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ABSTRACT 

Multi-view Video Coding (MVC) is vital for low bitrate applications that have constraints 

in bandwidth, battery capacity and memory size. Symmetric and mixed spatial-

resolution coding approaches are addressed in this thesis, where Prediction 

Architecture (PA) is investigated using block matching statistics. Impact of camera 

separation is studied for symmetric coding to define a criterion for the best usage of 

MVC. Visual enhancement is studied for mixed spatial-resolution coding to improve 

visual quality for the interpolated frames by utilising the information derived from 

disparity compensation. 

In the context of symmetric coding investigations, camera separation cannot be 

used as a sufficient criterion to select suitable coding solution for a given video. 

Prediction architectures are proposed, where MVC that uses these architectures have 

higher coding performance than the corresponding codec that deploys a set of other 

prediction architectures, where the coding gain is up to 2.3 dB. An Adaptive Reference 

Frame Ordering (ARFO) algorithm is proposed that saves up to 6.2% in bits compared 

to static reference frame ordering when coding sequence that contains hard scene 

changes. 

In the case of mixed spatial-resolution coding investigations, a new PA is proposed 

that is able to save bitrate by 13.1 Kbps compared to the corresponding codec that 

uses the extended architecture based on 3D-digital multimedia. The codec that uses 

hierarchical B-picture PA has higher coding efficiency than the corresponding codec 

that employs the proposed PA, where the bitrate saving is   24.9 Kbps. The ARFO 

algorithm has been integrated with the proposed PA where it saves bitrates by up to 

35.4 Kbps compared to corresponding codec that uses other prediction architectures. 

Visual enhancement algorithm is proposed and integrated within the presented PA. It 

provides highest quality improvement for the interpolated frames where coding gain is 

up to 0.9 dB compared to the corresponding frames that are coded by other prediction 

architectures. 
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CHAPTER 1. INTRODUCTION 
 
Multi-view video is an exciting technology which has great applications in our life. 

The first section will introduce multi-view video, and set of low bitrate applications 

are then outlined. The multi-view video chain is illustrated, where the coding 

component is highlighted. Multi-view video codec standards followed by research 

problem and motivations are also presented. The aim and objectives of this research 

are then outlined, followed by thesis structure at the end of this chapter. 
 

1.1 Multi-view video overview 
Multi-view video is a set of videos which are captured using synchronised cameras 

that are closely located at different viewpoints. The majority of videos in the set 

contain similar visual information, where the variance is due to disparity, occlusion 

and illumination effects (Jeon et al., 2009; Dufaux et al., 2013). The number of videos 

embedded in multi-view video is greater than one. Stereoscopic video is a special 

case of multi-view video that is inspired from the Human Visual System (HVS), where 

each eye perceives the corresponding video (Vetro et al., 2011). Multi-view video 

facilitates 3D perception by supporting a set of cues. These cues are (Dodgson, 

2005; Boev et al., 2011a): 

o Stereo parallax: each human eye receives a slightly different image. 

o Motion parallax: provides perceptual cues about the change in motion, distance 

linked by depth perception.  

o Accommodation: the ability to see sharply all objects at various distances. 

o Ocular convergence: the human focuses on a certain object, both eyes move 

inward to get a single binocular vision. 

Multi-view video would be used either to enrich the user experience through 

watching the scene from different viewpoints such as free-viewpoint Television (FTV) 

or viewing two slightly different views concurrently such as three-dimension 

Television (3DTV) (Tanimoto, 2009; Lee et al., 2010; Smolic, 2011). The former 

scenario extends view navigation functionality while the latter scenario stimulates 

depth perception for HVS. Multi-view video has opened a wide range of applications 

which include; entertainment, immersive teleconferencing, facial recognition and 

many other exciting applications (Minoli, 2011; Dufaux et al., 2013). 
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Since this thesis focuses on enabling multi-view video for applications that prefer 

low bitrates, the next section will outline a set of these applications for transmission 

scenario. 
 

1.2 Low bitrate applications 
Although portable devices such as tablets and smart phones support high bitrate, 

they have limited energy resources (battery) (Miao et al., 2009). Since smart phones 

host many applications, the power consumption is increasing rapidly in comparison 

to battery capability (Miao et al., 2009). Power consumption increases when 

decoding videos, that is affected by frame rate, spatial-resolution and bitrate (Lin et 

al., 2007). Video conferencing requires efficient bandwidth utilisation, low processing 

delay and better video quality, where spatial-resolution is usually Common 

Intermediate Format (Schwarz et al., 2007). It could be deployed using a wireless 

cameras array over IEEE 802.11b network (Yang & Goodwin, 2005). Telemedicine 

provides medical services such as remote diagnosis of patients ailments and remote 

surgery to patients who live in rural areas that lack on-site medical facility (Paul & 

Sorwar, 2007). Low bitrate is preferable for this type of application in order to reduce 

cost of medical service (Hewage et al., 2013). Video telephony is usually deployed 

using low bitrate transmission via Public Switched Telephone Network (PSTN) and 

Global System for Mobile communications (GSM) (Eisert, 2000; Kwon & Driessen, 

2001). Internet Protocol Television is one of the entertainment applications. It 

provides low quality video that is coded and transmitted to end-user, where received 

signal is decoded and post processed to remove strong artefacts (Shao et al., 2009). 

In surveillance, wireless ZigBee networks are used to enable monitoring activities for 

short time periods using low bitrate transmission via IEEE 802.15.4 protocol 

(Zainaldin et al., 2008).  

This section has outlined some applications that prefer low bitrate in transmission 

scenario. Generally, low bitrate is a constraint that is enforced in applications, where 

end-users’ devices have limited bandwidth connections, portable devices with limited 

battery capability, restricted amount of memory or small displays. The next section 

will introduce the multi-view video chain that begins from capturing to display, where 

each component is briefly outlined. 
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1.3 Multi-view video chain 
The multi-view video chain is depicted in Figure 1-1, where each block represents a 

component within the chain. Since this thesis focuses on coding multi-view video, 

the main component has been highlighted by grey colour. 

 
 

Figure 1-1 Multi-view video chain 

Acquisition: involves capturing a scene from a set of cameras. The most widely 

used cameras’ arrangements are (Lee et al., 2010): 

o 1D parallel (linear): cameras are positioned as an array either in vertical or 

horizontal direction. Most applications prefer horizontal direction to be consistent 

with motion parallax for HVS.  

o 2D parallel: cameras are placed in horizontal and vertical directions.  

o 1D arc (coplanar): cameras are positioned in convergent setup toward the scene 

centre. The videos are usually rectified in order to easily locate the corresponding 

points among views in the horizontal direction.  

Scene representation: the following are different formats for multi-view video, they 

are (Alatan et al., 2007; Morvan et al., 2008; Smolic, 2011): 

o Texture: All views are represented by their texture videos. 

o Depth: Part of visual data is texture alongside its depth map. It represents the 

pixel distances from the camera using grey scale image/video. 

o Model: video is either represented by foreground and background objects or 

through 3D meshes with their texture mapping. 

Sender side processing: It includes colour correction; white balancing, finding 

camera parameters; rectifying convergence multi-view video, objects segmentation 

and depth estimation (Smolic, 2011). 

Coding: Multi-view video is a superset of monoscopic video. Thus the main 

obstacle for transmission or storage is the huge size of multi-view video (Chen et al., 

2009b; Vetro, 2010), e.g. the required bandwidth for transmitting 2D video with Video 
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Graphics Array (VGA) resolution size using three full colour sampling with 30 Frames 

Per Second (FPS) will be 26.37 Mb/s. When extending this video to involve eight 

cameras, the size of its raw data will be 210.94 Mb/s. This example shows the high 

bitrate needed for transmitting multi-view video. Coding is the direct solution for multi-

view video as it offers practical solution when this type of video is transmitted or 

stored. Therefore visual data is coded first in order to reduce its size without 

significantly degrading the visual quality of original data. Thus coding multi-view 

video is usually considered in any multi-view application. 

A video codec exploits different types of visual information redundancies using 

hybrid video coding. It aims to minimise the number of bits required to represent the 

visual data. Therefore, the efficiency of video coding would be measured either by 

number of kilobits per second or number of bits per pixel for transmission and storage 

respectively. A video codec has two entities: an encoder and a decoder. The former 

compresses visual data and the latter decompresses the coded video prior to display. 

A video codec would use one of the following coding formats: 

o Texture (image-based): uses only texture views. 

o Depth: includes three subcategories 

• Video plus depth: uses one texture and one depth. Depth map supports view 

synthesis for narrow scene navigation. The rendered image would suffer from 

disocclusion which affects image quality. 

• Layered depth video: involves two texture views in addition to the depth and 

occlusion layers. It resolves the challenge of occlusion more efficiently at the 

expense of more complexity than video plus depth. The rendered image is 

affected by shadow and reflection area. 

• Multi-view plus depth: uses N texture views with their corresponding depth 

maps. It supports wider range of scene navigation at the expense of massive 

amount of data with respect to previous formats. 

o Model: supports free view-point navigation. Automatic segmentation and high 

quality animated objects are the main challenges for this format. 

The texture-based coding is the simplest format because the sender needs 

neither to estimate object depth nor model them, while the transmitted videos will be 

displayed directly at the decoder side. 

Transmission: This is the carrier media, where the multi-view video would be 

spread using the broadband and broadcast connections (e.g. digital video broadcast) 

(Mignone et al., 2011). It is broadcast either via frame-compatible or service-

compatible formats (Vetro et al., 2011; Dufaux et al., 2013). 
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o Frame-compatible: supports stereoscopic video, where both views are spatially 

multiplexed prior to coding. The most common arrangements are side-by-side and 

top-and-bottom. 

o Service-compatible: provides more flexibility than the previous format, where a 

legacy decoder would be able to extract a single view. Stereoscopic video is 

supported via multi-view video coding standards.  

Rendering: generates novel views using perceived coded views. Each scene 

representation format has its rendering characteristics (Stoykova et al., 2007; 

Smolic, 2011; Tanimoto, 2012). 

o Texture: interpolates views with limited quality. 

o Depth: synthesises views using a Depth Image Based Rendering algorithm 

(DIBR). They are obtained by projecting the pixel from image plane into 3D space 

then back projecting it into different camera plane. 

o Model: A new view is constructed after obtaining a visual hull followed by surface 

extraction, surface smoothing and mesh complexity reduction. 

Display: includes stereoscopic, auto-stereoscopic, volumetric and holographic 

displays (Benzie et al., 2007; Smolic, 2011). 

o Stereoscopic: shows single binocular disparity. It requires eye-glasses to filter 

different images to the corresponding eye.  

o Auto-stereoscopic: supports multiple binocular disparities via motion parallax. 

There are two cases for displaying multi-view video: 

• Two-views: integrates head-tracking system which identifies the head’s 

position, thus the videos are displayed correctly towards the user. 

• Multi-view imagery: uses either lenticular sheets or parallax barrier to distribute 

several images to set of viewing zones. These zones are the valid areas, where 

user would get 3D perception. 

o Volumetric (multi-planar): image is displayed within volume of space, where each 

point of light has corresponding point in 3D space that entails massive size of 

video. Although it supports viewing 3D from wide range of viewpoints, it has 

several challenges such as capturing real scenes. 

o Holographic: uses a photographic plate to reconstruct the objects using laser 

projection, diffraction and interference. It supports high quality images with depth 

cues. Due to the current very large scale integration technology, this type of 

display is usually found at research centres. 

Since this thesis targets multi-view video coding, the following section will briefly 

categorise multi-view video codec standards. 
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1.4 Multi-view video codecs taxonomy 
Simulcast video coding is most straightforward solution for coding multi-view video 

since it compresses each view separately. It can be used by any monoscopic video 

codecs, e.g. H.264/AVC or HEVC. Multi-view video codec standards compress 

jointly the given multi-view video, where spatial redundancies among neighbouring 

views are exploited. These multi-view video codec standards are: 

o MPEG-2 Multi-view profile which was finalised in 1996 targeting stereoscopic 

videos. It encodes independently the left view while the right view uses the 

previous decoded right frames in addition to the neighbouring left frames in 

prediction (Chen & Luthra, 1997; Ohm, 1999). 

o MPEG-C Part 3 was standardised in 2007. It is based on video plus depth, where 

each layer is coded separately. The average increase in bitrate is  8% extra with 

respect to 2D video compression (Bourge et al., 2006). 

o H.264/MVC was released in 2008. It provides efficient coding for multi-view video 

through extending the motion estimation of H.264/Advanced Video Coding (AVC) 

(Chen et al., 2009b). This codec is deployed in entertainment applications, e.g. 

Blu-ray 3D Discs. It contains stereoscopic video which includes a base view and 

dependent view. Stereoscopic video would be decoded either by 3D Blu-ray 

player that provides 3D video or via 2D Blu-ray player that extracts a base view 

only and ignores the other view (Vetro et al., 2011; Tanimoto, 2012; Dufaux et al., 

2013). 

o MVC+D supports coding texture views and depth maps, where both are coded 

independently. H.264/MVC decoder is therefore capable of extracting and 

decoding the coded texture views (Hannuksela et al., 2013). Although this codec 

applies few changes to encapsulate coded texture views and depth maps into 

single stream, it does not exploit the redundancy that exist among texture views 

and their depth maps (Chen & Vetro, 2014). 

o 3D-AVC applies changes at macroblock level to supports additional coding tools 

that exploit the redundancies among texture views and their depth maps (Zhang 

et al., 2013; Hannuksela et al., 2013). Part of the coding tools are neighbouring 

block-based disparity vector derivation, inter-view motion prediction and view 

synthesis prediction (Chen & Vetro, 2014). 3D-AVC is more coding efficient than 

MVC+D, where the bitrate reduction is on average 14% (Hanhart et al., 2014).   

o MV-HEVC enables coding the texture views using HEVC, where few changes are 

applied to enable inter-view prediction among neighbouring views (two and three 

views are supported) (Yuan et al., 2015). These changes include allowing 
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reference frames that belong to the base view to be used during predicting frames 

that belong to dependent views (Aflaki et al., 2014; Sansli et al., 2014). 

o 3D-HEVC supports MVD coding format, where each video is associated with the 

corresponding depth map. Each texture frame will be followed by its depth map 

and interleaved with the successive views. It is based on High Efficiency Video 

Codec (HEVC) in order to code high and ultra-high definition video resolution 

efficiently. This codec supports inter-view motion prediction, residual prediction 

and view synthesis prediction (Tech et al., 2015). This extension acts as the 

starting phase in standardising 3D video coding based on HEVC, where the first 

report for this extension was published in 2012 (Tech, 2012). 3D-HEVC is a 

suitable alternative to H.264/MVC when targeting autostereoscopic displays, 

where a subset of the texture videos with their depth maps will be transmitted. At 

the receiver side, the corresponding views will be decoded and displayed in 

addition to rendering novel views using DIBR algorithm (Müller et al., 2013). 

The MPEG-2 Multi-view profile has limited usage due to the challenges of display 

and hardware capabilities at that time (Smolic et al., 2007). Disocclusion is the main 

challenge for MPEG-C Part 3 standard that affects the video quality for the rendered 

views, where the occluded areas in the main texture video cannot be rendered 

efficiently (Vetro, 2010). H.264/MVC provides efficient coding solution for multi-view 

video at the expense of demanding huge computational complexity and large 

memory requirements compared to simulcast video coding (Zhang et al., 2008). It 

puts a limitation for predicting frames using only temporal and spatial frames, on the 

contrary to H.264/AVC that provides full flexibility in determining the frames that are 

included in the prediction through multi-reference prediction coding tool (Chen et al., 

2009b). Since MVC+D, 3D-AVC and 3D-HEVC support coding MVV with their 

associate depth maps, the rendered views are affected by the quality of depth map 

and the amount of disocclusion areas. MV-HEVC is based on the recent video codec 

HEVC. Although HEVC provides better coding efficiency than H.264/AVC (bitrate 

reduction is in the range of 50%), its encoder consumes a higher coding time than 

H.264/AVC encoder by at least a factor of four (Sullivan et al., 2012; Bossen et al., 

2012). It uses 16-bit data format instead of 8-bit as in H.264/AVC, therefore HEVC 

requires more memory bandwidth than H.264/AVC (Bossen et al., 2012). HEVC is 

suitable for applications that target ultra-high definition displays and parallel 

processing capabilities (Ahn et al., 2014). H.264/AVC remains a powerful coding 

standard for low bitrate applications that provides full flexibility for inter-picture 
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prediction compared to H.264/MVC in addition to less computational complexity and 

memory bandwidth than HEVC. 

1.5 Research problem and motivations 
Multi-view video has a wide area of applications nowadays, as it provides the user 

either the ability to watch multiple views simultaneously or viewing the scene from 

different viewpoints. These advantages entail higher amount of visual data than 2D 

video that is proportional to the number of cameras used in capturing the scene. 

Therefore coding multi-view video is an inevitable stage in applications that support 

multi-view video. Low bitrate in the context of multi-view video coding refers to coding 

the given multi-view video at lowest acceptable quality. This is defined for each multi-

view video using either quantisation parameter or bitrate. According to common test 

conditions for MVC, average low bitrate per camera is in range of 128 Kbps to 768 

Kbps (Su et al., 2006). This constraint is desirable when end-users devices have 

limited bandwidth connections, portable devices with limited battery capability, 

restricted amount of memory or small displays. Low bitrate multi-view video coding 

targets the coding performance in terms of rate-distortion without significantly 

increase the computational complexity and memory consumption of MVC. 

H.264/AVC is an essential coding standard for low bitrate applications that provides 

more flexibility for inter-picture prediction than H.246/MVC and it requires less 

computational complexity and memory bandwidth than HEVC. 

The general block diagram for coding multi-view video using H.264/AVC is 

depicted in Figure 1-2 that enables transmitting multi-view video between sender and 

receiver sides. The captured videos from neighbouring cameras are multiplexed into 

single sequence. During compression, each frame is divided into blocks. Each block 

is predicted, where the residual signal is transformed and quantised. Entropy coder 

compresses the prediction information and transformed coefficients, prior to 

transmission. The received video is decoded and de-multiplexed prior to display. A 

multi-view video codec focuses on exploiting visual redundancies among 

neighbouring views (inter-view correlation), using prediction (highlighted by a grey 

colour in Figure 1-2). This justifies the importance of the prediction component in 

coding multi-view video rather than simulcast video coding that compresses each 

view separately (Vetro et al., 2011). 

A resolution-based coding approach is an attractive solution when addressing 

multi-view video coding at low bitrates. It requires neither depth-map nor 

segmentation. It avoids the challenges related to depth estimation, holes filling and 
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automatic segmentation. Symmetric multi-view video coding has shown superior 

coding performance at low bitrates when it is compared to other coding approaches 

(Strohmeier & Tech, 2010; Saygili et al., 2010; De Silva et al., 2013). Symmetric 

multi-view video codec increases the quantisation parameter in order to meet the 

target bitrate. On the other hand, mixed spatial-resolution multi-view video coding 

reduces the amount of visual data, where the total perceived quality is close to the 

quality of full spatial-resolution frames due to the suppression theory (Aflaki et al., 

2013a). According to this theory, high frequency components that exist in the full 

spatial-resolution frames compensate the corresponding components in the lower 

spatial-resolution frames (De Silva et al., 2012). The mixed spatial-resolution multi-

view video coding approach reduces coding complexity and improves objectively the 

coding performance compared to symmetric coding (Fehn et al., 2007; Brust et al., 

2009; Aflaki et al., 2013a). Therefore, symmetric MVC and mixed spatial-resolution 

MVC are used in the investigations reported in the thesis. 

 

Figure 1-2 General block diagram for H.264/AVC based multi-view video coding 

Symmetric multi-view video coding is beneficial for multi-view video that contains 

a significant amount of spatial redundancies among neighbouring views. When the 

amount of these redundancies is insignificant, then simulcast video coding should be 

used since it requires less computational complexity than Multi-view Video Coding 

(MVC). The amount of spatial redundancies depends on camera separation, where 

closer cameras have higher degree of visual correlation than sparse cameras. 

Although several studies addressed the effect of camera separation on coding 

performance of MVC, still the criterion for the best usage of multi-view video coding 

is not defined (Merkle et al., 2007a; Bouyagoub et al., 2010). The prediction 

architecture is a main part in the prediction component of H.264/AVC since it defines 

the reference frames that are used in the prediction (reference frame selection) 

alongside defining how to address these frames during compression (reference 

frame ordering). Although a typical prediction architecture of H.264/MVC achieves 
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efficient coding gain compared to other prediction architectures, it has significant 

computational complexity and memory requirements (Zhang et al., 2008). Several 

prediction architectures have been proposed in the literature. Parts of these 

architectures justify neither reference frame selection nor reference frame ordering 

(Oka et al., 2004; Fecker & Kaup, 2005; Oh & Ho, 2007; Flierl et al., 2007). A few 

studies looked into the statistical analysis of block matching as a reliable technique 

to derive prediction architectures (Kaup & Fecker, 2006; Merkle et al., 2007a). Since 

they do not deploy all coding tools of H.264/AVC, the efficiency of inter-picture 

prediction is degraded. Still there are no clear clues about reference frame selection 

that should be used when H.264/AVC operates at low bitrates. Although a few 

studies have proposed different mechanisms for reference frame reordering, they do 

not provide a practical solution that fits the requirements of low bitrate applications 

(Pourazad et al., 2009a; Seungwook & Yang, 2011). 

In the context of mixed spatial-resolution multi-view video coding, frames that 

belong to neighbouring views may have different spatial-resolution. Therefore, the 

reference frames need further processing (either decimation or interpolation) before 

deploying inter-view prediction. Although the effect of deploying inter-view prediction 

direction among mixed spatial-resolution frames is addressed in the literature, the 

outcomes might be influenced by asymmetric quality settings at the point of 

conducting experiments (Brust et al., 2010). Therefore, there is a need to investigate 

different inter-view prediction directions to reveal the challenges when coding mixed 

spatial-resolution multi-view video. There are different decimation and interpolation 

methods, where there is no clear efficient method in terms of coding gain and 

computational complexity (Aksay et al., 2006; Fehn et al., 2007; Aflaki et al., 2013b). 

It is important to deploy suitable methods for decimation and interpolation to enable 

inter-view prediction without significantly increasing the computational complexity. 

Although a few prediction architectures are deployed, they are either inherited from 

a typical prediction architecture of H.264/MVC or there is no theoretical justification 

behind reference frame selection (Fehn et al., 2007; Chen et al., 2009a). Mixed 

spatial-resolution multi-view video could be used for free-viewpoint video (Garcia et 

al., 2010b). On the other hand, eye fatigue has been reported when viewing coded 

mixed spatial-resolution stereoscopic video (Jain et al., 2012, 2014). This entails that 

blurring artefacts for the asymmetric spatial-resolution coding approach should not 

be entirely ignored when it is deployed in the context of multi-view video coding. 

Several algorithms have looked into enhancing the visual quality of the interpolated 

frames (coded low spatial-resolution frames) through reducing the amount of 

blurriness at the receiver side (Tech et al., 2009a; Najafi, 2012). Since these studies 
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did not provide an efficient low complexity algorithm, an efficient solution is needed 

to enhance the visual quality for these frames. 

1.6 Aim and objectives 
The aim of this research is to investigate multi-view video coding using H.264/AVC 

when the codec operates at low bitrate.  

The following list summarises the research objectives: 

o Conduct a literature survey on: 

• Coding approaches that are used for low bitrate video codecs.  

• Multi-view video coding, particularly its prediction architectures. 

o In the context of symmetric spatial-resolution multi-view video coding: 

• Determine the impact of camera separation on the coding performance of 

multi-view video codec. 

• Investigate prediction architectures using a statistical analysis of block 

matching among different reference frames. 

• Investigate reference frame reordering. 

o In the context of mixed spatial-resolution multi-view video coding: 

• Explore the effect of deploying inter-view prediction using full and low spatial-

resolution reference frames. 

• Investigate suitable methods for decimating and interpolating reference 

frames. 

• Investigate prediction architectures using block matching statistics for both; full 

and low spatial-resolution frames. 

• Enhance visual quality for the coded low spatial-resolution frames. 
 

1.7 Thesis structure 
The thesis contains six chapters; it is organised as follows 

o Chapter 1 introduces multi-view video including low bitrate applications and multi-

view video chain. Multi-view video codec standards are then outlined. The 

research problem and motivations are defined. Aim and objectives of the 

investigations are then presented, followed by the structure of the thesis that is 

listed at the end of this chapter. 

o Chapter 2 presents the background to H.264/AVC key technologies. Parts of its 

coding tools are highlighted that are relevant to the thesis. H.264/MVC and its 
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limitations are outlined. Video quality metrics are then categorised, where 

objective quality metrics that are used in the thesis are outlined. 

o Chapter 3 categorises low bitrate multi-view video codecs. Block matching 

efficiency and prediction architectures are reviewed in the context of symmetric 

multi-view video coding, while prediction architectures and visual enhancement 

algorithms are reviewed in the context of mixed spatial-resolution MVC. A review 

summary and list of research investigations are then presented. 

o Chapter 4 focuses on symmetric multi-view video coding, where the impact of 

camera separation on the coding performance of MVC is studied. Prediction 

architectures are investigated for stereoscopic and multi-view video coding 

followed by examining reference frame reordering.  

o Chapter 5 targets asymmetric spatial-resolution multi-view video coding.           It 

presents the effect of deploying different inter-view prediction directions on the 

coding performance of the MVC. It then examines different methods for 

decimating and interpolating reference frames. Prediction architectures are then 

explored via block matching statistics. The feasibility of reducing blurriness in the 

interpolated frames is investigated. 

o Chapter 6 starts with the conclusions of research outcomes. A set of potential 

studies are then outlined that would provide future research directions.  
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CHAPTER 2. BACKGROUND 
 
This chapter presents the background that is relevant to H.264/AVC, H.264/MVC 

and video quality metrics. It starts with H.264/AVC and its coding tools, where parts 

of these tools that are relevant to the research investigations are highlighted. 

H.264/MVC is presented, where its typical prediction architecture and its limitations 

are demonstrated. Video quality metrics are outlined, where the metrics used in this 

research are illustrated.  
 

2.1 H.264/AVC standard 
This section focuses on the key technologies that provide coding efficiency behind 

H.264/AVC. This coding standard (named as MPEG-4 part 10) has been developed 

via Joint Video Team (JVT). It reflects a joint collaboration between Video Coding 

Experts Group and Moving Picture Experts Group (MPEG) committees. Parts of 

codec applications are: mobile TV, HD broadcasting and video conference. 

H.264/AVC is a hybrid video codec that relies on prediction and transformation 

(Marpe et al., 2005; Richardson, 2010). Figure 2-1 depicts H.264/AVC block 

diagram, where T, Q, T-1, Q-1, ME, MC and DPB are transform, quantisation, inverse 

transform, inverse quantisation, motion estimation, motion compensation and 

Decoded Picture Buffer respectively. The red dashed box defines the relevant parts 

of the prediction component that includes ME, MC, intra-prediction, DPB, List buffers 

and the Deblocking filter. The blue dashed box identifies the relevant parts of 

prediction architecture for H.264/AVC that involves DPB and List buffers. The input 

frame is divided into macroblocks; each has 16×16 pixels. Each macroblock is 

predicted, where the residual signal1 is transformed and quantised. Entropy coder 

compresses control data, prediction information and transformed coefficients. Since 

H.264/AVC codec uses coded pictures to deploy inter-picture prediction for next 

frames, it needs to decompress the coded frame. It applies an inverse operation for 

both quantisation and transformation, and then it deploys motion compensation to 

reconstruct the frame following by Deblocking filtering. The resultant frame is stored 

in DPB to guarantee identical reference frame at encoder and decoder sides. The 

next subsections outline the functionality of each block. 

1 It is the resulted signal after subtracting prediction from original block. 
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Figure 2-1 H.264/AVC block diagram for monoscopic video coding (Schwarz et al., 2006; 
Richardson, 2010) 

 

2.1.1 Prediction 
Prediction is core component for H.264/AVC. The next subsection outlines different 

prediction, macroblock and frame types. 

2.1.1.1 Prediction, macroblock and frame types 

There are two types of prediction: 

o Intra-prediction exploits the spatial redundancy for a macroblock using its 

neighbouring macroblocks. Since video could be segmented into foreground and 

background objects, neighbouring pixels among these objects share significant 

spatial correlations which would be exploited by intra-prediction. 

o Inter-picture prediction exploits temporal redundancy. Successive frames contain 

foreground objects in addition to static background. Therefore, there are 

significant temporal correlations among neighbouring temporal frames. Predictive 

coding exploits these redundancies as the new changes in the frame are coded 

instead of coding the entire frame through macroblocks that belong to reference 

frames (previously coded frames). 
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The macroblock is the basic unit in the codec that is either predicted by intra-

predication or inter-picture prediction as depicted in Figure 2-2. There are three types 

of macroblocks (Nukhet & Tunali, 2005; Marpe et al., 2006b; Richardson, 2010) 

o I-macroblock: allows intra-prediction using 4×4, 8×8 or 16×16 luma prediction. 

Luma prediction using 16×16 has four modes, they are horizontal, vertical, DC 

and planar. Luma predictions using 4×4 and 8×8 choose one from nine modes. 

Mode 0 to eight extrapolate samples in vertical, horizontal, DC, diagonal down-

left, diagonal down-right, vertical-left, horizontal-down, vertical-right and 

horizontal-up directions respectively. 
o P-macroblock: uses inter-picture prediction, where the samples that belong to 

reference frames are stored in DPB. Forward reference frames are used to get 

best block matching for current P-macroblock. 

o B-macroblock: expands the capability of inter-picture prediction deployed in P-

macroblock. It allows bi-prediction using forward and backward reference frames. 

Therefore, macroblock could be predicted either by forward, backward or bi-

predictions. This entails more memory is needed than P-macroblock in order to 

store forward and backward reference frames. 

 

 
 

Figure 2-2 Prediction types of H.264/AVC (Richardson, 2010) 

There are three types of frames that are supported in H.264; they are I-frame, P-

frame and B-frames. I-frame contains only I-macroblocks while P-frame has 

combinations of I-macroblocks and P-macroblocks. B-frame contains all types of 

macroblocks. Although I-frame provides less coding efficiency than P-frame and B-
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frame, it does not deploy motion estimation. This enables fast coding in addition to 

supporting temporal random access. Inter-picture prediction could deploy weighted 

prediction, where the predicted block is weighted using its temporal distance to 

current frame. Both P-frame and B-frame could be used as source for inter-picture 

prediction. B-frame gets efficient coding, where bi-prediction gives more accuracy 

than uni-prediction which is deployed in P-frame (Wong et al., 2011). 

2.1.1.2 Coding tools 

The codec supports a set of coding tools; they are multi-reference prediction, coding 

modes, sub-pixel ME and MC in addition to Deblocking filter. 

Multi-reference prediction is a key feature behind inter-picture prediction that 

provides H.264/AVC with the flexibility in selecting suitable source among available 

reference frames. Motion estimation searches for best block matching within 

temporal reference frames that are already decoded and stored in DPB. The chosen 

reference frame is signalled through transmitting its index in List buffer. This buffer 

stores the reference frames indices. List 0 is dedicated for forward prediction during 

coding P-frame, while List 0 and List 1 are used to store forward and backward 

reference frames’ indices respectively when B-frame is coded. Multi-reference 

prediction enables predicting macroblock using multiple reference frames, where 

each macroblock could be predicted using single or multiple reference frames. This 

flexibility provides the codec the capability to provide accurate prediction for the 

macroblock at the expense of computational complexity that is linked to the number 

of reference frames in addition to increasing amount of memory to store the relevant 

reference frames (Richardson, 2010). 

The prediction uses different coding modes (block sizes) as depicted in Figure 2-

3. Macroblock could be divided by 16×16, 16×8, 8×16 or 8×8 macroblock partitions. 

Therefore a macroblock could contain one 16×16 partition, two 8×16 partitions, two 

16×8 partitions or four 8×8 partitions. Each macroblock partition of size 8×8 could be 

further divided by single 8×8, two 8×4, two 4×8 or four 4×4 sub-macroblock partitions. 

Coding modes support variable block sizes that divide the frame into non-

overlapping blocks. Every block requires signalling its coding information that 

includes reference frame index and motion vector2. The selection of block size is 

linked to complexity degree of the region. Macroblock partitions are used to predict 

areas with smooth texture variation while sub-macroblock partitions are used to 

provide accurate predictions for regions with high degree of variations. Skip mode is 

2 It could point to integer, half or quarter-sample (it will be discussed later in this subsection). 
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the most important coding mode that predicts the entire macroblock 16×16, where 

the encoder sends only a flag instead of transmitting prediction information and 

residual signal (Nukhet & Tunali, 2005; Marpe et al., 2006a). 

 
Figure 2-3 H.264/AVC coding modes (Ostermann et al., 2004) 

H.264/AVC supports sub-pixel ME/MC3. The reference frame presents the integer 

sample (integer-pel) that might not be accurate enough during inter-picture 

prediction. Therefore, the codec generates half-pixel (half-pel) and quarter-pixel 

(quarter-pel) samples for each reference frame, where quarter-pel gets higher 

prediction accuracy than half-pel samples. Figure 2-4 depicts sub-pixel samples 

generation, where LPF is low pass filter. When a reference frame is stored in DPB, 

sub-pixel samples are generated, where integer samples are used to get half-

samples that include horizontal and vertical samples. These samples are obtained 

through up-sampling; the reference frame then uses neighbouring horizontal or 

vertical integer samples (six samples) to interpolate half-pel sample through AVC 

Finite Impulse Response (FIR) filter. The filter has 6 tap with weights of (1/32, -5/32, 

5/8, 5/8, -5/32, 1/32). Diagonal half-pel samples are obtained using either horizontal 

or vertical neighbouring half-pel samples. Quarter-pel samples are obtained through 

averaging the closest two samples; integer-pel and half-pel samples (Richardson, 

2010). 

Since each macroblock is handled separately, blocking distortion will be 

significant when coding the given frame at low bitrate. These types of artefacts 

appear as visible discontinuities among block boundaries. The codec deploys 

Deblocking filter (named loop filter) to minimise the effect of these artefacts by 

filtering the decoded block just before storing/displaying. Therefore, the blockiness 

artefacts are reduced which improves video quality perception and enhances inter-

picture prediction when the filtered frame is used later as reference frame (Marpe et 

al., 2006a). It filters up to 3 pixels from each block side that would be in horizontal or 

3 Motion compensation constructs the predicted macroblock using prediction information. 
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vertical direction. The filter has four strength levels starting from strongest level that 

targets intra-predicted blocks to weakest level for inter-predicted blocks that have 

the same reference frames, motion vectors and no coded coefficients (Richardson, 

2010). 

 

Figure 2-4 Sub-pixel samples generation via H.264/AVC 

2.1.1.3 Block matching process 

Block matching is the main process in inter-picture prediction. It searches for best 

block matching to the current macroblock, where the position of the predicted block 

that belongs to the reference frame is referred to as Motion Vector (MV). This is the 

actual motion vector that contains a pair of (x, y) coordinate that points to the 

predicted block itself. The codec predicts the actual MV through getting the median 

value among motion vectors that belong to neighbouring macroblocks (MVp). The 

difference vector (Motion Vector Difference, MVD) is obtained by subtracting 

predicted motion vector from actual motion vector. Figure 2-5 shows block matching 

process using a number of coding modes among five reference frames. Macroblock 

partition 8×8 will be further divided into sub-macroblock partitions, where block 

matching will check these modes as well. Predicting P-frame using single reference 

frame requires 259 checks to cover all combinations for coding modes, where 256 

checks is the combinations using sub-macroblock partitions (44) in addition to three 

checks for the macroblock partitions (16×16, 16×8 and, 8×16).  

The motion estimation for a single and five reference frames would consume 

about 50% and 80% of the codec’s total encoding time (Chiang et al., 2011; Xu & 

He, 2008). Therefore, motion estimation is the most computationally complex 

process of H.264/AVC. Searching for the best block matching requires computing 

visual distortion and amount of coded data. It includes motion vector difference, 

coding modes and reference frame index alongside the residual signal that is 

represented by transformed coefficients (it will be explained in the following 

subsections). This process is linked to rate-distortion optimization to guarantee the 

minimum cost for the final selection of block matching. It is a compromise between 
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the actual bitrate and distortion. The cost function is based on the Lagrangian 

method, J (ref | λMotion). It is defined by equation 2-1 (Jung et al., 2012), 

𝐽𝐽(𝑟𝑟𝑟𝑟𝑟𝑟|𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠, 𝑟𝑟) + 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑅𝑅(𝑀𝑀𝑀𝑀𝑆𝑆, 𝑅𝑅𝑅𝑅𝑅𝑅) (2-1) 

where Sum of Absolute Difference (SAD) frame is the prediction error between the 

current (s), and, corresponding reference block (r), λMotion is Lagrange multiplier, R is 

the number of bits required to code both; Motion Vector Difference (MVD) and 

reference frame (REF). The overhead cost of signalling the reference frame for each 

macroblock is related to the index position of the reference frame inside these 

buffers, where fewer number of bits are used to address the closer reference frames 

(e.g. the closest two reference frames requires single and three bits respectively). 

Therefore, H.264/AVC applies reference frames reordering when IPPP coding 

structure (it will be explained in the following subsection) is used to reduce the 

signalling of reference frames, where the closer reference frames have lower 

indexing value than further reference frames. This is accomplished through sorting 

decoded reference frames in descending order, where the index of nearest decoded 

reference frame (recent temporal frame) will be the first element in List 0 buffer (Shen 

et al., 2007). 

 

Figure 2-5 Block matching process when number of reference frames is 5 (Yu-wen et al., 
2006) 
 

2.1.1.4 Prediction architectures 

Prediction architectures are defined through Reference Frame Selection (RFS) and 

Reference Frame Ordering (RFO). RFS identifies a set of reference frames, where 

they are stored in DPB. Reference frame ordering (RFO) defines how these frames’ 

indices are placed inside the List buffer. Different combinations for RFS and RFO 
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lead to deriving different prediction architectures that eventually affect the coding 

performance of H.264/AVC. 

