (see Appendix 5.3 for the printouts). Apart from the *lntop* and *lncognitive* with coefficients of 0.47-0.78, no other human capital variables appear to be particularly correlated with FDI stocks/flows in the sample. The variance inflation factor (VIF) suggests that there is a high level of multicollinearity (with a maximum VIF of 777.28 and mean of 78.75). The extremely high multicollinearity is likely to be caused partly by the presence of first and second lags of *lnwage*, *lngdp* and *lnprimexport*, which, as expected, are highly correlated with the current levels of the variables. The logarithmic transformation appears to have rectified the problems with normality that were present in the levels equation, but the year dummies do not seem to have absorbed (all) the within-year clustering because both Frees' (1995) and Pesaran's (2004) tests⁴⁸ (De Hoyos and Sarafidis, 2006) point to the presence of cross-sectional dependence. Moreover, modified Wald's test (Baum, 2006, p. 222) suggests that the model suffers from

⁴⁸ Friedman's (1937) test cannot reject the null of no cross-sectional dependence, however tests by Frees (1995) and Pesaran (2004) are preferred because they can provide the *absolute* correlation between cross-sectional units prevents negative and positive correlations in the data adding up to cancel each other, "hiding" the cross-sectional dependence presence in the data and giving rise to a false rejection of the null hypothesis (De Hoyos and Sarafidis, 2006). As discussed in the previous section, in the case of FDI inflows both negative and positive cross-sectional dependence is theoretically plausible and the difference in these tests suggests that this appears to be the case in this dataset.

group-wise heteroskedasticity, and Wooldridge's test for panel data (Drukker, 2003) suggests that errors are serially correlated. The likely consequences of these problems and potential remedies that can be used to improve the validity of statistical inference from this model are therefore considered next.

Without the presence of cross-sectional dependence, Newey-West estimates of standard errors (SE) clustered by cross-sectional unit (Newey and West, 1987) could be used, which are heteroskedasticity and serial correlation consistent (also referred to as HAC SEs). However, in the presence of cross-sectional dependence, these SE estimates are still likely to be biased, making hypothesis testing invalid (Driscoll and Kraay, 1998; Petersen, 2009; Cameron et al. 2011). In many economic applications such dependence is expected to be positive, giving rise to understated standard errors and over-rejection of standard hypothesis tests (Cameron et al., 2011; Cameron and Miller, 2011). However, in this particular analysis the direction of the bias due to cross-sectional dependence is less clear because, as argued in the previous section, both negative and positive correlations may arise. In order to estimate SEs robust to cross-sectional dependence by country, observations can be clustered by time period (Baum et al., 2010), but this imposes the assumption that errors for a given country are independent over time which, as suggested by the serial correlation test, appears to be violated in this dataset. As a result, the standard errors are again likely to be biased, in this case most likely downward due to positive correlation across time, giving rise to over-rejection of standard hypothesis tests (Wooldridge, 2002). Thus, both these potential solutions have their limitations because they are unable to (simultaneously) provide SE estimates that are robust to both contemporaneous and serial dependence. Accordingly, recent contributions by Thompson (2011) and Cameron et al. (2011) propose combining standard one-way cluster-robust variance estimators (such as Newey-West) be extended to two or more non-nested dimensions (i.e. two-way or multi-way clustering). Effectively, this means that arbitrary error correlations are allowed within two or more clusters of observations, simultaneously. For instance, in this analysis, clustering by year allows for contemporaneous errors correlation across countries such as those arising from common shocks and clustering by country (i.e. the standard HAC SEs) which allows for within-country error correlations, the combination of which provides standard errors that are robust to heteroskedasticity, serial correlation and cross-sectional dependence,

simultaneously.⁴⁹ Accordingly, *two-way cluster-robust estimations*, *based on computations of the variance matrix (with a small-sample adjustment) illustrated by Thompson (2011) and Cameron et al. (2011)*⁵⁰, *are estimated here in addition to conventional panel estimators*. However, it should be noted that this method relies on large numbers of clusters (i.e. countries and years here) in both dimensions⁵¹ and despite the small-sample adjustment available, may not necessarily provide unbiased estimates in this analysis. Therefore, the results obtained using this estimator are presented as a robustness check in the appendices.

Considering the drawback of a small number of clusters in the data, an alternative spatial correlation consistent covariance estimator proposed by Driscoll and Kraay (1998) may be more appropriate in this empirical investigation. According to their Monte-Carlo simulations, this estimator's performance is similar to that of the Newey-West time-series estimator (which two-way clustering, above, is based on), but "despite the fact that it relies on large-T asymptotics, it dominates that of common alternatives which do not take spatial dependence into account, even when the time dimension is quite short" (Driscoll and Kraay, p. 550). Like the two-way cluster covariance matrix method above, the SE estimates obtained this way are also robust to disturbances being heteroskedastic, serially correlated and cross-sectionally dependent, simultaneously and therefore are appropriate for this empirical investigation. Accordingly, the *models in this analysis are estimated using the Driscoll-Kraay estimator, as adjusted for use with unbalanced panels by Hoechle (2007)*.⁵²

⁴⁹ In this particular analysis there may be reasons to cluster also by other variables, e.g. by geographical region or by the status of country in the EU accession process if countries within a cluster are more likely to compete for a certain amount of FDI, or if they are affected differently by common shocks, but the number of clusters in this case would be too small for this type of computation (Baum, 2010).

⁵⁰ Two-way/multi-way cluster-robust SE's have been automated for Stata in Schaffer's (2005) xtivreg2 command for FE and OLS, but they cannot be computed for RE. This command is explained in Baum et al. (2003; 2007; 2010). Alternatively, the *cluster2* command by Petersen (2009) could be used, but this is only available for OLS estimation.

⁵¹ For instance Nichols and Schaffer (2007) suggest at least 20 clusters in balanced panels or 50 in reasonably balanced panels. Similarly, Rogers (1993) suggests that each cluster should contain a maximum of five percent of the observations in the sample.

⁵² The computation of the variance matrix has been automated for Stata by Hoechle's (2007) *xtscc* command. Like the two-way clustering above, this robust estimator is only available in an OLS and FE setting.

As explained in the previous section, the RE estimator is preferred to the FE estimator because of its efficiency but it is it not necessarily consistent, and at this point it also appears to be less desirable considering that it cannot accommodate the computation of a heteroskedasticity-, serial correlation- and cross-sectional dependence consistent variance matrix. Nevertheless, standard diagnostic tests are considered to discriminate between FE, RE and OLS. A standard Hausman test suggests that the null of no systematic difference between FE and RE coefficient cannot be rejected at the conventional 5 percent level of significance. However, Wooldridge (2002) argues that this test can be invalid in cases where the disturbances are not independent and identically distributed (i.i.d). Accordingly, alternative formulations of the Hausman test which allow for temporal dependence (Wooldridge, 2002, p. 290) and for temporal and spatial dependence (Hoechle, 2007) were estimated⁵³ which unlike the standard test suggest that the null can be soundly rejected. Therefore, it appears that RE estimates are not consistent and therefore FE estimation is preferred. Finally, the F test for fixed effects (Baum, 2006, p. 114) indicates the presence of significant country effects, implying that *a pooled OLS* estimation would be inappropriate for this model. Based on the above considerations, only results from FE models are presented in the rest of this section.

As explained in the previous section, the use of FE models is inconvenient in this empirical analysis because it 'wipes out' the effect of time-invariant variables and it is inefficient in estimating the effect of variables with little within variance. The second drawback in particular, as Plümper and Troeger (2007) note, has been by-and-large ignored until recently and it should be taken seriously because it not only causes the estimated SEs to be larger (and thus the significance of results to be lower), but also "leads to highly unreliable point estimates and may thus cause wrong inferences in the same way a biased estimator could" (p. 125). As a solution, Plümper and Troeger have proposed the fixed effects vector decomposition (FEVD) estimator, for the estimation of time-invariant variables initially (Plümper and Troeger, 2004) and argue in their later contribution that this can be extended to include variables with low within variation (Plümper and Troeger, 2007). The FEVD approach appears to be appropriate in this analysis not only because of the presence

⁵³ Wooldridge's version of the test is automated for Stata in the *sigmamore* option of the test, while Hoechle's version was estimated based on the code provided by Hoechle (2007, pp. 305-6).

of time-invariant variables in some of the models, but also because the main variable(s) of interest, (*ln*)*SECedu* and (*ln*)*TERTedu*, show very little within variation which may cause the standard FE estimators to yield imprecise point estimates, as noted by Plümper and Troeger (2007) and Greene et al. (2010). Therefore, results from the *Fixed-Effects Vector Decomposition estimator, developed by (Plümper and Troeger, 2004, 2007), are also presented here in addition to those from the Driscoll-Kraay estimator.*

The FEVD estimator uses a three-step procedure in which the fixed effects from the conventional FE estimator are "decomposed" into: the observed component, explained by the variables with (little or) no time variation; and the unobserved component, i.e. the residual, which is taken to represent the 'truly unobserved unit heterogeneity' and replaces the fixed effect (see Box 5.1 for a more detailed explanation). First, however, it should be noted that the validity of the FEVD estimator when including only time-invariant variables has been seriously questioned in some recent contributions (Breusch et al., 2011a; Greene, 2011a). Nevertheless, the prevailing consensus after a long and controversial discussion⁵⁴ appears to be that the FEVD estimator becomes useful if variables with small between-to-within variance ratios (or 'slowly changing variables') are also included in the procedure, which is the case in the empirical investigation presented here. Namely, Greene et al. (2010, p. 5) argue that "it is the very presence of slowly changing variables and the fact that their estimates in a FE setting can be imprecise in a mean-squared error sense...may justify the use of the FEVD..." and go on to explain that the inconsistent FEVD estimator may be more reliable than the consistent FE because of its lower variance, in accordance with arguments put forward in Plümper and Troeger's (2004, 2007) original contributions. However, a remaining drawback is that the diagnostic problems identified in this empirical investigation cannot be addressed within a FEVD framework.

⁵⁴ Contributions include Beck (2011), Breusch et al. (2011a, b), Greene (2011a, b), Plümper and Troeger (2011).

Box 5.1: The FEVD estimator (based on Plümper and Troeger, 2004, 2007)

The three-step FEVD procedure:

The effect of time-invariant variables and those with low within variation or high betweento-within variance ratios is estimated as follows:

Stage 1: A standard FE model is estimated with time-variant variables, X_{it} :

$$FDIflow_{it} = \beta_{0i} + \kappa' X_{it} + \varepsilon_{it}$$
(5.8)

Stage 2: The estimated fixed effects from Stage 1, β_{0i} , are regressed on the explanatory variables with little- or no- within variation (X_{it} and Z_i , respectively), i.e. they are 'decomposed' into: the observed component which is explained by these variables; and the unobserved component, θ_i , which are "taken to represent truly unobserved unit heterogeneity" (Greene et al., 2010, p. 4):

$$\beta_{0i} = \alpha_0 + \kappa' X_{ii} + \lambda' Z_i + \theta_i$$
(5.9)

Stage 3: The full model from stage 1, including all time-invariant and time-varying explanatory variables, but with the fixed effects now being replaced by the residuals from *Stage 2*, θ_i , is estimated by pooled OLS:

$$y_{it} = \alpha_0 + \kappa' X_{it} + \lambda' Z_i + \mu \theta_i + \varepsilon_{it}$$
(5.10)

Plümper and Troeger (2004, p. 8) argue that the degrees of freedom have to be adjusted in this stage since only one variable (θ_i) is entered to account for all remaining unobservable individual effects. This is done automatically by the 4.0 beta version of the *xtfevd.ado* command used here.

The selection of variables with high between-to-within variance ratios

Based on Monte Carlo simulations, Plümper and Troeger (2007) provide the conditions under which FEVD is a superior estimator to standard FE, i.e. conditions under which a variable should be included in stage 2 of the FEVD estimation. They suggest that a between-to-within ratio of 2.8 or above should be included, though they explain that this threshold varies greatly depending on the correlation between the unit effects and the (almost) invariant variables and can be much lower than this. In this analysis these ratios appear to be higher in the case of the main the human capital measures *InSECedu* and *InTERTedu*, with ratios of 4.40 and 3.63, respectively (see Appendix 5.2). Apart from these, *Ingdp* and *Invacancy* also appear to stand out from the rest with ratios of 2.37 and 2.50, respectively. Accordingly, *these four variables are included in the second stage of the FEVD procedure in addition to the strictly time-invariant ones*.

5.4.2 Estimated results

Based on the analyses of different estimators in Section 5.3, the Driscoll-Kraay estimator and the FEVD estimator are preferred in this empirical investigation. Namely, FE with Driscoll-Kraay SEs is preferred to panel-robust FE because they are heteroskedasticity-, serial correlation- and cross-sectional dependence-consistent; and they are preferred to two-way cluster-robust SEs because of their superior finite-sample properties. FEVD, on the other hand, is preferred to the other versions of FE for estimating the effect of slowly-changing (*SECedu, TERTedu, gdp, vacancy*) or time invariant variables (*genvocratio, edutr1, cognitive, top*). Accordingly, results obtained using the FE estimator with Driscoll-Kraay SEs and the FEVD estimator are presented in the main text in rest of this section, whilst those from the other estimators are presented in the Appendices.

Before proceeding with the estimation of baseline Model 5.1 which includes both *SECedu* and *TERTedu*, five models were estimated: two which include only one of these human capital measures separately, two which include measures *top* and *cognitive* separately, and one with only these four human capital variables without controls⁵⁵. The results of the first four models do not suggest significant effects of the human capital variables on FDI. When these four human capital measures are entered together without control variables, *top* is found to be significant and positive, whilst *cognitive* is found to be marginally significant, but negative. However, these results do not appear to be robust to the inclusion of control variables as discussed below.

The full Model 5.1 was initially estimated using the Driscoll-Kraay estimator and this model was tested down, excluding control variables with t-statistics smaller than 1 (see Appendix 5.5 for printouts of the testing down procedure). The level of multicollinearity in this model has decreased significantly compared to the full model and it is now at acceptable levels with a maximum VIF of 6.4 and mean VIF of 2.39 (See Appendix 5.3). The parsimonious version of Model (5.1) is considered as a baseline model for the empirical investigations in the rest of this chapter.

⁵⁵ The market size variable, gdp, is the only variable kept in the model as a control since in the dependent variable is not scaled.

The results of the Driscoll-Kraay estimator for Model (5.1) do not appear to support the hypothesis that human capital exerts a positive effect on FDI inflows (Column 1 in Table 5.4 below). This finding is confirmed by the panel-robust FE estimator and two-way cluster-robust estimator (see Appendix 5.6 for printouts). As the human capital variables **SECedu** and **TERTedu** have relatively little variability across time, the FEVD estimator could be more suitable for identifying their effect on FDI inflows. However, this estimator, too, fails to find a significant effect of these variables on FDI inflows. The other 'slowly-changing' variable in the model, *gdp*, on the other hand, is found to be insignificant in all FE estimations, but it is highly significant and positive in the FEVD estimation. This appears to suggest that its estimated insignificance of this variable may be observed due to the country fixed effects having 'soaked up' its explanatory power (Beck, 2001, p. 285). The difference in results between the FE estimator(s) and FEVD is consistent with the superiority of FEVD estimator in estimating the effect of 'slowly-changing' variables, in line with the arguments and empirical findings of Plümper and Troeger (2007) and Greene et al. (2010). This finding also indirectly suggests that the failure to find a significant effect of these human capital measures on FDI inflows (in a FE context) is not caused (primarily) by these measures' low within variation and the inefficiency of the FE estimator related to it.

	(1)	(2)
VARIABLES	Driscoll-Kraay FE	FEVD
Insecedu	-0.120	-0.329
	(1.189)	(0.536)
Intertedu	-0.770	-0.492
	(0.648)	(0.583)
lngdp	-0.247	0.531**
	(0.365)	(0.226)
Intransition	5.076**	5.076
	(1.945)	(3.278)
Intradefree	-0.496	-0.496
	(0.384)	(0.733)
Ineconfree	1.129	1.129
	(0.765)	(1.314)
Inforbank	0.335**	0.335
	(0.131)	(0.274)
privatisation	0.403***	0.403***
	(0.111)	(0.112)
instability	-0.611***	-0.611*
	(0.138)	(0.355)
Observations	161	161
Number of groups	12	12

 Table 5.4: Model 5.1 results (dependent variable: Infdiflow)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Year dummies included, but not reported

In terms of the other controls, the indicator of progress in transition, *transition*, is found to have a positive and significant effect on FDI inflows in the FE estimations⁵⁶ (Column 1 in Table 5.4). According to these results, for a European transition economy in the sample, a 1% increase in the value of the EBRD transition indicator is, on average, associated with an increase of annual FDI inflows by 5.08%, *ceteris paribus*⁵⁷. Calculated at the mean of the sample, an increase from 3.22 to 3.26 of the EBRD progress in transition score is associated with an increase of USD 163.4 Million in annual FDI inflows. There are two results consistent with market-seeking

⁵⁶ The same effect is not found in the FEVD estimation in Column 2, the reason likely being due to panel-robust and Driscoll-Kraay FE estimators controlling for the effects of heteroskedasticity, autocorrelation (and cross-sectional dependence), which cannot be done in the case of FEVD.

⁵⁷ The effect of the transition indicator appears to be surprisingly large, perhaps due to its correlation with other variables. Further investigations using the more efficient System GMM estimator in Chapter 6 can shed light on this issue.

FDI. In the results from more efficient FEVD estimator, market size (*gdp*) is found to have a significant effect, with a 1% increase in this variable being associated with a 0.53% increase FDI inflows, on average. Calculated at the mean of the sample, an increase of USD 480 Million in a country's GDP is associated with an increase of 17 Million USD in annual FDI inflows. Similarly, the proxy for FDI in the banking sector (*forbank*) is significant and positive. Finally, controls for political instability (*instability*) and the proxy for one-off privatisation-related FDI (*privatisation*) are highly significant, which is not surprising considering that the latter has accounted for significant portions of FDI in European transition economies in certain time periods, as discussed in Section 5.2.3. This stresses the importance of controlling for these factors when seeking to explain FDI determinants in transition economies, which tends to be ignored in the previous literature. The significance and size of the control variables in Model (1) from the Driscoll-Kraay estimator are similar in the panel-robust FE estimation and two-way cluster robust estimation (Appendix 5.6 provides these results).

Table 5.5 below presents results for the two transition-specific human capital hypotheses developed in Section 5.2.2 (see Appendix 5.7 for printouts). Overall, there does not appear to be evidence in support of the hypotheses that the emphasis on general education during the previous system or the share of population educated after the fall of communism affect FDI inflows positively. The ratio of general to vocational enrolments in upper-secondary education at the outset of transition, *genvocratio*, is found to be statistically insignificant (Column 1), as is the share of population aged 16-30 in the working age population in 2008, *edutr1* (Column 2). As these are time-invariant variables, Models (5.2) and (5.3) could only be estimated using the FEVD estimator.

The effect of the second proxy for age structure, *edutr2*, is positive and significant in the Driscoll-Kraay estimation, as hypothesised (Column 3), a finding that is supported by the panel-robust and two-way cluster-robust estimators (see Appendix 5.7 for printouts). However, before drawing too many inferences from this result, it is noted that no significant effect of this variable on inward FDI is found in any of the remaining estimations in this thesis. The coefficients on *TERTedu* and *gdp*,

surprisingly, are negative and significant in the Driscoll-Kraay estimator, but they are insignificant in the results of the other estimators.

	(1)	(2)	(3)
VARIABLES	Model 5.2	Model 5.3	Model 5.4
Insecedu	-0.319	-0.365	-0.799
	(0.530)	(0.531)	(1.651)
Intertedu	-0.428	-0.574	-1.020**
	(0.771)	(0.527)	(0.387)
Ingenvocratio	-0.0552		
	(0.366)		
lnedutr1		-1.414	
		(1.508)	
lnedutr2			11.36***
			(2.787)
lngdp	0.514**	0.425**	-1.087**
	(0.229)	(0.214)	(0.429)
Intransition	5.076	5.076*	-0.931
	(3.255)	(2.985)	(3.983)
Intradefree	-0.496	-0.496	-0.478
	(0.727)	(0.716)	(0.368)
Ineconfree	1.129	1.129	-0.318
	(1.321)	(1.301)	(1.085)
Inforbank	0.335	0.335	0.334**
	(0.267)	(0.241)	(0.122)
privatisation	0.403***	0.403***	0.379**
	(0.111)	(0.110)	(0.123)
instability	-0.611*	-0.611*	
	(0.358)	(0.356)	
Observations	161	161	107
Number of groups	12	12	12

Table 5.5: Models 5.2-5.4 results

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Year dummies included, but not reported. Models 5.2 and 5.3 estimated using FEVD; Model 5.4

estimated using Driscoll-Kraay FE.

The results obtained for the alternative innovative measures of human capital, *cognitive* and *vacancy*, are presented in Table 5.6 below (see Appendix 5.8 for printouts). Similar to the volume measures of human capital, the level of (students') cognitive skills in a country (*cognitive*) and the share of top performers in cognitive tests (*top*) do not appear to attract FDI inflows into European transition economies

(Columns 2 and 3). The availability of skilled labour, as measured by the (average) number of weeks required to fill a vacancy for a skilled worker (*vacancy*) also does not appear to have a significant effect on FDI inflows, a finding which is supported by panel-robust and two-way cluster robust FE estimators (Column 1). Though, the reliability of the latter specification is questionable: the small number of years/observations available appears to be insufficient to identify the effect of explanatory variables on FDI inflows, as indicated also by the lack of statistical significance found for all the variables in the model.

	(1)	(2)	(3)
VARIABLES	Model 5.5	Model 5.6	Model 5.7
Insecedu	0.493	-0.412	-0.337
	(1.715)	(0.523)	(0.486)
Intertedu	0.346	-0.550	-0.598
	(6.932)	(0.664)	(0.634)
Invacancy	-0.255		
	(6.467)		
Incognitive		2.416	
		(3.885)	
Intop			0.507
			(0.395)
lngdp	0.638	0.501**	0.417*
	(3.151)	(0.218)	(0.231)
Intransition	5.193	4.164	4.164
	(70.00)	(3.421)	(3.194)
Intradefree	-1.026	-0.607	-0.607
	(10.18)	(0.765)	(0.739)
Ineconfree	-4.196	1.308	1.308
	(4.599)	(1.210)	(1.197)
Inforbank	0.221	0.538	0.538
	(3.320)	(0.351)	(0.332)
privatisation	0.575	0.395***	0.395***

Table 5.6: Models 5.5-5.7 results (dependent variable: Infdiflow)

instability	(0.556)	(0.125) -0.669* (0.363)	(0.124) -0.669* (0.362)
Observations	48	148	148
Number of groups	12	12	12

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Year dummies included, but not reported. Results obtained using FEVD.

5.5 Robustness check: A FDI stock adjustment model

As a robustness check, the effect of FDI on human capital is estimated using the FDI stock as the dependent variable in a stock (or partial) adjustment model framework. According to neoclassical stock adjustment models, the optimal stock of capital is not achieved instantaneously, but it is realised in smaller sequential changes (Lucas 1967; Gould, 1968; Lucas and Prescott, 1971; Blundell et al., 1995). The slow adjustment tends to be explained by the presence of costs of adjusting current stock which are increasing at the margin, either due to direct installation/dismantling costs or to losses from sudden disruptions of production activities. As a result of this inability to instantaneously achieve the optimal capital stock, the current level of investment will depend both on past investment and investors' expectations about other factors that are expected to affect firms' profitability. The stock adjustment model has been previously used to explain FDI in a country/industry level setting, among others, by Jun and Singh (1995), Cheng and Kwan (2000a), Kinoshita and Campos (2003), Blattner (2006), Bobonis and Shatz (2007), Riedl (2010) and Kinoshita (2011).

The stock adjustment model explains the current level of investment as a means of adjusting the current stock of FD towards its corresponding optimal level. Following Chow (1967) and Cheng and Kwan (2000a), it is assumed that capital adjusts according to the following process:

$$d\ln Y_{it} / dt = \alpha (\ln Y_{it} * -\ln Y_{it})$$
(5.11)

Thus, the adjustment process is such that the percentage change in current capital stock is proportional to the gap between the optimal stock of capital, Y_{it}^* , and current stock of capital, Y_{it} .

In empirical applications Equation (5.11) is replaced by its discrete version:

$$\ln Y_{it} - \ln Y_{it-1} = \alpha (\ln Y_{it} * - \ln Y_{it-1})$$
(5.12)

which, after collecting terms, becomes:

$$\ln Y_{it} = (1 - \alpha) \ln Y_{it-1} + \alpha \ln Y_{it} *(5.13)$$

Thus, the current level of investment is driven by the adjustment effect towards the equilibrium level, and the shift of the equilibrium level as a result of changes in other factors. The speed of the adjustment process is indicated by the coefficient on the lagged capital stock variable, $(1-\alpha)$, which has to be a positive fraction in order for the adjustment process to be stable. However, in addition to the adjustment effect, $(1-\alpha)$ can also reflect an agglomeration effect, as discussed in Sections 5.2 and 5.3. Accordingly, in previous FDI studies it has been interpreted as a combination of the two effects (Cheng and Kwan, 2000a; Kinoshita and Campos, 2003). However, in order to estimate the above equation, the unobserved optimal level of investment is still needed, which has to be specified in terms of its determinants, X_{it}:

$$\ln Y_{it}^* = \beta_i^{\prime} X_{it} + z\eta_i + \varepsilon_{it} \qquad (5.14)$$

Substituting (5.14) into (5.13) gives a dynamic panel equation which can be empirically investigated:

$$\ln Y_{it} = (1 - \alpha) \ln Y_{it-1} + \beta'_i X_{it} + z\eta_i + \varepsilon_{it}$$
(5.14)

The estimated coefficients β_i in a dynamic panel model are short-run coefficients, representing the effect of the *new* information on the respective regressors, controlling for their (joint) "*historical*" *effects*. Greene (2008, p. 469) explains: "With the lagged dependent variable, we now have in the equation the entire history of the right-hand-side variables, so that any measured influence is conditional on this history; in this case, any impact of (the independent variables X_{it}) represents the effect of new information". Thus, in addition to indicating the speed of adjustment towards the equilibrium level, the lagged dependent variable serves as a control variable in the model, incorporating the effect of potential "omitted" variables.

Finally, it should be noted that in this empirical investigation it is not the speed of adjustment of FDI stocks *per se* that is of interest; however, the dynamics in the underlying process must be modelled nevertheless because, as Bond (2002, p.1) warns, 'this may be crucial for recovering consistent estimates of other parameters'. Accordingly, the following stock adjustment version of the baseline Model (5.1), and augmented models (5.4) and (5.5) are estimated for robustness⁵⁸:

 $\ln FDIstock_{ii} = (1 - \alpha) \ln FDIstock_{i,t-1} + \beta_1 \ln SECedu_{ii} + \beta_2 \ln TERTedu_{ii} + \beta_1 \ln SECedu_{ii} + \beta_2 \ln TERTedu_{ii} + \beta_1 \ln SECedu_{ii} + \beta_2 \ln TERTedu_{ii} + \beta_2 \ln$

$$\ln FDIstock_{it} = (1 - \alpha) \ln FDIstock_{i,t-1} + \beta_1 \ln SECedu_{it} + \beta_2 \ln TERTedu_{it} + \beta_3 \ln edutr2_{it} + \beta'_i X_{it} + \delta t_i + z\eta_i + \varepsilon_{it}$$
(5.16)

 $\ln FDIstock_{ii} = (1 - \alpha) \ln FDIstock_{i,i-1} + \beta_1 \ln SECedu_{ii} + \beta_2 \ln TERTedu_{ii} + \beta_3 \ln vacancy_{ii} + \beta'_i X_{ii} + \delta t_i + z\eta_i + \varepsilon_{ii}$ (5.17)

Where

FDIstock is the stock of FDI (in USD) as reported by UNCTAD (2010b).

SECedu (**TERTedu**) is the share of population who have completed secondary (tertiary) education (see Section 5.2 and Table 5.3 for explanations);

edutr2 is the share of population aged 16-30 in a country's workforce;

vacancy is the length of period required to fill a vacancy for a skilled worker;

 X_{it} are the control variables: *gdp*, *tradefree*, *econfree*, *transition*, *forbank*, *privatisation*, *instability*. (see Section 5.2 and Table 5.3 for explanations);

 t_t are time dummies;

 η_i is an unobserved time-invariant individual effect; and

 ε_{it} is an unobserved white noise disturbance.

However, the inclusion of the lagged dependent variable in turn creates other problems for estimation which have to be addressed. The correlation of the lagged value of FDI stock with the fixed effects gives rise to "dynamic panel bias" (Nickell, 1981; Bond, 2002), which can be accounted by the methods discussed in the rest of this section and in Chapter 6.

 $^{^{58}}$ As discussed later, only models analogous to Models (5.1). (5.4) and (5.5) in the previous section are estimated because the other contain time-invariant variables which cannot be estimated using the estimator used here.
In a Within Groups (i.e. FE or LSDV) estimator, the observations are transformed into deviations from individual means (i.e. across time), eliminating the timeinvariant fixed effects which are the source of inconsistency. However, this transformation gives rise to negative correlations between the transformed lagged dependent variable and transformed error term, thus causing downward bias (Nickell, 1981; Kiviet, 1995). This correlation (and hence downward bias) does not decrease with a large N, but it does decrease by increasing the time-dimension (Nickell, 1981). In a Monte Carlo study, Judson and Owen (1999) find this "dynamic panel bias" to be significant even with a panel of 30 periods, which renders the use of Within Groups (LSDV) estimator inappropriate in this sample with a small timedimension of 14 years at best. Instrumental variable (IV) and Generalised Method of Moments (GMM) estimators (Anderson and Hsiao, 1982; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998), discussed in Section 6.6, have been developed to deal with this type of bias, but their properties hold for a large number of individuals. Monte Carlo evidence suggests that they can be biased and imprecise in small-N samples such as the one in this analysis; in particular, their relatively large variances favour LSDV in a small-N context, despite its inconsistency (Arellano and Bond, 1991; Kiviet, 1995; Judson and Owen, 1999). Accordingly, Kiviet (1995) suggests 'correcting' LSDV for dynamic panel bias as the best approach to be adopted in this context. Kiviet proposes 'subtracting' the bias from the estimated LSDV coefficients in a balanced-panel setting based on his derived approximation formula of the bias, which is later refined in Kiviet (1999) and Bun and Kiviet (2003) and extended to accommodate unbalanced panels by Bruno (2005a). Monte Carlo studies find the resulting 'bias-corrected' LSDV estimator to be preferred to both LSDV- and IV and GMM- estimators for small-N dynamic panel data such as the one used in this analysis (Kiviet, 1995; Judson and Owen, 1999; Bruno, 2005a, b). Accordingly, the partial adjustment FDI stock model in this section is estimated using the corrected dynamic LSDV (LSDVC) estimator by Bun and Kiviet (2003), as extended by Bruno (2005a) for implementation for unbalanced panels. As System GMM is preferred to Difference GMM in this empirical investigation (see Section 6.6 for a discussion), the results presented in the rest of this section use bias approximations based on the System GMM estimator as an initial consistent estimator. However, it should be noted, being a within-estimator,

the LSDVC estimator wipes out the effects of time-invariant variables, and thus precludes estimating some of the models proposed in this analysis.

Table 5.7 below summarises the results of the stock-adjustment models estimated using LSDVC (see Appendix 5.9 for printouts). In all three specifications the coefficient on the lagged FDI stock is positive and significant, as expected; it is below one, indicating a stable dynamic process and it lies in the 'credible' range, i.e. between the LSDV and OLS estimates, thus not indicating any specification problems and/or lack of consistency in estimation (Bond, 2002; Roodman, 2006; see Section 6.6 for explanations).

Similar to the model with FDI inflows as the dependent variable, the partial adjustment model does not appear to support the hypothesis that foreign investors are attracted by a higher level of human capital as measured by traditional volume measures: the percentage of population who have completed secondary (tertiary) education, *SECedu (TERTedu)*. The empirical evidence also does not appear to support the hypothesis that foreign investment is attracted by higher shares of population who have completed education after the fall of the communist system, as proxied by *edutr2* (Column 2) or by the availability of skilled workers in the economy, as proxied by *vacancy* (Column 3).

	(1)	(2)	(3)
VARIABLES	Model 5.15	Model 5.16	Model 5.17
L.Infdistock	0.783***	0.812***	0.800***
	(0.0610)	(0.0993)	(0.171)
Insecedu	-0.0284	-0.917	-0.937
	(0.566)	(0.866)	(1.791)
Intertedu	-0.400	-0.360	0.150
	(0.278)	(0.391)	(0.976)
lngdp	-0.0492	0.0502	0.986**
	(0.196)	(0.284)	(0.476)
Intransition	0.348	-1.606	-0.361
	(0.613)	(1.261)	(1.832)
Intradefree	0.158	0.325	0.401
	(0.171)	(0.278)	(0.392)
Ineconfree	0.0331	-0.0316	-1.471
	(0.319)	(0.404)	(0.902)
Inforbank	0.0205	-0.153	-0.401
	(0.0551)	(0.138)	(0.249)

 Table 5.7: Models 5.15-5.17 results (dependent variable: Infdistock)

privatisation	0.0830***	0.0775**	0.0438
	(0.0284)	(0.0339)	(0.0550)
instability	0.148		
	(0.145)		
lnedutr2		1.313	
		(0.946)	
Invacancy			0.288
			(0.230)
	154	107	10
Observations	154	107	48
Number of groups	12	12	12
LSDV-OLS range (lagged dependent			
var)	0.66-0.84	0.59-0.86	0.30-0.97

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Year dummies included, but not reported. Models estimated using LSDVC.

5.6 Conclusion

This chapter has provided a critical appraisal of alternative measures of human capital available for European transition economies. It has been argued that stock measures of education are superior to enrolment rates because they reflect the educational attainment of the whole workforce, and that secondary and tertiary education measures are superior to measures of primary education or literacy because the latter are uniformly high across European transition economies in the period covered in this study. Accordingly, the effect of the percentage of working age population who have completed secondary/tertiary education on FDI inflows/stocks was tested for a sample of European transition economies in the period 1995-2008. Consistent with the findings of the meta-regression analysis in Chapter 3, panel-robust FE, FEVD and two-way cluster-robust FE all fail to find a positive relationship between these measures and FDI inflows. These results are confirmed by a stock-adjustment model using with aggregate FDI stock estimated by the dynamic corrected LSDV estimator.

Similar to the volume measures of human capital, insignificant results are also found for the level of students' cognitive skills as measured by average scores in International Student Achievement Tests; for the share of top-performing students in these tests; as well as for a proxy of skilled labour availability as reported by the firms operating in the economy. Further, empirical results by and large do not support two transition-specific human capital hypotheses developed in this thesis: that foreign investors are expected to be attracted by a younger population, educated in a post-communist education system and by a higher proportion of a population that has completed general (as opposed to vocational) secondary education.

Thus, there appears to be no robust evidence linking higher availability or quality of human capital with the level of FDI inflows/stocks a country receives. One reason for this finding may be that human capital is not necessarily important for all types of FDI and the weak sectoral control variables used here have been unable to (sufficiently) account for these sectoral differences. Therefore, the next chapter looks more closely at the structure of FDI according to economic activity and the hypotheses developed earlier in this analysis are tested for FDI in economic sectors where foreign investors are expected to attach a higher weight to the level and quality of human capital in their decision-making.

Chapter 6

A SECTOR STUDY OF THE EFFECT OF HUMAN CAPITAL ON FDI IN EUROPEAN TRANSITION ECONOMIES

Contents

6.1 Introduction	222
6.2 The sectoral composition of FDI stocks in European transition economies	223
6.3 Assessing the importance of human capital for different economic sectors/types of I	FDI
	226
6.4 Related empirical studies	228
6.5 Evidence from aggregate manufacturing data	233
6.6 Evidence from disaggregated industry-level manufacturing data	241
6.6.1 The empirical model(s)	241
6.6.2 Generalised Method of Moments (GMM) estimators and their suitability for this	
particular empirical investigation	246
6.6.3 Instruments and specification tests in (System) GMM estimators	252
6.6.4 Estimation results	256
6.7 Conclusion	271

6.1 Introduction

Using various estimation techniques and human capital measures, the analysis presented in Chapter 5 empirically investigated the relationship between European transition economies' level of human capital and their FDI inflows/stocks. This investigation did not find support for the hypothesis that a country's stock of human capital attracts FDI, regardless of whether that stock was developed during or after communism. Measures of the quantity of education attained by the workforce which are commonly used in literature were not found to affect inward FDI, a result which is consistent with the lack of a 'genuine effect' in previous research as suggested by the meta-regression analysis presented in Chapter 3 of this thesis. It has been previously argued in this thesis (Section 5.2.1) that the use of aggregate FDI measures is a major weakness of empirical studies because the relative importance of (locational) factors is likely to depend largely on foreign investors' motivations for undertaking FDI (Section 2.2) and the technological intensity of the specific economic activities undertaken in the host country (Section 4.2). Accordingly, the use of aggregate measures has also been argued to be one potential explanation for lack of the empirical support for a human capital-FDI relationship found in previous research and in the analysis presented in Chapter 5. Therefore, this chapter analyses the sectoral composition of FDI in European transition economies; it provides arguments as to which type of foreign investors (i.e. in which economic sectors) are (more) likely to be affected by the host country's human capital endowment; and empirically tests the (relative) importance of human capital endowment for FDI in different economic activities.

The rest of this chapter is organised as follows. Section 6.2 provides a statistical overview of the sectoral composition of FDI stocks in European transition economies. Section 6.3 examines the theoretical arguments on the determinants of FDI at sector level and identifies sectors where foreign investors' decisions are likely to be (more strongly) affected by human capital. Section 6.4 provides a review of related studies that investigate FDI determinants using disaggregated data. The empirical investigations using sector- and industry- level manufacturing FDI data are presented in Sections 6.5 and 6.6, and Section 6.7 concludes with a summary of the empirical findings.

6.2 The sectoral composition of FDI stocks in European transition economies

The Vienna Institute for International Economic Studies (wiiw) provides a FDI database for Central, East, and South-East European transition economies (WIIW, 2011) which contains data on stocks of FDI according to economic activity as classified by NACE Rev 1.1^{59} . The data reported in this database is collected by the host countries' Central Banks through enterprise surveys. The database contains data for all the countries included in the analysis presented in the previous chapter, but not always for the whole period under consideration here (1995-2008). Tables in the rest of this section refer to data for 2007 because this was the most recent year for which data is available for the whole sample. The data, summarised in Table 6.1 below, suggest that nearly a third of the FDI stocks in the European transition economies in this study's sample are in the manufacturing sector, while the rest is highly dominated by services. The second major sector is the financial sector which accounts for just over a fifth of the FDI stock, followed by real estate, renting and business activities; financial wholesale and retail trade and transport, storage and communication (which is dominated by the telecommunication sector where major privatisations occurred during transition). However, the sectoral distribution differs significantly across the economies in the sample. Manufacturing appears to be a major FDI receiving sector, with a share above the weighted average, in the Slovak Republic, Czech Republic, Macedonia, Poland, Romania, Lithuania and Hungary, while in most of the other countries FDI is mainly concentrated in services. Notably, the financial sector accounts for the largest shares of FDI in Estonia, Latvia and South-East European countries (Croatia, Slovenia, Albania, Bosnia and Herzegovina), but it also makes up a significant share of FDI (11% or above) in each of the remaining countries in the sample.

⁵⁹ The database reports FDI according to the more recent version of NACE Rev 2.1 for only two of the countries included in this analysis. The database also provides data on FDI inflows, but these tend to be reported for fewer years and they are missing altogether for some countries. Other sources of sector-level comparable FDI data for large sets of countries are Eurostat and OECD. However, Eurostat covers only a few of the countries included in this analysis, while OECD provides outflows of OECD members by sector and by partner country *separately*, but not outflows broken down by sector *and* host country.

		FDI stock	
NACE	Rev 1.1 code and economic activity	(MN EUR)	Share (%)
D	Manufacturing	138,297.1	31.9
J	Financial intermediation	91,699.5	21.2
Κ	Real estate, renting and business activities	61,978.2	14.3
G	Wholesale and retail trade; repair of motor vehicles, motorcycles and personal and household goods	55,974.5	12.9
Ι	Transport, storage and communication	35,350.6	8.2
Е	Electricity, gas and water supply	21,358.1	4.9
F	Construction	7,851.3	1.8
С	Mining and quarrying	5,954.2	1.4
Н	Hotels and restaurants	3,381.4	0.8
A&B	Agriculture, hunting, forestry and fishing	1,905.1	0.4
	Other	9,574.8	2.2
	Total	433,324.6	100.0

Table	6.1:	Distribution	of FDI sto	cks acco	rding to	economic	activity	(2007))
-------	------	--------------	------------	----------	----------	----------	----------	--------	---

Source: Own calculations based on WIIW (2011)

Within manufacturing, around half of the FDI stock is concentrated in the manufacturing of transport equipment; basic metals and fabricated metal products; food industry; chemical industry; electrical and optical equipment (Table 6.2 below)⁶⁰. However, this again is not a uniform distribution across the economies in the sample. FDI in the automotive industry, for instance, has gone exclusively to five countries: almost 85% is concentrated in Hungary, Czech Republic and Poland, with the rest being split between the Slovak Republic and Romania. The same countries appear to be major destinations for FDI in the food and chemical industries and manufacture of basic metals, fabricated metal products and electrical equipment, though FDI in these sectors is not as concentrated as in the automotive industry. Of the smaller economies in the sample, Croatia and Slovenia appear to be the only destinations that have been more successful at attracting FDI in the major manufacturing sectors above. Slovenia has been particularly successful in attracting FDI in the chemical industry, whilst Croatia has significant FDI stocks in this industry as well as in the food industry and manufacturing of electrical equipment.

⁶⁰ The FDI stock figures presented in Table 6.1 are consistent with the data presented in Figure 1.3 in Section 1.2 because: (1) FDI stocks here are measured in Euros, whilst those in Figure 1.3 are measured in US Dollars and (2) FDI stocks here refer only to the sample of economies which are included in the empirical analyses in this thesis, whilst those in Figure 1.3 also include Bosnia and Herzegovina, Kosovo, Montenegro and Serbia.

NACE Rev	7 1.1 code and manufacturing activity	FDI stock (MN EUR)	Share (%)
DM	Transport equipment	25,205.6	18.9
DJ**	Basic metals and fabricated metal products	18,110.6	13.5
DA	Food products, beverages and tobacco	15,169.3	11.3
	Chemicals, chemical products and man-made		
DG	fibres	12,547.0	9.4
DL	Electrical and optical equipment	11,613.2	8.7
DI**	(Other) non-metallic mineral products	7,367.9	5.5
DK	Machinery and equipment n.e.c.	7,047.3	5.3
DF**	Coke, refined petroleum products and nuclear fuel	6,802.1	5.1
DH**	Rubber and plastic products	6,700.3	5.0
DD/DE**	Wood and wood products; pulp, paper and paper products; publishing and printing	5,648.5	4.2
DB/DC	Textiles/leather and textile/leather products	2,635.4	2.0
DN**	Furniture; manufacturing n.e.c.; recycling	1,272.3	1.0
	Other	13,597.1	10.2
Total***		133,716.7	100.0

Table 6.2: Distribution of manufacturing FDI stocks (2007)*

Source: Own calculations based on WIIW (2011)

*Albania and Bulgaria excluded (data for Albania available for 2003-5, and not available for Bulgaria) **The share of the sector is likely to be underestimated because data is not available for all countries ***The total does not equal that in the previous table because it does not include Albania and Bulgaria ****n.e.c. refers to 'not elsewhere classified'

In summary, this review of sectoral data reveals a diversity of distribution of FDI across the economies in the sample. Economies appear to differ greatly with regard to their shares of FDI in manufacturing compared to that in services, as well as their shares in different types of services or manufacturing activities. To the extent that the characteristics of different sectors where FDI takes place are associated with different motivations for foreign production and the foreign investors' decisions are affected by different factors, these differences in the sectoral composition of FDI among European transition economies may be conveniently used to assess the relative importance of these factors. The next section will argue that foreign investors are likely to assign a different relative importance to different locational factors, in particular to human capital endowment, depending on their motivation for foreign production, which in turn is (partly) reflected in the economic activity they undertake in the host economy. Accordingly, the sectors where human capital is expected to be relatively more attractive to foreign investors will be identified and

the hypotheses developed in the previous chapters will subsequently be tested using data at the sector level.

6.3 Assessing the importance of human capital for different economic sectors/types of FDI

As discussed in Section 2.2, FDI can be broadly categorised into four types according to the motivation for foreign production: (natural) resource-seeking, strategic asset or capability-seeking, market-seeking and efficiency-seeking (Dunning and Lundan, 2008). The rest of this section will look more closely at the characteristics of these types of FDI and assess the extent to which FDI in different economic sectors can be associated with these.

Resource-seeking FDI is motivated by access to the natural resources of a host country in order to minimise costs and/or ensure the security of supplies, as explained in Section 2.2. This type of FDI is typically associated with primary sector activities, i.e. agriculture, fishing, mining and quarrying (Schulz, 2007; Dunning and Lundan, 2008; Hallam, 2009; Gerlach and Liu, 2010), and as such it does not seem to account for a significant share of FDI in transition economies (Table 6.1 above). As the key determinant of this type of FDI are a country's natural resource endowments (which are location-bound), foreign investment will be relatively less affected by other factors, including human capital. Moreover, resource-seeking FDI typically involves transfers of resources to the home country which are then used as inputs in manufacturing or sold as final products (Schulz, 2007; Gerlach and Liu, 2010), which means that foreign affiliates have little interaction with the local economy; this has been argued to be a further reason why other factors that are normally expected to affect FDI are likely to be irrelevant (Schulz, 2007; Walsh and Yu, 2010). Consistent with these arguments, empirical analyses appear to suggest that FDI in the primary sector is affected by factors such as market size, market growth, macroeconomic stability, institutional quality or tax incentives (Dahl, 2002; Stöwhase, 2002; Schulz, 2007; Walsh and Yu, 2010). By the same token, it is argued here that human capital is unlikely to be a significant factor in attracting FDI in the primary sector, but also in some services such as tourism which, as Dunning and Lundan (2008, p. 68) point out, are also intended to exploit location-bound resources.

As discussed in Section 2.2, *strategic asset or capability-seeking FDI* is intended to acquire expertise and technological capability. As such, it can be argued to the type of FDI that is most affected by the availability of skilled labour. Though previous studies do not associate it with any particular economic sector, it appears that this type of FDI is more likely to be found in higher technology intensive industries, to the extent that their technologies are high skill-complementary. This type of foreign investment is typically directed towards developed countries (Hsu and Chen, 2009) and it is not expected to be significant in European transition economies.

Market-seeking FDI is intended to supply goods or services to the host country market or its neighbouring countries, as explained in Section 2.2. Because it is primarily motivated by access to markets, this type of FDI is relatively less likely to be affected by host country's factor endowments, and more so by the size and growth of the host market and that of the neighbouring countries (Schulz, 2007; Dunning and Lundan, 2008; Walsh and Yu, 2010). Hence, it is argued here that human capital is again less likely to be a significant factor in foreign investors' decision-making if FDI is undertaken for market-seeking purposes. Market-seeking FDI is typically associated with the tertiary sector due to the non-tradable and non-storable nature of (most) services which requires them to be produced in the host country where they will be consumed⁶¹ (Schulz, 2007; Riedl, 2010). Hence, FDI in the tertiary sector, including banking, retailing, real estate, business activities, transport and telecommunication which are major FDI recipients in European transition economies, is considered in this analysis as predominantly market-seeking and therefore less likely to be affected by the availability and cost of production factors, including human capital⁶². The classification of FDI in the secondary sector, on the other hand, is less straightforward, because it is likely to be driven both by efficiency considerations (discussed below) and by access to markets, the latter becoming especially relevant for products with high transportation costs and host countries with more trade barriers (Schulz, 2007; Riedl, 2010).

⁶¹ Note that although export of services is not always technically impossible (e.g. in banking or insurance), it is not likely to be practical and may cost more than operating a subsidiary in the local market, as Goldberg (2007) explains in the case of the banking sector.

⁶²There are some services in the information and communication technology (ICT) sector that are tradable due to telecommunication advances, but they cannot be controlled for because of the level of aggregation of data available for this sector study. However, such services are likely to account for a very small portion of services in the sample under consideration here, so it is unlikely to affect the results.

Efficiency-seeking FDI, as discussed previously in Section 2.2, aims to reduce production costs through a combination of resource- and market-seeking investment, typically through carrying out different stages of production in different countries so as to exploit differences in factor prices. Therefore, it is argued here that the availability and price of skilled labour is likely to be one of the factors considered by the efficiency seekers. As this type of FDI is predominantly related to the manufacturing sector (Schulz, 2007), it is argued here that if foreign investors' decisions are indeed affected by the availability and/or price of human capital then this relationship is most likely to be identified in this sector. Therefore, models similar to those developed in Chapter 5 of this thesis are going to be estimated in this chapter using the level of FDI stocks in manufacturing sector instead of the aggregate measure used previously.

Finally, as discussed in Section 4.2, previous research indicates complementarity between the skills and the level of technology. Based on this, it is argued here that the effect of human capital is likely to differ between different manufacturing activities according to their level of technological intensity. In this case, the level of technological intensity of foreign investment can be argued to be a proxy for the level of complexity of the task that foreign investors intend to carry out in the host economy, which, according to the arguments and evidence presented in Acemoglu and Autor (2012), is expected to determine the required skill intensity of the workforce in the host country. The proposition that FDI in different manufacturing industries may differ with regard to the relevance they are likely to attach to human capital availability is tested using dummy variables to distinguish between groups of industries with different levels of technological content, as classified by OECD/Eurostat. The classification of industries and the specification of this model are discussed in more detail in Section 6.6, after a review of the related empirical literature and an empirical investigation using aggregate manufacturing FDI data.

6.4 Related empirical studies

Mainly due to data limitations, only a few studies investigate the determinants of FDI at sector level (see Table 6.3 below for a summary). As in the case of the FDI literature in general (discussed in Chapter 3), human capital tends not to be included and, when it is, it is not clear that the measures used actually reflect human capital

availability in the host country. For instance, Urata and Kawai (2000), Nachum (2000), Bellak et al. (2009), Walsh and Yu (2010) and Kinoshita (2011) use measures that reflect the (share of) population currently enrolled in education which, as argued in Section 5.2.2, is an imperfect measure because it does not reflect the stock of human capital in the workforce. Tsen (2005) uses a measure of federal government expenditure, which again is a 'flow' measure reflecting only current investment in education and, as argued in Section 4.3, it is not clear from empirical analyses that higher levels of expenditure are associated with better educational outcomes. Finally, Bellak et al. (2009) use the share of low-skilled hours in total hours worked in each industry as a proxy for human capital. This proxy has the great advantage of measuring the skill level for specific industries, but it may merely reflect the technological level of the current firms in the market which may not be determined primarily by the skill level of the available workforce. In the empirical analysis presented below the relationship between human capital and FDI at sector level will be tested using arguably more appropriate measures of human capital: the share of population who have completed secondary/tertiary education (controlling for vintage effects), the level of cognitive skills and the availability of skilled labour as reported by firms currently operating in the manufacturing sector.

Study	Sample	Period	Estimation technique	Dependent variable	Human capital measure (result)	Independent variables related to human capital (results)	Comments
1. FDI in 1	nanufacturing						
Urata and Kawai (2000)	Japanese firms' manufacturing FDI in 117 developing and developed economies	1980- 1994	Logit	Dummy, 1 if the country is the chosen as the location for investment	Enrolment rate in secondary education (-)	Wage (-)	When the sample is divided in developing and developed economies, the results stay the same for the first group, but the human capital becomes positive and wage becomes insignificant for the latter group
Resmini (2000)	EU firms' FDI in 12 CEEC's	Panel (FE)	Logit	Dummy, 1 a certain manufacturing sector of a certain country is chosen as the location for investment		Wage differential between home and host country (+ in science-based and capital-intesive sectors, insignificant in traditional and scale-intensive ones)	This model provides information similar to the macro-level ones with country- industry pairs as a dependent variable in Riedl (2010) and Bellak et al. (2009), below.

Table 6.3: Sector/industry level FDI studies

Tsen (2005)	Malaysia	1980- 2002	Time-series	Value of foreign investment in approved projects in manufacturing	Federal government expenditure on education as a percentage of GDP (+)		
Bellak et al. (2009)	10 developed and transition economies	1995- 2004	Panel (difference GMM)	Total stock of inward FDI in different manufacturing industries in different countries (i.e. country industry pairs)	Low-skilled hours worked in each industry as a share of total hours worked (-)	Labour cost (insignificant), labour productivity (insignificant); Government- financed R&D as a percentage of GDP (+)	Effect of human capital is robust across specifications.
2. FDI in s	ervices						
Nachum (2000)	US states	1987 and 1992	OLS	Number of foreign investors in financial and professional services	Share of population in higher education (+)	Labour productivity (insignificant)	
2. FDI in r	nore than one see	ctor					
Bajo- Rubio and Sosvilla- Rivero (1994)	Spain	1964- 1989	Time-series (cointegration analysis)	FDI inflows in manufacturing/non- manufacturing		Unit labour costs (insignificant in manufacturing, - in non-manufacturing)	
Stöwhase (2002)	Bilateral inflows between 12 EU economies,	1995- 1999	OLS/GLS	FDI inflows in the primary/secondary/tertiary sector		Labour cost (insignificant)	

Schulz (2007)	63 developed and developing economies	1993- 2003	OLS and panel (FE and GMM)	Aggregate FDI inflows, and FDI inflows in the primary/secondary/tertiary sector, as a share of GDP		Labour cost (- in manufacturing, insignificant in other sectors)	Labour cost included only in the cross-section OLS regressions.
Bénassy- Quéré et al. (2007)	US FDI to 18 EU economies	1994- 2002	Panel (FE)	Companies' stock of capital expeditures in different industries		Unit labour costs (+ or insignificant)	Potential differences between sectors are not investigated.
Riedl (2010)	8 transition economies	1998- 2004	Dynamic panel (system GMM)	FDI stock in different manufacturing and service industries in different countries (i.e. country- industry pairs)		Unit labour costs (- in manufacturing, insignificant in services)	
Walsh and Yu (2010)	26 developed, developing and transition economies	1999- 2008	Panel (system GMM)	Aggregate FDI inflows, and FDI inflows in the primary/secondary/tertiary sector, as a share of GDP	Enrolment rates in primary, secondary and tertiary education (insignificant)		
Kinoshita (2011)	25 CEEB and CIS economies	1990- 1998	Dynamic panel (system GMM)	FDI stock in the tradable sector as a share of total FDI stock	Tertiary education enrolment rate (+)	Nominal wage rate (negative)	Tradable sector includes: agriculture, manufacturing, mining, retail, hotels and restaurants

Most of the previous studies regress FDI in the primary/secondary/tertiary sector, or more than one of these in separate regressions for comparison, on a set of country level determinants (Bajo-Rubio and Sosvilla-Rivero, 1994; Stöwhase, 2002; Schulz, 2007; Tsen, 2005; Walsh and Yu, 2010). Only a few use more disaggregated industry-level data, but either no attempt is made to differentiate between the potentially different effects of explanatory variables according to industry (Bénassy-Quéré et al., 2007; Bellak et al., 2009), or only differences between FDI in service vs. manufacturing industries (Riedl, 2010) or tradable vs. non-tradable industries (Kinoshita, 2011) are investigated. The analysis presented below will use both these approaches to investigate the effect of human capital on FDI. Since, as argued in the previous section, human capital is more likely to affect manufacturing (i.e. the secondary sector) than resource-based and service industries (i.e. the primary and tertiary sectors), the hypotheses developed in the previous chapter will first be tested here using data for the (total) manufacturing sector FDI. In Sections 4.2 and 6.3 it was further argued that human capital is likely to be relatively more important in some manufacturing industries than in others, depending on their capital intensity and the complementarity of that capital to skilled labour. Therefore, manufacturing FDI data will be broken down further and these potential differences are investigated using data for country-industry pairs as the cross-sectional unit of the panel analysis.

6.5 Evidence from aggregate manufacturing data

The specification adopted in this part of the sector study is similar to that developed in Chapter 5, except that the dependent variable and some of the independent variables are now measured at sector level. The dependent variable used in this investigation is the annual (aggregate) level of FDI stock in the manufacturing sector, (*ln*)manFDIstock, i.e. sector D in 1-digit NACE Rev 1.1 classification, as reported by WIIW (2011)⁶³. Other related measures similar to that used by Kinoshita

 $^{^{63}}$ The data, originally reported in Euros, was converted to US Dollars based on the historical exchange rate data provided in X-rate (2011) in order to be compatible with the GDP data (*gdp*). As the exchange rates are reported on a monthly basis (as an average of daily values), the annual exchange rate was calculated as the average of the monthly values reported, weighed by the number of days. As previously noted in Chapter 5, the use of USD is not expected to affect the results because any changes in the valuation of stocks that may exist due to exchange rate variability are picked up by the time dummies since they are expected to be universal across countries. The 'universality' of ER shocks is automatic in the case of the Countries that have the same currency, i.e. Euro, and those whose currencies are pegged against the Euro; and it is expected to hold also for countries with

(2011) were considered, but they do not seem to be appropriate for this analysis. First, specifying the dependent variable as a *share* of a sector's FDI stock in total FDI was considered; however, this can be misleading because it only provides information on the *relative* size of the FDI in manufacturing, which is determined by the factors that attract FDI in this sector, but also other factors that attract FDI in the other sectors. For instance, even though two countries may have the same level of manufacturing FDI, the share of manufacturing FDI will be lower in the country which also has abundant natural resources and hence more resource-seeking FDI. Second, the use of FDI stocks in tradable vs. non-tradable sectors was considered, but this does not appear to be an appropriate classification for this purpose of this analysis because it includes primary-sector activities (e.g. agriculture or mining) where the effect of human capital is likely to be smaller, as argued in Section 6.2.

As previously explained in Section 5.5, in a model with a stock measure, the (expected) persistence of FDI has to be accounted for by including the lagged dependent variable in the model and the 'dynamic panel bias' arising from the inclusion of this variable can be addressed using a number of methods. As in the case of the aggregate FDI stocks model developed in Section 5.5, the number of countries in this sample is too small to allow a GMM approach, and therefore dynamic panel bias is corrected by using *Bun and Kiviet's (2003) corrected dynamic LSDV estimator, as extended by Bruno (2005a) for implementation for unbalanced panels*.

Accordingly, the following LSDV Models are estimated here with similar regressors to those used in Chapter 5, with the exception of two variables which are now measured at sector level. Namely, a new dummy variable, *manprivatisation*, is created which indicates years when major privatisations of *manufacturing* enterprises occurred in order to control for one-off privatisation-related changes in FDI stock and *manvacancy* now reflects the average of the number of weeks it took firms *in manufacturing* to fill a vacancy for a skilled worker. These two variables were created in the same manner as their economy-wide counterparts, *privatisation* and *vacancy*, explained in Section 5.2. Table 6.4 below presents the list of variables used

floating exchange rates assuming that their exchange rates with the Euro and US Dollar will move together due to arbitrage effects.

in this chapter, as well as their definitions and sources whilst Appendix 6.1 presents their descriptive statistics and the raw correlations.

 Table 6.4: Variable names, definitions and sources

Variable name	Expected sign	Description	Source
manFDIstock	dependent var	Inward FDI stock in manufacturing according to NACE 1.1 classification (in current USD, converted from EUR)	WIIW (2010)
indFDIstock	dependent var	Inward FDI stock in country <i>i</i> in manufacturing industry <i>j</i> according to NACE 1.1 classification (in current USD, converted from EUR)	WIIW (2010)
SECedu	+	Percentage of population over age 15 who have completed secondary education, including those who have completed tertiary education (see Section 5.2.1)	Barro and Lee (2010)
TERTedu	+	Percentage of population over age 15 who have completed tertiary education as their highest level of education	Author's calculations based on data from Barro and Lee (2010)
genvocratio	+	The ratio of general to vocational enrolments in upper-secondary education in 1990	Author's calculations based on data from UNICEF (2010)
edutr1	+	Share of population aged 16-30 in a country's working age population in 2008 (population aged 0-14 in 1992/population aged 15-64 in 2008)	Author's calculations based on data from WDI (2010)
edutr2	+	Share of population who were educated in the communist system only up to age 12 or less in a country's working age population in the respective year (see Section 5.2.2 for explanations)	Author's calculations based on data from Barro and Lee (2010) and WDI (2010)
manvacancy	-	A country-average of the length of period required to fill a vacancy for a skilled worker by manufacturing firms	Author's calculations based on data from BEEPS (2002, 2005)
cognitive	+	Standardised measure of cognitive skills derived from maths and science scores in International Student Achievement Tests	Hanushek and Woessmann (2009a)
top	+	Share of top performers (i.e. those achieving a score of 600 points or one standard deviation above the OECD mean) in International Student Achievement Tests	Hanushek and Woessmann (2009a)
medium	NA	Dummy variable indicating high-tech industries (see Section 6.6 and Appendix 6.3)	Constructed by the author based on OECD (2011)/Eurostat (2011)

high	NA	Dummy variable indicating medium-tech industries (see Section 6.6 and Appendix 6.3)	Constructed by the author based on OECD (2011)/Eurostat (2011)
SECmed	+	Interaction term: SECedu*medium	NA
SEChigh	+	Interaction term: SECedu*high	NA
TERTmed	+	Interaction term: TERTedu*medium	NA
TERThigh	+	Interaction term: <i>TERTedu*high</i>	NA
cognitivemed	+	Interaction term: <i>congnitive*medium</i>	NA
cognitivehigh	+	Interaction term: <i>cognitive*high</i>	NA
topmed	+	Interaction term: <i>top*medium</i>	NA
tophigh	+	Interaction term: <i>top*high</i>	NA
wage	-	The average gross wage paid in the host country	WIIW (2011)
gdp	+	Size of the host market as measured by its GDP level (in current USD)	WDI (2010)
gdppc		GDP per capita (in current USD)	WDI (2010)
tradefree	?	Trade freedom component of the Economic Freedom Index	Heritage Foundation (2010)
econfree	+	Economic Freedom Index, excluding the trade freedom component (i.e. the simple average of all other components)	Author's calculations based on data from Heritage Foundation (2010)
ictinfra	+	Sum of the number of telephone lines, broadband subscriptions, and cellular subscriptions, per 100 inhabitants	Author's calculations based on data from WDI (2010)
transition	+	The overall transition score awarded by the EBRD	EBRD (various years)
manprivatisation	+	Dummy variable, equals to 1 in years when FDI-related privatisations of large enterprises took place in the manufacturing sector (see Section 5.2.3)	Constructed by the author based on EBRD (various years), UNCTAD (various years) and Kalotay and Hunya (2000)

indprivatisation	+	Dummy variable, equals to 1 in years when FDI-related privatisations of large enterprises took place in the specific industry (see Section 5.2.3)	Constructed by the author based on EBRD (various years), UNCTAD (various years) and Kalotay and Hunya (2000)
instability	-	Dummy variable, equals to 1 in years when a country is affected by political unrest, either an internal conflict or one in the region (see Section 5.2.3 for explanation)	Constructed by the author

Initially, the baseline Model (6.1) is estimated:

$$\ln manFDIstock_{it} = (1 - \alpha) \ln manFDIstock_{i,t-1} + \beta_1 \ln SECedu_{it} + \beta_2 \ln TERTedu_{it} + \beta'_i X_{it} + \delta t_i + z\eta_i + \varepsilon_{it}$$
(6.1)

Where

manFDIstock is the stock of FDI (in USD) from WIIW (2010);

SECedu (**TERTedu**) is the share of population who have completed secondary (tertiary) education (see Section 5.2 and Table 5.3 for explanations);

 X_{it} are the control variables: average gross wage (*wage*); the size of the host market (*gdp*); trade freedom (*tradefree*); economic freedom (*econfree*); ICT infrastructure (*ictinfra*) progress in transition (*transition*); dummy for major privatisations in manufacturing (*manprivatisation*); dummy for years of political instability (*instability*) (see Table 6.4 above and Section 5.2 for more explanations);

 t_t are time dummies;

 η_i is an unobserved time-invariant individual effect; and

 ε_{it} is an unobserved white noise disturbance.

The baseline Model (6.1) is subsequently augmented with the share of population aged 16-30 in a country's workforce, (*ln*)edutr2, and the period required for manufacturing firms to fill a vacancy for a skilled worker, (*ln*)manvacancy, similar to Models (5.16) and (5.17) in Chapter 5:

$$\ln manFDIstock_{it} = (1 - \alpha) \ln manFDIstock_{i,t-1} + \beta_1 \ln SECedu_{it} + \beta_2 \ln TERTedu_{it} + \beta_3 \ln edutr2_{it} + \beta'_i X_{it} + \delta t_i + z\eta_i + \varepsilon_{it} \qquad (6.2)$$

$$\ln manFDIstock_{it} = (1 - \alpha) \ln manFDIstock_{i,t-1} + \beta_1 \ln SECedu_{it} + \beta_2 \ln TERTedu_{it} + \beta_3 \ln manvacancy_{it} + \beta'_i X_{it} + \delta t_i + z\eta_i + \varepsilon_{it} \dots (6.3)$$

Table 6.5 below presents the results of Models (6.1-6.3) estimated using the dynamic corrected LSDV model, using System GMM as an initial estimator to correct for bias (printouts for these are presented in Appendix 6.2). The variables of interest and the controls in these models are insignificant, with the exception of *(ln)manvacancy* which is significant and positive. However, the size of the coefficient on the lagged dependent variable in all these models is above 1, which, as explained in Section 5.5,

indicates unstable (explosive) dynamics; in addition, the size of the coefficients is in thousands, which seems peculiar considering that these indicate percentage changes (as this is a log-log model). Therefore, these results are not considered reliable and are not interpreted.

	(1)	(2)	(3)
	Model	Model	Model
VARIABLES	(0.1)	(0.2)	(0.3)
	1 110444	1 000***	1 001***
L.manfdistock	1.110***	1.088***	1.201***
	(0.0323)	(0.0413)	(0.145)
Insecedu	-1,594	-3,266	32,803
	(7,602)	(11,491)	(32,124)
Intertedu	-3,575	-1,712	-6,926
	(2,456)	(4,336)	(16,241)
Inwage	-1,430	1,134	-1,880
	(3,519)	(4,977)	(21,846)
lngdp	813.2	-1,190	-5,682
	(3,416)	(6,113)	(20,281)
Intransition	7,920	7,844	-67,395*
	(12,549)	(20,537)	(40,335)
Intradefree	-86.76	211.0	3,943
	(2,289)	(3,910)	(4,908)
Ineconfree	-2,989	-4,061	-11,958
	(4,433)	(4,947)	(12,905)
Inictinfra	2,322	2,576	6,223
	(1,713)	(2,359)	(6,383)
manprivatisation	1,064**	1,091*	423.7
	(508.3)	(615.1)	(872.1)
lnedutr2		-13,602	
		(12,139)	
Inmanvacancy			5,871*
-			(3,192)
			~ / /
Observations	123	100	42
Number of countryid	12	12	11

 Table 6.5: Models 6.1-6.3 results (dependent variable: lnmanFDIstock)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Year dummies included, but not reported. Models estimated using LSDVC.

Considering the problems with these model(s), similar ones using industry-level data are estimated in the beginning of the next section to examine the *average* effect of

human capital on FDI in manufacturing industries (i.e. the overall effect *across* industries).

6.6 Evidence from disaggregated industry-level manufacturing data

6.6.1 The empirical model(s)

In Section 6.3 it was argued that the elasticity of FDI inflows to different human capital endowments is likely to differ across different manufacturing industries. This hypothesis is tested in this section using WIIW (2011) manufacturing data disaggregated by industry. The dependent variable in this investigation, *(ln)indFDIstock*, is the annual level of FDI stock in each manufacturing industry j in each country i. This analysis includes the whole list of industries in the manufacturing sector disaggregated at 2-digit level according to NACE Rev 1.1 classification (Eurostat, 2008), i.e. industries DA-DN, as listed in Table 6.2 in Section 6.2. The (potential) number of countries is smaller in this sample compared to previous empirical specifications because FDI data at NACE 2-digit level is not available for Bulgaria.

Now that the FDI stock is measured at a more disaggregated level, there are some instances where negative FDI stocks are observed⁶⁴. Negative FDI stocks may seem counter-intuitive and they are encountered more rarely than negative FDI inflows. The reasons for recorded negative FDI stocks may be similar to those for FDI inflows, e.g. when the value of loans or trade credits of the foreign subsidiary extended to its parent company exceed the parent company's direct investment in the subsidiary, or when the subsidiary suffers continuous losses leading to negative reserves. Negative FDI values may be problematic because they cannot be transformed into natural logarithms. Previous studies have approached the problem of zero or negative values by adding a value of one (currency unit) to zeros so that the observation takes the value of zero after the (natural) logarithmic transformation and by taking the natural logarithms of the *absolute* values of the negative observations and subsequently multiplying them by -1 so as to reflect the original

⁶⁴ A total of seven negative values are observed. Four of these are in the coke, refined petroleum products and nuclear fuel industry (DF) in Macedonia in 2000, Lithuania in 2000-01, and Hungary in 2003; one is in the textiles and leather industry (DB-DC) in the Czech Republic in 2000; and one is in furniture, manufacturing n.e.c., recycling (DN) in the Slovak Republic in 2007.

sign (Blonigen and Davies, 2004; Neumayer and Spess, 2005; Dalba-Norris et al., 2010; Mina, 2010). A modified version of this approach is applied here motivated on theoretical grounds: negative values are simply changed to the value of 1 USD (rather than to negative values obtained by the transformation explained above). As explained previously in Section 5.2, the purpose of this analysis is to explain the level of advanced direct investment by the foreign investors in their subsidiaries, preferably in gross terms, and not the level of trade credits/loans of the latter to their parent companies, the level of their repatriated profits, or losses they may incur (although it is recognised that the last two may themselves be relevant factors in determining the level of the investment that is of interest here). Accordingly, from a theoretical perspective, it is considered that the negative FDI inflows/stocks recorded due to these phenomena are irrelevant for this analysis and therefore this 'interference' with the data is justified. From the perspective of empirical estimation, these transformations are not expected to create any problems because they effect an extremely low proportion of the observations in this sample (i.e. a total of 7 observations out of the total of approximately 1300 that are used in the estimation).

The human capital measures and most control variables used here are the same as the ones used in Models 6.1-6.3 in the previous section; this includes the average number of weeks required to fill a vacancy, *(ln)manvacancy*, which can only measured at the level of the manufacturing sector as a whole because BEEPS does not disaggregate firms further than the 1-digit NACE classification. The only variable from the previous model that can be further disaggregated at NACE 2-digit classification level is the privatisation dummy, *indprivatisation*, which now indicates years when privatisations specific to each manufacturing industry took place. As in the previous empirical analyses in this thesis, the continuous variables, including the dependent variable, are transformed into natural logarithms.

In addition to the country- and industry-level explanatory variables, a set of *country dummies (c2-c14)* and *industry dummies (s2-s12)* are included in the model to account for any remaining country- and sector-specific factors that may affect FDI stocks. Also, as in the previous empirical specifications, a set of *year dummies (d1996-d2007)* is included in the model; as explained in Section 5.3, this is expected to (partially) account for the effects of potential cross-sectional dependence that arise

due to universal time shocks related to global FDI trends (Roodman, 2006; Sarafidis et al., 2009). Accordingly, the initial industry-level model estimated in this section is:

$$\ln indFDIstock_{ijt} = \beta_1 + (1 - \alpha) \ln indFDIstock_{ij,t-1} + \beta_2 \ln SECedu_{it} + \beta_3 \ln TERTedu_{it} + \gamma X_{it} + \delta t_i + \xi c_i + \theta s_j + \eta_{ij} + \varepsilon_{ijt} \qquad (6.4)$$

Where

i denotes the country dimension i=1, 2, ..., 13; *j* denotes the industry j=1, 2, ..., 13; and *t* denotes the time dimension t=1, 2, ..., 13.

manFDIstock is the stock of FDI in country i in industry j (in USD) from WIIW (2010);

SECedu (**TERTedu**) is the share of population who have completed secondary (tertiary) education (see Section 5.2 and Table 5.3 for explanations);

 X_{it} are the control variables: average gross wage (*wage*); the size of the host market (*gdp*); trade freedom (*tradefree*); economic freedom (*econfree*); ICT infrastructure (*ictinfra*) progress in transition (*transition*); dummy for major privatisations in manufacturing (*manprivatisation*); dummy for years of political instability (*instability*) (see Table 6.4 below and Section 5.2 for more explanations);

 t_t are time dummies

 c_i are country dummies

 s_j are sector (i.e. industry) dummies;

 η_{ij} is an unobserved time-invariant individual effect; and

 ε_{ijt} is an unobserved white noise disturbance.

This type of model is similar to those previously used in industry-level FDI studies by Bénassy-Quéré et al. (2007) and Bellak et al. (2009). It is analogous to Model (5.15) in Section 5.5 in the sense that it provides an estimate of the *average* effect of the independent variables on FDI stocks *across* different manufacturing industries. Namely, it makes use of a larger number of observations (and the benefits associated with this are discussed later in this section), but does not exploit the industry-level information to shed light on the industries' different levels of sensitivity to different explanatory variables. This can be investigated either through separate estimations by industry or industry group, or by adding dummy variables (and interactions) for them. The latter approach is adopted here because it provides a convenient means to test whether any (potential) observed differences in the estimated coefficients are statistically significant and it makes use of the maximum number of observations available for estimation. In this particular investigation it is the sensitivity of FDI to human capital endowment that is of interest. In Sections 4.2 and 6.3 it was argued that, to the extent that workforce skills are complementary with technological advancement (embodied in capital), the effect of human capital is expected to be stronger in more technologyintensive industries. Accordingly, industries here are classified on the basis of their technological intensity: low, medium and high. The dummy variables indicating technological intensity were based on the standard industry classification by OECD/Eurostat (OECD, 2011; Eurostat, 2011). OECD and Eurostat classify industries based on direct research and development (R&D) intensity, as initially proposed by Hatzichronoglou (1997). The original classification by OECD/Eurostat is in four categories (low, medium-low, medium-high, and high) based on their R&D relative to value-added and gross production statistics. However since only one of the manufacturing industries falls in the high-technology category, industries in this analysis are classified into three categories: *high-technology industries* (indicated by dummy variable *high*) in this analysis refer to both medium-high and high categories in the original classification; medium-technology industries (indicated by dummy variable *medium*) refer to the medium-low category in the original classification; and low-technology industries (indicated by dummy variable low) refer to the same category in the original classification. The list of NACE Rev 1.1 2-digit manufacturing industries and their respective technological intensity categories is presented in Appendix 6.3.

To test the hypothesis that FDI in medium and high-technology industries is relatively more sensitive to human capital in the host economy, the technological intensity dummies *medium* and *high* are interacted with the human capital variables *SECedu* and *TERTedu* to form *SECmed*, *SEChigh*, *TERTmed* and *TERThigh* (leaving low-technology industries in the reference category). Model (6.4) above is augmented with interactions and with the dummies *medium* and *high* in Model (6.5) below; although the latter are not of direct interest, they must be included because they are 'constitutive terms' of the interactions (Brambor et al., 2006). Accordingly, the second industry-level specification estimated in this section is:

$$\ln indFDIstock_{ijt} = \beta_0 + (1 - \alpha) \ln indFDIstock_{ijt-1} + \beta_2 \ln SECedu_{it} + \beta_3 \ln TERTedu_{it} + \beta_4 medium_j + \beta_5 high_j + \beta_6 \ln SECmed_{ijt} + \beta_7 \ln SEChigh_{ijt} ...(6.5) + \beta_8 \ln TERTmed_{ijt} + \beta_9 \ln TERThigh_{ijt} + \gamma X_{it} + \delta t_i + \xi c_i + \theta s_j + \eta_{ij} + \varepsilon_{ijt}$$

A similar strategy to that applied in Chapter 5 and Section 6.5 above is followed whereby the model is augmented with different variables to test the transition-specific human capital hypotheses developed in the Chapter 5 and the effect of alternative measures of human capital. Accordingly, specifications below are also estimated:

$$\ln indFDIstock_{ijt} = \beta_0 + (1 - \alpha) \ln indFDIstock_{ijt-1} + \beta_2 \ln SECedu_{it} + \beta_3 \ln TERTedu_{it} + \beta_4 \ln genvocratio_i + \gamma X_{it} + \delta t_i + \xi c_i + \theta s_j + \eta_{ij} + \varepsilon_{ijt} \dots (6.6)$$

$$\ln indFDIstock_{ijt} = \beta_0 + (1 - \alpha) \ln indFDIstock_{ijt-1} + \beta_2 \ln SECedu_{it} + \beta_3 \ln TERTedu_{it} + \beta_4 \ln manvacancy_{it} + \gamma X_{it} + \delta t_t + \xi c_i + \theta s_j + \eta_{ij} + \varepsilon_{ijt} \dots (6.9)$$

$$\ln indFDIstock_{ijt} = \beta_0 + (1 - \alpha) \ln indFDIstock_{ijt-1} + \beta_2 \ln SECedu_{it} + \beta_3 \ln TERTedu_{it} + \beta_4 \ln top_i + \gamma X_{it} + \delta t_i + \xi c_i + \theta s_j + \eta_{ij} + \varepsilon_{ijt} \qquad (6.11)$$

Where:

genvocratio is the initial ratio of general to vocational enrolments in uppersecondary education;

Inedutr1 is the share of population aged 16-30 in a country's working age population in 2008;

Inedutr2 is the share of population who were educated in the communist system only up to age 12 or less in a country's working age population;

manvacancy is the period required to fill a vacancy for a skilled worker by manufacturing firms;

cognitive is the average level of students' cognitive skills

top is the share of top performers in students' cognitive skills tests (see Section 5.2 and Table 6.4 for explanations.)

The next sub-section discusses the alternative estimators that can be used to estimate these models and their suitability, with a special focus on the GMM estimators which can now be used with the increase in the sample.

6.6.2 Generalised Method of Moments (GMM) estimators and their suitability for this particular empirical investigation

As the unit of the analysis is no longer the country, but the country-industry pair, the number of cross-sectional units and total observations available for estimating models (6.4-6.10) increases significantly. The increase in the number of cross-sectional units (N) to a potential of 156 country-industry pairs (13 industries in each of the 12 countries) is particularly important in this context; the Generalised Method of Moments (GMM) estimators which in Chapter 5 and Section 6.5 were ruled out due to the small N dimension can now can now be considered. The rest of this section provides an appraisal of the GMM estimators' merits compared to other available estimators. The properties of GMM estimators and the conditions that must be satisfied in order for these estimators to be consistent are also discussed and it evaluates different GMM estimators and their respective options. However, (arguably) the most important pre-conditions that have to be satisfied for using GMM estimators, large N and small T, are discussed first.

The unavailability of FDI stock data for some of the pairs slightly reduces the number of cross-sectional units⁶⁵ available for estimation; this happens either because some countries do not report data for certain industries or because they sometimes report aggregate data for two industries. Further, missing data for some of the independent variables (for whole countries, or just for some time periods) do not allow the exploitation of the total number of cross-sectional units for which FDI stock data is available. Still, the unbalanced dataset of 130 country-industry pairs ultimately available for estimation appears to be sufficiently large for using GMM estimatiors. Although there are no clear guidelines as to what consists a 'large N' sample (Roodman, 2006), the Monte Carlo simulations based on which Arellano and

⁶⁵ The number of available cross-sectional units, however, is a bit lower than 156 because data is missing for some country-industry pairs, either due to missing data for some industry-country pairs, or lack of compatibility due to the level of aggregation (e.g. some countries report aggregated data for Coke, refined petroleum and nuclear fuel, DF, and that for Rubber and plastic products, DH, whilst other report data separately for one or both of these).

Bond (1991) conclude that GMM estimators have 'negligible finite sample biases' (p. 293) are based on a smaller N of 100. For comparison, in terms of the number of cross-sectional units (N) in the sample used here is only slightly smaller than that in the original GMM application by Arellano and Bond (1991) who estimate a dynamic employment equation using an unbalanced dataset of 140 firms; it lies between those of similar GMM applications in industry-level FDI stock models in Bellak et al. (2009) and Riedl (2010) which employ panels of 108 and 155 country-industry pairs, respectively; and it is much larger than the dynamic panel study by Kinoshita (2011) with 12-17 cross-sectional units, which can be safely assumed to be far too small for consistent GMM estimation (Roodman, 2006, p. 35).

The sample used here also seems to be appropriate in terms of the time-dimension (T) size. The number of years available for estimation ranges from 1 to 13, with an average of approximately 10 years per cross-sectional unit. Thus, the number of years in this estimation for some of the country-industry pairs is larger than that of 7 periods which is used in the simulations of Arellano and Bond (1991) and some previous applications of GMM estimators (e.g. Arellano and Bond, 1991; Blundell and Bond, 1999; Mangan et al., 2005; Pugh et al., 2008). However, this should not be a cause for concern since the system GMM estimator has been shown by Hayakawa (2008) to be consistent in a large-N large-T context, with T as large as 20 which is significantly larger than the maximum of 13 periods in the sample used here. A more detailed discussion of this estimator, its suitability for use in this type of sample and a comparison with the previously used estimators is presented next.

As discussed previously in Sections 5.5 and 6.5, accounting for the dynamics in FDI models may be crucial for obtaining consistent estimates in panel models (Bond, 2002). However, the inclusion of lagged dependent variable creates problems in estimation. In OLS estimations (in levels) the lagged dependent variable is positively related to the individual-specific time-invariant component of the error term, giving rise to upward bias which does not vanish with a large T or large N (Bond, 2002, p. 4). On the other hand, as explained in Section 5.5, eliminating the fixed effects through a Within Group (LSDV) estimator introduces another type of downward bias known as 'dynamic panel bias', which decreases as the T approaches infinity, but is

a serious problem in small-T sample such as the one used here⁶⁶ (Nickell, 1981; Kiviet, 1995). One potential approach for dealing with the problems above, used in the empirical models in Sections 5.5 and 6.5 of this thesis, is to correct the LSDV estimates for this small-T bias. However, as previously noted, this approach has two (potential) disadvantages: the assumption of strictly exogenous regressors and the inability to accommodate time-invariant variables.

The second approach is that of instrumental variable (IV) and Generalised Method of Moments (GMM) estimators which provide consistent estimates in dynamic panels. Anderson and Hsiao (1982) propose estimating a first-difference model where the differenced lagged dependent variable is instrumented by either the level or the firstdifference of the second lag of the dependent variable. The differencing eliminates the fixed effects from the error term which, if present, would be correlated with the lagged dependent variable. However, since the error term in the differenced equation would still be correlated with the first difference of the lagged dependent variable ($\Delta y_{i,t-1}$), Anderson and Hsiao propose $\Delta y_{i,t-1}$ to be instrumented by its lag ($\Delta y_{i,t-2}$) or by the second lagged *level* of the dependent variable ($y_{i,t-2}$).

The Anderson-Hsiao IV approach is later extended to a GMM framework which, unlike the IV approach, allows for information to be exploited for more than one instrument per coefficient to be estimated. Accordingly, Arellano and Bond (1991) propose a GMM estimation of the first-differenced model where first-differences of the (predetermined) lagged dependent variable is instrumented by its lagged levels (rather than *only one* level), i.e. $\Delta y_{i,t-1}$ is instrumented by $y_{i,t-2}$ like in the Anderson-Hsiao approach, but also by longer lags like $y_{i,t-3}$, $y_{i,t-4}$, etc. etc. Unlike Anderson and Hsiao (1982), Arellano and Bond (1991) suggest using lagged *levels* specifically (rather than levels *or* differences), based on evidence from experiments in Arellano (1989) and Arellano and Bond (1991), later confirmed by Kiviet (1995), which suggests that the use of levels as instruments yields estimates with relatively smaller variances. The exploitation of more (potentially) valid instruments in a GMM framework means that more information is used in the estimation and thus the coefficients can be estimated more efficiently. Monte Carlo evidence in Arellano and Bond (1991) suggests that estimates obtained by GMM have variances which are up

⁶⁶ The time dimension of the industry-level is approximately 10 years, on average, i.e. it is even smaller compared to the ones used for aggregate data in the previous specifications.

to five times smaller compared to those obtained by the simpler version of IV estimators developed by Anderson and Hsiao (1982), discussed above.

Later contributions point out two limitations of the Arellano-Bond (AB) approach, referred to as the *difference* GMM estimator for dynamic panels (Ahn and Schmidt, 1995; Blundell and Bond, 1998). First, it has been argued that the instruments used in this estimator, i.e. the lagged levels of the variables, may be weak in explaining subsequent differences, especially for models where the dependent variable is persistent. Roodman (2006, p. 28) explains: "...if y (i.e. the dependent variable) is close to a random walk, then difference GMM performs poorly, because past levels convey little information about future changes, so that untransformed lags are weak instruments for transformed (i.e. differenced) variables". Accordingly, Blundell and Bond (1998) show that weak instruments can cause large finite-sample biases when the difference GMM does not make use of the all the information that is available within the data which, if used, can further increase the efficiency of the estimator (Arellano and Bover, 1995; Blundell and Bond, 1998).

The Arellano-Bond estimator was subsequently augmented by Blundell and Bond (1998) to include another equation in levels in addition to the one in differences. The approach used in 'levels equation', initially outlined in Arellano and Bover (1995), involves transforming the instruments to make them exogenous to the fixed effects, instead of removing the fixed effects by transforming regressors (as in the differenced-equation). Thus, here *levels* of the (predetermined) lagged dependent variable are *instrumented by differences*, i.e., $y_{i,t-1}$ is instrumented by $\Delta y_{i,t-1}$, $\Delta y_{i,t-2}$, etc., under the assumption that the differences are uncorrelated with the fixed effects. The resulting estimator, referred to as system GMM estimator, thus allows the exploitation of additional 'moment conditions' from the data in levels, which increases the efficiency of the obtained estimates (Arellano and Bover, 1995). In addition, the system GMM estimator has an advantage over the difference estimator when the dependent variable is persistent, in which case past changes may provide more information on the current levels (Roodman, 2006, p. 28). Blundell and Bond (1998) show that system GMM substantially reduces the biases that arise when such models are estimated using difference GMM estimators. Another advantage of system as opposed to *difference*-GMM is that the levels equation which is added in

this context allows the estimation of the time-invariant variables which are 'wiped out' in the Arellano-Bond estimator when only a differenced equation is used.

Considering the above, the *GMM estimators* appear to be superior, compared to the corrected LSDV models used in the previous estimations in this thesis, because they allow predetermined and endogenous regressors to be included in the model, which may be the case with some of the variables included in this model (i.e. wage, market size and education variables). Further, the system GMM estimator, in particular, appears to be superior in this particular analysis for two reasons. First, the dependent variable, FDI stock, is expected to be persistent; as explained above, difference GMM is expected to perform poorly in these cases. Second, it can be used to estimate the effect of time-invariant variables. The inclusion of time-invariant variables was already an issue in the previous specifications in this thesis for some of the human capital variables such as *genvocratio* and *cognitive*, but it becomes crucial at the industry-level in this specification because it allows the inclusion of technological intensity variables and their interactions with human capital variables, SECmed, SEChigh, TERTmed and TERThigh. This allows testing the hypothesis of a heterogeneous human capital effect depending on the industry. However, the additional moments incorporated in the system estimator are only valid under (additional) assumptions regarding the initial conditions process, discussed later in this section.

Further advantages of GMM estimators are that they do not require assumptions about the distribution and they allow for heteroskedasticity and within-individual autocorrelation can be accounted for using 'robust' estimation (Verbeek, 2000; Greene, 2002; Roodman, 2006). There are two options available in GMM estimation. First, a covariance matrix can be used which is independent of the estimated parameters (Windmeijer, 2005); the SE estimates obtained this way are robust to heteroskedasticity and arbitrary patterns of autocorrelation within individuals can be used in a *one-step GMM estimator* (Roodman, 2006, p.38)⁶⁷. Alternatively, a "sandwich" covariance matrix can be obtained based on the initial parameter estimates (i.e. those from the one-step estimation) and the GMM estimation is rerun in the second step, where this matrix is used to reweight the moment conditions

⁶⁷ In the *xtabond2*, this is done using option *robust* when option *onestep* (for one-step estimation) is specified (Roodman 2006, p. 38).

(Windmeijer, 2005; Roodman, 2006); the resulting *efficient two-step GMM estimator* is robust to "whatever patterns of heteroskedasticity and cross-correlation the sandwich covariance estimator models" (Roodman, 2006, p. 9). On the choice between the two, simulation studies suggest that two-step efficient GMM performs better than one-step GMM, with lower bias and somewhat higher precision (Arellano and Bond, 1991; Blundell and Bond, 1998; Windmeijer, 2005). However, computed standard errors in two-step GMM estimator have been found to be biased downward in smaller samples (Arellano and Bond, 2001; Bond, 2002; Windmeijer, 2005). For these samples Windmeijer (2005) develops a finite-sample correction for the two-step efficient GMM estimator which, simulations suggest, greatly reduces this problem (at least for the difference-GMM estimator for which simulations are carried out). Based on the above considerations, the *efficient two-step system GMM estimator is used here, applying Windmeijer's (2005) small-sample correction*⁶⁸.

Finally, it has been pointed out that the first-differenced equations in the (Difference and System) GMM estimators are inconvenient for application in unbalanced panels because they magnify gaps in the data (Arellano and Bover, 1995; Roodman, 2006), e.g. an observation missing for one period automatically means that the one for the next period is also missing because the difference cannot be taken. For this reason, Arellano and Bover (1995) propose an alternative to first-differencing, i.e. 'forward orthogonal deviations' or 'orthogonal deviations' which involves subtracting the average of all future observations available instead of subtracting the observation of the previous period. Roodman (2006, p. 20) explains that this minimises data losses due to gaps, whilst lagged observations (i.e. levels) remain valid as instruments because they are not involved in the computation of the orthogonal deviations. Accordingly, since the panel used here is an unbalanced panel with gaps, *orthogonal transformation instead of first-differencing is used in order to preserve sample size*, as recommended by Roodman (2006, p. 43).

Considering that most of the explanatory variables in this industry-level analysis vary only at country level, observations of FDI stocks coming from each of the countries are likely be correlated which in turn may bias the coefficients' estimated SEs. For this reason, clustering at country level was considered similar to the one undertaken in the empirical estimations in Section 5.4, but this was not applied for

⁶⁸ Windmeijer's (2005) correction is applied in *xtabond2* using option *robust* when *twostep* option (for two-step estimation) is specified, where SE's are already robust (Roodman, 2006, p. 38).

the following reasons. First, the number of clusters in these estimations in this thesis is likely to be too small to adjust for clustering effects, as previously explained in Section 5.3 and suggested by the results obtained by the two-way cluster estimator applied in Section 5.4 in which the size of SEs changed very little compared to those obtained using a conventional FE estimator. Second, using the *cluster* option in *xtabond2* overrides the default clustering based on the cross-sectional unit which is likely to be more important than that at country level. However, it can be argued that the potential clustering effects are not likely to be very serious in this analysis because their presence is expected to deteriorate the cross-sectional dependence tests, which does not appear to be the case here, as explained in the next section.

6.6.3 Instruments and specification tests in (System) GMM estimators

The lagged dependent variable in a dynamic panel model is predetermined but not exogenous, in the sense that it is determined within the model, but by *past* values of the other regressors, while being independent of their *present* values. The instrumentation approach adopted in GMM estimators to address the endogeneity of the lagged dependent variable can be used to address the endogeneity of other predetermined and endogenous regressors (with a slight modification in case of the latter, as explained below).

As explained in the previous section, the lagged dependent variable in the firstdifferenced equation is instrumented by its lagged levels, i.e. $\Delta y_{i,t-1}$ is instrumented by $y_{i,t-2}$ and longer lags (i.e., y_{i1} , y_{i2} ,..., $y_{i,t-2}$). Bond (2002, p. 16) explains that this approach is valid *under the assumption of serially uncorrelated disturbances, an assumption that will be tested through the Arellano-Bond m1/m2 test, explained below.* Bond further explains that this approach be adopted for any predetermined regressors, i.e. regressors that are not correlated with the contemporaneous disturbance term, but are correlated with previous disturbance terms. Thus, for any *predetermined regressor*, x_{it} , the valid instruments in the differenced equation would be the vector (x_{i1} , x_{i2} ,..., $x_{i,t-1}$). For endogenous regressors, i.e. those that have contemporaneous correlation with the disturbance term, $x_{i,t-1}$ is no longer a valid instrument, so the above vector would be replaced by the vector (x_{i1} , x_{i2} ,..., $x_{i,t-2}$). Alternatively, under an assumption of *strict exogeneity*, i.e. no correlation between the regressor and past, current, or future disturbance terms, then the contemporaneous levels are also valid instruments in the first-differenced equation,
making the instrument vector $(x_{i1}, x_{i2},..., x_{iT})$. On the choice between the treatment of variables in GMM estimation, Bond (2002, p. 17) notes that "while the choice between these alternatives may seem a little arbitrary, in most cases these moment conditions will be overidentifying restrictions, so that the validity of a particular assumption may be tested using the standard GMM tests of overidentifying restrictions". Accordingly, the *Sargan and Hansen tests of overidentifying restrictions, discussed below, will be used to inform the appropriate treatment of variables that are considered as possibly endogenous/predetermined.*

As explained in the previous section, in System GMM additional instruments, i.e. differences, are created to instrument for the levels of the lagged predetermined variable (and suitable lagged differences can be used in a similar manner as above for other predetermined and endogenous variables). However, Bond (2002, p. 17) explains that orthogonality to the disturbance term required for instrument validity in Difference-GMM above is no longer a sufficient condition; namely, the use of these additional moment conditions in the levels equation requires an additional assumption of differences in the regressors being uncorrelated with the individual fixed effects. Roodman (2006, p. 30), following Blundell and Bond (1998) explain that two conditions have to be satisfied in order for this assumption to hold. First, the coefficient on the lagged dependent variable "must have an absolute value less than unity, so that the process converges in expectation"; and second, "the deviations of the initial observations, y_{i1} , from these long-term convergent values must not correlate with the fixed effects". The "steady-state" assumption and hence the validity of the additional moment conditions for the levels equations will be tested using the Difference-Hansen test, as suggested by Bond (2002, p. 22).

The System GMM estimator can create a large number of moment conditions, and hence instruments, which can be used in the estimation: for each variable an instrument can be created for each time period and each lag distance for the corresponding to that period (Roodman, 2006, p. 24). However, caution should be taken because not all the instruments are necessarily valid. Namely, GMM estimators use lags as instruments under the assumption of errors not being autocorrelated which, as explained earlier, would mean they are correlated with the instruments. Arellano and Bond (1991, p. 278) warn that "an estimator that uses lags as instruments under the white noise errors would lose its consistency if in fact errors

were serially correlated" and, accordingly, tests of serial correlation must be conducted to ensure instrument validity. For this, Arellano and Bond (1991) propose a test of both first- and second-order serial correlation, referred to as m_1 and m_2 test statistics, respectively. The m₂ statistic tests the hypothesis of no second-order serial correlation in the error term of the first-differenced equation, a condition which must be satisfied in order for values of the dependent variable lagged two periods or to be uncorrelated with the error term, and hence valid instrument to be used in this equation. However, Arellano and Bond (1991, p. 282) note that this condition may be satisfied due to a lack of (second-order) serial correlation in the level equation errors, *or* just due to the errors in this equation following a random walk. In the latter case the m_2 test may become unreliable, i.e. it may wrongly reject the presence of second-order serial correlation, which is why the authors propose the m_1 statistic as a robustness check on this. The m_1 statistic discriminates between situations where lack of second order correlation is 'genuine' vs. those where errors follow a random walk by testing for the presence of first-order serial correlation. Here failure to reject the null of first-order serial correlation indicates that errors do not follow a random walk, thus implying a 'genuine' lack of second-order serial correlation. Thus, the m_1/m_2 test indicates instrument validity if (1) there is first-order serial correlation and, (2) there is no second-order serial correlation, in the first-differenced residuals.

The other way of testing for instrument validity is through *the Sargan/Hansen test* of overidentifying restrictions which test whether instruments are uncorrelated with the error term. Of the two, the Hansen J statistic has the advantage of being robust to heteroskedasticity and autocorrelation, and can be preferred on these grounds (Roodman, 2007). On the other hand, this test becomes unreliable with a large number of instruments, as discussed below, but Roodman (2006; 2009) provide guidelines as to what the 'acceptable' p-values for the test are and the signs which may indicate the weakening of the test due to instrument count (as discussed further in the next section when the tests from the estimations are interpreted). Whilst the Sargan/Hansen test above tests the validity of all overidentifying restrictions, the *difference-in-Hansen test* (or C statistic) is used to test the validity of a subset of instruments (Roodman, 2006, p. 13). Hence, as explained earlier, it can test the "stationarity condition" (and hence the appropriateness of System GMM estimator) by testing the validity of the additional moment conditions in the levels equation.

Another caveat of the System GMM estimators is that the large number of instruments created may create problems in finite samples if there is not sufficient information available for estimation, but also because it can weaken the Hansen test, resulting in failure to reject the null hypothesis of instrument validity with implausibly high p-values of up to 1.00 (Roodman, 2006, p. 14). Unfortunately, the literature does not provide clear guidance as to what is the 'appropriate' number of instruments allowed; a number of instruments lower than that of cross-sectional units is mentioned as a minimal arbitrary rule of thumb, but even this is likely to be too generous (Roodman, 2006, p. 14). Hence, Roodman points out that it is important to report the number of instruments and advises testing the robustness of the Hansen test statistic/p-value by reducing the number of instruments used in the estimation. To reduce the instrument count, Roodman (2006, pp. 22-24) proposes two approaches: limiting the lag ranges that are used to generate instruments and 'collapsing' instruments, i.e. creating instruments for each variable and lag distance only (and not also for each time period). Both reducing lag ranges and collapsing instruments are used here to reduce the instrument count, as necessary to reach instrument validity, and results are reported for specifications with different instrument counts for examining robustness.

As discussed previously, the lagged dependent variable coefficient is biased upward in an OLS regression and downward in a LSDV regression. Bond (2002) argues that estimates from consistent estimators should lie in the range between those obtained by these two estimators and this can be used as a type of check on other estimators. Bond (2002, p. 5) notes that failure of estimates from theoretically superior estimators (in this case system GMM) to follow such a pattern in a seemingly well specified AR(1) model may hint at either inconsistency or severe finite sample bias. Accordingly, *LSDV and OLS estimates of the lagged dependent variable are estimated and presented here for comparison* along with other standard specification tests.

Finally, the potential presence of cross-sectional dependence also has to be considered in a dynamic panel context. As explained in Section 5.3, there appears to be a common misconception among applied researchers that the inclusion of time dummies eliminates cross-sectional dependence in the errors. However, Sarafidis et al. (2009) clearly explain that the presence of such dummies is merely expected to

mitigate this problem by removing the 'homogeneous' component of the crosssectional dependence, i.e. that arising from universal time shocks (under the assumption that all cross-sectional units are affected in the same way by these shocks). The remaining 'heterogeneous' cross-sectional dependence may still be substantial and needs to be tested for. Fortunately, simulation evidence in Sarafidis et al. (2009) suggests that low levels of cross-sectional dependence do not cause noticeable bias in the context of GMM estimators. Nevertheless, it is not clear what constitutes 'low' levels of cross-sectional dependence in practice, so ideally ruling out the cross-sectional dependence through the relevant tests would be preferred.

Sarafidis et al. (2009) propose a *testing procedure for cross-sectional dependence in dynamic linear regression models* whereby the Arellano and Bond's (1991) m₂ test statistic for second-order serial correlation and the difference-in-Sargan (or Hansen) test which compares the Sargan (or Hansen) test statistic for all over-identifying restrictions and that for the over-identifying restrictions after excluding the instruments on the lagged dependent variable. In the model(s) estimated here, the m₂ test does not indicate the presence of second-order serial correlation which, according to Sarafidis et al. (2009), implies *possibly* no cross-sectional dependence. According to Sarafidis et al. the difference-in-Hansen test statistic provides another means of testing for heterogeneous error cross-sectional dependence. Here, the difference-in-Hansen test fails to reject the null which, Sarafidis et al. argue, *confirms* the lack of heterogeneous error cross-sectional dependence by virtue of failing to reject homogeneous dependence.

6.6.4 Estimation results

Before proceeding with the estimation, unit root tests are conducted to rule out the possibility of a cointegrating relationship between variables which might give rise to a spurious regression. Madala and Wu's (1999) Phillips-Perron type test (Phillips and Perron, 1988) is used here to test the variables for the presence for unit roots on de-meaned data (i.e. subtracting the cross-sectional averages from the series) which, Levin et al. (2002) argue, makes the test more reliable by mitigating the impact of potential cross-sectional dependence. Madala and Wu's test is a Fisher-type test where p-values from individual tests, i.e. unit root tests for each panel's time series here, are combined to obtain an overall test statistic on whether the panels contain a unit root. It should be noted that the consistency of this test relies on large-T

asymptotics (Madala and Wu,1999, p. 637), however this was the only available option because the other tests are not suitable for unbalanced panels and/or panels with gaps (StataCorp, 2009), and therefore they could not be implemented in this analysis⁶⁹. Maddala and Wu's (1999) Fisher test strongly rejects the null hypothesis that all panels contain a unit root for the dependent variable, (*ln*)*indFDIstock* and all the independent variables with the exception of (*ln*)*TERTedu* and (*ln*)*ictinfra* (see Appendix 6.4 for printouts). Hence, a cointegrating relationship, which would require for all variables to contain a unit root, can be ruled out.

Because, as explained above, GMM estimators do not rely on assumptions regarding the distribution, no normality testing is necessary. Also, as explained in the previous section, heteroskedasticity is accounted for in the two-step GMM estimator which is used here as the preferred estimator; where estimates from the one-step estimator are provided for comparison, clustering by cross-sectional unit is used so as to account for arbitrary patterns of heteroskedasticiy (as opposed to 'modelling' these patterns in the two-step estimator).

Initially, Model (6.4) is estimated treating all the dependent variables (with the exception of the lagged dependent variable) as exogenous, exploiting the full set of moment conditions available; i.e. for each variable, for each time period and lag. However, this initial specification fails diagnostic tests for instrument validity: the Sargan/Hansen test and the m₁/m₂ test for residual autocorrelation, which is not surprising considering that the number of instruments is larger than the number of cross-sectional units. As a response, the number of instruments is thus reduced because, as Verbeek (2000, p. 138) explains, tests may not be able to determine which of the instruments are invalid. As suggested by Roodman (2006), and explained in the previous section, collapsing instruments are collapsed, i.e. the creation of instruments for each time period is 'suppressed', but this does not appear to be sufficient because the tests again uniformly reject instrument validity. Accordingly, the lag range is subsequently reduced in addition to collapsing. Initially lags 1-7 are used and then the range is further reduced by excluding farther lags one

⁶⁹ The tests/estimations could not be carried out on a balanced sample because the number of observations would be significantly reduced. Data points in this sample are missing due the inconsistence of coverage of variables/years across countries and due to the exclusion of the negative values of FDI stocks, explained in sub-section 6.6.1.

at a time until acceptable specification tests are ultimately obtained when using lags 1 and 2, or lag 1 only (see Appendix 6.4 for printouts). The same instrument count could (theoretically) be obtained whilst using farther lags (e.g. 3 and 4), however the use of more recent lags as is preferred under the assumption that they are likely to convey more (relevant) information (Greene, 2003, p. 309). Between the two specifications for which instrument validity cannot be rejected, i.e. using the first lag or using lags 1 and 2, the one with both lags is preferred because it maximises the use of available information (to an extent that does not jeopardise instrument validity).

Having obtained an 'acceptable' specification, the assumption of endogenous independent variables is relaxed and other alternatives are further explored (see Appendix 6.5 for printouts). Initially, the other 'extreme' is assumed by specifying all the 'suspect' variables, (*ln*)wage, (*ln*)gdp, (*ln*)SECedu and (*ln*)TERTedu, as endogenous, however instrument validity is strongly rejected. Other 'intermediate' scenarios are further explored based on theoretical considerations, as follows.

First, it may be argued that due to the way the education variables are measured, they are expected to be predetermined rather than endogenous. Namely, potential feedback from FDI to the percentage of population who have attained a certain level of education would take at least a few years to take effect (or, more precisely, at least the length of the respective cycle of studies); and a similar argument would apply in case of a (plausible) relationship between the other regressors such as market size (i.e. GDP) and education variable; accordingly, a scenario is estimated where the education variables are treated as predetermined, whilst keeping (*ln*)wage and (*ln*)gdp endogenous. *Alternatively*, considering that (based on the discussions in Sections 2.3 and 5.3) the education variables are considered the ones least likely to cause endogeneity in this model, another scenario is estimated where these variables are assumed exogenous while (*ln*)wage and (*ln*)gdp are kept as endogenous. Again, both estimations fail the instrument validity tests.

Second, because the (potential) feedback of FDI on wages, *(ln)wage*, and on growth (and hence in the *(ln)gdp* variable here), would also take effect with a time lag, these variable may be argued to be predetermined in this model. Accordingly, two further specifications are tested where these variables are treated as predetermined, whist

(*ln*)*SECedu* and (*ln*)*TERTedu* are treated as exogenous, or predetermined. These specifications are, too, fail instrument validity tests.

Accordingly, all the explanatory variables in the estimations presented in the rest of this chapter are treated as strictly exogenous.

Table 6.6 below summarises the specifications tests and results for the baseline Model (6.4), as estimated with two-step System GMM, Windmeijer-corrected standard errors, orthogonal deviations and small-sample adjustments⁷⁰ (see Appendix 6.6 for printouts of specification tests and results). As explained in Section 5.5, in a dynamic model the short-run coefficients represent the effect of the *new* information on the respective regressors, controlling for their (joint) "historical" effects, whilst the long-run effects can be obtained by dividing the regressors by (α) , i.e. 1 minus the estimated coefficient on the lagged dependent variable (see Section 5.5 for an explanation of the stock adjustment model). The estimated coefficient short-run and long-run coefficients for the baseline Model (6.4) are presented in Columns (1) and (2) of Table 6.6 below. The Arellano-Bond m_1/m_2 test for the differenced residuals fails to reject second-order serial correlation whilst rejecting first-order serial correlation, indicating exogenous, and thus valid, instruments. Instrument validity is also indicated by Hansen's test of over-identifying restrictions⁷¹. The p-value on the Hansen test is 0.60, which is substantially higher than the (unusually high) threshold of 0.25 which Roodman (2007, p. 10) suggests using for this test as a precautionary measure; on the other hand, it is not "too good", i.e. it does not approach the p-value of 1.00 which would indicate a weakening of the test due to a large number of moments being tested (Roodman, 2007, pp. 9-10). The Difference-in-Hansen test also does not reject the null of instrument validity for the GMM instruments in the levels equation, indicating that the "stationarity" condition is satisfied and System GMM can be used. This is also confirmed by a coefficient on the lagged dependent variable which is below one, indicating a stable dynamic process (Roodman, 2006, p. 19). This coefficient is positive and significant, as expected; and it lies in the 'credible' range, i.e. between the LSDV and OLS estimates (see Appendix 6.6 for printouts), thus not indicating any specification problems and/or lack of consistency

⁷⁰ Small-sample adjustments refer to "small-sample corrections to the covariance matrix estimate, resulting in t instead of z test statistics for the coefficients and F instead of Wald chi2 test for overall fit" (Roodman, 2006, p. 38).

⁷¹ The Sargan test is borderline, however this is not considered to be a problem since, as explained in the previous section, this test is expected to over-reject the null in the presence of heteroskedasticity.

in estimation (Bond, 2002; Roodman, 2006). The rejection of first-order serial correlation in the differenced residuals by the m_1 test combined with the failure to reject the null of instrument validity for the 'extra' moment conditions by the difference-in-Hansen test indicates that cross-sectional dependence is not a problem in this model (Sarafidis et al., 2009). The estimated results presented in the rest of this chapter satisfy all the specification tests, unless stated otherwise.

The F-tests for the joint significance of the independent variables soundly rejects the null, indicating that the independent variables collectively have explanatory power with respect to the dependent variable. Similar to the results obtained from FE/FEVD models with aggregate FDI inflows and the LSDV models with aggregate/total manufacturing FDI stocks, this model does not find support for the hypothesis that the percentage of population who have completed secondary/tertiary education, (*ln*)SECedu and (*ln*)TERTedu, have a positive effect on inward FDI. According to the results, controlling for the historical effects of the "independent" regressors, a 1% increase in the level of the economic freedom index by Heritage Foundation, (*In*)econfree, is, on average, associated with 1.5% increase in the level of FDI stock in the manufacturing industries, on average. Calculated at the means of the sample, an increase of the economic freedom index from 57.8 to 58.4 is associated with an increase of EUR 8.36 Million in the level of annual FDI stocks in a manufacturing industry. An increase of 1% in host country's progress in transition as measured by the EBRD overall transition indicator, (*ln*)transition is, on average, associated with a 2.2% increase in the level of manufacturing FDI stock. Calculated at the means of the sample, an increase of the EBRD transition score from 3.22 to 3.25 is associated with an increase of EUR 12.26 Million in the level of annual FDI stocks in a manufacturing industry. The control for major privatisation (waves) in the specific manufacturing industries, *indprivatisation*, is marginally significant in the short-run.

The long-run coefficients depict a similar relationship between the stock of FDI and the independent variables in the model, with the exception of the privatisation variable. Again, economic freedom and progress in transition are the only factors that are found to affect manufacturing FDI stocks. In the long-run, an increase of 1% in the level of the economic freedom index is associated with a 2.3% increase (i.e. EUR 12.82 Million) in the level of FDI stock in a manufacturing industry, on average, whilst an increase of the same magnitude in the transition indicator is associated with 3.2% increase (i.e. EUR 17.84 Million).

	(1) (2)	
VARIABLES	Short-run	Long-run
L.Inindfdistock	0.321***	
	(0.112)	
Insecedu	-0.534	-0.785
	(1.040)	(1.577)
Intertedu	-1.015	-1.49
	(0.829)	(1.063)
Inwage	-0.481	-0.708
	(0.429)	(0.647)
lngdp	0.323	0.476
	(0.538)	(0.802)
Intradefree	-0.0157	-0.023
	(0.280)	(0.413)
Ineconfree	1.555**	2.289**
	(0.646)	(0.894)
Intransition	2.226**	3.277**
	(1.109)	(1.581)
lnictinfra	0.394*	0.580
	(0.232)	(0.359)
indprivatisation	1.300*	1.914
	(0.692)	(1.189)
Observations	1,283	
Number of id	130	
Number of instruments	47	
F test:	F(42, 129) =	89.93
	Prob > F =	0.00
Arellano-Bond AR(1) test:	z =	-2.13
	Prob > z =	0.03
Arellano-Bond AR(2) test:	z =	-1.06
	Prob > z =	0.29
Sargan test:	chi2(4) =	4.89
	Prof > chi2	0.08
Hansen test	=	0.08
Hallsen test.	Prof > chi2	0.99
	=	0.60
Difference-in-Hansen test:	chi2(2) =	0.73
	Prof > chi2	0.00
	=	0.39
LSDV-OLS range (lagged dependent var):		0.19-0.47

 Table 6.6: Model 6.4 results (dependent variable: lnindFDIstock)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Year dummies included, but not reported. Models estimated using twostep System GMM.

As a robustness check, Model (6.4) was estimated using the one-step System GMM estimator (as opposed to the *two-step* estimator) and/or using *first-differences* (as opposed to orthogonal deviations) in the differenced equation; and with the Difference GMM estimator using all these combinations of options. Whilst the results of these different specifications differ to some extent with regard to the magnitude and/or significance of the other regressors, the results with regard to the human capital variables remain largely unchanged, with the exception of the twostep estimator with first differences in which tertiary education is found to be statistically significant, though with a negative sign (see Appendix 6.7 for printouts). In addition, as suggested by Roodman (2006), the "robustness" of the Hansen test was tested, and approved, by checking for any major changes in its value when the instrument count is continuously reduced by: using only one lag, dropping year dummies, dropping sector dummies, and dropping country dummies (See Appendix 6.8 for printouts). The preferred specification remains with two lags, because it utilises more information in the estimation without causing deterioration of the specification tests; and with all dummies included because they are found to be jointly significant (See Appendix 6.8 for printouts of the joint significance tests).

Next, the baseline model above is augmented with technological intensity dummies, *medium* and *high*, and their respective interactions with the education variables: (*ln*)*SECmed*, (*ln*)*SEChigh*, (*ln*)*TERTmed* and (*ln*)*TERThigh*. This enables to test for the hypotheses that FDI in technology-intensive industries is relatively more sensitive to human capital availability⁷². Also, it should be able to shed light on any potential relationship between human capital and FDI that may exist only in these specific groups of manufacturing industries and therefore could be "hidden" by estimating the average effect when data for all industries (or all sectors) are pooled together. The estimator and the options used in this model are the same as in the previous model. The specification tests and results of the augmented Model (6.5) are presented in Table 6.7 below, whilst the printouts for these are presented in Appendix 6.9.

⁷² This hypothesis can also be tested by estimating and comparing individual regressions for different groups of industries. The results of this approach were not any different from the ones reported here, but they are not reported because of problems with the specification tests, likely resulting from the smaller sample size.

Similar to the previous model, this model appears to have no problems in terms of specification. In the short-run, the education variables remain insignificant, as are the technological intensity dummies and the interactions between these sets of variables. The insignificance of these variables indicated by their individual t-statistic was also confirmed by F tests for joint significance to ensure that this result was not obtained merely due to collinearity between the interactions and the variables themselves (see Appendix 6.9 for the joint tests). Contrary to expectations, *(ln)TERTmed* is found to be (marginally) significant with a negative sign in the long-run, indicating that the effect of the percentage of population who have attained secondary education is lower in medium technology manufacturing industries compared to low technology ones. In terms of control variables, economic freedom and progress in transition remain significant, with almost identical coefficients as in the baseline model.

