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Abstract 

Conventionally, a human has to learn to operate a machine by himself / herself. Human Adaptive 

Mechatronics (HAM) aims to investigate a machine that has the capability to learn its operator 

skills in order to provide assistance and guidance appropriately. Therefore, the understanding of 

human behaviour during the human-machine interaction (HMI) from the machine’s side is 

essential. The focus of this research is to propose a model of human-machine control strategy 

and performance evaluation from the machine’s point of view. Various HAM simulation 

scenarios are developed for the investigations of the HMI. 

The first case study that utilises the classic pendulum-driven capsule system reveals that a 

human can learn to control the unfamiliar system and summarise the control strategy as a set of 

rules. Further investigation of the case study is conducted with nine participants to explore the 

performance differences and control characteristics among them. High performers tend to 

control the pendulum at high frequency in the right portion of the angle range while the low 

performers perform inconsistent control behaviour. This control information is used to develop 

a human-machine control model by adopting an Artificial Neural Network (ANN) and 10-time-

10-fold cross-validation. Two models of capsule direction and position predictions are obtained 

with 88.3% and 79.1% accuracies, respectively.  

An Electroencephalogram (EEG) headset is integrated into the platform for monitoring brain 

activity during HMI. A number of preliminary studies reveal that the brain has a specific 

response pattern to particular stimuli compared to normal brainwaves. A novel human-machine 

performance evaluation based on the EEG brainwaves is developed by utilising a classical target 

hitting task as a case study of HMI. Six models are obtained for the evaluation of the 

corresponding performance aspects including the Fitts index of performance. The averaged 

evaluation accuracy of the models is 72.35%. However, the accuracy drops to 65.81% when the 

models are applied to unseen data. In general, it can be claimed that the accuracy is satisfactory 

since it is very challenging to evaluate the HMI performance based only on the EEG brainwave 

activity.  
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Chapter 1 Introduction 

1.1 Background 

Automated robots have been embraced unconsciously in day-to-day life. There are a growing 

number of intelligent domestic appliances, smart cars, prostheses, smart organs, robotic 

furniture, and robots for traffic monitoring that designed to improve quality of living and to 

make life easier [1], [2], including co-working or co-inhabiting robots in the home environment 

that are a promising prospect for elderly care [3]. 

Artificial intelligence is technologically advanced. An arm prosthesis, illustrated in Figure 1.1, 

is a benchmark of a novel human re-engineering, the disabled can efficiently utilise it with 

confident. The future of human re-engineering has been projected in [4], for instance; soft robot 

actuators, modular prosthesis, artificial white blood cell, printed bones, bionic lens, lab-grown 

liver etc. Humanoid robots in many science fiction are not so imaginative at all in the not-too-

distance future.  

 

Figure 1.1 The robot arm prosthesis [4]. 
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In terms of developing human-friendly and safe robots, the interaction is considerable concern 

as humans are expected to participate in many critical applications such as medical applications 

or dexterous machine controls. A real benefit is to have a surgeon who holds not only knowledge 

but also knows how to apply a robot device that has high accuracy. Nevertheless, these robots 

need to interact considerately and appropriately to various types of users and must be practically 

adaptable according to spontaneous situations in order to achieve the overall optimum system 

performance. 

1.2 Motivation 

The author completed a BSc in Computer Engineering with the project “3D Solar System 

Simulator”. The project and personal interests in the field of graphics programming have driven 

the author to game development. After several years in the game development business, the 

author has been recruited as a game development lecturer in the Department of Animation, 

College of Arts, Media and Technology, Chiang Mai University, Thailand. While being a 

lecturer, the author completed an MSc in Software Engineering in order to improve the 

knowledge in systematic software development and the MSc project was on the design aspect 

of computer games. The author also conducted the research in common elements in a game 

design and produced a conference paper which is [5]. The inspiration of [5] is the design and 

development of the adaptive game based on a player skill level. The adaptive gaming balances 

the amount of challenge to match the player skill to improve the player experience by avoiding 

too much boredom or anxiety. This balance would maximise the enjoyment experienced by a 

player. The concept of this balancing is known as ‘flow’, the psychology of optimal experience 

[6]. 

The nature of a lecturer career has encouraged the author to pursue further education to improve 

the maturity in a specific domain of knowledge. Therefore, the author has secured the offer for 

pursuing a Doctor of Philosophy (Ph.D.) in the United Kingdom at Staffordshire University 

provided by the Erasmus-Mundus Sustainable eTourism.  
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The connection and motivation between the previous knowledge and experiences of the author 

to the Ph.D. study is the adaptive manner of the software and machine intelligence. The concept 

of Human Adaptive Mechatronics (HAM) is similar to adaptive game development that aims to 

produce adaptive behaviour according to the individual human skill.  

Although steady advances in technology continue to evolve a machine to become more 

automated, some machines still require a human for the operation and interaction. The 

interaction can be roughly categorised into fully manual, semi-manual, supervisory, regulatory, 

attached interaction etc. Despite the types of interaction, there has been an increasing 

improvement on the interaction ergonomics, especially in the adaptive manner. The examples 

of adaptive interaction come from a variety of applications including anti-locked brake (ABS) 

system, traction control system, car driving assistance, vehicle manipulation assistance, a 

computer mouse cursor aiming or snapping system, smart watch, adaptive wheelchair, adaptive 

prosthesis, human walking support system etc.  

To provide an adaptable interactive machine, the machine is required to understand the human 

operator as shown in Figure 1.2. It does need to recognise the current state of the human action. 

It does need to know the competency of the action i.e. performance evaluation model. It does 

require understanding the model of the interaction. 

 

Figure 1.2 The requirements for a human-machine adaptive interaction system. 

Human Machine

Interaction

Adaptive guidance

Information required for producing adaptive guidance

- Human intention recognition

- Human skill level identification

- Human-machine interaction model

- Human-machine performance evaluation model
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Hence, the understanding of HMI to provide the adaptive interaction is the particular interest of 

this research especially the modelling and performance evaluation of the interaction. 

Considering an example of a walking support system for an elderly or disabled person as shown 

in Figure 1.3, the system needs to understand the interaction behaviour of the human wearing it 

in order to provide the intuitive assisting interaction.  

 

Figure 1.3 A fully lower limbs exoskeleton support system [3], [4]. 

1.3 Aim 

The aim of this research is to investigate a Human Adaptive Mechatronics (HAM) based HMI 

system by focusing on the understanding of human heuristic learning, human-machine control 

modelling, and human-machine performance evaluation modelling from the human brainwave 

using Artificial Neural Network.  

1.4 Objectives and deliverables 

The objectives with the corresponding deliverables are summarised in Table 1.1. 
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Table 1.1 Research objectives and deliverables. 

Objective 1. To investigate the concept, component and mechanism of the HAM particularly on 

the HMI and performance evaluation modelling. 

Deliverable 1. The literature review and this research documentation (This Ph.D. thesis). 

Objective 2. To set up a human-machine interaction environment for the investigations and data 

acquisitions for model developments. 

Deliverable 2. A HAM simulation platform that provides the interaction environment and models 

a case study machine for human participants to perform a given scenario to evaluate and model 

performance (Chapter 3). 

Objective 3. To study a human heuristic control and learning transformation according to the 

Rasmussen’s skills, rules, and knowledge model.  

Deliverable 3. The investigation on a human heuristic learning control with an unfamiliar 

machine system for control strategy identification and transformation into a set of rules and 

knowledge (Chapter 4). 

Objective 4. To study human-machine control skills, and characteristics by comparing the 

performance outcome from a number of participants and developing a model from the control 

information. 

Deliverable 4. The development of a model for the human-machine interaction and control 

information with a case study of an inverted pendulum-driven capsule system (Chapter 4). 

Objective 5. To develop a model of human-machine interaction performance evaluation based on 

the human brainwave. 

Deliverable 5. A proposed model of HMI performance evaluation that links between the control 

performance and the EEG brainwave. (Chapter 5, Chapter 6) 
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1.5 Ethical issue 

This research carries out an in-depth analysis of HMI. Experiments are confidentially conducted 

with a number of participants in a suitable environment. Preliminarily, the participants have 

informed a detailed explanation about the purpose and nature of the experiment(s) and 

volunteered to participate. Participants have the right to end the participation at any time. 

Participants’ personal information is recorded and treated as confidential information. A 

university’s fast track ethical form has been submitted to and officially approved by the 

corresponding committee. All the relevant documents e.g. consent form template etc. can be 

found in the Appendix A and B. 

1.6 Resources 

The listings below are the resources used in this research. 

 A personal computer that can support running of the interactive simulation platform in 

3D. 

o Microsoft Visual Studio 2010. 

o Microsoft XNA Game Studio 4.0. 

o DigitalRune engine for graphic user interface (GUI) within the simulation. 

o A joystick control interfaces i.e. Microsoft XBOX Joystick, Logitech 3D Force 

Feedback. 

 An Emotiv EPOC headset for the brain activity measurement (Electroencephalogram, 

EEG). 

o Emotiv EPOC software development kit (SDK). 

 MathWorks MATLAB for data analysis. 

o EEGLAB – an open source software package for electrophysiological signal 

processing. 

 Access to Staffordshire University’s library resources. 

 Access to Chiang Mai University’s on-line research library resources. 

 Documentation 
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o Microsoft Word and Excel.  

o Zotero for reference management. 

o Apache OpenOffice Draw. 

o Adobe Photoshop and Adobe Illustrator. 

o FreeMind – an open source mind map drawing. 

 A digital camera for taking photographs of devices and experiment settings. 

1.7 Project plan 

This research outlines a modified waterfall project plan as shown in Figure 1.4. The 

corresponding timeline of the project plan is shown in Table 1.2. 
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Figure 1.4 A modified waterfall project plan. 
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Table 1.2 A timeline of the project plan. 

Task 2011 2012 2013 2014 2015 

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Literature review                  

Identify research aim and objectives                  

Design, development, and implementation                  

Conduct the experiments                  

Analysis and model developments                  

Generate documents                  
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1.8 Contributions 

The contributions of this thesis are listed underneath. 

 A review of the human interaction with the man-made systems i.e. HAM, HRI, HSC etc. 

that leads to the importance of human-machine interaction performance modelling and 

evaluation. To develop the interaction performance model between human and machine, 

a review of model development approaches, perspectives, and the modelling algorithm 

is given. The human EEG brain activity monitoring system is reviewed in order to 

develop a novel model of human-machine performance evaluation based on the EEG 

brain activity – 1.10. 

 The design, development and implementation of the human adaptive mechatronics 

(HAM) simulation platform to conduct the investigations on the human interaction with 

the case study scenarios. The design and implementation of the descriptive-predictive 

10-time-10-fold cross-validation model development procedure – Chapter 3. 

 The investigation of human heuristic learning that emphasises the concept of skills, 

rules, and knowledge (SRK). The analysis for the extension of the SRK to include 

wisdom into the cycle of human heuristic learning – Chapter 4. 

 The analysis of human-machine control performance and model developments by 

applying the descriptive-predictive approach and artificial neural network (ANN) – 

Chapter 4. 

 The studies and implementations of the HMI scenarios simultaneously with the human 

brainwave monitoring system that lead to the development of a novel performance 

evaluation models based on the human brainwave – Chapter 5, Chapter 6. 
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1.9 Organisation of the thesis 

The thesis is organised into chapters as follows.  

Chapter 2 reviews the importance of human existence in man-made systems. A human and a 

machine are becoming close by the advancement of innovative technology. Nevertheless, a 

human is still the primary entity who makes use of the machine. To develop the HMI and 

performance evaluation model, the review related to human skill, performance, and machine are 

given. Moreover, a deep understanding of the HMI behaviour can be gained by the investigation 

of the human brain activity from the Electroencephalography (EEG) system. Many 

investigations related to EEG are reviewed with the primary objective of modelling an HMI 

performance evaluation based on the brain activity.  

Chapter 3 gives the focus and methodology adopted in this research. The HAM platform, design, 

and implementation of the investigations are described. The model development procedure is 

employed in the latter chapters for the development of human-machine control model and the 

six EEG-based human-machine performance evaluation models. 

Chapter 4 primarily provides the investigations on the human-machine heuristic learning, skill 

acquisition, rule formulation, performance differences, and control model development. 

Chapter 5 presents the preliminary studies on the EEG brain monitoring based human-machine 

interaction. 

Chapter 6 provides the development of a novel EEG-based human-machine performance 

evaluation models. 

Chapter 7 draws conclusions from each of the investigations, states the research limitation, and 

suggests possible future works after the completion. 

 



 

 

Page 12 of 319 

1.10 List of publications 

 K. Samarnggoon, S. Cang, H. Yu, M. S. Hasan, and T. Flämig, “Human Skill 

Performance to Control an Underactuated Pendulum-Driven Capsule System,” in 

Control (CONTROL), 2014 UKACC International Conference on, Loughborough, 

United Kingdom, 2014, pp. 731–736 [7]. 

 K. Samarnggoon and H. Yu, “Real-time Virtual Simulation of an Underactuated 

Pendulum-Driven Capsule System,” in Control (CONTROL), 2012 UKACC 

International Conference on, Cardiff, United Kingdom, 2012, vol. 2012, pp. 568–573  

[8]. 

  



 

 

Page 13 of 319 

Chapter 2 Literature review 

2.1 Introduction 

This chapter reviews related literature rooted from the concept of HAM by focusing on the 

human interaction, learning and modelling of the human behaviour in a system. A human is the 

most difficult part to understand because of the unpredictable behaviour. Therefore, several 

aspects and research projects relating to the human interaction with a system are carried out in 

order to identify the approach and the model development methodology aimed at understanding 

HMI. Moreover, the innovation of the affordable human brainwave monitoring system has made 

the possibility to study the human interaction behaviour with a machine system from the 

brainwave aspect. The related literature is given in the latter part of the chapter.  

Figure 2.1 shows a mind map of the literature review in this chapter. The review starts with the 

motivation mentioned in Section 1.2 i.e. a human-machine adaptive interaction. A generic view 

of the interaction between a human and a man-made system is introduced in Section 2.2 to 

support the reason for the emergence of many HMI research fields. However, a HAM is the root 

motivation of this research because of its attractive concept. The literature is reviewed and 

categorised by the three key components of the HAM based HMI concept as shown in Figure 

2.1. Then, the review is extended to the other relevant areas that are required to fulfil the 

objectives and the aim of this research. 
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Figure 2.1 A mind map of the literature review. 

The review extends to the areas of the application that would benefit from the improvement of 

the adaptive HMI in various forms of interaction i.e. the Forms of HMI. A review of control 

modes of the HMI provides various types of machine control activity that can be located and 

can be studied for the improvement of HMI e.g. pursuit tracking, balancing control, target hitting 

control etc. Furthermore, the review covers the model development, machine modelling, and 

the human EEG brainwaves monitoring that are applied in this research. 

2.2 Human and man-made systems 

Modern concepts such as HAI [9], HMI [10], HRI [11], and HAM [12] regularly use the word 

‘human’, additionally with other words like ‘machine’, ‘automation’, ‘robot’, and 

‘mechatronics’ to refer to a human in relation to a man-made system.  These additional words 

are defined with some subtly different meanings by the Oxford dictionary [13] as follows. 

Machine: (noun) “An apparatus using mechanical power and having several parts, 

each with a definite function and together performing a particular 

task.”  

Automation: (noun) “The use or introduction of automatic equipment in a manufacturing 

or other process or facility.” 
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Robot: (noun) “A machine capable of carrying out a complex series of actions 

automatically, especially one programmable by a computer.” 

Mechatronics (noun)  “Technology combining electronics and mechanical engineering.” 

Despite the subtle different meaning of these additional words, the HRI, HMI, HAI, and HAM 

concepts always strive for a common goal i.e. the interaction between human and a man-made 

system.  

To avoid ambiguity, the term human-machine interaction (HMI) will be used to refer to the 

human interaction with a man-made system. Otherwise, a specific term will be clearly stated. 

2.2.1 Human adaptive mechatronics (HAM) 

A human adaptive mechatronics (HAM) is a concept that originated from the Centre of 

Excellence (COE) Tokyo Denki University Japan in 2005 [14]. In a conventional human-

machine system, learning and skill expertise are the sole responsibility of a human. A HAM 

introduces an intelligent concept of adaptive capability that assists operators to learn and 

improve, based on individual skill level and environment to achieve the optimum system 

performance [12], [15]–[20].  

The holistic view of HAM as depicted in Figure 2.2, demonstrates the major disciplines and 

their relationships required to convey the HAM ideas. Each pair of the disciplines, including  

‘human’, ‘mechatronics’, ‘intelligent control’, and ‘computer network’, forms cross-related 

disciplines that require further study to understand the collaboration and application between 

them. Human and mechatronics form a human-machine system or human-in-the-loop system. 

Human-computer interaction (HCI) is established between human and computer network. The 

mechatronics controlled by intelligence makes an ordinary machine into a robotic one. In an 

attempt to mimic human intelligence and knowledge, cognitive science is applied to machine 

intelligence. The dashed line between mechatronics and computer network composes the 

network facility for the machine to be monitored and controlled over the network systems.  

As a human-in-the-loop machine system, the human is considered the main beneficiary during 

operation. Mechatronics, itself, is a relatively vast research area including many system-
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modelling studies from a simple pendulum to a complicated vehicular model. Intelligence and 

control mechanisms function as a brain behind all the system. Computer and network participate 

in remote controlling over an underlying infrastructure, e.g. urban search and rescue (USAR), 

supervisory and monitoring, off-site control, remote laboratory etc. 

 

Figure 2.2 The holistic view of HAM multi-disciplinary [19]. 

2.2.2 Human-robot interaction (HRI) 

Human-robot interaction (HRI) is a multidisciplinary research for investigating the interaction 

between a human and a robot. Similarly to the HAM, the HRI incorporates multiple disciplines 

such as engineering, computer science, artificial intelligence, robotics, social science, and 

humanities [11]. The challenging issues of HRI are the intuitive and safe interaction between 

these pairs of the interacting agent; human and robot, robot and robot, or both pairs 

simultaneously [21]–[24]. Furthermore, the survey in [25] shows a growing trend towards the 

interaction in dynamic environments rather than a stationary one. The design of HRI needs to 

be suitable for the particular applications. For examples, an autonomous robot should take a 
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little effort to operate. In contrast with a robot in a serious application such as USAR, medical 

surgery application, or nuclear handling etc., the interaction should be designed by focusing on 

speed, efficiency, accuracy, reliability etc. Furthermore, a robot task may be dissimilar to 

human’s task for the same type of operation. For example, a vacuum cleaner robot needs a clear 

space to operate properly whereas a human can do the same operation without the space 

clearance [26]. 

2.2.3 Haptic shared control (HSC) 

Haptic shared control (HSC) is an approach that combines a force feedback device to an active 

assistive system in a shared control manner [27]. The shared control between human and 

machine means that the control authority could be taken from both the operator and machine 

depended on a certain circumstance. As illustrated in Figure 2.3, in one particular task, the 

operator exert force FO to a special designed haptic device, concurrently the device estimates 

and balances active force feedback back to the operator to assist with the operation. For instance, 

a force feedback steering wheel for a lane-keeping task renders assistance to a driver based on 

the error of a car heading direction. This seamless assistance has managed to reduce the effort 

for steering, stress, attention demand, and improve safety and accuracy of the driving by 16% 

[28]. 

 

Figure 2.3 A haptic shared control approach. 

2.2.4 The evaluation of the HMI 

Section 2.2 introduces some concepts that aim to improve the quality of HMI using different 

approaches. An HSC focuses on utilising a haptic device that actively assists a human during 

HMI. An HRI gives a top view and general idea of the interaction improvement and awareness 
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between a human and a machine. A HAM based HMI aims to provide a machine adaptability in 

active, passive or in a combined manner. However, in practical, there are three key components 

in order to realise the HAM conceptual machine i.e. intention recognition, performance 

evaluation and adaptive assistance. The following sections review literature that corresponded 

to the three components i.e. Section 2.3 HMI intention recognition, Section 2.4 HMI adaptive 

assistance and Section 2.5 HMI performance modelling.  

2.3 HMI intention recognition 

Since HMI is a human-in-the-loop system, the intention of the interaction from a human is one 

of the important components in achieving the improvement of HMI. For a machine to assist the 

human operator appropriately, the recognition of a human’s intentions is considered necessary. 

Although a human behavioural intention is rather difficult to predict, it is possible to recognise 

and estimate the HMI intention from a goal-oriented task by applying a pattern recognition 

technique.  

An example of the pattern recognition applied to decode and estimate a covert human intention 

is studied in neuroscience [29]–[32]. The use of spatial information from various section shows 

the improvement in the recognition accuracy compared to the usage of a single spatial 

information. This improvement conforms to the fact that the human brain utilises several 

sections cooperatively to perform a task. Another interesting human intention study shows that 

the behavioural intention is influenced by a human’s personal experiences [33]. There are 

convincing pieces of evidence that the human brain simulates internal motions after the 

observation of biological motions. Consequently, the subsequent intentions of actions are the 

result of the internal imagination of motions.  

2.3.1 Hidden Markov Model based intention 

recognition 

A Hidden Markov Model (HMM) has been applied to discriminate the state of human intentions 

in order to improve the HMI performance in [34]–[40]. The states of unconscious hand touching 

on the desk during a pattern drawing task are classified using HMM. The hand states are the 
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indications of fine and rough movements of pattern drawing modes. Therefore, the classified 

state is used to improve the micro teleoperation performance by automatic switching between 

fine and rough movement modes [34].  

Active cooperation between a human and a robot arm has been realised using the recognition of 

human intention by applying the HMM to learn the characteristic of forces exerted on the robot 

arm gripper [35]. The scenario has been applied to a transportation task in which a human 

control to balance the payload during the human-robot arm cooperation. There are three stages 

in this active cooperation system; force-torque signal processing, force pattern recognition using 

HMM, and the cooperative trajectories generation. The experimental result suggests that both 

time and frequency domain information should be taken into account to obtain the most out of 

system robustness. 

Telemanipulation with virtual fixture assistance also has benefited from knowing the intentions 

of the working operator. A virtual fixture is a form of constraint that is applied to limit the range 

of e.g. movements, paths, or angles to guide the operator. An HMM model is used to classify 

the human intentions from motion and velocity profile in [36]. As a consequence of the intention 

classification outcomes, one of three types of the virtual fixture is activated. Path following with 

virtual fixture direction, aiming at the target with helping of attractive force field, and obstacles 

avoidance with the help of repulsive force field are the examples of the task with guidance. 

Combined recognition of intention and appropriate activation of guidance has proved 

improvements in both less operation execution time and less error during the teleoperation. 

Furthermore, suggestions for improving the accuracy of intention recognition could be done by 

giving sufficient training data, expanding the dimension of states in HMM, which only increase 

linear time complexity as long as the states are independent from each other. 

Although the use of virtual fixtures helps the overall teleoperation system’s performance in both 

time and accuracy, a typical virtual fixture is inflexible. An adaptive virtual fixture is introduced 

which can be adapted by tuning the fixture factor according to operator current estimated 

trajectories or intentions [37]. The algorithms such as K-means clustering, HMM, and Support 

Vector Machines (SVMs) are used in combination in the proposed system. The system shows 

an acceptable tolerance to the untrained situations.  
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A Layered Hidden Markov Model (LHMM) is used for intention recognition systems based on 

the motion of robot-assisted applications [38], [39]. This type of HMM has several HMMs 

running concurrently with their corresponding purpose for each level of HMMs. For example, 

the lowest level HMM may correspond to estimate primitive motions such as translation or 

rotation of robot manipulator while the higher level HMM is responsible for aggregate 

recognition from the primitive actions i.e. task level recognition. Two more advantages over a 

typical HMM are the smaller amount of training data and the independence of training for each 

level of HMM. In conclusion, it is stated that the LHMM has more recognition power than a 

typical HMM and has more robustness in case that misclassification occurred in the lower level 

but the overall system still able to recognise the tasks.  

An HHMM, i.e. a hierarchy of multiple HMMs is used to implement smart assisted living 

systems for elderly [40]. Information used to identify intention is obtained from a single inertial 

sensor worn on a finger, which can provide several data for intention identification such as 3D 

acceleration, orientation (gyro), magnetic data, and temperature. Five types of hand gesture are 

being recognised and mapped to command the robot actions for elderly people. The comparison 

between normal HMM and HHMM shows that the latter has more accuracy. This is because 

HHMM contains multi-level recognition steps. 

2.3.2 Self-organising map (SOM) based intention 

recognition 

A type of ANN called self-organising map (SOM) combined with Bayesian filtering technique 

is applied to estimate human intention [41]–[45]. The justification for applying SOM can be 

explained as follows. Firstly, there is no need to define finite automata states like other graph-

based models e.g. HMMs. Secondly, it is stated that a human intention should be recognised 

from inside the human brain activity rather than the recognition of the external activity of the 

human behaviour. Thus, the use of SOM in this work is claimed to be a model of the cerebral 

cortex area in the human brain. Besides, SOM is able to map a relatively large amount of 

dimensional data to much lesser dimensional data and with no loss of topology information. As 

a result, the computation complexity is decreased. Finally, the advantage of Bayes filtering 

algorithm over other methods is the ability to handle non-Gaussian data distribution of human 
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intention. Implementation of Bayes filtering is done by a statistical particle filtering algorithm. 

The test bed based on this proposed method is a remote operation task where the operator has 

to control two types of the truck in a miniature environment via remote interfaces and control 

panels. Large amounts of information are monitored during the operation, for example, infrared 

light markers for truck position tracking, potentiometers for rotations tracking and control panel 

switches etc. 

2.3.3 The evaluation of the HMI intention 

recognition 

Section 2.3 reviews some of the literature relating to HMI intention recognition. Several studies 

show that HMI improvement can be achieved by applying the knowledge of the human’s 

intention to provide assistance and adaptation. However, most of the works has weaknesses e.g. 

lack of performance evaluation related to the corresponding intention, fine tuning of the 

provided assistance etc. The only the work that tries to introduce an adaptive virtual fixture 

based on the current operator’s intended trajectory is proposed by [37]. 

2.4 HMI adaptive assistance 

The aim of adaptive assistance is to achieve the optimum system performance by providing help 

to a human operator. The assistance can be divided into passive and active. A direct assistance 

such as a physically assistive movement is considered as the active one [20], [46]. There are 

proofs that show the improvement in learning efficiency from the system’s active force 

assistance during the HMI task performed in many research experiments [47]–[50]. The HSC is 

one of the active assistance methods, which is introduced in Section 2.2.3. Passive assistance, 

on the other hand, is an internal adaptation of a system i.e. an automated system’s parameter 

tuning [51], [52]. 
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2.4.1 Dynamic system with virtual fixture and shared 

control guidance 

The effectiveness of the active assistance for performance and training enhancements has been 

studied [27]. As experimented in [53], the dynamic system is a mass-spring–damper as shown 

in Figure 2.4. This dynamic system can be controlled and moved in a two-dimensional space 

with 4 Degrees of Freedom (DOF) i.e. (x1, y1) and (x2, y2). A 2-DOF force feedback joystick is 

used to control the system’s dynamic. A direction and magnitude are directly applied to the mass 

m1 to force the mass m2 at the other end to move and reach a target. The system is classified as 

an underactuated system since the mass m2 is moved involuntarily.  

 

Figure 2.4 A two-mass spring damper dynamic system [53]. 

There are three scenarios compared in this classical target-hitting/reaching i.e. no assistance, 

virtual fixture assistance, and shared control. For virtual fixture assistance, a pair of virtual walls, 

modelled as a spring and damper, would automatically give feedback via the joystick to put the 

operator back on track when the mass tends to stray from the path. This kind of penalty-based 

passive assistance does nothing unless the object position is out of range. The virtual fixture 

could be either repulsive or attractive depended on the design, while the shared control scenario 

is implemented based on the HSC concept.  

Both virtual fixture and shared control assistance obviously boost the performance of the 

operation but the latter is in the lead because of its generality. However, they are inapplicable 

in the case of training enhancement. The effectiveness of training enhancement is equivalent in 

all of the three scenarios [27], [53]. 
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2.4.2 Confliction among the interacting agents  

A conflict commonly occurs when two or more agents participated in any cooperative task. It 

has been shown that one prefers to control the operation by himself/herself without interference 

[54], [55]. In the case of active assistance from an HSC machine, this conflict becomes 

unavoidable. Therefore, it is a good idea to pay more attention to the detail of the operator. 

Neuromuscular information from the operator leads to a real understanding of the operator 

control behaviour such as in a car lane-changing task [56].   

Humans learn to cooperate and share intention with each other since the beginning of life and a 

set of intuitive cooperation behaviours are developed during this time. Based on this fact, it is 

an attractive idea to identify these learning ways and mimic them for the development of an 

intuitive human-robot cooperation [55]. This kind of study gives mutual benefit to at least two 

research fields i.e. developmental psychology and robotics. Developmental psychology requires 

the experimental testing scenario for its human-being related theories whilst the research in 

robotics gains psychological knowledge to implement a robot that accurately mimics the human 

behaviour since it is impossible to develop a robot that behaves like a human being based solely 

on an ordinary sequential programming.  

2.4.3 Challenging issues in shared control 

2.4.3.1 Degree of support 

Although HSC has been proven in training improvement, a degree of assistance in HSC system 

should be carefully tuned because an excessive amount of support is likely to result in a 

lacklustre performance, worse than a task without any HSC support. This issue has to be 

clarified in the long run [27], [57].  

2.4.3.2 Authority 

Apart from the comfort derived from the autonomy, the authority to take control is critical [57]. 

Policy must be explicitly formulated over a level of automation (LoA) and a level of haptic 

authority (LoHA) on any certain circumstances.  
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There are two approaches to shared control in [58], “input-mixing shared control” and “haptic 

shared control”. The former allows mixing of control inputs from machine intelligence and 

human before evaluating the final control outcome to the actuators. The latter allows either a 

human or a machine to take over the machine simultaneously with a degree of negotiable 

authority through the haptic control interface. The “haptic shared control” shows better design 

potential over the “input-mixing shared control” because the operator stands in the loop 

constantly to overrule the elaborate system and to evaluate some erratic situation [28]. 

Instead of giving full authority to an actual haptic device to calculate and return force feedback 

to the operator, a study alters the human-robot shared control situation with two human 

participants. The two participants mutually control an on-screen object and obtain force 

feedback from each other via the haptic devices. Unfortunately, the result suggests that a human 

prefers to make a control decision solely on his/her own without interference from the partner 

[54]. 

2.4.3.3 Overreliance 

A machine is a man-made tool or a piece of equipment with limitations covered by its design 

and functionality. It is at risk of relying merely on the autonomous machine. Overreliance or 

over trust on autonomous systems could be a problem. Appreciating natural human ability of 

learning and problem solving, the system needs to be kept under the supervision of the operator. 

To avoid the overreliance or over trust issue, an HSC design should come up with situation 

awareness (SA) alerts at regular intervals. 

2.4.3.4 Dependency and skill retention  

In spite of experimental evidence indicating benefit over tradition manual control, the HSC 

experiments provide too small sample sizes compared to the real world. Overdependence of the 

system tends to confront with a long-term problem in which the operator would be unable to 

work without any support and influences to retention of skill as well [57]. There are many 

aspects of the HSC system still to be experimented in a long-term usage.  
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2.4.4 The evaluation of the HMI adaptive assistance 

Section 2.4 reviews the adaptive assistance component of the HAM concept. Apparently, HSC 

appears to be the concept that plays the major role in this component because of its active 

assistance mode by the utilisation of a haptic force feedback device. Many investigations e.g. 

[27], [53] etc. show that the HMI enhancement can be achieved when the active assistance is 

applied. However, it is not effective in some situations e.g. the case of training enhancement. 

However, there are still gaps and challenging issues in this particular aspect of HMI to be 

improved. These issues are the degree of support, the authority, the overreliance, the dependency 

and retention. All of the four issues may be solved by the investigation to the degree of support. 

The reason is that the degree of skill performance of each individual human operator is unique. 

Therefore, it is vital to evaluate an HMI performance prior to fine tuning of the degree of 

support. This reason is also applicable to the authority as the individual performance can vary, 

therefore, the offered authority must be adjusted accordingly. The aspect of overreliance may 

be improved by applying a different degree of active support to a human. The dependency and 

retention of skill would be improved by providing a different degree of support according to 

each stage of learning and performance levels of a human operator e.g. the support might be 

high at the beginning of the learning to use a machine, then it is gradually decreased. In 

summary, the basis of all aspects comes from the performance evaluation. 

2.5 HMI performance modelling 

A HMI performance modelling can provide valuable information for the enhancement and 

evaluation of the system design prior to the actual system implementation [59]–[61]. In addition 

to the pre-implementation benefit, with recent advancements in sensor and actuator 

technologies, a HMI performance model can be used in an online manner to provide adaptive 

guidance and assistance [12], [20], [51]. To understand the HMI performance model, many 

research projects have attempted to investigate the HMI aspects such as human skills, human 

sensory-motor skill performance, human skill learning stages, skills-rules-knowledge, human 

capacity etc.  
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2.5.1 Definition of human skill performance 

Over the decades, continued studies of human skill performance in various features take place 

in areas of research including psychology, sports, human factor engineering, cognitive science 

etc. [62]–[64]. Human skills can be described by two following perspectives [65]. In the first 

perspective, ‘skills’ is an ability to repeatedly perform sequences of action in the same task and 

similar environment with maximum certainty, minimal visual attention, and highly predictable 

pattern. Ideally, the outcome performance is identical from trial to trial. This skill perspective is 

also known as ‘open-loop skills’. It is commonly found in skilled workers in an assembly line, 

musician performance and vehicle manipulation skills etc.  

The next is a human skill in a dynamic system. A dynamic system is uncertain in both time and 

space of environment. Control in dynamic system requires tracking information for an operator 

therefore; it can be viewed as ‘closed-loop skills’. Examples of a tracking control task in 

dynamic environment are vehicle road driving and computer-based cursor positioning. As 

compared to the former definition, it can be noted that good vehicle manipulation skill does not 

necessary mean good driving on a road.  

The characteristics of open loop and closed loop skills are summarised in Table 2.1. 

Table 2.1 Characteristics of ‘open-loop’ and ‘closed-loop’ skills. 

Characteristic of skills 

Open-loop Closed-loop 

 High level of practice 

 Low attention demand 

 Single-response selection 

 Consistency of outcome 

 Processing time 

 Bandwidth 

o A rate of information transmission 

 Prediction and anticipation 

 Resources processing and management 

In general, a skilled operator performs a task with intimate knowledge [66]. A sequence of 

actions is formulated beforehand and is able to be adapted according to a change of 

circumstances. Controversially, an unskilled performer tends to perform the task without the 

knowledge and is likely to result in a disappointing performance.  



 

 

Page 27 of 319 

Ability to extract only useful information by ignoring any redundant piece of information is 

another personal characteristic of a skilful person. For example, a skilful restaurant server is 

able to take a long verbal order that at times includes irrelevant information.  

It is commonly mentioned that ‘skill learning years’ is in the ages between eight to twelve years 

old [63]. In fact, this statement is not necessarily true. A person can acquire a new skill through 

a learning process at any ages. Skills such as car driving, skiing, riding a motorcycle etc. can be 

learned at any ages. It is a term ‘skill acquisition’ typically used in traditional psychology, 

philosophy, education, movement science, and performance development [67]. 

2.5.2 Human sensory-motor skill performance 

Measurement of human sensory-motor skill performance is scaled by three general metrics i.e. 

time, magnitude, and accuracy. Timing is designed to evaluate reaction speed of perception in 

a task that related to sensory and reaction response. According to [64], motor timing 

measurement used especially in laboratory setting is the total ‘response time’ which is a period 

begun from the first appearance of stimuli appearance until the end of the task. The response 

time is divided into reaction time (RT) and movement time (MT) as shown in Figure 2.5. An 

RT starts from an appearance of stimuli until responding movement takes place and an MT starts 

from the movement to task completion.  

 

Figure 2.5 A diagram of reaction time (RT) and movement time (MT). 

The magnitude aspect of skill performance is measured in terms of distance, weight, force and 

height etc. The magnitude appears inconsistent for the sensory-motor skill measurement because 
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accumulation tends to appear from trial to trial depending on personal ergonomics such as body 

strength, body size, body weight, etc.  

According to [64], there are three terms of accuracy measurement - absolute error (AE), constant 

error (CE) and variable error (VE). The number of samples is denoted by sk. A trail of each 

performance outcome i.e. the outcome of an action is denoted by TOC. A trial target is denoted 

by TT. 

Absolute error (AE) is computed by averaging error values from trials out, disregarding a sign 

by applying an absolute mathematic operator. The AE calculation shows average error without 

direction, which is given by (2.1). 

𝐴𝐸 =
∑|𝑇𝑂𝐶 − 𝑇𝑇|

𝑠𝑘
 (2.1) 

Constant error (CE), as given by (2.2), is quite similar to AE except for the absolute 

mathematical operator i.e. a sign of each error is taken into account. The metric indicates average 

and direction of error from the trials. 