There are two different coding structures (IPPP and IBBP); that are used among 

any prediction architectures. The former relies on I-frame and P-frame irrespective 

of frames’ referencing selection. It has always low computational complexity and 

memory consumption with respect to IBBP as it allows forward prediction only. The 

latter deploys all frames’ types in order to provide efficient coding gain at the expense 

of increasing both computational complexity and memory. This is due to deployment 

of block matching using forward, backward and bi-prediction in addition to storing 

both forward and backward reference frames (Richardson, 2010). 

2.1.1.5 Statistical analysis of block matching 

Reference frames have different roles of block matching depending on temporal 

correlation. Statistical analysis of block matching is a powerful technique to 

understand how much each reference frame contributes in inter-picture prediction.  

Statistical analysis is conducted during block matching process using a set of 

counters that reflect the usage of each reference frames with different coding modes. 

The objective is to compute the amounts of the selected coding modes that includes 

the amounts of skip, 16×16, 16×8, 8×16 macroblock partitions alongside macroblock 

sub-partitions for each reference frame. When the block matching process 

determines the best coding mode for the current block, the corresponding counter 

for coding mode and reference frame is increased by one. When the given video is 

coded, the counters’ values are processed in order to determine the amounts of inter-

picture prediction for each reference frame. These values are first multiplied by a set 

of factors that reflect the size of each coding mode with respect to macroblock. E.g. 

the factor is one for skip and 16×16 block sizes, while it is two for 16×8 and 8×16 

block sizes. The summation is then taken place for the amounts of coding modes 

that belong to the same reference frame. Normalisation is applied to define the 

amount of prediction for each reference frame in percent. E.g. the amounts of blocks 

using coding modes {16×16 and 16×8} among three reference frames are {820, 

1150}, {550, 860} and {300, 590} respectively. The corresponding amounts with 

respect macroblock size would be {820, 575}, {550, 430} and {300, 295}. This entails 

that these reference frames have predicted 1395, 980 and 595 blocks, where the 

role for these frames are 46.97%, 33% and 20.03% respectively. 
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2.1.2 Transformation 
The residual signal contains energy that has a high degree of redundancy that is 

exploited by the transformation. It de-correlates the energy to make it concentrate 

into a low number of coefficients. It concentrates the energy into few non-zero 

coefficients that are located around the DC coefficient while the opposite 

corresponding corner usually has zero coefficients (Richardson, 2010). There are 

two transforms that are based on Hadamard integer transformation; they are 4×4 

and 8×8 integer transform. This type of transformation provides the codec two 

important properties. First it is reversible without any mismatch between encoder and 

decoder. Secondly, it provides easy hardware implementation through addition, 

subtraction and bit shifting (Sullivan et al., 2004; Richardson, 2010). 

2.1.3 Quantisation 
Quantisation is the main cause for visual quality degradation in a video codec, where 

transformed coefficients are scaled to a smaller set of values (Richardson, 2010). 

Therefore, it provides direct relationship among bitrate and video quality, where a 

high quantisation step provides significant coding ratio at the expense of significant 

distorted video quality. Quantisation exploits spectral redundancy, whereas the HVS 

is more sensitive to low frequency (colour intensity) than high frequency (edges). 

Therefore, the transformed coefficients located around the DC coefficient are 

quantised by a small factor while coefficients located at the opposite corner 

(represent edges) are quantised by a high factor. This non-uniform quantisation 

increases zero-coefficients while maintaining nearly the same visual perception 

(Richardson, 2010). Quantisation step size (QP) is a value among 52 values (scalar 

quantisation), where every 6 incremental step size reflects doubling quantisation 

(Sullivan et al., 2004). The transformed coefficients are scanned and placed into 

array after quantisation.  The scan order starts with coefficients that are located 

around DC coefficient and continues toward high frequency coefficients (Richardson, 

2010). 

2.1.4 Entropy 
Entropy encodes several elements that are generated through previous blocks. 

These elements are (Sullivan et al., 2004): 

o Layer syntax including picture and slice header. 

o Macroblock type involves prediction type and coding modes. 

o Macroblock Coded Block Pattern (CBP) identifies which macroblock partition 

(8×8) contains non-zero transformed coefficients. 
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o Quantisation parameter sent as delta value from corresponding QP for previous 

macroblock. 

o Reference frame indices that are used for inter-picture prediction. 

o Motion vector that is signalled via MVD. 

o Scaled transformed coefficients that correspond to residual signal. 

The last element is the most dominant one when coding video at high bitrates 

while other elements are the main bulk of data when coding video at low bitrates 

(Sullivan et al., 2004). These elements have significant amount of statistical 

dependencies that are exploited by the entropy coder. It assigns short codes for 

frequent patterns and longer codes for irregular patterns. There are two entropy 

coders; they are Context Adaptive Variable Length Coding (CAVLC) and Context-

based Adaptive Binary Arithmetic Coding (CABAC). The former is based on Huffman 

coding, where it codes only transformed coefficients. Twelve tables are deployed 

that describe coefficients number, magnitude and number of zero coefficients. The 

latter improves coding efficiency by 10% compared to CAVLC at the expense of more 

computational complexity (Sullivan et al., 2004). It has three main components, 

context modelling, binarisation and arithmetic coder. Context modelling selects the 

model according to observations from previously encoded blocks.  The second 

component converts non-binary symbol into bins, which are coded by the last 

component (Richardson, 2010). 

The codec has several coding tools that are usually not entirely used. Therefore, 

subsets of the supported coding tools are defined by the codec profile while its level 

identifies maximum limit of decoder capabilities (Richardson, 2010). Through 

configuring profile and level, H.264/AVC is used in a wide spectrum of applications. 

Detailed description for H.26/AVC are explained in these resources (Sullivan et al., 

2004; Nukhet & Tunali, 2005; Marpe et al., 2006a; Richardson, 2010). 

This section outlined key technologies behind H.264/AVC relevant to this thesis. 

These include multi-reference prediction, coding modes and sub-pixel ME and MC; 

that are deployed within the research investigations. The following section will 

introduce current extension for multi-view video codec (H.264/MVC) in terms of 

requirements, prediction architecture and its limitations. 

2.2 H.264/MVC standard 
H.264/MVC is introduced in this section, where its prediction architecture is 

highlighted. MVC was standardised for coding stereoscopic and multi-view video in 

2008 (Chen et al., 2009b; Vetro et al., 2011; Dufaux et al., 2013). MVC is similar to 
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scalable video coding (SVC4) in structuring the videos into layers. It supports inter-

layer prediction in order to exploit the inter-view dependency among these layers, 

where each layer represents a separate video. 

2.2.1 Different scenarios for multi-view video coding 
There are five main scenarios when displaying multi-view video at the receiver side, 

as reported in (Chen et al., 2009b), they are: 

o Monoscopic display: shows single view. Therefore this extension is backward 

compatible to H.264/AVC’s decoder. 

o Stereoscopic display: presents two views. There is no head motion parallax and 

it is considered as the simplest form of multi-view video. 

o Free-view point display: user selects a view among the received views. 

o Narrow view angle display: supports few views to be displayed. 

o Wide view range display: is capable of presenting a large number of views 

simultaneously. 

2.2.2 Multi-view video coding general requirements 
The following lists the generic requirements for MVC (Vetro et al., 2011): 

o Coding efficiency: the codec should exploit the spatial redundancy among 

neighbouring views. It should outperform the coding efficiency of simulcast video 

coding; otherwise simulcast video coding5 should be used to compress the given 

multi-view video. 

o Backward compatibility: users who are provided legacy decoders, the coded 

multi-view should be compliant with them. Therefore the 1st layer (base layer) of 

codec should be decoded independently. 

o Scalability: there are two types of scalability, they are namely: 

• Temporal scalability: displays the video through various frame rates. 

• View Scalability: multi-view displays have different capability in presenting 

views. For displays which support a limited number of views, view scalability is 

required. Therefore the encoder should not transmit extra views which will not 

be displayed at the decoder side.  

o Random access: there are two types of random access, they are: 

• Temporal random access: the monoscopic video should be compressed in a 

way that supports decoding certain frames independently in order to preview 

video at different time slices. 

4 Its coded stream is decodable by users with different resources and network bandwidth  
5 Compress each view separately using monoscopic video coding 
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• View random access: in free-view television, a user chooses certain view, 

therefore the multi-view video should be carefully organised in a way to support 

minimum decoded frames between different views. 

o Parallel processing: since multi-view video consists of a set of neighbouring 

views. Decoding the bitstream in a sequential manner would not be efficient 

solution for real-time applications. Therefore, the multi-view video codec should 

be designed in a way that supports parallel decoding to realise an acceptable 

decoding time for real-time applications (Ugur et al., 2007). 

o Decoder’s resources: the main critical resources are computational complexity 

and memory consumption. The multi-view video codec should be able to exploit 

the spatial redundancy among multi-view video without significantly increasing the 

decoder’s resources because it might prevent displaying the video in a smooth 

way.  

o Error resilient: error free transmission cannot be guaranteed when packet data 

might be lost. Therefore, multi-view video codec should enable robust 

transmission to the decoder especially for environments with an error-prone 

network. 

2.2.3 Typical prediction architecture 
Multi-view video coding exploits spatial redundancy among neighbouring views to 

improve coding efficiency with respect to simulcast video coding. The inter-picture 

mechanism for compressing monoscopic video has been extended in multi-view 

video codec. Hierarchical B-picture (HBP) is the most efficient prediction structure 

and it has evolved and become the typical prediction architecture for multi-view video 

coding (Zhang et al., 2011a). It is depicted in Figure 2-6, where Vi and Ti reflect the 

view-id and temporal-id; time slice numbers respectively (Chen et al., 2009b; Vetro 

et al., 2011). Base view is V0, where it uses only temporal reference frames for inter-

picture prediction, while the remaining views (odd and even views) are dependent 

views that use temporal and spatial reference frames. Odd views are V1, V3, V5 and 

V7 while V2, V4, V6 are even views. Each group of pictures in base view has a key 

frame that could be either I-frame or P-frame. Odd views allow bi-prediction from 

time and view directions, e.g. B-frame that belongs to view V1 (located at time slice 

T4) is predicted using temporal frames (B-frames located at time slices T0 and T8) 

and spatial frames (B-frames belong to V0 and V2 at time slice T4). There are a set 

of temporal levels within HBP prediction architecture, where level 1 has frames that 

located at time slices T0 and T8, while level 2 has frames located at T4. Frames 

located at T2 and T6 are belong to temporal level 3, while frames located at T1, T3, T5 
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and T7 are belong to temporal level 4. This arrangement allows predicting B-frame 

that is located at a certain temporal level by frames located at a lower temporal level.  

 
Figure 2-6 Typical prediction architecture for multi-view video coding (Jeon et al., 2009) 

Multi-view video coding extension of H.264/AVC deploys symmetric coding 

(parameter settings are similar among neighbouring views; e.g. spatial-, temporal-

resolution and quality). It’s prediction architecture fulfils the requirements for generic 

multi-view video codec (Chen et al., 2009b).  

o Backward compatibility: it is preserved through providing a base layer without any 

requirements for any reference frames from neighbouring views. At the decoder, 

the frames that belong to the base view are exploited without the need to decode 

frames that belong to neighbouring views. 

o Scalability: temporal scalability is maintained through using hierarchical B-picture 

for each view. View scalability is achieved through determining a priority identifier. 

It reflects the views which will be transmitted. Therefore, it uses view-id in addition 

to temporal-id. Figure 2-7 shows four different operation points6 in terms of 

priority-id, where the four different shaded grey levels correspond to these 

operating points. First operating point will display key frames (I0, I8, I16, etc.) that 

belong to V0 at the lowest frame rate; 7.5 FPS while the highest operating point 

will display all frames that belong to V0, V1 and V2 at 30 FPS. 

o Random access: Instantaneous Decoder Refresh (IDR) clears the contents of 

DPB. It relies on intra-prediction which provides temporal random access through 

6 It is the combinations of temporal-id and view-id that will facilitate parsing coded bitstream. 
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dividing the video into a Group Of Pictures (GOP). Each GOP starts with I-frame 

(key or anchor7 frame). When random access is requested, the decoder searches 

for the closest key frame to start decoding it independently followed by decoding 

next frames. 
 

 
Figure 2-7 Different priority-id for three views (Chen et al., 2009b) 

Frames need to be multiplexed into single stream prior to coding via multi-view 

video coding. There are two coding orders; view-first and time-first coding orders. 

The former multiplexes the frames that belong to certain view (they are located in 

the same GOP) then the frames that belong to the neighbouring view are then 

inserted. Time-first coding order multiplexes the frames that belong to neighbouring 

views in a sequential manner (belonging to the same time slice) then frames that 

belong to the next time slice are inserted afterward. Figure 2-8 illustrates time-first 

coding order that is a common order as it provides low decoding delay among views 

with respect to view-first coding (Chen et al., 2009b; Vetro et al., 2011). H.264/MVC 

operates from low to high bitrates depending on the application. Based on common 

test conditions which was defined through Call for Proposals (CfP), there are two 

types of coding conditions (Su et al., 2006). The first condition is coding multi-view 

sequence at constant quality; hence the common test conditions provide a set of 

quantisation parameters, where the video codec should follow it. The other condition 

is coding multi-view video at constant bitrate, hence there are three defined ranges; 

each reflects the amount of average bitrate per one view which is represented by the 

average Kilobits per second (Kbps). This range defines low, medium and high 

bitrates constraint for each multi-view video sequence.  

7 Anchor pictures also referred to frames that follow key frame at same time slice. 
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Figure 2-8 Time-first coding order (Chen et al., 2009b) 

Block matching is applied similarly to the corresponding one in monoscopic video 

coding. The majority of frames in the prediction architecture are B-frames that imply 

using two buffers to store reference frames indices through List 0 and List 1 buffers. 

Predicted block is chosen based on rate distortion that considers all available 

reference frames and coding modes. The process of checking block matching using 

spatial reference frame that belongs to neighbouring view is disparity estimation, 

while the corresponding process using temporal reference frame is motion 

estimation. These predictions are named inter-view (disparity) and temporal 

prediction respectively. In the context of block reconstruction, the process of 

compensating it by temporal reference frame via motion vector is named motion 

compensation, whilst the corresponding process that uses spatial reference frame 

via disparity vector is disparity compensation. The best block matching has minimum 

cost that represents current block through the information; motion-vectors or 

disparity-vectors, coding mode and residual transformed coefficients. 

 

2.2.4 Multi-view video coding limitations 
The multi-view video coding extension, H.264/MVC, uses B-frames to achieve 

efficient coding performance at the expense of large computational complexity and 

memory requirements8. It puts restriction in the prediction architecture that includes 

RFS and RFO. Figure 2-9 shows successive frames that belong to four cameras, 

where each rectangle represents a frame. F, S and T represent current frame, spatial 

frame and temporal frame respectively. It enforces inter-view prediction using only 

8 This is due to enable backward and forward reference frames that increase amount of time for 
deploying block matching in addition to increase DBP size to store these reference frames. 
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frames that belong to the closest  neighbouring views (S frames), where these 

frames are contained in the same access unit (Chen et al., 2009b; Vetro et al., 2011). 

Therefore, it does not support prediction using frames in spatiotemporal direction 

that belong to different access units. The multi-view video coding standard controls 

the RFO via parameter named InterPredPicsFirst. This parameter can select either 

placing spatial or temporal reference frames indices first in the List. Since the 

majority of the prediction comes across temporal direction, the codec uses temporal-

first as a default setting (ISO/IEC MPEG & ITU-T VCEG, 2008). The challenge is to 

determine which source of reference frames (temporal or spatial) is more significant. 

It is difficult to decide the most significant source for frames that belong to odd views 

(located at low temporal levels) especially when GOP size is large, e.g. B-frame 

located at time slice T8 when GOP size is 15. 

 

Figure 2-9 Temporal and spatial prediction via H.264/MVC 

The prediction architecture is what distinguishes multi-view video coding from 

simulcast video coding through allowing inter-picture prediction from different 

directions. On the other hand, prediction information is the main bulk of data when 

the codec operates at low bitrates. This entails the significant importance of 

prediction architecture when the codec operates at low bitrates. H.264/AVC is the 

base codec for multi-view video coding extension that supports IPPP and IBBP 

coding structures. It provides more flexibility for deriving prediction architectures in 

terms of reference frame selection and reference frame ordering. Therefore, 

H.264/AVC is used during the research investigations. 

This section introduced multi-view video coding extension, where different display 

scenarios, requirements and typical prediction architecture are illustrated. The 

justification behind selecting H.264/AVC instead of H.264/MVC is clarified. The next 

section will outline video quality metrics, where the objective quality metrics that are 

used in this research are highlighted. 
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2.3 Video quality metrics 
A Video Quality Metric (VQM) measures the amount of quality degradation in coded 

video. There are several types of coding artefacts that exist in coded video. The most 

common artefacts are blockiness and blurriness (Boev et al., 2011b). Blockiness 

appears when coding video at low bitrate due to scaling the transformed coefficients 

coarsely, while blurriness results from interpolating frames, where high frequency 

components are degraded. 

Video quality metrics are categorised into subjective and objective video quality 

metrics. Subjective metrics rely on assessing the visual quality through a group of 

viewers who judge the quality through watching reference video (un-coded) and 

coded videos (impaired). Although video quality measures obtained by subjective 

metrics are more reliable than objective video quality metrics, they are costly and 

need more time to be conducted. Significant time is needed for setting up the 

laboratory in a controlled lighting condition and performing tests among all assessors 

prior to conducting subjective assessment, e.g. visual acuity test, colour vision test 

and stereo vision test (Boev et al., 2011b; Pedro & Velasco, 2012). 

Objective video quality metrics use predefined formulas to determine the quality 

of coded video. There are three types of objective metrics depending on availability 

of reference video; they are: full reference, reduced reference and no reference 

metrics (Richardson, 2010; Pedro & Velasco, 2012). Full reference metrics require 

full availability of reference video, while reduced reference metrics use certain 

characteristics of reference video which are sent as side information beside coded 

video. No reference metrics assess the quality degradation of coded video without 

the need of reference video.  

Pedro and Velasco categorise full reference metrics according to the methodology 

deployed for each metric (Pedro & Velasco, 2012); they are: 

o Pixel-based metrics: the most time efficient methods that measure the 

degradation at pixel level, such as Mean Square Error (MSE), Signal-to-Noise 

Ratio (SNR) and Peak Single-to-Noise Ratio (PSNR) metrics. PSNR metric is the 

most common used in video coding due to its simplicity to compute video quality. 

It is combined with bitrate to measure Rate-Distortion curve (R-D) for the coded 

video. 

𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅 =  10 𝑙𝑙𝑙𝑙𝑙𝑙10
(2𝐷𝐷 −  1)2

𝑀𝑀𝑆𝑆𝑅𝑅
 

(2-2) 
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𝑀𝑀𝑆𝑆𝑅𝑅 =  
1

𝑀𝑀. 𝑃𝑃
� (𝑋𝑋𝑀𝑀,𝑗𝑗 − 𝑌𝑌𝑀𝑀,𝑗𝑗)2

𝑀𝑀−1,   𝑀𝑀−1

𝑀𝑀=0,   𝑗𝑗=0

 
(2-3) 

where MSE is mean square error while X and Y are luminance components of un-

coded and impairment frame respectively. M, N and D are horizontal, vertical 

dimensions and pixel bit depths (Richardson, 2010; Pedro & Velasco, 2012). 

In context of mixed spatial-resolution frames, the coded low spatial-resolution 

frames are interpolated prior to measuring PSNR. This metric has two measures; 

they are actual and over-estimated PSNR measures. Figure 2-10 shows these 

measures, where ENC, DEC and LPF are encoder, decoder and low pass filter 

respectively. Forg, Forg’ and Fcoded refer to un-coded frame (ground truth), un-coded 

frame (interpolated) and coded frame (interpolated) respectively. Computing 

PSNR from Forg and Fcoded is PSNRactual, that measures coding and blurriness 

distortions. PSNR over-estimated is computed using Forg’ and Fcoded. It measures 

amount of coding distortions only. Therefore its measurement is higher than 

PSNRactual. Since majority of studies rely on PSNRover-estimated, it is used as an 

objective quality measurement in chapter five. 

 
Figure 2-10 Actual and over-estimated Peak Signal-to-Noise Ratio 

o Based on structural similarities: they evaluate quality degradation for coded 

videos through measuring different aspects of images that affect HVS. One of the 

popular methods is Structural SIMilarity index (SSIM). It measures the perceived 

changes through the image’s structural information that satisfies three conditions. 

They are symmetry (SSIM(x, y) = SSIM(y, x)), boundedness (SSIM(x, y) ≤1)) and 

unique maximum (SSIM(x, y) = 1 if and only if x = y). It performs luminance, 

contrast and structure comparisons, where SSIM is the linear combination of 

these measurements (Wang et al., 2004). 
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𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀(𝑋𝑋, 𝑌𝑌) =
1
𝑊𝑊

� 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)
𝑊𝑊

𝑗𝑗=1

 (2-4) 

𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) =  
�2µ𝑥𝑥µ𝑦𝑦+𝐶𝐶1��2𝜎𝜎𝑥𝑥𝑦𝑦 + 𝐶𝐶2�

�µ𝑥𝑥
2 + µ𝑦𝑦

2 + 𝐶𝐶1�(𝜎𝜎𝑥𝑥
2 + 𝜎𝜎𝑦𝑦

2 + 𝐶𝐶2)
 (2-5) 

where MSSIM is average SSIM that represents image quality. W, µx, µy are the 

number of local windows in image, mean intensity for pixels in horizontal and 

vertical directions respectively. 𝜎𝜎x and 𝜎𝜎y are standard deviation for pixels in 

horizontal and vertical directions while C1 and C2 are two constants to avoid 

instability when denominator is zero (C1 and C2 are set to 6.5 and 58.5 

respectively) (Wang et al., 2004). 

o Based on artefacts: these types of metrics aim to measure amount of different 

artefacts such as blockiness, blurring and ringing. One of the most popular metric 

is Lee et al. metric which has been recommended via ITU-T (ITU-T, 2004, 2008; 

Lee et al., 2011). The metric measures the video quality degradation in areas 

around edges which affect significantly perception of HVS. The metric measures 

edge Peak Single-to-Noise Ratio (EPSNR), blockiness and blurriness, where their 

linear combination represent video quality measurement for this metric. First, the 

edges are extracted from the reference image using horizontal and vertical 

gradient operators followed by threshold to obtain the mask for a given image. 

This mask defines the pixels among the reference and impairment images that 

will be used to calculate EPSNR. Reference and impairment images are high pass 

filtered via SOBEL gradient operator to obtain their horizontal and vertical gradient 

images. These images are used to compute blockiness and blurriness. The next 

equations depict how to compute this Video Quality Metric (VQM). 

𝑀𝑀𝑉𝑉𝑀𝑀 =  𝑅𝑅𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅 + 𝑤𝑤1 × 𝑅𝑅𝑏𝑏𝑏𝑏𝑀𝑀𝑏𝑏𝑏𝑏𝑀𝑀𝑀𝑀𝑏𝑏 + 𝑤𝑤2 × 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (2-6) 

𝑅𝑅𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑃𝑃2

𝑀𝑀𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒
� 

(2-7) 

𝑅𝑅𝑏𝑏𝑏𝑏𝑀𝑀𝑏𝑏𝑏𝑏𝑀𝑀𝑀𝑀𝑏𝑏 =  
1

𝑛𝑛𝑏𝑏𝑏𝑏𝑀𝑀𝑏𝑏𝑏𝑏𝑀𝑀𝑀𝑀𝑏𝑏
� 𝐻𝐻𝑀𝑀𝑝𝑝(𝑘𝑘) − 𝐻𝐻𝑀𝑀𝑠𝑠(𝑘𝑘) 𝑖𝑖𝑟𝑟 �𝐻𝐻𝑀𝑀𝑝𝑝(𝑘𝑘) > 𝐻𝐻𝑀𝑀𝑠𝑠(𝑘𝑘)�

𝑏𝑏

 (2-8) 
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𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� 𝐻𝐻𝑀𝑀𝑠𝑠(𝑘𝑘) − 𝐻𝐻𝑀𝑀𝑝𝑝(𝑘𝑘) 𝑖𝑖𝑟𝑟 �𝐻𝐻𝑀𝑀𝑠𝑠(𝑘𝑘) > 𝐻𝐻𝑀𝑀𝑝𝑝(𝑘𝑘)�

𝑏𝑏

 (2-9) 

𝐻𝐻𝑀𝑀(𝑡𝑡, 𝑖𝑖, 𝑗𝑗) =  �𝑅𝑅(𝑡𝑡, 𝑖𝑖, 𝑗𝑗),
𝑅𝑅(𝑡𝑡, 𝑖𝑖, 𝑗𝑗) ≥ 𝑟𝑟𝑚𝑚𝑀𝑀𝑀𝑀       𝑎𝑎𝑛𝑛𝑎𝑎 

         𝑚𝑚
𝜋𝜋
2

− ∆𝜃𝜃 < 𝜃𝜃(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) < 𝑚𝑚
𝜋𝜋
2

+ ∆𝜃𝜃

0,                                               𝑙𝑙𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑟𝑟 

 

(2-10) 

𝑅𝑅(𝑡𝑡, 𝑖𝑖, 𝑗𝑗) = �𝐻𝐻(𝑡𝑡, 𝑖𝑖, 𝑗𝑗)2 + 𝑀𝑀(𝑡𝑡, 𝑖𝑖, 𝑗𝑗)2 (2-11) 

𝜃𝜃(𝑡𝑡, 𝑖𝑖, 𝑗𝑗) = 𝑡𝑡𝑎𝑎𝑛𝑛−1 �
𝑀𝑀(𝑡𝑡, 𝑖𝑖, 𝑗𝑗)
𝐻𝐻(𝑡𝑡, 𝑖𝑖, 𝑗𝑗)� 

(2-12) 

where Fblocking and Fblur are the amount of blockiness and blurriness. The constant 

numbers in equation 2-6 (w1 and w2) are set to -1/14 (Lee et al., 2011). In equation 

2-7, P and MSE edge represent maximum value in image (255 for pixel depth of 8-

bits) and mean square error for pixels identified through the mask (gradient image 

after thresholding). Horizontal and vertical component for reference and 

impairment images are HVs and HVp respectively. nblocking and nblur are number of 

pixels that satisfy the conditions in equations 2-8 and 2-9 respectively. In equation 

2-10, rmin and ∆θ are two thresholds that are set to 110 and 0.225 respectively 

(Lee et al., 2011). H, V, R and θ are horizontal, vertical gradient images, gradient 

magnitude and gradient direction (angle) respectively. 

o Based on the vision model used: these types of metrics simulate certain models 

that replicate the stimulus of HVS perception in order to estimate the video quality 

close to actual perception. These models use datasets in training phase in order 

to define model parameters values. De Silva et al. proposed Stereoscopic 

Structural Distortion (StSD) that uses suppression theory to quantify the visual 

quality for mixed spatial-resolution stereoscopic videos (De Silva et al., 2013). 

This metric measures both structural distortion and asymmetric blur. The former 

measures amount of changing objects’ structures while the latter is quantified by 

the amount of image sharpness degradation. Structural distortion is measured by 

decimating the frame by a factor of two in horizontal and vertical directions. 

Frames from right and left views are partitioned into a number of blocks, where 

block size is 13×13 pixels. Structural difference is then computed using reference 

and impairments frames. The resulted structural distortions (ds) from right and left 

views (dR and dL respectively) are summed to get final structural distortion. On the 
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other hand, Blurriness artefact is computed based on the magnitude difference 

for the reference and impairment frames’ edges that are previously extracted by 

SOBEL filter. The asymmetric blur (B) is the minimum blur among right and left 

views (bR and bL respectively) according to suppression theory (De Silva et al., 

2013). The following equations are used to compute StSD metric. 
 

𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆 =  
0.7343

1 + 𝑟𝑟�−15.778.(𝑒𝑒𝑠𝑠−0.14)� − 0.073 + 0.0085. 𝐵𝐵
 

(2-13) 

𝑎𝑎𝑠𝑠 = 𝑎𝑎𝐿𝐿 + 𝑎𝑎𝑅𝑅 (2-14) 

𝑎𝑎 = 1 − (0.5. 𝑎𝑎𝑚𝑚 + 1.5. 𝑎𝑎ℎ) (2-15) 

𝐵𝐵 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑏𝑏𝐿𝐿 , 𝑏𝑏𝑅𝑅) (2-16) 

𝐵𝐵𝑀𝑀,𝑗𝑗 = �
∆𝑟𝑟𝑀𝑀,𝑗𝑗 ∆𝑟𝑟𝑀𝑀,𝑗𝑗 >

𝜎𝜎𝑆𝑆𝑜𝑜

2
0 ∆𝑟𝑟𝑀𝑀,𝑗𝑗 ≤  

𝜎𝜎𝑆𝑆𝑜𝑜

2

 

(2-17) 

∆𝑟𝑟𝑀𝑀,𝑗𝑗 =  �
𝑆𝑆𝑀𝑀(𝑖𝑖, 𝑗𝑗) − 𝑆𝑆𝑏𝑏(𝑖𝑖, 𝑗𝑗) 𝑆𝑆𝑀𝑀(𝑖𝑖, 𝑗𝑗) > 𝑆𝑆0���

0 𝑆𝑆𝑀𝑀(𝑖𝑖, 𝑗𝑗) ≤  𝑆𝑆0��� 
(2-18) 

where dm and dh are the mean and highest structural distortion, while 𝜎𝜎So and ∆ei,j 

are standard deviation for edge magnitude of un-coded frame and edge 

magnitude difference for reference and coded frames. 𝑆𝑆𝑙𝑙���, S0 and Sc are the 

average of edge magnitude, edge magnitude for reference and coded frames 

respectively. 

 

2.4 Chapter Summary 
This chapter described briefly H.264/AVC, where the prediction component is 

highlighted. Parts of the coding tools that are supported by prediction are multi-

reference prediction, coding modes, sub-pixel ME and MC. These coding tools are 

studied during the research investigations. Multi-reference prediction supports inter-

picture prediction from multiple frames. Variable block size provides multiple block 

partitions that suit blocks with different complexity (homogenous and detail contents). 
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Sub-pixel ME and MC provide higher degree of accuracy than integer-pixel samples 

by interpolating the reference frame at a level of half and quarter-pixel. The chapter 

presented a multi-view video coding extension (H.264/MVC) that provides backward 

compatibility with legacy decoders, view scalability and random access at the 

expense of high computational complexity and memory requirements. This extension 

puts constraints on reference frame selection and reference frame ordering. Since 

H.264/AVC supports greater flexibility on both RFS and RFO, it is used during the 

investigations reported in this thesis. The Chapter also outlined video quality metrics, 

and highlighted objective video quality metrics that are used during the research 

investigations.  

The next chapter provides taxonomy for low bitrate video codecs. Symmetric 

multi-view video coding and asymmetric spatial-resolution multi-view video coding 

are then reviewed, where the challenges that are addressed in this thesis are 

summarised.  
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CHAPTER 3. REVIEW OF H.264 BASED MULTI-VIEW 
VIDEO CODING 

 

This chapter reviews coding approaches that are used for multi-view video coding 

based on H.264 at low bitrates. It includes resolution-based, depth-based, model-

based and hybrid-based coding approaches. Prediction architectures and block 

matching efficiency are then discussed for symmetric MVC. After that, prediction 

architectures and visual enhancement algorithms are reviewed for mixed spatial-

resolution MVC. A summary of the review is then outlined, followed by a summary of 

the investigations that are addressed in this thesis. 

3.1 Low bitrate video codecs 
This section reviews different coding approaches that are conducted when coding 

multi-view video at low bitrates. The coding approaches are categorised based on 

the key criteria that identifies each coding solution. Part of the coding approaches 

relies on resolution-based, where they either use similar setting or different coding 

parameters settings. Another category relies on integrating depth-maps with texture 

views in order to compress subset of views. Multi-view video could be coded using 

model-based, where either object or mesh-based coding is applied. The last 

approach integrates different combinations (hybrid-based) from the previous coding 

approaches. Figure 3-1 presents the taxonomy for coding multi-view video at low 

bitrates, where these coding approaches will be briefly outlined in the following 

subsections. 

3.1.1 Resolution-based approach 
The resolution-based coding approach is classified into either symmetric or 

asymmetric.  The symmetric coding approach uses similar settings for all views that 

include spatial-resolution, temporal-resolution and quality, while asymmetric-based 

coding deploys different coding parameters settings among neighbouring views.  

3.1.1.1 Symmetric Coding 

The quantisation parameter is a straightforward solution to reduce bitrate, where the 

codec increases the quantisation parameter in order to meet the target bitrate. This 

entails transforming the residual coefficients coarsely. Symmetric coding is preferred 

when the video quality for the dependent view is in range of 28 dB and 32 dB while 

mixed spatial-resolution is preferred when the corresponding video quality for the 
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dependent view is below 28 dB (Saygili et al., 2010). When dependent view is coded 

below the threshold (32 dB), symmetric coding obtains better quality than asymmetric 

quality coding approach for stereoscopic video coding (Saygili et al., 2011). 

Symmetric coding and video plus depth are preferable coding solutions than 

simulcast video coding and asymmetric spatial-resolution9 for mobile 3D television 

(Tech et al., 2009b; Strohmeier & Tech, 2010). Blocking artefacts is the main 

challenge for this coding approach, where it appears as large discontinuity distortions 

among nearby blocks. Truncating a set of views and coding remaining views with 

their depth maps provides better coding solution than symmetric coding at low 

bitrates, where accurate depth maps are crucial for the quality of synthesised views 

(Savas et al., 2011, 2012). Symmetric coding is one of the potential solutions for low 

bitrates, where the codec does not need additional amendments compared to other 

coding approaches. It requires neither depth map nor modelling the scene as in both 

depth-based and model-based coding approaches. 

 

Figure 3-1 Coding approaches for low bitrate applications 

9 Asymmetric spatial-resolution has been applied using simulcast video coding 
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The efficiency of symmetric coding approach is linked to the amount of spatial 

correlations among neighbouring views. H.264/AVC exploits these redundancies to 

provide superior coding gain than simulcast video coding at low bitrates (Merkle et 

al., 2007a). Since multi-view video coding requires higher computational complexity 

than simulcast video coding, it should not be used when the amount of spatial 

redundancies among neighbouring views are insignificant. Although several studies 

looked into block matching efficiency, they do not define clear criterion for the best 

usage of multi-view video coding (Merkle et al., 2007a; Bouyagoub et al., 2010). 

Prediction architecture is the core part of multi-view video coding. Although several 

prediction architectures have been proposed for symmetric coding, they provide 

neither sufficient justification behind their prediction architectures nor propose 

practical solution that fits low bitrate applications (Zhang et al., 2008; Pourazad et 

al., 2009a; Seungwook & Yang, 2011).  

3.1.1.2 Asymmetric Coding 

Asymmetric coding is the second type for resolution-based coding approach. It 

reduces the amount of data prior to compression in order to provide potential coding 

solution to symmetric coding approach. 

3.1.1.2.1 Asymmetric spatial-resolution 

Asymmetric spatial-resolution video coding relies on resolution reduction which 

entails coding fewer amounts of visual data with respect to symmetric coding. This 

leads to significantly improving coding efficiency at low bitrate. This approach has 

been used in monoscopic video coding, where lower spatial-resolution of the input 

frames are coded and transmitted. In the decoder side, higher spatial-resolution 

frames are generated using frame enlargement techniques (Uslubas et al., 2010; 

Tech & Babu, 2011). This concept has been extended to stereoscopic video coding, 

where frames spatial-resolution, that belong to certain view are reduced, while 

frames that belong to other view are maintained in their full spatial-resolution. This 

technique is called mixed spatial-resolution stereoscopic video coding which relies 

on suppression theory. This theory states that the perceptual quality of stereoscopic 

video would be close to the higher quality view where 30% to 35% of bitrate is 

advocated to the view that has low spatial-resolution frames (Brust et al., 2009). 

Asymmetric spatial-resolution compromises blocking with blurring artefacts in order 

to achieve better rate distortion than symmetric video coding (Fehn et al., 2007). The 

perceived quality for mixed spatial-resolution stereoscopic video coding has been 

reported to be close to quality of the higher spatial-resolution view (Aflaki et al., 2010, 
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2013a). At low bitrates, mixed spatial-resolution coding approach reduces blocking 

artefacts in addition to reducing encoding and decoding complexities compared to 

symmetric coding (Brust et al., 2009; Aflaki et al., 2013a).  
Few studies looked into investigating prediction architecture for this coding 

approach. They either inherited prediction architecture from symmetric coding or 

proposed prediction architectures in the context of stereoscopic video coding (Chen 

et al., 2008a; Fehn et al., 2007). Mixed spatial-resolution stereoscopic video by 

simulcast video coding is found to provide inferior quality compared to symmetric 

and video plus depth. On the other hand, mixed spatial-resolution could be applied 

in free-viewpoint TV (FTV). Therefore, few studies addressed enhancing visual 

quality for interpolated frames where they do not offer an efficient visual quality 

solution that fits low bitrate applications (Tech et al., 2009a; Najafi, 2012). 

3.1.1.2.2 Asymmetric temporal-resolution 

Asymmetric temporal-resolution reduces number of frames prior to coding through 

dropping these frames (temporal filtering), after the decoding process; the skipped 

frames are interpolated through the neighbouring decoded frames (Aksay et al., 

2006). It can be efficiently implemented by a lifting scheme (pyramid decomposition) 

(Ozbek & Murat Tekalp, 2006). The input sequence is split into two streams, where 

one sequence is used to predict the other (prediction phase). After that, the residual 

signal is obtained via subtracting the second stream from the predicted one and an 

update is applied to increase the smoothness of the next prediction step. This 

approach is implemented through Motion-Compensation Temporal Filtering (MCTF) 

for monoscopic video coding (Schwarz et al., 2006). In multi-view video coding, there 

is view dimension, therefore, there are two decomposition directions that are 

conducted through MCTF and Disparity-Compensated View Filtering (DCVF) (Yang 

et al., 2006; Garbas et al., 2011). 
The asymmetric temporal-resolution approach causes flickering artefacts (jerky 

appearance in terms of sharpness and quality) for sequences that contain fast 

objects’ motion (Stelmach et al., 2000; Yea & Vetro, 2009). This negatively affects 

the visual perception for this coding approach at the receiver side.  