	(1)	(2)
VARIABLES	Short-run	Long-run
L.Inindfdistock	0.319***	
	(0.116)	
Insecedu	-0.708	-1.038
	(0.996)	(1.511)
Intertedu	-0.669	-0.982
	(0.761)	(1.024)
medium	-0.268	-0.39
	(1.223)	(1.793)
high	-0.0317	-0.046
	(1.116)	(1.637)
Insecmed	0.330	0.484
	(0.372)	(0.520)
Insechigh	0.0870	0.127
	(0.345)	(0.500)
Intertmed	-0.739	-1.084*
	(0.453)	(0.571)
Interthigh	-0.375	-0.550
	(0.342)	(0.469)
lnwage	-0.481	-0.705
	(0.429)	(0.646)
lngdp	0.323	0.474
	(0.541)	(0.805)
Intradefree	-0.0110	-0.016
	(0.283)	(0.416)
Ineconfree	1.532**	2.248**
	(0.656)	(0.912)

Table 6.7: Model 6.5 results (de	pendent variable: lnindFDIstock)
----------------------------------	----------------------------------

Intransition	2.218**	3.254**
	(1.113)	(1.588)
lnictinfra	0.392	0.574
	(0.237)	(0.370)
indprivatisation	1.300*	1.908
	(0.702)	(1.210)
Observations	1 283	
Number of id	130	
Number of instruments	51	
F test:	F(48, 129) =	95.50
	Prob > F =	0.00
Arellano-Bond AR(1) test:	z =	-2.11
	Prob > z =	0.03
Arellano-Bond AR(2) test:	z =	-1.07
	Prob > z =	0.29
Sargan test:	chi2(4) =	4.69
	Prof > chi2 =	0.10
Hansen test:	chi2(4) =	0.94
	Prof > chi2 =	0.62
Difference-in-Hansen test:	chi2(2) =	0.68
	Prof > chi2 =	0.41
LSDV-OLS range (lagged dependent var):		0.17-0.46

Notes:

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Results with Windmeijer-corrected standard errors, small-sample adjustments and orthogonal deviations. Instruments are collapsed and lag range is restricted to lags 1 and 2.

lagged (ln)indfdistock is treated as predetermined, and other regressors as exogenous.

Country, year and sector dummies included, but not reported.

Table 6.8 below presents the results for the transition-specific hypothesis which were tested in Models (6.6-6.8). (Printouts of the results, specification tests, and long-run coefficients for Models (6.6-6.8) are presented in Appendices 6.10-6.12, respectively.) The estimated results do not seem to lend support to the hypothesis that foreign investors are attracted by countries that have emphasised general (rather than vocational) upper-secondary education, or by a relatively younger workforce which is educated in post-communist education system. Contrary to expectations, the initial general- to vocational- ratio of enrolments at the outset of transition, (*ln*)genvocratio, i.e. the level of emphasis on general education, is found to have a significant negative effect on FDI. The share of population aged 16-30 in 2008, (*ln*)edutr1, is also found to have an insignificant effect on FDI inflows, both in the

short- and long-run. The second proxy for the share of population educated after the communist period, (*ln*)edutr2, is found to be insignificant, however, this model has problem with the Arellano-Bond m1 test for residual correlation, and therefore it is not clear that the results of Model (6.8) are reliable.

	(1)	(2)	(3)
VARIABLES	Model (6.6)	Model (6.7)	Model (6.8)
L.lnindfdistock	0.321***	0.255**	0.247*
	(0.112)	(0.100)	(0.134)
Insecedu	-0.534	-0.683	0.532
	(1.040)	(3.491)	(3.940)
Intertedu	-1.015	0.236	-0.289
	(0.829)	(1.482)	(1.690)
Ingenvocratio	-2.355**		
	(1.038)		
lnedutr1		-3.224	
		(3.169)	
lnedutr2			-2.033
			(2.538)
lnwage	-0.481	0.0504	-0.177
	(0.429)	(0.770)	(0.784)
lngdp	0.323	-0.302	0.239
	(0.538)	(1.099)	(1.150)
Intradefree	-0.0157	-0.560	-0.395
	(0.280)	(0.382)	(0.419)
Ineconfree	1.555**	1.247*	1.131*
	(0.646)	(0.672)	(0.612)
Intransition	2.226**	3.906	2.576
	(1.109)	(2.387)	(2.958)
Inictinfra	0.394*	0.000282	0.235
	(0.232)	(0.544)	(0.632)
indprivatisation	1.300*	1.467***	1.093
	(0.692)	(0.459)	(0.682)
Observations		1,283	1,017
Number of id		130	129
Number of instruments		51	51

 Table 6.8: Models (6.6-6.8) results (dependent variable: lnindFDIstock)

Notes:

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Results with Windmeijer-corrected standard errors, small-sample adjustments and orthogonal deviations.

Instruments are collapsed and lag range is restricted to lags 1 and

2.

lagged (ln)indfdistock is treated as predetermined, and other regressors as exogenous.

Country, year and sector dummies included, but not reported.

Table 6.9 below presents the results of the baseline model augmented with the measures of human capital availability/cognitive skills. The country-average of number of weeks it takes firms in the manufacturing sector to fill a vacancy for a skilled worker in manufacturing, (ln)manvacancy, is found to be insignificant, though Model (6.9) appears to have problems with instrument validity and therefore cannot be considered reliable (see Appendix 6.13 for printouts). However, contrary to the previous results for human capital measures obtained in this research, the average level of cognitive skills in science and math measured in primary/secondary school in International Student Achievement Tests, *(ln)cognitive*, as well as the share of top-performers in these tests *(ln)top*, are found to have a significant positive effect on manufacturing FDI stocks (see Appendices 6.13 and 6.14 for Model 6.10 and 6.11 printouts, respectively). The size of these effects and the long-run coefficients are discussed later in this section.

	(1)	(2)	(3)
VARIABLES	Model (6.9)	Model (6.10)	Model (6.11)
L.lnindfdistock	0.162**	0.273*	0.273*
	(0.0644)	(0.138)	(0.138)
Insecedu	-5.270	-0.630	-0.630
	(3.904)	(1.050)	(1.050)
Intertedu	2.806	-1.150	-1.150
	(2.042)	(0.896)	(0.896)
Inmanvacancy	0.243		
	(0.480)		
Incognitive		9.368**	
		(3.824)	
Intop			1.679**
			(0.685)
Inwage	-1.283	-0.344	-0.344
	(2.259)	(0.497)	(0.497)
lngdp	2.474	0.264	0.264
	(2.157)	(0.561)	(0.561)
Intradefree	-1.477*	-0.101	-0.101
	(0.795)	(0.278)	(0.278)
Ineconfree	0.412	1.667**	1.667**
	(1.531)	(0.638)	(0.638)
Intransition	1.482	1.936*	1.936*
	(4.645)	(1.117)	(1.117)

Table 6.9: Model (6.9-6.11) results (dependent variable: lnindFDIstock)

lnictinfra	-1.458*	0.339	0.339
	(0.866)	(0.253)	(0.253)
indprivatisation	1.241	1.285	1.285
	(0.820)	(0.849)	(0.849)
Observations	474	1,190	1,190
Number of id	129	118	118
Number of instruments	39	46	46

Notes:

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Results with Windmeijer-corrected standard errors, small-sample adjustments and orthogonal deviations. Instruments are collapsed and lag range is restricted to lags 1 and 2.

lagged (ln)indfdistock is treated as predetermined, and other regressors as exogenous.

Country, year and sector dummies included, but not reported.

Having found a positive effect of *(ln)cognitive* and *(ln)top*, interactions of these variables were added to test the hypothesis that a higher level of cognitive skills and top performer in cognitive tests have a stronger effect on higher-technology manufacturing industries. Accordingly, Models (6.10) and (6.11) are augmented with technology level dummies, *medium* and *high*, and their interactions with the respective cognitive skill measures:

$$\ln indFDIstock_{ijt} = \beta_0 + (1 - \alpha) \ln indFDIstock_{ij,t-1} + \beta_2 \ln SECedu_{it} + \beta_3 \ln TERTedu_{it} + \beta_4 \ln cognitive_i + \beta_5 medium_j + \beta_6 high_j + \beta_7 \ln cognitivehigh_{ij} + \gamma X_{it} + \delta t_i + \xi c_i + \theta s_j + \eta_{ij} + \varepsilon_{ijt} \dots (6.12)$$

$$\ln indFDIstock_{ijt} = \beta_0 + (1 - \alpha) \ln indFDIstock_{ij,t-1} + \beta_2 \ln SECedu_{it} + \beta_3 \ln TERTedu_{it} + \beta_4 \ln top_i + \beta_5 medium_j + \beta_6 high_j + \beta_7 \ln topmed_{ij} + \beta_7 \ln tophigh_{ij} + \gamma X_{it} + \delta t_i + \xi c_i + \theta s_j + \eta_{ij} + \varepsilon_{ijt}$$
(6.13)

Table 6.10 below presents the estimated short- and long- run coefficients for Models (6.10) and (6.12), the printouts of which are presented in Appendices 6.14 and 6.16, respectively. The average level of cognitive skills, *(ln)cognitive*, remains significant in the long-run, with an even higher significance level and size of coefficient (Column 2). According to the results, a 1% increase in the standardised measure of cognitive skills is, on average, associated with a 9.3% increase in manufacturing FDI stock in the short-run and a 12.8% increase in the long-run. Calculated at the sample means, the results suggest that an increase of the standardised cognitive score measure from 4.75 to 4.8 (note that the maximum in the sample is 5.19) is associated

with an increase of a manufacturing industry's annual FDI stock by EUR 51.8 and 71.3 Million in the short- and long-run, respectively.

The inclusion of dummies for industry groups according to technological intensity suggests that, in accordance with the hypothesis developed earlier in this chapter, the positive effect of cognitive skills is larger in high-tech industries compared to that in low-tech industries, as indicated by the significant and positive interaction term *(ln)cognitivehigh*. The size of the effects of both *(ln)cognitive* and its interaction with the high-tech industry dummy remain very large. The estimated effect for low-tech industries is a bit smaller, with a 1% increase in *(ln)cognitive* being associated with a 7.1% and 9.7%, i.e. EUR 39.6 and 54.1 Million, increase in a manufacturing industry's FDI stock in the short-run and the long-run, respectively⁷³. For high-tech industries this effect is larger: a 1% increase in *(ln)cognitive* is associated with a 13.1% increase in manufacturing FDI stocks in the short-run and an 17.9% increase in the long-run, which at the mean of the sample translates into an increase of EUR 73 and 99.9 Million, respectively.

	(1)	(2)	(3)	(4)
	Model (6.10)		Mode	l (6.12)
VARIABLES	short-run	long-run	short-run	long-run
L.lnindfdistock	0.273*		0.274**	
	(0.138)		(0.138)	
Insecedu	-0.630	-0.857	-0.619	-0.852
	(1.050)	(1.470)	(1.053)	(1.474)
Intertedu	-1.150	-1.582	-1.147	-1.579
	(0.896)	(1.024)	(0.896)	(1.026)
Incognitive	9.368**	12.893***	7.106*	9.788**
	(3.824)	(3.853)	(3.727)	(4.250)
medium			-4.394	-6.053
			(3.517)	(4.610)
high			-9.844**	-13.560***
			(3.942)	(4.586)
Incognitivemed			2.427	3.343
			(2.193)	(2.895)
Incognitivehigh			5.928**	8.166***
			(2.452)	(2.874)
Inwage	-0.344	-0.473	-0.351	-0.483
	(0.497)	(0.722)	(0.496)	(0.722)

Table 6.10: Model (6.10) and (6.12) (dependent variable: lnindFDIstock)

(1)

 $\langle \mathbf{n} \rangle$

 $\langle \alpha \rangle$

(1)

⁷³ The effect for the high-tech industries is calculated by summing the coefficients on *lncognitive* and *lncognitivehigh*, e.g. in Column 3 the effect is 7.106 + 5.928 = 13.134.

lngdp	0.264	0.363	0.270	0.037
	(0.561)	(0.790)	(0.562)	0.7927
Intradefree	-0.101	-0.138	-0.100	-0.138
	(0.278)	(0.394)	(0.278)	(0.396)
Ineconfree	1.667**	2.294***	1.668**	2.297***
	(0.638)	(0.825)	(0.641)	(0.828)
Intransition	1.936*	2.664*	1.922*	2.647
	(1.117)	(1.452)	(1.117)	(1.457)*
Inictinfra	0.339	0.467	0.342	0.470
	(0.253)	(0.385)	(0.253)	(0.385)
indprivatisation	1.285	1.768	1.274	1.755
	(0.849)	(1.387)	(0.851)	(1.388)
Observations	1,190		1,190	
Number of id	118		118	
Number of instruments	46		48	

Notes:

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Results with Windmeijer-corrected standard errors, small-sample adjustments and orthogonal deviations.

Instruments are collapsed and lag range is restricted to lags 1 and 2.

lagged (ln)indfdistock is treated as predetermined, and other regressors as exogenous.

Country, year and sector dummies included, but not reported.

Table 6.11 below presents the estimated short- and long- run coefficients for Models (6.11) and (6.13), the printouts of which are presented in Appendices 6.15 and 6.17, respectively. Similar to the results for (*ln*)cognitive above, the short-run and long-run coefficients on the share of top-performers in cognitive tests (*ln*)top are significant and positive. According to the results, an increase of the share of top performers in cognitive tests by 1% (i.e. at the mean of the sample from 7.01 to 7.08 percent) is, on average, associated with an increase in manufacturing FDI stock by 1.6% (or EUR 6.7 Million) in the short-run and 2.3% (or EUR 12.8 Million) in the long-run.

As expected, the effect of (ln)top is found to be significantly larger in medium-tech industries and high-tech industries compared to the base category of low-tech industries, as indicated by the significant and positive interactions (ln)topmed and (ln)tophigh. An increase of (ln)top by 1% is, on average associated with an increase of 1.8% or EUR 10 Million (2.5% or EUR 13.9 Million) in the FDI stock of medium industries in the short-run (long-run), and an increase of 2% or EUR 11.2 Million (2.7% or EUR 15 Million) in the FDI stock of high-tech industries in the short-run (long-run).

	(1)	(2)	(3)	(4)
	Model	(6.11)	Model	(6.13)
VARIABLES	short-run	long-run	short-run	long-run
L.lnindfdistock	0.273*		0.275**	
	(0.138)		(0.137)	
Insecedu	-0.630	-0.867	-0.619	-0.853
	(1.050)	(1.470)	(1.056)	(1.480)
Intertedu	-1.150	-1.582	-1.141	-1.572
	(0.896)	(1.024)	(0.895)	(1.027)
Intop	1.679**	2.310***	1.353**	1.865**
	(0.685)	0.690	(0.659)	(0.721)
medium			0.887	1.223
			(0.644)	(0.832)
high			1.375**	1.896
			(0.685)	(0.852)
Intopmed			0.534**	0.736**
			(0.249)	(0.304)
Intophigh			0.670***	0.924***
			(0.256)	(0.300)
lnwage	-0.344	-1.473	-0.352	-0.485
	(0.497)	(0.722)	(0.496)	(0.721)
lngdp	0.264	0.363	0.272	0.374
	(0.561)	(0.790)	(0.563)	(0.794)
Intradefree	-0.101	-0.138	-0.104	-0.143
	(0.278)	(0.394)	(0.278)	(0.396)
Ineconfree	1.667**	2.294***	1.665**	2.296***
	(0.638)	(0.825)	(0.643)	(0.829)
Intransition	1.936*	2.664*	1.915*	2.641*
	(1.117)	(1.452)	(1.115)	(1.458)
lnictinfra	0.339	0.467	0.341	0.470
	(0.253)	(0.385)	(0.252)	(0.384)
indprivatisation	1.285	1.768	1.263	1.741
	(0.849)	(1.387)	(0.857)	(1.396)
Observations	1,190		1,190	
Number of id	118		118	
Number of instruments	46		48	

Table 6.11: Model (6.11) and (6.13) (dependent variable: lnindFDIstock)

Notes:

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Results with Windmeijer-corrected standard errors, small-sample adjustments and orthogonal deviations.

Instruments are collapsed and lag range is restricted to lags 1 and 2.

lagged (ln)indfdistock is treated as predetermined, and other regressors as exogenous.

Country, year and sector dummies included, but not reported.

Models (6.10) and (6.11) above were estimated adding the level of development (as measured by GDP per capita, *gdppc*) as a control variable in an attempt to control for possible omitted variable bias. The inclusion of this variable does not appear to reduce the size of the coefficients on *(ln)cognitive* and *(ln)top* (printouts for these regressions are presented in Appendix 6.19).

6.7 Conclusion

In previous chapters it was argued that not being able to discriminate between different economic sectors is a major weakness of FDI studies, particularly when the effect of human capital is being investigated. This chapter first looked at the sectoral composition of the FDI in European transition economies. An overview of the data suggests that nearly one-third of FDI stocks in these economies was in manufacturing; the rest is strongly dominated by services, of which financial intermediation is the largest industry, whilst the primary sector accounts for a negligible share of FDI. Of three sectors, it was argued that FDI in the manufacturing sector is most likely to be attracted by the availability (and cost) of human capital and therefore any potential relationship between human capital and the determinants of FDI are more likely to be identified by restricting the latter measure to FDI in manufacturing. Accordingly, a dynamic LSDV model similar to that used in the previous chapter was estimated using aggregate manufacturing FDI stocks as a dependent variable. Similar to the empirical investigation in the previous chapter and the meta-regression analysis in Chapter 3, no significant effect of education variables on FDI was found; similarly, no support is found for the transition-specific human capital hypotheses developed in Chapter 5.

It was further argued previously (in Section 4.2) that FDI in some industries is likely to be more sensitive to the availability of human capital, depending on their level of technological intensity. To test the hypothesis, the independent variable was measured at a further disaggregated level (2-digit NACE classification) and dummy variables indicating the level of technological intensity were entered, together with their interactions with the human capital variables. The (System) GMM results of the stock adjustment model with country-industry pairs of FDI stocks as a dependent variable do not suggest that there is a positive relationship between the percentage of population who have completed secondary/tertiary education and FDI, regardless of the level of technological intensity. The results of this model also do not support the transition-specific hypotheses developed in this research. However, contrary to the results obtained for the education measures, and in the previous chapter, the level of cognitive skills measured in International Student Achievement Tests, as well as the share of top-performers in these tests, are found to have a significant positive effect on FDI stocks. Moreover, in accordance with the hypothesis developed in this research, the positive effect of these variables is found to be stronger for FDI in (medium- and) high-tech industries. Except for the previous level of FDI stocks and the cognitive skills measure, FDI stocks in European transition economies appear to be primarily driven by the level of economic freedom and progress achieved in the transition process.

The empirical analyses presented in this thesis have consistently suggested no significant effect of traditional, non quality-adjusted, human capital measures on inwards FDI, accordingly the following chapter explores some potential explanations for these findings. However, there was empirical evidence indicating that the quality dimension of human capital has a positive effect on inwards manufacturing FDI in European transition economies, so Chapter 7 also presents a discussion of the implications of these results for further macro-level economic research focusing on the effects of human capital.

Chapter 7

CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH

Contents

7.1 Introduction	4
7.2 Main findings	5
7.2.1 Analysing the results of the previous empirical literature	5
7.2.2 Does human capital affect total inwards FDI in European transition economies?27	7
7.2.3 Does human capital affect inwards FDI in manufacturing activities in European transition economies?	8
7.2.4 Does the effect of human capital vary according to the level of technological intensity of inwards FDI?	0
7.2.5 Can the largely insignificant results be (partly) attributed to transition-specific factors?	, 0
7.3 Contributions to knowledge	1
7.3.1 Establishing the underlying theoretical rationale for a human capital-FDI relationship and choosing appropriate measures of human capital	1
7.3.2 Synthesising the results from the previous empirical literature	5
7.3.3 Modelling the relationship between human capital and inwards FDI in European transition economies	5
7.3.4 Estimating the effect of human capital on inwards FDI in European transition economies	6
7.3.5 Limitations of this research	8
7.4 Implications of the findings for further research: challenging conventional thinking? . 29	0
7.4.1 Do foreign investors necessarily require/prefer highly-skilled labour?	0
7.4.2 How much of a location-bound factor is a highly-skilled workforce?	2
7.4.3 Do the human capital measures used accurately reflect the workforce skills/characteristics most relevant to foreign investors?	3
7.4.4 Are foreign investors interested in the characteristics of the <i>whole</i> workforce?292	3
7.4.5 Are foreign investors attracted by (only) the quality of human capital?	4
7.4.6 Possible extensions of this research	4
7.5 Conclusion	6

7.1 Introduction

This aim of this thesis was to empirically investigate the effect of human capital on inwards FDI in European transition economies. Having found no consensus after a review of previous studies that empirically investigate this relationship, the first research questions in this research programme were whether an 'authentic' effect of human capital can be identified (and quantified) in previous research and whether the heterogeneity of results can be explained by specific characteristics of previous studies. These research questions were addressed using a meta-regression analysis (MRA) in Chapter 3. Following a critical review of alternative measures of human capital, the next research question addressed concerned whether economies with relatively abundant human capital attract more inwards FDI. This research question was investigated in Chapter 5 using panel data on aggregate FDI inflows and stocks of European transition economies. After a review of different types of FDI, the further research questions addressed in this research were whether economies that are relatively human capital abundant attract more inwards FDI into their manufacturing sector, and whether the effect of human capital is stronger in more technologically-intensive manufacturing industries. These research questions were addressed in Chapter 6 using panel data on manufacturing FDI stocks of European transition economies. This chapter will synthesise and analyse the findings of the thesis to provide explanations and implications of the findings for future research, and it will list its main contributions to knowledge and limitations. The rest of this chapter is organised as follows. Section 7.2 syntheses the findings of this research with regard to the research questions introduced above. Section 7.3 appraises the contributions to knowledge and the limitations of this thesis. Section 7.4 provides potential explanations for the findings of the empirical investigation and explores some of their implications. In addition, this section points to further research that can be undertaken in this field. A separate section on policy implications is not provided in this chapter considering the lack of significant effects found for traditional human capital measures and the need for further empirical work to explore the significance of the cognitive skills measures. Section 7.5 concludes by looking at the wider implications of this research for future empirical research using aggregate measures of human capital.

7.2 Main findings

7.2.1 Analysing the results of the previous empirical literature

The simple bivariate meta-regression model estimated in Chapter 3 suggested that there is no "genuine effect" of human capital on FDI in the previous literature. As this lack of a genuine effect may arise due to a large unexplained heterogeneity, the bivariate meta-regression model was subsequently augmented with a range of variables indicating characteristics of the original studies with regard to the data, estimation techniques and model specifications they use. However, in this metaregression analysis (MRA) this finding does not seem to be attributed to unexplained heterogeneity, as the results of the multivariate model confirm the lack of a "genuine effect" of human capital on FDI. This finding was argued to be consistent, among other explanations, with human capital not necessarily being a relevant attractor for all types of FDI, or in all economic activities; e.g. being of little importance in resource-seeking FDI in primary sector activities or in market-seeking tertiary sector activities compared to manufacturing activities. The fact that over half of the world inward FDI stock is estimated to be market- or resource-seeking (UNCTAD, 2010a), and therefore is expected to be (relatively) little affected by human capital, makes it difficult for studies using aggregate FDI measures to identify any relationship that may exist between human capital and FDI in the rest of the economic activities. Therefore, the empirical analyses in Chapters 6 restricts the measure of FDI stock to that in manufacturing activities where such a relationship is more likely to be found.

Controlling for different study characteristics related to FDI and human capital measures used, methodology, model specification and sample of countries covered in the sample, the results of the MRA suggests that there is *also no publication bias in the previous literature*. This finding in not surprising considering that the only a small fraction of the studies actually have the relationship between human capital and FDI as a focus of their investigation. Rather, human capital tends to be included merely as one of many FDI determinants in a "kitchen sink" approach, or simply as a control variable in empirical studies that focus on the effect of other locational factors on FDI. Under these circumstances, if the researchers are prone to "search" for significant results, they are likely to pay (relatively) little attention to the human capital variable compared both to their variable(s) of interest and other determinants

which are more "established" in FDI theory, as explained in Chapter 2 (e.g. market size, trade costs, etc.).

The results of the MRA suggest that the size of the estimated effect of human capital on FDI does not depend on the choice of FDI measure (flow vs. stock) or data/estimation technique (cross-section OLS, limited dependent variable model, time-series, static panel or dynamic panel). Similarly, the estimated effect of human capital does not appear to depend on indicators of "reliability" of the results: the quality of data and/or econometric techniques (as proxied by recentness of publication), the number of periods covered in the study, the number variables of controlled for in the model and whether or not endogeneity was (tentatively) controlled for. The estimated *effect of human capital on FDI* is found to be significantly lower if a simple labour cost measure in included the model, but it is *significantly larger in models where productivity or unit labour costs are controlled for*. Consistent with the view that human capital is becoming more important for (foreign) firms over time (Noorbakhsh et al., 2002; Machin, 2004), *studies using more recent data find a significantly larger effect of human capital on FDI*.

Contrary to expectations, the estimated effect of human capital is not larger when stock measures of human capital are used (as opposed to flow measures such as enrolment rates), or when output measures are used (as opposed to input measures such as spending on education). However, *the estimated effect of secondary education measures on FDI is lower compared to that of measures referring to other levels of education or not specifying the level of education*. There does not seem to be a theoretical rationale for secondary education being less important to foreign investors, but this finding could be partly explained by fact that secondary education attainment (to a greater extent than other levels) may actually measure different things in different countries because of the differences in education systems with regard to length of secondary education, in particular, there may also be more pronounced differences in the quality of provision at the secondary level.

The sample of countries for which the relationship between human capital and FDI is estimated also appears to affect the estimated results. The *estimated effect of human*

capital is found to be, on average, larger in mixed samples and regional data from China relative to samples of developing or developed economies. In contrast, the size of this effect is estimated to be *smaller, on average, in samples of transition economies*. One potential explanation for this finding was argued to be the inferiority of the communist education systems in developing skills and traits that are valued by (foreign) firms in a market economy, due partly to their curricular content, instruction methods and over-emphasis on 'traditional' vocational education. Accordingly, the level of emphasis on vocational education and the share of population educated in a post-communist education system were used in the empirical investigations reported in Chapters 5 and 6 in an attempt to investigate the extent to which these potential effects may cause foreign investors to value human capital developed in transition economies less than that in other countries.

7.2.2 Does human capital affect total inwards FDI in European transition economies?

Consistent with the results of the meta-regression, the empirical investigations in Chapters 5 and 6 do not find support for the hypothesis that volume measures of human capital positively affect the level of FDI received in European transition economies. This result is consistent across different specifications, regardless of the type of the human capital measure, FDI measure or estimator used. In a fixed effects (FE) estimation, the share of working age population who have completed secondary or tertiary education (Barro and Lee, 2010) are both found to have an insignificant effect on net FDI inflows, regardless of whether they enter the model separately or simultaneously. These results of the conventional (panel-robust) FE estimator are confirmed by the Driscoll-Kraay- and the two-way cluster-robust estimators which account for the effects of autocorrelation, cross-sectional dependence and group-wise heteroskedasticity. However, since these stock measures of education are both variables that change slowly over time, i.e. they have low within variation, the FE estimator which utilises only within variation in the estimation was argued to be less able to identify any potential relationship that may exist between these and FDI inflows. Accordingly, the fixed effect vector decomposition (FEVD) estimator was used in an attempt to improve the efficiency (i.e. precision) of estimation in order to ensure that the obtained results are not merely caused by low within variation in the data. The results of the FEVD

estimator also suggest that the share of the working age population who have completed secondary/tertiary education do not have a significant effect on FDI inflows. Finally, FDI stocks are used as an independent variable instead of net FDI inflows and a stock adjustment model is estimated as a robustness check. The stock adjustment model estimated using the corrected dynamic least squares dummy variable (LSDVC) estimator confirms the insignificant effect of these variables on FDI stocks.

In addition to the more conventional educational attainment measures above, three new measures of human capital were used in this investigation: the level of cognitive skills as derived by Hanushek and Woessmann (2009a) based on international standardised test scores at primary and/or secondary education level; the share of top-performing students in these tests (2009a); and the availability of skilled labour as measured by the country-average number of weeks it took firms currently operating in the economy to fill a vacancy for a skilled worker (BEEPS, 2002, 2005). As there is only one observation per country available for the measures of cognitive skills, these have to be assumed as time-invariant and, in a FE context, they can only be estimated using the FEVD estimator. The availability of skilled workers is available for a total of four years but, similar to the education measures above, it has low within variation and therefore the FEVD estimator is preferred. However, in the case of this variable, a stock adjustment model can also be estimated for using the corrected dynamic LSDV estimator. Similar to the human capital measures above, the level of cognitive skills, the share of top performers in cognitive tests and the availability of skilled workers in the economy are not found to affect the level of FDI inflows/stocks.

7.2.3 Does human capital affect inwards FDI in manufacturing activities in European transition economies?

In Chapter 6 it has been argued that human capital may not necessarily be a relevant factor for all types of FDI. If FDI is disaggregated according to economic sectors, it has been argued that FDI in primary sector activities such as agriculture or mining is driven by the availability of natural resources which are location-bound and therefore (relatively) less likely to be affected by the host countries' human capital availability. Similarly, FDI in the tertiary sector activities such as the provision of financial or telecommunication services is likely to be primarily driven by the size of the host country market. FDI in the manufacturing activities, on the other hand, was argued to be (largely) efficiency-seeking and therefore more likely to be driven by the availability and cost of factors of production such as human capital. If aggregate FDI data is used, as in most of the previous literature included in the MRA or in the estimations in Chapter 5, these sectoral differences may therefore "blur" any relationship between human capital and FDI in manufacturing.

Accordingly, the hypothesis of a positive relationship between human capital and FDI was tested in a stock adjustment model restricting the independent variable to stocks of FDI in the manufacturing sector only. This hypothesis was initially tested using total manufacturing FDI stocks in a corrected dynamic LSDV context, and insignificant effects of the share of population who have completed secondary/tertiary education and the availability of skilled workers as reported by the firms operating in the economy were found. Further, a dynamic panel model with country-industry pairs of FDI stocks in manufacturing industries as an independent variable was estimated using the two-step System Generalised Method of Moments (GMM) estimator; this way, the average effect of human capital across manufacturing sectors is estimated, although more disaggregated data is used. Similar to previous specifications using *aggregate FDI as an independent variable*, the results of the System GMM estimator suggest that neither the share of working age population who have completed secondary/tertiary education nor the availability of skilled workers in the economy have a significant effects on manufacturing FDI stocks in European transition economies. These findings appear are confirmed by both short-run and long-run coefficients and they appear to be robust to different specifications and GMM estimators.

However, in contrast to the measures of available quantity of human capital above, the measures of cognitive skills are found to be significantly and positively associated with inwards FDI stocks in European transition economies. Positive effects are found, of a feasible magnitude, for both the average level of cognitive skill as measured by the scores of primary/secondary students in International Student Achievement Tests and the percentage of top performers in these tests. The level of development (as measured by GDP per capita) was controlled for in these regressions because it was considered a potential source of omitted variable bias which could have affected the results, but the inclusion of this variable did not reduce the level of statistical significance or size of the coefficient of the cognitive skill measure. The effect of top performers' share was also found to be robust to the inclusion of the development variable.

7.2.4 Does the effect of human capital vary according to the level of technological intensity of inwards FDI?

After having found no relationship between quantity measures and aggregate FDI or manufacturing FDI, the hypothesis that the effect of human capital varies in different (manufacturing) industries depending on their level of technological intensity was tested. This also provides a means of testing whether such a relationship exists only in some specific industries, which would potentially explain why insignificant effects of human capital on aggregate or manufacturing FDI were found. Manufacturing industries were classified into three groups according to their level of technological intensity (based on the standard OECD/Eurostat classification) and the potential differences on the effect of human capital on these different groups were investigated using interaction terms. As in the previous specifications, no effect of volume measures of human capital on FDI was found, nor were there any statistically significant differences between the industry groups, indicating that human capital does not attract FDI regardless of the level of technological intensity. The effect of the level of cognitive skills and that of the share of top performers in cognitive tests, on the other hand, was found to vary with the level of industries' technological intensity. In accordance with the hypothesis proposed, the effect of the average level of cognitive skills is found to be significantly larger in high-tech industries compared to that in low-tech industries, whilst the effect of the share of top performers is significantly larger in both medium- and high-tech industries compared to that in low-tech industries.

7.2.5 Can the largely insignificant results be (partly) attributed to transition-specific factors?

It was argued that one potential explanation for the MRA finding that the estimated effect of human capital is smaller in samples of transition economies compared to other samples could (partly) be due to the inferiority of the communist (education) system in developing skills and traits that are relevant in a market economy, discussed in Sections 1.3 and 4.3. Accordingly, an attempt was made to control for

features of these education systems that may have caused the development of 'lowerquality' human capital in transition economies by including proxies for the percentage of population who have completed education after the fall of communism. *The results are mixed and, overall, they do not lend support to the hypothesis that foreign investors are attracted by a younger workforce (educated during the transition period).* The first proxy of age structure is found to have an insignificant effect when a model of aggregate FDI data is estimated using the FEVD estimator, and negative in an industry-level FDI model estimated using the System GMM estimator. The second proxy for age structure, on the other hand, is found to be positive in models using aggregate FDI, though insignificant in models using sector- and industry-level manufacturing data.

Further, one specific feature of the communist education systems which may have restricted the development of skills sought by firms in a market economy is their stronger emphasis on 'traditional' vocational education compared to developed economies. This (potential) effect was tested using the ratio of general-to-vocational upper-secondary enrolments at the outset of transition. Similar to the results regarding the age structure, *the evidence is mixed and does not appear to support the hypothesis that countries with a stronger emphasis on general education manage to attract more FDI*. Results of the System GMM estimator suggest that there is no significant effect of the initial general-to-vocational ratio in FDI in manufacturing industries, whilst the results of the FEVD estimator suggest that, contrary to expectations, a higher initial general-to-vocational ratio at the outset of transition is associated with lower net FDI inflows.

7.3 Contributions to knowledge

7.3.1 Establishing the underlying theoretical rationale for a human capital-FDI relationship and choosing appropriate measures of human capital

An initial review revealed many theoretical approaches to the determinants of FDI. However, the review of FDI theory shows that the few approaches that make reference to human capital as a potential determinant of FDI do not provide an underlying theoretical rationale for such a relationship. This research fills this gap by *addressing the reasons why countries with relatively abundant human capital may be expected to attract more FDI*. However, the initial attempt to provide this rationale proved to be problematic, largely because of the failure of economic research to unpick the meaning of 'relatively abundant human capital' and hence identify how it is best measured. Therefore, *based on previous micro-level studies, this research sought to identify the actual skills and traits that 'human capital' consists of and how these are developed.*

First, human capital theory and growth theory were reviewed to identify the mechanisms through which European transition countries with a relative advantage in human capital are expected to attract disproportionate amounts of FDI (Section 2.3). Three main potential channels were identified from growth theory: increased productivity, increased ability to adopt new technology and facilitation of *innovation*, of which technology adoption was argued to be likely to be the most important because of the type of activities that tend to be undertaken by foreign investors in transition economies. Further, the discussion presented in Section 4.2 looked more closely at what employee characteristics (foreign) firms are expected to value in a new market economy and has identified some 'productivity-enhancing' skills/traits. First, foreign investors are expected to be attracted by relatively abundant human capital because it enables, on average, a given worker to perform tasks more productively than those in countries with inferior stocks of human capital, which is the 'conventional' role of human capital as identified in orthodox human capital theory. Second, cognitive skills such as the ability to think critically and ability to perceive and solve new problems appear to be linked, in particular, to the facilitation of innovation and technology adoption. However, contrary to the (implicit) assumption usually made in economic research that human capital consists of only cognitive skills, non-cognitive skills and behavioural traits were also identified as relevant from the (foreign) employers' perspective. For instance, behavioural traits such as self-determination, efficacy and low time-discount rate are also expected to be 'productivity-enhancing' because, ceteris paribus, they make employees supply more effort and reduce the need for monitoring.

These insights further complicate the problem of measuring human capital in economic research and appear to require a *re-assessment of the conventional measures utilised in empirical studies*. The question of both how and where these skills and traits are developed appears to be crucial, both to inform the choice of appropriate human capital measures in applied economic research and from a policy

perspective. A review of relevant research has suggested that *formal education is an important channel through which these skills and traits are reinforced/developed by exposing students to problems with generalisable properties and a system of values similar to those that they will face in the workplace.* Therefore, measures of educational attainment were used as primary human capital measures in this research: the share of the working age population who have completed secondary education and the share of working age population who have completed tertiary education. The higher levels of formal schooling were used under the assumption that higher-level skills are predominantly developed in upper-secondary and tertiary levels, and considering that there is more variation in this measure in this sample across countries and across time.

Compared to a significant portion of previous literature which uses enrolment rates in education as a proxy for human capital, it has been argued here that *stock measures of human capital such as the ones above are more appropriate because they represent the whole of human capital available in the workforce*. Enrolment rates, on the other hand, only represent a portion of the capital being developed currently and they may even be misleading in a 'catch-up' scenario if enrolment rates are higher in countries that have lower shares of educated individuals have higher and/or faster growing enrolments.

Further, when stock measures are used, careful consideration should be given to the way these measures of education are defined and what they actually represent. Measures of the share of population who have completed a certain level of education defined in terms of the highest level of education completed by an individual (as in the Barro-Lee database, for instance) may be inappropriate measures of human capital stock. It was argued the percentage of population who have completed primary education, or even secondary education, can be highly misleading measure of the country's quantity of human capital. Namely, if a higher share of the population have primary education as their highest level attained, this automatically implies that a *lower* share of the population have attained secondary and/or tertiary education. In this case, higher values of the human capital measure actually represent lower levels of human capital endowment. By the same token, in this context a higher level of secondary education attainment could actually be at the expense of tertiary attainment. Therefore, in this research the share of working age population who have completed secondary education attainment was defined so as to include the share of those who have continued to complete tertiary education (i.e. the original value reported in Barro and Lee (2010) plus the share who have completed tertiary education and above).

In the previous literature, a measure referring to a certain level of education is (arbitrarily) chosen to represent human capital endowments; or, in a few cases, different levels are used as a robustness check, but separately (i.e. in different specifications). In this research it has been argued that, theoretically, there it appears to be inappropriate to limit the representation of human capital to only one measure/level of educational attainment. Also, the use of more than one measure could shed light into the specific levels of education that may be (relatively more) sought by foreign investors. Upon examination it was established that the inclusion of more than one human capital measure did not appear to cause any econometric problems (i.e. in terms of multicollinearity), and therefore both the share of working age population who have completed tertiary education were included in the model simultaneously.

However, it was argued in this research that there are likely to be differences in the quality and/or market value of skills offered by different education systems across countries which measures of educational attainment alone cannot convey information on. *A measure of cognitive skills based on standardised test scores was argued to provide more accurate information on the quality of (the cognitive component of) human capital because: it measures cognitive skills regardless of where and how they are formed; it reflects, in part, the quality of education provision; and, in addition to knowledge, it seeks to measure the ability to apply this to solve real-life problems, which is a more general competence that has been argued to be relevant in a dynamic market economy, and particularly during the process of transition.*

Further, as explained in Section 1.3, PISA tests provide information on the share of students reaching the highest proficiency level, i.e. those who can thoroughly analyse and evaluate information, a category which has been argued to be particularly valued in knowledge-based economies where innovation and decisions-making based on all

available evidence is needed. It was further argued in Section 5.2 that foreign investors are likely to be particularly interested in the share of the workforce at the top of the distribution of (cognitive) skills, as they can attract the most able individuals by paying higher wages compared to their local counterparts. Accordingly, the share of top-performers in International Student Achievement Tests was used as a proxy for the share of individuals at the top of the distribution in the workforce.

Finally, it was argued that, contrary to the conventional approach of measuring the 'supply' of human capital by the number of educated individuals, an additional appropriate measure would be one which indicates the availability of skilled labour in an economy as reported by the private sector itself. Accordingly, a country-average of the number of weeks it took firms to fill a vacancy for a skilled worked from survey data was calculated and used as a measure of skilled labour availability.

7.3.2 Synthesising the results from the previous empirical literature

This research has provided the first systematic review of empirical studies that estimate the effect of human capital on FDI inflows, in doing so it sought to search for any consensus that may prevail in previous research. However, an examination of the literature showed extremely diverse results, with no apparent patterns according to the particular characteristics of studies which could be used to summarise, classify, or explain, them. A meta-regression analysis was found to be a valuable tool in both identifying any average 'authentic' effect in the literature and explaining part of the heterogeneity in results that could be attributed to different study characteristics. Accordingly, the first meta-regression analysis of the empirical literature that estimates the effect of human capital on inwards FDI was conducted (Chapter 3).

7.3.3 Modelling the relationship between human capital and inwards FDI in European transition economies

Having identified the potential mechanisms behind the human capital-FDI relationship and what appear to be the most appropriate measures available, this research then analysed the extent to which the relationship between these measures and FDI are likely to apply in the specific context of (European) transition

economies. This research has presented some specific characteristics of the labour markets and education systems of these economies (Sections 1.3-1.4) and examined the type of 'human capital' developed in transition economies and its likely value in a market economy (Sections 4.2-4.3). It was argued that communist education systems, but also societies more generally, neglected or even actively discouraged the development of the 'productivity-enhancing' skills and traits identified above. By emphasising the memorising of factual knowledge, an authoritarian style of instruction and conformity to authority in general, they are likely to have inhibited creativity, critical thinking and self-directedness and instead fostered the development of the opposite traits such as docility, adherence to rules and dependence. Based on these considerations, two transition-specific human capital hypotheses were developed. First, since the differences between the level of skilldevelopment in developed economies and (European) transition economies were argued to be partially attributable to differences between general and vocational education, the ratio of general-to-vocational enrolments at the outset of transition was controlled for. Second, proxies were developed based on the age structure of the population as a means of controlling for the 'vintage' of human capital by discriminating between the age-groups who were educated during communism and those educated in the transition period.

7.3.4 Estimating the effect of human capital on inwards FDI in European transition economies

Based on the theoretical insights above, an empirical model was developed to estimate the effect of human capital on FDI for a sample of 12 European transition economies for the period 1995-2008. *The empirical analysis presented in Chapters 5 and 6 is the first to focus on the relationship between human capital and FDI in a sample of transition economies.* Although there are studies for transition economies that include human capital in the model as a control variable, like most of previous research, they tend not to pay too much attention to the measures used. With the exception of one study, they use human capital measures which were argued in Section 5.2 to be inappropriate for transition economies, i.e. enrolment rates (Tondel, 2001; Gorg and Greeneway, 2002; Kinoshita and Campos, 2003; Carstensen and Toubal, 2004) or illiteracy rates (Fung et al., 2008). The only study of European transition economies that uses a similar stock measure, the

economically active population with tertiary education, is Serbu (2005) but this study covers bilateral inward FDI stocks for only 3 economies.

This research has pointed out that human capital measures, in particular stock measures used here, change slowly over time and this may cause difficulties in identifying their effect in empirical estimations based on only within-variation of the variable. Accordingly, the *Fixed Effect Vector Decomposition (FEVD) technique has been used for the first time in this type of research*.

It has been argued in this research that controlling for the type and sector/industry of FDI is likely to be important in 'disentangling' the determinants of FDI, especially when human capital is concerned. In Chapter 6 this thesis presents *the first empirical analysis which used sector- and industry-level data to estimate the relationship between human capital and FDI*. The few sector- or industry-level studies that exist (for transition economies and beyond) do not include human capital measures at all. Further, they do not exploit this level of disaggregation to test for potential sectoral differences in the sensitivity of FDI to different determinants. *Initially, FDI in the manufacturing sector was identified as most likely to be affected by human capital compared to the primary and services sector*, so the effect of human capital on manufacturing industries, the more technologically-intensive ones are likely to be more sensitive to human capital availability. This hypothesis was tested by checking for differences in the estimated human capital effects between three groups of industries classified according to technological intensity.

Finally, this empirical research has considered and (tentatively) addressed potential problems in the estimations undertaken. Most empirical research in this area tends not to report any diagnostic tests or robustness checks, which makes it difficult to assess the reliability of their results. *In this research, multiple robustness checks were conducted using different human capital and FDI measures and different estimators. Different remedies for diagnostic problems, or approaches to accounting for their consequences in estimation, were considered and those which were assessed to be most appropriate were used in the estimations. In contrast to previous FDI studies which do not test/address this issue, cross-sectional dependence was argued to be likely to be found in this type of research. This*

suspicion was confirmed by the diagnostic test and suitable estimators were used to address the potential consequences of cross-sectional dependence. *Finally, this research was the first empirical analysis to discussthe potential endogeneity of human capital measures in FDI models.*

7.3.5 Limitations of this research

This research has addressed some major limitations of previous research in terms of the measures and empirical approach used. However, some limitations remain which could not be addressed, mainly due to the availability and/or quality of human capital measures.

First, with the exception of one measure, all human capital measures used here are economy- or sector-wide measures, whereas it is not clear that foreign investors are interested in the characteristics of the whole workforce. Rather, they may be interested only in the quantity/quality of skills and other characteristics of the individuals at the top of the skill distribution, which these measures do not necessarily convey information on.

Second, as discussed in Section 5.2, the productivity-enhancing skills and traits that are valued in the labour market are not only developed in formal education: they are also developed during early childhood (e.g. by the family) and after formal education (e.g. through work experience and formal or informal training). In this research, three innovative proxies were used which can be argued to partly account for these limitations. The measures of cognitive skills based upon International Student Achievement Test scores at primary/secondary education level also incorporate the skills formed during early childhood, regardless of where and how they were formed. However, the available data did not allow to control explicitly for the effects of pre-school learning which appear to be crucial for the development of cognitive, and especially non-cognitive, skills, partly due to the presence of multiplicative effects in skill formation (Heckman, 2000; Cunha et al., 2006). Similarly, lack of data did not allow to control for skill formation that occurs after formal schooling, which is likely to be a major limitation considering that this is estimated to account for "as much as one third to one half of all skill formation in a modern economy" (Heckman, 2000, p. 5). The measure of availability of skilled labour as reported by firms used here can be argued to include all the market-
relevant skills and traits, including those developed after schooling, however this is limited in that it is determined by the number and/or characteristics of the firms currently in the market and does not necessarily represent foreign investors' demand for skilled labour.

Third, the use of measures of the quantity of educational attainment implicitly assumes that education is homogeneous across countries and across time, whereas in reality there are likely to be significant differences with regard to quality and/or length of education. In this research, the quality of education is partially accounted for by the level of cognitive skills; however, this measure, too, has some limitations, as explained above.

Fourth, historically the education systems in transition economies appear to have been inferior in developing the type of cognitive and non-cognitive skills that are valued in a market economy. However, the extent to which this could be accounted for in this research is limited. Namely, the measure of cognitive skills utilised can partly account for cross-country differences in endowments in one type of cognitive skills, problem-solving skills, but this is only measured at primary/secondary level education and there is no data for variation across time. Vocational education was argued to be more associated with the types of skills/traits fostered in communist (education) systems, but controlling for the relative importance of vocational education, again, only partly controls for these effects. Finally, an attempt was made to control for the communism-specific characteristics of human capital through a measure of the vintage of human capital, as indicated by the age structure of the population. However, the effect of this proxy may be argued to reflect merely the potential effect of age structure, and it assumes that there has been an instantaneous reform in European transition economies' education systems.

Finally, it has been argued that the (relative) wage of skilled workers, in particular, should be controlled for in this type of research. Based on the assumption that income inequality in European transition economies is primarily driven by an increasing education premium during transition, the distribution of earnings as measured by the Gini coefficient was initially considered as a proxy for the level of skilled workers' wages. However, upon careful consideration it was decided that the effect of this variable is, a priori, ambiguous because it is affected by

both the level of wages of the highly skilled and the share of the highly skilled in the economy.

7.4 Implications of the findings for further research: challenging conventional thinking?

As explained in Section 7.2, the hypothesis that a country's relative quantity of human capital is positively related to the amount of foreign direct investment it attracts does not seem to be supported empirically by this empirical investigation. Some potential reasons for the insignificant results in the previous literature, e.g. the use of inappropriate measures of the level of human capital in the country or failure to discriminate between FDI in different sectors, have been initially advanced and accordingly addressed in this thesis. However, despite these and other methodological improvements, no significant effect of the quantity measures of human capital endowment on FDI could be identified in European transition economies. This finding and the lack of a "genuine" effect found by the MRA can potentially be explained on theoretical grounds and/or in terms of (the limitations of) empirical specification. The rest of this section explores some potential explanations for the insignificant effect of quantity measures of human capital on European transition economies' inward FDI, and then investigates the implications of the significant effect found for quality measures and potential extensions of this research programme.

7.4.1 Do foreign investors necessarily require/prefer highly-skilled labour?

Foreign investors may not necessarily be attracted by higher-level skills if the activities they (intend to) carry out in the host country are not skill-intensive in nature. Namely, if foreign investors turn to producing in European transition economies only at the later stages of the product cycle, i.e. mass production of a product rather than product development, as maintained by the product cycle theory (Section 2.2), then relative human capital endowment is not a relevant factor in their FDI location decision. This argument is consistent with evidence presented in Smarzynska (2002) according to which inwards FDI in transition economies are concentrated in low technology production activities, whilst foreign investors with

relatively higher R&D intensity tend to merely open representative offices rather than engage in production in these economies.

However, even in these 'imitation' stages of production, foreign investors may have choices of different technologies they can adopt, and the choice of technology is not necessarily exogenously determined. In Section 1.2 it was argued that foreign investors may choose the technology they adopt in the host country based on the quality and price of labour in the host country, or other characteristics such as the level of protection of intellectual property rights. This argument appears to be in line with models discussed in Section 2.3 according to which countries may choose their technology based on their human capital endowments. Namely, skill-complementary technologies developed in advanced economies may be relatively less profitable compared to a labour-intensive technology in a host country that is well endowed with (cheap) lower-skilled labour. Theoretically, the potential endogeneity of the choice of technology may "blur" the relationship between the level of skills in the host country and the level of FDI it receives: in this scenario a lower level of skills may be associated with a lower "quality" of FDI in terms of technological content, but not necessarily a smaller *amount* of FDI attracted. This is consistent with the arguments of UNCTAD (1999, pp. 205-6) that a lower level technology is transferred to affiliates in "host countries with low capabilities and weak learning systems", and the example of affiliates of foreign electronics firms in Indonesia which, according to Pangestu (1997, cited in Ritchie, 2002, p. 17), limit their technology to a medium level due to lack of highly educated workforce (engineers, scientists, and technicians). The ability of foreign firms to adapt the level of technology to the host country's workforce skills in turn would imply that foreign investors do not necessarily seek production locations with high-skill endowments and any relationship between human capital and FDI that may exist should be specified in terms of the technological level of FDI or similar measures, rather than merely a financial measure of FDI as is conventional practice in empirical literature.

Finally, the availability of highly-skilled employees may only translate into higher profitability for foreign investors, and hence be preferred by them, to the extent that they do not have to be (fully) remunerated for their skills. In this case, controlling for the cost of highly-skilled labour would be crucial for identifying any relationship between the availability of highly-skilled workers and inward FDI in an empirical investigation. However, finding data, or even proxies, for (relative) wages of skilled-labour appears to be very difficult in practice, as explained in the empirical investigations in Chapters 5 and 6.

7.4.2 How much of a location-bound factor is a highly-skilled workforce?

Even assuming that foreign investors do require (a portion of) their staff to be highly-skilled, this does not necessarily imply that the host countries' human capital endowments are a (major) factor in investors' location decisions.

First, the parent company has the option of transferring highly-skilled staff, including managerial staff, to the foreign subsidiary. Micro-level research economies reviewed in Section 4.3.1 suggests that this is indeed the case for many managerial positions in foreign subsidiaries in European transition economies.

Second, highly-skilled staff can be argued to be more mobile compared other 'conventional' location factors such as cheap low-skilled labour or natural resources. Compared to low-skilled labour, in particular, high-skilled labour is argued to be generally more mobile because of two reasons. First, assuming that skill-complementary technologies are likely to require a smaller number of employees, the transaction cost of transferring the highly-skilled to the MNE's parent country (or other foreign countries) is lower. Second, which is probably more relevant in the case of developing/transition economies, the immigration policies of developed economies tend to be selective, i.e. they aim to decrease the quantity, and increase the "quality", of immigration and thus are less stringent (or least impose lower transaction costs) for the highly-skilled workers (Checci et al., 2007; Kugler and Rapoport, 2011). The potential for highly-skilled employees to migrate from the parent company to the host country, and the *relative* ease with which such employees can emigrate to developed economies, makes a skilled workforce less of a locationbound factor, contrary to what appears to be the assumption in previous FDI research. As such, a skilled workforce is likely to be attached less weight by foreign investors when choosing their foreign production destination.

7.4.3 Do the human capital measures used accurately reflect the workforce skills/characteristics most relevant to foreign investors?

In empirical research in general, and to some extent in this thesis, it is usually assumed that a high level of technical skills is associated with high educational attainment and this is what increases the productivity of the workforce. Some limitations of this approach have been recognised and discussed in detail in Section 4.2. It can be further argued that in reality *there are likely to be other skills and traits which are not necessarily related to formal schooling, but which may be even more important than technical skills. Examples of these may be the ability of the local workforce to communicate in a major business language or familiarity with, and ability to adapt to, the culture and work norms of the investor's home country. This would be consistent with the research reviewed in Chapter 4 which suggests that employers value workers' communication skills and attitudes in addition to technical skills.*

Further, to the extent that foreign investors evaluate different locations based on the availability of workers with the relevant technical skills, they would be interested only in the segment of the workforce with the qualifications and experience relevant to their line of business. For instance, a foreign company who will employ chemical engineers would only be interested in the economy's quantity and quality of the workforce with the relevant qualification, whilst it is unlikely to be interested in the labour market for doctors or economists. The quality of this relevant segment of the workforce in turn is not necessarily related to the quality of the workforce overall, in which case the economy-wide measures used in empirical research do not convey the relevant information. Further problems with using economy-wide measures are discussed next.

7.4.4 Are foreign investors interested in the characteristics of the *whole* workforce?

Assuming that foreign investors do seek highly-skilled labour when choosing among potential production locations, it is not clear that this relationship can be tested using the conventional approach whereby FDI is related to country-level human capital measures. *Since each foreign investor is expected to employ merely a small fraction of the host country's workforce and the total share of foreign companies'*

*employment is likely to be relatively low*⁷⁴, *it is not clear that the average/overall level of skills in the host country is relevant to them. Instead, they can simply 'cream-skim' the local labour markets by offering higher wages compared to their local competitors.* Consistent with this is evidence that foreign investors do pay higher wages, on average, as explained in Sections 1.2 and 2.3, and the persistence of a foreign ownership premium even after controlling for firm- and employee-characteristics (Andrews et al., 2009). If foreign investors indeed cream-skim, they would only be interested in the top of the 'skill distribution'; this in turn implies that to the extent that most able/qualified individuals are randomly distributed across countries, foreign investors would be indifferent to the overall level of skills in the workforce when choosing their production location.

7.4.5 Are foreign investors attracted by (only) the quality of human capital?

Empirical evidence presented here appears to suggest that the only measures of human capital that are positively associated with inward FDI in the manufacturing sector are those of cognitive skills: the proxy for the average level of cognitive skills in the workforce and that for the share of the workforce at the top of the skill distribution. Moreover, the higher estimated effect of these measures on (mediumand) high-tech groups of industries compared to the low-tech group appears to be consistent with the hypothesis that the quality workforce skills affects also the level of technology employed by foreign investors and/or the sectoral composition of inward FDI. The findings of this thesis appear to stress the importance of controlling for direct measures of cognitive skills, which (partly) reflect the quality of schooling (in addition to conventional measures of human capital quantity)

7.4.6 Possible extensions of this research

This research has empirically investigated the effect of volume and quality measures of human capital on FDI at the macro-, sector- and industry-level in European transition economies. The potentially most interesting and important finding of this

⁷⁴ Although in Czech Republic, where the inwards FDI relative to the economy is among the highest in the sample, as explained in Section 1.2, the share of employees the employment in foreigncontrolled affiliates is as high as 45.5 percent in manufacturing and 18.7 percent in services, the share of employment relative to total employment is likely to be lower. This indicator does not appear to be available for European transition economies, but globally it is estimated to be around 2.2%, as calculated using data from (UNCTAD, 2011, p. 24) on foreign investment-enterprise employees and from ILO (2011) on world employment.

research has been the positive effect of cognitive skill measures on inward FDI, in contrast to consistent findings of insignificant effects of traditional human capital measures, both in this research and the previous literature. *The findings of this research point to the importance of distinguishing between the dimensions of volume and quality of human capital in future FDI studies and warrant further research on the size and robustness of the effect of cognitive skills measures on FDI.*

A similar approach could be used to test the same hypotheses in different samples of countries. Considering that the estimated effect of human capital measures on FDI in previous literature is found by the MRA to be smaller for samples of transition economies compared to other countries, it would be interesting to investigate whether the similar results are found for other economies. *The estimation of similar industry- level models in developed economies would, in particular, be interesting* for several reasons. First, such research has not been previously undertaken. Second, the technological level and human capital intensity of activities is likely to be significantly higher (on average) in developed economies, providing a reason to believe that a (stronger) effect of human capital on FDI would be found. Finally, the availability and quality of human capital (and FDI) data for developed economies is likely to allow for at least some of the limitations of this research to be overcome.

This research could be further improved by controlling for the level of wages of skilled workers and using/developing alternative measures of human capital which provide information on the actual skills of the workforce rather than merely the average quantity of education attained. The latter would, in particular, be useful because it would overcome the limitations of differences in quality of formal education and ensure that individuals' skills/traits are accounted for, regardless of whether and how they were formed. Existing studies that could be considered for this purpose would be the International Adult Literacy Survey (IALS), Adult Literacy and Lifeskills Survey (ALL) and OECD's Programme for the International Assessment of Adult Competencies (PIAAC) which provide information on the literacy of working-age population could be used. Or, ideally, similar but more inclusive surveys which would provide information on the skills and traits that are relevant in a market economy could be used.

Considering the complex relationship between human capital availability and FDI level/quality and difficulties in measuring human capital, complementing macrolevel research with micro-level quantitative and qualitative research could provide a useful means of disentangling this relationship. This type of study could be used, first of all, to identify the skills and traits that foreign investors value and, if they evaluate investment locations by availability of human capital, what indicators they use to inform their decision. Finally, related issues that would be interesting to research are whether and how the availability (and cost) of skilled labour affects the foreign investors' decisions to choose the type of activity that is undertaken in the host country (e.g. mass production vs. product development) and the level/recentness of technology they employ in the host country.

7.5 Conclusion

This chapter has summarised the main findings of this research and provided potential explanations for the failure of both this research and previous literature to find empirical support in favour of a positive relationship between an investment location's volume measures of human capital and its level of inward FDI. This chapter has also pointed out the importance of this thesis' finding of a positive relationship between the cognitive skill measures and inward FDI in European transition economies which indicates the importance of taking into account the quality dimension of human capital in addition to traditional educational attainment measures usually used in economic research.

However, the criticism and refinement of human capital and FDI measures in this research have wider implications for future economic research. First, the use of disaggregated measures of FDI flows/stocks at sector level or industry level (and classified according to technological intensity) appears to be more appropriate for disentangling the effect of different locational determinants of FDI. Second, the use of quality-adjusted measures of human capital appears to be a necessary, and potentially crucial, refinement to the use of traditional measures of the quantity of human capital when investigating the relationship between human capital endowments and FDI. This in turn appears to point to still wider implications for other economic research which empirically investigates the effects of aggregate

measures of human capital, for example in the study of economic growth or income inequality, both in European transition economies and beyond.

References

Note: * (i.e. asterisk) indicates the study is included in the meta-regression analysis.

Acemoglu, D. & Autor, 2012. What does human capital do? A review of Goldin and Katz's "The race between education and technology". *NBER Working Paper* No. 17820.

Acemoglu, D. & Zilibotti, F., 2001. Productivity differences. *The Quarterly Journal of Economics*, 16(2), pp. 563-606.

Aghion P. & Howitt, P., 1998. *Endogenous growth theory*. Cambridge, MA: MIT Press.

*Agiomirgianakis, G., Asteriou, D. & Papathoma, K., 2006. The determinants of foreign direct investment: A panel data study for the OECD countries. *City University Economics Discussion Paper* No. 03/06.

Ahn, S.C. & Schmidt, P., 1995. Efficient estimation of models for dynamic panel data. *Journal of Econometrics*, 68(1), pp. 5-28.

Al-Sadig, A., 2009. The effects of corruption on FDI inflows. *Cato Journal*, 29(2), pp. 267-294.

Albuquerque, R., 2003. The composition of international flows: risk sharing through foreign direct investment. *Journal of International Economics*, 61(2), pp. 353-383.

Alessandrini, S. ed., 2000. *The EU foreign direct investment in Central and Eastern Europe*. Milan: Giuffrè Editore.

Alfaro, L., Chanda, A., Kalemli-Ozcan, S. & Sayek, S., 2004. FDI and economic growth: The role of local financial markets. *Journal of International Economics*, 64(1), pp. 89-112.

Alfaro, L., Kalemli-Ozcan, S. & Volosovych, V., 2007. Capital flows in a globalized world: The role of policies and institutions. In: Edwards, S., ed. *Capital controls and capital flows in emerging economies: Policies, practices and consequences*. Chicago: University of Chicago Press.

Ali, F., Fiess, N. & MacDonald, R., 2010. Do institutions matter for foreign direct investment? *Open Economies Review*, 21(2), pp. 201-219.

Aliber, R.Z., 1970. A theory of direct foreign investment. In Kindleberger, C., ed. *The international corporation*. Cambridge, MA: MIT Press.

*Alsan, M., Bloom, D.E. & Canning, D., 2006. The effect of population health on foreign direct investment flows to low- and middle-income countries. *World Development*, 34(4), pp. 613-630.

Altomonte, C. & Resmini, L., 2001. Multinational corporations as catalyst for industrial development. The case of Poland. *LICOS Discussion Paper* No. 97/2001.

Altonji, J.G., 2010. Multiple skills, multiple types of education and the labor market: A research agenda. Mimeo. Yale University.

Andren, D, Earle, J. & Sapatoru, D., 2005. The wage effects of schooling under socialism and in transition: Evidence from Romania, 1950-2000. *Journal of Comparative Economics*, 33(2), pp. 300-323.

Anderson, T.W. & Hsiao C., 1982. Formulation and estimation of dynamic models using panel data. *Journal of Econometrics*, 18(1), pp. 47-82.

Angelucci, M., Estrin, S., Konings, J. & Zoliewski, Z., 2001. The effect of ownership and competitive pressure on firm performance in transition countries: Micro evidence from Bulgaria, Romania and Poland. *CEPR Discussion Paper* No. 2985.

Angrist, J. & Krueger, A., 1991. Does compulsory school attendance affect schooling and earnings? *Quarterly Journal of Economics*, 106(4), pp. 979-1014.

Andrews, M., Bellman, L., Schank, T. & Upward, R., 2009. The takeover and selection effects of foreign ownership in Germany: An analysis using linked worker-firm data. *Review of World Economics*, 145(2), pp. 293-317.

Apergis, N., 2009. Technology, human capital and growth: Further evidence from threshold cointegration. *The Open Economics Journal*, 20(2), pp. 80-86.

Arellano, M., 1989. A note on the Anderson-Hsiao estimator for panel data. *Economic Letters*, 31(4), pp. 337-341.

Arellano, M. & Bond, S., 1991. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. *Review of Economic Studies*, 58(2), pp. 277-97.

Arellano, M. & Bover, O., 1995. Another look at the instrumental variables estimation of error components models. *Journal of Econometrics*, 68(1), 29-51.

Arrow, K., 1973. Higher education as a filter. *Journal of Public Economics*, 2(3), pp. 193-216.

Ashenfelter O. & Krueger, A., 1994. Estimate of the economic return to schooling from a new sample of twins. American Economics Review, 84(5), PP. 1157-1173.

Ashenfelter, O. & Rouse, C., 1998. Income, schooling and ability: evidence from a new sample of identical twins. *Quarterly Journal of Economics*, 113(1), pp. 253–284.

*Axarloglou, K., 2005. What attracts foreign direct investment inflows in the United States. *The International Trade Journal*, 19(3), pp. 285-308.

Bajo-Rubio, O. & Montero-Muñoz, M., 2001. Foreign direct investment and trade: A causality analysis. *Open economies review*, 12(3), pp. 305-323.

Balasubramanya, V.N., Salisy, M. & Sapsford, D., 1996. Foreign direct investment and growth in EP and IS countries. *The Economic Journal*, 106(434), pp. 92-105.

Baltagi, B., 1985. Econometric analysis of panel data. Chichester: John Wiley.

Bandelj, N., 2002. Creation of foreign direct investment markets in Central and Eastern Europe. Mimeo. Princeton University.

Bandelj, N., 2007. *From communists to foreign capitalists*. Princeton: Princeton University Press.

Barro, R.J., 1991. Economic growth in a cross section of countries. *Quarterly Journal of Economics*, 106(2), pp. 407-443.

Barro, R.J., 1997. *Determinants of economic growth: A cross-country empirical study*. Cambridge, MA: MIT Press.

Barro, R.J. & Lee, J, 2010. A new data set of educational attainment in the world, 1950-2010. *NBER Working Paper* No. 15902.

Basu, P., Chakraborty, C. & Reagle, D., 2003. Liberalization, FDI, and growth in developing countries: A panel cointegration approach. *Economic Inquiry*, 41(3), pp. 510-516.

Baum, C.F., 2006. An introduction to modern econometrics using Stata. College Station, Texas: Stata Press.

Baum, C.F., Nichols, A. & Schaffer M.E., 2010. Evaluating one-way and two-way cluster-robust covariance matrix estimates. In: 16th UK Stata Users Group Meeting, September 2010. London: Stata Users Group.

Baum, C.F., Schaffer, M.E. & Stillman S., 2003. Instrumental variables and GMM: Estimation and testing. *The Stata Journal*, 3(1), pp. 1-31.

Baum, C.F., Schaffer, M.E. & Stillman S., 2007. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. *The Stata Journal*, 7(4), pp. 465-506.

Beck, N., 2001. Time-series-cross-section data: What have we learned in the past few years? *Annual Review of Political Science* 9(4), pp. 271–293.

Beck, N., 2011. Of fixed-effects and time-invariant variables. Political Analysis, 19(2), pp. 119-122.

Becker, G.S., 1964. *Human capital: A theoretical and empirical analysis, with special reference to education.* New York: NBER.

BEEPS, 2002. Business environment and enterprise performance survey 2002. London: EBRD-World Bank.

BEEPS, 2005. Business environment and enterprise performance survey 2005. London: EBRD-World Bank.

Behrman, J.R. & Rosenzweig, M.R., 1999. "Ability" biases in schooling returns and twins: A test and new estimates. *Economics of Education Review*, 18(2), pp. 159-167.

Bellak C., Leibrecht, M. & Riedl, A., 2008. Labour costs and FDI flows into Central and Eastern European Countries: A survey of the literature and empirical evidence. *Structural Change and Economic Dynamics*, 19(1), pp. 17-37.

*Bellak, C., Leibrecht, M. & Stehrer, R., 2009. The role of public policy in closing foreign direct investment gaps: an empirical analysis. *Empirica*, 37(1), pp. 19-46.

Belsley, D.A., Kuh, E. & Welsch, R.E., 2004. *Regression diagnostics: Identifying influential data and sources of collinearity*. Hoboken: John Wiley & Sons.

Benacek, V., Gronicki, M., Holland, D. & Sass, M., 2000. The determinants and impact of foreign direct investment in Central and Eastern Europe: A comparison of survey and econometric evidence. *Transnational Corporations*, 9(3), pp. 163-212.

Bénassy-Quéré, A., Gobalraja, N. & Trannoy, A., 2007. Tax and public input competition. *European Network of Economic Policy Research Institute Working Paper* No. 040.

Bengoa, M., & Sanchez-Robles, B., 2003. Foreign direct investment, economic freedom and growth: new evidence from Latin America. *European Journal of Political Economy*, 19(3), pp. 529-545.

Benhabib, J. & Spiegel M.M., 1994. The role of human capital in economic development: Evidence from aggregate cross-country data. *Journal of Monetary Economics*, 34(2), pp. 143-173.

Benhabib J. & Spiegel M.M., 2005. Human capital and technology diffusion. In Aghion P. & Durlauf S., *eds. Handbook of economic growth*. Amsterdam: North Holland.

Beirne, J. & Campos, N.F., 2007. Educational inputs and outcomes before the transition from communism. *Economics of Transition*, 15(1), pp. 57-76.

Berryman, S.E., 2000. *Hidden challenges to education systems in transition economies*. Washington, D.C.: The World Bank.

Bevan, A.A. & Estrin, S., 2004. The determinants of foreign direct investment into European transition economies. *Journal of Comparative Economics*, 32(4), pp. 775-787.

Bils, M. & Klenow, P.J., 2000. Does schooling cause growth? *American Economic Review*, 90(5), pp. 1160-1183.

Black, D.A. & Hoyt, W.H., 1989. Bidding for firms. *American Economic Review*, 79(5), pp. 1249–1256.

Blanchard, O., 1997. *The economics of post-communist transition*. Oxford, UK: Oxford University Press.

*Blanton, S.L. & Blanton, R.G., 2007. What attracts foreign investors? An examination of human rights and foreign direct investment. *The Journal of Politics*, 69(1), pp. 143-155.

Blattner, T.S., 2006. What drives foreign direct investment in Southeast Asia? A dynamic panel approach. Mimeo. European Central Bank.

Blejer, M.I & Skreb, M. eds., 2001. *Transition: The first decade*. London, England: The MIT Press.

Blonigen, B.A. & Davies, R.B., 2004. The effects of bilateral tax treaties on U.S. FDI activity. *International Tax and Public Finance*, 11(5), pp. 601-622.

Blomström, M., Kokko A. & Zejan, M., 2000. Foreign direct investment: Firm and host country strategies. London: Macmillan.

Blomström, M. & Kokko, A., 2003. Human capital and inward FDI. *CEPR Working Paper* No. 3762.

Blomström, M., Lipsey, R.E & Zejan, M., 1996. Is fixed investment the key to economic growth? *Quarterly Journal of Economics*, 111(1), pp. 269-276.

Blundell, R. & Bond S., 1998. Initial conditions and moment restrictions in dynamic panel data models. *Journal of Econometrics*, 87(1), pp. 115-143.

Blundell R. & Bond S., 1999. GMM estimation with persistent panel data: An application to production functions. *Institute for Fiscal Studies Working Paper* No. 99/4.

Blundell, R., Bond, S. & Meghir, C., 1995. Econometric models of company investment. In Matyas, L. & Sevestre, P., *eds. The econometrics of panel data: A handbook of the theory with applications*. 2nd ed. London: Kluwer Academic Publishers.

Blundell, R., Dearden, L. and Sianesi, B., 2005. In Machin S. and Vignoles, A., *eds. The economics of education in the UK*. Princeton: Princeton University Press.

Bobonis G.J. & Shatz H.J., 2006. Agglomeration, adjustment, and state policies in the location of foreign direct investment in the United States. The Review of Economics and Statistics, 89(1), pp. 30-43.

Boeri, T., 2000. Structural change, welfare systems, and labour reallocation: Lessons from the transition of formerly planned economies. Oxford: Oxford University Press.

Boeri T. & Garonna, P., 1993. Employment and unemployment in economies in transition: Conceptual and measurement issues. Paris: OECD.

Boeri, T. & Terrell, K., 2002 . Institutional determinants of labor reallocation in transition. *Journal of Economic Perspectives*, 16(1), pp. 51-76.

Boissiere, M., Knight, J.B. & Sabot, R.H., 1985. Earnings, schooling, ability and cognitive skills. *The American Economic Review*, 75(5), pp. 1016-1030.

Bond, S., 2002. Dynamic panel data models: A guide to micro data methods and practice. *Institute for Fiscal Studies Working Paper* No. 09/02.

Bond, S. & Windmeijer, 2002. Finite sample inference for GMM estimators in linear panel data models. *Institute for Fiscal Studies Working Paper* No. CWP04/02.

Borensztein, E., De Gregorio J. & Lee J.W., 1998. How does foreign direct investment affect economic growth? *Journal of International Economics*, 45(1), pp. 115-135.

*Bouoiyour, J., 2003. The determining factors of foreign direct investment in Morocco. Mimeo. Université de Pau et des Pays de l'Adour.

Bowles, S. & Gintis, H., 1976. Schooling in capitalist America: Educational reform and contradictions of economic life. New York: Basic Books.

Bowles, S., Gintis, H. & Osborne, M., 2001a. The determinants of earnings: A behavioral approach. *Journal of Economic Literature*, 39(4), pp. 1137-1176.

Bowles, S., Gintis, H. & Osborne, M., 2001b. Incentive-enhancing preferences: Personality, behavior and earnings. *American Economic Review*, 91(2), pp.155-158.

BP, 2010. *BP statistical review of world energy*. [pdf] Available at: http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2008/STAGING/local_assets/2010_downlo ads/statistical_review_of_world_energy_full_report_2010.pdf. [Accessed 4 October 2011]

Breton, T., 2009. Cognitive Skills, Schooling Attainment, and Schooling Resources: What Drives Economic Growth? Mimeo. Universidad EAFIT.

Breton, T., 2012. Schools before tools: Evidence that in a market economy human capital drives growth. Mimeo. Universidad EAFIT.

Breusch, T., Ward, M.B., Nguyen, H. & Kompas T., 2011a. On the fixed-effects vector decomposition. *Political Analysis*. 19(2), pp. 147-164.

Breusch, T., Ward, M.B., Nguyen, H. & Kompas T., 2011b. FEVD: Just IV or just mistaken? *Political Analysis*. 19(2), pp. 170-172.

*Broadman, H.G. & Recanatini, F., 2001. Where has all the foreign investment gone in Russia? *World Bank Policy Research Paper* No. 2640.

*Broadman, H.G. & Sun, X.L., 1997. The distribution of foreign direct investment in China. *The World Economy*, 20(3), pp. 339-361.

Brunello, G., Crivellaro, E. & Rocco, L., 2011. Lost in transition? The Returns to education acquired under communism 15 years after the fall of the Berlin wall. *IZA Discussion Paper* No. 5409.

Brunello, G. & Schlotter, M., 2011. Non cognitive skills and personality traits: Labour market relevance and their development in education & training systems. *IZA Discussion Paper* No. 5743.

Bruno, G.S.F., 2005a. Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models. *Economic Letters*, 87(3), pp. 361-366.

Bruno, G.S.F., 2005b. Estimation and inference in dynamic unbalanced panel-data models with a small number of individuals. *The Stata Journal*, 5(4), pp. 473-500.

Buckley, P.J. & Casson, M., 1976. *The future of the multinational enterprise*. London: Macmillan.

Budd, J., Konings, J. & Slaughter, M.J., 2006. International rent sharing in multinational firms. *Review of Economics and Statistics*, 87(1), pp. 73-84.

Bun, M.J.G. & Kiviet, J.F., 2003. On the diminishing returns of higher order terms in asymptotic expansions of bias. *Economics Letters*, 79(2), 145-152.

Bureau of the Census, 1998. First findings from the EQW National Employer Survey. EQW, RE01.

Cameron, A.C., Gelbach, J.B. & Miller D.L., 2011. Robust inference with multiway clustering. *Journal of Business & Economic Statistics*, 29(2), pp. 238-249.

Cameron A.C. & Miller, D.L., 2011. Robust inference with clustered data. UC Davis, Department of Economics Working Paper No. 10-6.

Campos, N.F. & Coricelli, F., 2002. Growth in transition: What we know, what we don't, and what we should. *William Davidson Institute Working Paper* No. 470.

Campos, N. & Dabušinkas, A., 2003. So many rocket scientists, so few marketing clerks: Occupational mobility in times of rapid technological change. *William Davidson Institute Working Paper* No. 552.

Campos, N & Jolliffe A., 2007. Earnings, schooling and economic reform: Econometric evidence from Hungary (1986-2004). *IZA Discussion Paper* No. 2678.

Campos, N.F. & Kinoshita, Y., 2002. Foreign direct investment as technology transferred: Some panel evidence from the transition economies. *William Davidson Institute Working Paper* No. 438.

Card, D. & Krueger, A.B., 1995. Time-series minimum-wage studies: A metaanalysis. *American Economic Review*, 85(2), pp. 238-243. Carlin, W. & Landesmann, M., 1997. From theory into practice? Restructuring and dynamism in transition economies. *Oxford Review of Economic Policy*, 13(2), pp. 77-105.

*Carstensen K. & Toubal F., 2004. Foreign direct investment in Central and Eastern European countries: a dynamic panel analysis. *Journal of Comparative Economics*, 32(1), pp. 3-22.

Caselli, F. & Coleman, W.J. II, 2006. The world technology frontier. *American Economic Review*, 96(3), pp. 499-522.

*Cassidy, J.F., Andreosso-O'Callaghan, B., 2006. Spatial determinants of Japanese FDI in China. *Japan and the World Economy*, 18(4), pp. 512-527.

CEPR, 2012. European firms in a global economy. [online] Available at: http://www.cepr.org/research/EFIGE.htm [Accessed 22 April 2012].

Chase, R.S., 1998. Markets for communist human capital: Returns to education and experience in the Czech Republic and Slovakia. *Industrial and Labor Relations Review*, 51(3), pp. 401-423.

Checci, D., 2005. *The economics of education: Human capital, family background and inequality*. Cambridge: Cambridge University Press.

*Checci, D., De Simone G. & Faini C., 2007. Skilled migration, FDI and human capital investment. *IZA Discussion Paper* No. 2795.

Chen, D.H.C., 2004. Gender equality and economic development: The role of information and communication technologies. Mimeo. The World Bank.

Cheng, S., 2006. The role of labour cost in the location choves of Japanese investors in China. *Papers in Regional Science*, 85(1), pp. 121-138.

*Cheng, S., 2007. Structure of firm location choices: An examination of Japanese Greenfield investment in China. *Asian Economic Journal*, 21(1), pp. 47-73.

*Cheng, L.K. & Kwan Y.K., 2000a. What are the determinants of the location of foreign direct investment? The Chinese experience. *Journal of International Economics*, 51(2), pp. 379-400.

*Cheng, L.K. & Kwan Y.K., 2000b. The location of foreign direct investment in Chinese regions: Further analysis of labour quality. In T. Itō, & Krueger, A.O., *eds. The role of foreign direct investment in East Asian Economic Development.* Chicago: University of Chicago Press.

*Cheng, S. and Stough., R.R., 2006. Location decisions of Japanese new manufacturing plants in China: A discrete-choice analysis. *The Annals of Regional Science*, 40(2), pp. 369-387.

Chevalier, A., Harmon, C. Walker, I. & Zhu, Y., 2004. Does education raise productivity or just reflect it? *The Economic Journal*, 114(499), pp. F499-F517.

Choi, N., 2007. Accounting for quality differences in human capital and foreign direct investment. *University of Colorado Working Paper* No. 07-10.

Chow, G.C., 1967. Technological change and the demand for computers. *American Economic Review*, 57(5), 1117–1130.

*Chousa, J.P., Chaitanya, K., Aristidis, B.P. & Tamazian, A., 2008. Determinants of barriers to quality of direct investments – Evidences from South & East Asian economies. *William Davidson Institute Working Paper* No. 910.

Claessens, S., Djankov, S. & Pohl, G., 1997. Ownership and corporate governance: Evidence from the Czech Republic. *World Bank Policy Research Paper* No. 1737.

Cohen, D., & Soto, M., 2007. Growth and human capital: Good data, good results." *Journal of Economic Growth*, 12(1), pp. 51–76.

Commander, S. & Kollo, J., 2008. The changing demand for skills: Evidence from the transition. *Economics of Transition*, 16(2), pp. 199-221.

Cosar, A.K., 2011. Human capital, technology adoption and development. *The B.E. Journal of Macroeconomics*, 11(1), Article 5.

Colclough, C., Kingdon, G. & Patrinos, H., 2010. The changing pattern of wage return to education and its implications. *Development Policy Review*, 28(6), pp. 733-747.

*Coughlin, C.C. & Segev, E., 2000. Foreign direct investment in China: A spatial econometric study. *The World Economy*, 23(1), pp. 1-23.

Cuervo-Cazurra, A., 2008. Better the devil you don't know: The type of corruption and FDI in transition economies. *Journal of International Management*, 14(1), pp. 12-27.

Cunha, F., Heckman, J.J., Lochner, L. & Masterov, D., 2006. Interpreting the evidence on life cycle skill formation. In: Hanushek, E.A..A. & Welch, F., *eds. Handbook of the economics of education, Volume 1*. Amsterdam: Elsevier B.V.

Czarnitzki, D., 2005. Extent and evolution of the productivity deficiency in Eastern Germany. *Journal of Productivity Analysis*, 24 (2), pp. 209-229.

Dahl, J., 2002, Incentives for foreign direct investment: The case of SADC in the 1990s. *Namibian Economic Research Unit Working Paper* No. 81.

Dalba-Norris, E., Honda, J., Lahreche, A. & Verdier, G., 2010. FDI flows to lowincome countries: Global drivers and growth implications. *IMF Working Paper* No. 10/132.

De Hoyos, R.E. & Sarafidis, V., 2006. Testing for cross-sectional dependence in panel-data models. *The Stata Journal*, 6(4), pp. 482-496.

de Mello., L.R. Jr, 1997. Foreign direct investment in developing countries and growth: A selective survey. *Journal of Development Studies*, 34(1), pp. 1-34.

De Melo M., Denizer C., Gelb, A. & Tenev S. V., 1997. Circumstances and choice: The role of initial conditions and policies in transition economies. *World Bank Policy Research Working Paper* No. 1866.

de la Fuente, A. & Ciccone, A., 2002. Human capital in a global and knowledgebased economy. *UFAE and IAE Working Paper* No. 562.03.

de la Fuente, A. & Doménech, R. 2006. Human capital in growth regressions: How much difference does data quality make? *Journal of the European Economic Association*, 4(1), pp. 1-36.

*Deichmann, J.I., Eshghi, A., Haughton, D.M., Sayek, S. & Teebagy, N.C., 2003. Foreign direct investment in the Eurasian transition economies. *Eastern European Economics*, 41(1), pp. 5-34.

Demekas D.G., Horváth, B., Ribakova, E. & Wu, J., 2005. Foreign direct investment in Southeastern Europe: How (and how much) can policies help? *IMF Working Paper* No. 05/110.

Deng, Z., Blake, A. & Falvey, R., 2009. Quantifying foreign direct investment productivity spillovers: A computable general equilibrium framework for China. *University of Nottingham, GEP Research Paper* No. 2009/18.

*Desbores, R. & Azémar, C., 2008. Public governance, health and foreign direct investment in Sub-Saharan Africa. *Journal of African Economies*, 18(4), pp. 667-709.

Dewit, G., Görg, H. & Montagna, C., 2009. Should I stay or should I go? Foreign direct investment, employment protection and domestic anchorage. *Review of World Economics*, 145(1), pp. 93-110.

Di Liberto, A., Pigliaru, F. & Chelucci, P., 2011. International TFP dynamics and human capital stocks: A panel data analysis, 1960-2003. *Review of Income and Wealth*, 57(1), pp. 156-182.

Donges, J. & Wieners, J., 1994. Foreign investment in the transformation process of Eastern Europe. *International Trade Journal*, 8(2), pp. 63–91.

Doucouliagos, C. & Stanley, T.D., 2009. Publication selection bias in minimumwage research? A meta-regression analysis. *British Journal of Industrial Relations*, 47(2), pp. 406-428.

Driscoll, J. & Kraay, A. C., 1998. Consistent covariance matrix estimation with spatially dependent data. *Review of Economics and Statistics*, 80(4), pp. 549–560.

Drukker, D.M., 2003. Testing for serial correlation in linear panel-data models. *The Stata Journal*, 3(2), pp. 168-177.

Du, J., Lu, Y. & Tao, Z., 2012. Institutions and FDI location choice: The role of cultural distances. *Journal of Asian Economics*, 23(3), pp. 210-223.

Duce, M., 2003. Definitions of foreign direct investment (FDI): A methodological note. Mimeo. Banco de España.

Dunning, J.H., 1988. *Explaining international production*. London: Allen and Unwin.

Dunning, J., 1994. Re-evaluating the benefits of foreign direct investment. *Transnational Corporations*, 3(1), pp. 23-51.

Dunning, J.H. & Lundan, S.M., 2008. *Multinational enterprises and the global economy*. 2nd ed. Cheltenham: Edward Elgar Publishing.

Durham, J.B., 2004. Absorbtive capacity and the effects of foreign direct investment and equity foreign portfolio investment on economic growth. *European Economic Review*, 48(2), pp. 285-306.

Dutta, N. & Osei-Yeboah, K., forthcoming. A new dimension to the relationship between foreign direct investment and human capital: The role of political and civil rights. *Journal of International Development*, forthcoming.

EBRD, 1997. *Transition Report*. London: European Bank for Reconstruction and Development.

EBRD, 2010. *Transition Report.* London: European Bank for Reconstruction and Development.

EBRD, various years. *Transition Report*. London: European Bank for Reconstruction and Development.

Edwards, R.C., 1976. Personal traits and 'success' in schooling and work. *Educational and* Psychological Measurement, 37(1), pp. 125-138.

Efendic, A., Pugh, G. & Adnett, N., 2009. Institutions and macroeconomic performance: A meta-regression analysis. *European Journal of Political Economy*, 27(3), pp. 586-599.

Egger, H., Egger, P., Falkinger, J. & Grossmann, V., 2005. International capital market integration, educational choice and economic growth. *IZA Discussion Paper* No. 1863.\

Eisner, R. & Strotz, R.H., 1963. Determinants of business investment. In: *Impacts of Monetary Policy*. Englewood Cliffs, NJ: Prentice-Hall.

Ernst & Young, 2011. Restart: Ernst & Young's 2011 European attractiveness survey. [pdf] Available at:

http://www.ey.com/Publication/vwLUAssets/Europe_attractiveness_2011_web_reso lution/\$FILE/Europe_attractiveness_2011_web_resolution.pdf. [Accessed 7 January 2012].

Egger, M., Smith, D. G., Schneider, M. & Minder, C., 1997. Bias in meta-analysis detected by a simple graphical test, *British Medical Journal*, 315(7109), pp. 629-634.

Eriksson, T. & Pytlikova, M., 2011. Foreign ownership wage premia in emerging economies: Evidence from the Czech Republic. *Economics of Transition*, 19(2), pp. 371-395.

Ekanayake, E.M. & Ledgerwood, J.R., 2010. How does foreign direct investment affect growth in developing economies? An empirical investigation. *The International Journal of Business and Finance Research*, 4(3), pp. 43-53.

ESI, 2012. Montenegro country profile. Available at: http://www.esiweb.org/index.php?lang=en&id=267 [Accessed 21 February 2012].

Euromoney, 2010. Euromoney country risk indicator. [online] Available at: <u>http://www.euromoney.com/Article/2675673/Country-risk-Methodology.html</u> [Accessed 30 October 2010].

Eurostat, 2001. Aggregations of manufacturing based on NACE Rev 1.1. [online] Available at:

http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/htec_esms_an2.pdf. [Accessed: 15 September 2011].

Eurostat, 2008. NACE Rev. 2: Statistical classifications of economic activities in the European Community. Luxembourg: European Communities.

Faeth, I., 2009. Determinants of foreign direct investment – A tale of nine theoretical models. *Journal of Economic Surveys*, 23(1), pp. 165-196.

Faini, R., 2004. Trade liberalization in a globalizing world. *IZA Working Paper No*. 1406.

FIAS, 2007. Attracting investment to South East Europe: Survey of FDI trends and investor perceptions. Washington, D.C.: The World Bank.

Filer, R., Gylfason, T, Jurajda, Š. & Mitchell, J., 2001. Markets and growth in the post-communist world. Mimeo. Center for Economic Research & Graduate Education – Economics Institute.

Fisher, R., 1954. *Statistical methods for research workers*. New York: Hafner Publishing Company.

Flabbi, L., Paternostro, S. & Tiongson, E.R., 2008. Returns to education in the economic transition: A systematic assessment using comparable data. *Economics of Education Review*, 27(6), pp. 724-740.

Flanagan, R., 1998. Were communists good human capitalists? The case of the Czech Republic. *Labour Economics*, 5(3), pp. 295 -312.

Fleisher, B, Sabirianova, K and Xiaojun W., 2005, Returns to skills and the speed of reforms: Evidence from central and eastern Europe, China, and Russia. *Journal of Comparative Economics*, 33(2), pp. 351-370.

Ford, T.C., Rork J.C. & Elmslie, B., 2008. Foreign direct investment, economic growth and the human capital threshold: Evidence from US states. *Review of International Economics*, 16(1), pp. 96-113.

Fosfuri, A., Massimo, M. & Ronde, T., 2001. Foreign direct investments and spillovers through workers' mobility. *Journal of International Economics*, 53(1), pp. 205-222

Franco, C., Rentocchini, F. & Marzetti, G.V., 2008. Why do firms invest abroad? An analysis of the motives underlying foreign direct investment. *University of Trento, Department of Economics Working Paper* No. 0817.

Frees, E. W., 1995. Assessing cross-sectional correlation in panel data. Journal of *Econometrics*, 69(2), pp. 393–414.

Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. *Journal of the American Statistical Association* 32(200), pp. 675–701.

Foster, A.D. & Rosenzweig, M.R., 1995. Learning by doing and learning from others: Human capital and technical change in agriculture. *Journal of Political Economy*, 103(6), pp. 1176-1209.

Foster, A.D. & Rosenzweig, M.R., 1996. Technical change and human-capital returns and investments: Evidence from the Green Revolution. The *American Economic Review*, 86(4), pp. 931-953.

Freeman, R., 1986. Demand for education. In Ashenfelter, O. & Layard, R., *eds. Handbook of Labor Economics, Volume 1.* Amsterdam: North-Holland.

Fu, X., 2012. Foreign direct investment and managerial knowledge spillovers through the diffusion of management practices. *Journal of Management Studies*, forthcoming.

*Fung, K.C., Izaka, H., Lin, C. & Siu, A., 2002. An econometric estimation of locational choices of foreign direct investment: The case of Hong Kong and U.S. firms in China. Mimeo. University of Hong Kong.

*Fung, K.C., Izaka, H., Lin, C. & Siu, A., 2003. Japanese direct investment in China. *China Economic Review*, 14(3), pp. 304-315.

*Fung, K.C., Garcia-Herrero, A., Lizaka, H. & Siu, A., 2006. Hard or soft? Institutional reforms and infrastructure spending as determinants of foreign direct investment in China. *Banco de España Working Paper* No. 0616.

*Fung, K.C, Korhonen, I., Li K. & Ng, F., 2008. China and Central and Eastern European Countries: Regional networks, global supply chain, or international competitors? *World Bank Policy Research Working Paper* No. 4689.

Fujita, M, 2008. A critical assessment of FDI data and policy implications. *Transnational Corporations*, 17(2), pp. 107-126.

Fujita, M., Krugman, P. & Venables, A.J., 1999. *The spatial economy: Cities, regions, and international trade*. Cambridge, MA: MIT Press.

Furceri, D. & Borelli, S., 2008. Foreign direct investments and exchange rate volatility in the EU neighbourhood countries. *Journal of International and Global Economic Studies*, 1(1), pp. 42-59.

*Gao, T., 2005. Labor quality and the location of foreign investment: Evidence from China. *China Economic Review*, 16(3), pp. 274-292.

Gerlach A. & Liu, P., 2010. Resource-seeking foreign direct investment in African agriculture: A review of country case studies. *FAO Commodity and Trade Policy Research Working Paper* No. 31.

Goldin, C. & Katz, L., 2008. *The race between education and technology*. Cambridge, MA: Harvard University Press.

Golub, S.S., 2003. Measures of restrictions on inward foreign direct investment for OECD countries. *OECD Economic Studies* No. 36/2003/1.

Graham, E.M., 1998. Market structure and the multinational enterprise: A game-theoretic approach. *Journal of International Business Studies*, 29(1), pp. 67-83.

Green, F., Machin, S. & Wilkenson, D., 1998. The meaning and determinants of skill shortages. *Oxford Bulletin of Economics and Statistics*, 60(2), pp. 165-188.

Greene, W., 2002. *Limdep version 8.0: Econometric modeling guide, Volume 2.* Plainview, NY: Econometric Software, Inc.

Greene, W., 2003. Econometric Analysis. 5th ed. New Jersey: Prentice Hall.

Greene, W., 2011a. Fixed effect vector decomposition: A magical solution to the problem of time-invariant variables in fixed effects models? *Political Analysis*, 19(2), pp. 135-146.

Greene, W., 2011a. Reply to rejoinder by Plümper and Troeger. *Political Analysis*, 19(2), pp. 170-172.

Greene, W., Orea, L. & Wall, A., 2010. Stochastic frontiers using a fixed-effect vector decomposition approach with an application to ICT and regional productivity in Spain. *Universidad de Ovideo Economic Discussion Papers, Efficiency Series Paper* No. 4/2010.

Goldin, C. & Katz, L., 1998. The origins of capital-skill complementarity. *Quarterly Journal of Economics*, 113(3), pp. 693–732.

Gould, J.P., 1968. Adjustment costs in the theory of investment of the firm. *The Review of Economic Studies*, 35(1), pp. 47-55.

Greiner, A., 2012. Human capital formation, learning by doing and the government in the process of economic growth. *Journal of Political Economy*, 59(1), pp. 71-89.

Gros, D. & Suhrcke, M., 2000. Ten years after: What is special about transition countries? *CESifo Working Paper* No. 327.

Grossman, G.M & Helpman, E., 1991. *Innovation and growth in the global economy*. Cambridge, MA: The MIT Press.

*Görg, H. & Greenaway, D., 2002. Is there a potential for increases in FDI for Central and Eastern European countries following EU accession? *GEP Working Paper* No. 02/031.

Haaland, J.I. & Wooton, I., 1999. International competition for multinational investment. *Scandinavian Journal of Economics*, 101(4), pp. 631–649.

Haaland, J.I. & Wooton, I., 2001a. Multinational firms: easy come, easy go? *CEPR Discussion Paper* No. 2600.

Haaland, J.I. & Wooton, I., 2001b. Multinational investment, industry risk, and policy competition. *Norwegian School of Economics and Business Administration, Department of Economics Discussion Paper* No. 35/2001.

Haaparanta, P., 1996. Competition for foreign direct investment. *Journal of Public Economics*, 63(1), pp. 141–153.

Hallam, D., 2009. Foreign investment in developing country agriculture – Issues, policy implications and international response. In: Global Forum VIII on International Investment, 7-8 December 2009. Paris: OECD.

Hanson Jr., J.R., 1996. Human capital and direct investment in poor countries. *Explorations in Economic History*, 33(1), pp. 86-106.

Hanushek, E.A., 2003. The failure of input-based schooling policies. *The Economic Journal*, 113(485), pp. F64-F98.

Hanushek, E.A., 2006. School resources. In Hanushek, E.A. & Welch, F., eds. Handbook of the economics of education, Volume 2. Amsterdam: Elsevier B.V.

Hanushek, E.A., 2011. Developing a skills-based agenda for "new human capital" research. Mimeo. Stanford University.

Hanushek, E.A. & Woessmann, L., 2009a. Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation. *NBER Working Paper* No. 14633.

Hanushek, E.A. & Woessmann, L., 2009b. Schooling, cognitive skills, and the Latin American growth puzzle. *CESIFO Working Paper* No. 2667.

Hanushek, E.A. & Woessmann, L., 2011a. How much do educational outcomes matter in OECD countries? *Economics Policy*, 26(67), pp. 427-491.

Hanushek, E.A. & Woessmann, L., 2011b. Sample selectivity and the validity of international student achievement tests in economic research. *Economics Letters*, 110(2), pp. 79-82.

Hartog, J. & Osterbeek, H., 2007. What should you know about the private returns to education? In: *Human capital: Theory and evidence*. Hartog, J & van den Brink, H.M, *eds*. Cambridge: Cambridge University Press.

Harvylyshyn, O. & McGettigan, D., 1999. Privatization in transition countries: A sampling of the literature. *IMF Working Paper* No. 99/6.

Hatzichronoglou, T., 1997. Revision of the high-technology sector and product classification. *OECD Science, Technology and Industry Working Paper* No. 1997/02.

Haufler, A. & Wooton, I., 1999. Country size and tax competition for foreign direct investment. *Journal of Public Economics*, 71(1), pp. 121–139.

Havlik, P., 2005. Structural change, productivity and employment in the new EU member states. *wiiw Research Reports* No. 313.

Havranek, T. & Irsova, Z., 2010. Which foreigners are worth wooing? A metaanalysis of vertical spillovers from FDI. *William Davidson Institute Working Paper No.* 996.

Hayakawa, K., 2008. The asymptotic properties of the System GMM estimator in dynamic panel data models when both N and T are large. Mimeo. Hiroshima University Department of Economics.

Head, K. & Mayer, T., 2002. Market potential and the location of Japanese firms in the European Union. *CEPR Discussion Paper* No. 3455.

Heckman, J.J., 2000. Policies to foster human capital. *Research in Economics*, 54(1), pp. 3-56.

Heckman, J.J., Stixrud, J. & Urzua, S., 2006. The effects of cognitive and noncognitive abilities on labor market outcomes and social behaviour. *Journal of Labor Economics*, 24(3), pp. 411-482.

Helpman, E., 1984. A simple theory of trade with multinational corporations. *Journal of Political Economy*, 92(3), pp. 451–471.

Hennart, J.F., 1982. *A theory of multinational enterprise*. Ann Arbor, MI: University of Michigan Press.

Hennart, J.F., 1991. The transaction cost theory of the multinational enterprise. In Pitelis, C.N. & Sugden, R., *eds. The nature of the transnational firms*. London: Routledge.

Head, C. K., Ries, J.C. & Swenson, D.L., 1999. Attracting foreign manufacturing: Investment promotion and agglomeration. *Regional Science and Urban Economics*, 29(2), pp. 197-218.

Herault, N. & Zakirova, R., 2011. Sheepskin effects in the returns to education: Accounting for enrolment and completion effects. *Melbourne Institute Working Paper* No. 4/11.

Heriot, K.C., Theis, J. & Campbell, N.D., 2010. Foreign direct investment and economic freedom: An empirical investigation. Available online at: <u>http://www.mfa-2008.com/papers/FDI%20FI%20Midwest%20Final.pdf</u> [Accessed 26 April 2012].

Heritage Foundation, 2010. *Index of Economic Freedom*. Washington, D.C.: The Heritage Foundation.

Hermes, N. & Lensink, R., 2003. Foreign direct investment, financial development and economic growth. *The Journal of Development Studies*, 40(1), pp. 142-163.

Heyman, F., Sjöholm, F. & Gustafsson Tingvall, P., 2006. Acquisitions, multinationals and wage dispersion. *IFN Working Paper* No. 675.

Hoechle, D., 2007. Robust standard errors for panel regressions with cross-sectional dependence. *The Stata Journal*, 7(3), pp. 281-312.

Hojo, M., 2003. An indirect effect of education on growth. *Economics Letters*, 80(1), pp. 31-34.

Holland, D. & Pain N., 1998. The diffusion of innovations in Central and Eastern Europe: A study of the determinants and impact of foreign direct investment. *NIESR Discussion Paper* No. 137.

Hong, J., 2007. Firm-specific effects on location decisions of foreign direct investment in China's logistics industry. *Regional Studies*, 41(5), pp. 673-683.

*Hong, J. & Chin, A.T.H., 2006. Modelling the location choices of foreign investments in Chinese logistics industry. *China Economic Review*, 18(4), pp. 425.

Hong, E., Sun, L. & Li T., 2008. Location of foreign direct investment in China: A spatial dynamic panel data analysis by country of origin. *Centre for Financial and Management Studies Discussion Paper* No. 86.

Hsu, C. & Chen, H., 2009. Foreign direct investment and capability development: A dynamic capabilities perspective. Management International Review, 49(5), pp. 585-605.

Hung, F., 2008. Returns to education and economic transition: An international comparison. *A Journal of Comparative Education*, 38(2), pp. 155-171.

Hunya, G., ed., 2000a. Integration through foreign direct investment: Making Central and Eastern European industries competitive. Cheltenham, UK: Edward Elgar.

Hunya, G., 2000b. Recent trends, policies and challenges in SEE countries. *OECD Working Papers of International Investment* No. 2000/5.

Hunya, G., 2002. Restructuring through FDI in Romanian manufacturing. *Economic Systems*, 26(4), pp. 387-394.

Hunya, G., 2004. Manufacturing FDI in new EU member states – Foreign penetration and location shifts between 1998 and 2002. *Wiiw Research Report* No. 311.

Hussey, A., 2012. Human capital augmentation versus the singaling value of MBA education. *Economics of Education Review*, forthcoming.

Hymer, S.H., 1976. *The international operations of national firms: A study of direct investment*. Cambridge, MA: MIT Press.

IEA, 2000a. *TIMSS 1999 International mathematics report*. Chestnut Hill, MA: Boston College International Study Center.

IEA, 2000b. *TIMSS 1999 International science report*. Chestnut Hill, MA: Boston College International Study Center.

IEA, 2008. *TIMSS 2007 International mathematics report*. Chestnut Hill, MA: Boston College International Study Center.

Institutional Investor, 2010. Country credit ratings. [online] Available at: <u>http://www.iimagazinerankings.com/CountryCredit/index.asp</u> [Accessed 30 October 2010].

IMF, 1993. Balance of Payments Manual. 5th ed. Washington, D.C.: IMF.

IMF, 2009. *Balance of payments and international investment position manual*. 6th ed. Washington, D.C.: IMF.

Islam, M.R., 2010. Human capital composition, proximity to technology frontier and productivity growth. *Monash University Discussion Paper* No. 23/10.

*Ismail, R. & Yussof, I., 2003. Labour market competitiveness and foreign direct investment: The case of Malaysia, Thailand and the Philippines. *Papers in Regional Science*, 82(3), pp. 389-402.

Iversen, C., 1935, Aspects of international capital movements. London: Levin & Munksgaard.

Jacquemin, A., 1989. International and multinational strategic behaviour. *Kyklos*, 42(4), pp. 495-513.

*Jaumotte, F., 2004. Foreign direct investment and regional trade agreements: The market size effect revisited. *IMF Working Paper* No. 04/206.

Javorcik, B.S., Caglar, O., Spatareanu, M. & Neagu, C., 2011. Migrant networks and foreign direct investment. *Journal of Development Economics*, 94(2), pp. 231-241.

Jeffries, I. ed., 2002. *Eastern Europe at the turn of the twenty-first century: A guide to the economies in transition.* London: Routledge.

Jeong, B., Kejak, M. & Vinogradov, V., 2008. Changing composition of human capital in the Czech Republic, Hungary and Poland. *Economics of Transition*, 16(2), pp. 247-271.

Jones, C.I., 1998. Introduction to economic growth. New York: W.W. Norton.

Jones, C.I. & Romer, P.M., 2010. The new Kaldor facts: Ideas, institutions, population, and human capital. *American Economic Journal: Macroeconomics*, 2(1), pp. 224-245.

Judson, R.A. & Owen, A.L., 1999. Estimating dynamic panel models: A practical guide for macroeconomists. *Economics Letters*, 65(1), pp. 9-15.

Jun, K.W. & Singh, H., 1995. Some new evidence on determinants of foreign direct investment in developing countries. *World Bank Policy Research Working Paper* No. 1531.

Kaditi, E.A., 2010. Foreign investments and institutional convergence in South eastern Europe. *LICOS Discussion Paper* No. 260/2010.

Kalotay, K., 2001. The contribution of foreign direct investment to transition revisited. *The Journal of World Investment*, 2(2), pp. 259-276.

Kalotay, K., 2008. FDI in Bulgaria and Romania in the wake of EU accession. *Journal of East-West Business*, 14(1), pp. 5-40.

Kalotay K. & Hunya, G., 2000. Privatization and FDI in Central and Eastern Europe. *Transnational Corporations*, 9(1), pp. 39-66.

Kaminski, B. & Riboud, M., 2000. Foreign investment and restructuring: The evidence from Hungary. *World Bank Technical Paper* No. 453.

Kang, S.J & Lee, H.S., 2007. The determinant of location choice of South Korean FDI in China. *Japan and the World Economy*, 19(4), pp. 441-460.

Kapstein, E.B., 2002. Human capital formation, economic development and the multinational enterprise. *OECD Development Centre Working Paper* No. 191.

Katz, L. & Autor, D., 1999. Changes in the wage structure and earnings inequality. In Ashenfelter, O. & Card, D., *eds. Handbook of Labor Economics*. Amsterdam: North-Holland.

Kemp, M.C., 1964. *The pure theory of international trade*. Englewood Cliffs, NJ: Prentice Hall.

Kindleberger, C.P., 1969. American business abroad: Six lectures on foreign direct investment. New Haven, CT: Yale University Press.

*Kinoshita, Y. & Campos, N.F., 2003. Why does FDI go where it goes? New evidence from the transition economies. *William Davidson Institute Working Paper* No. 573.

Kinoshita, Y. & Campos, N., 2006. A re-examination of determinants of foreign direct investment in transition economies. Mimeo. IMF.

Kinoshita, Y. 2011. Sectoral composition of foreign direct investment and external vulnerability in Eastern Europe. *IMF Working Paper* No. 11/123.

Kiviet, J.F., 1995. On bias, inconsistency, and efficiency of various estimators in dynamic panel data models. *Journal of Econometrics*, 68(1), pp. 53-78.

Kiviet, J.F., 1999. Expectation of expansions for estimators in a dynamic panel data model: Some results for weakly exogenous regressors. In: Hsiao, C., Lahiri, K., Lee, L.F. & Pesaran, M.H., *eds. Analysis of panel data and limited dependent variables.* Cambridge, UK: Cambridge University Press.

Kocenda, E., & Svejnar, J., 2003. Ownership and firm performance after large-scale privatization. *CEPR Discussion Paper* No. 4143.

Krkosa, L., 2000. Foreign direct investment financing of capital formation in central and eastern Europe. *EBRD Working Paper* No. 67.

Krueger, D. & Kumar, K.B, 2004. Skill-specific rather than general education: A reason for US-Europe growth differences? *Journal of Economic Growth*, 9(2), pp. 167-207.

*Kucera, D., 2002. Core labour standards and foreign direct investment. *International Labour Review*, 141(1-2), pp. 31-69.

Kudriaceva, N., 2011. The determinants of foreign direct investment in Central and Eastern Europe. Mimeo. University College London.

Kugler, M. & Rapoport, H., 2007. International labor and capital flows: Complements or substitutes? *Economics Letters*, 92(2), pp. 155-162.

Kugler, M. & Rapoport, H., 2011. Migration, FDI, and the margins of trade. *CID Working Paper* No. 222.

Lane, P.R. & Milesi-Ferreti, G.M., 2006. Capital flows to Central and Eastern Europe. *IMF Working Paper* No. 06/188.

Lankes, H.P. & Stern, N., 1998. Capital flows to eastern Europe and the former Soviet Union. *EBRD Working Paper* No. 27.

Lansbury, M., Pain, N. & Smidkova, K., 1996. Foreign direct investment in Central Europe since 1990: An econometric study. *National Institute Economic Review*, 156(1), pp. 104-114.

Laporte, B. & Schweitzer, J., 1994. Education and training. In Barr, N., ed., Labour markets and social policy in Central and Eastern Europe: The transition and beyond. London: Oxford University Press.

Lavy, V., 2010. Do differences in school's instruction time explain international achievement gaps in math, science and reading? Evidence from developed and developing countries. *NBER Working Paper* No. 16227.

Le, T., Gibson, J. & Oxley, L., 2005. Measures of human capital: A review of the literature. *New Zealand Treasury Working Paper* No. 05/10.

Leibrecht, M., & Scharler, J., 2009. How important is employment protection legislation for foreign direct investment flows in Central and Eastern European countries? *Economics of Transition*, 17(2), pp. 275-295.

Levin, A., Lin, C.F. & Chu, C.S.J., 2002. Unit root tests in panel data: Asymptotic and finite-sample properties. *Journal of Econometrics*, 108(1), pp. 1–24.

*Li, X., Hou, K. & Chan, M.W.L., 2008. An empirical study of foreign direct investment location in Eastern China. *The Chinese Economy*, 41(6), pp. 75-98.

Lieberman, I.W. & Kopf, D.J. eds, 2008. *Privatization in transition economies: The ongoing story. Contemporary Studies in Economic and Financial Analysis, Volume 9.* Oxford, UK: Elsevier.

Lin, F., 2011. Labour quality and inward FDI: A firm-level empirical study in China. *University of Adelaide, School of Economics Research Paper* No. 2011-12.

Lipsey, R.E., 2000. Interpreting developed countries' foreign direct investment. *NBER Working Paper* No. 7810.

Lipsey, R.E. & Sjohöholm, F., 2004. Host country impacts of inward FDI: Why such different answers. *EIJS Working Paper* No. 192.

Lipton, D., Sachs, J., Fischer, S. & Kornai, J., 1990. Creating a market economy in Eastern Europe: The case of Poland. *Brookings Papers on Economic Activity*, 1990(1), pp. 75-147.

Lizal, L., Singer, M. & Svejnar, J., 2001. Enterprise breakups and performance during the transition from plan to market. Review of Economics and Statistics, 83(1), pp. 92–99.

Lucas, R.E., 1967. Optimal investment policy and the flexible accelerator. *International Economic Review*, 8(1), pp. 78-85.

Lucas, R.E., 1988. On the mechanics of economic development. *Journal of Monetary Economics*, 22(1), pp. 78-85.

Lucas, R.E. & Prescott, E.C., 1971. Investment under uncertainty. *Econometrica*, 39(5), pp. 659-81.

Lucas, R.E., 1990. Why doesn't capital flow from rich to poor countries? *American Economic Review* 80(2), pp. 92-96.

MacDougall, G.D.A., 1960. The benefits and costs of private investment from abroad: A theoretical approach. *Oxford Bulletin of Economics and Statistics*, 22(3), pp. 189-211.

Machin, S., 2004. Skill-biased technical change and educational outcomes. In Johnes, G. & Johnes, J., *eds. International Handbook of the Economics of Education.* Cheltenham: Edward Elgar Publishing Ltd.

Magda, I., Rycx, I., Tojerow, I. & Valsamis, D, 2011. Wage differentials across sectors in Europe. *Economics of Transition*, 19(4), pp. 749–769.

Magee, S.P., 1977. Information and multinational corporations: An appropriability theory of direct foreign investment. In Bhagwati, J., *ed. The new international economic order*. Cambridge, MA: MIT Press.

Maddala, G.S. & Wu, S., 1999. A comparative study of unit root tests with panel data and a new simple test. *Oxford Bulletin of Economics and Statistics*, 61(0), Special Issue Nov., pp. 631-652.

*Majeed, T.M. & Ahmad, E., 2008. Human capital development and FDI in developing countries. *Journal of Economic Cooperation*, 29(3), pp. 79-104.

*Majocchi, A. & Presutti, M., 2009. Industrial clusters, entrepreneurial culture and the ocial environment: The effects on FDI distribution. *International Business Review*, 18(1), pp. 76-88.

*Majocchi, A. & Strange, R. 2007. The FDI location decision: does liberalization matter? *Transnational Corporations*, 16(2), pp. 1-40.

Marks, L.D. & Tesar, G., 2005. Different objectives, different models: The challenge of integrating EU and CEE higher education. *Transformations in Business & Economics*, 4(1), pp. 19-36.

Markusen, J.R., 1984. Multinationals, multi-plant economies, and the gains from trade. *Journal of International Economics*, 16(3-4), pp. 205–226.

Markusen, J.R., 1995. The boundaries of multinational enterprises and the theory of international trade. *The Journal of Economic Perspectives*, 9(2), pp. 196-189.

Markusen, J.R., 2002. *Multinational firms and the theory of international trade*. Cambridge, MA: MIT Press.

Markusen, J.R. & Venables, A.J., 1998. Multinational firms and the new trade theory. *Journal of International Economics*, 46(2), pp. 183–203.

Markusen, J.R. and Venables, A.J., 2000. The theory of endowment, intra-industry, and multinational trade. *Journal of International Economics*, 52(2), pp. 209–234.

Manacorda, M., Sanchez-Paramo, C. & Schady, N., 2010. Changes in returns to education in Latin America: The role of demand and supply of skills. *Industrial and Labor Relations Review*, 63(2), pp. 307-326.

Mangan, J., Pugh, G. & Gray, J., 2005. Changes in examination performance in English secondary schools over the course of a decade. *School Effectiveness and School Improvement*, 16(1), pp. 29-50.

Mankiw, N. G., Romer, D. & Weil, D.N., 1992. A contribution to the empirics of economic growth. *The Quarterly Journal of Economics*, 107(2), pp. 407-437.

Manning, A. & Manacorda, M., 1998. Just can't get enough: More on skill-biased change and labour market performance. *Berkley Center for Labour Economics Working Paper* No. 7.

Martinez-Martin, J., 2009. General equilibrium long-run determinants for Spanish FDI: A spatial panel data approach. *Research Institute of Applied Economics Working Paper* No. 2009/17.

McMahon, W.W., 2006. Education finance policy: Financing the nonmarket and social benefits. *Journal of Education Finance*, 32(2), pp. 264-284.

*Mercereau, B., 2005. FDI flows to Asia: Did the dragon crowd out the tigers? *IMF Working Paper* No. 05/189.

Mertaugh, M. & Hanushek, E.A., 2005. Education and training. In Barr, N., ed. *Labor markets and social policy in Central and Eastern Europe: The accession and beyond*. Washington, D.C.: The World Bank.

Meyer, K. E., 1996. Business operation of British and German companies with the economies of transition. *London Business School CIS Middle Europe Centre Discussion Paper* No. 19.

Meyer, K.E., 2001. Institutions, transaction costs and entry mode choice in Eastern Europe. *Journal of International Business Studies*, 32(2), pp. 357-367.

Meyer, K.E. & Estrin, S., 2001. Brownfield entry in emerging markets. *Journal of International Business Studies*, 32(3), pp. 575–584.

Michie, J., 2002. Foreign direct investment and 'human capital enhancement' in developing countries. *Competition & Change*, 6(4), pp. 363-372.

Micklewright, J., 1999. Education, inequality and transition. *Economics of Transition*, 7(4), pp. 343-376.

Mihalyi, P., 2000. FDI through cross-border M&A – The post-communist privatization story re-considered. Mimeo. UNCTAD.

*Mina, W., 2007. The location determinants of FDI in the GCC countries. *Journal of Multinational Financial Management*, 17(4), pp. 336-348.

Mincer, J., 1974. Schooling, experience and earnings. New York: NBER.

Miyamoto K., 2003. Human capital formation and foreign direct investment in developing countries. *OECD Development Centre Working Paper* No. 211.

*Mody, A., Dasgupta, S. & Sinha, S., 1999. Japanese multinationals in Asia: Drivers and attractors. *Oxford Development Studies*, 27(2), pp. 149-164.

Moll, P.G., 1998. Primary schooling, cognitive skills and wages in South Africa. *Economica*, New Series, 65(mayx), pp. 263-284.

Munich, D., Svejnar, J., & Terrell K., 2005. Returns to human capital under the communist wage grid and during the transition to a market economy. *The Review of Economics and Statistics*, 87(1), pp. 100-123.

Murnane, R.J., Willett, J.B. & Levy, F., 1995. The growing importance of cognitive skills in wage determination. *The Review of Economics and Statistics*, 77(2), pp. 251-266.

Murphy, K.M., Schleifer, A. & Vishny, R.W., 1991. The allocation of talent: Implications for growth. *Quarterly Journal of Economics*, 106(2), pp. 503-530.

*Nachum, L. 2000. Economic geography and the location of TNCs: Financial and professional service FDI to the USA. *Journal of International Business Studies*, 31(3), pp. 367-385.