𝐶𝐸 =
∑(T𝑂𝐶 − 𝑇𝑇)

𝑠𝑘
 (2.2) 

Variable error (VE), as named, gives a variability value of the performance trials i.e. a 

consistency of the outcomes. The VE can be calculated by (2.3). A low variable error does not 

confirm high accuracy as consistency may occur at either low or high accuracy. 

𝑉𝐸 = √
∑(T𝑂𝐶 − 𝑇𝑇)2

𝑠𝑘
− 𝐶𝐸2 (2.3) 

2.5.3 Fitts and Posner three stages model of skill 

learning 

Fitts and Posner [68] suggest a three-stage model of skill learning, consisting of the cognitive 

stage, associative stage, and autonomous stage as depicted in Figure 2.6. At a cognitive stage 

that is the lowest stage of the model, a learner develops the basic movement necessary to 

accomplish a task. A learner is still consciously aware of every movement. The movements are 

finely tuned and become smoother. Skill is developed to a middle stage of the model called the 
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associative stage. At the highest stage of the model, the autonomous stage, the movements 

become virtually automatic. The skill for a particular task is fully acquired.  

 

Figure 2.6 Fitts 3 stages model of skill learning.  

2.5.3.1 Fitts’ law 

Fitts’ law is a well-known method for quantitative measurement to evaluate the capacity of the 

human motor system associated with the amplitude movement control [69]. It is used as a 

performance indicator for pointing devices [70] and HCI research [71]. A formulation of Fitts’ 

law can be expressed as follows.  

𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 (𝑀𝑇) = 𝑎 + 𝑏 log2 (
2D

𝑊
)  𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

(2.4) 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 (𝐼𝐷) =  log2 (
2𝐷

𝑊
)  𝑏𝑖𝑡𝑠 

(2.5) 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝐼𝑃) =
𝐼𝐷

𝑀𝑇
 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

(2.6) 

Equation (2.4) defines movement time (𝑀𝑇) where 𝐷 is an amplitude or a distance of movement 

and 𝑊 is a target width. Figure 2.7 shows an example of the scenario. The term log2 (
2D

𝑊
) is 

defined as an "index of difficulty" (𝐼𝐷) of the task (2.5). This formula shows a speed-accuracy 

trade-off for a target reaching/hitting task. An index of performance (𝐼𝑃) can be calculated with 

(2.6). Equation (2.5) is basically the same as (A.1) in Appendix F, which is the amount of 
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information conveyed in binary format. By dividing (2.5) with 𝑀𝑇, Equation (2.6) becomes 

similar to (A.4) in Appendix F which is the information capacity of a communication channel. 

 

(a) 

 

(b) 

Figure 2.7 Fitts’ law target hitting task [70]. 

2.5.4 Skills, rules and knowledge (SRK) 

Rasmussen divides human behaviour into 3 levels; skill, rule, and knowledge [72]. First, the 

skill level behaviour is the low-level behaviour. An action is voluntary and automated without 

consciousness. The movement is seamlessly integrated, smooth, and hardly to be decomposed 

without unwanted attention. Musical performance is considered a low-level skill behaviour as 

professional musicians such as violinist, guitarist, and cellist cannot give precise detail of their 
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performance [73]. The skilled behaviour is directly influenced by repetitive practising and can 

be described by the Fitts and Posner model (Section 2.5.3).  

Secondly, the rule level behaviour, a human adheres to rules, know-how, or instructions learned 

from previous experience either in person or from others.  

Thirdly, the highest level, known as knowledge behaviour, occurs in an unfamiliar situation 

since rules and know-how is impractical. The situation leads to “trial and error” learning where 

critical thinking and plan modifying is tested. These suggested three levels of behaviour indicate 

personal capability and draw up guidelines for human-machine performance development 

model. 

A signal, sign, and symbol are type of information flowing amongst the three levels of 

behaviour. A signal is continuous sensory raw data from any interested matter, for example; 

room temperature, ambient light, dust level, humidity etc. Sign is an indicator associated with a 

certain signal to inform or suggest the corresponding actions to deal with. A symbol is a 

conceptual information used for further reasoning. The symbol differentiates from the sign as 

described in the following statement, “a sign is part of the physical world of being while a 

symbol is part of the human world of meaning”. These concepts of information flow are useful 

for modelling human performance. 

2.5.5 Human capacity 

The idea of human perception capacity borrows a formulation from an information theory. 

Figure 2.8 shows measurement of perception capacity using a concept of transmitted 

information. An intersection between the input and the output is used to refer to an amount of 

information transmitted from the input to the output. In other words, it measures a degree of 

recognition according to the given samples. The intersection could cover a fragment or the 

entirety of the input depends on the perception. Experimentally, a number of samples are given 

to a person for a particular aspect to be perceived i.e. the input circle in Figure 2.8. Later, a 

perceptive judgement i.e. the output circle in Figure 2.8 is obtained from him/her. By doing this 

repeatedly on a number of human subjects, the covariance of the input and the output is 
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calculated (the intersection in Figure 2.8) which is an indicator of an amount of information 

transmitted in a particular experiment.  

 

Figure 2.8 Transmitted information between input and output. 

2.5.5.1 Human perceptions capacity 

An absolute perception judgement on a particular aspect is made by human capacity [74]. Unit 

of measurement is in bit or entropy as in the information theory (Appendix F). Table 2.2 

summarises human perception capacity on the one-dimensional variable. Experimentally, 

capacity for each aspect of human perception e.g. visual, hearing, and tasting is calculated from 

the ability to spot differences. These human capacities are measured for a single aspect without 

any extra information.  
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Table 2.2 Channel capacity of a human absolute judgement on the one-dimensional variable. 

Aspect Capacity (bits) 

Visual  

Points presented on a line interval 3.25 

Area 2.6 

Angle 3 

Hue 3.1 

Curvature 2.2 

Square size 2.2 

Brightness 2.3 

Size 2.8 

Hearing 

Pitch tone 2.5 

Loudness 2.3 

Tasting 

Taste intensity (of salt solution) 1.9 

The capacity of human perception is increased when supplied with extra information and more 

variables for the judgement. As summarised in Table 2.3 there are two variables at the time of 

the judgement. 

Table 2.3 Channel capacity of a human absolute judgement on the two-dimensional variable. 

Aspect Capacity (bits) 

Visual 

Position of a dot in a square 4.6 

Colours 3.6 

Hearing 

Loudness and pitch 3.1 

Tasting 

Intensity of mixed salt and sugar 2.3 

In fact, human beings are able to discriminate things more accurately and more efficiently than 

the capacity values shown in Table 2.3. In real life, there exists multiple supplement information 

or contexts that help improve the human perception. As a multi-dimensional confirmation, the 

surrounding information help ensures the judgement.  

Furthermore, a special experiment with six variables of frequency, intensity, rate of interruption 

on time fraction, total duration, and spatial location is set up. Approximately 150 different 

variations are discriminated with 7.2 bits capacity. It is able to conclude that the variables help 

represent features or properties of objects and provide relevant for the perception judgement. 
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The more the number of variables raises, the more the capacity increase and tends towards the 

real human-being world. 

2.5.5.2 Redundancy of information for human perception 

The redundancy of information is occasionally necessary for human perception. An example, 

shown in Figure 2.9, illustrates a monitor display of a single decimal number. Apparently, an 

additional bar graph under an identical number affects clear and easy perception for human eyes.  

Alternative example is a pixel containing 28 = 256 bits of information on a colour display 

monitor. Human eyes are likely to encounter difficulty in perceiving and working with a single 

pixel although it supplies plenty amount of information.  

 

Figure 2.9 A single decimal number monitoring (a) a single number (b) a single number with 

an additional bar graph. 

2.5.6 Human performance index (HPI) 

[75] proposes a human performance index (HPI) as a generic performance evaluation 

framework. The framework consists of two layers of evaluation. The first layer is a collection 

of performance variables that evaluate the raw competency of actions. The second layer, so 

called performance criterions, is a weighted condition integrated to variables in the first layer. 

Ordinarily, performance criteria such as speed and accuracy are used in competency 

measurement metric. 

The weighted concept of HPI measurement can be simplified as grading evaluation in school. 

Scores from paper works, examinations, and attendance are weighted with different percentage 

values according to an importance of each piece of work separately in the subject. Grading point 
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average (GPA) is finally calculated from weighted credits of each subject. Therefore, the HPI is 

the final result of GPA while performance criterions are subjects, and raw evaluations are 

scoring.  

In addition, HPI framework could be used in two modes; open and closed form. The open form 

is located at the second layer i.e. performance criterions which are able to use in any applicable 

closed form. The closed form is located at the final accumulation evaluations i.e. the HPI. 

2.5.7 Human-robot information pipeline 

A human-robot information model or HRI based on a pipeline of information exchange has been 

proposed by [76]. A robot equipped with a colour web-camera, which has the capability to 

record a video at 640*480 resolutions. Each pixel in a recorded frame consists of three colours 

with eight bits of the colour intensity scale. The robot is used to report the status of a cup of 

coffee from one room to another room i.e. the coffee monitoring task. This scenario is an 

example of the information exchange pipeline. The camera can transfer 640*480*3*8 = 921,600 

bytes of information per second. However, the task requires only 1 bit to report the status i.e. 

ready (R) or not ready (NR). The value is calculated from standard entropy equation in (2.7). 

𝐻 = −0.5 log2 0.5 − 0.5 log2 0.5 = 1 𝑏𝑖𝑡 𝑜𝑓 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (2.7) 

It is denoted from (2.7) that the two statuses are equally occurred with 50% probability. If the 

coffee is likely to be ready (R) than not ready (NR) with 75% of probability, the conveyed 

information can be calculated from (2.8). 

𝐻 = −0.75 log2 0.75 − 0.25 log2 0.25 = 0.8113 𝑏𝑖𝑡 𝑜𝑓 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (2.8) 

It is clear that only the relevant information is needed for the coffee monitoring task. The 

information for the coffee status indicator is relatively small when compared to the robot that 

equipped with a high capacity of information from the camera. It is indicated a redundancy of 

information for a robot for this type of task. However, this redundancy of information is required 

for a human as discussed in Section 2.5.5.2. 

The information exchange is partially restricted to the capacity of the control interface. For 

instance, Atari gaming joystick has a single fire button and an eight-direction movement control 
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as demonstrated in Figure 2.10 (a). The Atari joystick provides log2(8) + 1 equals to 4 bits of 

information per sample.  

NES (Nintendo Entertainment System) gamepad, in Figure 2.10 (b), consists of four directional 

navigators, two fire buttons which could be pressed either separately or simultaneously and two 

middle ‘select’ and ‘start’ buttons have to be pressed separately. The NES gamepad has 3 +

log2(22 + 2) equals to 5.6 bits per sample. 

 

Figure 2.10 The layout of (a) Atari joystick, and (b) NES gamepad. 

2.5.8 HMI modelling perspectives and approaches 

There exist four perspectives in modelling human interaction with a machine as described in 

[61] i.e. control theoretic, task network, information processing, and knowledge base. 

Description of the four perspectives is given in Table 2.4. 
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Table 2.4 The four perspectives in HMI performance modelling. 

Perspective Description 

Knowledge base The knowledge base perspective models HMI based on the human 

ability to solve a problem at hands especially in the occurrence of an 

unfamiliar situation. A human needs to apply knowledge to interact 

and solve a problem heuristically.  

Information 

processing 

This perspective models HMI based on the human ability to identify 

a problem from the surrounding information. For example, an 

operator ability to diagnose a problem from the huge amount of 

information from monitoring consoles.  

Task network The task network models HMI based on the ability to formulate a 

sequence of actions to accomplish a particular task. For instance, an 

expert has the ability to perform a sequence of actions without a 

wrong order of actions. As oppose, a novice could perform a 

sequence of actions chaotically. 

Control theoretic This control theoretic perspective models HMI based on ability to 

perform certain action skilfully. This approach can be compared to 

a human skill modelling.  

Apart from the above four perspectives in HMI performance modelling, a model development 

approach should also be in consideration. Several approaches in model development can be 

applied e.g. descriptive, predictive, top down, bottom up etc. A pair of model development 

approaches and description is shown in Table 2.5 [61]. 
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Table 2.5 A list of pairing between the model development approaches. 

Model development 

approach 
Description 

Process vs. Output The process modelling focuses on modelling the activity 

within a process while the output modelling focuses on the 

relationship between input-output of a system. 

Predictive vs. Descriptive The predictive modelling anticipates the output from a certain 

circumstance while the descriptive modelling describes the 

existing data with a model. 

Prescriptive vs. 

Descriptive 

The prescriptive modelling explains instructively how ones 

should perform a system task while the descriptive modelling 

tells that how the operator is likely to perform a system task. 

Top-down vs. Bottom-up The top-down views from the overall system goal to the 

primitive activities while the bottom-up is vice versa i.e. 

modelling from primitive elements and actions up to the 

overall system goal. 

Single task vs. Multitask Model for a single specific task versus general modelling that 

can universally apply to multiple types of task. 

2.5.9 The evaluation of HMI performance modelling 

Section 2.5 reviews the literature related to HMI performance modelling. This topic is an 

extensive research area that incorporates many human-related disciplines such as the study of 

human skill and learning, the study of human capacity and performance, the study of HMI 

performance etc. A few of the research projects have focused on the development of online 

performance model which is considered to be the mandatory factor for achieving improvement 

of adaptive HMI. 
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2.6 Forms of HMI 

This section presents three forms of HMI i.e. proximity interaction, remote interaction, and 

wearable robotics as illustrated in Figure 2.11. These three forms of HMI can be considered as 

the application that would benefit from the HMI improvement in both practical and academic 

aspects.  

 

Figure 2.11 The three forms of HMI. 

2.6.1 Proximity interaction 

Figure 2.11(a) shows the proximity or face-to-face interaction that arises directly and physically 

within close range and immediate environment. A service robot with some kind of physical 
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interacting medium like a robotic arm or hand is one of the examples of a robot that can interact 

with a proximity range. 

2.6.2 Remote interaction 

A remote controlled interaction, also called telerobotics, teleoperation, or telemanipulation, 

occurs between an operator and robot situated in distant sites such as USAR and telemedicine. 

Depicted in Figure 2.11(b), a robot is remotely operated through a communication network via 

a local control interface. The interaction has to deal with time delay, telepresence, and situation 

awareness on a control screen over the network.  

2.6.2.1 Telerobotics 

Telerobotics is the study of robots that can be interacted with from a remote environment. Many 

terms can refer to the same as telerobotics including teleoperated robots, robot telemanipulation, 

and robot teleoperations. 

According to a distinguishing characteristic and its usefulness, remotely operated robots have 

been utilised in many applications. This remote indirect interaction (Figure 2.11 (b)) has 

emerged over decades for nuclear material handling operations [77] and space exploration. In a 

life-saving situation where every minute is counted, rescuers capably attempt a rescue from a 

remote site, exert less energy, and stay completely safe [24], [78]. Medical applications are 

greatly contributed by teleoperated robotics. In telesurgery, telemedicine, telehealthcare, and 

teleexamination, experts or doctors are able to perform operations from a physical distance [79], 

[80]. The teleoperations are employed in military battlefields in the same way. Hazardous 

operations such as explosive ordinance disposal [81], radioactive material handling [82] and 

operations in a poisonous environment, which are considered exceedingly dangerous for the 

human operators, demands control with dexterity and precision from teleoperations. Exploration 

tasks in inaccessible or hardly accessible areas such as space [83]–[86], underwater [87], [88], 

underground [89], and those relatively different in size of the operating environment compared 

to a human [90]–[96] (i.e. different in scale, either smaller or bigger) can be accomplished by 

teleoperated robotics. To reduce cost and to avoid loss of life, teleoperated vehicles are 
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frequently used in harsh terrain or environments [97]. These telerobotics applications help to 

enhance human capabilities. 

Besides the potential advantages, a remote connection poses problems of time delays, 

information loss, and distortion in the communication channel. A feeling of control is also 

problematic. As compensation, numerous control strategies are surveyed, compared, and 

summarised [98]–[100] e.g. force reflection, shared compliance control, predictive control etc. 

For example, bilateral teleoperations are the master controller and slave actuator systems that 

render force feedback over a transmission channel feeling from master to slave and vice versa. 

Advances in technologies have made hard tasks easier. For instance, the introduction of touch-

screen interfaces makes a teleoperated mobile control possible with just a fingertip by touching 

and specifying a robot’s trajectory through a touch panel [101]. To gain better teleoperations, 

telerobotics is facilitated by developments in 3D real time rendering hardware, computer 

graphics software, gaming industries [78], [102] and highly integrated technologies such as 

Nintendo Wii [103] and Microsoft Kinect [104]–[106].  

Situation awareness (SA) is a significant aspect of display interface design e.g. teleoperator 

interfaces, interfaces for aeroplanes, interfaces for power plants, and manufacturing [107], 

[108]. The experiment conducted in [102] is the comparative experiments between novice and 

expert users using altered 3D teleoperation interfaces for general domestic duties. There is a 

confirmation from the experiments that the novel mixed perspective visual display, designed to 

improve the SA, help to improve novice performance. The SA can be viewed as one of the 

assistive information provided to improve the efficiency of the operation. 

2.6.3 Wearable robotics 

Wearable robotics as shown in Figure 2.11(c) is an emerging technology of an intelligent device 

which is constituted as a part of the wearer as a prosthesis or a supportive device [109]. As a 

prosthetic device, it is used to replace amputated limbs. A supportive device is a device that aids 

the wearer in walking, carrying heavy loads, improving accuracy etc.  
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2.7 Control modes of HMI 

There exist several control modes depending on the situation and design of the control task e.g. 

pursuit tracking, balancing, on-off intermittent, aiming, and oscillatory control etc. Some of the 

daily life activities such as riding a bicycle require several control modes acting simultaneously. 

The rider has to maintain balance and turn the pedals to move forward simultaneously while the 

hands control the handlebar to keep the bicycle on track.  

2.7.1 Pursuit tracking and compensatory control 

A characteristic of human operators in manual control systems is identified by a simple pursuit 

and compensatory control. When a human functions as a servo, it can be modelled by families 

of quasi-linear transfer functions and other functions of frequency [110].  

In [111], a human-to-human interaction study has been conducted to examine a relationship 

between the sharing control of a pursuit tracking task. The approach extends the McRuer’s 

cross-over model [112], [113] to cope with two operators. Undertaking the cooperative task, a 

result concludes that each of the operators tends to adapt to the other. The explored relationship 

is established to advance a natural and intuitive HMI.  

2.7.2 Balancing control 

A mop or an inverted pendulum balancing is the example of this type of control mode that can 

be extended to the studies such as a study of human posture balancing, development of a robot 

arm posture, development of a crane vehicle etc. Many investigations have applied this type of 

control mode to study human control behaviour [16], [114], [115]. It is found that a skilful 

operator exhibits an on-off intermittency control strategy in balancing an inverted pendulum 

task. This intermittent control can be described by a linear model of time and velocity shifts 

[16]. Likewise, a human balancing control strategy is turned towards a discrete like control 

strategy when delay is introduced, also known as the bang-bang strategy [114]. This bang-bang 

control strategy is considerable to be a proportional-derivative (PD) type of automatic controller.  
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2.7.3 Oscillatory control 

An oscillatory control mode happens when there is a vibrating element with a damping ratio 

below 0.35 [116]. This oscillation limits a human ability to track the position of the system while 

operating it. To recover the tracking ability, a technique called ‘input shaping’ is enabled to 

suppress the oscillations. A crane system is an example that is likely to have the oscillatory 

dynamics while the human operator controls the payload through the obstacles as shown in 

Figure 2.12 [117], [118].  

 

 

Figure 2.12 A crane system [117], [118]. 

2.7.4 Target hitting/reaching control 

Target hitting or reaching is a simple control task that comprises of reaching or moving from 

one target to another target. The task can be either in the physical or virtual worlds. One 

examples of a physical target reaching task is to move a physical object from one position to 

another. In a virtual world, an example is the manipulation of a mouse cursor from one position 

to another. Fitts’ law (which is discussed in Section 2.5.3.1) is usually the formulation for 

performance measurement in a target hitting task, especially for a pointing device in HCI 

research [70], [119]. The target hitting task based on Fitts’ law definition is shown in Figure 2.7 

in Section 2.5.3.1. 
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2.7.5 Other studies 

The human control strategies discussed in the previous sections are considered as basic control 

tasks that are less complicated than a task in real life situations. Human control for a virtual ball 

juggling task is studied under the HAM assisting control [46], [120]. Car driving behaviour is 

particularly interested in the HSC research [28], [121].  

2.8 Descriptive and predictive model 

developments 

It is well-known that human behaviour is complicated and unpredictable. Therefore, it is 

difficult to develop a model analytically. A descriptive model development seems to be an 

appropriate approach for the model development of HMI performance modelling because it 

creates a model based on the observations.  

The descriptive approach is successfully applied in a number of HMI studies including a human 

car control strategy study [122], a crane control operation [117], a set of rules to control the 

level of a water tank [123], balancing an inverted pendulum under time delay [114].  

According to Table 2.5, opposition to the descriptive approach is a predictive modelling 

approach, which anticipates output from a given set of observations. The example of the 

predictive modelling approach can be found in [124], [125] for the modelling of human control 

in pursuit tracking task. The two opposite approaches can be developed in combination in order 

to obtain a reliable model. The combination is proceeded by dividing the observation data into 

two datasets. One part is used for the descriptive model development and another part is used to 

test the validity of the obtained descriptive model i.e. the predictive approach.  

2.8.1 Model development procedure 

A generic descriptive model development procedure is shown in Figure 2.13. The procedure 

consists of four main steps with one optional step. First, raw data is obtained from an 

experimental observation. Secondly, the raw data is segmented into an object of interest. 
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Thirdly, features are extracted from the segmented data. Then, the feature can be transformed if 

necessary depended on circumstances such as dimensionality reduction. Finally, the dataset is 

ready for a model development for a selection of modelling algorithms. 

At the optional block in Figure 2.13, the following data transformation technique could be 

applied. The principal component analysis (PCA) is a statistical technique for data or feature 

transformation into another space of an equal number of variables i.e. principal component (PC). 

However, the PCs in the principal component space is ranged from high to low importance in 

term of redundancy of information linearly combined from the original feature space i.e. each 

PC is a linear combination of the original space variables. That is, the variance among the PCs 

is maximised [126]. 

 

Figure 2.13 The generic descriptive model development procedure. 

2.8.2 Cross-validation 

The descriptive modelling approach utilises data obtained from an empirical observation to 

develop a model. It is obvious that there is a limitation of the data samples for the model 
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development. A cross-validation method is often applied for model training with this limitation 

[127]. The method divides data into two parts i.e. training and testing datasets. Obviously, the 

training dataset is used for training a model. The testing dataset is used to test the obtained model 

from the training. The model performance is evaluated from the testing result. By proceeding 

this model development for one time, it is a single fold cross-validation.  

Although there is some debates on the division ratio between training and testing datasets, a ten-

fold cross-validation seems to be the standard in practical applications [127]. The tenfold cross-

validation separates data into two parts at a time i.e. 90% for training and 10% for testing. The 

tenfold procedure proceeds for ten times i.e. ten folds by rotating the parts accounted for training 

and testing. The model performance is measured from averaging the ten testing outcomes. 

Furthermore, to obtain a reliable result, the overall tenfold procedure is repeated for ten 

iterations i.e. ten times. Therefore, the name of the entire procedure is ten times ten folds cross-

validation.  

2.8.3 Model performance evaluation 

A model evaluation by a single dimension may not adequate and could mislead the interpretation 

of the performance [128]. The additional metric can be produced to support the single dimension 

evaluation such as confusion matrix [129], receiver operating characteristic (ROC) curve [130], 

precision-recall (PR) curve [131].  

A confusion matrix or contingency table for a two-class prediction problem is given in Table 

2.6. The two classes are denoted by positive and negative. The table shows the four possible 

prediction outcomes which are true positive (TP), false positive (FP), false negative (FN), and 

true negative (TN). Equation (2.9) indicates the overall accuracy of the prediction. The true 

positive rate (TPR) is the proportion where positives are correctly predicted. The TPR is also 

known as recall or sensitivity. The false positive rate (FPR) is the proportion where negatives 

are incorrectly classified as positives. The TPR and FPR are calculated using (2.10) and (2.11), 

respectively. The true negative rate (TNR) is the proportion where negatives are classified 

correctly and the false negative rate (FNR) is the proportion where positives are incorrectly 

classified as negatives. They are calculated using (2.12) and (2.13), respectively. Finally, a 
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precision which is the proportion of predicted positives that are correct. The precision (P) is 

calculated using (2.14).  

Table 2.6 A two-class confusion matrix. 

  Predicted Class 

  Positive Negative 

A
ct

u
al

 

C
la

ss
 Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.9) 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.10) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2.11) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (2.12) 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (2.13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.14) 

These additional evaluations provide a deeper understanding of the classifier performance 

instead of a single dimension evaluation. Additionally, a plot between precision and recall i.e. 

PR curve can reveal the analytical performance of a classifier ability to predict certain positive 

cases with a particular precision.  

An ROC curve is another addition metric for model performance evaluation adopted from signal 

detection theory. ROC curve is a plot between TPR and FPR on y and x axes, respectively. A 

curve characteristic and an area under an ROC curve (AUC) reveal the performance of a 

classifier [132], [133]. The area closer to 1.0 is the ideal classifier performance. 
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2.9 Artificial neural network (ANN) 

Artificial neural network (ANN) is a statistical learning model inspired by a nervous system of 

the brain. Dating back to the 1940s, a nervous system is first mathematically modelled by 

McCulloch and Pitts [134]. Followed by the perceptron invented by Rosenblatt in 1962  [135], 

it is the less complicated by receiving one or more inputs and producing a single output. 

As stated in [136], “even though a computer is a million times faster in raw switching speed, 

the brain ends up being a billion times faster at what it does”, that because of the massiveness 

of concurrent function of the brain. A complex task, for example, face or speech recognition 

requires less than a second to perform by the brain. Comparing to a computer, there are billions 

of cycle needed to be completed. In human-like tasks, a neural network model represents 

remarkable achievement over other traditional artificial intelligence techniques. In addition, the 

neural network is an inductive learning algorithm meaning that parameters are modifiable 

during training. 

As a classification and pattern recognition model, an ANN is applied in plenty areas of research 

including assessment of HMI flight operation [137], control systems and applications [138]–

[141], modelling and optimisation of human car control strategy [122], modelling human 

decision making  [142], [143], predicting human trajectories in a novel vision-based robotic 

[144], a control of nonlinear structural systems [145], a tracking control of underactuated surface 

vessels [146] etc. 

An ANN mainly consists of interconnected entities, inputs, and outputs. The interconnected 

entities, called neurons or units 𝑈, mimic the biological neurons the human brain. An illustration 

of a neuron in neural network is shown in Figure 2.14.  
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Figure 2.14 A single neuron in a neural network [147]. 

An input vector 𝒁 has an associated weight vector 𝑾 that represents strength of each input 𝒊. A 

net input at each neuron is computed by 𝑛𝑒𝑡 = ∑ 𝑧𝑖𝑤𝑖 . An output 𝑜  of each neuron is a 

calculation of the activation function 𝑓𝐴𝑁 given the net input and a bias value 𝑏. The simplest 

activation function is a linear function 𝑓𝐴𝑁(𝑛𝑒𝑡 − 𝑏) =  𝜆(𝑛𝑒𝑡 − 𝑏) where 𝜆 is a constant slope 

of a function. There are other frequently used functions e.g. step function, ramp function that is 

a combination of linear and step function, sigmoid function, hyperbolic tangent, and Gaussian 

function.  

An adaptive learning rule is a prominent component of the ANN. During training, the input 

vector is provided repetitively. The weight and bias value is allowed to adjust according to the 

learning rule to meet criterion until the best weight and bias value is retrieved corresponding to 

the output vector. 

There are three strategies for learning; supervised, unsupervised and reinforcement learning. In 

supervised learning, a labelled dataset with known answers, so called a training dataset, is used 

in the training process to infer prediction functions for a new test dataset. Instead, the training 

dataset of unsupervised learning is supplied without labels. The model tries to extract patterns 

or features of the dataset from the environment without any supervision. It is widely known as 

cluster analysis. Lastly, the reinforcement learning is an intuitive trial and error paradigm of 

learning from previous experiences. Actions are rewarded or penalised from the feedback of the 

environment. Without prior knowledge, the paradigm aims to take actions that gain the highest 

reward. 

.

.

.
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2.10 Machine modelling 

2.10.1 An inverted pendulum-driven (IPD) capsule 

system 

An inverted pendulum is a classic dynamical system. Several studies have been conducted on 

the mechanism of the inverted pendulum-driven cart pole [148]–[150]. The IPD capsule is 

generally the same as IPD cart in which the inverted pendulum is enclosed by a capsule body. 

Applications of the capsule type of IPD systems are intestine diagnosis and tube inspection etc.  

The schematic diagram of IPD systems is shown in Figure 2.15(a) and Figure 2.15(b) for IPD 

cart pole and IPD capsule, respectively. The system consists of a body of mass 𝑀, a shaft of 

negligible mass attached via a rotatable joint to the upper midpoint of the body with length 𝐿, 

and a small mass 𝑚 attached to the end of the shaft. With proper rotation of the upper shaft, the 

system can be displaced. An input torque 𝜏 applied to the joint causes the rotation of the shaft. 

𝜃 is an angle between y-axis and the shaft. The displacement is measured in 𝑥 direction that has 

surface friction 𝑓. The mathematical model in this section is adopted from [148]. 
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Figure 2.15 The inverted pendulum-driven cart-pole system and inverted pendulum-driven capsule 

system. 

According to Figure 2.15, the equations for ball position, velocity, and acceleration can be 

expressed by (2.15), (2.16), and (2.17) respectively. The subscription 𝑏 stands for ball. 

[
𝑥𝑏

𝑦𝑏
] = [

𝑥 − 𝐿𝑠𝑖𝑛𝜃
𝐿𝑐𝑜𝑠𝜃

] (2.15) 

[
�̇�𝑏

�̇�𝑏
] = [�̇� − 𝐿�̇�𝑐𝑜𝑠𝜃

𝐿�̇�𝑠𝑖𝑛𝜃
] (2.16) 

[
�̈�𝑏

�̈�𝑏
] = [

�̈� − 𝐿�̈�𝑐𝑜𝑠𝜃 + 𝐿𝜃2̇𝑠𝑖𝑛𝜃

−(𝐿�̈�𝑠𝑖𝑛𝜃 + 𝐿𝜃2̇𝑐𝑜𝑠𝜃)
] (2.17) 
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The forces resulted from the small mass 𝑚 movement in 𝑥 and 𝑦 directions can be formulated 

by (2.18) and (2.19), respectively. By putting (2.17) into (2.18) and (2.19), the equation of 

motion and force from the ball mass i.e. (2.20) can be derived. 

𝐹𝑏𝑥 = −𝑚𝑥�̈� (2.18) 

𝐹𝑏𝑦 − 𝑚𝑔 = 𝑚𝑦�̈� (2.19) 

𝐹𝑏 = [
𝐹𝑏𝑥

𝐹𝑏𝑦
] = [

−𝑚�̈� + 𝑚𝐿�̈�𝑐𝑜𝑠𝜃 − 𝑚𝐿𝜃2̇𝑠𝑖𝑛𝜃

𝑚𝑔 − 𝑚𝐿�̈�𝑠𝑖𝑛𝜃 − 𝑚𝐿𝜃2̇𝑐𝑜𝑠𝜃
] (2.20) 

According to  [148], the input torque at the joint is calculated as follows. 

𝜏 = (−𝑚𝐿𝑐𝑜𝑠𝜃)�̈� + (𝑚𝐿2)�̈� − 𝑚𝑔𝐿𝑠𝑖𝑛𝜃 (2.21) 

𝐹𝑏𝑥 − 𝑓 = 𝑀�̈�;     where 𝑓 = 𝜇𝑁𝑠𝑔𝑛(�̇�) (2.22) 

𝑁 = 𝑀𝑔 + 𝐹𝑏𝑦 (2.23) 

From equation (2.21), (2.22) and (2.23), the (2.24) and (2.25) can be obtained 

�̈� =
𝑓𝜎1 + �̈�𝐿𝑚𝑐𝑜𝑠𝜃 − �̇�𝐿𝑚𝑠𝑖𝑛𝜃

𝑀 + 𝑚
 (2.24) 

where  𝜎1 = −𝑔(𝑀 + 𝑚) + 𝜃2̇𝐿𝑚𝑐𝑜𝑠𝜃 + �̈�𝐿𝑚𝑠𝑖𝑛𝜃 

�̈� =
𝐿𝑚𝑐𝑜𝑠𝜃�̈� + 𝜏 + 𝑔𝐿𝑚𝑠𝑖𝑛𝜃

𝐿2𝑚
 (2.25) 

2.11 Inclusion of human brain monitoring 

system 

It is a reasonable idea to include the knowledge of the human brain into the investigation for a 

better understanding of the human operator and thus can provide proper assistance based on this 

knowledge. It is proposed that an internal model exists inside human brain [151]. The role of 

the internal model is that the brain inside is adapting iteratively to model the interaction with 

the outside world. The adaptation makes the human motor skill progressive from feedback 

control towards feed-forward control once the brain mastered the skill. When a skill is mastered, 

the prediction and anticipation come into play for the feedforward control strategy. This 

existence of the internal model conforms with the evidence from neuroscientist that human 
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internally learns to simulate motion and reveal to the actual action in the future consequences 

[33]. Likewise, it is found that the human brain behaves like a Smith predictor which is agreed 

with the feed forward anticipation behaviour [152]. Furthermore, the researchers from 

neuroscience show that the internal brain activities can be decoded to understand a human 

intention from the spatial location of brain images  [29], [31], [153]. 

2.12 Human brain regions and functions 

The human brain is a living organ located in a head of a body that plays major roles in the central 

nervous system. As depicted in Figure 2.16(a), there are two principle components of the 

nervous system; the central nervous system (CNS) consists of the brain and spinal cord and the 

peripheral system (PNS) consists of sensory and motor nerve cells (neurons). Outside the brain 

and spinal cord, widespread networks of PNS nerve cells are built up across the body. Two-way 

communication from receptors in skins, motor connections in body muscles, and sensors in 

internal body organs to the brain are established through the networks. Sensory and motor 

information are gathered and delivered to the brain. A tremendous amount of the information is 

transmitted along the specialised plasma membranes of nerve cells through synapses in the form 

of electrical signals called nerve impulses. Subsequent to the interpretation of the information 

by the brain, instructions are sent back to the target parts of our body about how to react. 

  



 

 

Page 54 of 319 

 

(a) The human nervous system 

(b) Dorsal view of the human brain 

(c) Medial view of the human brain 

 

Figure 2.16 The human nervous system and the brain structure [154], [155]. 

The nerve cell is the basic unit of the whole nervous system. A complex tissue structure of the 

brain is estimated to be made up of 100 billion nerve cells [155]. There are two particular regions 

of a nerve cell, cell body and extensions, as shown in Figure 2.17(a). The cell body, so called a 

soma, a core region of a nerve cell, contains nucleus and organelles of an endomembrane system, 

like another ordinary cell cytoplasm. The extensions or processes are subdivided into two types, 

dendrites and axon. The dendrites are small tubular branches extended from the cell body that 

collects impulses from other cells. The axon is a lengthy single fibre connected to the cell body 

at an axon hillock like a root, responded for an impulse conduction. A nerve cell has many 
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dendrites but only one axon. The end of each axon is divided into branch structures. The branch 

termination has a knob called synaptic bouton or synaptic knob. These knobs locate relatively 

close to dendrites of other cells that form almost-connected junctions, called synapses, as 

depicted in Figure 2.17(b). The nerve impulses are transmitted toward the axon to the nearby 

cells through these knobs.  

 

Figure 2.17 Structure of nerve cell and synapse sites [154], [156]. 

The human brain composes of three major parts: the cerebrum, the cerebellum, and the 

brainstem. The cerebrum (the forebrain), the biggest and most developed part of the brain, 

influences in conscious behaviours, whereas the brainstem influences in most unconscious 

behaviours [155]. The second largest part in the back of the brain is the cerebellum. It is utilised 

in learning skill and movement control. Movement control of the body is direct to the side of 

the cerebellum. The right size of the cerebellum controls the right side of the body while the left 

side of the cerebellum controls the left side [154].  
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The cerebrum (the forebrain), itself, as the biggest and most developed part of the brain, is 

evenly divided by a longitudinal fissure into left and right cerebral hemispheres as shown in 

Figure 2.16(b). The hemispheres are covered by cerebral cortex that is a thin layer of nervous 

tissue.  Each hemisphere is subdivided into four lobes: frontal lobe, parietal lobe, temporal lobe, 

and occipital lobe as shown in Figure 2.16(c). They are named after skull bones that they lie 

underneath [154]. The frontal lobe locates at the front of the brain. The parietal lobe is at the top 

of the brain behind the frontal lobe.  The temporal lobe locates under the parietal lobe at the side 

of the brain. The occipital lobe is at the back. The frontal lobe involves in motor function, 

executive function, attention, memory, language, emotion, and personality [157]. On the other 

hand, the other three lobes serve mostly in sensory function, the parietal lobe serves in tactile 

functions, the temporal lobe functions in visual, auditory, and gustatory and the occipital 

functions in visual.  Unlike the cerebellum, control of the body is opposite to the side of the 

hemisphere. The right size of the hemisphere controls the left side of the body, while the left 

side of the hemisphere controls the right side [154].  