3.1.1.2.3 Asymmetric quality 

Asymmetric quality applies different quantisation step sizes among neighbouring 

views (Shafique et al., 2010). Different quality in stereoscopic video coding yields to 

average quality perception when subjectively assessed (Palaniappan & Nikil, 2012; 

Aflaki et al., 2013a). This concept has been extended to multi-view video, where 
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even views are coded in high quality while odd views are compressed in low quality 

in order to provide different qualities for the neighbouring views (Shafique et al., 

2010). This approach allows great flexibility to achieve bitrate adaptation without 

demanding major amendments on the video codec (Gurler & Tekalp, 2013). This is 

achievable through applying different levels of quantisation parameters to reach 

target bitrate. It has been reported that degrading lower quality view by less than this 

threshold (31 dB and 33 dB for parallax barrier and projection displays respectively) 

increase blockiness artefacts, where perceived quality will be closer to lower quality 

view (Saygili et al., 2011). 
Generally, asymmetric quality provides great flexibility among other asymmetric 

approaches. The blockiness artefacts would be an inevitable obstacle when coding 

multi-view videos at low bitrates (Savas et al., 2012). Symmetric coding and 

asymmetric spatial-resolution provide better perceived quality than asymmetric 

quality at low bitrates (Saygili et al., 2010; Aflaki et al., 2013a). 

3.1.1.2.4 Combined asymmetric 

The combined asymmetric coding approach integrates pervious asymmetric coding 

approaches for stereoscopic video coding. Several combinations have been 

generated using asymmetric settings for spatial-resolution, temporal-resolution and 

quality. Seven and six combinations have been proposed in Ozbek et al. and 

Eichhorn & Ni investigations (Ozbek & Tekalp, 2008; Eichhorn & Ni, 2009). The first 

study confirmed the acceptable visual quality when asymmetric spatial-resolution 

and quality are deployed while the second study concluded that the visual 

degradation using different asymmetric coding is more dependent on sequence, e.g. 

low motion sequences prefer asymmetric quality and asymmetric spatial-resolution 

coding. Asymmetric spatial-resolution is combined with asymmetric quality such that 

low spatial-resolution frames use lower QP than full spatial-resolution frames (Brust 

et al., 2010; Aflaki et al., 2013a). 

3.1.2 Depth-based approach 
In this category, the video is attached with its corresponding depth map, where it 

reflects the objects’ distance from the camera. This additional information is used 

when novel views are constructed. Through depth maps, subsets of texture-views 

are sent instead of transmitting all texture videos. The size of depth map (grey-scale) 

is much less than texture video10, therefore the total size of raw data decreases 

10 Depth’s optimal Bitrate is 10 % to 30% for Video Plus Depth coding approach (Tech et al., 2009b) 
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significantly when compared to multi-view video with texture coding format. Video 

plus depth, layered depth video and multi-view plus depth provide a trade-off 

between synthesised view’s quality and total bitrate. 

3.1.2.1 Video plus depth 

Video plus depth is the simplest subcategory in depth-based approach. In this coding 

approach, single texture video is accompanied with its depth map. This coding 

approach has proved its superior coding efficiency when an assessment is carried 

out using H.264/AVC which compresses texture and depth map separately (Merkle 

et al., 2009b). It saves up to 50% and entails higher coding efficiency than simulcast 

video coding at low bitrate, where acceptable quality level is dependent on depth 

map quality and scene content. For a smooth depth map with low structure 

complexity, Video plus depth has shown its superior subjective score when it is 

compared to simulcast video coding and mixed spatial-resolution stereoscopic video 

coding (Tech et al., 2009b; Strohmeier & Tech, 2010). The quality of rendered view 

is affected by the quality of the estimated depth map and the amount of 

disocclusion11, where inaccurate depth map and large amounts of disocclusion 

cause annoying artefacts for the rendered view at the receiver side (Kauff et al., 

2007; Oh et al., 2009). 

3.1.2.2 Layered depth video 

Layered Depth Video (LDV) tackles disocclusion that arises in video plus depth 

through using extra information (occlusion layers). In this coding approach, single 

texture is associated with depth map in addition to occlusion texture and occlusion 

depth layers. The last two layers are used during rendering; hole filling (Tian et al., 

2009). The occlusion (residual) layers are obtained by warping the texture layers and 

subtracting it to determine the occluded areas (Barsi et al., 2008). This coding 

approach has higher computational complexity than Video Plus Depth since the 

residual layers are generated at the sender side (Daribo & Saito, 2011). 

 

11 It reflects areas that does not exist in the reference frame while occlusion reflects areas that exist 
only in the reference frame (Oh et al., 2009) 
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3.1.2.3 Multi-view plus depth 

Multi-view plus depth (MVD) relies on attaching more texture views with their depth 

maps in order to facilitate better rendering for intermediate views. This coding 

approach does not use residual layer (occlusion layers) as in the layered depth video. 

Depth maps require on average 40% to 60% of total bitrate (Bosc et al., 2011). Multi-

view plus depth usually select the outmost views; left and right in addition to central 

view with their corresponding depth maps in order to support free view in wide range 

navigation (Jeon et al., 2009; Liu et al., 2011; Savas et al., 2012). Therefore, MVD is 

more suitable to autostereoscopic displays than video plus depth and layered depth 

video. Both texture and depth maps are coded together such that each texture frame 

is followed by its depth map in the same access unit (Hannuksela et al., 2013).  

3.1.3 Model-based coding approach 
Model-based coding covers object-based and mesh-based coding approaches. They 

are both content-based coding, where an analysis is required prior to compression. 

3.1.3.1 Object-based coding 

The object-based coding approach processes the frame prior to compression 

through extracting the objects from the background. The background image is coded 

separately alongside extracted foreground objects, where the binary mask12 is sent 

as side information. This is different from the conventional compression (hybrid video 

coding) which divides the frame into blocks, where each block is processed 

separately from its neighbours. At low bitrate, object-based coding approach does 

not suffer from blocking artefacts (Belloulata & Zhu, 2007). Background objects that 

exist in successive frames are represented by sprite (large background image 

obtained through camera motion parameters). Foreground objects are segmented 

by binary mask. At the decoder side, the binary mask is used to composite 

foreground objects with sprite in order to reconstruct views (Krutz et al., 2007; Wei, 

2007). Segmentation is applied for intra-frame and inter-frame in order to provide 

efficient solution for object segmentation using H.264/AVC (Narasak et al., 2008). 

Background sprite could be single or multiple. Single sprite combines background 

objects that exist in successive frames into a single frame whilst multiple sprite 

generates set of partitions for these objects. This improves coding efficiency 

especially for sequences that are captured by cameras with large pans (Krutz, 2010). 

Object-based coding is generally efficient solution when coding sequences that 

12 It is used to enable foreground objects composition with sprite sequence (Krutz et al., 2007). 
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contain background objects more than foreground objects, where the encoder 

transmits the coded sprite once in addition to transmitting the coded foreground 

objects for every frame. 

3.1.3.2 Mesh-based coding 

The mesh-based coding approach offers great support for scene navigation as in 

free viewpoint video. Objects are represented using a mesh model with 

corresponding texture. In each view, objects are segmented, where 3D objects are 

presented as voxel model. Texture is extracted from an object’s surface and 

presented as 3D mesh. Dynamic mesh is deployed in multi-view video, where 

triangles have connectivity over time (Smolic et al., 2007). In reconstruction, voxels 

are projected while texture is weighted from closer cameras (Smolić & Kauff, 2005; 

Smolic et al., 2006). It needs accurate segmentation for the object of interest to be 

reconstructed in high quality (Smolić & Kauff, 2005). H.264/AVC is used to encode 

texture information, while a 3D model is coded and sent to the receiver, where 

optimal source for each patch is selected and mapped to 3D object model (Chiang 

et al., 2012). This approach is suitable for a controlled environment; e.g. moving 

person in studio that allows accurate segmentation for 3D object using sparse 

camera setup (Smolić & Kauff, 2005).  

3.1.4 Hybrid-based approach 
Several studies have investigated the possibility of deploying depth-based with 

asymmetric coding approach in order to provide bitrate adaptation (Savas et al., 

2012; Gurler & Tekalp, 2013). For coding five views video, asymmetric quality, mixed 

spatial-resolution, combined asymmetric and multi-view plus depth coding approach 

are able to reduce bitrate with respect to simulcast video coding by 19.3% to 60%. 

The graceful bitrate degradation starts by deploying asymmetric quality, asymmetric 

spatial-resolution then combined asymmetric quality with spatial-resolution. For more 

bitrate reduction, multi-view plus depth is applied using three views (with their 

associate depth maps) then two views. Another study has focused on integrating 

depth-based coding approach with asymmetric chrominance, where multi-view plus 

depth is applied such that first view contains chrominance information (Shao et al., 

2012). At the decoder side, chrominance is reconstructed for the remaining coded 

views while the intermediate views are synthesised. 

The mesh-based coding approach is used to efficiently compress multi-view plus 

depth (Kim et al., 2007; Merkle et al., 2009a; Keimel et al., 2010). For depth map, 
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the segmentation using triangles are applied to separate areas that have the same 

intensity value (mesh triangulation). In this way, the coded depth map would have 

higher quality than hybrid video codec since the edges are better preserved. This 

entails improving quality of the synthesised views at the receiver side. 

Asymmetric-based coding approach has been integrated with object-based 

through identifying objects’ edges via binary mask (Pinto & Assuncao, 2012; L. & P., 

2013). The objective is to code these areas by higher quality than the remaining 

regions (non-uniform asymmetric quality) that results in improving subjective score 

than uniform asymmetric quality. 

Although the hybrid-based coding approach tends to improve coding performance 

further than previous coding approaches, it still inherits the challenges from these 

coding approaches. E.g. accurate depth map is still needed when depth-based 

coding approach is integrated with other coding approaches. 

 

Since symmetric coding approach has proved its efficiency when multi-view video is 

coded at low bitrates, it has been used within the investigation reported in this thesis. 

On the other hand, asymmetric spatial-resolution multi-view video coding provides 

less encoding, decoding computational complexities and similar subjective quality 

assessment compared to symmetric coding. Therefore this coding approach is also 

considered in the investigation reported in this thesis. 

The core component of MVC is prediction architecture that distinguishes multi-

view video coding from simulcast video coding. It has gained focus from a lot of 

research in the area of MVC. Therefore, the review will mainly target prediction 

architectures. The next two sections will focus on symmetric multi-view video coding 

and mixed spatial-resolution multi-view video coding. In the context of symmetric 

multi-view video coding, block matching efficiency and prediction architectures are 

reviewed, while prediction architectures and visual enhancement algorithms are 

reviewed for mixed spatial-resolution multi-view video coding. 

3.2 Symmetric multi-view video coding 
This section reviews block matching efficiency, prediction architectures in terms of 

Reference Frame Selection (RFS) and Reference Frame Ordering (RFO) in addition 

to coding structures. 
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3.2.1 Block matching efficiency 
The multi-view video coding standard deploys similar inter-picture prediction for 

motion and disparity estimation. In monoscopic video coding, successive frames are 

captured via the same view-point. Therefore temporal prediction is efficient, where 

the variation among predicted and actual block is caused through objects’ motion 

and occluded areas. When similar prediction applies to disparity estimation, the block 

matching becomes less efficient. The difference in cameras’ view angle would affect 

common spatial information among these frames. The same object would have 

different spatial information when it is captured via different view-points; this is due 

to the light illumination, shadow and occlusion.  Therefore, it is rationally true that 

coding efficiency will be marginal when coding sparse located cameras because the 

amount of common spatial correlation among these cameras is low. In this scenario, 

simulcast video coding would be preferred than MVC.  

Limited work has been conducted to reveal the best coding choice (simulcast 

video coding or MVC) for the given MVV.  Impact of camera separation has been 

used to provide multi-view videos with either different inter-camera angles or inter-

camera distances, where the target is to define the best usage for multi-view video 

coding. Inter-camera distance refers to the distance among two cameras lenses 

centres, while inter-camera angle is the angle between two cameras’ optical lines. 

Inter-camera distance and inter-camera angle are used to represent camera 

separation for linear cameras and convergent cameras setups respectively. 

Fecker and Kaup investigated the effect of camera separation on multi-view video 

coding (Fecker & Kaup, 2005). They used Xmas MVV (101 linear arranged cameras 

with camera separation of 3 mm), where videos with different inter-camera distances, 

starting from 3 mm to 90 mm are generated. At all inter-camera distances, MVC 

provides higher coding efficiency than simulcast video coding. They highlighted that 

coding efficiency of MVC degrades when camera’ separation increases. Merkle et 

al. explored the effect of camera separation in terms of inter-camera distance. They 

used Rena multi-view video (16 linear arranged cameras with camera separation of 

5 cm), where quantisation parameter is varied (Merkle et al., 2007a). They concluded 

that multi-view video coding becomes efficient when compressing high density 

cameras at low bitrates. They highlighted that the bitrate per camera saturated at 

different points depends on quality, where coding multi-view video using low quality 

settings lead to higher coding gain than coding it at high quality settings. They 

reported the coding gain of multi-view video coding becomes efficient when both 

camera separation and the coded videos’ quality are decreased. Abdoli et al. studied 
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the effect of the incremental distance between cameras on inter-view prediction 

(Abdoli et al., 2010). They measured the amount of inter-view prediction using five 

multi-view videos. The amount of inter-view prediction is 4.4% using the 

neighbouring cameras, while the amounts of inter-view prediction are 2.6% and 

0.53% when inter-camera distance is double twice. They revealed the inverse 

relationship among inter-camera distance and coding gain. Bouyagoub et al. 

explored the range of inter-camera angles for best usage of stereoscopic video 

coding for convergent camera setup (Bouyagoub et al., 2010). They reported that 

stereoscopic video codec should be used rather than simulcast video coding when 

inter-camera angle among stereoscopic video is up to 20°. 

The studies that addressed block matching efficiency either highlighted the 

relationship among camera separation and coding efficiency of MVC or providing 

particular threshold for the usage of stereoscopic video coding. Still the criterion for 

best usage of multi-view video coding is not yet defined. 

The next two sections review prediction architectures in terms of reference frame 

selection and reference frame ordering. 

3.2.2 Prediction architectures taxonomy 
The majority of prediction architectures focus on reference frame selection. Figure 

3-2 shows the taxonomy for deriving prediction architectures. From this Figure, 

prediction architectures are either derived by block match statistical analysis or 

proposed heuristically. The first category could be classified into two groups where 

first group conducts statistical analysis using only frames that belong to time and 

view directions, while the second group uses frames from all directions. The second 

category proposes prediction architectures without relying on block match statistics. 

It would be subdivided into three groups, where the first group proposes prediction 

architectures that address improving random access. The second group deploys 

view interpolation prediction that interpolates a subset of frames in order to be used 

during inter-picture prediction. The third group proposes either single or multiple 

schemes, where the former proposes prediction architecture, while the latter 

proposes a set of architectures and evaluates their coding performance.  
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Figure 3-2 Prediction architectures taxonomy for symmetric multi-view video coding 
 

3.2.2.1 Analysis-based study 

A set of prediction architectures are proposed in the literature based on the analysis 

of block matching that considers either temporal and spatial reference frames or the 

entire frames from different directions; temporal, spatial and spatiotemporal 

reference frames. The former is named as spatial-temporal correlation analysis while 

the latter is known as multi-reference frame analysis. 

3.2.2.1.1 Spatial-temporal correlation analysis 

There are two sub-categories that deploy spatial-temporal analysis in order to 

produce either single or multiple modes per sequence. Chung et al. investigated 

prediction architecture for 2-D camera array (5×9) to derive single mode per 

sequence (Chung et al., 2008a, 2008b). They analysed block matching for B-frame 

using backward, forward temporal frames (TB and TF), backward, forward spatial 

frames that belong to neighbouring horizontal and vertical cameras (HB, HF, VB and 

VF respectively) as shown in Figure 3-3-a. They reported that temporal prediction 

provides highest block matching while spatial prediction using vertical cameras gives 

lowest block matching contribution. They extended the Hierarchical B-Picture (HBP) 

architecture to cover 2-D camera array. 

Other studies focused on different modes per sequence (Zhang et al., 2006, 2009; 

Lu et al., 2010; Zhang & Cai, 2011). They used typical prediction architecture for 

H.264/MVC, where the middle view acts as base view. The main idea behind these 

prediction architectures is to analyse block matching during coding temporal frames 
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(T frames) that belong to base view (view 2) in addition to neighbouring frames (S 

frames) that follow anchor frames as shown in Figure 3-3-b. The amounts of temporal 

and spatial predictions are computed in order to select suitable mode for current 

GoGOP. Zhang et al. proposed in their first study four modes then reduced it to three 

modes in later studies for GOP which equals twelve (Zhang et al., 2006, 2009, 

2011b). Lu et al. deployed the same spatial-temporal analysis during switching 

modes, where GOP equals eight (Lu et al., 2010). 

 
(a) 

 
(b) 

Figure 3-3 Spatial-temporal correlation analysis using HBP a) 2-D camera array and b) 1-D 
camera array (Chung et al., 2008b; Zhang & Cai, 2011) 
 

3.2.2.1.2 Multi-reference frame analysis 

H.264/AVC supports great flexibility for inter-picture prediction through multi-

reference frame property. In the context of multi-view video coding, there are three 

types of frames; temporal, spatial and spatiotemporal frames. Several studies 

investigated block matching analysis using these frames (Merkle et al., 2006, 2007b, 

2007a; Kaup & Fecker, 2006; Yang & He, 2007). 
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The first temporal order statistical analysis has been applied to reveal which 

frames provide significant block matching (Merkle et al., 2006, 2007b, 2007a; Yang 

& He, 2007). Merkle et al. analysed block matching among five multi-view videos 

using one temporal, one spatial and two spatiotemporal frames as shown in Figure 

3-4-a (Merkle et al., 2006, 2007a). In their study, intra prediction is disabled while 

allowing only single coding mode; 16 × 16, with search range adjusted to 32 by 32. 

The average block matching for temporal, spatial, right spatiotemporal and left 

spatiotemporal frames are 80%, 9%, 6% and 5% respectively. They tested coding 

performance when omitting spatiotemporal frames, where average delta Lagrange 

function is increased by 2.7%. They proposed two categories of prediction 

architectures that omit spatiotemporal frames. All architectures are based on HBP 

architecture. The first category deploys inter-view prediction at key frames while the 

second category uses inter-view prediction at both, key and non-key frames. 

According to their results, the first category provides coding gain on average 1.6 dB 

with respect to simulcast video coding while the second category gets additional 0.2 

dB gain when inter-view prediction is applied to all frames (Merkle et al., 2007a). 

Yang and He investigated Diagonal Inter-view Prediction (DIP) that provides trade-

off among coding efficiency and low delay (Yang & He, 2007). They analysed the 

amount of inter-view prediction that are exploited through (DIP) and Normal Inter-

view Prediction13 (NIP). The amount of inter-view prediction that came through DIP 

is in the range 52% to 83 % from the corresponding amount using NIP. They stated 

that DIP should be used in order to reduce the coding delay.  

Higher temporal statistical analysis order has been studied by Kaup and Fecker 

as depicted in Figure 3-4-b (Kaup & Fecker, 2006). They deployed block matching 

analysis for nine multi-view videos, where 19 reference frames; three temporal, four 

spatial frames and twelve reference frames are used. They used single coding mode 

(16 × 16) with limited search area (32 × 32). According to their results, the amount 

of block matching through spatial and, spatiotemporal reference frames are on 

average (20% to 30%). They reported a significant amount of block matching when 

deploying all twelve spatiotemporal frames, however, the role of each frame is small 

compared to temporal and spatial frames. As a result, they suggested omitting 

spatiotemporal reference frames, where their prediction architecture involves only 

three temporal and all spatial frames. They concluded that efficient MVC should use 

neighbouring three temporal and all spatial frames, where coding gain would be 

degraded by on average 0.1 dB to 0.2 dB with respect to the same codec that deploys 

13 It uses nearest spatial while DIP uses nearest spatiotemporal reference frame 
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additional spatiotemporal reference frames (Kaup & Fecker, 2006). They also stated 

that nearest spatiotemporal reference frames should be selected when the codec 

allows prediction from this direction. 

 
(a) 

 
(b) 

Figure 3-4 Block matching analysis using a) Single temporal order and b) Higher temporal 
order (Merkle et al., 2006; Kaup & Fecker, 2006) 

 

3.2.2.2 Heuristic-based study 

The prediction architecture does not necessarily need to be based on block matching 

analysis as in the previous subsection. Other studies focused on enhancing coding 

efficiency for H.264/AVC based multi-view video coding using several approaches 

such as random access, view interpolation prediction and single or multiple schemes. 

3.2.2.2.1 Random access 

Several studies have proposed prediction architectures that aim to reduce random 

access (Kimata et al., 2004a; Yebin et al., 2006; Liu et al., 2007; Chen et al., 2008a; 

Lv, 2013). These studies either deployed stitched reference frame or non-stitched 

reference frame. The former uses single reference frame to predict frames that 

belong to the neighbouring views. The latter either uses HBP prediction architecture 

through modifying GOP structure or uses certain prediction architectures that 

enhance random access. 

Stitched reference frame is an approach that provides efficient random access 

through relying on higher spatial-resolution monoscopic video (panorama-based)(Li 

& Ding, 2008; Pourazad et al., 2009b).  This video acts as base view, where each 

view is predicted as an enhancement layer as shown in Figure 3-5. This prediction 

architecture requires less frame dependency than HBP prediction architecture. 
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Figure 3-5 Panorama-based prediction architecture (Li & Ding, 2008) 

In the context of non-stitched reference frame, several studies have focused on 

typical prediction architecture, e.g. HBP to improve random access (Park et al., 2008; 

Lv, 2013; Hussein et al., 2013; Yoon & Kim, 2012). Typical prediction architecture 

for H.264/MVC uses the first view; V0 as base view. Random access is improved 

when the base view becomes the middle view as shown in Figure 3-6 (Park et al., 

2008; Lv, 2013). Middle view is identified through global disparity that has lowest 

disparity among all views (Hussein et al., 2013). Internal configuration for GOP is 

modified to improve random access through dividing GOP into smaller groups (Yoon 

& Kim, 2012). Kimata et al. proposed prediction architecture based on GOP that 

contains base-GOP and inter-GOP (Kimata et al., 2004a, 2004b). Frames that 

belong to base-GOP are predicted using temporal frames while frames that belong 

to inter-GOP are predicted from frames that belong to the same and different GOP. 

They proposed Single-Reference and Multiple-Reference prediction architecture (SR 

and MR) as shown in Figure 3-7. The former omits frames in inter-GOP to be 

predicted from frames that belong to other inter-GOPs while the latter supports this 

prediction. Guo et al. proposed Global Motion Estimation (GME) that acts as side 

information when view switching takes place (Guo et al., 2005). Reference frame for 

switched view is obtained by warping neighbour coded frame using GME.  Kalva and 

Furht have used IPPP coding structure with different view arrangement that is 

inherited from hypercube model (Kalva & Furht, 2005). Eight corners are used to 

arrange eight-view video. It supports less number of view dependencies (three) than 

the sequential view prediction structure (seven).  

50 
 



 

 
Figure 3-6 HBP prediction architecture using middle view as base view (Lv, 2013) 

 

 
(a) 

 
(b) 

Figure 3-7 GoGOP Prediction architecture, where a) SR and b) MR (Kimata et al., 2004a) 

 

3.2.2.2.2 View interpolation prediction 

Reference frame is a crucial part in inter-view prediction, where the reference will be 

used during disparity estimation and disparity compensation. View interpolation 

prediction provides another source for inter-picture prediction. There are two 

categories, where the first is frame skipping approach that omits coding the frame at 

the encoder side itself, where the synthesised frame will represent the frame at the 

receiver side. The second is non-frame skipping approach, where the synthesised 

frame is considered as a potential source for inter-picture prediction. 

GoGOP prediction architecture is used to deploy frame skipping approach where 

part of B-frames are omitted from compression (An et al., 2008). Figure 3-8-a shows 

the proposed prediction architecture by An et al., where the shaded B-frames are 
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skipped from coding. Lee investigated the possibility of skip coding the frame when 

camera parameters are known for neighbouring views in addition to coding the 

difference between original and interpolated frame (Lee, 2013).  

In context of non-frame skipping approach, Kitahara et al. deployed view 

interpolation prediction, where camera parameters are known (Kitahara et al., 2006). 

Yamamoto et al. integrated colour correction for all colour channels alongside view 

interpolation prediction to improve coding efficiency (Yamamoto et al., 2007). Lee et 

al. used disparity estimation to synthesise the given frame. The synthesised frame 

would be used to predict blocks with different sizes starting from 16×16 to 8×8 (Lee 

et al., 2007). Pourazad et al. proposed prediction architecture that integrates view 

interpolation prediction with reference frame reordering as shown in Figure 3-8-b 

(Pourazad et al., 2009a). 

 
(a) 

 
(b) 

Figure 3-8 Prediction architecture proposed by a) An et al. and b) Pourazad et al. (An et al., 
2008; Pourazad et al., 2009a) 
 

3.2.2.2.3 Single / multiple schemes 

Several studies did not follow any of the previous categories. They simply proposed 

either single or multiple schemes. 

A single scheme has been used in few studies, where a novel architecture or 

frame type is proposed (Oka et al., 2004; Fecker & Kaup, 2005; Oh & Ho, 2007; Flierl 

et al., 2007). Multi-direction picture (M-picture) has been introduced that supports 

twenty-one coding modes (Oka et al., 2004). Figure 3-9-a illustrates the prediction 

architecture that is proposed by Oka et al. This frame type has two advantages; it 

improves inter-picture prediction accuracy and reduces amount of intra-prediction. 

Fecker et al. have proposed transposed picture ordering (Fecker & Kaup, 2005). This 

coding order starts coding frames that belong to the same time slice together prior 

to frames that belong to the next time slice. The prediction architecture employs the 

recent N+1 frame for inter-picture prediction, where N is number of reference frames 
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as shown in Figure 3-9-b. Oh and Ho have presented pyramid GOP structure with 

flexible search range (Oh & Ho, 2007). I-frame is alternatively used for successive 

cameras to support low coding delay. Flierl et al. have proposed Matrix Of Picture 

(MOP) that is based on HBP, where it supports view and temporal scalability (Flierl 

et al., 2007). They integrated histogram matching with their proposed architecture. It 

improves inter-view prediction through compensating Y, U and V variations among 

neighbouring views. 

 
(a) 

 
(b) 

Figure 3-9 Prediction architecture that is proposed by a) Oka et al. and b) Fecker and Kaup 
(Oka et al., 2004; Fecker & Kaup, 2005) 

Multiple schemes are proposed and evaluated to select the most efficient 

architecture in terms of coding efficiency (Li et al., 2004; Bilen et al., 2006; Sheikh 

Akbari et al., 2007). Li et al. presented three schemes for stereoscopic video coding 

as shown in Figure 3-10 (Li et al., 2004). They showed the highest coding superiority 

when the third scheme is deployed.  Bilen et al. have compared three schemes 

(modes) as shown in Figure 3-11. They stated that multi-view video coding is efficient 

when coding dense camera setup. They showed superior coding efficiency when 

coding multi-view video that contains scene change by multi-view video coding rather 

than simulcast video coding. Sheikh Akbari et al. have proposed two prediction 

schemes alongside two reference frame ordering as depicted in Figure 3-12. These 

reference frame orderings are temporal-first and spatial-first. They compared these 

modes when coding multi-view videos at different frame rates. They reported that 

MVC is superior to simulcast video coding when coding MVV at low frame rate. They 

stated that reference frame ordering has minor effect on the coding performance of 

MVC. 
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(a) 
 

(b) 

 

(c) 
Figure 3-10 Multiple schemes presented by Li et al., where right frames use a) MCP, b) DCP 
and c) MCP and DCP (Li et al., 2004) 
 

(a) (b) (c) 
Figure 3-11 (a-c) Modes 1, 2 and 3 that are proposed via Bilen et al. (Bilen et al., 2006) 
 

 

(a) 

 

(b) 
Figure 3-12 (a-b) Modes 1 and 2 that are proposed by Sheikh Akbari et al. (Sheikh Akbari et 
al., 2007) 

Several prediction architectures are proposed in the literature. Heuristic-based 

(non-analysis based) has variety of architectures. Part of these prediction 

architectures are deployed to improve random access that are suitable for FTV 

applications. Others rely on view interpolation prediction to improve coding 

performance of MVC that are suitable for planar camera setup. Other prediction 

architectures that belong to single / multiple schemes do not provide justification 

behind their architectures. In the context of analysis-based study, prediction 

architectures are derived through conducting block matching analysis among 

reference frames. Spatial-temporal correlation analysis is used to customise HBP 

architecture according to scene characteristics, where proposed architectures inherit 

the challenges from HBP architecture that include high computational complexity and 

memory resources. Few studies have used multi-reference frame analysis that 

considers all frames on contrary to spatial-temporal analysis, where their studies do 

not employ all coding modes of H.264 in addition to using limited size of search area. 

According to the outcomes from these studies, there are no clear clues about 
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reference frame selection that should be used when H.264/AVC operates at low 

bitrates. Since multi-reference frame analysis using higher temporal order considers 

sufficient numbers of frames from all prediction directions, it has been chosen to 

derive the prediction architectures proposed in this thesis.  

Prediction architecture is determined by reference frame selection and reference 

frame ordering. The majority of studies in the literature have focused on RFS. Few 

studies have investigated reference frame ordering where they show its importance 

on coding efficiency of multi-view video coding. The following subsection will 

therefore review reference frame ordering. 

3.2.3 Reference frame ordering 
Reference Frame Ordering (RFO) is categorised according to the way it is applied. 

It is either static or dynamic as shown in Figure 3-13. 

 
Figure 3-13 Reference frame ordering taxonomy for symmetric MVC 

3.2.3.1 Static reference frame ordering 

Static reference frame ordering is the common choice for studies that investigate 

prediction architectures (Fecker & Kaup, 2005; Bilen et al., 2006; Sheikh Akbari et 

al., 2007). Opposite to coding order is initiated by Andre and Fecker (Fecker & Kaup, 

2005). In fact, this ordering is the normal extension for default RFO in monoscopic 

video codec. It sorts the reference frames’ indices in opposite to their coding order, 

where the recent coded frame index will be placed first in the List buffer. Since the 

frames (at the same time slice) that belong to neighbouring views are coded together, 
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this reference frame ordering assigns the shortest code to nearest spatial reference 

frame as shown in Figure 3-14-a. Bilen et al. have used temporal-first for reference 

frame ordering (Bilen et al., 2006). They assigned lower indices for temporal 

reference frames than spatial and spatiotemporal reference frames as shown in 

Figure 3-14-b. Temporal-first and spatial-first have been deployed separately in two 

modes by Sheikh Akbari et al. as shown in Figure 3-15 (Sheikh Akbari et al., 2007). 

Temporal-first reference frame ordering places the indices that belong to temporal 

reference frames prior to the other reference frames. Spatial-first reference frame 

ordering places the indices that belong to spatial and spatiotemporal reference 

frames first in the List buffer. Temporal / spatial-first is deployed in multi-view video 

coding standard (ISO/IEC MPEG & ITU-T VCEG, 2008). The codec controls the 

reference frame ordering via parameter named InterPredPicsFirst. This parameter 

can select either placing spatial or temporal reference frames first in buffers. Since 

the majority of the prediction came across temporal direction, the codec uses 

temporal-first as a default setting. The challenge from using temporal / spatial-first 

RFO is to determine which source of reference frames is more significant when GOP 

is large (e.g. GOP size is fifteen). 

3.2.3.2 Dynamic reference frame ordering 

Few studies have looked into reference frame reordering (Pourazad et al., 2009a; 

Seungwook & Yang, 2011). Pourazad et al. derived reference frame reordering from 

single coding phase. They proposed histogram-based technique that is used to 

deploy reference frame reordering alongside view interpolation prediction (Pourazad 

et al., 2009a). The frequent referral for each reference frame is counted, where the 

frames’ indices are sorted in order to assign the most frequent reference frame a 

shortest codes. This mechanism improves reference frame ordering for H.264/MVC 

that uses HBP prediction architecture. Seungwook and Yang proposed a patent for 

reference frame reordering, where the suitable RFO is derived from multiple coding 

phases. They used H.264/AVC based stereoscopic video coding. The algorithm 

dynamically reorders reference frame indices through coding each frame twice to 

derive optimum reference frame ordering (Seungwook & Yang, 2011). At the 1st 

coding cycle, the reference frame order exploited from the previous frame is used 

while block matching is conducted. In the second coding cycle, the ordering is set 

according to block matching statistics deployed in the first coding cycle. The numbers 

of skipped macroblocks in both cycles are compared, where the RFO that leads to 

higher amount of skipped macroblocks is stored to be used for the following frame.  
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(a) 

 
(b) 

Figure 3-14 Decoded picture buffer with reference frame ordering for a) opposite to coding 
order and b) temporal-first (Bilen et al., 2006) 
 

 

 
(a) 

 
(b) 

Figure 3-15 Reference frame ordering used by Sheikh Akbari et al., where a) temporal-first 
and b) spatial-first (Sheikh Akbari et al., 2007) 

Prediction architecture either deploys static or dynamic reference frame ordering. 

The proposed static reference frames ordering in the literature are not theoretically 

justified. Dynamic reference frame ordering proposed by Pourazad et al. has several 

challenges. First, the encoder needs to signal the reference frame ordering to the 

decoder when the current order is changed. Secondly, the proposed reference frame 

reordering does not consider scene change scenarios. For HBP prediction 

architecture, forward frames are coded first before the frames that belong to previous 

time slices. Therefore, when a scene changes the frame that belongs to the new 

scene would be coded and analysed before the frames that belong to previous 

scene. Since both frames belong to different scenes, the information that is exploited 

by their algorithm would be irrelevant to the correct reference frame ordering for the 

current frame. The patent proposed by Seungwook and Yang gets optimum ordering. 

Since the proposed algorithm by Seungwook and Yang encodes frame twice, it does 
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not fit the requirement of low bitrate applications. After reviewing reference frame 

ordering, dynamic ordering using single coding phase is investigated in this thesis 

since it would provide a low computational complexity solution for solving the 

reference frame ordering. 

There are two coding structures that are used in the context of multi-view video 

coding. The following subsection will briefly discuss these coding structures. 

3.2.4 Coding structures 
Prediction architectures either deploy IPPP or IBBP coding structures as outlined in 

subsection 2.1.1.4. Different prediction architectures that use these coding structures 

are compared in terms of coding efficiency, computational complexity and memory 

consumption (Zhang et al., 2008). Sequential View Prediction Structure (SVPS) 

using P-frame is a straightforward example for IPPP coding structure that is shown 

in Figure 3-16-a. They showed that HBP prediction architecture is more coding 

efficient than SVPS at the expense of higher computational complexity and memory 

consumption. They measured complexity in terms of minimum number of reference 

frames that is equal to 58 and 96 for SVPS and HBP respectively. DPB needs to 

store at least 7 and 21 frames for these architectures respectively. In the context of 

number of block matches, coding P-frame needs less number of block matches than 

B-frame. P-frame needs 259 block matches when one reference frame is used. For 

stereoscopic video coding using HBP (Figure 3-16-b), B-frame needs 160055 block 

matches (Chiang et al., 2011). It includes forward, backward, disparity, forward plus 

backward and disparity plus backward. The superior coding performance from using 

B-frame than P-frame is a result from allowing backward, forward and bi-prediction, 

on contrary to the latter that uses only forward prediction (Richardson, 2010). This 

allows several prediction sources when coding B-frame that entails higher prediction 

accuracy than deploying P-frame at the expense of high computational complexity 

and memory consumption.  

In the context of symmetric MVC, several studies focus on reducing the 

complexity of HBP in two directions. The first direction is looking into reducing 

computational complexity, where four different levels are addressed. They are 

prediction mode, prediction direction, reference frame and block matching (Shen et 

al., 2010; Zhang et al., 2011a; Khattak et al., 2013). The second direction is reducing 

memory consumption, where data reuse or parallel architecture are conducted to 

reduce memory bandwidth (Tsung et al., 2007; Choi et al., 2011; Sampaio et al., 

2013). Although studies in both directions achieve significant complexity reduction 
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compared to HBP architecture, no unified framework has been proposed that 

reduces both, computational complexity and memory consumption.  

 
(a) 

 
(b) 

Figure 3-16 a) Sequential view prediction structure using P-frames and b) prediction sources 
in HBP prediction architecture (Zhang et al., 2008; Chiang et al., 2011) 

Prediction architectures could be deployed using either IPPP or IBBP coding 

structures. Prediction architectures based on IBBP coding structure are more coding 

efficient than corresponding architectures that deploy IPPP coding structure at the 

expense of higher computational complexity and memory consumption. Since low 

bitrate applications prefer coding solution with low complexity and memory 

requirements, IPPP coding structure is used in the investigations presented in this 

thesis. 

The following section will review prediction architectures and visual enhancement 

algorithms for mixed spatial-resolution multi-view video coding. 

3.3 Mixed spatial-resolution multi-view video coding 
This section explores prediction architectures and visual enhancement algorithms 

for mixed spatial-resolution MVC. Prediction architecture is the core component that 

distinguishes MVC form simulcast video coding, while visual enhancement 

addresses improving visual quality for the interpolated frames at the receiver side. 

The following subsection presents literature review for prediction architectures. 