*Narula, R., 1996. Multinational investment and economic structure: Globalisation and competitiveness. London: Routledge.

Nath, H.K., 2009. Trade, foreign direct investment, and growth: Evidence from transition economies. *Comparative Economic Studies*, 51(1), pp. 20-50.

Nazarov, Z. & Akhmedjonov, A., 2010. Education, training and innovation in transition economies: Is there a link? *RAND Working Paper* No. 776.

Nelson, R.R & Phelps, E.S., 1966. Investment in humans, technological diffusion and economic growth. *American Economic Review*, 56(2), pp. 69-75.

Neumayer, E. & Spess, L., 2005. Do bilateral investment treaties increase foreign direct investment to developing countries? *World Development*, 33(10), pp. 1567-1585.

Newell, A., 2001. The distribution of wages in transition countries. *IZA Discussion Paper* No. 267.

Newell, A. & Reilly, B., 1999. Rates of return to educational qualifications in the transitional economies. *Education Economics*, 7(1), pp. 67-84.

Newey, W. & West K., 1987. A simple positive semi-definite heteroscedastic and autocorrelation consistent covariance matrix. *Econometrica*, 55(3), pp. 703–708.

*Nguyen, N.A. & Nguyen, T., 2007. Foreign direct investment in Vietnam: An overview and analysis of the determinants of spatial distribution across provinces. *MPRA Paper* No. 1921.

Nichols, A. & Schaffer, M., 2007. Clustered errors in Stata. In: 7th United Kingdom Stata Users Group Meeting, September 2007. London: Stata Users Group.

Nickell, S., 1981. Biases in dynamic models with fixed effects. *Econometrica*, 49(6), pp. 1417-1426.

*Nicoletti, G., Golub, S., Hajkova, D., Mirza, D., Yoo K., 2003. Policies and international integration: Influences on trade and foreign direct investment. *OECD Working Paper* No. 359.

Norman, G., and Pepall, L., 2002. Knowledge spillovers, mergers and public policy in economic clusters. *Tufts University Department of Economics Discussion Paper* No. 0215.

*Noorbakhsh, F. Paloni, A. & Youssef, A., 2001. Human capital and FDI inflows to developing countries: New empirical evidence. *World Development*, 29(9), pp. 1593-1610.

Nunnenkamp, P., 2002. Determinants of FDI in developing countries: Has globalization changed the rules of the game? *Kiel Working Paper* No. 1122.

Nurkse, R., 1933. Causes and effects of capital movements. In Dunning, J.H., ed., 1972. *International investment*. Harmondsworth: Penguin.

OECD, 1996. *OECD Benchmark definition of foreign direct investment*. 3rd ed. Paris: OECD.

OECD, 2000. Literacy in the information age: Final report of the international adult literacy survey. Paris: OECD.

OECD, 2001. New horizons and policy challenges for foreign direct investment in the 21st century. Mimeo. OECD.

OECD, 2004. Learning for tomorrow's world: First results from PISA 2003. Paris: OECD.

OECD, 2007. PISA 2006, Science competencies for tomorrow's world. Volume 1: Analysis. Paris: OECD.

OECD, 2008. *Benchmark Definition of Foreign Direct Investment*. 4th ed. Paris: Organisation for Co-operation and Development.

OECD, 2010a. PISA 2009 results: What students know and can do. Student performance in reading, mathematics and science, Volume 1. Paris: OECD.

OECD, 2010b. OECD Factbook 2010: Economic, Environmental and Social Statistics. Paris: OECD.

OECD, 2011. ISIC Rev. 3 technology intensity definition. Paris: OECD.

Ohlin, B., 1933. *Interregional an international trade*. Cambridge, MA: Harvard University Press.

Onaran, O. & Stockhammer, 2008. The effect of FDI and foreign trade on wages in the Central and Eastern European countries in the post-transition era: A sectoral analysis for the manufacturing industry. *Structural Change and Economic Dynamics*, 19(1), pp. 66-80.

Orts, V., Alguacil, M. & Cuadros A., 2008. The last enlargement of the EU and the effects of inward foreign direct investment: a dynamic panel data approach. *Review of Development Economics*, 12(3), pp. 594-604.

Ozturk, I. 2007. Foreign direct investment – Growth Nexus: A review of the recent literature. *International Journal of Applied Econometrics and Quantitative Studies*, 4(2), pp. 79-98.

Pangestu, M., 1997. Indonesia: Trade and foreign investment linkages. In Dobson,W. & Chia, S.Y, *eds. Multinationals and East Asian integration*. Ottawa: International development research centre and Institute of Southeast Asian studies.

Pavlínek, P. (2002), Transformation of the Central and East European passenger car industry: Selective peripheral integration through foreign direct investment. *Environment and Planning*, 34(9), pp. 1685–1709.

Pesaran, M.H., 2004. General diagnostic tests for cross section dependence in panels. *IZA Discussion Paper* No. 1240.

Pessoa, A., 2008. MNCs, FDI and host country productivity: A theoretical and empirical appraisal. *The IUP Journal of Managerial Economics*, 6(4), pp. 25-66.

Pe'teri, G., 2000. On the legacy of state socialism in academia. *Minerva*, 33(4), pp. 305-324.

Petersen, M.A., 2009. Estimating standard errors in finance panel data sets: Comparing approaches. *The Review of Financial Studies*, 22(1), pp. 435-480.

*Pham, H.M., 2001. Regional economic development and foreign direct investment flows in Vietnam, 1988-98. *Journal of Asia Pacific Economy*, 7(2), pp. 182-202.

Phillips, P.C.B. & Perron, P., 1988. Testing for a unit root in time series regression. *Cowles Foundation Discussion Paper* No. 795R.

Plümper, T. & Troeger, V., 2004. The estimation of time-invariant panel analyses with unit fixed effects. Mimeo. University of Konstanz.

Plümper, T. & Troeger, V., 2007. Efficient estimation of time-invariant and rarely changing variables in finite sample panel analyses with unit fixed effects. *Political Analysis*, 15(2), pp. 124-139.

Plümper, T. & Troeger, V., 2011. Fixed-effects vector decomposition: Properties, reliability and instruments. *Political Analysis*, 15(2), pp. 124-139.

Portela, M., Alessie, R. & Teulings, C., 2010. Measurement error in education and growth regressions. *Scandinavian Journal of Economics*, 112(3), pp. 618-639.

Pritchett, L., 2006. Does learning to add up add up? The returns to schooling in aggregate data. In Hanushek, E.A. & Welch, F., *eds. Handbook of the Economics of Education*. Amsterdam: North Holland.

PRS, 2010. International country risk guide. [online] Available at: <u>http://www.prsgroup.com/ICRG_Methodology.aspx</u> [Accessed 30 October 2010].

Psacharopoulos, G. & Patrinos, H.A., 2004. Returns to investment in education: A further update. *Education Economics*, 12(2), pp. 111-134.

Pugh, G., Mangan, J. & Gray, J., 2008. Resources and attainment at key stage 4: Estimates from a dynamic methodology. Department for Children, Schools and Families Research Report No. RR056.

PWT, 2009. Penn World Table Version 6.3. Available through: http://pwt.econ.upenn.edu/php_site/pwt63/pwt63_form.php [Accessed 25 January 2012.]

Rasciute, S. & Pentecost, E.J., 2008. The location of foreign direct investment in the Central and Eastern European countries: A mixed logit and multilevel data approach. *Loughborough University, Department of Economics Discussion Paper* No. 2008/04.

Rashid, M., Rutkowski, J. & Fretwell, D., 2005. Labor markets. In Barr, N., ed. *Labor markets and social policy in Central and Eastern Europe: The accession and beyond*. Washington, D.C.: The World Bank.

Resmini, L., 2000. The determinants of foreign direct investment in the CEECs: New evidence from sectoral patterns. *Economics of Transition*, 8(3), pp. 665-689.

Riedl, A., 2010. Location factors of FDI and the growing services economy. *Economics of Transition*, 18(4), pp. 741-761.

Riley, J., 1979. Testing the educational screening hypothesis. *Journal of Political Economy*, 87(5), s227-252.

Ritchie, B.K., 2002. Foreign direct investment and intellectual capital formation in Southeast Asia. *OECD Development Centre Working Paper* No. 194.

*Rodriguez, X. & Pallas, J., 2008. Determinants of foreign direct investment in Spain. *Applied Economics*, 40(19), pp. 2443-2450.

Rogers, W., 1993. Regression standard errors in clustered samples. *Stata Technical Bulletin*, 3(13), pp. 19–23.

Romer, P.M., 1990. Endogenous technological change. *The Journal of Political Economy*, 98(5), pp. S71-S102.
Roland, G., 2000. *Transition and economics: Politics, markets, and firms*. London, England: The MIT Press.

Roodman, D., 2006. How to do xtabond2: An introduction to "difference" and "system" GMM in Stata. *Center for Global Development Working Paper* No. 103.

Roodman, D., 2007. A short note on the theme of too many instruments. *Centre for Global Development Working Paper* No. 125.

Roodman, D., 2009. How to do xtabond2: An introduction to difference and system GMM in Stata. *The Stata Journal*, 9(1), pp. 86-136.

Rosenzweig, M.R., 2010. Microeconomic approaches to development: Schooling, learning, and growth. *Journal of Economic Perspectives*, 24(3), pp. 81–96.

Rutkowski, J.J., 2007. Labor markets in EU8+2: From the shortage of jobs to the shortage of skilled workers. Washington, DC: World Bank.

Rutkowski, J.J., Scarpetta S., Banerji, A., O'Keefe, P. & Vodopivec, M., 2005. *Enhancing job opportunities: Eastern Europe and the Former Soviet Union*. Washington, DC: World Bank.

Sachs, J., 1997. Economies in Transition. Cambridge, MA: MIT Press.

Sachs, J.D. & Warner A.M., 1995. Natural resource abundance and economic growth. *NBER Working Paper* No. 5398.

Sarafidis, V., Takashi, Y. & Robertson, D., 2009. A test of cross section dependence for a linear dynamic panel model with regressors. *Journal of Econometrics*, 148(2), pp. 149-161.

Schaffer, M.E., 2005. xtivreg2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, LIML and k-class regression for panel data models. Boston College Department of Economics Statistical Software Component No. S456501.

*Schatz, H.J., 2003. Gravity, education, and economic development in a multinational affiliate location. *Journal of International Trade & Economic Development*, 12(2), pp. 117-150.

Schoellman, T., 2009. Measuring and accounting for cross-country differences in education quality. Mimeo. Clemson University.

Schultz, T. W., 1961. Investment in human capital. *The American Economic Review*, 1(2), pp. 1-17.

Schultz, T. W., 1975. The value of the ability to deal with disequilibria. *Journal of Economic Literature*, 13(3), pp. 827-846.

Schulz, H., 2007. Political institutions and foreign direct investment in developing countries: Does the sector matter? Mimeo. University of Pennsylvania.

Schwaiger, M.S. & Liebeg, D., 2007. Determinants of bank interest margins in Central and Eastern Europe. *Financial Stability Report*, 14(December), pp. 68-84.

Seck, A., 2009. International technology diffusion and economic growth: Explaining the spillover benefits to developing countries. Mimeo. Suffolk University.

*Serbu, S., 2005. FDI flows towards CEECs: An analysis on the Romania, Hungary and Slovenia's performances. Mimeo. University of Orleans.

Shleifer, A. & Vishny, R.W., 1993. Corruption. *Quarterly Journal of Economics*, 108(3), pp. 599-617.

Sianesi, B. & Van Reenen, J., 2003. The returns to education: Macroeconomics. *Journal of Economic Surveys*, 17(2), pp. 157-200.

Shirotori, M., Tumurchudur, B. & Cadot, O., 2010. Revealed factor intensity indices at the product level. UNCTAD Policy Issues in International Trade and Commodities Study Series No. 44.

Slaughter, M.J., 2002. Skill upgrading in developing countries: Has inward foreign direct investment played a role? *OECD Development Centre Working Paper* No. 192.

Smarzynska, B. K., 2002. The composition of foreign direct investment and protection of intellectual property rights: Evidence from transition economies. *European Economic Review* 48(1), pp. 39-62.

Smarzynska-Javorcik, B.K., 2008. Can survey evidence shed light on spillovers from foreign direct investment? *The World Bank Research Observer*, 23(2), pp. 139-159.

Smeets, R.A., 2008. Collecting the pieces of the FDI knowledge spillovers puzzle. *The World Bank Research Observer*, 23(2), pp. 107-138.

Smith, S., Cin, B. & Vodopivec, M., 1997. Privatization incidence, ownership forms, and firm performance: Evidence from Slovenia. *Journal of Comparative Economics*, Vol. 25(2), pp. 158-179.

Sohinger, J., 2005. Growth and convergence in European transition economies: The impact of foreign direct investment. *Eastern European Economics*, 43(2), pp. 73-94.

Solow, R.M., 1956. A contribution to the theory of economic growth. *Quarterly Journal of economics*, 70(1), pp. 65-94.

Spence, M., 1973. Job market signaling. *Quarterly Journal of Economics*, 87(3), pp. 355-374.

Soto, M., 2010. The causal effect of education on aggregate income. Mimeo. Instituto de Analisis Economico.

Soukiazis E. & Cravo T., 2008. Human capital and convergence process among countries. *Review of Development Economics*, 12(1), pp. 124-142.

Stanley, T.D., 2001. Wheat from chaff: Meta-analysis as quantitative literature review, *Journal of Economic Perspectives*, 15(3), pp. 131-150.

Stanley, T.D., 2005. Beyond publication bias, *Journal of Economic Surveys*, 19(3), pp. 309-345.

Stanley, T.D., 2008. Meta-regression methods for detecting and estimating empirical effects in the presence of publication selection. *Oxford bulleting of economics and statistic*, 70(1), pp. 103-127.

Stanley, T.D. & Jarrell, S.B., 1989. Meta-regression analysis: A quantitative method of literature surveys, *Journal of Economic Surveys*, 3(2), pp. 161-170.

StataCorp, 2009. *STATA quick reference and index: Release 11*. College Station, Texas: Stata Press.

Steffen, W. & Stephan, J.F., 2008. The role of human capital and managerial skills in explaining the productivity gaps between East and West. *Eastern European Economics*, 46(6), pp. 5-24.

Stöwhase, S., 2002. Tax rate differentials and sector specific foreign direct investment: Empirical evidence from the EU. Mimeo. University of Göttingen.

*Sun, Q., Tong, W. & Yu, Q., 2002. Determinants of foreign direct investment across China. *Journal of International Money and Finance*, 21(1), pp. 79-113.

Sunde, U. & Vischer, T., 2011. Human capital and growth: Specification matters. *IZA Discussion Paper* No. 5991.

Suutari, V. & Riusala, K., 2000. Operating in 'economies in transition' – Adjustment and management issues faced by Finnish expatriate managers in CEE. *Finnish Journal of Business Economics*, 49(4), pp. 87-107.

Svejnar, J., 1999. Labor markets in the transitional Central and East European economies. In Ashenfelter, O. & Card, D., *eds. Handbook of Labor Economics, Volume 3.* Amsterdam: Elsevier B.V.

te Velde, M.J., 2002. Government policies for inward foreign direct investment in developing countries: Implications for human capital formation and income inequality. *OECD Development Centre Working Paper* No. 193.

Thompson, S.B., 2011. Simple formulas for standard errors that cluster by both firm and time. *Journal of Financial Economics*, 99(1), pp. 1-10.

*Tøndel, L., 2001. Foreign direct investment during transition. Determinants and patterns in Central and Eastern Europe and the former Soviet Union. *CMI Working Paper* No 2001/9.

*Tsen, W.H., 2005. The determinants of foreign direct investment in the manufacturing industry of Malaysia. *Journal of Economic Cooperation*, 26(2), pp. 91-110.

UNCTAD, 1997. World investment report: Transnational corporations, market structure and competition policy. Geneva: United Nations.

UNCTAD, 1999. World investment report: Foreign direct investment and the challenge of development. Geneva: United Nations.

UNCTAD, 2002. World investment report: Transnational corporations and export competitiveness. Geneva: United Nations.

UNCTAD, 2003. World investment directory, Volume VIII: Central and Eastern Europe 2003. Geneva: United Nations.

UNCTAD, 2006. World investment report: FDI from developing and transition economies - Implications for development. Geneva: United Nations.

UNCTAD, 2007. World investment report: Transnational corporations, extractive industries and development. Geneva: United Nations.

UNCTAD, 2008a. World investment report: Transnational corporations and the infrastructure challenge. Geneva: United Nations.

UNCTAD, 2008b. *WID Country profiles*. Available at: <u>http://www.unctad.org/Templates/Page.asp?intItemID=3198&lang=1</u> [Accessed 13 December 2008].

UNCTAD, 2010a. World investment report: Investing in a low-carbon economy. Geneva: United Nations.

UNCTAD, 2010b. *FDI on-line database*. Available at: <u>http://stats.unctad.org/FDI/ReportFolders/reportFolders.aspx?sCS_referer=&sCS_Chose</u> <u>nLang=en</u> [Accessed 12 October 2010].

UNCTAD, 2011. World investment report: Non-equity modes of international production and development. Geneva: United Nations.

UNCTAD, 2012. UNCTADStat. Available at: <u>http://unctadstat.unctad.org/TableViewer/tableView.aspx?ReportId=89</u> [Accessed 2 February 2012].

UNCTAD, various years. World investment report. Geneva: United Nations.

UNECE, 2001. Economic survey of Europe 2001 No. 1. Geneva: United Nations.

UNECE, various years. Economic survey of Europe. Geneva: United Nations.

UNESCO, 2006. International standard classification of education: ISCED 1997.

UNICEF, 2010. *TransMONEE 2010 Database*. Geneva: UNICEF Regional Office for CEE/CIS.

*Urata, S. & Kawai, H., 2000. The determinants of the location of foreign direct investment by Japanese small and medium-sized enterprises. *Small Business Economics*, 15(2), pp. 79-103.

Uzagalieva, A., Kocenda, E. & Albuquerque, P.A., 2010. Technological imitation and innovation in new European Union markets. *CESifo Working Paper* No. 3039.

Vahter, P., 2010. Does FDI spur innovation, productivity and knowledge sourcing by incumbent firms? Evidence from manufacturing industry in Estonia. Mimeo. University of Tartu.

Vandenbussche, J., Aghion, P., & Meghir, C., 2006. Growth, distance to frontier and composition of human capital. *Journal of Economic Growth*, 11(2), pp. 97-127.

Vavilov, S., 2005. Foreign direct investment in transition economies: Evidence from energy industry. Mimeo. University of Sorbonne.

Verbeek, M., 2000. A guide to modern econometrics. Chichester: John Wiley.

Verbeek, M., 2008. A guide to modern econometrics. 3^{rd} ed. Chichester: Wiley and Sons.

Vernon, R., 1966. International investment and international trade in the product cycle. *Quarterly Journal of Economics*, 80(2), pp. 190–207.

Veugelers, R., 1991. Locational determinants and ranking of host countries: An empirical assessment. *Kyklos*, 44(3), pp. 363-382.

Wallace, M.T. & Jack, C.G., 2011. On-farm and off-farm returns to education among farm operators in Northern Ireland. 85th Annual conference of the agricultural economics society. Coventry, Warwick University 18-20 April 2011. Coventry: Agricultural Economics Society.

Walsh, J.P. & Yu, J., 2010. Determinants of foreign direct investment: A sectoral and institutional approach. *IMF Working Paper* No. 10/187.

Wang, M., 2011. FDI and human capital in the USA: Is FDI in different industries created equl? *Applied Economic Letters*, 18(2), pp. 163-166.

Wang, M., & Wong, M.C.S., 2009. Foreign direct investment and economic growth: The growth accounting perspective. *Economic Enquiry*, 47(4), pp. 701-710.

Warunsiri, S. & McNown, R., 2010. The returns to education in Thailand: A pseudopanel approach. *World Development*, 38(11), pp. 1616–1625. WDI, 2010. *The world development indicators on-line database*. Available at: <u>http://data.worldbank.org/data-catalog/world-development-indicators</u>. [Accessed 28 September 2010].

Weber, E., 2010. Foreign and domestic growth drivers in Eastern Europe. *Osteuropa-Institut Regensburg Working Paper* No. 286.

*Wei, Y., Liu, X., Parker, D. & Vaidya, K., 1999. The regional distribution of foreign direct investment in China. *Regional Studies*, 33(9), pp. 857-867.

Welch, F., 1970. Education in production. *The Journal of Political Economy*, 78(1), pp. 35-59.

WIIW, 2010. wiiw database on labour costs in Central, East and Southeast Europe. Available through: <u>http://data.fiw.ac.at/FiwDat/FiwDatServlet</u> [Accessed 22 September 2010]

WIIW, 2011. wiiw database on foreign direct investment in Central, East and Southeast Europe. Available through: <u>http://data.fiw.ac.at/FiwDat/FiwDatServlet</u> [Accessed 25 August 2011]

Windmeijer, F., 2005. A finite sample correction for the variance of linear efficient two-step GMM estimators. *Journal of Econometrics*, 126(1), pp. 25-51.

Winiecki, J. & Kondratowicz, A. eds., 2005. *The macroeconomics of transition: Developments in East Central Europe.* London: Routledge.

Witkowska, J., 2007. Foreign direct investment in the changing business environment of the European Union's new member states. *Global Economy Journal*, 7(4), article 2.

*Woodward, D.P., 1992. Locational determinants of Japanese manufacturing start-up in the United States. *Southern Economic Journal*, 58(3), pp. 690-708.

Wooldridge, J.M., 2002. *Introductory econometrics: A modern approach*. 2nd ed. Cincinatti, OH: South-Western College Publishing.

World Bank, 1996. World development report 1996: From plan to market. Washington: Oxford University Press.

World Bank, 2002. *Transition: The first ten years. Analysis and lessons for Eastern Europe and the former Soviet Union*. Washington, D.C.: The World Bank.

World Bank, 2008. Global economic prospects: *Technology diffusion in the developing world*. Washington: The International Bank for Reconstruction and Development/The World Bank.

Woessmann, L., 2006. International evidence on expenditures and class size: A review. Brookings *Papers on Education Policy*, 2006/2007(9), pp. 245-272.

X-rate, 2011. Exchange rate calculator. [online] Available at: <u>http://www.x-rates.com/d/USD/EUR/hist1998.html</u> [Accessed 1 September 2011]

Xu, B., 2000. Multinational enterprises, technology diffusion, and host country productivity growth. *Journal of Development Economics*, 62(2), pp. 477-493.

Zhan, J., 2006. FDI statistics: A critical review and policy implications. Mimeo. World Association of Investment Promotion Agencies.

*Zhang, J. & Fu, X., 2008. FDI and environmental regulations in China. *Journal of the Asia Pacific Economy*, 13(3), pp. 332-353.

*Zhang, K.H., 2001. What attracts foreign multinational corporations to China? *Contemporary Economic Policy*, 19(3), pp. 336-346.

Zhang, K.H. & Markusen, J.R., 1999. Vertical multinationals and host country characteristics. *Journal of Development Economics*, 59(2), pp. 233-252.

Appendix 1: Professional development

Conferences

Presented the following papers at the following conferences:

"The effect of human capital on FDI: A meta-regression analysis", in:

"The Adriatic-Balkan Area from Transition to Integration", May 21-22, 2010. Università Politecnica delle Marche. Ancona, Italy.

"Activating Sources of Economic Growth in Kosovo", May 13-14, 2010. Riinvest Institute/AAB-Riinvest University. Prishtina, Kosovo.

"Human capital and the attraction of inwards FDI in European transition economies", in:

"26th MET-EACES Network Seminar", April 16, 2012. Managing Economic Transition and European Association for Comparative Economic Studies. Brunel University, London, UK.

Attended the following conferences:

"Regional and Global Integration: Quo Vadis?", January 16-18, 2010. The Global Development Network. Prague, Czech Republic.

"International Trade: A Global Perspective for the 21st Century". 5-6 December 2008. Staffordshire University. Stoke-on-Trent, UK.

Seminars/trainings

Completed the following seminars/courses:

"EU Project Manager." European Certification Qualification Association and (ECQA). April 2010.

"Foreign Direct Investment Policies Seminar". Joint Vienna Institute. Vienna, Austria. 23-27 November 2009.

"Research Methods Course". Staffordshire University. November 2008.

Publications

Rizvanolli, A., forthcoming. The effect of human capital on FDI: A meta-regression analysis. In Canullo, G., Chiapparino, F., & Cingolani, G., eds. *The Adriatic-Balkan Area from Transition to Integration*. Napoli: Edizioni Scientifiche Italiane.

Teaching

Worked as a *teaching assistant/lecturer* (Riinvest/AAB-Riinvest University, Prishtina) in the following subjects:

Basic Macroeconomics. (September 2007-present)

Statistics. (January 2008-present)

Research projects

Participated in/managed the following research projects (Riinvest Institute, Prishtina):

"Kosovo Human Development Report 2011", 2011, UNDP. (Researcher and coauthor)

"Feasibility study for a VET centre in Kosovo", 2011, UNDP. (Project manager, author)

"Private Sector Development", 2011, Friedrich Ebert Stiftung. (Researcher and author)

"Assessment of the Demand for Student Financing Schemes in Kosovo", 2011, Finance in Motion. (*Researcher*)

"Economic challenges 2011+", 2011, Friedrich Ebert Stiftung. (*Researcher and co-author*)

"Anti-corruption and the Rule of Law", 2010, CIPE. (Researcher)

"Market Research of the Multi-family Housing Market in Prishtina", 2010, Private Investor. (*Project manager, co-author, editor*)

"Strategy for Industry in Kosova", 2009-2010, Ministry of Trade and Industry, Government of the Republic of Kosova. (*Researcher and co-author*)

"Extensive Evaluation of the Employment Assistance Services (EAS) Programme", 2009, Swiss Cooperation Organisation. (*Project coordinator and co-author of the evaluation report*).

"Non-formal Education in Kosovo: Survey and analysis of the drop-outs from compulsory and upper secondary education in Kosovo", 2008-2009, supported by GTZ (*Researcher*)

"Privatization and Post-privatization in Kosova", 2008, supported by The Netherlands Embassy in Prishtina, Friedrich Ebert Stiftung Foundation and Open Society Institute. (*Project manager, co-author, editor*)

Appendix 3

Contents

Appendix 3.1 Initial sensitivity analysis	335
Appendix 3.2: Summary statistics and correlations	338
Appendix 3.3: Bivariate MRA (Model 3.2) results and diagnostics	343
Appendix 3.4: Full multivariate MRA (Model 3.3) results and diagnostics	344
Appendix 3.5: Testing down procedure	346
Appendix 3.6: Parsimonious multivariate MRA (Model 3.3) results and diagnostics	353

Appendix 3.1 Initial sensitivity analysis

. **Start with full model, full sample

. regress tstat invsepcc dynamic qualdv timeseries crosssection mixed developed transition china fdistock fdirel h > cstock hcinput secondary tertiary sectert avgyred labcost labprod endogeneity

lnpubyr lnmedianyr lnperiod lntno

> exp published[pweight = weight], vce(cluster study)
(sum of wgt is 5.6000e+01)

Linear regression

Number of	obs	=	341
F(25,	55)	=	9.49
Prob > F		=	0.0000
R-squared		=	0.5727
Root MSE		=	3.8321

					(Std.	Err	• á	adju	sted	for	56	cluste	rs	in	study)	
tstat	 	Coef.	R St	ob d.	ust Err.		t		P> t		[9	95% Con	f.	Int	erval]	
invsepcc dynamic qualdv	+- 	.5552002 .0468112 1390898	.2	 12 57 09	4286 7505 3568	2 0 -1	.61 .81	 1 1 9	0.012 0.421 0.143		.1 0 3	L294836 0689234 3266043		.9 .1 .0	809167 625458 484247	, , , ,
timeseries crosssection mixed		.2394262 0133662 .0678314	.2	54 79 86	9799 2541 3475	0 -0 0	.94 .17	4 7 9	0.352 0.867 0.435		 1	271565		.7	504174 454626 408756	5
developed transition		.0911523	.0	66 09	0963 5401	1 -0	.38	8 3	0.173		0	0413076 2514326		.2 .1	236122	3
fdistock fdirel		.019603	.0	05 46	3429 3183	0	.3	0 7 3	0.715		0)874711 L405618		.1 .0	266771)
hcstock hcinput secondary	 	.1654176 0632204 0863616	.0 .0 .0	58 88 59	2348 2109 4305	-0 -1	.84 .72 .4	4 2 5	0.006 0.477 0.152		2 2	2399991 205463		• 2 • 1 • 0	135582 327398	2
tertiary sectert avgyred	 	1013375 .0288001 2290467	.1	05 06 03	0529 3227 0877	-2 0 -2	.01	1 6 2	0.050 0.651 0.030		2 0	2025999)979096 1356391		C .1 C	000752 555098 224542	2
labcost labprod endogeneity		1701654 .0046908 1301086	.0	51 44 05	9395 5042 3418	-3 0 -2	.28	8 1 4	0.002 0.916 0.018		2 0	2742546)844976 2371606		C .C	660762 938791 230566	
Inpubyr Inmedianyr Inperiod		.0609884 0950141 7163985	.6 .5 .3	40 06 93	8281 2518 2153	0 -0 -1	.10	0 9 2	0.925 0.852 0.074		-1 -1. -1	L.22326 .109565 L.50442		1. .9	345237 195372 716226	2
lntnoexp published _cons		-1.805099 1570831 8.390642	.9 .0 5.	82 40 30	6589 2468 6001	-1 -3 1	•84 •90 •58	4 0 8	0.072 0.000 0.120		-3. 2 -2.	.774392 2377394 .242821		.1 0 19	641932 764268 .02411	2 3

. **Linearity test

. estat ovtest

Ramsey RESET test using powers of the fitted values of tstat Ho: model has no omitted variables F(3, 312) = 80.55 Prob > F = 0.0000

. *fails linearity

•

. **Investigation of outliers

. qui regress tstat invsepcc dynamic qualdv timeseries crosssection mixed developed transition china fdistock fdir

> el hostock hoinput secondary tertiary sectert avgyred laboost labprod endogeneity lnpubyr lnmedianyr lnperiod l

> ntnoexp published

*regressions from Kang and Lee (2007) with large normalised squared residuals
.
.
. **Further investigation of outliers (cooksd, dfits)
. predict cooksd, cooksd
. predict dfits, dfits

```
. *regressions from Kang and Lee (2007) have the largest values of cooksd and dfits,
well above conventional cut-o
> ff points
>
```

**Histogram of residualspredict resid, res

. histogram resid

(bin=18, start=-22.362078, width=2.9453735)

. *histogram indicates normality problems, probably due to outliers

. **Multicollinearity check
. estat vif

Variable		VIF	1/VIF
invsepcc	1	265.67	0.003764
qualdv		66.36	0.015068
mixed		64.27	0.015560
published		40.76	0.024534
tertiary		35.71	0.028000
labcost		31.14	0.032112
hcstock		17.03	0.058718
china		16.07	0.062247
sectert		13.32	0.075077
lnpubyr		5.82	0.171899
lnperiod		5.45	0.183320
hcinput		5.17	0.193445
crosssection		4.52	0.221028
developed		4.41	0.226987
lnmedianyr		3.68	0.271382
endogeneity		3.22	0.310360
labprod		3.11	0.321297
lntnoexp		2.86	0.350024
avgyred		2.80	0.356914
secondary		2.64	0.378648
transition		2.59	0.386278
fdistock		2.49	0.401864
dynamic		2.21	0.452695
fdirel		2.08	0.480107
timeseries	Ţ	1.24	0.809423
Mean VIF		24.18	

. *very high collinearity

. $\ . \ * regressions$ from Kang and Lee (2005) are excluded from the analysis based on the above.

Variable*	Obs	Mean	Std. Dev.	Min	Max
tstat	335	1.194449	2.714776	-8.58	11.98
invsepcc	335	17.53262	24.52421	2.3585	216.316
Inpubyr	335	5.106788	0.71529	3.13813	7.67933
Inmedianyr	335	5.222382	0.77193	2.4666	7.86165
Intnoexp	335	4.853073	0.978714	2.04056	7.94315
Inperiod	335	4.536439	1.159802	1.66186	8.08479

Appendix 3.2: Summary statistics and correlations

*Note: Variables are multiplied by *invsepcc*

Г

Dummy		
variable		Value
dynamic		
	Zero	268
	Positive	_00 67
	Total	335
qualdy	lotal	555
quarat	7ero	292
	Positive	43
	Total	225
nanel	Total	555
Parier	Zero	170
	Positivo	175
	Total	225
timocorios	TOLAT	555
umeseries	70.00	220
	Zero	329
	Positive	6 225
	lotal	335
crosssection	_	
	Zero	272
	Positive	63
mixed		
	Zero	281
	Positive	54
	Total	335
developed		
	Zero	303
	Positive	32
	Total	335
developing		
	Zero	233
	Positive	102
	Total	335

transition		
	Zero	270
	Positive	65
	Total	335
china		
	Zero	253
	Positive	82
	Total	335
fdiflow		
	Zero	79
	Positive	256
	Total	335
fdistock		
	Zero	256
	Positive	79
	Total	335
fdirel		200
	Zero	218
	Positive	117
	Total	335
fdiahs	lotal	555
Tuluo 5	Zero	117
	Positive	218
	Total	335
hcflow	lotal	555
licitow	Zero	238
	Positive	97
	Total	335
hestock	Total	555
hestock	Zero	103
	Positive	232
	Total	335
hcinnut	lotal	555
nemput	Zero	319
	Positive	16
	Total	335
nrimary	lotal	555
printery	Zero	283
	Positive	52
	Total	335
secondary	iotui	555
	7ero	245
	Positive	<u>م</u> م
	Total	225
tertiary	iotai	
ter tiar y	7ero	220
	2010	200

	Positive	105
	Total	335
sectert		
	Zero	291
	Positive	44
	Total	335
avgyred		
	Zero	303
	Positive	32
	Total	335
labcost		
	Zero	153
	Positive	182
	Total	335
labprod		
	Zero	288
	Positive	47
	Total	335
endogeneity		
	Zero	279
	Positive	56
	Total	335
published		
	Zero	136
	Positive	199
	Total	335

. corr published Inperiod Inmedianyr Inpubyr Intnoexp endogeneity labprod labcost avgyred sectert tertiary second
> ary primary hcinput hcstock hcflow fdiabs fdirel fdistock fdiflow china transition developing developed mixed cr
> osssection timeseries panel qualdv dynamic invsepcc tstat

(obs=335)

	publis~d	lnperiod	lnmedi~r	lnpubyr	lntnoexp	endoge~y	labprod	labcost	avgyred	sectert	tertiary
published	1.0000										
Inperiod	0.5856	1.0000									
lnmedianyr	0.6166	0.4664	1.0000								
lnpubyr	0.6653	0.6483	0.6864	1.0000							
lntnoexp	0.5071	0.5688	0.5473	0.6343	1.0000						
endogeneity	0.0021	0.2048	0.2027	0.2747	0.2301	1.0000					
labprod	0.0897	0.2094	-0.0366	0.1403	0.1483	0.0282	1.0000				
labcost	0.9544	0.5512	0.6177	0.6171	0.5349	-0.0028	-0.0247	1.0000			
avgyred	-0.0569	-0.1265	0.0378	0.0277	0.0218	0.3245	-0.1055	-0.0844	1.0000		
sectert	0.1028	0.1324	0.2941	0.2236	0.2135	0.2255	0.1892	0.0960	-0.0977	1.0000	
tertiary	0.9065	0.5121	0.5631	0.5528	0.4581	-0.0784	-0.1074	0.9271	-0.0960	-0.1043	1.0000
secondary	-0.0689	0.0527	0.0086	0.0506	-0.1405	0.2803	-0.1360	-0.0876	-0.1596	-0.1045	-0.1332
primary	-0.0406	-0.0452	-0.0543	0.1201	0.0792	-0.0425	0.0407	-0.0234	-0.1110	-0.1206	-0.1185
hcinput	0.0636	0.2476	0.0371	0.0811	0.1194	-0.0812	0.5780	0.0197	-0.0624	-0.0139	-0.0448
hcstock	-0.0136	0.0289	0.3039	0.2774	0.3220	0.4003	-0.0599	-0.0075	0.2109	0.3918	-0.1675
hcflow	0.9209	0.5704	0.5232	0.5938	0.4265	-0.0842	0.0637	0.9047	-0.0929	-0.0532	0.9342
fdiabs	0.9441	0.5906	0.6378	0.6154	0.5489	0.0007	0.0059	0.9537	-0.0395	0.1206	0.9226
fdirel	-0.0826	-0.0022	-0.0212	0.1987	-0.0490	0.1449	0.1282	-0.1479	0.0380	-0.1505	-0.1185
fdistock	-0.0762	0.0440	0.0843	-0.1082	0.0486	0.4548	0.0068	-0.0247	0.2186	0.2373	-0.1009
fdiflow	0.9533	0.5892	0.6228	0.7040	0.5329	-0.0624	0.0397	0.9335	-0.0791	0.0275	0.9273
china	0.1015	0.1802	0.2346	0.1611	0.2406	0.1385	-0.0890	0.1406	-0.1350	0.3584	-0.0086
transition	-0.1564	-0.2529	-0.0171	-0.1245	-0.0013	-0.0853	0.1095	-0.1186	-0.1323	0.1847	-0.1045
developing	-0.1210	-0.0767	-0.1052	0.0075	-0.1505	-0.1057	-0.1490	-0.1780	0.2297	-0.1446	-0.1487
developed	0.0446	0.2867	0.0191	0.1521	0.1418	0.1706	0.5860	-0.0396	0.2553	-0.0827	-0.0750
mixed	0.9203	0.5177	0.5727	0.5949	0.4550	-0.0071	-0.0482	0.9254	-0.0727	-0.0124	0.9491
crosssection	0.0598	-0.0626	0.0259	0.0549	-0.1151	-0.0837	0.5144	-0.0561	0.2362	-0.1088	-0.1048
timeseries	-0.0477	-0.0106	-0.2571	-0.1677	-0.1534	-0.0173	-0.0158	-0.0510	0.0159	-0.0418	-0.0339
panel	-0.0911	0.1510	0.1052	0.2358	0.2274	0.3010	-0.0526	-0.0613	-0.1111	0.1437	-0.0693
qualdv	0.9435	0.5011	0.5849	0.5867	0.4706	-0.0959	-0.0675	0.9496	-0.0703	0.0510	0.9395
dynamic	-0.1155	0.2340	0.0263	-0.0309	0.0913	0.3203	0.0319	-0.0984	0.0964	0.0545	-0.0969
invsepcc	0.9725	0.6224	0.6668	0.7059	0.5651	0.0421	0.0428	0.9640	-0.0308	0.0843	0.9396
tstat	-0.2192	-0.0067	0.1088	0.0581	0.1143	0.1382	0.1852	-0.2311	0.1082	0.1458	-0.2874

second	d~y primary	hcinput	hcstock	hcflow	fdiabs	fdirel fdistock	fdiflow	china transi~n
++								

secondary | 1.0000 primary | -0.1970 1.0000

hcinput	-0.1107	-0.0770	1.0000								
hcstock	-0.0331	0.2527	-0.2262	1.0000							
hcflow	-0.0544	-0.1147	0.0966	-0.3371	1.0000						
fdiabs	-0.1646	-0.0728	0.0211	-0.0466	0.9154	1.0000					
fdirel	0.3413	0.1269	0.1624	0.0622	-0.0646	-0.3232	1.0000				
fdistock	-0.0519	-0.1090	0.0658	0.1933	-0.1365	0.0115	-0.2228	1.0000			
fdiflow	-0.0618	-0.0145	0.0511	-0.0740	0.9427	0.9243	-0.0035	-0.2756	1.0000		
china	0.0983	0.1372	0.0116	0.5657	-0.1388	0.0663	-0.0241	0.0087	0.0587	1.0000	
transition	-0.1324	0.0147	-0.0918	-0.1678	-0.0563	-0.0407	-0.2818	0.0396	-0.1275	-0.2194	1.0000
developing	0.1795	-0.0974	-0.0906	0.0402	-0.1270	-0.1983	0.3019	-0.1834	-0.0771	-0.3014	-0.2676
developed	-0.1241	-0.1083	0.6526	-0.0623	0.0707	0.0099	0.1399	0.0247	0.0428	-0.1455	-0.1292
mixed	-0.0930	-0.0385	-0.0527	-0.1771	0.9527	0.9292	-0.0981	-0.0234	0.9220	-0.1259	-0.1118
crosssection	-0.1256	-0.0358	0.6194	-0.1203	0.0379	-0.0804	0.2764	-0.0950	0.0157	-0.1155	-0.1777
timeseries	-0.0684	-0.0475	0.0150	-0.1129	-0.0244	-0.0407	-0.0820	-0.0608	-0.0501	-0.0638	-0.0567
panel	0.2918	-0.0379	-0.1655	0.3238	-0.1509	-0.1207	0.2346	0.0274	-0.0644	0.1510	-0.1894
qualdv	-0.1285	-0.0169	-0.0445	-0.0839	0.9316	0.9553	-0.1567	-0.1033	0.9505	0.0275	-0.0779
dynamic	0.0130	-0.0037	0.0765	-0.0455	-0.0668	-0.0229	-0.1149	0.3368	-0.1310	0.0715	0.2853
invsepcc	-0.0764	-0.0407	0.0685	-0.0315	0.9473	0.9629	-0.0560	-0.0514	0.9742	0.0630	-0.1232
tstat	-0.1027	0.2030	0.0803	0.2800	-0.2655	-0.1999	0.0672	0.0882	-0.2045	0.0544	-0.0258
I	develo~g	develo~d	mixed	crosss~n	timese~s	panel	qualdv	dynamic	invsepcc	tstat	
developing	+										
developed	-0.1774	1 0000									
mixed	-0 1536	-0 0741	1 0000								
crosssection	0.1008	0 5952	-0.0781	1 0000							
timeseries		-0.0376	-0.0325	-0.0517	1 0000						
nanel	0.0347	-0 2242	-0.0670	-0.3204	-0 1022	1 0000					
qualdy	-0 1406	-0.0511	0 9487	-0.0988	-0.0315	-0 1954	1 0000				
dynamic	-0.1613	0.1404	-0.1164	-0.1849	-0.0590	-0.3655	-0.1127	1.0000			
invsence		0 0503	0 9524	-0 0060	-0.0664	-0.0605	0 9632	-0.0570	1 0000		
tstat	-0.0528	0 1610	-0 2182	0 1111	-0 0534	0 0837	-0 2598	0 1582	-0 1918	1 0000	
LOLAL	0.0020	0.1010	0.2102	· • + + + + +	0.0001	0.000/	0.2000	0.1002	0.1710	T . 0000	

Appendix 3.3: Bivariate MRA (Model 3.2) results and diagnostics

. **Bivariate MRA model, sample excluding Kang and Lee (2007)
. regress tstat invsepcc [pweight = weight], vce(cluster study)
(sum of wgt is 5.5000e+01)

Linear regression

Number of	obs =	335
F(1,	54) =	2.12
Prob > F	=	0.1509
R-squared	=	0.0228
Root MSE	=	2.4799

		(Std.	Err.	adjusted f	for 55 clusters	in study)
 tstat	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
invsepcc _cons	0201938 2.066277	.0138601 .4036785	-1.4 5.1	6 0.151 2 0.000	0479817 1.256951	.007594 2.875604

. estat ovtest

Ramsey RESET test using powers of the fitted values of tstat Ho: model has no omitted variables $F(3, \ 330) = 7.22$ Prob > F = 0.0001

Appendix 3.4: Full multivariate MRA (Model 3.3) results and diagnostics

. **Start with full model, sample excluding Kang and Lee (2007)

. regress tstat invsepcc dynamic qualdv timeseries crosssection mixed developed transition china fdistock fdirel h

> cstock hcinput secondary tertiary sectert avgyred labcost labprod endogeneity lnpubyr lnmedianyr lnperiod lntno

> exp published [pweight = weight], vce(cluster study)
(sum of wgt is 5.5000e+01)

Linear regres	sion				Number of obs F(25, 54) Prob > F R-squared Root MSE	= 335 = 19.60 = 0.0000 = 0.3801 = 2.0503
		(Std.	Err. ad	justed fo	r 55 clusters	in study)
tstat	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
invsepcc dynamic qualdv timeseries crosssection mixed developed transition china fdistock fdirel hcstock hcinput secondary tertiary	.1750783 .0611628 0470682 .2182407 0027922 .090753 .0232758 1129344 .069092 .0237482 019491 .0453959 0733057 1215634 0550672 0332482	.1002161 .0456958 .0502894 .2574841 .0634367 .0879819 .0610291 .0705296 .0520508 .0529818 .0420386 .0557678 .0713894 .0582944 .0388507 .0376136	$\begin{array}{c} 1.75\\ 1.34\\ -0.94\\ 0.85\\ -0.04\\ 1.03\\ 0.38\\ -1.60\\ 1.33\\ 0.45\\ -0.46\\ 0.81\\ -1.03\\ -2.09\\ -1.42\\ -0.88\end{array}$	0.086 0.186 0.353 0.400 0.965 0.307 0.704 0.115 0.190 0.656 0.645 0.419 0.309 0.042 0.162 0.381	0258429 0304519 1478924 2979838 1299752 0856402 0990802 2543377 0352637 0824739 1037733 0664118 2164328 238436 1329581 1086589	.3759996 .1527774 .0537559 .7344652 .1243907 .2671462 .1456319 .0284688 .1734476 .1299703 .0647912 .1572035 .0698214 -0046902 .0228237 .0421626
avgyred labcost labprod endogeneity lnpubyr lnmedianyr lnmeriod lntnoexp published _cons	<pre> 1176622 1224047 .0955991 0599005 .3292858 .8875675 3733034 3661083 0730546 -1.885811</pre>	.0633563 .0457973 .0425048 .0562347 .4486779 .3427648 .222675 .4424019 .0380131 2.090304	-1.86 -2.67 2.25 -1.07 0.73 2.59 -1.68 -0.83 -1.92 -0.90	0.069 0.010 0.029 0.292 0.466 0.012 0.099 0.412 0.060 0.371	2446839 2142227 .0103821 1726442 5702592 .2003655 81974 -1.253071 1492663 -6.076618	.0093596 0305867 .1808162 0.528432 1.228831 1.57477 .0731331 .5208541 .0031571 2.304996

٠ . **Linearity test

. estat ovtest

Ramsey RESET test using powers of the fitted values of tstat Ho: model has no omitted variables F(3, 306) = 14.89

$$Prob > F = 0.0000$$

. *still fails linearity test, but F-statistic has decreased to 14.89 from over 95 in the full sample •

**Investigating normalitypredict resid, res

```
. histogram resid
(bin=18, start=-8.0269508, width=.81036038)
```


. *The distribution of residuals is basically bell-shaped .

```
. **Multicollinearity check
```

. estat vif

Variable		VIF	1/VIF
invsepcc	1	108.43	0.009223
mixed		31.85	0.031396
qualdv		25.64	0.039000
tertiary		14.92	0.067028
published		14.72	0.067923
labcost		14.12	0.070820
hcstock		5.38	0.185821
endogeneity		5.14	0.194506
china		5.00	0.199937
lntnoexp		4.93	0.202986
avgyred		4.58	0.218194
lnpubyr		3.95	0.253437
developed		3.86	0.259167
lnmedianyr		3.69	0.270828
sectert		3.46	0.289170
crosssection		3.44	0.290412
lnperiod		3.33	0.300197
hcinput		3.02	0.330713
secondary		2.62	0.382006
transition		2.62	0.382265
fdistock		2.53	0.394735
labprod		2.51	0.397706
fdirel		2.43	0.411623
dynamic		2.10	0.475339
timeseries		1.55	0.646038
Mean VIF	1	11.03	

. *very high VIF in the case of some variables

Appendix 3.5: Testing down procedure

. **Testing down procedure

. regress tstat invsepcc dynamic qualdv timeseries crosssection mixed developed transition china fdistock fdirel h

> cstock hcinput secondary tertiary sectert avgyred labcost labprod endogeneity lnpubyr lnmedianyr lnperiod lntno

> exp published[pweight = weight], vce(cluster study)
(sum of wgt is 5.5000e+01)

Linear regression

Number of	obs	=	335
F(25,	54)	=	19.60
Prob > F		=	0.0000
R-squared		=	0.3801
Root MSE		=	2.0503

(Std. Err. adjusted for 55 clusters in study)

tstat	 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
invsepcc	İ.	.1750783	.1002161	1.75	0.086	0258429	.3759996
dynamic		.0611628	.0456958	1.34	0.186	0304519	.1527774
qualdv		0470682	.0502894	-0.94	0.353	1478924	.0537559
timeseries		.2182407	.2574841	0.85	0.400	2979838	.7344652
crosssection		0027922	.0634367	-0.04	0.965	1299752	.1243907
mixed		.090753	.0879819	1.03	0.307	0856402	.2671462
developed		.0232758	.0610291	0.38	0.704	0990802	.1456319
transition		1129344	.0705296	-1.60	0.115	2543377	.0284688
china		.069092	.0520508	1.33	0.190	0352637	.1734476
fdistock		.0237482	.0529818	0.45	0.656	0824739	.1299703
fdirel		019491	.0420386	-0.46	0.645	1037733	.0647912
hcstock		.0453959	.0557678	0.81	0.419	0664118	.1572035
hcinput		0733057	.0713894	-1.03	0.309	2164328	.0698214
secondary		1215634	.0582944	-2.09	0.042	2384366	0046902
tertiary		0550672	.0388507	-1.42	0.162	1329581	.0228237
sectert		0332482	.0376136	-0.88	0.381	1086589	.0421626
avgyred		1176622	.0633563	-1.86	0.069	2446839	.0093596
labcost		1224047	.0457973	-2.67	0.010	2142227	0305867
labprod		.0955991	.0425048	2.25	0.029	.0103821	.1808162
endogeneity		0599005	.0562347	-1.07	0.292	1726442	.0528432
lnpubyr		.3292858	.4486779	0.73	0.466	5702592	1.228831
lnmedianyr		.8875675	.3427648	2.59	0.012	.2003655	1.57477
lnperiod		3733034	.222675	-1.68	0.099	81974	.0731331
lntnoexp		3661083	.4424019	-0.83	0.412	-1.253071	.5208541
published		0730546	.0380131	-1.92	0.060	1492663	.0031571
_cons		-1.885811	2.090304	-0.90	0.371	-6.076618	2.304996

. test crosssection=fdistock=0 $\ensuremath{\mathsf{crosssection}}$

(1) crosssection - fdistock = 0 (2) crosssection = 0F(2, 54) = 0.11 Prob > F = 0.8956

. *drop

•

. regress tstat invsepcc dynamic qualdv timeseries mixed developed transition china fdirel hcstock hcinput second

> ary tertiary sectert avgyred labcost labprod endogeneity lnpubyr lnmedianyr lnperiod lntnoexp published[pweight

> = weight], vce(cluster study)
(sum of wgt is 5.5000e+01)

Linear regression

Number of	obs	=	335
F(23,	54)	=	19.31
Prob > F		=	0.0000
R-squared		=	0.3788
Root MSE		=	2.0459

				(Std.	Err	. ac	djus	ted	for	55	clus	ters	in	study)
+ e+ a+		Coef	Rob	oust		+	 E	<u></u>		 ۱۹	5% C	onf	Tnt	orvall
	·+-									ر ا 				
invsepcc	Ì	.1578144	.088	1094	1	.79	0	.079		0	1883	43	.3	3344632
dynamic	1	.0691701	.036	5632	1	.89	0	.064		0	0413	47		142475
qualdv		0467879	.039	5976	-1	.18	0	.243		1	2617	62	. (326005
timeseries	1	.1973442	.276	2592	0	.71	0	.478		3	5652	21	• •	7512106
mixed		.1012093	.073	1363	1	.38	0	.172		0	4542	01	• 2	2478387
developed		.0191505	.048	9713	0	.39	0	.697		0	7903	11		.117332
transition		109668	.064	3321	-1	.70	0	.094			2386	46		.01931
china		.0687228	.049	8103	1	.38	0	.173		0	3114	07	. 1	685864
fdirel		0194871	.041	8807	-0	.47	0	.644		1	0345	29	. (0644786
hcstock		.0531121	.047	6449	1	.11	0	.270		0	4241	02	. 1	486343
hcinput		0593672	.051	5716	-1	.15	0	.255		1	6276	19	. (0440275
secondary		1226703	.057	2398	-2	.14	0	.037		2	3742	93	(079113
tertiary		0543681	.038	0699	-1	.43	0	.159		1	3069	37	. (219575
sectert		0293673	.037	1341	-0	.79	0	.432		1	0381	67	. (450821
avgyred		113034	.062	2294	-1	.82	0	.075		2	3779	64	. (0117284
labcost		116887	.041	3537	-2	.83	0	.007		1	9979	62	()339777
labprod		.0954643	.041	6386	2	.29	0	.026			0119	84	.1	789447
endogeneity		052746	.052	4212	-1	.01	0	.319		1	5784	42	.()523521
lnpubyr		.2751165	.426	3913	0	.65	0	.522		5	7974	65	1	.12998
lnmedianyr		.8931452	.337	7408	2	.64	0	.011		.2	1601	57	1.	570275
lnperiod		3483453	.232	2207	-1	.50	0	.139		8	1391	98	. 1	172293
lntnoexp		3838825	.407	5914	-0	.94	0	.350		-1.	2010	54	• 4	1332892
published		0728445	.037	5287	-1	.94	0	.057			1480	85	. (023961
_cons		-1.573993	2.12	6415	-0	.74	0	.462		-5.	8371	99	2.	.689213

. test developed=fdirel=0

```
( 1) developed - fdirel = 0
( 2) developed = 0
        F(2, 54) = 0.18
Prob > F = 0.8345
```

. *drop

.

. regress tstat invsepcc dynamic qualdv timeseries mixed transition china hcstock hcinput secondary tertiary sect > ert avgyred labcost labprod endogeneity lnpubyr lnmedianyr lnperiod lntnoexp

published[pweight = weight], vce(cl > uster study)
(sum of wgt is

5.5000e+01)

Linear regression

Number of	obs	=	335
F(21,	54)	=	21.39
Prob > F		=	0.0000
R-squared		=	0.3764
Root MSE		=	2.0433

				(Std.	Err.	adjuste	d for 55	clusters	in stud	y)
tstat	 +	Coef.	Rob Std.	Err.	t	P>	t [95% Conf.	Interva	1]
invsepcc dynamic qualdv timeseries mixed transition china hcstock hcinput secondary tertiary sectert avgyred labcost labprod endogeneity lnuubyr	+ 	.1351214 .0738996 -0343522 .1989821 .0973706 -1159383 .0658125 .0476042 -0559966 -127655 -0513456 02702 -0973897 -1119337 .1082472 -0469758 2365647	.08 .036 .036 .270 .058 .046 .038 .045 .051 .055 .035 .038 .054 .039 .035 .035 .049	31142 37192 32018 39733 32319 38613 36481 33359 4875 37704 475122 31287 41737 36787 35361 37553 36445	1.6 2.0 -0.9 0.7 1.6 -2.4 1.7 1.0 -1.0 -2.2 -1.3 -0.7 -1.8 -2.8 3.0 -0.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 49 47 66 91 92 98 26 77 82 78 007 049	0275586 .000282 1069325 3442867 0193774 2098895 0116723 0432888 1592229 2394679 1265531 1034633 2060014 1914846 0370016 1467292	.29780 .14751 .03822 .74225 .21411 02198 .14329 .13849 .04722 01584 .02386 .04942 .0112 03238 .17949 .05277 .0847	13 72 81 09 86 71 72 71 96 21 33 22 27 28 76
Inmedianyr Inperiod Intnoexp published cons		.9839192 3269056 3699038 0693669 -1.851455	.312 .21 .411 .03 2.13	21545 6472 9247 86779 9526	3.1 -1.5 -0.9 -1.8 -0.8	5 0.0 1 0.1 0 0.3 9 0.0 7 0.3	03 . 37 73 -1 65 91 -6	3580872 7609059 .195763 1431044 .140945	1.6097 .10709 .45595 .00437 2.4380	51 46 55 07 36

. test lnpubyr=timeseries=0

(1) - timeseries + lnpubyr = 0 (2) lnpubyr = 0

F(2, 54) = 0.47Prob > F = 0.6245

. *drop

٠

. regress tstat invsepcc dynamic qualdv mixed transition china hcstock hcinput secondary tertiary sectert avgyred

> labcost labprod endogeneity lnmedianyr lnperiod lntnoexp published[pweight = weight], vce(cluster study) (sum of wgt is 5.5000e+01)

Linear regression

Number of	obs	=	335
F(19,	54)	=	25.63
Prob > F		=	0.0000
R-squared		=	0.3687
Root MSE		=	2.0493

| Robust tstat | Coef. Std. Err. t P>|t| [95% Conf. Interval]

(Std. Err. adjusted for 55 clusters in study)

					[550 00HI.	
invsepcc	.1364476	.0820727	1.66	0.102	0280983	.3009936
dynamic	.0657264	.0398886	1.65	0.105	0142455	.1456982
qualdv	0350106	.0338011	-1.04	0.305	1027778	.0327566
mixed	.0997246	.060265	1.65	0.104	0210995	.2205487
transition	1074779	.0453495	-2.37	0.021	1983982	0165575
china	.0688293	.0379048	1.82	0.075	0071652	.1448238
hcstock	.048911	.0453869	1.08	0.286	0420843	.1399063
hcinput	0507865	.0600646	-0.85	0.402	1712088	.0696358
secondary	1299933	.0553888	-2.35	0.023	2410411	0189454
tertiary	0510921	.0376769	-1.36	0.181	1266297	.0244455
sectert	0259614	.037101	-0.70	0.487	1003445	.0484217
avgyred	0945595	.0548767	-1.72	0.091	2045806	.0154616
labcost	116154	.0400159	-2.90	0.005	1963811	0359268
labprod	.1015916	.0319196	3.18	0.002	.0375966	.1655866
endogeneity	0421202	.0508901	-0.83	0.411	1441487	.0599083
lnmedianyr	.9002566	.3375269	2.67	0.010	.2235558	1.576957
lnperiod	2340325	.222707	-1.05	0.298	6805331	.2124681
lntnoexp	3662773	.3993773	-0.92	0.363	-1.166981	.4344259
published	0653665	.0372577	-1.75	0.085	1400638	.0093307
_cons	6671542	1.720411	-0.39	0.700	-4.116371	2.782062

. test endogeneity=hcinput=0

(1) - hcinput + endogeneity = 0
(2) endogeneity = 0
F(2, 54) = 0.73
Prob > F = 0.4853
. *drop

.

. regress tstat invsepcc dynamic qualdv mixed transition china hcstock secondary tertiary sectert avgyred labcost > labprod lnmedianyr lnperiod lntnoexp published[pweight = weight], vce(cluster study) (sum of wgt is 5.5000e+01)

Linear regression

Number of	obs	=	335
F(17,	54)	=	19.88
Prob > F		=	0.0000
R-squared		=	0.3575
Root MSE		=	2.0609

				(Std.	Err.	adjusted	l for 55	cluster	rs in study)
tstat		Coef.	Rok Std.	oust Err.		: P> t	. [9	 95% Conf	f. Interval]
	+-								
invsepcc		.0950867	.071	L1625	1.3	34 0.18	70)475855	.2377589
dynamic		.0554318	.036	59301	1.5	50 0.13	90	0186085	.1294722
qualdv		0185974	.023	39687	-0.7	78 0.44	10	0666517	.0294569
mixed		.1038222	.052	22858	1.9	9 0.05	20	010045	.2086489
transition		079651	.041	L4857	-1.9	92 0.06	01	L628247	.0035228
china		.0699294	.037	74916	1.8	37 0.06	80	052367	.1450956
hcstock		.0529456	.035	59559	1.4	17 0.14	70	0191417	.1250329
secondary		1390807	.062	25101	-2.2	22 0.03	02	2644059	0137555
tertiary		0467081	.039	92329	-1.1	0.23	91	L253653	.0319491
sectert		0290207	.040)4334	-0.7	72 0.47	61	L100848	.0520434
avgyred		1046169	.061	L4913	-1.7	70 0.09	52	2278995	.0186657
labcost		1072095	.035	58078	-2.9	9 0.00	41	L789998	0354191
labprod		.0916028	.030)2899	3.0	0.00	4.0)308753	.1523304
lnmedianyr		.8759674	.329	91901	2.6	56 0.01	0.	215981	1.535954
lnperiod		1710445	.225	50857	-0.7	76 0.45	16	5223142	.2802252
lntnoexp		3950188	.408	33242	-0.9	97 0.33	8 -1	L.21366	.4236218
published		0601837	.037	72814	-1.6	51 0.11	21	L349283	.0145609
_cons	Ι	5025598	1.63	35373	-0.3	31 0.76	0 -3.	.781286	2.776166

. test sectert=lnperiod=0

(1) sectert - lnperiod = 0 (2) sectert = 0

F(2, 54) = 0.65Prob > F = 0.5276

. *drop

.

. regress tstat invsepcc dynamic qualdv mixed transition china hcstock secondary tertiary
avgyred labcost labprod
> lnmedianyr lntnoexp published[pweight = weight], vce(cluster study)
(sum of wgt is 5.5000e+01)

Linear regression

Number of	obs	=	335
F(15,	54)	=	19.62
Prob > F		=	0.0000
R-squared		=	0.3505
Root MSE		=	2.0657

			(Std.	Err. a	djusted for	55 clusters	in study)
tstat	 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
invsepcc		.0631281	.0676104	0.93	0.355	0724226	.1986788
dynamic		.0512156	.0346013	1.48	0.145	0181558	.1205871
qualdv		-0089414	.0221887	-0.40	0.689	0534271	.0355442
mixed		.098465	.0442419	2.23	0.030	.0097653	.1871647
transition		-0917751	.0375842	-2.44	0.018	1671268	0164233
china		.0573115	.0316608	1.81	0.076	0061645	.1207874
hcstock		.0514491	.0370359	1.39	0.170	0228034	.1257015
secondary		-1231097	.0502565	-2.45	0.018	2238679	0223515
tertiary		-0301877	.0250203	-1.21	0.233	0803505	.0199751
avgyred		-0841859	.0595683	-1.41	0.163	2036131	.0352413
labcost		-1048476	.036155	-2.90	0.005	1773339	0323612
labprod		.092567	.0311243	2.97	0.004	.0301666	.1549674
lnmedianyr		.8952305	.3146477	2.85	0.006	.2643999	1.526061
lntnoexp		3905211	.3660201	-1.07	0.291	-1.124347	.343305
published		0574519	.0375567	-1.53	0.132	1327485	.0178448
_cons		-1.139737	1.876688	-0.61	0.546	-4.902269	2.622796

. test qualdv=lntnoexp=0

(1) qualdy - lntnoexp = 0(2) qualdy = 0 F(2, 54) = 0.59 Prob > F = 0.5568

. *drop .

. regress tstat invsepcc dynamic mixed transition china hcstock secondary tertiary avgyred labcost labprod lnmed > ianyr published[pweight = weight], vce(cluster study)

(sum of wgt is 5.5000e+01)

Linear regressi	.on			l H H H	Number of obs F(13, 54) Prob > F R-squared Root MSE	= 335 = 16.55 = 0.0000 = 0.3443 = 2.069
		(Std.	Err. adj	justed for	r 55 clusters	in study)
 tstat	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>invsepcc dynamic mixed transition tchina hcstock secondary tertiary avgyred labcost labprod lnmedianyr published </pre>	.0158606 .0554106 .1032192 098037 .0619786 .0394269 1233779 0224771 0706794 102212 .0958277 .8716855 0442774	.045626 .0342959 .0461793 .039346 .0331083 .0341541 .0522618 .0227184 .0551799 .0352625 .0307249 .3133429 .037605	0.35 1.62 2.24 -2.49 1.87 1.15 -2.36 -0.99 -1.28 -2.90 3.12 2.78 -1.18	0.729 0.112 0.030 0.016 0.253 0.022 0.327 0.206 0.005 0.003 0.007 0.244	075614 0133484 .0106352 1769211 0043995 029048 2281565 0680247 1813084 1729091 .0342279 .2434709 1196709	.1073352 .1241697 .1958031 -0191529 .1283567 .079018 -0185993 .0230706 .0399497 -0315149 .1574275 1.4999 .0311161

. *final parsimonious model

Appendix 3.6: Parsimonious multivariate MRA (Model 3.3) results and diagnostics

. do "C:\Users\popli\Desktop\PhD final pieces\ch 3 final reported revisions 26apr12\viva 5 final multivariate MRA > minus52.do"

. **Final parsimonious model, sample excluding Kang and Lee (2007) . regress tstat invsepcc dynamic mixed transition china hcstock secondary tertiary avgyred labcost labprod lnmed > ianyr published[pweight = weight], vce(cluster study) (sum of wgt is 5.5000e+01)

Number of obs = 335

Linear regression

						F(13, 54) Prob > F R-squared Root MSE	$= 16.55 \\= 0.0000 \\= 0.3443 \\= 2.069$
			(Std.	Err. ad	justed f	or 55 clusters	in study)
			Robust				
tstat		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
invsepcc	-	.0158606	.045626	0.35	0.729	075614	.1073352
dynamic		.0554106	.0342959	1.62	0.112	0133484	.1241697
mixed		.1032192	.0461793	2.24	0.030	.0106352	.1958031
transition		098037	.039346	-2.49	0.016	1769211	0191529
china		.0619786	.0331083	1.87	0.067	0043995	.1283567
hcstock		.0394269	.0341541	1.15	0.253	029048	.1079018
secondary		1233779	.0522618	-2.36	0.022	2281565	0185993
tertiary		0224771	.0227184	-0.99	0.327	0680247	.0230706
avgyred		0706794	.0551799	-1.28	0.206	1813084	.0399497
labcost		102212	.0352625	-2.90	0.005	1729091	0315149
labprod		.0958277	.0307249	3.12	0.003	.0342279	.1574275
lnmedianyr		.8716855	.3133429	2.78	0.007	.2434709	1.4999
published		0442774	.037605	-1.18	0.244	1196709	.0311161
_cons		-2.37849	1.474975	-1.61	0.113	-5.335636	.5786567

. **Linearity test . estat ovtest

Ramsey RESET test using powers of the fitted values of tstat Ho: model has no omitted variables F(3, 318) = 3.41Prob > F = 0.0179

Prob > F =

. *linearity can be rejected at 5% significance level but not at the 1%.

. **Investigating normality

. qui regress tstat invsepcc dynamic mixed transition china hcstock secondary tertiary avgyred labcost labprod 1

> nmedianyr published

. estat imtest

Cameron & Trivedi's decomposition of IM-test

Source		chi2	df	p
Heteroskedasticity Skewness Kurtosis	· 	198.58 54.22 12.32	82 13 1	0.0000 0.0000 0.0004
Total	1	265.12	96	0.0000

. *normality problem

. predict resid2, res

```
. histogram resid2
(bin=18, start=-7.2053146, width=.79268736)
```


. *bell-shaped

. **Multicollinearity check . **Multicollinearity check . qui regress tstat invsepcc dynamic mixed transition china hcstock secondary tertiary avgyred labcost labprod l > nmedianyr published [pweight = weight], vce(cluster study)

. estat vif

Variable	VIF	1/VIF
·	+	
invsepcc	24.30	0.041146
mixed	12.99	0.076975
labcost	9.84	0.101595
published	9.42	0.106122
tertiary	7.83	0.127752
china	2.70	0.370059
hcstock	2.41	0.414391
lnmedianyr	2.25	0.444760
avgyred	2.12	0.470621
labprod	1.49	0.670293
secondary	1.41	0.709513
transition	1.32	0.759418
dynamic	1.28	0.780215
Mean VIF	+ 6.11	

. *multicillinearity significantly reduced

Appendix 5

Contents

Appendix 5.1: Descriptive statistics	
Appendix 5.2: Between-to-within ratios	
Appendix 5.3: Diagnostic tests and raw correlations	
Appendix 5.4: Initial specifications	
Appendix 5.5: Testing down procedure	
Appendix 5.6: Model 5.1 results	
Appendix 5.7: Models 5.2-5.4 results	
Appendix 5.8: Models 5.5-5.7 results	
Appendix 5.9: Stock-adjustment Models 5.15-5.17 results	

Variable		Mean	Std. Dev.	Min	Max	Observations
fdiflow	overall	3217.308	7549.187	9.49	71484.99	N = 193
	between		4040.673	238.0998	14038.79	n = 14
	within		6451.402	-8684.083	60663.51	T-bar = 13.7857
fdistock	overall	18978.49	35450.15	86.58867	251951.6	N = 194
	between		22709.32	830.7806	65544.95	n = 14
	within		27804.99	-38126.87	205385.1	T-bar = 13.8571
primedu	overall	91.84012	6.694157	72.5	99.8	N = 168
	between		6.63157	77.12	98.88714	n = 12
	within		2.063354	87.21154	96.16012	T = 14
		45 505 40	45 60076			N 460
secedu	overall	45.50548	15.62276	22	80.7	N = 168
	between		15.64613	22.68429	68.08286	n = 12
	within		4.280841	32.22262	58.12262	1 = 14
tortodu	overall	7 252005	2 172017	2.2	15.2	N - 169
terteau	botwoon	7.353095	2 120256	5.5 2 171 170	13.2	n = 100
	within		3.130230	3.471428	11 17720	II = 12 T = 14
	WICHIII		1.010515	4.555055	11.17730	1 - 14
genvoc~o	overall	0 4394899	0 4419921	0 1466837	1 780488	N = 196
Bennet o	between	0110010000	0.4575053	0.1466837	1.780488	n = 14
	within		0	0.4394899	0.4394899	T = 14
			-			
cognit~e	overall	4.75875	0.3990634	3.785	5.192	N = 168
-	between		0.4155658	3.785	5.192	n = 12
	within		0	4.75875	4.75875	T = 14
top	overall	0.0701667	0.0352971	0.013	0.122	N = 168
	between		0.0367568	0.013	0.122	n = 12
	within		0	0.0701667	0.0701667	T = 14
vacancy	overall	3.893044	1.362624	1.68085	7.23077	N = 56
	between		1.277325	2.07614	5.463493	n = 14
	within		0.5605182	2.023689	5.762399	T = 4
transi~n	overall	3.226143	0.4962871	1.111111	3.962222	N = 193
	between		0.4319198	2.182619	3.816508	n = 14
	within		0.2681852	2.154635	3.821301	I-bar = 13.7857
tue de for-	oo.r=11	72 04200	0.07642	46.0	07.0	N - 100
traderre	botucor	/3.04396	9.8/013	40.8	۵/.۵ م د دد ۲۰	N = 182
	within		5.301103	10 85034	02.305/1 01 31530	$H = -14$ $T_{-}b_{2}r_{-} = -12$
	between within		5.907103 8.02428	62 49.85934	82.58571 94.21538	n = 14 T-bar = 13

Appendix 5.1: Descriptive statistics

econfree	overall	57.88642	9.169961	24.42891	77.00185	N = 182
	between		8.099609	39.65407	72.5352	n = 14
	within		4.924805	42.29225	71.63622	T-bar = 13
ictinfra	overall	77.19616	52.2034	1.34503	249.1646	N = 196
	between		22.51218	35.22544	109.7186	n = 14
	within		47.45717	-1.754916	216.6421	T = 14
gdp	overall	4.89E+10	7.23E+10	1.87E+09	5.28E+11	N = 196
	between		6.36E+10	5.02E+09	2.44E+11	n = 14
	within		3.82E+10	-5.65E+10	3.33E+11	T = 14
nrimov~t	overall	0 1160067	0 0692491	0 0277404	0 2242426	N - 106
primex t	between	0.1109907	0.0082481	0.0277404	0.3343430	n = 130
	Detween		0.038700	0.0404040	0.2130174	11- 14
	within		0.037876	0.0043659	0.2389431	T = 14
forbank	overall	0.5317708	0.2209783	0	1	N = 192
	between		0.1485024	0.2535714	0.7792857	n = 14
	within		0.166837	0.0303423	0.9224851	T-bar = 13.7143
wage	overall	489.474	353.8258	60.8529	2038.203	N = 188
	between		247.6512	149.9469	1070.345	n = 14
	within		256.326	-82.96173	1457.333	T-bar = 13.4286
gini	overall	0.3263255	0.0424144	0.243	0.406	N = 106
U	between		0.0393852	0.267	0.377	n = 10
	within		0.0210108	0.2445398	0.3770398	T = 10.6
privat~n	overall	0.4081633	0.4927523	0	1	N = 196
	between		0.1846303	0.2142857	0.7857143	n = 14
	within		0.4593354	-0.377551	1.193878	T = 14
in at a box.	overall	0.0255402	0 1 5 9 9 7 2 5	•		N - 100
instabily	overall	0.0255102	0.1580/25	0	1	N = 196
	petween		0.0663416	0	0.2142857	n = 14
	within		0.1444961	0.1887755	0.8826531	T = 14

Variable		Mean	Std. Dev.	Between-to-within ratio*
Inprim~u	overall between within	4.517257	0.0760378 0.0754002 0.0232191	3.25
Insecedu	overall between within	3.757556	0.3524169 0.3572097 0.080819	4.42
Intert~u	overall between within	1.904314	0.4283678 0.4288173 0.1180212	3.63
Ingenv~o	overall between within	-1.160987	0.760616 0.7873124 0	Time-invariant
Incogn~e	overall between within	1.556188	0.0892752 0.092967 0	Time-invariant
Intop	overall between within	-2.83484	0.6635057 0.6909435 0	Time-invariant
Invaca~y	overall between within	1.295273	0.3678036 0.3499025 0.1397346	2.50
Intran~n	overall between within	1.156979	0.1799261 0.1521118 0.1034439	1.47
Intrad~e	overall between within	4.281385	0.1418565 0.0848653 0.1153051	0.74
Inecon~e	overall between within	4.044214	0.1767746 0.1546549 0.1001181	1.54
Inicti~a	overall between within	4.038468	0.9081815 0.4868857 0.7768782	0.63

Appendix 5.2: Between-to-within ratios

1				
Ingdp	overall between	23.86489	1.234269 1.170495	2.37
	within		0.4946693	
Innrim~t	overall	-2 305377	0 5699126	1 72
	hetween	2.000077	0 5057387	1.7 2
	within		0 2933943	
			0.299999 19	
Inforb~k	overall	-0.755124	0.6050269	0.75
	between		0.3673489	
	within		0.4867113	
Inwage	overall	5.941384	0.7370654	1.21
_	between		0.5736379	
	within		0.4723268	
Ingini	overall	-1.128338	0.1313726	1.89
	between		0.1219636	
	within		0.0644616	
Inedutr1	overall	-1.089152	0.1438554	Time-invariant
	between		0.1489045	
	within		0	
Inedutr2	overall	-1.690939	0.3105992	0.46
	between		0.1304231	
	within		0.2838955	
		0.4004633	0 4027522	0.40
privat [~] n	overall	0.4081633	0.4927523	0.40
	Detween		0.1846303	
	within		0.4593354	
instah~v	overall	0 0255102	0 1580725	0.46
instab y	hotwoon	0.0200102	0.1500725	0.40
	within		0.1444961	
	****		J.I.1.1.1.1.JUI	

*Ratio calculated by dividing between S.D. of the variable by its within S.D

Appendix 5.3: Diagnostic tests and raw correlations

<pre> **full model 5.1, in levels . xtreg fdiflow secedu tertedu wage llwage l2wage gdp llgdp l2gdp transition tradefree econfree ictinfra primexpo > rt l1primexport l2primexport forbank privatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d > 2000 d1999 d1998 d1997 d1996 d1995, fe note: d2008 omitted because of collinearity note: d1996 omitted because of collinearity note: d1995 omitted because of collinearity</pre>								
Fixed-effects (within) regression Group variable: country				Number Number	of obs of groups	= 143 = 12		
R-sq: within = 0.4612 between = 0.1098 overall = 0.1302				Obs per	group: min avg max	= 11 = 11.9 = 12		
corr(u_i, Xb) = -0.8857				F(29,10 Prob >)2) F	= 3.01 = 0.0000		
fdiflow	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]		
secedu tertedu	643.9913 111.3773	366.2689 1033.206	1.76 0.11	0.082 0.914	-82.50134 -1937.981	1370.484 2160.736	:	
wage	12.94399	21.80005	0.59	0.554	-30.29631	56.18428		
llwage	-43.1405	36.72932	-1.17	0.243	-115.9929	29.71193		
IZWAYE db	-3 620-07	1 48e-07	-2 45	0.557	-52.93000	-6 930-08		
lladp	7.19e-08	2.26e-07	0.32	0.751	-3.77e-07	5.20e-07	1	
12qdp	6.93e-07	1.99e-07	3.49	0.001	2.99e-07	1.09e-06		
transition	-39131.9	12394.22	-3.16	0.002	-63715.78	-14548.01		
tradefree	-78.23926	113.6188	-0.69	0.493	-303.6016	147.1231		
econfree	217.0831	236.8552	0.92	0.362	-252.7181	686.8842		
ictinfra	-11.89955	54.00112	-0.22	0.826	-119.0105	95.21142		
primexport	16567.55	28082.53	0.59	0.557	-39134.01	72269.12		
llprimexport	1058.366	31609.2	0.03	0.9/3	-61638.33	63/55.06		
12primexport	14143.96	32810.09	0.43	0.667	-50934.69	19222.62		
nrivatisat~n	-687 6849	1354 29	-0.51	0.701	-3373 914	1998 544		
instability	-1641.946	5963.029	-0.28	0.784	-13469.59	10185.69	1	
d2008	(omitted)							
d2007	-1424.24	3828.139	-0.37	0.711	-9017.336	6168.857		
d2006	-8120.683	4654.311	-1.74	0.084	-17352.49	1111.121		
d2005	-6744.756	5811.406	-1.16	0.249	-18271.65	4782.14		
d2004	-7145.187	6899.48	-1.04	0.303	-20830.27	6539.899		
d2003	-12845.82	8079.754	-1.59	0.115	-28871.98	3180.33		
d2002	-13701.33	8922.475	-1.54	0.128	-31399.01	3996.361		
d2001	-1/626.69	9641.028 10402 27	-1.83	0.070	-36/49.62	1496.243		
d1999	-20918 63	11426 23	-1.83	0.003	-43582 51	1745 252		
d1998	-23700.48	11992.49	-1.98	0.051	-47487.53	86.57441		
d1997	-25965.11	12637.75	-2.05	0.042	-51032.02	-898.2038	i i	
d1996	(omitted)							
d1995	(omitted)							
_cons	105144.1	47198.76	2.23	0.028	11525.63	198762.7		
sigma_u	13340.737							
sigma_e	6324.4792							
rho .81649655 (fraction of variance due to u_i)								
F test that all u_i=0: F(11, 102) = 2.99				9	Prob >	F = 0.0018		
. pantest2 yea	ır							

Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 26.218339 which is asy. distributed as chisq(1) under null, so: _____
```
Probability of value greater than LM is 3.049e-07 LM5= 5.1203847 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is 1.525e-07
```

```
Test for significance of fixed effects F= 2.9872844
Probability>F= .00176597
```

Test for normality of residuals

Skewness/Kurtosis tests for Normality

	070	ewiless/ Kur costs	CESUS IOI NOIN	laiicy	
					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
00000B	143	0.0000	0.0000		0.0000

```
. predict residlev
(option xb assumed; fitted values)
(53 missing values generated)
```

```
. histogram residlev
```


. *there is a normality problem, therefore fdiflow is transformed

. corr lnfdiflow lnfdistock lntransition lntradefree lneconfree lnictinfra lngdp lnl1gdp lnl2gdp lnprimexport ll1
> nprimexport l2lnprimexport lnforbank lnl1forbank lnl2forbank lnwage l1lnwage l2lnwage lnprimedu lnsecedu lntert
> edu lngenvocratio lnedutr1 lnedutr2 lnvacancy lncognitive lntop
(obs=44)

	lnfdif~w	lnfdis~k	lntran~n	lntrad~e	lnecon~e	lnicti~a	lngdp	lnl1gdp	lnl2gdp	lnprim~t	lllnpr~t
lnfdiflow	1.0000										
lnfdistock	0.8816	1.0000									
lntransition	0.5064	0.6909	1.0000								
lntradefree	0.0755	0.2607	0.6917	1.0000							
lneconfree	-0.1476	-0.0057	0.6054	0.6484	1.0000						
lnictinfra	0.3820	0.5073	0.7736	0.5031	0.5589	1.0000					
lngdp	0.8455	0.9326	0.4835	0.0613	-0.2342	0.3193	1.0000				
lnl1gdp	0.8420	0.9263	0.4848	0.0719	-0.2301	0.3196	0.9983	1.0000			
lnl2gdp	0.8334	0.9163	0.4776	0.0717	-0.2414	0.2985	0.9951	0.9978	1.0000		
lnprimexport	-0.0557	-0.1626	-0.2113	0.0753	-0.0618	-0.1455	-0.1659	-0.1652	-0.1745	1.0000	
lllnprimex~t	-0.0320	-0.1060	-0.1615	0.0775	-0.0734	-0.1600	-0.1040	-0.1042	-0.1033	0.9496	1.0000
121nprimex~t	-0.0540	-0.1016	-0.1388	0.0825	-0.0759	-0.2233	-0.1151	-0.1183	-0.1116	0.8965	0.9485
lnforbank	0.3564	0.2067	-0.1141	-0.1873	-0.1579	-0.3981	0.2332	0.2269	0.2174	0.0065	0.0189
lnllforbank	0.3171	0.1922	-0.1294	-0.2209	-0.1511	-0.4084	0.2094	0.1992	0.1877	0.0306	0.0295
lnl2forbank	0.2944	0.1523	-0.1244	-0.2012	-0.1196	-0.4151	0.1559	0.1479	0.1344	0.0372	0.0260
lnwage	0.3256	0.5200	0.6643	0.3730	0.3261	0.7890	0.4834	0.4893	0.4806	-0.4391	-0.4281
lllnwage	0.3249	0.5112	0.6611	0.3902	0.3270	0.7792	0.4829	0.4941	0.4863	-0.4133	-0.4073
121nwage	0.3181	0.5019	0.6616	0.4028	0.3167	0.7556	0.4826	0.4961	0.4948	-0.4071	-0.3855
lnprimedu	0.0565	0.1268	0.5307	0.5261	0.7438	0.2583	-0.0206	-0.0174	-0.0266	-0.1678	-0.1894
lnsecedu	-0.0180	0.0928	0.3905	0.4686	0.5500	0.3919	-0.1762	-0.1901	-0.2092	-0.0125	-0.0155
lntertedu	0.0076	0.1611	0.6562	0.6207	0.6386	0.5558	-0.1029	-0.1028	-0.1091	0.2247	0.2251
lngenvocra~o	-0.3367	-0.3290	0.2174	0.4523	0.7244	0.1145	-0.5435	-0.5439	-0.5503	0.3692	0.3417
lnedutr1	-0.5610	-0.6945	-0.5936	-0.2072	-0.0049	-0.6800	-0.6005	-0.5998	-0.6020	0.2150	0.1323
lnedutr2	-0.1639	-0.2750	-0.1743	-0.0144	0.1714	-0.0822	-0.2140	-0.2092	-0.2412	0.2615	0.1145
lnvacancy	-0.2293	-0.0336	0.4217	0.4742	0.5291	0.4411	-0.1589	-0.1569	-0.1525	-0.1803	-0.1555
lncognitive	0.4711	0.6453	0.8675	0.5852	0.4476	0.7907	0.4292	0.4286	0.4300	-0.1487	-0.0635
lntop	0.6964	0.7805	0.7879	0.3730	0.2474	0.6231	0.6146	0.6144	0.6167	-0.2751	-0.1843

	l2lnpr~t	lnforb~k	lnl1fo~k	lnl2fo~k	lnwage	lllnwage	121nwage	lnprim~u	lnsecedu	lntert~u	lngenv~o
+											
121nprimex~t	1.0000										
lnforbank	0.0367	1.0000									
lnl1forbank	0.0462	0.9681	1.0000								
lnl2forbank	0.0333	0.9276	0.9632	1.0000							
lnwage	-0.4682	-0.4365	-0.4846	-0.5318	1.0000						
lllnwage	-0.4529	-0.4357	-0.4882	-0.5322	0.9949	1.0000					
121nwage	-0.4262	-0.4541	-0.5098	-0.5551	0.9857	0.9941	1.0000				
lnprimedu	-0.1973	0.3158	0.3445	0.3980	0.0569	0.0665	0.0592	1.0000			
lnsecedu	0.0018	-0.0163	0.0224	0.0622	0.0266	0.0010	-0.0258	0.4399	1.0000		
lntertedu	0.2480	-0.3196	-0.2955	-0.2551	0.2111	0.2119	0.2134	0.4066	0.4175	1.0000	
lngenvocra~o	0.3528	0.0542	0.0683	0.1072	-0.2588	-0.2513	-0.2513	0.6008	0.4152	0.6974	1.0000
lnedutr1	0.0987	0.3448	0.3607	0.3899	-0.6075	-0.5932	-0.5964	0.1894	-0.1721	-0.2854	0.3773
lnedutr2	-0.0324	0.2450	0.2712	0.2852	-0.0843	-0.0592	-0.0937	0.3188	-0.1555	-0.1154	0.2893
lnvacancy	-0.1514	-0.6337	-0.6445	-0.6403	0.5299	0.5222	0.5321	0.0876	0.3595	0.3017	0.1181
lncognitive	-0.0081	-0.3248	-0.3565	-0.3816	0.6669	0.6564	0.6665	0.1577	0.3571	0.5976	0.0600
lntop	-0.1205	0.0287	-0.0098	-0.0478	0.5404	0.5327	0.5397	0.1829	0.1419	0.3543	-0.1143

| lnedutr1 lnedutr2 lnvaca~y lncogn~e lntop

+	 				
lnedutr1	1.0000				
lnedutr2	0.6700	1.0000			
lnvacancy	-0.2257	-0.1793	1.0000		
Incognitive	-0.8159	-0.4836	0.5005	1.0000	
lntop	-0.7781	-0.4538	0.1807	0.8817	1.0000

 **full model xtreg lnfdit 	l 5.1, log-log flow lnsecedu	1 lntertedu l	nwage lll	lnwage 12	lnwage lngdp	lllngdp l2l	ngdp			
> onfree lnict	intraderree in	ec xport lllnp	rimexport	- 121npri	mexport lnfor	bank privat	isation			
instability d2 > 06 d2005 d20	instability d2008 d2007 d20 > 06 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe robust									
note: d1997 or	mitted because	e of colline	arity							
note: d1996 or	nitted because	e of colline	arity							
note: a1995 or	nitted because	e or colline	arıty							
Fixed-effects	(within) regr	ression		Number	of obs =	143				
Group variable	e: country			Number	of groups =	12				
R-sq: within	= 0.7717			Obs per	group: min =	11				
between	n = 0.5551				avg =	11.9				
overal.	L = 0.0494				max =	12				
				F(11,11	.) =					
corr(u_i, Xb)	= -0.3698			Prob >	F =	•				
		(Std. E	rr. adjus	sted for	12 clusters i	n country)				
	 	Robust								
lnfdiflow	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]				
lnsecedu	4633169	2.128209	-0.22	0.832	-5.147474	4.22084				
lntertedu	7689391	1.211899	-0.63	0.539	-3.43631	1.898432				
lnwage	.0142601	1.544155	0.01	0.993	-3.384401	3.412921				
lllnwage	.5475273	.5299172	1.03	0.324	6188127	1.713867				
121nwage	3932786	.9403425	-0.42	0.684	-2.462958	1.676401				
Ingdp	.3805829	1.836163	0.21	0.840	-3.660785	4.421951				
llingdp	5564767	1.379886	-0.40	0.694	-3.593586	2.480632				
121ngap	229/46	1.448211	-0.16	0.877	-3.41/238	2.95//46				
Intransition	L.33692	3.053853	0.51	0.620	-5.164565	8.2/8404				
lnoconfroo		1 523858	-0.74	0.474	-1.00/109	.9200009				
Inictinfra	I _ 0536539	3963855	-0.14	0.404	- 9260924	8187846				
Inprimexport	2395144	.2997981	0.80	0.441	4203367	.8993655				
111nprimex~t	0042075	.318612	0.01	0.990	6970527	.7054677				
121nprimex~t	1572141	.3176584	-0.49	0.630	8563755	.5419472				
lnforbank	.2231828	.2380808	0.94	0.369	3008294	.7471951				
privatisat~n	.4472416	.1284495	3.48	0.005	.1645261	.7299571				
instability	6138362	.7838364	-0.78	0.450	-2.339049	1.111376				
d2008	2.118311	1.824904	1.16	0.270	-1.898275	6.134898				
d2007	2.124796	1.675585	1.27	0.231	-1.563142	5.812734				
d2006	1.554211	1.375633	1.13	0.283	-1.473536	4.581959				
d2005	1.146123	1.296192	0.88	0.395	-1.706776	3.999023				
d2004	.6854929	1.064224	0.64	0.533	-1.656849	3.027835				
d2003	.323199	.7889698	0.41	0.690	-1.413312	2.05971				
d2002	.4044573	.7250545	0.56	0.588	-1.191377	2.000291				
d2001	.2401294	.5693881	0.42	0.681	-1.013085	1.493344				
d2000	.0186956	.3/19085	0.05	0.961	/998694	.83/2605				
a1000	1050/38/	.3UZ6Z1 2256005	-0.1/	U.8/U 0 502	- 3300600	.0103720				
01998 21007	(omittod)	.2230903	0.09	0.302		.0333222				
A1004	(omitted)									
41995	(omitted)									
_cons	14.24458	36.72955	0.39	0.706	-66.59662	95.08579				
 	+									
sigma_u	1.4985071									
sigma_e	1 .4922401	(fraction	of worder	nco duro +						
L 110	1 . 2020033/	(IIACLION	or varial	ice due t	.u_±)					

. pantest2 year

Test for serial correlation in residuals Null hypothesis is either that rho=0 if residuals are AR(1) or that lamda=0 if residuals are MA(1) Following tests only approximate for unbalanced panels LM= 12.164785 which is asy. distributed as chisq(1) under null, so: Probability of value greater than LM is .000487 LM5= 3.4878051 which is asy. distributed as N(0,1) under null, so: Probability of value greater than abs(LM5) is .0002435

Test for significance of fixed effects F= 2.8622156 Probability>F= .00228797

Test for normality of residuals

Skewness	/Kurtosis	tests	for	Normality	7
----------	-----------	-------	-----	-----------	---

	SK	ewness/Kurtosis	tests for Norm	ality	
					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
+					
00000B	143	0.0561	0.1181	5.88	0.0529

. predict residln (option xb assumed; fitted values) (53 missing values generated)

```
. histogram residln
(bin=11, start=3.6209955, width=.6493669)
```


٠ . **variance inflation factor (VIF)

. qui reg fdiflow secedu tertedu wage llwage l2wage gdp llgdp l2gdp transition tradefree econfree ictinfra primex

> port llprimexport l2primexport forbank privatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001

```
> d2000 d1999 d1998 d1997 d1996 d1995
```

. estat vif

Variable		VIF	1/VIF
llgdp	T	777.28	0.001287
l1wage		477.33	0.002095
gdp		288.21	0.003470
12gdp		245.43	0.004074
wage		196.04	0.005101
12wage		160.30	0.006238
ictinfra		16.87	0.059271
llprimexport		12.87	0.077707
d1997		9.50	0.105267
d1998		9.31	0.107446
primexport		8.75	0.114298
d1999		8.20	0.121886
12primexport		7.95	0.125832
d2000		7.63	0.130998
d2001		7.27	0.137618
transition		6.91	0.144673
d2002		5.30	0.188619

```
d2003 | 4.77 0.209444
                        0.241686
                  4.14
      d2004 |
                4.±
3.89
      d2005 L
      d2006 |
                  3.58
                         0.279662
                          0.282476
   econfree |
                  3.54
                  3.48
                         0.287106
     secedu |
                  3.36
                         0.297843
      d2007 |
    forbank |
                  3.06
                          0.326492
                 2.95
                         0.338893
    tertedu |
   tradefree |
                  2.86
                          0.349426
                 1.50
                         0.667569
privatisat~n |
instability |
                  1.49
                        0.669974
   Mean VIF |
                 78.75
. *there is high multicollinearity
. **cross-sectional dependence tests
. qui xtreg lnfdiflow Însecedu Intertedu lnwage l1lnwage l2lnwage lngdp l1lngdp l2lngdp
Intransition Intradefree
> lneconfree lnictinfra lnprimexport lllnprimexport l2lnprimexport lnforbank privatisation
instability d2008 d2007
> d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe
. xtcsd, frees abs
 Frees' test of cross sectional independence =
                                                0.313
|-----|
 Critical values from Frees' Q distribution
                    alpha = 0.10 : 0.2333
                     alpha = 0.05 :
                                     0.3103
                     alpha = 0.01 : 0.4649
Average absolute value of the off-diagonal elements = 0.270
. xtcsd, pesaran abs
Pesaran's test of cross sectional independence = -2.280, Pr = 0.0226
Average absolute value of the off-diagonal elements =
                                                    0.255
. *there is a cross-sectional dependence problem
. **heteroskedasticity test
. qui xtreg lnfdiflow lnsecedu lntertedu lnwage l1lnwage l2lnwage lngdp l1lngdp l2lngdp
Intransition Intradefree
> lneconfree lnictinfra lnprimexport lllnprimexport l2lnprimexport lnforbank privatisation
instability d2008 d2007
> d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe
. xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (12) =
                67.48
Prob>chi2 =
              0.0000
. *there is a heteroskedasticity problem
. **serial correlation test
. xtserial lnfdiflow lnsecedu lntertedu lnwage l1lnwage l2lnwage lngdp l1lngdp l2lngdp
Intransition Intradefree 1
> neconfree lnictinfra lnprimexport lllnprimexport l2lnprimexport lnforbank privatisation
instability d2008 d2007
> d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995
Wooldridge test for autocorrelation in panel data
H0: no first-order autocorrelation
                      9.463
   F( 1,
             11) =
          Prob > F =
                         0.0105
```

```
. *there is a serial correlation problem
```

. *therefore, Driscoll-Kraay SE's (robust to heteroskedasticity, serial correlation and cross-sectional dependence $% \left({{{\left[{{{\rm{C}}} \right]}}_{{\rm{C}}}}_{{\rm{C}}} \right)$

>)

. **Hausman test

. *FE estimation

. qui xtreg lnfdiflow lnsecedu lntertedu lnwage lllnwage l2lnwage lngdp l2lngdp l2lngdp

Intransition Intradefree
> Ineconfree Inictinfra Inprimexport llInprimexport l2Inprimexport Inforbank privatisation
instability d2008 d2007

> d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe

. est store feli

. *RE estimation

. qui xtreg lnfdiflow ln
secedu lntertedu lnwage lllnwage lllnwage lngdp lllngdp lllngdp l
lntransition lntradefree $\ensuremath{\mathsf{N}}$

> lneconfree lnictinfra lnprimexport lllnprimexport l2lnprimexport lnforbank privatisation instability d2008 d2007

> d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, re

. est store reli

. *Conventional Hausman test

. hausman feli reli

		Coeffi	cients		
	1	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
		feli	reli	Difference	S.E.
lnsecedu	-+-	- 4633169	163096		1 826122
Intertedu	ï	- 7689391	- 1598311	- 609108	8236482
lnwage	i	0142601	-1 34973	1 36399	7247764
111nwage	i	.5475273	.3128669	.2346604	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
121nwage	i	3932786	.6015357	9948143	.3371823
lnadp	i	.3805829	1.347262	9666789	.5975451
lllngdp	i	5564767	.4989155	-1.055392	· · · · ·
121ngdp	i	229746	-1.060782	.8310358	.3292609
Intransition	Ì.	1.55692	6.309532	-4.752613	2.601833
lntradefree	Ì.	4707713	7577396	.2869683	.2981251
lneconfree		1.155114	-1.440415	2.595529	.788465
lnictinfra		0536539	.2619887	3156426	.2171724
lnprimexport	1	.2395144	.350609	1110946	.0915035
lllnprimex~t		.0042075	0571217	.0613292	
l2lnprimex~t		1572141	3325908	.1753766	.1473407
lnforbank		.2231828	.4476344	2244516	.1584315
privatisat~n		.4472416	.5381635	0909219	.012263
instability		6138362	0451347	5687016	.215062
d2008		2.118311	.2455641	1.872747	1.083027
d2007		2.124796	.3693831	1.755413	.9869644
d2006		1.554211	1551574	1.709369	.8777765
d2005		1.146123	4729852	1.619109	.7835802
d2004		.6854929	6407246	1.326217	.6471892
d2003		.323199	6209917	.9441907	.5293624
d2002		.4044573	4120101	.8164674	.4321286
d2001		.2401294	4360164	.6761458	.3613012
d2000		.0186956	5976556	.6163512	.2701818
d1999		0507387	3333133	.2825747	.1402556
d1998		.1567807	.1148545	.0419262	.0430835

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(29) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 7.97 Prob>chi2 = 1.0000 (V_b-V_B is not positive definite)

. *Panel-robust Hausman test (Wooldridge, 2002)

. hausman feli reli, sigmamore

Note: the rank of the differenced variance matrix (11) does not equal the number of coefficients being tested

(29); be sure this is what you expect, or there may be problems computing the test. Examine the output of $% \left[\left({{{\left({{{\left({1 \right)}} \right)}_{i}}}_{i}}} \right)} \right]$

your estimators for anything unexpected and possibly consider scaling your variables so that the

coefficients are on a similar scale.

		Coeffi	cients		
		(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	1	feli	reli	Difference	S.E.
lnsecedu	-+-	4633169	.163096	6264129	1.950793
lntertedu		7689391	1598311	609108	.8829069
lnwage		.0142601	-1.34973	1.36399	.8853712
lllnwage		.5475273	.3128669	.2346604	.3345801
121nwage		3932786	.6015357	9948143	.5258773
lngdp		.3805829	1.347262	9666789	.8204679
lllngdp		5564767	.4989155	-1.055392	.5518417
121ngdp		229746	-1.060782	.8310358	.613776
lntransition		1.55692	6.309532	-4.752613	2.847253
lntradefree		4707713	7577396	.2869683	.3708358
lneconfree		1.155114	-1.440415	2.595529	.8756891
lnictinfra		0536539	.2619887	3156426	.2522345
lnprimexport		.2395144	.350609	1110946	.142992
lllnprimex~t		.0042075	0571217	.0613292	.0626374
121nprimex~t		1572141	3325908	.1753766	.1887065
lnforbank		.2231828	.4476344	2244516	.1834441
privatisat~n		.4472416	.5381635	0909219	.0415424
instability		6138362	0451347	5687016	.3016885
d2008		2.118311	.2455641	1.872747	1.173015
d2007		2.124796	.3693831	1.755413	1.06905
d2006		1.554211	1551574	1.709369	.9516056
d2005		1.146123	4729852	1.619109	.8529012
d2004		.6854929	6407246	1.326217	.7124953
d2003		.323199	6209917	.9441907	.5858145
d2002		.4044573	4120101	.8164674	.481669
d2001		.2401294	4360164	.6761458	.4031172
d2000		.0186956	5976556	.6163512	.3061226
d1999		0507387	3333133	.2825747	.179233
d1998		.1567807	.1148545	.0419262	.1029484

b = consistent under Ho and Ha; obtained from xtreg

 ${\rm B}$ = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(11) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 23.49 Prob>chi2 = 0.0151 (V_b-V_B is not positive definite)

. *Spatial and temporal dependence robust Hausman test (Hoechle 2007)

. * Generate the variables for the auxiliary regression proposed by Hausman (1978).