Together with the spinal cord, the brain entirely dominates personalities, body functions, 

physical abilities, sensing, behaviours, automatic functions such as the heart beating, digestion, 

blood circulation, and lung inflation and much more. The spinal cord is cylindrical tissue 

enveloped in vertebrae, lying along the backbone of the body. Serving as a normal channel of 

communication between the brain and the rest of the body, information from skin, tissue, 

muscles and internal organ are relayed through the spinal cord. Apart from the relay duties, 

some of the movement instructions such as reflex are operated independently by the spinal cord. 

In the case of spinal cord injuries, there could be effects on bodily functions according to 

position and severity of injuries such as breathing, food digestion, leg paralysis, and temperature 

and pain sensation. 

2.13 Electroencephalography (EEG)   

An electroencephalography (EEG) is a non-invasive measurement of electrical activities of the 

cerebral cortex, familiarly known as brainwaves. It is considered to be a macroscopic 

measurement. Figure 2.18 shows an example of EEG signal recorded from a 12-channel headset. 
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The x-axis is time measured in seconds while the y-axis is the electrical voltage that is usually 

measured in microvolts (µV). 

 

 

Figure 2.18 An example of 12 channels EEG signal. 

The prior EEG research is conducted on animals by Richard Caton in 1875 [158], [159]. In 

1929, the first human EEG was contributed by German psychiatrist Hans Berger [160]. The 

electrical activities are record of information transmission in the human brain neuron networks 

during synaptic excitation by placing the electrodes on a head scalp [154]. The EEG pattern 

significantly changes as behaviour or mental attitude changes. Despite a sleep mode, the signal 

still changes dramatically [155]. For decades, the EEG has been used to study human brain 

functions by psychologists, neuroscientists, physiologists etc. [161]–[163]. Also, it has been 

applied for the continuous monitoring of the cerebral cortex activity of a patient suffered from 

symptoms such as obtund and comatose [164]. The experimental report of the EEG for 

functional localisation of brain regions mentions that the left frontal hemisphere has a higher 

level of activity while listening to joy and happy musical excerpt. In contrast, a level of activity 

of the right frontal hemisphere rises when subjects listen to frightened and sad music excerpts 

[165].  
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2.13.1 The 10-20 international system 

The standard 10-20 international system is the specification for theplacement of electrodes. The 

electrodes are placed radially around the scalp surface to cover spatial areas across the cerebral 

cortex regions. The examples of electrodes and cap used for EEG signal recording are shown in 

Figure 2.19.  

 

Figure 2.19 The electrodes and caps for EEG data acquisition [166]. 

The distances between adjacent electrodes are 10% or 20% of the front-to-back or left-to-right 

point of the skull, as depicted in Figure 2.20. Each electrode is labelled with an alphabet and a 

number associated with the cerebral hemisphere lobe underneath the areas.  The label ‘F’, ‘P’, 

‘T’ and ‘O’ are used as the prefix for frontal lobe, parietal lobe, temporal lobe, and occipital 

lobe, respectively. The label ‘C’ stands for the centre and ‘Z’ means zero, used to refer to the 

electrodes along the nasion-inion line. The ‘A1’ and ‘A2’ are usually used as the ground i.e. the 

point of voltage reference for the other electrodes.  
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Figure 2.20 the 10-20 international system of electrode placements [166]. 

2.13.1.1 EEG rhythms 

Within 1-30 Hz range, the EEG brainwave can be categorised into rhythms of interests 

corresponding to a particular brain activity, frequency, amplitude, shape, and the location of the 

electrode. The frequency rhythms are specified as shown in Table 2.7  [166].  
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Table 2.7 EEG rhythms [166]. 

Rhythm 

name 

Example of 

signal within 

1-second 

window 

Frequency 

band range 

Amplitude 

(µV) 
Locations Example of activity 

Delta 

 

< 4 Hz 50-350  Vary Deep sleep, drowsiness 

Theta 

 

4 – 8 Hz 10-150 Vary Deep sleep, drowsiness 

Alpha 

 

8 - 13 Hz 20-100 Posterior 
Relaxed wakefulness with 

eyes closed. 

Beta 

 

13 – 30 Hz 10-30 
Frontal or 

diffuse 
Cognitive activities 

Mu 

 

7-12 Hz 10-50 Central 

Relaxed and wakefulness 

with either both eyes open 

or close. The mu rhythm is 

then blocked (event related 

desynchronisation or ERD) 

by limb movements such as 

hand movement. 

Lambda 

 

Sharp 

transients of 

200-300ms 

duration 

Below 50 Occipital Visual exploration 

The Delta rhythms are the slowest signal oscillation below 4 Hz. The Delta rhythms are usually 

occurred during a deep sleep state. During a normal sleep or a drowsiness activity, the signal is 

categorised as the Theta rhythms. The Alpha rhythms of the brainwave oscillate around 8-13 

Hz at the posterior region during relaxed and wakefulness states with eyes closed. The Beta 

rhythms are categorised by the brainwave oscillated around 13-30 Hz and occurred during the 

cognitively oriented activities. 
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Mu rhythms are a subset of the Alpha rhythms that are associated with limb movements during 

relaxed and wakefulness state [167], [168].  The Mu rhythms block or desynchronise the 

ongoing brainwaves. In other words, there is the identifiable change in the ongoing train of the 

signal [169]–[171].  

2.13.1.2 EEG artefacts 

Due to the very low electric voltages on the scalp surface, the signal contamination tends to 

happen easily by many non-brain sources [172] such as eyes blinks, eyes movements, muscle 

movements, head movements, body movements, electrode defect etc. The sources of EEG 

artefacts can be divided into two categories biological and technical sources, as summarised in 

Table 2.8 [166]. Some examples of the EEG artefacts are shown in Figure 2.21. Distinctly from 

the typical EEG signal, some abnormal characteristics of the signal are obviously shown in the 

artefacts. These artefacts need to be identified and dealt before any meaningful analyses. 

Fortunately, some research projects have been accounted for these artefacts [173]–[175] e.g. the 

wavelet analysis for artefact removal, the independent component analysis (ICA) etc. These 

techniques are fully discussed in Section 2.13.4. 

Table 2.8 The sources of EEG artefacts [166]. 

Source of EEG artefacts 

Biological Technical 

Muscle activity (EMG) Defective electrodes, wires, ground 

Electrocardiogram (ECG) Loose electrodes 

Heartbeat/pulse Electrostatic disturbances 

Eye movements Electromagnetic interference 

Wet skin (sweating) A/C power sources (50/60 Hz) 

Body movements, breathing  

Tongue movements  
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Figure 2.21 The examples of EEG artefact [166]. 

2.13.2 Advantages and disadvantages of EEG 

The fact that the weakness of the signals retrieved from the human scalp, which is likely to be 

contaminated, is considered as one of the disadvantages of the EEG recording. An amplifier is 

usually utilised to boost the relatively weak electric potential to gain the useable signal [154].  

The advantages of an EEG monitoring system outweigh its downside. The cost of EEG 

recording is rather low. The method is non-invasive. Although the EEG’s spatial resolution is 

low, the temporal resolution of the EEG is high.  

The advancement in headset technologies makes the EEG monitoring processes easier and more 

comfortable especially for patients such as children and elderly [176], [177]. The Emotiv EPOC 

is an example of a lightweight and wireless headset, as shown in Figure 2.22. The felt sensors, 

as shown in Figure 2.23, are moistened with saline solution and attached to the headset’s 

placeholders. The headset sends signals through a wireless USB dongle shown in Figure 2.24 

to a computer. The sampling interval depends on a headset. The Emotiv EPOC headset can 
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provide 128 Hz of the sampling rate (2048 Hz internal) while the Biosemi Active can give 2048 

Hz of sampling rate [178]. The 128 Hz is a reasonable sample rate because the oscillation of the 

EEG brain activity falls between 1 Hz to approximately 30 Hz.  Therefore, the acquired signal 

is typically band-pass filtered to a range of the interested frequencies e.g. 1-30 Hz, or 1-60 Hz.   

Besides the general advantages, the number of brain monitoring systems and techniques 

including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), 

magneto-encephalography (MEG), optical topography (NIRS) is compared and criticised in 

HAM studies together with the EEG [16].  

The reliability of the EEG method in brain activity measurements has been proven over a period 

of months on many types of subjects [179]–[181]. In disabled subjects, the EEG is effectively 

utilised as a brain-computer interface (BCI) to help subject with limbs movement problem to 

control an object without any physical limb movements [178], [182]. 

 

Figure 2.22 The Emotiv EPOC headset. 



 

 

Page 64 of 319 

 

Figure 2.23 Felt sensors. 

 

Figure 2.24 USB dongle for wireless data acquisition with the Emotiv EPOC headset. 

2.13.3 Stimulus-locked event or event-related 

potential (ERP) 

An event-related potential (ERP) or a stimulus-locked event is an identifiable change of ongoing 

EEG signals reacting to given stimulus events e.g. visual, auditory, imagery, sensorimotor, etc. 

[172], [183], [184]. Figure 2.25 demonstrates the ERP that takes place at the time of the onset 

of the stimuli within the reading window of -500ms to 1500ms. The ERP signals or voltages are 

quite small e.g. around 1 to 30 microvolts compared to the background EEG signals [185].  

By a low signal-to-noise ratio of the EEG signal, the conventional method to detect the ERP is 

to average the EEG signal out around the stimulus onset time. To the event of interest, mental 
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preparation and response are expressed in the averaged ERP. The noises or artefacts are 

deadened, and the signal-to-noise is improved as well. Still, some cancellation of important 

brain related activities are revealed in this averaging method [186], [187]. That makes this 

method unsuitable for a research project that bases on a single trial brain response analysis.  

During the analysis, it is important to eliminate interferences from other sources e.g. eye blinks, 

heartbeats etc. For example, an independent component analysis (ICA) in EEGLAB [188] is 

used to remove those artefacts in [189]. 

 

Figure 2.25 Event-related potential (ERP) averaging method. 

There is a study using the ERP to investigate the origins of memory sources [162]. The study 

uses an old-new discrimination scenario to differentiate the ERPs from the occipital lobe and 

the frontal lobe. It has been concluded that the frontal lobe is the important region for memory 

source monitoring. 

2.13.3.1 P300 speller ERP 

A P300 speller is human-brain-thinking spelling based on the ERP brain responses [177], [178], 

[190]. Regularly, a P300 ERP can be interpreted from the central-parietal lobe of the brain. The 

common features of ERP waveform are the amplitude, the latency, and the scalp distribution. 

The letter ‘P’ refers to a positive deflection of the EEG signal after stimulated and the number 
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‘300’ is the latency of the deflection measured in milliseconds. If a deflection is bounced back 

towards the negative scale then a letter ‘N’ is used instead.  

An example of P300 is depicted in a graph in Figure 2.26. The Emotiv EPOC headset is used in 

a P300 ERP experiment in [177], [190]. The wave is returned from an electrode Cz at the centre 

of a human head shown in Figure 2.20. The P300 ERP shows five deflections from an onset of 

a stimulus. The first deflection is a positive deflection P1 occurring around 100ms, followed by 

a negative deflection N1. Around 200ms after the stimulus, another positive deflection P2 

occurs. The signal bounces towards negative scale again at N2 and gradually moves towards 

positive at P3 at around 400ms. 

 

Figure 2.26 P300 event-related potential [190]. 

2.13.4 Analysis and signal processing methods 

2.13.4.1 Filtering 

In most cases, the frequency of the brainwaves falls between 1 Hz to 30 Hz agreeing to the 

rhythms definition, as summarised in Table 2.7 in Section 2.13.1.1. Therefore, it is mandatory 

to band pass filter the signals to the frequency range of interest. For example, the Butterworth 

band-pass filter is applied to limit the acquired signals to fall between 1 Hz to 12 Hz in a study 

of P300-based BCI for disabled subjects [178]. The immediate effect of filtering is that power 

line frequency, which normally is 50/60 Hz, is cancelled out as well.  
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2.13.4.2 Windsorisation 

Windsorisation is an amplitude trimmings or truncation during pre-processing to make the EEG 

signal stay within the range of interest. Spikes, unwanted, and extreme amplitude caused by 

strange noise or artefact are eliminated. This technique is employed in pre-processing of [178]. 

Figure 2.27 shows truncated boundary of the method. The signals that exceed the two red lines 

are clipped off.  

 

Figure 2.27 The example of windsorisation or truncation. 

2.13.4.3 Time and frequency domain analysis 

The extraction of frequencies from a time series signal provides the extra dimension of data 

inthe time domain signal analysis. Fourier Transform (FT) is a method used for transforming 

data from time domain to frequency domain. The transformation extracts frequency and 

amplitude information from the periodic data. The process is reversible, so it is possible to 

transform from the time domain to the frequency domain and vice versa. The advantage of the 

analysis in the frequency domain is that the filtering is performed faster and sometimes the noise 

is easier to be filtered out. Therefore, the method is frequently applied to the EEG study [180], 

[191]–[195]. 

Any periodic sequence 𝑓(𝑡) can be defined in terms of a linear combination of sines and cosines 

of different frequency. It is known as a Fourier series (2.26).  

𝑓(𝑡) =  ∑ 𝐴𝑘 cos(2𝜋𝜔𝑘𝑡)

𝑛

𝑘=1

+ 𝐵𝑘 sin(2𝜋𝜔𝑘𝑡) (2.26) 

Where 𝐴 is an amplitude, 𝜔 is a frequency. 
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The Fourier transform of 𝑓(𝑡) is defined as (2.27) 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−2𝜋𝑖𝜔𝑡𝑑𝑡
∞

−∞

 (2.27) 

And the inverse Fourier transform is defined as (2.28) 

𝑓(𝑡) = ∫ 𝐹(𝜔)𝑒2𝜋𝑖𝜔𝑡𝑑𝜔
∞

−∞

 (2.28) 

In case of a discrete periodic sequence 𝑓(𝑘) where 𝑘 is an integer at a period 𝑁.  

A Discrete Fourier Transform (DFT) can be defined as (2.29) 

𝐹(𝑗) = ∑ 𝑓(𝑘)𝑒−2𝜋𝑖𝑘𝑗 𝑁⁄

𝑁−1

𝑘=0

 
0 ≤ 𝑗 ≤ 𝑁 − 1 (2.29) 

The inverse Discrete Fourier Transform is defined by (2.30) 

𝑓(𝑘) =
1

𝑁
∑ 𝐹(𝑗)𝑒2𝜋𝑖𝑘𝑗 𝑁⁄

𝑁−1

𝑗=0

 
0 ≤ 𝑘 ≤ 𝑁 − 1 (2.30) 

The faster algorithm to the Discrete Fourier Transform is the Fast Fourier Transform (FFT), 

which uses 𝑂(𝑁 log 𝑁) instead of 𝑂(𝑁2) operations [196], [197].  

The major drawback of the Fourier Transform is that the time domain information is completely 

lost after the transformation. The other drawback of the Fourier Transform is that it works well 

only with the stationarysignal. The Fourier Transform produces decent results when it is applied 

to stationary data, unfortunately, the EEG signal is non-stationary. Hence, the alternative version 

of the Fourier Transform called Short-Time Fourier Transform (STFT) or Gabor transform 

[198] is invented to deal with the mentioned drawback. The STFT method pays more attention 

to the time window of a local segment of the signal. Although the STFT has overcome the 

stationary problem, it is still lack of time resolution. 



 

 

Page 69 of 319 

2.13.4.4 Wavelet Analysis 

Wavelet analysis is an alternative to the shortcomings of the Fourier analysis. A basic concept 

of the wavelet analysis and a tutorial on application to the neuroelectric or EEG data are supplied 

in [199]. The wavelet has a time-varying shape that can be stretched, shrunk or translated over 

a time scale. Figure 2.28 shows a B-spline wavelet and its variations. Various works in the EEG 

including de-noising [187], ocular artefacts removal [174], [175], feature extraction [200], [201] 

etc. has applied the analysis in many ways.  

 

 

Figure 2.28 A B-spline wavelet stretching, shrinking, translation and the corresponding 

frequency spectrum [199]. 

The potential advantage of the wavelet analysis is that it maintains both frequency and time 

domain data of the transformed signal. Basically, in the Fourier Transform, the sine and cosine 

waves are used for sampling the signal of interest. The sine and cosine waves are localised in a 

frequency domain but spread infinitely in a time domain. Conversely, the wavelet 

transformation utilises a wavelet shape instead of the sine/cosine waves to transform the signal 

of interest. A set of variations of a wavelet shape is called a wavelet family. The examples of 

well-known wavelet shapes are shown in Figure 2.29. By utilising a wavelet family, the wavelet 

transformation is localised in both time and frequency domain. In theory, scale and translation 

are infinite, but practically it is limited to particular levels. 
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Figure 2.29 Some of the wavelet shapes [199]. 

2.13.4.5 Independent component analysis (ICA) 

The independent component analysis (ICA) is a method for training or learning spatial filters 

that focuses on one source of information in the data while processing the data collected from 

many scalp locations [172], [188], [202]. It is a statistical blind source separation problem. 

Figure 2.30 shows the basic illustration of the ICA. Given that there are two sinusoidal signals 

A and B, which have different frequency and phase, Figure 2.30(a). They are linearly mixed 

using equations (2.31) and (2.32). The mixed signals are shown in Figure 2.30(b). By applying 

the ICA algorithm to M1 and M2, the sources A and B can be revealed. The revealed signals 

are shown in Figure 2.30(c), which are approximately the same as the sources. The amplitude 

of both uncovered signals is slightly different from the sources. It is required to invert the phase 

of the revealed signal that seems to be the source B.   

𝑀1 = 𝐴 − 2𝐵 (2.31) 

𝑀2 = 1.73𝐴 + 3.41𝐵 (2.32) 
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Figure 2.30 The ICA process. 

The ICA can be applied for removal of eye activity artefacts as explained in [203]. The process 

of eye artefact removal using ICA is shown in Figure 2.31. A multiple channels of EEG data is 

unmixed into independent component Figure 2.31(a). The suspicious eye activity artefactual 

components are marked for exclusion, then the remaining components are mixed in order to 

form the original EEG signal without the eye activity artefacts. 
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Figure 2.31 ICA applied for eye activity artefact removal [203]. 
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2.13.4.6 EEG feature extraction 

In order to be able to create a model from EEG brainwaves, it is required to analyse the 

characteristic / feature of the EEG signals. Several analysis perspectives can be applied to extract 

features from the EEG signal including statistical analysis [191], [204], [205], time domain 

analysis, ERP analysis [172], frequency domain analysis [191]–[193], time-frequency domain 

analysis [194], [195], wavelet transform [199]–[201] etc. Summaries of EEG feature extraction 

domains and algorithms are given in Table 2.9. Some of the reviewed works for human emotion 

recognition by applying statistical features is given in Table 2.10. Most of the works apply six 

statistical features referred from [192]. The advantage of using statistical features is that it can 

be computed online with less calculation effort.  

Table 2.9 The EEG feature extraction domains and algorithms. 

Feature extraction domain Algorithms Related works 

Statistical  

Means, median, standard 

deviation, root mean square, 

skewness, kurtosis, minimum, 

maximum, peak-to-peak  

[191], [192], [195], [204]–[206] 

Time domain 
Event related potential (ERP), 

Time domain parameters (TDP) 
[172], [193], [207], [208] 

Frequency domain 

Fast Fourier transform (FFT), 

Power spectral density (PSD), 

autoregressive (AR), 

Eigenvector 

[191]–[193] 

Time-frequency domain 

Wavelet transform, Common 

spatial pattern (CSP), Time 

frequency distribution 

[194], [199]–[201] 

Space-time-frequency domain 
Parallel factor analysis 

(PARAFAC), STAT-PCA 
[209]–[211] 
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Table 2.10 Reviewed works on human emotion recognition based on statistical features. 

Reviewed work Recognition Signals / data 

size 

Statistical 

analysis 

Time 

domain 

analysis 

Frequency 

domain 

analysis 

Time-

frequency 

domain 

analysis 

Classifier 

algorithms 

Accuracy Additional 

information 

[204] 

5 emotions  

- 6 subjects, 64 

channels EEG,  

256 Hz 

sampling rate 

- 150 for 

training 

6 statistical 

features plus 5 

transformation 

of statistical 

features 

N/A N/A N/A Back 

propagation 

ANN 

95% N/A 

[206] 

5 emotions  

- multi-modal 3 

bio-potential 

sensors (EEG, 

pulse, skin 

conductance) 

- 12 subjects 

6 statistical 

features 

N/A N/A N/A SVM 41.7% N/A 

[192] 

8 emotions 

recognition 

from 

 

- single subject 

- 5 physiological 

states; 

electromyogram, 

blood-volume 

pressure, heart 

rate, skin 

conductivity, 

respiration 

6 statistical 

features 

N/A 4 features of 

power 

spectral 

density (PSD) 

N/A k-NN, MAP 81% features 

transformation: 

sequential 

floating 

forward search 

(SFFS) and 

fisher 

projection (FP) 

[191] 

7  emotions 

- 3 subjects 

- EEG BIOPAC  

with 3 

electrodes 

min, max, 

skewness, 

kurtosis, peak-

to-peak, 

median, 

standard 

deviation 

N/A FFT for 

frequency 

spectrum 

N/A N/A N/A salient features 

Only provide 

an analysis no 

conclusion 

accuracy 
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[205] 

 
Parkinson 

diseases 

classification 

- 11 subjects 

- EEG 9 

channels 

baseline, 

standard 

deviation, 

means 

N/A FFT N/A Simplecart 84.42% Parkinson 

disease 

WEKA 

software 

11 folds cross-

validation 

[195] 

6 emotions 

detection 

- EEG 63 

biosensors 

- 6 healthy 

subjects 

- 256 Hz 

sampling rate 

energy, 

recoursing 

energy 

efficiency, root 

mean square 

N/A N/A discrete 

wavelet 

transform 

Fuzzy C-Means 

(FCM) 

N/A 

 

Cluster 

analysis 

Remarks: k-nearest neighbour (k-NN) classifier, Maximum a Posteriori (MAP) classifier, support vector machine (SVM), artificial neural network 

(ANN).
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2.13.5 Visualisation 

2.13.5.1 ERP image 

An ERP image is a single-trial visualisation tool which is drawn alongside with the averaged 

ERP to show every trial that is averaged for the ERP [212]. The example of the ERP image from 

an electrode AF3 is shown in Figure 2.32. The averaged ERP graph is shown at the bottom of 

Figure 2.32. The ERP is averaged from 293 epochs. All of the 293 epochs is shown by the 

colour-coded value of amplitude as shown at the top of Figure 2.32. The colour-code is shown 

on the right side of Figure 2.32. 

 

Figure 2.32 An example of ERP image. 
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2.13.5.2 2D topography map 

A 2D topography is an EEG activation mapping across the scalp surface. It is represented in a 

colour-coded scale from the top view. The colour gradation expresses amplitude of the brain 

activity at the given time. An example of 2D topography is shown in Figure 2.33. The figure 

shows an EEG activation at 200ms, 300ms, 400ms, and 500ms, respectively. The colour-coded 

scale ranges from -7.2 to 7.2 µV in blue to red colour. 

 

Figure 2.33 An example of 2D topography. 

2.13.5.3 3D topography map 

Likewise, a 3D topography represents a three-dimensional mapping of EEG activations across 

the scalp. An example of 3D topography is shown in Figure 2.34. The figure shows colour-

coded EEG activation in 3D scalp head at 200ms, 300ms, 400ms, and 500ms. The voltage code 

is range from -7.9 to 7.9 µV from blue to red colour. The colours that represented EEG activation 

are derived from the voltage value at the location of the sensor on the scalp at the specified time. 

The colour of the topography other than the exact sensor location is interpolated.  
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Figure 2.34 An example of 3D topography. 

2.13.6 Apparatus 

The Emotiv EPOC is a wireless EEG headset as shown in Figure 2.35. The headset has 16 

electrodes, as depicted in Figure 2.35. Fourteen electrodes are used for the EEG recording while 

the other two i.e. CMS and DRL are used as the reference. The CMS and DRL stand for 

“Common Mode Sense” and “Driven Right Leg”, respectively. The sampling rate of the headset 

is 128 Hz (2048 Hz internal).  

Some literature has proven that the Emotiv EPOC headset can provide a good quality of EEG 

brain activity signal for various applications including a replication of visual P300 ERP speller 

[190], an auditory ERP study [189], and mental actions BCI classification [213]. A study by 

[189] compares the Emotiv headset simultaneously with a research grade Neuroscan 4.3 headset 

by placing them on top of each other while subjects listen to the auditory stimuli to capture the 

auditory ERP and can be concluded that the Emotiv headset can record a reliable EEG signal. 

The portability of the headset provides flexibility for EEG recording. Children and cognitive 
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disorder adults benefit from this advantage. The outdoor EEG recording also benefits from this 

advantage [176]. The wireless capability of the headset makes it possible to integrate the headset 

to a mobile phone for a novel phone BCI dialling application by adopting a P300 speller 

paradigm with a lightweight classifier running on the phone [177].  

 

Figure 2.35 The locations of Emotiv EPOC electrodes on the scalp [190]. 

The localisation or coordinates of the electrodes of the Emotiv EPOC headset can be found in 

Appendix C. These values can be used with EEGLAB [188], [214], [215] or other software for 

a plotting of scalp topography maps. 

2.14 The analysis and the identification of 

research gap 

It is found from the literature review that most of the research projects are lacks of the important 

component i.e. the online HMI performance modelling and evaluation. This component is the 

centre of the machine’s capability to give the adaptive assistance based on the individual 

performance level. Although the study related to a human performance has been investigated 

for decades, it is rather different from the HMI performance modelling point of view. It is the 

performance of the interaction between a human and a machine that is the basis for the adaptive 

capability of a machine. 
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There exist some of the recent research projects on the analysis and understanding of HMI 

performance in various type of applications such as forestry manipulation [216], air traffic 

control [217]. The work in [216] focuses on the performance analysis of a hydraulic 

manipulator’s  trajectories operated by two different operators. It is the offline performance 

analysis of the manipulation trajectory that would be useful in the future for the implementation 

of an adaptive machine. The work in [217] proposes a model of human performance from the 

perspective of decision-making ability i.e. the decision of a sequence of actions from the air 

traffic control application. Apparently, it is a study of human performance models from the task 

network perspective of HMI performance modelling [61].  

Recent work based on the HAM concept implements an assistive steering wheel from a driving 

simulation scenario [218]. The assistive controller is adjusted based on the classification of the 

driving behaviours of an expert and a non-expert drivers. A classifier is used to compare the 

similarity distance between them in order to adjust the parameter of the assistive controller. 

There is no apparent performance evaluation model but the comparison between the two 

different drivers by using a classifier. It is lack of a performance evaluation method. Another 

HAM based research work focuses on a comparison of skill index algorithms for the evaluation 

of human operator performance on the driving skill [219]. However, the comparison is rather 

brief, unclear, and there exists the limitation mentioned on the paper i.e. it is subject-dependent.  

The improvement of HMI requires multiple studies in the related fields e.g. a machine, a human, 

interaction, intention recognition etc. However, a human can be considered as the main body 

who uses a machine, and it is the most unpredictable part of an HMI system. Hence, the inclusion 

of an EEG device to record the internal inherent of the human brain processing activity could 

reveal the relationship of the HMI activity and provide the establishment to create a model of 

HMI performance evaluation. This establishment can be considered as the bridge between the 

internal of a human intention to the outcome of the HMI actions.  

2.15 Summary 

This chapter reviews research works related to human and machine interaction especially the 

HAM concept. The HAM concept has emerged from a simple idea of machine intelligent and 
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learning i.e. the machine capability to give the assistance or guidance to its user. The HAM 

realisation requires knowledge and methodology from many research fields. However, the HAM 

research is still in its infancy stage. It still has many challenging issues to be addressed such as 

human-machine interaction modelling, human-machine performance evaluation modelling, 

human intention modelling etc. 

A review on HRI, HMI, HAI, HSC, and HAM reveals the important similarity among these 

man-made systems i.e. the human interaction with them. Although the interaction may be 

slightly different, a human is a primary body within these human-in-the-loop systems. 

There exist several forms of human-machine interaction (HMI) including proximity, remote, 

and wearable. A control interface is the mandatory interacting medium in any forms of the 

interaction. The advancements of the human-machine control interface have improved the many 

aspects the interaction e.g. performance, ergonomic, efficiency, energy conservation etc. A brief 

review of telerobotics is given to addressing the importance of the remote controlled robot 

applications that could be accomplished by the improvement from human-machine interaction 

research. 

An adaptive interaction requires several components working as a system; recognition of human 

intention, human-machine performance evaluation, adaptive assistance, shared control etc. The 

details and reviews of these components are given.   

Although the concept of adaptive and shared control interaction would successfully improve the 

quality of interaction towards the positive direction, this is idealistic. Many issues regarding the 

conflict, degree of sharing, authority in control, overreliances etc. have been discussed. 

It is vital to understand a model of human performance since the human is the primary beneficial 

body of the interaction. Various aspects of human performance modelling including the 

definition of human skill, characteristic of the skilful operator, human capacity, stages of skill 

learning, Fitts’ law, and Rasmussen model of SRK etc. have been given.  

A review of some particular aspects of human control modes e.g. pursuit tracking, compensatory 

control, balancing control, oscillatory control, target hitting control etc. have been given. These 

control strategies can be thought as a primitive human-machine interaction. 
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Several perspectives can be adopted in the HMI model development. The selection of 

perspectives depends on the particular level of interaction. For example, a supervisory 

interaction can apply the knowledge base perspective while a low level of interaction can apply 

the control-theoretic perspective for HMI performance modelling. Apart from the perspective 

selection, a choice of modelling approaches depends on the available data. The descriptive 

modelling approach is often used for human modelling since the human behaviour is relatively 

difficult to model analytically. The review of these perspectives and approaches are presented.  

Particularly, the descriptive and predictive approaches are suitable for the development of HMI 

model. A cross-validation method ensures the consistency of the modelling outcome. Additional 

model performance evaluation methods are reviewed to confirm the validity of the model 

accuracy. The bio-inspired artificial neural networks (ANN) machine learning is reviewed for 

using along with the selected perspective and approach.  

To conduct the investigation on HMI, a model of a pendulum-driven capsule system is reviewed, 

and the mathematical model is examined for the simulation platform.  

In order to achieve in depth understanding to HMI, the introduction of brain monitoring system 

can be employed. The brain regions and functions are reviewed in conjunction with a non-

invasive measurement of brain electrical activity of cerebral cortex, EEG. Some technical 

aspects related to the EEG system, fundamental, analysis methods etc. are introduced. Finally, 

the apparatus used in this research i.e. the Emotiv EPOC headset is investigated. 
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Chapter 3 Method of investigation, 

platform design and 

implementation 

3.1 Introduction 

This chapter describes the investigation method, design, and implementation in order to fulfil 

the aim and objectives of this research. Since this research aims at studying human interaction 

with a machine under the motivation from the HAM concept, two main stakeholders are 

obviously involved i.e. a human and a machine. A human can be any person who can interact 

with a robot / machine in order to accomplish a certain task. It is well known that to conduct 

research on an actual machine can cost tremendous budget, time, and effort. Also, a physical 

machine requires a certain amount of effort from a human participant to conduct an experiment. 

Safety is also a serious issue that needs to be taken into account to a physically based research. 

Alternatively, simulation is a powerful method that can help avoid the previously mentioned 

issues and can give an accurate result before a physically based research. Hence, this research 

is based on the simulation where a machine is simulated using a mathematical model. However, 

the operator side is still performed by an actual human rather than a simulated one. 

Consequently, a hardware interfacing between a simulated machine and a human is still required 

in order to acquire the interaction behaviour.  

A HAM simulation platform is developed by this research in order to conduct the investigations. 

The platform is responsible for simulating a machine model, interface with external hardware, 

and handle the interaction between the machine and a human. The design, architecture, and 

implementation of the platform are discussed in Section 3.4. 
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3.2 Focus of the research 

To describe the focus of this research, the four approaches of human performance modelling 

from a review in Section 2.5.8 is used to clarify the focus area of the investigation. The 

approaches can be hierarchically represented by the arrangement from low to high level of HMI 

as shown in Figure 3.1. The ‘knowledge base’ circle can be considered as a high level of 

interaction to a machine such as supervisory control. The ‘information processing’ involves the 

processing of information and notification of any occurrences of a meaningful signal from a 

machine system i.e. monitoring. The ‘task network’ requires a human to interact with a machine 

in a correct sequence of actions in order to achieve the best performance e.g. a sequence of 

making a dish of salad. The ‘control theoretic’ is the focus of this research in which the 

interaction is focused on the low-level interaction with a machine e.g. vegetable chopping.  

It can be noted from Figure 3.1 that it is possible to develop the corresponding performance and 

control model at each level. Since this research focuses at the low level, the design and method 

of investigation are proposed to develop control and performance model at this level.  

 

Figure 3.1 Hierarchical of approaches for a modelling of HMI. 
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Although HMI modelling can be defined in a number of ways, this research develops a view on 

the perspective of HMI modelling which is shown in Figure 3.2. A human can be modelled in 

terms of e.g. mental model, cognition model, and human physical attributes etc. A system can 

be anysystems such as a robot, a car, a factory plant, a computer etc. A task can be designed 

based on the goal of a particular problem. The intersections of each pair form a meaningful 

relationship. A ‘human-system’ forms a human machine interface or man-machine interface 

(MMI) which defines ergonomic and interaction between human and machine. A ‘human-task’ 

forms a relation for a task understanding. A ‘system-task’ forms a relation that specifies the 

capability of the system to do a task. The centre of the three blocks forms the HMI modelling. 

Also, the environment modelling is an inevitable part that covers all of the blocks because the 

participating bodies have to work within an environment. 

 

Figure 3.2 This research view on the perspective of HMI modelling. 
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3.3 Research methodology and design of the 

investigations 

This research is based on a positivism research paradigm/philosophy where the research 

approach is to investigate, analyse, and develop a model based on conductions of an empirical 

study. An experimental scenario is designed and developed in order to execute an empirical 

study by enquiring a human participant to perform the scenario on a simulation platform. The 

data acquired during the experimental scenario is used for analysis, deductive reasoning and 

development of a model. The establishment of a relationship between a human-machine 

interaction performance and the scenarios is drawn from these analysis and model development.  

A systematic research onion model has been presented in [220]. This research has adopted some 

parts of the onion model which are shown by the red dashed lines in Figure 3.3. The justification 

for choosing the onion components are given below. 

 

Figure 3.3 The research methods applied in this research are indicated by the red dashed lines 

from the view of research onion [220]. 
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 Philosophies 

o Positivism - The nature of this research is a multidiscipline science based on the 

observation of the phenomena of HMI. 

 Approaches 

o Deductive - the investigations are designed to fulfil the research aim and 

objectives. 

 Strategies 

o Experiment and case study - the strategy of this research is to design case studies 

and experiments to fulfil the research aim and objectives. 

 Choices 

o Mixed methods - both qualitative and quantitative methods are applied. 

However, the quantitative is the key method because the main motive is to obtain 

and analyse data from the empirical experiments. 

 Time horizons (Cross-sectional) 

o Cross sectional - this research is conducted based on short periods in time horizon 

because of the constraints of the Ph.D. duration and resources. 

 Techniques and procedures 

o Data collection and analysis - this research obtains data empirically from the 

experimentation which are performed by participants.  

Figure 3.4 shows a simplified diagram of the focus of the investigation from Figure 3.1. 
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Figure 3.4 A simplified diagram of the investigation. 

According to the paradigm and methods of the research, there are three main scenarios designed 

for the empirical investigations.  

1. A human heuristic learning to control and identify a machine control rule. 

2. A human heuristic learning and control performance analysis. 

a. Development of a human-machine control model based on the data observation. 

3. A development of HMI performance evaluation model based on the features of EEG 

brainwaves. 

3.4 HAM simulation platform 

A simulation is a powerful tool for realising a system prior to an actual development, 

implementation, and deployment. Therefore, to study the HAM concept, a virtual platform is 

developed which provides an environment for a robot / machine simulation based on a 

mathematical model. In addition, the platform intends to provide real-time interaction with a 

human operator / participant in order to acquire their control information. 

A diagram of interconnection blocks between a human and the platform is shown in Figure 3.5. 

A human operates a machine with the platform via an interface device such as a joystick, 

Human HAM platformInteraction

Analysis, 

performance, model 

development
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keyboard, mouse, etc. The operator perceives a feedback and interact by their intention and turns 

out to be an action based on his/her skills and knowledge. It is noted that the operation is driven 

by a task goal. The process is reciprocal as a learning cycle. The action is based on skill. A 

human has the capability to learn to operate a machine by training until a particular skill is 

acquired. The skill is transformed into a set of rules. Eventually, a set of rules is formulated into 

knowledge.  Ultimately, knowledge revolutionises into wisdom.  