3.3.1 Prediction architectures taxonomy 

The taxonomy first classifies prediction architectures in terms of whether the frames 

arrangement follows conventional mixed spatial-resolution multi-view video or not 

conventional one. Suppression theory describes the total perceived quality when 

viewing stereoscopic video that contains views with different qualities. This entails 

that one of the views has full spatial-resolution frames, while the other has lower 

spatial-resolution frames. This arrangement is named in this thesis as conventional 

mixed spatial-resolution that is illustrated in Figure 3-17. The majority of studies 
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follow conventional mixed spatial-resolution, while few studies proposed other frame 

arrangements that are referred to as non-conventional mixed spatial-resolution. For 

each frame arrangement; there are two coding solutions. The first is simulcast video 

coding while the second is MVC. The latter could be deployed using either 

Hierarchical B-picture; typical prediction architecture for H.264/MVC or other 

architectures that are based on IPPP coding structure. Figure 3-18 presents the 

prediction architectures taxonomy for mixed spatial-resolution multi-view video.  

 
Figure 3-17 Conventional mixed spatial-resolution stereoscopic video 

 

 

Figure 3-18  Prediction architectures taxonomy for mixed spatial-resolution MVV 

3.3.1.1 Conventional mixed spatial-resolution 

This subsection covers simulcast and multi-view video coding. 

3.3.1.1.1 Simulcast video coding 

Simulcast video coding is a common choice for coding conventional mixed spatial-

resolution multi-view video coding. Several studies have used simulcast video coding 

to investigate bitrate allocation, design low pass filters, compare this coding 

approach with other approaches and to, develop full reference video quality metric.  
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Mobile 3DTV project is focused on exploring different solutions to support 

stereoscopic video transmission on Digital Video Broadcast over Handheld devices 

(DVB) that is supported by the European Union. They studied mixed spatial-

resolution stereoscopic video coding using simulcast video coding (Tech et al., 

2009b; Brust et al., 2009; Smirnov, 2010).  They compared symmetric spatial-

resolution with mixed spatial-resolution stereoscopic video coding on small and large 

displays (Tech et al., 2009a). They reported that 58% and 61% of assessors prefer 

coded mixed spatial-resolution stereoscopic video for these displays respectively. 

Brust et al. studied optimum bitrate distribution among mixed spatial-resolution 

stereoscopic video beside complexity analysis with respect to symmetric spatial-

resolution stereoscopic video (Brust et al., 2009). They stated that mixed spatial-

resolution is suitable for coding stereoscopic video at low bitrate, where coding 

artefacts are minimised. Optimum bitrate allocation for view with lower spatial-

resolution frames is in the range of 30% to 35% from total bitrate. The total complexity 

for decoding mixed spatial-resolution stereoscopic video is less than decoding 

symmetric full spatial-resolution stereoscopic video. Smirnov et al. compared the 

coding performance for mixed spatial-resolution stereoscopic video using a set of 

filters (Smirnov et al., 2010a). The filter groups are standard anti-aliasing filters, 

standard interpolation filters and Finite Impulse Response (FIR) anti-aliasing filter 

with variable cut-off frequency (0.1 to 0.9). They showed that variable cut-off 

frequency gets higher coding performance than other filters.  

Other studies focused on comparing asymmetric spatial-resolution with other 

coding approaches (Bal, 2009; Strohmeier & Tech, 2010; Saygili et al., 2011; Aflaki 

et al., 2013a). Bal has compared subjectively mixed spatial-resolution stereoscopic 

video with simulcast and multi-view video coding (Bal, 2009). They reported that 

MVC provides better results than mixed spatial-resolution stereoscopic video. They 

stated that this coding approach might provide better subjective score when inter-

view prediction is enabled at low bitrate. Strohmeier et al. compared subjectively 

several coding approaches that includes simulcast, multi-view video coding, mixed 

spatial-resolution stereoscopic video coding and video plus depth coding approach 

(Strohmeier & Tech, 2010). Two coding profiles are used through H.264/AVC; 

baseline and high profiles at low and high bitrates. At low bitrate, multi-view video 

coding and video plus depth provide best results among other coding approaches. It 

is important to note that mixed spatial-resolution stereoscopic video is coded through 

simulcast video coding for each view. Saygili et al. tried to reveal the best coding 

approach at high and low bitrate through testing asymmetric quality, asymmetric 

spatial-resolution and symmetric coding (Saygili et al., 2011). They stated that above 
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threshold14, asymmetric quality gets highest coding performance in addition to 

providing fine control for bitrate adaptation while at low bitrate, symmetric coding and 

mixed spatial-resolution coding are preferable. Aflaki et al. compared subjectively 

symmetric coding, asymmetric quality coding and mixed spatial-resolution (with 

asymmetric quality) stereoscopic video coding; ∆QP is 2 to 4 at low bitrate (Aflaki et 

al., 2010, 2013a). They concluded that asymmetric quality with mixed spatial-

resolution gets close subjective score to symmetric coding. They highlighted the 

importance of mixed spatial-resolution in applications that prefers low coding 

complexity.  

Other studies used simulcast video coding to develop quality metric for 

asymmetric stereoscopic video coding (De Silva et al., 2012). Blurring artefacts that 

result from the interpolated frames are simulated by Gaussian low pass filter. They 

reported that HVS has higher degree of tolerance before identifying asymmetric blur 

than identifying asymmetric quality. This was explained by high frequency that exists 

in one of the views for mixed spatial-resolution stereoscopic video while blocking 

artefacts are easily noticed by their additional high frequency. 

3.3.1.1.2 Multi-view video coding 

Simulcast video coding does not benefit from inter-view correlation that exists in 

MVV, while MVC exploits visual spatial redundancy among neighbouring views. 

Prediction architectures are deployed either by IBBP or IPPP coding structure. 

Typical prediction architecture for H.264/MVC is deployed for coding mixed 

spatial-resolution multi-view video as shown in Figure 3-19. Even views have full 

spatial-resolution, while odd views have low spatial-resolution frames. Chen et al. 

have used this Prediction Architecture (PA) during their studies that aim to reduce 

decoding complexity for mixed spatial-resolution multi-view video (Chen et al., 

2008a, 2008b, 2009a). During disparity compensation, the even or odd samples are 

extracted directly from decoded reference frame when scaled disparity vector is 

pointed to integer or half-sample position respectively (Chen et al., 2008a). When 

scaled disparity vector points to quarter-sample position, closest integer-samples 

and half-samples are averaged. Therefore, their approach reduces interpolation 

complexity for generating half-sample which consumes around 40% of the decoding 

complexity for Hierarchical B-Picture architecture. They improved direct disparity 

compensation through selecting suitable filter at the encoder side in order to provide 

accurate sample on the basis of picture and region levels (Chen et al., 2008b, 

14 It is 31 dB and 33 dB for parallax barrier display and full-resolution projection display respectively 
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2009a). Quan et al. integrated asymmetric spatial-resolution as scalability property 

for enhancement view of stereoscopic video coding (Quan et al., 2011). In symmetric 

coding, Full spatial-resolution frames that belong to enhancement view are predicted 

by neighbouring frames that belong to base view in addition to its lower spatial-

resolution. The prediction architecture is switched from symmetric to asymmetric 

video coding through deploying low spatial-resolution frames in enhancement view.  

 
Figure 3-19 HBP prediction architecture for mixed spatial-resolution three-view video 

Other studies deployed Hierarchical B-Picture to investigate optimum scaling 

factor, effect of inter-view prediction direction and examining different decimation 

methods (Ekmekcioglu et al., 2008b; Tech et al., 2009a; Brust et al., 2010; Aflaki et 

al., 2013b). Tech et al. compared objectively coding performance when coding right 

view with full spatial-resolution frames alongside left view that are coded using 

different combinations from filtering, down-sampling and inter-view prediction (Tech 

et al., 2009a). They showed that enabling inter-view prediction in addition to down-

sampling gets highest rate-distortion followed by simulcast video coding for the 

down-sampled view. Coding both low pass filtered left view with and without inter-

view prediction provide lower rate-distortion than former combinations. They 

highlighted that inter-view prediction for down-sampled left view save 70% of bitrate 

compared to coding down-sampled left view separately. Brust et al. investigated 

coding performance using different prediction direction for mixed spatial-resolution 

stereoscopic video coding (Brust et al., 2010). They used asymmetric quality 

alongside asymmetric spatial-resolution, where full spatial-resolution frames have 

higher QP than low spatial-resolution frames. They reported that predicting full 

spatial-resolution by lower spatial-resolution provides equal coding performance 

when low spatial-resolution frames are predicted by higher spatial-resolution frames 

at low bitrates. The results revealed by Brust et al. are contradicting to the nature of 

image complexity that is usually increased by decimation (Yu & Winkler, 2013). 

Based on Brust et al. study, the inter-view prediction by FR and LR frames provide 
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similar inter-view prediction while image complexity is increased by decimation that 

should have an effect on inter-view prediction (Brust et al., 2010; Yu & Winkler, 

2013). Aflaki et al. explored different decimation methods for mixed spatial-resolution 

three-view video coding, where middle view uses full spatial-resolution frames while 

surrounding views use lower spatial-resolution frames (Aflaki et al., 2013b). They 

proposed low complexity and high performance decimation methods. Low 

complexity method down-samples each sample directly that belongs to full spatial-

resolution frame without filtering these samples. High performance method 

decimates integer sample, where remaining sub-pixel samples are generated using 

corresponding integer and half-samples at low spatial-resolution. They showed 

superior coding performance when high performance is deployed within mixed 

spatial-resolution multi-view video coding. Ekmekcioglu et al. studied objectively 

coding performance for mixed spatial-resolution stereoscopic video using different 

down-sampled scaling factors (Ekmekcioglu et al., 2008b). They deployed several 

scaling factors starting from 0.3 to 0.9 and compared coding performance for 

asymmetric with symmetric stereoscopic video coding. They stated that target bitrate 

affects optimum scaling factor, where highest coding performance at low bitrate is 

achieved through deploying scaling factor of 0.6 horizontally and vertically. 

IPPP coding structure has been deployed in a set of studies to compress mixed 

spatial-resolution multi-view video coding (Aksay et al., 2006; Fehn et al., 2007; Yang 

et al., 2009). Aksay et al. evaluated asymmetric temporal-resolution and spatial-

resolution through seven combinations (Aksay et al., 2006). They compared these 

asymmetric coding approaches with symmetric stereoscopic video coding. Figure 3-

20-a shows prediction architecture that is used to code mixed spatial-resolution 

stereoscopic video. They concluded that asymmetric spatial-resolution provides 

optimum solution while asymmetric temporal-resolution is beneficial for slow motion 

videos. Fehn et al. evaluated objectively asymmetric spatial-resolution stereoscopic 

video coding that is compatible15 to Digital Video Broadcasting (DVB) (Fehn et al., 

2007). They proposed prediction architecture that is named 3D-Digital Multimedia 

Broadcast (3D-DMB) as shown in Figure 3-20-b. They reported that coding the right 

view is higher than the corresponding full spatial-resolution frames when coding 

stereoscopic video at low bitrate. Also, they stated that total bitrate for mixed spatial-

resolution stereoscopic video is slightly higher than monoscopic video coding. Yang 

et al. investigated the feasibility of reducing interpolation complexity for decoded 

mixed spatial-resolution stereoscopic video (Yang et al., 2009). They utilised the 

15 Maximum number of reference frames is three 
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usage of skip coding mode during disparity compensation, where 3D-DMB prediction 

architecture is deployed. Skipped macroblocks are directly copied from full spatial-

resolution reference frame in order to avoid interpolating these blocks after decoding. 

They reported that the interpolation complexity is reduced by 30% to 40% of total 

time consumed by interpolation.  

 

(a) 

 

(b) 

Figure 3-20  Prediction architectures for stereoscopic video coding: a) mode 1 by Bilen et 
al. and b) 3D-DMB by Fehn et al. (Bilen et al., 2006; Fehn et al., 2007) 
 

3.3.1.2 Non-conventional mixed spatial-resolution 

Some mixed spatial-resolution multi-view video studies do not follow conventional 

frame arrangement format (Ekmekcioglu et al., 2008a; Yu et al., 2010; Najafi, 2012; 

Aflaki et al., 2012; Jain et al., 2014). These studies have deployed either simulcast 

or multi-view video coding. 

3.3.1.2.1 Simulcast video coding 

Few studies have proposed different asymmetric spatial-resolution frame 

arrangements formats. Aflaki et al. proposed cross asymmetric among stereoscopic 

video as shown in Figure 3-21 (Aflaki et al., 2012). Decimation is applied differently 

on both views, where one of the views is horizontally down-sampled while the other 

view is vertically down-sampled. They used Spatial Index (SI)16 to measure spatial 

information for both views in horizontal and vertical directions, where the view with 

lower SI in horizontal direction is down-sampled in the horizontal direction. They 

reported that their frame arrangement provide similar results to conventional mixed 

spatial-resolution format when both are subjectively evaluated on large display (46″ 

display).  

Ankit et al. proposed alternating blur, where asymmetric spatial-resolution is 

applied in a balanced manner on both stereoscopic views (Jain et al., 2014). Figure 

16 It is computed through extracting edges by deploying SOBEL high pass filter (ITU, 2008). 
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3-22-b shows alternate blur, where white and grey blocks are sharp and blurred 

frames respectively. This frame arrangement is different from conventional mixed 

spatial-resolution frames (single-eye blur) as depicted in Figure 3-22-a. They target 

reducing eye fatigue that results from watching single-eye blur stereoscopic video by 

distributing blur level on both views, where their frame arrangement provides better 

viewing experience for the animated scene than single-eye blur. 

 
Figure 3-21 Frame arrangement format example by Aflaki et al (Aflaki et al., 2012) 

 

 
(a) 

 

(b) 
Figure 3-22 Binocular suppression a) single-eye and b) alternating blur (Jain et al., 2014) 

 

3.3.1.2.2 Multi-view video coding 

Typical prediction architecture; HBP has been used to compress non-conventional 

frame arrangements for mixed spatial-resolution multi-view video. S. Najafi used low 

spatial-resolution multi-view video alongside high spatial-resolution still images as 

shown in Figure 3-23 (Najafi, 2012). They aim to restore high frequency components 

for coded low spatial-resolution frames by super-resolution technique. The first set 

(low spatial-resolution MVV) is coded by H.264/MVC as base layer while high spatial-

resolution still images are coded as enhancement layer at low frame rate. They show 

the effectiveness of their algorithm to super-resolve low spatial-resolution frames for 

scenes that contain fast objects motion.  

IPPP coding structure has been used to code anchor frames (Ekmekcioglu et al., 

2008a). They used low spatial-resolution frames in majority of anchor frames in order 

to speed up view switching as shown in Figure 3-24, where GOV is Group Of Views. 

They stated that their inter-view configurations provide superior view random access 
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than HBP architecture. Yu et al. proposed two sampling directions for frames that 

belong to the right view as shown in Figure 3-25 (Yu et al., 2010). They deployed 

3D-DMB prediction architecture, where I-frame is analysed in terms of Sum of 

Absolute Transformed Difference (SATD). It is computed based on intra-prediction 

from either upper or left macroblocks. When SATD for horizontal direction is less 

than vertical direction, the frames that belong to the right view are horizontally down-

sampled; otherwise they are vertically down-sampled. 

 
Figure 3-23 Frames arrangement for mixed spatial-resolution MVC (Najafi, 2012) 

 

 
(a) 

 
(b) 

Figure 3-24 Different configurations for inter-view prediction among  anchor frames for GOV 
equal a) 3 and b) 5 (Ekmekcioglu et al., 2008a) 
 

 
(a) 
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(b) 

Figure 3-25 Different down-sampling for right view a) vertical sampling and b) horizontal 
sampling (Yu et al., 2010) 

IPPP coding structure usually needs less computational complexity and memory 

size compared to IBBP structure. This coding structure is therefore used in the 

investigation in this thesis for conventional mixed spatial-resolution frames 

arrangement.  

The next subsection will discuss visual enhancement in context of mixed spatial-

resolution multi-view video coding. 

3.3.2 Visual enhancement algorithms 

Suppression theory is used to justify the deployment of mixed spatial-resolution 

multi-view video coding. It states that HVS would fuse views with different quality, 

where perceived quality is closer to the view with the higher quality (Bal, 2009; Aflaki 

et al., 2011). This coding approach needs less coding complexity than symmetric 

video coding (Brust et al., 2009; Aflaki et al., 2013a). Michael G. Perkins has initiated 

the usage of mixed spatial-resolution stereoscopic video, where disparity-

compensated transform-domain predictive coding was applied (Perkins, 1992). They 

deployed low pass filter to the left view that is sub-sampled by a factor of 4 in 

horizontal and vertical directions. The subjective score when viewing mixed spatial-

resolution stereoscopic video coding is closer to the view that has full spatial-

resolution frames (Aflaki et al., 2013a).  

Several studies raised several challenges for mixed spatial-resolution 

stereoscopic video that is either coded by simulcast or stereoscopic video coding. 

This coding approach (without inter-view prediction) has been compared subjectively 

to simulcast, stereoscopic video coding (symmetric spatial-resolution) and video plus 

depth coding approach (Tech et al., 2009b; Strohmeier & Tech, 2010). Mixed spatial-

resolution stereoscopic video using simulcast video coding has provided inferior 

results compared to stereoscopic video coding and video plus depth coding 

approaches. According to their results, scenes that have slow objects’ motion, 
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complex depth structure or medium spatial information are suited to be coded by 

asymmetric spatial-resolution. It is worth noting that these studies apply simulcast 

video coding when assessing this coding approach. Bal has stated that subjective 

assessment for mixed spatial-resolution stereoscopic video is display dependent 

(Bal, 2009). Ankit et al. have raised another challenge due to viewing asymmetric 

stereoscopic content for a period of ten minutes (Jain et al., 2014). They reported 

that viewing conventional mixed spatial-resolution stereoscopic video leads to eye 

fatigue, where most assessors felt eye strain for the eye that receive higher quality. 

This was the reason behind their proposed frame arrangement to distribute equally 

the blur on two views that leads to reduce eye strain. 

Few studies have focused on enhancing visual quality for coded mixed spatial-

resolution stereoscopic video (Tech et al., 2009a; Najafi, 2012). Tech et al. applied 

un-sharp filter to enhance visual quality of coded low spatial-resolution frames (Tech 

et al., 2009a). They proposed Advanced Mixed-Resolution Stereo Coding (AMRSC), 

where inter-view prediction and bitrate allocation are investigated. Visual 

enhancement via un-sharp filter has been subjectively evaluated using two displays; 

3.5” and 32”. Although this filter reduces amount of low frequency component and 

enhances high frequency contents, it magnifies coding artefacts as well. Therefore 

this filter is not suitable when enhancing coded frames at low bitrates. They stated 

that full spatial-resolution frame could provide information that can be used during 

reconstructing low spatial-resolution frame. S. Najafi used mixed spatial-resolution 

for monoscopic and multi-view video coding (Najafi, 2012). The algorithm registers 

first low spatial-resolution with full spatial-resolution frames. Then up-sampling via 

non-local means filter followed by de-blurring the up-sampled frame. For multi-view 

video, they used two types of cameras, first are a set of cameras that capture low 

spatial-resolution frames at high frame rate while the other set capture high spatial-

resolution frames at low frame rate as shown in Figure 3-23. The first set is encoded 

via H.264/MVC. The up-sampled versions for low spatial-resolution frames are used 

as predictor for corresponding full spatial-resolution frames. The frame fusion is 

deployed among temporal frames; therefore the algorithm is affected by scene 

characteristics, where it becomes less efficient for scenes that have slow objects 

motion. Their mixed spatial-resolution format is not consistent with conventional 

mixed spatial-resolution, where low spatial-resolution frames are located between 

anchor frames. Also the proposed architecture suffers from high complexity at the 

receiver side.  

Although several algorithms have looked into enhancing visual quality for coded 

low spatial-resolution frames, they do not provide efficient solution in terms of visual 
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quality or low complexity solution at the decoder side. Therefore, there is a need to 

find a low computational complexity solution to improve visual quality of the 

interpolated frames at the receiver side. 

In the next section, literature review is summarised alongside a list of studies that 

are addressed in this thesis. 

3.4 Summary 
In this section, the literature review is summarised alongside a list of studies that are 

addressed in this thesis. 

3.4.1 Summary of the review 
Different coding approaches are used when coding multi-view videos at low bitrates. 

The depth-based approach has challenges that include depth estimation and view 

rendering, where an inaccurate depth map and disocclusion would affect the quality 

of the synthesised view. The main challenge for the object-based coding approach 

is automatic segmentation that is capable of extracting foreground objects efficiently. 

Since segmentation is deployed at the sender side, the encoder computational 

complexity is high. The mesh-based coding approach faces the challenges of 

mapping geometry models to objects in order to find the best model match for each 

object, in addition to representing multiple objects in a real scene. The resolution-

based coding approach provides a practical solution, where neither depth-map nor 

segmentation is needed. Symmetric and mixed spatial-resolution coding approaches 

are more suitable solutions than asymmetric quality when a dependent view is coded 

at low bitrates.  Asymmetric temporal-resolution has shown inferior results with 

respect to asymmetric quality and asymmetric spatial-resolution coding approaches. 

Asymmetric spatial-resolution has lower coding complexity than asymmetric quality, 

since 37.5% of the frames are not coded, when decimation is applied by factor of 

two horizontally and vertically for stereoscopic video. Therefore, symmetric and, 

asymmetric (mixed) spatial-resolution multi-view video coding are chosen in the 

research investigations presented in this thesis. 

In the context of symmetric multi-view video coding, block matching efficiency and 

prediction architectures are reviewed. Several studies have looked into block 

matching efficiency through investigating the effect of camera separation on the 

coding performance of multi-view video coding. The target is defining the best usage 

for multi-view video coding. Part of these studies highlights the relationship among 

camera separation and the coding efficiency of MVC; others put a hard inter-camera 
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angle threshold for the best usage of stereoscopic video coding. Still the criterion for 

the best usage of multi-view video coding is not yet defined. 
Several prediction architectures have been proposed in the literature for 

symmetric MVC. Prediction architectures that are categorised under random access 

are suitable for certain applications (e.g. FTV), while view interpolation prediction is 

more suitable for planar camera setup. Single / multiple schemes do not justify the 

configuration behind their prediction architectures. In the context of an analysis-

based study, prediction architectures are justified through analysing block matching 

statistics among reference frames. Prediction architectures that belong to the 

category of spatial-temporal correlation analysis inherit the challenges from the HBP 

architecture that include high computational complexity and memory resources. 

Multi-reference frame analysis considers all frames, where few studies have used 

multi-reference frame analysis to derive the configuration of the prediction 

architecture. These studies do not employ all coding modes of H.264 in addition to 

using a search area of limited size. According to the outcomes from these studies, 

there are no clear clues about reference frame selection that should be used when 

H.264/AVC operates at low bitrates. 

Several static reference frame ordering schemes have been proposed that are 

not theoretically justified. Few studies tried to solve reference frame ordering through 

proposing algorithms that derive the suitable reference frame ordering dynamically. 

They provide neither a practical solution that fits requirements of low bitrate 

applications nor an efficient mechanism that is suitable for videos that contains hard 

scene changes. There is still a need for an efficient mechanism that is suitable for 

real time applications and also considers scene change scenario. 

Low bitrate applications prefer coding solutions with low computational complexity 

and memory consumption. Therefore, an IPPP coding structure is used in the 

investigations presented in this thesis. 

In the context of mixed spatial-resolution MVC, prediction architectures and visual 

enhancement algorithms are reviewed. Non-conventional mixed spatial-resolution 

MVC tries to provide alternative coding solutions over conventional mixed spatial-

resolution MVC. The challenge of non-conventional mixed spatial-resolution is that it 

does not go through a comprehensive subjective investigation as the conventional 

frame arrangement. Also, parts of these frame arrangements do not specify how 

mixed spatial-resolution frames are applied to multi-view video. On the other hand, 

a conventional frame arrangement has gone through detailed subjective tests in 

different studies. In addition to this, deploying it into multi-view video is straight 

forward.  
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There are two coding solutions for mixed spatial-resolution multi-view video, either 

each view is coded separately (simulcast video coding) or all views are jointly coded 

(MVC). Simulcast video coding needs less computational complexity than MVC. 

Simulcast video coding is not sensitive to camera calibration problem and different 

lighting conditions. It does not exploit spatial redundancies among neighbouring 

views, contrary to MVC. Therefore, multi-view video coding is used in the studies 

presented for mixed spatial-resolution multi-view video. 

Hierarchical B-picture and 3D-DMB prediction architectures are used in the 

majority of mixed spatial-resolution MVC studies. The former architecture inherits the 

challenges related to significant computational complexity and memory 

consumption, while the latter architecture justifies neither reference frame selection 

nor considers reference frame ordering. Therefore, investigating prediction 

architectures in the context of multi-view video coding that relies on the IPPP coding 

structure is essential as a potential solution for low bitrate applications.  

Although the effect of inter-view prediction direction has been addressed by Brust 

et al., the results are not consistent with the outcomes reported by Yu et al. (Brust et 

al., 2010; Yu & Winkler, 2013). Brust et al. stated that inter-view prediction direction 

performs equally when the codec that uses either full or low spatial-resolution frames 

in the base view that operates at low bitrates. Yu et al. reported that image complexity 

is usually increased by decimation that entails affecting the coding efficiency from 

inter-view prediction. This needs to be addressed to highlight the challenges when 

inter-view prediction is deployed among mixed spatial-resolution frames. Since there 

are different decimation and interpolation methods, a comparative study is needed 

to define potential solutions for these processes.  

Few studies revealed negative effects for mixed spatial-resolution stereoscopic 

video coding. It includes inferior coding results in comparison to the symmetric 

coding and video plus depth coding approach, when mixed spatial-resolution is 

simulcast coded in addition to eye fatigue that is reported when watching coded 

videos. Although there are few studies that target reducing blurriness artefacts via 

an un-sharp filter and super-resolution technique, they provide neither an efficient 

solution in terms of visual quality nor a low complexity algorithm. Therefore, a low 

computational complexity solution is needed to enhance visual quality for the 

interpolated frames at the receiver side. 

The research investigations conducted in this thesis will be presented in the next 

subsection. 
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3.4.2 List of studies undertaken 
The research investigations are categorised into two phases according to the spatial-

resolution that involves symmetric and asymmetric multi-view video coding. The 

following list outlines the studies toward symmetric multi-view video coding: 

o Camera separation is first investigated to determine the best usage for multi-view 

video coding. 

o Prediction architectures have to be investigated, particularly reference frame 

selection when H.264/AVC operates at low bitrate. Comprehensive statistical 

analysis of block matching will be used to derive a reference frame selection.  

o Reference frame reordering will be investigated in order to efficiently reorder the 

indices of reference frame dynamically. 
 

In the second part of the thesis, the research focuses on mixed spatial-resolution 

multi-view video coding, where prediction architectures and visual enhancement for 

coded low spatial-resolution frames are studied. The following studies outline the 

investigations undertaken: 

o Inter-view prediction direction will be examined for full spatial-resolution and low 

spatial-resolution reference frames. This needs to be deployed using a symmetric 

quality configuration among views. This would identify the challenges when 

predicting frames through different spatial-resolution reference frames.  

o Mixed spatial-resolution multi-view video coding implies the need to decimate or 

interpolate reference frames. Therefore, different decimation and interpolation 

methods are compared in terms of coding gain and computational complexity. 

o Prediction architectures are investigated, where the roles of full spatial-resolution 

and low spatial-resolution frames need to be explored. The outcomes from the 

corresponding studies in the first phase would provide clues about reference 

frame selection and reference frame ordering that facilitates statistical analysis of 

block matching among mixed spatial-resolution MVC.  

o The feasibility for improving the visual quality of the interpolated frames is 

investigated through exploiting the embedded information in the neighbouring full 

spatial-resolution frames. 

 

The following chapter targets symmetric multi-view video coding. The first part of the 

investigation focuses on defining criteria, where multi-view video coding should be 

used rather than simulcast video coding. Prediction architectures are investigated for 

stereoscopic and multi-view video coding, using statistical analysis of block 
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matching. Reference frame reordering is then targeted in order to find a suitable 

mechanism to reorder the indices of reference frames dynamically.  
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CHAPTER 4. SYMMETRIC MULTI-VIEW VIDEO 
CODING 

 

This chapter presents the studies that are relevant to symmetric multi-view video 

coding. These studies include exploring the impact of camera separation on coding 

performance of MVC, investigating prediction architectures of H.264/AVC for 

stereoscopic and MVC in addition to tackling reference frame reordering. Figure 4-1 

shows a block diagram for these studies, where the circles labelled by 1, 2 and 3 

refer to the impact of camera separation, prediction architectures and reference 

frame reordering. 

 

Figure 4-1 Block diagram for the studies conducted in symmetric multi-view video coding 

The first study looks into camera separation, where the objective behind it is to 

determine the best usage for multi-view video coding. Prediction architectures are 

then studied, in particular reference frame selection that is able to identify reference 
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frames that have the most block matching contribution during coding of multi-view 

video at low bitrate. Reference frame reordering is then investigated, where the 

objective is to find efficient mechanism for dynamically ordering indices of reference 

frames that would be robust to scene changes. 

The following section investigates the first part of the study that explores camera 

separation effect on the coding performance of multi-view video coding. 
 

4.1 Impact of camera separation on the coding performance 
of multi-view video coding 

 

4.1.1 Introduction 
This section investigates the suitable usage of multi-view video coding through 

exploring the impact of camera separation on coding performance of MVC. Wide 

convergent multi-view videos are used in this study since their coding efficiency using 

multi-view video coding cannot be determined in advance as neighbouring cameras 

capture the same scene from different angle positions. Camera separation is 

represented by inter-camera angle that suits coplanar camera setup. This study 

looks into exploring the range of inter-camera angles, where the multi-view video 

coding operates efficiently in comparison with simulcast video coding. 

4.1.2 Multi-view video with different inter-camera angles 
Two datasets have been used throughout this investigation: Break-dancers and 

Ballet. Both are examples for coplanar camera setup, where they are widely used 

since their depth-maps are available (Oh et al., 2009; Garcia et al., 2010a). Both 

were generated via Microsoft research laboratory and these datasets are available 

from Microsoft research website17. 

Microsoft datasets were generated using eight synchronised cameras that 

captured fifteen frames per second using PtGrey colour cameras. Each camera 

generated one-hundred frames. These cameras were positioned in one-dimensional 

arc configuration with spanning angle of 30°, where each camera had 30° of view 

with 8 mm lenses. Each frame has an Extended Graphics Array (XGA) resolution 

and it is represented using RGB colour format (Zitnick et al., 2004). 

As this research targets designing multi-view video coding which is suitable for 

low bitrate applications; the target applications usually prefer display with low spatial-

17Online: http://research.microsoft.com/en-us/downloads/5e4675af-03f4-4b16-b3bc-
a85c5bafb21d/ / 
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resolution. Therefore, the original datasets have been spatially decimated to 

Common Intermediate Format (CIF) resolution.  

Generating CIF size frames involves filtering, decimating, cropping and, colour 

conversion. First, each frame is filtered by 5×5 Kaiser FIR low pass filter in order to 

reduce the aliasing effect. The filter has cut-off frequency of 0.5 and its coefficients 

are tabulated in Table 4-1. Filtered frames are spatially down-sampled horizontally 

and vertically by skipping even samples. The filtered down-sampled frame is cropped 

starting from point (Px, Py) = (120, 47) and (80, 47) for Break-dancers and Ballet 

respectively. The same starting point is applied to all frames within each dataset to 

maintain external camera parameters (translation and rotation). The CIF size frame 

is converted from RGB to YUV colour space. Figures 4-2 and 4-3 show the 1st frame 

among eight views for Break-dancers and Ballet respectively; these images are 

scaled down to 10% of its original size. The original, low pass filtered, down-sampled 

frame and, CIF size frame of Break-dancers are shown in Figures 4-4-a to 4-4-d 

respectively. The corresponding frames for Ballet dataset are shown in Figures 4-5-

a to 4-5-d. The first two images in Figures 4-4 and 4-5 are scaled down to 40% of 

their original size. The following equations are used during the colour conversion 

(Ghanbari, 1999); 

𝑌𝑌 = 0.2999 𝑅𝑅 + 0.587 𝐺𝐺 + 0.114 𝐵𝐵 (4-1) 

𝑈𝑈 = −0.148 𝑅𝑅 − 0.289 𝐺𝐺 + 0.437 𝐵𝐵 + 128 (4-2) 

𝑀𝑀 = 0.615 𝑅𝑅 − 0.515 𝐺𝐺 + 0.100 𝐵𝐵 + 128 (4-3) 
 

 
Table 4-1 Kaiser FIR filter coefficients 

0 0 0.0393 0 0 
0 0.0653 0.1077 0.0653 0 

0.0393 0.1077 0.1511 0.1077 0.0393 
0 0.0653 0.1077 0.0653 0 
0 0 0.0393 0 0 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 4-2 (a-h) show the 1st frame of Break-dancers for camera 0 to camera 7 respectively 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 4-3 (a-h) show the 1st frame of Ballet for camera 0 to camera 7 respectively 
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(c) 
 

 

 
 

(d) 
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Figure 4-4 (a-d) show the 1st frame in Break-dancers for camera 0 in its; original, low pass 
filtered, decimated and, cropped frame respectively 

 

(a) 
 

 

(b) 
 

 
(c) 

 

 
 
 

(d) 
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Figure 4-5 (a-d) show the 1st frame in Ballet for camera 0 in its; original, low pass filtered, 
decimated and, cropped frame respectively 
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There are two sets of videos needed to be generated prior to compression. The 

first set concerns monoscopic videos, each containing single view. Since there are 

two multi-view videos, each has eight videos; therefore the total number of 

monoscopic videos is sixteen.  

The second set of videos concerns multi-view video. Since multi-view video with 

different inter-camera angles are required, different videos are generated which 

contain three different inter-camera angles. First, the inter-camera angles between 

each camera and reference camera (fifth camera;C4) is calculated as shown in Table 

4-2, where each angle is extracted through panning angles from camera rotation 

matrices provided in (Zitnick et al., 2004). 

Figure 4-6 shows multi-view video with different inter-camera angles, notated by 

Φ1, Φ2, and Φ3. The camera separation angles; ΦiR and, ΦiL are the angles between 

centred view to right R and, left L view respectively, i corresponds to certain inter-

camera angle, where i = 1, 2 or 3 and the sequence name reflects all the selected 

camera indices. All possible combinations of multi-view video with different inter-

camera angles are then generated for Break-dancers and Ballet as depicted in 

Tables 4-3 and 4-4. These angles have approximately 4°, 8° and 12° for Φ1, Φ2, and 

Φ3 respectively. 

The selected views are interleaved (multiplexed) into single YUV sequence prior 

to compression via H.264/AVC based multi-view video coding. The multiplexing 

starts with a frame from centre view, followed by one frame from each side. 

 

Table 4-2 Camera Separation angles for convergent multi-view videos 

Camera Number Inter-camera angle for Break-
dancers (deg) 

Inter-camera angle for 
Ballet (deg) 

C0 -15.8 -18.29 
C1 -12.6 -13.37 
C2 -9.25 -8.41 
C3 -4.63 -4.85 
C4 0 0 
C5 +2.69 +3.46 
C6 +7.52 +8.7 
C7 +10.76 +12.73 
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Figure 4-6 Different inter-camera angles for convergent multi-view video 
 

 

Table 4-3 Inter-camera angles for Break-dancers multi-view video 
Φi Φ1 

Sequence name 012 123 234 345 456 567 
ΦiR 3.2 3.35 4.62 4.63 2.69 4.83 
ΦiL 3.35 4.62 4.63 2.69 4.83 3.24 
Φi Φ2 Φ3 

Sequence name 024 135 246 357 036 147 
ΦiR 6.55 7.97 9.25 7.32 11.17 12.6 
ΦiL 9.25 7.32 7.52 8.07 12.15 10.76 

 

Table 4-4 Inter-camera angles for Ballet multi-view video 
Φi Φ1 

Sequence name 012 123 234 345 456 567 
ΦiR 4.92 4.96 3.56 4.85 3.46 5.24 
ΦiL 4.96 3.56 4.85 3.46 5.24 4.03 
Φi Φ2 Φ3 

Sequence name 024 135 246 357 036 147 
ΦiR 9.88 8.52 8.41 8.31 13.44 13.37 
ΦiL 8.41 8.31 8.7 9.27 13.55 12.73 

 

4.1.3 Experimental setup 
H.264/AVC based multi-view video coding has been used via JM software; version 

18.018 (Sühring, 2011). Recent nine coded frames are used to compress multi-view 

videos via H.264/AVC based multi-view video coding. Decoded Picture Buffer (DPB) 

is modified to support this reference frame selection for multi-view video coding. The 

order of reference frame inside DPB follows default order of JM (opposite to coding 

order) which sorts the decoded frames in descending order of their coding direction. 

18 Online: http://iphome.hhi.de/suehring/tml/download/ 
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For simulcast video coding, each view is compressed separately using the recent 

three temporal frames. Search range has been set to cover corresponding points in 

multi-view videos with different inter-camera angles. It is set to 32, 48 and 64 in the 

horizontal direction for multi-view video sequences with Φ1, Φ2, and Φ3 inter-camera 

angles respectively, while search range in the vertical direction is set to 32 among 

all sequences. The average Peak Signal to Noise Ratio (PSNR), of the decoded 

luminance component for reconstructed videos was calculated at different bitrates. 

The bitrate starts from 64 Kbps to 1600 Kbps with 128 as delta step size. 

4.1.4 Results and discussions 
Figure 4-7 and Figure 4-8 present rate-distortion curves when Break-dancers and 

Ballet videos are coded respectively via MVC and simulcast video coding. It can be 

seen that coding performance of multi-view video codec outperforms simulcast video 

codec up to 1.1 dB and 0.3 dB for Break-dancers and Ballet respectively (for Φ1). 

Coding multi-view with small inter-camera angle as Φ1 using multi-view video codec 

is beneficial. It obtains higher coding efficiency than simulcast video coding for 

bitrates up to 1088 Kbps and 320 Kbps for Break-dancers and Ballet respectively. 

Coding performance is decreased when inter-camera angle increases for both multi-

view video datasets. For high inter-camera angle such as Φ3, MVC is beneficial for 

bitrates up to 576 Kbps for Break-dancers, while it obtains inferior results compared 

to simulcast video coding for Ballet. Therefore, multi-view video coding is used for 

Break-dancers dataset with inter-camera angle up to 12°, while it is used for Ballet 

when corresponding angle is 4°. 