. scalar lambda_hat = 1 - sqrt(e(sigma_e)^2/(e(g_avg)*e(sigma_u)^2+e(sigma_e)^2))

. gen in_sample = e(sample)

. sort country year

. qui foreach X of varlist lnfdiflow ln
secedu lntertedu lnwage lllnwage lllnwage lngdp lllngdp lllngdp l
lntransiti $\ensuremath{\mathsf{N}}$

> on lntradefree lneconfree lnictinfra lnprimexport lllnprimexport l2lnprimexport lnforbank privatisation instabil

> ity d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995 {

. *Hoechle's (2007) auxilary regression robust to general forms of spatial and temporal dependence, based on Woold $% \left(\left({{{\mathbf{x}}_{i}}} \right) \right)$

> ridge's(2002)panel-robust auxilary regression

. qui xtscc lnfdiflow_re lnsecedu_re lntertedu_re lnwage_re lllnwage_re l2lnwage_re lngdp_re lllngdp_re l2lngdp_re

> Intransition_re Intradefree_re Ineconfree_re Inictinfra_re Inprimexport_re
11Inprimexport_re 12Inprimexport_re

> Inforbank_re privatisation_re instability_re d2008_re d2007_re d2006_re d2005_re d2004_re
d2003_re d2002_re d20

> 01_re d2000_re d1999_re d1998_re lnfdiflow_fe lnsecedu_fe lntertedu_fe lnwage_fe l1lnwage_fe
l2lnwage_fe lngdp_f

> e lllngdp_fe l2lngdp_fe lntransition_fe lntradefree_fe lneconfree_fe lnictinfra_fe
lnprimexport_fe l1lnprimexpo

> rt_fe l2lnprimexport_fe lnforbank_fe privatisation_fe instability_fe d2008_fe d2007_fe d2006_fe d2005_fe d2004_f

```
> e d2003_fe d2002_fe d2001_fe d2000_fe d1999_fe d1998_fe if in_sample, lag(8)
```

```
. *Perform an asymptotically equivalent version of the test as proposed by Hausman (1978)
 test lnsecedu_fe lntertedu_fe lnwage_fe lllnwage_fe l2lnwage_fe lngdp_fe lllngdp_fe
l2lngdp_fe lntransition_fe
> lntradefree_fe lneconfree_fe lnictinfra_fe lnprimexport_fe l1lnprimexport_fe
l2lnprimexport_fe lnforbank_fe priv
> atisation_fe instability_fe d2008_fe d2007_fe d2006_fe d2005_fe d2004_fe d2003_fe d2002_fe
d2001 fe d2000 fe d19
> 99_fe d1998_fe
 (1) lnsecedu_fe = 0
 (2)
      lntertedu_fe = 0
 (3) lnwage_fe = 0
 (4) lllnwage_fe = 0
 (5)
      12 \ln wage_fe = 0
 (6) lngdp_fe = 0
 (7)
      lllngdp_fe = 0
 (8) 121ngdp_fe = 0
 ( 9) Intransition_fe = 0
(10) Intradefree_fe = 0
 (11) lneconfree_fe = 0
 (12)
      lnictinfra_fe = 0
 (13) lnprimexport_fe = 0
 (14) lllnprimexport_fe = 0
 (15)
      121nprimexport_fe = 0
 (16) lnforbank_fe = 0
 (17) privatisation_fe = 0
 (18) instability_fe = 0
 (19) \quad d2008_{fe} = 0
 (20) d2007_fe = 0
 (21) d2006_fe = 0
 (22) d2005_fe = 0
 (23) d2004_fe = 0
 (24) d2003_fe = 0
 (25) d2002_fe = 0
 (26) d2001 fe = 0
 (27) d2000_fe = 0
 (28) d1999_fe = 0
 (29) d1998_fe = 0
      F(12, 11) = 3.8e+18
           Prob > F = 0.0000
. *RE estimator not consistent, therefore only FE estimators used
. **Driscoll-Kraay FE estimator
. xtscc lnfdiflow lnsecedu lntertedu lnwage 111nwage 121nwage lngdp 111ngdp 121ngdp
Intransition Intradefree lnec
> onfree lnictinfra lnprimexport lllnprimexport l2lnprimexport lnforbank privatisation
instability d2008 d2007 d20
> 06 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe
                                                                      143
Regression with Driscoll-Kraav standard errors
                                              Number of obs
                                                                =
Method: Fixed-effects regression
                                              Number of groups =
                                                                        12
                                                                     73.71
Group variable (i): country
                                              F(32, 11) =
maximum lag: 2
                                               Prob > F
                                                                =
                                                                     0.0000
                                               within R-squared =
                                                                     0.7717
                                    _____
                        Drisc/Kraay
  |
lnfdiflow |
                 Coef. Std. Err.
                                       t P>|t|
                                                      [95% Conf. Interval]
  lnsecedu | -.4633169 1.664913 -0.28 0.786 -4.127765
lntertedu | -.7689391 1.095653 -0.70 0.497 -3.180455
                                                                 3.201132
                                                                  1.642577
                                    0.02 0.985
    lnwage | .0142601 .7397215
                                                      -1.613856
                                                                 1.642376
              .5475273 1.018364
-.3932786 .6477473
                                     0.54 0.602
-0.61 0.556
   lllnwage |
                                                      -1.693877
                                                                  2.788931
                                                      -1.818961
                                                                  1.032404
   121nwage |
              .3805829 .8062184
-.5564767 1.656194
                                      0.47 0.646
-0.34 0.743
      lngdp |
                                                      -1.393892
                                                                  2.155058
    lllngdp |
                                                      -4.201736
                                                                   3.088782
                                     -0.29 0.776
    121ngdp | -.229746 .7879839
                                                      -1.964087
                                                                  1.504595
                                                      -5.792846
lntransition |
               1.55692 3.339307
                                      0.47
                                             0.650
                                                                  8,906685
                                     -0.96 0.358
lntradefree |
              -.4707713
                          .4911897
                                                      -1.551872
                                                                   .6103298
 lneconfree | 1.155114 1.172786
                                     0.98 0.346
                                                      -1.42617
                                                                  3.736398
 lnictinfra | -.0536539
                          .2306969
                                     -0.23
                                             0.820
                                                      -.5614144
                                                                  .4541066
```

1.57 0.145

0.02 0.984

lnprimexport | .2395144 .1526793 llnprimex~t | .0042075 .2109392

.5755592

.4684815

-.0965304

-.4600665

121nprimex~t		1572141	.2949864	-0.53	0.605	8064748	.4920465
lnforbank		.2231828	.1454572	1.53	0.153	0969663	.543332
privatisat~n		.4472416	.1291914	3.46	0.005	.1628932	.73159
instability	i	6138362	.4778674	-1.28	0.225	-1.665615	.4379428
d2008	i	(omitted)					
d2007		.0064849	.124471	0.05	0.959	2674739	.2804437
d2006		5640997	.2129543	-2.65	0.023	-1.032809	0953906
d2005	1	9721877	.282827	-3.44	0.006	-1.594686	3496897
d2004	1	-1.432818	.3228847	-4.44	0.001	-2.143483	7221538
d2003		-1.795112	.3183692	-5.64	0.000	-2.495838	-1.094386
d2002		-1.713854	.3914926	-4.38	0.001	-2.575523	8521845
d2001		-1.878182	.4321582	-4.35	0.001	-2.829356	9270081
d2000		-2.099616	.4937456	-4.25	0.001	-3.186342	-1.012889
d1999		-2.16905	.500257	-4.34	0.001	-3.270108	-1.067992
d1998		-1.961531	.478901	-4.10	0.002	-3.015585	9074765
d1997	1	-2.118311	.5183656	-4.09	0.002	-3.259226	9773961
d1996		(omitted)					
d1995	1	(omitted)					
_cons		16.36289	13.60602	1.20	0.254	-13.58376	46.30955

Appendix 5.4: Initial specifications

**secedu only

. xtfevd lnfdiflow lnsecedu lngdp lntransition lntradefree lneconfree lnforbank privatisation
instability d2008 d
> 2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, invariant (lnsecedu

2007 d2008 d2003 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1998 d1996, invariant (insecedu lngdp)

panel fixed effects regression with vector decomposition

degrees of freedom fevd mean squared error	= 128 = .1859815	number of obs F(23, 128)	= 161 = 40.02397
root mean squared error	= .4312557	Prob > F	= 4.00e - 46
Residual Sum of Squares	= 29.94302	R-squared	= .915896
Estimation Sum of Squares	= 326.0809	adj. K-Squared	= .09407

lnfdiflow		Coef.	fevd Std. Err.	t	P> t	[95% Conf.	Interval]
Intransition	i	5.356397	2.838508	1.89	0.061	2600758	10.97287
lntradefree	Ť.	478568	.7498234	-0.64	0.524	-1.962222	1.005086
lneconfree		1.015615	1.287807	0.79	0.432	-1.532531	3.56376
lnforbank		.3331903	.2577847	1.29	0.199	1768807	.8432613
privatisat~n		.3967238	.1131736	3.51	0.001	.1727905	.6206572
instability		6373658	.3515562	-1.81	0.072	-1.33298	.0582482
d2008		1.158198	.5669942	2.04	0.043	.0363029	2.280093
d2007		1.187937	.5538793	2.14	0.034	.0919922	2.283882
d2006		.6576642	.5563393	1.18	0.239	4431482	1.758476
d2005		.3509573	.5413783	0.65	0.518	7202522	1.422167
d2004		.0131117	.5339007	0.02	0.980	-1.043302	1.069525
d2003		367296	.5184643	-0.71	0.480	-1.393166	.6585743
d2002		3132066	.5018079	-0.62	0.534	-1.306119	.679706
d2001		4494045	.4794552	-0.94	0.350	-1.398088	.4992794
d2000		5379365	.4530832	-1.19	0.237	-1.434439	.358566
d1999		4731643	.4234959	-1.12	0.266	-1.311123	.3647946
d1998		178981	.3987864	-0.45	0.654	968048	.610086
d1997		240217	.3886696	-0.62	0.538	-1.009266	.5288321
d1996		2047121	.354228	-0.58	0.564	9056127	.4961885
lnsecedu		6129995	.5792951	-1.06	0.292	-1.759234	.5332349
lngdp		.5260324	.2071689	2.54	0.012	.1161134	.9359514
eta		1					
_cons		-11.71173	6.559518	-1.79	0.077	-24.69085	1.2674

**tertedu only

. xtfevd lnfdiflow lntertedu lngdp lntransition lntradefree lneconfree lnforbank
privatisation instability d2008
> d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, invariant
(lntertedu lngdp)

degrees of freedom fevd	=	128	number of obs	=	161
mean squared error	=	.1841164	F(23, 128)	=	41.8006
root mean squared error	=	.4290879	Prob > F	=	3.75e-47
Residual Sum of Squares	=	29.64274	R-squared	=	.9167395
Total Sum of Squares	=	356.0239	adj. R-squared	=	.8959243
Estimation Sum of Squares	=	326.3812			

lnfdiflow		Coef.	fevd Std. Err.	t	P> t	[95% Conf.	Interval]
lntransition	i.	5.065456	3.595322	1.41	0.161	-2.048502	12.17941
lntradefree		5005262	.806716	-0.62	0.536	-2.096752	1.095699
lneconfree		1.13442	1.347584	0.84	0.401	-1.532005	3.800845
lnforbank		.3355226	.2758931	1.22	0.226	210379	.8814243
privatisat~n		.4033676	.1111797	3.63	0.000	.1833795	.6233557
instability		6161357	.3552252	-1.73	0.085	-1.31901	.0867382
d2008		1.335864	.6992319	1.91	0.058	0476862	2.719413
d2007		1.345936	.6947224	1.94	0.055	0286913	2.720562
d2006		.7925446	.7005531	1.13	0.260	5936194	2.178709
d2005		.4660706	.6830944	0.68	0.496	8855484	1.81769
d2004		.1092848	.6674859	0.16	0.870	-1.21145	1.43002
d2003		281251	.6482182	-0.43	0.665	-1.563862	1.001359
d2002		2395973	.6532853	-0.37	0.714	-1.532234	1.053039
d2001		3929505	.6302668	-0.62	0.534	-1.640041	.8541401
d2000		5001761	.5962179	-0.84	0.403	-1.679895	.6795429
d1999		4459966	.5414495	-0.82	0.412	-1.517347	.6253537
d1998		1587937	.4921586	-0.32	0.747	-1.132614	.8150261
d1997		2307012	.4491689	-0.51	0.608	-1.119459	.6580561
d1996		2021054	.378378	-0.53	0.594	9507909	.5465801
lntertedu		6255987	.6939644	-0.90	0.369	-1.998726	.7475284
lngdp		.5463153	.2313063	2.36	0.020	.0886363	1.003994
eta		1					
_cons		-13.42047	7.102442	-1.89	0.061	-27.47386	.6329281

*cognitive only
. xtfevd lnfdiflow lncognitive lngdp lntransition lntradefree lneconfree lnforbank
privatisation instability d2008
> d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, invariant (lncognitive lngdp)

degrees of freedom fevd	=	122	number of obs	=	155
mean squared error	=	.1880317	F(23, 122)	=	30.6598
root mean squared error	=	.4336263	Prob > F	=	7.50e-39
Residual Sum of Squares	=	29.14492	R-squared	=	.9214037
Total Sum of Squares	=	370.8179	adj. R-squared	=	.9007883
Estimation Sum of Squares	=	341.673			

			fevd				
lnfdiflow		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Intransition		4.420685	2.77026	1.60	0.113	-1.063323	9.904692
lntradefree		5043205	.7520113	-0.67	0.504	-1.993002	.9843609
lneconfree		1.210238	.9384561	1.29	0.200	6475295	3.068006
lnforbank		.5441142	.2715376	2.00	0.047	.0065785	1.08165
privatisat~n		.3975968	.1168695	3.40	0.001	.166242	.6289515
instability		6800063	.3900897	-1.74	0.084	-1.452228	.0922151
d2008		1.014567	.7590072	1.34	0.184	4879638	2.517097
d2007		1.09521	.7335244	1.49	0.138	3568747	2.547295
d2006		.5016368	.6599598	0.76	0.449	8048195	1.808093
d2005		.1811519	.6345775	0.29	0.776	-1.075058	1.437361
d2004		0460169	.5843823	-0.08	0.937	-1.20286	1.110826
d2003		4827314	.5740631	-0.84	0.402	-1.619147	.6536838
d2002		3936693	.5508646	-0.71	0.476	-1.484161	.6968222
d2001		5339357	.5359303	-1.00	0.321	-1.594863	.5269919
d2000		6044857	.479996	-1.26	0.210	-1.554686	.3457143
d1999		5693758	.4374754	-1.30	0.196	-1.435402	.2966504
d1998		2373199	.3972763	-0.60	0.551	-1.023768	.5491283
d1997		2181913	.3901967	-0.56	0.577	9906246	.554242
d1996		268626	.3159214	-0.85	0.397	894024	.356772
lncognitive		3461962	3.173119	-0.11	0.913	-6.627702	5.935309
lngdp		.6299125	.1497804	4.21	0.000	.3334073	.9264177
éta		1					
_cons		-15.36924	5.660174	-2.72	0.008	-26.57411	-4.164356

*top only
. xtfevd lnfdiflow lntop lngdp lntransition lntradefree lneconfree lnforbank privatisation
instability d2008 d200

> 7 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, invariant (lntop lngdp)

degrees of freedom fevd	=	122	number of obs	=	155
mean squared error	=	.1880317	F(23, 122)	=	29.82651
root mean squared error	=	.4336263	Prob > F	=	2.95e-38
Residual Sum of Squares	=	29.14492	R-squared	=	.9214037
Total Sum of Squares	=	370.8179	adj. R-squared	=	.9007883
Estimation Sum of Squares	=	341.673			

lnfdiflow	 	Coef.	fevd Std. Err.	t	P> t	[95% Conf.	. Interval]
Intransition	+-	4.420685	2.627052	1.68	0.095	7798279	9.621197
lntradefree		5043205	.743656	-0.68	0.499	-1.976462	.9678207
lneconfree		1.210238	.9346493	1.29	0.198	6399935	3.06047
lnforbank	L	.5441142	.2667	2.04	0.043	.016155	1.072073
privatisat~n	İ.	.3975968	.1209224	3.29	0.001	.1582188	.6369747
instability		6800063	.3885983	-1.75	0.083	-1.449275	.0892628
d2008		1.014567	.8032543	1.26	0.209	5755553	2.604689
d2007		1.09521	.771542	1.42	0.158	4321344	2.622555
d2006		.5016368	.6960984	0.72	0.473	8763594	1.879633
d2005		.1811519	.6699516	0.27	0.787	-1.145084	1.507388
d2004	L	0460169	.6159515	-0.07	0.941	-1.265354	1.173321
d2003	1	4827314	.609894	-0.79	0.430	-1.690077	.7246147
d2002	1	3936693	.577182	-0.68	0.496	-1.536259	.7489201
d2001		5339357	.57071	-0.94	0.351	-1.663713	.5958418
d2000		6044857	.5117058	-1.18	0.240	-1.617458	.4084871
d1999	L	5693759	.4676003	-1.22	0.226	-1.495037	.3562856
d1998	L	2373199	.4249205	-0.56	0.578	-1.078492	.6038526
d1997	1	2181913	.4195069	-0.52	0.604	-1.048647	.6122645
d1996	L	268626	.342299	-0.78	0.434	9462411	.408989
lntop	L	.1959804	.4066572	0.48	0.631	609038	1.000999
lngdp	L	.5558178	.1617803	3.44	0.001	.2355575	.8760781
eta	L	1		•			•
_cons		-13.57802	6.843076	-1.98	0.049	-27.12458	0314733

**secede + tertedu + cognitive + top, no controls apart from GDP
. xtfevd lnfdiflow lnsecedu lntertedu lncognitive lntop lngdp d2008 d2007 d2006 d2005 d2004
d2003 d2002 d2001 d200

> 0 d1999 d1998 d1997 d1996, invariant (lnsecedu lntertedu lncognitive lntop lngdp)

degrees of freedom fevd	-	125	number of obs	=	154
mean squared error	=	.2881555	F(20, 125)	=	32.53735
root mean squared error	=	.5368012	Prob > F	=	1.47e-38
Residual Sum of Squares	=	44.37595	R-squared	=	.8786716
Total Sum of Squares	=	365.7506	adj. R-squared	=	.851494
Estimation Sum of Squares	-	321.3747			

	1		fevd				
lnfdiflow		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
d2008	1	2.097962	.4695057	4.47	0.000	1.168752	3.027172
d2007		2.294056	.4358057	5.26	0.000	1.431542	3.156569
d2006		1.967035	.3941124	4.99	0.000	1.187038	2.747032
d2005		1.633203	.367383	4.45	0.000	.9061068	2.3603
d2004		1.477392	.3425538	4.31	0.000	.7994361	2.155349
d2003		.7670785	.3126302	2.45	0.016	.1483447	1.385812
d2002		1.045132	.2850849	3.67	0.000	.4809134	1.60935
d2001		.8366917	.2698381	3.10	0.002	.3026487	1.370735
d2000		.7885345	.2610243	3.02	0.003	.271935	1.305134
d1999		.458696	.2590832	1.77	0.079	0540619	.9714538
d1998		.6375934	.2568383	2.48	0.014	.1292784	1.145908
d1997		.3328475	.253222	1.31	0.191	1683102	.8340053
d1996		1188265	.2525382	-0.47	0.639	618631	.380978
lnsecedu	I	.5007416	.4755116	1.05	0.294	4403549	1.441838
lntertedu		.1693764	.4980866	0.34	0.734	8163988	1.155152
lncognitive		-7.964224	4.635011	-1.72	0.088	-17.13749	1.209037
lntop	I	1.509943	.5486668	2.75	0.007	.4240628	2.595822
lngdp		.6325433	.1871594	3.38	0.001	.2621317	1.002955
eta		1					
_cons		5.314719	9.243507	0.57	0.566	-12.97933	23.60877

Appendix 5.5: Testing down procedure

*Start from the baseline regression

. xtscc lnfdiflow lnsecedu lntertedu lnwage l1lnwage l2lnwage lngdp l1lngdp l2lngdp Intransition Intradefree lnec

> onfree lnictinfra lnprimexport lllnprimexport l2lnprimexport lnforbank privatisation instability d2008 d2007 d20

> 06 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe

Regression with Driscoll-Kraay standard errors	Number of obs	=	143
Method: Fixed-effects regression	Number of groups	=	12
Group variable (i): country	F(32, 11)	=	73.71
maximum lag: 2	Prob > F	=	0.0000
	within R-squared	=	0.7717

lnfdiflow	 +-	Coef.	Drisc/Kraay Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu	i	4633169	1.664913	-0.28	0.786	-4.127765	3.201132
lntertedu	1	7689391	1.095653	-0.70	0.497	-3.180455	1.642577
lnwage	1	.0142601	.7397215	0.02	0.985	-1.613856	1.642376
lllnwage	1	.5475273	1.018364	0.54	0.602	-1.693877	2.788931
121nwage	1	3932786	.6477473	-0.61	0.556	-1.818961	1.032404
lngdp	1	.3805829	.8062184	0.47	0.646	-1.393892	2.155058
lllngdp	1	5564767	1.656194	-0.34	0.743	-4.201736	3.088782
121ngdp	1	229746	.7879839	-0.29	0.776	-1.964087	1.504595
lntransition	1	1.55692	3.339307	0.47	0.650	-5.792846	8.906685
lntradefree		4707713	.4911897	-0.96	0.358	-1.551872	.6103298
lneconfree	1	1.155114	1.172786	0.98	0.346	-1.42617	3.736398
lnictinfra	1	0536539	.2306969	-0.23	0.820	5614144	.4541066
lnprimexport		.2395144	.1526793	1.57	0.145	0965304	.5755592
lllnprimex~t		.0042075	.2109392	0.02	0.984	4600665	.4684815
121nprimex~t		1572141	.2949864	-0.53	0.605	8064748	.4920465
lnforbank		.2231828	.1454572	1.53	0.153	0969663	.543332
privatisat~n		.4472416	.1291914	3.46	0.005	.1628932	.73159
instability		6138362	.4778674	-1.28	0.225	-1.665615	.4379428
d2008		(omitted)					
d2007	1	.0064849	.124471	0.05	0.959	2674739	.2804437
d2006	1	5640997	.2129543	-2.65	0.023	-1.032809	0953906
d2005		9721877	.282827	-3.44	0.006	-1.594686	3496897
d2004		-1.432818	.3228847	-4.44	0.001	-2.143483	7221538
d2003	1	-1.795112	.3183692	-5.64	0.000	-2.495838	-1.094386
d2002	1	-1.713854	.3914926	-4.38	0.001	-2.575523	8521845
d2001		-1.878182	.4321582	-4.35	0.001	-2.829356	9270081
d2000		-2.099616	.4937456	-4.25	0.001	-3.186342	-1.012889
d1999		-2.16905	.500257	-4.34	0.001	-3.270108	-1.067992
d1998		-1.961531	.478901	-4.10	0.002	-3.015585	9074765
d1997	1	-2.118311	.5183656	-4.09	0.002	-3.259226	9773961
d1996	1	(omitted)					
d1995	1	(omitted)					
_cons		16.36289	13.60602	1.20	0.254	-13.58376	46.30955

•

**testing down
. test lnprimexport=l1lnprimexport=l2lnprimexport=0

(1) lnprimexport - lllnprimexport = 0
(2) lnprimexport - l2lnprimexport = 0
(3) lnprimexport = 0

- - F(3, 11) = 1.04 Prob > F = 0.4111

. *lnprimexport lllnprimexport l2lnprimexport dropped

. xtscc lnfdiflow lnsecedu lntertedu lngdp lnwage l1lnwage l2lnwage l1lngdp l2lngdp > nrested interition instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d199 > 9 d1998 d1997 d1996 d1995, fe

Regression with Driscoll-Kraay standard errors	Number	of obs	=	143
Method: Fixed-effects regression	Number	of groups	=	12
Group variable (i): country	F(29,	11)	=	76.03
maximum lag: 2	Prob >	F	=	0.0000
	within	R-squared	=	0.7696

lnfdiflow	 	Coef.	Drisc/Kraay Std. Err.	t		[95% Conf.	Interval]
lnsecedu	+-	3771131	1.637528	-0.23	0.822	-3.981289	3.227062
lntertedu	i.	-1.048645	.9799451	-1.07	0.307	-3.205489	1.1082
lngdp	Ì.	.324391	.7648338	0.42	0.680	-1.358997	2.007779
lnwage	Ì.	0485696	.652992	-0.07	0.942	-1.485795	1.388656
lllnwage		.563708	.9827377	0.57	0.578	-1.599283	2.726699
121nwage		3653256	.618266	-0.59	0.567	-1.72612	.9954687
lllngdp		5844466	1.591709	-0.37	0.720	-4.087776	2.918882
121ngdp		059768	.7691966	-0.08	0.939	-1.752758	1.633222
lntransition		.9692884	2.555835	0.38	0.712	-4.656065	6.594642
lntradefree		4802472	.4999409	-0.96	0.357	-1.58061	.6201154
lneconfree		1.151382	1.028574	1.12	0.287	-1.112495	3.415258
lnictinfra		.0653135	.2123113	0.31	0.764	4019807	.5326076
lnforbank		.2539841	.1431212	1.77	0.104	0610236	.5689917
privatisat~n		.4368253	.1161576	3.76	0.003	.1811642	.6924865
instability		4896169	.3608577	-1.36	0.202	-1.283859	.3046255
d2008		(omitted)					
d2007		.0103053	.1117826	0.09	0.928	2357265	.2563371
d2006		5091337	.1957218	-2.60	0.025	9399144	0783529
d2005		8947227	.2546995	-3.51	0.005	-1.455312	3341329
d2004		-1.369949	.3159297	-4.34	0.001	-2.065306	6745928
d2003		-1.783363	.3296874	-5.41	0.000	-2.509	-1.057726
d2002		-1.708304	.3904971	-4.37	0.001	-2.567782	8488258
d2001		-1.851164	.433241	-4.27	0.001	-2.804721	8976067
d2000		-2.028246	.4816067	-4.21	0.001	-3.088255	9682363
d1999		-2.129266	.4927161	-4.32	0.001	-3.213726	-1.044805
d1998		-1.920149	.491798	-3.90	0.002	-3.002589	8377086
d1997		-2.043494	.5399295	-3.78	0.003	-3.231871	8551171
d1996		(omitted)					
d1995		(omitted)					
_cons		14.70304	15.14035	0.97	0.352	-18.62064	48.02672

. test lnwage=l1lnwage=l2lnwage=0

(1) lnwage - l1lnwage = 0 (2) lnwage - l2lnwage = 0 (3) lnwage = 0

F(3, 11) = 0.17Prob > F = 0.9134

. *lnwage l1lnwage l2lnwage dropped

. xtscc lnfdiflow lnsecedu lntertedu lngdp lllngdp lllngdp lntransition lntradefree lneconfree lnictinfra lnforba > nk privatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995 > , fe

12

143 Regression with Driscoll-Kraay standard errors Number of obs = Method: Fixed-effects regression Number of groups = F(26, 11) = Prob > F = 209.98 Group variable (i): country 0.0000 maximum lag: 2 within R-squared = 0.7692

lnfdiflow		Coef.	Drisc/Kraay Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu		3309616	1.603159	-0.21	0.840	-3.85949	3.197567
lntertedu		-1.132672	.7874712	-1.44	0.178	-2.865884	.6005404
lngdp		.2472936	.5176596	0.48	0.642	8920675	1.386655
lllngdp		.0214622	.80546	0.03	0.979	-1.751343	1.794268
l2lngdp		4380341	.286701	-1.53	0.155	-1.069059	.1929905
lntransition		.8194406	3.112823	0.26	0.797	-6.031836	7.670717
lntradefree		4831496	.4762856	-1.01	0.332	-1.531447	.5651481
lneconfree		1.134157	1.016109	1.12	0.288	-1.102284	3.370598
lnictinfra		.0944659	.1985089	0.48	0.643	3424493	.5313811
lnforbank		.2623754	.1253009	2.09	0.060	01341	.5381609
privatisat~n		.4433493	.1075314	4.12	0.002	.2066742	.6800244
instability		4674504	.3148991	-1.48	0.166	-1.160539	.2256378
d2008		(omitted)					
d2007		.0054516	.1086993	0.05	0.961	2337938	.2446971
d2006		5159944	.1759227	-2.93	0.014	9031976	1287912
d2005		9051766	.235617	-3.84	0.003	-1.423766	3865871
d2004		-1.366422	.3247421	-4.21	0.001	-2.081174	6516693
d2003		-1.769301	.3536955	-5.00	0.000	-2.54778	9908225
d2002		-1.69836	.3974846	-4.27	0.001	-2.573218	8235022
d2001		-1.845141	.4109433	-4.49	0.001	-2.749621	9406605
d2000		-1.998279	.4504739	-4.44	0.001	-2.989766	-1.006793
d1999		-2.113392	.4201567	-5.03	0.000	-3.038151	-1.188634
d1998		-1.903464	.3977942	-4.79	0.001	-2.779003	-1.027924
d1997		-2.022921	.4160453	-4.86	0.001	-2.938631	-1.107212
d1996		(omitted)					
d1995		(omitted)					
_cons	I	12.08992	12.2683	0.99	0.346	-14.91242	39.09226

. test lllngdp=l2lngdp=0

(1) lllngdp - l2lngdp = 0 (2) lllngdp = 0 F(2, 11) = 1.47 Prob > F = 0.2708

. *lllngdp l2lngdp dropped

•

. xtscc lnfdiflow lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnictinfra lnforbank privatisation > instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996

d1995, fe

Regression with Driscoll-Kraay standard errors	Number of	obs	=	161
Method: Fixed-effects regression	Number of	groups	=	12
Group variable (i): country	F(24,	11)	=	2221.09
maximum lag: 2	Prob > F		=	0.0000
	within R-s	quared	=	0.7972

lnfdiflow	 	Coef.	Drisc/Kraay Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu		2985031	1.361085	-0.22	0.830	-3.294231	2.697225
lntertedu		7683703	.6483295	-1.19	0.261	-2.195334	.6585934
lngdp		2121493	.4060959	-0.52	0.612	-1.10596	.6816617
lntransition		5.033338	1.938876	2.60	0.025	.7659012	9.300775
lntradefree		489566	.3964931	-1.23	0.243	-1.362241	.3831093
lneconfree		1.118148	.7603085	1.47	0.169	55528	2.791576
lnictinfra		0551046	.1183415	-0.47	0.651	3155725	.2053633
lnforbank		.329932	.1262097	2.61	0.024	.0521463	.6077177
privatisat~n		.4057775	.1073731	3.78	0.003	.169451	.642104
instability		649036	.1269566	-5.11	0.000	9284655	3696064
d2008		(omitted)					
d2007		.0074095	.0499144	0.15	0.885	1024514	.1172704
d2006		546573	.1235574	-4.42	0.001	818521	274625
d2005		8787819	.1528978	-5.75	0.000	-1.215308	5422562
d2004		-1.244921	.204825	-6.08	0.000	-1.695738	7941043
d2003		-1.64187	.2096546	-7.83	0.000	-2.103316	-1.180423
d2002		-1.607321	.267084	-6.02	0.000	-2.195169	-1.019473
d2001		-1.774218	.2976082	-5.96	0.000	-2.429249	-1.119187
d2000		-1.902729	.3384812	-5.62	0.000	-2.647721	-1.157737
d1999		-1.86489	.3498803	-5.33	0.000	-2.634971	-1.094808
d1998		-1.593711	.375671	-4.24	0.001	-2.420557	7668642
d1997		-1.674576	.3944981	-4.24	0.001	-2.542861	8062918
d1996		-1.66505	.4245808	-3.92	0.002	-2.599546	7305538
d1995		-1.48374	.4937553	-3.01	0.012	-2.570489	3969923
_cons		7.931019	6.957071	1.14	0.279	-7.381392	23.24343

*ictinfra dropped

**BASELINE REGRESSION:

. xtscc lnfdiflow lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank

privatisation instability > d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe

Regression with Driscoll-Kraay standard errors	Number	of c	obs	=	161
Method: Fixed-effects regression	Number	of g	groups	=	12
Group variable (i): country	F(23,	1	11)	=	13218.83
maximum lag: 2	Prob >	F		=	0.0000
	within	R-sc	quared	=	0.7971

lnfdiflow		Coef.	Drisc/Kraay Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu		1197061	1.188927	-0.10	0.922	-2.736518	2.497106
lntertedu		7697577	.648464	-1.19	0.260	-2.197017	.657502
lngdp		2470292	.3654323	-0.68	0.513	-1.05134	.5572819
lntransition		5.076224	1.94496	2.61	0.024	.7953961	9.357051
lntradefree		4964094	.3841643	-1.29	0.223	-1.341949	.3491304
lneconfree		1.12866	.7650754	1.48	0.168	5552597	2.81258
lnforbank		.3345589	.1307638	2.56	0.027	.0467497	.6223682
privatisat~n		.4026688	.1105342	3.64	0.004	.1593847	.6459529
instability		6108348	.1382	-4.42	0.001	915011	3066586
d2008		(omitted)					
d2007		.0092618	.0514554	0.18	0.860	1039908	.1225144
d2006		5447139	.1258323	-4.33	0.001	8216689	2677589
d2005		8722318	.1590181	-5.49	0.000	-1.222228	5222354
d2004		-1.230521	.2175621	-5.66	0.000	-1.709372	7516701
d2003		-1.623655	.2215913	-7.33	0.000	-2.111374	-1.135935
d2002		-1.584403	.2808361	-5.64	0.000	-2.202519	9662868
d2001		-1.739983	.3126275	-5.57	0.000	-2.428072	-1.051895
d2000		-1.849178	.3538286	-5.23	0.000	-2.62795	-1.070407
d1999		-1.797017	.3549371	-5.06	0.000	-2.578228	-1.015806
d1998		-1.511477	.3687633	-4.10	0.002	-2.323119	6998343
d1997		-1.584419	.3918259	-4.04	0.002	-2.446822	7220159
d1996		-1.557279	.3980971	-3.91	0.002	-2.433484	6810728
d1995		-1.355782	.4460091	-3.04	0.011	-2.337441	3741225
_cons		7.77193	7.102661	1.09	0.297	-7.860922	23.40478

. **variance inflation factor (VIF)

. qui reg lnfdiflow lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank privatisation instabili

> ty d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995

. estat vif

Variable		VIF	1/VIF
Intransition Ineconfree Ingdp d1996		6.40 3.44 3.28 2.86	0.156161 0.291059 0.304814 0.349518
d1997 d1998		2.46	0.405694
d1999 d2000		2.28	0.438047
lntradefree d2004		2.23 2.21	0.449385
lntertedu d2003		2.14 2.12	0.468111 0.471924
d2001 d2002		2.11 2.09	0.474180 0.478514
d1995 lnsecedu		2.05 2.00	0.487948 0.500857
d2005 d2006		1.99 1.95	0.501346
d2007 lnforbank		1.87	0.534935
privatisat~n		1.35	0.743016
Mean VIF	:	2.39	

. *multicollinearity significantly reduced after testing down

Appendix 5.6: Model 5.1 results

d1995 | -1.355782

_cons | 7.77193 7.102661

.4460091

. **parsimonious 5.1 model, baseline model . **Driscoll-Kraay FE . xtscc lnfdiflow lnsecedu lntertedu lnqdp lntransition lntradefree lneconfree lnforbank privatisation instability · d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe Regression with Driscoll-Kraay standard errors Number of obs 161 = Method: Fixed-effects regression Number of groups = 12 F(23, 11) = 13218.83Group variable (i): country maximum lag: 2 Prob > F = 0.0000 within R-squared = 0.7971 _____ 1 Drisc/Kraay lnfdiflow | Coef. Std. Err. [95% Conf. Interval] t P>|t| ______ lnsecedu | -.1197061 1.188927 -0.10 0.922 -2.736518 lntertedu | -.7697577 .648464 -1.19 0.260 -2.197017 2.497106 lntertedu | -.7697577 .648464 .657502 -0.68 0.513 lngdp | -.2470292 .3654323 -1.05134 .5572819 2.61 0.024 -1.29 0.223 Intransition | 5.076224 1.94496 .7953961 9.357051 -.4964094 .3841643 lntradefree | -1.341949 .3491304 1.480.168-.55525972.560.027.04674973.640.004.1593847 lneconfree | 1.12866 .7650754 2.81258 .3345589 .1307638 .4026688 .1105342 lnforbank | .6223682 .6459529 privatisat~n | -.915011 instability | -.6108348 .1382 -4.42 0.001 -.3066586 d2008 | (omitted) .1225144 d2007 | .0092618 .0514554 0.18 0.860 -.1039908 -4.33 0.001 -5.49 0.000 d2006 | -.5447139 .1258323 -.8216689 -.2677589 .1590181 d2005 | -.8722318 -1.222228 -.5222354 .2175621 -5.66 0.000 -7.33 0.000 -1.709372 d2004 | -1.230521 -.7516701 .2215913 d2003 | -1.623655 -2.111374 -1.135935 d2002 | -1.584403 .2808361 -5.64 0.000 -2.202519 -.9662868 d2001 | -1.739983 .3126275 0.000 -2.428072 -5.57 -1.051895 -5.23 0.000 -1.849178 .3538286 d2000 L -2.62795 -1.070407d1999 | -1.797017 .3549371 -5.06 0.000 -2.578228 -1.015806 d1998 | -1.511477 .3687633 -4.10 0.002 -2.323119 -.6998343 -4.04 0.002 d1997 | -1.584419 .3918259 -2.446822 -.7220159 .3980971 -3.91 0.002 -3.04 0.011 d1996 | -1.557279

-2.433484

-2.337441

1.09 0.297 -7.860922

-.6810728

-.3741225

23.40478

. **FEVD . xtfevd lnfdiflow lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank privatisation instabilit > y d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, invariant (lnsecedu lntertedu l > ngdp)

panel fixed effects regression with vector decomposition

•

degrees of freedom fevd	=	127	number of obs	=	161
mean squared error	=	.1841029	F(24, 127)	=	39.97923
root mean squared error	=	.4290721	Prob > F	=	1.45e-46
Residual Sum of Squares	=	29.64056	R-squared	=	.9167456
Total Sum of Squares	=	356.0239	adj. R-squared	=	.8951125
Estimation Sum of Squares	=	326.3834			

lnfdiflow	 	Coef.	fevd Std. Err.	t	P> t	[95% Conf.	Interval]
Intransition	i	5.076224	3.278408	1.55	0.124	-1.411155	11.5636
lntradefree		4964095	.7327268	-0.68	0.499	-1.946344	.9535247
lneconfree		1.12866	1.314091	0.86	0.392	-1.47169	3.72901
lnforbank		.3345589	.2738955	1.22	0.224	2074309	.8765488
privatisat~n		.4026688	.112055	3.59	0.000	.1809321	.6244055
instability		6108348	.354684	-1.72	0.087	-1.31269	.0910208
d2008		1.355782	.5825829	2.33	0.022	.2029554	2.508608
d2007		1.365044	.5740508	2.38	0.019	.2291008	2.500987
d2006		.811068	.5842918	1.39	0.168	34514	1.967276
d2005		.4835501	.5761841	0.84	0.403	6566143	1.623714
d2004		.1252609	.5700484	0.22	0.826	-1.002762	1.253284
d2003		2678727	.5585404	-0.48	0.632	-1.373123	.837378
d2002		2286209	.5498479	-0.42	0.678	-1.316671	.8594289
d2001		3842013	.5272514	-0.73	0.468	-1.427537	.6591341
d2000		4933962	.5003166	-0.99	0.326	-1.483432	.49664
d1999		4412351	.4712571	-0.94	0.351	-1.373768	.4912976
d1998		1556949	.437597	-0.36	0.723	-1.02162	.7102306
d1997		228637	.4228525	-0.54	0.590	-1.065386	.6081117
d1996		2014967	.3751049	-0.54	0.592	9437616	.5407683
lnsecedu		3287548	.5359311	-0.61	0.541	-1.389266	.731756
lntertedu		4923385	.5830922	-0.84	0.400	-1.646173	.6614959
lngdp		.5307859	.2260036	2.35	0.020	.0835655	.9780063
eta		1					
_cons		-12.08435	6.509716	-1.86	0.066	-24.96591	.7971988

**baseline model robustness checks
 **panel-robust FE

. xtreg lnfdiflow lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank privatisation instability > d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, fe

robust

note: d1995 omitted because of collinearity

Fixed-effects (within) regression	Number of obs	=	161
Group variable: country	Number of groups	=	12
R-sq: within = 0.7971 between = 0.0969 overall = 0.3720	Obs per group: min avg max	= = 1 =	11 .3.4 14
corr(u_i, Xb) = -0.0025	F(11,11) Prob > F	=	•

(Std. Err. adjusted for 12 clusters in country)

lnfdiflow		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu	1	1197061	1.370948	-0.09	0.932	-3.137142	2.89773
lntertedu	1	7697577	1.069552	-0.72	0.487	-3.123826	1.58431
lngdp	İ.	2470292	.5498437	-0.45	0.662	-1.457227	.9631686
lntransition	1	5.076224	1.960386	2.59	0.025	.7614422	9.391005
lntradefree	1	4964094	.433271	-1.15	0.276	-1.450032	.4572136
lneconfree	1	1.12866	.9192933	1.23	0.245	8946909	3.152011
lnforbank	1	.3345589	.1684206	1.99	0.072	0361322	.7052501
privatisat~n	1	.4026688	.0885954	4.55	0.001	.2076716	.5976661
instability	1	6108348	.2186769	-2.79	0.017	-1.092139	1295301
d2008	1	1.355782	1.270149	1.07	0.309	-1.439798	4.151362
d2007	1	1.365044	1.177778	1.16	0.271	-1.227228	3.957316
d2006	1	.811068	.9095068	0.89	0.392	-1.190743	2.812879
d2005	1	.4835501	.8271486	0.58	0.571	-1.336992	2.304092
d2004	1	.1252609	.6568525	0.19	0.852	-1.320462	1.570984
d2003	1	2678727	.5357853	-0.50	0.627	-1.447128	.9113829
d2002	1	2286209	.540008	-0.42	0.680	-1.41717	.9599287
d2001		3842012	.4602437	-0.83	0.422	-1.397191	.6287883
d2000	1	4933962	.3408151	-1.45	0.176	-1.243525	.2567328
d1999	1	4412351	.3876759	-1.14	0.279	-1.294504	.4120338
d1998	1	1556949	.3731024	-0.42	0.684	9768877	.665498
d1997	1	228637	.3768698	-0.61	0.556	-1.058122	.6008479
d1996	1	2014967	.2855653	-0.71	0.495	8300217	.4270284
d1995	1	(omitted)					
_cons		6.416148	12.59179	0.51	0.620	-21.2982	34.1305
sigma_u sigma_e rho	 	1.1338305 .48310483 .84634882	(fraction	of variar	nce due t		

. **two-way cluster-robust FE (clusters: country & year), small-sample adjustment

. xtivreg2 lnfdiflow lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank privatisation instability d20 $\,$

> 08 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, fe cluster(country year) small

Warning: estimated covariance matrix of moment conditions not of full rank. standard errors and model tests should be interpreted with caution.

Possible causes:

number of clusters insufficient to calculate robust covariance matrix singleton dummy variable (dummy with one 1 and N-1 0s or vice versa) partial option may address problem.

FIXED EFFECTS ESTIMATION

Number of groups =	12	Obs per group: min	= 11
		avg	= 13.4
		max	= 14

OLS estimation

Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and clustering on country and year

Number of clust Number of clust Total (centered Total (uncenter	ters (country ters (year) = d) SS = red) SS =	y) = 12 = 14 146.0739744 146.0739744			Number of obs F(22, 11) Prob > F Centered R2 Uncentered R2	$= 161 \\ = 11.17 \\ = 0.0001 \\ = 0.7971 \\ = 0.7971$
Residual SS	=	29.64056556			Root MSE	= .4831
 lnfdiflow	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu	1197061	1.541854	-0.08	0.940	-3.513305	3.273892
lntertedu	7697577	1.100132	-0.70	0.499	-3.191132	1.651617
lngdp	2470292	.500921	-0.49	0.632	-1.349549	.8554904
lntransition	5.076224	2.060217	2.46	0.031	.5417168	9.61073
lntradefree	4964094	.4291283	-1.16	0.272	-1.440914	.4480955
lneconfree	1.12866	.879382	1.28	0.226	8068468	3.064167
lnforbank	.3345589	.2012192	1.66	0.125	1083216	.7774394
privatisat~n	.4026688	.1096154	3.67	0.004	.161407	.6439307
instability	6108348	.2247348	-2.72	0.020	-1.105473	1161968
d2008	1.355782	.9164258	1.48	0.167	6612576	3.372821
d2007	1.365044	.868219	1.57	0.144	5458934	3.275981
d2006	.811068	.6489852	1.25	0.237	6173387	2.239475
d2005	.4835501	.5869892	0.82	0.428	8084045	1.775505
d2004	.1252609	.3957253	0.32	0.758	7457247	.9962465
d2003	2678727	.3002555	-0.89	0.391	9287305	.3929852
d2002	2286209	.3365222	-0.68	0.511	9693012	.5120595
d2001	3842012	.3030284	-1.2/	0.231	-1.051162	.2827599
d2000	4933962	.0291878	-16.90	0.000	5576382	4291542
d1999	4412351	.2043401	-2.16	0.054	8909846	.0085144
d1998	1556949	.195433	-0.80	0.443	5858401	.2/44503
d1997	228637	.2546274	-0.90	0.388	/890681	.331/942
d1996	201496/	.1402195	-1.44	0.1/9	51011/8	.10/1244
Warning: estima standa Possible causes	ated covarian ard errors an s:	nce matrix of nd model tes	f moment ts should	conditi d be int	ions not of ful terpreted with	l rank. caution.
number	r of cluster:	s insufficie	nt to cal	lculate	robust covaria	nce matrix
single	eton dummy va	ariable (dum	ny with d	one 1 ar	nd N-1 Os or vi	ce versa)
partial option	may address	problem.				
Included instru	uments: lnsed lnecd d2000 d199	cedu lnterte onfree lnfor 6 d2005 d200 7 d1996	du lngdp pank priv 4 d2003 d	lntrans vatisati d2002 d2	sition lntradef ion instability 2001 d2000 d199	ree d2008 d2007 9 d1998

Appendix 5.7: Models 5.2-5.4 results

**model 5.2

. **FEVD . xtfevd lnfdiflow lnsecedu lntertedu lngenvocratio lngdp lntransition lntradefree lneconfree lnforbank privatisat

> ion instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997
d1996, invariant (lnsece
> du Intertedu lngdp lngenvocratio)

degrees of freedom fevd	= 126	number of obs	= 161
mean squared error	= .1841029	F(25, 126)	= 41.14599
root mean squared error	= .4290721	Prob > F	= 1.16e - 47
Residual Sum of Squares	= 29.64056	R-squared	= .9167456
Total Sum of Squares	= 356.0239	adj. R-squared	= .8942801
Estimation Sum of Squares	= 326.3834		

 lnfdiflow	Coef.	fevd Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>lntransition </pre>	5.076224	3.254858	1.56	0.121	-1.365045	11.51749
lntradefree	4964094	.7266036	-0.68	0.496	-1.934337	.9415178
lneconfree	1.12866	1.320899	0.85	0.394	-1.485359	3.742679
lnforbank	.3345589	.267463	1.25	0.213	1947424	.8638603
privatisat~n	.4026688	.1113381	3.62	0.000	.1823341	.6230036
instability	6108347	.3584418	-1.70	0.091	-1.320181	.0985111
d2008	1.355782	.5810615	2.33	0.021	.2058784	2.505685
d2007	1.365044	.5719967	2.39	0.018	.2330791	2.497008
d2006	.811068	.580221	1.40	0.165	3371724	1.959308
d2005	.4835501	.5705436	0.85	0.398	6455389	1.612639
d2004	.1252609	.5636853	0.22	0.825	9902557	1.240777
d2003	2678727	.5498498	-0.49	0.627	-1.356009	.8202638
d2002	2286209	.5404437	-0.42	0.673	-1.298143	.8409013
d2001	3842013	.5179701	-0.74	0.460	-1.409249	.6408463
d2000	4933962	.4940989	-1.00	0.320	-1.471203	.484411
d1999	4412351	.4598204	-0.96	0.339	-1.351206	.468736
d1998	1556949	.4270309	-0.36	0.716	-1.000776	.6893867
d1997	228637	.4073868	-0.56	0.576	-1.034843	.5775695
d1996	2014967	.3542701	-0.57	0.571	9025869	.4995935
lnsecedu	3189886	.5298442	-0.60	0.548	-1.367535	.7295575
lntertedu	428064	.7707516	-0.56	0.580	-1.953359	1.097231
lngdp	.5137274	.2291567	2.24	0.027	.0602329	.9672218
lngenvocra~o	0552107	.3658122	-0.15	0.880	7791422	.6687208
eta	1		•			
cons	-11.88948	6.365258	-1.87	0.064	-24.48614	.7071753

```
. **model 5.3
. **FEVD
. xtfevd lnfdiflow lnsecedu lntertedu lnedutr1 lngdp lntransition lntradefree lneconfree
lnforbank privatisation i
> nstability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996,
invariant (lnsecedu ln
> tertedu lngdp lnedutr1)
```

degrees of freedom fevd	= 126	number of obs	= 161
mean squared error	= .1841029	F(25, 126)	= 36.47658
root mean squared error	= .4290721	Prob > F	= 7.65e-45
Residual Sum of Squares	= 29.64057	R-squared	= .9167456
Total Sum of Squares	= 356.0239	adj. R-squared	= .8942801
Estimation Sum of Squares	= 326.3834		

lnfdiflow		Coef.	fevd Std. Err.	t	P> t	[95% Conf.	Interval]
 Intransition	-+- 	5.076224	2.985388	1.70	0.092		10.98422
lntradefree	i	4964095	.7162338	-0.69	0.490	-1.913815	.9209962
lneconfree	i	1.12866	1.301289	0.87	0.387	-1.446553	3.703873
lnforbank	i	.3345589	.2408748	1.39	0.167	1421252	.811243
privatisat~n	i	.4026688	.1101926	3.65	0.000	.1846009	.6207368
instability	i	6108348	.3530232	-1.73	0.086	-1.309457	.0877877
d2008	i	1.355782	.598041	2.27	0.025	.1722763	2.539288
d2007	i	1.365044	.5817162	2.35	0.021	.2138446	2.516243
d2006	i	.811068	.5789397	1.40	0.164	3346366	1.956773
d2005	İ.	.4835501	.565222	0.86	0.394	6350076	1.602108
d2004	i	.1252609	.5524884	0.23	0.821	9680974	1.218619
d2003	i	2678727	.533324	-0.50	0.616	-1.323305	.7875599
d2002	i	2286209	.5159143	-0.44	0.658	-1.2496	.7923584
d2001	İ.	3842012	.4908528	-0.78	0.435	-1.355584	.587182
d2000	Ì.	4933962	.4693119	-1.05	0.295	-1.422151	.4353583
d1999	i	4412351	.43338	-1.02	0.311	-1.298881	.4164112
d1998	İ.	1556949	.3953311	-0.39	0.694	9380436	.6266538
d1997	İ.	228637	.3784126	-0.60	0.547	9775044	.5202304
d1996	Ì.	2014967	.329943	-0.61	0.542	8544442	.4514508
lnsecedu	i	3645756	.5312595	-0.69	0.494	-1.415922	.6867713
lntertedu	İ.	5740212	.5265747	-1.09	0.278	-1.616097	.4680547
lngdp	İ.	.4251323	.2143216	1.98	0.049	.0009962	.8492684
lnedutr1	Ì.	-1.414284	1.508223	-0.94	0.350	-4.399012	1.570444
eta	Ì	1					
_cons	L	-10.7882	6.206171	-1.74	0.085	-23.07003	1.493633

**model 5.4

. **Driscoll-Kraay FE . xtscc lnfdiflow lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree lneconfree

Inforbank privatisation in
> stability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, fe

Regression with Driscoll-Kraay standard errors	Number	of obs	=	107
Method: Fixed-effects regression	Number	of groups	=	12
Group variable (i): country	F(23,	11)	=	346.66
maximum lag: 2	Prob >	F	=	0.0000
	within	R-squared	=	0.7825

lnfdiflow		Coef.	Drisc/Kraay Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu	1	7990205	1.651207	-0.48	0.638	-4.433302	2.835261
lntertedu		-1.02028	.3865625	-2.64	0.023	-1.871098	1694617
lnedutr2		11.35946	2.786995	4.08	0.002	5.225326	17.49359
lngdp		-1.086931	.4286627	-2.54	0.028	-2.030411	1434509
lntransition		9312099	3.983058	-0.23	0.819	-9.697862	7.835442
lntradefree		4775107	.3679055	-1.30	0.221	-1.287265	.3322438
lneconfree		3184353	1.085194	-0.29	0.775	-2.706931	2.07006
lnforbank		.3335295	.1223288	2.73	0.020	.0642857	.6027734
privatisat~n		.3794268	.1232884	3.08	0.011	.1080709	.6507826
instability		(omitted)					
d2008		(omitted)					
d2007		.5667871	.1631372	3.47	0.005	.2077245	.9258498
d2006		.5958942	.327618	1.82	0.096	1251881	1.316977
d2005		.9514534	.511122	1.86	0.090	1735185	2.076425
d2004		1.564274	.7947424	1.97	0.075	1849424	3.31349
d2003		2.133989	1.025065	2.08	0.062	1221634	4.390141
d2002		3.366952	1.346115	2.50	0.029	.4041736	6.329731
d2001		4.699161	1.731943	2.71	0.020	.8871803	8.511142
d2000		6.312527	2.198298	2.87	0.015	1.474106	11.15095
d1999		(omitted)					
d1998		(omitted)					
d1997		(omitted)					
d1996		(omitted)					
_cons	1	60.62371	9.606906	6.31	0.000	39.47905	81.76837

<pre>**Model 5.4 **panel-robust . xtreg lnfdif lnforbank priv > stability d2 robust note: instabil note: d2008 on note: d1999 on note: d1997 on note: d1996 on Fixed-effects</pre>	FE Flow Insecedu vatisation in 2008 d2007 d20 Lity omitted be nitted because nitted because nitted because nitted because (within) regr	Intertedu In 06 d2005 d20 ecause of colline; of colline; of colline; of colline; of colline; of colline; ession	nedutr2 1 004 d2003 ollineari arity arity arity arity arity arity	ngdp lnt d2002 d ty Number	of obs	tradefree 1 1999 d1998 d = 107	neconfree d1997 d1996, fe
Group variable	e: country			Numper	or groups	= 12	
R-sq: within betweer overall	= 0.7825 n = 0.5271 L = 0.1742			Obs per	group: min avg max	= 8 = 8.9 = 9	
				F(11.11)	= .	
corr(u i, Xb)	= -0.9336			Prob >	F		
		(Std. E	rr. adjus	ted for	12 clusters	in country)	
lnfdiflow	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]	
lnsecedu	7990205	1.609193	-0.50	0.629	-4.34083	2.742789	
Intertedu	-1.02028	1.5139	-0.67	0.514	-4.352351	2.311791	
lnedutr2	11.35946	4.629214	2.45	0.032	1.170628	21.54829	
lngdp	-1.086931	1.267435	-0.86	0.409	-3.876536	1.702674	
Intransition	9312099	4.302016	-0.22	0.833	-10.39988	8.537465	
lntradefree	4775107	1.103373	-0.43	0.674	-2.906018	1.950997	
lneconfree	3184353	1.183674	-0.27	0.793	-2.923683	2.286813	
lnforbank	.3335295	.3455008	0.97	0.355	4269127	1.093972	
privatisat~n	.3794268	.1293191	2.93	0.014	.0947972	.6640563	
instability	(omitted)						
d2008	(omitted)						
d2007	.5667871	.2382675	2.38	0.037	.042364	1.09121	
d2006	.5958942	.443151	1.34	0.206	3/94/45	1.5/1263	
d2005	.9514534	. 5600551	1.70	0.117	2812196	2.184126	
d2004 d2003	2 133080	1 05/008	2 02	0.060	- 1858661	J.J4/90J A 453844	
d2003	3 366952	1 318436	2.02	0.000	4650934	6 268812	
d2002 d2001	4 699161	1 803052	2.55	0.024	7306713	8 667651	
d2000	6.312527	2.489947	2.54	0.028	.8321905	11.79286	
d1999	(omitted)						
d1998	(omitted)						
d1997	(omitted)						
d1996	(omitted)						
_cons	60.62371	38.50919	1.57	0.144	-24.13446	145.3819	
+							
sigma_u	3.4335813						
sıgma_e	.43663278	(free et il.	. e				
rho	.9840863	(fraction (or variar	ice due t	.o u_1)		

. **two-way cluster-robust FE (clusters: country & year), small-sample adjustment . xtivreg2 lnfdiflow lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree lneconfree lnforbank privatisation instab > ility d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996, fe cluster(country year) small Warning: estimated covariance matrix of moment conditions not of full rank. standard errors and model tests should be interpreted with caution. Possible causes: number of clusters insufficient to calculate robust covariance matrix singleton dummy variable (dummy with one 1 and N-1 0s or vice versa) partial option may address problem. Warning - collinearities detected Vars dropped: instability d2000 d1999 d1998 d1997 d1996 FIXED EFFECTS ESTIMATION

Obs per group: min =

r group: min = avg = may -

max =

8

9

8.9

OLS estimation

Number of groups =

Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and clustering on country and year

12

Number of clusters (cou	ntr	y) = 12	Number of obs	=	107
Number of clusters (year	r)	= 9	F(17, 8)	=	0.86
			Prob > F	=	0.6285
Total (centered) SS	=	68.36354012	Centered R2	=	0.7825
Total (uncentered) SS	=	68.36354012	Uncentered R2	=	0.7825
Residual SS	=	14.87055865	Root MSE	=	.4366

lnfdiflow		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu	1	7990205	1.489491	-0.54	0.606	-4.233794	2.635753
lntertedu		-1.02028	1.412756	-0.72	0.491	-4.278102	2.237542
lnedutr2		11.35946	4.349243	2.61	0.031	1.330087	21.38883
lngdp		-1.086931	1.168591	-0.93	0.380	-3.781706	1.607844
lntransition		9312099	5.569214	-0.17	0.871	-13.77384	11.91142
lntradefree		4775107	1.043737	-0.46	0.659	-2.884373	1.929352
lneconfree		3184353	1.477547	-0.22	0.835	-3.725665	3.088795
lnforbank		.3335295	.2418876	1.38	0.205	2242642	.8913232
privatisat~n		.3794268	.1597211	2.38	0.045	.0111093	.7477442
d2008		-6.312527	2.552748	-2.47	0.039	-12.19917	4258798
d2007		-5.74574	2.343857	-2.45	0.040	-11.15068	3407959
d2006		-5.716633	2.256395	-2.53	0.035	-10.91989	5133758
d2005		-5.361074	2.081727	-2.58	0.033	-10.16155	5606015
d2004		-4.748253	1.778748	-2.67	0.028	-8.850053	6464539
d2003		-4.178538	1.508894	-2.77	0.024	-7.658054	6990219
d2002		-2.945575	1.149142	-2.56	0.033	-5.5955	2956494
d2001		-1.613366	.6404581	-2.52	0.036	-3.090265	1364671

Warning: estimated covariance matrix of moment conditions not of full rank. standard errors and model tests should be interpreted with caution. Possible causes:

number of clusters insufficient to calculate robust covariance matrix singleton dummy variable (dummy with one 1 and N-1 0s or vice versa) partial option may address problem.

Included instruments:	<pre>lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree</pre>
	<pre>lneconfree lnforbank privatisation d2008 d2007 d2006 d2005</pre>
	d2004 d2003 d2002 d2001
Dropped collinear:	instability d2000 d1999 d1998 d1997 d1996

Appendix 5.8: Models 5.5-5.7 results

**Model 5.5 **FEVD

. xtfevd lnfdiflow lnsecedu lntertedu lnvacancy lngdp lntransition lntradefree lneconfree Inforbank privatisation

> d2005 d2004 d2003, invariant (lnsecedu lntertedu lngdp lnvacancy)

degrees of freedom fevd	= 24	number of obs	= 48
mean squared error	= .0883556	F(14, 24)	= 9.82583
root mean squared error	= .2972467	Prob > F	= 1.45e-06
Residual Sum of Squares	= 4.241069	R-squared	= .9375918
Total Sum of Squares	= 67.95695	adj. R-squared	877784
Estimation Sum of Squares	= 63.71588		

		fevd				
lnfdiflow	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
lntransition	5.192804	70.00127	0.07	0.941	-139.2827	149.6683
lntradefree	-1.025658	10.17839	-0.10	0.921	-22.03282	19.9815
lneconfree	-4.195524	4.598553	-0.91	0.371	-13.68647	5.295424
lnforbank	.2211436	3.320147	0.07	0.947	-6.631302	7.073589
privatisat~n	.5754189	.5556053	1.04	0.311	5712941	1.722132
d2005	.4173607	1.081872	0.39	0.703	-1.815513	2.650234
d2004	.0397049	1.245805	0.03	0.975	-2.53151	2.61092
d2003	166552	.397613	-0.42	0.679	9871849	.6540808
lnsecedu	.4925184	1.715465	0.29	0.776	-3.048027	4.033064
lntertedu	.3462602	6.931933	0.05	0.961	-13.96055	14.65307
lngdp	.6376342	3.15114	0.20	0.841	-5.866	7.141268
lnvacancy	2549383	6.466808	-0.04	0.969	-13.60177	13.0919
eta	1	•				
_cons	4.578285	58.70432	0.08	0.938	-116.5815	125.7381

. **model 5.5 . **Driscoll-Kraay FE . xtscc lnfdiflow lnsecedu lntertedu lnvacancy lngdp lntransition lntradefree lneconfree Inforbank privatisation i
> nstability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996

d1995, fe

Regression with Driscoll-Kraay standard errors	Number o	f obs	=	48
Method: Fixed-effects regression	Number o	f groups	=	12
Group variable (i): country	F(24,	11)	=	25.53
maximum lag: 1	Prob > F		=	0.0000
	within R	-squared	=	0.7150

lnfdiflow		Coef.	Drisc/Kraay Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu		-7.362814	3.866754	-1.90	0.083	-15.87348	1.147853
lntertedu		-1.617557	.4828556	-3.35	0.006	-2.680315	5547994
lnvacancy		.2964394	.1332782	2.22	0.048	.003096	.5897827
lngdp		1.532452	.6216916	2.46	0.031	.1641177	2.900786
lntransition		5.192804	3.472798	1.50	0.163	-2.450774	12.83638
lntradefree		-1.025658	.623642	-1.64	0.128	-2.398284	.3469691
lneconfree		-4.195524	1.518957	-2.76	0.018	-7.538726	8523229
lnforbank		.2211437	.4908849	0.45	0.661	8592866	1.301574
privatisat~n		.5754189	.1023149	5.62	0.000	.3502254	.8006124
instability		(omitted)					
d2008		(omitted)					
d2007		(omitted)					
d2006		(omitted)					
d2005		16.20471	16.51479	0.98	0.348	-20.14411	52.55353
d2004		15.82706	16.36398	0.97	0.354	-20.18983	51.84394
d2003		15.6208	16.28146	0.96	0.358	-20.21446	51.45606
d2002		15.78735	16.10244	0.98	0.348	-19.65387	51.22857
d2001		(omitted)					
d2000		(omitted)					
d1999		(omitted)					
d1998		(omitted)					
d1997		(omitted)					
d1996		(omitted)					
d1995		(omitted)					
_cons		(omitted)					

**model 5.5 rd	obustness chec	ks					
. **panel-robu	ist FE						
. xtreg lnfdif	Elow lnsecedu	lntertedu lı	nvacancy	lngdp lnt	transition l	ntradefree	lneconfree
lnforbank priv	vatisation i						
> nstability of	12008 d2007 d2	006 d2005 d2	2004 d200	3 d2002 d	d2001 d2000	d1999 d199	8 d1997 d1996
d1995, fe robu	ıst						
note: instabil	Lity omitted b	ecause of co	ollineari	ty			
note: d2008 or	nitted because	of collinea	arity				
note: d2007 or	nitted because	of collinea	arity				
note: d2006 or	nitted because	of collinea	arity				
note: d2004 or	nitted because	of collinea	arity				
note: d2001 or	nitted because	of collinea	arity				
note: d2000 or	nitted because	of collinea	arity				
note: d1999 or	nitted because	of collinea	arity				
note: d1998 or	nitted because	of collinea	arity				
note: d1997 or	nitted because	of collinea	arity				
note: d1996 or	nitted because	of collinea	arity				
note: d1995 or	nitted because	of collinea	arity				
		!		NT	- C - 1	4	0
Fixed-effects	(within) regr	ession		Number (of amound	= 4	0
Group variable	e: country			Number	or groups	= 1	Z
R-sa. within	= 0 7150			Ohs ner	group, min	_	4
hetweer	n = 0.2125			opp ber	group. min	= 4	0
overall	I = 0.2040				max	=	4
overail	0.2010				marx		1
				F(11,11))	=	
corr(u_i, Xb)	= -0.9582			Prob > 1	F	=	
		(Std. E	rr. adjus	ted for 1	12 clusters	in country)
	1	Robust					
lnfdiflow	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval	1
	+						-
lnsecedu	-7.362814	5.021575	-1.47	0.171	-18.41523	3.68959	7
lntertedu	-1.617557	2.440575	-0.66	0.521	-6.989227	3.75411	2
lnvacancy	.2964394	.6519483	0.45	0.658	-1.138489	1.73136	8
lngdp	1.532452	1.809276	0.85	0.415	-2.449737	5.5146	4
lntransition	5.192804	5.057197	1.03	0.327	-5.938013	16.3236	2
lntradefree	-1.025658	1.464621	-0.70	0.498	-4.249266	2.19795	1
lneconfree	-4.195524	3.08922	-1.36	0.202	-10.99485	2.60380	3

lnfdiflow		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lnsecedu	+-	-7.362814	5.021575	-1.47	0.171	-18.41523	3.689597
lntertedu	1	-1.617557	2.440575	-0.66	0.521	-6.989227	3.754112
lnvacancy	1	.2964394	.6519483	0.45	0.658	-1.138489	1.731368
lngdp	1	1.532452	1.809276	0.85	0.415	-2.449737	5.51464
lntransition	1	5.192804	5.057197	1.03	0.327	-5.938013	16.32362
lntradefree	1	-1.025658	1.464621	-0.70	0.498	-4.249266	2.197951
lneconfree	1	-4.195524	3.08922	-1.36	0.202	-10.99485	2.603803
lnforbank	1	.2211437	.997418	0.22	0.829	-1.974158	2.416446
privatisat~n	1	.5754189	.1729685	3.33	0.007	.1947179	.9561199
instability	1	(omitted)					
d2008	1	(omitted)					
d2007	1	(omitted)					
d2006	1	(omitted)					
d2005		.3776558	.4360385	0.87	0.405	5820586	1.33737
d2004		(omitted)					
d2003	1	2062569	.2882827	-0.72	0.489	8407628	.428249
d2002		0397049	.6914996	-0.06	0.955	-1.561685	1.482275
d2001	1	(omitted)					
d2000	1	(omitted)					
d1999	1	(omitted)					
d1998	1	(omitted)					
d1997	1	(omitted)					
d1996	1	(omitted)					
d1995	1	(omitted)					
_cons	1	15.82706	43.87987	0.36	0.725	-80.75188	112.406
sigma_u		3.7215238					
sigma_e	1	.42037028					
rho	1	.98740158	(fraction (of varia	nce due t	oui)	

. **two-way cl . xtivreg2 lnf lnforbank priv > bility d2008 cluster(countr Warning: estim stand Possible cause numbe singl partial option Warning - coll	uster-robust diflow lnsece atisation ins d2007 d2006 y year) small ated covarian ard errors an s: r of clusters eton dummy va may address inearities de	FE (cluster: edu Intertedu sta d2005 d2004 nee matrix o: ned model test s insufficies ariable (dumm problem. etected	s: countr a lnvacar d2003 d2 f moment as should nt to cal ny with c	y & year hey lngdg 2002 d200 conditic d be inte Leulate r pne 1 and	c), small-sample lntransition of d2000 d1999 ons not of full erpreted with of cobust covariant N-1 0s or vio	le adjustment lntradefree d1998 d1997 L rank. caution. nce matrix ce versa)	d1996, fe	3
vars dropped.	d1996	42000 42007	42000 42	2002 0200	1 42000 41999			
FIXED EFFECTS	ESTIMATION							
Number of grou	ps =	12		Obs per	r group: min = avg = max =	4 4.0 4		
OLS estimation								
Estimates effi Statistics rob	cient for hor ust to hetero	noskedastici oskedasticity	ty only and clu	stering	on country and	l year		
Number of clus Number of clus	ters (country ters (year) =	() = 12 = 4		N F	Number of obs = 7(12, 3) = 2rob > F =	= 48 = 2.87 = 0.2089		
Total (centere Total (uncente Residual SS	d) SS = red) SS = =	14.87872551 14.87872551 4.241068124		C L F	Centered R2 = Jncentered R2 = Root MSE =	= 0.7150 = 0.7150 = .4204		
lnfdiflow	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]		
lnsecedu	-7.362814	6.694397 1 346714	-1.10	0.352	-28.66737	13.94174		
lnvacancy	.2964394	.332908	0.89	0.439	7630224	1.355901		
lngdp	1.532452	1.333552	1.15	0.334	-2.711505	5.776409		
lntransition	5.192804	4.263002	1.22	0.310	-8.373972	18.75958		
lntradefree	-1.025658	1.226393	-0.84	0.464	-4.928588	2.877273		
lneconfree	-4.195524	2.948984	-1.42	0.250	-13.58051	5.189459		
Inforbank	.221143/	.8049584	0.27	0.801	-2.340593	2.782881		
privatisat~n	.5/54189	.1604665	3.59	0.037	.064/429	1.086095		
d2003	.41/300/	.7409441	0.56	0.010	-1.900114	2.0000000		
d2004	166552	.3178929	-0.52	0.637	-1.178229	.8451252		
Warning: estim stand Possible cause numbe singl	ated covarian ard errors an s: r of clusters eton dummy va	nce matrix o: nd model test s insufficient ariable (dumm	moment s should nt to cal	condition d be inte culate r	ons not of full erpreted with o cobust covarian d N-1 Os or vio	l rank. caution. nce matrix ce versa)		
partial option	may address	problem.						
Included instr	uments: lnsed lntra d2003	cedu lnterted adefree lnecd	du lnvaca onfree lr	ancy lngo nforbank	p lntransition privatisation	n d2005 d2004		
Dropped collin	ear: insta d1998	ability d2008 8 d1997 d1999	3 d2007 c	12006 d20	002 d2001 d2000) d1999		

. **model 5.6
. **FEVD
. xtfevd lnfdiflow lnsecedu lntertedu lncognitive lngdp lntransition lntradefree lneconfree
lnforbank privatisatio
> n instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996,
invariant (lnsecedu

> Intertedu lngdp lncognitive)

= 114	number of obs	= 148
= .1895275	F(25, 114)	= 34.79964
= .4353476	Prob > F	= 4.54e - 41
= 28.05007	R-squared	= .9195435
= 348.6367	adj. R-squared	= .8962535
= 320.5866		
	= 114 = .1895275 = .4353476 = 28.05007 = 348.6367 = 320.5866	= 114 number of obs = .1895275 F(25, 114) = .4353476 Prob > F = 28.05007 R-squared = 348.6367 adj. R-squared = 320.5866

	1		fevd				
lnfdiflow	Ì	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Intransition		4.164404	3.421488	1.22	0.226	-2.613537	10.94234
lntradefree		6065213	.7645734	-0.79	0.429	-2.121135	.9080927
lneconfree		1.308299	1.209804	1.08	0.282	-1.088314	3.704913
lnforbank		.5379091	.3507974	1.53	0.128	1570178	1.232836
privatisat~n		.3951362	.1248085	3.17	0.002	.1478916	.6423809
instability		6689404	.3633525	-1.84	0.068	-1.388739	.0508582
d2008		1.314611	.759752	1.73	0.086	1904513	2.819674
d2007		1.344188	.724338	1.86	0.066	0907199	2.779096
d2006		.7289289	.6940138	1.05	0.296	6459071	2.103765
d2005		.4422089	.6641826	0.67	0.507	8735317	1.75795
d2004		.0912998	.6263405	0.15	0.884	-1.149476	1.332076
d2003		3671024	.5992905	-0.61	0.541	-1.554292	.8200875
d2002		2956889	.563415	-0.52	0.601	-1.41181	.8204319
d2001		4453612	.5398705	-0.82	0.411	-1.514841	.6241181
d2000		5392883	.4782913	-1.13	0.262	-1.48678	.408203
d1999		521057	.4488259	-1.16	0.248	-1.410178	.3680637
d1998		1993567	.4152317	-0.48	0.632	-1.021927	.6232141
d1997		2079851	.3850522	-0.54	0.590	9707705	.5548003
d1996		2765067	.3255859	-0.85	0.398	92149	.3684765
lnsecedu		4124725	.5226991	-0.79	0.432	-1.447935	.6229904
lntertedu		5501259	.6640389	-0.83	0.409	-1.865582	.76533
lngdp		.5012058	.2175962	2.30	0.023	.0701493	.9322622
lncognitive		2.41587	3.884817	0.62	0.535	-5.279923	10.11166
eta		1					
_cons		-13.71058	6.707268	-2.04	0.043	-26.99763	4235353

```
. **model 5.7
. **FEVD
. xtfevd lnfdiflow lnsecedu lntertedu lntop lngdp lntransition lntradefree lneconfree
lnforbank privatisation inst
> ability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996,
invariant (lnsecedu lnter
> tedu lngdp lntop)
```

degrees of freedom fevd	= 114	number of obs	= 148
mean squared error	= .1895275	F(25, 114)	= 32.67579
root mean squared error	= .4353476	Prob > F	= 9.56e-40
Residual Sum of Squares	= 28.05007	R-squared	= .9195435
Total Sum of Squares	= 348.6367	adj. R-squared	= .8962535
Estimation Sum of Squares	= 320.5866		

lnfdiflow		Coef.	fevd Std. Err.	+	P> +	[95% Conf.	Intervall
	-+-						
Intransition	T	4.164404	3.194222	1.30	0.195	-2.163326	10.49213
lntradefree		6065213	.7390153	-0.82	0.414	-2.070505	.8574624
lneconfree		1.308299	1.196722	1.09	0.277	-1.062398	3.678997
lnforbank		.5379091	.331839	1.62	0.108	1194615	1.19528
privatisat~n		.3951362	.1241694	3.18	0.002	.1491576	.6411149
instability		6689404	.361589	-1.85	0.067	-1.385245	.0473645
d2008		1.314612	.73272	1.79	0.075	1369011	2.766124
d2007		1.344188	.6996647	1.92	0.057	0418424	2.730218
d2006		.7289289	.6713526	1.09	0.280	6010154	2.058873
d2005		.4422089	.6428006	0.69	0.493	8311741	1.715592
d2004		.0912998	.6093314	0.15	0.881	-1.115781	1.29838
d2003		3671023	.5897418	-0.62	0.535	-1.535376	.8011715
d2002		2956889	.5581891	-0.53	0.597	-1.401457	.8100794
d2001		4453612	.540905	-0.82	0.412	-1.51689	.6261674
d2000		5392883	.4801443	-1.12	0.264	-1.49045	.4118738
d1999		521057	.4532775	-1.15	0.253	-1.418996	.3768823
d1998		1993567	.4229686	-0.47	0.638	-1.037254	.6385408
d1997		2079851	.3961099	-0.53	0.601	9926757	.5767055
d1996		2765067	.336526	-0.82	0.413	9431621	.3901487
lnsecedu		3370755	.4856186	-0.69	0.489	-1.299082	.6249313
lntertedu		5978336	.6339079	-0.94	0.348	-1.8536	.6579331
lngdp		.4168696	.2310097	1.80	0.074	0407588	.874498
lntop		.5065795	.3949159	1.28	0.202	2757458	1.288905
eta		1			•	•	
_cons		-6.678992	8.26356	-0.81	0.421	-23.04904	9.691058

Appendix 5.9: Stock-adjustment Models 5.15-5.17 results

```
. **Model 5.15
. **LSDVC
. xtlsdvc lnfdistock lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank
privatisation instabil
> ity d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995,
initial(bb) vcov(100) f
> irst
Note: Bias correction initialized by Blundell and Bond estimator
Note: Blundell and Bond estimator is implemented through
the user-written Stata command -xtabond2- by David Roodman,
```

Center for Global Development, Washington, DC droodman@cgdev.org Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system $\ensuremath{\mathsf{GMM}}$

Group variable Time variable Number of inst	: country : year :ruments = 110			Number Number Obs per	of obs = of groups = group: min =	154 12 11
Prob > chi2	= 0.000				max =	12.03
lnfdistock	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lnfdistock L1.	.9050609	.0472958	19.14	0.000	.8123628	.9977589
<pre>lnsecedu lntertedu lntransition lntransition lntradefree lneconfree lnforbank privatisat~n instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 </pre>	.1048215 .0560304 .0867569 .4294225 .1467702 -6146536 .0618411 .0796853 .0636878 3435988 0124753 0218381 2408557 0828847 0387322 1009702 2690082 346811 2618724 1511151 0799517 0083581	.0475025 .0385592 .0497128 .3159713 .1159331 .1528279 .0282625 .0250226 .1054409 1.127405 1.132472 1.134666 1.131223 1.136584 1.137437 1.138244 1.13591 1.132726 1.143726 1.149525 1.154677	$\begin{array}{c} 2.21\\ 1.45\\ 1.75\\ 1.36\\ 1.27\\ -4.02\\ 2.19\\ 3.18\\ 0.60\\ -0.30\\ -0.01\\ -0.02\\ -0.21\\ -0.07\\ -0.03\\ -0.09\\ -0.24\\ -0.31\\ -0.23\\ -0.13\\ -0.13\\ -0.07\\ -0.01\end{array}$	0.027 0.146 0.081 0.174 0.206 0.000 0.029 0.001 0.546 0.761 0.991 0.942 0.973 0.942 0.973 0.929 0.813 0.759 0.818 0.895 0.945 0.994	.0117184 0195442 0106784 1898699 0804544 9141908 .0064475 .030642 1429725 -2.553272 -2.23208 -2.245743 -2.458012 -2.310548 -2.31888 -2.495351 -2.566914 -2.566914 -2.566914 -2.399523 -2.332978 -2.271484	.1979247 .1316051 .1841922 1.048715 .3739948 3151164 .1172346 .1287287 .2703481 1.866074 2.20716 1.976301 2.144778 2.190604 2.129947 1.957334 1.971037 2.097293 2.173075 2.254768
Instruments for Standard D.(lnseced privatisat d2000 d199 GMM-type (mi L(1/.).L.1 Instruments for Standard Insecedu 1 privatisat d2000 d199 GMM-type (mi D.L.Infdis	r first diffe lu lntertedu l ion instabili 9 d1998 d1997 ssing=0, sepa nfdistock or levels equa ntertedu lngd ion instabili 9 d1998 d1997 ssing=0, sepa stock	rences equat ngdp lntran: ty d2008 d20 d1996) rate instrum tion p lntransit: ty d2008 d20 d1996 rate instrum	tion sition lr 007 d2006 ments for ion lntra 007 d2006 ments for	ntradefre 5 d2005 d 5 each pe adefree 1 5 d2005 d 5 each pe	e lneconfree 2004 d2003 d2 riod unless c neconfree lnf 2004 d2003 d2 riod unless c	lnforbank 002 d2001 ollapsed) orbank 002 d2001 ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first () in first (differenc differenc	ces: z = ces: z =	-4.29 Pr > 0.82 Pr >	z = 0.000 z = 0.413
Sargan test of (Not robust,	overid. rest but not weak	rictions: cl ened by many	ni2(87) y instrum	= 114.3 nents.)	9 Prob > chi	2 = 0.026

Difference-in-Sargan tests of exogeneity of instrument subsets:
```
GMM instruments for levels
    Sargan test excluding group:chi2(75)= 84.39Prob > chi2 = 0.214Difference (null H = exogenous):chi2(12)= 30.00Prob > chi2 = 0.003
  iv(lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank privatisation
instability d2008 d2007
> d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
    Sargan test excluding group: chi2(65) = 87.49 Prob > chi2 = 0.033
Difference (null H = exogenous): chi2(22) = 26.90 Prob > chi2 = 0.215
note: d2008 dropped because of collinearity
      in the LSDV regression
note: Bias correction up to order O(1/T)
    D.(Insecedu Intertedu Ingdp Intransition Intradefree Ineconfree Inforbank
    privatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001
    d2000 d1999 d1998 d1997 d1996)
    L(1/.).L.lnfdistock
    Insecedu Intertedu Ingdp Intransition Intradefree Ineconfree Inforbank
    privatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001
    d2000 d1999 d1998 d1997 d1996
    D.L.lnfdistock
  GMM instruments for levels
  iv(lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank privatisation
instability d2008 d2007
> d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
LSDVC dynamic regression
(bootstrapped SE)
               ____
                      _____
```

<pre>Infdistock L1. .7828173 .0610114 12.83 0.000 .6632372 .9023974 Insecedu 0284297 .5658546 -0.05 0.960 -1.137484 1.080625 Intertedu 4000683 .2779822 -1.44 0.1509449034 .1447668 Ingdp 0491923 .1960674 -0.25 0.8024334772 .3350927 Intransition .3480042 .6129296 0.57 0.5708533156 1.549324 Intradefree .1583884 .170685 0.93 0.353176148 .4929248 Ineconfree .0330567 .318517 0.10 0.9175912251 .6573385 Inforbank .0205479 .0550637 0.37 0.7090873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309136753 .432357 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.1860704747 .3634648 d2005 109588 .136392 -0.80 0.4223769113 .1577353 d2004 0309901 .1578472 -0.20 0.8443403648 .278387 d2003 6609853 .1931142 -0.32 0.7524394821 .3175114 d2002 2027927 .2384648 -0.85 0.395670175 .2645897 d2001 4262735 .2663993 -1.60 0.1109484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406</pre>	lnfdistock		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Lil. .7828173 .0610114 12.83 0.000 .6632372 .9023974 Insecedu 0284297 .5658546 -0.05 0.960 -1.137484 1.080625 Intertedu 4000683 .2779822 -1.44 0.1509449034 .1447668 Ingdp 0491923 .1960674 -0.25 0.8024334772 .3350927 Intransition .3480042 .6129296 0.57 0.5708533156 1.549324 Intradefree .1583884 .170685 0.93 0.353176148 .4929248 Ineconfree .0330567 .318517 0.10 0.9175912251 .6573385 Inforbank .0205479 .0550637 0.37 0.7090873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309136753 .432357 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.1860704747 .3634648 d2005 109588 .136392 -0.80 0.4223769113 .1577353 d2004 0309901 .1578472 -0.20 0.8443403648 .2783847 d2003 -060853 .1931142 -0.32 0.7524394821 .3175114 d2002 2027927 .2384648 -0.85 0.395670175 .2645897 d2001 4262735 .2663993 -1.60 0.1109484065 .0958596 d2000 .5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	lnfdistock	-+						
Insecedu 0284297 .5658546 -0.05 0.960 -1.137484 1.080625 Intertedu 4000683 .2779822 -1.44 0.150 9449034 .1447668 Ingdp 0491923 .1960674 -0.25 0.802 4334772 .3350927 Intransition .3480042 .6129296 0.57 0.570 8533156 1.549324 Intradefree .1583884 .170685 0.93 0.353 176148 .4929248 Inconfree .030567 .318517 0.10 0.917 5912251 .6573385 Inforbank .0205479 .0550637 0.37 0.709 0873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309 136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.184 3403648 .2783847 d2004 <	L1.	İ	.7828173	.0610114	12.83	0.000	.6632372	.9023974
Intertedu 4000683 .2779822 -1.44 0.150 9449034 .1447668 Ingdp 0491923 .1960674 -0.25 0.802 4334772 .3350927 Intransition .3480042 .6129296 0.57 0.570 8533156 1.549324 Intradefree .1583884 .170685 0.93 0.353 176148 .4929248 Ineconfree .0330567 .318517 0.10 0.917 5912251 .6573385 Inforbank .0205479 .0550637 0.37 0.709 0873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309 136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.186 0704747 .3634648 d2003 0609853 .1931142 -0.32 0.752 .4394821 .3175114 <t< td=""><td>lnsecedu</td><td> </td><td>0284297</td><td>.5658546</td><td>-0.05</td><td>0.960</td><td>-1.137484</td><td>1.080625</td></t<>	lnsecedu		0284297	.5658546	-0.05	0.960	-1.137484	1.080625
lngdp 0491923.1960674-0.250.8024334772.3350927lntransition .3480042.61292960.570.57085331561.549324lntradefree .1583884.1706850.930.353176148.4929248lneconfree .030567.3185170.100.9175912251.6573385lnforbank .0205479.05506370.370.7090873749.1284708privatisat~n .0829518.02837722.920.003.0273334.1385701instability .1478013.14518351.020.309136753.4323557d2007 .2539941.0787863.220.001.0995765.4084118d2006 .1464951.11070091.320.1860704747.3634648d2005 109588.136392-0.800.4223769113.1577353d2004 0309901.1578472-0.200.8443403648.2788471d2003 0609853.1931142-0.320.7524394821.3175114d2002 2027927.2384648-0.850.395670175.2645897d2001 4262735.2663993-1.600.1109484065.0958596d2000 5228783.2745711-1.900.057-1.061028.0152711d1999 4823994.2937901-1.640.101-1.058217.0934187d1998 4199612.293462-1.4	lntertedu	1	4000683	.2779822	-1.44	0.150	9449034	.1447668
Intransition .3480042 .6129296 0.57 0.570 8533156 1.549324 Intradefree .1583884 .170685 0.93 0.353 176148 .4929248 Ineconfree .0330567 .318517 0.10 0.917 5912251 .657385 Inforbank .0205479 .0550637 0.37 0.709 0873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309 136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.186 0704747 .3634648 d2005 109588 .136392 -0.80 0.422 3769113 .1577353 d2004 0309901 .1578472 -0.20 0.844 3403648 .2783847 d2003 0608853 .1931142 -0.32 0.752 4394821 .3175114 d200	lngdp		0491923	.1960674	-0.25	0.802	4334772	.3350927
Intradefree .1583884 .170685 0.93 0.353 176148 .4929248 Ineconfree .0330567 .318517 0.10 0.917 5912251 .6573385 Inforbank .0205479 .0550637 0.37 0.709 0873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309 136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2005 109588 .136392 -0.80 0.422 3769113 .1577353 d2004 0309901 .1578472 -0.20 0.844 3403648 .2783847 d2003 600853 .1931142 -0.32 0.752 4394821 .3175114 d2000 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 <	lntransition	1	.3480042	.6129296	0.57	0.570	8533156	1.549324
Ineconfree .0330567 .318517 0.10 0.917 5912251 .6573385 Inforbank .0205479 .0550637 0.37 0.709 0873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309 136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.186 0704747 .3634648 d2003 0609853 .1931142 -0.32 0.752 4394821 .3175114 d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958566 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.	lntradefree	1	.1583884	.170685	0.93	0.353	176148	.4929248
Inforbank .0205479 .0550637 0.37 0.709 0873749 .1284708 privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309 136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.186 0704747 .3634648 d2003 0309901 .1578472 -0.20 0.844 3403648 .2783847 d2003 0609853 .1931142 -0.32 0.752 4394821 .3175114 d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64	lneconfree	1	.0330567	.318517	0.10	0.917	5912251	.6573385
privatisat~n .0829518 .0283772 2.92 0.003 .0273334 .1385701 instability .1478013 .1451835 1.02 0.309136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.1860704747 .3634648 d2005 109588 .136392 -0.80 0.4223769113 .1577353 d2004 0309901 .1578472 -0.20 0.8443403648 .2783847 d2003 0609853 .1931142 -0.32 0.7524394821 .3175114 d2002 2027927 .2384648 -0.85 0.395670175 .2645897 d2001 4262735 .2663993 -1.60 0.1109484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.1529951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	lnforbank	1	.0205479	.0550637	0.37	0.709	0873749	.1284708
instability .1478013 .1451835 1.02 0.309136753 .4323557 d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.1860704747 .3634648 d2005 109588 .136392 -0.80 0.4223769113 .1577353 d2004 0309901 .1578472 -0.20 0.8443403648 .2783847 d2003 0609853 .1931142 -0.32 0.7524394821 .3175114 d2002 2027927 .2384648 -0.85 0.395670175 .2645897 d2001 4262735 .2663993 -1.60 0.1109484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.1529951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	privatisat~n	1	.0829518	.0283772	2.92	0.003	.0273334	.1385701
d2007 .2539941 .078786 3.22 0.001 .0995765 .4084118 d2006 .1464951 .1107009 1.32 0.186 0704747 .3634648 d2005 109588 .136392 -0.80 0.422 3769113 .1577353 d2004 0309901 .1578472 -0.20 0.844 3403648 .2783847 d2003 0608853 .1931142 -0.32 0.752 4394821 .3175114 d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	instability	1	.1478013	.1451835	1.02	0.309	136753	.4323557
d2006 .1464951 .1107009 1.32 0.186 0704747 .3634648 d2005 109588 .136392 -0.80 0.422 3769113 .1577353 d2004 0309901 .1578472 -0.20 0.844 3403648 .2783847 d2003 0609853 .1931142 -0.32 0.752 4394821 .3175114 d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2007	1	.2539941	.078786	3.22	0.001	.0995765	.4084118
d2005 109588 .136392 -0.80 0.422 3769113 .1577353 d2004 0309901 .1578472 -0.20 0.844 3403648 .2783847 d2003 0609853 .1931142 -0.32 0.752 4394821 .3175114 d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2006	1	.1464951	.1107009	1.32	0.186	0704747	.3634648
d2004 0309901 .1578472 -0.20 0.844 3403648 .2783847 d2003 0609853 .1931142 -0.32 0.752 4394821 .3175114 d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1522137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2005	1	109588	.136392	-0.80	0.422	3769113	.1577353
d2003 0609853 .1931142 -0.32 0.752 4394821 .3175114 d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .152137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2004	1	0309901	.1578472	-0.20	0.844	3403648	.2783847
d2002 2027927 .2384648 -0.85 0.395 670175 .2645897 d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2003	1	0609853	.1931142	-0.32	0.752	4394821	.3175114
d2001 4262735 .2663993 -1.60 0.110 9484065 .0958596 d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2002	1	2027927	.2384648	-0.85	0.395	670175	.2645897
d2000 5228783 .2745711 -1.90 0.057 -1.061028 .0152711 d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2001	1	4262735	.2663993	-1.60	0.110	9484065	.0958596
d1999 4823994 .2937901 -1.64 0.101 -1.058217 .0934187 d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d2000	1	5228783	.2745711	-1.90	0.057	-1.061028	.0152711
d1998 4199612 .293462 -1.43 0.152 9951362 .1552137 d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d1999	1	4823994	.2937901	-1.64	0.101	-1.058217	.0934187
d1997 3960572 .325822 -1.22 0.224 -1.034657 .2425422 d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d1998	1	4199612	.293462	-1.43	0.152	9951362	.1552137
d1996 3659851 .3395602 -1.08 0.281 -1.031511 .2995406	d1997		3960572	.325822	-1.22	0.224	-1.034657	.2425422
	d1996		3659851	.3395602	-1.08	0.281	-1.031511	.2995406

**FE . xtreg lnfdis lnforbank priv > on instabili d1995, fe note: d2008 om note: d1995 om	stock lllnfdi vatisati .ty d2008 d20 hitted becaus hitted becaus	stock lnsece 07 d2006 d20 e of colline e of colline	edu lnter 005 d2004 earity earity	tedu lngo d2003 d2	dp lntransitio 2002 d2001 d20	n lntradefr 00 d1999 d1	ee lneconfree .998 d1997 d1996
Fixed-effects Group variable	(within) reg e: country	ression		Number Number	of obs = of groups =	154 12	
R-sq: within between overall	= 0.9822 n = 0.9599 = 0.9384			Obs per	group: min = avg = max =	11 12.8 13	
corr(u_i, Xb)	= 0.5456			F(22,12 Prob >	20) = F =	301.66 0.0000	
lnfdistock	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
lllnfdistock	6674096	0544314	12 26	0 000	5596393	7751799	
lnsocodu	- 1045754	418508	-0.25	0.000	- 9331921	7240413	
Intertedu	- 4363795	2103971	-2 07	0.040	- 8529512	- 0198078	
Ingdo	- 0212873	1515265	-0.14	0 889	- 3212993	2787246	
Intransition	.8798334	.5872634	1.50	0.137	2829072	2.042574	
Intradefree	.1420477	1558496	0.91	0.364	1665237	.450619	
lneconfree	.0999724	.2685426	0.37	0.710	4317232	.6316681	
lnforbank	.0352891	.0460527	0.77	0.445	0558921	.1264703	
privatisat~n	.0743428	.0290266	2.56	0.012	.016872	.1318135	
instability	.2261211	.1232095	1.84	0.069	0178251	.4700674	
d2008	(omitted)						
d2007	.2176431	.0675212	3.22	0.002	.0839557	.3513305	
d2006	.0734303	.0974285	0.75	0.453	1194714	.266332	
d2005	1919698	.1144406	-1.68	0.096	4185542	.0346146	
d2004	1423731	.1415373	-1.01	0.316	4226072	.1378609	
d2003	2037683	.1708699	-1.19	0.235	5420788	.1345423	
d2002	3702204	.2030861	-1.82	0.071	7723167	.031876	
d2001	600323	.2244245	-2.67	0.009	-1.044668	1559782	
d2000	6947769	.2359514	-2.94	0.004	-1.161944	2276096	
d1999	6658584	.2430238	-2.74	0.007	-1.147029	1846882	
d1998	623954	.2531636	-2.46	0.015	-1.1252	1227077	
d1997	6248347	.2764059	-2.26	0.026	-1.172099	0775702	
d1996	6070858	.2891836	-2.10	0.038	-1.179649	0345224	
d1995	(omitted)						
_cons	3.143199	3.993757	0.79	0.433	-4.764161	11.05056	
sigma u l	.45336375						
sigma e l	.14498628						
rho	.90721641	(fraction	of varia	nce due t	:o u_i)		
F test that al	i=0:	F(11, 120)	= 2.	71	Prob >	F = 0.0038	

. **OLS . reg lnfdistock lllnfdistock lnsecedu lntertedu lngdp lntransition lntradefree lneconfree lnforbank privatisation

> instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995

note: d1996 omitted because of collinearity note: d1995 omitted because of collinearity

Source		SS	df	MS	Number of obs =	154
	-+-				F(22, 131) =	700.55
Model		370.363824	22	16.8347193	Prob > F =	0.0000
Residual		3.14802702	131	.024030741	R-squared =	0.9916
	-+-				Adj R-squared =	0.9902
Total		373.511851	153	2.44125393	Root MSE =	.15502

lnfdistock	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
 11lnfdistock	.8441584	.0410207	20.58	0.000	.7630097	.9253071
lnsecedu	.1280657	.0530201	2.42	0.017	.0231793	.2329521
lntertedu	.064451	.0442231	1.46	0.147	0230328	.1519348
lngdp	.1523334	.045465	3.35	0.001	.0623929	.2422739
<pre>lntransition </pre>	.5047635	.3281414	1.54	0.126	1443784	1.153905
lntradefree	.1635247	.1321116	1.24	0.218	0978235	.4248729
lneconfree	5271588	.1713888	-3.08	0.003	8662068	1881108
lnforbank	.0507018	.0307065	1.65	0.101	010043	.1114466
privatisat~n	.0828858	.0285046	2.91	0.004	.0264969	.1392748
instability	.0527444	.1132203	0.47	0.642	1712324	.2767212
d2008	2588742	.0929773	-2.78	0.006	4428055	0749428
d2007	.0621191	.0900157	0.69	0.491	1159534	.2401915
d2006	.0467715	.0862475	0.54	0.589	1238466	.2173895
d2005	1689089	.0846073	-2.00	0.048	3362824	0015354
d2004	0217619	.0831464	-0.26	0.794	1862453	.1427215
d2003	.0198915	.0788035	0.25	0.801	1360007	.1757837
d2002	0455109	.0812658	-0.56	0.576	2062741	.1152523
d2001	2117026	.0811458	-2.61	0.010	3722283	0511769
d2000	2855473	.0826721	-3.45	0.001	4490925	1220021
d1999	2088546	.0760986	-2.74	0.007	3593959	0583134
d1998	1134067	.0726287	-1.56	0.121	2570837	.0302702
d1997	0517242	.0698502	-0.74	0.460	1899046	.0864563
d1996	(omitted)					
d1995	(omitted)					
_cons	-1.738992	1.138829	-1.53	0.129	-3.991867	.5138824

```
. **Model 5.16
. **LSDVC
. xtlsdvc lnfdistock lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree lneconfree
lnforbank privatisation
> instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996
d1995, initial(bb) vc
> ov(100) first
Note: Bias correction initialized by Blundell and Bond estimator
```

Note: Blundell and Bond estimator is implemented through the user-written Stata command -xtabond2- by David Roodman,

Center for Global Development, Washington, DC droodman@cgdev.org Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable: country Time variable : year	
	Number of obs = 107 Number of groups = 12
Number of instruments = 94	Obs per group: min = 8
Wald chi2(19) = 704780.79	avg = 8.92
Prob > chi2 = 0.000	max = 9
lnfdistock Coef. Std. Err.	z P> z [95% Conf. Interval]
lnfdistock	
L1. .8806979 .055748 15	.80 0.000 .7714338 .9899621
lnsecedu .0299378 .0544312 0	.55 0.5820767455 .1366211
lntertedu .0304191 .0437684 0	.70 0.4870553653 .1162035
lnedutr2 2582851 .17619 -1	.47 0.1436036113 .087041
lngdp .0820024 .0526182 1	.56 0.1190211274 .1851323
Intransition .746077 .4455357 1	.67 0.094127157 1.619311
Intradefree .0594042 .1628641 0	.36 0.7152598035 .3786119
lneconfree $1 - 417111 - 1937858 - 2$	$15 0.031 - \ 7969242 - \ 0.372978$
lnforbank 0998654 0542925 1	84 0.066 - 0065459 2062767
nrivaticaton 0702405 0252475 2	1/ 0 002 0200457 .2002707
Privacisal~II .U/93493 .U2324/5 3	.14 0.002 .0290004 .1288330
	.00 U.5/9 -3.5//426 1.99///6
d2007 4853085 1.43622 -0	.34 0.735 -3.300249 2.329632
d2006 5319362 1.445626 -0	.37 0.713 -3.365312 2.301439
d2005 7687698 1.448503 -0	.53 0.596 -3.607784 2.070245
d2004 6503797 1.464501 -0	.44 0.657 -3.520749 2.21999
d2003 639123 1.480486 -0	.43 0.666 -3.540822 2.262576
d2002 7364389 1.500407 -0	.49 0.624 -3.677183 2.204305
d2001 9431126 1.515681 -0	.62 0.534 -3.913792 2.027567
	69 0 487 -4 06218 1 936157
d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In	ntransition lntradefree lneconfree
<pre>d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In Inforbank privatisation d2008 d2007 d20 d2000) GMM-type (missing=0, separate instruments L(1/.).L.Infdistock Instruments for levels equation Standard Insecedu Intertedu Inedutr2 Ingdp Intra Inforbank privatisation d2008 d2007 d20 d2000 GMM-type (missing=0, separate instruments)</pre>	ntransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed)
d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In Inforbank privatisation d2008 d2007 d20 d2000) GMM-type (missing=0, separate instruments L(1/.).L.Infdistock Instruments for levels equation Standard Insecedu Intertedu Inedutr2 Ingdp Intra Inforbank privatisation d2008 d2007 d20 d2000 GMM-type (missing=0, separate instruments D.L.Infdistock	ntransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed)
d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In Inforbank privatisation d2008 d2007 d20 d2000) GMM-type (missing=0, separate instruments L(1/.).L.Infdistock Instruments for levels equation Standard Insecedu Intertedu Inedutr2 Ingdp Intra Inforbank privatisation d2008 d2007 d20 d2000 GMM-type (missing=0, separate instruments D.L.Infdistock 	ntransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) erences: $z = -1.30$ Pr > $z = 0.195$ erences: $z = -0.91$ Pr > $z = 0.361$
<pre>d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In Inforbank privatisation d2008 d2007 d20 d2000) GMM-type (missing=0, separate instruments L(1/.).L.Infdistock Instruments for levels equation Standard Insecedu Intertedu Inedutr2 Ingdp Intra Inforbank privatisation d2008 d2007 d20 d2000 GMM-type (missing=0, separate instruments D.L.Infdistock D.L.Infdistock Arellano-Bond test for AR(1) in first diffe Arellano-Bond test for AR(2) in first diffe Gargan test of overid. restrictions: chi2(" (Not robust, but not weakened by many instruments D. Not robust, but not we</pre>	thransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) erences: $z = -1.30$ Pr > $z = 0.195$ erences: $z = -0.91$ Pr > $z = 0.361$
d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In Inforbank privatisation d2008 d2007 d20 d2000) GMM-type (missing=0, separate instruments L(1/.).L.Infdistock Instruments for levels equation Standard Insecedu Intertedu Inedutr2 Ingdp Intra Inforbank privatisation d2008 d2007 d20 d2000 GMM-type (missing=0, separate instruments D.L.Infdistock 	ntransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) erences: $z = -1.30$ Pr > $z = 0.195$ erences: $z = -0.91$ Pr > $z = 0.361$ 75) = 120.53 Prob > chi2 = 0.001 struments.) f instrument subsets: 26) = 87.02 Prob > chi2 = 0.043
<pre>d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In Inforbank privatisation d2008 d2007 d20 d2000) GMM-type (missing=0, separate instruments L(1/.).L.Infdistock Instruments for levels equation Standard Insecedu Intertedu Inedutr2 Ingdp Intra Inforbank privatisation d2008 d2007 d20 d2000 GMM-type (missing=0, separate instruments D.L.Infdistock Arellano-Bond test for AR(1) in first diffe Arellano-Bond test for AR(2) in first diffe Arellano-Bond test for AR(2) in first diffe GMM instruments for levels Sargan test of overid. restrictions: chi2((Not robust, but not weakened by many ins Difference-in-Sargan tests of exogeneity of GMM instruments for levels Sargan test excluding group: chi2(0 Difference (null H = exogenous): chi2(5 iv(Insecedu Intertedu Inedutr2 Ingdp Intra Comparison (Not Comparison) (Not Com</pre>	ntransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) erences: $z = -1.30$ Pr > $z = 0.195$ erences: $z = -0.91$ Pr > $z = 0.361$ 75) = 120.53 Prob > chi2 = 0.001 struments.) f instrument subsets: 66) = 87.02 Prob > chi2 = 0.043 9) = 33.51 Prob > chi2 = 0.000 ransition lntradefree lneconfree lnfo
<pre>d2000 -1.063012 1.530216 -0 Instruments for first differences equation Standard D.(Insecedu Intertedu Inedutr2 Ingdp In Inforbank privatisation d2008 d2007 d20 d2000) GMM-type (missing=0, separate instruments L(1/.).L.Infdistock Instruments for levels equation Standard Insecedu Intertedu Inedutr2 Ingdp Intra Inforbank privatisation d2008 d2007 d20 d2000 GMM-type (missing=0, separate instruments D.L.Infdistock </pre>	ntransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) erences: $z = -1.30$ Pr > $z = 0.195$ erences: $z = -0.91$ Pr > $z = 0.361$
<pre>d2000 -1.063012 1.530216 -0</pre>	ntransition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) ansition lntradefree lneconfree 006 d2005 d2004 d2003 d2002 d2001 s for each period unless collapsed) erences: $z = -1.30$ Pr > $z = 0.195$ erences: $z = -0.91$ Pr > $z = 0.361$ 75) = 120.53 Prob > chi2 = 0.001 struments.) f instrument subsets: 66) = 87.02 Prob > chi2 = 0.043 9) = 33.51 Prob > chi2 = 0.000 ransition lntradefree lneconfree lnfo 57) = 81.18 Prob > chi2 = 0.019

```
note: d2000 dropped because of collinearity
    in the LSDV regression
note: Bias correction up to order O(1/T)
   D.(lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree lneconfree
   Inforbank privatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001
   d2000)
   L(1/.).L.lnfdistock
   lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree lneconfree
   Inforbank privatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001
   d2000
   D.L.lnfdistock
  GMM instruments for levels
 iv(lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree lneconfree lnforbank
privatisation d2008 d2007 d20
> 06 d2005 d2004 d2003 d2002 d2001 d2000)
LSDVC dynamic regression
(bootstrapped SE)
```

lnfdistock	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lnfdistock						
L1.	.8118696	.0992795	8.18	0.000	.6172853	1.006454
lnsecedu	9165034	.8664793	-1.06	0.290	-2.614772	.7817648
lntertedu	359973	.391451	-0.92	0.358	-1.127203	.4072568
lnedutr2	1.31286	.9460754	1.39	0.165	5414138	3.167134
lngdp	.0501852	.2840239	0.18	0.860	5064915	.6068618
Intransition	-1.606036	1.260893	-1.27	0.203	-4.07734	.8652683
lntradefree	.3245785	.2781746	1.17	0.243	2206337	.8697908
lneconfree	0315855	.4044924	-0.08	0.938	824376	.7612049
lnforbank	1534018	.1383517	-1.11	0.268	4245662	.1177626
privatisat~n	.0774709	.0338998	2.29	0.022	.0110285	.1439134
d2008	5413411	.72054	-0.75	0.452	-1.953574	.8708913
d2007	1851626	.667905	-0.28	0.782	-1.494232	1.123907
d2006	1685373	.609181	-0.28	0.782	-1.36251	1.025435
d2005	337425	.5533745	-0.61	0.542	-1.422019	.7471691
d2004	133752	.4538721	-0.29	0.768	-1.023325	.7558209
d2003	0393706	.3827414	-0.10	0.918	78953	.7107888
d2002	0199234	.2749607	-0.07	0.942	5588365	.5189896
d2001	0838206	.1537376	-0.55	0.586	3851408	.2174997

.

. **FE							
. xtreg lnfdis	stock lllnfdi	stock lnsece	du lnter	edu lned	lutr2 lngdp 1	lntransitior	1 lntradefree
Inecontree Int	torbank pr	10000 10007	10000 100	205 -12004	10002 1000		0 11000 11000
> 1Vatisation	INSTADILLTY	azuus azuu/ (azuu6 azi	JUS az004	azuus azuu.	2 azuul azuu	10 01999 01998
note: instabil	lity omitted	because of c	ollinear	i + v			
note: d2008 or	nitted becaus	e of colline	arity	LCY			
note: d1999 or	mitted becaus	e of colline	arity				
note: d1998 or	mitted becaus	e of colline	arity				
note: d1997 or	nitted becaus	e of colline	aritv				
note: d1996 or	mitted becaus	e of colline	arity				
note: d1995 or	mitted becaus	e of colline	arity				
Fixed-effects	(within) req	ression		Number	of obs	= 107	1
Group variable	e: country			Number	of groups	= 12	
-	0 0750			01			
R-sq: within	= 0.9759			Obs per	group: min	= 8	5
betweer	n = 0.6048				avg	= 8.9	,
overal	L = 0.6770				max	= 9	,
				F(18,77	7)	= 173.34	
corr(u_i, Xb)	= 0.2384			Prob >	F	= 0.0000)
lnfdistock	Coef.	Std. Err.	t	 P> t	[95% Con:	f. Interval]	-
	+						-
llinfdistock	.5900802	.08/8604	6.72	0.000	.4151278	. /650326	
Insecedu	5//0833	.6965158	-0.83	0.410	-1.964024	.8098569	1
Interteau	5110411 1 220526	.2926/12	-1.75	0.084	-1.094424	.0/1141/	
Ineduciz	I 1.336336	2450746	1.34	0.120	3923011	5.009032	1
Ingap		1 10/6/5	1 21	0.939	4/061/2	.3003007	
Intradofroo	2725007	2220567	-1.21	0.229	-3.828407	. 9312702	
lnoconfroo	I 2529951	3686371	1.00	0.115	- 4810552	.0370333	
Inforbank	.2323331	1113174	-1 60	0.495	- 40100078	0/331/5	
nrivatisat~n	0632226	031922	1 98	0.113	- 0003422	1267875	
instability	(omitted)	.031922	1.90	0.031	0003422	.1207075)
d2008	(omitted)						
d2000	2752057	0808232	3 41	0 001	114266	4361453	
d2006	2065971	1410076	1 47	0 147	- 0741848	487370)
d2005	0091293	.1879512	0.05	0.961	3651294	. 383388	
d2000	148199	.2657344	0.56	0.579	3809458	.6773438	
d2003	1648078	.3424179	0.48	0.632	5170334	. 846649)
d2002	.1188257	.4349789	0.27	0.785	7473279	.9849793	8
d2001	.0273457	.540983	0.05	0.960	-1.049889	1.104581	
d2000	.1187729	.661319	0.18	0.858	-1.198081	1.435627	1
d1999	(omitted)						
d1998	(omitted)						
d1997	(omitted)						
d1996	(omitted)						
d1995	(omitted)						
_cons	7.940602	7.217681	1.10	0.275	-6.431636	22.31284	L
sigma 11	+ 88236582						-
sigma e	.13591617						
rho	.97682281	(fraction	of varia	nce due t	o u_i)		
F test that a	 11 u i=0·	F(11, 77) =	 3 1'	 7	Prob	= 0 0014	-
cirac a.	~ ~.	- (+ + , , , ,) =	0.1		1100 /	- 0.001-	

. **OLS

.

. reg lnfdistock lllnfdistock lnsecedu lntertedu lnedutr2 lngdp lntransition lntradefree lneconfree lnforbank priv > atisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998

d1997 d1996 d1995 note: instability omitted because of collinearity

Source	l	SS	df		MS		Number of obs	=	107
Model	-+-	227.229012	18	12	.623834		F(10, 00) Prob > F	_	0.0000
Residual	i	2.06746257	88	.02	3493893		R-squared	=	0.9910
	+-						Adj R-squared	=	0.9891
Total		229.296474	106	2.1	6317429		Root MSE	=	.15328
lnfdistock		Coef.	Std.	Err.	t	 P> t	[95% Conf.	In	terval]
	+-	8640939	0683	 807	12 64	0 000	7282017		9999861
Insecedu	i.	.0159029	.0702	704	0.23	0.821	1237446	•	1555505
Intertedu	i.	.0232967	.0567	916	0.41	0.683	0895646	•	.136158
lnedutr2	i.	3325469	.2255	358	-1.47	0.144	7807519		1156581
lnqdp	i	.0946493	.0657	928	1.44	0.154	0361		2253987
Intransition	Ì.	.7744966	.5514	502	1.40	0.164	3213948	1	.870388
lntradefree	Ì.	.0908684	.2098	557	0.43	0.666	3261757		5079125
lneconfree	1	3398062	.2467	012	-1.38	0.172	830073		1504606
lnforbank	1	.1158861	.0687	244	1.69	0.095	0206892		2524614
privatisat~n	1	.0744099	.0322	801	2.31	0.024	.01026		1385598
instability	1	(omitted)							
d2008	1	.3420262	.237	467	1.44	0.153	1298895		.813942
d2007	1	.6392588	.2126	119	3.01	0.003	.2167374		1.06178
d2006	1	.5860322	.1900	586	3.08	0.003	.2083306	•	9637337
d2005	1	.3462564	.1776	614	1.95	0.054	0068084	•	6993212
d2004		.4566108	.1508	898	3.03	0.003	.1567491	•	7564726
d2003		.4544518	.1245	066	3.65	0.000	.2070211	•	7018825
d2002		.3456252	.0934	968	3.70	0.000	.1598199	•	5314305
d2001		.1281347	.0733	051	1.75	0.084	0175438	•	2738133
d2000		(omitted)							
d1999		(omitted)							
d1998		(omitted)							
d1997	1	(omitted)							
d1996	1	(omitted)							
d1995 _cons		(omitted) -1.792921	1.944	592	-0.92	0.359	-5.657388	2	.071546

```
. **Model 5.17
. **LSDVC
. xtlsdvc lnfdistock lllnfdistock lnsecedu lntertedu lnvacancy lngdp lntransition lntradefree
lneconfree lnforbank
> privatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998
d1997 d1996 d1995,
> initial(bb) vcov(100) first
note: d2001 dropped because of collinearity
```

note: 111nfdistock dropped because of collinearity Note: Bias correction initialized by Blundell and Bond estimator

Note: Blundell and Bond estimator is implemented through

the user-written Stata command -xtabond2- by David Roodman,

Center for Global Development, Washington, DC droodman@cgdev.org

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable	: country : year			Number o Number o	of obs = of groups =	48 12
Number of inst	ruments = 41			Obs per	group: min =	4
Wald chi2(14)	= 488290.14				avg =	4.00
Prob > chi2	= 0.000				max =	4
lnfdistock	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lnfdistock						
L1.	.8977995	.0854526	10.51	0.000	.7303155	1.065283
lnsecedu	.0485539	.0715418	0.68	0.497	0916654	.1887732
lntertedu	.1910826	.0729563	2.62	0.009	.048091	.3340743
lnvacancy	.2246185	.0910351	2.47	0.014	.046193	.4030441
lngdp	.0778563	.0931203	0.84	0.403	1046561	.2603687
<pre>lntransition </pre>	.1558071	.6244971	0.25	0.803	-1.068185	1.379799
lntradefree	062606	.207485	-0.30	0.763	4692691	.3440571
lneconfree	967274	.2399055	-4.03	0.000	-1.43748	4970679
lnforbank	.2217583	.0771907	2.87	0.004	.0704672	.3730493
privatisat~n	.1045229	.0328716	3.18	0.001	.0400957	.1689501
d2005	2.468708	2.02655	1.22	0.223	-1.503257	6.440673
d2004	2.591857	2.029857	1.28	0.202	-1.386591	6.570304
d2003	2.627675	2.037782	1.29	0.197	-1.366303	6.621653
d2002	2.552531	2.036454	1.25	0.210	-1.438845	6.543907
<pre>Inforbank GMM-type (mi L(1/.).L.1 Instruments fo Standard Insecedu l Inforbank GMM-type (mi D.L.Infdis</pre>	privatisation ssing=0, sepa nfdistock r levels equa ntertedu lnva privatisation ssing=0, sepa tock	d2005 d200 rate instrum tion cancy lngdp d2005 d200 rate instrum	4 d2003 d ments for lntransi 4 d2003 d ments for	12002) each per tion lntr 12002 each per	riod unless c radefree lnec riod unless c	ollapsed) onfree ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first () in first (differenc differenc	es: z =	-2.61 Pr > 1.10 Pr >	z = 0.009 z = 0.270
Sargan test of (Not robust,	overid. rest but not weak	rictions: cl ened by man	hi2(27) y instrum	= 46.99 ments.)) Prob > chi	2 = 0.010
Difference-in- GMM instrume	Sargan tests nts for level	of exogenei s	ty of ins	trument s	subsets:	
Sargan tes	t excluding g	roup: cl	hi2(23)	= 34.68	8 Prob > chi	2 = 0.056
Difference	(null H = ex	ogenous): cl	hi2(4)	= 12.31	l Prob > chi	2 = 0.015
<pre>iv(lnsecedu privatisation > 003 d2002)</pre>	lntertedu lnv d2005 d2004 d	acancy lngdy 2	p lntrans	ition lnt	radefree lne	confree lnforbank
Sargan tes	t excluding g	roup: cl	hi2(14)	= 19.95	5 Prob > chi	2 = 0.132
Difference	(null H = ex	ogenous): cl	hi2(13)	= 27.05	ō Prob > chi	2 = 0.012
note: d2003 dr	opped because	of colline	arity			

note: Bias correction up to order O(1/T)

```
D.(lnsecedu Intertedu Invacancy Ingdp Intransition Intradefree Ineconfree
Inforbank privatisation d2005 d2004 d2003 d2002)
L(1/.).L.Infdistock
Insecedu Intertedu Invacancy Ingdp Intransition Intradefree Ineconfree
Inforbank privatisation d2005 d2004 d2003 d2002
D.I.Infdistock
GMM instruments for levels
iv(Insecedu Intertedu Invacancy Ingdp Intransition Intradefree Ineconfree Inforbank
privatisation d2005 d2004 d2
> 003 d2002)
LSDVC dynamic regression
(bootstrapped SE)
```

lnfdistock		Coef.	Std. Err.	Z	P> z	[95% Conf.	[Interval]
lnfdistock	1						
L1.	İ.	.8002723	.1714412	4.67	0.000	.4642537	1.136291
lnsecedu		9372391	1.790581	-0.52	0.601	-4.446713	2.572235
lntertedu		.15019	.9760434	0.15	0.878	-1.76282	2.0632
lnvacancy		.2876396	.2296195	1.25	0.210	1624064	.7376855
lngdp	1	.9855574	.4763982	2.07	0.039	.051834	1.919281
Intransition	1	3605443	1.831897	-0.20	0.844	-3.950996	3.229908
lntradefree	1	.401198	.3918783	1.02	0.306	3668693	1.169265
lneconfree	1	-1.471083	.902214	-1.63	0.103	-3.23939	.297224
lnforbank		4011407	.249009	-1.61	0.107	8891894	.0869081
privatisat~n		.0438374	.0550406	0.80	0.426	0640402	.151715
d2005		3316825	.2389914	-1.39	0.165	8000971	.136732
d2004		1113344	.1293712	-0.86	0.389	3648974	.1422286
d2002	Ì.	.0632003	.1561237	0.40	0.686	2427965	.3691971

.