The HAM simulation platform is responsible for providing a simulation environment that is 

including a machine model simulation, a scenario based on a task, data acquisition, interface 

management, rendering the virtual appearance of the simulation etc. It is noted that the platform 

wirelessly acquires data from the Emotiv EPOC headset through the manufacturer provided 

API. 
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Figure 3.5 A building block of the platform. 

3.4.1 The internal architecture of the platform 

An internal architecture of the simulation platform is shown in Figure 3.6. The simulation begins 

with the specified initial conditions such as an initial pendulum angle, a zero model velocity, 

etc. Then, it enters the loop that sequentially processes the blocks inside the loop. The loop is 

aimed to maintain the specified time step. However, this depends on many factors e.g. 

complexity of the model and the simulation calculation method, speed of the computer etc. The 

simulation loop contains the equation solver, input management, graphic rendering, on-screen 
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graph drawing, a logging system, and the optional adaptation computation for active / passive 

assistance. The equation solver is implemented with ordinary differential equation (ODE) solver 

using 4th Order Runge-Kutta numerical method [221], [222]. After the simulation is completed, 

the platform saves logged data to files for further analysis. 

 

Figure 3.6 The HAM simulation platform internal architecture. 
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The platform is implemented using Microsoft C# programming language and the XNA as the 

graphical rendering package. The XNA is a powerful cross-platform library for graphics and 

game development. 

3.5 Variations of pendulum-driven capsule 

models 

A pendulum-driven capsule model explained in Section 2.10.1 is chosen as the case study 

because of its dynamics and challenges to control by a human. The study of the pendulum 

control mechanism is useful in many applications such as a human standing posture, an 

excavator arm structure etc. Furthermore, the pendulum-driven capsule is an underactuated 

mechanical system that required the particular level of skill, rule, and knowledge to learn to 

control it. There are two variations of the pendulum-driven model in this research i.e. Model I 

in Section 3.5.1 and Model II in Section 3.5.2. 

3.5.1 Model I: A pendulum-driven capsule 

A mathematical model of the pendulum-driven capsule Model I is obtained from the modelling 

explained in section 2.10.1. The model is required to be in a proper form for the numerical 

simulation by the platform. Thereby, the equations of motion (2.24) and (2.25) need to be 

transformed into the state-space form as follows. 

�̇� =
(2𝑀 + 2𝑚)(𝜎2 + 𝜇𝑆𝜎3) − 𝜔2𝐿𝑚𝑠𝑖𝑛(𝜃)

(𝑀 + 𝑚)(2𝑀 + 𝑚 − 𝑚𝑐𝑜𝑠(2𝜃) − 𝜇𝑆𝑚𝑠𝑖𝑛(2𝜃))
 

𝑤ℎ𝑒𝑟𝑒 𝜎2 =
cos (𝜃)(𝜏 + 𝑔𝐿𝑚𝑠𝑖𝑛(𝜃))

𝐿
 

𝑎𝑛𝑑 𝜎3 =
𝑔𝐿𝑚𝑠𝑖𝑛2(𝜃) + 𝜏sin (𝜃)

𝐿
− 𝑔(𝑀 + 𝑚) + 𝜔2𝐿𝑚𝑐𝑜𝑠(𝜃) 

(3.1) 

�̇� =
(2𝑀 + 2𝑚)(𝜏 + 𝑔𝐿𝑚𝑠𝑖𝑛(𝜃) − 𝜎4)

𝐿2𝑚(2𝑀 + 𝑚 − 𝑚𝑐𝑜𝑠(2𝜃) − 𝜇𝑆𝑚𝑠𝑖𝑛(2𝜃))
 

𝑤ℎ𝑒𝑟𝑒 𝜎4

=
𝐿𝑚𝑐𝑜𝑠(𝜃)(𝜇𝑆(𝑀𝑔 + 𝑚𝑔 − 𝜔2𝐿𝑚𝑐𝑜𝑠(𝜃)) + 𝜔2𝐿𝑚𝑠𝑖𝑛(𝜃))

𝑀 + 𝑚
 

(3.2) 

�̇� = 𝑣 (3.3) 
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�̇� = 𝜔 (3.4) 

The equations (3.1), (3.2), (3.3), and (3.4) are in the appropriate form for the numerical 

simulation using the implemented ODE solver in the platform simulation loop. A diagram of 

the pendulum-driven capsule input / output is shown in Figure 3.7. Input is the torque  that 

controls the pendulum at the joint attached to the capsule body as illustrated in Figure 2.15. The 

outputs are the pendulum rotation angle and the capsule position according to the underactuated 

mechanism. 

 

Figure 3.7 Input / output of pendulum-driven capsule model. 

3.5.2 Model II: A PID controlled inverted pendulum-

driven capsule 

In this section, the model in Section 3.5.1 is modified to integrate an additional proportional-

integral-differential (PID) i.e. Model II. A diagram of the modified model is shown in Figure 

3.8. The PID controller is used to control the amount of torque required to maintain the 

pendulum angle at the desired value θd. Therefore, a pendulum-driven capsule becomes an 

inverted pendulum-driven capsule system by applying the PID controller to maintain the 

pendulum angle at the upright position (θ=0) while there is no control input from a human 

operator. The simulation for this model is programmed to limit the range of pendulum angle to 

match the physical appearance of the capsule i.e. 90 < θ < -90. Unlike the model in Section 3.5.1 

where the raw control input is the amount of torque. The raw input for the Model II is the desired 

angle θ. In other words, a human operator can concentrate on the pendulum angle to 

underactuate the capsule system to move in desired directions. The amount of torque is 

automatically computed by the PID controller to rotate the pendulum to the target angle.  
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Figure 3.8 Input / output of PID controlled inverted pendulum-driven capsule model. 

The justification for utilising a PID controller is explained here. The PID controller closely 

mimics the control behaviour of a human in balancing an inverted pendulum which is discussed 

in Section 2.7.2. A human can compensate the control in only two aspects i.e. the instantaneous 

compensation (proportional component) and the compensation over short consecutive actions 

(derivative component). The extra integral controller component is responsible for 

compensating the accumulated error over a period of time which is hardly achievable by a 

human being. Therefore, the use of PID controller can provide a smooth control to a human 

participant with the additional benefit of the integral component.  

3.5.3 Human interaction with the machine models 

The models described in Section 3.5.1 and 3.5.2 can be illustrated when they are operated by a 

human participant as shown in Figure 3.9 and Figure 3.10, respectively. The human operator is 

given the goal of the task that acts as the reference. The human brain processes the information 

and takes the action via the joystick interface to control the pendulum-driven capsule system. 

Then, the joystick action is transformed into the input to control the pendulum model. The 

Model I is controlled directly via the joystick output that is mapped into the amount of torque. 

The Model II has the PID controller to transform the desired pendulum angle into the amount 

of torque required to control the pendulum angle. A proper rotation of the inverted pendulum 

can drive the capsule system towards the desired direction. This rotation strategy is the control 

task that the human operator needs to learn. The appearance of pendulum orientation and capsule 

position on the display acts as feedback information to the human operator. Then, the loop is 

iterated aim at completing the task goal. 

The models contain time-varying variables that pass the information throughout the system loop. 

The signal r(t) is the reference or the given task goal. The p(t) is the internal processing of the 
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individual human brain. The h(t) is the result of an internal brain processing output as a hand 

motion to control the joystick interface. The signal j(t) is the output from the joystick that is 

generated by the human operator’s hand movement. u(t) is the control output from the PID 

controller to the pendulum-driven capsule simulation to achieve the desired angle. The θ(t) and 

x(t) are the outputs from the simulation model that appear on the screen of the virtual simulation 

platform. These outputs act as the feedback to the human operator’s visual perception. The 

signal ep(t) is the simulation output information plus any external disturbances such as 

environmental distractions and unrelated activities on the screen. 

 

Figure 3.9 A human interaction with the pendulum-driven capsule system (Model I). 

 

Figure 3.10 A human interaction with the PID controlled inverted pendulum-driven capsule 

system (Model II). 
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3.6 10-time-10-fold cross-validation 

It is mentioned in Section 3.3 that the investigation includes a model development. The model 

development requires dataset acquired from the empirical experimentation. Then, the dataset is 

developed into a model by one of the modelling algorithms such as ANN, SVM, HMM, linear 

regression etc. In this research, an ANN is adopted as a model development tool because of its 

flexibility and the ability to solve both linear and nonlinear problems. Furthermore, the structure 

of an ANN is the artificial resemblance of the human’s brain. Also, a review of several machine 

learning algorithms in [223] indicates that the ANN is the most suitable and widely adopted 

over the other methods for the EEG brainwave model development such as BCI.  

The procedure shown in Figure 3.11 proceeds to ensure the consistency and validity of the model 

development. Firstly, the dataset is divided into two parts i.e. training and blind test datasets. 

The condition for dataset dividing depends on the application. Then step 1, the training dataset 

is fed into the 10-time-10-fold cross-validation procedure as shown in details in a flowchart in 

Figure 3.13. The procedure is adopted from Section 2.8.1. The training dataset is shuffled and 

partitioned into ten equal portions as shown in Figure 3.12. It is noted that the partitioning is 

done along with stratification. The stratification distributes the equal number of types of class 

into each portion to avoid the situation where there is a single type of class in a portion. Then, 

the 1st portion out of ten portions is preserved for testing while the rest is used for training a 

model. This process is the 1st fold. The 2nd fold is continued by using the 2nd portion as the 

testing and the rest as the training. This process is repeated for ten folds. Then, this entire process 

is repeated for ten times i.e. 10-time-10-fold cross validation. It is noted that the previous 

training is for a single configuration of a model. In order to find the optimal model configuration, 

several of model configuration and parameter need to be put into the procedure e.g. number of 

hidden neurons.  

The purpose of the 10-time-10-fold cross-validation procedure is to locate the best model 

configuration and parameter, given the training dataset. It is noted that configuration and 

parameter can be anything that affects the performance of the developing model e.g. number of 

hidden neurons in an ANN, training algorithm, initial condition etc. In this research, the 

configuration is determined only by a number hidden neuron within a single hidden layer design 
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of an ANN. A single hidden layer with the proper number of hidden neurons and activation 

function is sufficient to solve both linear and non-linear problems [224], [225]. The 10-time-10-

fold cross-validation loops 100 iterations for each configuration. This method ensures the 

consistency of the outcome since the best model is selected from the averaged performance of 

this procedure that is indicated by step 2 of Figure 3.11. Then, the selected best model is trained 

with the entire training dataset. This is the outcome of the model development. The final model 

is tested with unseen dataset i.e. the blind test dataset in order to test the effectiveness of the 

model when it is applied in general.  

 

Figure 3.11 An overall process of training and blind testing with 10-time-10-fold cross 

validation. 
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Figure 3.12 Dataset partitioning and stratification (a) the entire dataset (b) the dataset 

partitioned into ten portions (c) each portion contains an equal number of rows and equal type 

of classes. 
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Figure 3.13 A flow chart of 10-time-10-fold cross-validation procedure. 
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3.7 List of the investigations 

This section summarises the investigations have been completed in this research. A list of the 

investigation is shown in Table 3.1. 

Table 3.1 List of the investigations completed in this research. 

No. Description 

Chapter 

/Section 

Objectives 

fulfilment 

1 

Single participant learning to control pendulum-driven 

capsule system (Model I) 

o Identification of a set of rules to control the system  

4.2 1, 2, 4 

2 

Nine participants learning to control a PID controlled 

pendulum-driven capsule system (Model II) 

o Nine participants  

o A comparison of performance outcome between 

participants in terms of final capsule displacement 

o A characteristic of low and high performance control 

signals are identified 

4.3 1, 2, 4, 5 

3 

Development of a human-machine control model based on 

the control data and information from the investigation No. 

2 

o A set of rules of capsule control law from human control 

information is developed into a model. 

o Feature extraction from the control information 

o Develop two model by adopting ANN as the modelling 

algorithm 

o The procedure in Section 3.6 is applied. 

4.4 1, 2, 3, 4 
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4 

A study on brainwaves from EEG measurement 

o Preliminary study on EEG with the Emotiv EPOC headset 

o The main investigation is the ERP for certain stimuli e.g. 

auditory, click, simple target hitting task. 

Chapter 5 2 

5 

A human EEG brainwaves and human-machine interaction 

performance evaluation 

o A target hitting task is adopted as the investigation scenario 

to capture the human EEG brainwaves. 

o The corresponding target hitting task performance metrics 

are RT, MT, DT, MA, HA and the Fitts IP.  

o Development of 6 ANN models which can be used to 

evaluate a human-machine interaction performance based 

on the EEG brainwaves. 

 Six ANN models are obtained corresponding to each 

performance indicator. 

o The procedure in Section 3.6 is applied. 

Chapter 6 1, 2, 3, 4, 5 

6 
An implementation of hardware inverted pendulum driven-

capsule system 

Appendix J Not 

applicable 
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3.8 Summary 

This chapter presents a research methodology adopted in this research i.e. positivism paradigm 

with quantitative approach. The focus area of the research has been clarified that is the 

investigation at the lowest level of the four approaches to hierarchical modelling of human-

machine performance. Then, the paradigm and the focus are formulated into the method and 

design of the investigations that are realised by the implementation of the HAM simulation 

platform. The platform is functioned as a machine simulation and the interaction interface 

between human and machine instead of using a physical machine.  

The experiment data of each scenario are acquired via the platform. The analysis and model 

development of the acquired data is done offline. The model development procedures that 

ensure the consistency of the obtained model has presented i.e. the 10-time-10-fold cross 

validation. A table that summarises all of the investigations completed in this research is given 

along with a reference to the corresponding sections of this thesis. 
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Chapter 4 Human-machine interaction – 

learning, performance, and 

model development 

4.1 Introduction 

This chapter presents the investigation on an HMI with the two machine models presented in 

Section 3.5 i.e. Model I and II. The Model I is applied in the study of heuristic learning to control 

the machine in Section 4.2. The Model II is applied in the investigation with nine participants 

in Section 4.3. The control information from Section 4.3 is further analysed in order to develop 

a human-machine control model in Section 4.4.  

4.2 A heuristic learning to control the 

pendulum-driven capsule system 

The Model I in Section 3.5.1 is applied in order to understand a heuristic learning of a human. 

A participant is asked to learn and figure out how to control the machine according to the given 

instruction.  

A sampling rate or the simulation time step is 100Hz or 10ms per loop. The only input of Model 

I is the torque at the joint as shown in Figure 2.15 which is mapped directly to the movement of 

a thumbstick of the joystick to control the amount of torque. A photo of the thumb stick is shown 

in Figure 4.1. It can be noted that the system time step is 10ms. Therefore, the torque pushed by 

the joystick in real time is applied to the system at every step of the simulation loop.  
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Figure 4.1 A photo of the joystick which indicates the thumbstick. 

4.2.1 Heuristic learning and identification of control 

strategy 

Apparently, one of the advantages of a real-time interactive simulation is that it is useful for 

heuristic learning and practising. The underactuated nature of the pendulum-driven capsule 

system is rather challenging for a human operator to learn to control especially the control of a 

capsule body movement rather than the pendulum itself.  

The experimentation is conducted by having a participant try to control the capsule system to 

move the capsule body to the desired direction either left or right. The interaction loop is shown 

in Figure 3.9 which diagrams transfer of control information around the system loop. A 

participant needs to interact with the system by the mentioned control mechanisms i.e. control 

of a thumb stick to actuate the amount of torque at the pendulum joint. The outputs of the system 

are the pendulum angle θ(t) and the capsule body movement x(t). These outputs act as feedback 

to a human, and the overall system becomes closed loop.  
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The capsule system parameters are configured as follows; M=0.5kg, m=0.05kg, L=0.3m, 

g=9.81 m/s2, μ=0.01 N*m/s. The initial conditions – θ, ω, x, v, and τ are 180 degrees, 0 rad/s, 0 

m, 0 m/s, and 0 N.m/s respectively. The illustration of the system configurations and the initial 

conditions are shown in Figure 4.2.  

 

Figure 4.2 The system configuration, parameters, and initial conditions. 

In the beginning, the system stays still with the pendulum shaft and the ball lying straight down 

because of the gravity and the absence of any disturbances. The pendulum start to swing when 

a small torque is applied by a user via the joystick as shown by the short-time downward impulse 

of the blue dashed line in Figure 4.3 (a). The capsule body starts to move to the left and the right 

repeatedly according to the forces produced from the pendulum ball movements and the surface 

friction as shown in Figure 4.3 (b). The capsule is unintentionally displaced to the right after it 

finally comes to the steady state as indicated by the ending position at approximately 0.15m of 

the capsule body position graph in Figure 4.3 (b). A screenshot of the simulation and the 

experiment is shown in Figure 4.4. A human participant learns to control the simulated machine 

by control the amount of torque via the joystick as shown in Figure 4.4. 
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(a) A small activation of torque and the pendulum angular velocity. 

 

(b) The capsule body position (black dashed line) and velocity (solid red line) when the small 

amount of torque is activated. 

Figure 4.3 A small activation of torque τ at near the 2nd second (blue dashed line) causes the 

pendulum to swing, and the capsule starts to move. 
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Figure 4.4 A screenshot of a human heuristic learning to control a pendulum-driven capsule system. 
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4.2.2 The identification of rules for the machine 

control 

After several tries of control the movement of the pendulum to drive the capsule into the desired 

direction, a set of control rules is developed. Figure 4.5 shows the identified control rules of the 

capsule system. The identified control rules can be summarised and explained by the following 

steps. 

Step 1) Generate a pulse of torque by pushing the joystick to allow the pendulum to swing freely 

and then release the joystick as shown at approximately around the 1st second in Figure 4.5(a). 

Figure 4.6(a) shows the close-up moment where a small impulse of torque is generated (solid 

red line), and the angular velocity of the pendulum starts to accelerate (solid green line). Then, 

the pendulum freely oscillates in the same behaviour as shown in Figure 4.3(a). 

Step 2) If an operator wants to control the capsule to the left direction. The human operator 

needs to push the torque backwards suddenly and only in a short period (impulse liked) while 

the pendulum is freely swinging back to the left side as shown at the approximately 3rd second 

of Figure 4.5(a), technically at the middle of the swinging back. The close-up detail of this 

moment is shown in Figure 4.6(b). The instructions for moving the capsule body to the right 

direction can be achieved in a similar way. 

A general description can be explained as follows. In order to control the capsule to the left, a 

human operator needs to push the torque in the middle of the rising or falling of the pendulum 

angular velocity. In other words, the operator needs to push the torque at the middle edge of the 

sine curves. These rules torque control strategy allow the user to control the capsule body to the 

desired directions. 
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(a) The graphs of torque (τ), pendulum angle (θ), and angular velocity (ω) during control 

of the pendulum to the left (from 0 to 10s) and the right directions (from 10s to 20s). 

 

(b) The graphs of capsule body position (x), velocity (v), and the sign of surface friction, 

sgn(v). 

Figure 4.5 The scaled control signals from the heuristic learning to control the system by a 

human operator. 

  

Step 1 Step 2 
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(a) The control characteristics for step 1. 

 

(b) The control characteristics for step 2. 

Figure 4.6 The control characteristics for (a) step 1 and (b) step 2. 
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Conclusion remarks to the investigation on a human heuristic learning to control the pendulum-

driven capsule system, the identified rules of the control seem similar to a walking cycle of a 

human that can be illustrated by Figure 4.7 i.e. an inverted bottom half of a circle of leg 

movements. Given that the desired movement is to move to the right, firstly it is needed to push 

the pendulum to swing freely from A to B reciprocally. At the moment where the pendulum ball 

is reaching the point B, the torque must be pushed in the opposite way. This will make the 

capsule move to the right because of both the pushed torque and the surface friction effects. This 

mechanism is working in the same way as a human walking cycle. 

 

Figure 4.7 A simple human walking cycle by swinging a leg from point A to point B. 

4.3 Human learning skill and performance to 

control an underactuated inverted 

pendulum-driven capsule system 

The investigation in this section is based on the Model II, a PID controlled inverted pendulum-

driven capsule system as explained in Section 3.5.2. 

4.3.1 Participants 

Nine participants age between 21 and 50 attend this experiment. Each of them agreed and signed 

the consent form before the investigation. The consent form template can be found in Appendix 

A. The participants have different personal attributes such as ages, handedness, and knowledge 

about principles related to the machine that could influence the control learning and 

performance. The participants are labelled as CH4P1 to CH4P9. The detail of the participants 

attributes and knowledge is shown in Table 4.1. One of them is female. Eight of them are right-

handed while two of them are left-handed. All of them know the knowledge on Newtons law of 
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motion. Only one of them does not know the pendulum mechanism. Almost half of the 

participants do not know the inverted pendulum mechanism. Three out of nine know the 

principle of an inverted pendulum. None of them has tried this experiment before this 

investigation. 

Table 4.1 The participants’ attributes and knowledge. 

P G A H N Pe IPe IpeP TBF 

CH4P1 Male 31-35 Right Yes Yes No No No 

CH4P2 Male 36-40 Right Yes Yes Yes No No 

CH4P3 Female 31-35 Right Yes Yes No No No 

CH4P4 Male 21-25 Right Yes No No No No 

CH4P5 Male 26-30 Left Yes Yes No No No 

CH4P6 Male 26-30 Right Yes Yes Yes No No 

CH4P7 Male 41-45 Left Yes Yes Yes Yes No 

CH4P8 Male 46-50 Right Yes Yes Yes Yes No 

CH4P9 Male 26-30 Right Yes Yes Yes Yes No 

P=Participant Identity, G=Gender, A=Ages, H=Handedness, N=Knowledge on Newton 

law of motion, Pe=Knowledge on pendulum, IPe=Knowledge on inverted pendulum, 

IPeP=Knowledge on inverted pendulum principle, TBF=Has the participant tried this 

experiment before 

4.3.2 The investigation 

The experiment is designed to investigate the human operator learning and skill performance 

when operating the underactuated inverted pendulum-driven capsule system i.e. the Model II in 

Section 3.5.2. The PID controlled inverted pendulum-driven capsule system allowed the 

participants to concentrate on controlling the pendulum angle rather than the torque. A proper 

rotation of the pendulum can underactuate the capsule body to move in the desired direction. 

However, it requires both learning and skill to operate and identify the correct control strategy. 

The interaction model is shown in Figure 3.10. The simulation appearance in this section has 

been upgraded from 2D to 3D simulation as shown in Figure 4.8. However, the model is 

basically the model presented in Section 3.5.2. The underlying mathematical model is the one-

dimensional system that can move in either positive or negative x-axis. The 3D appearance 

makes the system easy for the operator perceptions. 

The joystick axis is mapped to control the angle of the pendulum directly. The mapping means 

that when the joystick is pushed towards negative PovX direction (Figure 4.9) it can rotate the 
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pendulum angle of the capsule system to left-hand side which means toward the positive 90 

degrees of the pendulum-driven capsule model (refer to Figure 2.15).  

 

Figure 4.8 The screenshot of the 3D interactive simulation. 

 

Figure 4.9 The joystick and the axis mapping to the pendulum angle. 
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The PID controller constants – kP, kI, kD are 0.7, 0.7, and 6.0, respectively. The control output 

gain factor is 10. The constants and the gain are heuristically tuned so that the maximum 

pendulum angle overshoot is achieved as shown in Figure 4.10. Table 4.2 shows the parameters 

for the capsule system.  

Table 4.2 The capsule system parameters. 

Ball 

mass 

(kg) 

Capsule 

mass 

(kg) 

Shaft 

length 

(m) 

Surface 

friction 

coefficient 

Gravity 

constant 

(m/s2) 

0.2 0.5 0.3 0.5 9.81 

 

Figure 4.10 The pendulum angle response for the selected PID constants. 

4.3.3 Task 

The control task in this experiment is a direct control of the pendulum angle to displace the 

capsule body to the specified direction i.e. left or right. A participant has full control over the 

desired angle of the pendulum by pushing the joystick handle. The effect of pendulum rotation 

can cause the capsule to move erratically back and forth. This is a normal condition because of 

the mechanism of the inverted pendulum-driven capsule system. Nonetheless, it is controllable 

for the intended displacement direction. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 0.14 0.28 0.42 0.56 0.7 0.84 0.98 1.12 1.26 1.4 1.54 1.68

P
en

d
u
lu

m
 a

n
g
le

 (
R

ad
)

Time (Second)

Pendulum angle response for the selected PID constants

kP = 0.7, kI=0.7, kD=6.0, gain=10.0



 

 

Page 115 of 319 

Each session of the experiment for each participant contains a learning session before the actual 

performance trials. The actual trials consist of 6 trials separated into three trials for right and 

three trials for left movement. There is no time limitation for the learning session while the 

actual trial is limited to 20 seconds per session which means a participant has to control the 

capsule to the specified direction as far as possible within the given time limitation. 

4.3.4 Performance analysis 

This section summarises the results from the experimentation conducted by the nine 

participants. The ‘R’ and ‘L’ letters are used to indicate right or left movement task followed by 

a trial number as shown in Figure 4.11. For examples, ‘R1’ stands for the first right trial, ‘R2’ 

for the second right trial, and so on. Each of the participants performs the experiment for ‘R1’ 

to ‘R3’ and ‘L1’ to ‘L3’ which produces a total of 54 trials for the entire investigation.  

Figure 4.12 shows the amount of learning time used by each participant before the actual 

performance tracked trials. According to Figure 4.12, the amount of learning time (LT) does not 

reflect the performance of the actual trials since the best performance is achieved by ‘CH4P3’ 

who takes 212.9s learning time while ‘CH4P9’ uses 586.88s to learn to control the capsule 

system but achieves the worst outcomes. It is indicated that the participant ‘CH4P9’ spends a 

large amount of time to figure out how the capsule system works but could not acquire sufficient 

skill to control the capsule system. 

The performance is indicated by the final capsule position i.e. the horizontal distance measured 

from the start position of the capsule body. The top two high performance trials belong to 

‘CH4P2’ and ‘CH4P3’ with their 3rd and 2nd left trials, respectively. They are denoted by 

‘CH4P2-L3’ and ‘CH4P3-L2’ as shown in Figure 4.11. It is apparent that the best performer is 

‘CH4P2’ which is shown by the highest amount of accumulated capsule distance as shown in 

Figure 4.13.The highest average speed at 2.10 cm/s is also from ‘CH4P2’ as shown in Figure 

4.14. At the low ends, it is clear that the lowest performance trial is achieved by ‘CH4P4-R2’ 

i.e. 0.26 cm. However, ‘CH4P4’ is not the lowest performer because the total accumulated 

distance and capsule average speed are still higher than ‘CH4P9’. It is concluded that ‘CH4P9’ 

achieves the worst performance which is agreed with the statement in the previous paragraph 

that the ‘CH4P9’ could not figure out how to control the capsule system.  
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Figure 4.11 The absolute values of final capsule position. 

 

Figure 4.12 The time used for learning from the nine participants. 
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Figure 4.13 The total capsule distances accumulate from all trials. 

 

Figure 4.14 The average capsule speeds accumulate from all trials. 
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Figure 4.15 The average capsule distance from the right trials and left trials of the nine 

participants. 

It is interesting that almost all of the right-handed participants achieve higher left performance 

than right performance as shown in Figure 4.15. Likewise, the left-handed participants, ‘CH4P5’ 
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effect of a hand grasping orientation on the joystick and the fact of the human brain activation. 

A left human brain is activated when the right parts of the body are in action, and vice versa. 

This is confirmed from the pieces of evidence from the experimental results as follows. The 

highest left direction performance is from the participant ‘CH4P2’ who is right-handed (CH4P2-
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‘CH4P7’ achieves good performance across all of the trials, the variance is relatively low. This 

means there is a low learning achieved by this participant. 

 

Figure 4.16 The variance of the absolute displacement for each participant. 
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(c) 

 

(d) 

Figure 4.17 The graphs show control amplitude from the joystick, frequency characteristics, 

and the capsule displacement. 
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4.3.5 Low-level analysis 

In the previous section, skill performance of the human operator to control the capsule is 

measured from the final capsule distance. It is interesting to analyse the details of the control 

input i.e. the raw control input from the joystick that produces the desired angle of the inverted 

pendulum and causes the capsule to displace. From theoretical and mathematical control points 

of view [148], [149], [226], the studies are sought to create a profile of pendulum angles which 

tend to underactuate a capsule body to displace. These control profiles are designed to be 

performed automatically by a machine controller. The rotation profiles are perfect in both time 

and frequency of control oscillation. As opposed to a human operator is not a perfect machine 

who can reproduce the control profile from the theory although it could be used as purpose 

guideline.  

Obviously, the underlying outcome of the final performance is from the manual control of the 

joystick as indicated in Section 4.3.4.1. The detailed analysis of this manual control signal could 

reveal the information which can be used to create a human-machine control model. One of the 

detailed analysis is the identification of a control cycle which mimicries the automatic control 

profile from [148], [149], [226]. The identification can be accomplished by applying an 

approximation algorithm to the control input i.e. a local minimum and maximum as shown in 

Figure 4.18. The algorithm finds the peaks and bottoms of sinusoidal waves which are the 

approximation as a control cycle. This cycle information can be used to develop a model in 

Section 4.4. 

 

Figure 4.18 An example of the identification of cycles from the joystick control input. 
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4.4 Development of human-machine control 

model using ANN 

In this section, a human-machine control model is investigated based on the control information 

from Section 4.3. In Section 4.3, nine participants have been instructed to learn to control a PID 

controlled inverted pendulum-driven capsule system. A joystick is the input device which 

controls the pendulum angle. Hence, the control information is the time-varying angle of the 

inverted pendulum.  

The time-varying angle of the inverted pendulum contains a human control strategy that rules 

the movement of the capsule body. Therefore, it is required to extract the information from these 

control signals in order to develop a control model. According to the literature review, there 

exist several approaches for a model development as reviewed in Section 2.5.8. Since a human 

control strategy is rather difficult to obtain analytically, a descriptive modelling approach 

appears to be a suitable method to develop a model from the given control information. The 

opposition is a predictive modelling approach where it makes a prediction based on a set of 

given inputs.  

Although the two approaches are in opposition, they are often developed simultaneously to 

ensure that the obtained descriptive model performance is truly effective.  

4.4.1 Model development 

An ANN is adopted as a modelling tool in order to develop the model of human-machine 

control. Two types of ANN modelling are employed i.e. classification and regression neural 

networks, as shown in Figure 4.19. The classification model produces a discrete output that 

indicates a class of capsule movements i.e. backward and forward. The regression model 

generates a continuous output which is a capsule displacement. The inputs or features are 

extracted from the control information in Section 4.3. 
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Figure 4.19 The block diagrams of ANN classification and regression. 

4.4.1.1 Signal segmentation and feature extraction 

The procedure to extract control information from a sinusoidal like control signal is shown in 

Figure 4.20. It is noted that a trial of the experiment lasts 20 seconds with a sampling rate of 

100 Hz. Therefore, the joystick control signal is the equal length. On the right side of the 

‘Joystick Control Signal’ from the dashed line is a graph of an example of the control signal 

produced by a participant. The graph conveys control information that can be approximated into 

a train of simple switch control cycles [226]. The control signal can be approximated i.e. 

segmentation by applying local minima and local maxima algorithms as described in Appendix 

G. The algorithms find peaks and bottoms of the sinusoidal like control signal as shown by the 

dashed line from the ‘Control Cycle Approximation’ block. Any three adjacent bottom-peak-

bottom points form the triangle of a control cycle. A triangle conforms to the stereotype of the 

simple switch control profile [226]. The process is repeated until all of the trials are processed. 

The graph on the right of the ‘Extract feature’ in Figure 4.20 is the example of an identified 

control cycle. A, B and C are the amplitude parameters at each of the corresponding time tA, tB 

and tC, respectively. These parameters are used to create features of a control cycle as shown in 

Table 4.3. It is noted that the output for a cycle is the net displacement of a capsule measured 

from the start to the end of the cycle timing period i.e. tA to tC. 
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Figure 4.20 The flow chart of the signal processing procedure to extract the control features. 
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Table 4.3 The nine features of a control cycle and description. 

Feature No. Cycle Parameter Description 

1 A Amplitude value at point A 

2 B Amplitude value at point B 

3 C Amplitude value at point C 

4 TCA = tC – tA Time difference between point C and A 

5 TBA = tB – tA Time difference between point B and A 

6 TCB = tC - tB Time difference between point C and B 

7 CA = C – A Amplitude difference from point C and A 

8 BA = B – A Amplitude difference from point B and A 

9 CB = C - B Amplitude difference from point C and B 

4.4.1.2 Datasets preparation 

After completing the process of segmentation and feature extraction as explained in Section 

4.4.1.1, the datasets are obtained as shown in Table 4.4 and Table 4.5. It is noted that the data 

is normalised and shown only in 3 rows. The tables expand to K=3,685 rows which are the size 

of the extracted control cycles from the entire 54 trials.  

The procedure in Section 3.4 is applied for models development. Since the procedure requires 

two datasets i.e. training and blind test datasets, the control cycles extracted from the best 

performance trial from each of the participants are preserved as the blind test dataset which is 

equal to 683 rows of the K. Therefore; the remaining 3,002 is for the training dataset as shown 

in Figure 4.21.  
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Figure 4.21 The datasets preparation for human-machine control modelling. 
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Table 4.4 The example of normalised dataset rows for the neural network classification. 

 Features / Inputs Outputs 

Cycle No. A B C TCA TBA TCB CA BA CB Forward Backward 

1 0.6514 0.0197 0.5655 0.1157 0.4688 0.3612 0.4284 0.0935 0.8569 1 0 

2 0.5655 0.0314 0.4363 0.0992 0.4688 0.3524 0.3924 0.1478 0.7776 0 1 

3 0.4363 0.0432 0.3618 0.1074 0.4648 0.3612 0.4379 0.2261 0.7290 0 1 

… … … … … … … … … … … … 

K            

Table 4.5 The example of normalised dataset rows for the Neural Network Regression. 

 Features / Inputs Output 

Cycle No. A B C TCA  TBA  TCB CA BA CB Displacement value 

1 0.3284 0.0314 0.4167 0.0909 0.4609 0.3568 0.5735 0.2794 0.7665 0.4735 

2 0.4167 0.0314 0.4363 0.0992 0.4609 0.3612 0.5163 0.2304 0.7776 0.3341 

3 0.4363 0.0236 0.6319 0.1074 0.4609 0.3656 0.6630 0.2152 0.8921 0.3292 

… … … … … … … … … … … 

K           
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4.4.2 Modelling results 

The results are delivered separately for classification and regression models in Section 4.4.2.1 

and 4.4.2.2, respectively.  

4.4.2.1 Classification model 

The classification model training result is shown in Figure 4.22. The figure shows the result 

from step 1 of Figure 3.11 i.e. averaged training and testing accuracies from 10 times of running 

with a number of hidden neurons range from 1 to 18. The overall trend of the averaged training 

accuracies is in an increasing trend as the number of hidden neurons increased. However, the 

averaged testing accuracies do not follow the same trend. The best model is selected based on 

the best average testing accuracy. Therefore, it is found that a model with seven hidden neurons 

gives the best averaged testing accuracy at 86.94%. The structure of the seven hidden neurons 

ANN model is shown in Figure 4.23. The corresponding input weight, local weight, and bias 

are given in Table 4.6, Table 4.7, and Table 4.8, respectively. 

 

Figure 4.22 The classification result using the 10-time-10-fold validation. 
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Figure 4.23 The classification ANN with seven hidden neurons. 

Table 4.6 The input weight (IW) matrix for the ANN classification model. 

IW 

1.398 0.141 0.914 0.542 1.744 -0.691 -1.237 -0.494 -0.379 

0.793 -1.479 -0.590 0.814 -0.648 -0.064 -0.039 -0.969 0.106 

2.533 1.737 0.361 -1.142 0.768 -0.692 0.194 0.742 -0.625 

2.156 -0.500 0.661 0.969 1.734 -1.626 -1.633 -1.289 -0.755 

-3.707 -4.354 -2.809 3.342 -1.029 3.205 1.181 0.093 2.422 

5.421 1.670 1.522 -1.491 -1.846 -0.340 -3.459 -1.566 -0.382 

-1.040 -3.458 -0.715 0.331 -1.786 1.783 -0.383 -1.541 1.063 

Table 4.7 The local weight (LW) matrix for the ANN classification model. 

LW 

4.981 -2.542 -4.699 -4.565 -2.000 1.523 2.589 

-4.575 3.564 4.596 2.825 2.620 -1.395 -2.512 
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Table 4.8  The bias matrix for the ANN classification model. 

b1 b2 

-0.1589 -2.1565 

-1.2782 0.8545 

-3.0643  

0.3230  

7.7591  

1.1063  

-3.4729 
 

Following step 2 in Figure 3.11, the best model is selected i.e. the model with seven hidden 

neurons. Then, the selected configuration is trained with the entire data to obtain the optimum 

model. A confusion matrix of the optimum model is shown in Table 4.9. The overall 

classification accuracy is 88.3%. A TPR or recall of ‘Forward’ and ‘Backward’ is 86.2% and 

89.9%, respectively. The total numbers of ‘Forward’ and ‘Backward’ instances are 1287 and 

1715, respectively. The model can retrieve or recall the ‘Forward’ instances equal to 1109 out 

of 1287 (86.2%) whereas in the ‘Backward’ case it recalls 1541 instances out of 1715 (89.9%). 