It is clear that using multi-view video coding for Break-dancers brings significant 

coding performance with respect to Ballet dataset. Based on these results, the multi-

view video coding efficiency is not only dependant on the target bitrate and inter-

camera angle but also on scene complexity. To clarify this, Temporal Index (TI)19 is 

used among temporal and spatial frames for both datasets (ITU, 2008). Figure 4-9 

shows temporal index, where X-axis and Y-axis are frame numbers and their TI 

respectively. TI curves using both temporal and spatial frames for Break-dancers are 

crossed over while TI curve using temporal frames is lower than the corresponding 

curve for spatial frames using Ballet. The average temporal index using temporal 

and spatial frames are 14.3 and 15 for Break-dancers, while 8.3 and 21.2 are the 

corresponding values for Ballet respectively. From these Figures, Break-dancers 

19 It measures amount of motion difference among successive frames  (ITU, 2008) 
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multi-view video has balanced amount of correlations among temporal and spatial 

frames while Ballet has dominant temporal correlation. 

 

Figure 4-7 Rate-distortion curves for coding Break-dancers videos 

 

 

Figure 4-8 Rate-distortion curves for coding Ballet videos 
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(a) 

 

 
(b) 

Figure 4-9 TI among temporal and spatial frames for a) Break-dancers and b) Ballet 

 

4.1.5 Conclusions 
In this section, the impact of camera separation on the coding performance of MVC 

is investigated for wide-baseline cameras, where inter-camera angle is used to 

define a criterion for suitable use of MVC. From the results, the suitable usage for 

MVC depends on the amount of temporal correlation exist in MVV, where a dataset 

with dominant temporal correlations has lower inter-camera angle threshold (4°) than 

a dataset with balance temporal and spatial correlations (12°). This entails that inter-

camera angle is not a sufficient criterion to decide the best coding solution for the 

86 
 



 

given multi-view video. In fact, scene characteristic plays a more significant role than 

camera separation, where objects’ motion and scene complexity affect the amount 

of blocks that are predicted through spatial frames. 

The following section will explore prediction architectures for H.264/AVC based 

stereoscopic video coding (simplest case for multi-view video coding). 

4.2 Stereoscopic video coding using statistics of block 
matching 

 

4.2.1. Introduction 
In this section, prediction architectures for H.264/AVC based stereoscopic video 

coding are investigated at low bitrate. Quantitative statistics method for H.264/AVC 

based stereoscopic video coding is used to derive RFS and RFO. In the following 

sections, the generated stereoscopic videos are introduced then statistical analysis 

of block matching is conducted. The proposed prediction architecture is validated 

through its coding performance among other prediction architectures and the last 

subsection concludes the outcome by this investigation. 

4.2.2. Stereoscopic videos generation 
Microsoft multi-view video (Break-dancers) has been used which is outlined in 

section 4.1.2. Two additional multi-view videos are considered, Race1 and Exit 

datasets that have different scene characteristics. Race1 dataset has fast global 

motion while Exit dataset large disparity with slow objects’ motion (Zhang et al., 

2011a). Both are generated through capturing the scenes using eight cameras that 

are placed in linear setup. Each view is stored in YUV 4:2:0 format, where its spatial-

resolution is Video Graphics Array (VGA). Race1 MVV is provided via KDDI 

(available online20), where its camera separation is 20 cm and captures 30 FPS. 

Mitsubishi Electric Research Laboratories, MERL provided Exit MVV (available 

online21), where its cameras capture 25 FPS and their camera spacing is 19.5 cm 

(Zhang et al., 2011a). 

Race1 and Exit datasets are decimated, where their luminance components of 

each frame are low pass filtered via Kaiser FIR filter and spatially down-sampled to 

Quarter Video Graphics Array (QVGA) resolution size. 

20 online: www.mmnt.net/db/0/0/ftp.ne.jp/040/KDDI/multiview/Race1 
21 online: ftp.merl.com/pub/avetro/mvc-testseq/orig-yuv/exit/ 
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Stereoscopic videos are generated from Break-dancers, Race1 and Exit such that 

seven stereoscopic videos are generated from each MVV. Figure 4-10 shows the 

frames interleaving for stereoscopic video, where each block represent a frame. 

 

Figure 4-10 Multiplexing frames generated from both cameras into single sequence 

 

4.2.3. Statistical analysis of block matching among reference frames 
 

A statistical analysis is applied so that all coding modes, intra-prediction and rate 

control are enabled. Two bitrates are considered; 64 Kbps and 192 Kbps which 

reflect coding each video at low and medium bitrate respectively. Recent seven 

frames are included in the prediction architecture as shown in Figure 4-11, where T0-

T2 and M0-M3 are the temporal and spatiotemporal frames respectively and S is the 

spatial frame. These frames are sorted in the descending order as depicted in Figure 

4-12. 

 
            (a) 

 
            (b) 

Figure 4-11 Block diagram of reference frames used in the statistical analysis for a) left 
view and b) right view 
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             (a) 

 
            (b) 

Figure 4-12 Reference frame ordering for frames in a) left view and b) right view 

Table 4-5 shows the results for the Break-dancer’s statistical analysis of block 

matching at 64 Kbps and 192 Kbps. These results represent the average statistics 

of coding seven pairs of the stereoscopic adjacent views. From Table 4-5, it can be 

seen that the neighbouring reference frames (nearest temporal and spatial) have 

significant contribution for block matching. Also, from this table, it is obvious that the 

distribution of the block matching amongst reference frames is inconsistent with the 

position of the reference frames indices in the buffer List 0. Reference frame T0 is 

used for predicting the majority of blocks for right and left views at 192 kbps and left 

view at 64 kbps. 

Table 4-5 Statistics of block matching amongst reference frames for Break-dancers using 
the descending order frame indexing at bitrate a) 64 kbps and, b) 192 kbps 

REF T0 T1 T2 S0 M0 M1 M2 M3 
Left 48.23 4.2 3 n/a 40.3 2.5 0.82 0.95 

Right 34.63 2.4 1.7 58.7 1.8 0.45 0.35 n/a 
(a) 

REF T0 T1 T2 S0 M0 M1 M2 M3 
Left 70.4 7.5 4.8 n/a 13.46 2 0.84 1 

Right 54 5.1 3.1 35.31 1.6 0.5 0.39 n/a 
(b) 

Based on the previous results, additional coding performance would be obtained 

through placing the reference frames appropriately based on their block matching 

contributions. Therefore, the reference frames are first indexed according to their 

contributions in block matching using the resulting statistics from the first set of 

experiments beside their spatial position to the current frame, as shown in Figure 4-
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13. Another statistical analysis of block matching is performed using the proposed 

reference frame indexing. The results for Break-dancers are tabulated in Table 4-6. 

It can be seen that the temporal frames have higher contribution in prediction than 

the spatial frames. It entails that coding performance of the stereoscopic video codec 

could be increased by using the proposed reference frame indexing. 

 

            (a) 
 

 
            (b) 

Figure 4-13 Reference frame order (according to their block matching contribution among 
reference frames for coding frames a) left view and b) right view 

 

Table 4-6 Statistics of block matching amongst reference frames for Break-dancers 
using the proposed frame indexing order at bitrate a) 64 Kbps and, b) 192 Kbps 

REF T0 T1 T2 S0 M0 M1 M2 M3 
Left 85.98 4.4 1.92 n/a 5.59 0.78 0.6 0.73 

Right 72 2.96 1.16 22.57 0.35 0.68 0.28 n/a 
(a) 

REF T0 T1 T2 S0 M0 M1 M2 M3 
Left 81.47 7.22 3.28 n/a 5.54 0.93 0.66 0.9 

Right 66.4 5 2 25 0.9 0.4 0.3 n/a 
(b) 

The contribution of the nearest temporal reference frame is increased in the 

proposed reference frame order rather than previous RFO. From Table 4-6, there is 

a relationship between target bitrate and inter-picture prediction. Nearest temporal 

reference frame; T0 has the highest contribution of block matching, however, the 

percentage compared to the remaining reference frames decrease with the growth 

of bitrate. The contribution of the other temporal frames; T1 and T2 increase 

proportionally with the target bitrate. 
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4.2.4. Proposed prediction architecture 
Prediction architecture has been proposed based on the previous block matching 

analysis. Although the results reported in the previous subsection are based on block 

match statistics for one dataset (Break-dancers), it provides a reasonable way to 

reveal the reference frame contribution in terms of block matching since the dataset 

has balanced amounts of temporal and spatial correlation. Four reference frames 

are included in the proposed PA, they are T0, T1, T2 and, S0 or M0
22. They have more 

than 97.5% of block matching of P-frames when coding Break-dancers at 64 Kbps 

and 192 Kbps. Figure 4-14 shows the proposed prediction architecture, for coding 

stereoscopic videos, where the number in each block represents reference frame 

index inside List 0. 

 

         (a) 

 

          (b) 
Figure 4-14 Block diagram of the proposed prediction architecture for coding a) left view 
and b) right view 

 

4.2.5. Results and discussions 
The proposed prediction architecture is evaluated using videos from views number 

3 and 4 of Race1 and Exit datasets. The former dataset has global fast objects 

motion while second dataset has low objects motion and large disparities (Zhang et 

al., 2011a; Khattak et al., 2013). These videos are coded using H.264/AVC based 

stereoscopic video codec. The same sequences are coded via two prediction 

architectures. The first Prediction Architecture (PA) is Sequential View Prediction 

Structure (SVPS) (Zhang et al., 2008). The second prediction architecture is the one 

proposed by Bouyagoub et al. (Bouyagoub et al., 2010). The first prediction 

architecture relies on nearest temporal and spatial reference frames while second is 

22 The last reference frame for right or left view 
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most recent PA amongst IPPP coding structures for stereoscopic video coding. 

Figure 4-15 shows the PSNR results for Race1 and Exit videos. From these results, 

it can be seen that the application of the proposed prediction architecture improves 

the coding gain of the H.264/AVC compared to the same codec that uses PA 

presented by Bouyagoub et al. by up to 0.37 dB. The proposed PA improves coding 

gain of the H.264/AVC to same codec that deploys SVPS by up to 0.49 dB. 

 
(a) 

 

 
(b) 

Figure 4-15 Coding performance of the stereoscopic video codec using the proposed 
prediction architecture among other prediction architectures for a) Race1 and b) Exit 

 

4.2.6. Conclusions 
The Codec that deploys the proposed prediction architecture is found to give better 

coding performance than the same codec that uses the other two prediction 

architectures. By exploiting the information derived from block matching statistics, 
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reference frame ordering is adjusted in a way to be coherent with the role among 

reference frames in terms of inter-picture prediction that entails improving coding 

performance of the codec. The proposed PA outperforms a set of prediction 

architectures that use IPPP coding structure by coding gain up to 0.49 dB. 

The following section will investigate prediction architectures for H.264/AVC 

based multi-view video coding through analysing block matching statistics among 

neighbouring frames. 

 

4.3 Multi-view videos coding using statistics of block 
matching 

 

4.3.1 Introduction 
This section studies H.264/AVC prediction architectures via block matching analysis. 

The philosophy of applying statistical analysis to define reference frames that have 

significant role in block matching while identifying their indices’ order that are 

consistent with their block matching contributions. 

4.3.2 Datasets description and experimental setup 
Different multi-view videos have been used in this investigation that includes Break-

dancers, Ballet, Exit and Race1 datasets. These multi-view videos have been low 

pass filtered and decimated as mentioned earlier in subsections 4.1.2 and 4.2.2. The 

first seven views from each multi-view video are used, where monoscopic video is 

constructed through multiplexing frames that belong to these views using time-first 

ordering (Chen et al., 2009b). 

4.3.3 Statistics of block matching among reference frames 
Block matching is statistically analysed through determining on average how much 

each reference frame is used in predicting P-frame. Intra-prediction and all coding 

modes are enabled.  Break-dancers dataset is compressed via H.264/AVC based 

multi-view video coding using target bitrate of 64 Kbps. Twenty-one reference frames 

have been used in predicting P-frame that belongs to middle view VK as depicted in 

Figure 4-16-a, where T0-T2 and M0-M14 are the temporal frames and spatiotemporal 

frames respectively, while S0-S2 are the spatial reference frames. The frames indices 

are sorted in opposite to coding order as depicted in Figure 4-16-b. The block 

matching statistics are computed during coding Break-dancers MVV. Table 4-7 
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shows this distribution among reference frames, e.g. block matching contribution for 

S0 and M9 are 66% and 0.37% respectively. From Table 4-7, the distribution of the 

block matching amongst reference frames is inconsistent with the position of the 

reference frames’ indices in the buffer List 0. Hence, current bit allocation for 

representing each reference frame could be improved through sorting reference 

frames’ indices in a suitable order. 

 
(a) 

 
(b) 

Figure 4-16 Prediction architecture a) RFS and b) RFO 
 

Table 4-7 Statistics of block matching using opposite to coding order RFO (K=3) 

View number Ti-3 Ti-2 Ti-1 Ti 

View 0   0.02 0.087 0.87 
View 1   0.03 0.22 1.95 
View 2   0.37 0.95 66 
View 3 0.67 1.8 16.85 P 
View 4 0.2 0.57 5.06   
View 5 0.08 0.26 1.67   
View 6 0.09 0.26 2.03   

 

In the second set of experiments, the reference frames indices are sorted 

according to their contributions of block matching beside their spatial position to the 

current frame as shown in Figure 4-17. Another statistical analysis of block matching 

is performed using the proposed reference frame indexing. The results for Break-

dancers sequences are tabulated in Table 4-8. From this table, it can be seen that 

the temporal frames have higher role of block matching than spatial reference frames 

in addition to the majority of prediction came from recent temporal reference frame 

(T0). This finding matches the fact that temporal correlations are higher than the 
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spatial correlations. The statistic of Skip and Intra-Prediction for using the first set of 

indexing reference frames are 40% and 7.6%, while for using the second indexing 

are 55.8% and 5.82%, respectively. The percentage of the macroblocks using the 

Skip mode prediction is increased by 15.8%.  The encoded skipped macroblock cost 

a single bit to signal this mode instead of sending its prediction information. 

Additional coding performance would be achieved by using the proposed reference 

frame indexing. It can also be seen that the percentage of the Intra-coded 

macroblock is reduced by 1.78% which would improve coding performance since it 

is more costly than other coding modes. 

 

Figure 4-17 RFO according to the reference frames contributions of block matching 

 
Table 4-8 Statistics of block matching using the proposed RFO 

View number Ti-3 Ti-2 Ti-1 Ti 

View 0   0.02 0.07 0.29 
View 1   0.01 0.1 1.36 
View 2   0.15 1.18 23.61 
View 3 0.5 1.38 67.64 P 
View 4 0.1 0.22 1.93   
View 5 0.08 0.17 0.73   
View 6 0.04 0.1 0.32   

 

4.3.4 Proposed prediction architectures 
The outcome from the previous statistical analysis is used to derive the proposed 

prediction architecture. Figure 4-18 shows the proposed architectures using 4 and 6 

reference frames. The frames indices are sorted in interleave order, where there is 

no preferable direction for sorting reference frames’ indices (e.g. temporal and spatial 

directions). The numbers in each block represent reference frame index, where Vk, 
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Vk+1, Vk-1 and Vk-2 are current and its three corresponding neighbouring views. There 

is no typical prediction architecture for IPPP coding structure. Therefore, the 

proposed prediction architecture is evaluated alongside five different prediction 

architectures that use IPPP coding structure. The first two prediction architectures23 

(named Typical-A and, Typical-B) are based on the outcomes of Merkle et al. and 

Kaup and Fecker (Merkle et al., 2007a; Kaup & Fecker, 2006). The first Prediction 

Architecture (PA) gives higher priority to temporal reference frames while the second 

places the spatial reference frame first in List 0. The 3rd and 4th prediction 

architectures represent the prediction architectures (mode 1 and mode 3) proposed 

by Sheikh Akbari et al. that use similar RFS with different RFO (Sheikh Akbari et al., 

2007). The 5th prediction architecture is proposed by Fecker and Kaup (Fecker & 

Kaup, 2005). These prediction architectures reflect three different reference frame 

selection categories. Typical-A and Typical-B relies in majority on temporal frames, 

while prediction architecture proposed by Fecker and Kaup relies on spatial frames. 

Prediction architectures proposed by Sheikh Akbari et al. use almost balance 

amounts for temporal and spatial frames. Break-dancers, Ballet, Exit and Race1 are 

coded using these prediction architectures. 

 
(a) 

 
(b) 

Figure 4-18 The proposed prediction architectures using: a) 4 reference frames and b) 6 
reference frames 

4.3.5 Results and discussions 
The Peak Signal to Noise Ratio (PSNR) measurement was used to assess the 

quality of the reconstructed luminance components of the decoded sequences. 

Figure 4-19 and Figure 4-20 show rate-distortion curves when coding Break-

dancers, Ballet, Race1 and Exit datasets at low bitrates; 32, 64 and 96 kbps. From 

Figure 4-19, it can be seen that the proposed prediction architecture improves the 

23 They include the recent three temporal reference frames and nearest neighbouring spatial frame 
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coding performance with respect to other prediction architectures that are based on 

IPPP coding structure. The codec using the proposed prediction architecture (six 

reference frames) provides significant coding gain up to 2.3 dB compared to the 

corresponding codec that deploys PA that is proposed by Fecker and Kaup. It 

improves coding gain using four reference frames by up to 0.43 dB and 0.83 dB 

compared to Typical-A and Typical-B prediction architectures respectively. From 

Figure 4-20, the proposed prediction architecture gives higher coding efficiency than 

the corresponding PA proposed by Sheikh Akbari et al. by up to 0.8 dB. From Figure 

4-19, the proposed PA using 4 frames gets less coding gain improvement to Typical–

A PA in comparison to the one presented by Fecker and Kaup. This indicates the 

importance of relying on temporal frames more than spatial frames  (RFS) in addition 

to putting the index of the nearest temporal frame first in the List.  

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 4-19 (a-d) Coding performance using proposed prediction architectures (4 and 6 
reference frames) among three different prediction architectures for Break-dancers, Ballet, 
Exit and Race1 respectively 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 4-20 (a-d) Coding performance using the proposed PA (4 reference frames) and 
prediction architectures proposed by Sheikh Akbari et al for Break-dancers, Ballet, Exit and 
Race1 respectively 
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H.264/AVC relies on multi-reference frame and coding modes to provide flexibility 

during inter-picture prediction. Coding modes are analysed starting from block size 

of 16 × 16 to 4 × 4 for the proposed PA using six reference frames as shown in Figure 

4-21. It is clear that the coding modes of sub-macroblock partitions are rarely used 

during coding Break-dancers at low bitrate. Since the majority of inter-picture 

prediction comes from few frames using different sizes of macroblock partition, a 

trade-off study among the reference frames and coding modes is applied. The next 

subsection presents the study in terms of computational complexity and coding 

performance of multi-view video coding. 

 
Figure 4-21 Mode distribution among reference frames at low bitrate 

 

4.3.6 Computational complexity and coding performance trade-off 
study 

Different sets of reference frames are selected and evaluated. Their coding modes   

are set into two categories based on mode distribution analysis, where the first 

category enables all coding modes while the second enables macroblock partition 

modes. There are six reference frames; they are T0, T1, S0, S1, M1 and M2. From 

these reference frames, three sets of reference frames are evaluated as shown in 

Figure 4-22, where white blocks are reference frame selection. These sets use the 

first two, four and six reference frames. They are named first, second and third 

reference frame selection; RFS-1, RFS-2 and RFS-3, respectively. The relation 

among them is: RFS-1 ⊆ RFS-2 ⊆ RFS-3. These sets provide 91.25%, 94.56% and 

97.1% of block matching. If computational complexity for RFS-1 is X; then the 

corresponding complexity for 2nd and 3rd are roughly 2 and 3 multiplied by X. 
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(a) 

 
(b) 

 

 
(c) 

Figure 4-22 (a - c) show RFS-1 to RFS-3 respectively 

Four Multi-view videos; Break-dancers, Ballet, Race1 and Exit, have been 

encoded twice via H.264/AVC based MVC at low bitrates. In the 1st phase, all coding 

modes are enabled while in the 2nd set of experiments; sub-macroblock partitions are 

disabled. Table 4-9 show the results for MVC using these reference frame selections 

when all coding modes are enabled. The computational complexity is realised by the 

average encoding time per frame. Table 4-10 shows the average encoding time 

among datasets using different set of reference frames. From this set of experiments, 

it can be observed that the average encoding time per frame is proportional with the 

number of reference frames. ∆PSNR when RFS-2 is used is in the range of -0.08 to 

-0.31 dB with respect to RFS-1. For six reference frames, the corresponding coding 

gain with respect to RFS-1 is in the range of -0.14 to -0.43 dB. ∆PSNR and ∆BR are 

defined by equation 4-4 and equation 4-5 respectively, where PSNR1 and BR1 

represent coding performance when RFS-1 is used, while i is the label of RFS (2 and 

3). 

∆ 𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅𝑀𝑀 = 𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅1 − 𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅𝑀𝑀, 𝑖𝑖 ∈ 2 𝑎𝑎𝑛𝑛𝑎𝑎 3 (4-4) 

∆ BR𝑀𝑀 = 𝐵𝐵𝑅𝑅1 − 𝐵𝐵𝑅𝑅𝑀𝑀, 𝑖𝑖 ∈ 2 𝑎𝑎𝑛𝑛𝑎𝑎 3 (4-5) 

 

Table 4-9 Coding performance when MVC uses all coding modes 
MVV Break-dancers Ballet Race1 Exit 
RFS PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate 

1 34.55 70.1 38.34 65.94 29.54 94.06 34.53 66.18 
2 34.63 70.03 38.49 66.37 29.85 95.23 34.70 67.25 
3 34.69 70.23 38.61 66.02 29.97 95.42 34.72 67.97 

 

Table 4-10 Average encoding time (seconds) per frame using all coding modes 
RFS Break-dancers Ballet Race1 Exit 

1 54 53 37 39 
2 111 104 83 77 
3 161 152 101 108 
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Table 4-11 shows the results when MVC uses macroblock partitions, while the 

corresponding average encoding time per frame is shown in Table 4-12. In the 

second set of experiments, disabling sub-macroblock partition coding modes speeds 

up MVC by on average 26% of the encoding time, while the ∆PSNR is dropped by 

on average 0.1 dB. Coding multi-view video using six reference frames through 

enabling all coding modes gets higher coding gain (by up to 0.34 dB) than the 

corresponding RFS that relies on the nearest temporal and spatial frames alongside 

macroblock partitions. This is achieved at expense of increasing the required 

encoding time to compress the given MVV, where RFS-3 needs on average 3.8 times 

more the required time taken by the RFS-1. 

Table 4-11 Coding performance using macroblock partition sizes 
MVV Break-dancers Ballet Race1 Exit 
RFS PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate 

1 34.41 68.09 38.243 65.65 29.536 94.79 34.423 65.72 
2 34.655 70.12 38.332 65.75 29.729 94.9 34.546 65.82 
3 34.664 70.06 38.392 65.83 29.898 95.3 34.596 65.91 

 

Table 4-12 Average encoding time (sec) per frame using macroblock partition sizes 
RFS Break-dancers Ballet Race1 Exit 

1 39 39 28 28 
2 79 77 59 58 
3 114 112 83 80 

 

4.3.7 Conclusions 
Block matching statistical analysis is used to reveal reference frames that have 

significant contribution of block matching for MVC, where prediction architectures 

using four and six reference frames are proposed. Reference frame selection using 

six frames includes nearest two temporal, two spatial and two spatiotemporal frames 

while interleaved order is used to sort their reference frame indices. The proposed 

architecture outperforms a set of prediction architectures that use IPPP coding 

structure by coding gain up to 2.3 dB. The application of the prediction architecture 

with smaller number of reference frames is preferred at low bitrate. Trade-off study 

among coding efficiency and computational complexity using different set of 

reference frame selections and coding modes is evaluated. For low computational 

complexity MVC, nearest temporal and spatial frames are deployed in RFS while 

coding modes would include macroblock partitions. 
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This section used static reference frame ordering during coding MVV. The next 

section will investigate efficient mechanism for reference frame reordering. 

4.4 Adaptive reference frame ordering algorithm 
 

4.4.1 Introduction 
Multi-view videos have different degree of scene complexity and motion among 

existing objects in the scene. Therefore, it is difficult to unify reference frame 

selection or reference frame ordering for all multi-view videos. E.g. temporal frames 

can be more dominant than other frames as in Ballet dataset or almost balanced 

between temporal and spatial frames as in Break-dancers dataset. 

Reordering reference frames indices inside List 0 buffer would reduce the total 

number of bits required to signal reference frames indices by assigning shorter 

indices for most frequent reference frames. This saves unnecessary bits when 

signalling these indices that consequently lead to improve the coding performance 

of MVC. Therefore, this section focuses on developing efficient mechanism for 

reference frame reordering. The following subsection will exploit observation from 

reference frame ordering using Microsoft datasets. Based on this observation, 

adaptive reference frame ordering algorithm will be proposed. Different applications 

are then discussed, where significant remarks will be concluded. 

4.4.2 Multi-view video coding using static reference frame order 
This subsection investigates how to predict suitable reference frame ordering (RFO) 

at each time slice. A statistical analysis of block matching among reference frames 

has been conducted using prediction architecture depicted in Figure 4-23, where the 

reference frame ordering is static. This analysis determines the contribution of each 

reference frame for predicting P-frame using all coding modes. This analysis is 

deployed during encoding Break-dancers and Ballet at low bitrate. 

The basic idea behind this subsection is to reveal the order of reference frames 

after encoding the P-frame using the following order; T0, T1, S0 and S1. The statistic 

of the block matching amongst reference frames is calculated and used to sort the 

reference frames in descending order. The sorted reference frames are then given 

a label. These labels are tabulated in Table 4-13. There are six reference frame 

orders starting from Label A to Label F and Refi represent either temporal (T) or 

Spatial reference frame (S). The first seven views are used during coding each multi-

view video, where the first, two views; V0 and V1; are not used in this analysis due to 
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unavailability of some reference frames (e.g. S0 and S1). Table 4-14 and Table 4-15, 

show the suitable reference frames order in terms of “labels”, based on the statistics 

of block matching among four reference frames for the first 55 frames from time slice 

t2 to t12. E.g. RFO labels for the frame that belongs to t2 for Break-dancers and Ballet 

are ‘C’ and ‘A’ respectively. It is worth mentioning that reference frames orders 

labelled by ‘A’ and, ‘B’ are similar because their first two reference frames are the 

same (T0 then S0) and they always have the most contribution of block matching 

prediction (the same concept applies to labels ‘C’ and ‘D’). The shaded cells in both 

tables show consecutive frames within the same view (temporal frames) which 

should be coded using different reference frame orders. Also, it can be inferred that 

the suitable reference frame order would be predicted in most cases, using the 

previous temporal frame. 

 

Figure 4-23 Prediction architecture used in investigating reference frame order 

 

Table 4-13 Reference frame orders tagged with different labels 
Case  Ref0 Ref1 Ref2 Ref3 

A T0 S0 S1 T1 
B T0 S0 T1 S1 
C S0 T0 S1 T1 
D S0 T0 T1 S1 
E T0 T1 S0 S1 
F S0 S1 T0 T1 

 

Table 4-14 Labels that reflect the suitable RFO for Break-dancers 
Vk t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 
V2 C C C C D C D E D C C 
V3 B B B B B B A B B B B 
V4 C D C C C C C C C C C 
V5 A A A C C C C C C C C 
V6 C C C C C C C C C C C 
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Table 4-15 Labels that reflect the suitable RFO for Ballet 
Vk t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 
V2 A C D B B B B B B B A 
V3 B B B A B A A A A A B 
V4 A B B B A A B A A B A 
V5 B A B A D B D D C B C 
V6 B A B C C C C C C C C 

 

4.4.3 Proposed adaptive reference frame ordering algorithm 

The previous subsection shows that the RFO for current P-frame is mostly predicted 

through a recent temporal frame. Therefore, adaptive reference frame ordering 

algorithm is proposed that is depicted in Figure 4-24. For a P-frame, it checks first if 

the frame is located in a position, where partial reference frames are available 

(transient state e.g. all P-frames in the first time slice; t0). In this stage, the algorithm 

uses predefined prediction architecture to encode the frame. 

In a non-transient scenario, the algorithm loads the corresponding order of 

reference frames then encodes the P-frame using that order. After that, the algorithm 

loops on all its macroblocks to compute the block matching statistics among all 

reference frames. When there is no scene change, the algorithm sorts the reference 

frames based on their block matching statistics and its new order will be stored and 

applied to the next temporal frame. 

When the video codec compresses frames that belong to a new scene, the 

majority of macroblocks that belong to the first frame in the new scene are intra-

predicted. Hence the algorithm relies on the amount of intra-coded macroblocks to 

detect scene changes. If the percentage of intra-predicted macroblocks exceeds 

certain threshold (60%), then the following P-frames will use similar reference frames 

order to the corresponding P-frames in the transient state (Brandt et al., 2008). 

Therefore, the next frame to be coded that is located within the same time slice will 

use short indices for spatial reference frames through placing the order of these 

frames first in List 0.  

The algorithm would be deployed in both, encoder and decoder where the 

encoder does not need to signal the new reference frame ordering when it occurs. 

The decoder computes block matching statistics using current reference frame 

ordering during motion and disparity compensation. After decoding the current 

frame, the reference frames’ indices are sorted according to the block matching 

statistics. The decoder stores new reference frame ordering to be used for the next 

temporal frame as long as there is no scene changes among decoded frames. 
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Figure 4-24 Adaptive reference frame ordering algorithm 
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4.4.4 Proposed algorithm applications 

There are two applications that would benefit from the proposed Adaptive Reference 

Frame Ordering algorithm (ARFO). The first application is coding given multi-view 

video by PA that contains many reference frames, while the latter is coding a 

sequence that contains hard scene changes. 

The proposed algorithm is applied to prediction architectures (mode 1 and mode 

3) proposed by Sheikh Akbari et al. to code four multi-view videos, Break-dancers, 

Ballet, Race1 and Exit (Sheikh Akbari et al., 2007). These architectures use five 

reference frames, where their RFO are clearly stated. These architectures use three 

temporal, spatial and spatiotemporal reference frames. The first architecture (mode 

1), places spatial and spatiotemporal frames indices first, while the second 

architecture (mode 3), places temporal frames in the beginning of the other reference 

frames. The proposed algorithm starts with the same RFO that is defined in each 

mode. Frames located in the time slice below t3 will be coded using the available 

reference frames (transient state). After t3, the algorithm starts to adapt the reference 

frame ordering dynamically. 

The proposed algorithm is validated also by integrating it to PA; mode 3 proposed 

by Bilen et al. when coding a sequence that contains hard scene changes (Bilen et 

al., 2006). This architecture defines clearly RFO and it uses a smaller number of 

reference frames than prediction architectures proposed by Sheikh Akbari et al. The 

sequence is generated from Break-dancers, Ballet, Race1 and Exit multi-view 

videos. To generate sequence with hard scene changes, Microsoft datasets are 

decimated first to QVGA to match the spatial-resolution of both KDDI and MERL 

datasets. Then, the first six frames from each view within each dataset are used to 

generate the sequence where sixteen consecutive frames from each video are 

concatenated to form multi-view video sequence, thus the resulted sequence 

contains 192 frames.  

4.4.5 Results and discussions 
Figures 4-25 and 4-26 show the coding performance of the multi-view video codec 

using the proposed adaptive reference frame ordering algorithm in comparison to 

static reference frame ordering proposed by Sheikh Akbari et al. It can be seen that 

the proposed algorithm gives higher coding performance compared to the static 

reference frame ordering by up to 0.2 dB. From these figures, the ARFO algorithm 

is less efficient when applying to videos with dominant temporal correlation (e.g. 

Ballet and Exit videos). 
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(b) 

 
 

 
(c) 
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(d) 

 

Figure 4-25 (a-d) Coding performance using the proposed algorithm when the PA (mode 1) 
proposed by Sheikh Akbari et al. is used for Break-dancers, Ballet, Exit and Race1 
respectively (Sheikh Akbari et al., 2007) 
 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 4-26 (a-d) Coding performance using the proposed algorithm when the PA (mode 3) 
proposed by Sheikh Akbari et al. is used for Break-dancers, Ballet, Exit and Race1 
respectively (Sheikh Akbari et al., 2007) 

In the second application, the proposed algorithm is evaluated when coding 

sequence which contains hard scene changes. Results are shown in Figure 4-27 

and Figure 4-28, where BR, BA, EX and, RA stand for Break-dancers, Ballet, Exit 

and Race1 respectively. From these figures, the proposed algorithm improves 

coding performance compared to the use of static reference frame ordering when 

scene change occurs. The proposed algorithm saves significant bitrates, up to 6.2% 

with respect to static reference frame ordering. 
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Figure 4-27 Number of bits per coded picture when ARFO algorithm is used with prediction 
architecture proposed by Bilen et al. (Bilen et al., 2006) 
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Figure 4-28 Coding performance using the proposed ARFO algorithm when the prediction 
architecture proposed by Bilen et al. is used (Bilen et al., 2006)  

4.4.6 Conclusions 

In this section, an adaptive reference frame ordering algorithm is proposed. It 

updates reference frames ordering through placing reference frame indices that have 

significant role of block matching first inside List 0. Reference frame order is 

predicted by analysing block matching statistics for previous temporal frame, where 

suitable order is exploited. This saves un-necessary bits required for addressing 

reference frame indices. Therefore the algorithm improves the coding performance 

for the prediction architecture which relies on multiple reference frames (up to 0.2 

dB). When a video contains hard scene changes, the proposed algorithm updates 

reference frame order through placing spatial reference frames first. Hence the 

proposed algorithm saves significant amount of bits up to 6.2%. 

The outcomes for the investigations applied for symmetric spatial-resolution multi-

view video coding are summarised in the next section. 

 

4.5 Summary of the investigations 
The coding performance for multi-view video codec depends on block matching 

efficiency that exploits inter-view correlations among neighbouring views. Impact of 

camera separation on the coding performance of multi-view video coding is 

investigated. Based on coding results for wide baseline convergent multi-view video, 

inter-camera angle does not provide sufficient criterion to be used for selecting a 

suitable coding solution for a given multi-view video. Scene complexity has major 
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effect on inter-camera angle threshold. The dataset with a dominant temporal 

correlation has lower threshold (4°) than the dataset with balanced spatial-temporal 

correlation (12°). 

Prediction architectures are investigated mainly to identify reference frame 

selection when H.264/AVC based MVC operates at low bitrates. Statistical analysis 

of block matching among reference frames is used to derive reference frame 

selection and their reference frame ordering. Based on block matching statistics, 

prediction architectures have been proposed, using four and six reference frames. 

The reference frame selection that uses six frames includes the nearest two 

temporal, two spatial and two spatiotemporal frames. Interleaved RFO is used to sort 

reference frames indices. The proposed prediction architectures yield superior 

coding performance than other prediction architectures, by coding gain up to       2.3 

dB. Since few reference frames with a subset of coding modes have the majority of 

block matching contributions, a trade-off study among coding efficiency and 

computational complexity is conducted. For low computational complexity MVC, the 

nearest temporal and spatial frames to current P-frame are used for RFS while 

coding mode deploys only macroblock partitions. 

Reference frame reordering is studied to provide an effective solution for ordering 

indices of reference frames. Based on block matching statistic results, the RFO 

would be predicted usually through the previous temporal frame. When the scene 

changes, reference frames indices are reordered in a way that places spatial 

reference frames first in List 0. An adaptive reference frame ordering algorithm is 

proposed. The proposed algorithm is tested among other prediction architectures 

that use static RFO. When coding MVV using multiple reference frames, it gets a 

coding gain up to 0.2 dB with respect to prediction architectures that are proposed 

by Sheikh Akbari et al. It saves bitrate up to 6.2% with respect to the PA that is 

proposed by Bilen et al. when coding MVV that has multiple scene changes. 

Mixed spatial-resolution MVC is investigated in the next chapter. This coding 

approach is an efficient solution when coding MVV at low bitrates. The next chapter 

will focus on studying the effect of inter-view prediction direction on the coding 

performance of MVC. Different decimation and interpolation methods will be 

evaluated in terms of coding gain and computational complexity. Prediction 

architectures will be investigated for reference frame selection and reference frame 

ordering through analysing block matching statistics among the reference frames. 

The feasibility of improving visual quality for the coded low spatial-resolution frames 

will be explored in order to reduce blurriness artefacts at the receiver side.  
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CHAPTER 5. MIXED SPATIAL-RESOLUTION MULTI-
VIEW VIDEO CODING 

 

This chapter provides a set of studies toward investigating prediction architectures 

for asymmetric (mixed) spatial-resolution multi-view video coding when it operates 

at low bitrates. Particularly, the inter-view prediction is the main point for the 

investigations, where frames that belong to neighbouring views have different 

spatial-resolution (two interleaved sets of views that have frames with different 

spatial-resolution). Figure 5-1 shows the block diagram for the studies reported in 

this chapter. Circles labelled 1, 2, 3 and 4 reflect studies that investigate impact of 

inter-view prediction direction, explore different decimation and interpolation 

methods, derive RFS and RFO and investigate how to enhance visual quality for low 

spatial-resolution frames. 

 
Figure 5-1 Block diagram for the studies conducted in mixed spatial-resolution multi-view 
video coding 

Figure 5-2 shows the pre-processing and post-processing needed for mixed 

spatial-resolution multi-view video coding. At the sender side, frames that belong to 

subset of views are decimated by filtering and down-sampling prior to coding. At the 
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receiver side, the sequence is decoded, where low spatial-resolution frames are 

interpolated by up-sampling and filtering. 
The first investigation explores the effect of using a low spatial-resolution frame 

to predict its neighbouring full spatial-resolution frame and vice versa. This would 

provide clear insight about impact of resolution reduction on inter-view prediction. 