. **FE . xtreg lnfdistock lllnfdistock lnsecedu lntertedu lnvacancy lngdp lntransition lntradefree lneconfree lnforbank p > rivatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995,fe note: instability omitted because of collinearity Number of groups = Fixed-effects (within) regression 48 Group variable: country 12 R-sq: within = 0.9791Obs per group: min = 4 4.0 between = 0.5147avg = overall = 0.5259max = 4 F(13.23) 83.08 = $corr(u_i, Xb) = -0.7828$ = Prob > F 0.0000 lnfdistock | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 111nfdistock |
 .3099765
 .1602137
 1.93
 0.065
 -.0214509

 1nsecedu |
 -2.475255
 1.116257
 -2.22
 0.037
 -4.784408

 1ntertedu |
 -.5593412
 .5969751
 -0.94
 0.359
 -1.794278

 1nvacancy |
 .1357895
 .1068955
 1.27
 0.217
 -.0853407

 1ngdp |
 1.287851
 .3239115
 3.98
 0.001
 .6177894

 1ntransition |
 .0026686
 1.358066
 0.00
 0.998
 -2.806704

 1ntradefree |
 .448129
 .2018111
 2.22
 0.037
 .0306508
 .6414038 -.1661017 .6755959 .3569197 1.957913 2.812042 .8656071 lneconfree | -.3238841 .6438529 lnforbank | -.5604368 .1708097
 -0.50
 0.620
 -1.655795

 -3.28
 0.003
 -.9137835
 1.008027 -.20709 .0665125 .0074137 .0285687 0.26 0.798 -.0516852 privatisat~n | instability | (omitted) d2008 | (omitted) d2007 | (omitted) d2006 | (omitted) d2005 | -.0643408 .0895869 -0.72 0.480 -.2496654 .1209838 d2004 | (omitted) -.0388948 .098381 -0.40 0.696 -.2424115 .1646219 -.0847756 .1911969 -0.44 0.662 -.4802966 .3107454 d2003 | .3107454 d2002 | d2001 | (omitted) d2000 | (omitted) d1999 | (omitted) d1998 | (omitted) d1997 | (omitted) d1996 | (omitted) d1995 | (omitted) _cons | -15.25231 8.820247 -1.73 0.097 -33.49838 2.993767 ____+ _____ sigma_u | 1.5068576 sigma_e | .07056648 rho | .99781173 (fraction of variance due to u_i) _____ F test that all $u_i=0$: F(11, 23) = 7.40 Prob > F = 0.0000

. **OLS . reg lnfdistock lllnfdistock lnsecedu lntertedu lnvacancy lngdp lntransition lntradefree lneconfree lnforbank pri

> vatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995 d1996

note: instability omitted because of collinearity

Source	I SS	df	MS		Number of obs	= 48
Model	81.3319117	13 6.2	2563009		Prob > F	= 0.0000
Residual	.519917216	34 .015	5291683		R-squared	= 0.9936
Total	+ 81.8518289	47 1.74	4152827		Adj R-squared Root MSE	= 0.9912 = .12366
lnfdistock	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lllnfdistock	.9729042	.0896259	10.86	0.000	.7907624	1.155046
lnsecedu	0063703	.0862696	-0.07	0.942	1816913	.1689506
lntertedu	.1696389	.0943231	1.80	0.081	0220487	.3613266
lnvacancy	.2367733	.1197646	1.98	0.056	0066176	.4801641
lngdp	000332	.1002784	-0.00	0.997	2041221	.2034582
Intransition	1898742	.7579255	-0.25	0.804	-1.730164	1.350416
lntradefree	0013784	.2669808	-0.01	0.996	5439487	.5411919
lneconfree	8789366	.3044616	-2.89	0.007	-1.497677	2601962
lnforbank	.2295101	.0990511	2.32	0.027	.028214	.4308061
privatisat~n	.1138667	.04285	2.66	0.012	.0267851	.2009484
instability	(omitted)					
d2008	(omitted)					
d2007	(omitted)					
d2006	(omitted)					
d2005	1763234	.0591216	-2.98	0.005	2964729	056174
d2004	0444551	.0571931	-0.78	0.442	1606854	.0717752
d2003	(omitted)					
d2002	0784778	.0547007	-1.43	0.161	189643	.0326873
d2001	(omitted)					
d2000	(omitted)					
d1999	(omitted)					
d1998	(omitted)					
d1997	(omitted)					
d1996	(omitted)					
d1995	(omitted)					
d1996	(omitted)					
_cons	3.893939	2.342262	1.66	0.106	8661106	8.653989

Appendix 6

Contents

Appendix 6.1: Descriptive statistics and raw correlations	409
Appendix 6.2: Models 6.1-6.3 results	413
Appendix 6.3: Technological intensity classification	
Appendix 6.4: Unit root tests and initial specification tests	426
Appendix 6.5: Testing the instrument validity	448
Appendix 6.6: Model 6.4 results	460
Appendix 6.7: Different GMM estimators and options	467
Appendix 6.8: Reducing the instrument count	
Appendix 6.9: Model 6.5 results	
Appendix 6.10: Model 6.6 results	501
Appendix 6.11: Model 6.7 results	508
Appendix 6.12: Model 6.8 results	515
Appendix 6.13: Model 6.9 results	
Appendix 6.14: Model 6.10 results	530
Appendix 6.15: Model 6.11 results	537
Appendix 6.16: Model 6.12 results	544
Appendix 6.17: Model 6.13 results	551
Appendix 6.18: Adding GDP per capita to Models 6.10-6.11	558

Variable		Mean	Std. Dev.	Min	Max	Observations
manfdi~k	overall	6814.486	10475.6	39.1255	55474.5	N = 153
	between		7983.675	183.9826	23616.39	n = 14
						T-bar =
	within		6830.655	-11600.8	38672.6	10.9286
manvac~v	overall	4,155934	1.907717	1.51351	9,94	N = 52
,	between		1.863207	2.125	8.77	n = 13
	within		0.609959	2.398837	5.913027	
					0.01001	
manpri~n	overall	0.163399	0.370943	0	1	N = 153
	between		0.12112	0	0.5	n = 14
						T-bar =
	within		0.35567	-0.3366	1.086476	10.9286
indfdi~k	overall	557.6086	1160.246	1.00E-06	10575.5	N = 1609
	between		887.619	0.065769	4306.717	n= 154
						T-bar =
	within		718.8372	-2795.94	6973.497	10.4481
in due vitrue	المعمد	0.010507	0 102 412	0	1	N - 2549
inapri n	botucon	0.010597	0.102413	0	1	N = 2548
	between		0.031407	0 20260	0.214280	II = 182
	within		0.097504	-0.20369	0.939168	1 = 14
primedu	overall	91.84012	6.694157	72.5	99.8	N = 168
	between		6.63157	77.12	98.88714	n = 12
	within		2.063354	87.21154	96.16012	T = 14
secedu	overall	45 50548	15 62276	22	80.7	N = 168
Seccut	hetween	13.30310	15 64613	22 68429	68 08286	n = 12
	within		4 280841	32 22.00 423	58 12262	T = 12
	within		4.200041	52.22202	50.12202	1- 14
tertedu	overall	7.353095	3.173817	3.3	15.2	N = 168
	between		3.130256	3.471428	13.7	n = 12
	within		1.018513	4.553095	11.17738	T = 14
genvoc~o	overall	0 43040	0 441007	0 146684	1 780/182	N = 196
genvoc o	hetween	0.43545	0.441552	0.140004	1 780/88	n = 1/1
	within		0.457505	0.13010	0 13010	T = 14
	VVILIIII		0	0.43345	0.43743	I - 14
cognit~e	overall	4.75875	0.399063	3.785	5.192	N = 168
	between		0.415566	3.785	5.192	n = 12
	within		0	4.75875	4.75875	T = 14

Appendix 6.1: Descriptive statistics and raw correlations

top	overall	0.070167	0.035297	0.013	0.122	N =	168
	between		0.036757	0.013	0.122	n =	12
	within		0	0.070167	0.070167	T =	14
vacancy	overall	3.893044	1.362624	1.68085	7.23077	N =	56
	between		1.277325	2.07614	5.463493	n =	14
	within		0.560518	2.023689	5.762399	T =	4
transi~n	overall	3.226143	0.496287	1.111111	3.962222	N =	193
	between		0.43192	2.182619	3.816508	n =	14
						T-ba	ar =
	within		0.268185	2.154635	3.821301	13.7	857
tradef~e	overall	73.04396	9.87613	46.8	87.8	N =	182
	between		5.907103	62	82.58571	n =	14
	within		8.02428	49.85934	94.21538	T-bar =	= 13
econfree	overall	57.88642	9.169961	24.42891	77.00185	N =	182
	between		8.099609	39.65407	72.5352	n =	14
	within		4.924805	42.29225	71.63622	T-bar =	= 13
ictinfra	overall	77.19616	52.2034	1.34503	249.1646	N =	196
	between		22.51218	35.22544	109.7186	n =	14
	within		47.45717	-1.75492	216.6421	T =	14
gdp	overall	4.89E+10	7.23E+10	1.87E+09	5.28E+11	N =	196
	between		6.36E+10	5.02E+09 -	2.44E+11	n =	14
	within		3.82E+10	5.65E+10	3.33E+11	T =	14
primex~t	overall	0.116997	0.068248	0.02774	0.334344	N =	196
	between		0.058766	0.046485	0.215017	n =	14
	within		0.037876	-0.00437	0.238943	T =	14
forbank	overall	0.531771	0.220978	0	1	N =	192
	between		0.148502	0.253571	0.779286	n = T-ha	14 ar =
	within		0.166837	0.030342	0.922485	13.7	143
wage	overall	489.474	353.8258	60.8529	2038.203	N =	188
	between		247.6512	149.9469	1070.345	n =	14
						T-ba	ar =
	within		256.326	-82.9617	1457.333	13.4	286
gini	overall	0.326326	0.042414	0.243	0.406	N =	106
	between		0.039385	0.267	0.377	n =	10
	within		0.021011	0.24454	0.37704	T =	10.6

privat~n	overall	0.408163	0.492752	0	1	N =	196
	between		0.18463	0.214286	0.785714	n =	14
	within		0.459335	-0.37755	1.193878	T =	14
					_		
instab~y	overall	0.02551	0.158073	0	1	N =	196
	between		0.066342	0	0.214286	n =	14
	within		0.144496	-0.18878	0.882653	T =	14

. corr lnindfdistock lntransition lntradefree lneconfree lnictinfra lnprimedu lnsecedu lntertedu lngenvocratio l
> nedutr1 lnedutr2 lncognitive lnmanvacancy lngdp lntop
(obs=436)

	lnindf~k	lntran~n	lntrad~e	lnecon~e	lnicti~a	lnprim~u	lnsecedu	lntert~u	lngenv~o	lnedutr1	lnedutr2
+	1 0000										
liitiiututst~k	1.0000	1 0000									
Incransicion	0.3693	1.0000									
lntradefree	-0.0418	0.6437	1.0000								
lneconfree	-0.1511	0.5474	0.7167	1.0000							
lnictinfra	0.3230	0.7060	0.4098	0.4431	1.0000						
lnprimedu	-0.0189	0.5754	0.6081	0.6955	0.1595	1.0000					
lnsecedu	-0.0245	0.3915	0.4837	0.6169	0.3762	0.5440	1.0000				
lntertedu	-0.1009	0.6185	0.7156	0.7028	0.4638	0.4673	0.4482	1.0000			
lngenvocra~o	-0.3512	0.2582	0.6389	0.8035	0.0538	0.6088	0.4993	0.7515	1.0000		
lnedutr1	-0.5068	-0.5051	-0.0341	0.1011	-0.6986	0.1982	-0.0995	-0.0148	0.5272	1.0000	
lnedutr2	-0.1463	-0.0758	0.0954	0.1471	-0.0767	0.2283	-0.0964	0.0817	0.3371	0.6002	1.0000
lncognitive	0.3708	0.8365	0.5338	0.4504	0.8027	0.1890	0.3264	0.4648	0.0600	-0.7290	-0.3532
lnmanvacancy	-0.1573	0.3224	0.4105	0.4147	0.3332	0.1578	0.3788	0.3426	0.1859	-0.1725	-0.0932
lngdp	0.6756	0.4253	-0.1317	-0.3357	0.3035	-0.0045	-0.2089	-0.2398	-0.5694	-0.6277	-0.1597
lntop	0.5018	0.7626	0.2740	0.2002	0.5798	0.2367	0.1043	0.1008	-0.2087	-0.6785	-0.3285

		lncogn~e lnmanv~y		lngdp	lntop
	+-				
lncognitive	L	1.0000			
lnmanvacancy		0.4106	1.0000		
lngdp		0.3514	-0.3275	1.0000	
lntop		0.8427	0.1152	0.6088	1.0000

Appendix 6.2: Models 6.1-6.3 results

. **Model (6.1) (LSDVC) . xtlsdvc manfdistock lnsecedu lntertedu lnwage lngdp lntransition lntradefree Ineconfree lnictinfra manprivatisat > ion instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, initial(bb) > vcov(100) first note: variable instability is time-invariant over the estimation sample and has been discarded note: d1995 dropped because of collinearity Note: Bias correction initialized by Blundell and Bond estimator Note: Blundell and Bond estimator is implemented through the user-written Stata command -xtabond2- by David Roodman, Center for Global Development, Washington, DC droodman@cgdev.org Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Dynamic panel-data estimation, one-step system GMM _____ Number of obs=123Number of groups=12Obs per group: min =5 Group variable: countryid Time variable : year Number of instruments = 111 avg = 10.25 max = 13 Wald chi2(23) = 9866.80 Prob > chi2 = 0.000 manfdistock | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____+____ manfdistock | 1.0726 .0261763 40.98 0.000 1.021295 1.123904 L1. | lnsecedu | -340.3054 618.3513 lntertedu | -1300.381 656.8293 -0.55 0.582 -1.98 0.048 -1552.252 871.6408 -13.01892 -2587.742
 Inwage
 -1283.133
 516.4708
 -2.48
 0.013
 -2295.397

 Ingdp
 691.7068
 312.126
 2.22
 0.027
 79.95112

 Insition
 5686.72
 5120.33
 1.11
 0.267
 -4348.943

 cadefree
 1352.337
 1732.993
 0.78
 0.435
 -2044.267

 cconfree
 -191.0656
 2032.056
 -0.09
 0.925
 -4173.822
 -270.8687 1303.463 15722.38 Intransition | Intradefree | 1352.337 Intradefree |1352.3371732.993lneconfree |-191.06562032.056 4748.941 3791.691 1392.16971.3521.430.152-511.65461051.042401.27722.620.009264.5531-25047.2811848.44-2.110.035-48269.79 lnictinfra | 3295.975 vati~n | 1051.042 401.2772 d2008 | -25047.28 11848.44 1837.531 manprivati~n | -1824.756 d2007 | -21641.46 11831.68 d2006 | -23297.53 11745.48 -1.83 0.067 -44831.13 1548.209 -1.98 0.047 -46318.26 -276.811 -1.96 0.051 -45729.87 d2005 | -22839.36 11679.05 51.16094 -1.89 0.058 -44806.11 -1.91 0.056 -45020.89 d2004 | -22013.19 11629.25 d2003 | -22247.25 11619.41 779.7247 526.3767 d2002 | -23202.36 11608.43 -2.00 0.046 -45954.46 -450.2528 d2001 | -22943.6 11616.4 -1.98 0.048 -45711.32 d2000 | -23001.52 11540.42 -1.99 0.046 -45620.34 -175.8761 -382.7105 d1999 | -22333.99 11590.56 -1.93 0.054 -45051.07 d1998 | -21692.46 11644.12 -1.86 0.062 -44514.52 383,102 1129.605 d1997 | -21647 11475.3 -1.89 0.059 -44138.17 844.1746 d1996 | -20877.25 11221.91 -1.86 0.063 -42871.78 1117.284

Instruments for first differences equation

Standard

D.(lnsecedu lntertedu lnwage lngdp lntransition lntradefree lneconfree lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/.).L.manfdistock

Instruments for levels equation

Standard

Insecedu Intertedu Inwage Ingdp Intransition Intradefree Ineconfree
Inictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002
d2001 d2000 d1999 d1998 d1997 d1996

GMM-type (missing=0, separate instruments for each period unless collapsed) <code>D.L.manfdistock</code>

Arellano-Bond test for AR(1) in first differences: z = -4.46 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -1.72 Pr > z = 0.085

Sargan test of overid. restrictions: chi2(88) = 113.69 Prob > chi2 = 0.034
(Not robust, but not weakened by many instruments.)

```
Difference-in-Sargan tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Sargan test excluding group: chi2(76) = 110.57 Prob > chi2 = 0.006
Difference (null H = exogenous): chi2(12) = 3.12 Prob > chi2 = 0.995
  iv(lnsecedu lntertedu lnwage lngdp lntransition lntradefree lneconfree lnictinfra
manprivatisation d2008 d2007 d
> 2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
    Sargan test excluding group: chi2(66) = 99.75 Prob > chi2 = 0.005
Difference (null H = exogenous): chi2(22) = 13.94 Prob > chi2 = 0.904
note: d2008 dropped because of collinearity
    in the LSDV regression
note: Bias correction up to order O(1/T)
    D.(Insecedu Intertedu Inwage Ingdp Intransition Intradefree Ineconfree
    lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002
    d2001 d2000 d1999 d1998 d1997 d1996)
    L(1/.).L.manfdistock
    lnsecedu lntertedu lnwage lngdp lntransition lntradefree lneconfree
    lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002
    d2001 d2000 d1999 d1998 d1997 d1996
    D.L.manfdistock
  GMM instruments for levels
  iv(lnsecedu lntertedu lnwage lngdp lntransition lntradefree lneconfree lnictinfra
manprivatisation d2008 d2007 d
> 2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
LSDVC dynamic regression
(bootstrapped SE)
                        _____
```

manfdistock	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
manfdistock	 					
L1.	1.109882	.0323443	34.31	0.000	1.046488	1.173275
lnsecedu	-1594.429	7601.586	-0.21	0.834	-16493.26	13304.41
lntertedu	-3574.935	2455.596	-1.46	0.145	-8387.814	1237.944
lnwage	-1429.649	3519.215	-0.41	0.685	-8327.184	5467.885
lngdp	813.2126	3416.311	0.24	0.812	-5882.635	7509.06
lntransition	7920.074	12549.35	0.63	0.528	-16676.21	32516.36
lntradefree	-86.76408	2289.004	-0.04	0.970	-4573.129	4399.601
lneconfree	-2989.151	4433.338	-0.67	0.500	-11678.33	5700.032
lnictinfra	2322.138	1712.925	1.36	0.175	-1035.132	5679.409
manprivati~n	1063.526	508.2505	2.09	0.036	67.37326	2059.679
d2007	3547.624	770.1055	4.61	0.000	2038.245	5057.003
d2006	1887.352	1230.582	1.53	0.125	-524.5442	4299.248
d2005	2321.564	1450.08	1.60	0.109	-520.5407	5163.669
d2004	3224.769	1892.483	1.70	0.088	-484.4285	6933.967
d2003	3149.485	2072.877	1.52	0.129	-913.2784	7212.248
d2002	2278.702	2674.508	0.85	0.394	-2963.237	7520.642
d2001	2616.286	3040.977	0.86	0.390	-3343.92	8576.491
d2000	2479.81	3416.885	0.73	0.468	-4217.161	9176.781
d1999	3371.186	3599.064	0.94	0.349	-3682.851	10425.22
d1998	4194.479	3867.205	1.08	0.278	-3385.103	11774.06
d1997	4049.657	4263.892	0.95	0.342	-4307.418	12406.73
d1996	4040.653	4500.675	0.90	0.369	-4780.509	12861.81

```
. **Model 6.2(LSDVC)
. xtlsdvc manfdistock lnsecedu lntertedu lnedutr2 lnwage lngdp lntransition
Intradefree Ineconfree Inictinfra manp
> rivatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000
d1999 d1998 d1997 d1996 d1995, in
> itial(bb) vcov(100) first
note: variable instability is time-invariant over the
      estimation sample and has been discarded
note: variable d1998 is time-invariant over the
     estimation sample and has been discarded
note: variable d1997 is time-invariant over the
      estimation sample and has been discarded
note: variable d1996 is time-invariant over the
     estimation sample and has been discarded
note: variable d1995 is time-invariant over the
      estimation sample and has been discarded
note: d1999 dropped because of collinearity
Note: Bias correction initialized by Blundell and Bond estimator
Note: Blundell and Bond estimator is implemented through
      the user-written Stata command -xtabond2- by David Roodman,
      Center for Global Development, Washington, DC droodman@cgdev.org
```

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system $\ensuremath{\mathsf{GMM}}$

Group variable Time variable Number of inst Wald chi2(20) Prob > chi2	e: countryid : year cruments = 95 = 8136.06 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	100 12 5 8.33 9
manfdistock	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
manfdistock	 					
L1.	1.052522	.0322886	32.60	0.000	.9892371	1.115806
lnsecedu	-23.11787	860.4007	-0.03	0.979	-1709.472	1663.236
lntertedu	-1397.665	775.3874	-1.80	0.071	-2917.396	122.0667
lnedutr2	874.9979	2694.53	0.32	0.745	-4406.184	6156.18
lnwage	-1280.672	607.6725	-2.11	0.035	-2471.689	-89.65622
lngdp	958.7519	403.8551	2.37	0.018	167.2105	1750.293
lntransition	6663.675	6441.502	1.03	0.301	-5961.437	19288.79
lntradefree	1005.576	2548.743	0.39	0.693	-3989.868	6001.02
lneconfree	-531.4659	3004.468	-0.18	0.860	-6420.115	5357.183
lnictinfra	1209.865	1394.95	0.87	0.386	-1524.187	3943.917
manprivati~n	1023.948	466.8776	2.19	0.028	108.8851	1939.012
d2008	-28684.51	14891.79	-1.93	0.054	-57871.88	502.8663
d2007	-25253.97	14961.8	-1.69	0.091	-54578.55	4070.611
d2006	-26859.49	14948.99	-1.80	0.072	-56158.97	2439.996
d2005	-26369.34	14957.59	-1.76	0.078	-55685.68	2947.01
d2004	-25486.8	15046.67	-1.69	0.090	-54977.74	4004.134
d2003	-25597.07	15180.02	-1.69	0.092	-55349.36	4155.215
d2002	-26391.33	15369.09	-1.72	0.086	-56514.19	3731.53
d2001	-26007.33	15611.36	-1.67	0.096	-56605.03	4590.375
d2000	-25942.48	15787	-1.64	0.100	-56884.43	4999.473
Instruments fo	or first diffe	rences equa	tion			
D (Inseced	hu Intertedu 1	nedutr2 lnw	age lagdr	Intrans	ition Intrade	free
lneconfree d2002_d200	e lnictinfra m	anprivatisa	tion d200)8 d2007	d2006 d2005 d	2004 d2003
GMM-type (mi	Lssing=0, sepa	rate instru	ments for	r each pe	riod unless c	ollapsed)
Instruments fo	nanitaistock or levels equa	tion				
Standard	JI ICVCIS CYUU	101011				
Insecedu	Intertedu lned	lutr? Inwago	lngdn lr	ntranciti	on Intradefre	0
Ineconfree	lnictinfra m	anprivatisa	tion d200	18 d2007	d2006 d2005 d	2004 2003
d2002 d200	01 d2000	anpiivacioa	01011 a200		a2000 a2000 a	2001 02000
GMM-type (mi	issing=0. sepa	rate instru	ments for	r each pe	riod unless c	ollapsed)
D.L.manfdi	lstock			saon po		
Arellano-Bond	test for NP(1) in first	differen			7 - 0 000

Archino Bond test for AR(2) in first differences: z = -1.74 Pr > z = 0.002

```
Sargan test of overid. restrictions: chi2(75) = 92.39 Prob > chi2 = 0.084
  (Not robust, but not weakened by many instruments.)
Difference-in-Sargan tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Sargan test excluding group: chi2(66) = 90.12 Prob > chi2 = 0.026
Difference (null H = exogenous): chi2(9) = 2.26 Prob > chi2 = 0.987
  iv(lnsecedu lntertedu lnedutr2 lnwage lngdp lntransition lntradefree lneconfree
lnictinfra manprivatisation d200
> 8 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000)
    Sargan test excluding group: chi2(56) = 79.55 Prob > chi2 = 0.021
Difference (null H = exogenous): chi2(19) = 12.84 Prob > chi2 = 0.847
note: d2008 dropped because of collinearity
      in the LSDV regression
note: Bias correction up to order O(1/T)
    D.(Insecedu Intertedu Inedutr2 Inwage Ingdp Intransition Intradefree
    lneconfree lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003
    d2002 d2001 d2000)
    L(1/.).L.manfdistock
    lnsecedu lntertedu lnedutr2 lnwage lngdp lntransition lntradefree
    lneconfree lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003
    d2002 d2001 d2000
    D.L.manfdistock
  GMM instruments for levels
  iv(lnsecedu lntertedu lnedutr2 lnwage lngdp lntransition lntradefree lneconfree
lnictinfra manprivatisation d200
> 8 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000)
LSDVC dynamic regression
(bootstrapped SE)
```

manfdistock		Coef.	Std. Err.	Z	P> z	[95% Conf.	[Interval]
manfdistock L1.		1.088028	.0412909	26.35	0.000	1.007099	1.168957
<pre>lnsecedu lntertedu lnedutr2 lnwage lngdp lntransition lntradefree lneconfree lnictinfra manprivati~n d2007 d2006</pre>		-3265.546 -1711.834 -13602.46 1134.347 -1190.473 7844.214 211.0329 -4061.495 2575.773 1090.971 2751.99 332.2169	11491.29 4335.963 12138.54 4976.724 6112.637 20536.8 3910.167 4946.871 2358.717 615.0621 1173.893 1758.272	-0.28 -0.39 -1.12 0.23 -0.19 0.38 0.05 -0.82 1.09 1.77 2.34 0.19	0.776 0.693 0.262 0.820 0.846 0.702 0.957 0.412 0.275 0.076 0.019 0.850	-25788.06 -10210.16 -37393.55 -8619.853 -13171.02 -32407.17 -7452.753 -13757.18 -2047.227 -114.5289 451.2012 -3113 932	19256.97 6786.497 10188.64 10888.55 10790.08 48095.59 7874.819 5634.193 7198.774 2296.47 5052.779 3778 366
d2005 d2004 d2003 d2002 d2001 d2001 d2000		-255.6132 -696.7297 -2260.891 -4729.846 -6308.386 -8755.319	2634.327 3582.555 4651.731 5917.202 7546.808 9273.901	-0.10 -0.19 -0.49 -0.80 -0.84 -0.94	0.923 0.846 0.627 0.424 0.403 0.345	-5418.799 -7718.409 -11378.12 -16327.35 -21099.86 -26931.83	4907.572 6324.949 6856.334 6867.656 8483.086 9421.192

```
. **Model 6.3(LSDVC)
. xtlsdvc manfdistock lnsecedu lntertedu lnmanvacancy lnwage lngdp lntransition
Intradefree Ineconfree Inictinfra
> manprivatisation instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000
d1999 d1998 d1997 d1996 d1995
> , initial(bb) vcov(100) first
note: variable instability is time-invariant over the
      estimation sample and has been discarded
note: variable d2008 is time-invariant over the
      estimation sample and has been discarded
note: variable d2007 is time-invariant over the
      estimation sample and has been discarded
note: variable d2006 is time-invariant over the
      estimation sample and has been discarded
note: variable d2000 is time-invariant over the
      estimation sample and has been discarded
note: variable d1999 is time-invariant over the
      estimation sample and has been discarded
note: variable d1998 is time-invariant over the
      estimation sample and has been discarded
note: variable d1997 is time-invariant over the
      estimation sample and has been discarded
note: variable d1996 is time-invariant over the
      estimation sample and has been discarded
note: variable d1995 is time-invariant over the
      estimation sample and has been discarded
note: d2001 dropped because of collinearity
Note: Bias correction initialized by Blundell and Bond estimator
```

Note: Blundell and Bond estimator is implemented through the user-written Stata command -xtabond2- by David Roodman,

Center for Global Development, Washington, DC droodman@cgdev.org

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variabl Time variable Number of ins Wald chi2(15) Prob > chi2	.e: str = =	countryid year uments = 42 4799.88 0.000			Number Number Obs pei	of obs = of groups = r group: min = avg = max =	42 11 2 3.82 4
manfdistock		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
manfdistock	-+-						
L1.	Ì	1.123667	.0622207	18.06	0.000	1.001716	1.245617
lnsecedu	i	-1041.55	823.2802	-1.27	0.206	-2655.15	572.0491
lntertedu	i	-1349.383	1051.208	-1.28	0.199	-3409.712	710.9461
lnmanvacancy		710.7931	764.0726	0.93	0.352	-786.7618	2208.348
lnwage	1	-1244.385	711.7049	-1.75	0.080	-2639.301	150.5304
lngdp		608.5713	546.446	1.11	0.265	-462.4432	1679.586
Intransition	1	4894.127	8667.262	0.56	0.572	-12093.39	21881.65
lntradefree		1969.3	2982.297	0.66	0.509	-3875.894	7814.495
lneconfree		-1334.806	3648.063	-0.37	0.714	-8484.878	5815.267
lnictinfra		1516.244	1533.711	0.99	0.323	-1489.774	4522.262
manprivati~n		815.1173	490.8693	1.66	0.097	-146.969	1777.204
d2005		-17218.18	17684.34	-0.97	0.330	-51878.84	17442.48
d2004		-16132.48	17762.84	-0.91	0.364	-50947	18682.04
d2003		-16342.54	17754.02	-0.92	0.357	-51139.77	18454.7
d2002		-17378.44	17721.23	-0.98	0.327	-52111.43	17354.54
Instruments f	or	first diffe	erences equa	tion			

Instruments for first differences equation
Standard
D.(Insecedu Intertedu Inmanvacancy Inwage Ingdp Intransition Intradefree
Ineconfree Inictinfra manprivatisation d2005 d2004 d2003 d2002)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/.).L.manfdistock
Instruments for levels equation
Standard
Insecedu Intertedu Inmanvacancy Inwage Ingdp Intransition Intradefree
Ineconfree Inictinfra manprivatisation d2005 d2004 d2003 d2002
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.L.manfdistock

417

```
Arellano-Bond test for AR(1) in first differences: z = -1.63 Pr > z = 0.103
Arellano-Bond test for AR(2) in first differences: z = -1.62 Pr > z = 0.105
Sargan test of overid. restrictions: chi2(27) = 42.84 Prob > chi2 = 0.027
  (Not robust, but not weakened by many instruments.)
Difference-in-Sargan tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Sargan test excluding group: chi2(23) = 41.14 Prob > chi2 = 0.011
Difference (null H = exogenous): chi2(4) = 1.70 Prob > chi2 = 0.790
  iv(lnsecedu lntertedu lnmanvacancy lnwage lngdp lntransition lntradefree lneconfree
lnictinfra manprivatisation
> d2005 d2004 d2003 d2002)
    Sargan test excluding group: chi2(13) = 14.97 Prob > chi2 = 0.309
Difference (null H = exogenous): chi2(14) = 27.87 Prob > chi2 = 0.015
note: d2002 dropped because of collinearity
    in the LSDV regression
note: Bias correction up to order O(1/T)
    D.(Insecedu Intertedu Inmanvacancy Inwage Ingdp Intransition Intradefree
    Ineconfree Inictinfra manprivatisation d2005 d2004 d2003 d2002)
    L(1/.).L.manfdistock
    lnsecedu lntertedu lnmanvacancy lnwage lngdp lntransition lntradefree
    Ineconfree Inictinfra manprivatisation d2005 d2004 d2003 d2002
    D.L.manfdistock
  GMM instruments for levels
  iv(lnsecedu lntertedu lnmanvacancy lnwage lngdp lntransition lntradefree lneconfree
lnictinfra manprivatisation
> d2005 d2004 d2003 d2002)
LSDVC dynamic regression
(bootstrapped SE)
 manfdistock | Coef. Std. Err. z P>|z| [95% Conf. Interval]
         ____+
                                       ------
                   _____
                                                            _____
manfdistock |
        L1. | 1.20136 .1448339
                                                            .9174913
                                        8.29 0.000
                                                                         1.48523
    lnsecedu | 32802.57 32123.64
                                         1.02 0.307
                                                          -30158.61
                                                                        95763.74
Intertedu | -6925.728 16240.79
Inmanvacancy | 5870.575 3191.668
                                         -0.43 0.670
1.84 0.066
                                                            -38757.1
                                                                          24905.64
                                                            -384.9786
                                                                         12126.13
                                          -0.09 0.931
-0.28 0.779
    lnwage | -1879.595 21845.65
                                                            -44696.28
                                                                          40937.1
       lngdp |
                -5682.114
                             20281.17
                                                            -45432.47
                                                                          34068.24
                                         -1.67 0.095
Intransition | -67394.92 40335.44
                                                            -146450.9
                                                                         11661.08
                                                  0.422
 Intradefree | 3942.533
                            4907.706
                                          0.80
                                                            -5676.394
                                                                          13561.46
  lneconfree |
                -11957.93
                             12904.55
                                          -0.93
                                                  0.354
                                                            -37250.37
                                                                          13334.52
  lnictinfra | 6223.325 6382.685 0.98 0.330
                                                            -6286.507
                                                                         18733.16
                423.7125 872.1456
2715.529 5036.157
                                         0.49 0.627
0.54 0.590
                                                            -1285.661
manprivati~n |
                                                                          2133.086
       d2005 |
                                                           -7155.158
                                                                          12586.22
       d2004 | 3492.799 3906.217
d2003 | 1981.686 2441.031
                                         0.89 0.371
0.81 0.417
                                                            -4163.246
                                                                         11148.84
                                                            -2802.646
                                                                         6766.018
```

.

. **Testing down Model (6.1)to reduce the instrument count . **Initial full Model . xtlsdvc manfdistock lnsecedu lntertedu lnwage lngdp lntransition lntradefree Ineconfree Inictinfra manprivatisat > ion instability d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, initial(bb) > vcov(100) first note: variable instability is time-invariant over the estimation sample and has been discarded note: d1995 dropped because of collinearity Note: Bias correction initialized by Blundell and Bond estimator Note: Blundell and Bond estimator is implemented through the user-written Stata command -xtabond2- by David Roodman, Center for Global Development, Washington, DC droodman@cgdev.org Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Dynamic panel-data estimation, one-step system GMM Group variable: countryid Number of obs = 123 Number of groups = 12 Time variable : year Obs per group: min = Number of instruments = 1115 avg = max = Wald chi2(23) = 9866.80 10.25 Prob > chi2 = 0.000 13 manfdistock | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ manfdistock | .0261763 40.98 0.000 1.021295 L1. | 1.0726 1.123904 lnsecedu | -340.3054 618.3513 lntertedu | -1300.381 656.8293 -0.55 0.582 -1.98 0.048 -1552.252 871.6408 -13.01892 lntertedu | -2587.742 -2.48 0.013 lnwage | -1283.133 516.4708 -2295.397 -270.8687
 2.22
 0.027
 79.95112

 1.11
 0.267
 -4348.943

 0.78
 0.435
 -2044.267

 -0.09
 0.925
 -4173.822
 lngdp | 691.7068 312.126 sition | 5686.72 5120.33 1303.463 15722.38 Intransition | Intradefree1352.3371732.993Ineconfree-191.06562032.056 4748.941 3791.691 tinfra | 1392.16 971.352 vati~n | 1051.042 401.2772 d2008 | -25047.28 11848.44
 971.352
 1.43
 0.152
 -511.6546

 401.2772
 2.62
 0.009
 264.5531

 11848.44
 -2.11
 0.035
 -48269.79
 lnictinfra | 3295.975 1837.531 manprivati~n | -1824.756 -1.83 0.067 -44831.13 -1.98 0.047 -46318.26 1548.209 d2007 | -21641.46 11831.68 d2006 | -23297.53 11745.48 -276.811 d2005 | -22839.36 11679.05 -1.96 0.051 -45729.87 51.16094 d2003 | -22013.19 11629.25 d2003 | -22247.25 11619.41 -1.89 0.058 -44806.11 -1.91 0.056 -45020.89 -2.00 0.046 -45954.46 779.7247 526.3767 d2002 | -23202.36 11608.43 -450.2528 -1.98 0.048 -45711.32 -1.99 0.046 -45620.34 d2001 | -22943.6 11616.4 -175.8761 -23001.52 11540.42 d2000 I -382.7105 -22333.99 11590.56 -21692.46 11644.12 -1.93 0.054 -1.86 0.062 d1999 | -22333.99 -45051.07 383,102 d1.998 | -44514.52 1129.605 -1.89 0.059 -44138.17 d1997 | -21647 11475.3 844.1746 d1996 | -20877.25 11221.91 -1.86 0.063 -42871.78 1117.284 _____ _____ -----____ Instruments for first differences equation Standard D.(Insecedu Intertedu Inwage Ingdp Intransition Intradefree Ineconfree lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/.).L.manfdistock Instruments for levels equation Standard Insecedu Intertedu Inwage Ingdp Intransition Intradefree Ineconfree Inictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.manfdistock Arellano-Bond test for AR(1) in first differences: z = -4.46 Pr > z = 0.000

Difference-in-Sargan tests of exogeneity of instrument subsets:

```
GMM instruments for levels
    Sargan test excluding group: chi2(76) = 110.57 Prob > chi2 = 0.006
Difference (null H = exogenous): chi2(12) = 3.12 Prob > chi2 = 0.995
  iv(lnsecedu lntertedu lnwage lngdp lntransition lntradefree lneconfree lnictinfra
manprivatisation d2008 d2007 d
> 2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
    Sargan test excluding group: chi2(66) = 99.75 Prob > chi2 = 0.005
Difference (null H = exogenous): chi2(22) = 13.94 Prob > chi2 = 0.904
note: d2008 dropped because of collinearity
      in the LSDV regression
note: Bias correction up to order O(1/T)
    D. (Insecedu Intertedu Inwage Ingdp Intransition Intradefree Ineconfree
    lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002
    d2001 d2000 d1999 d1998 d1997 d1996)
    L(1/.).L.manfdistock
    Insecedu Intertedu Inwage Ingdp Intransition Intradefree Ineconfree
    lnictinfra manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002
    d2001 d2000 d1999 d1998 d1997 d1996
    D.L.manfdistock
  GMM instruments for levels
  iv(lnsecedu lntertedu lnwage lngdp lntransition lntradefree lneconfree lnictinfra
manprivatisation d2008 d2007 d
> 2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
LSDVC dynamic regression
(bootstrapped SE)
manfdistock | Coef. Std. Err. z P>|z| [95% Conf. Interval]
manfdistock |
        L1. | 1.109882 .0323443 34.31 0.000
                                                            1.046488
                                                                        1,173275
   lnsecedu | -1594.429 7601.586
                                         -0.21 0.834
                                                           -16493.26
                                                                        13304.41
                                         -1.46 0.145
-0.41 0.685
  lntertedu | -3574.935
                             2455.596
                                                           -8387.814
                                                                         1237.944
                            3519.215
     lnwage | -1429.649
                                                           -8327.184
                                                                         5467.885
                            3416.311
                                         0.24 0.812
0.63 0.528
       lngdp | 813.2126
                                                           -5882.635
                                                                          7509.06
lntransition |
                 7920.074
                             12549.35
                                                           -16676.21
                                                                         32516.36
```

-0.04 0.970

1.36 0.175

2.09 0.036 4.61 0.000 1.53 0.125

1.60 0.109 1.70 0.088

1.52 0.129

0.86 0.390

0.73 0.468 0.94 0.349

1.08 0.278

0.95 0.342 0.90 0.369

0.500

0.394

-0.67

0.85

-4573.129

-11678.33

-1035.132

67.37326

2038.245

-524.5442

-520.5407

-484.4285

-913.2784

-2963.237

-3343.92

-4217.161

-3682.851

-3385.103

-4307.418

-4780.509

4399.601

5700.032

5679.409

2059.679

5057.003

4299.248

5163.669

6933.967

7212.248

7520.642

8576.491

9176.781

10425.22

11774.06

12406.73 12861.81

. test lntradefree=lnwage

(1) - lnwage + lntradefree = 0

chi2(1)	=	0.14
Prob > chi2	2 =	0.7080

lntradefree | -86.76408 2289.004

2322.138

3547.624

2321.564

2278.702

2479.81

3371.186

4194.479

d1997 | 4049.657 4263.892 d1996 | 4040.653 4500.675

2616.286

1063.526 508.2505

1887.352 1230.582

3224.769 1892.483

3149.485 2072.877

4433.338

1712.925

770.1055

1450.08

2674.508

3040.977

3416.885

3599.064

3867.205

4263.892

lneconfree | -2989.151

lnictinfra L

d2007 |

d2006 |

d2005 I

d2004 |

d2003 |

d2002 |

d2001 |

d2000 |

d1999 |

d1998 |

manprivati~n |

. **lntradefree & lnwage dropped . xtlsdvc manfdistock insecedu intertedu ingdp intransition ineconfree inictinfra manprivatisation instability d20 > 08 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, initial(bb) vcov(100) first note: variable instability is time-invariant over the estimation sample and has been discarded note: d1995 dropped because of collinearity Note: Bias correction initialized by Blundell and Bond estimator Note: Blundell and Bond estimator is implemented through

the user-written Stata command -xtabond2- by David Roodman, Center for Global Development, Washington, DC droodman@cgdev.org

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable	e: countryid			Number	of obs =	123
Time variable	: year			Number	of groups =	12
Number of inst	ruments = 109			Obs per	group: min =	5
Wald chi2(21)	= 9683.23				avg =	10.25
Prob > chi2	= 0.000				max =	13
manfdistock	Coef.	Std. Err.		 P> z	[95% Conf.	Intervall
	+					
manfdistock						
L1.	1.078477 	.0262135	41.14	0.000	1.0271	1.129855
lnsecedu	453.8763	527.1814	0.86	0.389	-579.3803	1487.133
lntertedu	-463.7821	568.805	-0.82	0.415	-1578.619	651.0553
lngdp	730.4102	311.379	2.35	0.019	120.1187	1340.702
Intransition	1033.303	4642.291	0.22	0.824	-8065.419	10132.03
lneconfree	89.87123	2043.452	0.04	0.965	-3915.22	4094.963
lnictinfra	-252.3672	715.9008	-0.35	0.724	-1655.507	1150.773
manprivati~n	1055.678	400.6972	2.63	0.008	270.3263	1841.03
d2008	-20450 76	10261 33	-1 99	0 046	-40562 59	-338 9233
d2000	1 _17002 97	10201.00	-1 66	0.010	-37078 /1	3072 461
22007	10602.57	10242.70	-1.00	0.057	-37070.41	1206 000
42000	10023.74	10151 02	-1.02	0.000	-30043.37	1662 004
12005	17505.72	10131.93	-1.00	0.072	-30130.94	1003.904
d2004	-1/585.72	101/2.57	-1.73	0.084	-3/523.59	2352.152
d2003	-1/841.2/	10139.17	-1.76	0.078	-3//13.6/	2031.137
d2002	-18655.09	10081.78	-1.85	0.064	-38415.02	1104.844
d2001	-18501.87	10083.4	-1.83	0.067	-38264.96	1261.225
d2000	-18845.12	10021.38	-1.88	0.060	-38486.67	796.4189
d1999	-18708.81	10103.63	-1.85	0.064	-38511.57	1093.947
d1998	-18387.52	10135.48	-1.81	0.070	-38252.7	1477.651
d1997	-18778.31	10061.98	-1.87	0.062	-38499.43	942.8156
d1996	-18193.15	9831.386	-1.85	0.064	-37462.32	1076.01
Instruments fo	or first diffe	rences equa	tion			
Standard						
D.(lnseced manprivat:	du lntertedu l isation d2008	ngdp lntran d2007 d2006	sition lr d2005 d2	neconfree 2004 d200	lnictinfra 3 d2002 d2001	d2000
d1999 d199	98 d1997 d1996)				
GMM-type (m	issing=0, sepa	rate instru	ments for	c each pe	riod unless c	ollapsed)
L(1/.).L.r	manfdistock					
Instruments fo Standard	or levels equa	tion				
lnsecedu 1	lntertedu lngd	p lntransit	ion lneco	onfree ln	ictinfra	
manprivat	isation d2008	d2007 d2006	d2005 d2	2004 d200	3 d2002 d2001	d2000
d1999 d199	98 d1997 d1996					
GMM-type (m:	issing=0, sepa	rate instru	ments for	c each pe	riod unless c	ollapsed)
D.L.manfd:	istock			-		- ·
Arellano-Bond	test for AR(1) in first	differend	ces: z =	-4.65 Pr >	z = 0.000
Arellano-Bond	test for AR(2) in first	differend	ces: z =	-1.74 Pr >	z = 0.082
Common toot of	E arranid maat			117 E	1 Duch > chi	
(Not robust	but not weak	ened by man	niz(88) v instrum	-11/.5	1 Prob > cni.	2 = 0.019
(NOC LODUSC)	, but not weak	CIICA Dy Mall	γ ±113 C ± UII			
Difference-in-	-Sargan tests	of exogenei	ty of ins	strument	subsets:	
GMM instrume	ents for level	s				
Sargan tes	st excluding g	roup: c	hi2(76)	= 113.2	1 Prob > chi	2 = 0.004
Difference	e (null H = ex	ogenous): c	hi2(12)	= 4.3	0 Prob > chi	2 = 0.977

```
iv(lnsecedu lntertedu lnqdp lntransition lneconfree lnictinfra manprivatisation
d2008 d2007 d2006 d2005 d2004 d2
> 003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
   Sargan test excluding group: chi2(68) = 106.51 Prob > chi2 = 0.002
Difference (null H = exogenous): chi2(20) = 11.00 Prob > chi2 = 0.946
note: d2008 dropped because of collinearity
   in the LSDV regression
note: Bias correction up to order O(1/T)
   D.(Insecedu Intertedu Ingdp Intransition Ineconfree Inictinfra
   manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000
   d1999 d1998 d1997 d1996)
   L(1/.) L.manfdistock
   Insecedu Intertedu Ingdp Intransition Ineconfree Inictinfra
   manprivatisation d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000
   d1999 d1998 d1997 d1996
   D.L.manfdistock
  GMM instruments for levels
  iv(lnsecedu lntertedu lngdp lntransition lneconfree lnictinfra manprivatisation
d2008 d2007 d2006 d2005 d2004 d2
> 003 d2002 d2001 d2000 d1999 d1998 d1997 d1996)
LSDVC dynamic regression
(bootstrapped SE)
                 Coef. Std. Err. z P>|z| [95% Conf. Interval]
manfdistock |
_____
manfdistock |
        L1. | 1.109596 .0319144 34.77 0.000
                                                      1.047045
                                                                 1.172147
   lnsecedu | -1664.669 7488.975
                                     -0.22 0.824 -16342.79
                                                                13013.45
                                                                1257.021
  lntertedu | -3377.63 2364.661
lngdp | -152.6028 2072.84
                                     -1.43 0.153
-0.07 0.941
                                                     -8012.281
     -4215.294
                                                                  3910.088
Intransition | 9594.075 10908.45
                                                                  30974.25
  lneconfree |
                                                                  5486.173
                                                                  5261,929
  lnictinfra L
manprivati~n |
                                                                   2061.49
                                                                  5114.066
                                                                  4398.091
                                                                  5267.113
                                                                  7044.343
                                                                  7375.003
                                                                  7763.373
                                     1.03 0.303
      d2001 |
              3057.517 2970.441
                                                     -2764.441
                                                                  8879.474
                                     0.88 0.381
1.04 0.296
      d2000 | 2939.487 3355.627
                                                     -3637.421
                                                                  9516.396
      d1999 |
               3762.966
                           3601.28
                                                     -3295.414
                                                                  10821.35
                                     1.23 0.220
      d1998 | 4652.535 3790.458
                                                     -2776.626
                                                                   12081.7
      d1997 | 4585.972 4092.148
d1996 | 4682.647 4207.508
                                     1.12 0.262
1.11 0.266
                                                     -3434.491
                                                                  12606.44
                                                     -3563.917
                                                                12929.21
```

. test lntransition=lneconfree=0

(1) Intransition - Ineconfree = 0

(2) Intransition = 0

chi2(2) = 0.86 Prob > chi2 = 0.6490

. **Intransition & Ineconfree dropped . xtlsdvc manfdistock lnsecedu lntertedu lngdp lnictinfra manprivatisation instability d2008 d2007 d2006 d2005 d20 > 04 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 d1995, initial(bb) vcov(100) first note: variable instability is time-invariant over the estimation sample and has been discarded note: d1995 dropped because of collinearity Note: Bias correction initialized by Blundell and Bond estimator Note: Blundell and Bond estimator is implemented through

the user-written Stata command -xtabond2- by David Roodman, Center for Global Development, Washington, DC droodman@cgdev.org

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable Number of inst Wald chi2(19) Prob > chi2	e: countryid : year ruments = 107 = 9688.47 = 0.000			Number Number Obs per	of obs of groups group: min avg max	= 123 = 12 = 5 = 10.25 = 13
manfdistock	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
manfdistock L1.	1.078748	.0261542	41.25	0.000	1.027487	1.13001
<pre>Insecedu Intertedu Ingdp Inictinfra manprivati~n d2008 d2007 d2006 d2005 d2004 d2003 d2002 d2001 d2000 d1999 d1998 d1997 d1996 </pre>	510.602 -361.7917 775.4905 -197.26 1070.962 -20595.35 -17141.4 -18745.82 -18346.49 -17699.98 -177941.32 -18743.82 -18587.01 -18933.28 -18793.62 -18479.31 -18874.02 -18325.85	$\begin{array}{r} 471.3558\\ 429.7157\\ 238.9738\\ 641.9894\\ 401.8862\\ 6223.301\\ 6247.456\\ 6216.559\\ 6204.613\\ 6211.021\\ 6174.393\\ 6124.903\\ 6135.62\\ 6121.088\\ 6145.96\\ 6134.312\\ 6129.1\end{array}$	$\begin{array}{c} 1.08 \\ -0.84 \\ 3.25 \\ -0.31 \\ 2.66 \\ -3.31 \\ -2.74 \\ -3.02 \\ -2.96 \\ -2.85 \\ -2.91 \\ -3.06 \\ -3.03 \\ -3.09 \\ -3.06 \\ -3.01 \\ -3.08 \\ -3.04 \end{array}$	0.279 0.400 0.001 0.759 0.008 0.001 0.006 0.003 0.003 0.004 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.002 0.003 0.002 0	-413.2383 -1204.019 307.1105 -1455.536 283.2792 -32792.79 -29386.19 -30930.06 -30507.31 -29873.36 -30042.91 -30748.41 -30612.6 -30930.39 -30839.48 -30502.34 -30502.34 -30502.34 -30123.07	1434.442 480.4356 1243.87 1061.016 1858.644 -8397.902 -4896.615 -6561.593 -6185.669 -5526.6 -5839.734 -6739.231 -6561.415 -6936.166 -6747.759 -6456.275 -6877.114 -6528.625
Instruments for Standard D.(Inseced d2005 d200 GMM-type (mi L(1/.).L.m Instruments for Standard Insecedu 1 d2005 d200 GMM-type (mi D.L.manfdi	or first diffe: hu lntertedu ln 4 d2003 d2002 .ssing=0, sepa: hanfdistock or levels equal .ntertedu lngdp 4 d2003 d2002 .ssing=0, sepa: .stock	rences equingdp lnict d2001 d20 rate instr tion p lnictinf d2001 d20 rate instr	infra manpriva 00 d1999 di 00 d1999 di 00 d1999 di 00 d1999 di 00 d1999 di	rivatisa 1998 d19 each pe atisatio 1998 d19 each pe	tion d2008 d 97 d1996) riod unless n d2008 d200 97 d1996 riod unless	2007 d2006 collapsed) 7 d2006 collapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	difference difference	es: z = es: z =	-5.02 Pr > -1.64 Pr >	z = 0.000 z = 0.101
Sargan test of (Not robust,	overid. rest but not weak	rictions: ened by ma	chi2(88) ny instrume	= 117.4 ents.)	0 Prob > ch	i2 = 0.020
Difference-in- GMM instrume Sargan tes Difference iv(lnsecedu d2004 d2003 d2 > 999 d1998 d1 Sargan tes Difference	Sargan tests of ents for level t excluding gr (null H = exc lntertedu lng 2002 d2001 d200 .997 d1996) t excluding gr (null H = exc	of exogene coup: ogenous): dp lnictin 00 d1 coup: ogenous):	chi2(76) chi2(12) fra manpris chi2(70) chi2(18)	= 112.7 = 4.6 vatisati = 108.3 = 9.0	subsets: 1 Prob > ch 9 Prob > ch on d2008 d20 7 Prob > ch 2 Prob > ch	i2 = 0.004 i2 = 0.968 07 d2006 d2005 i2 = 0.002 i2 = 0.959

manfdistock	I	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
manfdistock L1.		1.115415	.0286414	38.94	0.000	1.059279	1.171551
lnsecedu		497.0232	6624.399	0.08	0.940	-12486.56	13480.61
lntertedu		-3585.485	2385.215	-1.50	0.133	-8260.422	1089.451
lngdp		168.8159	1777.261	0.09	0.924	-3314.552	3652.184
lnictinfra		2243.391	1582.473	1.42	0.156	-858.1999	5344.982
manprivati~n		1103.146	495.3471	2.23	0.026	132.284	2074.009
d2007		3744.107	754.0481	4.97	0.000	2266.2	5222.015
d2006		2235.989	1105.156	2.02	0.043	69.92333	4402.055
d2005		2811.592	1314.114	2.14	0.032	235.9761	5387.207
d2004		3706.883	1730.324	2.14	0.032	315.5104	7098.256
d2003		3678.514	1852.524	1.99	0.047	47.6335	7309.394
d2002		2971.32	2430.712	1.22	0.222	-1792.787	7735.427
d2001		3334.252	2751.173	1.21	0.226	-2057.949	8726.452
d2000		3331.485	3172.755	1.05	0.294	-2886.999	9549.97
d1999		3999.806	3373.288	1.19	0.236	-2611.717	10611.33
d1998		4767.836	3561.059	1.34	0.181	-2211.711	11747.38
d1997		4675	3876.807	1.21	0.228	-2923.403	12273.4
d1996		5106.965	4090.08	1.25	0.212	-2909.444	13123.37

		Original OECD	Technology dummy
NACE F	Rev 1.1 code and economic activity	classification	variables
DA	Food products, beverages and tobacco	L	Low
DB/DC	Textiles/leather and textile/leather products	L	Low
DD/DE	Wood and wood products; pulp, paper and paper products; publishing and printing	L	Low
DF	Coke, refined petroleum products and nuclear fuel Chemicals, chemical products and man-made	M-L	Medium
DG*	fibers	M-H	High
DH	Rubber and plastic products	M-L	Medium
DI	(Other) non-metallic mineral products	M-L	Medium
DJ	Basic metals and fabricated metal products	M-L	Medium
DK	Machinery and equipment n.e.c.	M-H	High
DL**	Electrical and optical equipment	Н	High
DM	Transport equipment	M-H	High
D*	Furniture; n.e.c.; recycling	L	Low

Appendix 6.3: Technological intensity classification

Source: OECD (2011)

*All sub-groups except for one are classified as 'medium-high' in the original classification **Three out of four sub-groups are classified as 'high' in the original classification

Appendix 6.4: Unit root tests and initial specification tests

 $\ast\ast\ast$ Fisher unit root tests, using demean option to account for cross-sectional dependence

. xtunitroot fisher lnindfdistock, pp lag(1) demean could not compute test for panel 16 could not compute test for panel 80

Fisher-type unit-root test for lnindfdistock Based on Phillips-Perron tests

Ho: All panels contain unit roots Number of panels = 154 Ha: At least one panel is stationary Avg. number of periods = 10.45 Panel-specific AR parameter: Asymptotics: T -> Infinity Panel means: Included Time trend: Not included Cross-sectional means removed Newey-West lags: 1 lag _____ Statistic p-value
 Inverse chi-squared(304)
 P
 469.2289
 0.0000

 Inverse normal
 Z
 -2.9576
 0.0016

 Inverse logit t(709)
 L*
 -4.0156
 0.0000

 Modified inv. chi-squared Pm
 6.7009
 0.0000
 _____ P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels. . xtunitroot fisher Intransition, pp lag(1) demean Fisher-type unit-root test for Intransition Based on Phillips-Perron tests Ho: All panels contain unit roots Number of panels = 182 Ha: At least one panel is stationary Avg. number of periods = 13.79 AR parameter: Panel-specific Panel means: Included Time trend: Not included Asymptotics: T -> Infinity Cross-sectional means removed Newey-West lags: 1 lag _____ Statistic p-value
 Inverse chi-squared(364)
 P
 1280.3454
 0.0000

 Inverse normal
 Z
 -20.7716
 0.0000

 Inverse logit t(914)
 L*
 -24.6875
 0.0000

 Modified inv. chi-squared Pm
 33.9620
 0.0000
 P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels. . xtunitroot fisher Intradefree, pp lag(1) demean Fisher-type unit-root test for lntradefree Based on Phillips-Perron tests Ha: At least one panel is stationary Ho: All panels contain unit roots Number of panels 182 Avg. number of periods = 13.00AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Not included Cross-sectional means removed Newey-West lags: 1 lag _____ Statistic p-value
 Inverse chi-squared(364)
 P
 662.7768
 0.0000

 Inverse normal
 Z
 -9.7649
 0.0000

 Inverse logit t(914)
 L*
 -9.8332
 0.0000

 Modified inv. chi-squared Pm
 11.0734
 0.0000

P statistic requires number of panels to be finite.

Other statistics are suitable for finite or infinite number of panels. _____ . xtunitroot fisher lneconfree, pp lag(1) demean Fisher-type unit-root test for lneconfree Based on Phillips-Perron tests Number of panels Ho: All panels contain unit roots = 182 Ha: At least one panel is stationary Avg. number of periods = 13.00AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Not included Cross-sectional means removed Newey-West lags: 1 lag _____ _____ Statistic p-value
 Inverse chi-squared(364)
 P
 1231.2940
 0.0000

 Inverse normal
 Z
 -12.8428
 0.0000

 Inverse logit t(914)
 L*
 -20.5767
 0.0000

 Modified inv. chi-squared Pm
 32.1441
 0.0000
 P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels. . xtunitroot fisher lnictinfra, pp lag(1) demean Fisher-type unit-root test for lnictinfra Based on Phillips-Perron tests Ho: All panels contain unit roots Number of panels = 182 Number of periods = 14 Ha: At least one panel is stationary AR parameter: Panel-specific Panel means: Included Time trend: Not included Asymptotics: T -> Infinity Cross-sectional means removed Newey-West lags: 1 lag Statistic p-value _____
 Inverse chi-squared(364)
 P
 232.2167
 1.0000

 Inverse normal
 Z
 8.3788
 1.0000

 Inverse logit t(914)
 L*
 8.6198
 1.0000

 Modified inv. chi-squared Pm
 -4.8842
 1.0000
 P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels. _____ . xtunitroot fisher lnsecedu, pp lag(1) demean Fisher-type unit-root test for lnsecedu Based on Phillips-Perron tests Ho: All panels contain unit roots Number of panels = 12 Ha: At least one panel is stationary Number of periods = 14 AR parameter: Panel-specific Panel means: Included Time trend: Not included Asymptotics: T -> Infinity Cross-sectional means removed Newey-West lags: 1 lag Statistic p-value _____
 Inverse chi-squared(24)
 P
 54.0188
 0.0004

 Inverse normal
 Z
 -2.6761
 0.0037

 Inverse logit t(54)
 L*
 -3.4712
 0.0005

 Modified inv. chi-squared Pm
 4.3328
 0.0000
 _____ P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels.

. xtunitroot fisher lngdp, pp lag(1) demean Fisher-type unit-root test for lngdp Based on Phillips-Perron tests Number of panels = 14 Number of periods = 14 Ho: All panels contain unit roots Ha: At least one panel is stationary AR parameter: Panel-specific Panel means: Included Time trend: Not included Asymptotics: T -> Infinity Cross-sectional means removed Newey-West lags: 1 lag Statistic p-value _____
 Inverse chi-squared(28)
 P
 106.7239
 0.0000

 Inverse normal
 Z
 -2.1162
 0.0172

 Inverse logit t(74)
 L*
 -5.5884
 0.0000

 Modified inv. chi-squared Pm
 10.5199
 0.0000
 P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels. . xtunitroot fisher lntertedu, pp lag(1) demean Fisher-type unit-root test for Intertedu Based on Phillips-Perron tests Number of panels = 156 Ho: All panels contain unit roots Number of periods = 14 Ha: At least one panel is stationary AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Not included Cross-sectional means removed Newey-West lags: 1 lag _____ Statistic p-value
 Inverse chi-squared(312)
 P
 257.3760
 0.9893

 Inverse normal
 Z
 6.6218
 1.0000

 Inverse logit t(654)
 L*
 7.5725
 1.0000

 Modified inv. chi-squared Pm
 -2.1867
 0.9856
 P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels. . xtunitroot fisher lnedutransition2, pp lag(1) demean Fisher-type unit-root test for lnedutransition2 Based on Phillips-Perron tests Ha: At least one panel is stationary Avg. number of periods = 156 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Not included Cross-sectional means removed Newey-West lags: 1 lag _____ Statistic p-value
 Inverse chi-squared(312)
 P
 2298.1686
 0.0000

 Inverse normal
 Z
 -18.8831
 0.0000

 Inverse logit t(784)
 L*
 -42.5685
 0.0000

 Modified inv. chi-squared Pm
 79.5104
 0.0000
 P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels.

. xtunitroot fisher lnwage, pp lag(1) demean Fisher-type unit-root test for lnwage Based on Phillips-Perron tests Ho: All panels contain unit roots Number of panels = 182 Ha: At least one panel is stationary Avg. number of periods = 13.43 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Not included Cross-sectional means removed Newey-West lags: 1 lag _____ Statistic p-value _____
 Inverse chi-squared(364)
 P
 727.1602
 0.0000

 Inverse normal
 Z
 -2.4153
 0.0079

 Inverse logit t(914)
 L*
 -5.9800
 0.0000

 Modified inv. chi-squared Pm
 13.4596
 0.0000
 _____ ------____ P statistic requires number of panels to be finite.

Other statistics are suitable for finite or infinite number of panels.

**initial specification
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition 1 > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock) iv(lnsecedu lntertedu lnwage lngdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996-d2008 c2-> c14 s2-s13) two robust small o > rthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Dynamice paner	data cotinat.		p bybeem	01111		
Group variable Time variable Number of ins F(44, 129) Prob > F	e: id : year truments = 134 = 67.62 = 0.000	4		Number Number Obs per	of obs = of groups = group: min = avg = max =	1283 130 1 9.87 13
lnindfdist~k	 Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+					
L1.	.2978747	.1451054	2.05	0.042	.0107801	.5849692
lnsecedu	7572554	1.126232	-0.67	0.503	-2.985534	1.471023
lntertedu	3391896	1.069308	-0.32	0.752	-2.454842	1.776462
lnwage	5601606	.5341135	-1.05	0.296	-1.616917	.4965961
lnqdp	.5910103	.6396796	0.92	0.357	6746115	1.856632
lntradefree	1064939	.2762006	-0.39	0.700	6529637	.4399758
lneconfree	1.182877	.7703745	1.54	0.127	3413275	2.707082
lntransition	2.08377	1.370431	1.52	0.131	6276612	4.795202
lnictinfra	.3746656	.3347958	1.12	0.265	2877362	1.037067
indprivati~n	1.470644	.8406541	1.75	0.083	1926106	3.133899
d1996	8238078	.9906252	-0.83	0.407	-2.783784	1.136168
d1997	7123139	.9452012	-0.75	0.452	-2.582418	1.15779
d1998	6416653	.8744837	-0.73	0.464	-2.371853	1.088522
d1999	5669629	.7863053	-0.72	0.472	-2.122687	.9887614
d2000	9257001	.5840057	-1.59	0.115	-2.08117	.2297696
d2001	681652	.5886138	-1.16	0.249	-1.846239	.4829349
d2002	549423	.5465017	-1.01	0.317	-1.63069	.531844
d2003	4686766	.5202426	-0.90	0.369	-1.497989	.560636
d2004	2185787	.3180992	-0.69	0.493	8479458	.4107884
d2005	1601537	.2349323	-0.68	0.497	624973	.3046657
d2006	2169285	.1548289	-1.40	0.164	5232613	.0894042
d2007	1622286	.2340824	-0.69	0.490	6253663	.3009091
с4	1.857914	1.019322	1.82	0.071	1588397	3.874668
c5	2.510407	1.97487	1.27	0.206	-1.396921	6.417735
c6	1.836361	1.6223	1.13	0.260	-1.373399	5.046121
с7	2.515459	2.237896	1.12	0.263	-1.912274	6.943192
c8	1.084082	1.116441	0.97	0.333	-1.124823	3.292987
с9	1.744383	1.618597	1.08	0.283	-1.458051	4.946816
c11	1.53665	2.702688	0.57	0.571	-3.810684	6.883984
c12	2.138795	1.991041	1.07	0.285	-1.800529	6.078118
c13	1.864911	1.382707	1.35	0.180	8708092	4.60063
c14	1.979948	1.218421	1.63	0.107	4307289	4.390624
s2	9736692	.3596255	-2.71	0.008	-1.685197	2621414
s3	-2.878196	.7822486	-3.68	0.000	-4.425894	-1.330498
s4	3385739	.3330705	-1.02	0.311	997562	.3204141
s5	-2.140208	.6554023	-3.27	0.001	-3.436937	8434781
s6	2407095	.2534548	-0.95	0.344	742176	.2607571
s7	8328143	.3243414	-2.57	0.011	-1.474532	1910969
s8	2402478	.2611621	-0.92	0.359	7569636	.2764679
s9	3602723	.2929357	-1.23	0.221	9398527	.2193082
s10	9522802	.3378148	-2.82	0.006	-1.620655	2839054
s11	3553612	.2//9339	-1.28	0.203	9052602	.1945378
s12	1	.35/8/38	- [, []	0.2/1	-1.103685	.3124389

s13 _cons	-1.660634 -13.17014	.4666511 12.66758	-3.56 -1.04	0.001 0.300	-2.583915 -38.23326	73 11	373533 .89298
Instruments for Standard FOD.(Insece Inictinfra d2003 d2004 c13 c14 s2 GMM-type (mis L(1/.).L.In Instruments for Standard _cons Insecedu In Inictinfra d2003 d2004 c13 c14 s2	orthogonal du Intertedu indprivatisa d2005 d2006 s3 s4 s5 s6 sing=0, sepa indfdistock levels equa tertedu Inwa indprivatisa d2005 d2006 s3 s4 s5 s6 sing=0 sepa	deviations lnwage ln tion d1996 d2007 d20 s7 s8 s9 s rate instr tion ge lngdp l tion d1996 d2007 d20 s7 s8 s9 s rate instr	e equation agdp lntrad d1997 d19 008 c2 c3 o 10 s11 s12 ruments for ntradefree d1997 d19 008 c2 c3 o 10 s11 s12 008 c2 c3 o 10 s11 s12 008 c2 c3 o	defree lne 998 d1999 c4 c5 c6 c 2 s13) c each per 91 e lneconfr 998 d1999 c4 c5 c6 c 2 s13 c each per	confree 1nt d2000 d2001 7 c8 c9 c10 iod unless ee 1ntransi d2000 d2001 7 c8 c9 c10	ransit d2002 cll c collar tion d2002 cll c	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
D.L.lnindfd	istock		difforon				
Arellano-Bond t	est for AR(1) in first	differen	ces: z =	-1.06 Pr >	z =	0.287
Sargan test of (Not robust, Hansen test of (Robust, but	overid. rest but not weak overid. rest can be weake	rictions: ened by ma rictions: ned by man	chi2(89) ny instrum chi2(89) ny instrume	= 235.13 nents.) = 106.45 ents.)	Prob > ch	i2 = i2 =	0.000
Difference-in-H GMM instrumen Hansen test Difference iv(lnsecedu l indprivatisatio	ansen tests ts for level excluding g (null H = ex ntertedu lnw n d1996 d199	of exogene s roup: ogenous): age lngdp 7 d	ty of ins chi2(77) chi2(12) lntradefre	= 98.20 = 8.25 ee lneconf	ubsets: Prob > ch Prob > ch ree lntrans	i2 = i2 = ition	0.052 0.765 lnictinf
> 1998 d1999 d2 c8 c9 c10 c11 c > s3 s4 s5 s6 s	000 d2001 d2 12 c13 c14 s 7 s8 s9 s10	002 d2003 2 s11 s12 s1	d2004 d200)5 d2006 d	2007 d2008	c2 c3	c4 c5 c6
Hansen test Difference	excluding g (null H = ex	roup: ogenous):	chi2(46) chi2(43)	= 79.47 = 26.98	Prob > ch Prob > ch	i2 = i2 =	0.002 0.973

```
*fails instrument validity tests**collapsing instruments
. xtabond2 lnindfdistock l.lnindfdistock
                                            lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
collapse) iv(lnsecedu lntertedu lnwa
> ge lngdp
              Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996-
d2008 c2-c14 s2-s13) two robu
> st small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan statistics may be negative.
```

Dynamic panel-data estimation, two-step system GMM

Dynamic paner.	-uata estinati	Lon, two-ste	p system	GMM		
Group variable Time variable Number of inst F(44, 129) Prob > F	e: id : year truments = 57 = 107.63 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1283 130 1 9.87 13
lnindfdist~k	 Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+ 					
L1.	.2500422	.188926	1.32	0.188	1237525	.6238369
lnsecedu	5773644	1.066541	-0.54	0.589	-2.687542	1.532813
lntertedu	-1.112778	.7320694	-1.52	0.131	-2.561195	.3356388
lnwage	2794698	.5274014	-0.53	0.597	-1.322946	.7640068
lngdp	.3561638	.711584	0.50	0.618	-1.051723	1.76405
lntradefree	.0154571	.2243494	0.07	0.945	4284237	.4593379
lneconfree	1.158458	.5886368	1.97	0.051	0061743	2.32309
lntransition	1.869017	1.266205	1.48	0.142	6362018	4.374235
lnictinfra	.2367734	.2054149	1.15	0.251	169645	.6431918
indprivati~n	.8135382	.6201818	1.31	0.192	4135067	2.040583
d1996	-1.372023	.8596409	-1.60	0.113	-3.072844	.3287973
d1997	-1.225842	.8639593	-1.42	0.158	-2.935207	.4835226
d1998	-1.13865	.791561	-1.44	0.153	-2.704773	.4274724
d1999	9051986	.7522497	-1.20	0.231	-2.393543	.5831459
d2000	9981159	.7077054	-1.41	0.161	-2.398328	.4020966
d2001	8451333	.6221579	-1.36	0.177	-2.076088	.3858213
d2002	782863	.5661996	-1.38	0.169	-1.903103	.3373768
d2003	5407693	.522688	-1.03	0.303	-1.57492	.4933817
d2004	3207463	.3707723	-0.87	0.389	-1.054328	.4128358
d2005	2370668	.2601797	-0.91	0.364	7518387	.2777052
d2006	2179109	.2085666	-1.04	0.298	6305651	.1947432
d2007	0771359	.1433772	-0.54	0.592	3608111	.2065393
с4	2.140484	1.154837	1.85	0.066	1443907	4.425358
c5	3.435726	2.099101	1.64	0.104	7173964	7.588849
сб	2.848118	1.168679	2.44	0.016	.5358583	5.160378
с7	3.902396	2.309029	1.69	0.093	6660739	8.470866
c8	1.937948	.9760687	1.99	0.049	.0067716	3.869123
с9	2.677491	1.40508	1.91	0.059	1024942	5.457477
c11	3.091655	3.101057	1.00	0.321	-3.043861	9.227172
c12	3.184441	2.330199	1.37	0.174	-1.425915	7.794798
c13	2.747404	1.56396	1.76	0.081	3469301	5.841738
c14	2.714441	1.423317	1.91	0.059	1016261	5.530508
s2	-1.236095	.4680308	-2.64	0.009	-2.162106	3100852
s3	-3.151883	1.072035	-2.94	0.004	-5.272931	-1.030835
s4	3412179	.3007158	-1.13	0.259	9361916	.2537558
s5	-2.656843	.9330251	-2.85	0.005	-4.502856	8108297
s6	3073535	.2946886	-1.04	0.299	8904021	.2756951
s7	9873224	.3897406	-2.53	0.012	-1.758434	216211
s8	3394888	.2716105	-1.25	0.214	8768769	.1978993
s9	5655168	.3051004	-1.85	0.066	-1.169165	.0381318
s10	-1.089904	.4213304	-2.59	0.011	-1.923516	2562911
s11	6444302	.3331455	-1.93	0.055	-1.303567	.0147064
s12	5115812	.3096923	-1.65	0.101	-1.124315	.1011525
s13	-1.76802	.6385367	-2.77	0.006	-3.031381	5046598
_cons	-8.303172	13.52679	-0.61	0.540	-35.06625	18.45991
-------	-----------	----------	-------	-------	-----------	----------
-------	-----------	----------	-------	-------	-----------	----------

_____ Instruments for orthogonal deviations equation Standard FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/.).L.lnindfdistock collapsed Instruments for levels equation Standard _cons Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed Arellano-Bond test for AR(1) in first differences: z = -1.65 Pr > z = 0.099Arellano-Bond test for AR(2) in first differences: z = -1.10 Pr > z = 0.270Sargan test of overid. restrictions: chi2(12) = 12.50 Prob > chi2 = 0.407 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(12) = 17.01 Prob > chi2 = 0.149 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(11) = 16.55 Prob > chi2 = 0.122Difference (null H = exogenous): chi2(1) = 0.45 Prob > chi2 = 0.501. *fails instrument validity tests

```
. **limiting lags
. **laglimit 1 7
. xtabond2 lnindfdistock l.lnindfdistock
                                             lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition 1
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 7) collapse) iv(lnsecedu l
> ntertedu lnwage lngdp lntradefr
                             Intradefree Ineconfree Intransition Inictinfra
indprivatisation d1996-d2008 c2-c14 s2
> -s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
```

Difference-in-Sargan statistics may be negative.

paner						
Group variable	e: id			Number	of obs =	1283
Time variable	: year			Number	of groups =	130
Number of inst	truments = 52			Obs per	group: min =	1
F(44, 129)	= 89.92				avg =	9.87
Prob > F	= 0.000				max =	13
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+					
	.2309852	.1807398	1.28	0.204	1266129	.5885833
lnsecedu	-1.088259	.9304486	-1.17	0.244	-2.929175	.7526559
lntertedu	-1.3572	.7063731	-1.92	0.057	-2.754776	.0403768
lnwage	2652029	.5010582	-0.53	0.598	-1.256559	.726153
lngdp	.2367891	.6401898	0.37	0.712	-1.029842	1.50342
lntradefree	.0171587	.240038	0.07	0.943	4577623	.4920797
lneconfree	1.470017	.551895	2.66	0.009	.3780795	2.561955
Intransition	2.229198	1.36254	1.64	0.104	4666202	4,925016
Inictinfra	2205244	201947	1 09	0 277	- 1790328	6200815
indprivati~n	8209957	6493979	1 26	0 208	- 463854	2 105845
41996	-1 525234	7887951	_1 93	0.200	-3 085884	0354165
41007	1 1 111152	7016016	1 00	0.033	2 966965	1200500
-11.000	1 20242	.7040010	-1.00	0.074	-2.900900	.1300300
d1998	-1.362243	. /296521	-1.8/	0.064	-2.805878	.0813911
d1999	-1.144813	.6926467	-1.65	0.101	-2.515231	.2256056
a2000	-1.245283	.6243748	-1.99	0.048	-2.480624	0099424
d2001	-1.069569	.5800807	-1.84	0.068	-2.21/2/3	.0781346
d2002	9566041	.5219732	-1.83	0.069	-1.989341	.0761327
d2003	6644162	.4650337	-1.43	0.155	-1.584497	.2556644
d2004	4450536	.3278205	-1.36	0.177	-1.093655	.2035474
d2005	3181526	.2339901	-1.36	0.176	7811078	.1448025
d2006	2931066	.1851431	-1.58	0.116	6594168	.0732035
d2007	1164891	.1567937	-0.74	0.459	4267092	.193731
с4	2.408179	1.015014	2.37	0.019	.3999493	4.416409
с5	4.201327	2.006357	2.09	0.038	.2316993	8.170954
сб	3.494356	1.231289	2.84	0.005	1.058221	5.930492
с7	4.745473	2.13597	2.22	0.028	.5194036	8.971543
c8	2.38102	.9930784	2.40	0.018	.4161906	4.34585
C 9	3,33119	1.401998	2.38	0.019	5573017	6.105078
c11	3,417969	2.582476	1.32	0.188	-1.691523	8.527461
c12	3.817644	2.124046	1.80	0.075	3848331	8.020122
c13	3 181473	1 384366	2 30	0 023	4424711	5 920475
c14	1 2 92619	1 224713	2.30	0.025	5030659	5 3/031/
C14	1 1 1 5 7 1 1	1610007	2.55	0.010	2 07117	2420505
32	1 2 202046	.4019907	-2.50	0.014	-2.07117 E 1246E2	1 26044
53	-3.202046	.9/6/91/	-3.20	0.001	-3.134632	-1.20944
S4	3004116	.2995535	-1.00	0.318	8930856	. 2922623
SO	-2.459125	.9146748	-2.69	0.008	-4.268832	6494185
S6	250/455	.2849278	-0.88	0.380	8144821	.312991
s/	9653842	.383586	-2.52	0.013	-1./24318	2064499
s8	3150256	.2849359	-1.11	0.271	8787782	.248727
s9	4884267	.3296375	-1.48	0.141	-1.140623	.1637693
s10	-1.044445	.4042178	-2.58	0.011	-1.844199	2446897
s11	5560698	.3374256	-1.65	0.102	-1.223675	.1115349
s12	4151755	.3513518	-1.18	0.240	-1.110334	.2799827
s13	-1.840366	.6237273	-2.95	0.004	-3.074425	606306

_cons	-5.030602	12.56883	-0.40	0.690	-29.89835	19.83714
-------	-----------	----------	-------	-------	-----------	----------

_____ Instruments for orthogonal deviations equation Standard FOD.(lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/7).L.lnindfdistock collapsed Instruments for levels equation Standard _cons Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed Arellano-Bond test for AR(1) in first differences: z = -1.66 Pr > z = 0.096Arellano-Bond test for AR(2) in first differences: z = -1.14 Pr > z = 0.254Sargan test of overid. restrictions: chi2(7) = 11.46 Prob > chi2 = 0.120 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(7) = 10.02 Prob > chi2 = 0.187 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(6) = 9.15 Prob > chi2 = 0.165Difference (null H = exogenous): chi2(1) = 0.87 Prob > chi2 = 0.351

. **fails instrument validity tests

. *laglimit 1 6 . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 6) collapse) iv(lnsecedu l > ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2 > -s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Group variable Time variable Number of inst F(44, 129) Prob > F	e: id : year truments = 51 = 86.18 = 0.000			Number Number Obs per	of obs = of groups = r group: min = avg = max =	1283 130 1 9.87 13
lnindfdist~k	Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lpindfdict~k	+					
L1.	.2390337	.1966717	1.22	0.226	1500861	.6281536
lnsecedu	-1.28277	.9623953	-1.33	0.185	-3.186893	.6213528
lntertedu	-1.434477	.6839355	-2.10	0.038	-2.787661	0812943
lnwage	4273924	.4874329	-0.88	0.382	-1.39179	.5370055
lngdp	.4154806	.6051685	0.69	0.494	7818601	1.612821
lntradefree	.0239786	.2398197	0.10	0.921	4505105	.4984676
lneconfree	1.60263	.542653	2.95	0.004	.5289778	2.676282
lntransition	1.993196	1.355238	1.47	0.144	6881763	4.674569
lnictinfra	.1798124	.1999585	0.90	0.370	2158105	.5754353
indprivati~n	.6724807	.5845294	1.15	0.252	484025	1.828986
d1996	-1.615774	.7630455	-2.12	0.036	-3.125478	1060701
d1997	-1.529522	.7617723	-2.01	0.047	-3.036707	0223372
d1998	-1.461658	.7117659	-2.05	0.042	-2.869904	0534115
d1999	-1.23225	.67475	-1.83	0.070	-2.567259	.1027593
d2000	-1.258025	.609739	-2.06	0.041	-2.464408	0516413
d2001	-1.146693	.5631636	-2.04	0.044	-2.260926	0324604
d2002	-1.01776	.5023007	-2.03	0.045	-2.011574	0239457
d2003	6866092	.4475565	-1.53	0.127	-1.572111	.1988922
d2004	4824349	.3122022	-1.55	0.125	-1.100135	.1352648
d2005	3558089	.2203166	-1.61	0.109	7917106	.0800929
d2006	325524	.1754884	-1.85	0.066	6727321	.0216841
d2007	15096	.1604419	-0.94	0.349	4683984	.1664783
c4	2.403135	.9931236	2.42	0.017	.438216	4.368055
c5	4.147065	1.941143	2.14	0.035	.306465	7.987665
c6	3.869094	1.280763	3.02	0.003	1.335074	6.403114
c /	4./41191	2.058617	2.30	0.023	.6681665	8.814216
C8	2.568419	.9942508	2.58	0.011	.6012692	4.535568
C9	3.515857	1.388282	2.53	0.013	./691064	6.262608
C11	2.99603/	2.42457	1.24	0.219	-1.801035	7.793108
C12	1 2 14026	2.029100	1.75	0.082	4033/90	7.300009 E 706169
C13	J 3.14020	1 210151	2.33	0.020	.3003313	5 252455
C14	1 00722	1.210131	2.44	0.010	. 3030239	1 5 5 5 2 4 5 5
SZ	-1.09723 2.117070	.4/60994	-2.30	0.023	-2.039204	1002000
50	- 2436169	2961099	-0.82	0.003	- 8294777	3122138
24	-2430109	010707	-2.47	0.412	-1 093295	- 4536135
3J SA	-2.273434	2722683	-0.76	0.013	- 74579	3315889
s7	9320774	3943994	-2 36	0.020	-1 712406	- 1517484
58	-2770551	2805851	-0.99	0.325	- 8321996	2780895
۹۵ د ۹	- 4562269	. 3209339	-1.42	0.158	-1.091202	.1787486
s10	9985429	.407937	-2.45	0.016	-1.805656	1914295
s11	5147579	.3379247	-1.52	0.130	-1.18335	.1538343
s12	3899694	.3425042	-1.14	0.257	-1.067622	.2876835
s13	-1.783003	.6610878	-2.70	0.008	-3.090982	4750251
_cons	-7.619425	11.77162	-0.65	0.519	-30.90986	15.67101

Instruments for orthogonal deviations equation Standard							
FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed)							
L(1/6).L.InindIdistock collapsed Instruments for levels equation							
Standard							
<pre>cons Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c1 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed D.L.Inindfdistock collapsed</pre>	12 sed)						
Arellano-Bond test for AR(1) in first differences: $z = -1.65$ Pr > $z = -1.65$ Pr > $z = -1.11$ Pr > $z = $	0.098 0.268						
Sargan test of overid. restrictions: chi2(6) = 11.16 Prob > chi2 = ((Not robust, but not weakened by many instruments.)	0.084						
Hansen test of overid. restrictions: chi2(6) = 7.82 Prob > chi2 = (Robust, but can be weakened by many instruments.)	0.251						
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels							
Hansen test excluding group: chi2(5) = 6.66 Prob > chi2 = 0	0.247						
Difference (null H = exogenous): chi2(1) = 1.16 Prob > chi2 = 0	0.281						

. *fails instrument validity tests

. **laglimit 1 5 . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 5) collapse) iv(lnsecedu l > ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2 > -s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

1 1						
Group variable Time variable Number of inst F(44, 129) Prob > F	e: id : year cruments = 50 = 84.74 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1283 130 1 9.87 13
	 	Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+ 					
L1.	.2542499	.1990111	1.28	0.204	1394984	.6479981
lnsecedu	-1.224096	.9772412	-1.25	0.213	-3.157592	.7093992
lntertedu	-1.425792	.686128	-2.08	0.040	-2.783313	0682713
lnwage	3988685	.4689869	-0.85	0.397	-1.326771	.5290335
lngdp	.3683495	.5856158	0.63	0.530	7903056	1.527005
lntradefree	.0351866	.2349989	0.15	0.881	4297645	.5001377
lneconfree	1.597474	.5598505	2.85	0.005	.4897965	2.705152
Intransition	2.07022	1,223761	1.69	0.093	3510202	4,49146
lnictinfra	2044371	.2071102	0.99	0.325	2053355	.6142097
indprivati~n	.6938887	.5687006	1.22	0.225	-,4312993	1.819077
d1996	-1.536009	.7969854	-1.93	0.056	-3.112864	.0408466
d1997	-1.45585	. 7928259	-1.84	0.069	-3.024475	.1127757
d1998	-1 401749	7304588	-1 92	0 057	-2 846979	0434818
d1999	-1 175589	6930778	-1 70	0 092	-2 546861	1956818
42000	-1 222003	608644	-2 01	0.047	-2 42622	- 0177859
d2000	-1 107799	574056	-1 93	0.056	-2 243583	0279844
d2001	= 9805031	5109816	-1 92	0.057	-1 991493	0304864
42002	- 6511412	.0100010	_1 /5	0.149	-1 5396	2373177
d2003	- 4666768	3111568	-1.40	0.136	-1 082308	1489546
d2004 d2005	- 3401881	22/21/8	_1 52	0.132	- 7838026	1034263
42005	216/062	1764640	1 70	0.132	7050020	.1034203
42007	1 1 200000	1605000	-1.75	0.075	00000002	.0320430
az007	1290009 0.272512	.1003222	-0.77	0.442	4033142	.2033303
C4		1 025726	2.39	0.010	.4002033	4.330022
	4.060363	1 410051	2.11	0.037	.230200	7.870501 C 400542
C6	3.69/852	1.416051	2.61	0.010	.8961615	6.499543
C7	4.6/1209	2.040897	2.29	0.024	.6332451	8.709173
C8	2.502176	1.031693	2.43	0.017	.4609469	4.543405
C9	3.42926	1.418802	2.42	0.017	.622126	6.236395
cll	3.03133	2.29/106	1.32	0.189	-1.51355	7.57621
C12	3.5416/3	1.934167	1.83	0.069	2851231	/.3684/
C13	3.105287	1.321468	2.35	0.020	.4907299	5./19845
c14	2.930575	1.210965	2.42	0.017	.5346504	5.3265
s2	-1.119763	.4419428	-2.53	0.012	-1.994158	2453687
s3	-3.075185	1.009204	-3.05	0.003	-5.071919	-1.078451
s4	2718567	.283656	-0.96	0.340	833077	.2893636
s5	-2.277129	.8693215	-2.62	0.010	-3.997103	5571551
s6	2405538	.2586972	-0.93	0.354	7523926	.271285
s7	9362682	.378114	-2.48	0.015	-1.684376	1881605
s8	2984532	.2669193	-1.12	0.266	8265595	.2296532
s9	4724958	.308181	-1.53	0.128	-1.082239	.1372478
s10	9984026	.3927583	-2.54	0.012	-1.775485	2213206
s11	5345241	.3133501	-1.71	0.090	-1.154495	.0854467
s12	4036736	.3377785	-1.20	0.234	-1.071977	.2646294
s13	-1.749802	.6447251	-2.71	0.008	-3.025406	4741972
_cons	-7.160907	11.48477	-0.62	0.534	-29.8838	15.56199

Instruments for orthogonal deviations equation Standard						
 FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(15) L hindfdistock collapsed 						
Instruments for levels equation						
Standard						
<pre>Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed</pre>						
Arellano-Bond test for AR(1) in first differences: $z = -1.71$ Pr > $z = 0.088$ Arellano-Bond test for AR(2) in first differences: $z = -1.08$ Pr > $z = 0.281$						
Sargan test of overid. restrictions: chi2(5) = 10.89 Prob > chi2 = 0.054 (Not robust, but not weakened by many instruments.)						
Hansen test of overid. restrictions: chi2(5) = 7.31 Prob > chi2 = 0.199 (Robust, but can be weakened by many instruments.)						
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels						
Hansen test excluding group: $chi2(4) = 6.61$ Prob > $chi2 = 0.158$ Difference (null H = exogenous): $chi2(1) = 0.70$ Prob > $chi2 = 0.403$						

. *fails instrument validity tests

. **laglimit 1 4 . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 4) collapse) iv(lnsecedu l > ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2 > -s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Group variable Time variable	e: id : year			Number Number	of obs = of groups =	1283 130
F(44 129)	= 85.01			0.00 pc1	ava =	9 87
Prob > F	= 0.000				max =	13
	I	Corrected				
lnindfdist~k	L Coef.	Std. Err.	t	P>ItI	[95% Conf.	Intervall
	+		ŭ			
lnindfdist~k	I					
L1.	.3024129	.2134972	1.42	0.159	1199965	.7248224
	1					
lnsecedu	-1.13002	.9657758	-1.17	0.244	-3.040831	.780791
lntertedu	-1.364065	.6788464	-2.01	0.047	-2.70718	0209512
lnwage	4352596	.4539	-0.96	0.339	-1.333312	.4627927
lnqdp	.3572461	.5662922	0.63	0.529	7631768	1.477669
lntradefree	.0554154	.2450246	0.23	0.821	4293716	.5402025
lneconfree	1.492667	.629089	2.37	0.019	.2479986	2.737334
Intransition	2.100232	1.17817	1.78	0.077	2308065	4.431271
lnictinfra	.2998424	.2121628	1.41	0.160	1199268	.7196116
indprivati~n	.5361775	4518528	1,19	0.238	3578243	1,430179
d1996	-1.258261	.8135	-1.55	0.124	-2.867791	.3512681
d1997	-1.196462	.7961502	-1.50	0.135	-2.771664	.3787409
d1998	-1 159283	7448122	-1 56	0 122	-2 632912	3143466
d1999	- 969594	6898461	-1 41	0.162	-2 334471	3952834
42000	-1 058315	6062626	_1 75	0.102	-2 25782	1/11006
d2000	-1.030313 -9888058	5718586	-1.73	0.085	-2.120242	1426304
42002	_ 8601837	5063631	-1.72	0.000	-1 871036	1326682
42002	1 102010		1 04	0.000	1 102262	12526002
22003	403949	3006777	-1.34	0.300	_ 0071000	1025065
42005	- 2000052	2101383	_1 37	0.173	- 7335657	1335753
42005	0015670	17/5272	1 67	0.173	1333031	.15557596
42000	0714007	1702547	-1.07	0.097	0300942	.0337380
02007	2 21000	.1/03047	-0.42	0.070	4004515	.2030302
C4	2.21009	1 072600	2.23	0.028	.2400040	4.173J14 7 401414
	3.710233	1.072009	1.90	0.049	.011091	7.421414
C0		2 002206	2.33	0.021	.319641	0.349103
C7	4.311/90	2.003200	2.10	0.035	.5402402	0.2/0040
C8	2.2/29/3	1.068335	2.13	0.035	.1592464	4.3867
C9	3.1/03/8	1.419903	2.23	0.027	.3610646	5.9/9692
C11 -10	2.788759	2.110697	1.32	0.189	-1.38/30/	6.964825
C12	3.280979	1.821392	1.80	0.074	322689	6.884646
C13	2.864216	1.296045	2.21	0.029	.2999593	5.428472
C14	2.737283	1.211082	2.26	0.025	.3411268	5.133439
sz	-1.05/156	.4405108	-2.40	0.018	-1.928/1/	1855948
S3	-2.806622	1.0/5658	-2.61	0.010	-4.934839	6/84059
S4	2824133	.2/236/2	-1.04	0.302	8212985	.2564/18
S5	-1.961092	.9/40995	-2.01	0.046	-3.888372	0338121
SO	2432247	.2440066	-1.00	0.321	/2599/8	.2395484
s/	8800836	.3818854	-2.30	0.023	-1.635653	124514
s8	3033228	.2530693	-1.20	0.233	8040266	.197381
s9	455816	.3028899	-1.50	0.135	-1.055091	.143459
s10	9437514	.3921954	-2.41	0.018	-1./19/2	1677831
s11	5157395	.3035331	-1.70	0.092	-1.116287	.0848081
s12	402448	.3219004	-1.25	0.213	-1.039336	.2344397
s13	-1.632811	.6461697	-2.53	0.013	-2.9112/4	3543489
_cons	-7.394954	11.19707	-0.66	0.510	-29.54863	14.75872

Instruments for orthogonal deviations equation Standard							
 FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) 							
L(1/4).L.Inindidistock collapsed Instruments for levels equation							
Standard							
_cons							
<pre>Insected Interfect Inwage ingdp intraderice Interinitie Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapse D.L.lnindfdistock collapsed</pre>	d)						
Arellano-Bond test for AR(1) in first differences: $z = -1.79$ Pr > $z = 0$.	073						
Arellano-Bond test for AR(2) in first differences: $z = -1.02$ Pr > $z = 0$.	309						
Sargan test of overid. restrictions: chi2(4) = 10.87 Prob > chi2 = 0. (Not robust, but not weakened by many instruments.)	028						
Hansen test of overid. restrictions: chi2(4) = 5.87 Prob > chi2 = 0. (Robust, but can be weakened by many instruments.)	209						
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels							
Hansen test excluding group: $chi2(3) = 4.51 Prob > chi2 = 0.$	211						
Difference (null H = exogenous): chi2(1) = 1.36 Prob > chi2 = 0.	243						

. **fails instrument validity tests

. **laglimit 1 3 . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 3) collapse) iv(lnsecedu l > ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2 > -s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system $\ensuremath{\mathsf{GMM}}$

		-				
Group variable Time variable	e: id : year			Number Number	of obs = of groups =	1283 130
Number of inst	cruments = 48			Obs per	group: min =	1
F(44, 129)	= 84.91				avg =	9.87
Prob > F	= 0.000				max =	13
		Corrected				
Inindedict 1	Coof	Corrected	+		IOF Comf	Totowroll
ininaraist~k	coer.	Sta. Err.	t	P> t	[95% Conr.	Intervalj
lnindfdictak	r					
TITITIALALSU'K	1 2503845	1906996	1 36	0 176	_ 1170103	6366884
ш т .	.2353043	.1900990	1.50	0.1/0	.11/0100	.0300004
lnsecedu	3620891	1.036617	-0.35	0.727	-2.413061	1.688883
lntertedu	-1.686296	.7269682	-2.32	0.022	-3.12462	2479715
lnwage	4010693	.4452837	-0.90	0.369	-1.282074	.4799355
lnadp	.417495	.5622288	0.74	0.459	6948884	1.529878
lntradefree	.2101625	.2784523	0.75	0.452	3407623	.7610873
lneconfree	1,27007	.6037023	2.10	0.037	.0756301	2,46451
Intransition	2.736017	1.265637	2.16	0.032	.2319237	5,24011
lnictinfra	.4430819	.2421966	1.83	0.070	0361101	.9222739
indprivati~n	.4308111	.4015231	1.07	0.285	3636121	1.225234
d1996	8004353	.8632162	-0.93	0.356	-2.50833	.907459
d1997	8115697	.8355483	-0.97	0.333	-2,464722	.8415831
d1998	7888399	.7799654	-1.01	0.314	-2.332021	.7543407
d1999	6451104	. 7211483	-0.89	0.373	-2.07192	.7816992
d2000	9674841	. 599788	-1.61	0.109	-2.154179	.2192111
d2001	7118747	.5946116	-1.20	0.233	-1.888328	.4645789
d2002	6735877	.5111185	-1.32	0.190	-1.684848	.3376728
d2003	3534356	.4695859	-0.75	0.453	-1.282523	.5756517
d2004	2873285	.2961489	-0.97	0.334	8732664	.2986094
d2005	2273898	.219403	-1.04	0.302	6614841	.2067044
d2006	2411724	.170931	-1.41	0.161	5793636	.0970189
d2007	0749129	.1555642	-0.48	0.631	3827005	.2328748
c4	2.0306	.9581471	2.12	0.036	.134882	3.926317
c5	2.809916	1.85624	1.51	0.133	8626996	6.482532
c6	3.090519	1.429701	2.16	0.032	.2618198	5.919218
c7	3.918665	1.931981	2.03	0.045	.0961931	7.741138
c8	1.99882	1.030794	1.94	0.055	0406307	4.03827
с9	2.764141	1.378253	2.01	0.047	.0372332	5.49105
c11	2.97823	2.084734	1.43	0.156	-1.146466	7.102927
c12	2.996321	1.771809	1.69	0.093	5092456	6.501888
c13	2.554047	1.252832	2.04	0.044	.0752894	5.032805
c14	2.711128	1.156834	2.34	0.021	.4223027	4.999953
s2	-1.122459	.4087667	-2.75	0.007	-1.931214	3137038
s3	-3.279457	1.055774	-3.11	0.002	-5.368331	-1.190583
s4	3142022	.2616926	-1.20	0.232	8319673	.203563
s5	-2.026182	.8800052	-2.30	0.023	-3.767294	2850704
s6	26457	.2325229	-1.14	0.257	7246222	.1954821
s7	9578787	.3548387	-2.70	0.008	-1.659936	2558217
s8	3378485	.2414495	-1.40	0.164	8155622	.1398652
s9	4954958	.2787938	-1.78	0.078	-1.047096	.0561046
s10	-1.012274	.3580359	-2.83	0.005	-1.720657	3038914
s11	558062	.2804309	-1.99	0.049	-1.112901	0032226
s12	4783171	.3140441	-1.52	0.130	-1.099661	.1430269
s13	-1.772305	.5887121	-3.01	0.003	-2.937087	6075242
_cons	-12.17042	11.48296	-1.06	0.291	-34.88974	10.54889

Instruments for orthogonal deviations equation Standard						
 FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/3).L. hindfdistock collapsed 						
Instruments for levels equation						
Standard						
<pre>Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collap D.L.lnindfdistock collapsed</pre>	2 c12 psed)					
Arellano-Bond test for AR(1) in first differences: $z = -1.86$ Pr > $z =$ Arellano-Bond test for AR(2) in first differences: $z = -1.08$ Pr > $z =$	0.062 0.279					
Sargan test of overid. restrictions: chi2(3) = 10.87 Prob > chi2 = (Not robust, but not weakened by many instruments.)	0.012					
Hansen test of overid. restrictions: chi2(3) = 3.81 Prob > chi2 = (Robust, but can be weakened by many instruments.)	0.282					
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels						
Hansen test excluding group: chi2(2) = 2.91 Prob > chi2 = Difference (null H = exogenous): chi2(1) = 0.90 Prob > chi2 =	0.233 0.341					

. *fails instrument validity tests

. *laglimit 1 2 . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 2) collapse) iv(lnsecedu l > ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2 > -s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

		-				
Group variable Time variable Number of inst	e: id : year truments = 47			Number Number Obs per	of obs = of groups = group: min =	1283 130 1
F(44, 129)	= 89.93				avg =	9.87
Prob > F	= 0.000				max =	13
	 I	Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall
	+					
lnindfdist~k						
L1.	.3208334	.1117719	2.87	0.005	.09969	.5419769
Insecedu	 533791	1.040238	-0.51	0.609	-2.591928	1.524346
Intertedu	-1.014866	.828662	-1.22	0.223	-2.654394	.6246623
Inwage	4811796	. 4289389	-1.12	0.264	-1.329846	.3674865
lnadp	.3232995	.538482	0.60	0.549	7421003	1.388699
lntradefree	0156689	.2795488	-0.06	0.955	568763	.5374253
lneconfree	1.555186	.646416	2.41	0.018	.2762365	2.834136
Intransition	2.226154	1.108879	2.01	0.047	.0322095	4.420099
lnictinfra	.3942821	.2317451	1.70	0.091	0642313	.8527956
indprivati~n	1.30017	.692433	1.88	0.063	0698252	2.670166
d1996	9040535	.744114	-1.21	0.227	-2.376301	.5681942
d1997	9096219	.7171691	-1.27	0.207	-2.328558	.5093148
d1998	8653015	.6743822	-1.28	0.202	-2.199583	.4689801
d1999	7769027	.6236156	-1.25	0.215	-2.010741	.456936
d2000	-1.120688	.526311	-2.13	0.035	-2.162007	0793687
d2001	8396037	.5206383	-1.61	0.109	-1.869699	.190492
d2002	7322052	.4465472	-1.64	0.104	-1.61571	.1512994
d2003	6432739	.4242456	-1.52	0.132	-1.482654	.1961064
d2004	2990308	.2750488	-1.09	0.279	8432216	.2451601
d2005	2410968	.2048553	-1.18	0.241	646408	.1642143
d2006	2709131	.1581928	-1.71	0.089	5839014	.0420752
d2007	0226139	.1101029	-0.21	0.838	2404553	.1952274
с4	2.143116	.8504812	2.52	0.013	.4604184	3.825814
c5	2.861377	1.588306	1.80	0.074	2811263	6.003879
с6	2.344773	1.332944	1.76	0.081	2924895	4.982035
с7	3.373176	1.664154	2.03	0.045	.0806068	6.665745
c8	1.515622	.9709776	1.56	0.121	4054807	3.436725
с9	2.255235	1.217279	1.85	0.066	1531816	4.663652
c11	2.69387	1.93081	1.40	0.165	-1.126285	6.514024
c12	2.795191	1.518817	1.84	0.068	2098246	5.800207
c13	2.459607	1.092451	2.25	0.026	.2981662	4.621048
c14	2.40213	1.059094	2.27	0.025	.3066859	4.497574
s2	-1.003029	.3208703	-3.13	0.002	-1.637879	3681792
s3	-2.843619	.7675946	-3.70	0.000	-4.362324	-1.324914
s4	2663226	.2382375	-1.12	0.266	7376813	.2050362
s5	-2.080592	.5994255	-3.47	0.001	-3.26657	8946138
s6	2634231	.2085931	-1.26	0.209	6761297	.1492835
s7	8562062	.2694939	-3.18	0.002	-1.389407	3230059
s8	2892621	.2128607	-1.36	0.177	7104123	.131888
s9	4886417	.2366244	-2.07	0.041	9568088	0204746
s10	9078983	.2684454	-3.38	0.001	-1.439024	3767725
s11	486165	.2320611	-2.09	0.038	9453037	0270264
s12	4438315	.2777173	-1.60	0.112	993302	.1056389
s13	-1.586333	.3809908	-4.16	0.000	-2.340133	8325336
_cons	-9.37977	11.0529	-0.85	0.398	-31.24821	12.48867

Instruments for orthogonal deviations equation
FOD.(lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/2).L.InIndidistock collapsed Instruments for levels equation
Standard
_cons
<pre>Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed</pre>
Arellano-Bond test for AR(1) in first differences: $z = -2.13$ Pr > $z = 0.033$
Areilano-Bond test for AR(2) in first differences: z = -1.06 Pr > z = 0.289
<pre>Sargan test of overid. restrictions: chi2(2) = 4.89 Prob > chi2 = 0.087 (Not robust, but not weakened by many instruments.)</pre>
Hansen test of overid. restrictions: chi2(2) = 0.99 Prob > chi2 = 0.609 (Robust, but can be weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels
Hansen test excluding group: $chi2(1) = 0.26$ Prob > $chi2 = 0.612$ Difference (null H = exogenous): $chi2(1) = 0.73$ Prob > $chi2 = 0.392$

*instrument validity OK

```
. *laglimit 1 1
```

. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 1) collapse) iv(lnsecedu l Intradefree Ineconfree Intransition Inictinfra > ntertedu lnwage lngdp indprivatisation d1996-d2008 c2-c14 s2 > -s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Dynamic paner	-uata estimati	Lon, two-step	5 System	Ghin		
Group variable Time variable Number of ins F(44, 129) Prob > F	e: id : year truments = 46 = 96.31 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1283 130 1 9.87 13
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+					
L1.	.3941117	.1103209	3.57	0.000	.175839	.6123844
lnsecedu	6819076	1.074021	-0.63	0.527	-2.806885	1.44307
lntertedu	2879896	1.09214	-0.26	0.792	-2.448815	1.872836
lnwage	6691042	.4641303	-1.44	0.152	-1.587397	.249189
lnqdp	.5540893	.5870941	0.94	0.347	6074907	1.715669
lntradefree	0415594	.2653751	-0.16	0.876	5666106	.4834918
lneconfree	1.079604	.8117343	1.33	0.186	5264321	2.68564
Intransition	2.453441	1.129033	2.17	0.032	.2196205	4.687261
lnictinfra	.4411933	.2333615	1.89	0.061	0205181	.9029047
indprivati~n	1 664574	7451581	2 23	0 027	1902605	3 138888
d1996	-5198179	7594564	-0.68	0.495	-2 022421	9827853
d1997	- 461927	7654574	-0.60	0.547	-1 976403	1 052549
d1998	I _ /359923	7275555	-0.60	0.550	_1 875479	1 003/0/
d1990	4339923	. 1213333	-0.00	0.550	-1.07.0479	015444
42000	39/4//	.0033002	-0.60	0.550	-1.710399	.9134443
12000	0909095	.4955192	-1.80	0.075	-1.0/1300	.0094273
d2001	56/0213	. 5325987	-1.06	0.289	-1.620781	.486/383
d2002	4241/13	.49/1045	-0.85	0.395	-1.40//05	.559362
d2003	3869563	.4648622	-0.83	0.407	-1.306697	.5327849
d2004	1443547	.2734652	-0.53	0.598	6854123	.3967029
d2005	1351844	.1998528	-0.68	0.500	5305981	.2602293
d2006	2179156	.140639	-1.55	0.124	4961732	.060342
d2007	0885259	.1376497	-0.64	0.521	3608693	.1838175
с4	1.572689	.9349458	1.68	0.095	277124	3.422502
c5	1.905097	1.781897	1.07	0.287	-1.62043	5.430623
c6	1.387911	1.501631	0.92	0.357	-1.583102	4.358925
с7	1.910462	2.11309	0.90	0.368	-2.270338	6.091263
c8	.8080908	1.115498	0.72	0.470	-1.398949	3.01513
с9	1.259658	1.493367	0.84	0.401	-1.695004	4.21432
c11	1.078344	2.48017	0.43	0.664	-3.828732	5.98542
c12	1.686599	1.821377	0.93	0.356	-1.91704	5.290239
c13	1.597011	1.313623	1.22	0.226	-1.002024	4.196047
c14	1.634928	1.160712	1.41	0.161	6615697	3.931425
s2	- 8893628	. 3148124	-2.83	0.005	-1.512227	- 2664987
e 3	-2 529691	726899	-3 48	0 001	-3 967878	-1 091503
55 c /	-2.525051	23/869	-0.96	0.338	- 6903722	2390157
54	-1 876678	5745456	-3.27	0.001	-3 013/31	- 7300258
35	1 2406225	2060244	-3.27	0.001	-3.013431	1670010
50	7452521	.2000244	-1.17	0.245	0402400	.1070019
S /	/400031	.20/33//	-2.10	0.000	-1.2/04/4	2102017
S8	1243/034	.21031/2	-1.10	0.249	0398212	.1/24143
S9	14496206	.2326964	-1.93	0.056	910016	.010//49
s10	/965863	.2663393	-2.99	0.003	-1.323545	2696274
s11	4180931	.2291747	-1.82	0.070	8715209	.0353347
s12	3/60593	.2780088	-1.35	0.179	9261066	.1739879
s13	-1.449896	.3484933	-4.16	0.000	-2.139399	7603933

_cons		-12.79457	11.4	48754	-1.11	0.267	-35.52295	9.933811

<pre>Instruments for orthogonal deviations equation Standard FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransit: Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c: c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapse L.L.Inindfdistock collapsed Instruments for levels equation Standardcons Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c: c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapse D.L.Inindfdistock collapsed</pre>	ion 12 sed) 12 sed)
Arellano-Bond test for AR(1) in first differences: $z = -2.13$ Pr > $z = 0$ Arellano-Bond test for AR(2) in first differences: $z = -1.05$ Pr > $z = 0$	0.033 0.296
Sargan test of overid. restrictions: chi2(1) = 0.69 Prob > chi2 = ((Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(1) = 0.25 Prob > chi2 = ((Robust, but can be weakened by many instruments.)	0.407
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(0) = 0.00 Prob > chi2 = Difference (null H = exogenous): chi2(1) = 0.25 Prob > chi2 = (0.615

*instrument validity OK

Appendix 6.5: Testing instrument validity

```
. **Model 5.4
. **FDI stock predetermined; all variables exogenous
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 2) collapse) iv(lnsecedu l
> ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14 s2
> -s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
  Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
                                                            Number of obs = 1283
Number of groups = 130
Group variable: id
                                                            Obs per group: min = 1
avg = 9.87
Time variable : year
Number of instruments = 47
F(44, 129) = 89.93
Prob > F = 0.000
                                                                               max =
                                                                             _____
                                 Corrected
| Corrected
lnindfdist~k | Coef. Std. Err.
                                                    t P>|t| [95% Conf. Interval]
 lnindfdist~k |
         L1. | .3208334 .1117719
                                                  2.87 0.005
                                                                          .09969
                                                                                         .5419769
    lnsecedu | -.533791 1.040238 -0.51 0.609 -2.591928
                                                                                       1.524346
                                                                                       .6246623

        Intertedu |
        -1.014866
        .828662
        -1.22
        0.223

        Inwage |
        -.4811796
        .4289389
        -1.12
        0.264

                                                                       -2.654394
                                                                       -1.329846
                                                                                        .3674865
                                    .538482
                                                 0.60 0.549
-0.06 0.955
        lngdp | .3232995
                                                                      -.7421003
                                                                                       1.388699
                   .3232995 .538482
-.0156689 .2795488
 lntradefree |
                                                                         -.568763
                                                                                         .5374253

        .2.753300
        -0.00
        0.955
        -.568/63

        .646416
        2.41
        0.018
        .2762365

        1.108879
        2.01
        0.047
        .0322095

        .2317451
        1.70
        0.091
        -.0642313

  lneconfree | 1.555186
                                                                                         2.834136

        1.555186
        .646416

        2.226154
        1.108879

        .3942821
        .2317451

Intransition |
                                                                                        4.420099
 lnictinfra L
                                                                                        .8527956

        1.88
        0.063
        -.0698252

        -1.21
        0.227
        -2.376301

                                  .692433
indprivati~n |
                    1.30017
                                                                                       2.670166
        d1996 |
                   -.9040535
                                     .744114
                                                  -1.21
                                                                                        .5681942
         d1997 | -.9096219 .7171691
                                                  -1.27 0.207 -2.328558
                                                                                        .5093148
        d1998 | -.8653015 .6743822
d1999 | -.7769027 .6236156
                                                 -1.28 0.202
-1.25 0.215
                                                                       -2.199583
                                                                                        .4689801
                                                                       -2.010741
                                                                                          .456936
                                  .526311
                                                  -2.13 0.035
                                                                                       -.0793687
         d2000 | -1.120688
                                                                       -2.162007
                   -.8396037
         d2001 |
                                   .5206383
                                                  -1.61
                                                            0.109
                                                                       -1.869699
                                                                                         .190492
                   -.7322052 .4465472
                                                  -1.64 0.104
                                                                                        .1512994
         d2002 |
                                                                        -1.61571
                                  .4242456
                                                 -1.52 0.132
-1.09 0.279
                                                                                        .1961064
                   -.6432739
                                                                       -1.482654
         d2003 |
                                                                                        .2451601
         d2004 |
                   -.2990308
                                                                       -.8432216
                                                 -1.18 0.241 -.646408
         d2005 | -.2410968 .2048553
                                                                                       .1642143
                   -.2709131 .1581928
-.0226139 .1101029
                                                 -1.71 0.089
-0.21 0.838
                                                                                        .0420752
         d2006 |
                                                                       -.5839014
         d2007 |
                                                                       -.2404553
                                                                                        .1952274

        2.143116
        .8504812
        2.52
        0.013
        .4604184

        2.861377
        1.588306
        1.80
        0.074
        -.2811263

        2.344773
        1.332944
        1.76
        0.081
        -.2924895

        2.32176
        1.664154
        2.03
        0.045
        .986668

            c4 |
                                                                                        3.825814
            c5 |
                                                                                         6.003879
            c6 |
                                                                                        4.982035
                    3.373176 1.664154
1.515622 .9709776
                                                 2.03 0.045
1.56 0.121
                                                                        .0806068
                                                                                        6.665745
            c7 |
                                                                       -.4054807
            c8 |
                                                                                        3.436725
                   2.2552351.2172791.850.066-.15318162.693871.930811.400.165-1.1262852.7951911.5188171.840.068-.2098246
            c9 |
                                                                                        4.663652
           c11 |
                                                                                         6.514024
           c12 |
                                                                                        5.800207
                                                 2.25 0.026
2.27 0.025
                                                                      .2981662
           c13 | 2.459607 1.092451
c14 | 2.40213 1.059094
                                                                                        4.621048
                                                                         .3066859
                                                                                       4.497574
                   -1.003029 .3208703
                                                  -3.13 0.002
                                                                       -1.637879
                                                                                       -.3681792
            s2 |
                                  .2382375
            s3 |
                   -2.843619
                                                  -3.70
                                                            0.000
                                                                       -4.362324
                                                                                       -1.324914
                                                 -1.12 0.266
                   -.2663226
                                                                       -.7376813
                                                                                        .2050362
            s4 |
            s5 | -2.080592 .5994255
s6 | -.2634231 .2085931
                                                 -3.47 0.001
-1.26 0.209
                                                                                       -.8946138
                                                                        -3.26657
                                                  -1.26
                                                                       -.6761297
                                                                                        .1492835
            s7 | -.8562062 .2694939
                                                  -3.18 0.002 -1.389407
                                                                                       -.3230059
                                                 -1.36 0.177 -.7104123
-2.07 0.041 -.9568088
            s8 | -.2892621 .2128607
s9 | -.4886417 .2366244
                                                                                        .131888
                                                                                       -.0204746
```

s10 s11 s12 s13 _cons	9078983 486165 4438315 -1.586333 -9.37977	.2684454 .2320611 .2777173 .3809908 11.0529	-3.38 -2.09 -1.60 -4.16 -0.85	0.001 0.038 0.112 0.000 0.398	-1.439024 9453037 993302 -2.340133 -31.24821	3 02 .10 83 12	767725 270264 056389 325336 .48867
<pre>Instruments f Standard FOD.(lnse Inictinfr d2003 d20 c13 c14 s GMM-type (m L(1/2).L. Instruments f Standard _cons Insecedu Inictinfr d2003 d20 c13 c14 s GMM-type (m D.L.lnind</pre>	or orthogonal cedu lntertedu a indprivatisa 04 d2005 d2006 2 s3 s4 s5 s6 issing=0, sepa lnindfdistock or levels equa lntertedu lnwa a indprivatisa 04 d2005 d2006 2 s3 s4 s5 s6 issing=0, sepa fdistock colla	deviations lnwage lng tion d1996 d2007 d200 s7 s8 s9 s1 rate instrum collapsed tion ge lngdp ln tion d1996 d2007 d200 s7 s8 s9 s1 rate instrum psed	equation dp lntrac d1997 d19 8 c2 c3 c 0 s11 s12 ments for tradefree d1997 d19 8 c2 c3 c 0 s11 s12 ments for	defree 1 998 d199 c4 c5 c6 2 s13) c each po e lnecon: 998 d199 c4 c5 c6 2 s13 c each po	neconfree lnt 9 d2000 d2001 c7 c8 c9 c10 eriod unless free lntransi 9 d2000 d2001 c7 c8 c9 c10 eriod unless	ransif d200: c11 c collap tion d200: c11 c collap	tion 2 cl2 psed) 2 cl2 psed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differend differend	ces: z = ces: z =	-2.13 Pr > -1.06 Pr >	z = z =	0.033 0.289
Sargan test o (Not robust Hansen test o (Robust, bu	f overid. rest , but not weak f overid. rest t can be weake	rictions: c ened by man rictions: c ned by many	hi2(2) y instrur hi2(2) instrume	= 4.1 nents.) = 0.1 ents.)	89 Prob > ch 99 Prob > ch	i2 = i2 =	0.087
Difference-in GMM instrum Hansen te Differenc	-Hansen tests ents for level st excluding g e (null H = ex	of exogenei s roup: c ogenous): c	ty of ins hi2(1) hi2(1)	= 0.1 = 0.1	subsets: 26 Prob > ch 73 Prob > ch	i2 = i2 =	0.612 0.392

. *acceptable specification tests

. **FDI stock predetermined; gdp, wage, secedu & tertedu endogenous . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock 1.lnsecedu 1.lntertedu 1.lnwage 1.lng > dp , laglimit(1 2) collapse) iv(Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996-d2008 c2 > -c14 s2-s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

2 - 1 - 1			2			
Group variable Time variable Number of inst F(44, 129) Prob > F	e: id : year cruments = 55 = 69.49 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1283 130 1 9.87 13
lnindfdist~k		Corrected Std Frr	+	P>1+1	[95% Conf	Intervall
	+				[J J 8 CONT.	
lnindfdist~k L1.	 .408263	.099017	4.12	0.000	.2123556	.6041705
lnsecedu	1.391176	1.455805	0.96	0.341	-1.489171	4.271523
Interteau	9098347	.5904922	-1.54	0.126	-2.0/8138	.2584686
Inwage	/U16354	.3911914	-1.19	0.237	-1.8/1322	.4080313
Intradofroo	0754216	2598619	_0.01	0.344	- 5895646	1387215
Incraterie	1 924799	6668083	2 89	0.005	6055021	3 244095
Intransition	3330241	1 309251	0 25	0.000	-2 257362	2 92341
lnictinfra	.5235513	.2693383	1.94	0.054	0093412	1.056444
indprivati~n	1.456308	.6978269	2.09	0.039	.07564	2.836975
d1996	4155657	.7724507	-0.54	0.592	-1.943878	1.112747
d1997	4798783	.7415386	-0.65	0.519	-1.947031	.987274
d1998	4126425	.6999137	-0.59	0.557	-1.797439	.9721538
d1999	3497589	.6474538	-0.54	0.590	-1.630762	.9312443
d2000	729744	.5819704	-1.25	0.212	-1.881187	.4216986
d2001	5758382	.5708923	-1.01	0.315	-1.705363	.5536862
d2002	4667194	.4845283	-0.96	0.337	-1.425371	.4919318
d2003	339949	.4204956	-0.81	0.420	-1.17191	.4920118
d2004	1875772	.3169292	-0.59	0.555	8146294	.4394749
d2005	1505887	.2507848	-0.60	0.549	6467727	.3455953
d2006	235003	.2023019	-1.16	0.248	6352622	.1652562
d2007	.087015	.1384975	0.63	0.531	1870056	.3610356
c4	2.239232	.9565589	2.34	0.021	.3466572	4.131808
c5	1.176978	1.744089	0.67	0.501	-2.273744	4.6277
c6	1.083336	1.348176	0.80	0.423	-1.584062	3.750735
c7	2.165043	1.483499	1.46	0.147	7700956	5.100181
C8	.8184628	.8638/21	0.95	0.345	8907293	2.52/655
C9	.8667398	1.172609	0.74	0.461	-1.453295	3.186775
C11	3.12/626	2.1/9196	1.44	0.154	-1.183966	7.439218
C12	1 1 052547	1.039201	1.11	0.271	-1.429022	1 007070
C15	1 2 702/20	1 102625	2 52	0.072	1007000	4.00/0/9
C14	_1 095121	3688136	-2.55	0.013	-1 824828	- 365/1/3
52	-1.095121 -2 307993	7494576	-2.97	0.004	-1.024020	- 8251729
s4	- 3334904	2908471	-1 15	0.005	- 9089386	2419577
55	-1.831449	.7346032	-2.49	0.014	-3.284879	3780183
55	2826747	.2590987	-1.09	0.277	7953079	.2299584
s7	8368899	.3115268	-2.69	0.008	-1.453253	2205266
s8	3709348	.2583141	-1.44	0.153	8820156	.140146
s9	4899429	.312255	-1.57	0.119	-1.107747	.1278613
s10	9148551	.3242862	-2.82	0.006	-1.556463	273247
s11	4983276	.2686603	-1.85	0.066	-1.029879	.0332234
s12	3849729	.3322302	-1.16	0.249	-1.042299	.2723527
s13	-1.547021	.4202643	-3.68	0.000	-2.378524	7155173
cons	-18.06218	14.37927	-1.26	0.211	-46.51192	10.38755

Instruments for orthogonal deviations equation	
FOD. (Intradefree Ineconfree Intransition Inictinfra indprivatisation of d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d200 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s s12 s13)	d1996 08 c2 s11
L(1/2).(L.lnindfdistock L.lnsecedu L.lntertedu L.lnwage L.lngdp) colli	apsed
Instruments for levels equation	
Standard	
<pre>cons Intradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d200 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s s12 s13 GMM-type (missing=0, separate instruments for each period unless collaps D.(L.lnindfdistock L.lnsecedu L.lntertedu L.lnwage L.lngdp) collapsed</pre>	08 c2 s11 sed)
Arellano-Bond test for AR(1) in first differences: $z = -1.98$ Pr > $z = 0$ Arellano-Bond test for AR(2) in first differences: $z = -0.90$ Pr > $z = 0$	0.048 0.368
Sargan test of overid. restrictions: chi2(10) = 12.53 Prob > chi2 = ((Not robust, but not weakened by many instruments.)	0.251
Hansen test of overid. restrictions: chi2(10) = 21.73 Prob > chi2 = ((Robust, but can be weakened by many instruments.)	0.017
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels	
Hansen test excluding group: chi2(5) = 3.63 Prob > chi2 = (0.604
Difference (null H = exogenous): chi2(5) = 18.10 Prob > chi2 = 0	0.003

. *fails specification tests

**FDI stock predetermined; gdp & wage endogenous; secedu & tertedu predetermined . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock lnsecedu Intertedu l.lnwage l.lngdp , > laglimit(1 2) collapse) iv(lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s > 2-s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Group variable Time variable Number of inst	e: id : year truments = 55			Number Number Obs per	of obs = of groups = group: min =	1283 130 1
F(44, 129)	= 77.93				avg =	9.87
Prob > F	= 0.000				max =	13
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdiat k	+					
TITTIATATSU~K	1 115165	078242	5 69	0 000	2906612	6002688
ш т.	.445405	.070242	5.05	0.000	.2900012	.0002000
lnsecedu	, _1.674779	.9373675	-1.79	0.076	-3.529383	.1798257
lntertedu	6521125	.5724687	-1.14	0.257	-1.784756	.4805308
lnwage	3868201	.6211391	-0.62	0.535	-1.615759	.8421188
lngdp	.4128716	.7227899	0.57	0.569	-1.017186	1.842929
lntradefree	1489961	.2277433	-0.65	0.514	5995918	.3015996
lneconfree	1.73191	.719143	2.41	0.017	.3090678	3.154752
lntransition	1.464705	1.439699	1.02	0.311	-1.383775	4.313186
lnictinfra	.2396872	.251919	0.95	0.343	2587408	.7381151
indprivati~n	1.743844	.6002286	2.91	0.004	.5562774	2.931411
d1996	8341754	.6926759	-1.20	0.231	-2.204652	.5363008
d1997	8080644	.6394208	-1.26	0.209	-2.073174	.4570453
d1998	7733217	.5906585	-1.31	0.193	-1.941954	.3953107
d1999	6903175	.555995	-1.24	0.217	-1.790367	.4097323
d2000	8799858	.5177431	-1.70	0.092	-1.904353	.1443816
d2001	7507007	.5071957	-1.48	0.141	-1.7542	.2527983
d2002	5389089	.4370601	-1.23	0.220	-1.403643	.3258252
d2003	4701205	.3685595	-1.28	0.204	-1.199324	.2590834
d2004	1929811	.2829314	-0.68	0.496	7527677	.3668055
d2005	1248883	.2267789	-0.55	0.583	5735758	.3237993
d2006	2026314	.1854423	-1.09	0.277	5695336	.1642707
d2007	.1044894	.1363047	0.77	0.445	1651929	.3741717
с4	1.418176	.9234833	1.54	0.127	4089579	3.245311
c5	2.950014	1.443044	2.04	0.043	.0949162	5.805111
с6	2.380815	1.24303	1.92	0.058	07855	4.84018
с7	2.914898	1.298369	2.25	0.026	.3460429	5.483752
c8	1.453313	.8599233	1.69	0.093	2480668	3.154692
с9	2.374727	.9216011	2.58	0.011	.5513161	4.198137
c11	1.112987	1.912361	0.58	0.562	-2.670665	4.896639
c12	2.263891	1.523748	1.49	0.140	750881	5.278663
c13	1.941542	1.004701	1.93	0.055	046283	3.929366
c14	1.545725	1.108712	1.39	0.166	6478892	3.739339
s2	9635405	.3507542	-2.75	0.007	-1.657516	2695648
s3	-1.988975	.5691869	-3.49	0.001	-3.115125	8628244
s4	2581532	.2723978	-0.95	0.345	797099	.2807925
s5	-1.820311	.6662035	-2.73	0.007	-3.138411	5022109
s6	2415306	.2443805	-0.99	0.325	7250435	.2419823
s7	7157294	.2852805	-2.51	0.013	-1.280164	151295
s8	2948168	.2422679	-1.22	0.226	7741498	.1845163
s9	4491089	.2857342	-1.57	0.118	-1.014441	.1162231
s10	7782399	.2942783	-2.64	0.009	-1.360477	1960031
s11	4041342	.252663	-1.60	0.112	9040342	.0957657
s12	3639674	.304326	-1.20	0.234	9660839	.238149
s13	-1.43978	.3672628	-3.92	0.000	-2.166419	7131416
cons	-7.405741	14.05436	-0.53	0.599	-35.21263	20.40115

Instruments for orthogonal deviations equation Standard	
FOD.(lntradefree lneconfree lntransition lnictinfra indprivatisation d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d20 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13)	d1996 008 c2 s11
GMM-type (missing=0, separate instruments for each period unless collap L(1/2).(L.lnindfdistock lnsecedu lntertedu L.lnwage L.lngdp) collapse	sed) d
Instruments for levels equation	
Standard	
<pre>cons Intradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d20 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13 GMM-type (missing=0, separate instruments for each period unless collap D.(L.lnindfdistock lnsecedu lntertedu L.lnwage L.lngdp) collapsed</pre>	008 c2 s11 osed)
Arellano-Bond test for AR(1) in first differences: $z = -2.00$ Pr > $z =$ Arellano-Bond test for AR(2) in first differences: $z = -0.83$ Pr > $z =$	0.045 0.404
Sargan test of overid. restrictions: chi2(10) = 12.92 Prob > chi2 = (Not robust, but not weakened by many instruments.)	0.228
Hansen test of overid. restrictions: chi2(10) = 20.21 Prob > chi2 = (Robust, but can be weakened by many instruments.)	0.027
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels	
Hansen test excluding group: chi2(5) = 9.24 Prob > chi2 =	0.100
Difference (null H = exogenous): chi2(5) = 10.97 Prob > chi2 =	0.052