An FPR of ‘Forward’ and ‘Backward’ is 13.6% and 10.4%, respectively. It means that 174 

instances of ‘Backward’ are incorrectly classified as ‘Forward’ while 178 instances of ‘Forward’ 

are incorrectly classified as ‘Backward’. A TNR of ‘Forward’ and ‘Backward’ is 86.4% and 

89.6%, respectively. It shows that 1109 instances of ‘Forward’ are correctly classified out of the 

mixing of 1109 ‘Forward’ and 174 ‘Backward’ instances. An FNR of ‘Forward’ and ‘Backward’ 

is 13.8% and 10.1%, respectively. The rate shows that 178 of ‘Forward’ instances are incorrectly 

classified as ‘Backward’ and 174 of ‘Backward’ instances are incorrectly classified as ‘Forward’ 

in proportion to the class instances i.e. 1287 and 1715, respectively.  

Then, the trained optimum model is tested with an unseen data which is the process of a blind 

test. The preserved 683 data rows are used for this purpose. A confusion matrix of the blind 

testing is given in Table 4.10. The overall accuracy is 92.2%. A TPR for ‘Forward’ and 

‘Backward’ are 80.0% (144 out of 180 instances) and 96.6% (486 out of 504 instances), 

respectively. An FPR is 10.6% and 6.9% for ‘Forward’ and ‘Backward’, respectively. An FNR 

is 20.0% and 3.4% for forward and backward, respectively. A TNR is 89.4% and 93.1% for 

forward and backward, respectively.  
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Table 4.9 The confusion matrix of the classification model with the seven hidden neurons. 

  Predicted Class  

  Forward Backward  

A
ct

u
al

 C
la

ss
 Forward 

1109 (TP) 

36.9% 

178 (FN) 

5.9% 

86.2% (TPR) 

13.8% (FNR) 

Backward 

174 (FP) 

5.8% 

1541 (TN) 

51.3% 

89.9% (TPR) 

10.1 (FNR) 

  86.4% (TNR) 

13.6% (FPR) 

89.6% (TNR) 

10.4% (FPR) 

88.3% (AC) 

11.7% (Error) 

Table 4.10 The confusion matrix of the blind test process tested with the seven hidden neurons 

model. 

  Predicted Class  

  Forward Backward  

A
ct

u
al

 C
la

ss
 Forward 

144 (TP) 

21.1% 

36 (FN) 

5.3% 

80.0% (TPR) 

20.0% (FNR) 

Backward 

17 (FP) 

2.5% 

486 (TN) 

71.2% 

96.6% (TPR) 

3.4% (FNR) 

  89.4% (TNR) 

10.6% (FPR) 

93.1% (TNR) 

6.9% (FPR) 

92.2% (AC) 

7.8% (Error) 

Both the optimum model training and blind testing results provide a rather high performance of 

classification. However, in some cases, a single value of performance indication e.g. TPR or 
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TNR might be misleading. Therefore, precision-recall (PR) and receiver operating characteristic 

(ROC) graphs are produced to provide further analysis. The PR and ROC curves from the seven 

hidden neurons training i.e. the optimum model are shown in Figure 4.24. The curves confirm 

a good classification performance with the area under a curve (AUC) equal to 0.9338 of the 

ROC curve. The PR curve is slightly different. The PR curve shows ‘Backward’ marginally 

better than the ‘Forward’ case. This is because the actual population of ‘Backward’ class is 

higher than the ‘Forward’ class (1715 versus 1287, a summation of the population in each of 

the class row).  

For blind testing, the AUC of ROC curve is 0.9314 which also confirms the excellence of the 

model performance. Nonetheless, PR curve in Figure 4.25 shows that the ‘Backward’ case 

performs better than the ‘Forward’ case with the black dotted line closer to the upper right 

corner. It is noted that the reason could be the greater number of ‘Backward’ population for 

blind testing. The population is calculated by adding the number of populations in the same row 

of actual class. The population of ‘Backward’ class is 503 compared to 180 for ‘Forward’ class.  

 

Figure 4.24  The Precision-Recall (PR) and Receiver Operating Characteristic (ROC) curves 

of the optimum classification model with seven hidden neurons. 
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Figure 4.25 The Precision-Recall (PR) and Receiver Operating Characteristic (ROC) curves of 

the classification model applied to blind test dataset. 

4.4.2.2 Regression model  

A regression model follows the same procedure in Section 3.4. Figure 4.26 shows the averaged 

training and testing results referring to step 1 of Figure 3.11. The result is similar to the 

classification modelling in the sense that the accuracy increases as the number of hidden neurons 

grow. The best testing accuracy of 73.16% is produced by the model with 14 hidden neurons.  

Figure 4.27 shows the structure of the regression model with 14 hidden neurons. The input 

weights, local weights and biases are given in Table 4.11, Table 4.12, and Table 4.13, 

respectively. Then, 100% of data are used to train the 14-hidden neuron model i.e. the optimum 

regression model. By training with 100% of data, the optimum regression model is obtained 

with 79.10%. Then, the accuracy is 77.01% when the model is applied to the preserved blind 

test dataset.  

The regression model is further applied to predict the capsule position using the preserved best 

trials for each of the participants. Figure 4.28 shows the capsule position predictions. The x-axis 

shows the sequence of the identified control cycles. Most of the capsule position predictions are 

fairly accurate except the ‘CH4P6-L3’ and ‘CH4P8-L3’.  
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Figure 4.26  The regression result using the 10-time-10-fold cross validation. 

 

Figure 4.27  The ANN regression structure with 14 hidden neurons. 
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Table 4.11 The input weight (IW) matrix for the ANN regression model. 

IW 

0.093 -1.263 0.359 0.153 0.225 -0.493 -0.597 -1.494 1.050 

0.756 0.473 3.168 -2.591 -2.875 3.628 1.484 -0.322 2.123 

-5.313 -0.849 -3.514 -2.801 -4.569 1.781 1.195 2.778 -2.419 

-1.437 0.609 2.855 3.806 4.534 -2.353 2.733 0.724 1.994 

0.118 -2.097 -1.491 1.006 1.032 -1.968 -1.963 -1.354 0.400 

0.438 -2.619 -1.298 0.444 2.173 -0.900 -1.930 -0.863 0.020 

28.708 4.339 -102.359 -6.705 28.300 -25.699 -108.932 -27.757 -48.703 

2.246 0.798 1.389 -0.010 -1.654 1.001 -2.089 0.493 -0.682 

1.731 1.484 1.158 -0.230 -1.153 1.354 -1.684 -0.971 -0.899 

-0.636 0.615 -1.050 0.749 -0.491 -0.696 0.305 -0.391 -0.681 

-0.606 -0.281 0.501 0.104 -1.053 -0.520 0.541 0.012 -0.993 

1.250 -0.917 0.897 -0.281 1.151 0.002 -0.490 0.104 -0.010 

-1.822 -6.108 -3.485 -0.624 -6.016 7.917 -1.093 -2.949 1.499 

1.910 0.671 -0.854 10.068 10.485 -5.778 -0.115 0.023 -0.164 

Table 4.12 The local weight (LW) matrix for the ANN regression model. 

LW 

0.887 0.323 -0.132 -0.055 -9.769 9.767 0.174 -9.285 9.384 2.720 4.629 1.842 0.071 0.058 
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Table 4.13 The bias matrix for the ANN regression model. 

b1 b2 

3.625 3.757 

4.349  

3.383  

1.230  

0.191  

0.225  

122.839  

-0.729  

-0.877  

-1.860  

-1.560  

1.680  

-4.667  

5.494 
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Figure 4.28  The capsule position prediction using the regression model applied to the 

preserved trials. 

4.5 Analysis 

The Model I in Section 3.5 is learned heuristically by an operator in order to discover a control 

law of the model. A set of control rules is identified after several attempts. Apparently, a human 

can learn heuristically although the system is rather challenging to manipulate because of the 

dynamic behaviour of the pendulum. This identification of control rules obeys Fitts three stages 

of learning and the Rasmussen model SRK. The skill to control the dynamic of pendulum via 

the joystick is developed into a set of rules. Then, the set of rules is developed into knowledge 

when it is applied to compare with a human walking cycle. These skills and rules can be 
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developed into the knowledge for the specific machine operation. The knowledge can be 

revolutionised and generalised into wisdom over time by applying particular domain of 

knowledge into other domains as shown in Figure 4.29. 

 

Figure 4.29 The cycle of skills-rules-knowledge-wisdom. 

It can be noted that the Model I is not an inverted pendulum. It is a hanging pendulum attached 

to the capsule body. Therefore, it is practically impossible for a human to control the pendulum 

to stay upright while managing to underactuate the capsule body movement. A pendulum 

balancing alone is one of the classical challenging problems of the investigation in many 

research projects [16], [47], [114], [227]. 

The Model II is an inverted pendulum-driven capsule system. The model includes a PID 

controller in order to control the pendulum angle to stay upright. As a consequence, a human 

participant can concentrate to control the pendulum rotation rather concentrate on the dynamic 

of pendulum balancing. Nine participants are recruited to participate this scenario of the 

investigation. The results indicate that the nine participants show different learning time and 

performance outcomes. The performance is indicated by e.g. an amount of absolute value of 

final capsule distance, accumulated absolute final capsule distance, average capsule speed etc. 

It is interesting that the right-handed and left-handed participants achieve their best performance 

on the opposite side of their handed-ness. The variance of the final capsule distance seems to 
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Machine
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indicate a learning index in this investigation. The characteristic of a high and a low performer 

is differentiated by the input oscillation frequency, correctness of the oscillation etc.  

Although the pendulum rotation angle control profile generated by a human operator differs 

from the six steps control strategy in [148] the profile successfully drives the capsule system 

forward. The manual control profile is not identical to the automatic control profile. This is 

normal as a human being who can heuristically learn and apply knowledge to the facing 

circumstance to solve the problem but does not need to be mathematically / objectively perfect 

as in the same as the automation. 

Further, the manual control information is analysed by the identification of a control cycle which 

mimicries the theoretical control profile. The extremum is applied in order to approximate the 

manual control signal. These control signals are developed into a model of human-machine 

control in Section 4.4. 

A coupling of descriptive and predictive modelling approaches is utilised with an ANN for the 

model developments. The data of human-machine control information is obtained from the 

investigation in Section 4.3. The data is analysed, segmented, and features extracted in order to 

develop an ANN model. Two types of ANN i.e. classification and regression models are 

developed by applying the 10-time-10-fold cross-validation procedure from Section 3.4. The 

procedure reveals that the optimum ANN configurations for classification and regression 

models are 7 and 14 number of hidden neurons, respectively. The overall accuracies of the 

models are 88.3% and 79.1%, respectively. These accuracies are additionally confirmed by a 

plot of precision-recall and ROC curves.  

Moreover, the two models are tested with an unseen data i.e. blind test dataset. The blind test 

outcomes are 92.2% and 77.01% for classification and regression models, respectively. Once 

more, the accuracies are double confirmed by a plot of precision-recall and ROC curves.  

Since the regression model gives a continuous output of capsule displacement, therefore, it is 

applied to predict a capsule displacement. The prediction results are fairly accurate. 
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4.6 Summary 

In this chapter, a human-machine heuristic learning and human-machine control model 

development have been investigated based on a case study machine i.e. the pendulum-driven 

capsule system. It can be concluded from the investigation in Section 4.2 that a human can learn 

to control an unfamiliar system and formulate a set of control rules for it. Moreover, these rules 

of machine control can be developed into knowledge that can be applied to other similar 

mechanisms. From time to time, the knowledge can be evolved into wisdom that can be applied 

to other domains. The investigation in Section 4.3 has been conducted with nine participants 

which provide more variety of information on the human-machine control. Various performance 

aspects have been produced to compare and to identify the differences in the control 

characteristics among the participants. Further development has been investigated in Section 

4.4, the human raw control information from Section 4.3 is extracted in order to develop a 

human-machine control model. As a result, two ANN models are obtained with relatively high 

accuracy. The classification model is possible to be applied to predict the human-machine 

control behaviour i.e. the human operator intention to control the machine to the desired 

direction.  
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Chapter 5 Electroencephalography – 

preliminary investigations 

5.1 Introduction 

This chapter introduces a new hardware interface into the platform i.e. the Emotiv EPOC 

headset. The headset is used to record brainwave activity in the form of electroencephalogram 

(EEG) which is the electrical neuro-activity generated from the brain neural system as discussed 

in Section 2.13. The chapter conducts preliminary investigations on the fundamental of EEG 

recording, EEG data processing, EEG artefacts removal, and to formulate a workflow for the 

EEG analysis. In order to perform these investigations, three scenarios are designed and 

implemented i.e. 1) Study on brain response to an auditory event, 2) Study on brain response to 

a finger movement, and 3) Study on brain response to target hitting task.  

5.2 The investigations 

The three investigations can be divided into two categories according to the eyes opening 

condition i.e. eye closed, and eyes opened. The investigation 1 and 2 are conducted while the 

participant eyes are closed. The investigation 3, a simple scenario of a target hitting task is 

required that the participant eyes be opened during the experiment. A list of the EEG preliminary 

investigation is summarised in Table 5.1 

Table 5.1 A list of the EEG preliminary investigations. 

Investigation Description Eyes status Section 

1 Study on brain response to an auditory event Closed Section 5.4 

2 Study on brain response to a finger movement Closed Section 5.5 

3 Study on brain response to target hitting task Opened Section 5.7 
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5.3 The integration of EEG brain monitoring 

system to the HAM simulation platform 

To acquire EEG brain activity data, the HAM platform building block in Figure 3.5 Section 3.4 

includes the dashed block diagram where the Emotiv EPOC headset and the API are 

implemented for the EEG data acquisition. It can be noted that the communication between the 

platform and the headset is wireless via the USB dongle. The platform can acquire the EEG data 

simultaneously with the other simulation data via the manufacturer provided API. 

5.4 Study on brain response to an auditory event 

A brain response to an auditory event is investigated in this section. Previously, it has been 

reported that the brain is responded to an auditory by the frontal area of the human’s scalp [189]. 

Therefore, the AF3 and AF4 (Figure 2.35) electrodes of the Emotiv EPOC are the focus of this 

investigation. The investigation consists of a single participant with four experiments. 

5.4.1 Experiment procedure 

A participant sits in a comfortable chair with both eyes closed while wearing the headset and 

earphones. The HAM platform runs and plays a sound effect at certain time intervals while the 

headset is recording the EEG brainwave. The markers denoted as ‘1’ are inserted into the marker 

channel of the headset when the sound effect ‘Windows Critical Stop.wav’ is played. The sound 

effect is played randomly at every 2,000ms to 3,000ms intervals. The marker ‘1’ is a target event 

i.e. the event of interest. In this case, it is the brain response to the sound. The markers denoted 

as ‘2’ are inserted randomly at every 1,000ms to 5,000ms intervals. The marker ‘2’ is a non-

target event which is used to compare with the target response. Figure 5.1 depicts the insertion 

process of the two markers during the experiment timeline. It can be noted that the HAM 

platform is programmed to prevent the chance of the two events from happening at the same 

time.  
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Figure 5.1 The markers insertion for the auditory experiment. 

The participant is instructed to keep the body movement as low as possible to keep the noises 

at the minimum level. However, eyes opening, mouth water swallow, head muscle movement, 

coughing, and other activities can happen randomly. These activities cause the unrelated brain 

activity signal which is known as artefacts. The artefacts need to be removed in the post-

processing analysis of the recorded data.  

A recording session lasts for approximately 3-10 minutes and produces a comma-separated 

value (CSV) file. Each experiment repeats for a number of sessions until the headset is removed. 

5.4.2 Data processing 

Each of the CSV files is imported into MATLAB for processing with the EEGLAB software 

toolbox. Each file contains the 14 channels of EEG brainwave plus an additional marker 

channel. However, only AF3 and AF4 are selected for the analysis according to [189] for the 

study of the brain responded to the auditory stimulus. The data from AF3 and AF4 is band pass 

filtered to 1-20 Hz. Then, the epochs i.e. a segment of the two brainwaves at the event markers 

are extracted. The major artefacts are manually inspected and the contaminated epochs are 

rejected using the epoch rejection tools provided in the EEGLAB. This means some of the 

extracted epochs are excluded from the ERP calculation. This processing procedure is shown in 

Figure 5.2. This data processing procedure is applied to each experiment session one at a time. 

Once all the sessions within the same experiment are processed, they are merged for the ERP 

calculation. Then, the ERP and ERP images are produced. The ERP image shows the strength 



 

 

Page 145 of 319 

of the signal from all epochs within one plot. Each epoch is plotted with the colour-coded value 

of amplitude over time along the horizontal view. The entire epochs plot is stacked vertically. 

 

Figure 5.2 The processing procedure of the auditory ERP data. 

5.4.3 Results 

The detail of the four experiments is shown in Table 5.2. All of the four experiments have been 

conducted with one participant who is at age 33, male, and right-handed. Three experiments are 

performed in a quiet environment while the experiment number 2 is performed in an office 

environment. Each of the experiments contains an unequal amount of sessions because the time 

used for each session is not the same due to the discomfort of the headset. Therefore, the amount 

of extracted events (target and non-target) from the marked marker is not the same for each 

experiment. After artefact removal, the total number of artefact-free target and non-target 

epochs is remained as shown in Table 5.2. 
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Table 5.2 The summary of experiment details for the four experiments. 

Experiment No. 1 2 3 4 
All 

Experiments 

Number of sessions 8 10 3 4 Not applicable 

Experiment 

Environment 
Quiet  Office Quiet Quiet Not applicable 

Number of target 

epochs 
267 622 393 429 1711 

Number of non-

target epochs 
164 518 344 51 1414 

Target and non-

target ERPs 

comparison 

Figure 

Appendix.4 

Figure 

Appendix.5 

Figure 

Appendix.6 

Figure 

Appendix.7 

Figure 

Appendix.8 

Experiment 1 

Session 1, 2, 3, 4, 5, 6, 8 are merged to calculate the ERP graph. It can be noted that session 7 

is excluded from the calculation because it contains few events and most of them are noisy. 

Figure Appendix.4 shows the comparison of the ERP from AF3 and AF4 for target and non-

target. It is obvious that the target ERP shows a brain response to the sound effect event. Both 

AF3 and AF4 potentials are decreasing (approximately at N200) and then increasing 

(approximately at P400).  

Experiment 2 

All 10 sessions are included in the data processing. The number of extracted target events (with 

marker ‘1’) is 622 epochs. Figure Appendix.5 shows the comparison of channels ERP from AF3 

and AF4 electrodes in response to target and non-target events. Although the result from 

experiment 2 is not very clear for the ERP responses to the target event when compared to the 

experiment 1, the graphs still show the similar pattern with a relatively weak response to the 

target sound. This could be the result of the signal recording in an office environment which has 

many non-related distractions. However, the non-target ERP obviously shows random 

brainwave. 
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Experiment 3 

Figure Appendix.6 shows the comparison of the channels ERP for the brain AF3 and AF4 

electrodes to the target and non-target events. The target ERP shows an identifiable pattern of 

the brain response when compared to the non-target response which has no pattern.  

Experiment 4 

Figure Appendix.7 shows the comparison of channel ERP for the target and non-target events. 

Although in this experiment the signals corresponding to target events are not clearly 

distinguishable, but it still shows the clearer pattern than the non-target ERP, which shows 

random waveforms.  

All Experiments 

All in all, some of the experiment within this investigation does not show any obvious auditory 

ERP e.g. experiment 2 and 3. However, the ERP is highly obvious when all of the 4 experiments 

are combined to generate the ERP as shown in Figure Appendix.8. The target EEG deflects 

toward negative at around 250ms then bounces back immediately before the 500ms of the event 

onset latency. The non-target does not show a significant brain response. 

5.5 Study on brain response to a finger 

movement 

This section presents the study of a human brain response when a human participant clicks on a 

computer mouse at his / her intention while both eyes are closed to keep artefacts to the 

minimum level.  

5.5.1 Experimental procedure 

In this study, all of the frontal electrodes – AF3, AF4, F7, F8, F3, F4, FC5, FC6 are included in 

the analysis of the ERP. A human participant sits on a comfortable chair in front of a computer 
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and grasps a mouse. The participant is instructed to close both eyes and to keep the other 

activities to a minimum. The participant can click a mouse at any time at his / her intention when 

the HAM platform is running while recording the EEG data. A target marker ‘1’ is marked when 

the participant clicks the mouse. A non-target marker ‘2’ is inserted at random intervals in order 

to be used as a comparison between the ERP of click event and the human normal ongoing brain 

event. The marking procedure is depicted in Figure 5.3.  

 

Figure 5.3 The event marking procedure of the study on brain response to a mouse click. 

5.5.2 Results 

The investigation contains four experiments as shown in Table 5.3. The participant is male aged 

33 with right-handedness. Three experiments are performed with the right hand while 

experiment 4 is performed with the left hand. The number of target and non-target epochs is 

shown in the table. The numbers are not equal because it depends on the amount of time the 

participant spends on each session. The ERP graphs for the four experiments are calculated and 

shown in Figure Appendix.9, Figure Appendix.10, Figure Appendix.11, and Figure 

Appendix.12, sequentially. 
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Table 5.3 Summary of the four experiments of the study on brain response to a mouse click. 

Experiment No. 1 2 3 4 

Number of target epochs 

(click) 
545 270 359 372 

Number of non-target 

epochs (random) 
493 200 295 272 

Target and non-target 

ERPs comparison 

Figure 

Appendix.9 

Figure 

Appendix.10 

Figure 

Appendix.11 

Figure 

Appendix.12 

It can be noted from all of the four experiments that the ERP of a finger movement is clearly 

visible. The brain responds to the voluntary mouse click at around 200ms. For example, Figure 

Appendix.9 (a) shows the ERP graph and 2D topography. The 2D topography shows at 244ms 

after a mouse click. The brain at the F3 electrodes (refer to Figure 2.35 for the F3 location) 

shows the darkest red colour of positive deflection with the surrounding areas having the same 

colour fading away. This type of response is the same that is found in experiment 1, 2, and 3. 

However, the experiment 4 is different. The right parts around F4 of the brain are activated as 

shown in Figure Appendix.12 (a). It is commonly known that when the right parts of the human 

body are in use, the left brain takes responsibility to process the action, and vice versa. 

Therefore, the study on the brain response to a mouse click confirms this knowledge. 
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5.6 A workflow for eye opened experiments 

In Section 5.7, the investigation on a simple target hitting task is conducted. It is obvious that 

this type of operation is a vision based operation. Therefore, both eyes are required to be open 

during the operation. As a consequence, it is necessary to have a workflow which includes a 

method to handle the eye related artefacts. The ICA discussed in Section 2.13.4.5 is a technique 

that can be used to deal with this type of artefacts. Figure 5.4 shows a workflow for the 

investigation in Section 5.7 which includes the ICA analysis which has the capability to remove 

eye artefacts.  

The process starts with data acquisition via the HAM platform. The HAM platform generates a 

CSV file for each session which can be imported directly into MATLAB for further post-

processing. The CSV file contains the EEG signals, marker channel, task-specific data etc. The 

EEGLAB toolbox in MATLAB is used to band pass filter the EEG data into the range of brain 

normal rhythms i.e. 1-30 Hz. Then, the continuous EEG waves are extracted into epochs by the 

specified marker name e.g. ‘5’, ‘10’ etc. The epoch duration can be specified to be e.g. from -

500ms to 1500ms centred at the marker onset time for the ERP analysis. Normally, the EEG 

data falls into the particular amplitude range e.g. 10-30 µV of Beta brain rhythm (Table 2.7). 

Therefore, the epoch that contains the signal that exceeds the range can be removed. After that, 

a manual inspection is performed to exclude the abnormal epochs. Then, the ICA algorithm is 

executed on the EEG data to extract the ICA components. After the ICA components have been 

extracted, an analysis of the independent component to find the suspicious artefactual 

components are performed. Thereby, the suspicious component which contributes to the eyes or 

other artefacts is marked to be removed. The marked components are removed in order to obtain 

the remaining EEG data without artefacts. The process of ICA for artefact removal can be found 

in Section 2.13.4.5. Finally, the cleaned EEG data is ready for the analysis. 
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Figure 5.4 A workflow that can deal with eye artefacts by utilising the ICA. 
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5.7  Study on brain response to target hitting 

task 

In this section a study on brain response when a participant performs a simple target hitting task 

is reported. This type of task has been discussed in Section 2.7.4.   

5.7.1 Experimental procedure 

A black target circle is programmed to appear on screen at random positions and time intervals. 

A human participant has to move the mouse to click on the appeared target as quick as possible. 

A screenshot of the scenario is shown in Figure 5.5. It can be noted that a participant has been 

instructed to keep mouse stationary while waiting for a target to appear on the screen. The target 

disappears after it has been clicked and the process is repeated. The process lasts for 30 

repetitions for each session for each participant. There are two types of event marker in this 

experiment for the ERP calculation i.e. 1) target appear, 2) target click.  

 

Figure 5.5 A screenshot of the simple target hitting task scenario. 
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5.7.2 Results 

The ERP analysis is focused on the two events i.e. 1) when a black target circle has appeared on 

the screen 2) when the target has been clicked. The investigation in this section has been 

conducted by two participants as shown in Table 5.4 for the participant and experiment details. 

Each participant conducts 10 sessions while each session has been programmed to have 30 

appearances of the black circle target. However, some of the epochs have to be excluded due to 

artefacts. The number of epochs after the exclusion of artefactual epochs is shown in Table 5.4. 

Figure 5.6 and Figure 5.7 show the ERP response to the two events i.e. target appear and target 

click, for participant CH5P1 and CH5P2, respectively.  

Table 5.4 The participants and experiment details. 

 Participant CH5P1 Participant CH5P2 

Age 34 35 

Handedness Right Right 

Number of epochs for target appear event 259 293 

Number of epochs for target click event 267 306 

The ERP results clearly show that the brain responds to the target appearance events as shown 

in (b) and (c) of Figure 5.6 and Figure 5.7. However, it is relatively difficult to differentiate the 

ERP at the click event because the ERP is not very clear as shown in (e) and (f) of Figure 5.6 

and Figure 5.7. The 2D topography maps of the brain areas activation have been produced as 

shown in (d) and (g) of Figure 5.6 and Figure 5.7 for some of the interesting latency after the 

events onset time i.e. from 250ms to 360ms with 10ms interval. The 2D topography maps of the 

target appear event from participant CH5P1 shows that both frontal and posterior areas activate 

downward negative value of EEG. In contrast, frontal and posterior brain areas from participant 

CH5P2 are activated in the opposite direction i.e. the frontal towards positive while the posterior 

towards the negative value of EEG. Nevertheless, the posterior ERP from both participants are 

identical in which the brainwaves are deflected downward negative and then bounce back 

toward positive at around 250ms and 500ms, respectively. It is clear that this is the effect of the 

function of the posterior area which functions for visual processing while the frontal areas can 

be functioned for multiple types of task. 
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Figure 5.6 The brain responses at target-appear and target-click events from Participant 

CH5P1. 
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Snapshots of display monitor

Target has appeared Target has been clicked

…

(a) Time line

(b) Target appear ERP from frontal electrodes

(c) Target appear ERP

from posterior electrodes

(d) 2D topography maps of target appear

(e) Target click ERP from frontal electrodes

(f) Target click ERP 

from posterior electrodes

(g) 2D topography maps of target click

250 ms 260 ms 270 ms 280 ms

290 ms 300 ms 310 ms 320 ms

330 ms 340 ms 350 ms 360 ms

-7.8

-3.9

0

3.9

7.8

250 ms 260 ms 270 ms 280 ms

290 ms 300 ms 310 ms 320 ms

330 ms 340 ms 350 ms 360 ms

-2.4

-1.2

0

1.2

2.4

-1000 -500 0 500 1000 1500

-5

0

5

Latency (ms)

P
o
te

n
ti

al
 (

V

)

+

-

120 ms

-1000 -500 0 500 1000 1500

-5

0

5

Latency (ms)

P
o
te

n
ti

a
l 

(
V

)

+

-

100 ms

-1000 -500 0 500 1000 1500

-2

-1

0

1

2

Latency (ms)

P
o

te
n

ti
al

 (


V
)

+

-

555 ms

-1000 -500 0 500 1000 1500

-2

-1

0

1

2

Latency (ms)

P
o
te

n
ti

al
 (

V

)

+

-

989 ms

Frontal electrodes: AF3 AF4 F7 F8 FC5 FC6 F3 F4 Posterior electrodes: P7 O1 O2 P8



 

 

Page 155 of 319 

 

Figure 5.7 The brain responses at target-appear and target-click events from Participant 

CH5P2. 
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5.8 Summary 

The investigations in this chapter are mainly the study of the fundamental of EEG brainwaves 

data acquisition, data processing, workflow, ERP analysis etc. New hardware for the EEG 

recording has been introduced and integrated into the HAM platform in order to perform the 

investigations. Three investigations are presented based on the study of the brain response to a 

particular stimulus i.e. audio, finger movement, and a simple target hitting task. The first two of 

them are performed while the participant’s eyes are closed in order to minimise noises. The last 

one requires participant eyes opened in order to perform the task. 

The ERP from the particular target stimuli i.e. audio and finger movement are obviously 

identifiable. A comparison between the ERP from the target and non-target events reveal that 

the brain EEG has a specific response to the stimulus by having a transient spike immediately 

after the stimulus onset time.  

A simple target hitting task has been implemented in order to study the brain response to the 

task events i.e. target appear and click events. This type of task is visually based operation. 

Therefore, a workflow for eyes opened EEG analysis is needed. The independent component 

analysis (ICA) is an effective method which can deal with this artefactual EEG. The result shows 

that the brain responds to the target appearance and the click events differently. The evidence 

from these investigations confirms that the Emotiv EPOC headset is able to record a brain-

related activity. 
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Chapter 6 Human-machine interaction 

performance evaluation based 

on brainwave 

6.1 Introduction 

This chapter presents the investigation of a human-machine operation simultaneously with the 

EEG data acquisition system to establish a relationship between task actions and the human 

brainwave functions. A target hitting / reaching operation is adopted as a case study for this 

investigation based on the following justifications.  

1. The task is simple. 

2. It is a primitive task that can be in any part of HMI which involves reaching from one 

point to another point. 

3. The simplicity of the task allows analysis of the EEG brainwaves with a clear focus on 

a particular type of action by having a minimum amount of distractions. 

4. An aspect of the task and the corresponding performance indicator is well established 

by a renowned Fitts and Posner study and a number of followed studies e.g. in HCI 

research. 

6.2 Experiment design 

The experiment is designed to replicate a target hitting task (THT) and is integrated into the 

existing HAM platform. THT is simply a task of moving a mouse cursor to reach and hit a target 

as fast and as accurate as possible. A literature review of THT is discussed in Section 2.7.4 and 

2.5.3.1.  

In this study, a THT is designed and explained as follows. A target and mouse cursor are 

spawned at a certain time and position within the screen boundary as shown in Figure 6.1 and 
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are represented by TP(x,y) and MP(x,y), respectively. They are settled apart at a certain distance. 

A target has a diameter of W. The screen has a fixed dimension of 1280 by 720 pixels i.e. width 

and height, respectively. The coordinate of the screen is depicted in the figure and can be noted 

that the positive X axis is pointed toward the right, and the positive Y is pointed downward. 

  

 Figure 6.1 A design of target hitting task. 

6.2.1 Task pattern 

A set of delay spawn time, mouse cursor start position, and the target position is defined as a set 

of “task pattern” (TP) initialisation parameters. Fourteen task patterns and a set of initialisation 

parameters are pseudos pre-designed as shown in Table 6.1. According to Fitts index of 

difficulty (ID) which is defined by (2.5), each task pattern has a certain index of difficulty that 

is shown in the last column of Table 6.1. For simplicity, it can be noted that the target size is the 

same for all fourteen task patterns i.e. 100 pixels diameter. 
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Table 6.1 The pseudo pre-generated ‘task pattern’ with targets delay to spawn with its 

position, and mouse start position. 

Task 

pattern 

number 

Delay spawn 

time 

(Milliseconds) 

Mouse position, 

MP 

Target position, 

TP 
Target 

diameter 

TW 

(pixels) 

Target 

distance 

(pixels) 

Fitts 

index of 

difficulty 

, ID 

(bits) 
x y x y 

1 2108 640 360 320 180 100 367.15 2.88 

2 1190 640 360 960 180 100 367.15 2.88 

3 2174 640 360 960 540 100 367.15 2.88 

4 1490 640 360 320 540 100 367.15 2.88 

5 2014 640 360 640 620 100 260.00 2.38 

6 2055 640 360 640 100 100 260.00 2.38 

7 1634 640 360 100 360 100 540.00 3.43 

8 1969 640 360 1180 360 100 540.00 3.43 

9 1552 30 30 1180 620 100 1292.52 4.69 

10 1508 30 690 1180 100 100 1292.52 4.69 

11 2082 1250 690 100 100 100 1292.52 4.69 

12 2349 1250 30 100 620 100 1292.52 4.69 

13 1345 30 360 640 360 100 610.00 3.61 

14 2627 1250 360 640 360 100 610.00 3.61 

A list of task patterns on Table 6.1 is sequentially spawned one by one. For example, once the 

simulation is started. 2,108milliseconds are delayed before the first task pattern is spawned on 

the screen concurrently with the specified mouse cursor start position. The human participant 

moves the mouse to click on a target as fast and accurately as possible. The timeline in Figure 

6.2 shows a sequence of fixation and spawn-reaction-click events of a task pattern. Reaction 

event is measured from the moment where a target is spawned to the first voluntary reaction of 

the participant to move the mouse. The duration of a task pattern is completed with a hit click 

on the target within the boundary TW. Then, the next queued task pattern is scheduled to be 

spawned by the delay / fixation time. A ‘session’ is completed when all of the 14 task patterns 

are spawned and clicked.  
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 Figure 6.2 A timeline shows the sequence of task pattern fixation and events - spawn, reaction, 

and click. 

6.3 EEG data acquisition and synchronisation 

The Emotiv EPOC headset (Section 2.13.6) is used to record the EEG signals from scalp 

locations across a participant’s head. It is noted that T7 and T8 are excluded from the context of 

this investigation since the main focus is in the frontal and posterior region of the human brain 

function. The frontal of the brain region is responsible for decision making, planning of 

movement etc. The posterior is functioned for visual processing. Therefore, the remaining 12 

electrodes are AF3, AF4, F7, F8, F3, F4, FC5, FC6, P7, P8, O1, and O2 as shown in Figure 6.3.  

SPAWN REACTION CLICK

Time

FIXATION

A timeline of task pattern with its delay fixation and events

Initialise mouse (MP) and 

target (TP) positions
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Figure 6.3 The 12 electrode locations focused in the THT investigation. 

The EEG signals are recorded simultaneously with the simulation of the experiment described 

in Section 6.2. An event marker of spawn, reaction, and click is invoked to be inserted via the 

headset API to be used as the synchronisation points between the brainwave recording and the 

simulation system on a computer as shown in Figure 6.4. A simulation of the THT while having 

the headset turned on for EEG data acquisition simultaneously can be considered as having two 

systems running concurrently i.e. simulation on the computer and the headset. Thus, there is two 

timelines i.e. simulation timeline (ST) and headset timeline (HT). The simulation is directly 

interacted with a participant while collecting the task information such as a mouse cursor start 

position, a target spawn position, a mouse trajectory, a mouse click, and the three main task 

events – spawn, reaction, and click. The simulation time is kept track by the high precision clock 

on the computer while the headset has its clock for the acquisition of the 12 channels EEG 

signals. 

12 of 12 electrode locations shown

Click on electrodes to toggle name/number

AF3

F7 
F3 

FC5

P7 

O1 O2 

P8 

FC6

F4 
F8 

AF4

Channel locations
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Figure 6.4 The task pattern events, simulation timeline (ST), and headset timeline (HT). 

6.4 Experiment procedure 

An experiment starts with a brief demonstration to perform the THT operation and the purpose 

of the experiment. A participant is instructed as follows. 

SPAWN REACTION CLICK

Time

FIXATION

Task pattern

Initialise mouse (MP) and 

target (TP) positions

Simulation timeline (ST)

Headset timeline (HT)

Headset time (from headset clock)

Simulation time (from computer clock)

Mouse positions

Mouse click

EEG signal #1

EEG signal #12

.

.

.

Marker

Invoke to insert the event marker on headset via API
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 To perform the THT by moving the mouse to click on a spawned target as fast and 

accurate as possible.  

 To react and move a mouse only when a target is spawned and ready on screen otherwise 

keep the mouse at stationary. 

 To keep other body part movements and eye blinks at a minimum. However, a 

participant is informed and allowed to relax during the delay time since the main focus 

of the analysis is from the start of a target spawn, during the movement, and a click 

moment of task pattern. 

Then, the following sequences of procedure are executed. 

1. The 14 electrodes are moistened with saline solution as recommended by the manual. It 

is noted that T7 and T8 are recorded but are not used for the analysis. 