Since two views are sufficient to conduct this investigation, stereoscopic video coding 

is used. Different methods in decimation and interpolation reference frames are 

evaluated in terms of coding gain and computational complexity. Statistical analysis 

of block matching will be conducted, where the results revealed by the corresponding 

analysis for symmetric multi-view video coding are used to identify reference frames 

candidates. Based on this statistical analysis, both RFS and RFO are derived. Multi-

view videos have different characteristics of disparity, objects’ motion and texture 

complexity. Therefore another detailed statistical analysis is applied to derive the 

correlation among neighbouring views; that entails omitting reference frames from 

RFS that would have insignificant amount of block matching. Adaptive reference 

frame ordering algorithm (reported in section 4.4), is deployed for mixed spatial-

resolution multi-view video coding in order to evaluate coding efficiency when coding 

sequence that contains hard scene changes. The last section looked into enhancing 

the visual quality for coded low spatial-resolution frames. By exploiting information 

that exists in the neighbouring full spatial-resolution frame, the amount of blurriness 

could be minimised. 

 

Figure 5-2 Mixed spatial-resolution multi-view video structure 

 

The following section investigates the effect of inter-view prediction direction on 

the coding performance of stereoscopic video coding. 
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5.1 Impact of inter-view prediction direction on the coding 
performance of stereoscopic video coding 

 

5.1.1 Introduction 
Mixed spatial-resolution MVC implies additional process to be applied for reference 

frames prior to Inter-View Prediction (IVP), where frames’ spatial-resolutions have to 

be similar before applying block matching. Figure 5-3 demonstrates different cases 

of IVP among reference frames with different spatial-resolution, where FR and LR 

stand for Full spatial-Resolution and Low spatial-Resolution frames. In this Figure, 

shaded block with dark grey represents reference frame while shaded block with light 

grey represents current frame to be coded via IVP. The first two cases are IVP, where 

REference Frame (REF) has to be decimated or interpolated in order to be used as 

a source to predict low spatial-resolution or full spatial-resolution frame respectively. 

The 3rd case is IVP with symmetric spatial-resolution (REF is used directly in block 

matching). Figure 5-4 shows IVP among asymmetric spatial-resolution frames. 

Figure 5-4-a illustrates the process of predicting low spatial-resolution frame, where 

filtering24 full spatial-resolution REF and down-sampling are applied prior to block 

matching. Figure 5-4-b shows the process needed to predict FR frame via LR frame 

that involves up-sampling and filtering25. 

 
(a) 

 

 
(b) 

 
(c) 

Figure 5-3 Different inter-view prediction for mixed spatial-resolution MVC 

 

 
(a) 

 

 
(b) 

24 It uses the same filter that is applied in decimating un-coded frames in the pre-processing stage 
25 It uses the same filter that is applied in interpolating coded frames in the post-processing stage 
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Figure 5-4 Two cases where reference frames have to be decimated or interpolated 
 

In the following subsections, the effect of prediction direction is studied among 

mixed spatial-resolution stereoscopic video coding, where symmetric quality is 

applied when quantising transformed residual coefficients. The following subsection 

describes the datasets and pre-processing steps. 

5.1.2 Mixed spatial-resolution stereoscopic videos preparation 
Six multi-view videos have been used in this chapter. They are Break-dancers, Exit, 

Race1, Akko & Kayo, Ballroom and Rena. These videos are available online and 

have been recommended in the common test conditions of multi-view video coding 

(Su et al., 2006). Break-dancers, Exit and Race1 have been described earlier in 

subsections 4.1.2 and 4.2.2. Table 5-1 describes the other videos in terms of camera 

setup and frame rate. These videos are provided as YUV 4:2:0, where frame spatial-

resolution is VGA. 

Table 5-1 Datasets description 

Sequence Number of 
Cameras 

Camera 
Setup 

Camera 
Separation (cm) 

Frame 
rate Provider 

Ballroom26 8 1D linear 19.5 25 MERL 
Akko & 
Kayo 100 (5 x 20) 2D array 5 30 Nagoya 

university 

Rena27 8 1D linear 5 30 Nagoya 
university 

Mixed spatial-resolution stereoscopic videos have been pre-processed through 

two stages. Two views are selected from each MVV, where their spatial-resolution is 

first decimated by a factor of two28 in the horizontal and vertical directions. This would 

provide sequences that fit requirements for low bitrate applications. The original 

spatial-resolution of the luminance components have been down-sampled using 

MPEG-4 down-sampling filter for all YUV videos. Break-dancers sequence has been 

converted from RGB into YUV format prior to down-sampling all colour channels. 

The choice of down-sampling filter was recommended in several studies (Chen et 

al., 2008a; Brust et al., 2010; Smirnov et al., 2010b). The outputs from the decimation 

are considered as full spatial-resolution videos. The second stage focuses on 

generating mixed spatial-resolution stereoscopic videos, where the target view that 

26 Online: ftp://ftp.merl.com/pub/avetro/mvc-testseq/orig-yuv/ballroom/ 
27 Akko & Kayo and Rena datasets are available online: http://www.tanimoto.nuee.nagoya-u.ac.jp/ 
28 It has been subjectively shown that asymmetric stereoscopic video coding using factor of two 
provides similar perceived quality to symmetric stereoscopic video coding (Aflaki et al., 2010) 
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should have low spatial-resolution frames is obtained through applying additional 

decimation by a factor of two in both spatial directions. Table 5-2 lists low pass filters’ 

coefficients that are used for decimating and interpolating frames, where MPEG filter 

with 13 taps and AVC filter with 6 taps are used for decimation and interpolation 

processes respectively. 

Table 5-2 Low pass filters coefficients used for decimation and interpolation 
MPEG Filter {2, 0, -4, -3, 5, 19, 26, 19, 5, -3, -4, 0, 2} / 64 
AVC Filter {1, -5, 20, 20, -5, 1} / 32 

 

5.1.3 Experimental Setup 
The first two views in each multi-view video sequence are coded through JM 18.0. 

IPPP coding structure is used, where each frame belonging to base view is predicted 

from a recent temporal frame. Frames that belong to dependent view are predicted 

through recent temporal and neighbouring spatial frames as shown in Figure 5-5. 

This figure shows two inter-view prediction directions. First direction deploys inter-

view prediction via FR reference frames while the second applies inter-view 

prediction by LR reference frames. One hundred frames in each view are coded by 

stereoscopic video coding, where the frames from both views are interleaved via 

time-first coding order (Chen et al., 2009b). All coding modes are enabled while 

symmetric quality is applied for both prediction directions. This avoids any 

compensation for the negative effect of sub-sampled and up-sampled reference 

frames. Therefore the results will not be biased toward different quality in mixed 

spatial-resolution stereoscopic video. Quantisation step sizes are adjusted to match 

MVC common test conditions as shown in Table 5-3 (Su et al., 2006).  

 

 

(a) 
 

(b) 
Figure 5-5 Mixed spatial-resolution stereoscopic video codec with two different inter-view 
prediction directions, where base view is a) FR and b) LR 
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Table 5-3 Quantisation parameter setting 

Sequence High quality - 
QPL Medium quality -QPM low quality - QPH 

Break-dancers 22 26 31 
Race1 24 26 28 
Exit 26 29 31 
Rena 23 28 33 
Akko & Kayo 24 29 36 
Ballroom 29 31 34 

 

5.1.4 Results and Discussions 
The coding performance for the two inter-view prediction directions is shown in 

Figure 5-6. It shows rate-distortion curves, where the horizontal and vertical axes are 

bitrate (Kbps) and PSNR (dB) respectively. Blue and red curves represent coding 

performance when FR or LR frames are used in base view. 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure 5-6 (a-f) Rate-distortion using mixed spatial-resolution stereoscopic video coding for 
Akko & Kayo, Ballroom, Break-dancers, Exit, Race1 and Rena respectively 

From these Figures, mixed spatial-resolution stereoscopic video coding that uses 

FR frames as base view has higher coding performance than the corresponding 

codec that uses LR frames at low bitrates. The first IVP direction (blue curve) 

increases coding gain by on average 0.63 dB while it saves 6.2% of bitrate compared 

to IVP direction that uses LR frames in base view. 
Mixed spatial-resolution stereoscopic video coding provides higher coding gain 

when FR frames are used in base view rather than LR frames. This is due to higher 

prediction accuracy that comes from neighbouring spatial frames. Statistical analysis 

for IVP has been applied at low bitrate. The amounts of blocks that are predicted via 

spatial frames that belong to base view in both IVP directions are compared. Figure 
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5-7 illustrates the amount of IVP in percentage across Y-axis for six stereoscopic 

videos while X-axis is the frame number that belongs to the dependent view. The 

average inter-view percentage in both prediction directions among every video is 

calculated. The ratio among both IVP directions is then obtained. The ratio is in the 

range of 1.2 to 8.8, where Break-dancers and Akko & Kayo videos have the lowest 

and highest ratios respectively.  

The coding performance for mixed spatial-resolution stereoscopic video codec 

depends on the type of frame resolution in base view. From the previous analysis 

results, deploying full rather than low spatial-resolution frames in the base view 

provides better inter-view prediction. When FR frames are used in base view, the 

reference frame has to be decimated to provide same spatial-resolution for the target 

frame that belongs to dependent view. Therefore decimated reference frame and 

target frame have similar information loss. However, the corresponding asymmetric 

coding that deploys LR frames in base view suffers from degradation in prediction 

efficiency. This is due to interpolation that is applied for the reference frame prior to 

prediction. The interpolated reference frame has blurriness which is strongly located 

around edges while the target frame maintains its high frequency (details), this would 

reduce the amount of inter-view prediction. 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 
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(e) 

 

 
(f) 
 

Figure 5-7 (a-f) Amount of IVP for frames that belong to dependent view for Akko & Kayo, 
Ballroom, Break-dancers, Exit, Race1 and Rena respectively 
 

Brust et al. investigated the effect of inter-view prediction direction on 

stereoscopic video coding (Brust et al., 2010). They reported similar coding efficiency 

for both inter-view prediction directions at low bitrates. Since their study considers 

asymmetric quality among mixed spatial-resolution stereoscopic videos, their results 

are biased to asymmetric quality setting. Delta quantisation for asymmetric coding 

that deploys LR frames (range of 7 to 9) is three times higher than the corresponding 

codec that uses FR frames in base view (range of 2 to 3). The following subsection 

will investigate the effect of asymmetric quality on inter-view prediction in the context 

of mixed spatial-resolution stereoscopic video coding. 
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5.1.5 Effect of asymmetric quality on the inter-view prediction 
The relationship between inter-view prediction and quantisation parameter is 

explored in the context of mixed spatial-resolution stereoscopic video coding. 

Statistical analysis of block matching is deployed to reveal this relationship. Six 

videos are coded by H.264/AVC based stereoscopic video coding. These videos are 

Akko & Kayo, Ballroom, Break-dancers, Exit, Race1 and Rena. Low spatial-

resolution frames are used in the base view while full spatial-resolution frames are 

used in the dependent view. Asymmetric quality has been applied such that delta 

quantisation (∆QP) values among neighbouring views are set from 0 to 10 with step 

size of 2. Low spatial-resolution frames are coded via lower QP than full spatial-

resolution frames. Block matching statistics are analysed for blocks that are inter-

view predicted using every quality setting.  

Figure 5-8 shows the amount of inter-view prediction (%) when ∆QP changes for 

different stereoscopic videos, where ∆QP and inter-view prediction amount (%) are 

presented along X-axis and Y-axis respectively. From this figure, there is positive 

linear relationship among inter-view prediction and ∆QP parameter. Linear 

regression is used to analyse the data by using SPSS statistical software. Figure 5-

9 shows curve fitting, where independent variable is ∆QP and dependent variable 

(response) is Inter-View Prediction (IVP). According to regression analysis results, 

there is a strong correlation29 (0.665) among delta QP and IVP, where 44% of the 

variation in the inter-view prediction can be explained by asymmetric quality. The 

relationship of IVP and ∆QP based on six multi-view videos would be described by 

the following equation; 

IVP = 1.492 + 1.096 ΔQP (5-1) 

Although deploying large ∆QP among mixed spatial-resolution frames would 

increase amount of inter-view prediction, it increases the amount of blockiness for 

full spatial-resolution frames that are coded by large QP (low-quality). Blocking 

artefacts degrades 3D perception since it is visible when low quality view is less than 

the threshold; approximately 32 dB (De Silva et al., 2012; Gurler & Tekalp, 2013). 

Therefore, asymmetric quality is a great challenge in the context of visual perception 

especially when the codec operates at low bitrates. 

29 Strong correlation for 0.665 is based on the interpretation described by Evans (Evans, 1996) 
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Figure 5-8 Relationship among ΔQP and inter-view prediction in percent 

 

 

Figure 5-9 Curve fitting among delta quantisation parameter and IVP 

 

5.1.6 Conclusions 
This section investigated the effect of different inter-view prediction direction on the 

coding performance of mixed spatial-resolution stereoscopic video coding. At low 

bitrate, mixed spatial-resolution stereoscopic video coding provides superior coding 

performance using FR frames rather than LR frames in base view. When FR frames 

are used in base view, the reference frame and target frame have similar information 

loss due to decimation. However, the corresponding asymmetric coding that deploys 
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LR frames in base view suffers from degradation in prediction efficiency. This is due 

to blurriness that is consequence of interpolating low spatial-resolution reference 

frame, while the target frame maintains its high frequency (details); this would affect 

negatively the amount of inter-view prediction. The results obtained by Brust et al. 

are affected by asymmetric quality settings.  

Mixed spatial-resolution multi-view video coding deploys decimating and 

interpolating reference frames in order to provide the same spatial-resolution for 

disparity estimation. The method used in decimation or interpolation is vital since it 

will affect integer and sub-pixel samples of reference frames. Therefore, the next 

section will examine different methods for decimating and interpolating reference 

frames. The objective is to find a suitable method for each process in terms of coding 

gain and computational complexity.  
 

5.2 Different decimation and interpolation methods 
 

5.2.1 Introduction 
Decimation and interpolation are inevitable processes, where spatial-resolution for 

reference frame and target frame has to be the same prior to block matching. 

Decimation and interpolation are deployed at both encoder and decoder sides. 

Encoder needs to provide reference frames with the same spatial-resolution to 

current (target) frames during disparity estimation, while decoder performs these 

processes to decode current frames during disparity compensation. Since reference 

frame has sixteen samples, finding a suitable method for each process is important 

to reduce computational complexity overhead. The next two subsections will explore 

suitable methods for decimating and interpolating reference frames in terms of 

coding gain and computational complexity. 

5.2.2 Different methods for decimating reference frames 
This subsection explores different methods for decimating reference frames. Figure 

5-10 provides an illustration for inter-view prediction among mixed spatial-resolution 

frames, where FR reference frame (F1’) is low pass filtered and down-sampled prior 

to disparity estimation of the target frame (F2). 
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Figure 5-10 Inter-view prediction using FR reference frame 

There are two methods for decimating reference frames. The first method 

(conventional decimation method) is widely used among mixed spatial-resolution 

stereoscopic video coding. This method filters and down-samples each sample 

separately (grey rectangles in Figure 5-10 represent F1’ samples). Figure 5-11-a 

shows this method, where LPF and head-down arrow stand for low pass filtering and 

down-sampling respectively. Aflaki et al. proposed high performance decimation 

method that is depicted in Figures 5-11-b (Aflaki et al., 2013b). High performance 

method gets first integer-pixel sample (I-pel) from the corresponding sample (FR). 

Half-pixel (H-pel) and Quarter-pixel (Q-pel) samples at LR are obtained from integer 

and sub-pixel samples at low spatial-resolution. 
 

 

 
(a) 

 
(b) 

Figure 5-11 Decimation methods a) conventional and b) high performance method 
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Six mixed spatial-resolution stereoscopic videos are coded at low bitrates via 

H.264/AVC based stereoscopic video coding. These datasets are recommended by 

common test conditions for MVC (Su et al., 2006). Each video contains two-hundred 

frames, where base view uses FR frames. Full spatial-resolution reference frames 

are decimated before deploying disparity estimation. Two decimation methods are 

applied, where their consumed time during decimation and, coding performance are 

reported. Figure 5-12 shows rate-distortion curves for stereoscopic video coding. 

Conventional and high performance methods are presented using blue and red 

curves respectively. Bitrate (Kbps) and PSNR for luminance component (dB) are 

presented across X-axis and Y-axis respectively. From these figures, high 

performance method has slightly better coding performance than conventional 

method by saving bitrate on average by 0.88 Kbps.  

Figure 5-13 shows the total time consumed using these decimation methods. The 

measurements reflect the amount of computational complexity for each decimation 

method. All the experiments were carried out on a computer with Intel i7 CPU and 

memory of 16 GB. The total time consumed during coding Break-dancers is different 

than other datasets, as its frame’s spatial-resolution is bigger than other datasets by 

a factor of 2.56. The average time required for conventional and high performance 

decimation methods are 112 seconds and 90 seconds respectively. 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 
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(e) 

 

 
(f) 
 

Figure 5-12 (a-f) Rate-distortion using different decimation methods for Akko & Kayo, 
Ballroom, Break-dancers, Exit, Race1 and Rena respectively 

 

 
Figure 5-13 Total time consumed during decimating reference frames 

131 
 



 

High performance method is suitable for decimation in terms of coding gain and 

computational complexity. This method decreases the time needed for decimation 

by 24% compared to conventional decimation method without degrading quality of 

reference frames. The main part of the decimation complexity is the number of filter 

coefficients used, where large number of filter coefficients increases the amount of 

time needed for filtering the reference frame. The conventional method uses the 

same low pass filter (eleven non-zero coefficients) for sixteen samples. The high 

performance method applies this filter to obtain integer samples. It uses AVC 

interpolation filter (6 non-zero coefficients) three times to get half-pixel samples, 

while bilinear filter is used for quarter-pixel samples. 

The high performance method distributes samples in a different way than the 

conventional method as depicted in Figure 5-14. Yellow, blue and green represent 

integer-pixel, half-pixel and quarter-pixel respectively. The filtered sub-pixels have 

uniform distribution when high performance method is used as shown in Figure 5-

14-a. The filtered sub-pixels are localised in the first quadrant as shown in Figure 5-

14-b when conventional method is applied. This results in high degree of similarity 

among samples when conventional method is used while samples obtained by high 

performance have less similarity. In order to realise the similarity among integer pixel 

and its sub-pixels, average Sum of Square Error (SSEavg) is computed by using both 

methods for the first frame that belong to Akko & Kayo. Integer-pixel and its sub-

pixels are used to calculate SSEavg for luminance component. Table 5-4 shows 

SSEavg, when high performance and conventional decimation methods are applied 

to first FR reference frame. From this table, samples have more similarity (less 

SSEavg), when the conventional method is applied rather than the high performance 

method. 

 

  
(a) (b) 

Figure 5-14 (a-b) Integer and sub-pixels that represent reference frame samples using high 
performance and conventional decimation methods respectively 
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Table 5-4 SSEavg for luminance component using high performance and conventional 
decimation methods 

SSEavg among all 

samples with 

respect to integer 

sample (I-Pel) 

FR reference frame is decimated 

by high performance method 

FR reference frame is decimated 

by conventional method 

I-Pel Q-Pel H-Pel Q-Pel I-Pel Q-Pel H-Pel Q-Pel 

I-Pel 0 14.4 57.3 115.5 0 3.1 11.9 25.5 

Q-Pel 26.92 41.1 80.9 136.4 5.5 8.2 16.6 29.8 

H-Pel 107.4 118.4 158.5 212 21.1 23.5 31.8 44.7 

Q-Pel 217.4 225.1 263.3 317.3 45.7 47.6 55.6 68.2 
 

5.2.3 Different methods for interpolating reference frames 
Low spatial-resolution frames in base view need to be interpolated prior to disparity 

estimation as shown in Figure 5-15. Interpolating reference frames does not bring 

new information or cause information loss. The low spatial-resolution frame is up-

sampled by a factor of two in the horizontal and vertical directions. The padded pixels 

are then generated via low pass filter. 
 

 
Figure 5-15 Inter-view prediction using LR reference frame 

The conventional interpolation method handles each sample separately, where 

each is up-sampled and filtered via AVC interpolation filter (6-taps). The method is 

illustrated in Figure 5-16-a. The second method is high performance interpolation 

method that is opposite to the corresponding high performance decimation method. 

It interpolates integer-pixel sample using corresponding low spatial-resolution 

reference frame. This integer sample is used to estimate half-pixel samples. The 

remaining samples are obtained via integer-pixel and half-pixel samples that belong 

to full spatial-resolution frame as shown in Figure 5-16-b. 

Six mixed spatial-resolution stereoscopic videos are coded, where each has two-

hundred frames. Base view has LR frames while dependent view has FR frames. 

Two interpolation methods are compared in terms of coding gain and computational 
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complexity. Figure 5-17 shows rate-distortion curves for stereoscopic video coding, 

where blue and red curves are coding performances using conventional and high 

performance methods respectively. Bitrate (Kbps) and PSNR for luminance 

component (dB) are presented across X-axis and Y-axis respectively. From these 

figures, conventional and high performance interpolation methods give the same 

coding performance. Figure 5-18 shows total time consumed during interpolating 

reference frames, where UP refers to up-sampling. All the experiments were carried 

out on a computer with Intel i7 CPU and memory of 16 GB. From this figure, 

interpolating samples using the high performance method reduces the amount of 

time needed for interpolation up to 56% with respect to time needed by the 

conventional method. AVC interpolation filter (6-coefficients) is used by sixteen and 

four times when the conventional and high performance interpolation methods are 

used respectively. Hence, the conventional method consume more time for filtering 

than the high performance method. 
 

 

 
(a) 

 
(b) 

Figure 5-16 (a-b) Reference frame interpolation using conventional and high performance 
methods respectively 
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(a) 

 
(b) 

 

 
(c) 
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(d) 

 

 
(e) 

 

 
(f) 
 

Figure 5-17 (a-f) Rate-distortion using different interpolation methods for Akko & Kayo, 
Ballroom, Break-dancers, Exit, Race1 and Rena respectively 
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Figure 5-18 Total time consumed during interpolating reference frames 
 

5.2.4 Conclusions 
This section investigated different methods for decimating and interpolating 

reference frames. Conventional methods for decimation and interpolation would cost 

significant amount of time, where each sample is filtered separately. High 

performance methods reduce the amount of time needed for decimation and 

interpolation through filtering fewer numbers of samples. According to coding 

performance and time needed for filtering, the high performance methods are 

recommended for decimation and interpolation. Disadvantage from relying on high 

performance method is removing the one-to-one relationship among samples at low 

and full spatial-resolution. Conventional method maintains this relationship, where 

each sample depends on the corresponding sample presented at different spatial-

resolution. 

The following section investigates the prediction architectures for mixed spatial-

resolution multi-view video coding. Statistical analysis of block matching among 

candidate reference frames will be used to derive prediction architecture.  

 

5.3 Mixed spatial-resolution multi-view video coding using 
statistics of block matching 

 

5.3.1 Introduction 
This section investigates prediction architectures for mixed spatial-resolution MVC. 

Through block matching analysis among neighbouring reference frames, RFS and 

RFO will be defined. Two block matching statistical analyses are applied separately 
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for both, full and low spatial-resolution frames. Since the contribution of reference 

frames change with time, prediction via spatial and temporal reference frames should 

be avoided when the expected amount of block matching for each frame is 

insignificant. Therefore, a study is conducted to investigate the feasibility of 

dynamically skipping these reference frames. The proposed prediction architecture 

will then be presented and evaluated among other prediction architectures in terms 

of coding performance, computational complexity at the encoder side and memory 

consumption at the decoder side. Adaptive reference frame ordering algorithm 

(presented in section 4.4) will be integrated with the proposed architecture. The 

outcomes will be concluded at the end of this section. 

5.3.2 Statistics of block matching among reference frames 
The outcomes from the previous block matching statistics (discussed in section 4.3) 

are used to preliminary define RFS that is deployed in this subsection. Accordingly, 

six reference frames; T0, T1, S0, S1, STL and STR are used in the analysis as shown 

in Figure 5-19. Two separate block matching statistics are analysed for Break-

dancers. Four successive views are coded via H.264/AVC based multi-view video 

coding, where different combinations are coded. Five sequences30 are examined; 

their output results are averaged to reveal the block matching contribution for each 

reference frame. The reference frame ordering for each analysis is depicted in Figure 

5-20. Based on the results derived from the first section (5.1); FR reference frames 

indices are placed first in List 0 when coding FR frames as shown in Figure 5-20-a. 

Predicting LR frames via full spatial-resolution reference frames do not negatively 

affect inter-view prediction. Therefore, RFO follows the corresponding order for 

symmetric multi-view video coding (Figure 5-20-b) when conducting block matching 

analysis for LR frames.  

Table 5-5 shows the average results for Block Matching (BM) statistics in 

percentage among reference frames when coding five sequences. From this table, 

two most significant reference frames for predicting full spatial-resolution frame are 

T0 and S0. These frames contribute by on average 91.1%. For low spatial-resolution 

frame, both T0 and S1 have significant role of block matching that is on average 

92.2%. Coding LR frames provide easier scenario to define RFS than FR frames. 

When coding LR frames, two closest reference frames (temporal and spatial) provide 

the majority of block matching with respect to the remaining reference frames. 

Predicting FR frames are affected negatively by the neighbouring reference frames 

that have lower spatial-resolution. This increases the amount of blocks that are 

30 Starts from sequence that includes view 0 to 3 until last sequence that has view 4 to 7 
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temporal predicted (83.3%). Spatiotemporal reference frames provide less than 1% 

when predicting FR frames while they contribute by more than 5% for LR frames. 

Figure 5-21 presents RFS and RFO when number of reference frames is two, where 

the number inside each block is the reference frame order. Inter-view prediction is 

mostly affected by blurred reference frames when coding FR frames. From Table 5-

5, neighbouring FR reference frame provides higher block matching than the closest 

LR frame. 

 

(a) 
 

(b) 
Figure 5-19 Symmetric multi-view video coding a) RFS and b) RFO 

 

 

(a) 
 

(b) 
Figure 5-20 RFO for block matching statistics when coding a) FR and b) LR frames 

 
Table 5-5 Statistical analyses average results when coding FR and LR frames 

BM statistical analysis (%) T0 T1 S0 S1 STR STL 

Full spatial-resolution frame 79.29 3.96 11.81 4 0.58 0.36 

Low spatial-resolution frame 60.27 1.78 0.87 31.97 4.17 0.94 
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(a) 

 
(b) 

Figure 5-21 Reference frame selection and reference frame ordering for a) full and b) low 
spatial-resolution frames 

The block matching statistics have been used to compare the amounts of inter-

view prediction using both FR and LR frames (S0 and S1 frames as shown in Figure 

5-22-a). H.264/AVC based MVC has been used to compress three-view video that 

deploys mixed spatial-resolution frames. The middle view contains LR frames, while 

surrounding views have FR frames. Six videos have been coded, where one-

hundred frames from each view has been coded. Two prediction architectures have 

been deployed as shown in Figure 5-22-b and Figure 5-22-c. They use recent 

temporal and spatial reference frame in predicting FR frames that belong to the third 

view. The 1st PA uses FR frame (S0), while the second PA uses neighbouring LR 

frame (spatial reference frame, S1). The amount of IVP for FR frames that belong to 

the third view are analysed for both S0 and S1 reference frames, where the results 

are shown in Table 5-6. The outcomes from this table are consistent with the results 

presented in Table 5-5. Although LR frame (S1) has more spatial redundancies than 

FR frame (S0) with respect to current FR frame (P), it provides less significant role 

for block matching than S0. This is due to high frequency components that exist in S0 

and P-frame, where both are not decimated prior to disparity estimation. High 

frequency components in LR frame are degraded that negatively affects its IVP 

accuracy. Therefore, FR reference frames should be used instead of LR frames in 

IVP for FR frames that belong to the dependent view. 
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(a) 

 

 
(b) 

 
(c) 

Figure 5-22 (a-c) shows different IVP sources, PA using FR and LR frames for IVP 
  

 

Table 5-6 Average IVP amount (%) when FR frame is predicted using S0 and S1 frames 

Average IVP 
(%) using 

Akko & 
Kayo Ballroom Break-

dancers Exit Race1 Rena Average 

FR frame (S0) 9.18 8.75 16.58 1.08 7.76 9.14 8.75 
LR frame (S1) 4.54 6.77 14.4 0.72 3.81 8.73 6.5 

Coding FR frames that belong to a dependent view is most challenging in 

prediction architecture, where the amount of IVP using S0 and S1 is 15.8 % compared 

to the corresponding amount (32.8%) for LR frames as shown in Table 5-5. Number 

of blocks in the full spatial-resolution frame is higher than the corresponding blocks 

in LR frame by factor of four. Therefore, second temporal frame is used for predicting 

FR frames that belong to dependent view. Multi-view videos have various 

characteristics in terms of scene complexity and objects motion. This affects the 

efficiency of temporal and inter-view predictions that consequently influences 

reference frame selection and reference frame ordering. The following subsection 

will investigate the feasibility of dynamically skipping these reference frames when 

the expected amount of block matching for each reference frame is insignificant 

during coding the full spatial-resolution frame. 
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5.3.3 Dynamic temporal and spatial reference frames selection 
Multi-view video using three-views is explored, where low spatial-resolution frames 

are deployed in the middle view while full spatial-resolution frames are used in base 

and third views. Figure 5-23 shows three-view video, where RFS for frames that 

belong to dependent view use two recent temporal frames and FR spatial reference 

frame. Based on the results reported in subsection 5.3.2, spatial reference frame (S0) 

is used to predict frames in neighbouring views (A and B frames) as shown in Figure 

5-23. Therefore, the amount of inter-view predicted blocks in A-frame and B-frame 

might be correlated. This would entail the feasibility of exploiting the amount of inter-

view predicted blocks in A-frame to dynamically select S0 before coding B-frame. To 

validate this correlation, statistical analysis is applied to compute the amount of inter-

view predicted blocks for A-frame and B-frame using S0 as shown in Figure 5-24 that 

are referred to blue and red arrows respectively. The correlation among inter-view 

predicted blocks when coding low and full spatial-resolution frames is presented in 

Table 5-7. The average inter-view prediction correlation based on six videos is 0.44. 

It shows moderate31 positive relationship among the amount of inter-view predicted 

blocks when coding LR and FR frames. Therefore, the amount of inter-view predicted 

blocks for LR frame (A-frame) is analysed. When this amount is less than threshold32, 

then S0 reference frame is skipped during coding FR frame (B-frame). 

 

 
Figure 5-23 Inter-view prediction for LR and FR frames 

31 Moderate correlation for 0.44 is based on the interpretation described by Evans (Evans, 1996) 
32 It will be defined at the end of this subsection. 
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(a) 

 

(b) 
Figure 5-24 Inter-view prediction for a) LR frame and b) FR frame 
 

Table 5-7 Average inter-view prediction correlation among LR and FR frames 

Dataset Akko & 
Kayo Ballroom Break-

dancers Exit Race1 Rena Average 

Average correlation 
for IVP 0.16 0.57 0.74 0.22 0.66 0.3 0.44 

The Second temporal frame (T1) is used during coding FR frame that belong to 

dependent view when it is expected to significantly contribute to block matching. This 

is applicable when a correlation exists among temporal predicted blocks using 2nd 

temporal reference frame among frames that belong to base and third views as 

shown in Figure 5-25-a. Statistical analysis has been conducted in order to validate 

the correlation among temporal-predicted blocks in both frames; A-frame and B-

frame. Figure 5-25-b highlights temporal reference frame; T1, where its role of block 

matching is analysed when coding both FR frames (referred to T1 via blue and red 

arrows). The correlation result is tabulated in Table 5-8. It shows moderate positive 

relationship33 (0.42) among 2nd temporal reference frame during coding A-frame and 

B-frame. Based on the correlation results in Table 5-8, T1 temporal reference frame 

is used during coding B-frame when the corresponding amount for coding A-frame 

is higher than the threshold. Since Exit MVV contains objects with slow motion 

characteristics, the amount of temporal predicted blocks during coding FR frames 

(A-frame and B-frame using T1) is not significantly high (0.98% and 0.99% 

respectively). Although Exit MVV shows negative correlation among temporal 

prediction for FR frames that belong to the base and dependent views, the amount 

of correlation is very weak (0.08) as shown in Table 5-8. Therefore there is almost 

no correlation among the few blocks that are predicted using T1 for this particular 

MVV. 

33 Moderate correlation for 0.42 is based on the interpretation described by Evans (Evans, 1996) 
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(a) 

 
(b) 

Figure 5-25 a) Temporal prediction using 2nd temporal reference frame source and b) 
Prediction architecture among three-view video coding 

 
Table 5-8 Average temporal prediction correlation among FR frames 

Dataset Akko & 
Kayo Ballroom Break-

dancers Exit Race1 Rena Average 

Average correlation 
for temporal prediction 0.11 0.43 0.67 -0.08 0.82 0.57 0.42 

 

Dynamic spatial and temporal reference frames selections are deployed during 

coding FR frames that belong to the third view. They are selected when the 

corresponding amount of inter-view and temporal predicted blocks are higher than 

the threshold. It would refer to insignificant amount of block matching. To set the 

threshold value, six videos have been coded via H.264/AVC based multi-view video 

coding, where different thresholds are used (0%, 2.5%, 4%, 6%, 12% and 20%). The 

thresholds have been chosen since four, six, twelve and twenty percent have been 

used in the literature to describe different amounts of block matching that reflect to 

very low, low, significant and high amounts of block matching respectively (Kaup & 

Fecker, 2006; Merkle et al., 2007a; Shen et al., 2007). Increasing threshold value 

reduces the amount of time needed to encode multi-view video through skipping 

more reference frames at the expense of increasing average bitrate with respect to 

the same codec that does not apply threshold. Figure 5-26 shows the effect of using 

different values of threshold on the bitrate. From this figure, setting threshold to 2.5% 

results in minor bitrate increase (<0.5 Kbps) compared to setting it by 12 which 

causes significant increase of bitrate (>12 Kbps). 
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Figure 5-26 Effect of using different block matching thresholds on bitrate 

 

5.3.4 Proposed prediction architecture 
Reference frame selection and reference frame ordering are defined based on the 

results that are presented in subsections 5.3.2 and 5.3.3. Figure 5-27 depicts 

prediction architecture for mixed spatial-resolution multi-views video coding, where 

Group Of Picture (GOP) is eight. It deploys low spatial-resolution frames in the 

middle view. Dashed red and blue arrows are reference frames that are used when 

conditions A and B are true. When the amount of inter-view prediction blocks for low 

spatial-resolution frame is higher than the threshold, then condition A is true. 

Similarly, when temporal predicted blocks for frame belongs to base view is higher 

than the threshold, then condition B is true. Threshold is set to 2.5% that reflects 

insignificant amount of block matching. 

Two recent temporal frames are used to predict frames in base view, while 

nearest temporal and spatial reference frames are used during LR frames prediction. 

For FR frames that belong to the third view, there are four reference frame selection 

cases. They are illustrated in Table 5-9, where REF is the reference frame. Spatial 

and 2nd temporal reference frames are selected when their expected amount of block 

matching are significant. 
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Condition A is true when the amount of spatial prediction using S0 REF for LR frame ≥ 2.5% while 
condition B is true when the amount of temporal prediction using T1 REF for FR frame ≥ 2.5% 
 

Figure 5-27 Proposed prediction architecture for mixed spatial-resolution MVC 

 

Table 5-9 Four cases for reference frame selection during coding FR frames 
Condition A Condition B 1st REF 2nd REF 3rd REF 

False False T0 n/a n/a 
True False T0 S0 n/a 
False True T0 T1 n/a 
True True T0 S0 T1 

 

 

5.3.5 Results and discussions 
There are three criteria when evaluating the proposed PA among other asymmetric 

MVC. They are computational complexity, memory consumption and coding gain. 

The computational complexity is represented by the encoding time that reflects the 

complexity for software encoder, while memory consumption is defined through the 

minimum number of reference frames needed for DPB. Coding gain is represented 

by average quality for the coded video and the average bitrate. Two prediction 

architectures are used for comparison. Hierarchical B-picture; HBP is 1st PA as 

shown in Figure 5-28-a. It is widely used in MVC, while the extended architecture 

based on 3D-DMB is the 2nd PA as depicted in Figure 5-28-b. Their asymmetric 

codec relies on IPPP coding structure that uses three reference frames. This 

complies with the recommendation reported by ITU-T for Digital Multimedia 

Broadcasting (DMB) (Antipolis, 2005). The extended architecture adds 3rd view to 

3D-DMB prediction architecture where its frames use two temporal frames and one 

spatial frame; similar to the corresponding frames in the 2nd view. The proposed PA, 

HBP and extend architecture based 3D-DMB are used to encode six videos. These 

architectures deploy LR frames in the middle view. GOP is set to eight frames; each 

GOP begins with I-frame. 
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(a) 

 

 
(b) 

 
Figure 5-28 Prediction architectures a) HBP and b) Extended prediction architecture based 
3D-DMB (Chen et al., 2008a; Fehn et al., 2007) 

 

The 1st criterion is computational complexity that has two components; block 

matching complexity and resolution matching complexity. Block Matching (BM) finds 

best prediction for a given macroblock using motion and disparity estimation. The 

proposed prediction architecture and extended architecture based 3D-DMB use 

IPPP coding structure. Both architectures use three reference frames when 

predicting FR frames that belong to dependent view. Therefore BM checks three 

reference frames in forward prediction direction. HBP architecture use IBBP coding 

structure. Since it has three prediction directions; forward, backward and bi-

prediction, BM needs to check each direction, where maximum number of reference 

frames is two in each direction. Therefore, BM needed for IPPP coding structure is 

less than IBBP structure. 

Resolution matching complexity is raised during decimating or interpolating 

reference frame in order to match the target frame spatial-resolution. This complexity 

is caused at the encoder and decoder sides for disparity estimation and disparity 

compensation respectively. Extended prediction based 3D-DMB uses decimation 

and interpolation to predict LR frames and FR frames respectively. Hierarchical B-

pictures architecture applies decimation for frames that belong to the base and 2nd 

147 
 



 

views in order to predict frames belonging to odd view. The proposed prediction 

architecture applies decimation for frames that belong to base view only. Therefore, 

it requires less complexity among others for resolution matching. 