. *fails specification tests

. **FDI stock predetermined; gdp & wage endogenous, secedu & tertedu exogenous . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock l.lnwage l.lngdp , laglimit(1 2) col > lapse) iv(lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c > 14 s2-s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Group variable Time variable Number of inst	e: id : year truments = 51			Number Number Obs per	of obs = of groups = group: min =	1283 130 1
Prob > F	= 0.000				max =	13
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+ 					
L1.	.2841363	.1911339	1.49	0.140	0940267	.6622994
lnsecedu	7661954	1.064209	-0.72	0.473	-2.871758	1.339367
lntertedu	-1.347418	.8917796	-1.51	0.133	-3.111826	.41699
lnwage	3312103	.6182998	-0.54	0.593	-1.554532	.8921109
lngdp	1.106128	.7529693	1.47	0.144	3836399	2.595896
lntradefree	.1611391	.3235816	0.50	0.619	479075	.8013532
lneconfree	1.191983	.6132272	1.94	0.054	0213022	2.405268
lntransition	.9380517	1.273605	0.74	0.463	-1.581807	3.45791
lnictinfra	.3782772	.2386835	1.58	0.115	0939639	.8505184
indprivati~n	.5990027	.7004031	0.86	0.394	7867621	1.984767
d1996	0209897	.8247931	-0.03	0.980	-1.652863	1.610884
d1997	0698833	.765072	-0.09	0.927	-1.583597	1.44383
d1998	0658882	.7196098	-0.09	0.927	-1.489654	1.357877
d1999	.1007959	.651045	0.15	0.877	-1.187313	1.388904
d2000	1101001	.56721	-0.19	0.846	-1.232339	1.012139
d2001	.0544375	.563866	0.10	0.923	-1.061185	1.17006
d2002	.0312545	.4770982	0.07	0.948	912696	.9752049
d2003	.1637921	.3953344	0.41	0.679	6183868	.9459709
d2004	.1707005	.3023254	0.56	0.573	4274577	.7688588
d2005	.1718424	.2334289	0.74	0.463	2900024	.6336872
d2006	.0646152	.1893835	0.34	0.734	3100847	.4393151
d2007	.0893266	.1534702	0.58	0.562	214318	.3929711
с4	.9119244	.915345	1.00	0.321	8991081	2.722957
c5	1.412575	1.532635	0.92	0.358	-1.619781	4.444931
с6	2.98403	1.981309	1.51	0.134	9360388	6.904098
с7	2.371756	1.644184	1.44	0.152	8813019	5.624813
c8	1.578503	1.242833	1.27	0.206	8804718	4.037477
с9	2.201603	1.425407	1.54	0.125	6186004	5.021806
c11	.2772691	1.75267	0.16	0.875	-3.190432	3.74497
c12	1.274501	1.388395	0.92	0.360	-1.472473	4.021475
c13	1.307213	1.052586	1.24	0.217	7753541	3.389779
c14	1.448684	1.307089	1.11	0.270	-1.137425	4.034792
s2	-1.113089	.4057135	-2.74	0.007	-1.915803	3103746
s3	-2.982445	1.039063	-2.87	0.005	-5.038257	9266329
s4	3356607	.2594467	-1.29	0.198	8489823	.1776609
s5	-2.084864	.7971638	-2.62	0.010	-3.662072	507656
s6	2831985	.2161462	-1.31	0.192	710849	.144452
s7	9476069	.3555574	-2.67	0.009	-1.651086	2441279
s8	3594599	.2351822	-1.53	0.129	8247736	.1058538
s9	5008216	.263	-1.90	0.059	-1.021174	.0195304
s10	-1.00287	.356879	-2.81	0.006	-1.708963	2967756
s11	5634075	.2741238	-2.06	0.042	-1.105768	0210468
s12	5353741	.3020537	-1.77	0.079	-1.132995	.0622466
s13	-1.767849	.5809793	-3.04	0.003	-2.917331	6183676
_cons	-24.92467	14.65162	-1.70	0.091	-53.91325	4.063914

Instruments for orthogonal deviations equation Standard
FOD. (Insecedu Intertedu Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13)
L(1/2).(L.lnindfdistock L.lnwage L.lngdp) collapsed
Instruments for levels equation
Standard
<pre>Insecedu Intertedu Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.lnindfdistock L.lnwage L.lngdp) collapsed</pre>
Arellano-Bond test for AR(1) in first differences: $z = -1.73$ Pr > $z = 0.084$ Arellano-Bond test for AR(2) in first differences: $z = -1.08$ Pr > $z = 0.279$
Sargan test of overid. restrictions: chi2(6) = 6.91 Prob > chi2 = 0.329 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(6) = 4.38 Prob > chi2 = 0.625 (Robust, but can be weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels
Hansen test excluding group: chi2(3) = 2.36 Prob > chi2 = 0.500 Difference (null H = exogenous): chi2(3) = 2.02 Prob > chi2 = 0.569

. *fails specification tests

. **FDI stock predetermined; gdp & wage predetermined, secedu & tertedu exogenous . xtabond2 lnindfdistock l.lnindfdistock Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition 1 > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock Inwage Ingdp , laglimit(1 2) collaps > e) iv(Insecedu Intertedu Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996-d2008 c2-c14 s2-> s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Group variable Time variable Number of inst	e: id : year truments = 51			Number Number Obs per	of obs = of groups = group: min =	1283 130 1
F(44, 129)	= /2./6				avg =	9.8/
Prod > F	= 0.000				max =	13
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall
	+					
lnindfdist~k						
L1.	.4712474	.171904	2.74	0.007	.1311311	.8113636
Insecedu	-2.00676	1.104611	-1.82	0.072	-4.192259	.1787397
Interteau	3838467	. 7492899	-0.51	0.609	-1.866335	1.098642
Inwage	3846961	.9296048	-0.41	0.680	-2.223942	1.43433
Introdefree	1 1/05122	20512022	0.74	0.401	-1.13013	2.4/0/3
Ineconfree	1 1 515544	8499819	1 78	0.040	- 1661658	3 197254
Intransition	5712668	1 414866	0 40	0.687	-2 22808	3 370613
Inictinfra	1949185	371384	0.40	0.601	- 5398738	9297108
indprivati~n	9309465	6486252	1.44	0.154	3523743	2,214267
d1996	5562535	.8022728	-0.69	0.489	-2.14357	1.031063
d1997	5221947	.7339918	-0.71	0.478	-1.974415	.9300259
d1998	4912198	.689091	-0.71	0.477	-1.854603	.8721636
d1999	3733414	.6222197	-0.60	0.550	-1.604418	.8577355
d2000	2982926	.5295831	-0.56	0.574	-1.346086	.7495006
d2001	4627244	.5466023	-0.85	0.399	-1.544191	.6187416
d2002	3176024	.4704905	-0.68	0.501	-1.248479	.6132745
d2003	0723652	.3671941	-0.20	0.844	7988677	.6541374
d2004	027247	.3024487	-0.09	0.928	6256492	.5711552
d2005	.0069123	.2345572	0.03	0.977	4571648	.4709894
d2006	0647597	.1899046	-0.34	0.734	4404907	.3109712
d2007	.1497612	.1640396	0.91	0.363	1747952	.4743176
c4	1.209968	1.025457	1.18	0.240	8189242	3.238859
c5	2.787894	1.70419	1.64	0.104	5838879	6.159676
c6	2.58387	1.815044	1.42	0.157	-1.00724	6.174979
c'/	2.504487	1.591612	1.57	0.118	6445556	5.65353
C8	1.449839	1.164428	1.25	0.215	8540093	3./53688
C9	2.266/54	1.265084	1.79	0.076	2362447	4./69/54
C11 c12	1 726206	1.716252	0.03	0.978	-3.34/886	3.443407
C12	1 1 550060	1 060106	1.05	0.293	-1.JIII/2 527570	2 657214
c13	1 1 051631	1 118168	1.47	0.144	-1 81/198	3 91746
C14	_ 806122	3769922	-2 14	0.405	-1 55201	- 0602338
52	-1 644304	9298844	-2.14	0.034	-3 484103	1954949
s4	- 2164456	2464394	-0.88	0.381	- 704032	2711409
51	-1.395617	.7602147	-1.84	0.069	-2.89972	.1084865
55	201355	.2211817	-0.91	0.364	6389684	.2362585
s7	6621646	.337679	-1.96	0.052	-1.330271	.0059416
s8	2246446	.2263118	-0.99	0.323	672408	.2231188
s9	3874048	.2716206	-1.43	0.156	9248129	.1500033
s10	7100495	.3360196	-2.11	0.037	-1.374873	0452266
s11	3387108	.2567434	-1.32	0.189	8466838	.1692622
s12	3250991	.3048219	-1.07	0.288	9281967	.2779985
s13	-1.192582	.5067341	-2.35	0.020	-2.195168	1899961
_cons	-10.99121	18.35569	-0.60	0.550	-47.30839	25.32597

Instruments for orthogonal deviations equation Standard
FOD.(lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13)
GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).(L.lnindfdistock lnwage lngdp) collapsed
Instruments for levels equation Standard
<pre>Insecedu Intertedu Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.lnindfdistock Inwage Ingdp) collapsed</pre>
Arellano-Bond test for AR(1) in first differences: $z = -1.93$ Pr > $z = 0.054$ Arellano-Bond test for AR(2) in first differences: $z = -0.80$ Pr > $z = 0.426$
Sargan test of overid. restrictions: chi2(6) = 13.25 Prob > chi2 = 0.039 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(6) = 12.27 Prob > chi2 = 0.056 (Robust, but can be weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels
Hansen test excluding group:chi2(3)=9.33Prob > chi2 =0.025Difference (null H = exogenous):chi2(3)=2.94Prob > chi2 =0.401

. *fails specification tests

. **FDI stock predetermined; gdp, wage, secedu & tertedu predetermined . xtabond2 lnindfdistock l.lnindfdistock Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition 1 > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock Insecedu Intertedu Inwage Ingdp , lag > limit(1 2) collapse) iv(Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996-d2008 c2-c14 s2-> s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Group variable Time variable Number of inst F(44, 129)	e: id : year truments = 55 = 66.13			Number Number Obs per	of obs = of groups = r group: min = avg =	1283 130 1 9.87
Prob > F	= 0.000				max =	13
		Corrected		D: 11 1		T , , , , , , , , , , , , , , , , , , ,
ininaraist~k	Coer.	Sta. Err.	t	P> t	[95% CONI.	Intervalj
lnindfdist~k	r					
I.1.	4758102	0876206	5.43	0.000	3024506	6491698
lnsecedu	-2.337161	1.137156	-2.06	0.042	-4.587052	0872693
lntertedu	4947653	.6804912	-0.73	0.469	-1.841134	.8516033
lnwage	.2666401	.6037543	0.44	0.659	9279025	1.461183
lngdp	115622	.6671488	-0.17	0.863	-1.435592	1.204348
lntradefree	0342546	.2579519	-0.13	0.895	5446187	.4761095
lneconfree	1.345314	.9738663	1.38	0.170	5815044	3.272132
lntransition	2.465132	1.614752	1.53	0.129	7296951	5.65996
lnictinfra	.2875196	.286082	1.01	0.317	2785005	.8535398
indprivati~n	1.452164	.577344	2.52	0.013	.3098746	2.594453
d1996	3373079	.7353046	-0.46	0.647	-1.792126	1.11751
d1997	3367697	.6956491	-0.48	0.629	-1.713128	1.039589
d1998	374551	.6563238	-0.57	0.569	-1.673104	.9240017
d1999	3439375	.6123779	-0.56	0.575	-1.555542	.8676672
d2000	5348873	.5559036	-0.96	0.338	-1.634756	.5649816
d2001	4607081	.5635188	-0.82	0.415	-1.575644	.6542277
d2002	3056298	.4803922	-0.64	0.526	-1.256098	.644838
d2003	1775218	.4042304	-0.44	0.661	9773016	.622258
d2004	0187427	.3114867	-0.06	0.952	6350268	.5975414
d2005	.006661	.2449473	0.03	0.978	4779733	.4912952
d2006	0662447	.1998288	-0.33	0.741	4616108	.3291214
d2007	.1871005	.14235	1.31	0.191	0945424	.4687434
с4	.8383526	1.048722	0.80	0.426	-1.23657	2.913275
c5	3.540452	1.792886	1.97	0.050	0068171	7.087722
с6	1.846354	1.19116	1.55	0.124	5103845	4.203092
с7	3.17022	1.718218	1.85	0.067	2293164	6.569756
c8	1.182949	.9118339	1.30	0.197	6211366	2.987035
с9	2.476949	1.135334	2.18	0.031	.2306638	4.723234
c11	1.376694	2.051697	0.67	0.503	-2.682639	5.436028
c12	3.088859	1.724903	1.79	0.076	3239049	6.501622
c13	1.759105	1.223	1.44	0.153	6606298	4.178839
c14	.6084658	1.25654	0.48	0.629	-1.87763	3.094562
s2	8231432	.3452433	-2.38	0.019	-1.506216	1400709
s3	-1.800518	.6572028	-2.74	0.007	-3.10081	500226
s4	2172284	.2654757	-0.82	0.415	7424786	.3080219
s5	-1.688912	.8601355	-1.96	0.052	-3.390711	.0128875
s6	2278511	.261971	-0.87	0.386	7461671	.2904649
s'/	6985578	.2976832	-2.35	0.020	-1.287531	1095842
s8	2535879	.239895	-1.06	0.292	728226	.2210501
s9	4408976	.2817381	-1.56	0.120	9983233	.1165281
s10	/242171	.3053514	-2.37	0.019	-1.328362	1200718
s11	2952998	.2603379	-1.13	0.259	8103847	.2197851
s12	3727299	.3418804	-1.09	0.278	-1.049149	.3036887
s13	-1.28473	.3/24003	-3.45	0.001	-2.021534	54/92/4
_cons	2.866771	14.20672	0.20	0.840	-25.24158	30.97512

```
_____
Instruments for orthogonal deviations equation
  Standard
    FOD.(lntradefree lneconfree lntransition lnictinfra indprivatisation d1996
    d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2
   c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
    s12 s13)
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L(1/2).(L.lnindfdistock lnsecedu lntertedu lnwage lngdp) collapsed
Instruments for levels equation
  Standard
    _cons
    Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996
    d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2
    c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
    s12 s13
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    D.(L.lnindfdistock lnsecedu lntertedu lnwage lngdp) collapsed
Arellano-Bond test for AR(1) in first differences: z = -2.03 Pr > z = 0.043
Arellano-Bond test for AR(2) in first differences: z = -0.79 Pr > z = 0.427
Sargan test of overid. restrictions: chi2(10) = 19.22 Prob > chi2 = 0.038
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(10) = 30.79 Prob > chi2 = 0.001
  (Robust, but can be weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group: chi2(5) = 11.82 Prob > chi2 = 0.037
Difference (null H = exogenous): chi2(5) = 18.97 Prob > chi2 = 0.002
```

. *fails specification tests

Appendix 6.6: Model 6.4 results

```
. **Model 6.4 System GMM
. xtabond2 lnindfdistock l.lnindfdistock
                                         lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 2) collapse) iv(lnsecedu l
> ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14 s2
> -s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
                                             Number of obs=1283Number of groups=130Obs per group: min =1
Group variable: id
Time variable : year
Number of instruments = 47
F(44, 129) = 89.93
Prob > F = 0.000
                                                         avg = 9.87
max = 13
           Ι
                         Corrected
                  Coef. Std. Err.
lnindfdist~k |
                                         t P>|t|
                                                       [95% Conf. Interval]
lnindfdist~k |
       L1. | .3208334 .1117719 2.87 0.005
                                                        .09969
                                                                 .5419769
   lnsecedu -.533791 1.040238 -0.51 0.609 -2.591928
                                                                 1,524346
                                                                 .6246623
  lntertedu | -1.014866 .828662 -1.22 0.223
                                                      -2.654394
                                     -1.12 0.264
0.60 0.549
                                                                   .3674865
     lnwage | -.4811796
                          .4289389
                                                      -1.329846
                           .538482
               .3232995
                                                      -.7421003
                                                                  1.388699
      lnadp |
                                     -0.06 0.955
2.41 0.018
2.01 0.047
                                                     -.568763
lntradefree | -.0156689 .2795488
                                                                   .5374253
 lneconfree |
               1.555186
                           .646416
                                                       .2762365
                                                                   2.834136
Intransition | 2.226154 1.108879
                                                       .0322095
                                                                  4.420099
 lnictinfra | .3942821 .2317451
ndprivati~n | 1.30017 .692433
                                     1.70 0.091
1.88 0.063
                                                      -.0642313
                                                                   .8527956
                           .692433
                                                      -.0698252
indprivati~n |
                                                                   2.670166
                                                                  .5681942
                          .744114
.7171691
                                     -1.21 0.227
-1.27 0.207
      d1996 | -.9040535
                                                      -2.376301
      d1997 |
               -.9096219
                                                      -2.328558
                                                                   .5093148
      d1998 | -.8653015 .6743822
                                     -1.28 0.202
                                                      -2.199583
                                                                  .4689801
                         .6236156
.526311
                                     -1.25 0.215
-2.13 0.035
                                                      -2.010741
      d1999 | -.7769027
                                                                    .456936
      d2000 |
              -1.120688
                                                      -2.162007
                                                                  -.0793687
                                     -1.61 0.109
-1.64 0.104
                                                                  .190492
      d2001 | -.8396037 .5206383
                                                     -1.869699
```

-.7322052 .4465472 d2002 | -1.64 -1.61571 .1512994 -1.52 0.132 -1.482654 .1961064 .4242456 d2003 | -.6432739 -.2990308 .2750488 -.2410968 .2048553 -1.09 0.279 -.8432216 -1.18 0.241 -.646408 .2451601 d2004 | d2005 i .1642143 -1.71 0.089 -.2709131 .1581928 -.5839014 d2006 | .0420752 -0.21 0.838 2.52 0.013 -.2404553 .1101029 d2007 | -.0226139 .1952274 c4 | 2.143116 .4604184 3.825814
 2.861377
 1.588306
 1.80
 0.074

 2.344773
 1.332944
 1.76
 0.081

 3.373176
 1.664154
 2.03
 0.045
 2.861377 1.588306 2.344773 1.332944 -.2811263 c5 | 6.003879 c6 | -.2924895 4.982035 c7 | .0806068 6.665745 1.515622 .9709776 1.56 0.121 1.85 0.066 -.4054807 3,436725 c8 | 2.255235 1.217279 C9 | -.1531816 4.663652 2.69387 1.93081 2.795191 1.518817 1.40 0.165 1.84 0.068 1.93081 -1.126285 6.514024 c11 | 1.84 0.068 2.25 0.026 c12 | -.2098246 5.800207 .2981662 c13 | 2.459607 1.092451 4.621048 2.27 0.025 -3.13 0.002 2.40213 1.059094 .3066859 4.497574 c14 | .3208703 s2 | -1.003029 -1.637879 -.3681792 s3 | -2.843619 .7675946 -3.70 0.000 -4.362324 -1.324914 .2382375 -1.12 0.266 -3.47 0.001 .2050362 -.2663226 -.7376813 s4 | .5994255 s5 | -2.080592 -,8946138 -3.26657 -1.26 0.209 -3.18 0.002 s6 | -.2634231 .2085931 -.6761297 .1492835 s7 | -.8562062 .2694939 -3.18 -1.389407 -.3230059 -1.36 0.177 s8 | -.2892621 .2128607 -.7104123 .131888 s9 | -.4886417 .2366244 s10 | -.9078983 .2684454 -2.07 0.041 -.9568088 -3.38 0.001 -1.439024 -.0204746

-.3767725

s11 486165 s12 4438315 s13 -1.586333 _cons -9.37977	.2320611 .2777173 .3809908 11.0529	-2.09 -1.60 -4.16 -0.85	0.038 0.112 0.000 0.398	9453037 993302 -2.340133 -31.24821	0 .1 8 12	270264 056389 325336 .48867	
Instruments for orthogona Standard FOD.(lnsecedu lnterte Inictinfra indprivati d2003 d2004 d2005 d20 c13 c14 s2 s3 s4 s5 s GMM-type (missing=0, se L(1/2).L.lnindfdistoc Instruments for levels eq Standard cons Insecedu Intertedu ln Inictinfra indprivati d2003 d2004 d2005 d20 c13 c14 s2 s3 s4 s5 s GMM-type (missing=0, se D.L.lnindfdistock col	l deviations of du lnwage lng sation d1996 of 06 d2007 d2006 6 s7 s8 s9 s1 parate instrum k collapsed uation wage lngdp ln sation d1996 of 06 d2007 d2000 6 s7 s8 s9 s1 parate instrum lapsed	equation dp lntrad d1997 d19 8 c2 c3 c 0 s11 s12 ments for tradefree d1997 d19 8 c2 c3 c 0 s11 s12 ments for	efree ln 98 d1999 4 c5 c6 5 s13) • each pe 98 d1999 4 c5 c6 5 s13 • each pe	econfree lnt d2000 d2001 c7 c8 c9 c10 riod unless o ree lntransi d2000 d2001 c7 c8 c9 c10 riod unless o	ransi d200 c11 colla tion d200 c11 colla	tion 2 c12 psed) 2 c12 c12 psed)	
Arellano-Bond test for AR Arellano-Bond test for AR	(1) in first ((2) in first (differenc differenc	es: z = es: z =	-2.13 Pr > -1.06 Pr >	z = z =	0.033 0.289	
<pre>Sargan test of overid. restrictions: chi2(2) = 4.89 Prob > chi2 = 0.087 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(2) = 0.99 Prob > chi2 = 0.609 (Robust, but can be weakened by many instruments.)</pre>							
Difference-in-Hansen test GMM instruments for lev Hansen test excluding Difference (null H =	s of exogenei els group: cl exogenous): cl	ty of ins hi2(1) hi2(1)	= 0.2 = 0.7	subsets: 6 Prob > ch: 3 Prob > ch:	i2 = i2 =	0.612 0.392	

.

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	78595	1.577803	-0.50	0.619	-3.907673	2.335773

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	-1.494281	1.063527	-1.41	0.162	-3.598495	.6099328

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	7084854	.6471814	-1.09	0.276	-1.98895	.571979

. nlcom _b[lngdp]/(1-_b[l.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	.4760239	.8021236	0.59	0.554	-1.110997	2.063045

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	0230707	.4135921	-0.06	0.956	8413729	.7952315

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	2.289845	.8949541	2.56	0.012	.5191567	4.060534

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	3.277774	1.581633	2.07	0.040	.1484745	6.407073

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

462

lnindfdist~k		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+						
_nl_1		.5805382	.359881	1.61	0.109	1314952	1.292572

. nlcom _b[indprivatisation]/(1-_b[1.lnindfdistock])

•

_nl_1: _b[indprivatisation]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef	. Std. Err.	t	P> t	[95% Conf	. Interval]
	+					
_nl_1	1.91436	2 1.189135	1.61	0.110	4383716	4.267095

	F E							
 xtreg lnind; 	Edistock l.lni	Indfdistock	lnsed	edu lr	ntertedu	lnwage	lngdp ln	tradefree
lneconfree lnt	transition lni	LC						
> tinfra indp	rivatisation d	1996-d2008	c2-c14 s2	2-s13,	fe			
note: d1996 or	mitted because	e of colline	arity					
note: c2 omit	ted because of	E collineari	tv					
note: c3 omitt	ted because of	- collineari	+ v					
note: c3 omitt	ted because of	E collineari	су +					
note: C4 omitt	Led because of	. collineari	LY					
note: C5 Omiti	ted because of	collineari	су					
note: c6 omit1	ted because of	collineari	ty					
note: c7 omit	ted because of	E collineari	ty					
note: c8 omit	ted because of	E collineari	ty					
note: c9 omit	ted because of	E collineari	ty					
note: c10 omit	tted because d	of collinear	ity					
note: c11 omit	tted because o	of collinear	itv					
note: c12 omit	tted because o	of collinear	itv					
note: c13 omit	tted because (of collinear	ity					
note. cij omij	tted because (of collinear	1 L Y					
note: CI4 omin	tted because d	or collinear	ıty					
note: s2 omiti	ted because of	collineari	τy					
note: s3 omit	ted because of	E collineari	ty					
note: s4 omit	ted because of	E collineari	ty					
note: s5 omit	ted because of	E collineari	ty					
note: s6 omit	ted because of	E collineari	ty					
note: s7 omit!	ted because of	- collineari	t.v					
note: s8 omitt	ted because of	E collineari	- <u>-</u>					
noto: s9 omiti	ted because of	- collineari	су + 17					
note. 35 Omitti	Leu Decause OI	f collineari	су :+					
note: SIU omin	tted because d	of collinear	lty					
note: sll omit	tted because o	of collinear	ity					
note: s12 omit	tted because o	of collinear	ity					
note: s13 omit	tted because o	of collinear	ity					
Fixed-effects	(within) requ	ression		Numbe	er of obs	=	12	83
Group variable	⊇• id			Numbe	r of gro	uns =	1	30
oroup variable	. 10				51 01 910	apo		
P-cq: within	- 0 2952			Obc r	or group	• min -		1
K-SQ: WICHIN	- 0.2932			ops F	er group	- 11111 -		1
between	n = 0.8341					avg =	9	.9
overal.	1 = 0.5743					max =	-	13
								- 4
				F(22,	1131)	=	21.	54
corr(u i, Xb)	= 0.5226			F(22, Prob	1131) > F	=	21.	54 00
corr(u_i, Xb)	= 0.5226			F(22, Prob	1131) > F	=	21.	54 00
corr(u_i, Xb)	= 0.5226			F(22, Prob	1131) > F	= =	21.	54 00
corr(u_i, Xb)	= 0.5226	Ctd Exx		F(22, Prob	1131) > F	= = % Conf	21.1 0.00	 1
corr(u_i, Xb) lnindfdist~k	= 0.5226	Std. Err.	t	F(22, Prob P> t	1131) > F 	= = % Conf.	21. 0.000	54 00 1]
corr(u_i, Xb)	= 0.5226	Std. Err.	t	F(22, Prob P> t	1131) > F [95	= = % Conf.	21. 0.000	54 00 1]
<pre>corr(u_i, Xb)</pre>	= 0.5226	Std. Err.	t	F(22, Prob P> t	1131) > F [95	= = % Conf.	21. 0.00	 1]
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.	= 0.5226	Std. Err.	t 6.56	F(22, Prob P> t 0.000	1131) > F [95 	= = % Conf. 	21.1 0.000 Interva	54 00 1] 91
corr(u_i, Xb) lnindfdist~k lnindfdist~k Ll.	= 0.5226	Std. Err.	t 6.56	F(22, Prob P> t 0.000	1131) > F [95 	= = % Conf. 56024	21.3 0.000	54 00 1] 91
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu	= 0.5226	Std. Err. .0294962 1.501536	t 6.56 -0.45	F(22, Prob P>It 0.000 0.656	1131) > F [95 	= = % Conf. 56024 15976	21.1 0.000 Interva .25134 2.2762	54 00 1] 91 42
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu	= 0.5226	Std. Err.	t 6.56 -0.45 -0.52	F(22, Prob P> t 0.000 0.656 0.601	1131) > F [95 	= % Conf. 56024 15976 20329	21.1 0.000 Interva .25134 2.2762 1.05450	54 00 1] 91 42 64
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .749431	t 6.56 -0.45 -0.52 -0.69	F(22, Prob P> t 0.000 0.656 0.601 0.491	1131) > F [95 	= * Conf. 56024 15976 20329 54694	21.1 0.000 Interva .25134 2.2762 1.0545 98628	54 1] 91 42 64
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .7749431 7466757	t 6.56 -0.45 -0.52 -0.69 0.60	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546	1131) > F [95 	= * Conf. 56024 15976 20329 54694 14301	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915	54 1] 91 42 64 18 75
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 6022797	t -0.45 -0.52 -0.69 0.60	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546	1131) > F [95 	= * Conf. 56024 15976 20329 54694 14301 47121	21. 0.000 Interva .25134 2.2762 1.0545 .98628 1.915	54
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.</pre>	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787	t 6.56 -0.45 -0.52 -0.69 0.60 0.06	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954	1131) > F [95 	= * Conf. 56024 15976 20329 54694 14301 47131	21. 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160	54
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k lnsecedu lntertedu lntertedu lnwage lngdp lntradefree lneconfree</pre>	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811	t -0.45 -0.52 -0.69 0.60 0.06 1.47	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954	1131) > F [95) .13 5 -3.6 -1.8 -2.0 5 -1.0 4 -1.1 46	= * Conf. 56024 15976 20329 54694 14301 47131 01241	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900	54
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.141 0.362	1131) > F [95 	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911	54 00 1] 91 42 64 18 75 68 64 96
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.141 0.362 0.240	1131) > F [95) .13 5 -3.6 -1.8 -2.0 5 -1.0 4 -1.1 46 2 -3.0)31	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.2570	54 1] 91 42 64 18 75 68 64 96 64
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.</pre>	= 0.5226	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.954 0.141 0.362 0.240 0.000	$ \begin{array}{c} 1131) \\ > F \\ \hline $	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 6561 13273	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.2190 8.3911 1.2577 1.85660	54
<pre>corr(u_i, Xb)</pre>	= 0.5226 Coef. 1934758 6698671 3828825 5342059 4507245 0347742 1 .37947 2 .662767 4709106 1 .268965 (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.141 0.362 0.240 0.000	1131) > F $[95]$	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2166 3.21900 8.3911 1.2570 1.85660	54
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997	= 0.5226 Coef. . 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1.37947 2.662767 4709106 1.268965 (omitted) .0130319	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.9546 0.9546 0.141 0.362 0.240 0.000 0.000	1131) > F [95) .13 5 -3.6 -1.8 -2.0 5 -1.0 5 -1.0 5 -1.1 46 2 -3.0) .31 0 .68 968	= % Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.2570 1.85660 .67593	54 1] 91 42 64 18 75 68 64 96 64 96 64 93 29
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998	= 0.5226 Coef. . 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1 .37947 2 .662767 4709106 1 .268965 (omitted) 0130319 0687798	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.000 0.969 0.859	1131) > F $[95$ -3.6 -3.6 -1.8 -2.0 -1.0 -1.0 -1.1 46 $2 -3.0$ 31 68 69	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413	21. 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.2190 8.3911 1.2570 1.8566 .675933 82860	54 1] 91 42 64 18 75 68 64 96 64 96 64 93 29 08
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1998</pre>	= 0.5226 Coef. 1934758 1934758 6698671 3828825 5342059 4507245 . 0347742 1 .37947 2.662767 4709106 1 .268965 (omitted) 0130319 0687798 1486281	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .3872561 .4313122	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.954 0.240 0.000 0.969 0.859 0.730	$ \begin{array}{c} 1131) \\ > F \\ \hline $	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 47634	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.2190 8.3911 1.2577 1.85660 .67593 .828600	54 500 91 42 54 18 55 56 56 56 56 56 56 56 56 56
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.</pre>	= 0.5226 Coef. 1934758 6698671 3828825 5342059 . 4507245 0347742 1.37947 2.662767 4709106 1.268965 (omitted) 0130319 0687798 1.486281 2616717	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4972562	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.954 0.954 0.954 0.000 0.969 0.859 0.859 0.730	$ \begin{array}{c} 1131) \\ > F \\ $	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97634 07643	21.1 0.000 Interva 225134 2.2762 1.0545 .98628 1.915 1.2166 3.21900 8.3911 1.2570 1.85660 .67593 .828600 .994880	54 500 1] 91 42 64 18 75 58 54 96 54 96 53 29 03 45 54 54 55 56 56 56 56 56 56 56 56 56
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000	= 0.5226 Coef. . 1934758 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1.37947 2.662767 4709106 1.268965 (omitted) .0130319 .0687798 1486281 2516717	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .502561	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.666	$\begin{array}{c} 1131) \\ > F \\ \hline \\ [95] \\ \\ 0 \\ .13 \\ \hline \\ 5 \\ -3.6 \\ -1.8 \\ -2.0 \\ -1.0 \\ -1.1 \\46 \\ -2.0 \\ -3.0 \\ 0 \\6 \\ 0$	= % Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97634 07634 07634	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2166 3.21900 8.3911 1.2577 1.85660 .67593 .828600 .99489 .70434	54 54 50 1] 91 42 64 18 56 64 96 64 96 64 96 64 93 29 08 03 45 75 58 54 96 64 96 64 96 96 96 96 96 97 97 97 97 97 97 97 97 97 97
<pre>corr(u_i, Xb)</pre>	= 0.5226 Coef. 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1 .37947 2 .662767 4709106 1 .268965 (omitted) 0130319 0687798 1486281 2516717 0294384	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 -0.05	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.362 0.240 0.000 0.969 0.730 0.606 0.958	$\begin{array}{c} 1131) \\ > F \\ \hline \\ [95] \\ \\ 0 \\ .13 \\ \\ 0 \\ \\ .13 \\ \\ .05 \\ \\ \\ .05 \\ \\ .05 \\ \\ .05 \\ \\ .05 \\$	= * Conf. 56024 15976 20329 54694 14301 01241 05661 58187 13273 49869 10413 97634 07688 34394	21.1 0.000 Interva 225134 2.2762 1.0545 98628 1.915 1.2160 3.21900 8.3911 1.2570 1.85660 .67593 .82860 .99489 .70434 1.0755 .0434	54 54 50 51 51 51 54 54 54 56 54 56 54 56 54 56 54 50 53 52 50 52 52 52 52 52 52 52 52 52 52 52 52 52
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Inwage Ingdp Intradefree Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2001 d2002</pre>	= 0.5226 Coef. 1934758 6698671 3828825 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.000 0.965 0.300 0.000 0.965 0.000 0.965 0.000 0.956 0.000 0.956 0.000 0.956 0.000 0.956 0.000 0.956 0.000 0.956 0.000 0.956 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.000 0.954 0.000 0.000 0.954 0.000 0.000 0.954 0.000 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.954 0.000 0.955 0.000 0.955 0.000 0.955 0.000 0.955 0.000 0.955 0.000 0.955 0.955 0.000 0.955 0.735 0.000 0.955 0.855 0.85	$\begin{array}{c} 1131) \\ > F \\ [95] \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline$	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 558187 13273 49869 10413 97634 07688 34394 69033	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.2577 1.85660 .67593 .828600 .99489 .70434 1.0755 1.375	54 500
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k Ll. lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n dl996 dl997 dl998 dl999 d2000 d2001 d2002 d2003</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1 .37947 2 .662767 4709106 1 .268965 (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37	F(22, Prob P> t 	$ \begin{array}{c} 1131) \\ > F \\ $	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97638 34394 69033 83695	21.1 0.000 Interva 225134 2.2762 1.0545 0.98628 1.915 1.2160 3.21900 8.3911 1.257 1.85660 .67593 .828600 .994890 .70434 1.0755 1.375 1.5880	54 500 1] 91 42 64 18 75 58 64 96 64 96 64 96 63 29 03 29 03 45 17 23 42
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004	= 0.5226 Coef. . 1934758 	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.946 0.946 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.730 0.606 0.958 0.731 0.476	$\begin{array}{c} 1131) \\ > F \\ \hline \\ [95] \\ \\ \\ 0 \\ \\ \\ \\ \\ \\ \\$	= % Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97634 07688 34394 69033 34394 69033	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2166 3.21900 8.3911 1.2577 1.85660 .67593 .828600 .99489 .70434 1.0755 1.3755 1.3755 1.3755	54 54 60 7- 91 42 64 18 75 68 64 96 64 96 64 93 29 08 03 29 08 03 45 17 23 42 68
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k lnindfdist~k lntertedu lntertedu lnwage lndradefree lnconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2003</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1 .37947 2 .662767 4709106 1 .268965 (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.34 -0.52 -0.05 0.25 0.25 0.37 0.71 0.74	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.362 0.240 0.000 0.965 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.606 0.601 0.459	$\begin{array}{c} 1131) \\ > F \\ [95] \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	= * Conf. 56024 15976 20329 54694 14301 47131 01241 05561 58187 13273 49869 10413 97634 07688 34394 69033 83695 55066	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.2570 1.85660 .67593 .82860 .99489 .70434 1.0755 1.3755 1.3755 1.3755 1.3755	54 54 60 91 42 64 18 75 68 64 96 64 96 64 93 29 08 03 45 17 23 42 68 34
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Inwage Ingdp Intradefree Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004</pre>	= 0.5226 Coef. 1934758 6698671 3828825 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.554 0.5554 0.5545 0.554 0.554 0.554 0.554 0	$\begin{array}{c} 1131) \\ > F \\ [95] \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline$	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 65661 65661 13273 49869 10413 55163 49869 10413 83494 69033 83695 83491 55066 55066	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.257 1.85660 .67593 .828600 .99489 .70434 1.0755 1.3755 1.3755 1.3755 1.3755 1.3755 2.2791	54 54 500 1] 91 42 64 18 75 68 64 96 64 96 64 90 64 90 64 90 64 90 80 3 45 17 23 45 17 23 45 57
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2004</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 382825 5342059 4507245 0347742 0347742 37947 662767 4709106 1.2662767 4709106 1.266265 (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135 5468484 6100633	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8152234 .829063 .9782966	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.491 0.362 0.954 0.954 0.141 0.362 0.969 0.730 0.666 0.958 0.859 0.730 0.666 0.958 0.859 0.730 0.666 0.958 0.859 0.730 0.666 0.958 0.859 0.730 0.656 0.601 0.441 0.362 0.954 0.240 0.000 0.556 0.555 0.555 0.556 0.556 0.556 0.556 0.555 0.555 0.555 0.555 0.555 0.555 0.556 0.556 0.556 0.555 0.555 0.555 0.555 0.556 0.556 0.555 0.555 0.555 0.556 0.555 0.556 0.555 0.556 0.555 0.556 0.55	$1131) > F \\ [95]$	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97638 34394 69033 83695 83491 55066 18547 09417	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.257 1.85660 .67593 .828600 .994890 .70434 1.0755 1.375 1.375 1.375 1.375 1.3880 1.9864 2.2035 2.2791 2.5295	54 54 60 1] 91 42 64 18 75 58 64 96 64 96 63 29 08 03 29 08 03 29 08 03 45 17 23 45 17 23 45 64 64 64 64 64 65 64 64 64 65 64 64 64 65 64 64 64 64 64 64 64 64 64 64 64 64 64
<pre>corr(u_i, Xb)</pre>	= 0.5226 Coef. . 1934758 . 1934758 	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22, Prob P> t 	1131) > F $[95$ -3.66 -1.8 -2.00 -1.00 -1.01 46 $2 -3.00$ 69 6	= % Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97634 07688 34394 69033 34394 69033 83695 83695 83695 83695 83695 83695	21.1 0.000 Interva .25134 2.2762 1.0545 98628 1.915 1.2160 3.21900 8.3911 1.2570 1.85660 .67593 .828600 .99489 .70434 1.0755 1.3755 1.3755 1.3880 1.9864 2.2035 2.27911 2.5295 2.8883	54 54 60 7- 91 42 64 18 75 68 64 96 64 96 64 93 29 08 03 29 08 03 29 08 03 45 17 23 42 68 34 57 44 88
<pre>corr(u_i, Xb) lnindfdist~k Il. Insecedu Intertedu Inwage Indep Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2006 d2007 d2007</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1 .37947 2 .662767 4709106 1 .268965 (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135 5468484 6100633 8098976 	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .337859 .337859 .6228805 .608485 .7427938 .8152234 .8829063 .9782966 1.059337	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.240 0.000 0.969 0.730 0.606 0.958 0.730 0.6056 0.601 0.958 0.730 0.6056 0.730 0.6056 0.730 0.6056 0.730 0.6056 0.730 0.6056 0.730 0.6056 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.606 0.958 0.730 0.459 0.533 0.4459 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.533 0.4458 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5338 0.5458 0.5568 0.55788 0.557888 0.55788 0.55788 0.5578888 0.55788 0.55788	$\begin{array}{c} 1131) \\ > F \\ \hline \\ [95] \\ \hline \\ -3.6 \\ -1.8 \\ -2.0 \\ -1.0 \\ -1.1 \\ -3.6 \\ -1.0 \\ -1.1 \\ -3.0 \\ -$	= * Conf. 56024 15976 20329 54694 14301 47131 01241 01241 58187 13273 49869 10413 97634 07688 34394 69033 83695 55066 18547 09417 68589	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.2570 1.85660 .67593 .82860 .99489 .70434 1.0755 1.3755 1.3755 1.3755 1.3755 1.3755 2.27910 2.5295 2.8883	54 54 60 91 42 64 18 75 68 64 96 64 96 64 96 64 93 29 98 93 45 17 23 42 68 34 51 7 42 68 84
<pre>corr(u_i, Xb) lnindfdist~k ll. lnindfdist~k ll. lnsecedu lntertedu lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2004 c2006 d2007 d2008 c2</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 6698671 3828825 5342059 4507245 0347742 1 .37947 2 .662767 4709106 1 .268965 (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135 5468484 6100633 8098976 (omitted) 	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.000 0.969 0.730 0.606 0.958 0.806 0.533 0.4458 0.4458 0.4458 0.4458 0.4458 0.4458 0.4458 0.5338 0.4458 0.4458 0.5338 0.4458 0.5388 0.4458 0.5388 0.4458 0.5388 0.4458 0.5388 0.445888 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.445888 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.44588 0.445888 0.445888 0.445888 0.44588888 0.44588888888888888888888888888888888888	$\begin{array}{c} 1131) \\ > F \\ [95] \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline$	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 55187 13273 49869 10413 55166 34394 69033 83695 83491 55066 83491 55066 83491 55066	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.257 1.85660 .67593 .828600 .99489 .70434 1.0755 1.3755 1.3755 1.3755 1.3755 2.27911 2.52955 2.8883	54 500 1] 91 42 64 18 75 68 64 96 64 96 64 90 64 90 53 29 90 80 33 45 17 23 42 68 34 67 44 84
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k lnindfdist~k lnindfdist~k lnsecedu lntertedu lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 </pre>	= 0.5226 Coef. . 1934758 1934758 1934758 382825 5342059 4507245 0347742 0347742 37947 662767 4709106 1.2662767 4709106 1.266265 (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135 5468484 6100633 8098976 (omitted) . (omitted) . (omitted) . (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.491 0.362 0.954 0.141 0.362 0.240 0.000 0.969 0.730 0.606 0.730 0.606 0.730 0.606 0.730 0.606 0.730 0.606 0.533 0.445	$\begin{array}{c} 1131) \\ > F \\ [95] \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97638 34394 69033 83695 83491 55066 18547 09417 68589	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.257 1.85660 .67593 .828600 .994890 .70434 1.0755 1.3755 1.3755 1.3755 1.3755 1.3755 2.2791 2.5295 2.8883	54 500 1] 31 42 64 18 75 68 64 96 64 96 63 29 08 03 29 08 03 29 08 03 45 17 23 45 17 23 45 68 64 64 96 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 83 84 54 84 84 84 84 84 84 84 84 84 84 84 84 84
<pre>corr(u_i, Xb)</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 1934758 382825 5342059 4507245 0347742 1.37947 2.662767 4709106 1.268965 (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135 5468484 6100633 8098976 (omitted) (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22, Prob P> t 	$\begin{array}{c} 1131) \\ > F \\ \hline \\ [95] \\ \\ [95] \\ \\ \\ \\ \\ \\ \\$	= % Conf. 56024 15976 20329 54694 14301 01241 65661 58187 13273 49869 10413 97634 07638 34394 69033 83695 83491 55066 18547 09417 68589	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2166 3.21900 8.3911 1.2570 1.85660 .67593 .828600 .99489 .70434 1.0755 1.3755 1.3755 1.3755 2.27911 2.5295 2.8883	54 500 1] 91 42 64 18 75 68 64 96 64 96 64 93 29 08 03 29 08 03 45 17 23 42 68 34 57 44 84
<pre>corr(u_i, Xb) lnindfdist~k Il. Insecedu Intertedu Inwage Indqp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5</pre>	= 0.5226 Coef. 1934758 6698671 3828825 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .002787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22, Prob P> t 	$\begin{array}{c} 1131) \\ > F \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97634 07688 34394 69033 83695 83491 55066 18547 09417 68589	21.1 0.000 Interva .25134 2.2762 1.05456 .98628 1.915 1.2160 3.21900 8.3911 1.2570 1.85660 .67593 .82860 .99489 .70434 1.0755 1.3755 1.3755 1.3755 1.3755 2.27910 2.5295 2.8883	54 54 60 7- 91 42 64 18 75 68 64 96 64 96 64 96 64 93 29 08 03 45 17 23 42 68 34 67 44 84
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.</pre>	= 0.5226 Coef. 1934758 6698671 3828825 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.76	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.000 0.956 0.730 0.606 0.958 0.730 0.606 0.958 0.735 0.606 0.958 0.735 0.606 0.958 0.735 0.606 0.954 0.955 0.735 0.606 0.958 0.735 0.606 0.958 0.806 0.958 0.806 0.958 0.806 0.953 0.445 0.533 0.535 0.535 0.535 0.535 0.535 0.535 0.555 0.5	$\begin{array}{c} 1131) \\ > F \\ [95] \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	= * Conf. 56024 15976 20329 54694 14301 47131 01241 65661 55187 13273 49869 10413 97634 07688 34394 69033 83695 83491 55066 83491 55066 83491 55068	21.1 0.000 Interva .25134 2.2762 1.0545 .98628 1.915 1.2160 3.21900 8.3911 1.257 1.85660 .67593 .828600 .99489 .70434 1.0755 1.3755 1.5880 1.9864 2.0355 2.27911 2.5295 2.8883	54 54 500 1] 91 42 64 18 75 568 64 96 64 96 63 29 08 03 45 17 23 45 17 23 45 17 23 45 17 23 45 17 23 45 17 23 45 24 84 84
<pre>corr(u_i, Xb)</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 382825 382825 5342059 4507245 0347742 37947 2.662767 4709106 1.266965 (omitted) . 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135 5468484 6100633 8098976 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.76	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.946 0.141 0.362 0.240 0.000 0.969 0.730 0.606 0.730 0.445 0.533 0.445 0.445 0.533 0.535 0.555 0.55	$\begin{array}{c} 1131) \\ > F \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	= % Conf. 56024 15976 20329 54694 14301 47131 01241 65661 58187 13273 49869 10413 97634 07638 34394 07688 34394 07688 34395 8365 8565 8565 8565 8565 8565 8565 856	21.1 0.000 Interva .25134 2.2762 1.0545 98628 1.915 1.2166 3.21900 8.3911 1.2577 1.85661 .67593 .828600 .99489 .70434 1.0755 1.3755 1.5880 1.98644 2.2035 2.27914 2.5295 2.8883	54 500 1] 91 42 64 18 75 68 64 96 64 96 64 90 32 29 08 03 29 08 03 229 08 03 45 17 23 42 68 34 57 44 84
<pre>corr(u_i, Xb)</pre>	= 0.5226 Coef. . 1934758 1934758 1934758 1934758 382825 5342059 4507245 0347742 1 .37947 . 2.662767 4709106 1 .268965 . (omitted) 0130319 0687798 1486281 2516717 0294384 1530985 2521734 5290596 6040135 5468484 6100633 8098976 . (omitted) . (o	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22, Prob P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.240 0.000 0.969 0.730 0.606 0.958 0.730 0.606 0.741 0.459 0.730 0.606 0.958 0.730 0.606 0.741 0.459 0.730 0.606 0.741 0.459 0.730 0.606 0.741 0.459 0.730 0.741 0.459 0.536 0.533 0.445 0.538 0.445 0.538 0.445 0.538 0.538 0.445 0.5388 0.5388 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488 0.54888 0.5488 0.5488 0.54888 0.54888 0.54888 0.54888 0.54888 0.54888 0.54888 0.54888 0.54888 0.54888 0.548888 0.548888 0.5488888888 0.54888888888888888888888888888888888888	$\begin{array}{c} 1131) \\ > F \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	= % Conf. 56024 15976 20329 54694 14301 01241 65661 58187 13273 49869 10413 97634 07638 34394 69033 83695 83491 55066 18547 09417 68589	21.1 0.000 Interva .25134 2.2762 1.0545 98628 1.915 1.2166 3.2190 8.3911 1.2570 1.85660 .67593 .828600 .99489 .70434 1.0755 1.3755 1.3755 1.37850 1.98644 2.2035 2.27911 2.5295 2.88831	54 500

c10	(omitted)						
c11	(omitted)						
c12	(omitted)						
c13	(omitted)						
c14	(omitted)						
s2	(omitted)						
s3	(omitted)						
s4	(omitted)						
s5	(omitted)						
s6	(omitted)						
s7	(omitted)						
s8	(omitted)						
s9	(omitted)						
s10	(omitted)						
s11	(omitted)						
s12	(omitted)						
s13	(omitted)						
_cons	-11.95249	15.260	13 -0.	78 0.43	34 -41	.89383	17.98885
sigma u	1.4583088						
sigma e l	1,2182688						
rho l	.58896614	(fract	ion of va	uriance du	ie to u i)	
F test that all	u_i=0:	F(129,	1131) =	2.12		Prob > F	= 0.0000

•

. **Model 6.4 OLS . reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnicti > nfra indprivatisation d1996-d2008 c2-c14 s2-s13 note: d2008 omitted because of collinearity note: c2 omitted because of collinearity note: c3 omitted because of collinearity note: c10 omitted because of collinearity

Source	SS	df		MS		Number of obs	=	1283
Madal	EECC CO7CA		100	======		F(44, 1238)	=	/5.16
Model Recidual	2083 96973	44 1238	1 68	314263 333581		Prop > F P-squared	_	0.0000
Residuai	2003.90973	1230	1.00			Adi R-squared	_	0.7270
Total	7650.59737	1282	5.96	770466		Root MSE	_	1.2974
100041	,	1000	0.00			10000 1102		1.0071
lnindfdist~k	Coet.	Std.	Err. 	t 	P> t	[95% Conf.		cerval]
lnindfdist~k								
L1.	.4778515	.0250	706	19.06	0.000	.428666		.527037
I								
lnsecedu	996562	1.596	739	-0.62	0.533	-4.129175	2.	.136051
lntertedu	2239122	.7790	083	-0.29	0.774	-1.752235	1	1.30441
lnwage	5886715	.8231	173	-0.72	0.475	-2.203531	1.	.026188
lngdp	.5549401	.790	297	0.70	0.483	9955293	2	2.10541
lntradefree	1448079	.6402	688	-0.23	0.821	-1.40094	1.	.111324
lneconfree	.5732394	.9968	057	0.58	0.565	-1.382376	2.	.528855
Intransition	2.432461	3.107	627	0.78	0.434	-3.664335	8.	.529258
lnictinfra	.2218436	.4265	315	0.52	0.603	6149608	1.	.058648
indprivati~n	1.655353	.3044	638	5.44	0.000	1.058031	2.	.252675
d1996	8193515	1.127	264	-0.73	0.467	-3.03091	1.	.392207
d1997	6819054	1.012	083	-0.67	0.501	-2.667494	1.	.303683
d1998	6334704	.9104	454	-0.70	0.487	-2.419657	1.	.152716
d1999	5643722	.8483	348	-0.67	0.506	-2.228705	1.	.099961
d2000 i	9730768	.8039	344	-1.21	0.226	-2.550301	. 6	5041477
d2001	5908311	.7311	608	-0.81	0.419	-2.025282	. 8	3436201
d2002	4850339	.6386	994	-0.76	0.448	-1,738087		.768019
d2003	4556584	.5259	541	-0.87	0.386	-1,487518		5762016
d2004	1850777	. 4443	288	-0.42	0.677	-1.056799		686643
d2005	1870454	.3706	179	-0.50	0.614	9141539		5400631
d2006	2483097	. 3014	798	-0.82	0.410	8397775		3431581
d2000	- 1869985	2092	488	-0.89	0.372	- 59752	•	2235229
d2008	(omitted)	.2052	100	0.00	0.072	.00702	• 4	2233223
c2	(omitted)							
C2	(omitted)							
c.1	1 244041	1 1 1 1 5	955	1 09	0 278	_1 00/188	3	192269
C4	1 870444	1 703	353	1 04	0.270	-1.647903	 r	5 38879
CJ	1 50607	1 501	061	1 004	0.207	1 52627		1 71021
20	1 7172	1 501	222	1 00	0.315	1 205100	1	010500
C7	1./1/2	1 020	001	1.09	0.270	-1.303100	4. 0	012261
C0	1 206442	1 200	004 006	1 07	0.392	1 161701	2.	024505
~10	1.300442 (amittad)	1.290	020	1.07	0.200	-1.101/01	р.	. 934365
C10	(00000000000000000000000000000000000000	2 2 2 0	163	0 22	0 0 0 7 7	2 007756	4	060120
CII a12	.4001000	2.229	403	0.22	0.027	-3.00//30	4.	-00UIZ9
CIZ	1.377434	1 1 2 0	043	1 20	0.420	-1.9/1000	4.	. /20431
CI3	1.339142	1.120	300 14C	1.20	0.232	000009	Д	. 33/1/2
C14	1.343043	1.368	146	0.98	0.326	-1.341097	4.	.02/184
SZ	/603264	.1834	128	-4.15	0.000	-1.120167		4004862
S3	-2.140034	.2165	296	-9.88	0.000	-2.56484	-1.	. /15229
s4	1852932	.183	226	-1.01	0.312	544761		1/41/46
s5	-1.609111	.2165	958	- / . 43	0.000	-2.034047	-1.	.184176
s6	2057085	.179	393	-1.15	0.252	5576564	• 1	1462395
s7	626032	.182	978	-3.42	0.001	9850133	2	2670507
s8	198082	.1833	286	-1.08	0.280	5577512	• 1	1615871
s9	3850523	.1817	988	-2.12	0.034	7417201	(0283845
s10	6752637	.1815	645	-3.72	0.000	-1.031472	3	3190555
s11	3444126	.1782	365	-1.93	0.054	6940915	• (052663
s12	313625	.1779	358	-1.76	0.078	6627141	• (0354641
s13	-1.287006	.1946	514	-6.61	0.000	-1.668889	9	9051231
_cons	-8.980017	15.97	736	-0.56	0.574	-40.32571	22	2.36568

Appendix 6.7: Different GMM estimators and options

```
. **Robustess checks: different GMM estimators/options
. **Baseline Model 6.4
. **Two-step System GMM with orthogonal deviations
. xtabond2 lnindfdistock l.lnindfdistock
                                        lnsecedu lntertedu lnwage lngdp
Intradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock
l.lnwage , laglimit(1 2) collapse)
> s2-s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
```

Group variable Time variable Number of ins F(44, 129) Prob > F	e: id : year truments = 49 = 81.64 = 0.000			Number Number Obs pei	of obs = of groups = c group: min = avg = max =	1283 130 1 9.87 13
lnindfdist~k	 Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+					
L1.	.3118026	.1164769	2.68	0.008	.0813502	.5422551
lnsecedu	.0468517	1.163361	0.04	0.968	-2.254886	2.348589
lntertedu	-1.199081	.8440154	-1.42	0.158	-2.868986	.4708243
lnwage	-1.589346	1.563896	-1.02	0.311	-4.683552	1.50486
lngdp	1.086779	1.19042	0.91	0.363	-1.268496	3.442054
lntradefree	0564319	.2832339	-0.20	0.842	616817	.5039533
lneconfree	1.684713	.6495537	2.59	0.011	.3995553	2.969871
lntransition	.0625179	2.601038	0.02	0.981	-5.0837	5.208736
lnictinfra	.5968877	.2842984	2.10	0.038	.0343965	1.159379
indprivati~n	1.238553	.5804432	2.13	0.035	.0901318	2.386974
- d1996	-1.418608	1.168044	-1.21	0.227	-3.729611	.892395
d1997	-1.34834	1.025403	-1.31	0.191	-3.377125	.6804442
d1998	-1.196141	.9190589	-1.30	0.195	-3.014521	.6222398
d1999	-1.091693	.82118	-1.33	0.186	-2.716417	.5330319
d2000	-1.493446	.7842617	-1.90	0.059	-3.045127	.0582345
d2001	-1.183898	.745564	-1.59	0.115	-2.659015	.2912184
d2002	-1.026956	.6415318	-1.60	0.112	-2.296242	.2423301
d2003	8394947	.5380433	-1.56	0.121	-1.904027	.2250371
d2004	5001698	.4166954	-1.20	0.232	-1.324612	.3242723
d2005	4229228	.3409997	-1.24	0.217	-1.097599	.2517534
d2006	4305971	.2790515	-1.54	0.125	9827074	.1215131
d2007	1126247	.1930198	-0.58	0.561	4945192	.2692698
с4	2.926609	1.394602	2.10	0.038	.1673548	5.685863
c5	2.246218	1.651374	1.36	0.176	-1.021066	5.513503
c6	3.638409	2.260917	1.61	0.110	8348701	8.111688
с7	3.286725	1.585354	2.07	0.040	.1500628	6.423386
c8	2.17646	1.392373	1.56	0.120	5783836	4.931305
с9	2.467177	1.256693	1.96	0.052	0192217	4.953575
c11	2.223938	1.934521	1.15	0.252	-1.60356	6.051435
c12	1.638658	2.062934	0.79	0.428	-2,442908	5.720224
c13	2.638554	1.075905	2.45	0.016	.5098484	4.767259
c14	3.818521	2.165148	1.76	0.080	4652773	8.102318
s2	-1.057647	.3289273	-3.22	0.002	-1.708438	4068561
s3	-2.916411	.7930776	-3.68	0.000	-4.485535	-1.347288
s4	3186784	.2456693	-1.30	0.197	8047412	.1673844
s5	-2.022297	.6883361	-2.94	0.004	-3.384187	6604071
56	3068299	.2108101	-1.46	0.148	7239228	.110263
s7	9126659	.2808676	-3.25	0.001	-1.468369	3569625
s8	3390712	.2175703	-1.56	0.122	7695393	.0913969

 s9 |
 -.5226335
 .2428629
 -2.15
 0.033
 -1.003144

 s10 |
 -.9676882
 .2799486
 -3.46
 0.001
 -1.521573

 s11 |
 -.5433867
 .2376025
 -2.29
 0.024
 -1.013489

 -.0421234 s10 | -.9676882 -.4138031 s11 | -.0732842 s12 | -.5113618 .2790045 -1.83 0.069 -1.063379 .0406554 -1.671998 -2.451264 .3938622 -4.25 0.000 s13 | -.892732 cons | -21.39492 19.97551 -1.07 0.286 -60.91695 18,12711 _____ Instruments for orthogonal deviations equation Standard FOD. (lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).(L.lnindfdistock L.lnwage) collapsed Instruments for levels equation Standard _cons Ingdp Insecedu Intertedu Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.lnindfdistock L.lnwage) collapsed Arellano-Bond test for AR(1) in first differences: z = -2.02 Pr > z = 0.043Arellano-Bond test for AR(2) in first differences: z = -1.10 Pr > z = 0.271Sargan test of overid. restrictions: chi2(4) = 5.74 Prob > chi2 = 0.219(Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(4) = 3.43 Prob > chi2 = 0.488 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(2) = 2.19 Prob > chi2 = 0.334 Difference (null H = exogenous): chi2(2) = 1.24 Prob > chi2 = 0.538 2.19 Prob > chi2 = 0.334

•
```
. **Two-step System GMM with first-differences
. xtabond2 lnindfdistock l.lnindfdistock
                                              lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock
l.lnwage , laglimit(1 2) collapse)
> iv(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14
> s2-s13) two robust small
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
```

estimation. Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

1 1						
Group variable Time variable Number of inst F(44, 129) Prob > F	e: id : year truments = 49 = 66.09 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1283 130 1 9.87 13
	 I	Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+ 					
L1.	.2691585	.1777997	1.51	0.133	0826225	.6209394
lnsecedu	-1.396712	1.205301	-1.16	0.249	-3.781429	.9880044
lntertedu	-1.096964	.8487584	-1.29	0.199	-2.776254	.5823249
lnwage	1.60485	1.972234	0.81	0.417	-2.297263	5.506963
lngdp	9075936	1.557426	-0.58	0.561	-3.988999	2.173811
lntradefree	.1248105	.3399202	0.37	0.714	5477299	.7973509
lneconfree	.7273438	.7069848	1.03	0.306	6714429	2.126131
Intransition	5.468454	3.124856	1.75	0.082	7141509	11.65106
lnictinfra	.0848902	.3270981	0.26	0.796	5622815	.7320618
indprivati~n	.7286264	.5094052	1.43	0.155	2792442	1.736497
d1996	1085934	1.900689	-0.06	0.955	-3.869153	3.651967
d1997	1178784	1.654935	-0.07	0.943	-3.392208	3.156451
d1998	1693992	1.464851	-0.12	0.908	-3.067642	2.728844
d1999	125655	1.28858	-0.10	0.922	-2.675143	2.423833
d2000	2669579	1.103164	-0.24	0.809	-2.449594	1.915678
d2001	1212092	1.100814	-0.11	0.912	-2.299196	2.056778
d2002	1464257	.9470683	-0.15	0.877	-2.020223	1.727372
d2003	0178252	.8249837	-0.02	0.983	-1.650076	1.614425
d2004	.0976067	.6008169	0.16	0.871	-1.091124	1.286338
d2005	.1140221	.4611591	0.25	0.805	7983925	1.026437
d2006	.0716629	.3654403	0.20	0.845	6513697	.7946954
d2007	.1728076	.2417095	0.71	0.476	3054207	.6510359
с4	.5889191	1.916041	0.31	0.759	-3.202015	4.379853
c5	4.097405	1.976788	2.07	0.040	.1862808	8.008528
с6	1.015598	3.39254	0.30	0.765	-5.696627	7.727822
с7	4.071791	1.811661	2.25	0.026	.4873758	7.656207
c8	.7695969	2.050836	0.38	0.708	-3.288033	4.827227
с9	2.394537	1.831614	1.31	0.193	-1.229357	6.018431
c11	3.804126	1.834229	2.07	0.040	.1750592	7.433193
c12	5.014132	2.174466	2.31	0.023	.7118978	9.316367
c13	2.32699	1.371	1.70	0.092	3855662	5.039547
c14	.2438983	2.927808	0.08	0.934	-5.548841	6.036637
s2	-1.119406	.4049832	-2.76	0.007	-1.920675	3181364
s3	-3.014431	.8684904	-3.47	0.001	-4.73276	-1.296101
s4	3218211	.2654138	-1.21	0.228	8469488	.2033067
s5	-1.971264	.6775162	-2.91	0.004	-3.311747	6307821
s6	2893152	.2361387	-1.23	0.223	7565214	.177891
s7	9519478	.3473225	-2.74	0.007	-1.639134	2647619
s8	3492682	.2486752	-1.40	0.163	8412782	.1427419
s9	5305611	.2834785	-1.87	0.064	-1.09143	.0303081
s10	-1.016318	.3635181	-2.80	0.006	-1.735547	2970883
s11	5508828	.2827024	-1.95	0.054	-1.110216	.0084508
s12	5117693	.3254677	-1.57	0.118	-1.155715	.1321766
s13	-1.69675	.5696414	-2.98	0.003	-2.8238	5697009
cons	11.10659	24.5/156	0.45	0.652	-37.50885	59.72203

Instruments for first differences equation
<pre>Standard D.(lngdp Insecedu Intertedu Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).(L.lnindfdistock L.lnwage) collapsed Instruments for levels equation Standard</pre>
cons Ingdp Insecedu Intertedu Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.lnindfdistock L.lnwage) collapsed
Arellano-Bond test for AR(1) in first differences: $z = -1.91$ Pr > $z = 0.056$ Arellano-Bond test for AR(2) in first differences: $z = -1.05$ Pr > $z = 0.295$
Sargan test of overid. restrictions: chi2(4) = 16.43 Prob > chi2 = 0.002
<pre>(Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(4) = 3.81 Prob > chi2 = 0.433 (Robust, but can be weakened by many instruments.)</pre>
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels
Hansen test excluding group: $chi2(2) = 3.30$ Prob > $chi2 = 0.192$ Difference (pull H = exceptous): $chi2(2) = 0.51$ Prob > $chi2 = 0.772$
·

. **One-step System GMM with orthogonal deviations . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock l.lnwage , laglimit(1 2) collapse) > iv(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 > s2-s13) robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate robust weighting matrix for Hansen test. Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, one-step system GMM

Group variable	e: id			Number	of obs =	1283
Time variable	: year			Number	of groups =	130
Number of inst	truments = 49			Obs pe	r group: min =	1
F(44, 129)	= 82.74				avg =	9.87
Prob > F	= 0.000				max =	13
lnindfdict k	l Coof	Robust	-		LOE% Comf	Totownall
Ininalaist~k	Coer.	Sta. Err.	τ	P> t	[95% Conr.	Intervalj
lnindfdist~k	' I					
L1.	.3153918	.1697328	1.86	0.065	0204287	.6512124
	Ì					
lnsecedu	5194027	1.166665	-0.45	0.657	-2.827678	1.788873
lntertedu	460752	1.127382	-0.41	0.683	-2.691305	1.769801
lnwage	-1.501007	1.458438	-1.03	0.305	-4.386562	1.384548
lngdp	1.214024	1.159024	1.05	0.297	-1.079133	3.507181
lntradefree	0916138	.2741554	-0.33	0.739	6340371	.4508094
lneconfree	1.063004	.7801689	1.36	0.175	4805796	2.606587
lntransition	1.126705	2.572192	0.44	0.662	-3.962439	6.21585
lnictinfra	.485981	.3065339	1.59	0.115	1205038	1.092466
indprivati~n	1.435112	.8615085	1.67	0.098	2694037	3.139628
d1996	-1.259476	1.44291	-0.87	0.384	-4.11431	1.595358
d1997	-1.091732	1.309633	-0.83	0.406	-3.682873	1.499409
d1998	9788583	1.178588	-0.83	0.408	-3.310724	1.353008
d1999	8563159	1.043498	-0.82	0.413	-2.920901	1.20827
d2000	-1.292668	.859674	-1.50	0.135	-2.993555	.4082177
d2001	9785031	.8629711	-1.13	0.259	-2.685913	.7289063
d2002	7894262	.7944173	-0.99	0.322	-2.3612	.7823479
d2003	6845515	.6950258	-0.98	0.327	-2.059677	.6905742
d2004	39108	.485758	-0.81	0.422	-1.352164	.5700042
d2005	3275378	.3778065	-0.87	0.388	-1.075037	.4199616
d2006	3684809	.2865428	-1.29	0.201	9354129	.1984511
d2007	2616755	.3099199	-0.84	0.400	8748596	.3515087
с4	2.396354	1.546258	1.55	0.124	6629542	5.455663
c5	1.934287	2.065667	0.94	0.351	-2.152686	6.021261
c6	2.772375	2.644683	1.05	0.296	-2.460194	8.004944
с7	2.242077	2.30939	0.97	0.333	-2.327108	6.811263
c8	1.607855	1.681609	0.96	0.341	-1.71925	4.934961
с9	1.840741	1.828238	1.01	0.316	-1.776474	5.457955
c11	.760061	2.514112	0.30	0.763	-4.21417	5.734292
c12	1.087094	2.261959	0.48	0.632	-3.388248	5.562435
c13	1.970324	1.464224	1.35	0.181	9266786	4.867327
c14	2.880969	2.27329	1.27	0.207	-1.616791	7.378729
s2	-1.018544	.3847798	-2.65	0.009	-1.77984	2572477
s3	-2.840602	.8704427	-3.26	0.001	-4.562794	-1.118409
s4	276817	.2555616	-1.08	0.281	7824519	.2288178
s5	-2.104155	.6835643	-3.08	0.003	-3.456603	7517059
s6	2764831	.2183767	-1.27	0.208	7085468	.1555805
s7	8701231	.3437864	-2.53	0.013	-1.550313	1899332
s8	2987674	.2328451	-1.28	0.202	7594572	.1619224
s9	5076782	.2556348	-1.99	0.049	-1.013458	0018986
s10	9210151	.3412125	-2.70	0.008	-1.596112	2459179
s11	4967885	.2688938	-1.85	0.067	-1.028801	.0352244
s12	4557158	.3145668	-1.45	0.150	-1.078094	.1666623
s13	-1.721573	.6000386	-2.87	0.005	-2.908764	5343816
_cons	-21.91064	18.88653	-1.16	0.248	-59.27811	15.45683

Instruments for orthogonal deviations equation Standard FOD.(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).(L.lnindfdistock L.lnwage) collapsed Instruments for levels equation Standard cons lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.lnindfdistock L.lnwage) collapsed Arellano-Bond test for AR(1) in first differences: z = -2.27 Pr > z = 0.023Arellano-Bond test for AR(2) in first differences: z = -1.31 Pr > z = 0.189Sargan test of overid. restrictions: chi2(4) = 5.74 Prob > chi2 = 0.219 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(4) = 3.43 Prob > chi2 = 0.488 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(2) = 2.19 Prob > chi2 = 0.334 Difference (null H = exogenous): chi2(2) = 1.24 Prob > chi2 = 0.538

•

```
. **One-step System GMM with with first-differences
                                            lnsecedu lntertedu lnwage lngdp
. xtabond2 lnindfdistock l.lnindfdistock
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock
l.lnwage , laglimit(1 2) collapse)
> iv(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14
> s2-s13) robust small
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
```

Using a generalized inverse to calculate robust weighting matrix for Hansen test. Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, one-step system GMM

Group variable	e: id			Number	of obs =	1283
Time variable	: year			Number	of groups =	130
Number of ins	truments = 49			Obs pe	r group: min =	1
F(44, 129)	= 64.86				avg =	9.87
Prob > F	= 0.000				max =	13
		Robust			5050 g 6	
lnindfdist~k	Coei.	Std. Err.	t	P> t	[95% Conf.	Intervalj
lnindfdist~k	+					
L1.	2678748	168859	1.59	0.115	0662169	.6019666
	.2010110	.100000	1.00	0.110	.0002200	.0010000
lnsecedu	-1.848736	1.35692	-1.36	0.175	-4.533435	.8359626
lntertedu	.287518	1.412482	0.20	0.839	-2.507112	3.082148
lnwage	.9234055	2.172794	0.42	0.672	-3.375521	5.222332
lngdp	2254943	1.77012	-0.13	0.899	-3.727721	3.276732
lntradefree	.2589226	.3950202	0.66	0.513	5226344	1.04048
lneconfree	.4624361	.7272329	0.64	0.526	9764121	1.901284
lntransition	5.467928	3.469547	1.58	0.117	-1.396655	12.33251
lnictinfra	2183336	.4481527	-0.49	0.627	-1.105015	.6683474
indprivati~n	1.925279	1.128235	1.71	0.090	3069619	4.15752
d1996	3457928	2,186929	-0.16	0.875	-4.672685	3,981099
d1997	3054397	1.925077	-0.16	0.874	-4.114252	3.503372
d1998	3181826	1.711057	-0.19	0.853	-3,703552	3.067187
d1999	239548	1.456781	-0.16	0.870	-3.121824	2.642728
d2000	- 5104973	1.232078	-0.41	0.679	-2.948194	1.9272
d2001	-2108453	1 170733	-0 18	0 857	-2 52717	2 10548
d2002	- 1156179	1.052906	-0.11	0.913	-2.198818	1.967583
d2002	- 1267762	.919817	-0.14	0.891	-1.946657	1.693104
d2004	1124369	6714873	0 17	0 867	-1 216117	1 440991
d2001	1378212	. 5247565	0.26	0.793	9004224	1,176065
d2005	0308767	3867978	0.20	0 936	- 7344121	7961656
d2000	-0464679	3485884	-0.13	0 894	- 7361585	6432227
02007	5/903//	2 036861	0.13	0.788	-3 480946	1 579015
C4 C5	1 3 249188	1 964979	1 65	0.101	- 6385713	7 136947
c6	2181413	4 020064	0.05	0.101	-7 735655	8 171937
c0 c7	· 2 21533	2 128302	1 04	0.300	-1.995568	6 126228
C7	0116301	2 10668	1.04	0.300	-1.750037	1 773315
C0 C9	1 2/5183	2 205259	0.00	0.573	-3 117075	5 6083/1
011	1 1 260267	2 201155	0.50	0.575	2 157225	5 07007
c11	1 2 100105	2.304433	1 20	0.160	1 472402	0 201272
C12 c13	1 1 460009	1 /23811	1.30	0.109	-1.357035	0.291373 A 27705A
c1/	1 - 1215297	3 308274	_0_04	0.307	-6 667031	6 123072
C14	1 002154	200/1/0	-0.04	0.971	1 071420	2010001
52	1 2 020555	.3904149	-2.72	0.007	-1.071420	1 210004
53	1 -3.020333	.0030003	-3.51	0.001	-4.737223	2406014
54	2 202005	.2702052	-1.09	0.279	0207013	.2400914
50	-2.203993	.0907037	-3.31	0.001	-3.030373	91/4103
so 27	0215204	.2290/0/	-1.54	0.101	/03/401	.1400000/
57	2174601	2462212	-2.02	0.010	-1.033004	2291773
so	31/4601	.2403212	-1.29	0.200	0040120	.1090923
59		25155C0	-2.11	0.03/	-1.09900Z	034/195
S10	902 / /04 5221215	0000000 000000	-2.00	0.006	1 001026	20/2000
SII ~10	000110	· ∠0∠4∠90	-1.09	0.001	-I.U91920	1664401
S1Z	I492113	.3328306	-1.48	0.142	-1.120000	.10044UL
S13	I -1.039995	.0194/1 26 50200	-2.9/	0.004	-3.003033	014330L
_cons	1 .1109213	20.30300	0.03	0.9/9	-21.0/031	JJ.JIZIJ

Instruments for first differences equation Standard D.(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).(L.lnindfdistock L.lnwage) collapsed Instruments for levels equation Standard cons lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.lnindfdistock L.lnwage) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.26 Pr > z = 0.024Arellano-Bond test for AR(2) in first differences: z = -1.42 Pr > z = 0.155Sargan test of overid. restrictions: chi2(4) = 16.43 Prob > chi2 = 0.002 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(4) = 3.81 Prob > chi2 = 0.433 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(2) = 3.30 Prob > chi2 = 0.192 Difference (null H = exogenous): chi2(2) = 0.51 Prob > chi2 = 0.775

•

```
. **Two-step Difference GMM with orthogonal deviations
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp
Intradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock
l.lnwage , laglimit(1 2) collapse)
> iv(lngdp lnsecedu lntertedu 🛛 lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14
> s2-s13) nolevel two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c5 dropped due to collinearity
c6 dropped due to collinearity
c7 dropped due to collinearity
c8 dropped due to collinearity
c9 dropped due to collinearity
c10 dropped due to collinearity
c11 dropped due to collinearity
c12 dropped due to collinearity
c13 dropped due to collinearity
c14 dropped due to collinearity
s2 dropped due to collinearity
s3 dropped due to collinearity
s4 dropped due to collinearity
s5 dropped due to collinearity
s6 dropped due to collinearity
s7 dropped due to collinearity
s8 dropped due to collinearity
s9 dropped due to collinearity
s10 dropped due to collinearity
s11 dropped due to collinearity
s12 dropped due to collinearity
s13 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step difference GMM
                                                ____
                                            Number of obs = 1153
Number of groups = 129
Obs per group: min = 0
avg = 8.94
Group variable: id
Time variable : year
Number of instruments = 24
F(22, 129) = 57.37
Prob > F = 0.000
                                                            max =
                                                                      12
                                    _____
          Corrected
                  Coef. Std. Err.
                                       t P>|t|
lnindfdist~k |
                                                      [95% Conf. Interval]
lnindfdist~k |
       L1. | .2930003 .1060283 2.76 0.007
                                                      .0832207
                                                                 .5027798
                                                                      87628
   1
```

	i						
lnsecedu		4927605	1.051485	-0.47	0.640	-2.573149	1.587628
lntertedu		7563393	.7825626	-0.97	0.336	-2.304659	.79198
lnwage		988525	1.080394	-0.91	0.362	-3.126111	1.149061
lngdp		.7411505	.9557393	0.78	0.439	-1.149803	2.632104
lntradefree		0973139	.2387109	-0.41	0.684	5696091	.3749814
lneconfree		1.143403	.6992432	1.64	0.104	2400664	2.526873
lntransition		1.264554	1.719025	0.74	0.463	-2.136579	4.665687
lnictinfra		.2994335	.3249365	0.92	0.359	3434613	.9423284
indprivati~n		1.117634	.7609688	1.47	0.144	3879616	2.623229
d1996		-1.520294	.9680214	-1.57	0.119	-3.435548	.3949604
d1997		-1.438709	.8300253	-1.73	0.085	-3.080934	.2035167
d1998		-1.305631	.761333	-1.71	0.089	-2.811947	.2006853
d1999		-1.149328	.6681515	-1.72	0.088	-2.471282	.1726262
d2000		-1.424333	.560782	-2.54	0.012	-2.533854	3148123
d2001		-1.124522	.550354	-2.04	0.043	-2.213411	0356332
d2002		9878034	.4750811	-2.08	0.040	-1.927763	0478438
d2003		8303105	.395666	-2.10	0.038	-1.613145	0474755
d2004		4831601	.3236007	-1.49	0.138	-1.123412	.1570918
d2005		4042647	.2561911	-1.58	0.117	9111452	.1026158
d2006		4005121	.2036581	-1.97	0.051	8034547	.0024305
d2007		2775821	.2883635	-0.96	0.338	8481164	.2929522

Instruments for orthogonal deviations equation Standard
FOD.(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition
d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
cl3 cl4 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).(L.lnindfdistock L.lnwage) collapsed
Arellano-Bond test for AR(1) in first differences: $z = -2.07$ Pr > $z = 0.038$ Arellano-Bond test for AR(2) in first differences: $z = -1.15$ Pr > $z = 0.248$
Sargan test of overid. restrictions: $chi2(2) = 1.02$ Prob > $chi2 = 0.602$
Hansen test of overid. restrictions: chi2(2) = 0.49 Prob > chi2 = 0.783 (Robust, but can be weakened by many instruments.)

•

```
. **Two-step Difference GMM with first-differences
. xtabond2 lnindfdistock l.lnindfdistock
                                             lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock
l.lnwage , laglimit(1 2) collapse)
> iv(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14
> s2-s13) nolevel two robust small
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c5 dropped due to collinearity
c6 dropped due to collinearity
c7 dropped due to collinearity
c8 dropped due to collinearity
c9 dropped due to collinearity
c10 dropped due to collinearity
cll dropped due to collinearity
c12 dropped due to collinearity
c13 dropped due to collinearity
c14 dropped due to collinearity
s2 dropped due to collinearity
s3 dropped due to collinearity
s4 dropped due to collinearity
s5 dropped due to collinearity
s6 dropped due to collinearity
s7 dropped due to collinearity
s8 dropped due to collinearity
s9 dropped due to collinearity
s10 dropped due to collinearity
s11 dropped due to collinearity
s12 dropped due to collinearity
s13 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
  Difference-in-Sargan statistics may be negative.
```

Dvnam	ic r	panel-data	estimation.	two-step	difference	GMM
Dynam.	TC F	Janer uata	cotination,	LWO SLCP	UTTTCTCHCC	01.11.1

ents = 24 29.40 0.000 	Corrected		Obs per	r group: min = avg = max =	0 8.94 12
29.40 0.000 	Corrected			avg = max =	8.94
Coef.	Corrected				12
Coef.	Corrected				
Coef.					
	Std. Err.	t	P> t	[95% Conf.	Interval]
.1903081	.1639547	1.16	0.248	1340803	.5146965
1.225137	2.172029	0.56	0.574	-3.072276	5.522551
.8779878	1.76518	-0.50	0.620	-4.37044	2.614464
.9167376	2.992441	-0.31	0.760	-6.837355	5.003879
2.439099	2.683389	0.91	0.365	-2.870051	7.74825
.2860834	.5209066	0.55	0.584	7445431	1.31671
.6376986	.6840691	-0.93	0.353	-1.991146	.715749
2.929559	3.017635	0.97	0.333	-3.040906	8.900025
.9664639	1.183973	-0.82	0.416	-3.308983	1.376055
1.005035	1.037093	0.97	0.334	-1.046878	3.056949
1.454939	2.399953	-0.61	0.545	-6.203306	3.293427
.9139625	2.062629	-0.44	0.658	-4.994924	3.166999
743905	1.796452	-0.41	0.679	-4.29823	2.81042
315584	1.491995	-0.21	0.833	-3.267533	2.636365
.2982558	1.164866	-0.26	0.798	-2.602971	2.00646
.1604224	1.060155	0.15	0.880	-1.937119	2.257964
.1331592	.8496524	0.16	0.876	-1.547899	1.814217
.0904483	.6867668	0.13	0.895	-1.268337	1.449233
.2488974	.5866864	0.42	0.672	911876	1.409671
.2169736	.4670309	0.46	0.643	7070584	1.141006
.1509676	.382725	0.39	0.694	6062632	.9081984
.0494124	.3880439	-0.13	0.899	8171667	.7183419
	.1903081 1.225137 .8779878 .9167376 2.439099 .2860834 .6376986 2.929559 .9664639 1.005035 1.454939 .9139625 .743905 .315584 .2982558 .1604224 .1331592 .0904483 .2488974 .2169736 .1509676 .0494124	.1903081 .1639547 1.225137 2.172029 .8779878 1.76518 .9167376 2.992441 2.439099 2.683389 .2860834 .5209066 .6376986 .6840691 2.929559 3.017635 .9664639 1.183973 1.005035 1.037093 1.454939 2.399953 .9139625 2.062629 .743905 1.796452 .315584 1.491995 .282558 1.164866 .1604224 1.060155 .1331592 .8496524 .0904483 .6867668 .2488974 .5866864 .2169736 .4670309 .1509676 .382725 .0494124 .3880439	.1903081 .1639547 1.16 1.225137 2.172029 0.56 .8779878 1.76518 -0.50 .9167376 2.992441 -0.31 2.439099 2.683389 0.91 .2860834 .5209066 0.55 .6376986 .6840691 -0.93 2.929559 3.017635 0.97 .9664639 1.183973 -0.82 1.005035 1.037093 0.97 1.454939 2.399953 -0.61 .9139625 2.062629 -0.44 -743905 1.796452 -0.41 .315584 1.491995 -0.21 .282558 1.164866 -0.26 .1604224 1.060155 0.15 .1331592 .8496524 0.16 .0904483 .6867668 0.13 .2488974 .5866864 0.42 .2169736 .4670309 0.46 .1509676 .382725 0.39 .0494124 .3880439 -0.13	.1903081.16395471.160.2481.2251372.1720290.560.574.87798781.76518 -0.50 0.620.91673762.992441 -0.31 0.7602.4390992.6833890.910.365.2860834.52090660.550.584.6376986.6840691 -0.93 0.3532.9295593.0176350.970.333.96646391.183973 -0.82 0.4161.0050351.0370930.970.3341.4549392.399953 -0.61 0.545.91396252.062629 -0.44 0.658.7439051.796452 -0.41 0.679.3155841.491995 -0.21 0.833.1364520.160.876.0904483.68676680.130.895.2488974.58668640.420.672.2169736.46703090.460.643.1509676.3827250.390.694.0494124.3880439 -0.13 0.899	.1903081 $.1639547$ 1.16 0.248 1340803 1.225137 2.172029 0.56 0.574 -3.072276 $.8779878$ 1.76518 -0.50 0.620 -4.37044 $.9167376$ 2.992441 -0.31 0.760 -6.837355 2.439099 2.683389 0.91 0.365 -2.870051 $.2860834$ $.5209066$ 0.55 0.584 7445431 $.6376986$ $.6840691$ -0.93 0.353 -1.991146 2.929559 3.017635 0.97 0.333 -3.040906 $.9664639$ 1.183973 -0.82 0.416 -3.308983 1.05035 1.037093 0.97 0.334 -1.046878 1.454939 2.399953 -0.61 0.545 -6.203306 $.9139625$ 2.062629 -0.44 0.658 -4.994924 -743905 1.796452 -0.41 0.679 -4.29823 $.315584$ 1.491995 -0.21 0.833 -3.267533 $.2982558$ 1.164866 -0.26 0.798 -2.602971 11604224 1.060155 0.15 0.880 -1.937119 1331592 $.8496524$ 0.16 0.876 -1.547899 0904483 $.6867668$ 0.13 0.895 -1.268337 $.2488974$ $.5866864$ 0.42 0.672 -911876 $.2169736$ $.4670309$ 0.46 0.643 -7070584 $.1509676$ $.382725$ 0.39 0.694 -6

```
. **One-step Difference GMM with orthogonal deviations
. xtabond2 lnindfdistock l.lnindfdistock
                                             lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock
l.lnwage , laglimit(1 2) collapse)
> iv(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14
> s2-s13) nolevel robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c5 dropped due to collinearity
c6 dropped due to collinearity
c7 dropped due to collinearity
c8 dropped due to collinearity
c9 dropped due to collinearity
c10 dropped due to collinearity
cll dropped due to collinearity
c12 dropped due to collinearity
c13 dropped due to collinearity
c14 dropped due to collinearity
s2 dropped due to collinearity
s3 dropped due to collinearity
s4 dropped due to collinearity
s5 dropped due to collinearity
s6 dropped due to collinearity
s7 dropped due to collinearity
s8 dropped due to collinearity
s9 dropped due to collinearity
s10 dropped due to collinearity
s11 dropped due to collinearity
s12 dropped due to collinearity
s13 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate robust weighting matrix for Hansen test.
```

Difference-in-Sargan statistics may be negative.

Group variable Time variable Number of ins F(22, 129)	e: : tr =	id year uments = 24 59.44			Number Number Obs pei	of obs = of groups = r group: min = avg =	1153 129 0 8.94
Prob > F	=	0.000				max =	12
			Robust				
lnindfdist~k	i	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+-						
L1.	İ	.3742096	.1615508	2.32	0.022	.0545774	.6938418
lnsecedu	i	5324873	1.068499	-0.50	0.619	-2.646539	1.581565
lntertedu	1	2691231	1.091236	-0.25	0.806	-2.428161	1.889914
lnwage	1	-1.109091	1.140859	-0.97	0.333	-3.366308	1.148127
lngdp	1	.8638822	1.005014	0.86	0.392	-1.124562	2.852326
lntradefree	1	0909696	.2419678	-0.38	0.708	5697088	.3877697
lneconfree	1	.9428296	.844571	1.12	0.266	7281748	2.613834
lntransition	1	1.572588	1.781331	0.88	0.379	-1.951819	5.096995
lnictinfra	1	.3687599	.3374664	1.09	0.277	2989257	1.036445
indprivati~n	1	1.539059	.9305875	1.65	0.101	3021316	3.380249
d1996	1	-1.063788	1.14551	-0.93	0.355	-3.330208	1.202631
d1997	1	9621468	1.056675	-0.91	0.364	-3.052804	1.12851
d1998		8656549	.9763563	-0.89	0.377	-2.7974	1.06609
d1999		7645111	.8507447	-0.90	0.371	-2.44773	.9187081
d2000		-1.188517	.6271413	-1.90	0.060	-2.429332	.0522972
d2001		845211	.6683859	-1.26	0.208	-2.167629	.4772069
d2002		6832481	.6377413	-1.07	0.286	-1.945035	.5785387
d2003		596077	.5219533	-1.14	0.256	-1.628774	.4366203
d2004		3198882	.3898462	-0.82	0.413	-1.091208	.4514319
d2005	1	2882423	.29969	-0.96	0.338	8811864	.3047018
d2006	1	334738	.2202185	-1.52	0.131	7704457	.1009698
d2007		2380554	.2992249	-0.80	0.428	8300792	.3539685

Dynamic panel-data estimation, one-step difference GMM

Instruments for orthogonal deviations equation

Standard

•

Sargan test of overid. restrictions: chi2(2) = 1.02 Prob > chi2 = 0.602 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(2) = 0.49 Prob > chi2 = 0.783 (Robust, but can be weakened by many instruments.)

```
. **Two-step Difference GMM with first-differences
. xtabond2 lnindfdistock l.lnindfdistock
                                             lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock
l.lnwage , laglimit(1 2) collapse)
> iv(lngdp lnsecedu lntertedu lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14
> s2-s13) nolevel robust small
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c5 dropped due to collinearity
c6 dropped due to collinearity
c7 dropped due to collinearity
c8 dropped due to collinearity
c9 dropped due to collinearity
c10 dropped due to collinearity
cll dropped due to collinearity
c12 dropped due to collinearity
c13 dropped due to collinearity
c14 dropped due to collinearity
s2 dropped due to collinearity
s3 dropped due to collinearity
s4 dropped due to collinearity
s5 dropped due to collinearity
s6 dropped due to collinearity
s7 dropped due to collinearity
s8 dropped due to collinearity
s9 dropped due to collinearity
s10 dropped due to collinearity
s11 dropped due to collinearity
s12 dropped due to collinearity
s13 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate robust weighting matrix for Hansen test.
```

Difference-in-Sargan statistics may be negative.

Group variabl	e:	id			Number	of obs =	1153
Time variable	:	year			Number	of groups =	129
Number of ins	tr	uments = 24			obs pe:	r group: min =	0
F(22, 129)	=	32.51				avg =	8.94
Prob > F	=	0.000				max =	12
			Robust				
lnindfdist~k	į.	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+-						
L1.	Ì.	.4097621	.1917979	2.14	0.035	.0302852	.7892389
lnsecedu		9777922	2.663254	-0.37	0.714	-6.247106	4.291522
lntertedu	i	2.635979	3.047204	0.87	0.389	-3.39299	8.664947
lnwage	i	2.896084	4.266317	0.68	0.498	-5.544928	11.3371
lnqdp	i	-1.068887	3.945235	-0.27	0.787	-8.87463	6.736857
lntradefree	İ.	.6865883	.7136727	0.96	0.338	7254306	2.098607
lneconfree	İ.	-1.587547	1.063717	-1.49	0.138	-3.692138	.5170441
lntransition	İ.	5.715283	3.859109	1.48	0.141	-1.920058	13.35062
lnictinfra	Ì.	-1.163273	1.136022	-1.02	0.308	-3.410921	1.084374
indprivati~n	1	2.427789	1.42494	1.70	0.091	3914891	5.247067
	1	.5316167	2.875291	0.18	0.854	-5.157217	6.220451
d1997	İ.	.7442441	2.443995	0.30	0.761	-4.09126	5.579748
d1998	Ì.	.7484036	2.136189	0.35	0.727	-3.478099	4.974906
d1999	1	.8319356	1.718803	0.48	0.629	-2.568758	4.23263
d2000	1	.7298896	1.394292	0.52	0.602	-2.028751	3.48853
d2001	1	1.189035	1.331886	0.89	0.374	-1.446134	3.824204
d2002	1	1.114755	1.144752	0.97	0.332	-1.150164	3.379674
d2003	1	.8622895	.8974387	0.96	0.338	913315	2.637894
d2004	1	.9765492	.827137	1.18	0.240	6599617	2.61306
d2005	1	.8222447	.6738815	1.22	0.225	5110463	2.155536
d2006	1	.577263	.5079175	1.14	0.258	4276642	1.58219
d2007		.2024043	.4380825	0.46	0.645	6643527	1.069161

Dynamic panel-data estimation, one-step difference GMM

Instruments for first differences equation

Standard

Hansen test of overid. restrictions: chi2(2) = 2.45 Prob > chi2 = 0.294 (Robust, but can be weakened by many instruments.)

Appendix 6.8: Reducing the instrument count

```
. **Checking robustness by reducing the number of instruments
. **start with Baseline Model 6.4
. xtabond2 lnindfdistock l.lnindfdistock
                                           lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 2) collapse) iv(lnsecedu l
> ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14 s2
> -s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
                  _____
                                              Number of obs = 1283
Group variable: id
                                             Obs per group: min = 1
Time variable : year
Number of instruments = 47
                                                         up: min
avg = 9.87
~~ = 13
F(44, 129) = 89.93
Prob > F = 0.000
Prob > F
           |
                         Corrected
                  Coef. Std. Err.
lnindfdist~k |
                                        t P>|t|
                                                       [95% Conf. Interval]
lnindfdist~k |
       L1. | .3208334 .1117719 2.87 0.005
                                                        .09969
                                                                 .5419769
   lnsecedu | -.533791 1.040238 -0.51 0.609 -2.591928
                                                                 1.524346
                                                                 .6246623
  lntertedu | -1.014866 .828662 -1.22 0.223
                                                      -2.654394
                          .4289389
                                     -1.12 0.264
0.60 0.549
     lnwage | -.4811796
                                                      -1.329846
                                                                   .3674865
                           .538482
               .3232995
                                                      -.7421003
                                                                  1.388699
      lnadp |
                                     -0.06 0.955
2.41 0.018
2.01 0.047
lntradefree | -.0156689 .2795488
                                                                   .5374253
                                                       -.568763
 lneconfree |
               1.555186
                           .646416
                                                       .2762365
                                                                   2.834136
Intransition | 2.226154 1.108879
                                                       .0322095
                                                                  4.420099
 lnictinfra | .3942821 .2317451
ndprivati~n | 1.30017 .692433
                                     1.70 0.091
1.88 0.063
                                                      -.0642313
                                                                   .8527956
                          .692433
                                                      -.0698252
                                                                   2.670166
indprivati~n |
                                                                  .5681942
                          .744114
.7171691
                                     -1.21 0.227 -2.376301
-1.27 0.207 -2.328558
      d1996 | -.9040535
      d1997 |
              -.9096219
                                                                   .5093148
      d1998 | -.8653015 .6743822
                                     -1.28 0.202
                                                      -2.199583
                                                                  .4689801
      d1999 | -.7769027 .6236156
d2000 | -1.120688 .526311
                                     -1.25 0.215
-2.13 0.035
                                                      -2.010741
                                                                    .456936
                                                      -2.162007
                                                                  -.0793687
                                     -1.61 0.109
                                                                   .190492
      d2001 | -.8396037
                          .5206383
                                                      -1.869699
                                      -1.64 0.104
-1.52 0.132
      d2002 | -.7322052
                          .4465472
                                                       -1.61571
                                                                   .1512994
       42002 i
                 6422720
                            1212156
                                                       -1 482654
                                                                    1961064
                                                                         01
                                                                         43
```

uz 005	0452755	.4242450	-1.JZ	0.152	-1.402004	.1901004
d2004	2990308	.2750488	-1.09	0.279	8432216	.2451601
d2005	2410968	.2048553	-1.18	0.241	646408	.1642143
d2006	2709131	.1581928	-1.71	0.089	5839014	.0420752
d2007	0226139	.1101029	-0.21	0.838	2404553	.1952274
с4	2.143116	.8504812	2.52	0.013	.4604184	3.825814
с5	2.861377	1.588306	1.80	0.074	2811263	6.003879
с6	2.344773	1.332944	1.76	0.081	2924895	4.982035
с7	3.373176	1.664154	2.03	0.045	.0806068	6.665745
с8	1.515622	.9709776	1.56	0.121	4054807	3.436725
с9	2.255235	1.217279	1.85	0.066	1531816	4.663652
c11	2.69387	1.93081	1.40	0.165	-1.126285	6.514024
c12	2.795191	1.518817	1.84	0.068	2098246	5.800207
c13	2.459607	1.092451	2.25	0.026	.2981662	4.621048
c14	2.40213	1.059094	2.27	0.025	.3066859	4.497574
s2	-1.003029	.3208703	-3.13	0.002	-1.637879	3681792
s3	-2.843619	.7675946	-3.70	0.000	-4.362324	-1.324914
s4	2663226	.2382375	-1.12	0.266	7376813	.2050362
s5	-2.080592	.5994255	-3.47	0.001	-3.26657	8946138
s6	2634231	.2085931	-1.26	0.209	6761297	.1492835
s7	8562062	.2694939	-3.18	0.002	-1.389407	3230059
s8	2892621	.2128607	-1.36	0.177	7104123	.131888
s9	4886417	.2366244	-2.07	0.041	9568088	0204746
s10	9078983	.2684454	-3.38	0.001	-1.439024	3767725

s11 486165 s12 4438315 s13 -1.586333 _cons -9.37977	.2320611 .2777173 .3809908 11.0529	-2.09 -1.60 -4.16 -0.85	0.038 0.112 0.000 0.398	9453037 993302 -2.340133 -31.24821	0 .1 8 12	270264 056389 325336 .48867
Instruments for orthogonal Standard FOD.(Insecedu Intertedu Inictinfra indprivatis. d2003 d2004 d2005 d2000 c13 c14 s2 s3 s4 s5 s6 GMM-type (missing=0, sepu L(1/2).L.Inindfdistock Instruments for levels equa Standard cons Insecedu Intertedu Inwa Inictinfra indprivatis. d2003 d2004 d2005 d2000 c13 c14 s2 s3 s4 s5 s6 GMM-type (missing=0, sepu D.L.Inindfdistock coll	deviations of u lnwage lng ation d1996 of 6 d2007 d2000 s7 s8 s9 s1 arate instruc collapsed ation age lngdp ln ation d1996 of 6 d2007 d2000 s7 s8 s9 s1 arate instruct apsed	equation dp lntrad d1997 d19 8 c2 c3 c 0 s11 s12 ments for tradefree d1997 d19 8 c2 c3 c 0 s11 s12 ments for	lefree ln 98 d1999 4 c5 c6 5 s13) e each pe e lneconf 98 d1999 4 c5 c6 5 s13 e each pe	econfree lnt d2000 d2001 c7 c8 c9 c10 riod unless o ree lntransi d2000 d2001 c7 c8 c9 c10 riod unless o	ransi d200 c11 colla tion d200 c11 colla	tion 2 c12 psed) 2 c12 psed)
Arellano-Bond test for AR(: Arellano-Bond test for AR(:	1) in first (2) in first (differenc differenc	es: z = es: z =	-2.13 Pr > -1.06 Pr >	z = z =	0.033 0.289
Sargan test of overid. res (Not robust, but not weak Hansen test of overid. res (Robust, but can be weak	trictions: c kened by man trictions: c ened by many	hi2(2) y instrum hi2(2) instrume	= 4.8 ments.) = 0.9 mts.)	9 Prob > ch: 9 Prob > ch:	i2 = i2 =	0.087
Difference-in-Hansen tests GMM instruments for leve Hansen test excluding Difference (null H = et	of exogenei ls group: c! xogenous): c!	ty of ins hi2(1) hi2(1)	= 0.2 = 0.7	subsets: 6 Prob > ch: 3 Prob > ch:	i2 = i2 =	0.612 0.392

```
. **testing joint significance of dummies
. test c4=c5=c6=c7=c8=c9=c11=c12=c13=0
 (1) c4 - c5 = 0
 (2) c4 - c6 = 0
 (3) c4 - c7 = 0
 (4) c4 - c8 = 0
        c4 - c9 = 0
 (5)
 (6) c4 - c11 = 0
 (9) c4 = 0
        F(9, 129) =
                             1.98
              Prob > F =
                              0.0463
. test d1996=d1997=d1998=d1999=d2000=d2001=d2002=d2003=d2004=d2005=d2006=d2007=0
 (1) d1996 - d1997 = 0
 \begin{array}{cccc} (2) & d1996 & - & d1998 & = & 0 \\ (3) & d1996 & - & d1999 & = & 0 \end{array}
 (4) d1996 - d2000 = 0
  \begin{array}{cccc} (1) & d1996 & d2000 & 0 \\ (5) & d1996 & -d2001 & = 0 \\ (6) & d1996 & -d2002 & = 0 \end{array} 
 \begin{array}{cccc} (0) & d1996 & -d2003 & = 0 \\ (0) & d1996 & -d2004 & = 0 \\ (0) & d1996 & -d2004 & = 0 \end{array}
 (9) d1996 - d2005 = 0
 (12) d1996 = 0
        F(12, 129) = 3.15
              .
Prob > F =
                              0.0006
. test s2=s3=s4=s5=s6=s7=s8=s9=s10=s11=s12=s13=0
 (1) s2 - s3 = 0
 (2) s2 - s4 = 0
(3) s2 - s5 = 0
 (4) s2 - s6 = 0
 (5)
        s2 - s7 = 0
 (6) s2 - s8 = 0
       s2 - s9 = 0
 (7)
 (8)
        s2 - s10 = 0
 (9) s2 - s11 = 0
 (10) s_2 - s_{12} = 0
(11) s_2 - s_{13} = 0
 (12) \quad s2 = 0
        F(12, 129) = 2.10
              Prob > F =
                               0.0209
```

```
. **limit lag length to lag 1 only
. xtabond2 lnindfdistock l.lnindfdistock
                                            lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 1) collapse) iv(lnsecedu 1
> ntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra
indprivatisation d1996-d2008 c2-c14 s2
> -s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
```

estimation. Difference-in-Sargan statistics may be negative.

billelence in bargan scattseles may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst F(44, 129)	e: id : year truments = 46 = 96.31			Number Number Obs per	of obs = of groups = group: min = avg =	1283 130 1 9.87
Prob > F	= 0.000				max =	13
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
lnindfdigt k	+					
ININGIAIST~K	0/1117	1102200	2 5 7	0 000	175020	6100011
LT.	.394111/	.1103209	5.57	0.000	.1/3039	.0123044
lnsecedu	6819076	1.074021	-0.63	0.527	-2.806885	1.44307
lntertedu	2879896	1.09214	-0.26	0.792	-2.448815	1.872836
lnwage	6691042	.4641303	-1.44	0.152	-1.587397	.249189
lngdp	.5540893	.5870941	0.94	0.347	6074907	1.715669
lntradefree	0415594	.2653751	-0.16	0.876	5666106	.4834918
lneconfree	1.079604	.8117343	1.33	0.186	5264321	2.68564
lntransition	2.453441	1.129033	2.17	0.032	.2196205	4.687261
lnictinfra	.4411933	.2333615	1.89	0.061	0205181	.9029047
indprivati~n	1.664574	.7451581	2.23	0.027	.1902605	3.138888
d1996	5198179	.7594564	-0.68	0.495	-2.022421	.9827853
d1997	461927	.7654574	-0.60	0.547	-1.976403	1.052549
d1998	4359923	.7275555	-0.60	0.550	-1.875479	1.003494
d1999	397477	.6635862	-0.60	0.550	-1.710399	.9154445
d2000	8909695	.4955192	-1.80	0.075	-1.871366	.0894273
d2001	5670213	.5325987	-1.06	0.289	-1.620781	.4867383
d2002	4241713	.4971045	-0.85	0.395	-1.407705	.559362
d2003	3869563	.4648622	-0.83	0.407	-1.306697	.5327849
d2004	1443547	.2734652	-0.53	0.598	6854123	.3967029
d2005	1351844	.1998528	-0.68	0.500	5305981	.2602293
d2006	2179156	.140639	-1.55	0.124	4961732	.060342
d2007	0885259	.1376497	-0.64	0.521	3608693	.1838175
с4	1.572689	.9349458	1.68	0.095	277124	3.422502
c5	1.905097	1.781897	1.07	0.287	-1.62043	5.430623
с6	1.387911	1.501631	0.92	0.357	-1.583102	4.358925
с7	1.910462	2.11309	0.90	0.368	-2.270338	6.091263
с8	.8080908	1.115498	0.72	0.470	-1.398949	3.01513
с9	1.259658	1.493367	0.84	0.401	-1.695004	4.21432
c11	1.078344	2.48017	0.43	0.664	-3.828732	5.98542
c12	1.686599	1.821377	0.93	0.356	-1.91704	5.290239
c13	1.597011	1.313623	1.22	0.226	-1.002024	4.196047
c14	1.634928	1.160712	1.41	0.161	6615697	3.931425
s2	8893628	.3148124	-2.83	0.005	-1.512227	2664987
s3	-2.529691	.726899	-3.48	0.001	-3.967878	-1.091503
s4	2256783	.234869	-0.96	0.338	6903722	.2390157
s5	-1.876678	.5745456	-3.27	0.001	-3.013431	7399258
s6	2406225	.2060244	-1.17	0.245	6482468	.1670019
s7	7453531	.2679377	-2.78	0.006	-1.275474	2152317
s8	2437034	.2103172	-1.16	0.249	6598212	.1724143
s9	4496206	.2326964	-1.93	0.056	910016	.0107749
s10	/965863	.2663393	-2.99	0.003	-1.323545	2696274
s11	4180931	.2291747	-1.82	0.070	8715209	.0353347
s12	3760593	.2780088	-1.35	0.179	9261066	.1739879
s13	-1.449896	.3484933	-4.16	0.000	-2.139399	/603933
_cons	-12.79457	11.48754	-1.11	0.267	-35.52295	9.933811

Instruments for orthogonal deviations equation
<pre>Standard FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L.L.Inindfdistock collapsed Instruments for levels equation Condeted</pre>
cons
<pre>Insected Interfeed Integret indep Intradefiele Integration Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed Arellano-Bond test for AR(1) in first differences: z = -2.13 Pr > z = 0.033</pre>
Arellano-Bond test for AR(2) in first differences: $z = -1.05$ Pr > $z = 0.296$
Sargan test of overid. restrictions: chi2(1) = 0.69 Prob > chi2 = 0.407 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(1) = 0.25 Prob > chi2 = 0.615 (Robust, but can be weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels
Hansen test excluding group: $chi2(0) = 0.00$ Prob > $chi2 = .$
Difference (null H = exogenous): chi2(1) = 0.25 Prob > chi2 = 0.615

```
. **lag 1 only + drop time dummies
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition 1
> nictinfra indprivatisation c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 1)
collapse) iv(lnsecedu lntertedu ln
> wage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation c2-
c14 s2-s13) two robust small o
> rthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
```

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

		,	1			
Group variable Time variable Number of inst F(32, 129) Prob > F	e: id : year truments = 34 = 112.29 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1283 130 1 9.87 13
lnindfdist~k	 Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k						
L1.	.3764636	.1934389	1.95	0.054	00626	.7591871
lnsecedu	171759	.9792483	-0.18	0.861	-2.109226	1.765708
lntertedu	1231369	1.318128	-0.09	0.926	-2.731086	2.484812
lnwage	250018	.4850901	-0.52	0.607	-1.209781	.7097448
lngdp	.7288795	.4080439	1.79	0.076	0784453	1.536204
lntradefree	3952729	.4040027	-0.98	0.330	-1.194602	.4040564
lneconfree	1.279448	.5539172	2.31	0.022	.1835093	2.375387
lntransition	1.58898	1.014233	1.57	0.120	4177053	3.595664
lnictinfra	.3102064	.1615489	1.92	0.057	009422	.6298348
indprivati~n	1.654461	.8647889	1.91	0.058	0565454	3.365467
с4	.9965928	.5264762	1.89	0.061	0450533	2.038239
c5	.9069865	1.088311	0.83	0.406	-1.246263	3.060236
с6	.7000743	1.508338	0.46	0.643	-2.284209	3.684357
с7	.9778697	1.695634	0.58	0.565	-2.376983	4.332723
c8	.2989524	1.030428	0.29	0.772	-1.739774	2.337679
с9	.5430532	1.322144	0.41	0.682	-2.072841	3.158948
c11	.4071503	1.937629	0.21	0.834	-3.426497	4.240797
c12	1.119358	1.428807	0.78	0.435	-1.707572	3.946287
c13	.9620363	.8610701	1.12	0.266	7416119	2.665685
c14	.8514235	.9148714	0.93	0.354	9586719	2.661519
s2	9130881	.4007695	-2.28	0.024	-1.70602	1201557
s3	-2.613937	1.036353	-2.52	0.013	-4.664387	5634869
s4	2364176	.2567487	-0.92	0.359	7444012	.271566
s5	-1.93409	.7408903	-2.61	0.010	-3.399959	4682199
s6	2513339	.219791	-1.14	0.255	6861958	.183528
s7	773169	.3655342	-2.12	0.036	-1.496387	0499507
s8	2555357	.2377598	-1.07	0.284	7259493	.2148779
s9	4606759	.2554996	-1.80	0.074	9661881	.0448362
s10	8243677	.3645652	-2.26	0.025	-1.545669	1030666
s11	4344565	.2787699	-1.56	0.122	9860096	.1170966
s12	3894063	.3086802	-1.26	0.209	-1.000138	.221325
s13	-1.495252	.5716175	-2.62	0.010	-2.626211	3642927
_cons	-19.10277	8.826993	-2.16	0.032	-36.56719	-1.638349

Instruments for orthogonal deviations equation

Standard

FOD.(lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L.L.lnindfdistock collapsed

Instruments for levels equation

Standard

_cons

•

```
. **lag 1 only + drop time & sector dummies
. xtabond2 lnindfdistock l.lnindfdistock
                                            lnsecedu lntertedu lnwage lngdp
lntradefree lneconfree lntransition l
> nictinfra indprivatisation c2-c14, gmm(l.lnindfdistock, laglimit(1 1) collapse)
iv(lnsecedu lntertedu lnwage ln
        Intradefree Ineconfree Intransition Inictinfra indprivatisation c2-c14 )
app <
two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
```

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of ins F(20, 129)	le: e : str =	id year uments = 22 79.94			Number Number Obs per	of obs = of groups = group: min = avg =	1283 130 1 9.87
Prob > F	=	0.000				max =	13
			Corrected				
lnindfdist~k	İ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	-+-						
L1.	i	.4028806	.195752	2.06	0.042	.0155806	.7901806
lnsecedu		1311129	.9917576	-0.13	0.895	-2.09333	1.831104
lntertedu	Ì	1114431	1.305805	-0.09	0.932	-2.695011	2.472125
lnwage		3644721	.493494	-0.74	0.462	-1.340862	.6119179
lngdp		.8274061	.4127889	2.00	0.047	.0106932	1.644119
lntradefree		4164439	.3852922	-1.08	0.282	-1.178754	.3458662
lneconfree		1.282053	.5785274	2.22	0.028	.1374224	2.426684
lntransition		1.360653	1.108516	1.23	0.222	8325722	3.553879
lnictinfra		.310408	.1509293	2.06	0.042	.0117906	.6090254
indprivati~n		1.643025	.7464403	2.20	0.030	.1661742	3.119875
с4		.8671793	.516155	1.68	0.095	1540461	1.888405
c5		.5387926	1.114507	0.48	0.630	-1.666286	2.743871
сб		.6339256	1.454935	0.44	0.664	-2.244698	3.51255
с7		.6544548	1.638001	0.40	0.690	-2.586369	3.895279
c8		.3308169	1.029282	0.32	0.748	-1.705643	2.367277
с9		.2905566	1.340887	0.22	0.829	-2.36242	2.943534
c11		.1763581	1.983485	0.09	0.929	-3.748016	4.100732
c12		.990764	1.481791	0.67	0.505	-1.940995	3.922523
c13		.7701365	.8206513	0.94	0.350	8535422	2.393815
c14 _cons		.8637202 -21.31364	.9336956 9.249435	0.93 -2.30	0.357 0.023	9836194 -39.61388	2.71106 -3.01341

Instruments for orthogonal deviations equation Standard

FOD.(Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14) GMM-type (missing=0, separate instruments for each period unless collapsed) L.L.lnindfdistock collapsed Instruments for levels equation

Standard

_cons

Insecedu Intertedu Inwage Ingdp Intradefree Ineconfree Intransition lnictinfra indprivatisation c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed

Arellano-Bond t	est for	AR(1) i	n first	differenc	es:	z =	-2.13	Pr >	z =	0.033
Arellano-Bond t	est for	AR(2) i	n first	differenc	es:	z =	-1.02	Pr >	z =	0.310
Sargan test of	overid.	restric	tions:	chi2(1)	=	0.43	Prob	> ch	i2 =	0.512
(Not robust,	but not	weakene	d by mai	ny instrum	ents	.)				
Hansen test of	overid.	restric	tions:	cĥi2(1)	=	0.64	Prob	> ch	i2 =	0.424
(Robust, but	can be w	veakened	by man	y instrume	nts.)				