2. The headset is placed on a participant scalp according to 10-20 international system and 

the headset instruction manual.  

3. Each electrode is inspected individually to ensure that it is properly contacted with the 

participant’s scalp.  

4. The headset is switched on to start communication wirelessly with its accompanying 

USB data receiver.  

5. A “TestBench” software which is provided by the headset manufacturer is launched to 

show the brainwaves in real-time.  

6. The brainwaves are examined to ensure that the recording contains minimum unrelated 

brain activities.  

Then, a “session” is started which contains 14 task patterns (Table 6.1). Each participant 

performs 15 sessions per “experiment”. Each participant completes 3 experiments. 

Furthermore, the following conditions are always met. 

1. The same cursor pointing device is used for each participant which is a Logitech 

G600 with a sensitivity configured to 3100 dots per inch (DPI) and a report rate of 

1000 Hz by default. 

2. For each of the ‘experiment’, the headset is removed for relaxation for 10-15 

minutes. Then, the process is repeated from the sequences above. 
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6.5 Task performance metrics 

A number of aspects of the evaluation of the THT performance can be assessed including speed, 

accuracy, Fitts and Posner formulation etc.   

6.5.1 Speed 

An aspect of speed performance is obviously the evaluation based on time measurements. In 

this case of the design and implementation, the speed aspect is divided into two metrics i.e. 

reaction time (RT) and movement time (MT). Summation between the two is duration time (DT) 

of a task pattern measured from spawn to click. 

6.5.2 Accuracy 

An accuracy aspect of a task pattern can be assessed from two perspectives i.e. a mouse 

movement accuracy and a click on target accuracy. 

6.5.2.1 Movement accuracy  

The mouse movement accuracy can be explained by Figure 6.5 with an example of task pattern. 

A mouse cursor and a target are spawned at position PT1 and PT3, respectively. A mouse 

movement is captured by a discrete sampling time of the simulation e.g. a sampling frequency 

of 128 Hz means that the movement is captured 128 times in one second. An example of a single 

captured mouse position is shown as P2 in Figure 6.5. It can be noted that the best movement 

trajectory is a straight line between the two position of the mouse start and the target centre. 

Therefore, a relative movement error can be calculated from the perpendicular distance deviated 

from the best movement trajectory.  

 



 

 

Page 165 of 319 

 

Figure 6.5 The analysis diagram of target hitting task trajectory. 

A detail of the calculation is described as follows. Vector SEG_A is a vector of segment PT1 to 

PT2. Vector SEG_B is a vector segment PT1 to PT3. Therefore, SEG_A and SEG_B can be 

formulated by (6.1) and (6.2). 

𝑺𝑬𝑮_𝑨 = 𝑃𝑇2 − 𝑃𝑇1 (6.1) 

𝑺𝑬𝑮_𝑩 = 𝑃𝑇3 − 𝑃𝑇1 (6.2) 

Vector dot product between two vectors can be calculated algebraically and geometrically by 

(6.3) and (6.4), respectively. Therefore, the angle 𝜃1 can be calculated by (6.5).  

𝑺𝑬𝑮_𝑨. 𝑺𝑬𝑮_𝑩 = ∑ 𝑆𝐸𝐺_𝐴𝑖𝑆𝐸𝐺_𝐵𝑖

𝑛

𝑖=1

 (6.3) 

𝑺𝑬𝑮_𝑨. 𝑺𝑬𝑮_𝑩 = |𝑺𝑬𝑮_𝑨||𝑺𝑬𝑮_𝑩| cos 𝜃1 (6.4) 

𝜃1 = cos−1 (
𝑺𝑬𝑮_𝑨. 𝑺𝑬𝑮_𝑩

|𝑺𝑬𝑮_𝑨||𝑺𝑬𝑮_𝑩|
) (6.5) 

Thus, a movement error for the case of Figure 6.5 can be calculated by (6.6) 

𝐴𝑛 𝑒𝑟𝑟𝑜𝑟 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = |𝑺𝑬𝑮_𝑨| sin 𝜃1 (6.6) 
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All in all, the accumulate movement error for the entire task pattern duration can be calculated 

by (6.7). 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =  ∑|𝑺𝑬𝑮_𝑨|𝑘 sin 𝜃𝑘

𝑛

𝑘=1

 (6.7) 

6.5.2.2 Hit accuracy 

A hit accuracy can be calculated by (6.8). 

𝐻𝑖𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  (1 −
|𝑷𝑻𝟒 − 𝑷𝑻𝟑|

0.5𝑇𝑊
) ∗ 100 (6.8) 

6.5.3 Calculation of task performance 

To summarise, the performance metrics for the THT can be categorised as shown in Table 6.2. 

The accuracy aspects are measured in pixel and percentage for the MA and HA, respectively. 

The aspects of speed are measured in a unit of time i.e. second.  

Table 6.2 A summary of the performance metrics for the THT. 

Aspect Measurement 
Unit of 

measurement 

Performance 

indication direction 

Speed 

Reaction time (RT) Second lower is better 

Movement time (MT) Second lower is better 

Duration time (DT) Second lower is better 

Accuracy 

Movement accuracy (MA) Pixel lower is better 

Hitting accuracy (HA) Percentage higher is better 

Rate of information 

processing 

Index of performance (IP) Bits/Seconds higher is better 
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6.6 The establishment of EEG brainwaves and 

task performances 

In order to establish a relationship between EEG brainwaves and task performances, a sequence 

of steps in Figure 6.10 are proceeded to develop a model. The aim is to create a model that can 

predict performance based on the EEG signals. Following the sequences in Figure 6.10, each 

step can be described as follows. 

Step 1)  The experiment sessions from all participants are fed into step 1.  

Step 2)  The independent component analysis (ICA) is applied to each session in order to extract 

the independent components (ICs) from the 12 channels of EEG. A measurement of EEG 

signal from a single electrode is considered as a resulted from multiple sources such as the 

brain related sources and the eyes related artefacts. The ICA tends to separate this 

combination into its independent source or component. As a result, the 12 ICs are obtained 

as shown in Figure 6.6. 

 

Figure 6.6 The example of 12 ICs from Participant 4 Experiment 3 Session 10 (P4E3S10). 
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Step 3)  The 12 ICs are manually inspected in order to distinguish between brain related sources 

and artefacts related sources. Obviously, the eyes blink can be identified by a short spike of 

positive EEG amplitude as shown in Figure 6.7 while the eyes move can be identified by a 

short square wave of EEG amplitude either negative or positive as shown in Figure 6.8.  

 

(a) The example of EEG brainwaves containing eyes blinks artefact. 

 

(b) The example of independent components containing eyes blinks artefact. 

Figure 6.7 The example of the EEG brainwaves containing eyes blink artefact and the 

corresponding independent component analysis. 
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(a) The example of EEG brainwaves containing eyes moves artefact. 

 

(b) The example of independent components containing eyes moves artefact. 

Figure 6.8 The example of the EEG brainwaves containing eyes move artefact and the 

corresponding independent component analysis. 

Additionally, details of the component properties as shown in Figure 6.9 can be used to identify 

the suspicious artefactual components. For example, Figure 6.9(a) shows an eyes blink 

component which is identifiable from the 2D topology scalp map where the intensity of red 

colour or positive spike is strong in the frontal part of the scalp map. Figure 6.9(b) shows eyes 
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move artefactual component where the 2D topology scalp map shows coloured blue and red on 

the opposite sides in the front of the scalp which is the characteristic of the eyes move artefact.  

 

(a) The property of an independent component that contains suspicious eyes blinks artefact. 

 

(b) The property of an independent component that contains suspicious eyes move artefact. 

Figure 6.9 The examples of independent component property that contains eyes blink and eyes 

move artefacts. 
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Step 4)  Once the suspicious artefactual components are identified, they are used to prune the 

original EEG in order to obtain the artefact-free EEG.  

Step 5)  The artefacts-free continuous EEG is extracted according to a task pattern boundary 

with the extension of 1000ms latency times around the boundary. It is because of brainwaves 

react to a stimulus both before and after the onset time of the presentation of the stimulus; 

therefore, the extension is done for this reason. 

Step 6)  So far, the EEG brainwaves contain the signals of the frequency range between 1 – 45 

Hz. Since the study in this context concerns about the performance of an operation which is 

performed during wake up state with hand movement on a computer mouse, the frequency 

range of interest is within the alpha rhythm especially Mu and sensorimotor rhythm (SMR). 

Hence, the EEG signals are band-pass filtered with 7-16 Hz using EEGLAB filtering 

function. 

Step 7)  A task pattern which contains the corresponding EEG exceeded the extreme values of 

the amplitude of interest is automatically excluded. The algorithm is simply a loop through 

all of the task patterns and detects its corresponding EEG in every channel whether the signal 

contains a sampling amplitude exceed a specified range e.g. -20 to 20 µV. 

Step 8)  The remaining task patterns are proceeded with the analysis of event-related potential 

(ERP) at the spawn-reaction events, and click event.  

Step 9)  The remaining task patterns from step 7 are used to develop a model of EEG brainwaves 

in association with task performance indicators. 

Step 10)  The remaining task patterns from step 7 are analysed with ERP method at spawn-

reaction event, and click event. The information obtained from this analysis is used by 

EEG feature extraction in step 14. 

Step 11)  The task patterns are separated into two groups i.e. low and high according to the 

specified performance criteria / indicator. The separation point is at the median value 

of the criteria. Then, it is further separated into 6 sections as shown in Figure 6.10 i.e. 

A, B, C, D, E, and F. Sections B and E are used for training of the model. The remaining 

sections in each group are reserved for a blind test. 

Step 12)  Two group of task pattern are attained. 

Step 13)  The signals from frontal and posterior electrodes are averaged, respectively.  

Step 14)  The averaged frontal and posterior are feature extracted using the information from 

a. Local extremum information 
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b. Fourier transform information 

c. Information from ERP analysis in step 10 

Step 15)  Principal component analysis (PCA) is applied in order to transform the features into 

an equal number of principal components as the number of features. However, variance 

among the principal components is maximised. Therefore, the transformed features 

into principal components are good to be used for training. 

Step 16)  The principal components are ordered from high to low important components. In 

other words, only a number of first few principal components can represent over 90% 

of the entire number of features. Therefore, the dimension of the original feature space 

can be reduced by selecting first few principal components. 

Step 17)  The selected principal components are used to develop an ANN model by training with 

the 10-time-10-fold cross validation method presented in Section 3.4.  

Step 18)  The procedure is repeated from the connector C for all of six performance indicators 

i.e. RT, MT, DT, MA, HA, and IP. 
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P1 P2 … Pn

1) Experiment sessions

2) Independent component 

analysis (ICA)

12 channels continuous EEG signals which are 

contaminated with artefacts such as eyes blink and 

eyes move.

3) Manually inspect the ICs to 

identify eyes blink / move 

components (one session at a 

time)

Eyes blink 

component (IC 1)

Eyes move 

component (IC3)

AF3

F7

F3

FC5

FC6

F4

F8

AF4

ICA is applied to the 12 channels EEG to extract 

the independent components (ICs) which linearly 

combined within the EEG.

2D scalp topology maps of the 12 ICs

An example of eyes blink EEG for 2 times 

which can be noticed from frontal electrodes 

such as AF3, F7, F3, FC5 etc.

An example of eyes move which can be 

noticed from the end of the cut section of EEG 

as shown above.

Both eyes blink and eyes move can be 

identified by a specific 2D scalp maps of the 

extracted ICs as shown below.

A
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5) Extract continuous EEG 

according to a task pattern 

boundary minus/plus 1000ms

6) Apply band pass filter to the 

extracted EEG for the range of Mu 

and SMR rhythm (7-16 Hz)

It is noted that there are task performance 

metrics associated with the task pattern boundary 

e.g. RT, MT, DT, MA, HA, IP.

Apply band pass filter in order to analyse EEG 

in a specific band of interest i.e. alpha band in 

the range of Mu and SMR rhythm using 

EEGLAB filtering function

4) Prune with the suspected 

artefactual ICs

Then, eyes blink and eyes move artefacts-free 

continuous EEG is obtained.

A
After the artifactual ICs are identified. The 

original EEG is pruned with the susptected

ICs. An example of the eyes blink removal is 

shown below. The blue line is the EEG before 

removal and the red line is the after.

SPAWN REACTION CLICK Time

1000ms 1000ms
This time course is vary 

according to duration time of 

each task pattern performance.

An example of a task pattern

The continuous EEG is extracted into a section 

of EEG according to a task pattern boundary 

minus/plus 1000ms.  

B

RT: Reaction time, MT: Movement time, DT: 

Duration time, MA: Movement accuracy, HA: Hit 

accuracy, IP: Fitts index of performance, SMR: 

Sensorimotor rhythm
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8) Event related 

potential (ERP) analysis

9) Development of model of the human 

EEG brainwaves in association with task 

performances

7) Extreme epochs are excluded
Epochs which contain electrodes amplitude 

greater or lower than the specified threshold are 

excluded.

B

C

10) ERP analysis at events

a) SPAWN and 

REACTION ERP

b) CLICK ERP

An analysis of event related potential (ERP) at 

the events within a task pattern boundary. The 

ERP provides information for feature extraction 

of EEG waves.
A

m
p

li
tu

d
e

Time

Spawn Click

Reaction

ERP ERP
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11) Separation of task patterns and 

the corresponding EEG into high 

and low groups by a specified 

performance criteria / indicator

12a) High 

group

12b) Low 

group

13) Average frontal / 

posterior group of EEG 

C

D

Performance criteria variable

Values

Median

A

B C D
E F

Low group High group

5%

40% 40%5% 5%
5%

Task 

pattern ID

All of the remaining task patterns are sorted 

according to a specified performance 

criteria as shown in the above figure. They 

are separated into 6 sections A, B, C, D, E, 

and F. Sections B and E are used for 

training an ANN model while A, C, D, and 

F are reserved for blind test.

14 of 14 electrode locations shown

Click on electrodes to toggle name/number

AF3

F7 
F3 

FC5

T7 

P7 

O1 O2 

P8 

T8 

FC6

F4 
F8 

AF4

Channel locations

Frontal 

Average

Posterior 

Average

There are 12 channels of EEG for the 

corresponding task pattern boundary. Eight 

and four of them accounted for frontal and 

posterior areas, respectively. It is obvious 

that a single-trial EEG i.e. a single task 

pattern barely show identifiable pattern of 

response. Therefore, an averaging method 

of the ERP analysis is applied to the frontal 

and posterior areas as shown below.
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D

17) Develop an ANN model with 

the selected principal components 

by training with the 10-time-10-

fold cross validation

14a) Local maximum / 

minimum information

14b) Fourier transform 

information

14c) Information from 

ERP analysis

15) Principal component analysis 

(PCA)

18) Repeat from connector C for 6 

performance indicators - DT, RT, 

MT, HA, MA, IP

Transformation of features into a principal 

component space where the variances among 

components are maximised.

16) Select first few principal 

components which covered for 

most of the feature dataset 

representation

Reduce the dimensionality of the features into a 

number of principal components which is sufficient 

to represent the original feature space.

Power

FrequencyAmplitude

Time

Spawn Click

Frontal

Amplitude

Time

Spawn Click

Posterior

14) EEG feature extraction

D
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Figure 6.10 A workflow for the establishment of a relationship of the EEG brainwaves and the 

task performances. 

As a result of the procedure in Figure 6.10, there are six ANN models developed according to 

each of the performance indicators as shown in Figure 6.11. The six models take the transformed 

features of EEG brainwaves and evaluate performance into low and high for each of the model 

output.  

 

 

D

END

Six ANNs are obtained for each of 

the performance indicators
Six models of ANN are obtained for each of 

the performance indicators i.e. RT, MT, DT, 

HA, MA, and IP.
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Figure 6.11 The six ANN models for performance prediction from EEG brainwaves. 

 

The six artificial neural network models for 

performance evaluation from EEG brainwaves

RT MT DT MA HA IP

EEG brainwaves

Features

The internal of 6 ANN models of performance predictor

Predict performance in each 

aspect into low or high

RT (low/high) MT (low/high)

DT (low/high)

IP (low/high)HA (low/high)

MA (low/high)
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6.7 Results 

6.7.1 Participants and the experiment 

There are 4 participants in this investigation. The participants agree to conduct the experiment 

by signing the consent form as shown in the Appendix B. Each of the participants completes 3 

experiments, 15 sessions and 14 task patterns in each session as shown in Figure 6.12. As a 

result, a total of 180 sessions and 2,520 task patterns are obtained. The attribute of each 

participant is shown in Table 6.3. Three of the participants are male, one of them is female. 

Their ages are in the range of 30-35 years. One of them has left-handedness; however, the 

participant prefers to use right hand to perform the task.  

 

Figure 6.12 The layered blocks showing the number of participants, experiments, sessions, and 

task patterns. 

Table 6.3 The attribute of the participants. 

Participant ID Gender Age Handedness Hand used to 

perform an action 

P1 Male 30-35 Right Right 

P2 Male 30-35 Right Right 

P3 Male 30-35 Left Right 

P4 Female 30-35 Right Right 

4 participants

3 experiments

15 sessions

14 task patterns
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The setup time for each “experiment” according to the experiment procedure as explained in 

Section 6.4 is approximately 15 minutes including the preparation of the electrodes and the 

installation of the headset on the participant scalp. According to Table 6.1, a total amount of 

fixation time in a session excluding a participant’s action time is 26.09 seconds. Thus, it is 6.52 

minutes for 15 sessions provided that the experiment is performed continuously. At the end of 

each experiment, the headset is removed and the preparation for the next experiment starts. 

Therefore, an approximate total experiment time for each participant is 64.56 minutes.  

6.7.1.1 Naming notation 

To identify a specific participant, experiment, session and task pattern, a hierarchical naming 

notation is defined which is shown in Figure 6.13. For example, P3E2S5T2 means participant 

1, experiment 2, session 5, and task pattern 1. 

 

Figure 6.13 The naming notation for the identification of a participant, experiment, session, 

and task pattern. 

6.7.2 Time synchronisation 

It is important to have time synchronisation between the simulation platform and the EEG data 

acquisition device to ensure the validity of the timing of the human-machine operation and the 

brainwaves.  It is mentioned in Section 6.3 that there is a marker invoked to be inserted as the 

synchronisation points. Although a perfect synchronisation between the simulation platform and 

the EEG headset system is preferable, practically, slight time drifts between the two systems do 

exist which can be depicted in Figure 6.14.  

P#E#S#T#

Participant ID Experiment ID Session ID Task pattern ID
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Figure 6.14 The timelines between the simulation and the Emotiv headset showing events and 

the time drifts. 

Figure 6.14 shows the simulation timeline (ST) and headset timeline (HT) and the three main 

events of a task pattern. A target is spawned at time point STS as shown on the simulation 

timeline. The simulation system records a “SPAWN” event. The “REACTION” and “CLICK” 

events are recorded thereafter when a participant react to move and click on the target. The 

Emotiv EPOC API has the capability to insert an event marker for the synchronisation purpose. 

With an ideal condition, the appearance of the triggered marker should be fully synchronised 

with the simulation timeline. Unfortunately, in a practical situation, the markers appear on the 

headset timeline with slight time difference at HTS, HTR, and HTC. The time differences are 

denoted as time drifts between the two systems as TDS, TDR, and TDC as shown in Figure 6.14. 

As an example, event timing information from the 14 task patterns from P4E3S1 is calculated 

as shown in Table 6.4. The table shows the corresponding time points of each of the 14 task 

patterns within a session. For example, the first task pattern, a target is spawned and marked as 

‘SPAWN’ at 7.258 seconds on the simulation timeline and is also triggered to be marked on the 

headset timeline at the same time. However, the ‘SPAWN’ event marker is marked on the 

headset timeline at 7.225 seconds on the headset clock which is slightly early with 0.033 seconds 

SPAWN REACTION CLICK

Simulation timeline (ST)

Headset timeline (HT)

Time drift 

Headset time (from headset clock)

Simulation time (from computer clock)

TDS TDR TDC

Time drift Time drift 

SPAWN REACTION CLICK

STS STR STC

HTS HTR HTC
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window of difference. With the second task pattern, a target is marked as ‘SPAWN’ at 11.518 

seconds on the simulation timeline while it is marked on the headset timeline at 11.519 seconds 

which is 0.001 seconds of delay.  

Time drifts information TDS, TDR, TDC for all of the 14 task patterns from P4E3S1 are shown 

on the right side of the table. The average of time drift at spawn, reaction, and click events are 

0.0174, 0.0161, 0.0166 seconds with 0.0102, 0.0113, 0.0093 deviations, respectively. Both 

simulation and the headset are set to sample at the same rate at 128 Hz. It is 0.0078125 seconds 

between two adjacent sampling windows. Therefore, the average time drift at spawn, reaction, 

click events are as large as 2.2272, 2.0608, and 2.1248 times compared to the sampling rate.  

A solution is needed to solve the problem of time drifts between the two systems. A computer 

for the THT simulation is more powerful and has a higher precision clock than the headset. Also, 

the experiment is based on the THT simulation on a computer. The headset is an additional piece 

of equipment to acquire brainwave signals in relation to the task operation on the simulation on 

a computer. It is reasonable to use the time information of the events base from the simulation 

timeline and find the closest time on the headset timeline for the corresponding events. This 

solution of time adjustment to be based on the simulation timeline replaces the unreliable 

method of marker insertion via the API.  
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Table 6.4 The time drifts between headset and simulation from P4E3S1 before the adjustment. 

 Headset Simulation 

Time drift between 

simulation – headset 

BEFORE adjustment 

 Event time (nth Second) Event time (nth Second) Time (Second) 

Task 

Pattern 

No. 

HTS HTR HTC STS STR STC TDS TDR TDC 

1 7.225 7.569 8.445 7.258 7.600 8.450 0.033 0.031 0.005 

2 11.519 11.511 12.606 11.518 11.538 12.614 -0.001 0.027 0.008 

3 14.763 15.107 15.827 14.771 15.109 15.847 0.008 0.002 0.020 

4 18.954 19.330 20.143 18.975 19.334 20.147 0.021 0.004 0.004 

5 22.583 22.927 23.615 22.601 22.959 23.634 0.018 0.032 0.019 

6 26.586 26.868 27.556 26.606 26.875 27.564 0.020 0.007 0.008 

7 30.559 30.778 31.716 30.576 30.803 31.720 0.017 0.025 0.004 

8 34.313 34.563 35.501 34.319 34.567 35.532 0.006 0.004 0.031 

9 38.441 38.817 40.067 38.461 38.820 40.088 0.020 0.003 0.021 

10 42.601 42.945 44.165 42.604 42.970 44.192 0.003 0.025 0.027 

11 46.636 46.855 47.794 46.666 46.879 47.818 0.030 0.024 0.024 

12 50.827 51.171 52.203 50.857 51.187 52.229 0.030 0.016 0.026 

13 55.519 55.831 56.519 55.531 55.834 56.544 0.012 0.003 0.025 

14 58.834 59.210 59.898 58.860 59.232 59.908 0.026 0.022 0.010 

    Average 0.0174 0.0161 0.0166 

    Standard deviation 0.0102 0.0113 0.0093 

Table 6.5 shows the events timing information from Table 6.4 after adjustment of event timing 

points to be based on the simulation timeline. As an example, the first task pattern, a target is 

spawned at 7.258 seconds on the simulation timeline. The closest time point on the headset is at 

7.264 seconds which is 0.006 seconds of delay. Event timing of the second task pattern remains 

the same as before the adjustment. The average event time drift of all the 14 task patterns is 

0.0033, 0.0034, and 0.0041 seconds of delay for spawn, reaction, and click events, respectively. 

They are only 0.4224, 0.4352, 0.5248 times compared to the sampling rate. Figure 6.16, Figure 

6.17 show a graph of time drifts before and after adjustment for the 14 task patterns for spawn, 

reaction, and click events, respectively. The graphs clearly show the significant improvement 

of time synchronisation between the simulation timeline and the headset timeline. 
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Table 6.5 The time drifts between headset and simulation from P4E3S1 after the adjustment. 

 
Headset (adjusted time 

point) 
Simulation 

Time drift between 

simulation - headset AFTER 

adjustment 

 Event time (nth Second) Event time (nth Second) Time (Second) 

Task 

Pattern 

No. 

HTS HTR HTC STS STR STC TDS TDR TDC 

1 7.264 7.601 8.452 7.258 7.600 8.450 -0.006 -0.001 -0.002 

2 11.519 11.542 12.614 11.518 11.538 12.614 -0.001 -0.004 0.000 

3 14.771 15.115 15.85 14.771 15.109 15.847 0.000 -0.006 -0.003 

4 18.978 19.338 20.151 18.975 19.334 20.147 -0.003 -0.004 -0.004 

5 22.606 22.966 23.639 22.601 22.959 23.634 -0.005 -0.007 -0.005 

6 26.61 26.875 27.564 26.606 26.875 27.564 -0.004 0.000 0.000 

7 30.582 30.809 31.724 30.576 30.803 31.720 -0.006 -0.006 -0.004 

8 34.321 34.571 35.54 34.319 34.567 35.532 -0.002 -0.004 -0.008 

9 38.465 38.824 40.091 38.461 38.820 40.088 -0.004 -0.004 -0.003 

10 42.609 42.976 44.196 42.604 42.970 44.192 -0.005 -0.006 -0.004 

11 46.667 46.879 47.825 46.666 46.879 47.818 -0.001 0.000 -0.007 

12 50.858 51.187 52.235 50.857 51.187 52.229 -0.001 0.000 -0.006 

13 55.535 55.839 56.551 55.531 55.834 56.544 -0.004 -0.005 -0.007 

14 58.865 59.233 59.913 58.860 59.232 59.908 -0.005 -0.001 -0.005 

    Average -0.0033 -0.0034 -0.0041 

    Standard deviation 0.0018 0.0024 0.0023 
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Figure 6.15 The time drifts at the SPAWN event before / after the adjustments from P4E3S1. 

 

Figure 6.16 The time drifts at the REACTION event before / after the adjustments from 

P4E3S1. 
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Figure 6.17 The time drifts at the CLICK event before / after the adjustments from P4E3S1. 

Previously, the problem of time synchronisation and the solution to the time drift has 

demonstrated from a single session i.e. P4E3S1. Figure 6.18 (a) shows the averaged time drift 

from all of the 15 sessions in experiment 1 from participant 1 before adjustment. Figure 6.18 (b) 

shows the averaged time drift after adjustment. It can be noted that before adjustment all 15 

sessions show averaged time drift with early marked time of the event on the headset. After 

adjustment, the time drifts on the headset are properly marked slightly after the simulation 

timeline with the very minimum amount of drift time compared to the before adjustment. Figure 

6.19, Figure 6.20, and Figure 6.21 show sessions averaged time drift before / after adjustment 

from the first experiment of each participant.  
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(a) Before adjustment. 

 

(b) After adjustment. 

Figure 6.18 The sessions averaged time drifts between the simulation and the headset 

timelines from P1E1. 
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(a) Before adjustment. 

 

(b) After adjustment. 

Figure 6.19 The sessions averaged time drifts between the simulation and the headset 

timelines from P2E1. 
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(a) Before adjustment. 

 

(b) After adjustment. 

Figure 6.20 The sessions averaged time drifts between the simulation and the headset 

timelines from P3E1. 
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(a) Before adjustment. 

 

(b) After adjustment. 

Figure 6.21 The sessions averaged time drifts between the simulation and the headset 

timelines from P4E1. 
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6.7.3 Analysis of task performance 

In this section, an analysis of task performance is presented. Statistical information of the 

performance metrics in Section 6.5 are calculated and presented. A result of calculation from all 

participants is presented at first. Then, an individual result is presented. 

6.7.3.1 All participants 

General statistical information on the performance metrics – RT, MT, DT, MA, HA, and IP 

from all participants is presented in Table 6.6.  

The minimum of RT is 0.0s while the maximum is 0.8s. The reason of 0.0s RT is that sometimes 

a participant expected a target to appear at a certain time in the incoming time point and starts 

to move a mouse cursor before the target is actually spawned. The biggest RT is as large as 0.8s 

which is slightly greater than the average of MT which is 0.79s. A box plot of RT, MT, and DT 

is shown in Figure 6.22. It is noted that the RT contains outliers in both lower and upper parts 

which are dominated in the lower part around RT 0.0s as shown in the distribution of data in 

Figure 6.23. MT and DT have a small number of outliers in the upper part of the box plot as 

shown in Figure 6.22. Therefore, the data distribution of MT and DT are reasonably a normal 

distribution as shown in Figure 6.24, and Figure 6.25, respectively.  

A box plot of MA is shown in Figure 6.26. Although there is a huge variation in the upper 

outliers of the MA, most of the data are stayed within between the upper adjacent and lower 

adjacent as can be observed from the data distribution plot in Figure 6.27. This means although 

there are some movement deviations from the perfectly straight lines, most of the performances 

stay within the range of deviation from 0.465 pixels (minimum) to 40 pixels (upper adjacent). 

In contrast to MA, HA shows most of the outliers in the lower part of a box plot as shown in 

Figure 6.28. It is noted that there is one task pattern that contains negative HA. The negative 

HA is from the task pattern performed by P2E1S8T3. According to the detailed inspection, it is 

found that a target is located at T(960,540) while the mouse hit click moment occurs at 

M(996,576). The distance between these two points is 50.91 pixels. The distance is larger than 

the target radius, 50 pixels. This is the reason of the negative HA. It is possible to have a negative 

HA because of the rounding error from the algorithm used to detect a collision between the 
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mouse cursor and the target boundary. The algorithm is implemented by integer calculation so 

that an interactive simulation can run smoothly. The algorithm can be found in the Appendix C. 

This justification conforms to the highest accuracy of HA values where there exist 8 task 

patterns with 100% HA. Apart from both extreme ends, the HA data is distributed around 70-

90% of HA with a standard deviation of 14.993 and the median at 81.56%.  

Fitts index of performance (IP) is calculated by (2.6). Outliers of the IP belong to the high 

performance area or the upper end of a box plot as shown in Figure 6.30. Although there are 

some of the outliers, the overall distribution of IP is normal as shown in Figure 6.31. The highest 

performance according to the highest IP of 6.517 bits/seconds belongs to P2E2S14T14. The 

lowest of IP 1.565 belongs to P3E1S11T5. 

Table 6.6 The performance statistics (All participants). 

 Speed Accuracy Fitts 

 
RT 

(Seconds) 

MT 

(Seconds) 

DT 

(Seconds) 

MA 

(Pixels) 
HA (%) 

IP 

(Bits/s) 

Minimum 0.000 0.290 0.530 0.465 -1.823 1.565 

Maximum 0.800 1.863 2.130 191.610 100.000 6.517 

Average 0.259 0.790 1.049 17.433 77.502 3.412 

Median 0.276 0.772 1.028 11.057 81.561 3.382 

Standard 

deviation 
0.106 0.252 0.239 19.653 14.993 0.724 

Data 

distribution 

figure 

Figure 

6.23 

Figure 

6.24 

Figure 

6.25 

Figure 

6.27 

Figure 

6.29 

Figure 

6.31 
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Figure 6.22 The box plot of speed aspects (RT, MT, DT) from all participants. 

 

Figure 6.23 The reaction time (RT) data distribution. 
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Figure 6.24 The movement time (MT) data distribution. 

 

Figure 6.25 The duration time (DT) data distribution. 
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Figure 6.26 The box plot of movement accuracy (MA) from all participants. 

 

Figure 6.27 The movement accuracy (MA) data distribution. 
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Figure 6.28 The box plot of hit accuracy (HA) from all participants. 

 

Figure 6.29 The hit accuracy (HA) data distribution. 
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Figure 6.30 The box plot of Fitts index of performance (IP) from all participants. 

 

Figure 6.31 The Fitts index of performance (IP) data distribution. 
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6.7.3.2 Comparison among participants 

In this section, the performance statistics are presented for each participant in order to compare 

the performance between them.  

Table 6.7 shows the performance statistics for each participant. P3 has the fastest averaged RT 

of 0.188s. However, the deviation is quite large at 0.139s. This can be observed from the 

participant-ordered plot of RT and a box plot in Figure 6.32(a) and Figure 6.32(b), respectively. 

P3 also has the slowest RT of 0.8s as shown in the upper outliers in Figure 6.32(b). P1 has the 

slowest averaged RT of 0.309s but the RT performance is rather constant as indicated by the 

lowest standard deviation of 0.053s. The minimum RT from all of the participants is as low as 

0s which mean there exists the anticipation behaviour for a target appearance.  
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Table 6.7 The performance statistics for each participant. 

 Speed Accuracy Fitts 

 
RT 

(Seconds) 

MT 

(Seconds) 

DT 

(Seconds) 

MA 

(Pixels) 
HA (%) 

IP 

(Bits/s) 

P1 

Minimum 0.007 0.346 0.573 0.57 6.70 2.342 

Maximum 0.469 1.110 1.541 58.98 97.17 5.276 

Mean 0.309 0.633 0.941 10.46 72.31 3.727 

Median 0.304 0.594 0.910 8.28 75.58 3.721 

Standard deviation 0.053 0.160 0.181 8.10 15.90 0.525 

P2 

Minimum 0.000 0.290 0.530 0.98 -1.82 1.698 

Maximum 0.640 1.840 2.130 154.11 100.00 6.517 

Mean 0.277 0.719 0.997 20.72 72.89 3.659 

Median 0.280 0.686 0.960 12.29 75.95 3.641 

Standard deviation 0.081 0.272 0.281 24.19 18.29 0.878 

P3 

Minimum 0.000 0.448 0.593 0.86 40.33 1.565 

Maximum 0.800 1.863 2.060 191.61 100.00 4.975 

Mean 0.188 0.974 1.163 14.10 85.87 3.050 

Median 0.210 0.950 1.146 10.03 86.58 3.072 

Standard deviation 0.139 0.219 0.223 15.03 7.69 0.611 

P4 

Minimum 0.006 0.400 0.655 0.46 21.89 1.822 

Maximum 0.572 1.504 1.952 141.42 100.00 5.393 

Mean 0.262 0.833 1.095 24.44 78.92 3.214 

Median 0.276 0.794 1.062 15.78 80.20 3.181 

Standard deviation 0.091 0.200 0.193 23.46 11.54 0.590 
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(a) The reaction time (RT) plots ordered by the participants. 

 

(b) The box plots of each participant reaction time (RT). 

Figure 6.32 The plots of reaction time (RT) performance statistics for each participant. 
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The fastest MT belongs to P2 for 0.29s though the fastest averaged MT belongs to P1 for 0.633s 

as shown in the box plots in Figure 6.33(b). Although P2 possesses the fastest MT, the 

participant also exhibits the second slowest MT of 1.840s which is only 0.023s difference from 

the slowest one as shown in the upper outliers of the box plots in Figure 6.33(b). The averaged 

slowest MT belongs to P3 which is in contrast to P3’s RT performance. P1 has no outliers 

whereas the others have outliers lie around the upper end of MT box plot as shown in Figure 

6.33(a) and Figure 6.33(b). 

 

(a) The movement time (MT) plots ordered by the participants. 
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(b) The box plots of each participant movement time (MT). 

Figure 6.33 The plots of movement time (MT) performance statistics for each participant. 

Since DT is the sum of RT and MT, the performance aspect of DT can be largely affected by 

the performance of MT in addition to the RT as can be observed from Figure 6.34(b) in 

comparison to Figure 6.32(b) and Figure 6.33(b). 
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(a) The duration time (DT) plots ordered by the participants. 

 

(b) The box plots of each participant duration time (DT). 

Figure 6.34 The plots of duration time (DT) performance statistics for each participant. 
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The averaged MA from all of the participants is in the same range as shown in Figure 6.35. The 

maximum MA belongs to P3 with 191.61 pixels deviated from a perfect movement line as 

shown in the upper outlier of Figure 6.35(b) for P3. The minimum MA for each participant is 

as low as zero which means a perfect movement from the start position to the target click. A 

plot of mouse movements for each of the minimum MA from each of the participants is shown 

in Figure 6.36(a), Figure 6.36(b), Figure 6.36(c), and Figure 6.36(d), respectively. The plots are 

from task pattern P1E3S9T3, P2E2S5T1, P3E3S8T7, and P4E3S13T5, correspondingly. At the 

other ends, P3 has the maximum MA, then P2, P3, and P1, orderly. A plot of mouse movements 

of these maximums is shown in Figure 6.37(a), Figure 6.37(b), Figure 6.37(c), and Figure 

6.37(d), respectively. They are illustrated from task pattern P1E3S10T10, P2E2S3T11, 

P3E1S1T10, and P4E1S4T10, respectively.  

 

(a) The movement accuracy (MA) plots ordered by the participants. 
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(b) The box plots of each participant movement accuracy (MA). 

Figure 6.35 The plots of movement accuracy (MA) performance statistics for each participant. 

 

(a) The trajectory plot from the task pattern with the lowest MA from P1. 
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(b) The trajectory plot from the task pattern with the lowest MA from P2. 

 

(c) The trajectory plot from the task pattern with the lowest MA from P3. 
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(d) The trajectory plot from the task pattern with the lowest MA from P4. 