Memory consumption is the second criterion for evaluation, where minimum 

number of reference frames defines the memory size needed for prediction 

architecture. HBP architecture stores 10 and 14 for FR and LR reference frames as 

shown in Figure 5-29-a, where Blue, green and white blocks are reference frame, 

current frame and un-coded frame respectively. Fourteen LR frames are 4 LR 

(temporal prediction) plus 10 decimated FR (for IVP). Extended prediction 

architecture based 3D-DMB stores 8 and 6 for FR and LR reference frames 

respectively as shown in Figure 5-29-b. Eight FR reference frames include five FR 

frames and three interpolated LR frames, while six LR frames are three frames (in 

the middle view) and three decimated FR frames. The proposed PA stores 5 and 6 

for FR and LR reference frames as depicted in Figure 5-29-c. 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 5-29 Prediction architectures for a) Hierarchical B-picture, b) Extended architecture 
based 3D-DMB and c) Proposed prediction architecture 

Table 5-10 shows minimum size for DPB when different prediction architectures 

are used. Last column shows the total amount of frames with respect to FR frames 

that is equal to the number of LR frames divided by 4 plus number of FR frames. The 

proposed prediction architecture saves significant amount of memory required for 
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DPB by 51.9% and 31.6% with respect to HBP and extended architecture based 3D-

DMB respectively. 

Mixed spatial-resolution multi-view videos have been coded at low bitrates using 

H.264/AVC based multi-view video coding. Three neighbouring views are 

multiplexed, where frames that belong to the middle view are decimated by a factor 

of two in the horizontal and vertical directions. Figure 5-30 shows rate-distortion 

curves for different videos, where PSNR (dB) and bitrate (Kbps) are presented along 

Y-axis and X-axis respectively. Blue, green and red curves are rate-distortion using 

hierarchical B-picture (HBP), proposed prediction architecture and extended 

architecture based 3D-DMB respectively. 

Table 5-10 Minimum size for DPB for different prediction architectures 

Prediction architecture Number of 
FR frames 

Number 
of LR 

frames 

Total frames with 
respect to FR 

frames 

Hierarchical B-picture 10 14 13.5 

Extend architecture based 3D-
DMB 8 6 9.5 

Proposed architecture 5 6 6.5 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 
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Figure 5-30 (a-f) Rate-distortion curves for Akko & Kayo, Ballroom, Break-dancers, Exit, 
Race1 and Rena respectively 

The proposed PA provides better coding gain than the extended architecture 

based 3D-DMB. The proposed PA needs less bitrate for transmitting asymmetric 

MVV by on average 13.1 Kbps while both obtain similar quality for decoded MVV. 

HBP PA gets higher coding gain than the proposed prediction architecture, where 

the former obtains better quality by on average 0.78 dB while requiring less bitrate 

by on average 24.9 Kbps with respect to the proposed prediction architecture. 

Computational complexity for H.264/AVC based multi-view video coding using 

different prediction architectures is measured through the total encoding time. It 

reflects computational complexity for BM and resolution matching. All the 

experiments were carried out on a computer with Intel i7 CPU and memory of 16 GB. 

Figure 5-31 shows total time needed for encoding different videos using different 
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prediction architectures, where Y-axis is the total time (Hour). The proposed 

prediction architecture accelerates encoding by on average 57% and up to 77.5% 

with respect to the corresponding time needed by hierarchical B-picture architecture. 

It speeds up encoding by on average 14% and up to 54% with respect to the 

extended prediction architecture based 3D-DMB. Table 5-11 shows amount of 

saving S0 and T1 reference frames during coding FR frames that belong to 3rd view. 

Saving amount for S0 is high for Exit since it has large disparity and slow objects’ 

motion on contrary to Break-dancers that have high objects’ motion (T1 saving is 

0.9%). From these results, it can be seen that the proposed PA needs less memory 

consumption and encoding time with respect to both; extended architecture based 

3D-DMB and hierarchical B-picture prediction architectures. It gives superior coding 

gain than the former architecture. HBP provides best coding efficiency among other 

architectures that are based on IPPP coding structure at the expense of the highest 

computational complexity and memory consumption. 

Six multi-view videos with different views have been coded for validation using 

the proposed PA, HBP PA and the extended architecture based 3D-DMB. The 

results highlight that the proposed PA saves on average 11.6 Kbps compared to the 

extended architecture based 3D-DMB. HBP architecture saves on average 23.6 

Kbps and provides 0.63 dB better quality for the decoded asymmetric multi-view 

videos with respect to the proposed PA. H.264/AVC based MVC that deploys the 

proposed PA needs less encoding time compared to corresponding codec that uses 

either HBP or extended architecture based 3D-DMB by on average 49.9% (up to 

58%) and 5.8% (up to 20.5%) respectively. 

 
Figure 5-31 Total encoding time when using different prediction architectures 
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Table 5-11 the amount of saving percent for S0 and T1 reference frames 

Dataset Akko & 
Kayo Ballroom Break-

dancers Exit Race1 Rena Average 

S0 Saving % 0 1.6 0 92.9 1.6 0 16 
T1 Saving % 40.7 43.5 0.9 97.2 5.6 27.8 36 

 

5.3.6 Proposed prediction architecture with adaptive reference frame 
ordering algorithm 

Adaptive reference frame ordering algorithm (reported in section 4.4) has been 

integrated with the proposed prediction architecture. The algorithm presents efficient 

mechanism for reordering reference frames indices. The proposed prediction 

architecture contains three reference frames. The first three reference frames are 

indexed via ‘1’, ‘010’ and ‘011’ respectively. Since the 1st frame is recent temporal 

frame ‘T0’ which usually provides most significant role of block matching, deploying 

reference frame reorder algorithm would not provide bits saving for the proposed 

prediction architecture. However, the algorithm is beneficial when coding multi-view 

video that contains hard scene change. Coding frame that belong to new scene 

would change RFO, where the most significant reference frame becomes the nearest 

spatial frame instead of the recent temporal reference frame. Therefore, deploying 

the algorithm would be essential when coding mixed spatial-resolution multi-view 

video that has multiple scenes. When the first frame is coded that belongs to a new 

scene, the majority of coded blocks are intra-predicted. The reference frame indices 

will be then reordered in a way that places nearest spatial reference frame first in 

List 0. The new RFO is applied for the frames that belong to the neighbouring views. 

Three-view video with hard scene change is generated in the context of mixed 

spatial-resolution MVV through multiplexing frames that belong to Akko & Kayo, 

Ballroom, Exit, Race1 and Rena. The sequence starts with first nine frames from 

Akko & Kayo, following by six frames from each MVV. Frames that belong to the 

middle frame are decimated while frames belonging to the surrounding views have 

full spatial-resolution. This sequence is coded by H.264/AVC based multi-view video 

coding using three prediction architectures; the proposed architecture with Adaptive 

Reference Frame Order (ARFO) algorithm, extended architecture based 3D-DMB 

and HBP prediction architectures. 

The result in terms of rate-distortion is presented in Figure 5-32, where blue, red 

and green curves are rate-distortion when coding the video using HBP architecture, 

extended architecture based 3D-DMB and the proposed PA respectively. Figure 5-
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33 shows amount of bits per frame when the video is coded by these prediction 

architectures. HBP architecture reduces the amount of bit saving with respect to the 

proposed prediction architecture as depicted in Figure 5-33-a. This is due to 

backward prediction, where the reference frame and the current frame belong to the 

new scene. Figure 5-33-b shows clearly bit saving with respect to extended 

architecture based 3D-DMB. Figure 5-34 depicts encoding time when coding MVV 

that has multiple scene changes. Blue, red and green bars represent total encoding 

time needed by HBP architecture, extended architecture based 3D-DMB and the 

proposed PA respectively. 

The proposed architecture with adaptive reference frame ordering algorithm 

saves on average 28.7 Kbps and 35.4 Kbps with respect to HBP architecture and 

the extended architecture based 3D-DMB respectively. It provides similar quality for 

decoded asymmetric multi-view video to the corresponding video coded via 

extended architecture based 3D-DMB. HBP provides better quality by on average 

0.38 dB compared to the corresponding video that is coded by the proposed 

prediction architecture. The proposed prediction architecture accelerates encoding 

time by on average 64% and 33% with respect to the corresponding time needed by 

hierarchical B-picture architecture and the extended PA based 3D-DMB. 

 

 
Figure 5-32 Rate-distortion curves when coding MVV that contains hard scene change 
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(b) 

 
Figure 5-33 Amount of bits per frame using proposed prediction architecture with              a) 
HBP PA and b) Extended PA based 3D-DMB 
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Figure 5-34 Total encoding time when coding MVV with hard scene changes using different 
prediction architectures 

 

5.3.7 Conclusions 
Prediction architecture is proposed based on the block matching statistics for full and 

low spatial-resolution frames. Nearest temporal and spatial reference frames are 

selected during coding LR frames. Full spatial-resolution frames that belong to 

dependent view use two temporal frames and FR spatial reference frames. For full 

spatial-resolution frames, temporal and spatial reference frames are dynamically 

skipped when their expected amount of block matching are insignificant. The 

proposed prediction architecture is compared to the extended architecture based 3D-

DMB and hierarchical B-picture prediction architectures in terms of computational 

complexity, memory consumption and rate-distortion. From the results, the proposed 

prediction architecture saves significant amount of memory required for DPB by 

51.9% and 31.6% with respect to HBP and extended architecture based 3D-DMB 

respectively.  

The proposed prediction architecture accelerates encoding by on average 57% 

and up to 77.5% with respect to the corresponding time needed by hierarchical B-

picture architecture. It speeds up encoding by on average 14% and up to 54% with 

respect to extended prediction architecture based 3D-DMB. The proposed prediction 

architecture needs less bitrate for coding asymmetric multi-view video than extended 

PA based 3D-DMB by on average 13.1 Kbps while both obtain similar quality for 

decoded multi-view video. The MVC that uses HBP PA has higher coding 

performance than the corresponding codec that uses the proposed PA. HBP PA 

provides higher quality for coded videos by on average 0.78 dB while achieves less 

bitrate by on average 24.9 Kbps with respect to the proposed PA. 
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Adaptive reference frame ordering algorithm is integrated with the proposed 

prediction architecture to provide efficient mechanism for coding multi-view video 

that contains several scenes. When scene changes the adaptive reference frame 

ordering algorithm modifies spatial reference index to be the first in the List 0. 

Therefore, next frames located at the same time slice will be predicted via spatial 

reference frame that needs single bit for indexing. The proposed architecture with 

reference frame reorder algorithm saves on average 28.7 Kbps and 35.4 Kbps with 

respect to HBP architecture and extended architecture based 3D-DMB respectively. 

It provides similar quality for decoded asymmetric MVV to the corresponding MVV 

coded via extended architecture based 3D-DMB. HBP provides better quality by on 

average 0.38 dB compared to the corresponding video that is coded by the proposed 

prediction architecture. The proposed PA accelerates encoding time by on average 

64% and 33% with respect to the corresponding time needed by hierarchical B-

picture architecture and the extended PA based 3D-DMB. 

Although suppression theory provides acceptable justification for deploying mixed 

spatial-resolution frames, this type of coded video causes eye fatigue when it is 

watched for several minutes (Jain et al., 2014). On the other hand, it could be used 

in free-viewpoint video (Garcia et al., 2010a). Since the interpolated frames suffer 

from blurriness, the next section will investigate visual quality enhancement for the 

interpolated frames using embedded information in neighbouring full spatial-

resolution frames. 

 

5.4 Visual quality enhancement algorithm for interpolated 
frames 

 

5.4.1 Introduction 
This section focuses on enhancing visual quality for the interpolated frames. The 

coded LR frames at low bitrates suffer from blockiness and blurriness artefacts when 

they are interpolated at the receiver side. To realise both artefacts, H.264/AVC based 

stereoscopic video coding is used to encode mixed spatial-resolution videos at low 

bitrates. The first two views from Akko & Kayo, Ballroom, Break-dancers, Exit, Race1 

and Rena have been coded. Frames that belong to the dependent view are 

decimated prior to compression while the decoded LR frames have been interpolated 

before display. Figure 5-35 shows un-coded and interpolated frames for the first 

frame that belong to the dependent view. The first column presents un-coded frame 

while the second column shows coded LR frame after interpolation. From this figure, 
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the details that are visible in un-coded frame are degraded significantly with respect 

to the interpolated frame. Coding LR frames at low bitrates causes blockiness 

artefacts while interpolating it prior to display, reduce the details significantly. 

Therefore, the blockiness artefacts are magnified by the negative effect from 

interpolation. This entails reducing the visual quality of interpolated frames 

significantly with respect to un-coded frames. Since there are two sets of coded 

frames; FR and LR frames, the information that exists in FR frames are exploited to 

enhance visual quality for the interpolated frames. 

 

  
(a) 

 
 
 

  
(b) 

 

  
(c) 
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(e) 

 
 

  
(f) 

 

Figure 5-35 (a-f) Un-coded frame versus interpolated frame for Akko & Kayo, Ballroom, 
Break-dancers, Exit, Race1 and Rena respectively 

In the next subsection, the relationship among residual error for inter-view 

predicted blocks and disparity compensation will be highlighted. The proposed visual 

enhancement algorithm will be presented that is based on disparity compensation, 

where its applications, display and inter-view prediction are discussed. The 

integration among the proposed visual enhancement algorithm and the proposed 

prediction architecture is then presented.  

160 
 



 

5.4.2 Residual error for disparity compensation 
This subsection investigates the relationship between residual error for inter-view 

predicted block and disparity compensation. The frames that belong to base view 

are FR while LR frames are used in dependent view. During inter-view prediction, 

reference frame is decimated to match spatial-resolution for the current frame that 

entails storing two copies of reference frame; FR and LR frames. Block matching 

uses blocks that belong to LR reference frame to predict blocks that belong to LR 

target frame. Residual energy is generated through subtracting reference (Predicted) 

block from the target (Original) block as shown in following equation. 

𝑅𝑅𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟 𝑆𝑆𝑖𝑖𝑙𝑙𝑛𝑛𝑎𝑎𝑙𝑙 = 𝑂𝑂𝑟𝑟𝑖𝑖𝑙𝑙𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙 𝑆𝑆𝑖𝑖𝑙𝑙𝑛𝑛𝑎𝑎𝑙𝑙 − 𝑃𝑃𝑟𝑟𝑟𝑟𝑎𝑎𝑖𝑖𝑃𝑃𝑡𝑡𝑟𝑟𝑎𝑎 𝑆𝑆𝑖𝑖𝑙𝑙𝑛𝑛𝑎𝑎𝑙𝑙 (5-2) 

The previous equation is applicable when coding FR frame. The next equations 

show block matching when it is deployed for LR and FR frames. 

𝐵𝐵𝑀𝑀 𝑅𝑅𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟 𝐿𝐿𝑅𝑅 = 𝑅𝑅2𝐿𝐿𝑅𝑅 – 𝑅𝑅1𝐿𝐿𝑅𝑅 (5-3) 

𝐵𝐵𝑀𝑀 𝑅𝑅𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟 𝐹𝐹𝑅𝑅 = 𝑅𝑅2𝐹𝐹𝑅𝑅  – 𝑅𝑅1𝐹𝐹𝑅𝑅 (5-4) 

In equations 5-3 and 5-4, both F1 and, F2 refer to reference (predicted) and target 

(original) blocks respectively. When BM ErrorFR is available, then the target block 

would be computed directly from eq. 5-4. In mixed spatial-resolution MVC, BM 

ErrorFR is not available; however it could be estimated by interpolating BM ErrorLR. 

This error signal is available during disparity compensation. Figure 5-36 illustrates 

how to estimate the target block (F2’FR) using information available from the 

reference block (F1FR) that belongs to FR frame during disparity compensation. The 

information includes disparity vector that is obtained by disparity estimation and 

residual signal (BM ErrorLR), where both are available at the encoder and decoder 

sides. 

 

Figure 5-36 Estimating FR frame using disparity compensation 

Disparity 
Compensation

LPF F2’FR
BM

ErrorLR

F1FR
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Utilising the information from disparity compensation has been studied previously 

via Yang et al. (Yang et al., 2009) that is reported in subsection 3.3.1.1.2. Their study 

aims to reduce the amount of time needed for interpolation in order to decrease the 

amount of decoding complexity at the receiver side. In this subsection, all inter-view 

predicted blocks are used to estimate the corresponding FR blocks during 

interpolating coded LR frame that belongs to the dependent view. 

There are three types of blocks for a coded LR frame, they are intra, temporal and 

inter-view predicted blocks. For inter-view predicted blocks, there are two types of 

blocks. First types of blocks are predicted, where their energy is zero while second 

type, the predicted blocks are associated with their residual. First type of blocks 

(F2’FR) are copied directly from blocks that belong to the FR frame (F1FR) as shown 

in eq. 5-5. The second type of blocks (F2’FR) are estimated by adding corresponding 

prediction from F1FR to interpolated signal from BM ErrorLR as shown in eq. 5-6. For 

both inter-view predicted blocks, disparity compensation uses samples at integer and 

sub-pixel positions to obtain F1FR. 

𝑅𝑅2′𝐹𝐹𝑅𝑅 = 𝑅𝑅1𝐹𝐹𝑅𝑅 (5-5) 

𝑅𝑅2′𝐹𝐹𝑅𝑅 = 𝑅𝑅1𝐹𝐹𝑅𝑅 +  𝐵𝐵𝑀𝑀 𝑅𝑅𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟′ 𝐹𝐹𝑅𝑅 (5-6) 

The key point in enhancing visual quality of interpolated frame is the amount of 

correlation among estimated residual (eq. 5-6) and actual residual signals. To 

explore this correlation, two different experiments have been carried out. The first 

experiment uses symmetric FR stereoscopic video coding, where the first two 

reference frames and their following frames that belong to dependent view are 

exploited and stored separately as depicted in Figure 5-37 (F1 and F3 that are located 

at the time slices T0 and T1). The second experiment uses mixed spatial-resolution 

stereoscopic video coding, where the same coding setup (quantisation parameter) 

is applied and the corresponding frames are extracted.  

 

Figure 5-37 Low spatial-resolution frames that are used to compute residual correlation 
among actual and estimated signals 

Base view

Dependent view

T1 T2T0

F0

F1 F3

F2

F5

F4
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An analysis is carried out to measure the correlation among estimated and actual 

residual energies. Actual energy is obtained from first experiment by subtracting the 

predicted from original blocks. In the second experiment, when BM ErrorLR exists 

during block matching, then this signal is interpolated to obtain estimated residual 

signal. The correlation between actual and estimated residual signals is measured. 

Tables 5-12 and 5-13 present inter-view prediction analysis for F1 and F3 

respectively. During coding, F1 frame uses inter-view prediction in the majority of 

blocks while F3 frame relies mainly on temporal prediction. Total amounts for inter-

view predicted blocks are on average 81% and 17% while 37% and 2.2% are the 

amounts of inter-view predicted blocks that do not have residual signal for F1 and F3 

respectively. The amounts of inter-view predicted blocks that are associated with the 

residual signal are 44% and 14.8% for F1 and F3. The average correlation for actual 

and estimated residual signals is presented in the last column that measures the 

correlation among inter-view predicted blocks that are associated with the residual 

signals. 

The net results for F1 and F3 frames that belong to the dependent view are 

summarised as depicted in Figure 5-38. Blue, red and green colours reflect amount 

of intra plus temporal, inter-view prediction without residual and inter-view prediction 

that is associated with residual signal respectively. Less than half the amounts of 

target blocks need to interpolate residual signal for frames that follow key frames 

(e.g. F1). For frames that follow non-key frames (e.g. F3), the total amount of inter-

view prediction is significantly less than the amount of intra and temporal predicted 

blocks. Figure 5-39 depicts the amount of error correlation (per 8×8 block) for F1 

frame, where X-axis and Y-axis are number of blocks and correlation value for 

residual signal among actual and estimated signals. 

 
Table 5-12 Statistical analysis of inter-view prediction for F1 frame 

Dataset Intra predicted 
blocks % IVP % 

IVP % 
where 

Error = 0  

IVP % 
where  

Error ≠ 0 

Average 
correlation 

error 
Akko & Kayo 8.67 91.33 58 33.33 0.2 
Ball 18 82 30 52 0.24 
Break-dancers 27.6 72.4 8.98 63.41 0.27 
Exit 17.67 82.33 30.67 51.67 0.29 
Race1 26.67 73.33 28.33 45 0.27 
Rena 14.33 85.67 67 18.67 0.22 
Average 18.82 81.18 37.16 44.01 0.25 
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Table 5-13 Statistical analysis of inter-view prediction for F3 frame 

Dataset 
Intra / Temporal 
predicted blocks 

% 
IVP % 

IVP % 
where 

Error = 0  

IVP % 
where  

Error ≠ 0 

Average 
correlation 

error 
Akko & Kayo 86.33  13.67  2.33  11.33  0.14  
Ball 89.33  10.67  1  9.67  0.29  
Break-dancers 73.57  26.43  2.6  23.83  0.24  
Exit34 99.33  0.67  0  0.67  -0.11  
Race1 89.67  10.33  0.67  9.67  0.21  
Rena 76.33  23.67  4.33  19.33  0.23  
Average 83.05  16.95  2.19  14.77  0.22  

 

 

 
(a) 

 
(b) 

Figure 5-38 Inter-view prediction statistics for dependent frame that follows a) Key frames 
and b) Non-key frames 

 

 
(a) 

34 It has been excluded in computing error correlation since number of IVP blocks equals two 
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(b) 

 

 
(c) 

 

 
(d) 
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(e) 

 

 
(f) 

 

Figure 5-39 (a-f) Residual correlation per 8×8 block among actual and estimated residual 
signals for Akko & Kayo, Ballroom, Break-dancers, Exit, Race1 and Rena respectively 

The average correlations for residual signals among actual and estimated signals 

are 0.25 and 0.22 for F1 and F3 respectively. Although the correlation is weak35 

positive, majority of the inter-view predicted blocks have 82% and 79% positive 

correlation for F1 and F3 respectively. This means that significant amount of blocks 

can be estimated by adding the interpolated residual signal (BM Error’FR) to FR 

reference block (F1FR). 

 

35 Weak correlation is based on the interpretation described by Evans (Evans, 1996) 
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5.4.3 Proposed visual enhancement algorithm 
The proposed Visual Enhancement (VE) algorithm is depicted in Figure 5-40-a where 

the main steps are shaded by grey colour. Figures 5-40-b and 5-40-c show steps for 

coding information utilisation and frame updating procedures respectively. 

The proposed algorithm starts when LR frame is decoded and interpolated as 

shown in Figure 5-40-a. The proposed algorithm performs two steps; utilising coding 

information and updating the interpolated frame. The first step searches for inter-

view predicted blocks, where the residual signal and disparity vector are extracted. 

Disparity vector is scaled by a factor of two in the horizontal and vertical directions. 

Sub-pixel sample is identified from the disparity vector that will be used among 

scaled disparity vector to extract predicted blocks that belong to FR reference frame 

(F1FR). The second step interpolates the residual signal (if it exists) by AVC 

interpolation filter (6-taps), then the estimated block (F2’FR) in Figure 5-36 is 

computed by adding the predicted block to the interpolated residual signal (BM 

Error’FR). This estimated block will replace the corresponding block that exists in the 

interpolated coded frame. The algorithm repeats these steps for all inter-view 

predicted blocks prior to saving the output frame.  

 
 

(a) 
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(b) 

 

 
(c) 

 
Figure 5-40 Proposed visual enhancement algorithm: a) Main algorithm, b) Coding 
information utilisation and c) Frame update procedure 

The following Figures (5-41 to 5-46) show examples when VE algorithm is 

deployed for Akko & Kayo, Ballroom, Break-dancers, Exit, Race1 and Rena multi-

view videos respectively. These Figures present luminance component for un-coded, 

interpolated coded fame using AVC filter and visually enhanced frame that is 

obtained by VE algorithm, where conventional decimation method is applied for FR 

reference frame prior to inter-view prediction.  

 
(a) 
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(b) 

 

 
(c) 

 
Figure 5-41 (a-c) VE example using Akko & Kayo, where a) un-coded, b) interpolated via 
AVC filter and c) visual enhanced frame 
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(a) 

 

 
(b) 
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(c) 

 
Figure 5-42 (a-c) VE example using Ballroom, where a) un-coded, b) interpolated via AVC 
filter and c) visual enhanced frame 

 

 
(a) 
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 (b) 
  

 
(c) 

 
Figure 5-43 (a-c) VE example using Break-dancers, where a) un-coded, b) interpolated via 
AVC filter and c) visual enhanced frame 
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(a) 

 

 
(b) 
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(c) 

 
Figure 5-44 (a-c) VE example using Exit, where a) un-coded, b) interpolated via AVC filter 
and c) visual enhanced frame 

 

 
(a) 
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(b) 

 
 

 
(c) 

 
Figure 5-45 (a-c) VE example using Race1, where a) un-coded, b) interpolated via AVC 
filter and c) visual enhanced frame 
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(a) 

 

 
(b) 
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(c) 

 
Figure 5-46 (a-c) VE example using Rena, where a) un-coded, b) interpolated via AVC filter 
and c) visual enhanced frame 

Figure 5-47 and Figure 5-48 present a set of examples for blocks size of 16 × 16 

pixels (luminance component) using the 1st frame of Akko & Kayo MVV. Each figure 

contains four blocks, where first two blocks are un-coded and coded blocks using 

symmetric spatial-resolution stereoscopic video coding. The remaining two (mixed 

spatial-resolution stereoscopic video coding) are coded blocks that are obtained by 

AVC interpolation filter and VE algorithm respectively. Figure 5-47 (a-i) presents 

visual enhanced blocks, where the Sum Square Error (SSE) for residual signal is 

zero. Figure 5-48 (a-i) shows examples of twelve different blocks, where their 

corresponding SSE for residual signal are 13, 55, 72, 76, 93, 95, 125, 258, 4834, 

5433, 7665 and 9723 respectively. It can be seen from both set of examples that the 

amount of blurriness that exists in visually enhanced frame or block level is less than 

the corresponding one that is interpolated by AVC filter. In another word, proposed 

VE algorithm increases frame edge’s sharpness with respect to AVC interpolation 

filter. 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 
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(g) 

 

 
(h) 

 
(i) 
 

 
(j) 

 
(k) 

 

 
(i) 

Figure 5-47 (a-i) Visual enhanced blocks, where their residual signal is zero 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 
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(g) 

 

 
(h) 

 
(i) 
 

 
(j) 

 
(k) 

 

 
(i) 

Figure 5-48 (a-i) Visual enhanced blocks that are associated with residual signal during 
disparity compensation 
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5.4.4 Proposed algorithm applications 
There are two applications for the proposed visual enhancement algorithm. The first 

application is reducing the amount of blurriness in the interpolated frame prior to 

display. The second application is improving inter-view prediction when visual 

enhanced frames are used to predict neighbouring full spatial-resolution frames.  

In context of the 1st application; display, the proposed VE algorithm is applied to 

the interpolated frames using mixed spatial-resolution stereoscopic video coding, 

where dependent view has LR frames. From subsection 5.2.2, there are two 

decimation methods for disparity estimation. They are conventional and high 

performance decimation methods. Both are used separately to evaluate the visual 

quality of frames that are obtained by the proposed VE algorithm. The algorithm is 

applied for the first two frames that belong to dependent view (F1 and F3 as shown 

in Figure 5-37). Four objective metrics are used to compare the coded LR frames 

that are interpolated by AVC filter and the corresponding frames that are visually 

enhanced by the proposed VE algorithm. These metrics are PSNR, MSSIM, StSD 

and VQM that is proposed by Lee et al., where these metrics are outlined in section 

2.3.  

The first set of results using PSNR and MSSIM metrics compares visually 

enhanced frames when two different decimation methods are applied to FR 

reference frames. The first method is high performance method while the second is 

conventional decimation method. The following tables (5-14 to 5-19) provide the 

results for the first two frames; F1 and F3 as shown in Figure 5-37, where both frames 

belong to dependent view. It can be seen from these tables that the visual quality for 

interpolated frame is improved when VE algorithm is deployed rather than 

interpolating these frames by AVC filter. This is conditional when conventional 

decimation method is applied for FR reference frames. The delta PSNR improvement 

using over-estimated and actual measures for 1st frame (F1) are on average 0.92 dB 

and 0.62 dB while 0.11 dB and, 0.09 dB are corresponding measures for the 2nd 

frame (F3). When high performance method is deployed, VE algorithm provides 

inferior results with respect to default interpolation method. 
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Table 5-14 PSNRactual results using high performance method for F1 frame 
Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 28.34  29.42 -1.08 
Ballroom 26.73  27.7  -0.97  
Break-dancers 34.01  34.74  -0.73  
Exit 29.56  30.77  -1.21  
Race1 31.25  31.93  -0.68  
Rena  32.97  33.12  -0.15  
Average  -0.8  

 
Table 5-15 PSNRactual results using conventional decimation method for F1 frame 

Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 29.47 29.16 0.3 
Ballroom 28.2  27.7  0.5 
Break-dancers 35.1  34.76  0.34 
Exit 31.59  30.81  0.79 
Race1 33.21  31.94  1.27 
Rena  33.57  33.04  0.53 
Average  0.62 
 

Table 5-16 PSNRactual results using high performance method for F3 frame 
Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 29.35 29.39 -0.04 
Ballroom 27.34  27.7  -0.36  
Break-dancers 34.22  34.76  -0.54  
Exit 30.73  30.82  -0.09  
Race1 31  31.38  -0.38  
Rena  32.76  32.88  -0.11  
Average  -0.25 

 
Table 5-17 PSNRactual results using conventional decimation method for F3 frame 

Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 29.55 29.47 0.08 
Ballroom 27.83 27.8  0.03 
Break-dancers 35 34.8  0.2 
Exit 30.98 30.98  0 
Race1 31.61 31.45  0.16 
Rena  33.02 32.94  0.08 
Average  0.09  
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Table 5-18 PSNRover-estimated results using conventional decimation for F1 frame 
Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 32.03 31.21 0.82 
Ballroom 30.02  29.25  0.77 
Break-dancers 37.49  37.03  0.46 
Exit 32.71  31.71  1 
Race1 34.44  32.93  1.51 
Rena  37.44  36.52  0.92 
Average  0.92 

 
Table 5-19 PSNRover-estimated results using conventional decimation for F3 frame 

Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 31.74 31.6 0.13 
Ballroom 29.35  29.33  0.03 
Break-dancers 37.12  36.88  0.24 
Exit 31.92  31.92  0 
Race1 32.59  32.41  0.19 
Rena  33.02  32.94  0.08 
Average  0.11 

 

Table 5-20 and Table 5-23 present the results using MSSIM video quality metric. 

They are consistent with the previous results, where delta quality improvement for 

F1 and F3 are 0.015 and 0.002 respectively when conventional decimation method is 

used for FR frames  

Table 5-20 MSSIMactual results using high performance method for F1 frame 
Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 0.82  0.83 -0.01  
Ballroom 0.8  0.8  0  
Break-dancers 0.94  0.95  -0.01  
Exit 0.88  0.88  0  
Race1 0.91  0.91  0  
Rena  0.89  0.89  0  
Average  -0.002 

 

Table 5-21 MSSIMactual results using conventional decimation method for F1 frame 
Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 0.84 0.82 0.01 
Ballroom 0.83 0.8 0.03 
Break-dancers 0.95 0.94 0.01 
Exit 0.9 0.88 0.02 
Race1 0.93 0.91 0.02 
Rena  0.9 0.89 0.01 
Average  0.02 
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Table 5-22 MSSIMactual results using high performance method for F3 frame 
Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 0.83 0.82 0.01 
Ballroom 0.8  0.8  0  
Break-dancers 0.94  0.94  0  
Exit 0.88  0.88  0  
Race1 0.9  0.9  0  
Rena  0.88  0.88  0  
Average  0 

 
Table 5-23 MSSIMactual results using conventional decimation method for F3 frame 

Multi-view video With VE algorithm Without VE algorithm Delta PSNR 
Akko & Kayo 0.83 0.83 0 
Ballroom 0.8 0.8  0 
Break-dancers 0.94 0.94  0 
Exit 0.88 0.88  0 
Race1 0.91 0.91  0 
Rena  0.89 0.89  0 
Average  0 

 

Table 5-24 and Table 5-25 summarise results using these metrics; PSNRactual and 

MSSIMactual. From these results, applying VE algorithm with conventional decimation 

method provides the best visual quality among interpolation by AVC filter, regardless 

of the decimation method used for FR reference frame. The quality improvement is 

on average 0.62 dB and 0.58 dB with respect to frame interpolation by AVC filter with 

conventional and high performance decimation methods respectively (F1 frame). 

Visual enhancement algorithm is sensitive to the decimation method applied for 

FR reference frame. Conventional decimation method maintains one-to-one 

relationship for sub-pixel samples among FR and LR frames as shown in Figure 5-

49-a. This would support direct retrieving for the corresponding samples that belong 

to FR reference frame (during disparity compensation). On the contrary, high 

performance decimation method loses this property since the sub-pixel samples are 

generated from samples that belong to low spatial-resolution reference frames as 

depicted in Figure 5-49-b. 

 

 

 

 
Table 5-24 Summary results using PSNRactual 

Average ΔPSNR actual F1 F3 

185 
 



 

PSNR VE based high performance decimation minus 
PSNR Default interpolation based high performance decimation 

-0.8 -0.25 

PSNR VE based conventional decimation minus 
PSNR Default interpolation based conventional decimation 

0.62  0.09 

PSNR VE based conventional decimation minus 
PSNR Default interpolation based high performance decimation 

0.58 0.18 

 

Table 5-25 Summary results using MSSIMactual 

Average ΔMSSIM actual F1 F3 
MSSIM VE based high performance decimation minus 
MSSIM Default interpolation based high performance decimation 

-0.002 -0.001 

MSSIM VE based conventional decimation  minus 
MSSIM Default interpolation based conventional decimation 

0.015  0.002  

MSSIM VE based conventional decimation minus 
MSSIM Default interpolation based high performance decimation 

0.015  0.003  

 

 
(a) 

 
(b) 

Figure 5-49 (a-b) Relation among reference frames at FR and LR using conventional and 
high performance decimation methods respectively 

 

The proposed VE algorithm improves visual quality for F1 more significantly than 

F3. The amounts of inter-view prediction for both frames are analysed. The amount 

of inter-view predicted blocks is 81% for frames that follow Key frame (e.g. F1), while 

the corresponding amount for frames that follow non key-frames (e.g. F3) is 14% as 

shown in Table 5-26. Therefore, coding F1 relies mostly on IVP, while majority of 

blocks that belong to F3 are predicted by temporal frames. This explains why the 

proposed VE algorithm is more effective on F1 than F3. 

 

 

Table 5-26 Amount of inter-view prediction (%) for F1 and F3 frames 
Multi-view video F1 located at T0 [key frame] F3 located at T1 [non-key frame] 
Akko & Kayo 91.33  13.67 
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Ballroom 82  10.67 
Break-dancers 72.4  26.43 
Exit 82.33  0.67 
Race1 73.33  10.33 
Rena 85.67  23.67 
Average 81.18  14.24 

PSNRactual and MSSIMactual metrics are extended to measure quality for coded LR 

frames that follow key frames. Three views are coded via H.264/AVC based multi-

view video coding using first forty nine frames from each view. Sequential view 

prediction architecture is deployed, where each frame belongs to dependent view is 

predicted by nearest temporal and spatial frames. Two experiments are conducted. 

Coded LR frames that follow key frames are visually enhanced by the proposed VE 

algorithm in the 1st experiment, while these frames are interpolated by AVC 6-tap 

filter in the 2nd experiment. Both experiments use conventional decimation method 

for FR reference frames during inter-view prediction. Coded frames that follow key 

frames are extracted and their visual qualities are compared using these objective 

metrics; PSNRactual and MSSIMactual. The following tables (5-27 to 5-32) provide the 

results for different videos. It can be seen that the proposed VE algorithm provides 

quality improvement than interpolation via AVC 6-tap filter through PSNR and 

MSSIM metrics. 