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(0) = 0.00 Prob > chi2 = . Difference (null H = exogenous): chi2(1) = 0.64 Prob > chi2 = 0.424

. **lag 1 only + drop time, sector & year dummies

. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnwage lngdp lntradefree lneconfree lntransition l

> nictinfra indprivatisation, gmm(l.lnindfdistock, laglimit(1 1) collapse)

iv(lnsecedu lntertedu lnwage lngdp

> Intradefree Ineconfree Intransition Inictinfra indprivatisation) two robust small orthog

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, two-step system GMM

2 1			1 - 2			
Group variable	e: id			Number	of obs =	1283
lime variable	: year			Oba por	or groups =	130
F(10 129)	- 98.43			obs per	group: min =	9 87
Prob > F	= 0.000				max =	13
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
	+					
lnindfdist~k						
L1.	.5061902	.1590555	3.18	0.002	.191495	.8208854
lnsecedu	0957877	.2990294	-0.32	0.749	6874248	.4958494
lntertedu	371845	.3050338	-1.22	0.225	9753618	.2316719
lnwage	0998372	.1459941	-0.68	0.495	3886901	.1890157
lngdp	.566149	.1876215	3.02	0.003	.1949353	.9373627
lntradefree	6655098	.4103886	-1.62	0.107	-1.477474	.146454
lneconfree	.7466977	.7935578	0.94	0.348	8233758	2.316771
Intransition	2.755338	1.923395	1.43	0.154	-1.050146	6.560821
lnictinfra	.212107	.1414691	1.50	0.136	067793	.492007
indprivati~n	1.948911	.5954608	3.27	0.001	.7707773	3.127045
_cons	-14.18927	5.62458	-2.52	0.013	-25.31764	-3.060906
Standard FOD.(lnsed lnictinfra GMM-type (mi L.L.lnindi Instruments fo Standard _cons lnsecedu i lnictinfra GMM-type (mi D.L.lnindi	cedu Intertedu a indprivatisa issing=0, sepa Edistock colla or levels equa Intertedu Inwa a indprivatisa issing=0, sepa Edistock colla	lnwage lng tion) rate instru psed tion ge lngdp ln tion rate instru psed	dp lntrad ments for tradefree ments for	defree ln s each pe e lneconf s each pe	econfree lntr riod unless c ree lntransit riod unless c	ansition ollapsed) ion ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	ces: z = ces: z =	-2.36 Pr > -0.83 Pr >	z = 0.018 z = 0.407
Sargan test of	f overid. rest	rictions: c	hi2(1) w instrum	= 3.7	3 Prob > chi	2 = 0.053
Hansen test of (Robust, but	overid. rest can be weake	rictions: c ned by many	hi2(1) instrume	= 2.1 ents.)	8 Prob > chi	2 = 0.140
Difference-in- GMM instrume	-Hansen tests ents for level	of exogenei s	ty of ins	strument	subsets:	
Hansen tes	st excluding g	roup: c	hi2(0)	= 0.0	0 Prob > chi 8 Prob > chi	2 = .
DITIELEUCE	, питт п — ех	ugenous/; C	11 I Z (I J	- ∠.1	U FLUN / UIL	∠ — U•14U

Appendix 6.9: Model 6.5 results

. **Model 6.5 System GMM . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu medium high lnsecmed lnsechigh lntertmed lnterthigh l > nwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996d2008 c2-c14 s2-s13, gmm(l.lni > ndfdistock, laglimit(1 2) collapse) iv(lnsecedu lntertedu medium high lnsecmed Insechigh Intertmed Interthigh 1 > nwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996d2008 c2-c14 s2-s13) two robus > t small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity s9 dropped due to collinearity s12 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variabl	e: id			Number	of obs =	1283
Time variable	: year			Number	of groups =	130
Number of ins	truments = 51			Obs pe	r group: min =	1
F(48, 129)	= 95.50				avg =	9.87
Prob > F	= 0.000				max =	13
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
lnindfdist~k	+					
Infinaraioe k	1 3186341	1155068	2 76	0 007	090101	5471672
	.0100011	.1100000	2.70	0.007	.090101	.01/10/2
lnsecedu	7075837	.9959982	-0.71	0.479	-2.678191	1.263023
lntertedu	6692939	.7609879	-0.88	0.381	-2.174927	.8363393
medium	2675938	1.223482	-0.22	0.827	-2.688282	2.153095
high	0316611	1.116168	-0.03	0.977	-2.240027	2.176704
lnsecmed	.3302604	.3722931	0.89	0.377	4063306	1.066851
lnsechigh	.0870308	.3449474	0.25	0.801	5954561	.7695177
lntertmed	738955	.4530264	-1.63	0.105	-1.635279	.1573689
lnterthigh	3753829	.341706	-1.10	0.274	-1.051457	.3006907
lnwage	4806463	.4288579	-1.12	0.264	-1.329152	.3678596
lngdp	.3234916	.5414496	0.60	0.551	7477797	1.394763
lntradefree	0110028	.2828068	-0.04	0.969	5705429	.5485373
lneconfree	1.53208	.6561581	2.33	0.021	.233855	2.830305
lntransition	2.217576	1.113234	1.99	0.048	.0150159	4.420136
lnictinfra	.3917369	.2374591	1.65	0.101	0780818	.8615556
indprivati~n	1.300261	.7022273	1.85	0.066	0891128	2.689635
d1996	9259038	.7763041	-1.19	0.235	-2.46184	.6100328
d1997	9292165	.7489195	-1.24	0.217	-2.410972	.5525391
d1998	8836442	.7041417	-1.25	0.212	-2.276806	.5095174
d1999	7931488	.6494056	-1.22	0.224	-2.078014	.491716
d2000	-1.132953	.546507	-2.07	0.040	-2.21423	0516754
d2001	8502346	.5406804	-1.57	0.118	-1.919984	.2195147
d2002	7419855	.4658944	-1.59	0.114	-1.663769	.1797981
d2003	6509138	.4347867	-1.50	0.137	-1.51115	.2093223
d2004	3050955	.2868833	-1.06	0.290	8727011	.2625102
d2005	2456584	.2135151	-1.15	0.252	6681033	.1767865
d2006	2744388	.1635764	-1.68	0.096	5980787	.0492012
d2007	0315988	.1160358	-0.27	0.786	2611784	.1979809
с4	2.145751	.889404	2.41	0.017	.3860436	3.905459
с5	2.890242	1.639949	1.76	0.080	3544381	6.134922
c6	2.35833	1.385946	1.70	0.091	383799	5.100459
с7	3.38911	1.736309	1.95	0.053	04622	6.824439
c8	1.515109	1.010399	1.50	0.136	4839892	3.514208
с9	2.269701	1.26919	1.79	0.076	2414224	4.780825
c11	2.674857	1.984967	1.35	0.180	-1.252449	6.602163
c12	2.801168	1.559792	1.80	0.075	2849174	5.887254
c13	2.447954	1.128848	2.17	0.032	.2145014	4.681407
c14	2.379993	1.09593	2.17	0.032	.2116693	4.548318

s2	-1.01171	.3109367	-3.25	0.001	-1.626906	396514
s3	-2.841134	.7682494	-3.70	0.000	-4.361134	-1.321134
s4	2582483	.2152177	-1.20	0.232	6840618	.1675652
s5	-1.612347	.5246853	-3.07	0.003	-2.65045	5742447
s6	.1820921	.2407576	0.76	0.451	2942527	.658437
s7	3765197	.2185681	-1.72	0.087	808962	.0559226
s8	.1724847	.1789014	0.96	0.337	1814761	.5264456
s10	4640475	.2668551	-1.74	0.084	9920269	.0639319
s11	0420604	.2473929	-0.17	0.865	5315334	.4474126
s13	-1.596439	.3735762	-4.27	0.000	-2.335569	8573095
_cons	-9.29383	11.22656	-0.83	0.409	-31.50585	12.91819
Instruments for Standard	orthogonal	deviations	equation			
FOD.(lnsece	du lntertedu	ı medium hig	h lnsecme	ed lnsech	igh lntertme	b
lnterthigh	lnwage lngd	p lntradefre	e lneconi	free lntr	ansition lni	ctinfra
indprivatis	ation d1996	d1997 d1998	d1999 d2	2000 d200	1 d2002 d200	3 d2004
d2005 d2006	d2007 d2008	8 c2 c3 c4 c	5 c6 c7 d	c8 c9 c10	c11 c12 c13	c14 s2 s3

s4 s5 s6 s7 s8 s9 s10 s11 s12 s13)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).L.lnindfdistock collapsed

Instruments for levels equation

Standard

_cons

Insecedu Intertedu medium high Insecmed Insechigh Intertmed Interthigh Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed)

GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed

Arellano-Bond test for AR(1) in first differences: z = -2.11 Pr > z = 0.035Arellano-Bond test for AR(2) in first differences: z = -1.07 Pr > z = 0.286

Sargan test of overid. restrictions: chi2(2) = 4.69 Prob > chi2 = 0.096
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(2) = 0.94 Prob > chi2 = 0.624 (Robust, but can be weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:

GMM instruments for levels						
Hansen test excluding group:	chi2(1)	=	0.27	Prob > 0	chi2 =	0.606
Difference (null H = exogenous):	chi2(1)	=	0.68	Prob > d	chi2 =	0.411

```
. **testing the joint significance of technological dummies and their interactions
. test lntertmed=lnterthigh=lnsecmed=lnsechigh=0
 (1) Intertmed - Interthigh = 0
( 2) - lnsecmed + lntertmed = 0
( 3) - lnsechigh + lntertmed = 0
 (4) lntertmed = 0
       F(4, 129) = 0.79
             Prob > F = 0.5367
. test lntertmed=lnterthigh=0
(1) lntertmed - lnterthigh = 0
(2) lntertmed = 0
       F(2, 129) = 1.34
             Prob > F =
                           0.2666
. test lnsecmed=lnsechigh=0
(1) lnsecmed - lnsechigh = 0
(2) lnsecmed = 0
       F(2, 129) = 0.48
            Prob > F =
                           0.6230
. test lntertmed=lnterthigh=lnsecmed=lnsechigh=high=medium=0
 (1) lntertmed - lnterthigh = 0
 \begin{array}{c} (2) & - \text{lnsecmed} + \text{lntertmed} = 0 \\ (3) & - \text{lnsechigh} + \text{lntertmed} = 0 \end{array} 
 (4) - high + lntertmed = 0
( 5) - medium + Intertmed = 0
( 6) Intertmed = 0
       F(6, 129) = 1.32
Prob > F = 0.2550
. test high=medium=0
 (1) - medium + high = 0
(2) high = 0
       F(2, 129) = 0.03
Prob > F = 0.9712
```

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-1.038478	1.511925	-0.69	0.493	-4.02986	1.952903

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	9822826	1.024879	-0.96	0.340	-3.01003	1.045465

. nlcom _b[medium]/(1-_b[1.lnindfdistock])

_nl_1: _b[medium]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	3927314	1.793787	-0.22	0.827	-3.941782	3.15632

. nlcom _b[high]/(1-_b[1.lnindfdistock])

_nl_1: _b[high]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	0464671	1.637247	-0.03	0.977	-3.285801	3.192866

. nlcom _b[lnsecmed]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecmed]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	.4847034	.5203027	0.93	0.353	5447283	1.514135

. nlcom _b[lnsechigh]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsechigh]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	.1277299	.5007642	0.26	0.799	8630443	1.118504

. nlcom _b[lntertmed]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertmed]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	-1.08452	.5716462	-1.90	0.060	-2.215536	.046496

. nlcom _b[lnterthigh]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnterthigh]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	5509271	.4697511	-1.17	0.243	-1.480341	.3784871

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	7054158	.6465677	-1.09	0.277	-1.984666	.5738342

. nlcom _b[lngdp]/(1-_b[l.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k		Coef.	Std. 1	Err.	t	P> t	[95% Conf.	Interval]
	+							
_nl_1		.4747693	.8051	704	0.59	0.556	-1.11828	2.067819

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	0161482	.4164811	-0.04	0.969	8401662	.8078698

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	1	Coef.	Std. Err.	t	P> t	[95% Conf.]	Interval]
nl1	+	2.248542	.9122624	2.46	0.015	.4436086	4.053475

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	3.254603	1.588275	2.05	0.042	.1121617	6.397045

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.5749288	.3707886	1.55	0.123	1586856	1.308543

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

_nl_1: _b[indprivatisation]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	1.908315	1.210645	1.58	0.117	486975	4.303606

. **Model 6.4	FE Fdistock l lni	ndfdistock	lnsecedu	Interted	u medium bio	th Insecmed
Insechigh Inte	ertmed lnterth	igh lnwa		Inictinf	ra indorivat	igation d1006
d2008 c2-c14 s	s2-s13	confree fint	ansition	INICUINI	τα τησρειναι	_1Sation 01996-
note: d2008 or	mitted because	e of colline	earity			
note: c2 omitt	ed because of	collineari	Lty			
note: c3 omitt	ted because of	collineari	lty city			
note: s9 omitt	ed because of	collineari	ity			
note: s12 omit	ted because c	of collinear	rity			
Random-effects Group variable	s GLS regressi e: id	.on		Number Number	of obs of groups	= 1283 = 130
R-sq: within	= 0.2588	Obs per	group: min	= 1		
betweer	n = 0.9543				avg	= 9.9
overal	L = 0.7295				max	= 13
corr(u_i, X)	= 0 (assumed	Wald ch Prob >	i2(48) chi2	= 3327.56 = 0.0000		
lnindfdist~k	Coef. +	Std. Err.	Z	P> z	[95% Conf	[. Interval]
lnindfdist~k	I					
L1.	.466158 	.0253451	18.39	0.000	.4164825	.5158334
lnsecedu	-1.138928	1.601715	-0.71	0.477	-4.278231	2.000375
lntertedu	.1274414	.7898702	0.16	0.872	-1.420676	1.675559
medium high	0142298	.9590468	0.01	0.988	-1.865467	1.893927
lnsecmed	.2907087	.2883759	1.01	0.313	2744976	.8559151
lnsechigh	.094277	.2770552	0.34	0.734	4487412	.6372953
Intertmed	7559742	.2673351	-2.83	0.005	-1.279941	2320071
lnwage	5912116	.8216276	-0.72	0.134	-2.201572	1.019149
lngdp	.5555586	.7888705	0.70	0.481	9905992	2.101716
lntradefree	1319482	.6391154	-0.21	0.836	-1.384591	1.120695
Ineconfree		.9950677	0.60	0.550	-1.355918	2.544676
lnictinfra	.2369778	.4257908	0.56	0.578	5975568	1.071512
indprivati~n	1.660414	.3039669	5.46	0.000	1.06465	2.256179
d1996	8174703	1.125214	-0.73	0.468	-3.022849	1.387909
d1997 d1998	6354915	.9087861	-0.88	0.499	-2.416679	1.145696
d1999	5663146	.8467888	-0.67	0.504	-2.22599	1.093361
d2000	9754321	.8024712	-1.22	0.224	-2.548247	.5973826
d2001	5980579	.7298341	-0.82	0.413	-2.028506	.8323906
d2002 d2003	4571827	.5249981	-0.87	0.384	-1.48616	.5717947
d2004	1875785	.4435201	-0.42	0.672	-1.056862	.6817048
d2005	1862975	.3699418	-0.50	0.615	9113702	.5387751
d2006 d2007	248378 -1880241	2088674	-0.83	0.409	8381891	.3414331 2213485
d2008	(omitted)	.2000074	0.90	0.000	. 33 / 33 0 /	.2213403
c2	(omitted)					
c3	(omitted)	1 1 4 4 0 0 5	1 1 1	0.005	0.00051	2 517646
C4	1.275398 1.908944	1.144025	1.11	0.265	966851	3.51/646 5.41754
c6	1.582748	1.589092	1.00	0.319	-1.531815	4.69731
с7	1.752315	1.578505	1.11	0.267	-1.341497	4.846127
C8	.8736985	1.02812	0.85	0.395	-1.14138	2.888777
c10	(omitted)	1.290407	1.00	0.202	-1.14001	3.933440
c11	.5184136	2.22575	0.23	0.816	-3.843977	4.880804
c12	1.416609	1.704074	0.83	0.406	-1.923314	4.756532
c13	1.357486	1.118367	1.21	0.225	8344733	3.549444
C14 s2	1.344155 7833108	.1832545	-4.27	0.325	-1.142483	4.020829
s3	-2.181337	.217236	-10.04	0.000	-2.607112	-1.755562
s4	1827652	.1835897	-1.00	0.319	5425945	.1770641
s5	-1.267003	.2130915	-5.95	0.000	-1.684655	8493517
so s7	2579533	.1844614	-1.40	0.162	6194909	.1035844

s8		.163459	.1874511	0.87	0.383	2039385	.5308564
s9		(omitted)					
s10		3678584	.1779073	-2.07	0.039	7165504	0191664
s11		0314497	.1762677	-0.18	0.858	3769279	.3140286
s12		(omitted)					
s13		-1.309218	.1951552	-6.71	0.000	-1.691715	9267209
_cons		-9.290704	15.95644	-0.58	0.560	-40.56475	21.98335
	+-						
sigma_u		0					
sigma_e		1.20442					
rho		0	(fraction	of variar	nce due t	:o u_i)	

. **Model 6.4 OLS . reg lnindfdistock l.lnindfdistock lnsecedu lntertedu medium high lnsecmed lnsechigh lntertmed lnterthigh lnwage > lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13 note: d2008 omitted because of collinearity note: c2 omitted because of collinearity note: c3 omitted because of collinearity note: c10 omitted because of collinearity note: s8 omitted because of collinearity note: s10 omitted because of collinearity

Source	SS.	df		MS		Number of obs	=	1283
Madal	+	10	116	260606		F(48, 1234)	=	69.32
Rocidual	1 2069 65242	40 1237	1 67	209000		PIOD > r P-squared	_	0.0000
Kesiuuai	+	1234	1.07			Adi R-squared	_	0.7295
Total	7650.59737	1282	5.96	770466		Root MSE	=	1.2951
lnindfdist~k	Coef.	Std. 1	Err.	t	P> t	[95% Conf.	In	terval]
lpindfdigt.k	+							
TITITIATATSU~K	I 466158	0253	451	18 39	0 000	4164338		5158822
• 11		.0200	101	10.35	0.000	. 110 10 00	•	5150022
lnsecedu	-1.138928	1.601	715	-0.71	0.477	-4.281313	2	.003457
lntertedu	.1274414	.7898	702	0.16	0.872	-1.422196	1	.677078
medium	.1776888	.9648	926	0.18	0.854	-1.715323		2.0707
high	2843563	.9136	999	-0.31	0.756	-2.076933	1	.508221
lnsecmed	.2907087	.2883	759	1.01	0.314	2750525		.85647
Insechigh	.094277	.2770	552	0.34	0.734	4492744	•	6378284
Intertmed	7559742	.2673	351	-2.83	0.005	-1.280456		2314926
Interthigh	3856889	.2572	142	-1.50	0.134	8903143	•	1189365
Inwage	5912116	.8216	276	-0.72	0.4/2	-2.203153	~	1.02073
Ingdp	.5555586	. /888	/05	0.70	0.481	9921172	2	.103234
Intradefree	1319482	.6391	154	-0.21	0.836	-1.385821	T	.121925
Ineconfree	.5943793	.9950	6//	0.60	0.550	-1.35/832	2	.546591
Intransition	2.433/42	3.101	951	0.78	0.433	-3.651938	8	.519423
Inictinira	.2369778	.4257	908	0.56	0.578	5983/61	T	.072332
indprivati~n	1.660414	.3039	669 214	5.46	0.000	1.064065	2	.256/63
d1996	01/4/03	1 010	214	-0.75	0.400	-3.023014	T	1 2002
d1997		1.010.	230 061	-0.00	0.499	-2.003/4/	1	147445
d1998 d1998	- 5663146	.9007	888 001	-0.70	0.400	-2.410420	T	1 00/00
42000	- 975/321	8024	712	-1.22	0.304	-2.5/9791		5989267
d2000	- 5980579	7298	3/1	-1.22	0.224	-2.029911	•	833795
42002	1 - 1895536	6375	302	-0.02	0.413	-2.029911		7612276
d2002	-4571827	5249	981	-0.87	0.445	-1 48717	•	5728049
d2003	1 - 1875785	4435	201	-0.42	0.504	-1 057715	•	6825583
d2001	1 - 1862975	3699	418	-0.50	0.615	- 9120821	•	539487
d2006	248378	.3009	296	-0.83	0.409	8387682		3420122
d2007	1880241	.2088	674	-0.90	0.368	5977987		2217504
d2008	(omitted)							
c2	(omitted)							
c3	(omitted)							
с4	1.275398	1.144	025	1.11	0.265	9690524	3	.519848
с5	1.908944	1.790	133	1.07	0.286	-1.603096	5	.420985
c6	1.582748	1.589	092	1.00	0.319	-1.534873	4	.700368
с7	1.752315	1.578	505	1.11	0.267	-1.344535	4	.849165
c8	.8736985	1.02	812	0.85	0.396	-1.143358	2	.890755
с9	1.394419	1.296	467	1.08	0.282	-1.149104	3	.937943
c10	(omitted)							
c11	.5184136	2.22	575	0.23	0.816	-3.84826	4	.885087
c12	1.416609	1.704	074	0.83	0.406	-1.926593	4	.759811
c13	1.357486	1.118	367	1.21	0.225	8366254	3	.551596
c14	1.344155	1.365	675	0.98	0.325	-1.335147	4	.023457
s2	7833108	.1832	545	-4.27	0.000	-1.142836	-	.423786
s3	-2.181337	.217	236	-10.04	0.000	-2.60753	-1	.755144
s4	1827652	.1835	897	-1.00	0.320	5429477	•	1774174
s5	-1.430462	.2179	047	-6.56	0.000	-1.857967	-1	.002958
s6	.4807784	.1819	445	2.64	0.008	.1238236	•	8377332
s7	4214122	.1865	537	-2.26	0.024	7874097		0554148
s8	(omitted)	1000	F 1 1	0 0 7	0 000	5040454		0040000
s9	I163459	.1874	110	-0.87	0.383	5312171	·	2042992
s10	(omitted)	1	071	1 00	0 050	0100701		C0E0005
S11	I .3364U8/	. 1 7 7 0	∠ / ⊥ 0 7 2	1.89	0.059	UIZZ/ZI	·	7160007
S12	1.30/8584	. 1/19	013	2.0/	0.039	.UI8824	•	110092/

s13	1	-1.309218	.1951552	-6.71	0.000	-1.692091	9263453
_cons	I	-9.290704	15.95644	-0.58	0.561	-40.59546	22.01405

Appendix 6.10: Model 6.6 results

```
. **Model 6.6 System GMM
 . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lngenvocratio lnwage
lngdp lntradefree lneconfree lntr
> ansition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13,
gmm(l.lnindfdistock, laglimit(1 2) collapse) iv(
> Insecedu Intertedu Ingenvocratio Inwage Ingdp Intradefree Ineconfree Intransition
lnictinfra indprivatisation d1
> 996-d2008 c2-c14 s2-s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
c14 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
  Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
                                                                Number of obs = 1283
Number of groups = 130
Group variable: id
                                                               Obs per group: min = 1
avg = 9.87
max = 13
Time variable : year
Number of instruments = 47
F(44, 129) = 89.93
Prob > F = 0.000
                        _____
                                                                                 _____
                                   Corrected
| Corrected
lnindfdist~k | Coef. Std.Err.
                                                        t P>|t| [95% Conf. Interval]
 lnindfdist~k |
         L1. | .3208332 .1117717
                                                     2.87 0.005
                                                                             .0996901
                                                                                              .5419763
                                                                                            1.524368
    lnsecedu | -.5337772 1.040243 -0.51 0.609 -2.591922
    lntertedu | -1.014868 .8286618
genvocra~o | -2.355396 1.038488
                                                    -1.22 0.223
-2.27 0.025
                                                                                            .6246594
                                                                            -2.654396
                                                                             -4.41007
lngenvocra~o |
                                                     -1.12 0.264
0.60 0.549
       lnwage | -.4811834 .4289406
                                                                            -1.329853
                                                                                               .367486
                                     .5384849
                                                                                             1.388711
         lngdp |
                     .3233058
                                                                            -.7420997
                                                     -0.06 0.955
 lntradefree | -.0156682 .2795487
                                                                            -.5687621
                                                                                              .5374258

      Intransition |
      1.555184
      .6464159
      2.41
      0.018
      .2762342

      Intransition |
      2.226154
      1.108879
      2.01
      0.047
      .0322095

      Inictinfra |
      .3942835
      .2317452
      1.70
      0.091
      -.0642301

      indprivati~n |
      1.300169
      .6924332
      1.88
      0.063
      -.0698275

      d1996 |
      -.9040468
      .7441145
      -1.21
      0.227
      -2.376296

                                                                           .2762342
                                                                                              2.834134
                                                                                            4,420099
                                                                                              .8527971
                                                                                            2.670165
                                                                                               .568202
                                    .7171694

        -1.21
        0.227

        -1.27
        0.207

        -1.28
        0.202

        -1.25
        0.215

        -2.13
        0.035

         d1997 | -.9096157
                                                                            -2.328553
                                                                                              .5093216
                                                                                              .4689876
         d1998 i
                     -.8652952
                                                                            -2.199578
         d1999 | -.7768966 .6236162
d2000 | -1.120684 .5263108
                                                                                              .4569434
                                                                            -2.010736
                                                                            -2.162002
                                                                                            -.0793647
                                      .520639
                                                     -1.61 0.109
                                                                                             .1904984
         d2001 | -.8395985
                                                                            -1.869695
                    -.7322011 .4465474
                                                    -1.64 0.104 -1.615706
-1.52 0.132 -1.482651
-1.09 0.279 -.8432193
                                                                                             .1513038
         d2002 |
         d2003 i
                                     .4242457
                                                                                              .1961103
                     -.6432703
         d2004 | -.2990284 .2750489
                                                                                            .2451625
                     -.2410952 .2048553
-.2709119 .1581927
                                                     -1.18 0.241
-1.71 0.089
         d2005 |
                                                                            -.6464063
                                                                                               .164216
         d2006 |
                     -.2709119
                                                                            -.5839001
                                                                                            .0420762
                     -.0226137 .1101028
                                                     -0.21 0.838
-0.52 0.605
                                                                            -.2404549
         d2007 |
                                                                                             .1952275
                                      .498923
             c4 |
                     -.2590173
                                                                            -1.246149
                                                                                              .7281141

      c5
      1.498331
      1.364212
      1.10
      0.274
      -1.200795

      c6
      5.769905
      2.633327
      2.19
      0.030
      .5598019

      c7
      2.725895
      1.452534
      1.88
      0.063
      -.1479795

                                                                                              4.197457
                                                                                              10,98001
                                                                                              5.599769

      c8 |
      1.739472
      1.04999
      1.66
      0.100
      -.3379593

      c9 |
      4.388865
      1.995284
      2.20
      0.030
      .4411473

      c11 |
      1.967594
      1.695636
      1.16
      0.248
      -1.387264

                                                                                             3.816903
                                                                                              8.336582
                                                                                            5.322452
                     .3403784 1.177823
1.138289 .6992816
                                                    0.29 0.773
1.63 0.106
                                                                            -1.989974
                                                                                             2.670731
            c12 |
                                                                                             2.521834
            c13 |
                                                                            -.2452572
                     -1.003029
                                       .32087
                                                     -3.13 0.002
                                                                            -1.637878
             s2 |
                                                                                               -.36818
                                                     -3.70 0.000
-1.12 0.266
             s3 |
                                     .7675935
                     -2.843622
                                                                            -4.362324
                                                                                             -1.324919
                     -.2663222 .2382374
                                                                            -.7376806
                                                                                              .2050363
             s4 |
                                                     -3.47 0.001 -3.266569
-1.26 0.209 -.6761292
             s5 | -2.080591 .5994253
s6 | -.2634229 .208593
                                                                                            -.8946133
                                                                                             .1492835
             s7 | -.8562063 .2694936
                                                     -3.18 0.002 -1.389406
                                                                                            -.3230066
                                                     -1.36 0.177 -.7104115
-2.07 0.041 -.9568083
             s8 | -.2892617 .2128605
s9 | -.4886414 .2366243
                                                                                            .1318881
                                                                                            -.0204745
```

	s10 s11 s12 s13 _cons	907898 4861648 4438317 -1.586334 -11.44628	.268445 .2320609 .277717 .3809904 10.99704	-3.38 -2.09 -1.60 -4.16 -1.04	0.001 0.038 0.112 0.000 0.300	-1.439 9453 9933 -2.340 -33.20	023 029 017 . 0133 - 0419 1	3767731 0270267 1056382 .832535 0.31163
Instrum Stand FOD Int d20 GMM-t L(1 Instrum Stand Co Ins Int d20 c10 GMM-t D.L	ents for ard (lnsece ransitio) 01 d2002 cll cl2 ype (mis /2).L.ln ents for ard ns ecedu ln ransitio) 01 d2002 cl1 cl2 ype (mis .lnindfd	orthogonal o du Intertedu n Inictinfra d2003 d2004 c13 c14 s2 s sing=0, separ indfdistock o levels equat tertedu Inger n Inictinfra d2003 d2004 c13 c14 s2 s sing=0, separ istock collap	deviations e lngenvocrat indprivatis d2005 d2005 c3 s4 s5 s6 cate instrum collapsed cion nvocratio ln indprivatis d2005 d2006 c3 s4 s5 s6 cate instrum osed	equation tio lnwag sation dl 5 d2007 d s7 s8 s9 ments for mwage lng sation dl 5 d2007 d s7 s8 s9 ments for	e lngd 996 dl 2008 c s10 s each j 996 dl 2008 c s10 s each j	p lntradef 997 d1998 2 c3 c4 c5 11 s12 s13 period unl 997 d1998 2 c3 c4 c5 11 s12 s13 period unl	iree lnec d1999 d2 5 c6 c7 c 3) .ess coll .neconfre d1999 d2 5 c6 c7 c 3 .ess coll .ess coll	onfree 000 8 c9 apsed) e 000 8 c9 apsed)
Arellan Arellan	o-Bond to	est for AR(1) est for AR(2)	in first o in first o	differenc differenc	es: z	= -2.13 = -1.06	Pr > z = Pr > z =	0.033
Sargan (Not Hansen (Robu	test of robust, test of st, but	overid. restr but not weake overid. restr can be weaker	cictions: ch ened by many cictions: ch hed by many	ni2(2) y instrum ni2(2) instrume	= 4 ents.) = 0 nts.)	.89 Prob .99 Prob	> chi2 = > chi2 =	0.087
Differe GMM i Han Dif	nce-in-H nstrumen sen test ference	ansen tests o ts for levels excluding gr (null H = exc	of exogeneit coup: ch ogenous): ch	ty of ins ni2(1) ni2(1)	trumen = 0 = 0	t subsets: .26 Prob .73 Prob	> chi2 = > chi2 =	0.612 0.392

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	7859294	1.577807	-0.50	0.619	-3.90766	2.335801

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	-1.494284	1.063526	-1.41	0.162	-3.598497	.6099284

. nlcom _b[lngenvocratio]/(1-_b[l.lnindfdistock])

_nl_1: _b[lngenvocratio]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
n] 1	-3.468067	1.185637	-2.93	0.004	-5.813879	-1.122255

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	7084907	.6471833	-1.09	0.276	-1.988959	.5719773

. nlcom _b[lngdp]/(1-_b[1.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.476033	.8021273	0.59	0.554	-1.110995	2.063061

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	0230697	.4135917	-0.06	0.956	8413711	.7952317

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	2.289841	.8949544	2.56	0.012	.5191516	4.06053

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	3.277772	1.581632	2.07	0.040	.1484735	6.407071

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.58054	.3598811	1.61	0.109	1314936	1.292573

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

.

_nl_1: _b[indprivatisation]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
+							
_nl_1	1.914358	1.189135	1.61	0.110	4383736	4.26709	
. xtreg lnindt							
--	--	---	---	--	--	--	------
•	distock l.lni	ndfdistock	lnsecedu	Interted	u lngenvocrat	io lnwage li	ıgdp
lntradefree lr	neconfree lntr	ans			-	-	
> ition lnicti	Infra indpriva	tisation d1	996-d2008	3 c2-c14	s2-s13, fe		
note: lngenvoo	ratio omitted	l because of	collinea	arity	,		
note: d1996 or	nitted because	e of colline	aritv	-			
note: c2 omitt	ed because of	collineari	tv				
note: c3 omitt	ed because of	collineari	t.v				
note: c4 omitt	ed because of	collineari	t v				
note: c5 omitt	ed because of	collineari	t v				
note: c6 omitt	ed because of	collineari	cy tw				
note: co omitt	ed because of	collineari	L Y				
note: c7 omitt	ed because of	. collineari	LY				
note: co omitt	ed because of	. collineari	LY				
note: C9 omiti	ed because of	collineari	cy 				
note: CIU omit	ted because c	collinear.	ıty				
note: cll omit	ted because c	of collinear.	ıty				
note: CI2 omit	ted because c	collinear.	ıty				
note: cl3 omit	ted because c	of collinear.	ıty				
note: c14 omit	ted because c	of collinear	ity				
note: s2 omitt	ed because of	collineari	ty				
note: s3 omitt	ed because of	collineari	ty				
note: s4 omitt	ed because of	E collineari	ty				
note: s5 omitt	ed because of	E collineari	ty				
note: s6 omitt	ed because of	collineari	ty				
note: s7 omitt	ed because of	collineari	ty				
note: s8 omitt	ed because of	collineari	ty				
note: s9 omitt	ed because of	collineari	ty				
note: s10 omit	ted because c	of collinear	ity				
note: s11 omit	ted because c	of collinear	ity				
note: s12 omit	ted because c	of collinear	ity				
note: s13 omit	ted because c	of collinear	ity				
Fixed-effects	(within) regr	ression		Number	of obs =	= 1283	
Group variable	e: id			Number	of groups =	= 130	
1					5 1		
R-sa: within	= 0.2952			Obs per	group: min =	= 1	
betweer	1 = 0.8341				ava =	9.9	
overal	= 0.5743				max =	= 13	
010141						10	
				F(22.11	31) =	= 21.54	
corr(u i Xh)	- 0 5226			Prob >	51) F –	- 0.0000	
COII(u_I, AD)	- 0.3220			FIOD >		- 0.0000	
lnindfdist~k	Coef	Std Frr	+	P > +	[95% Conf	Intervall	
		JUU. DII.	L	F / L	[J J 0 COULT .	Incervarj	
lnindfdictak							
TITTIUTUTSU'K	1024750	0204062	с . Е С		1256024	2512401	
L1.	.1934758	.0294962	6.56	0.000	.1356024	.2513491	
L1.	.1934758	.0294962	6.56	0.000	.1356024	.2513491	
L1.	.1934758	.0294962	6.56 -0.45	0.000	.1356024	.2513491	
L1. Insecedu Intertedu	.1934758 6698671 3828825	.0294962 1.501536 .7326196	6.56 -0.45 -0.52	0.000 0.656 0.601	.1356024 -3.615976 -1.820329	.2513491 2.276242 1.054564	
L1. Insecedu Intertedu Ingenvocra~o	.1934758 6698671 3828825 (omitted)	.0294962 1.501536 .7326196	6.56 -0.45 -0.52	0.000 0.656 0.601	.1356024 -3.615976 -1.820329	.2513491 2.276242 1.054564	
L1. Insecedu Intertedu Ingenvocra~o Inwage	.1934758 6698671 3828825 (omitted) 5342059	.0294962 1.501536 .7326196 .7749431	6.56 -0.45 -0.52 -0.69	0.000 0.656 0.601 0.491	.1356024 -3.615976 -1.820329 -2.054694	.2513491 2.276242 1.054564 .9862818	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp	.1934758 6698671 3828825 (omitted) 5342059 .4507245	.0294962 1.501536 .7326196 .7749431 .7466757	6.56 -0.45 -0.52 -0.69 0.60	0.000 0.656 0.601 0.491 0.546	.1356024 -3.615976 -1.820329 -2.054694 -1.014301	.2513491 2.276242 1.054564 .9862818 1.91575	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787	6.56 -0.45 -0.52 -0.69 0.60 0.06	0.000 0.656 0.601 0.491 0.546 0.954	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668	
L1. Insecedu Intertedu Ingenvocra~o Ingap Intradefree Ineconfree	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47	0.000 0.656 0.601 0.491 0.546 0.954 0.141	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Ineconfree Intransition	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24	0.000 0.656 0.601 0.546 0.954 0.141 0.362 0.240 0.000	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603	
L1. L1. Lnsecedu lntertedu lngenvocra~o lnwage lngdp lntradefree lntconfree lntcransition lnictinfra indprivati~n d1996	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted)	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24	0.000 0.656 0.601 0.546 0.954 0.141 0.362 0.240 0.000	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603	
L1. L1. Lnsecedu lntertedu lngenvocra~o lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329	
L1. L1. Lnsecedu lntertedu lngenvocra~o lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1998	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Incconfree Intransition Inictinfra indprivati~n d1996 d1997 d1999	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .3872561 .4313123	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445	
L1. L1. Lnsecedu lntertedu lngenvocra~o lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .337859 .3872561 .4313123 .4872503 .5631599	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05	0.000 0.656 0.601 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517	
L1. Insecedu Intertedu Ingenvocra~o Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.068365	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.18\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ \end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ 0.74\\ \end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2005	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 5468484	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .882063	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.18\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ 0.74\\ 0.62\\ \end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.20354 2.279167	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2006 d2006	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100622	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .978266	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.18\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ 0.74\\ 0.62\\ 0.62\\ \end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.536 0.536	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.300417	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2007	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8000276	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.050327	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.18\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ 0.74\\ 0.62\\ 0.62\\ 0.76\end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.533 0.45	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.309417 -1.207689	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ 0.74\\ 0.62\\ 0.62\\ 0.76\\ \end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.533 0.445	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2007 d2008 c2	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted)	.0294962 1.501536 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.76	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.533 0.445	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted)	.0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8152234 .829063 .9782966 1.059337	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.18\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ 0.74\\ 0.62\\ 0.62\\ 0.76\\ \end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.533 0.445	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384	
L1. Insecedu Intertedu Ingenvocra~o Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4	.1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted)	.0294962 1.501536 .7326196 .7326196 .749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	$\begin{array}{c} 6.56\\ -0.45\\ -0.52\\ -0.69\\ 0.60\\ 0.06\\ 1.47\\ 0.91\\ 1.17\\ 4.24\\ 0.04\\ 0.18\\ 0.34\\ -0.52\\ -0.05\\ 0.25\\ 0.37\\ 0.71\\ 0.74\\ 0.62\\ 0.62\\ 0.76\\ \end{array}$	0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.533 0.445	.1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075527 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384	

c6 c7 c8 c9 c10 c11 c12	<pre>(omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)</pre>							
c14	(omitted)							
s2	(omitted)							
s3	(omitted)							
s4	(omitted)							
s5	(omitted)							
s6	(omitted)							
s7	(omitted)							
s8	(omitted)							
s9	(omitted)							
s10	(omitted)							
s11	(omitted)							
s12	(omitted)							
s13	(omitted)							
_cons	-11.95249	15.260	013	-0.78	0.434	-41	.89383	17.98885
sigma_u sigma_e rho	1.4583088 1.2182688 .58896614	(fract	tion o	f varia	ance due)	
F test that all	u_i=0:	F(129,	1131)	=	2.12		Prob >	F = 0.0000

•

. **Model 6.6 OLS . reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lngenvocratio lnwage lngdp lntradefree lneconfree lntransit > ion lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13 note: d2008 omitted because of collinearity note: c2 omitted because of collinearity note: c3 omitted because of collinearity note: c6 omitted because of collinearity note: c10 omitted because of collinearity

Source	SS	df		MS		Number of obs	=	1283
			100			F(44, 1238)	=	75.16
Model		1020	126.	514265		Prob > F	=	0.0000
Residual	2083.96973	1238	1.68	333581		R-squared	_	0.7276
Total	7650 59737	1282	5 96	770466		Root MSE	_	1 2974
iocai	1 1030.33737	1202	5.90	110400		NOOC MOL		1.2714
lnindfdist~k	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	[erval]
lpindfdict.k	+ I							
ININALAISL~K	1 1770515	0250	706	10.06	0 000	120666		527027
• 11	.4//0010	.0250	100	19.00	0.000	.420000		. JZ / US /
lnsecedu	996562	1.596	739	-0.62	0.533	-4.129175	2.	.136051
lntertedu	2239122	.7790	083	-0.29	0.774	-1.752235	1	L.30441
lngenvocra~o	1.091326	1.094	759	1.00	0.319	-1.056462	3.	.239114
lnwage	5886715	.8231	173	-0.72	0.475	-2.203531	1.	.026188
lngdp	.5549401	.790	297	0.70	0.483	9955293	2	2.10541
lntradefree	1448079	.6402	688	-0.23	0.821	-1.40094	1.	.111324
lneconfree	.5732394	.9968	057	0.58	0.565	-1.382376	2.	.528855
lntransition	2.432461	3.107	627	0.78	0.434	-3.664335	8.	529258
lnictinfra	.2218436	.4265	315	0.52	0.603	6149608	1.	.058648
indprivati~n	1.655353	.3044	638	5.44	0.000	1.058031	2.	252675
d1996	8193515	1.127	264	-0.73	0.467	-3.03091	1.	392207
d1997	6819054	1.012	083	-0.67	0.501	-2.667494	1.	303683
d1998	6334704	.9104	454	-0.70	0.487	-2.419657	1.	152716
d1999	5643722	.8483	348	-0.67	0.506	-2.228705	1	099961
d2000	9730768	. 8039	344	-1.21	0.226	-2.550301	. 6	5041477
d2001	5908311	.7311	608	-0.81	0.419	-2.025282		3436201
d2002	- 4850339	6386	994	-0.76	0 448	-1 738087	• •	768019
d2003	- 4556584	5259	541	-0.87	0 386	-1 487518		5762016
d2003	-1850777	4443	288	-0.42	0.677	-1 056799	•	686643
d2005	-1870454	3706	179	-0.50	0 614	- 9141539		5400631
d2005	- 2483097	3014	798	-0.82	0 410	- 8397775	•	2431581
d2000	-1869985	2092	488	-0.89	0.410	- 59752	•	2235229
d2008	(omitted)	.2072	100	0.05	0.372	. 3 5 7 3 2	• 4	
a2000	(omitted)							
C2	(omitted)							
C4	2 35702	1 895	994	1 24	0 214	-1 362696	6	076736
C-1	2.00702	2 100	234	1 19	0.214	-1 618438	6	622385
C5 C6	(omittod)	2.100	234	1.17	0.234	1.010430	0.	.022505
c0 c7		1 756	8/11	1 15	0 251	_1 /29618	5	163813
C7 C8	7789378	0307	716	1.13	0.201	-1.047129	2	60/000
C0 C9	3978618	7295	374	0.55	0.405	_1 033405	1	820128
c10	(omittod)	. 1295	574	0.55	0.000	1.033403	± .	.029120
c10	(OMILCCEQ) 8226872	2 21	712	0 37	0 711	-3 52763	5	173004
c12	2 51/816	2 012	654	1 25	0.212	-1 133771	6	163106
c12	1 051244	1 1012	655	1 21	0.212	0000010	0.	1 00260
c1.0	1 2 456022	2 102	055	1 12	0.192	1 026674		: 72070
C14	7602264	1021	9JJ 150	1 15	0.201	1 120167		1001062
52	2 140024	.1034	100	-4.13	0.000	-1.120107		716002
53	1050000	.2100	290	-9.00	0.000	-2.00404	-1,	. /13229
S4	1852932	.103	226	-1.01	0.312	544/61	• -	104176
s5	-1.009111	.2105	707 202	- / . 43	0.000	-2.03404/	- 1 .	.1041/6
S6	205/085	.1/9	373 070	-1.15	0.252	55 /6564	• -	1402395
s/	026032	.182	918 200	-3.42	0.001	9850133	2	20/050/
sð	198082	.1833	∠86 000	-1.08	0.280	55//512	•	10128/1
S9	3850523	.101-	700 C 4 F	-2.12	0.034	/41/201	(1203045
s10	6/5263/	.1815	045	-3.72	0.000	-1.0314/2		3190555
s11	3444126	.1782	365	-1.93	0.054	6940915	• (1052663
s12	313625	.17/9	358	-1.76	0.078	6627141	• (J354641
s13	-1.28/006	.1946	514	-0.01	0.000	-1.668889		1051231
_cons	-8.02262	12.95	JJ4	-0.50	0.012	-39.32511	23	5.2/98/

Appendix 6.11: Model 6.7 results

. **Model 6.7 System GMM . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnedutr1 lnwage lngdp Intradefree Ineconfree Intransit > ion lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 2) collapse) iv(lnsec > edu Intertedu Inedutr2 Inwage lngdp Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996-d2008 > c2-c14 s2-s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d1996 dropped due to collinearity d1997 dropped due to collinearity d1998 dropped due to collinearity d1999 dropped due to collinearity d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c10 dropped due to collinearity c14 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variabl Time variable Number of ins F(40, 128) Prob > F	e: : tr =	id year uments = 44 70.73 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1017 129 0 7.88 9
lnindfdist~k		Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k L1.	+-	.2549424	.1001758	2.54	0.012	.0567275	.4531573
lnsecedu Intertedu Inedutr1 Inwage		6830495 .2359653 -3.224424 .0504303	3.491269 1.481796 3.169413 .7695943	-0.20 0.16 -1.02 0.07	0.845 0.874 0.311 0.948	-7.591121 -2.696022 -9.495648 -1.472343	6.225022 3.167953 3.046801 1.573204
Intradefree Ineconfree Intransition Inictinfra		5602262 1.246827 3.905563 .0002816	.382225 .6718255 2.387353 .5441693	-0.27 -1.47 1.86 1.64 0.00	0.784 0.145 0.066 0.104 1.000	-2.476737 -1.316524 0824948 8182222 -1.07645	1.873104 .1960713 2.576148 8.629349 1.077014
indprivati~n d2000 d2001 d2002	 	1.466513 -1.401019 -1.098527 9821841	.4590689 .758449 .7649334 .668966	3.19 -1.85 -1.44 -1.47	0.002 0.067 0.153 0.144	.5581671 -2.90174 -2.612079 -2.305848	2.374859 .0997016 .4150242 .3414794
d2003 d2004 d2005 d2006		9826175 4672128 3543014 334569	.6106534 .4164823 .3108645 .2284057	-1.61 -1.12 -1.14 -1.46	0.110 0.264 0.257 0.145	-2.1909 -1.291294 9694 7865087	.2256645 .3568686 .2607972 .1173707
c4 c5 c6 c7		0433848 .7788852 2.15048 2718286 1.520359	.1309223 .8728962 3.988453 1.211196 2.478786	-0.33 0.89 0.54 -0.22 0.61	0.741 0.374 0.591 0.823 0.541	9482891 -5.741355 -2.668386 -3.384343	2.506059 10.04232 2.124729 6.42506
c8 c9 c11 c12	 	5059063 .3668426 2.467365 2.728538	.9762386 1.871407 3.546448 2.826551	-0.52 0.20 0.70 0.97	0.605 0.845 0.488 0.336	-2.437561 -3.336055 -4.549888 -2.864277	1.425749 4.069741 9.484618 8.321352
c13 s2 s3 s4		1.56813 -1.091814 -2.917215 2058736	1.554882 .3205895 .7118135 .2492766	1.01 -3.41 -4.10 -0.83	0.315 0.001 0.000 0.410	-1.508469 -1.726155 -4.32566 69911	4.64473 4574725 -1.508771 .2873627
s5 s6 s7 s8 s9	 	-2.141548 2532607 8301723 2031554 4462089	.5583018 .2376626 .2666017 .2264517 .2447109	-3.84 -1.07 -3.11 -0.90 -1.82	0.000 0.289 0.002 0.371 0.071	-3.246244 7235168 -1.357689 6512288 9304112	-1.036853 .2169955 3026552 .244918 .0379934

s10 9292377 . s11 4211535 . s12 4006556 s13 -1.702016 . _cons 2.265456	2630042 2356199 .292481 3763542 24.3354	-3.53 -1.79 -1.37 -4.52 0.09	0.001 0.076 0.173 0.000 0.926	-1.449636 8873676 9793792 -2.446697 -45.8863	4 .0 9 50	088389 450606 178068 573351 .41721
<pre>Instruments for orthogonal de Standard FOD.(lnsecedu lntertedu l Intransition lnictinfra i d2001 d2002 d2003 d2004 c c10 c11 c12 c13 c14 s2 s3 GMM-type (missing=0, separa L(1/2).L.lnindfdistock cc Instruments for levels equati Standard cons Insecedu Intertedu Inedut Intransition Inictinfra i d2001 d2002 d2003 d2004 c c10 c11 c12 c13 c14 s2 s3 GMM-type (missing=0, separa D.L.lnindfdistock collaps</pre>	eviations e .nedutr2 ln .ndprivatis 22005 d2006 5 s4 s5 s6 tte instrum 11apsed .on er2 lnwage .ndprivatis 12005 d2006 5 s4 s5 s6 tte instrum sed	quation wage lng ation d1 d2007 d s7 s8 s9 ents for lngdp ln ation d1 d2007 d s7 s8 s9 ents for	dp lntrad 996 d1997 2008 c2 c s10 s11 each per tradefree 996 d1997 2008 c2 c s10 s11 each per	efree lneco d1998 d199 3 c4 c5 c6 s12 s13) iod unless lneconfree d1998 d199 3 c4 c5 c6 s12 s13 iod unless	nfree 9 d20 c7 c8 colla 9 d20 c7 c8 colla	00 c9 psed) 00 c9 psed)
Arellano-Bond test for AR(1) Arellano-Bond test for AR(2)	in first d in first d	ifference ifference	es: z = es: z =	-2.18 Pr > -1.13 Pr >	z = z =	0.029 0.259
Sargan test of overid. restri (Not robust, but not weaker Hansen test of overid. restri (Robust, but can be weakene	.ctions: ch hed by many .ctions: ch ed by many	i2(3) instrum i2(3) instrume	= 9.84 ents.) = 1.76 nts.)	Prob > ch Prob > ch	i2 = i2 =	0.020
Difference-in-Hansen tests of GMM instruments for levels Hansen test excluding gro Difference (null H = exco gmm(L.lnindfdistock, collap Hansen test excluding gro Difference (null H = exco	exogeneit pup: ch genous): ch use lag(1 2 pup: ch genous): ch	y of ins i2(2) i2(1))) i2(0) i2(3)	trument s = 1.00 = 0.76 = 0.00 = 1.76	ubsets: Prob > ch Prob > ch Prob > ch Prob > ch	i2 = i2 = i2 = i2 =	0.608 0.383 0.625

•

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

```
_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])
```

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	9167742	4.753547	-0.19	0.847	-10.32248	8.48893

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
+						
_nl_1	.3167075	2.018786	0.16	0.876	-3.677806	4.311221

. nlcom _b[lnedutr1]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnedutr1]/(1-_b[l.lnindfdistock])

nl_1 -4.327751 3.815281 -1.13 0.259 -11.87694 3.221434	lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	nl1	-4.327751	3.815281	-1.13	0.259	-11.87694	3.221434

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	.0676865	1.029851	0.07	0.948	-1.970049	2.105422

. nlcom _b[lngdp]/(1-_b[1.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	405091	1.450203	-0.28	0.780	-3.274566	2.464384

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	7519233	.5095328	-1.48	0.142	-1.760121	.2562743

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	1.673464	.8486342	1.97	0.051	0057042	3.352631

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	5.241962	3.592483	1.46	0.147	-1.86638	12.3503

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.000378	.7303502	0.00	1.000	-1.444745	1.445501

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

.

_nl_1: _b[indprivatisation]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
+									
_nl_1	1.968322	.7891953	2.49	0.014	.4067642	3.52988			

. **Model 6.7	FE					
. xtreg lnindf	distock l.ln:	indfdistock	lnsecedu	lnterted	u lnedutr1 ln	wage lngdp
lntradefree lr	neconfree lnt	ransition				
> lnictinfra	indprivatisat	ion d1996-d	l2008 c2-c	c14 s2-s1	3, fe	
note: lnedutr1	omitted beca	ause of coll	inearity			
note: d1996 om	nitted because	e of colline	earity			
note: c2 omitt	ed because of	E collineari	ty			
note: c3 omitt	ed because of	E collineari	ty			
note: c4 omitt	ed because of	E collineari	ty			
note: c5 omitt	ed because of	E collineari	ty			
note: c6 omitt	ed because of	E collineari	ty			
note: c7 omitt	ed because of	E collineari	ty			
note: c8 omitt	ed because of	E collineari	tv			
note: c9 omitt	ed because of	E collineari	tv			
note: c10 omit	ted because o	of collinear	itv			
note: cll omit	ted because o	of collinear	itv			
note: c12 omit	ted because of	of collinear	itv			
note: c13 omit	ted because o	of collinear	itv			
note: c14 omit	ted because o	of collinear	itv			
note: s2 omitt	ed because of	E collineari	tv			
note: s3 omitt	ed because of	E collineari	.tv			
note: s4 omitt	ed because of	E collineari	.tv			
note: s5 omitt	ed because of	E collineari	.tv			
note: s6 omitt	ed because of	F collineari	tv			
note: s7 omitt	ed because of	F collineari	tv			
note: s8 omitt	ed because of	F collineari	tv			
note: s9 omitt	ed because of	F collineari	tv			
note: s10 omit	ted because of	of collinear	itv			
note: s11 omit	ted because (of collinear	itv			
note: s12 omit	ted because (of collinear	itv			
note: s13 omit	ted because (of collinear	itv			
10000. DIS 01110	ced becaube (or corrincar	TCY			
Fixed-effects	(within) requ	ression		Number	of obs =	1283
Group variable	· id	0331011		Number	of groups =	130
oroup variabre	. 10			NUMBEL	or groups -	100
P-ca. within	- 0 2952			Obs por	aroun. min -	. 1
hotwoor	= 0.2332			ODS PCI	group. min =	. 99
overall	- 0 5743				avg -	13
Overail	- 0.5745				illar -	1.5
				F(22 11	31) -	21 5 /
corr(u i Yb)	- 0 5226			F(22,11 Brob	31) =	21.54
corr(u_i, Xb)	= 0.5226			F(22,11 Prob >	31) = F =	21.54 0.0000
corr(u_i, Xb)	= 0.5226			F(22,11 Prob >	31) = F =	21.54 0.0000
corr(u_i, Xb)	= 0.5226	Std Frr	+	F(22,11 Prob >	31) = F =	21.54 0.0000
corr(u_i, Xb) lnindfdist~k	= 0.5226 Coef.	Std. Err.	t	F(22,11 Prob > P> t	31) = F = [95% Conf.	21.54 0.0000 Interval]
corr(u_i, Xb)	= 0.5226 Coef.	Std. Err.	t	F(22,11 Prob > P> t	31) = F = [95% Conf.	21.54 0.0000 Interval]
corr(u_i, Xb)	= 0.5226 Coef.	Std. Err.	t	F(22,11 Prob > P> t	31) = F = [95% Conf.	21.54 0.0000 Interval]
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.	= 0.5226 Coef. .1934758	Std. Err.	t 6.56	F(22,11 Prob > P> t 0.000	31) = F = [95% Conf. .1356024	21.54 0.0000 Interval] .2513491
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.	= 0.5226 Coef.	Std. Err.	t 6.56	F(22,11 Prob > P> t 0.000	31) = F = [95% Conf. .1356024	21.54 0.0000 Interval] .2513491
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671	Std. Err.	t 6.56 -0.45	F(22,11 Prob > P> t 0.000 0.656 0.601	31) = F = [95% Conf. .1356024 -3.615976	21.54 0.0000 Interval] .2513491 2.276242
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (cmitted)	Std. Err. .0294962 1.501536 .7326196	t 6.56 -0.45 -0.52	F(22,11 Prob > P> t 0.000 0.656 0.601	31) = F = [95% Conf. .1356024 -3.615976 -1.820329	21.54 0.0000 Interval] .2513491 2.276242 1.054564
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) comitted)	Std. Err. .0294962 1.501536 .7326196	t 6.56 -0.45 -0.52	F(22,11 Prob > P> t 0.000 0.656 0.601 0.401	31) = F = [95% Conf. .1356024 -3.615976 -1.820329	21.54 0.0000 Interval] .2513491 2.276242 1.054564
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 5342059	Std. Err. .0294962 1.501536 .7326196 .7749431	t 6.56 -0.45 -0.52 -0.69	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .4507245	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757	t 6.56 -0.45 -0.52 -0.69 0.60	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lntertedu lntedutr1 lnwage lngdp lntradefree	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787	t -0.45 -0.52 -0.69 0.60 0.06	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 -1.147131	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811	t -0.45 -0.52 -0.69 0.60 0.06 1.47	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241	21.54 0.0000 Interval] 2.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntertedu lnedutr1 lnwage lngdp lntradefree lntransition	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lnedutr1 lnwage lngdp lntradefree lnconfree lntransition lnictinfra	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lntertedu lntradefree lntradefree lntransition lnictinfra indprivati~n	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273	21.54 0.0000 Interval] 2.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065614 -3.0558187 .6813273	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603
corr(u_i, Xb) lnindfdist~k lnindfdist~k lnindfdist~k lnsecedu lntertedu lntertedu lntedutr1 lnwage lntradefree lntradefree lntransition lnictinfra indprivati~n d1996 d1997	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869	21.54 0.0000 Interval] 2.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lndpt lntradefree lntradefree lntransition lnictinfra indprivati~n d1996 d1998	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lntadefree lntradefree lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 0.347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lntedutr1 lnwage lntradefree lntradefree lntransition lntratirra indprivati~n d1996 d1997 d1998 d1999 d2000	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.21906 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517
corr(u_i, Xb) lnindfdist~k lnindfdist~k lnindfdist~k lnsecedu lntertedu lntertedu lntedutr1 lnwage lntradefree lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523
corr(u_i, Xb) Inindfdist~k Inindfdist~k Insecedu Intertedu Intertedu Intertedu Intradefree Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.063695	21.54 0.0000 Interval] 2.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lndputr1 lnwage lntradefree lntradefree lntransition lnictinfra d1996 d1997 d1998 d1998 d1999 d2000 d2001 d2002 d2003 d2004	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.34 -0.52 -0.05 0.25 0.37 0.71	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468
corr(u_i, Xb) Inindfdist~k Inindfdist~k Inindfdist~k Insecedu Intertedu Intertedu Intradefree Intradefree Intransition Intrictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2003 d2004 d2005	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459	31) = F = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.21906 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534
corr(u_i, Xb) lnindfdist~k lnindfdist~k lnindfdist~k lnsecedu lntertedu lntertedu lndqtr1 lngdp lntradefree lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2005 d205	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.74 0.62	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203544 2.279167
corr(u_i, Xb) lnindfdist~k lnindfdist~k lnindfdist~k lnsecedu lntertedu lntertedu lntertedu lntradefree lntradefree lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1997 d2000 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2006 d2006 d2006 d2007 d2006 d2006 d2006 d2007 d2006 d2007 d2006 d2006 d2006 d2007 d2006	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.052 -0.05 0.25 0.37 0.71 0.71 0.62 0.62	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.533	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534
corr(u_i, Xb) Inindfdist~k Inindfdist~k Insecedu Insecedu Intertedu Intertedu Intradefree Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1997 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 d2008 d2008 d2007 d2008 d2008 d2008 d2008 d2008 d2008 d2008 d2008 d2008 d2007 d2008 d208 d208 d208 d208 d208 d208	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8152234 .8152234 .8152234 .829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.62 0.62 0.62	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.533 0.445	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.1309417 -1.309417 -1.268589	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .704345 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384
corr(u_i, Xb) Inindfdist~k L1. Insecedu Intertedu Intertedu Indutr1 Inwage Indpi Intradefree Intransition Intransition Intrinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c22 d2008 c2	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.533 0.445	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	21.54 0.0000 Interval] 2.2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.07551 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384
corr(u_i, Xb)	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.459 0.536 0.533 0.445	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065664 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.21906 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384
corr(u_i, Xb) lnindfdist~k lnindfdist~k lnindfdist~k lnsecedu lntertedu lntertedu lntertedu lntadefree lntradefree lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2005 d2006 d2007 d2008 c2 c3 c4	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.533 0.445	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	21.54 0.0000 Interval] 2276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203544 2.279167 2.529544 2.888384
corr(u_i, Xb) Inindfdist~k Inindfdist~k Inindfdist~k Insecedu Intertedu Intertedu Intertedu Intradefree Intradefree Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1997 d2000 d2000 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted) (omitted)	<pre>Std. Err 0294962 1.501536 . 7326196 . 7749431 . 7466757 . 6023787 . 9375811 2.919594 . 4009703 . 2994998 . 337859 . 3872561 . 4313123 . 4872503 . 5631599 . 6228805 . 6808485 . 7427938 . 8152234 . 8829063 . 9782966 1.059337</pre>	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.052 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.533 0.445	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	21.54 0.0000 Interval] .2513491 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384
corr(u_i, Xb) 	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 .2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.76	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.533 0.445	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.069033 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.219064 8.391196 1.25764 1.856603 .6759329 .8286008 .9948903 .704345 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384
corr(u_i, Xb) Inindfdist~k Inindfdist~k Insecedu Insecedu Intertedu Indutr1 Inwage Intradefree Intradefree Intransition Intrinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c3 c4 c5 c6 c7	= 0.5226 Coef. .1934758 6698671 3828825 (omitted) 5342059 .4507245 .0347742 1.37947 2.662767 .4709106 1.268965 (omitted) .0130319 .0687798 .1486281 2516717 0294384 .1530985 5.2521734 .5290596 .6040135 .5468484 .6100633 .8098976 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)	Std. Err. .0294962 1.501536 .7326196 .7749431 .7466757 .6023787 .9375811 2.919594 .4009703 .2994998 .337859 .3872561 .4313123 .4872503 .5631599 .6228805 .6808485 .7427938 .8152234 .8829063 .9782966 1.059337	t 6.56 -0.45 -0.52 -0.69 0.60 0.06 1.47 0.91 1.17 4.24 0.04 0.18 0.34 -0.52 -0.05 0.25 0.37 0.71 0.74 0.62 0.62 0.76	F(22,11 Prob > P> t 0.000 0.656 0.601 0.491 0.546 0.954 0.141 0.362 0.240 0.000 0.969 0.859 0.730 0.606 0.958 0.806 0.711 0.476 0.459 0.536 0.533 0.445	31) = F = = [95% Conf. .1356024 -3.615976 -1.820329 -2.054694 -1.014301 -1.147131 4601241 -3.065661 3158187 .6813273 649869 6910413 697634 -1.207688 -1.134394 -1.083695 9283491 9955066 -1.18547 -1.309417 -1.268589	21.54 0.0000 Interval] 2.276242 1.054564 .9862818 1.91575 1.21668 3.21906 1.25764 1.856603 .6759329 .8286008 .9948903 .7043445 1.075517 1.37523 1.588042 1.986468 2.203534 2.279167 2.529544 2.888384

c8	(omitted)							
c9	(omitted)							
c10	(omitted)							
c11	(omitted)							
c12	(omitted)							
c13	(omitted)							
c14	(omitted)							
s2	(omitted)							
s3	(omitted)							
s4	(omitted)							
s5	(omitted)							
s6	(omitted)							
s7	(omitted)							
s8	(omitted)							
s9	(omitted)							
s10	(omitted)							
s11	(omitted)							
s12	(omitted)							
s13	(omitted)							
_cons	-11.95249	15.26	013	-0.78	0.434	-41	.89383	17.98885
+-	1 1583088							
sigma_u	1 2182688							
signa_c	58896617	(frac	tion o	f waria	ngo duo t	0 11 i	\ \	
± 110		(11 aC		- varia	e uue t		,	
F test that all	u_i=0:	F(129,	1131)	=	2.12		Prob >	F = 0.0000

•

. **Model 6.7 OLS . reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lnedutr1 lnwage lngdp lntradefree lneconfree lntransition 1 > nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13 note: lnedutr1 omitted because of collinearity note: d2008 omitted because of collinearity note: c2 omitted because of collinearity note: c3 omitted because of collinearity note: c10 omitted because of collinearity

Source	I SS	df		MS		Number of obs	=	1283
Model	+	44	126	514265		F(44, 1238) Prob > F	=	/5.16
Residual	2083.96973	1238	1.68	333581		R-squared	_	0.7276
	+					Adj R-squared	=	0.7179
Total	7650.59737	1282	5.96	5770466		Root MSE	=	1.2974
lnindfdist~k	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lnindfdictak	+							
L1.	.4778515	.0250	706	19.06	0.000	.428666		.527037
lnsecedu	996562	1.596	739	-0.62	0.533	-4.129175	2	.136051
lntertedu	2239122	.7790	083	-0.29	0.774	-1.752235		1.30441
Inedutrl	(omitted)	0001	1 7 0	0 70	0 475	0 000501	1	000100
Inwage	5886/15 5540401	.8231	1/3	-0.72	0.4/5	-2.203531	Ţ	2 10541
Intradefree	- 1448079	6402	688	-0.23	0.403	9955295	1	111324
lneconfree	.5732394	.9968	057	0.58	0.565	-1.382376	2	.528855
Intransition	2.432461	3.107	627	0.78	0.434	-3.664335	8	.529258
lnictinfra	.2218436	.4265	315	0.52	0.603	6149608	1	.058648
indprivati~n	1.655353	.3044	638	5.44	0.000	1.058031	2	.252675
d1996	8193515	1.127	264	-0.73	0.467	-3.03091	1	.392207
d1997	6819054	1.012	083	-0.67	0.501	-2.667494	1	.303683
d1998	6334704	.9104	454	-0.70	0.487	-2.419657	1	.152716
d1999	0720769	.8483	348	-0.67	0.506	-2.228/05	Ţ	.099961 6041477
d2000	9730766 - 5908311	.0039	544 608	-1.21	0.220	-2.025282	•	8436201
d2001	- 4850339	6386	994	-0.76	0.419	-1 738087	•	768019
d2002	4556584	.5259	541	-0.87	0.386	-1.487518		5762016
d2004	1850777	.4443	288	-0.42	0.677	-1.056799		.686643
d2005	1870454	.3706	179	-0.50	0.614	9141539		5400631
d2006	2483097	.3014	798	-0.82	0.410	8397775	•	3431581
d2007	1869985	.2092	488	-0.89	0.372	59752	•	2235229
d2008	(omitted)							
c2	(omitted)							
C3	(OMILLED)	1 1/5	955	1 09	0 278	_1 00/188	3	192269
C4 C5	1 1 870444	1 793	353	1 04	0.270	-1 647903	J	5 38879
c6	1.58697	1.591	961	1.00	0.319	-1.53627		4.71021
c7	1.7172	1.581	333	1.09	0.278	-1.385188	4	.819588
c8	.8826534	1.029	984	0.86	0.392	-1.138054	2	.903361
с9	1.386442	1.298	826	1.07	0.286	-1.161701	3	.934585
c10	(omitted)							
c11	.4861865	2.229	463	0.22	0.827	-3.887756	4	.860129
c12	1.377434	1.707	043	0.81	0.420	-1.971583	4	.726451
C13	1.339142 1.242042	1 260	368	1.20	0.232	858889	3	027104
C14 c2	1.343043	1834	158	-4 15	0.320	-1 120167	- 4	4004862
53	-2.140034	.2165	296	-9.88	0.000	-2.56484	-1	.715229
s4	1852932	.183	226	-1.01	0.312	544761		1741746
s5	-1.609111	.2165	958	-7.43	0.000	-2.034047	-1	.184176
s6	2057085	.179	393	-1.15	0.252	5576564		1462395
s7	626032	.182	978	-3.42	0.001	9850133		2670507
s8	198082	.1833	286	-1.08	0.280	5577512	•	1615871
s9	3850523	.1817	988	-2.12	0.034	7417201		0283845
s10	6/52637	.1815	045	-3./2	0.000	-1.0314/2		3190555
S11 s12	I3444120	.1770	358	-1.93	0.034	- 6627141	•	0354641
s13	-1.287006	.1946	514	-6.61	0.000	-1.668889		9051231
cons	-8.980017	15.97	736	-0.56	0.574	-40.32571	2	2.36568

Appendix 6.12: Model 6.8 results

```
. **Model 6.8 System GMM
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnedutr2 lnwage lngdp
Intradefree Ineconfree Intransit
> ion lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 2) collapse) iv(lnsec
> edu Intertedu Inedutr2 Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra
indprivatisation d1996-d2008
> c2-c14 s2-s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d1996 dropped due to collinearity
d1997 dropped due to collinearity
d1998 dropped due to collinearity
d1999 dropped due to collinearity
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
```

Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst F(41, 128)	e: id : year truments = 44 = 71.09			Number Number Obs per	of obs = of groups = group: min = avg =	1017 129 2 7.88
Prob > F	= 0.000				max =	9
lnindfdist~k	Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+ I					
L1.	.2471913	.1338728	1.85	0.067	0176989	.5120815
lnsecedu	I .5316728	3.94001	0.13	0.893	-7.264311	8.327657
Intertedu	- 2888301	1 690202	-0.17	0 865	-3 633183	3 055523
lnedutr2	-2.032767	2.538394	-0.80	0.425	-7.055412	2.989879
Inwage	1769181	.7841293	-0.23	0.822	-1.728452	1.374616
lnadp	.2387449	1.150458	0.21	0.836	-2.037632	2.515122
Intradefree	- 3954479	4186803	-0.94	0.347	-1.223878	4329826
Ineconfree	1.130553	.6118557	1.85	0.067	0801082	2.341214
Intransition	2.575986	2.957642	0.87	0.385	-3.276215	8,428186
lnictinfra	.2354257	.631623	0.37	0.710	-1.014348	1,4852
indprivati~n	1.092808	.6823433	1.60	0.112	2573253	2.44294
d2000	-2.596683	1.805602	-1.44	0.153	-6.169375	.9760097
d2001	-2.006699	1.478533	-1.36	0.177	-4.932228	.9188307
d2002	-1.6729	1.185281	-1.41	0.161	-4.018181	.6723822
d2003	-1.387378	.8659555	-1.60	0.112	-3.100819	.3260631
d2004	8642311	.6996054	-1.24	0.219	-2.24852	.5200577
d2005	6093439	.4821514	-1.26	0.209	-1.563363	.344675
d2006	4757525	. 3122733	-1.52	0.130	-1.093639	.1421335
d2007	1519571	.2176071	-0.70	0.486	5825299	.2786156
c.4	1.33198	1.630616	0.82	0.416	-1.894473	4.558433
c.5	1.287664	4.466655	0.29	0.774	-7.550377	10.1257
c 6	264221	1.149067	0.23	0.819	-2.009405	2.537847
c7	1,460366	3.042518	0.48	0.632	-4.559776	7.480509
c8	0565919	1.098785	-0.05	0.959	-2.230726	2.117543
C 9	3943886	1,917376	0.21	0.837	-3.399467	4.188244
c11	2.650141	4.146407	0.64	0.524	-5.554234	10.85452
c12	1,923656	3.465959	0.56	0.580	-4.934336	8.781647
c13	1 717337	2 006856	0.86	0 394	-2 253571	5 688245
c14	1 073528	1 843067	0.58	0 561	-2 573295	4 72035
s2	-1.107974	.3492908	-3.17	0.002	-1.799106	- 4168429
53	-3.041175	.855519	-3.55	0.001	-4.733965	-1.348385
s4	2345176	2565837	-0.91	0.362	7422123	.273177
s5	-2.015386	.6452471	-3.12	0.002	-3.292118	7386545
56	2603064	.2399599	-1.08	0.280	7351082	.2144953
s7	8620969	.2947679	-2.92	0.004	-1.445346	2788484
s8	2269404	.231945	-0.98	0.330	6858833	.2320024
s9	4470334	.2469849	-1.81	0.073	9357352	.0416683

	s10 s11 s12 s13 _cons	963826 4478979 420763 -1.744846 -12.27674	.2930736 .2490195 .2945916 .4491459 30.0098	-3.29 -1.80 -1.43 -3.88 -0.41	0.001 0.074 0.156 0.000 0.683	-1.543722 9406255 -1.003663 -2.633558 -71.65625	3 .0 .1 8 47	839298 448298 621368 561344 .10277
Instrum Stand FOD Int d2C C1C GMM-t L(1 Instrum Stand c1C GMM-t D.I	hents for dard 0.(lnsece rransitio 001 d2002 0) cl1 cl2 type (mis //2).L.ln hents for dard secedu ln rransitio 001 d2002 0) cl1 cl2 type (mis .lnindfd	orthogonal d du Intertedu n Inictinfra d2003 d2004 c13 c14 s2 s sing=0, sepan indfdistock d levels equat tertedu Inedu n Inictinfra d2003 d2004 c13 c14 s2 s sing=0, sepan istock collag	deviations of lnedutr2 li indprivati d2005 d2000 s3 s4 s5 s6 cate instrum collapsed tion utr2 lnwage indprivati d2005 d2000 s3 s4 s5 s6 cate instrum psed	equation nwage lng sation d1 6 d2007 c s7 s8 s9 ments for lngdp lr sation d1 6 d2007 c s7 s8 s9 ments for	dp lntra 996 d199 12008 c2 9 s10 s1: 5 each pe 12008 c2 996 d199 12008 c2 9 s10 s1: 5 each pe	adefree lneco 97 d1998 d199 c3 c4 c5 c6 l s12 s13) eriod unless ee lneconfree 97 d1998 d199 c3 c4 c5 c6 l s12 s13 eriod unless	nfree 9 d20 c7 c8 collaj 9 d20 c7 c8 collaj	00 c9 psed) 00 c9 psed)
Arellar Arellar	no-Bond t no-Bond t	est for AR(1) est for AR(2)) in first () in first (differenc differenc	ces: z = ces: z =	-1.65 Pr > -1.20 Pr >	z = z =	0.098 0.228
Sargan (Not Hansen (Robu	test of robust, test of ust, but	overid. rest but not weake overid. rest can be weake	rictions: cl ened by many rictions: cl ned by many	hi2(2) y instrum hi2(2) instrume	= 9.8 ments.) = 0.9 ents.)	33 Prob > ch 98 Prob > ch	i2 = i2 =	0.007
Differe GMM i Har Dif	ence-in-H Instrumen Isen test Eference	ansen tests o ts for levels excluding gn (null H = exc	of exogenei s coup: cl ogenous): cl	ty of ins hi2(1) hi2(1)	= 0.9 = 0.4	subsets: 53 Prob > ch 45 Prob > ch	i2 = i2 =	0.468 0.501

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	.7062523	5.160208	0.14	0.891	-9.504101	10.91661

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
+									
_nl_1	3836699	2.196171	-0.17	0.862	-4.729169	3.961829			

. nlcom _b[lnedutr2]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnedutr2]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	-2.700243	3.229872	-0.84	0.405	-9.091096	3.690609

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl 1	2350107	1.049275	-0.22	0.823	-2.311181	1.841159

. nlcom _b[lngdp]/(1-_b[1.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	.3171389	1.540019	0.21	0.837	-2.730053	3.36433

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	5252966	.5726001	-0.92	0.361	-1.658284	.6076904

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	1.50178	.7594319	1.98	0.050	0008859	3.004446

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	3.421833	4.271524	0.80	0.425	-5.030108	11.87377

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.3127298	.8127523	0.38	0.701	-1.295439	1.920899

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

.

_nl_1: _b[indprivatisation]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	1.451641	1.059848	1.37	0.173	645449	3.54873

. xtreg lnind: lntradefree ln	Edistock l.lni					
lincraderree In	acconfuse late	indfdistock i	lnsecedu	lntertedu	ı lnedutr2 lr	nwage lngdp
> I [] [[] [] [] [] [] []	indorivaticat	ion d1996-d	2008 c2-c	-14 -2	fo	
note: d1996 or	nitted because	e of colline	arity	214 32-313	, 10	
note: d1997 or	nitted because	e of collinea	arity			
note: d1998 or	nitted because	e of collinea	arity			
note: d1999 or	nitted because	e of collinea	arity			
note: d2000 or	nitted because	e of collinea	arity			
note: c2 omit	ed because of	t collineari	ЗУ			
note: C3 omiti	ed because of	E collinearii	-у			
note: c5 omiti	ed because of	E collinearii	- Y - V			
note: c6 omit	ed because of	E collineari	- 1 - V			
note: c7 omitt	ed because of	E collineari	LY			
note: c8 omit	ed because of	E collineari	-y			
note: c9 omit	ed because of	E collineari	ΞУ			
note: c10 omit	ted because o	of collinear:	ity			
note: cli omit	ted because of	of collinear:	LTY Ltv			
note: c13 omit	ted because (of collinear	itv			
note: c14 omit	ted because o	of collinear:	itv			
note: s2 omit	ed because of	E collineari	Ξy			
note: s3 omit	ed because of	E collineari	СУ			
note: s4 omitt	ed because of	E collineari	ГУ			
note: s5 omiti	ed because of	t collineari	-У			
note: so omiti	ed because of	E collineari E collineari	-y			
note: s8 omiti	ed because of	f collineari	- Y - V			
note: s9 omit1	ed because of	E collineari	-y Ly			
note: s10 omit	ted because o	of collinear:	ity			
note: s11 omit	ted because o	of collinear	ity			
note: s12 omit	ted because o	of collinear	ity			
note: s13 omit	ted because o	of collinear:	ity			
Fixed_offocts	(within) room	cossion		Number	fobc -	- 1017
Group variable	(within) regr e: id	-6551011		Number o	of aroups =	= 129
					- 9 F -	
R-sq: within	= 0.2078			Obs per	group: min =	= 2
between	n = 0.5268				avg =	- 7.9
overall	L = 0.3421				max =	= 9
				F (10,000		10.00
corr(u i Xb)	- 0 0871			F(19,869	') = ' =	= 12.00
COII(u_I, XD)	- 0.0071			FIOD > F	-	
						0.0000
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
<pre>lnindfdist~k lnindfdist~k</pre>	Coef.	Std. Err.	t t	P> t	[95% Conf.	. Interval]
lnindfdist~k lnindfdist~k Ll.	Coef.	Std. Err.	t 4.51	P> t 0.000	[95% Conf.	. Interval]
lnindfdist~k lnindfdist~k L1.	Coef.	Std. Err.	t 4.51	P> t 0.000	[95% Conf. .0872541	. Interval] .2216304
lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu	Coef.	Std. Err.	t 4.51 -0.67 1.18	P> t 0.000 0.505 0.239	[95% Conf. .0872541 -7.469826 -1.026321	. Interval] . 2216304 3.681129 4.117763
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2</pre>	Coef. .1544423 -1.894348 1.545721 0938979	Std. Err.	t 4.51 -0.67 1.18 -0.03	<pre>P> t 0.000 0.505 0.239 0.976</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945	. Interval] .2216304 3.681129 4.117763 5.949149
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617	t 4.51 -0.67 1.18 -0.03 -0.21	<pre>P> t 0.000 0.505 0.239 0.976 0.830</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438	. Interval] .2216304 3.681129 4.117763 5.949149 2.615622
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983	t 4.51 -0.67 1.18 -0.03 -0.21 0.32	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213	.2216304 3.681129 4.117763 5.949149 2.615622 4.045444
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.622</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lneconfree lneconfree</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.100</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 2.004240	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691
<pre>lnindfdist~k</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 6277883	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713
<pre>lnindfdist~k</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731	t -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted)	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731	t -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted)	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731	t -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268
<pre>lnindfdist~k lnindfdist~k lnsecedu lntertedu lnedutr2 lnwage lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted)	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731	t -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.1369421 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 </pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted)	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719	. 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268
<pre>lnindfdist~k lnindfdist~k lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719	. Interval] . 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2001</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 4452622	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.42	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719	. 2216304 3.681129 4.117763 5.949149 2.615622 4.04544 1.625539 3.017691 13.99713 1.068499 1.927268
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 </pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 .4452692 .5095087	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731 .5452607 .933336 1.267414	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.48 0.40	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719 7879773 -1.386587 -1.978041	. Interval] . 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268 1.352387 2.277125 2.997059
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 .4452692 .5095087 .7581084	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731 .5452607 .933336 1.267414 1.573375	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.48 0.40 0.48	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000 0.605 0.633 0.688 0.630</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.7819685 -1.395818 .5436719 7879773 -1.386587 -1.978041 -2.329951	. Interval] . 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268 1.352387 2.277125 2.997059 3.846168
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lnedutr2 lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 .4452692 .5095087 .7581084 .8380035	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731 .5452607 .933336 1.267414 1.573375 1.857651	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.48 0.40 0.45	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000 0.605 0.633 0.688 0.630 0.652</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719 7879773 -1.386587 -1.978041 -2.329951 -2.808004	. Interval] . 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268 1.352387 2.277125 2.997059 3.846168 4.484011
<pre>lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Inedutr2 Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2006</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 .4452692 .5095087 .7581084 .8380035 .7767722	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731 .5452607 .93336 1.267414 1.573375 1.857651 2.080451	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.48 0.40 0.48 0.45 0.37	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000 0.605 0.633 0.688 0.630 0.652 0.709</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719 7879773 -1.386587 -1.978041 -2.329951 -2.808004 -3.306525	. Interval] . 2216304 3.681129 4.117763 5.949149 2.615622 4.04544 1.625539 3.017691 13.99713 1.068499 1.927268 1.352387 2.277125 2.997059 3.846168 4.484011 4.860069
<pre>lnindfdist~k Inindfdist~k lnsecedu Intertedu Intertedu Inedutr2 Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2001 d2002 d2003 d2004 d2005 d2006 d2007</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 .4452692 .5095087 .7581084 8380035 .7767722 .7837934	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731 .5452607 .933336 1.267414 1.573375 1.857651 2.080451 2.280204	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.48 0.40 0.48 0.45 0.37 0.34	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000 0.605 0.633 0.688 0.630 0.652 0.709 0.731</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719 7879773 -1.386587 -1.978041 -2.329951 -2.808004 -3.306525 -3.691557	. Interval] . 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268 1.352387 2.277125 2.997059 3.846168 4.484011 4.860069 5.259144
<pre>lnindfdist~k</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 .4452692 .5095087 .7581084 .8380035 .7767722 .7837934 .9360274	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731 .5452607 .933336 1.267414 1.573375 1.857651 2.080451 2.280204 2.462257	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.48 0.48 0.40 0.48 0.40 0.37 0.34 0.38	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000 0.605 0.633 0.688 0.630 0.652 0.709 0.731 0.704</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719 7879773 -1.386587 -1.978041 -2.329951 -2.808004 -3.306525 -3.691557 -3.896639	. Interval] . 2216304 3.681129 4.117763 5.949149 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268 1.352387 2.277125 2.997059 3.846168 4.484011 4.860069 5.259144 5.768694
<pre>lnindfdist~k lnindfdist~k lnsecedu lntertedu lnedutr2 lnedutr2 lngdp lntradefree lncconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2005 d2005 d2006 c2</pre>	Coef. .1544423 -1.894348 1.545721 0938979 3209078 .5656156 2337731 .6178614 5.546141 1636593 1.23547 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) .2822047 .4452692 .5095087 .7581084 .8380035 .7767722 .7837934 .9360274 (omitted) (omitted)	Std. Err. .0342326 2.840721 1.310463 3.07895 1.49617 1.772983 .9473249 1.22272 4.305803 .6277883 .3524731 .5452607 .933336 1.267414 1.573375 1.857651 2.080451 2.280204 2.462257	t 4.51 -0.67 1.18 -0.03 -0.21 0.32 -0.25 0.51 1.29 -0.26 3.51 0.52 0.48 0.48 0.40 0.48 0.45 0.37 0.34 0.38	<pre>P> t 0.000 0.505 0.239 0.976 0.830 0.750 0.805 0.613 0.198 0.794 0.000 0.605 0.633 0.688 0.630 0.652 0.709 0.731 0.704</pre>	[95% Conf. .0872541 -7.469826 -1.026321 -6.136945 -3.257438 -2.914213 -2.093085 -1.781968 -2.904849 -1.395818 .5436719 7879773 -1.386587 -1.978041 -2.329951 -2.808004 -3.306525 -3.691557 -3.896639	1.352387 2.277125 2.997059 3.846109 2.615622 4.045444 1.625539 3.017691 13.99713 1.068499 1.927268 1.352387 2.277125 2.997059 3.846108 4.484011 4.860069 5.259144 5.768694

c5 (omitted)		
c6 (omitted)		
c7 (omitted)		
c8 (omitted)		
c9 (omitted)		
c10 (omitted)		
cll (omitted)		
c12 (omitted)		
c13 (omitted)		
c14 (omitted)		
s2 (omitted)		
s3 (omitted)		
s4 (omitted)		
s5 (omitted)		
s6 (omitted)		
s7 (omitted)		
s8 (omitted)		
s9 (omitted)		
s10 (omitted)		
s11 (omitted)		
s12 (omitted)		
s13 (omitted)		
_cons -11.82798	36.03991 -0.33 0.743 -	-82.56343 58.90747
sigma_e 1.3444254		
rho .58067024	(fraction of variance due to u	1_i)
F test that all u_i=0:	F(128, 869) = 1.69	Prob > F = 0.0000

. **Model 6.8 OLS	
. reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lnedutr2 lnwage lngdp	
Intradefree lneconfree Intransition 1	
> nictinfra indprivatisation d1996-d2008 c2-c14 s2-s13	
note: d1996 omitted because of collinearity	
note: d1997 omitted because of collinearity	
note: d1998 omitted because of collinearity	
note: d1999 omitted because of collinearity	
note: d2008 omitted because of collinearity	
note: c2 omitted because of collinearity	
note: c3 omitted because of collinearity	
note: c10 omitted because of collinearity	

Source	SS	df	MS	_	Number of obs	= 1017
Model Residual	4150.22348 1962.08077	41 975	101.22496 2.0123905	3 3	Prob > F R-squared	= 0.0000 = 0.6790
Total	6112.30425	1016	6.0160474	9	Root MSE	= 0.6655 = 1.4186
lnindfdist~k	Coef.	Std. E	Srr.	t P> t	[95% Conf.	Interval]
lnindfdist~k L1.	.4451329	.02903	356 15.	33 0.000	.3881533	.5021124
L1. Insecedu Intertedu Inedutr2 Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4	<pre>4451329 -2.632523 1.531901 .4292342 -1.107588 1.5520484748131769781 5.104167 5.104167 (omitted)</pre>	.02903 2.9923 1.3798 3.2462 1.573 1.86 .99836 1.2885 4.5387 .66136 .35388 2.5961 2.0944 1.6782 1.3139 .99934 .71427 .4917 .28511 2.3356 4.2234 2.8660 3.8211 2.0623 2.4296 5.0345 4.2538 2.4474 3.0701 .22490 .2212	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 0.000 88 0.379 11 0.267 13 0.895 70 0.482 83 0.405 48 0.634 12 0.261 12 0.634 14 0.891 12 0.267 18 0.855 03 0.973 74 0.000 18 0.855 03 0.974 02 0.983 09 0.932 06 0.953 02 0.980 18 0.860 46 0.648 25 0.803 27 0.786 34 0.735 19 0.849 02 0.981 11 0.914 82 0.415 16 0.875 01 0.989 09 0.925 3 0.000	.3881533 -8.504806 -1.176006 -5.941186 -4.196053 -2.104296 -2.434007 -2.705718 -3.802653 -1.887848 .9825765 -5.570617 -4.179045 -3.32821 -2.690856 -1.902029 -1.383869 -1.051558 6898746 -4.002018 -7.143123 -4.655357 -8.226566 -4.094976 -4.505802 -13.98968 -9.018355 -4.77014 -5.73568 -1.235217 -2.691388 691388 5718193	.5021124 3.23976 4.239808 6.799655 1.980877 5.208393 1.484381 2.351762 14.01099 .7078956 2.371497 4.618717 4.04127 3.258449 2.466142 2.020184 4.419501 .8785917 .4291298 5.164908 9.433064 6.593217 6.77078 3.999248 5.030132 5.769855 7.677325 4.835444 6.314065 3525104 -1.666536 .3068728
s5 s6 s7 s8 s9 s10 s11	-1.52/418 2008726 5856399 1234263 3441415 6756028 280944 -2783651	.26132 .22047 .22383 .2238 .22341 .22185 .21783	289 -5. 757 -0. 817 -2. 889 -0. 559 -1. 567 -3. 879 -1. 001 -1	84 0.000 91 0.362 62 0.009 55 0.582 54 0.124 05 0.002 29 0.197 28 0.201	-2.04025 6335342 -1.024887 5627861 7825729 -1.110975 7084291 704991	-1.014586 .231789 1463925 .3159335 .0942899 2402312 .146541
s12 s13 cons	2/83651 -1.336615 -20.30152	.23610)49 -5.)37 -0.	28 0.201 66 0.000 56 0.575	704991 -1.799947 -91.41374	.1482608 8732829 50.81069

Appendix 6.13: Model 6.9 results

```
. **Model 6.9 System GMM
 . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lnmanvacancy lnwage lngdp
Intradefree Ineconfree Intra
> nsition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 2) collapse) iv(1
> nsecedu lntertedu lnmanvacancy lnwage lngdp lntradefree lneconfree lntransition
Inictinfra indprivatisation d199
> 6-d2008 c2-c14 s2-s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d1996 dropped due to collinearity
d1997 dropped due to collinearity
d1998 dropped due to collinearity
d1999 dropped due to collinearity
d2000 dropped due to collinearity
d2001 dropped due to collinearity
d2005 dropped due to collinearity
d2006 dropped due to collinearity
d2007 dropped due to collinearity
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c10 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
   Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
   Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
   _____
                                                                      Number of obs = 474
Number of groups = 129
Group variable: id
Time variable : year
Number of instruments = 39
                                                                     Obs per group: min =
avg =
                                                                                                                  2
                                                                                                               3.67
F(36, 128) = 43.04
Prob > F = 0.000
                                                                                              max =
Prob > F
                                                                                                             4
                  1
                                    Corrected
lnindfdist~k | Coef. Std. Err.
                                                              t P>|t| [95% Conf. Interval]
_____
lnindfdist~k |
         L1. | .1623606 .0644369 2.52 0.013 .0348612 .2898599
                                                                                                      2.455212
Insecedu |-5.269533.904006-1.350.179Intertedu |2.8060312.0420721.370.172Inmanvacancy |.2430967.47951830.510.613
                                                                                  -12.99427
                                                                                     -1.234557
                                                                                                          6.84662
                                                                                     -.7057121
                                                                                                      1.191906

        Inwage |
        -1.282527
        2.259141

        Ingdp |
        2.473552
        2.157266

        Intradefree |
        -1.476849
        .7953757

        Ineconfree |
        .412047
        1.530543

      Inwage |
      -1.282527
      2.259141
      -0.57
      0.571
      -5.752624

      Ingdp |
      2.473552
      2.157266
      1.15
      0.254
      -1.794966

      Intradefree |
      -1.476849
      .7953757
      -1.86
      0.066
      -3.050636

      Ineconfree |
      .412047
      1.530543
      0.27
      0.788
      -2.616393

      Intransition |
      1.482094
      4.644855
      0.32
      0.750
      -7.708545

                                                                                                        3.187569
                                                                                                        6.742071
                                                                                                        .0969372
                                                                                                         3.440487
                                                                                                        10.67273
                                                           -1.68 0.095 -3.170585
1.51 0.133 -.3821771
                       -1.457939 .8655539
1.240731 .820201
                                                                                                         .2547076
   lnictinfra |
indprivati~n |
                                                                                                         2.863639
                       -.612343 .5666512 -1.08 0.282 -1.733559
                                                                                                       .5088733
          d2002 |
          d2003 | -.5903033 .4510315
d2004 | -.2538604 .1969357
                                                          -1.31 0.193
-1.29 0.200
                                                                                                        .3021396
                                                                                    -1.482746
                                                                                     -.6435313
                                                                                                        .1358105

      c4 |
      1.18061
      1.684804
      0.70
      0.485
      -2.153061

      c5 |
      3.84144
      4.307167
      0.89
      0.374
      -4.681026

      c6 |
      3.273879
      3.601662
      0.91
      0.365
      -3.852625

      c7 |
      .3011992
      3.943585
      0.08
      0.939
      -7.501858

      c8 |
      .9411944
      2.542453
      0.37
      0.712
      -4.089483

                                                                                                        4.514282
                                                                                                        12.36391
                                                                                                      10.40038
                       .3011992 3.943585
.9411944 2.542453
                                                                                                         8,104257
                                                                                                        5.971871

        c9
        2.04759
        3.260275
        0.63
        0.531
        -4.403422

        c11
        -6.007371
        5.815265
        -1.03
        0.304
        -17.51387

        c12
        -.4962372
        4.499215
        -0.11
        0.912
        -9.398703

                                                                                                      8.498602
```

c13 | 1.18063 2.290358 0.52 0.607 c14 | .4342362 2.743247 0.16 0.874

.3030889

s2 | -1.228538 .3167719

s3 | -2.79709 .414308 s4 | -.2851709 .2888651

s7 | -1.003216 .2856124

s8 | -.2999942 .2714149 s9 | -.6243253 .2902699

-.3825483

-2.51857 .8746722

s5 |

s6 |

5.499124 8.406229

5.712494 5.862219

-.601751

-1.977311 .286398 -.7878822

.2171649

-.4380832

.2370466 -.0499767

-3.351234

-4.993747

-3.88 0.000 -1.855326

-6.75 0.000 -3.616869 -0.99 0.325 -.8567398

-2.88 0.005 -4.249259 -1.26 0.209 -.9822616

-3.51 0.001 -1.568349

-1.11 0.271 -.837035 -2.15 0.033 -1.198674

s1 s1 s1 s1 _con	0 - 1 - 2 - 3 - s	1.092421 .6080296 .5401891 1.897566 -23.5394	.2796099 .2726269 .3342359 .3328755 38.46843	-3.91 -2.23 -1.62 -5.70 -0.61	0.000 0.027 0.109 0.000 0.542	-1.645677 -1.147469 -1.201532 -2.556217 -99.65576	5 0 .1 -1.1 52	391649 685906 211537 238915 .57697
Instruments Standard FOD.(ln Intrans d2001 GMM-type L(1/2). Instruments Standard cons Inseced Intrans d2001 d c10 c11 GMM-type D.L.lni	for o secedu ition 2002 d cl2 cc (missi L.lnin for l u lnte ition 2002 d cl2 cc (missi ndfdis	rthogonal o Intertedu Inictinfra 2003 d2004 13 c14 s2 : ng=0, sepa: dfdistock o evels equa rtedu lnma: Inictinfra 2003 d2004 13 c14 s2 : ng=0, sepa: tock collag	deviations lnmanvacar indprivati d2005 d2005 s3 s4 s5 s6 rate instru collapsed tion nvacancy lr indprivati d2005 d200 s3 s4 s5 s6 rate instru psed	equation cy lnwage sation dl 6 d2007 c is 7 s8 s9 iments for wage lngc sation dl 6 d2007 c is 7 s8 s9 iments for	e lngdp 996 d19 12008 c2 9 s10 s1 e each p 12008 c2 12008 c2 9 s10 s1 e each p	<pre>Intradefree 1 97 d1998 d199 : c3 c4 c5 c6 1 s12 s13) period unless defree lnecon 97 d1998 d199 : c3 c4 c5 c6 1 s12 s13 period unless </pre>	necon 9 d20 c7 c8 collaj free 9 d20 c7 c8 collaj	free 00 c9 psed) 00 c9 psed)
Arellano-Bc Arellano-Bc	nd tes nd tes	t for AR(1 t for AR(2) in first) in first	differenc differenc	es: z = es: z =	-1.13 Pr > 1.33 Pr >	z = z =	0.259 0.185
Sargan test (Not robu Hansen test (Robust,	of ov st, bu of ov but ca	erid. rest t not weak erid. rest n be weake	rictions: c ened by man rictions: c ned by many	chi2(2) ny instrum chi2(2) y instrume	= 1. nents.) = 1. ents.)	77 Prob > ch 33 Prob > ch	.i2 = .i2 =	0.412
Difference- GMM instr Hansen Differe	in-Han uments test e nce (n	sen tests for levels xcluding g ull H = exe	of exogenei s roup: c ogenous): c	ty of ins: hi2(1) hi2(1)	= 0. = 0.	<pre>subsets: 73 Prob > ch 60 Prob > ch</pre>	i2 = i2 =	0.393 0.438

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-6.290929	4.458424	-1.41	0.161	-15.11268	2.530824

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	3.349928	2.45272	1.37	0.174	-1.503198	8.203054

. nlcom _b[lnmanvacancy]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnmanvacancy]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
+						
_n1_1	.2902164	.5831119	0.50	0.620	86357	1.444003

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-1.531121	2.662295	-0.58	0.566	-6.798927	3.736685

. nlcom _b[lngdp]/(1-_b[1.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	2.953004	2.528501	1.17	0.245	-2.050068	7.956076

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	-1.763109	.8885003	-1.98	0.049	-3.521158	0050591

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.4919145	1.807949	0.27	0.786	-3.085421	4.06925

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	1.76937	5.487313	0.32	0.748	-9.088217	12.62696

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	-1.740533	.9926776	-1.75	0.082	-3.704715	.2236497

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

.

_nl_1: _b[indprivatisation]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	1.481223	.9767697	1.52	0.132	4514828	3.413929

. **Model 6.9	FE						
. xtreg lnind	distock l.ln:	indfdistock	lnsecedu	lntertedu	lnmanvacan	cy lnwage	lngdp
lntradefree l	neconfree lnti	ransi	0.0 10000	0 14 0	10 5		
> tion iniction	itra indprivat	cisation dl9	96-d2008	c2-c14 s2	-sl3, ie		
note: d1996 of	nitted because	e of colline	arity				
note: d1998 or	nitted because	e of colline	arity				
note: d1999 or	nitted because	e of colline	arity				
note: d2000 or	nitted because	e of colline	arity				
note: d2001 or	nitted because	e of colline	arity				
note: d2005 or	nitted because	e of colline	arity				
note: d2006 or	nitted because	e of colline	arity				
note: d200/ or	nitted because	e of colline	arity				
note: c2 omiti	ed because of	E collineari	tv				
note: c3 omit	ed because of	E collineari	tv				
note: c4 omit	ed because of	E collineari	ty				
note: c5 omit	ed because of	E collineari	ty				
note: c6 omit	ed because of	E collineari	ty				
note: c7 omit	ed because of	E collineari	ty				
note: c8 omiti	ed because of	t collineari	ty				
note: c10 omit	ted because of	of collinear	itv				
note: c11 omit	ted because of	of collinear	itv				
note: c12 omit	ted because of	of collinear	ity				
note: c13 omit	ted because of	of collinear	ity				
note: c14 omit	ted because of	of collinear	ity				
note: s2 omit	ed because of	E collineari	ty				
note: s3 omit	ed because of	t collineari	ty				
note: s4 omiti	ed because of	E COllineari E collinoari	ty				
note: s6 omiti	ed because of	E collineari	tv				
note: s7 omit1	ed because of	E collineari	ty				
note: s8 omit	ed because of	E collineari	ty				
note: s9 omit	ed because of	E collineari	ty				
note: s10 omit	ted because of	of collinear	ity				
note: s11 omit	ted because o	of collinear	ity				
note: sl2 omit	ted because (of collinear	ity				
10000. 315 0101	ced because (or corrincar	тсу				
Fixed-effects	(within) reg	ression		Number o	f obs	= 47	4
Group variable	e: id			Number o	f groups :	= 12	.9
	0.4655						
R-sq: within	= 0.1655			Obs per	group: min	=	2
overal	1 = 0.0292				avg : may :	= 3. -	1
OVCIAI.	L = 0.0200				IIIdX ·	_	-
				F(14,331) :	= 4.6	9
corr(u_i, Xb)	= -0.7028			Prob > F	' :	= 0.000	0
						Turk 1	
	Coer.	Sta. Err.	τ	P> t	[95% Conr	. Interval	. J
lnindfdist~k							
L1.	1317418	.0476066	-2.77	0.006	2253914	038092	1
lnsecedu	-6.46421	5.429048	-1.19	0.235	-17.144	4.2155	8
lntertedu	4.21239	4.146953	1.02	0.310	-3.945316	12.370	1
Inmanvacancy	.548/969	.643979	0.85	0.395	/18010/	1.81560	15
lnado	1.06247	3.912538	0.27	0.786	-6.634106	8.75904	17
lntradefree	-1.275542	1.119891	-1.14	0.256	-3.478544	.927459	19
lneconfree	1.585176	3.004957	0.53	0.598	-4.326045	7.49639	7
lntransition	1.319704	7.06918	0.19	0.852	-12.58648	15.2258	19
lnictinfra	-1.283302	1.38941	-0.92	0.356	-4.016488	1.44988	5
indprivati~n	.256356	.4424349	0.58	0.563	6139829	1.12669	15
01996 71007	(omitted)						
d1998	(omitted)						
d1999	(omitted)						
d2000	(omitted)						
d2001	(omitted)		o – -	0 4 5 5			-
d2002		1.128426	-0.74	U.460	-3.053931	1.3856	5
d2003	3592856	.3091125	-1.16	0.245	-1.9673583	.248787	1
		·	- • - V				-

F test that	all	u_i=0:	F(128, 331)	= 2	.55	Prob >	F = 0.0000
sigma_u sigma_e rhc		2.8747652 1.0125354 .88963587	(fraction	of varia	nce due to	o u_i)	
d200 d2008 c2 c3 c4 c5 c6 c6 c1 c1 c12 c12 c12 c12 c12 c12	7	<pre>(omitted) (</pre>	74.03014	-0.01	0.992	-146.342	144.9158
d2005 d2006	5 5	(omitted) (omitted)					

. **Model 6.9	OLS					
. reg lnindfdi	stock l.lnind	fdistock ln	secedu l	ntertedu	lnmanvacancy	lnwage lngdp
> on lnictinf	econiree intr	ansiti ation d1996	-d2008 c	2-014 02		
note: d1996 or	itted because	of colline	aritv	2-014 32	-515	
note: d1997 or	nitted because	of colline	arity			
note: d1998 or	nitted because	of colline	arity			
note: d1999 or	nitted because	of colline	arity			
note: d2000 or	nitted because	of colline	arity			
note: d2001 or	nitted because	of colline	arity arity			
note: d2002 of	itted because	of colline	arity			
note: d2007 or	nitted because	of colline	arity			
note: d2008 or	nitted because	of colline	arity			
note: c2 omitt	ed because of	collineari	ty			
note: c3 omitt	ed because of	collineari f collineari	ty			
note: ciù omit	led because o	i coilinear	тсу			
Source	SS	df	MS		Number of obs	= 474
					F(36, 437)	= 30.85
Model	1713.49929	36 47.5	972025		Prob > F	= 0.0000
Residual	674.304541	437 1.54	303099		R-squared	= 0.7176
Total	2387 80383	473 5 04	821106		Adj K-squared	= 0.6943 = 1.2422
IOCAL	2307.00303	4/5 5.04	021100		NOOC MOL	- 1.2422
lnindfdist~k	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
lnindfdist~k						
L1.	.3645601	.0426396	8.55	0.000	.2807559	.4483644
Insecedu	-5.889452	6.647576	-0.89	0.376	-18.95465	7.175743
Innenvecency	0338434	7881219	0.33	0.739	-0.207090	1 582824
lnwage	-1.712065	4.907729	-0.35	0.727	-11.35775	7.933621
lngdp	2.917351	4.782743	0.61	0.542	-6.482687	12.31739
lntradefree	-1.560958	1.370548	-1.14	0.255	-4.254642	1.132726
lneconfree	3172042	3.680971	-0.09	0.931	-7.551812	6.917403
Intransition	1.239104	8.664374	0.14	0.886	-15.78992	18.26813
indorivatian	-1.425153	1.701448	-0.84	0.403	-4.769192	3 033703
d1996	(omitted)	. 4075075	1.00	0.000	1.100004	3.033703
d1997	(omitted)					
d1998	(omitted)					
d1999	(omitted)					
d2000	(omitted)					
d2001	(omitted)					
d2002	0105919	.6495215	-0.02	0.987	-1.287166	1.265982
d2004	.3001285	1.061183	0.28	0.777	-1.785527	2.385784
d2005	.5384806	1.383676	0.39	0.697	-2.181005	3.257967
d2006	(omitted)					
d2007	(omitted)					
a2008	(omitted)					
c3	(omitted)					
с4	.5139797	4.673235	0.11	0.912	-8.670831	9.69879
c5	3.113824	9.239284	0.34	0.736	-15.04513	21.27278
c6	5.267948	8.217458	0.64	0.522	-10.8827	21.4186
c7	.3717934	9.80899	0.04	0.970	-18.90687	19.65045
C8	2.289598	5./5841 7 157002	0.40	0.691	-9.028022	13.60/22
c10	(omitted)	1.13/003	0.49	0.020	-10.57654	11.33911
c11	-7.677295	13.10202	-0.59	0.558	-33.4281	18.0735
c12	-1.952978	10.25221	-0.19	0.849	-22.10275	18.19679
c13	.7223587	5.831507	0.12	0.901	-10.73893	12.18364
c14	.6273745	7.050386	0.09	0.929	-13.22951	14.48426
s2	9030392	.2900518	-3.11	0.002	-1.473109	3329692
SJ	-2.195124	.333839/ 2876198	-0.58 -0.53	0.000	-2.051255 - 7183593	-1.338993 4122207
s4 s5	-1.579224	.3487438	-4.53	0.000	-2.264648	8938006
s6	2894123	.2826688	-1.02	0.306	8449717	.2661471
s7	6909471	.2892021	-2.39	0.017	-1.259347	1225472
s8	1737184	.2875436	-0.60	0.546	7388588	.3914219
59	5253628	.28/9949	-1.82	0.069	-1.09139	. 0406645

s10		7666432	.2895425	-2.65	0.008	-1.335712	1975742
s11		3904962	.2813401	-1.39	0.166	9434441	.1624517
s12		3300268	.2809938	-1.17	0.241	8822941	.2222406
s13		-1.363044	.3065708	-4.45	0.000	-1.96558	7605071
_cons		-25.14777	86.69812	-0.29	0.772	-195.5449	145.2493

Appendix 6.14: Model 6.10 results

```
. **Model 6.10 System GMM
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lncognitive lnwage lngdp
lntradefree lneconfree lntran
> sition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 2) collapse) iv(ln
> secedu Intertedu Incognitive Inwage Ingdp Intradefree Ineconfree Intransition
lnictinfra indprivatisation d1996-
> d2008 c2-c14 s2-s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c10 dropped due to collinearity
c14 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan statistics may be negative.
```

Dynamic panel-data estimation, two-step system GMM

paner						
Group variable	e: id			Number	of obs =	1190
Time variable	: year			Number	of groups =	118
Number of inst	cruments = 46			Obs per	group: min =	1
F(43, 117)	= 86.33				avg =	10.08
Prob > F	= 0.000				max =	13
	 I	Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
	+					
lnindfdist~k						
L1.	.2734133	.1381996	1.98	0.050	0002837	.5471104
lnsecedu	6301696	1.050209	-0.60	0.550	-2.710053	1.449714
lntertedu	-1.149708	.8957392	-1.28	0.202	-2.923672	.6242565
lncognitive	9.368211	3.824135	2.45	0.016	1.794712	16.94171
lnwage	3437998	.4970901	-0.69	0.491	-1.328261	.6406611
lngdp	.2638605	.5614964	0.47	0.639	8481537	1.375875
lntradefree	100903	.2775874	-0.36	0.717	6506502	.4488442
lneconfree	1.666878	.6380633	2.61	0.010	.4032275	2.930529
lntransition	1.935826	1.116605	1.73	0.086	2755516	4.147203
lnictinfra	.339383	.25291	1.34	0.182	1614919	.8402579
indprivati~n	1.284724	.8492116	1.51	0.133	3970955	2.966543
d1996	-1.131936	.8234994	-1.37	0.172	-2.762834	.4989609
d1997	-1.141214	.7948586	-1.44	0.154	-2.71539	.4329616
d1998	-1.070207	.7439904	-1.44	0.153	-2.543641	.4032268
d1999	9536596	.6820016	-1.40	0.165	-2.304328	.3970087
d2000	-1.20929	.5561669	-2.17	0.032	-2.310749	1078301
d2001	9418119	.5447399	-1.73	0.086	-2.020641	.1370169
d2002	8300337	.4687773	-1.77	0.079	-1.758423	.0983552
d2003	7541855	.4661597	-1.62	0.108	-1.67739	.1690193
d2004	3776078	.2844143	-1.33	0.187	9408754	.1856598
d2005	2919753	.2032158	-1.44	0.153	6944335	.110483
d2006	315483	.1531521	-2.06	0.042	6187928	0121733
d2007	1063216	.1067601	-1.00	0.321	3177544	.1051112
c5	.5802203	1.390917	0.42	0.677	-2.174419	3.334859
с6	2079396	1.060298	-0.20	0.845	-2.307804	1.891925
с7	1.274691	1.293719	0.99	0.327	-1.287452	3.836834
c8	4460709	.6871025	-0.65	0.517	-1.806841	.9146996
с9	.5002541	1.012936	0.49	0.622	-1.505812	2.50632
c11	.8723578	1.472593	0.59	0.555	-2.044035	3.788751
c12	1.52098	1.371451	1.11	0.270	-1.195106	4.237066
c13	.1058687	.6525713	0.16	0.871	-1.186515	1.398252
s2	-1.038786	.3528116	-2.94	0.004	-1.737511	3400612
s3	-3.094493	.8778612	-3.53	0.001	-4.833051	-1.355935
s4	2505053	.2541049	-0.99	0.326	7537467	.2527361
s5	-2.432572	.6680723	-3.64	0.000	-3.755654	-1.10949
s6	3380133	.223451	-1.51	0.133	7805463	.1045196
s7	849182	.2873255	-2.96	0.004	-1.418215	2801488
s8	3749078	.229595	-1.63	0.105	8296087	.0797931
s9	5279527	.2484098	-2.13	0.036	-1.019915	0359901

	s10 s11 s12 s13 _cons	9398831 5393753 3994759 -1.726833 -20.10125	.300264 .2573897 .2807677 .4534426 11.25469	-3.13 -2.10 -1.42 -3.81 -1.79	0.002 0.038 0.157 0.000 0.077	-1.53454 -1.049122 9555216 -2.624852 -42.39057	3 0 .1 8 2.	452259 296285 565699 288136 188071
Instrum Stand FOD Int d200 GMM-t L(1 Instrum Stand CC Ins Int d200 c100 GMM-t D.L	ents for lard 0.(lnsece ransitic 01 d2002 0 cl1 cl2 ype (mis /2).L.ln hents for lard ns eccedu ln rransitic 01 d2002 0 cl1 cl2 ype (mis .lnindfd	tertedu lnco in lnictinfra d2003 d2004 cl3 cl4 s2 sing=0, sepa indfdistock levels equa tertedu lnco in lnictinfra d2003 d2004 cl3 cl4 s2 sing=0, sepa listock colla	deviations of lncognitive indprivati: d2005 d2000 s3 s4 s5 s6 rate instrum collapsed tion gnitive lnwa indprivati: d2005 d2000 s3 s4 s5 s6 rate instrum psed	equation e lnwage sation dl 6 d2007 c s7 s8 s9 ments for age lngdr sation dl 6 d2007 c s7 s8 s9 ments for	lngdp 1 996 d19 22008 c2 9 s10 s1 c each p 0 lntrac 996 d19 12008 c2 9 s10 s1 c each p	ntradefree ln 97 d1998 d199 2 c3 c4 c5 c6 1 s12 s13) period unless defree lneconf 97 d1998 d199 2 c3 c4 c5 c6 1 s12 s13 period unless	econf 9 d20 c7 c8 colla ree 9 d20 c7 c8 colla	ree 00 c9 psed) 00 c9 psed)
Arellan Arellan	io-Bond t io-Bond t	est for AR(1 est for AR(2) in first () in first (differenc	es: z = es: z =	= -2.03 Pr > = -1.18 Pr >	z = z =	0.043 0.238
Sargan (Not Hansen (Robu	test of robust, test of ust, but	overid. rest but not weak overid. rest can be weake	rictions: cl ened by many rictions: cl ned by many	ni2(2) y instrum ni2(2) instrume	= 4. ments.) = 1. ents.)	91 Prob > ch .08 Prob > ch	.i2 = .i2 =	0.086
Differe GMM i Han Dif	ence-in-H .nstrumen isen test ference	ansen tests ts for level excluding g (null H = ex	of exogenei s roup: cl ogenous): cl	ty of ins ni2(1) ni2(1)	strument = 0. = 0.	subsets: 62 Prob > ch 45 Prob > ch	i2 = i2 =	0.430 0.500

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	8673013	1.470079	-0.59	0.556	-3.778717	2.044114

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-1.582341	1.024185	-1.54	0.125	-3.610686	.4460042

. nlcom _b[lncognitive]/(1-_b[l.lnindfdistock])

_nl_1: _b[lncognitive]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	12.89345	3.853078	3.35	0.001	5.262634	20.52427

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	4731711	.7223765	-0.66	0.514	-1.9038	.9574578

. nlcom _b[lngdp]/(1-_b[1.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	.3631508	.7907741	0.46	0.647	-1.202936	1.929237

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	1388726	.3945465	-0.35	0.725	9202513	.642506

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	2.294122	.8257607	2.78	0.006	.658746	3.929498

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	2.664274	1.452349	1.83	0.069	2120269	5.540574

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.4670922	.3853514	1.21	0.228	296076	1.23026

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

.