Figure 6.36 The trajectory plots from the task patterns with the lowest movement accuracy 

(MA) for each participant. 
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(a) The trajectory plot from the task pattern with the highest MA from P1. 

 

(b) The trajectory plot from the task pattern with the highest MA from P2. 
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(c) The trajectory plot from the task pattern with the highest MA from P3. 

 

(d) The trajectory plot from the task pattern with the highest MA from P4. 

Figure 6.37 The trajectory plots from the task patterns with the highest movement accuracy 

(MA) for each participant. 
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In term of hit accuracy performance i.e. HA, most participants have the maximum accuracy of 

100% except P1 which has the maximum HA at 97.17%. P3 has the highest averaged HA of 

85.87%. This high averaged HA conforms to a speed-accuracy trade-off since P3 has the slowest 

averaged DT of 1.163s. Likewise, P1 has the lowest averaged HA of 72.31% which also 

conforms to the trade-off by having the fastest averaged DT of 0.941s. P3 performs moderately 

steady as shown by the standard deviation value of HA. An ordered HA plot and the box plot of 

HA for the four participants are shown in Figure 6.38. 

 

(a) The hit accuracy (HA) plots ordered by the participants. 
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(b) The box plots of each participant hit accuracy (HA). 

Figure 6.38 The plots of hit accuracy (HA) performance statistics for each participant. 

Since IP is calculated based on DT and the distance between start and target positions, it is 
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HA with the value of 1.565 and 3.050 bits/seconds, respectively. A plot of ordered IP grouped 

by participants and box plots are shown in Figure 6.39. 
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(a) The Fitts index of performance (IP) plots ordered by the participants. 

 

(b) The box plots of each participant Fitts index of performance (IP). 

Figure 6.39 The plots of Fitts index of performance (IP) performance statistics for each 

participant. 
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6.7.4 Analysis of event-related potential (ERP) 

This section presents results from analysis of the event-related potential (ERP) at the onset of 

the task pattern events i.e. spawn, reaction, and click. A definition and calculation method of 

ERP can be found in Section 2.13.3. The ERP is calculated from a total number of task patterns 

after exclusion of the extreme epochs as described in the 7th step of Figure 6.10. A boundary of 

the ERP is between -1000ms and 1000ms from the onset of the analysing event. 

It is noted that a reaction event is an immediate consequence from a spawn event. The two 

events always come together at a fraction of seconds apart, hence, the ERP is analysed in the 

same section.  

6.7.4.1 Spawn and reaction events 

Figure 6.40(a) and Figure 6.40(b) show the spawn ERP for a group of frontal and posterior 

electrodes, respectively. Figure 6.40 shows that frontal EEG brainwaves respond to the onset of 

spawn event with a peak positive deflection of F4 at 164.0625ms and 0.5047 µV of amplitude. 

The peak deflection is followed by a deflection towards negative value at 203.125ms and -

0.5821 µV of amplitude dominated by FC6 and F4. The magnitude of the amplitude is a little 

larger than the first deflection. The next positive deflection comes at 265.625ms at 0.541 µV 

dominantly at FC6. Then, the followed spikes are lowered down until back to the normal 

oscillation. A sequence of spawn ERP deflections is summarised in Table 6.8. In brief, all of the 

frontal electrodes synchronously respond to the onset of a target spawn event. 

At the posterior area in Figure 6.40(b), the first deflection comes at the opposite side to the 

frontal area at 125ms with a slightly larger magnitude of -0.7446 µV from O1. The next distinct 

spike comes at 187.5ms with 1.2178 µV amplitude eminently from the same O1 electrode. It is 

followed by the maximum amplitude of deflection at 242.1875ms with -1.2636 µV from O1. 

The O1 signal bounces back once more to the positive side at 315.5ms with a reduced in 

magnitude at 0.7409 µV before oscillates down to the normal wave. The other posterior 

electrodes other than the O1 have rather normal oscillation except the O2 where it slightly 

follows the trend of O1 with smaller amplitudes of deflection. Table 6.9 summarises the 

sequence of deflections from posterior electrodes for the spawn ERP. 
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(a) The ERP at the spawn event from a group of frontal EEG electrodes. 

 

(b) The ERP at the spawn event from a group of posterior EEG electrodes. 

Figure 6.40 The ERP at the spawn event. 
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Table 6.8 The sequence of spawn ERP deflections of frontal electrodes. 

Sequence of 

deflections 

Time 

(Milliseconds) 

Amplitude 

(Microvolts) 
Electrodes 

1 164.0625 0.5047 F4 

2 203.125 -0.5821 FC6, F4 

3 265.625 0.541 FC6 

4 328.125 -0.4303 F8, FC6 

5 414.0625 0.4588 FC6, AF4 

Table 6.9 The sequence of spawn ERP deflections of posterior electrodes. 

Sequence of 

deflections 

Time 

(Milliseconds) 

Amplitude 

(Microvolts) 
Electrodes 

1 125 -0.7446 O1 

2 187.5 1.2178 O1 

3 242.1875 -1.2636 O1 

4 312.5 0.7409 O1 

Figure 6.41(a) and Figure 6.41(b) shows the ERP at the reaction event from frontal and posterior 

electrode groups, respectively. Summaries of the sequence of deflections are shown in Table 

6.10 and Table 6.11 for frontal and posterior. It is obvious that although the reaction event occurs 

with the mean time of 259ms after the spawn event (Table 6.6), the train of deflections from the 

previous spawn event is missing. It means that the deviation of reaction times has cancelled out 

the spikes of the spawn event when the ERP is calculated at the reaction event. Nevertheless, 

the reaction event shows a number of spikes at latencies 109.375ms, 164.0625ms, 234.375ms, 

and 296.875ms with the amplitudes of -0.3434 µV, 0.3076 µV, -0.2411 µV, and 0.2008 µV, 

respectively. These spikes are mainly from F3, F4, and FC6. In contrast, at the posterior 

electrodes, the deflection is not distinguishable from the ongoing train of EEG brainwaves as 

shown in Figure 6.41(b). 



 

 

Page 217 of 319 

 

(a) The ERP at the reaction event from a group of frontal EEG electrodes. 

 

(b) The ERP at the reaction event from a group of posterior EEG electrodes. 

Figure 6.41 The ERP at the reaction event. 
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Table 6.10 The sequence of reaction ERP deflections of frontal electrodes. 

Sequence of 

deflections 

Time 

(Milliseconds) 

Amplitude 

(Microvolts) 
Electrodes 

1 109.375 -0.3434 F3 

2 164.0625 0.3076 F3, F4 

3 234.375 -0.2411 FC6 

4 296.875 0.2008 FC6 

Table 6.11 The sequence of reaction ERP deflections of posterior electrodes. 

Sequence of 

deflections 

Time 

(Milliseconds) 

Amplitude 

(Microvolts) 
Electrodes 

1 7.8125 -0.2217 O1 

2 46.875 -0.1928 O2 

3 109.375 0.2105 O2 

4 171.875 -0.2337 O1 

5 234.375 0.2275 O1 

6.7.4.2 Click event 

A click event occurs after the spawn event at the mean latency of 1,049ms according to the mean 

duration time in Table 6.6. A trace of spawn ERP can be observed at the far left of the click ERP 

at the frontal group of electrodes as shown in Figure 6.42(a). In contrast, a trace of spawn ERP 

from posterior electrodes cannot be observed from Figure 6.42(b). From the frontal group of 

electrodes, the first deflection can be observed at 23.4375ms with 0.3346 µV from F3. A 

summary of the sequence of deflections for the frontal is shown in Table 6.12. The two dominant 

spikes from F3 are 0.5251 µV and -0.5217 µV at 156.25ms and 210.9375ms latencies, 

respectively. The frontal brainwaves of click ERP have moderate synchronisation compared to 

the frontal spawn ERP. 
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At the posterior electrodes, the synchronisation is rather chaotic but the ERP is still able to 

distinguish from the ongoing brainwaves. Table 6.13 summarises a sequence of deflections from 

posterior electrodes for the click ERP. The deflections are dominated by O1 and P8 with the 

bottom and peak from O1 at 304.6875ms and 359.375ms, respectively.  

 

 

(a) The ERP at the click event from a group of frontal EEG electrodes. 
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(b) The ERP at the click event from a group of posterior EEG electrodes. 

Figure 6.42 The ERP at the click event. 

Table 6.12 The sequence of click ERP deflections of frontal electrodes. 
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Table 6.13 The sequence of click ERP deflections of posterior electrodes. 

Sequence of 

deflections 

Time 

(Milliseconds) 

Amplitude 

(Microvolts) 

Electrodes 

1 109.375 -0.4636 P8 

2 164.0625 -0.5046 O1 

3 195.3125 0.878 P8 

4 250 -0.9294 P8 

5 257.8125 0.6644 O1 

6 304.6875 -1.2185 O1 

7 359.375 1.1766 O1 

8 406.25 -0.5408 O1 

 

6.7.4.3 Region averaged ERP 

Figure 6.43(a), (b), (c), and (d) show the averaged ERP from the frontal and posterior group of 

electrodes for spawn and click events, accordingly. It is noted that the region averaged ERP 

makes the ERP more visible provided that the synchronisation among the brainwaves in the area 

are consistent. 
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(a) The averaged ERP from the frontal group of electrodes at the spawn event. 

 

(b) The averaged ERP from the posterior group of electrodes at the spawn event. 
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(c) The averaged ERP from the frontal group of electrodes at the click event. 

 

(d) The averaged ERP from the posterior group of electrodes at the click event. 

Figure 6.43 The averaged ERP at the spawn and click events from the group of frontal and 

posterior electrodes. 
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6.7.5 Development of model of the human EEG 

brainwave in association with task performances 

According to step 11 in Figure 6.10, the task patterns are sorted and separated into six sections 

one at a time by the particular performance criteria as shown in Figure 6.44. Table 6.14 shows 

the number of task patterns in each section when separates with performance criterion i.e. RT, 

MT, DT, MA, HA, and IP, respectively. It is noted that the separation is based solely on the 

value of performance criteria without the interpretation of the meaning of the value i.e. lower is 

better or higher is better. Therefore, the interpretation of the meaning of performance is needed 

after the model development.  

 

Figure 6.44 The separation of task patterns into six sections according to the performance 

variable. 
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Table 6.14 The number of task pattern in sections A, B, C, D, E, and F when separate with the 

particular performance variable. 

Performance 

criteria variable 

Number of task pattern in each section 

A B C D E F 

RT 63 1126 64 63 1133 64 

MT 63 1129 64 63 1130 64 

DT 63 1127 64 63 1132 64 

MA 63 1129 64 63 1130 64 

HA 62 1122 63 63 1139 64 

IP 63 1128 64 63 1131 64 

According to step 14 of Figure 6.10, three areas of information are used for feature extraction 

i.e. local extremum, Fourier transform, and information from ERP analyses. A list of features 

from all three areas is shown in Table 6.15. Seven, two, and five of features are from local 

extremum, Fourier transform, and ERP analysis, respectively. It is noted that these features are 

calculated from the averaged ERP of frontal and posterior region for each single-trial of the 

EEG in each task pattern. Therefore, there are 28 features in total.  
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Table 6.15 The list of EEG features for the model development. 

Frontal average EEG Posterior average EEG 

Local Extremum 

1. Number of peaks 

2. Number of bottoms 

3. Mean of peaks 

4. Mean of bottoms 

5. Standard deviation of peaks 

6. Standard deviation of bottoms 

7. Accumulated time different of peaks and 

bottoms  

8. Number of peaks 

9. Number of bottoms 

10. Mean of peaks 

11. Mean of bottoms 

12. Standard deviation of peaks 

13. Standard deviation of bottoms 

14. Accumulated time different of peaks and 

bottoms 

Fourier transform 

15. Averaged of 6 dominant frequencies 

(5% of sampling rate i.e. 128 Hz) 

16. Averaged of power of the 6 dominant 

frequencies. 

17. Averaged of 6 dominant frequencies 

(5% of sampling rate i.e. 128 Hz) 

18. Averaged of power of the 6 dominant 

frequencies. 

Information from ERP analyses 

19. Peak time of spawn ERP 

20. Peak amplitude of spawn ERP 

21. Peak time of click ERP 

22. Peak amplitude of click ERP 

23. (Peak time of click ERP) – (Peak time of 

spawn ERP) 

24. Peak time of spawn ERP 

25. Peak amplitude of spawn ERP 

26. Peak time of click ERP 

27. Peak amplitude of click ERP 

28. (Peak time of click ERP) – (Peak time of 

spawn ERP) 

Since there are 28 features in total which is a rather high dimensionality of feature space. The 

proposed 10-time-10-fold cross-validation requires a twice number of the input in order to train 

to locate the optimum number of hidden neurons. The PCA is applied in order to reduce the 

dimensionality of the original feature space as described in Section 2.8. Table 6.16 shows the 

percentages of principal component accountabilities to the original feature space range from 
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high to low. For example, the principal component PC1 can represent 31.46% of the whole 28 

features. Therefore, the accumulated accountability from PC1 to PC28 is equal to 100%. Figure 

6.45 shows the accumulated accountability percentages covered by the first 10 principal 

components to the 28 features. It shows that only 10 principal components can cover over 90% 

of the original features.  

Therefore, a trade-off between percentages of coverage and number of principal components 

needs to be decided. The percentages of accountability for 7, 14, and 21 components are 82.94%, 

97.03%, and 99.80%, respectively. According to the preliminary training of the 10-time-10-fold 

cross-validation for 1 time, it is shown that 7 principal components are sufficient. Furthermore, 

by selecting 7 principal components the maximum number of hidden neurons for training is 14 

which are half the amount of hidden neurons compared to the case of 14 principal components. 

Table 6.16 The percentages of variance explained for the 28 principal components (PC). 

Percentages of variance explained for the 28 principal components (PC) 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 

31.46 23.95 9.84 5.83 4.38 3.99 3.49 

PC8 PC9 PC10 PC11 PC12 PC13 PC14 

3.17 2.73 2.47 2.06 1.39 1.20 1.08 

PC15 PC16 PC17 PC18 PC19 PC20 PC21 

0.80 0.61 0.52 0.31 0.26 0.16 0.09 

PC22 PC23 PC24 PC25 PC26 PC27 PC28 

0.08 0.06 0.03 0.02 0.01 0.00 0.00 
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Figure 6.45 A plot of accountability percentages to the original feature space of the first 10 

principal components. 

6.7.5.1 The modelling results 

The model development follows the process shown in Figure 3.11 of Section 3.4. There are six 

developed models i.e. the model based on each performance criteria – RT, MT, DT, MA, HA, 

and IP. Several of the modelling outputs are obtained during the development process. Hence, 

the summary of the result is presented first in this section. Then, the detailed outputs for each of 

the modelling process are given in Appendix I.1, I.2, I.3, I.4, I.5, and I.6 for RT, MT, DT, MA, 

HA, and IP, respectively. 

The total running time for the 10-time-10-fold cross validation is 14.36 hours for all of the model 

training. Figure 6.46 shows total run times for each of the model. The average training time is 

143.65 minutes. All of the models is trained with MATLAB pattern recognition neural network 

with a set of default training algorithms.  
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Figure 6.46 The total training run time for each model by applying the 10-time-10-fold cross 

validation. 

Summary of the model development is shown in Table 6.17. The results can be referred to the 

steps in Figure 3.11. The second column of the table shows that the maximum training accuracy 

is 95.32% for the DT model whereas the worst is 66.56% for the HA model. All the training 

reaches maximum accuracy with the number of hidden neurons at twice the number of 7 

principal component inputs i.e. 14 number of hidden neurons. However, the testing results are 

in contrast. The RT, DT, and MA models attain their best accuracy with a single hidden neuron 

with the accuracy of 59.87%, 85.73%, and 62.28%, respectively. The best testing accuracy is 

still with DT model at 91.95% which is dropped from the training by 3.37%. The worst testing 

remains with the HA model at 58.42%.  
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Table 6.17 The summary of the model development results. 

Performance 

indicator 

Step 1 of Figure 3.11 

(10-time-10-fold cross validation) 

Step 3 of Figure 

3.11 

Step 4 of Figure 

3.11 

Best training Best testing Model training Blind test 

Acc 

(%) 

Number 

of 

hidden 

neurons 

Acc 

(%) 

Number 

of 

hidden 

neurons 

Acc 

(%) 

AUC Acc 

(%) 

AUC 

RT 67.01 14 59.87 1 60.3 0.63 58.3 0.59 

MT 88.82 14 85.73 2 86.3 0.93 72.0 0.86 

DT 95.32 14 91.95 1 92.1 0.98 74.0 0.88 

MA 68.23 14 62.28 1 62.8 0.67 66.9 0.76 

HA 66.56 14 58.42 8 63.2 0.69 60.7 0.62 

IP 71.26 14 64.96 6 69.4 0.76 63.0 0.67 

Average 76.2  70.53  72.35 0.77 65.81 0.73 

According to step 2 of Figure 3.11, the best configuration for each model is located. Then, all 

of the training datasets is used to train the selected configuration i.e. number of hidden neurons. 

The result of the training accuracies is shown by the 3rd column of Table 6.17 along with the 

area under the curve (AUC) of ROC curve. The model training accuracies are improved by small 

percentages from the previous testing results. The most accurate model is the DT model with 

the accuracy of 92.1% and 0.98 of AUC.  

After the models are trained, they are tested with the preserved blind test dataset. The results of 

the blind test are shown in the 4th column of Table 6.17. All of the blind testing accuracies is 

dropped from the model training except the MA model which gives an improvement by 4.1%. 
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The most accuracy drop is the DT model which is dropped by 18.1% from the model training 

accuracy. The second accuracy drop rate is the MT model at 14.3% while the rests are dropped 

by a small percentage of 2%, 2.5%, and 6.4% for RT, HA, and IP models, respectively. It is the 

indication of overtraining for the DT and MT models while the other models stay within the 

range of their training accuracy when applying to the unseen dataset.  

Details of the results including the averaged classification accuracies from 10-time-10-fold 

cross-validation, confusion matrix, PR curve, and ROC curve from model training and blind 

testing for each of the model development is presented in the Appendix I.1, I.2, I.3, I.4, I.5, and 

I.6. 

6.7.6 Evaluation of HMI performance based on the 

EEG brainwave 

Once the six models are developed, they can be used to evaluate a task pattern performance 

based solely on the EEG brainwaves as mentioned at the end of Section 6.6. The diagram of the 

evaluation is shown in Figure 6.11. It can be noted that the models are developed by separating 

the data into two groups based on the value of the performance indicator. The meanings of model 

outcomes need to be interpreted for each of the performance indicators as shown in Table 6.18.  

Table 6.18 Interpretation of the meaning of model outcomes. 

Performance indicator The interpretation of the model outcomes 

RT Class Low means high performance and vice versa 

MT Class Low means high performance and vice versa 

DT Class Low means high performance and vice versa 

MA Class Low means high performance and vice versa 

HA Class High means high performance and vice versa 

IP Class High means high performance and vice versa 

The example of performance evaluation is shown in Table 6.19. It is noted that the table shows 

the converted interpretation of the outcomes of RT, MT, DT, and MA from 0 to 1 and vice versa. 

The outcomes of HA and IP remain the same as the classification model output. The values in 

the parenthesis of the task performance values are the median of each performance indicator. 

Cells of the table which are shaded with red colour mean that the outcome of the corresponding 

evaluation is incorrect according to the separation point at the median value.  
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Table 6.19 The example of performance evaluation using the six models. 

P#E#S#T# 

Evaluation of performance based on EEG brainwaves Task performance values 

RT MT DT MA HA IP 
RT 

(0.276) 

MT 

(0.772) 

DT 

(1.028) 

MA 

(11.05) 

HA 

(81.56) 

IP 

(3.38) 

P1E1S1T1 1 1 1 1 0 1 0.350 0.622 0.972 9.77 79.41 2.96 

P1E1S1T2 0 1 0 1 0 0 0.345 0.848 1.193 16.58 75.67 2.41 

P1E1S1T3 0 0 0 0 0 1 0.310 0.883 1.193 4.70 65.82 2.41 

P1E1S1T4 0 1 1 1 1 0 0.255 0.655 0.910 5.32 83.03 3.16 

P1E1S1T5 1 1 1 0 0 0 0.317 0.635 0.952 9.04 65.94 2.50 

P2E2S8T14 1 1 1 1 0 1 0.270 0.430 0.700 8.25 58.82 5.16 

P2E2S9T1 1 1 1 1 0 1 0.290 0.400 0.690 8.59 69.73 4.17 

P2E2S9T2 1 1 1 1 0 1 0.280 0.370 0.650 19.43 71.36 4.43 

P2E2S9T3 1 1 1 1 0 1 0.280 0.480 0.760 28.17 66.00 3.78 

P2E2S9T4 1 1 1 1 0 1 0.220 0.400 0.620 15.35 56.73 4.64 

P3E2S4T10 0 0 0 0 1 0 0.352 1.512 1.864 24.06 76.59 2.52 

P3E2S4T11 0 0 0 0 1 0 0.007 1.601 1.608 14.03 89.80 2.92 

P3E2S4T12 1 0 0 0 1 0 0.007 1.235 1.242 15.66 81.56 3.78 

P3E2S4T13 0 0 0 0 1 0 0.255 0.918 1.173 6.32 77.64 3.08 

P3E2S4T14 0 0 0 0 1 1 0.048 1.242 1.290 14.18 88.00 2.80 

P4E1S10T7 1 1 1 0 0 0 0.048 0.869 0.917 35.81 80.00 3.74 

P4E1S10T8 1 0 1 1 1 0 0.297 0.787 1.084 20.11 86.58 3.17 

P4E1S10T9 0 0 0 0 0 0 0.393 1.063 1.456 26.65 67.44 3.22 

P4E1S10T10 0 0 0 0 1 1 0.248 1.113 1.361 108.10 84.38 3.45 

P4E1S10T11 1 0 0 0 0 0 0.296 0.780 1.076 46.55 62.42 4.36 
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6.8 Summary 

This chapter has developed a novel human-machine performance evaluation method based on 

the human EEG brainwaves. A classic HMI scenario, target hitting task, is employed as a case 

study. The task is simple and allows the establishment of the relationship between the human 

EEG brainwaves and the task performance become possible with minimal disturbances. The 

task is designated with 14 task patterns where a participant performs the main interaction activity 

that is the movement of a mouse cursor to hit a target as fast and accurate as possible. The time 

course of a task pattern i.e. from target appear to target click, is where the establishment is taken 

into account. Since the performance of a task pattern is evaluated from the start of the target 

appearance until it is clicked by a mouse cursor. There are two main performance aspects in this 

type of task i.e. speed and accuracy which can be separated into more details including reaction 

time (RT), movement time (MT), duration time (DT), movement accuracy (MA), hit accuracy 

(HA), and the Fitts index of performance (IP). The establishment of the relationship between 

human EEG brainwaves and task performances is achieved by relating the six performance 

indicators to the features of the corresponding EEG signals. The models are obtained by utilising 

the model development methodology presented in Section 3.6 i.e. the descriptive modelling 

approach and the 10-time-10-fold cross-validation. 

As a result, six models of task performance evaluation based solely on the EEG brainwaves are 

achieved. The six models are responsible for the evaluation of each aspect of the task 

performance. The averaged evaluation accuracy is 72.35%. The averaged evaluation accuracy 

when the models are applied to an unseen data is 65.81%. The overall accuracies are somewhat 

acceptable since it is rather challenging to establish the relationship between the human EEG 

brainwaves to the performances of the interaction. Furthermore, there exists a number of 

limitations i.e. the limitation of the number of electrodes, the limitation of the location of 

electrodes especially where the brain region is responsible for limbs movement. Likewise, there 

exist external factors other than the EEG brainwave that affects task performance e.g. other 

aspects of the brain processing, physical ergonomics, and spinal cord command mechanisms 

etc. 
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Chapter 7  Conclusion and future work 

This chapter concludes the works completed in this research project that lead to the original 

contributions. Section 7.1 summarises the research in each aspect i.e. the literature review, the 

design and development, and the investigations. The summaries are described along with the 

fulfilment of the objectives presented in Chapter 1. Then, the detailed conclusions of the key 

investigations in this research are presented in Section 7.2 and Section 7.3. This research project 

has provided and improved the understanding of the author as a research student in many 

aspects, which can be summarised as the learning experiences in Section 7.4. Section 7.6 

discusses on the known limitations and a list of future works are given in Section 7.7.  

7.1 Summary of the research works 

The works completed in this research project can be categorised into three parts i.e. the literature 

review, the design and development, the investigation and the analysis. 

7.1.1 The literature review 

A review of the state-of-the-art human interaction with the man-made systems has been 

completed. The review starts from the concept of HAM and spreads out to the related areas in 

order to identify / locate the gaps to improve the HAM research field. This part of the thesis can 

be considered as the fulfilment of Objective 1. 

7.1.2 The design, development, and implementation 

of the HAM experimentation platform 

 This research is based on a simulation because of several reasons discussed in the 

introduction of Chapter 3. Therefore, a HAM simulation platform has been developed 

to fulfil Objective 2 and is employed in all of the investigations in this research. 
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 The Emotiv EPOC EEG monitoring system is integrated into the HAM simulation 

platform for the acquisition of human brainwave simultaneously with the HMI scenarios. 

This expansion has been added to meet Objective 2 so that the platform can be used to 

conduct the experiments to fulfil Objective 5. 

 The descriptive-predictive and 10-time-10-fold cross-validation model development 

procedures are adopted and modified to be used for the model development in this 

research. These parts of the research project are developed to fulfil Objective 4 and 5. 

The procedures are developed and applied in both the HMI control model and the 

performance evaluation model in Chapter 4 and Chapter 6, respectively. 

 These simulation and experimentation scenarios are implemented to fulfil Objective 2. 

a. An inverted pendulum-driven capsule system i.e. the Model I and the Model II 

in Chapter 4. 

b. The scenarios for the EEG-based experimentation in Chapter 5. 

c. The target hitting task for the establishment of HMI performance evaluation 

models in Chapter 6. 

7.1.3 The investigation and analysis 

 The human heuristic learning control and the identification of control skills-rules-

knowledge (SRK) and wisdom have been investigated in Chapter 4. This part of the 

investigation is conducted to fulfil Objective 3 and the outcome shows that a human 

follows the SRK with the addition of the wisdom i.e. the extension of the SRK.  

 The establishment of human-machine control model that fulfils Objective 4 i.e. the 

understanding of a human from the machine side so that it can provide the appropriate 

assistance. 

 The thesis establishes a novel HMI performance evaluation models based on the human 

brainwave. A target hitting task has been adopted to establish the relationship between 

HMI control performance and the human brainwave. This part of the research can be 

considered as the fulfilment of Objective 5. The concept of performance evaluation from 

the human brainwave from this research project could be applied to other research 

projects such as the adaptive adjustments of the computer game difficulty. This is the 

example of the application from one domain of knowledge to another. 
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7.2 Human-machine interaction heuristic 

learning and control model development 

Two variations of a pendulum-driven cart pole / capsule system have been employed as a 

machine model for the investigation of HMI heuristic learning and control model development 

in Chapter 4.  

From the investigation of a human heuristic learning and control in Section 4.2, it can be 

concluded that a human can learn to identify the control strategy of an unfamiliar machine 

mechanism i.e. the Model I, an underactuated pendulum-driven capsule system. A set of rules 

of the machine control strategy is developed during the learning stage. It is clear that this finding 

complies with the Fitts three stages of learning and the Rasmussen’s model of SRK. The 

participant stays in the cognitive stage during the heuristic learning to identify the machine 

control mechanism. Then, the learning is transformed into the associative stage when the 

participant figures out the machine control mechanism. This phase of learning can be thought 

as the process of rules creation in the Rasmussen’s SRK model. Skill is acquired during this 

phase of learning. The skill can be developed further by practising until the identified set of 

control actions becomes autonomous. These skills and rules are developed into the knowledge 

for the specific machine operation. The knowledge can be revolutionised and generalised into 

wisdom over time by applying the particular domain of knowledge into other domains. 

In order to focus the study on the action of human learning and control on the inverted pendulum 

rotation strategy, Model I has been modified to Model II by the integration of a PID controller. 

Therefore, a human participant can concentrate on learning the rotation of an inverted pendulum 

to control the machine. The investigation with Model II has been conducted with nine human 

participants that provide the variations of the heuristic control and learning. As a result of the 

experiment, the nine participants show different characteristics of skill and strategy to control 

the machine e.g. high versus low oscillation of the pendulum, and the rotation range. The control 

characteristics and pendulum rotation profile may not be as perfect as the theoretical profile but 

a human can learn to identify the control strategy that can effectively produce a good 

performance outcome.  
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The control information in the investigation of Model II is further employed for the development 

of human-machine control model in Section 4.4. Two types of model are employed i.e. 

classification and regression models with the overall accuracies of 88.3% and 79.1%, 

respectively. The performance of the models is twofold confirmed by the plot of precision-recall 

and ROC curves. Furthermore, the obtained models are applied to an unseen dataset which is 

the blind testing process. The blind test accuracies are 92.2% and 77.01% for the classification 

and the regression models, respectively.  

7.3 Human-machine interaction performance 

evaluation based on EEG brainwave 

The Emotiv EPOC system has been integrated into the platform in order to simultaneously 

acquire the brainwave while a human participant performs the machine operation. The 

preliminary investigations with EEG are aimed to understand how the brain responds to a 

particular stimuli i.e. event-related potential (ERP) and to develop a workflow for the 

development of EEG-based performance evaluation models. Three preliminary investigations 

have been conducted which can be divided into two groups according to eyes opening conditions 

e.g. eyes closed,  and eyes opened in Chapter 5. It can be concluded from the eyes closed 

investigation that the human EEG brainwave has the distinguishable responses to the stimulus 

e.g. the audio sound effect, and the voluntary limb movement. Moreover, the voluntary limb 

movements based experiment shows that the brain is activated on the opposite side of the limb 

movement which complies with the well-established knowledge of the human brain functions. 

The preliminary study is extended to cope with eyes opened based experiment so that the 

workflow can be utilised in the actual HMI which essentially requires eyes to be opened during 

the interaction. A simple target hitting task is used to develop this pilot study. The eyes related 

artefacts can be removed systematically with the usage of the ICA. The ERP analysis from this 

pilot study shows that the human brain has a clear response when a target appears on the screen 

especially in the posterior region of the human brain. This region is responsible for visual 

processing.   
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In Chapter 6, a novel HMI performance evaluation model has been developed based on the 

features extracted from the human EEG brainwave. Six models are obtained for the six 

performance aspects of the target hitting task. The obtained models can be used for the 

prediction of operator performance that will be the guidance for the machine to provide the 

adaptive assistance based on the performance level. 

7.4 The analysis of the chosen methods 

The analysis of the chosen methods that proved to be justified is given below for each aspect. 

7.4.1 The simulation 

The simulation-based experimentation proves the following advantages to this research project. 

 The simulation saves time and effort which allow the project to be completed in time. 

Moreover, the simulation unifies all of the investigations completed in this research i.e. 

the usage of the same environment throughout the research project. 

 There is no harm to the participants with the simulation. 

 Many simulation scenarios can be implemented to conduct the experiment. 

 The data acquisition is convenient and effective. 

7.4.2 The 10-time-10-fold cross-validation and the 

ANN 

The limited number of dataset in this research can be problematic for the model development. 

However, the use of the 10-time-10-fold cross-validation can effectively utilise the dataset and 

can locate the best ANN model configuration because it repeatedly uses the data as explained 

in Section 3.6. The use of ANN in this research has proved that it can give relatively good 

modelling results with the case studies such as the inverted pendulum-driven capsule system 

and the human brainwave etc. 
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7.4.3 The electroencephalography brainwave 

monitoring system 

The EEG has several advantages over the others as discussed in Section 2.13.2. This research 

mentions that the usage, preparation and maintenance of the EEG headset are the time-

consuming process. However, it is less complicated than other brain monitoring systems. The 

obtained brainwave can be utilised straight away after the acquisition in the form of the 

computer file. Although the spatial resolution is not good, the temporal resolution is the great 

advantage to this research because the HMI usually uses time as the performance indicator e.g. 

time to react, time to complete the task etc.  

7.5 Research as learning experiences 

This section discusses some aspects that are learned from the research process that can be 

considered as the valuable experiences and knowledge.  

7.5.1 Research area, scope, and focus 

A research project ideally is based on the personal interest of the researcher or is generated by 

an organisation. A literature review is the fundamental stage that gives the exploration to the 

relevant area. Although it is common that the interesting literature in the research area would be 

attractive, the review needs to have a definite scope. It is necessary to have the focus and scope 

in mind so that the research project can be proceeded within the sensible period of time. The 

example from this research project is the multidisciplinary of the HAM. The literature review 

and the investigation would have easily strayed away from the focus and scope. There are many 

interesting literature such as machine learning methods, mathematical modelling of a machine 

and the simulation, the human behaviours, EEG, BCI etc.  

7.5.2 Expansion of knowledge 

A research project has to seek and open up to the ideas available in the related fields that would 

benefit to the focused area. This research starts from the HAM and expands to the related area 
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i.e. HRI, HSC, HAI, human intention recognition, model developments, human performance, 

human brainwave monitoring etc. However, the focus is maintained in the HAM area i.e. the 

HMI performance evaluation.  

7.5.3 Know the limitations 

A research project is usually bounded by some limitations such as time, resource, technical issue 

and budget etc. It is good to keep these limitations in mind. For example, one of the limitations 

of this research project is a simulation-based research that may not represent the real world 

situation. Furthermore, this research utilises a budget non-research-grade brainwave monitoring 

headset which may not give the best brainwave recording quality. The recruitment of the 

participants that is sometime rather difficult to access to a good sample that would represent the 

aimed population. The limitation of the computing resource such as the personal computer for 

the analysis and model development. To accelerate the research, the author uses two computers 

to run the analysis and model development while a laptop is used to produce the documentation 

simultaneously. Also, the dimensionality of the data is a considerable concern to the computing 

power / resource of a computer that would produce the result within the sensible computational 

time. 

7.5.4 Time management 

A good research project has to be completed within the allowed period of time. A well-defined 

scope, focus, and a plan of the research are the keys. A researcher would have the imagination 

and ambition to do a particular research. However, it is good to know the limitation of a given 

period of time and be reasonable for the width and the depth of the research investigations. In 

practical, it is needed to allocate spare times for the unforeseen circumstances e.g. the time for 

the administration activity, the time needed to collaborate with other people, the time for the 

recruitment of the sample participants, the time for the software and hardware problems etc.  

7.5.5 Life and balance  

It is a good practise to balance the amount of life activities such as doing a research, travelling 

and sightseeing, doing sports and exercises, having relaxation etc. Despite the health benefits of 
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doing an exercise such as running and playing football which is particularly the famous sports 

in the United Kingdom, these activities could help release some stresses during the intensive 

research activity and provide a refreshing mood to conduct a research. Moreover, during a 

running session, the brain is rather relaxed and there is time to think about the research problem 

that is being solved. This thinking might turn out to be the ultimate idea and solution of the 

research. Travelling and sightseeing could open up the state of mind and increase personal 

experiences that would benefit the research in some ways. For examples, the author thinks about 

the skills required to operate the car during a driving for the travelling. The skills to operate a 

car are different from the ability to drive carefully. Also, it does not mean that a driver has the 

knowledge about the traffic rules and locations etc.  

7.6 Limitations in this research 

 There is a known limitation of the spatial resolution of any hardware used to record the 

EEG brainwaves. The Emotiv EPOC has the capability to record 14 locations on the 

human scalp. Headsets with 256 or more electrodes are available in the market. 

However, these headsets are very expensive and require the wired connection rather than 

a wireless one which can be uncomfortable in many applications. 

 The temporal resolution i.e. the sampling rate of the brainwave headset is another 

limitation of the research project. Although the Emotiv EPOC headset specification 

mentions an internal sampling rate of 256 Hz, it produces a data rate of 128 Hz only. 

The higher the sampling rate is, the more detail of the temporal resolution can be 

obtained from the recording which will be useful to produce more accurate analysis of 

the human brain activities. 

 The use of scalp region i.e. frontal and posterior averaged brainwave may limit the 

spatial resolution which is already the main drawback of the EEG. However, the 

averaged method improves the temporal signal-to-noise ratio. This is the trade-off 

between the two choices i.e. spatial and temporal resolutions. This aspect may be 

improved in the future from the steady advancements in technology.  

 The number of participants and gender i.e. male-female balance are limited because of 

time, effort, and ethical issues. For example, for the EEG brainwave based 
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investigations, a participant needs to agree to wear the headset which is moistened by 

saline solution. Furthermore, the investigation needs to be done in a quiet environment, 

takes long time to finish because of the headset preparation and the maintenance 

procedures during the experiment etc. However, Table 2.10 shows that the number of 

human participants which is 1-12 participants. 

 This research adopts simulation as the primary HMI activity which may not give fully 

realistic situation. 

7.7 Future works 

A list of possible future works that can be investigated further from this research project is given 

below. 

 An EEG headset with more electrodes and higher sampling rate could be used. 