 
Table 5-27 PSNRactual and MSSIMactual results for Akko & Kayo video  

Metric PSNR MSSIM 

Frame With VE 
algorithm 

Without VE 
algorithm 

Delta 
PSNR 

With VE 
algorithm 

Without VE 
algorithm 

Delta 
MSSIM 

F1 29.47 29.16 0.3 0.84 0.82 0.01 
F25 29.35 29.03 0.32 0.83 0.82 0.01 
F49 29.13 28.88 0.24 0.83 0.82 0.02 
F73 29.61 29.24 0.37 0.84 0.82 0.02 
F97 29.89 29.61 0.28 0.85 0.84 0.01 
F121 29.64 29.26 0.38 0.85 0.84 0.02 
F145 29.35 29.07 0.28 0.84 0.82 0.02 
Average  0.31  0.02 

 

 
Table 5-28 PSNRactual and MSSIMactual results for Ballroom video 

Metric PSNR MSSIM 
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Frame 
With VE 
algorithm 

Without VE 
algorithm 

Delta 
PSNR 

With VE 
algorithm 

Without VE 
algorithm 

Delta 
MSSIM 

F1 28.2 27.7 0.5 0.83 0.8 0.03 
F25 28.31 27.72 0.58 0.83 0.81 0.03 
F49 28.53 27.96 0.57 0.84 0.81 0.02 
F73 28.95 28.37 0.58 0.84 0.82 0.02 
F97 28.63 28.28 0.35 0.84 0.83 0.02 
F121 28.86 28.24 0.62 0.85 0.83 0.02 
F145 29.17 28.62 0.55 0.85 0.83 0.02 
Average  0.54  0.02 

 
Table 5-29 PSNRactual and MSSIMactual results for Break-dancers video 

Metric PSNR MSSIM 

Frame 
With VE 
algorithm 

Without VE 
algorithm 

Delta 
PSNR 

With VE 
algorithm 

Without VE 
algorithm 

Delta 
MSSIM 

F1 35.1 34.76 0.34 0.95 0.94 0.01 
F25 35 34.68 0.32 0.95 0.94 0.01 
F49 35.03 34.8 0.24 0.95 0.95 0 
F73 35.15 34.99 0.16 0.95 0.95 0 
F97 35.1 35 0.09 0.95 0.95 0 
F121 35.09 34.85 0.24 0.95 0.95 0 
F145 35.48 35.18 0.29 0.95 0.95 0 
Average  0.24  0.003 

 
Table 5-30 PSNRactual and MSSIMactual results for Exit video 

Metric PSNR MSSIM 

Frame With VE 
algorithm 

Without VE 
algorithm 

Delta 
PSNR 

With VE 
algorithm 

Without VE 
algorithm 

Delta 
MSSIM 

F1 31.59 30.81 0.79 0.9 0.88 0.02 
F25 31.9 30.98 0.92 0.9 0.88 0.02 
F49 31.65 30.81 0.83 0.9 0.88 0.02 
F73 31.79 30.91 0.88 0.9 0.88 0.02 
F97 31.94 30.96 0.98 0.9 0.88 0.02 
F121 31.89 31.16 0.74 0.9 0.88 0.02 
F145 31.74 31.12 0.62 0.9 0.88 0.02 
Average  0.82  0.02 
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Table 5-31 PSNRactual and MSSIMactual results for Race1 video 
Metric PSNR MSSIM 

Frame 
With VE 
algorithm 

Without VE 
algorithm 

Delta 
PSNR 

With VE 
algorithm 

Without VE 
algorithm 

Delta 
MSSIM 

F1 33.21 31.94 1.27 0.93 0.91 0.02 
F25 32.07 30.1 1.97 0.93 0.9 0.03 
F49 30.75 28.96 1.79 0.92 0.89 0.03 
F73 30.21 27.52 2.7 0.93 0.88 0.05 
F97 29.44 26.99 2.45 0.93 0.88 0.05 
F121 30.68 27.47 3.21 0.93 0.89 0.04 
F145 30.92 28 2.92 0.93 0.88 0.05 
Average  2.33  0.04 

 
Table 5-32 PSNRactual and MSSIMactual results for Rena video 

Metric PSNR MSSIM 

Frame 
With VE 
algorithm 

Without VE 
algorithm 

Delta 
PSNR 

With VE 
algorithm 

Without VE 
algorithm 

Delta 
MSSIM 

F1 33.57 33.04 0.53 0.9 0.9 0 
F25 33.54 32.7 0.84 0.9 0.88 0.02 
F49 33.53 32.69 0.85 0.9 0.89 0.01 
F73 33.58 32.84 0.74 0.89 0.88 0.01 
F97 33.7 33.08 0.62 0.9 0.89 0.01 
F121 33.68 33.14 0.54 0.9 0.9 0 
F145 34.03 33.49 0.54 0.9 0.9 0 
Average  0.67  0.01 
 

The proposed VE algorithm improves visual quality of interpolated frame that 

follow the key frame. This improvement is due to blurriness reduction that exists in 

the interpolated frame. Two objective metrics have been used to measure the 

amount of blurriness. It involves evaluating FR frame, interpolated frames by AVC 

filter and the corresponding frames that are visually enhanced by the proposed VE 

algorithm. These metrics are VQM that is proposed by Lee et al. and Baverage 

component in StSD metric (Lee et al., 2011; De Silva et al., 2013). Multi-view video 

coding is used to encode three-view video, where LR frames are associated with the 

middle view. In each experiment, full spatial-resolution reference frames that belong 

to the base view are decimated by conventional method. Proposed VE algorithm is 

deployed on the coded LR frames that follow key frames. 

The blurriness component of StSD metric has been used to measure the amount 

of blurriness in all interpolated frames that follow key frames36. It measures the 

36 There are seven low spatial-resolution frames that follow key frames; starting from F1 to F145 
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different amount of edge magnitude among un-coded frames and coded frames, 

where the edges are extracted by SOBEL filter. The following tables (5-33 to 5-38) 

show blurriness amount that is measured by Baverage (defined in StSD metric). It is 

computed for FR, LR and visually enhanced frames, where delta Baverage is computed 

by subtracting values in 4th column from values in the 3rd column. From these tables, 

the proposed algorithm reduces amount of blurriness for interpolated frames in the 

range of 0.3 to 2.9. 

 
Table 5-33 Blurriness amount of StSD results for Akko & Kayo video 

Time 
Slice 

Coded FR 
frame 

Interpolated frame 
without VE algorithm 

Interpolated frame 
with VE algorithm Delta Baverage 

T0 6.09 8.82 7.73 1.1 
T8 6.37 9.27 8.11 1.17 
T16 6.07 9.11 7.66 1.45 
T24 6.59 9.55 8.14 1.4 
T32 6.32 8.94 7.46 1.49 
T40 6.46 9.48 7.93 1.55 
T48 6.05 9.53 8.02 1.51 
Average  1.38 

 
Table 5-34 Blurriness amount of StSD results for Ballroom video 

Time 
Slice 

Coded FR 
frame 

Interpolated frame 
without VE algorithm 

Interpolated frame 
with VE algorithm Delta Baverage 

T0 4.98 11.07 8.66 2.41 
T8 4.65 11.09 8.89 2.2 
T16 4.58 10.59 8.42 2.16 
T24 4.44 10.03 7.97 2.06 
T32 4.14 9.92 8.15 1.77 
T40 4.09 9.76 7.89 1.87 
T48 4.18 9.66 8.02 1.64 
Average  2.02 

 
Table 5-35 Blurriness amount of StSD results for Break-dancers video 

Time 
Slice 

Coded FR 
frame 

Interpolated frame 
without VE algorithm 

Interpolated frame 
with VE algorithm Delta Baverage 

T0 2.12 3.62 3.32 0.3 
T8 2.18 3.82 3.48 0.34 
T16 1.85 3.46 3.2 0.26 
T24 1.94 3.41 3.14 0.27 
T32 2.11 3.67 3.45 0.23 
T40 1.95 3.64 3.32 0.31 
T48 2.08 3.57 3.28 0.29 
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Average  0.29 
 

Table 5-36 Blurriness amount of StSD results for Exit video 
Time 
Slice 

Coded FR 
frame 

Interpolated frame 
without VE algorithm 

Interpolated frame 
with VE algorithm Delta Baverage 

T0 1.69 5.69 4.83 0.86 
T8 1.6 5.5 4.51 0.99 
T16 1.57 5.43 4.56 0.87 
T24 1.66 5.43 4.51 0.92 
T32 1.55 5.25 4.34 0.91 
T40 1.55 5.07 4.24 0.83 
T48 1.48 5.24 4.44 0.8 
Average  0.88 

 
Table 5-37 Blurriness amount of StSD results for Race1 video 

Time 
Slice 

Coded FR 
frame 

Interpolated frame 
without VE algorithm 

Interpolated frame 
with VE algorithm Delta Baverage 

T0 1.51 5.3 3.46 1.83 
T8 1.13 5.85 3.63 2.22 
T16 1 6.36 3.77 2.59 
T24 0.66 6.63 3.21 3.43 
T32 0.39 6.72 3.46 3.26 
T40 0.38 6.52 3.27 3.25 
T48 0.42 6.6 3.15 3.45 
Average  2.86 

 
Table 5-38 Blurriness amount of StSD results for Rena video 

Time 
Slice 

Coded FR 
frame 

Interpolated frame 
without VE algorithm 

Interpolated frame 
with VE algorithm Delta Baverage 

T0 2.83 6.37 5.74 0.63 
T8 3.14 7 6.09 0.91 
T16 2.85 6.49 5.69 0.8 
T24 3.02 6.55 5.81 0.74 
T32 2.86 6.36 5.67 0.7 
T40 2.93 6.28 5.62 0.66 
T48 2.91 6 5.4 0.6 
Average  0.72 

 

The results are summarised in Table 5-39. The FR frames that belong to the base 

view have lowest blurriness, while the interpolated frames that use AVC filter have 

the highest blurriness. Coded FR frames suffer from blocking artefacts; therefore 

their edges are not significantly blurred. Interpolated frames suffer from both; 

blurriness and blocking artefacts. The proposed VE algorithm reduces the amount of 

blurriness that exists in these frames. Frames that are obtained by the proposed VE 

191 
 



 

algorithm have less blurriness than the corresponding frames that are interpolated 

by AVC filter. The blurriness reduction varies among different multi-view videos37. 

This is due to different scene complexities among these videos that would be 

represented by the Spatial Index (SI). High amount of SI indicates frames with 

complex details (contains many edges) while low amount of SI indicates frames with 

few details. E.g. for F1 frame, SI are 33.93 and 41.61 for Break-dancers and Race1 

respectively. VE algorithm would improve the visual quality for frames that contain 

complex details more than frames that have smooth areas. 

Table 5-39 Amount of blur using blurriness component in StSD metric 
Multi-view video Blur average (1st 

view) 
Blur average (2nd 
view) without 
VE 

Blur average (2nd 
view) with VE 

Δ Blur among 
frames belong 
to 2nd view 

Akko & Kayo 6.28 9.24 7.86 1.38 
Ballroom 4.44 10.3 8.29 2.02 
Break-dancers 2.03 3.6 3.31 0.29 
Exit 1.59 5.37 4.49 0.88 
Race 0.78 6.28 3.42 2.86 
Rena 2.93 6.43 5.72 0.72 
Average  1.36 
 

Video Quality Metric (VQM) proposed by Lee et al, is used to evaluate the visual 

quality improvement when the proposed VE algorithm is used for the interpolated 

frames. The metric measures the amount of PSNR around edges, blockiness and 

blurriness. Table 5-40 shows detail results using this video quality metric. FR frames 

have the highest VQM among LR frames. Visual enhanced frames by VE algorithm 

have fewer amounts of blockiness and blurriness artefacts than the interpolated 

frames by AVC filter (referred to as INT) as depicted in Table 5-41. Since visually 

enhanced frames inherit blocks from neighbouring FR coded frames, they have less 

blockiness and blurriness with respect to the corresponding coded LR frames that 

are interpolated by AVC filter. Table 5-42 shows amount of preserved edges. 

Average amount of preserved edges for frames that are visually enhanced by VE 

algorithm is 54.7% while the corresponding amount of frames that are interpolated 

by AVC filter is 28.1%. Table 5-43 summarises these results using average VQM, 

the proposed VE algorithm enhances the quality of interpolated frames, where the 

improvement varies from 1 to 6.9 dB. 

37 The highest and lowest improvement exist in Race1 (2.86) and Break-dancers (0.29) 
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Table 5-40 VQM Lee et al. comprehensive results for different videos 

Multi-view video Akko & 
Kayo Ballroom Break-

dancers Exit Race1 Rena 

VQM 1st view 19 20.9 26.2 27.7 30.9 26.7 
VQM 2nd view (without  VE) 8.6 6.2 13 7.4 4.8 13.1 
VQM 2nd view (with VE) 9.7 8.8 14.5 8.6 11.7 16.3 
EPSNR 1st view 28.1 28.4 32.3 33 34.3 33.4 
EPSNR 2nd view(without VE) 22.7 21 25.6 23.1 20.4 26.8 
EPSNR 2nd view(with VE) 22.2 21.2 25.4 22.1 21.9 27.7 
Blocking 1st view 54.5 44.8 38 31.9 21.5 40.1 
Blocking 2nd view(without VE) 90.2 93.2 83.4 102.1 98.2 81.7 
Blocking 2nd view (with VE) 82.5 80.9 71.3 91.1 66.9 66.3 
Blur 1st view 73.2 60.9 48.1 40.6 26.3 53.7 
Blur 2nd view(without VE) 106.7 113.7 93.5 118.1 120.7 111.3 
Blur 2nd view (with VE) 93 92.6 81.9 98.1 76.2 93.3 

 

Table 5-41 Average quality improvement (VQM Lee et al.) for the interpolated frames 

Multi-view video VQM VE – 
VQM INT 

EPSNR VE – 
EPSNR INT 

Blocking VE – 
Blocking INT 

Blur VE – 
Blur INT 

Akko & Kayo 1.04 -0.49 0.55 0.98  
Ballroom 2.6 0.21 0.88  1.51  
Break-dancers 1.51 -0.18 0.86  0.83  
Exit 1.25 -0.97 0.79  1.43  
Race1 6.93 1.52 2.24  3.17  
Rena 3.26 0.88 1.1  1.28  
Average 2.76 0.16  1.07  1.53  

 

Table 5-42 Amount of preserved edges in percent via VQM Lee et al. 

Multi-view video 
1st view 

(FR 
frames) 

2nd view where coded 
LR frames are INT 

2nd view where LR coded 
frames are visually 

enhanced 
Akko & Kayo 69.1  31.7  54.3  
Ballroom 77.9  30.2  53.1  
Break-dancers 76.9  38.8  55.2  
Exit 87  16  56.6  
Race1 90.5  19.4  59.9  
Rena 73.6  32.5  49.4  
Average 79.2  28.1  54.7  

193 
 



 

 

Table 5-43 VQM average results based on Lee et al. proposed metric 
Multi-view video VQM Lee et al. 

(1st view) 
VQM Lee et al. 
(2nd view) 
without VE 

VQM Lee et al. 
(2nd view) with 
VE 

Δ VQM among 
frames belong 
to 2nd view 

Akko & Kayo 18.98 8.63 9.67 1.03 
Ballroom 20.89 6.2 8.8 2.6 
Break-dancers 26.2 12.99 14.5 1.51 
Exit 27.75 7.38 8.63 1.25 
Race 30.92 4.78 11.71 6.93 
Rena 26.71 13.05 16.32 3.26 
Average  2.76 

The second application; inter-view prediction; is evaluated for mixed spatial-

resolution multi-view video coding, where the middle view has LR frames. Three 

views are coded via H.264/AVC based multi-view video coding, where the first forty-

nine frames from each view are coded. The proposed VE algorithm is used to 

improve the visual quality of the interpolated reference frames that belong to the 

second view. These frames follow key frames and they are used to predict FR frames 

that belong to the third view. Figure 5-50 shows three reference frame candidates to 

predict P-frame in the third view. These candidates are S0, S1 and S1’, where the last 

candidate is reference frame that is visually enhanced by the proposed VE algorithm. 

Three experiments have been conducted using different candidates for inter-view 

prediction. In each experiment, the statistics of inter-view predicted blocks are 

analysed. Table 5-44 presents the average amount of inter-view predicted blocks. 

From this table, the average amount of inter-view predicted blocks are increased 

when visually enhanced frame (S1’) is used instead of interpolated reference frame 

(S1). Table 5-45 shows the coding gain when different spatial reference frames are 

used. When S1’ is used to predict FR frame, the bitrate is reduced by on average 33 

Kbps and PSNR is increased by on average 0.35 dB with respect to the 

corresponding codec that uses S1 reference frame. When S0 is used instead of S1’ 

reference frame, the average bitrate and PSNR are reduced by on average 20.28 

Kbps and 0.25 dB respectively. From these results, it can be implied that conducting 

VE algorithm for interpolated reference frames enhances the IVP when compared to 

the same frames that do not use the proposed VE algorithm. Full spatial-resolution 

frames (S0) provide the best choice for inter-view prediction among other reference 

frame candidates in terms of average bitrate. 
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(a) 

 
(b) 

 
(c) 

Figure 5-50 (a-c) Different source for inter-view prediction using FR, coded LR and visually 
enhanced reference frames respectively 

 
Table 5-44 Average amount of IVP (%) using different reference frames 

Multi-view video S0 S1 S1’ 
Akko & Kayo 90 86.72 88.19 
Ballroom 71.9 77.43 80.05 
Break-dancers 58 53.81 60.95 
Exit 43.72 39.09 44.76 
Race 62.62 61.62 66.43 
Rena 51.51 56.29 58.13 
Average 57.55 62.49 66.42 

 
Table 5-45 Coding gain using different sources for inter-view prediction 

Multi-view video 
PSNR (dB) Bitrate (Kbps) 

S0 S1 S1’ S0 S1 S1’ 
Akko & Kayo 30.94  30.76  30.96  460.78  497.71  472.9  

Ballroom 31.25 31.13  31.41  548.13  585.07  556.25  
Break-dancers 35.3  35.2  35.55  421.80  442.19  425.51  

Exit 35.55  35.56  35.8  357.31  379.59  360.87  
Race1 34.71  34.62  35.51  1523.31  1716.13  1615.27  
Rena 37.61  37.5 37.64  384.27  394.75  386.46  

The proposed visual enhancement algorithm is deployed using two different 

decimation methods; conventional and high performance methods. The proposed 

algorithm improves visual quality for the interpolated frames, where the amount of 

blurriness is reduced. This is linked to the method used for decimating FR reference 

frames. Since conventional decimation method maintains one to one relationship 

among FR and LR reference frame, it provides the proposed VE algorithm the ability 

to use the correct samples during estimating the FR blocks that belong to the 

interpolated frame. The improvement is significant for frames that follow key frames, 

where the amount of IVP is significantly higher than the corresponding amount for 

the frames that follow non-key frames. 
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5.4.5 Proposed prediction architecture with visual enhancement 
algorithm 

The proposed VE algorithm is integrated with the PA that is presented in subsection 

5.3.4. The proposed VE algorithm is used to improve visual quality for the 

interpolated frames prior to display. There are three modes that correspond to 

different configurations within the proposed PA. Figure 5-51 shows these modes, 

where A, and B are two conditions that are discussed in subsection 5.3.4 (enable 

prediction using spatial and temporal reference frames that are referred to red and 

blue arrows respectively). AF and C represent high performance and conventional 

decimation methods respectively. Red block refers to the key frame while grey block 

refers to LR frame that is visually enhanced by VE algorithm. 

 

 
 

 
(a) 

 

 
(b) 
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(c) 

 

Figure 5-51 (a-c) Proposed prediction architectures using modes 0, 1 and 2 

Mode 0 (Proposed MR-MVC mode 0) represents the proposed prediction 

architecture without integrating VE algorithm. Mode 1 (Proposed MR-MVC mode 1) 

integrates VE algorithm for LR frame that follows the key frame while mode 2 

(Proposed MR-MVC mode 2) applies VE algorithm to all LR frames. These modes 

provide trade-off among visual quality and bitrate. Mode 1 changes only the 

decimation method for FR reference frames (key frames). Mode 2 applies two 

changes in the proposed prediction architecture, where temporal prediction for low 

spatial-resolution frames is omitted. This would improve the visual quality for all 

interpolated frames that would rely on the inter-view prediction. Also all FR frames 

that belong to the base view are decimated by the conventional method. 

5.4.6 Results and discussions 
The proposed prediction architecture among three modes is evaluated alongside the 

extended architecture based 3D-DMB and HBP. Figure 5-52 shows rate-distortion 

curves when different prediction architectures are used, where Y-axis and X-axis are 

PSNRactual and bitrate respectively.  

Table 5-46 and Table 5-47 provide the results when coding mixed spatial-

resolution multi-view videos using the proposed prediction architecture, HBP and the 

extended architecture based 3D-DMB. From these results, VE algorithm improves 

visual quality for the interpolated frames at the expense of increasing average bitrate 

(e.g. the proposed PA using mode 2 processes VE algorithm for all LR frames by 

omitting temporal prediction for the view that contains LR frames). 
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(e) 

 

 
(f) 

 

Figure 5-52 Rate-distortion curves for the proposed prediction architecture among 
different modes 
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Table 5-46 ∆PSNR results for proposed prediction architecture 

ΔPSNR (dB) 
PSNR(Mode i) – PSNR(extended 
PA based 3D-DMB) PSNR(Mode i) – PSNR(HBP) 

Mode 0 1 2 0 1 2 
Akko & Kayo 0.13 0.15 0.21 -0.75 -0.73 -0.67 
Ballroom 0.13 0.18 0.32 -0.68 -0.63 -0.48 
Break-dancers 0.07 0.08 0.17 -0.45 -0.43 -0.35 
Exit 0.09 0.17 0.45 -0.65 -0.57 -0.29 
Race1 0.02 0.15 0.94 -0.37 -0.25 0.54 
Rena -0.01 0.04 0.24 -0.71 -0.66 -0.47 
Average 0.07 0.13 0.39 -0.6 -0.54 -0.29 

 
Table 5-47 ∆bitrate results for proposed prediction architecture 

ΔBR (Kbps) 
BR(Mode i) – BR(extended PA 
based 3D-DMB) BR(Mode i) – BR(HBP) 

Mode 0 1 2 0 1 2 
Akko & Kayo -9.07 -8.34 -1.2 5.26 5.99 13.13 
Ballroom -7.2 -6.5 11.89 8.18 8.88 27.27 
Break-dancers -5.5 -5.34 9.68 -16.08 -15.92 -0.9 
Exit -2.68 -1.8 25.32 3.23 4.11 31.23 
Race1 -49.88 -47.31 1.32 158.67 161.24 209.87 
Rena -4.4 -4.42 0.2 -9.89 -9.91 -5.29 
Average -13.12 -12.29 7.87 24.9 25.73 45.89 

The summary results in terms of ΔPSNR and ΔBR are presented in Table 5-48 

and Table 5-49 respectively. From these results, deploying mode 1 has slightly 

improved actual PSNR while average bitrate increases by 0.84 Kbps with respect to 

mode 0. Mode 2 provides the highest visual quality for the proposed PA with respect 

to other modes. Its improvements are on average 0.39 dB and -0.29 dB at the 

expense of increasing average bitrate by 7.87 Kbps and 45.89 Kbps with respect to 

deploying extended architecture based 3D-DMB and HBP prediction architectures 

respectively. The proposed VE algorithm increases coding time by 0.038% and 

0.049% for modes 1 and 2 respectively. Therefore the computational complexity for 

the proposed VE algorithm is not considered a burden for MVC.  

Table 5-48 ΔPSNR summary results 

ΔPSNR actual 
PSNR(Proposed Prediction architecture) – 

PSNR (Extended PA based 3D-DMB                      
/ HBP architectures) 

Prediction architecture Mode 0 Mode 1 Mode 2 
Extended PA based 3D-DMB 0.072 0.128 0.387 
HBP -0.601 -0.545 -0.285 
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Table 5-49 ΔBitrate summary results 

ΔBR BR(Proposed Prediction architecture) – 
BR (Extended 3D-DMB / HBP architecture) 

Prediction architecture Mode 0 Mode 1 Mode 2 
Extended architecture based 3D-
DMB -13.122 -12.285 7.868 

HBP 24.895 25.732 45.885 
 

 

Tables 5-50 to 5-52 show PSNRactual results when coding the middle view that 

contains LR frames by different prediction architectures. Deploying VE algorithm for 

all interpolated frames improves visual quality of these frames. The quality 

improvements are on average 0.9 dB and 0.6 dB with respect to the corresponding 

interpolated frames that are coded by the extended architecture based 3D-DMB and 

HBP prediction architectures respectively. VE algorithm is deployed in two modes, 

where mode 1 executes the proposed VE algorithm for a set of LR frames that follow 

key frames. The average quality improvement for the view that has LR frames using 

mode 1 is 0.2 dB at the expense of slightly increasing the average bitrate by 0.84 

Kbps with respect to mode 0. Mode 2 allows further visual quality improvement, 

where the average quality gain for the view that has LR frames is 0.9 dB and the 

average bitrate is increased by 21 Kbps with respect to mode 0. 

Table 5-50 PSNRactual results for interpolated frames 

Prediction 
architecture 

Akko & 
Kayo Ballroom Break-

dancers Exit Race1 Rena 

Extended 
3D-DMB 29.13 28.189 35.021 30.944 28.263 32.778 

HBP 29.615 28.589 35.288 31.164 28.238 33.271 
mode 0 29.133 28.18 35.006 30.942 28.249 32.769 
mode 1 29.191 28.315 35.049 31.165 28.609 32.924 
mode 2 29.356 28.732 35.3 31.914 30.893 33.497 

 
Table 5-51 ΔPSNR for interpolated frames with respect to extended PA based 3D-DMB 

ΔPSNR (dB): PSNR(proposed architecture) – PSNR(extended PA based 3D-DMB) 

Proposed prediction architecture with Mode 0 Mode 1 Mode 2 
Akko & Kayo 0.003  0.061  0.226  
Ballroom -0.01  0.125  0.543 
Break-dancers -0.015  0.028  0.279  
Exit -0.002  0.221  0.97  
Race1 -0.014  0.346  2.63  
Rena -0.009  0.146  0.718  
Average -0.008  0.154  0.894  
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Table 5-52 ΔPSNR for interpolated frames with respect to HBP architecture 
ΔPSNR (dB): PSNR(proposed architecture) – PSNR(HBP) 
Proposed prediction architecture with Mode 0 Mode 1 Mode 2 
Akko & Kayo -0.482  -0.424  -0.259  
Ballroom -0.409  -0.275  0.143  
Break-dancers -0.282  -0.239  0.012  
Exit -0.222  0.001  0.751  
Race1 0.011  0.37  2.655  
Rena -0.502  -0.347  0.225  
Average -0.314  -0.152  0.588  

 

5.4.7 Conclusions 
A visual enhancement algorithm has been proposed that improves visual quality for 

coded LR frames. During disparity compensation, the blocks that belong to FR 

frames are used among the interpolated residual to substitute blocks that belong to 

the interpolated frames. The VE algorithm would be used in display and enhancing 

inter-view prediction. The former application targets reducing blurriness, while the 

latter improves visual quality for the interpolated reference frames prior to conducting 

disparity estimation. A set of modes have been presented to provide different trade-

off among visual quality for the interpolated frames and average bitrate. Processing 

the proposed VE algorithm for the interpolated frames through the proposed PA, 

mode 2 provides the highest visual quality improvement among corresponding 

frames that are coded by HBP and the extended PA based 3D-DMB. The quality 

improvements for these frames are on average 0.9 dB and 0.6 dB at the expense of 

increasing bitrate by on average 8 Kbps and 46 Kbps with respect to extended PA 

based 3D-DMB and HBP PA respectively. 

 

5.5 Summary of the investigations 
This chapter investigated mixed spatial-resolution multi-view video coding at low 

bitrates. First, it discussed how much inter-view prediction is affected when coding 

frames with different spatial-resolution. Deploying a FR frame as reference frame 

provides better coding efficiency than using a LR frame when coding mixed spatial-

resolution stereoscopic video, by on average 0.63 dB while saving bitrate by 6.2%. 

When asymmetric quality is deployed with mixed spatial-resolution stereoscopic 

video coding that deploys LR frames in a base view, 44% of the variation in the IVP 

can be explained by asymmetric quality, according to regression analysis. The 
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relationship of IVP and ∆QP using six multi-view videos could be described by 

equation 5-1.  

Different methods for decimation and interpolation of reference frames are 

compared. High performance methods are recommended for decimation and 

interpolation since they achieve similar coding gain and less time for filtering 

compared to conventional methods. This is due to deploying filtering on fewer 

samples than conventional methods. 

Statistical analysis of block matching is then applied for low and full spatial-

resolution frames. Recent temporal and spatial FR reference frames have most 

significant contribution of block matching when coding FR and LR frames. Through 

analysing the correlation among temporal and inter-view predicted blocks during 

coding neighbouring frames, spatial and 2nd temporal reference frames are used 

when their expected role of block matching are significant. This is beneficial when 

coding multi-view video that contains large disparities and slow objects motion. 

Based on the previous results, prediction architecture is proposed and evaluated 

among HBP and extended architecture based 3D-DMB. The proposed prediction 

architecture saves a significant amount of memory required for DPB by 51.9% and 

31.6% with respect to HBP and extended architecture based 3D-DMB respectively. 

The proposed prediction architecture accelerates encoding by on average 57% and 

up to 77.5% with respect to the corresponding time needed by hierarchical B-picture 

architecture. It speeds up encoding by on average 14% and up to 54% with respect 

to an extended prediction architecture based 3D-DMB. The proposed PA needs less 

bitrate for coding asymmetric MVV by on average 13.1 Kbps with respect to extended 

architecture based 3D-DMB, while both obtain similar quality for decoded MVV. HBP 

PA provides higher coding efficiency than the proposed PA, where HBP PA obtains 

better quality by on average 0.78 dB while requiring less bitrate by on average 24.9 

Kbps with respect to the proposed PA. 

The proposed PA with adaptive reference frame ordering algorithm saves on 

average 28.7 Kbps and 35.4 Kbps with respect to an HBP architecture and extended 

architecture based on 3D-DMB, respectively. It provides a similar quality for decoded 

asymmetric MVV to the corresponding video coded via extended architecture based 

3D-DMB. HBP provides better quality by on average 0.38 dB compared to the 

corresponding video that is coded by the proposed prediction architecture. The 

proposed prediction architecture accelerates compression time by on average 64% 

and 33% with respect to the corresponding time needed by HBP architecture and 

the extended PA based 3D-DMB. 
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A visual enhancement algorithm has been proposed to reduce the amount of 

blurriness that exists in coded LR frames. During disparity compensation, the blocks 

that belong to FR frames are used among interpolated residuals to substitute blocks 

that belong to the interpolated frames. Different modes have been presented to 

provide a trade-off among visual quality for the interpolated frames and average 

bitrate. Integrating VE algorithm for the interpolated frames (mode 2) provides the 

highest visual quality improvement among corresponding frames that are coded by 

other prediction architectures. The quality improvements for the interpolated frames 

are on average 0.9 dB and 0.6 dB at the expense of increasing bitrate by on average 

8 Kbps and 46 Kbps with respect to extended architecture based 3D-DMB and HBP 

prediction architectures respectively. 

The next chapter will summarise the outcomes of the research investigations that 

are reported in the thesis, followed by the research directions that could be 

addressed in the future.   
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 
 

This chapter presents the outcomes of the research investigations and outlines 

several research directions that could be addressed in the future. 

6.1 Conclusions of research investigations 

The following outcomes of the research investigations for symmetric multi-view video 

coding are summarised as follows: 

o The camera separation affects the coding performance for multi-view video 

coding. Although increasing the camera separation reduces coding efficiency for 

MVC, it cannot be used as a reliable criterion when selecting a suitable coding 

solution for a given multi-view video. Scene complexity affects inter-camera angle 

threshold, where datasets with a dominant temporal correlation have a lower 

threshold than datasets with balanced correlations among spatial and temporal 

frames. 

o Prediction architectures have been investigated in terms of RFS and RFO. Based 

on the block matching analysis, the nearest two frames in temporal, spatial and 

spatiotemporal directions are chosen for RFS. Interleaved RFO is more consistent 

with the block matching analysis than other static reference frame ordering. The 

proposed prediction architecture achieves a superior coding performance relative 

to other architectures by a coding gain up to 2.3 dB. Since few reference frames 

have the majority of block matching contributions using a subset of coding modes, 

a trade-off study among coding efficiency and computational complexity was 

conducted. For low complexity multi-view video codec, the nearest temporal and 

spatial frames are used for reference frame selection, while macroblock partitions 

coding modes are enabled. 

o Adaptive reference frame ordering algorithm is proposed, where RFO for the 

current frame is predicted by analysing block matching statistics for recent 

temporal frame. When the scene changes, reference frames indices are 

reordered in a way that places the spatial reference frame first rather than the 

temporal reference frame in List 0. The algorithm has been tested in two 

applications: through coding multi-view videos using multiple reference frames, 

and compressing a sequence that contains hard scene changes. For prediction 

architectures with multiple reference frames, the algorithm improves the coding 

gain for the codec by up to 0.2 dB. When coding a sequence that contains multiple 
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scenes, the algorithm saves bitrate by up to 6.2% with respect to a prediction 

architecture that deploys a static reference frame ordering. 

In context of mixed spatial-resolution multi-view video coding investigations, the 

following outcomes are summarised as follows: 

o The first study explores the effect of inter-view prediction direction on the coding 

performance of mixed spatial-resolution stereoscopic video coding. Deploying FR 

rather than LR frames in the base view achieves a higher coding gain by on 

average 0.63 dB while the bitrate is reduced by 6.2%. The results published by 

Brust et al. regarding the effect of different inter-view prediction directions on 

coding performance of stereoscopic video coding are biased to asymmetric 

quality (Brust et al., 2010). Based on regression analysis for asymmetric quality, 

and mixed spatial-resolution stereoscopic video coding using six multi-view 

videos, the relationship of Inter-View Prediction (IVP) and ∆QP would be 

described by the equation: IVP = 1.492 + 1.096 ΔQP 

o Different decimation and interpolation methods have been evaluated in terms of 

coding gain and computational complexity. High performance methods for 

decimation and interpolation have similar coding gain and require less 

computational complexity than the conventional methods. This is due to the 

deployment of filtering to less number of samples than the conventional methods. 

Conventional decimation and interpolation methods maintain a one-to-one 

relationship among samples at full and low spatial-resolution, in contrast to high 

performance methods. 

o The prediction architecture has been defined by statistical analysis of block 

matching among candidate reference frames. Nearest temporal and spatial FR 

reference frames are used during coding of full and low spatial-resolution frames. 

Spatial and second temporal reference frames are selected when their expected 

amount of block matching are significant during coding FR frame that belong to 

the dependent view. Based on block matching statistics results, prediction 

architecture is proposed and evaluated among HBP and extended architecture 

based 3D-DMB. The proposed PA reduces DPB size by 51.9% and 31.6% with 

respect to HBP and extended architecture based 3D-DMB respectively. The 

proposed prediction architecture speeds-up encoding by on average 57% and 

14% with respect to the corresponding time needed by HBP and extended 

architecture based 3D-DMB respectively. The proposed prediction architecture 

needs less bitrate for coding asymmetric multi-view video by on average 13.1 
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Kbps with respect to the extended architecture based 3D-DMB. HBP architecture 

is more coding efficient than the proposed architecture, where it obtains better 

quality by on average 0.78 dB while requiring less bitrate by on average 24.9 

Kbps. 

o Adaptive reference frame ordering algorithm has been integrated with the 

proposed PA. It saves bitrate by on average 28.7 Kbps and 35.4 Kbps with respect 

to HBP architecture and extended architecture based 3D-DMB, respectively. The 

proposed prediction architecture speeds up encoding by on average 64% and 

33% with respect to the corresponding time needed by hierarchical B-picture 

architecture and the extended PA based 3D-DMB. 

o A visual enhancement algorithm is proposed to improve visual quality for the 

interpolated frames that utilise the information derived from disparity 

compensation. Blocks that belong to the interpolated frame are substituted by 

summation of predicted blocks that belong to the FR reference frame and the 

interpolated signals from residuals. The algorithm is sensitive to decimation 

method that is deployed to FR reference frame during inter-view prediction. 

Frames processed by the algorithm have higher visual quality than the 

corresponding frames that are interpolated by an AVC filter. This is conditional to 

deploying the conventional decimation method for FR frames. The improvement 

is more significant for the interpolated frames that follow key frames rather than 

frames that follow non-key frames. This is due to significant amount of inter-view 

prediction of former frames. The visual quality improvement is validated using 

PSNR, MSSIM, Blurriness component of StSD and VQM proposed by Lee et al. 

metric. Different modes have been presented to provide trade-off among visual 

quality of the interpolated frames and average bitrate. Integrating the VE algorithm 

for all frames (mode 2) gets the highest visual quality improvement among 

corresponding frames that are coded by other prediction architectures. The quality 

improvements for interpolated frames are on average 0.9 dB and 0.6 dB at the 

expense of increasing bitrate by on average 8 Kbps and 46 Kbps with respect to 

the extended architecture based 3D-DMB and HBP prediction architectures 

respectively. 
 

In summary, the research investigated the impact of camera separation and 

prediction architectures in context of symmetric MVC. Inter-camera angle as 

standalone criteria is not sufficient to decide the best use for MVC. Through 

conducting statistical analysis of block matching, prediction architectures are 

proposed in addition to proposing adaptive reference frame ordering algorithm that 
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is beneficial when coding videos with hard scene changes. In context of mixed 

spatial-resolution MVC, several studies are tackled towards deriving prediction 

architecture. First, the impact of inter-view prediction direction is studied then 

different decimation and interpolation methods are examined in addition to 

conducting block matching statistics. The proposed prediction architecture provides 

comparable coding performance, consumes less computational complexity and 

memory size than other prediction architectures that are common used through this 

coding approach. Visual enhancement is tackled for the interpolated frames. Low 

computational complexity solution is proposed, where the information embedded in 

disparity compensation is used to reduce the amount of blurriness in the interpolated 

frame at the receiver side. 

  

Parts of the outcomes that have been reported in the thesis are published that 

include the investigations reported in sections 4.1, 4.3 and 4.4. The papers are 

attached in the publications section. 

 

6.2 Future work 
There are several research directions that could be addressed in future work. The 

following summarise these research directions: 

o The proposed visual enhancement algorithm needs further improvement. Since 

the proposed algorithm does not apply for all blocks, boundaries among 

intra/temporal blocks and inter-view predicted blocks might be visible. One of the 

candidate solutions is applying a Deblocking filter, where the pixels related to both 

blocks are filtered by different weights.  

o The proposed visual enhancement algorithm provides a low-complexity solution 

for interpolated frames at the expense of a bitrate increase. The super-resolution 

by example-based method could improve visual quality for the interpolated frames 

without increasing the bitrate at the expense of high computational complexity. 

This needs to be investigated to compare both methods in terms of rate-distortion 

and computational complexity. 

o Jain et al. proposed alternate blur format for mixed spatial-resolution stereoscopic 

video coding (Jain et al., 2014). Their proposed format reduces the amount of eye 

fatigue relative to a single-blur format especially for animated scenes. The 

proposed visual enhancement algorithm could be applied to an alternate blur 

format, where an interpolated frame will use information from temporal and 

disparity compensations to improve its visual quality. Objective and subjective 

208 
 



 

assessments are necessary to compare both single-blur and alternate blur 

formats for mixed spatial-resolution multi-view video coding. 

o Mixed spatial-resolution multi-view video coding could be deployed in the context 

of multi-view plus depth. Texture and depth maps among neighbouring views 

could have different spatial-resolution. This could further reduce the bitrate 

compared to deploying each coding approach separately. At the decoder side, 

the interpolated frames could be visually improved by the proposed visual 

enhancement algorithm while the frames belonging to intermediate views are 

synthesised. 
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