_nl_1: _b[indprivatisation]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	1.768163	1.387002	1.27	0.205	9787213	4.515047

. HOUCE 0.10	/ FE						
. xtreg lnindf	distock l.lni	ndfdistock	lnsecedu	lnterted	u lncognitive	e lnwage lngo	lp
lntradefree lr	econfree lntr	ansit					
> ion lnictinf	ra indprivati	sation d1990	6-d2008 c	2-c14 s2	-s13, fe		
note: incognit	ive omitted b	ecause of co	ollineari	τy			
note: al996 on	litted because	e or collinea	arity				
note: cz omitt	ed because of	. collineari	LY +				
note: C3 omitt	ed because of	collineari	ty ty				
note: c4 omitt	ed because of	collineari	Ly ty				
note: CJ Omitt	ed because of	. collineari	су +				
note: co omitt	ed because of	. collineari	су +				
note: c/ omitt	ed because of	. Collineari	LY tr				
note: co omitt	ed because of	. collineari	су +				
note: cj omiti note: cl0 omit	tod bogauso of	f collinear	ity				
note: clu omit	ted because c	f collinear.	1 L Y				
note: cl2 omit	ted because c	of collinear	itv				
note: c13 omit	ted because c	of collinear	itv				
note: c14 omit	ted because c	of collinear	itv				
note: s2 omitt	ed because of	collinearii	tv				
note: s3 omitt	ed because of	collineari	t.v				
note: s4 omitt	ed because of	collineari	t.v				
note: s5 omitt	ed because of	collineari	tv				
note: s6 omitt	ed because of	collineari	tv				
note: s7 omitt	ed because of	collineari	tv				
note: s8 omitt	ed because of	collineari	ty				
note: s9 omitt	ed because of	collineari	tv				
note: s10 omit	ted because c	of collinear:	ity				
note: s11 omit	ted because c	of collinear:	ity				
note: s12 omit	ted because c	of collinear:	itý				
note: s13 omit	ted because c	of collinear:	ity				
Fixed-effects	(within) regr	ession		Number	of obs =	= 1190	
Group variable	e: id			Number	of groups =	= 118	
R-sq: within	= 0.2873			Obs per	group: min =	- 1	
betweer	n = 0.8249				avg =	= 10.1	
overall	= 0.5735				max =	= 13	
					E 0 1	10 04	
				F(22,10	50) =	19.24	
corr(u_i, Xb)	= 0.5084			F(22,10 Prob >	50) = F =	= 19.24	
corr(u_i, Xb)	= 0.5084			F(22,10 Prob >	50) = F =	= 19.24 = 0.0000	
corr(u_i, Xb)	= 0.5084			F(22,10 Prob >	50) = F =	= 19.24 = 0.0000	
corr(u_i, Xb) lnindfdist~k	= 0.5084 Coef.	Std. Err.	t	F(22,10 Prob > P> t	50) = F = [95% Conf.	= 19.24 = 0.0000 [
corr(u_i, Xb)	= 0.5084 Coef.	Std. Err.	t	F(22,10 Prob > P> t	50) = F = [95% Conf.	= 19.24 = 0.0000 [
corr(u_i, Xb)	= 0.5084	Std. Err.	t	F(22,10 Prob > P> t	50) = F = [95% Conf.	= 19.24 = 0.0000 Interval]	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.	= 0.5084 Coef.	Std. Err.	t 6.29	F(22,10 Prob > P> t 0.000	50) = F = [95% Conf. 	= 19.24 = 0.0000 [Interval] .2534403	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.	= 0.5084 Coef.	Std. Err.	t 6.29	F(22,10 Prob > P> t 0.000	50) = F = [95% Conf. .1328738	= 19.24 = 0.0000 Interval] .2534403	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu	= 0.5084 Coef. .193157 5961464	Std. Err.	t 6.29 -0.38	F(22,10 Prob > P> t 0.000 0.706 0.602	50) = F = [95% Conf. .1328738 -3.696876	= 19.24 = 0.0000 Interval] .2534403 2.504584	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted)	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939	<pre>= 19.24 = 0.0000</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) - 5827412	Std. Err. .0307219 1.580211 .758344 8460517	t 6.29 -0.38 -0.52	F(22,10 Prob > P> t 0.000 0.706 0.603	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652	<pre>Interval .2534403 2.504584 1.093145 1.079169</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 5104846	Std. Err. .0307219 1.580211 .758344 .8469517 .70508	t 6.29 -0.38 -0.52 -0.69	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019096	<pre>If 19.24 If 0.0000 If Interval If 2534403 2.504584 1.093145 1.079169 2.040055</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 6512587	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898	<pre>Interval Interva</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1 436007	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 9727028	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48	F(22,10 Prob > P>lt 0.000 0.706 0.603 0.492 0.513 0.976 0.140	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 - 4728324	<pre>Interval Interva</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.05263	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76	F(22,10 Prob > P>lt 	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887	<pre>Interval Interval .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921	<pre>If 19.24 If 19.2</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962	<pre>Interval Interval .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756</pre>	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lncognitive lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .480843 1.39859 (omitted)	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 .4728324 -3.665887 3434921 .755962	<pre>Interval Interval .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958</pre>	F = [95% Conf. [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479	<pre>Interval Interval .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943</pre>	
corr(u_i, Xb)	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628	<pre>Interval Interval .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lntconfree lntconfree lntcinfra indprivati~n d1996 d1998 d1998	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961	<pre>Interval Interval .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663</pre>	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 1.664835 2317374	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117	<pre>Interval Interval Interval .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419</pre>	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lncognitive lndprive lndprive lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .588631	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774	<pre>IJ9.24 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .588631 .6507777	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.771</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515	<pre>IJ9.24 IOUDO INTERVAL IOUDO INTERVAL IOUDO INTERVAL IOUDO IOU</pre>	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.771 0.706</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 .4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.23017 -1.6774 -1.087515 -1.120065	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .766649 1.143224 1.46643 1.654137</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2001 d2003 d2004	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.649 0.983 0.771 0.706 0.485</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.4654137 2.058076</pre>	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Incognitive Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2003 d2004 d2005	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73	<pre>F(22,10 Prob > Prob > P> t </pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 -3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 -1.05191	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729</pre>	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu lntertedu lncognitive lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2004 d2005	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .480843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60	<pre>F(22,10 Prob > Prob > P> t </pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 05191 -1.252642	<pre>IJ9.24 0.0000 Interval 2.534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lndgp lntradefree lnconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1997 d1998 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2006	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161 .5786153	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.73 0.60 0.57	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.958 0.833 0.771 0.706 0.485 0.467 0.550 0.570</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 -3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 -1.05191 -1.252642 -1.419899	<pre>IJ9.24 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161 .5786153 .8586361	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .588631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.958 0.833 0.771 0.706 0.485 0.467 0.550 0.570 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 -1.05192 -1.05192 -1.0515 -1.120065 9770965 -1.252642 -1.419899 -1.310382	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161 .5786153 .8586361 (omitted)	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.706 0.485 0.467 0.550 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 -1.05191 -1.252642 -1.419899 -1.310382	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lncognitive lngdp lntradefree lncconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161 .5786153 .8586361 (omitted) (omitted) (omitted)	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.65 0.78	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.649 0.983 0.771 0.706 0.485 0.467 0.550 0.570 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.6774 -1.087515 -1.120065 9770965 -1.05191 -1.252642 -1.419899 -1.310382	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143266 1.046663 .7666419 1.14326 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654</pre>	
corr(u_i, Xb) lnindfdist~k L1. Insecedu lntertedu lncognitive lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c22 c3 c4	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .480843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161 .5786153 .8586361 (omitted) (omitted) (omitted) (omitted)	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.649 0.983 0.771 0.706 0.485 0.467 0.550 0.570 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 5.120065 9770965 -1.05191 -1.252642 -1.419899 -1.310382	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654</pre>	
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Incognitive Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .480843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161 .5786153 .8586361 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.706 0.485 0.467 0.550 0.570 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 1.05191 -1.252642 -1.419899 -1.310382	<pre>IJ9.24 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</pre>	
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntertedu lncognitive lndpr lntradefree lncconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1997 d1998 d1997 d2000 d2001 d2002 d2003 d2004 d2005 d2005 d2005 d2005 d2005 d2007 d2008 c2 c3 c4 c5 c6	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 .267036 .5404855 .6194095 .5497161 .5786153 .8586361 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.958 0.833 0.771 0.706 0.485 0.467 0.550 0.467 0.550 0.570 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136962 16774 -1.087515 -1.20017 -1.16774 -1.087515 -1.20065 9770965 -1.05191 1.252642 -1.419899 -1.310382	<pre>IJ9.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 1.66419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654</pre>	

c8 c9 c10 c11 c12	(omitted) (omitted) (omitted) (omitted)						
c13	(omitted)						
c14	(omitted)						
s2	(omitted)						
s3	(omitted)						
s4	(omitted)						
s5	(omitted)						
s6	(omitted)						
s7	(omitted)						
s8	(omitted)						
s9	(omitted)						
s10	(omitted)						
s11	(omitted)						
s12	(omitted)						
s13	(omitted)						
_cons	-13.0252	16.023	- 803	0.81	0.416	-44.466	18.41559
 sigma_u sigma_e rho	1.4805195 1.2593186 .58021217	(fract	ion of	varianc	e due to u	i)	
F test that all	u_i=0:	F(117,	1050) =	1.	97	Prob > F	= 0.0000

. **Model 6.10 OLS . reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lncognitive lnwage lngdp lntradefree lneconfree lntransitio > n lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13 note: lncognitive omitted because of collinearity note: d2008 omitted because of collinearity note: c2 omitted because of collinearity note: c3 omitted because of collinearity note: c4 omitted because of collinearity note: c10 omitted because of collinearity

model 5400.44026 43 125.77768 Prob S F = 0.000 Residual 2030.60261 1146 1.77190454 Rredured = 0.716 0.38 Inindfdist-k Total 7439.04266 1189 6.25655413 Root MSE = 1.3311 Inindfdist-k L. .4553395 .0264225 17.23 0.000 .4034975 .5071814 Inaccedu 6442964 1.667813 -0.51 0.611 -4.120607 2.424014 Interdetu 2664939 .8003897 -0.33 0.739 -1.83687 1.0364 Intradefree 647189 .6869072 -0.24 0.811 -1.812662 1.49466 Intradefree 6653723 1.026627 -0.24 0.811 -1.512626 1.183018 Intradefree 62709 .800233 -0.70 0.449 -2.27897 1.07664 dings68225 1.67694 -0.71 0.467 -2.39181 1.42206 intradefree 6167039 3.224724 0.63 0.529 -4.293668 1.164907 intradefree 627039 8.20225 <th>Source</th> <th>SS</th> <th>df</th> <th></th> <th>MS</th> <th></th> <th>Number of obs</th> <th>= 1190</th>	Source	SS	df		MS		Number of obs	= 1190
Residual 2030.60251 1146 1.77190454 Resquared 0.7270 Total 7339.04286 1189 6.25655413 Root MSE = 1.3311 Inindfdist-k Coef. Std. Err. t P>(t) [95% Conf. Interval] Inindfdist-k . . .4553395 .0264225 17.23 0.000 .4034975 .5071814 Incognitive . .4553395 .0264225 17.23 0.000 .4034975 .5071814 Incognitive (.	Model	5408.44026	43	 125	5.77768		F(43, 1146) Prob > F	= /0.98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Residual	2030.60261	1146	1.77	7190454		R-squared	= 0.7270
Total 7439.04286 1189 6.25655413 Root MSE = 1.311 Inindfdist-k Coef. Std. Err. t P> t [95% Conf. Interval] Inindfdist-k L1. .4553395 .0264225 17.23 0.000 .4034975 .5071814 Insecedu 8482964 1.667813 -0.51 0.611 -4.120607 2.424014 Incognitivel (omitted) 1.0309 1.0309 1.0309 1.0309 Incognitivel (omitted) .242409 8.803867 -0.76 0.449 -2.427897 1.07664 Intradefree 655723 1.026627 0.24 0.811 -1.512456 1.164907 Indprivation 2.031659 3.224724 0.63 0.522 591526 1.164907 indprivation 1.845784 .3307288 5.58 0.000 1.196882 2.494666 d1997 7394278 1.04816 -0.71 0.441 -2.796262 1.317406 d1998 652328 .94323	+						Adj R-squared	= 0.7168
<pre>lnindfdist-k Coef. Std. Err. t P> t [95% Conf. Interval]</pre>	Total	7439.04286	1189	6.25	5655413		Root MSE	= 1.3311
Inindfdist-k I. .4553395 .0264225 17.23 0.000 .4034975 .5071814 Insecedu 8482964 1.667813 -0.51 0.611 -4.120607 2.424014 Interdeut 2664939 .8003897 -0.33 0.739 -1.838887 1.3039 Incognitive (cmitted) .624709 .618834 0.76 0.449 -2.427897 1.07664 Intradefree 6578286 .8930867 -0.76 0.449 -2.427897 1.07664 Intradefree 6678723 1.026627 0.68 0.498 -1.318907 2.709652 Intransition 2.031659 3.224724 0.63 0.529 -4.2553861 1.164907 indprivati-n 1.845784 .3307288 5.58 0.000 1.196882 2.494686 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6622325 .9432236 -0.72 0.471 -2.530871 1.170342 d2000	lnindfdist~k	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
L1. .4553395 .0264225 17.23 0.000 .4034975 .5071814 Insecedu 8482964 1.667813 -0.51 0.611 -4.120607 2.424014 Intertedu 266439 .8003897 -0.33 0.739 -1.836887 1.3039 Incognitive (omitted) Inwage 6756286 .8930867 -0.76 0.449 -2.427897 1.07664 Ingpl .624709 .818834 0.76 0.446 -9818729 2.231291 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 1.183018 Ineconfree .6953723 1.026627 0.68 0.498 -1.318907 2.709552 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Inictinfra .2866624 .4476191 0.64 0.5225915826 1.164907 indprivati-n 1.845784 .3307288 5.58 0.000 1.196882 2.494686 d1996 8688525 1.167694 -0.74 0.457 -3.159911 1.422206 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6152339 .8800233 -0.70 0.487 -2.339141 1.114134 d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .57668265 d2004 254877 .4721513 -0.55 0.586 -1.183866 6.869893 d2005 2449832 .398573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 (omitted) c3 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639083 1.11 0.266 -1.385169 5.014927 c7 1.814879 1.639983 1.11 0.266 -1.385169 5.014927 c7 1.814879 1.639083 1.11 0.266 -1.385169 5.014927 c7 1.814879 1.639083 1.11 0.266 -1.385169 5.014927 c7 1.814879 1.639083 1.11 0.266 -1.385169 5.014927 c6 1.703414 1.50398 1.52977 1.26 0.2097418316 .1614996 d2008 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.63906 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.639083 1.11 0.266 -1.385169 5.014927 c7 3.814879 1.639083 1.11 0.266 -1.385169 5.014927 c7 3.814879 1.639083 1.11 0.266 -1.385169 5.014927 c9 1.42124 1.84774 1.06 0.2	lnindfdist~k							
Insecedu 8482964 1.667813 -0.51 0.611 -4.120607 2.424014 Incognitive (omitted) 1.3039 Incognitive (omitted) Inwage 6756286 .8930867 -0.76 0.449 -2.427897 1.07664 Ingp .624709 .818334 0.76 0.446 9818729 2.231291 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Intransition 2.031659 3.224721 0.64 0.527 -3159911 1.422206 d1099 6125039 860233 -0	L1.	.4553395	.0264	225	17.23	0.000	.4034975	.5071814
<pre>Intertedu 2664939 .8003897 -0.33 0.739 -1.836887 1.3339 Incognitive (omitted) Inwage 6755286 .8930867 -0.76 0.449 -2.427897 1.07664 Ingdp .624709 .818834 0.76 0.4469818729 2.231291 Intradefree .1647189 .6869072 -0.24 0.811 -1.512456 1.183018 Ineconfree .6953723 1.026627 0.68 0.498 -1.318907 2.709552 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Initinfra .2866624 .4476191 0.64 0.5225915826 1.164907 indprivatin 1.845784 .3307288 5.58 0.000 1.196882 2.494686 d1996 8688525 1.167694 -0.74 0.457 -3.159911 1.422206 d1997 7394278 1.04316 -0.71 0.481 -2.796262 1.317406 d1998 6602325 .9432236 -0.72 0.471 -2.530871 1.170406 d1999 6125039 .8800233 -0.70 0.487 -2.339141 1.114134 d2000 -1.02664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 05657408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2004 2574877 .4721513 -0.55 0.586 -1.18366 .6668903 d2005 2449832 .396573 -0.62 0.537 -1.02074 .3531074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 290166 .230225 -1.26 0.2087418316 .1614996 d2008 (omitted) c3 (omitted) c4 (omitted) c3 (omitted) c4 (omitted) c4 (omitted) c3 (omitted) c4 (omitted) c3 (omitted) c4 (omitted) c4 .630784 5.29071 1.02 0.781 -3.856898 5.130467 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c6 1.70344 1.63906 1.04 0.299812374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.281 -1.217261 4.059728 c10 (omitted) c3 .001244 1.353717 1.226 0.2098117953 3.712572 c6 1.70344 1.63906 1.04 0.299812374 4.919202 c7 1.8148797 1.26 0.2098117953 3.712572 c14 1.541986 1.450862 -3.986 0.000 -1.1596733943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 1.957271 -0.65 0.3955504313 .2176159 s5 -1.849678 .233013 -7.93 0.000 -2.304274 -1.391333 s6 269348 .1915905 -1.36 0.017336562422 -1.93</pre>	lnsecedu	8482964	1.667	813	-0.51	0.611	-4.120607	2.424014
<pre>Incognitive (omitted) Inwage 6756286 .8930867 -0.76 0.449 -2.427897 1.07664 Ingdp .624709 .818834 0.76 0.4469618729 2.231291 Intradefree 1647189 .6869072 -0.24 0.811 -1.512456 1.183018 Ineconfree .6953723 1.026627 0.68 0.498 -1.318907 2.709652 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Inictifra .286624 .4476191 0.64 0.5225915826 1.164907 indprivati-n 1.845784 .3307288 5.58 0.000 1.196882 2.494686 d1996 868525 1.167694 -0.74 0.457 -3.159911 1.42206 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6602325 .9432236 -0.72 0.471 -2.530871 1.170406 d1998 6602325 .9432236 -0.72 0.471 -2.339141 1.14134 d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7715987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2574877 .4721513 -0.55 0.586 -1.183866 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.327 -9.0654423 .3224251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 (omitted) c3 (omitted) c4 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639068 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.12015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450864 1.06 0.281 -1.301673 -3.934743 s3 -2.307871 .2316229 -9.96 0.000 -2.762402 -1.85344 s4 1664077 .1957271 -0.85 0.395550431 .217615 s5 -1.849678 .233031 -7.93 0.000 -2.304227 -1.383193 s6 2609348 .1915905 -1.36 0.1736456942 .139473 s6 .265996 .194377 -220 0.028791172045814 s4 6648787 .233314 -7.93 0.000 -2.30427 -1.383193 s6 2659348 .1915905 -1.</pre>	lntertedu	2664939	.8003	897	-0.33	0.739	-1.836887	1.3039
<pre>lnwage 6756286 .8930867 -0.76 0.449 -2.427897 1.07664 lngdp .624709 .818834 0.76 0.4469818729 2.231291 lntransition 2.031659 3.224724 0.63 0.529 -4.295366 8.338685 lnictinfra .2866624 .4476191 0.64 0.5225915826 1.164907 indprivatin 1.845784 .330728 5.58 0.000 1.196882 2.494666 d1996 8688525 1.167694 -0.74 0.457 -3.159911 1.422206 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6602325 .9432236 -0.72 0.471 -2.530871 1.170406 d1999 6125039 .8800233 -0.70 0.487 -2.339141 1.114134 d2000 -1.02664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 02664 .8395791 -0.65 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2274877 .4721513 -0.55 0.586 -1.183866 .6668903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 comitted] c2 (omitted) c3 (omitted) c4 (omitted) c4 (omitted) c5 1.863221 1.857155 1.000 0.316 -1.780584 5.507027 c6 1.703414 1.639066 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.38169 5.014927 c8 .9619516 1.061126 0.91 c1 .6357408 1.152977 1.26 0.209911953 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c21 (omitted) c21 (omitted) c33 .450386 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450983 1.11 0.266 -1.385698 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104324 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450972 -9.96 0.000 -2.762422 -1.85334 s4 1664077 .1957271 -0.85 0.3955506313 .22757 s4 .9619516 1.061126 0.91 0.365120053 4.386598 s2 7770235 .1950266 -3.98 0.000 -1.259673394373 s3 -2.307871 .231629 -9.96 0.000 -2.762422 -1.85334 s4 .164097 .1957271 -0.85 0.3955506313 .2176159 s5 -1.849678 .233013 -7.93 0.000 2.762442 -1.391333 s6 2609348 .1915905 -1.36 0.173645591 .222</pre>	lncognitive	(omitted)						
<pre>Ingdp .624709 .818834 0.76 0.446981729 2.231291 Intraderce .1647189 .6869072 -0.24 0.811 -1.512456 1.183018 Ineconfree .6953723 1.026627 0.68 0.498 -1.318907 2.709652 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358685 Inicitifra .2866624 .4476191 0.64 0.5229515826 1.164907 indprivati-n 1.845784 .3307288 5.58 0.000 1.199682 2.494686 d1996 6888525 1.167694 -0.74 0.457 -3.159911 1.422206 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 662325 .9432236 -0.72 0.471 -2.530871 1.170406 d1999 6125039 .8800233 -0.70 0.487 -2.339141 1.14134 d2000 -1.026664 .8395791 -0.85 0.396 -2.169842 .8583001 d2002 5557408 .7716987 -0.85 0.396 -2.169842 .8583001 d2002 556324 .6750865 -0.78 0.436 -1.808172 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2574877 .4721513 -0.55 0.586 -1.183866 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.02374 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 29166 .2302025 -1.26 0.2087418316 .1614996 d208 (omitted) c3 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c6 1.703414 1.63906 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.12015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450946 1.06 0.288 -1.304627 4.388398 s2 7770235 .1950266 -3.98 0.000 -1.1596733943743 s3 -2.307871 .231629 -9.96 0.000 -2.762422 -1.8334 s4 1664077 .195721 -0.65 0.3955504313 .217615 s5 -1.849678 .233031 -7.93 0.000 -2.762424 -1.39133 s6 2609348 .1915905 -1.36 0.1736365423 .1149728 s7 .6039348 .1915905 -1.36 0.1073645591222394 s4 .2663964 .139197 -3.52 0.000 -1.1596733943743 s3 3773324 .1959437 -2.20 0.028791172</pre>	lnwage	6756286	.8930	867	-0.76	0.449	-2.427897	1.07664
Intradefree 1647189 .6859072 -0.24 0.811 -1.312456 1.183018 Ineconfree .6553723 1.026627 0.668 0.498 -1.318907 2.709552 Intransition 2.031659 3.224724 0.63 0.529 -4.295366 8.358655 Inictinfra .2866624 .4476191 0.64 0.5225915826 1.164907 indprivati-n 1.845784 .3307288 5.58 0.000 1.196882 2.494686 d1996 8688525 1.167694 -0.74 0.457 -3.159911 1.422206 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6802325 .9432236 -0.72 0.471 -2.530871 1.170406 d1999 6125039 .8800233 -0.70 0.487 -2.530871 1.170406 d1999 6125039 .8800233 -0.70 0.487 -2.530871 1.170406 d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5253284 .6750865 -0.78 0.436 -1.850872 .7982156 d2004 2574877 .4721513 -0.55 0.586 -1.183867 .788265 d2004 2574877 .4721513 -0.65 0.586 -1.183867 .58625 d2004 2254827 .3281966 -0.98 0.3279654423 .3224251 d2007 22409832 .396573 -0.62 0.537 -1.023074 .5331074 d2008 (omitted) c2 (omitted) c3 (omitted) c4 (omitted) c4 (omitted) c4 (omitted) c5 1.863221 1.857155 1.000 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.777139 0.77 0.439 -2.104532 4.846531 c13 1.450386 1.152077 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.385898 s2 7770235 1.950266 -3.98 0.000 -1.1596733943743 s3 2609348 1.915977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.385898 s2 7770235 1.950266 -3.98 0.000 -2.376424 -1.391933 s6 2609348 1.915905 -1.36 0.1736368423 .1149728 s7 6039828 1.944849 -3.11 0.010298565912223964 s6 2659208 1.894537 -2.2	lngdp	.624709	.818	834	0.76	0.446	9818729	2.231291
Interasition 2.031659 3.224724 0.68 0.498 -1.1890/ 2.709552 Inictinfra 2.866624 .4476191 0.64 0.5225915826 1.164907 indprivati~n 1.845784 .3307286 5.58 0.000 1.196882 2.494686 d1996 8688525 1.167694 -0.74 0.457 -3.159911 1.422206 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6125039 .8800233 -0.70 0.487 -2.339141 1.114134 d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.435 -1.660192 .5768265 d2004 2574877 .4721513 -0.55 0.586 -1.183866 .6668893 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .32247251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 (omitted) c3 (omitted) c4 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.044 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.12015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.288 0.781 -3.865898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.466531 c13 1.450386 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 0.3146.733943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.8334 s4 164077 .1957271 -0.85 0.3955504313 .2176159 s5 -1.849678 .233303 -7.93 0.000 -2.307424 -1.319333 s6 256898 1.944849 -3.11 0.00298556912223764 s7 639828 .194489 -3.11 0.0029855691222364 s7 639828 .194489 -3.11 0.0029855691222364 s6 2699348 .195905 -1.36 0.1736368423 .1149728 s7 6039828 .194489 -3.11 0.01764159 .1279707 s9 4184957 .1899437 -2.20 0.0287410340006308 s12 2558026 .1951128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287460340006308 s12 2558028 .195455 -1.470 0.	Intradefree	1647189	.6869	072	-0.24	0.811	-1.512456	1.183018
Intransition 2.031659 3.224724 0.63 0.529 -4.25366 8.356865 Inictifra 2.266622 4.4476191 0.64 0.5225915826 1.164907 indprivati~n 1.845784 .3307288 5.58 0.000 1.196882 2.494686 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6802325 .9432236 -0.72 0.471 -2.530871 1.170406 d1999 612539 .8800233 -0.70 0.487 -2.339141 1.11434 d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.16942 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2574877 .4721513 -0.55 0.586 -1.183866 .668893 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 (omitted) c2 (omitted) c3 (omitted) c4 (omitted) c4 (omitted) c4 (omitted) c1 .6367845 2.290316 0.28 0.781 -3.85169 5.014927 c6 1.703414 1.63906 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.180516 5.014927 c6 1.703414 1.63906 1.04 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.85689 5.104827 c11 .6367845 2.290316 0.28 0.781 -3.85689 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.484531 c13 1.450388 1.152977 1.26 0.209 -8.117953 3.712572 c14 1.541986 1.450846 1.066 0.288 -1.304627 4.38588 s2 7770235 1.950266 -3.98 0.000 -1.59673 -3.943743 s3 -2.207871 .231629 -9.96 0.000 -2.762402 -1.85344 s4 164077 1.957271 -0.85 0.395550431 .2176159 s5 -1.849678 .233031 -7.93 0.000 -2.307427 -3.3943743 s6 2609348 .191595 -1.36 0.1736368423 .1149728 s7 6039828 .194484 -3.11 0.0029855612239347 s6 2609348 .191595 -1.36 0.1736368423 .1149728 s7 6039828 .1944847 -3.13 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287911720458194 s10 679648 .193197 -3.52 0.000 -1.760464004538 s12 2558086 .1951128 -1.31 0.19164159 .1279707 s9 418	Ineconfree	.6953723	1.026	627	0.68	0.498	-1.318907	2.709652
Inferinfra .2860824 .44/6191 0.044 0.9229915826 1.16490/ indprivation 1.845784 .3307288 5.58 0.000 1.99882 2.494686 d1996 66802325 .9432236 -0.74 0.457 -3.159911 1.422206 d1997 7394278 1.048316 -0.71 0.481 -2.796262 1.317406 d1998 6620325 .9432236 -0.72 0.471 -2.530871 1.170406 d1999 6125039 .8800233 -0.70 0.487 -2.339141 1.114134 d2000 -1.02664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .55568241 -0.93 0.355 -1.608192 .5768265 d2004 2574877 .4721513 -0.55 0.586 -1.183666 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 (omitted) c2 (omitted) c3 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.044 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856988 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 0.1304627 4.388598 s2 27770235 1.950266 -3.39 0.000 -1.1596733943743 s3 -2.307871 2.316629 -9.96 0.000 -2.762402 -1.8534 s4 664077 1.957271 -0.85 0.395 -5.50431 3.2176159 s5 -1.849678 2.233013 -7.93 0.000 -2.307424 -1.391933 s6 2669348 .1915905 -1.36 0.1736368423 .1149728 s7 6039828 .1944849 -3.11 0.00298556912223964 s8 2560936 .1961128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287911720458134 s1 7373324 .1899455 -1.97 0.0507460340006308 s12 2659208 .1892543 -1.441 0.1606372446 .1054029 s13 357324 .1899555 -1.97 0.0507460340006308 s12 2659208 .1892543 -1.441 0.1606372446 .1054029 s13 -1	Intransition	2.031659	3.224	/24	0.63	0.529	-4.295366	8.358685
<pre>Indprivation 1.849/84 .330/288 5.36 0.000 1.190882 2.494888 d1996 6688525 1.167694 -0.71 0.481 -2.796262 1.317406 d1998 6802325 .9432236 -0.72 0.471 -2.339141 1.114134 d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2574877 .47721513 -0.55 0.586 -1.183866 .6668903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 (omitted) c2 (omitted) c3 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.066 0.2881304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.1596733943743 s3 -2.307871 .231629 -9.96 0.000 -2.307424 -1.85374 s4 1664077 1.957271 -0.85 0.3955504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.39133 s6 2603948 .1915905 -1.36 0.1735368433 .1149728 s7 603928 1.914949 -3.11 0.0029855691 .222364 s8 2568096 .1961128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.02891172045814 s1 373324 .1899437 -2.20 0.028911720458194 s1 373324 .189955 -1.36 0.0733628423 .1149728 s1 357342 .1899437 -2.20 0.028911720458194 s1 357342 .1899437 -2.20 0.028911720458194 s1 6799648 .193197 -3.52 0.000 -1.6506449006308 s12 2659208 .1892543 -1.41 0.1606372446 .1054029 s13 -1.557006 16.60593 -0.65 0.519 -43.30148 21.86137</pre>	inictinira	.2866624	.44/6	191	0.64	0.522	5915826	1.164907
d1990 0000325 1.107034 -0.74 0.437 -3.13931 1.42220 d1997 7394278 1.048316 -0.71 0.481 -2.79626 1.317406 d1998 660325 .9432236 -0.72 0.471 -2.530871 1.170406 d1999 6125039 .880023 -0.70 0.487 -2.339141 1.114134 d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2574077 .4721513 -0.55 0.586 -1.183866 .6668903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.3279654423 .3224251 d2007 290166 .2302025 -1.26 0.2087418316 .1614996 d2008 (omitted) c2 (omitted) c3 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639066 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.066 0.288 -1.304627 4.388598 s2 7770235 1.95026 -3.98 0.000 -1.1596733943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.8534 s4 1664077 .195777 -0.85 0.395 -2.504313 .2176159 s5 -1.849678 .233013 -7.93 0.000 -1.1596733943743 s4 1664077 .195777 -0.85 0.395 -2.504324 .446531 s5 -1.849678 .233013 -7.93 0.000 -2.307424 -1.391333 s6 2603948 .194484 -3.11 0.002 -9.8554591 .2223964 s8 2568096 .1961128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287911720458194 s10 6739544 .139197 -3.52 0.0000 +1.505043009053 s11 373324 .189955 -1.97 0.0507460340006308 s12 2659208 .1892543 -1.44 0.1606372446 .1054029 s13 -1.55700 1.660593 -0.65 0.519 -43.30148 21.86137	indprivati~n	1.845/84	.3307.	200	5.58	0.000	1.196882	2.494686
d1998 6802325 .943226 -0.72 0.471 -2.750821 1.17400 d1998 6125039 .8800233 -0.70 0.487 -2.339141 1.114134 d2000 6125039 .8800233 -0.70 0.487 -2.339141 1.114134 d2001 6125039 .8800233 -0.70 0.487 -2.339141 1.114134 d2001 61257408 .7716987 -0.85 0.396 -2.169842 .883801 d2002 5253284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2006 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2007 240166 .2302025 -1.26 0.208 7418316 .1614996 c2 (omitted) c3 (omitted) c4 (omitted) .21 .341997 .341997 c3 (omitted) .14141.639006 1.04 0.299 -1.120015 .3.043919 c4 </td <td>d1990 d1007 </td> <td>00000223</td> <td>1 0/0</td> <td>094 216</td> <td>-0.74</td> <td>0.457</td> <td>-3.139911</td> <td>1 217406</td>	d1990 d1007	00000223	1 0/0	094 216	-0.74	0.457	-3.139911	1 217406
d1999 612503 .830233 -0.70 0.487 -2.339141 1.114134 d2000 6125039 .8800233 -0.70 0.487 -2.169842 .8583601 d2001 6557408 .716987 -0.85 0.396 -2.169842 .8583601 d2003 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2004 2574877 .4721513 -0.55 0.586 -1.830866 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 (3215086 .3281966 -0.98 0.327 9654423 .3224251 d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (cmitted) - - 7418316 .1614996 c2 (cmitted) - - 217261 4.919202 c7 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639083 1.11 0.266 -1.38	d1998	- 6802325	Q132	236	-0.71	0.401	-2.530871	1 170406
d2000 -1.026664 .8395791 -1.22 0.222 -2.673948 .6206207 d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8883601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5568263 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2008 (omitted) .3215086 .3281966 -0.98 0.327 9654423 .3224251 d2008 (omitted) .22 (omitted) .22 .1266 .2008 7418316 .1614996 d2008 (omitted) .22 (omitted) .22 .22 .2015 3.043919 c2 (omitted) .22 .1857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.84879 1.663083 1.11 0.266 -1.385169	d1999	- 6125039	8800	233	-0.70	0.487	-2 339141	1 114134
d2001 6557408 .7716987 -0.85 0.396 -2.169842 .8583601 d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2004 2574877 .4721513 -0.55 0.586 -1.183866 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted) .2 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted) .2 .200166 .2302025 -1.26 0.208 7418316 .1614996 d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted) .2 .2 (omitted) .2 .2 .200166 .20028 .7418316 .1614996 c10 (omitted) .2 .2 .0 .230225 .1.26 .2015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitte	d2000	-1 026664	8395	791	-1 22	0.407	-2 673948	6206207
d2002 5263284 .6750865 -0.78 0.436 -1.850872 .7982156 d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2574877 .4721513 -0.55 0.586 -1.183866 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.327 9654423 .3224251 d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted) - - - 7418316 .1614996 d2008 (omitted) - - 7418316 .1614996 d20 (omitted) - - 7418316 .1614996 d20 (omitted) - - 7418316 .1614996 c10 (omitted) - - 121015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.121015 3.0443919 c11	d2000	6557408	. 7716	987	-0.85	0.396	-2.169842	.8583601
d2003 5156825 .5568241 -0.93 0.355 -1.608192 .5768265 d2004 2574877 .4721513 -0.55 0.586 -1.183866 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.327 9654423 .3224251 d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted)	d2002	5263284	.6750	865	-0.78	0.436	-1.850872	.7982156
d2004 2574877 .4721513 -0.55 0.586 -1.183866 .6688903 d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2006 3215086 .3281966 -0.98 0.327 9654423 .3224251 d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted) .23 (omitted)	d2003	5156825	.5568	241	-0.93	0.355	-1.608192	.5768265
d2005 2449832 .396573 -0.62 0.537 -1.023074 .5331074 d2007 22015086 .3281966 -0.98 0.327 9654423 .3224251 d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted) c2 (omitted)	d2004	2574877	.4721	513	-0.55	0.586	-1.183866	.6688903
d2006 3215086 .3281966 -0.98 0.327 9654423 .3224251 d2007 200166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted) c2 (omitted) .31 (omitted) .32 (omitted) .32 (omitted) .33210 c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .6619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted)	d2005	2449832	.396	573	-0.62	0.537	-1.023074	.5331074
d2007 290166 .2302025 -1.26 0.208 7418316 .1614996 d2008 (omitted)	d2006	3215086	.3281	966	-0.98	0.327	9654423	.3224251
d2008 (omitted) c2 (omitted) c3 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 1.950266 -3.98 0.000 -1.1596733943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.3955504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.1736368423 .1149728 s7 6039828 .194849 -3.11 0.10298556912223964 s8 2568096 .1961128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287911720458194 s10 6799648 .193197 -3.52 0.000 -1.0590243009053 s11 373324 .189955 -1.97 0.0507460340006308 s12 2659208 .1892543 -1.41 0.1606372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.7604869450348 2cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	d2007	290166	.2302	025	-1.26	0.208	7418316	.1614996
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d2008	(omitted)						
c3 (omitted) c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.1596733943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.3955504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.1736368423 .1149728 s7 6039828 .1944849 -3.11 0.00298556912223964 s8 2568096 .1961128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287911720458194 s10 6799648 .193197 -3.52 0.000 -1.0590243009053 s11 3733324 .1899555 -1.97 0.0507460340006308 s12 2659208 .1892543 -1.41 0.1606372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.7604869450348 ccons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	c2	(omitted)						
c4 (omitted) c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.630906 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) (omitted) - - - - - c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.209 8117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.38598 s2 7770235 .1950266 -3.98 0.000 -1.159673 3943743 s3 -2.307871 .2316629 -9.96 0.000 -2.307424 -1.8534 s5 -1.849678	c3	(omitted)						
c5 1.863221 1.857155 1.00 0.316 -1.780584 5.507027 c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) - - -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.209 8117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.159673 3943743 s3 -2.307871 .2316629 -9.96 0.000 -2.307424 -1.85334 s5 -1.849678 .233013 -7.93 0.00	c4	(omitted)						
c6 1.703414 1.639006 1.04 0.299 -1.512374 4.919202 c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) - -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.209 8117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.159673 3943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.395 5504313 .2176159 s5 -1.849678 .233013 -7.93 0.000 -2.307424 <t< td=""><td>c5 </td><td>1.863221</td><td>1.857</td><td>155</td><td>1.00</td><td>0.316</td><td>-1.780584</td><td>5.507027</td></t<>	c5	1.863221	1.857	155	1.00	0.316	-1.780584	5.507027
c7 1.814879 1.630983 1.11 0.266 -1.385169 5.014927 c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.209 8117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.159673 3943743 s3 -2.307871 .2316629 -9.96 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 <t< td=""><td>C6 </td><td>1.703414</td><td>1.639</td><td>006</td><td>1.04</td><td>0.299</td><td>-1.512374</td><td>4.919202</td></t<>	C6	1.703414	1.639	006	1.04	0.299	-1.512374	4.919202
c8 .9619516 1.061126 0.91 0.365 -1.120015 3.043919 c9 1.421234 1.344774 1.06 0.291 -1.217261 4.059728 c10 (omitted)	c7	1.814879	1.630	983	1.11	0.266	-1.385169	5.014927
c10 (omitted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.1596733943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.3955504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.1736368423 .1149728 s7 6039828 .1944849 -3.11 0.00298556912223964 s8 2568096 .1961128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287911720458194 s10 6799648 .193197 -3.52 0.000 -1.0590243009053 s11 3733324 .1899565 -1.97 0.0507460340006308 s12 2659208 .1892543 -1.41 0.1606372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.7604869450348 cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	C8	.9619516	1.061	126	0.91	0.365	-1.120015	3.043919
c10 (cm1tted) c11 .6367845 2.290316 0.28 0.781 -3.856898 5.130467 c12 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1.450388 1.152977 1.26 0.2098117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.1596733943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.3955504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.1736368423 .1149728 s7 6039828 .1944849 -3.11 0.00298556912223964 s8 2568096 .1961128 -1.31 0.19164159 .1279707 s9 4184957 .1899437 -2.20 0.0287911720458194 s10 6799648 .193197 -3.52 0.000 -1.0590243009053 s11 3733224 .1899565 -1.97 0.0507460340006308 s12 2659208 .1892543 -1.41 0.1606372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.7604869450348 _ccons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	C9	1.421234	1.344	//4	1.06	0.291	-1.21/261	4.059/28
c11 1 .6367643 2.290316 0.26 0.781 -3.636396 3.130467 c12 1 1.371 1.77139 0.77 0.439 -2.104532 4.846531 c13 1 1.450388 1.152977 1.26 0.209 8117953 3.712572 c14 1 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.159673 3943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.395 5504313 .2176159 s5 1.849678 .233013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9	CIU	(OMITTED)	2 200	210	0 20	0 701	2 056000	E 120467
c13 1.371 1.77139 0.77 0.439 -2.104332 4.040331 c13 1.450388 1.152977 1.26 0.209 8117953 3.712572 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.159673 3943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.395 5504313 .2176159 s5 -1.849678 .233013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 6799648 .193197	CII c12	.030/845	2.290	316 120	0.28	0.781	-3.856898	J.130467
c14 1.541986 1.4502577 1125 111753 11175372 c14 1.541986 1.450846 1.06 0.288 -1.304627 4.388598 s2 7770235 .1950266 -3.98 0.000 -1.159673 3943743 s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.395 5504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 6799648 .193197 -3.52 0.000 -1.059024 3009053 s11 3733324 .1899565 <td< td=""><td>c13 </td><td>1 450388</td><td>1 152</td><td>977</td><td>1 26</td><td>0.435</td><td>-2.104552</td><td>3 712572</td></td<>	c13	1 450388	1 152	977	1 26	0.435	-2.104552	3 712572
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	c14	1 541986	1 450	846	1 06	0.209	-1 304627	4 388598
s3 -2.307871 .2316629 -9.96 0.000 -2.762402 -1.85334 s4 1664077 .1957271 -0.85 0.395 5504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.85334 s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 679648 .133197 -3.52 0.000 -1.059024 3009053 s11 373324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 <td_cons td="" <=""> -10.72006 <</td_cons>	c1 1	- 7770235	1950	266	_3 98	0.200	-1 159673	- 3943743
s4 1664077 .1957271 -0.85 0.395 5504313 .2176159 s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 679648 .193197 -3.52 0.000 -1.059024 3009053 s11 3733324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s3	-2.307871	.2316	629	-9.96	0.000	-2.762402	-1.85334
s5 -1.849678 .2333013 -7.93 0.000 -2.307424 -1.391933 s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 6799648 .193197 -3.52 0.000 -1.059024 3009053 s11 3733324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s4	1664077	.1957	271	-0.85	0.395	5504313	.2176159
s6 2609348 .1915905 -1.36 0.173 6368423 .1149728 s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 6799648 .193197 -3.52 0.000 -1.059024 3009053 s11 3733324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s5	-1.849678	.2333	013	-7.93	0.000	-2.307424	-1.391933
s7 6039828 .1944849 -3.11 0.002 9855691 2223964 s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 6799648 .193197 -3.52 0.000 -1.059024 3009053 s11 2659208 .1892543 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s6	2609348	.1915	905	-1.36	0.173	6368423	.1149728
s8 2568096 .1961128 -1.31 0.191 64159 .1279707 s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 6799648 .193197 -3.52 0.000 -1.059024 3009053 s11 3733324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s7	6039828	.1944	849	-3.11	0.002	9855691	2223964
s9 4184957 .1899437 -2.20 0.028 791172 0458194 s10 6799648 .193197 -3.52 0.000 -1.059024 3009053 s11 3733324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s8	2568096	.1961	128	-1.31	0.191	64159	.1279707
s10 6799648 .193197 -3.52 0.000 -1.059024 3009053 s11 3733324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s9	4184957	.1899	437	-2.20	0.028	791172	0458194
s11 3733324 .1899565 -1.97 0.050 746034 0006308 s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s10	6799648	.193	197	-3.52	0.000	-1.059024	3009053
s12 2659208 .1892543 -1.41 0.160 6372446 .1054029 s13 -1.352761 .2078075 -6.51 0.000 -1.760486 9450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s11	3733324	.1899	565	-1.97	0.050	746034	0006308
s13 -1.352761 .2078075 -6.51 0.000 -1.7604869450348 _cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s12	2659208	.1892	543	-1.41	0.160	6372446	.1054029
_cons -10.72006 16.60593 -0.65 0.519 -43.30148 21.86137	s13	-1.352761	.2078	075	-6.51	0.000	-1.760486	9450348
	_cons	-10.72006	16.60	593	-0.65	0.519	-43.30148	21.86137

Appendix 6.15: Model 6.11 results

```
. **Model 6.11 System GMM
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lntop lnwage lngdp
Intradefree lneconfree lntransition
> lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock,
laglimit(1 2) collapse) iv(lnsecedu
> Intertedu Intop Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra
indprivatisation d1996-d2008 c2-c14
> s2-s13) two robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c10 dropped due to collinearity
c14 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
  Difference-in-Sargan statistics may be negative.
```

Dynamic panel-data estimation, two-step system GMM

paner		.011, CWO 300	p system	01111		
Group variabl Time variable Number of ins F(43 117)	e: id : year truments = 46 = 86 33			Number Number Obs per	of obs = of groups = group: min = avg =	1190 118 1 10 08
Prob > F	= 0.000				max =	10.00
		Corrected				
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+ 					
L1.	.273413	.1381993	1.98	0.050	0002834	.5471095
lnsecedu	6301561	1.050211	-0.60	0.550	-2.710044	1.449732
lntertedu	-1.149711	.8957391	-1.28	0.202	-2.923676	.6242529
lntop	1.678539	.6851836	2.45	0.016	.3215685	3.035509
lnwage	3438097	.4970922	-0.69	0.491	-1.328275	.6406552
lngdp	.2638738	.5614991	0.47	0.639	8481457	1.375893
lntradefree	1009019	.2775873	-0.36	0.717	6506491	.4488452
lneconfree	1.666877	.6380634	2.61	0.010	.4032261	2.930529
lntransition	1.935819	1.116605	1.73	0.086	2755584	4.147197
lnictinfra	.3393839	.25291	1.34	0.182	1614912	.840259
indprivati~n	1.284721	.8492123	1.51	0.133	3970998	2.966541
d1996	-1.131931	.8234982	-1.37	0.172	-2.762826	.4989641
d1997	-1.141209	.7948574	-1.44	0.154	-2.715383	.4329643
d1998	-1.070202	.7439895	-1.44	0.153	-2.543634	.4032306
d1999	953654	.6820005	-1.40	0.165	-2.30432	.3970123
d2000	-1.209285	.5561651	-2.17	0.032	-2.310741	1078292
d2001	941807	.5447392	-1.73	0.086	-2.020634	.1370204
d2002	8300299	.4687764	-1.77	0.079	-1.758417	.0983571
d2003	7541816	.4661584	-1.62	0.108	-1.677384	.1690208
d2004	3776055	.2844137	-1.33	0.187	940872	.185661
d2005	2919736	.2032154	-1.44	0.153	694431	.1104838
d2006	315482	.1531518	-2.06	0.042	618791	0121729
d2007	1063217	.10676	-1.00	0.321	3177542	.1051109
c5	369976	1.434863	-0.26	0.797	-3.211647	2.471695
с6	5854218	1.088117	-0.54	0.592	-2.740381	1.569537
с7	.4924199	1.213011	0.41	0.686	-1.909884	2.894724
c8	4757835	.6881803	-0.69	0.491	-1.838689	.8871216
с9	1.281046	1.113783	1.15	0.252	9247429	3.486834
c11	2205169	1.310681	-0.17	0.867	-2.816252	2.375218
c12	1.148921	1.318583	0.87	0.385	-1.462463	3.760305
c13	8040778	.7812519	-1.03	0.306	-2.351306	.7431507
s2	-1.038786	.3528113	-2.94	0.004	-1.73751	3400616
s3	-3.094495	.8778592	-3.53	0.001	-4.833049	-1.355941
s4	2505042	.2541047	-0.99	0.326	7537452	.2527367
s5	-2.432569	.6680709	-3.64	0.000	-3./55649	-1.10949
so	3380128	.2234509	-1.51	0.133	/805455	.10452
s7	8491818	.28/3251	-2.96	0.004	-1.418214	2801494
s8	3/4906/	.229594/	-1.63	0.105	82960/1	.0/9/936
s9	52/951/	.248409/	-2.13	0.036	-1.019914	0359893

s10 s11 s12 s13 _cons	939882 5393744 3994754 -1.726834 3424096	.3002634 .2573894 .2807674 .4534419 12.53785	-3.13 -2.10 -1.42 -3.81 -0.03	0.002 0.038 0.157 0.000 0.978	-1.534538 -1.049121 9555205 -2.624852 -25.17297	0 .1 8 24	345226 296283 565697 288157 .48815
Instruments f Standard FOD.(lnse Intransit d2001 d20 c10 c11 c GMM-type (n L(1/2).L. Instruments f Standard cons Insecedu Lnictinfr d2003 d20 c13 c14 s GMM-type (n D.L.lning	cedu Intertedu ion Inictinfra 02 d2003 d2004 12 c13 c14 s2 iissing=0, sepa Inindfdistock for levels equa Intertedu Into a indprivatisa 04 d2005 d2006 2 s3 s4 s5 s6 iissing=0, sepa Ifdistock colla	deviations of Intop lnwad indprivati: d2005 d2000 s3 s4 s5 s6 rate instrum collapsed tion p lnwage lnd tion d1996 of d2007 d2003 s7 s8 s9 s10 rate instrum psed	equation ge lngdp sation d1 6 d2007 c s7 s8 s9 ments for gdp lntra d1997 d19 3 c2 c3 c 0 s11 s12 ments for	<pre>Intradef 996 d199 12008 c2 9 s10 s11 c each pe adefree 1 98 d1999 24 c5 c6 2 s13 c each pe</pre>	ree lneconfr 7 d1998 d199 c3 c4 c5 c6 s12 s13) rriod unless neconfree ln d2000 d2001 c7 c8 c9 c10 rriod unless	ee 9 d20 c7 c8 colla trans d200 c11 colla	00 c9 psed) ition 2 c12 psed)
Arellano-Bond Arellano-Bond	l test for AR(1 l test for AR(2) in first () in first (differenc	ces: z = ces: z =	-2.03 Pr > -1.18 Pr >	z = z =	0.043 0.238
Sargan test o (Not robust Hansen test o (Robust, bu	of overid. rest , but not weak of overid. rest at can be weake	rictions: cl ened by many rictions: cl ned by many	ni2(2) y instrum ni2(2) instrume	= 4.9 ments.) = 1.0 ents.)	1 Prob > ch 8 Prob > ch	i2 = i2 =	0.086
Difference-ir GMM instrum Hansen te Differenc	-Hansen tests hents for level est excluding g ee (null H = ex	of exogeneit s roup: cl ogenous): cl	ty of ins ni2(1) ni2(1)	= 0.6 = 0.4	subsets: 2 Prob > ch 5 Prob > ch	i2 = i2 =	0.430 0.500

•

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	8672823	1.470082	-0.59	0.556	-3.778702	2.044137

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-1.582345	1.024185	-1.54	0.125	-3.610689	.4459988

. nlcom _b[lntop]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntop]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	2.310169	.6903694	3.35	0.001	.9429284	3.677409

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	4731846	.7223794	-0.66	0.514	-1.903819	.9574501

. nlcom _b[lngdp]/(1-_b[1.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	.3631688	.7907777	0.46	0.647	-1.202925	1.929263

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	1388711	.3945461	-0.35	0.725	920249	.6425068

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	2.294119	.8257604	2.78	0.006	.6587444	3.929495

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	2.664264	1.45235	1.83	0.069	212039	5.540566

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.4670932	.3853514	1.21	0.228	2960749	1.230261

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

.

_nl_1: _b[indprivatisation]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	1.768158	1.387001	1.27	0.205	9787249	4.515041
. **Model 6.11	l FE					
---	---	---	---	---	--	--
. xtreg lnind:	Edistock l.ln:	indfdistock 3	lnsecedu	lnterted	u lntop lnwag	e lngdp
lntradefree l	neconfree lnt	ransition ln				
> ictinfra ind	dprivatisatio	n d1996-d2008	8 c2-c14	s2-s13,	fe	
note: lntop or	mitted because	e of collinea	arity			
note: d1996 or	mitted because	e of collinea	arity			
note: c2 omit	ed because of	f collinearit	ty			
note: c3 omit	ed because of	f collinearit	ty			
note: c4 omit	ed because of	f collinearit	ty			
note: c5 omit	ed because of	f collinearit	ty			
note: c6 omit	ed because of	f collinearit	ty			
note: c7 omit	ed because of	f collinearit	ty			
note: c8 omit	ed because of	f collinearit	ty			
note: c9 omit	ed because of	f collinearit	ty			
note: c10 omit	ted because of	of collinear:	ity			
note: c11 omit	ted because of	of collinear:	ity			
note: c12 omit	ted because of	of collinear:	ity			
note: c13 omit	ted because of	of collinear:	ity			
note: c14 omit	ted because of	of collinear:	ity			
note: s2 omit	ed because of	f collinearit	tv			
note: s3 omit!	ed because of	f collinearit	tv			
note: s4 omit	ed because of	f collinearit	tv			
note: s5 omitt	ted because of	f collinearit	tv			
note: s6 omit1	ted because of	f collinearit	t.v			
note: s7 omitt	ted because of	f collinearit	tv			
note: s8 omitt	ed because of	f collinearit	tv			
note: s9 omitt	ed because of	f collinearit	t v			
note: s10 omit	ted because (of collinear	itv			
note: s11 omit	ted because (of collinear:	itv			
note: s12 omit	ted because (of collinear	itv			
note: s12 omit	ted because (of collinear:	ity			
HOLE, SIS ONLI	lieu because (JI COIIIIeal.	тсу			
Fixed_offocts	(within) requ	ression		Number	of obs -	1190
Croup wariable	(within) regi	Lession		Number	of groups =	119
GLOUP VALIADI	e. 10			Number	or groups -	110
D con within	_ 0 2072			Oha nor	arour, min -	1
R-Sq: WILIIII	= 0.2073			ops ber	group: min =	10 1
Detween	1 = 0.0249				avg =	10.1
overal.	L = 0.5735				IIIdX =	13
				F(22 10	50) -	10, 24
corr(u i Yb)	- 0 5084			F(22,10	50) =	19.24
corr(u_i, Xb)	= 0.5084			F(22,10 Prob >	50) = F =	19.24 0.0000
corr(u_i, Xb)	= 0.5084			F(22,10 Prob >	50) = F =	19.24 0.0000
corr(u_i, Xb)	= 0.5084	Std Exx		F(22,10 Prob >	50) = F =	19.24 0.0000
corr(u_i, Xb) lnindfdist~k	= 0.5084	Std. Err.	t	F(22,10 Prob > P> t	50) = F = [95% Conf.	19.24 0.0000
corr(u_i, Xb)	= 0.5084	Std. Err.	t	F(22,10 Prob > P> t	50) = F = [95% Conf.	19.24 0.0000 Interval]
corr(u_i, Xb) lnindfdist~k lnindfdist~k	= 0.5084	Std. Err.	t	F(22,10 Prob > P> t	50) = F = [95% Conf.	19.24 0.0000 Interval]
corr(u_i, Xb) lnindfdist~k lnindfdist~k Ll.	= 0.5084	Std. Err.	t 6.29	F(22,10 Prob > P> t 0.000	50) = F = [95% Conf. .1328738	19.24 0.0000 Interval] .2534403
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.	= 0.5084	Std. Err.	t 6.29	F(22,10 Prob > P> t 0.000	50) = F = [95% Conf. .1328738	19.24 0.0000 Interval] .2534403
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu	= 0.5084	Std. Err. .0307219 1.580211	t 6.29 -0.38	F(22,10 Prob > P> t 0.000 0.706	50) = F = [95% Conf. .1328738 -3.696876	19.24 0.0000 Interval] .2534403 2.504584
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu	= 0.5084 Coef.	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	F(22,10 Prob > P> t 0.000 0.706 0.603	50) = F = [95% Conf. .1328738 -3.696876 -1.882939	19.24 0.0000 Interval] .2534403 2.504584 1.093145
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntop	= 0.5084	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	F(22,10 Prob > P> t 0.000 0.706 0.603	50) = F = [95% Conf. .1328738 -3.696876 -1.882939	19.24 0.0000 Interval] .2534403 2.504584 1.093145
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntop lnwage	= 0.5084	Std. Err. .0307219 1.580211 .758344 .8469517	t 6.29 -0.38 -0.52 -0.69	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntop lnwage lngdp	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846	Std. Err. .0307219 1.580211 .758344 .8469517 .779508	t 6.29 -0.38 -0.52 -0.69 0.65	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree Ineconfree	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntop lnwage lngdp lntradefree lneconfree lntransition	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntop lnwage lngdp lntradefree lneconfree lntransition lnictinfra	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661
corr(u_i, Xb) lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivati~n	= 0.5084 Coef. .193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree Inconfree Intransition Inictinfra indprivati~n d1996	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted)	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756
corr(u_i, Xb) 	= 0.5084 Coef. . 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntop lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479 7051628	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntop lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37	F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711	50) = F = [95% Conf. 	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663
corr(u_i, Xb) lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k lnsecedu lntertedu lntop lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001</pre>	= 0.5084 Coef. .193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224
corr(u_i, Xb) 	= 0.5084 Coef. .193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.771</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643
corr(u_i, Xb) lnindfdist~k L1. lnindfdist~k L1. lnsecedu lntertedu lntop lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .588631 .6507777 .7069018	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38	<pre>F(22,10 Prob > P> t </pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.23017 -1.16774 -1.087515 -1.120065	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n</pre>	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70	<pre>F(22,10 Prob > P> t </pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076
corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.649 0.983 0.771 0.706 0.485 0.467</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.08755 120065 9770965 -1.05191	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.4654137 2.058076 2.290729
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1.</pre>	= 0.5084 Coef. .193157 5961464 3948972 (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895 .6194095 .5497161	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.771 0.706 0.485 0.467 0.550</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 05191 -1.252642	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 8.748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074
<pre>corr(u_i, Xb) lnindfdist~k lnindfdist~k L1. Insecedu Intop Inwage Ingdp Intradefree Inconfree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2001 d2002 d2003 d2004 d2005 d2004</pre>	= 0.5084 Coef. .193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.771 0.706 0.485 0.467 0.550 0.570</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 -9770965 -1.05191 -1.252642 -1.419899	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 8.748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713
corr(u_i, Xb) lnindfdist~k L1. lnsecedu lntertedu lntop lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .588631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > P> t </pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.23091 -1.26774 -1.087515 -1.120065 9770965 -1.05191 -1.252642 -1.419899 -1.310382	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654
<pre>corr(u_i, Xb) Inindfdist~k Il. Insecedu Intertedu Intop Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2004 d2005 d2006 d2007 d2008 c2</pre>	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.65 7.02 0.78	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.649 0.983 0.771 0.706 0.485 0.467 0.550 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 -1.05191 -1.252642 -1.419899 -1.310382	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 8.748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654
corr(u_i, Xb) lnindfdist~k L1. Insecedu Intertedu Intop Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.649 0.983 0.711 0.706 0.485 0.467 0.550 0.570 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065 9770965 -1.05191 -1.252642 -1.419899 -1.310382	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076 2.290729 2.352074 2.57713 3.027654
corr(u_i, Xb) 	= 0.5084 Coef. .193157 193157 	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003 .8517466 .9185275 1.018494 1.105387	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70 0.73 0.60 0.57 0.78	<pre>F(22,10 Prob > P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.711 0.649 0.983 0.771 0.706 0.485 0.467 0.550 0.570 0.437</pre>	50) = F = [95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.22065 9770965 -1.05191 -1.252642 -1.419899 -1.310382	19.24 0.0000 Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 8.748656 1.046663 .7666419 1.143224 1.4654137 2.058076 2.290729 2.352074 2.57713 3.027654

c6 c7 c8 c9 c10 c11 c12	<pre>(omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)</pre>								
C13 C14	(omitted)								
s2	(omitted)								
s3	(omitted)								
s4	(omitted)								
s5	(omitted)								
s6	(omitted)								
s7	(omitted)								
s8	(omitted)								
s9	(omitted)								
s10	(omitted)								
s11	(omitted)								
s12	(omitted)								
s13	(omitted)								
_cons	-13.0252	16.023	303	-0.81	0.416	-	44.466	18.415	559
sigma_u sigma_e rho	1.4805195 1.2593186 .58021217	(fract	tion of	f varia	ince due	to u_i	.)		
F test that all	u_i=0:	F(117,	1050)	=	1.97		Prob >	F = 0.00	000

. **Model 6.11 OLS
. reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lntop lnwage lngdp lntradefree
lneconfree lntransition lnic
> tinfra indprivatisation d1996-d2008 c2-c14 s2-s13
note: d2008 omitted because of collinearity
note: c2 omitted because of collinearity
note: c3 omitted because of collinearity
note: c4 omitted because of collinearity
note: c10 omitted because of collinearity
note: c11 omitted because of collinearity

Source	SS	df		MS		Number of obs	= 1190
Model	5408.44026	43	125	5.77768		Prob > F	= 0.0000
Residual	2030.60261	1146	1.7	7190454		R-squared	= 0.7270
Total	+	1100				Adj R-squared	= 0.7168
IOCAL	1439.04280	1109	0.2.	0000410		ROOL MSE	- 1.5511
lnindfdist~k	Coef.	Std. 1	Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k							
L1.	.4553395	.02642	225	17.23	0.000	.4034975	.5071814
lnsecedu	8482964	1.667	813	-0.51	0.611	-4.120607	2.424014
lntertedu	2664939	.8003	897	-0.33	0.739	-1.836887	1.3039
lntop	.3136591	1.128	134	0.28	0.781	-1.899781	2.5271
Inwage	6/56286	.8930	367	-0.76	0.449	-2.42/89/	1.0/664
Ingap	.624/09	.818	534 072	0.76	0.446	9818/29	2.231291
lnogonfrog		1 0260	572 527	-0.24	0.011	-1.012400	2 700652
Intransition	0900720	3 224	724	0.00	0.490	-4 295366	8 358685
lnictinfra	2866624	4476	191	0.63	0.522	- 5915826	1 164907
indprivati~n	1.845784	. 3307	288	5.58	0.000	1,196882	2.494686
d1996	8688525	1.1670	594	-0.74	0.457	-3.159911	1.422206
d1997	7394278	1.048	316	-0.71	0.481	-2.796262	1.317406
d1998	6802325	.94322	236	-0.72	0.471	-2.530871	1.170406
d1999	6125039	.88002	233	-0.70	0.487	-2.339141	1.114134
d2000	-1.026664	.8395	791	-1.22	0.222	-2.673948	.6206207
d2001	6557408	.77169	987	-0.85	0.396	-2.169842	.8583601
d2002	5263284	.6750	865	-0.78	0.436	-1.850872	.7982156
d2003	5156825	.55682	241	-0.93	0.355	-1.608192	.5768265
d2004	2574877	.4721	513	-0.55	0.586	-1.183866	.6688903
d2005	2449832	.396	5/3	-0.62	0.537	-1.023074	.5331074
d2006	3215086	.3281	900 125	-0.98	0.327	9654423	.3224231
d2008	(omitted)	.23020	JZJ	-1.20	0.200	/410510	.1014990
c2	(omitted)						
c3	(omitted)						
c4	(omitted)						
c5	1.160913	2.297	914	0.51	0.614	-3.347676	5.669503
c6	1.079568	2.919	758	0.37	0.712	-4.649103	6.808239
с7	1.165673	1.734	713	0.67	0.502	-2.237896	4.569243
c8	.5394276	1.731	556	0.31	0.755	-2.857948	3.936803
с9	1.158936	1.4850	655	0.78	0.436	-1.755972	4.073844
c10	(omitted)						
c11	(omitted)	1 1	204	0.04	0 100	1 007001	2 046450
c12	.9/46285	1.15/8	394	0.84	0.400	-1.29/201	3.246458
C13	. 1 057001	1.7263	102 102	0.45	0.654	-2.613394	4.163209
C14 c2		1950	403 266	-3 98	0.021	-2.173331	4.209012
52	= 2 307871	2316	529	-9.96	0.000	-2 762402	-1 85334
s4	-1664077	1957	271	-0.85	0.000	- 5504313	2176159
s5	-1.849678	.23330	013	-7.93	0.000	-2.307424	-1.391933
s6	2609348	.1915	905	-1.36	0.173	6368423	.1149728
s7	6039828	.1944	849	-3.11	0.002	9855691	2223964
s8	2568096	.1961	128	-1.31	0.191	64159	.1279707
s9	4184957	.1899	437	-2.20	0.028	791172	0458194
s10	6799648	.193	197	-3.52	0.000	-1.059024	3009053
s11	3733324	.1899	565	-1.97	0.050	746034	0006308
s12	2659208	.1892	543	-1.41	0.160	6372446	.1054029
s13	-1.352761	.2078	075	-6.51	0.000	-1.760486	9450348
_cons		19./2	994 	-0.4/	0.635	-48.068/6	29.35297

Appendix 6.16: Model 6.12 results

```
. **Model 6.12 System GMM
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lncognitive medium high
Incognitivemed Incognitivehigh
> lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation
d1996-d2008 c2-c14 s2-s13, gmm(1.1
> nindfdistock, laglimit(1 2) collapse) iv(lnsecedu lntertedu lncognitive medium
high lncognitivemed lncognitiveh
> igh lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation
d1996-d2008 c2-c14 s2-s13) two
> robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c10 dropped due to collinearity
c14 dropped due to collinearity
s9 dropped due to collinearity
s12 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
  Difference-in-Sargan statistics may be negative.
```

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of ins F(45, 117) Prob > F	e: id : year truments = 48 = 87.85 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	1190 118 1 10.08 13
lnindfdist~k	Coef.	Corrected Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k	+ 					
L1.	.2740962	.1376079	1.99	0.049	.001571	.5466214
lnsecedu	6185799	1.052515	-0.59	0.558	-2.703031	1.465871
lntertedu	-1.146813	.8958742	-1.28	0.203	-2.921045	.6274184
lncognitive	7.105769	3.727214	1.91	0.059	2757837	14.48732
medium	-4.393903	3.517494	-1.25	0.214	-11.36012	2.572311
high	-9.843935	3.941758	-2.50	0.014	-17.65038	-2.037489
lncognitiv~d	2.427065	2.193241	1.11	0.271	-1.916533	6.770663
lncognitiv~h	5.928285	2.452042	2.42	0.017	1.072144	10.78443
lnwage	3508278	.4964165	-0.71	0.481	-1.333955	.6322991
lnadp	.2701066	.5623839	0.48	0.632	8436652	1.383878
lntradefree	1003206	.277724	-0.36	0.719	6503384	.4496971
lneconfree	1.667732	.6407266	2.60	0.010	.398806	2,936657
Intransition	1.922088	1.117154	1.72	0.088	2903764	4.134552
Inictinfra	3415843	.2527238	1.35	0.179	1589219	.8420905
indprivati~n	1,274273	.8507842	1.50	0.137	4106609	2.959206
d1996	-1 127069	8241885	-1 37	0 174	-2 759331	5051932
d1997	-1 136049	7957171	-1 43	0 156	-2 711925	439827
d1998	-1 065003	7450535	-1 43	0.156	-2 540542	4105367
d1990	- 9/86019	6830488	_1 39	0.150	-2 301344	.4100007
42000		557278	-2.16	0.100	-2.301344	- 1019087
d2000	-1.203303	5166196	-2.10	0.033	-2.021144	1/30588
42002	0267224	.3400190	1 76	0.005	1 757676	1042215
42002	7515406	.4700724	-1.70	0.001	-1.757070	1722056
d2003	2754701	.40/0339	-1.01	0.110	-1.0/04//	.1/33930
42004	3734701	.2032920	-1.32	0.151	9404773	1125121
d2005	2906699	.2040007	-1.42	0.137	0940329	.1135131
a2006	3145917	.153965	-2.04	0.043	6195113	0096722
a2007	103/1/4	.1060224	-0.98	0.330	3136892	.1062543
CO	.5516408	1.394/56	0.40	0.693	-2.210599	3.313881
C6	2282548	1.06118	-0.22	0.830	-2.329867	1.8/335/
c /	1.25241	1.289/92	0.97	0.334	-1.301956	3.806///
C8	43/1925	.6823942	-0.64	0.523	-1./88638	.9142535
c9	.4984923	1.007512	0.49	0.622	-1.496831	2.493816
c11	.8848306	1.475147	0.60	0.550	-2.036621	3.806282
c12	1.550041	1.373342	1.13	0.261	-1.16979	4.269873
c13	.0898292	.6553447	0.14	0.891	-1.208047	1.387705

s2		-1.026616	.3407383	-3.01	0.003	-1.70143	3518015
s3	1	-3.066186	.8668811	-3.54	0.001	-4.782999	-1.349374
s4	1	2424927	.2483548	-0.98	0.331	7343465	.249361
s5	1	-1.902161	.6082298	-3.13	0.002	-3.106728	6975938
s6	1	.0489277	.2395554	0.20	0.839	4254992	.5233546
s7	1	3198982	.2225223	-1.44	0.153	7605921	.1207956
s8	1	.1547029	.1843405	0.84	0.403	2103739	.5197796
s10	1	5604123	.2771262	-2.02	0.045	-1.109246	0115783
s11	1	1420308	.2413577	-0.59	0.557	620027	.3359655
s13	1	-1.721273	.4476254	-3.85	0.000	-2.607771	8347738
_cons		-16.65516	11.12534	-1.50	0.137	-38.68832	5.377996
Instruments f	for	orthogonal	deviations	equation			
FOD.(lnse	ece	du lnterted	u lncognitiv	e medium	high lno	cognitivemed	

lncognitivehigh lnwage lngdp lntradefree lneconfree Intransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).L.lnindfdistock collapsed Instruments for levels equation Standard _cons Insecedu Intertedu Incognitive medium high Incognitivemed Incognitivehigh lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.03 Pr > z = 0.043Arellano-Bond test for AR(2) in first differences: z = -1.18 Pr > z = 0.239-----Sargan test of overid. restrictions: chi2(2) = 5.00 Prob > chi2 = 0.082 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(2) = 1.09 Prob > chi2 = 0.581(Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels

Hansen test excluding group: chi2(1) = 0.62 Prob > chi2 = 0.432Difference (null H = exogenous): chi2(1) = 0.47 Prob > chi2 = 0.494

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	8521514	1.474776	-0.58	0.564	-3.772868	2.068565

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-1.579842	1.026869	-1.54	0.127	-3.613502	.4538177

. nlcom _b[lncognitive]/(1-_b[l.lnindfdistock])

_nl_1: _b[lncognitive]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	9.788858	4.250107	2.30	0.023	1.371744	18.20597

. nlcom _b[medium]/(1-_b[1.lnindfdistock])

_nl_1: _b[medium]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-6.05301	4.610773	-1.31	0.192	-15.1844	3.078385

. nlcom _b[high]/(1-_b[1.lnindfdistock])

_nl_1: _b[high]/(1-_b[l.lnindfdistock])

lnindfdist~k		Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
nl1	+	13.56094	4.586	5779	-2.96	0.00	4 -22.64481	-4.47706

. nlcom _b[lncognitivemed]/(1-_b[l.lnindfdistock])

_nl_1: _b[lncognitivemed]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	3.343508	2.89519	1.15	0.251	-2.390263	9.077279

. nlcom _b[lncognitivehigh]/(1-_b[l.lnindfdistock])

_nl_1: _b[lncognitivehigh]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	8.166764	2.87414	2.84	0.005	2.474681	13.85885

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	483298	.7220237	-0.67	0.505	-1.913228	.9466321

. nlcom _b[lngdp]/(1-_b[l.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	.3720969	.7927868	0.47	0.640	-1.197976	1.94217

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	138201	.3950025	-0.35	0.727	9204828	.6440808

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	2.297455	.8284946	2.77	0.006	.6566652	3.938246

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	2.647855	1.45707	1.82	0.072	2377953	5.533505

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	.4705642	.3852191	1.22	0.224	292342	1.23347

. nlcom _b[indprivatisation]/(1-_b[l.lnindfdistock])

_nl_1: _b[indprivatisation]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
_nl_1	1.755429	1.388093	1.26	0.209	9936154	4.504474

```
. **Model 6.12 FE
. xtreq lnindfdistock l.lnindfdistock lnsecedu lntertedu lncognitive medium high
lncognitivemed lncognitivehigh ln
> wage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-
d2008 c2-c14 s2-s13, fe
note: Incognitive omitted because of collinearity
note: medium omitted because of collinearity
note: high omitted because of collinearity
note: Incognitivemed omitted because of collinearity
note: Incognitive high omitted because of collinearity
note: d1996 omitted because of collinearity
note: c2 omitted because of collinearity
note: c3 omitted because of collinearity
note: c4 omitted because of collinearity
note: c5 omitted because of collinearity
note: c6 omitted because of collinearity
note: c7 omitted because of collinearity
note: c8 omitted because of collinearity
note: c9 omitted because of collinearity
note: c10 omitted because of collinearity
note: cll omitted because of collinearity
note: c12 omitted because of collinearity
note: c13 omitted because of collinearity
note: c14 omitted because of collinearity
note: s2 omitted because of collinearity
note: s3 omitted because of collinearity
note: s4 omitted because of collinearity
note: s5 omitted because of collinearity
note: s6 omitted because of collinearity
note: s7 omitted because of collinearity
note: s8 omitted because of collinearity
note: s9 omitted because of collinearity
note: s10 omitted because of collinearity
note: sl1 omitted because of collinearity
note: s12 omitted because of collinearity
note: s13 omitted because of collinearity
                                              Number of obs = 1190
Number of groups = 118
Fixed-effects (within) regression
Group variable: id
R-sq: within = 0.2873
                                              Obs per group: min =
                                                                           1
      between = 0.8249
                                                             avg =
                                                                        10.1
      overall = 0.5735
                                                             max =
                                                                        13
                                              F(22,1050)
                                                                      19.24
corr(u_i, Xb) = 0.5084
                                                                =
                                                                      0.0000
                                              Prob > F
lnindfdist~k | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____+
lnindfdist~k |
       L1. |
                 .193157 .0307219
                                       6.29 0.000
                                                        .1328738
                                                                     .2534403
                                      -0.38 0.706
-0.52 0.603
   lnsecedu | -.5961464 1.580211
                                                       -3.696876
                                                                   2.504584
                           .758344
                                                                  1.093145
                                                       -1.882939
  lntertedu | -.3948972
 lncognitive | (omitted)
               (omitted)
    medium |
      high |
               (omitted)
               (omitted)
lncognitiv~d |
lncognitiv~h |
               (omitted)
                          .8469517
                                      -0.69 0.492
0.65 0.513
-0.03 0.976
                                                                   1.079169
               -.5827412
                                                       -2.244652
     lnwage |
                           .779508
                                                       -1.019086
      lngdp |
               .5104846
                                                                    2.040055
               -.0199811
                          .6512587
                                                       -1.297898
                                                                   1.257936
lntradefree |
 lneconfree | 1.436007 .9727928
ntransition | 2.323538 3.052363
                                      1.48 0.140
0.76 0.447
                                                       -.4728324
                                                                    3.344846
Intransition |
                                                       -3.665887
                                                                    8.312963
                                      1.15 0.250
 lnictinfra |
               .4880843 .4237924
                                                       -.3434921
                                                                   1.319661
indprivati~n |
                1.398859
                          .3276367
                                       4.27 0.000
                                                        .755962
                                                                    2.041756
      d1996 |
               (omitted)
                                      0.05 0.958
0.21 0.833
0.37 0.711
               .0184732 .3497666
                                                                    .7047943
      d1997 |
                                                       -.6678479
      d1998 |
                .0848514
                           .4026112
                                                       -.7051628
                                                                    .8748656
      d1999 |
               .1664835
                          .4485618
                                                       -.7136961
                                                                   1.046663
                          .5087994
               -.2317374
                                             0.649
0.983
                                                       -1.230117
      d2000 L
                                      -0.46
                                                                    .7666419
      d2001 |
               -.0122579
                           .5888631
                                      -0.02
                                                        -1.16774
                                                                   1.143224
                          .6507777
                                      0.29 0.771
      d2002 |
               .1894574
                                                       -1.087515
                                                                    1.46643
                           .7069018
                                      0.38 0.706
0.70 0.485
                                                       -1.120065
      d2003 |
                 .267036
                                                                    1.654137
               .5404895
      d2004 |
                           .7734003
                                                       -.9770965
                                                                   2.058076
      d2005 | .6194095
                          .8517466
                                       0.73 0.467
                                                        -1.05191
                                                                   2.290729
```

d2006 d2007 d2008 c2	.5497161 .5786153 .8586361 (omitted)	.9185275 1.018494 1.105387	0.60 0.57 0.78	0.550 0.570 0.437	-1.252642 -1.419899 -1.310382	2.352074 2.57713 3.027654
c3	(omitted)					
c4	(omitted)					
c5	(omitted)					
c6	(omitted)					
c7	(omitted)					
c8	(omitted)					
c9	(omitted)					
c10	(omitted)					
c11	(omitted)					
c12	(omitted)					
c13	(omitted)					
c14	(omitted)					
s2	(omitted)					
s3	(omitted)					
s4	(omitted)					
s5	(omitted)					
s6	(omitted)					
s7	(omitted)					
s8	(omitted)					
s9	(omitted)					
s10	(omitted)					
s11	(omitted)					
s12	(omitted)					
s13	(omitted)					
_cons	-13.0252	16.02303	-0.81	0.416	-44.466	18.41559
sigma_u	1.4805195					
sigma_e	1.2593186					
rho	.58021217	(fraction o	of varia	nce due t	o u_i)	
F test that all	u_i=0:	F(117, 1050)) = :	1.92	Prob >	F = 0.0000

. **Model 6.12 OLS . reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lncognitive medium high lncognitivemed lncognitivehigh lnwa > ge lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996d2008 c2-c14 s2-s13 note: lncognitive omitted because of collinearity note: medium omitted because of collinearity note: c4 omitted because of collinearity note: c10 omitted because of collinearity note: s10 omitted because of collinearity

Source	I SS	df		MS		Number of obs	=	1190
Model	+	45	120	393424		F(45, 1144) Prob > F	_	0 0000
Residual	2021.33878	1144	1.7	6690453		R-squared	_	0.7283
	+					Adj R-squared	=	0.7176
Total	7439.04286	1189	6.2	5655413		Root MSE	=	1.3292
lnindfdist~k	Coef. +	Std.	Err.	t 	P> t	[95% Conf.	In 	terval]
lnindfdist~k								
L1.	.4472093	.0266	232	16.80	0.000	.3949736		.499445
lnsecedu	8417746	1.665	477	-0.51	0.613	-4.109507	2	.425958
lntertedu	2712395	.7992	626	-0.34	0.734	-1.839425	1	.296946
lncognitive	(omitted)							
medium	(omitted)							
high	-7.734266	3.087	944	-2.50	0.012	-13.79294	-1	.675596
lncognitiv~d	1.940997	1.952	861	0.99	0.320	-1.890594	5	.772589
lncognitiv~h	4.41077	1.926	957	2.29	0.022	.6300038	8	.191536
Inwage	6//2831	.8918	312	-0.76	0.448	-2.42/091	T	.0/2525
Ingap	.6331922	.81/6	863 500	0.77	0.439	9/11409	2	.23/525
lncconfroo	7112104	1 025	200	-0.24	0.012	-1.309217	2	722606
Intransition	· · /112104	3 220	173	0.09	0.400	-1.300273	2	3/1828
Inictinfra	1 2932105	4469	963	0.03	0.530	-4.294300	1	170235
indprivati~n	1 816172	3305	208	5 49	0.012	1 167677	2	464667
d1996	- 86738	1,166	047	-0.74	0.457	-3.155211	1	. 420451
d1997	7379134	1.046	836	-0.70	0.481	-2.791848	1	.316021
d1998	6781001	.9418	927	-0.72	0.472	-2.526131	1	.169931
d1999	6090569	.8787	825	-0.69	0.488	-2.333263	1	.115149
d2000	-1.02247	.8383	968	-1.22	0.223	-2.667438		6224982
d2001	6561624	.7706	106	-0.85	0.395	-2.168131		8558063
d2002	5251843	.6741	347	-0.78	0.436	-1.847863		7974948
d2003	514148	.5560	385	-0.92	0.355	-1.605118	•	5768218
d2004	2560552	.4714	853	-0.54	0.587	-1.181128	•	6690176
d2005	2416745	.3960	171	-0.61	0.542	-1.018676	·	5353268
d2006	3183027	.327	738	-0.97	0.332	9613376	·	3247323
d2007	288655	.2298	/96	-1.26	0.209	/3968/9	•	1623//8
a2008	(omitted)							
CZ	(omitted)							
C3	(omitted)							
c5	1.351072	1.873	072	0.72	0.471	-2.323969	5	.026114
c6	1.159314	1.660	048	0.70	0.485	-2.097765	4	.416394
c7	1.333946	1.647	505	0.81	0.418	-1.898523	4	.566416
c8	.5653086	1.079	234	0.52	0.601	-1.552192	2	.682809
с9	1.035051	1.357	203	0.76	0.446	-1.627835	3	.697937
c10	(omitted)							
c11	.2471034	2.296	415	0.11	0.914	-4.258555	4	.752761
c12	1.09896	1.775	168	0.62	0.536	-2.383991	4	.581911
c13	.9625966	1.178	752	0.82	0.414	-1.350162	3	.275355
c14	1.078748	1.469	038	0.73	0.463	-1.803563	3	.961059
s2	7807437	.1947	639	-4.01	0.000	-1.162878		3986091
S3	-2.324189	.2314	764	-10.04	0.000	-2.//8355	-1	.8/0023
S4	1649878	.1954	564	-0.84	0.399	5484812	•	2185055
55	I -4.90/044	3.14U 1030	727 702	-1.20	0.114	-11.12930 0524667	T	.1942/1 8130///
50 c7	-3 707247	- 101 3 101	202 558	2.23 -1 19	0.020	-9 837755	· ?	423261
ے / د ک	-3 353586	3 120	582	-1 07	0.230	-9 476293	2	769121
<u>ج</u> ٩	-3.516236	3.118	283	-1.13	0.260	-9.634433	2	2.60196
s10	(omitted)	0.110		1.10	0.200	2.001100		
s11	.3251242	.189	685	1.71	0.087	0470454		6972938
s12	.4344696	.190	237	2.28	0.023	.0612171		8077222
s13	-1.369156	.207	641	-6.59	0.000	-1.776556		9617558
_cons	-10.53859	16.58	337	-0.64	0.525	-43.07582	2	1.99864

Appendix 6.17: Model 6.13 results

```
. **Model 6.13 System GMM
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lntop medium high
Intopmed Intophigh Inwage Ingdp Intr
> adefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-
s13, gmm(l.lnindfdistock, lagl
> imit(1 2) collapse) iv(lnsecedu lntertedu lntop medium high lntopmed lntophigh
lnwage lngdp lntradefree lneconf
> ree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13) two robust
small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c10 dropped due to collinearity
c14 dropped due to collinearity
s9 dropped due to collinearity
s12 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
```

Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable	e: id : year			Number Number	of obs = of groups =	1190 118
F(45 117)	- 94 09			obs per	group: min =	10 08
Prob > F	= 0.000				max =	13
	- 0.000					
1		Corrected				
lnindfdist~k	Coef.	Std. Err.	t.	P> t	[95% Conf.	Intervall
+						
lnindfdist~k						
L1.	.2747524	.1374544	2.00	0.048	.0025313	.5469736
lnsecedu	6192496	1.055669	-0.59	0.559	-2.709946	1.471447
lntertedu	-1.140739	.8949205	-1.27	0.205	-2.913082	.6316046
lntop	1.353072	.6591961	2.05	0.042	.047569	2.658576
medium	.8872834	.6441342	1.38	0.171	3883906	2.162957
high	1.375217	.6848358	2.01	0.047	.0189352	2.731498
Intopmed	.5341413	.2488251	2.15	0.034	.0413563	1.026926
lntophigh	.6702641	.255963	2.62	0.010	.1633428	1.177185
lnwage	3520658	.4958906	-0.71	0.479	-1.334151	.6300196
lnadp	.2718977	.5630781	0.48	0.630	843249	1.387044
lntradefree	1041962	.2782747	-0.37	0.709	6553047	.4469124
lneconfree	1.665476	.6426724	2.59	0.011	.3926971	2,938255
Intransition	1.915387	1.115326	1.72	0.089	2934581	4.124232
lnictinfra l	.3414675	.2524592	1.35	0.179	1585148	.8414497
indprivati~n	1.263367	.8569906	1.47	0.143	4338579	2.960592
d1996	-1.124484	.8256096	-1.36	0.176	-2.759561	.5105924
d1997	-1.135456	.7974377	-1.42	0.157	-2.71474	.4438272
d1998	-1.063377	.7471081	-1.42	0.157	-2.542985	.4162317
d1999	9468323	.6850767	-1.38	0.170	-2.303591	.4099262
d2000	-1.203742	.5584418	-2.16	0.033	-2.309707	0977776
d2001	9372839	.548921	-1.71	0.090	-2.024393	.1498253
d2002	8249611	.4717734	-1.75	0.083	-1.759284	.1093614
d2003	7502088	.4677077	-1.60	0.111	-1.676479	.1760619
d2004	3745764	.2860981	-1.31	0.193	9411787	.1920259
d2005	2901108	.2048857	-1.42	0.159	6958763	.1156546
d2006	3140316	.1546016	-2.03	0.044	6202121	0078512
d2007	1028822	.105242	-0.98	0.330	3113084	.1055441
c5	4176129	1,442499	-0.29	0.773	-3.274407	2,439181
c6	6082816	1.093475	-0.56	0.579	-2.773851	1.557288
c7	.4498709	1.210034	0.37	0.711	-1.946538	2.84628
c8	469632	.683442	-0.69	0.493	-1.823153	.8838891
c9	1.292147	1.095302	1.18	0.241	87704	3.461335
c11	2930605	1.30604	-0.22	0.823	-2.879605	2.293484
c12	1.148692	1.320234	0.87	0.386	-1.465962	3.763347
c13	8446192	.7944675	-1.06	0.290	-2.41802	.7287821
s2	-1.027942	.3222811	-3.19	0.002	-1.666203	3896815

s3 s4 s5 s7 s8 s10 s11 s13 _cons	-3.091186 2699002 -1.949007 .0554885 3246613 .1555045 5523456 1409758 -1.759596 -1.359993	.879531 .2437889 .6034988 .2407395 .2146717 .1753087 .2634429 .2355489 .4560392 12.58258	-3.51 -1.11 -3.23 0.23 -1.51 0.89 -2.10 -0.60 -3.86 -0.11	0.001 0.271 0.002 0.818 0.133 0.377 0.038 0.551 0.000 0.914	-4.833051 7527113 -3.144205 4212835 7498074 1916852 -1.07408 6074681 -2.662757 -26.27914	-1 .2 7 .5 .1 .5 0 .3 8 23	.34932 129108 538089 322605 004848 026942 306108 255164 564338 .55915
Instruments for Standard FOD.(lnsece lntradefree d1997 d1998 c3 c4 c5 c6 s12 s13) GMM-type (mis L(1/2).L.ln Instruments for Standard cons lnsecedu ln lntradefree d1997 d1998 c3 c4 c5 c6 s12 s13 GMM-type (mis D.L.lnindfd	orthogonal du Intertedu Ineconfree d1999 d2000 c7 c8 c9 c1 sing=0, sepa indfdistock levels equa tertedu Into Ineconfree d1999 d2000 c7 c8 c9 c1 sing=0, sepa istock colla	deviations of lntop mediu lntransition d2001 d2002 0 cll cl2 c2 rate instrum collapsed tion p medium hid lntransition d2001 d2002 0 cl1 cl2 c2 rate instrum psed	equation im high 1 h lnictin 2 d2003 d 13 c14 s2 ments for gh lntopm h lnictin 2 d2003 d 13 c14 s2 ments for	ntopmed i fra indpi 2004 d200 s 3 s4 s each per each per 2004 d200 s 3 s4 s each per	Intophigh In rivatisation 05 d2006 d20 5 s6 s7 s8 s riod unless rivatisation 05 d2006 d20 5 s6 s7 s8 s riod unless	wage d199 07 d2 9 s10 colla d199 07 d2 9 s10 colla	lngdp 6 008 c2 s11 psed) 6 008 c2 s11 psed)
Arellano-Bond to Arellano-Bond to	est for AR(1 est for AR(2) in first () in first (lifferenc lifferenc	es: z = es: z =	-2.02 Pr > -1.17 Pr >	z = z =	0.043 0.240
Sargan test of (Not robust, Hansen test of (Robust, but	overid. rest but not weak overid. rest can be weake	rictions: ch ened by many rictions: ch ned by many	hi2(2) y instrum hi2(2) instrume	= 5.0 ments.) = 1.08 mts.)	7 Prob > ch. 8 Prob > ch.	i2 = i2 =	0.079
Difference-in-H GMM instrumen Hansen test Difference	ansen tests ts for level excluding g (null H = ex	of exogeneit s roup: ch ogenous): ch	ty of ins ni2(1) ni2(1)	= 0.63 = 0.4	subsets: 1 Prob > ch 7 Prob > ch	i2 = i2 =	0.433 0.493

.

. **Calculating long-run coefficients
. nlcom _b[lnsecedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnsecedu]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	8538458	1.480284	-0.58	0.565	-3.785471	2.07778

. nlcom _b[lntertedu]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntertedu]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	-1.572895	1.027491	-1.53	0.129	-3.607787	.4619965

. nlcom _b[lntop]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntop]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	1.86567	.7219291	2.58	0.011	.4359268	3.295412

. nlcom _b[medium]/(1-_b[l.lnindfdistock])

_nl_1: _b[medium]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	1.223421	.8327944	1.47	0.145	4258842	2.872727

. nlcom _b[high]/(1-_b[1.lnindfdistock])

_nl_1: _b[high]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	1.896203	.8525542	2.22	0.028	.2077639	3.584642

. nlcom _b[lntopmed]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntopmed]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
n] 1	. 7364951	. 3042183	2.42	0.017	. 1340067	1.338984

. nlcom _b[lntophigh]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntophigh]/(1-_b[l.lnindfdistock])

<pre>lnindfdist~k Coef. Std. Err. t P> t [95% Conf. Interval</pre>							
	lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1 .9241866 .3008574 3.07 0.003 .3283544 1.52001	_nl_1	.9241866	.3008574	3.07	0.003	.3283544	1.520019

. nlcom _b[lnwage]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnwage]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std.	Err.	t	P> t	[95%	Conf.	[Interval]

 	-+						
_nl_1		4854422	.7216971	-0.67	0.503	-1.914725	.9438411

. nlcom _b[lngdp]/(1-_b[l.lnindfdistock])

_nl_1: _b[lngdp]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	.3749033	.7945243	0.47	0.638	-1.19861	1.948417

. nlcom _b[lntradefree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntradefree]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	1436698	.396652	-0.36	0.718	9292183	.6418788

. nlcom _b[lneconfree]/(1-_b[l.lnindfdistock])

_nl_1: _b[lneconfree]/(1-_b[1.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	2.296424	.8298805	2.77	0.007	.6528895	3.939959

. nlcom _b[lntransition]/(1-_b[l.lnindfdistock])

_nl_1: _b[lntransition]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
_nl_1	2.641011	1.458867	1.81	0.073	2481989	5.530221

. nlcom _b[lnictinfra]/(1-_b[l.lnindfdistock])

_nl_1: _b[lnictinfra]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
_nl_1	.4708289	.3849539	1.22	0.224	2915522	1.23321

. nlcom _b[indprivatisation]/(1-_b[1.lnindfdistock])

_nl_1: _b[indprivatisation]/(1-_b[l.lnindfdistock])

lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	+ 1.74198	1.396775	1.25	0.215	-1.024259	4.50822

wtwoor Indeald						
. xureg inindi	distock l.ln:	indfdistock	lnsecedu	lnterted	lu lntop mediu	ım high
> ngdp lntrade	i incognitiver	nign inwage ree intransi	⊥ tion lni	stinfra i	ndnrivatisati	on d1996-d2008
c^2-c^{14} s ^{2-s13} .	fe	Lee Inclansi		JUINITA I	Indprivacisaci	1011 01990-02000
note: Intop or	itted because	e of colline	arity			
note: medium o	mitted becaus	se of collin	earity			
note: high omi	tted because	of collinea	rity			
note: lncognit	ivemed omitte	ed because o	f colline	earity		
note: lncognit	ivehigh omit:	ted because	of collin	nearity		
note: d1996 or	nitted because	e of colline	arity			
note: c2 omitt	ed because of	f collineari	ty			
note: c3 omitt	ed because of	f collineari	ty			
note: c4 omitt	ed because of	t collineari	ty			
note: c5 omitt	ed because of	f collineari	су +			
note: co omitt	ed because of	f collineari	tv			
note: c8 omitt	ed because of	f collineari	tv			
note: c9 omitt	ed because of	f collineari	ty			
note: c10 omit	ted because of	of collinear	ity			
note: cll omit	ted because of	of collinear	ity			
note: c12 omit	ted because o	of collinear	ity			
note: c13 omit	ted because of	of collinear	ity			
note: c14 omit	ted because o	of collinear	ity			
note: s2 omitt	ed because of	f collineari	ty			
note: s3 omitt	ed because of	f collineari	су +			
note: s4 omitt	ed because of	f collineari	ty			
note: s6 omitt	ed because of	f collineari	tv			
note: s7 omitt	ed because of	f collineari	tv			
note: s8 omitt	ed because of	f collineari	ty			
note: s9 omitt	ed because of	f collineari	ty			
note: s10 omit	ted because of	of collinear	ity			
note: s11 omit	ted because of	of collinear	ity			
note: s12 omit	ted because of	of collinear	ity			
note: s13 omit	ted because o	of collinear	ity			
Fixed_offects	(within) rog	rossion		Numbor	of obc	- 1100
Group variable	(within) regi	Lession		Number	of groups =	- 118
Group variable	. 10			Number	or groups -	- 110
R-sq: within	= 0.2873			Obs per	group: min =	= 1
betweer	1 = 0.8249			1	avg =	= 10.1
overall	_ = 0.5735				max =	= 13
<i>.</i>	0 5004			F(22,10	50) =	= 19.24
corr(u_1, Xb)	= 0.5084			Prob >	F. =	= 0.0000
 lnindfdist~k	Coef.	Std. Err.	t	 P> t	[95% Conf.	. Interval]
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lnindfdist~k lnindfdist~k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnindfdist~k lnindfdist~k L1.	Coef.	Std. Err.	t 6.29	P> t 0.000	[95% Conf. .1328738	. Interval]
lnindfdist~k lnindfdist~k L1.	Coef.	Std. Err.	t 6.29	P> t 0.000	[95% Conf. .1328738	.2534403
lnindfdist~k lnindfdist~k L1. lnsecedu	Coef.	Std. Err.	t 6.29 -0.38	P> t 0.000 0.706	[95% Conf. .1328738 -3.696876	. Interval] .2534403 2.504584
lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu	Coef. .193157 5961464 3948972	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	P> t 0.000 0.706 0.603	[95% Conf. .1328738 -3.696876 -1.882939	.1nterval] .2534403 2.504584 1.093145
lnindfdist~k Ll. lnsecedu lntertedu lntertedu modium	Coef. .193157 5961464 3948972 (omitted)	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	P> t 0.000 0.706 0.603	[95% Conf. .1328738 -3.696876 -1.882939	.2534403 2.504584 1.093145
lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted)	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	<pre>P> t 0.000 0.706 0.603</pre>	[95% Conf. .1328738 -3.696876 -1.882939	.2534403 2.504584 1.093145
lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high Incognitiv~d	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted)	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	P> t 0.000 0.706 0.603	[95% Conf. .1328738 -3.696876 -1.882939	.2534403 2.504584 1.093145
lnindfdist~k L1. Insecedu Intertedu Intop medium high Incognitiv~d	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted)	Std. Err. .0307219 1.580211 .758344	t 6.29 -0.38 -0.52	P> t 0.000 0.706 0.603	[95% Conf. .1328738 -3.696876 -1.882939	.2534403 2.504584 1.093145
lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high Incognitiv~d Incognitiv~h Inwage	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412	Std. Err. .0307219 1.580211 .758344 .8469517	t 6.29 -0.38 -0.52 -0.69	<pre>P> t 0.000 0.706 0.603 0.492</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652	. Interval] .2534403 2.504584 1.093145
lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntop medium high lncognitiv~d lncognitiv~h lnwage lngdp	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846	Std. Err. .0307219 1.580211 .758344 .8469517 .779508	t 6.29 -0.38 -0.52 -0.69 0.65	<pre>P> t 0.000 0.706 0.603 0.492 0.513</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086	. Interval] .2534403 2.504584 1.093145 1.079169 2.040055
lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high Incognitiv~d Incognitiv~d Incognitiv~h Inwage Ingdp Intradefree	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898	
lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high Incognitiv~d Incognitiv~d Incognitiv~h Ingdp Intradefree Ineconfree	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324	
lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high Incognitiv~d Incognitiv~d Incognitiv~h Inwage Ingdp Intradefree Intransition	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887	1.079169 2.040055 1.257936 3.344846 8.312963
<pre>lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high lncognitiv~d lncognitiv~h Ingdp Intradefree Intransition Inictinfra</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924	t 6.29 -0.38 -0.52 -0.65 -0.03 1.48 0.76 1.15	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921	
lnindfdist~k L1. Insecedu Intertedu Intertedu Intop medium high Incognitiv~d Incognitiv~h Inwage Ingdp Intradefree Inconfree Intransition Inictinfra indprivati~n	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367	t -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962	
<pre>lnindfdist~k lnindfdist~k L1.</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) 0104722	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.959</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 -3434921 .755962	. Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 7047042
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntop medium high lncognitiv~d lncognitiv~d lncognitiv~h lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1908</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 0848514	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 9727928 3.052363 .4237924 .3276367 .3497666 4026112	t 6.29 -0.38 -0.52 -0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479 - 7051628	. Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 8748556
<pre>lnindfdist~k lnindfdist~k L1. lnsecedu lntertedu lntop medium high lncognitiv~d lncognitiv~d lncognitiv~h lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1998</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37	<pre>P> t 0.000 0.706 0.603 0.492 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479 7051628 7136961	. Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663
<pre>lnindfdist~k lnindfdist~k lnsecedu lntertedu lntop medium high lncognitiv~d lncognitiv~d lncognitiv~h lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374	Std. Err. .0307219 1.580211 .758344 .758344 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46	<pre>P> t 0.000 0.706 0.603 0.603 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 -3434921 .755962 6678479 7051628 7136961 -1.230117	. Interval] .2534403 2.504584 1.093145 1.079169 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419
<pre>lnindfdist~k lnindfdist~k lnsecedu Intertedu Intop medium high Incognitiv~d Incognitiv~h Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579	Std. Err. .0307219 1.580211 .758344 .758344 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02	<pre>P> t 0.000 0.706 0.603 0.603 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774	
<pre>lnindfdist~k lnindfdist~k lnindfdist~k lnsecedu lntertedu lntop medium high lncognitiv~d lncognitiv~d lncognitiv~h lnwage lngdp lntradefree lntransition lnictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574	Std. Err. .0307219 1.580211 .758344 .758344 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29	<pre>P> t 0.000 0.706 0.603 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.6983 0.771</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515	
<pre>lnindfdist~k lnindfdist~k lnsecedu Intertedu Intop medium high Incognitiv~d Incognitiv~h Inwage Ingdp Intradefree Ineconfree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036	Std. Err. .0307219 1.580211 .758344 .758344 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018	t 6.29 -0.38 -0.52 -0.69 0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38	<pre>P> t 0.000 0.706 0.603 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.771 0.706</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 -4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.16774 -1.087515 -1.120065	. Interval] .2534403 2.504584 1.093145 1.093145 1.093145 2.040055 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137
<pre>lnindfdist~k lnindfdist~k L1. Insecedu Intertedu Intop medium high Incognitiv~d Incognitiv~h Inwage Ingdp Intradefree Intransition Inictinfra indprivati~n d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004</pre>	Coef. .193157 5961464 3948972 (omitted) (omitted) (omitted) (omitted) (omitted) 5827412 .5104846 0199811 1.436007 2.323538 .4880843 1.398859 (omitted) .0184732 .0848514 .1664835 2317374 0122579 .1894574 .267036 .5404895	Std. Err. .0307219 1.580211 .758344 .8469517 .779508 .6512587 .9727928 3.052363 .4237924 .3276367 .3497666 .4026112 .4485618 .5087994 .5888631 .6507777 .7069018 .7734003	t 6.29 -0.38 -0.52 -0.65 -0.03 1.48 0.76 1.15 4.27 0.05 0.21 0.37 -0.46 -0.02 0.29 0.38 0.70	<pre>P> t 0.000 0.706 0.603 0.513 0.976 0.140 0.447 0.250 0.000 0.958 0.833 0.711 0.649 0.983 0.771 0.706 0.485</pre>	[95% Conf. .1328738 -3.696876 -1.882939 -2.244652 -1.019086 -1.297898 4728324 -3.665887 3434921 .755962 6678479 7051628 7136961 -1.230117 -1.6774 -1.087515 -1.120065 9770965	. Interval] .2534403 2.504584 1.093145 1.093145 1.257936 3.344846 8.312963 1.319661 2.041756 .7047943 .8748656 1.046663 .7666419 1.143224 1.46643 1.654137 2.058076

d2006	.5497161	.9185275	0.60	0.550	-1.252642	2.352074
d2007	.5786153	1.018494	0.57	0.570	-1.419899	2.57713
d2008	.8586361	1.105387	0.78	0.437	-1.310382	3.027654
c2	(omitted)					
c3	(omitted)					
c4	(omitted)					
c5	(omitted)					
c6	(omitted)					
c7	(omitted)					
c8	(omitted)					
c9	(omitted)					
c10	(omitted)					
c11	(omitted)					
c12	(omitted)					
c13	(omitted)					
c14	(omitted)					
s2	(omitted)					
s3	(omitted)					
s4	(omitted)					
s5	(omitted)					
s6	(omitted)					
s7	(omitted)					
s8	(omitted)					
s9	(omitted)					
s10	(omitted)					
s11	(omitted)					
s12	(omitted)					
s13	(omitted)					
_cons	-13.0252	16.02303	-0.81	0.416	-44.466	18.41559
sigma_u	1.4805195					
sigma e	1.2593186					
rho	.58021217	(fraction o	of varia	nce due t	o u_i)	
F test that all	u_i=0:	F(117, 1050)) =	1.92	Prob >	F = 0.0000

. **Model 6.13 OLS . reg lnindfdistock l.lnindfdistock lnsecedu lntertedu lntop medium high lncognitivemed lncognitivehigh lnwage lngdp lntradefree lneconfree lntransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13 note: medium omitted because of collinearity note: d2008 omitted because of collinearity note: c10 omitted because of collinearity note: c11 omitted because of collinearity note: s10 omitted because of collinearity

Source	SS	df		MS		Number of obs	=	1190
Modol	5/17 70/08		120	303121		F(45, 1144)	=	68.14
Residual	2021 33878	4J 1144	1 76	690453		R-squared	_	0.0000
						Adj R-squared	=	0.7176
Total	7439.04286	1189	6.25	655413		Root MSE	=	1.3292
lnindfdist~k	Coef.	Std.	Err.	t 	P> t	[95% Conf.	Int	terval]
lnindfdist~k								
L1.	.4472093	.0266	232	16.80	0.000	.3949736		.499445
lnsecedu	8417746	1.665	477	-0.51	0.613	-4.109507	2	.425958
lntertedu	2712395	.7992	626	-0.34	0.734	-1.839425	1	.296946
lntop	.121715	1.131	139	0.11	0.914	-2.097624	2	.341054
medium	(omitted)							
high	-7.734266	3.087	944	-2.50	0.012	-13.79294	-1	.675596
lncognitiv~d	1.940997	1.952	861	0.99	0.320	-1.890594	5	.772589
lncognitiv~h	4.41077	1.926	957	2.29	0.022	.6300038	8	.191536
lnwage	6772831	.8918	312	-0.76	0.448	-2.427091	1	.072525
lngdp	.6331922	.8176	863	0.77	0.439	9711409	2	.237525
lntradefree	1633381	.6859	588	-0.24	0.812	-1.509217		1.18254
lneconfree	.7112104	1.025	201	0.69	0.488	-1.300275	2	.722696
lntransition	2.02372	3.220	173	0.63	0.530	-4.294388	8	.341828
lnictinfra	.2932105	.4469	963	0.66	0.512	583814	1	.170235
indprivati~n	1.816172	.3305	208	5.49	0.000	1.167677	2	.464667
d1996	86738	1.166	047	-0.74	0.457	-3.155211	1	.420451
d1997	7379134	1.046	836	-0.70	0.481	-2.791848	1	.316021
d1998	6781001	.9418	927	-0.72	0.472	-2.526131	1	.169931
d1999	6090569	.8787	825	-0.69	0.488	-2.333263	1	.115149
d2000	-1.02247	.8383	968	-1.22	0.223	-2.667438	. (6224982
d2001	6561624	.7706	106	-0.85	0.395	-2.168131	. :	8558063
d2002	5251843	.6741	347	-0.78	0.436	-1.847863	•	7974948
d2003	514148	.5560	385	-0.92	0.355	-1.605118	• !	5768218
d2004	2560552	.4714	853	-0.54	0.587	-1.181128	•	6690176
d2005	2416745	.3960	171	-0.61	0.542	-1.018676	• !	5353268
d2006	3183027	.327	738	-0.97	0.332	9613376	•	3247323
d2007	288655	.2298	796	-1.26	0.209	7396879	•	1623778
d2008	(omitted)							
c2	(omitted)							
c3	(omitted)							
с4	(omitted)							
c5	1.078543	2.294	967	0.47	0.638	-3.424274	5	.581359
C6	.91/2318	2.916	634	0.31	0.753	-4.805319	6	.639783
c/	1.082023	1.732	695	0.62	0.532	-2.31/594		4.48164
C8	.401348/	1./30	444	0.23	0.81/	-2.993852	3	. /96549
-10	.9332671	1.48/	/64	0.63	0.531	-1.985/85	3	.852319
C10	(omitted)							
CII	(omitted)	1 150	4	0 00	0 41 4	1 202065	2	014160
C12	.9451489	1.156	45/	0.82	0.414	-1.323865	3	.214163
C13	./004//2	1.724	200	0.41	0.685	-2.683/19	4	.084673
C14	.8905846	1.64/	382	0.54	0.589	-2.341645	4	.122814
SZ	/80/43/	.194/	039	-4.01	0.000	-1.162878		3986091
SJ	-2.324189	.2314	104 567	-10.04	0.000	-2.1/8355	- T .	.0/UUZ3
S4	10498/8	.1954	565	1 50	0.399	3484812	• • 1	10100000
S5	-4.90/044	3.14U	200	-1.20	0.114	-11.12930	Τ.	• 1 7 4 Z / L
S6	.432/330 _3 7072/7	.1938 3 104	232 550	2.23 _1 10	0.020	.UJZ466/ _0 827755	• •	122261
5/	-3.101241	2 1 2 0	500	-1.19	0.200	-2.03//33	2	- 123201 760101
58	-3.303000	2 110	202	-1.07	0.203	-9.4/0293	۷.	· /09121
S9 010	-3.J10230	J.II8	203	-1.10	0.200	-2.034433		2.00130
S1U	3251272	1 0 0	685	1 71	0 0 9 7	- 0470454		6972938
S11	1311606	100	227	2 20	0.007	04/04/4	• •	2077000
S12	-1 360156	-19U 207	641	-6 59	0.023	-1 776556		9617559
CODE	_10 01	19 70	439	-0 51	0 612	-48 67081		28 6508
	10.01	12.10	100	0.01	0.012	-0.0/001		

Appendix 6.18: Adding GDP per capita to Models 6.10-6.11

. **Model 6.10 System GMM; gdppc added . xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lncognitive lngdppc lnwage lngdp lntradefree lneconfre > e Intransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13, gmm(l.lnindfdistock, laglimit(1 2) collaps > e) iv(lnsecedu lntertedu lncognitive lnwage lngdp lngdppc lntradefree lneconfree lntransition lnictinfra indpriv > atisation d1996-d2008 c2-c14 s2-s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. d2008 dropped due to collinearity c2 dropped due to collinearity c3 dropped due to collinearity c4 dropped due to collinearity c10 dropped due to collinearity c14 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

punci						
Group variable	e: id			Number	of obs =	1190
Time variable	: year			Number	of groups =	118
Number of inst	truments = 47			Obs per	group: min =	1
F(44, 117)	= 87.83			Ŧ	avg =	10.08
Prob > F	= 0.000				max =	13
1	 	Corrected	+	D. I.F.I	[058 Game	T
Ininafaist~k	Coer.	Sta. Err.	t 	P> t	[95% Conf.	Interval]
lnindfdist~k						
L1.	.2826773	.1358295	2.08	0.040	.0136742	.5516805
lnsecedu	-1.03974	1.060562	-0.98	0.329	-3.140126	1.060647
lntertedu	-1.02306	.8876349	-1.15	0.251	-2.780975	.7348542
lncognitive	12.5763	4.572086	2.75	0.007	3.521526	21.63108
lngdppc	-3.062678	1.023764	-2.99	0.003	-5.090188	-1.035168
lnwage	5801907	.4832202	-1.20	0.232	-1.537183	.3768016
lngdp	3.766369	1.161199	3.24	0.002	1.466676	6.066062
lntradefree	1789883	.2700003	-0.66	0.509	7137098	.3557332
lneconfree	1.51049	.6259208	2.41	0.017	.2708868	2.750093
lntransition	2.062604	1.130506	1.82	0.071	1763042	4.301512
lnictinfra	.3396273	.2500229	1.36	0.177	15553	.8347845
indprivati~n	1.274932	.8536178	1.49	0.138	4156129	2.965478
d1996	-1.102014	.8185308	-1.35	0.181	-2.723072	.519043
d1997	-1.046441	.7823572	-1.34	0.184	-2.595858	.5029766
d1998	9592046	.7288974	-1.32	0.191	-2.402748	.4843386
d1999	8014993	.6641724	-1.21	0.230	-2.116858	.5138593
d2000	-1.058805	.5430723	-1.95	0.054	-2.134332	.0167208
d2001	8021465	.5337963	-1.50	0.136	-1.859302	.255009
d2002	6835965	.4528925	-1.51	0.134	-1.580526	.2133334
d2003	6553299	.4614872	-1.42	0.158	-1.569281	.2586213
d2004	2694524	.2737047	-0.98	0.327	8115101	.2726054
d2005	2059684	.1972161	-1.04	0.298	5965445	.1846077
d2006	2869199	.154115	-1.86	0.065	5921365	.0182968
d2007	0981813	.105829	-0.93	0.355	3077701	.1114075
c5	-4.704319	2.125326	-2.21	0.029	-8.913415	4952219
c6	1.4346	1.260854	1.14	0.258	-1.062456	3.931656
с7	-4.094824	1.683057	-2.43	0.016	-7.42803	7616188
c8	4661012	.6776927	-0.69	0.493	-1.808236	.8760336
с9	8197154	.9414271	-0.87	0.386	-2.684162	1.044732
c11	-9.281254	3.102999	-2.99	0.003	-15.42658	-3.135927
c12	-6.169702	2.405264	-2.57	0.012	-10.9332	-1.406202
c13	-3.157996	1.202051	-2.63	0.010	-5.538596	7773959
s2	-1.024433	.3508764	-2.92	0.004	-1.719326	329541
s3	-3.058937	.8756762	-3.49	0.001	-4.793167	-1.324706
s4	2436914	.2536934	-0.96	0.339	746118	.2587351
s5	-2.409922	.6681235	-3.61	0.000	-3.733105	-1.086738
s6	3309459	.2230735	-1.48	0.141	7727312	.1108395
s7	8346848	.2840781	-2.94	0.004	-1.397287	272083
s8	3674799	.2291647	-1.60	0.112	8213285	.0863687

s9 | -.5185608 .2479504 -2.09 0.039 -1.009614 -.027508 .2971595 -3.11 0.002 -2.07 0.041 -1.513779 -.3367608 s10 | -.9252697 .2559413 s11 | -.5291376 -1.036016 -.0222594 s12 | -.3899874 .2800385 -1.39 0.166 -.9445889 .1646141 -2.558737 -1.684515 .4414265 -3.82 0.000 s13 | -.8102929 cons | -76.82609 22.79317 -3.37 0.001 -121.9668 -31.68542_____ Instruments for orthogonal deviations equation Standard FOD. (Insecedu Intertedu Incognitive Inwage Ingdp Ingdppc Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).L.lnindfdistock collapsed Instruments for levels equation Standard _cons Insecedu Intertedu Incognitive Inwage Ingdp Ingdppc Intradefree Ineconfree Intransition Inictinfra indprivatisation d1996 d1997 d1998 d1999 d2000 d2001 d2002 d2003 d2004 d2005 d2006 d2007 d2008 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.lnindfdistock collapsed Arellano-Bond test for AR(1) in first differences: z = -2.05 Pr > z = 0.041Arellano-Bond test for AR(2) in first differences: z = -1.15 Pr > z = 0.250_____ Sargan test of overid. restrictions: chi2(2) = 5.82 Prob > chi2 = 0.055 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(2) = 1.26 Prob > chi2 = 0.533(Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(1) = 0.64 Prob > chi2 = 0.422Difference (null H = exogenous): chi2(1) = 0.62 Prob > chi2 = 0.433• .

```
. **Model 6.11 System GMM; gdppc added
. xtabond2 lnindfdistock l.lnindfdistock lnsecedu lntertedu lntop lngdppc lnwage
lngdp lntradefree lneconfree lnt
> ransition lnictinfra indprivatisation d1996-d2008 c2-c14 s2-s13,
gmm(l.lnindfdistock, laglimit(1 2) collapse) iv
> (Insecedu Intertedu Intop Inwage Ingdp Ingdppc Intradefree Ineconfree Intransition
lnictinfra indprivatisation d
>1996-d2008 c2-c14 s2-s13) two robust small orthog Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
d2008 dropped due to collinearity
c2 dropped due to collinearity
c3 dropped due to collinearity
c4 dropped due to collinearity
c10 dropped due to collinearity
c14 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
Group variable: id
                                                  Number of obs = 1190
Number of groups = 118
Time variable : year
```

Rumber of 11st F(44, 117) Prob > F	= 87.83 = 0.000			Ubs per	group:	min = avg = max =	10.08 13
		Corrected					
lnindfdist~k	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
lnindfdist~k	, 						
L1.	.2827064	.1358113	2.08	0.040	.013	7392	.5516735
lnsecedu	-1.039978	1.06058	-0.98	0.329	-3.140	0402	1.060445
lntertedu	-1.022812	.8874795	-1.15	0.251	-2.780	0419	.7347944
lntop	2.2532	.8191878	2.75	0.007	.6308	3419	3.875559
lngdppc	-3.062019	1.0236	-2.99	0.003	-5.089	9205	-1.034833
lnwage	5799838	.4831941	-1.20	0.232	-1.536	5924	.3769568
lngdp	3.765335	1.160897	3.24	0.002	1.460	5239	6.064431
lntradefree	1790447	.2699853	-0.66	0.509	713	7365	.355647
lneconfree	1.510521	.6259936	2.41	0.017	.270	7737	2.750269
lntransition	2.062467	1.130488	1.82	0.071	1764	4051	4.301338
lnictinfra	.3395753	.2500216	1.36	0.177	1555	5794	.83473
indprivati~n	1.275116	.8534632	1.49	0.138	4151	1233	2.965355
d1996	-1.102221	.8186037	-1.35	0.181	-2.723	3423	.5189804
d1997	-1.046644	.7824268	-1.34	0.184	-2.596	5199	.5029116
d1998	9593982	.7289661	-1.32	0.191	-2.403	3077	.484281
d1999	8017089	.664245	-1.21	0.230	-2.11	7211	.5137935
d2000	-1.058963	.54316	-1.95	0.054	-2.134	4663	.0167368
d2001	802337	.5338567	-1.50	0.136	-1.859	9612	.2549382
d2002	6837383	.4529507	-1.51	0.134	-1.580	0783	.2133068
d2003	6554832	.4615597	-1.42	0.158	-1.569	9578	.2586116
d2004	2695419	.2737409	-0.98	0.327	8110	5715	.2725877
d2005	2060397	.197243	-1.04	0.298	5966	5692	.1845899
d2006	2869638	.154138	-1.86	0.065	592	2226	.0182984
d2007	0981683	.1058275	-0.93	0.356	307	7541	.1114176
c5	-5.977929	2.414348	-2.48	0.015	-10.75	5942	-1.19644
с6	.9273838	1.226012	0.76	0.451	-1.500	0669	3.355436
с7	-5.143368	1.873839	-2.74	0.007	-8.854	4409	-1.432327
c8	5060019	.6783128	-0.75	0.457	-1.849	9365	.8373611
с9	.2288126	.9881429	0.23	0.817	-1.728	3153	2.185778
c11	-10.74563	3.406038	-3.15	0.002	-17.49	9111	-4.000148
c12	-6.666898	2.500745	-2.67	0.009	-11.61	1949	-1.714305
c13	-4.378461	1.533492	-2.86	0.005	-7.415	5462	-1.341459
s2	-1.024422	.3508728	-2.92	0.004	-1.719	9307	3295366
s3	-3.058751	.8756045	-3.49	0.001	-4.79	9284	-1.324663
s4	2437071	.2537033	-0.96	0.339	7462	1532	.2587389
s5	-2.409998	.6681375	-3.61	0.000	-3.733	3209	-1.086786
s6	3309558	.2230802	-1.48	0.141	772	7545	.1108429
s7	8346567	.284077	-2.94	0.004	-1.397	7256	2720571
s8	3675132	.2291768	-1.60	0.111	8213	3859	.0863595
s9	5185871	.2479621	-2.09	0.039	-1.009	9663	0275112
s10	9252718	.2971667	-3.11	0.002	-1.513	3795	3367487

s11 s12 s13 _cons	5291518 3899766 -1.684461 -50.2829	.2559487 .2800521 .4414049 17.74709	-2.07 -1.39 -3.82 -2.83	0.041 0.166 0.000 0.005	-1.036045 9446052 -2.55864 -85.43007	0 .1 8 -15	222588 646519 102816 .13572
Instruments for Standard FOD.(lnseced Intransition d2001 d2002 c10 c11 c12 GMM-type (miss L(1/2).L.ln: Instruments for Standard cons Insecedu lni Intransition d2001 d2002 c10 c11 c12 GMM-type (miss D.L.lnindfd:	orthogonal of du Intertedu h Inictinfra d2003 d2004 c13 c14 s2 s sing=0, separ indfdistock of levels equal tertedu Intop h Inictinfra d2003 d2004 c13 c14 s2 s sing=0, separ istock collaj	deviations e lntop lnwag indprivatis d2005 d2006 s3 s4 s5 s6 rate instrum collapsed tion p lnwage lng indprivatis d2005 d2006 s3 s4 s5 s6 rate instrum psed	equation ge lngdp sation dl 5 d2007 d s7 s8 s9 ments for gdp lngdp sation dl 5 d2007 d s7 s8 s9 ments for	lngdppc 1 996 d199 2008 c2 c s10 s11 each per pc lntrac 996 d199 2008 c2 c s10 s11 each per	Intradefree 1 7 d1998 d1995 c3 c4 c5 c6 d s12 s13) riod unless d defree lnecon 7 d1998 d1995 c3 c4 c5 c6 d s12 s13 riod unless d	lneco 9 d20 c7 c8 colla nfree 9 d20 c7 c8 colla	nfree 00 c9 psed) 00 c9 psed)
Arellano-Bond to Arellano-Bond to	est for AR(1) est for AR(2)) in first o) in first o	lifferenc lifferenc	es: z = es: z =	-2.05 Pr > -1.15 Pr >	z = z =	0.041 0.250
Sargan test of a (Not robust,) Hansen test of a (Robust, but a	overid. rest out not weake overid. rest can be weake	rictions: ch ened by many rictions: ch ned by many	ni2(2) v instrum ni2(2) instrume	= 5.82 ments.) = 1.20 nts.)	2 Prob > ch: 5 Prob > ch:	i2 = i2 =	0.055
Difference-in-Ha GMM instrument Hansen test Difference	ansen tests o ts for levels excluding g (null H = exc	of exogeneit s roup: ch ogenous): ch	y of ins 112(1) 112(1)	= 0.64 = 0.62	subsets: 4 Prob > ch: 2 Prob > ch:	i2 = i2 =	0.422 0.433