Especially, the electrodes around the central area of the human scalp which are 

responsible for limb movements. However, the increased number of electrodes would 

introduce the complexity in both the acquisition and the analysis processes e.g. 

complexity of the headset wirings, more sensors to be moistened, more computational 

power etc.  

 It is challenging to establish the relationship between the operation performance and the 

brain activity i.e. the EEG brainwaves. It might be a good idea to include another 

equipment to read muscle activity, spinal cord activity etc. Then, the knowledge of these 

muscle and spinal cord activities could be used to discover the understanding of the 

relationship among the brain, muscle, and spinal cord activities. 

 Some other available machine learning and model development methods such as the 

SVM, the Genetic algorithms, and the artificial immune system etc. could be applied to 

make a comparison among them.  

 This research project has focused on a primitive HMI task i.e. the target hitting task. It 

would be a good idea to extend to the other types / more complicated types of task e.g. 

a pendulum balancing task, a task based on the decision making etc.  
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 A future investigation based on a physical machine may give the more realistic HMI. 

However, the physical HMI may introduce some safety issues, complexities in the 

research procedure, efforts and time to conduct a research etc. 

 A future work could increase the number of participants with the balance between the 

two genders i.e. male-female which may improve the investigation results. 

 This research project has focused on the performance evaluation part of the HAM 

concept. A future work could concentrate on a closed loop HAM adaptive machine i.e. 

the intention recognition, the performance evaluation, and the adaptive assistance.  

 A static design of the computer game difficulty may introduce boredom / anxiety to a 

player. The concept of the HAM adaptive machine especially the performance 

evaluation could be applied to make a more challenging computer game.  
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 Appendix 

A. Consent form for a low level control of 

pendulum-driven robot to measure 

performance among participants 

Research Ethics Consent Form 

Project title: Human adaptive mechatronics (HAM) based human robot interactions (HRI) through 

an adaptive virtual simulation platform 

Name of the researcher: Keattikorn Samarnggoon, Research Student, Faculty of Computing, 

Engineering and Technology 

Name of the experiment: A low level control of pendulum-driven robot to measure performance 

among participants 

The experiment:  

Description 

A participant will be asked to conduct a low level control of the pendulum-driven robot in a 

virtual environment platform using the provided joystick interface. The control information and 

internal parameters of the simulation will be collected for further analyses. Video recording of the 

participant during the experiment will be made and it will be used as a reference when analysing the 

acquired data. 

Task 

A simple target reaching task will be given to the participant. The participant will learn to 

control the pendulum-driven robot in virtual environment.  

Protocol 

1. The participant read and signs the consent form. 
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2. The experiment environment is set up and prepared.  

3. The participant answers pre-experiment questionnaires. 

4. The participant will be explained and demonstrated about the simulation software and the 

interface that will be used. 

5. The first trial, 20 seconds will be given to familiarize with the platform and learn to control 

the robot. 

6. Main trials will last 20 seconds for each trial, the participant will be asked to control the 

robot to the right/left as far as possible within 20 seconds. 

7. 3 trials for right side, 3 trials for left side 

 

Please tick in the boxes below: 

 I have read all the information provided regarding the experiment description, task, and 

protocol which will be conducted during your participation. 

 I agree to participate in this experiment. 

Name of participant: 

………………………………………………………………………Signature………………………

……Date……………. 

Name of researcher: 

………………………………………………………………………Signature………………………

……Date……………. 

Please answer to the questionnaires behind this page. 

Pre-experiment questionnaires 

1. What is gender? 

 Male 

 Female 

 Not applicable 

2. How old are you? 

 Below 20  

 21-25 

 26-30 

 31-35 

 36-40 

 41-45 

 46-50 

 Above 50 
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3. What is your handedness? (Choose one) 

 Righty 

 Lefty 

 Comfortable with either side 

4. Do you know Physics like Newton laws of motion?  

 Yes  No 

5. Do you know pendulum? 

 Yes  No 

6. Do you know inverted pendulum? 

 Yes  No  

7. Do you know the principle behind the inverted pendulum-driven robot? 

 Yes  No 

8. Have you conducted this experiment before? 

 Yes  No 
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B. Consent form for EEG target hitting task 

experiment 

Research Ethics Consent Form 

Project title: Human adaptive mechatronics (HAM) based human robot interactions (HRI) through 

an adaptive virtual simulation platform 

Name of the researcher: Keattikorn Samarnggoon, Research Student, Faculty of Computing, 

Engineering and Technology 

Name of the experiment: An EEG based experimentation conduct on a HAM simulation platform 

The experiment:  

Description 

A participant will be asked to conduct the given experiment e.g. target hitting task while 

having an Emotiv EPOC headset installed on his / her head in order to record the EEG brainwaves 

during the interaction with the given task / operation. 

Please tick in the boxes below: 

 I have read all the information provided regarding the experiment and task description which 

will be conducted during your participation. 

 I agree to participate in this experiment. 

Name of participant: 

………………………………………………………………………Signature………………………

……Date……………. 

Name of researcher: 

………………………………………………………………………Signature………………………

……Date……………. 
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C. Emotiv EPOC electrode placement 

coordinates 

The localisation or coordinates of the electrodes of the Emotiv EPOC headset. 

Number labels ref theta radius X Y Z sph_theta sph_phi sph_radius type 

1 AF3 -23 0.411 0.885 0.376 0.276 23 16 1 1 1 

2 F7 -54 0.511 0.587 0.809 -0.0349 54 -2 1 2 1 

3 F3 -39 0.333 0.673 0.545 0.5 39 30 1 3 1 

4 FC5 -69 0.394 0.339 0.883 0.326 69 19 1 4 1 

5 T7 -90 0.511 0 0.999 -0.0349 90 -2 1 5 1 

6 P7 -126 0.511 -0.59 0.809 -0.0349 126 -2 1 6 1 

7 O1 -162 0.511 -0.95 0.309 -0.0349 162 -2 1 7 1 

8 O2 162 0.511 -0.95 -0.309 -0.0349 -162 -2 1 8 1 

9 P8 126 0.511 -0.59 -0.809 -0.0349 -126 -2 1 9 1 

10 T8 90 0.511 0 0.999 -0.0349 -90 -2 1 10 1 

11 FC6 69 0.394 0.34 -0.883 0.326 -69 19 1 11 1 

12 F4 39 0.333 0.67 -0.545 0.5 -39 30 1 12 1 

13 F8 54 0.511 0.59 -0.809 -0.0349 -54 -2 1 13 1 

14 AF4 23 0.411 0.89 -0.376 0.276 -23 16 1 14 1 

 

D. Circle to circle intersection algorithm 

         Boolean CircleCircleIntersection ( int c1x , int c1y , 

         int r1 , 

         int c2x , int c2y , int r2 ) 

         { 

              int lx = c1x - c2x ; 

              int ly = c1y - c2y ; 

              int ll = lx * lx + ly * ly ; 

              int r1_plus_r2 = r1 + r2 ; 

 

              if ( ll > ( ( r1_plus_r2 ) * ( r1_plus_r2 ) ) ) 

              { 

                   return false ; 

              } 

              return true ; 

         } 
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E. Box plot 

A box plot in this research is based on boxplot function from MATLAB. The elements of a box 

plot are shown in Figure Appendix.1 . The centre mark in the box is the median. The edges of 

the box are 25th and 75th percentiles. Red crossed points outside the box are outliers.  

 

Figure Appendix.1 Box plot elements. 

F. Information theory 

The information theory is used to calculate the amount of information transfer / convey from 

one place to another e.g. the concept of human-robot information pipeline in Section 2.5.6. The 

amount of information, conveyed by the probability of events having the same degree of 

occurrence , equals to log2 𝑁 where N is number of the events [228]. The amount of information 

is expressed in bits. The information transmission rate is expressed in bits/second. In other 

words, this information conveying can be described in computing science using a binary 

representation where 1 bit of binary digit can convey two possible outcomes which are 0 or 1. 
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In general, 2n different possibilities (equally-likely of occurrence) can be expressed using n bits 

of binary digits.  

𝐻𝑠 = log2 𝑁  𝑏𝑖𝑡𝑠 (A.1) 

For the case of unequal probability events, the information convey is calculated using the inverse 

of the corresponding probability. 

𝐻𝑠 = log2

1

𝑃
 𝑏𝑖𝑡𝑠 (A.2) 

For a series of information, the average information conveyed can be computed using 

summation of the above equation multiply by the corresponding probability. 

𝐻𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑃𝑖 [log2

1

𝑃𝑖
]

𝑛

𝑖=1

 𝑏𝑖𝑡𝑠 (A.3)  

Information capacity of a channel 

The information capacity I of a communication channel is defined as (A.4) where W is a 

bandwidth, S is a signal, and N is a noise [71], [229], [230]. 

𝐼 = 𝑊 log2

𝑆 + 𝑁

𝑁
 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 (A.4)  

Entropy of information 

An entropy of information is a measure of uncertainty of the information given the probability 

of the events. A standard entropy calculation is defined as follows. 

𝐻(𝑋) = 𝐸𝑋[𝐼(𝑥)] = ∑ −𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 (A.5)  

In the case of binary information representation, entropy can be calculated as follows. 

𝐻(𝑋) = − ∑ 𝑝(𝑥) log2 𝑝(𝑥)

𝑥∈𝑋

− (1 − 𝑝(𝑥)) log2 1 − 𝑝(𝑥) (A.6)  

The information transmission rate is defined as follows. 
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Base equation 𝐼 = W log2 [1 +
𝑆(𝑓)

𝑁(𝑓)
] (A.7) 

Continuous 𝐼 = ∫ log2 [1 +
𝑆(𝑓)

𝑁(𝑓)
] 𝑑𝑓

𝑊

0

 (A.8)  

Discrete 𝐼 = ∑ log2 [1 +
𝑆𝑖(𝑓)

𝑁𝑖(𝑓)
]

𝑊

𝑖=0

 (A.9)  

S is a signal spectrum while N is a noise spectrum. W is a channel capacity, or bandwidth. 
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G. Extremum – local minima and maxima 

An absolute maximum or an absolute minimum is an absolute extremum of a function. 

Sometimes they are referred to as a global maximum or a global minimum, respectively. Not 

every function has both an absolute maximum and an absolute minimum. As shown in Figure 

Appendix.2, a function in Figure Appendix.2 (a) has only an absolute minimum whilst a 

function in Figure Appendix.2 (b) has only an absolute maximum.  

 

(a) 

 

(b) 

Figure Appendix.2 Functions with no absolute extremum [231]. 

For a function 𝑓 defined on a set 𝑆 of real numbers and a number 𝑐 𝜖 𝑆. 

The absolute maximum and absolute minimum can be defined as  

𝑓(𝑐) is the absolute maximum of 𝑓 on 𝑆 if 𝑓(𝑐) ≥ 𝑓(𝑥) for all 𝑥 𝜖 𝑆 and 

𝑓(𝑐) is the absolute minimum of 𝑓 on 𝑆 if 𝑓(𝑐) ≤ 𝑓(𝑥) for all 𝑥 𝜖 𝑆 

A local maximum or a local minimum, sometimes referred to as a relative maximum or a relative 

minimum, respectively, is a local extremum in a given neighbourhood, as shown in Figure 

Appendix.3.  
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The local maximum and local minimum can be defined as 𝑓(𝑐) is the local maximum of 𝑓 if 

𝑓(𝑐) ≥ 𝑓(𝑥) for all 𝑥 in some open interval containing 𝐶 . 𝑓(𝑐) is the local minimum of 𝑓 if 

𝑓(𝑐) ≤ 𝑓(𝑥) for all 𝑥 in some open interval containing 𝐶. 

A point 𝑐  where its derivative 𝑓′(𝑐) is zero or undefinable is called a critical point of the 

function. The local extrema always occur at the critical point. A local extremum is not necessary 

to be equal to an absolute extremum of a function, whereas an absolute extremum and a local 

extremum are the same value in the given neighbourhood.  

If a continuous function is defined in a closed interval [𝑎, 𝑏], an absolute extremum must be 

occurred at a boundary point of the interval (at point 𝑎 or 𝑏) or a critical point. 

If a function is a piecewise-defined function, all of the absolute extrema must be defined and 

then compared for the absolute largest or smallest value. 

 

Figure Appendix.3 Local extrema of a function [231]. 
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H. Preliminary EEG investigation results 
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Target Non-target 

 

(a) The F3 (blue) and AF4 (green) ERP responded to the target auditory event. 

 

(b) The AF3 (blue) and AF4 (green) ERP from the non-target event. 
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(c) The AF3 ERP image responded to the target auditory event. 

 

(d) The AF3 ERP image responded to the non-target event. 
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(e) The AF4 ERP image responded to the target auditory event. 

 

(f) The AF4 ERP image responded to the non-target event. 

Figure Appendix.4 The comparison between targets and non-target response for experiment 1. 
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Target Non-target 

 

(a) The AF3 (blue) and AF4 (green) ERP responded to the target auditory 

event. 

 

(b) The AF3 (blue) and AF4 (green) ERP from the non-target event. 
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(c) The AF3 ERP image responded to the target auditory event. 

 

(d) The AF3 ERP image responded to the non-target event. 
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(e) The AF4 ERP image responded to the target auditory event. 

 

(f) The AF4 ERP image responded to the non-target event. 

 

Figure Appendix.5 The comparison between targets and non-target response for experiment 2. 
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Target Non-target 

 

(a) The AF3 (blue) and AF4 (green) ERP responded to the target auditory 

event. 

 

(b) The AF3 (blue) and AF4 (green) ERP from the non-target event. 
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(c) The AF3 ERP image responded to the target auditory event. 

 

(d) The AF3 ERP image responded to the non-target event. 
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(e) The AF4 ERP image responded to the target auditory event. 

 

(f) The AF4 ERP image responded to the non-target event. 

 

Figure Appendix.6 The comparison between targets and non-target response for experiment 3. 
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Target Non-target 

 

(a) The AF3 (blue) and AF4 (green) ERP responded to the target auditory 

event. 

 

(b) The AF3 (blue) and AF4 (green) ERP from the non-target event. 
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(c) The AF3 ERP image responded to the target auditory event. 

 

(d) The AF3 ERP image responded to the non-target event. 
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(e) The AF4 ERP image responded to the target auditory event. 

 

(f) The AF4 ERP image responded to the non-target event. 

 

Figure Appendix.7 The comparison between targets and non-target response for experiment 4. 
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Target Non-target 

 

(a) The AF3 (blue) and AF4 (green) ERP responded to the target auditory 

event. 

 

(b) The AF3 (blue) and AF4 (green) ERP from the non-target event. 
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(c) The AF3 ERP image responded to the target auditory event. 

 

(d) The AF3 ERP image responded to the non-target event. 

-24.9

-12.5

0

12.5

24.9

T
ri

al
s

AF3

1000

-1000  -500   0   500  1000  1500

-3

-2
-1
0

1
2
3

Time (ms)


V

-23.3

-11.7

0

11.7

23.3

T
ri

al
s

AF3

1000

-1000  -500   0   500  1000  1500

-0.8

-0.4

0

0.4

0.8

1.2

Time (ms)


V



 

 

Page 287 of 319 

 

(e) The AF4 ERP image responded to the target auditory event. 

 

(f) The AF4 ERP image responded to the non-target event. 

Figure Appendix.8 The comparison between targets and non-target response from all the 4 experiments. 
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(a) Target (the ERP responded to a mouse click) 

 

(b) Non-target 

Figure Appendix.9 The brain responses to (a) target and (b) non-target (experiment 1). 
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(a) Target (the ERP responded to a mouse click) 

 

(b) Non-target 

Figure Appendix.10 The brain responses to (a) target and (b) non-target (experiment 2). 
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(a) Target (the ERP responded to a mouse click) 

  

(b) Non-target 

Figure Appendix.11 The brain responses to (a) target and (b) non-target (experiment 3). 
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(a) Target (the ERP responded to a mouse click) 

  

(b) Non-target 

Figure Appendix.12 The brain responses to (a) target and (b) non-target (experiment 4). 
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I. The modelling results based on each of the 

target hitting task performance indicators 

(RT, MT, DT, MA, HA, IP) 

I.1 RT modelling result  

 

Figure Appendix.13 The 10-time-10-fold cross validation results for RT as a performance 

indicator. 
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Table Appendix.1 The confusion matrix of the RT classification model with a single hidden neuron. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

588 (TP) 

26.0% 

351 (FN) 

15.5% 

62.6% (TPR) 

37.4% (FNR) 

High 

545 (FP) 

24.1% 

775 (TN) 

34.3% 

58.7% (TPR) 

41.3% (FNR) 

  51.9% (TNR) 

48.1% (FPR) 

68.8% (TNR) 

31.2% (FPR) 

60.3% (AC) 

39.7% (Error) 
 

 

(a) The precision-recall curve from the RT model training.
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(b) The ROC curve from the RT model training. 

Figure Appendix.14 The RT model training performance curves (a) PR curve (b) ROC curve. 
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Table Appendix.2 The confusion matrix of the RT blind test classification model with a single 

hidden neuron. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

72 (TP) 

28.3% 

51 (FN) 

20.1% 

58.5% (TPR) 

41.5% (FNR) 

High 

55 (FP) 

21.7% 

76 (TN) 

29.9% 

58.0% (TPR) 

42.0% (FNR) 

  56.7% (TNR) 

43.3% (FPR) 

59.8% (TNR) 

40.2% (FPR) 

58.3% (AC) 

41.7% (Error) 
 

 

(a) The precision-recall curve from the RT model blind testing. 
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(b) The ROC curve from the RT model blind testing. 

Figure Appendix.15 The RT blind testing performance curves (a) PR curve (b) ROC curve. 
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I.2 MT modelling result 

 

Figure Appendix.16 The 10-time-10-fold cross validation results for MT as a performance 

indicator. 

  

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Number of hidden neurons

10-time-10-fold average classification accuracy when using

movement time (MT) as a performance indicator

Average training accuracy Average testing



 

 

Page 298 of 319 

 

Table Appendix.3 The confusion matrix of the MT classification model with the 2 hidden neurons. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

955 (TP) 

42.3% 

135 (FN) 

6.0% 

87.6% (TPR) 

12.4% (FNR) 

High 

175 (FP) 

7.7% 

994 (TN) 

44.0% 

85.0% (TPR) 

15.0% (FNR) 

  84.5% (TNR) 

15.5% (FPR) 

88.0% (TNR) 

12.0% (FPR) 

86.3% (AC) 

13.7% (Error) 
 

 

(a) The precision-recall curve from the MT model training. 
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(b) The ROC curve from the MT model training. 

Figure Appendix.17 The MT model training performance curves (a) PR curve (b) ROC curve. 
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Table Appendix.4 The confusion matrix of the MT blind test classification model with the 2 hidden 

neurons. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

92 (TP) 

36.2% 

36 (FN) 

14.2% 

71.9% (TPR) 

28.1% (FNR) 

High 

35 (FP) 

13.8% 

91 (TN) 

35.8% 

72.2% (TPR) 

27.8% (FNR) 

  72.4% (TNR) 

27.6% (FPR) 

71.7% (TNR) 

28.3% (FPR) 

72.0% (AC) 

28.0% (Error) 
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(a) The precision-recall curve from the MT model blind testing. 

 

(b) The ROC curve from the MT model blind testing. 

Figure Appendix.18 The MT blind testing performance curves (a) PR curve (b) ROC curve. 
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I.3 DT modelling result 

 

Figure Appendix.19 The 10-time-10-fold cross validation results for DT as a performance 

indicator. 

Table Appendix.5 The confusion matrix of the DT classification model with a single hidden neuron. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

1040 (TP) 

46.0% 

86 (FN) 

3.8% 

92.4% (TPR) 

7.6% (FNR) 

High 

92 (FP) 

4.1% 

1041 (TN) 

46.1% 

91.9% (TPR) 

8.1% (FNR) 

  91.9% (TNR) 

8.1% (FPR) 

92.4% (TNR) 

7.6% (FPR) 

92.1% (AC) 

7.9% (Error) 
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(a) The precision-recall curve from the DT model training. 

 

(b) The ROC curve from the DT model training. 

Figure Appendix.20 The DT model training performance curves (a) PR curve (b) ROC curve. 
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Table Appendix.6 The confusion matrix of the DT blind test classification model with a single 

hidden neuron.  

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

93 (TP) 

36.6% 

32 (FN) 

12.6% 

74.4% (TPR) 

25.6% (FNR) 

High 

34 (FP) 

13.4% 

95 (TN) 

37.4% 

73.6% (TPR) 

26.4% (FNR) 

  73.2% (TNR) 

26.8% (FPR) 

74.8% (TNR) 

25.2% (FPR) 

74.0% (AC) 

26.0% (Error) 
 

 

(a) The precision-recall curve from the DT model blind testing. 
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(b) The ROC curve from the DT model blind testing. 

Figure Appendix.21 The DT blind testing performance curves (a) PR curve (b) ROC curve. 
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I.4 MA modelling result 

 

Figure Appendix.22 The 10-time-10-fold cross validation results for MA as a performance 

indicator. 

Table Appendix.7 The confusion matrix of the MA classification model with a single hidden neuron. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

678 (TP) 

30.00% 

388 (FN) 

17.20% 

63.6% (TPR) 

36.4% (FNR) 

High 

452 (FP) 

20.00% 

741 (TN) 

32.80% 

62.1% (TPR) 

37.9% (FNR) 

  60.0% (TNR) 

40.0% (FPR) 

65.6% (TNR) 

34.4% (FPR) 

62.8% (AC) 

37.2% (Error) 
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(a) The precision-recall curve from the MA model training. 

 

(b) The ROC curve from the MA model training. 

Figure Appendix.23 The MA model training performance curves (a) PR curve (b) ROC curve. 
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Table Appendix.8 The confusion matrix of the MA blind test classification model with a single 

hidden neuron. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

81 (TP) 

31.90% 

38 (FN) 

15.00% 

68.1% (TPR) 

31.9% (FNR) 

High 

46 (FP) 

18.10% 

89 (TN) 

35.00% 

65.9% (TPR) 

34.1% (FNR) 

  63.8% (TNR) 

36.2% (FPR) 

70.1% (TNR) 

29.9% (FPR) 

66.9% (AC) 

33.9% (Error) 
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(a) The precision-recall curve from the MA model blind testing. 

 

(b) The ROC curve from the MA model blind testing. 

Figure Appendix.24 The MA blind testing performance curves (a) PR curve (b) ROC curve. 
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I.5 HA modelling result 

 

Figure Appendix.25 The 10-time-10-fold cross validation results for HA as a performance 

indicator. 

Table Appendix.9 The confusion matrix of the HA classification model with 8 hidden neurons. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

731 (TP) 

32.3% 

423 (FN) 

18.7% 

63.3% (TPR) 

36.7% (FNR) 

High 

408 (FP) 

18.0% 

699 (TN) 

30.9% 

63.1% (TPR) 

36.9% (FNR) 

  64.2% (TNR) 

35.8% (FPR) 

62.3% (TNR) 

37.7% (FPR) 

63.2% (AC) 

36.8% (Error) 
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(a) The precision-recall curve from the HA model training. 

 

(b) The ROC curve from the HA model training. 

Figure Appendix.26 The HA model training performance curves (a) PR curve (b) ROC curve. 
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Table Appendix.10 The confusion matrix of the HA blind test classification model with 8 hidden 

neurons. 

  Predicted Class  

  Low High  

A
ct

u
al

 C
la

ss
 Low 

86 (TP) 

34.1% 

58 (FN) 

23.0% 

59.7% (TPR) 

40.3% (FNR) 

High 

41 (FP) 

16.3% 

67 (TN) 

26.6% 

62.0% (TPR) 

38.0% (FNR) 

  67.7% (TNR) 

32.3% (FPR) 

53.6% (TNR) 

46.4% (FPR) 

60.7% (AC) 

39.3% (Error) 
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(a) The precision-recall curve from the HA model blind testing. 
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(b) The ROC curve from the HA model blind testing. 

Figure Appendix.27 The HA blind testing performance curves (a) PR curve (b) ROC curve. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC (AUC=0.62419)

False positive rate

T
ru

e 
p
o
si

ti
v
e 

ra
te

 

 

Low

High



 

 

Page 315 of 319 

I.6 IP modelling result 

 

Figure Appendix.28 The 10-time-10-fold cross validation results for IP as a performance 

indicator. 

Table Appendix.11 The confusion matrix of the IP classification model with the 6 hidden neurons. 
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33.7% 

321 (FN) 

14.2% 

70.3% (TPR) 

29.7% (FNR) 

High 

370 (FP) 

16.4% 

807 (TN) 

35.7% 

68.6% (TPR) 

31.4% (FNR) 

  67.3% (TNR) 

32.7% (FPR) 

71.5% (TNR) 

28.5% (FPR) 

69.4% (AC) 

30.6% (Error) 
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(a) The precision-recall curve from the IP model training. 

 

(b) The ROC curve from the IP model training. 

Figure Appendix.29 The IP model training performance curves (a) PR curve (b) ROC curve. 
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Table Appendix.12 The confusion matrix of the IP blind test classification model with the 6 hidden 

neurons. 

  Predicted Class  
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(a) The precision-recall curve from the IP model blind testing. 

 

(b) The ROC curve from the IP model blind testing. 

Figure Appendix.30 The IP blind testing performance curves (a) PR curve (b) ROC curve. 
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Real time Virtual Simulation of an Underactuated 
Pendulum-Driven Capsule System 

Keattikorn Samarnggoon and Hongnian Yu 

 
Abstract— In this paper, a real time virtual simulation 
framework which is the foundation for studying human 
adaptive mechatronics (HAM) is proposed. This framework 
allows researchers to interact and experiment with the system 
in real time. Thus, motion control patterns can be identified 
and learned with, for example, a heuristic strategy. The 
prototype is developed with an underactuated pendulum-
driven capsule robot model. Motion control patterns are 
identified and presented. The experimentation results 
demonstrate the proposed concept. 

Keywords-human adaptive mechatronics, pendulum capsule 
robot, underactuated systems, virtual environment, real time 
system (key words) 

I.  INTRODUCTION 
Human adaptive mechatronics (HAM) is defined as an 

intelligence human machine system in which the system can 
be self-adapted intelligently based on the current user 
competency level to obtain optimum performance [1–5]. To 
achieve the HAM requirements, there must be several 
mechanisms working together. The main components of a 
HAM system are human operators, the intelligent 
discrimination of operator actions, competency evaluation 
metrics, human machine interaction mechanisms, and the 
machine system. 

The work presented in this paper is a part of HAM 
research which covers a real time virtual system for 
understand the functions of human operators in HAM which 
has many invaluable advantages. This kind of virtual 
simulation systems running in real time allows researchers to 
experiment with dynamic of the modelled system in an 
immediate and interactive manner. Robotic researchers 
usually design mechanical systems by modelling 
mathematical relation of system parts but there exists 
troublesome to find control patterns for human operating a 
robot. This issue can be overcome by the help of real time 
virtual simulation systems. Motion control patterns could be 
identified by trial and error (heuristic) experimentation 
strategies using this virtual system. Moreover, apart from the 
robot mechanical simulation itself, dynamics of the 
environment can also be integrated into the simulation, for 
examples, different frictions of ground areas, dynamic of 
fluid while controlling robot movements, and capsule bots 
moving on a simulated deformable surface in medical 
application robotics.  

Virtual training is also capable with this real time 
simulation based on the human-in-the-loop concept of 
mechanical systems. Training scenarios can be implemented 
with little effort or at no cost. Measurement of performance 
improvements can also be done from the feedback within the 
environments. This allows users to practice as much as they 
want. As a result, the user learning curve could be improved 

drastically. Regarding training environment with virtual real 
time simulation, it is a novel concept called human adaptive 
mechatronics that could further help optimise the learning 
curve of a user while training by its assisting behaviours.  

The main contributions of the paper are 
 Proposing a real time virtual human and machine 
interactions framework. The proposed framework will be a 
basis for development and realisation of the HAM concept. 

 Developing a human heuristic learning strategy for 
learning motion control patterns. 

 Conducting the experimental tests to demonstrate the 
framework and the HAM concepts. 

II. RELATED WORKS 
Human is considered the main component of the HAM 

systems because the aim of this system is a combination of 
an automatic control and adaptive manual control system 
which is operated by humans. Normally, humans are 
complex and unpredictable, but if they are involved in a 
goal oriented task, it is possible to recognise their intentions. 
Human has been long studied in many related fields e.g., 
neurophysiological, neuroscience, cognitive science, and 
psychophysical. In neuroscience study, Haynes and 
colleague successfully read human covert intention by 
decoding brain images from various sections simultaneously 
[6], [7]. The pattern recognition technique is used in 
decoding those human intentions by discriminate patterns 
from spatial information from various brain activity areas. 
This method of using spatial brain information is claimed to 
be more accurate than analysing only specific area of the 
human brain. The reason is that when human performing an 
activity, several of brain areas are working together 
according to its functions. Additionally, human intentions 
are influenced from personal experiences. This is indicated 
by Blakemore and Decety analysis of the evidences of brain 
activity [8]. The evidences show that when human perceive 
biological motions there exists brain activity that try to 
simulate these motions internally. As a consequence, this 
internal simulation would reflect as intentions in future 
actions. This basically works in the same way as training 
activity to improve personal experience.  

Human has good abilities to learn, predict, and process 
information. However, these capabilities are depended on 
individual. A task that is performed by different persons 
might return different results because of individual ability. 
Individual ability is usually denoted by word ‘skill’ and the 
outcome from using skill to perform an action is called 
‘performance’. Learning capability is another magnificence 
aspect of human being in which humans have learnt to 
improve their skills and as an overall result i.e., overall 
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performance improvement. The most important part that 
ruled all of these capabilities is the thinking inside the 
human brain. Consequently, as mentioned earlier, internal 
thinking would reflect out as the intentions to do a specified 
task. This intended output actions could be identified by 
pattern recognition techniques. The intention recognition is 
also considered as part of the HAM system. 

For the intelligent machine to serve or adapt to human 
appropriately, it needs to know human intentions by 
estimating from various kinds of related information. 
Fortunately, sensor technologies have advanced 
significantly along with the matured field of pattern 
recognition. These two combinations are essential for online 
human intention recognition. Observations and 
measurements from sensors are the inputs to pattern 
recognition algorithms to identify or estimate human 
intention at time. There exist numbers of information to be 
monitored and measured which is depended on the type of 
tasks. For examples, patterns of force signals exert on an 
arm gripper are recognised to discriminate human operator 
actions when performs industrial weight loading operation 
using Hidden Markov Models [9], motion and velocity 
pattern profiles are the information used to classify human 
actions in telemanipulation tasks [10]. The identified actions 
are useful for switching among virtual fixture models which 
help in different mode of operations. Once the machine has 
ability to identify human intention in which step the human 
operator is performing. It is functionality of the next 
component of the HAM system to evaluate how well the 
performing competency. 

The aim of competency evaluation is to measure how 
well the operator is performing a step of the task so that the 
next component of the HAM system can make adaptations 
for assisting the operator. A generic performance evaluation 
framework, human performance index (HPI), is proposed in 
[11]. The framework consists of two layers of evaluation. 
The first layer is the collection of performance variables that 
evaluate raw competency of actions. The second layer is the 
weighted conditional integral of those variables in the first 
layer for specific area of measurement e.g. speed, and 
accuracy. This layer is called performance criterions. Final 
performance conclusion, HPI, is then weighted and 
accumulated from the second layer values. On the other 
hand, this HPI measurement concept can be viewed as 
grading evaluation in education such as school. Evaluations 
such as paper works, examinations, and attendance are 
scored. These scores are weighted with different percentage 
values according to its importance. The subject’s grade is 
calculated from these values. Grading point average (GPA) 
is finally calculated from weighted credits of each subject. 
Therefore, the HPI is viewed as the GPA while performance 
criterions are viewed as subjects, and raw evaluations are 
viewed as those scorings. In addition, this HPI framework 
could be used in two modes, open form and closed form. 
The open form is located at the second layer in which these 
performance criterions can be used in any applicable future 
closed form. The closed form is located at the final 

accumulation evaluations, HPI or GPA. Performance 
criterions such as speed and accuracy are the example of 
competency measurement metric. This metric is a basis for 
the next step of the HAM system, adaptive tuning. 

Intelligent adaptation of the HAM system is tuned based 
on current operator competency. There are two types of 
adaptation i.e., passive and active adaptation. Tuning 
parameters inside the machine without interfering the 
operator is a passive adaptation [12]. An active adaptation 
works in the opposite way. It actively assists the operator 
by, as an example, pushing small amount of force to the 
controller grip to help achieving the aimed intention easily 
[13–15].  

The basis system model for this paper is an underactuated 
modelling approach and a 6-step motion control strategy to 
develop a desired driving profile studied in [16].  

Underactuated mechanical systems are a system that has 
less control inputs than degrees of freedom of the system to 
be controlled. This system may also occur in a full actuated 
system because it losses some freedom of control due to 
some reasons such as accident or system failure.  

III. PROPOSED REAL TIME VIRTUAL SIMULATION SYSTEM 

 
Figure 1. Diagram of the proposed real time virtual simulation based 

on HAM. 
In this paper, the framework for the human machine 

controlling system in real time virtual simulation 
environment is proposed. Fig.1 shows a diagram and 
components of the system. The human operator interacts 
with a real time virtual simulation via the provided 
interfaces while perceiving information from the controlling 
system through a display monitor. It is the human operator’s 
brain that processes information and orders the muscles to 
take actions to control an interface to manipulate the 
machine for accomplishing the desired task. Information is 
retrieved through various perception channels, e.g., eyes 
looking at meaningful data on the display screen, ears 
hearing the alert sound signal, and feeling of touching 
control interfaces. The human operator then observes, 
interprets, and processes this information and reacts with 

569



appropriate actions with the aimed goal in mind. Overall, 
these activities can be viewed as a human-in-the-loop 
control scheme and they are working together to be a 
system. Lacks of one of these components could cause the 
system failure. 

The human block in the proposed framework diagram 
(Fig.1) acts as a controller that controls the underlying 
virtual simulation system. Loop of brain processing, 
perceptions, and actions that related to the human block is 
performed simultaneously. To control the system, the 
human operator first needs to know the goal of the 
controlling task. Then, the control strategy is planned to 
reach the goal. For example, the heuristic strategy is one of 
many strategy selections. Based on the planned strategy, 
series of actions are performed repeatedly. Outcome of each 
action may not be as planned but it can be adapted 
according to the situation because of adaptability of human. 
This process can be viewed as a learning process to control 
the system. It is individual skills that affect all blocks in the 
human related loop i.e., skill for perceptions, skill for 
information processing, and skill for conducting actions. 
These inputs (perceptions), outputs (actions), and internal 
flows (brain activities) work as a control system that 
interacts with the underlying virtual simulation 
environment. 

There is a ‘task’ block located in conjunction between a 
human controller and the system (Fig.1). Task 
understanding is needed to be given first so that the human 
operator is able to plan actions ahead in mind. For example, 
the given task as controlling a robot to the right, an operator 
might think ahead about how to control to reach the given 
goal. Thus, it is very important to describe the task goal to 
the human operator. 

The proposed real time virtual simulation environment 
needs software components to compose the system. These 
components are responsible to simulate the dynamical 
system, in this case the pendulum-driven capsule robot, to 
interface with the input system, to render the outputs to the 
display interface, and in the future functionalities; to 
recognise human intention and to calculate assisted tuning 
parameters and forces. The blocks component of this 
simulation environment from the software architecture point 
of view is shown in Fig.2. 

Software architecture design for this proposed system in 
Fig.2 is designed centred on the following system functional 
requirements: 1) simulating dynamics in real time, 2) 
allowing the user to interact with the simulated dynamic via 
some controlling interfaces, 3) displaying adequate 
information for the user to perceive, 4) recognising and 
adapting the system behaviour based on the current user’s 
competency, and 5) logging and saving experiment data for 
future analysis. It starts with initial conditions and enters the 
main simulation loop with the aimed sampling time step. 
The simulation loop continues running until the software is 
terminated. Inside of the simulation loop, there are particular 
components executing to serve the whole functionalities of 
this virtual system. The ordinary differential equation 

solver, ODE Solver block, is used for solving ordinary 
differential equations with the implemented method and 
algorithm. The equations are based on the mathematical 
model of the mechanical system. The input system is 
responsible to handle an interface between the human 
operator and the virtual system. The input values from the 
device are transformed into the model’s input at every single 
step of simulation loops. The display output is drawn by the 
underlying graphic rendering system to visualize the 
simulating environment. Additional features such as the log 
system and the real time oscilloscope alike, the graphing 
system are essential for analysing immediate simulating 
values as well as logged values for later analysis. 
Realisation of HAM cannot be achieved without the 
following components; adaptation computation based on 
human intention and its corresponding competency, 
adaptation computation which is divided into passive and 
active tuning (Shaded blocks in Fig.2). 

ODE Solver

Simulation loop

(Time Step)
Rendering System

Saving Logs

Input System

Graphing System

Logging Sytem

Additional Features

END

The Model

Initial Conditions

START

Passive adaptive

Active adaptive

Adaptation
Computation

 
Figure 2. The software architecture. 

IV. MODEL OF THE DYNAMICAL SYSTEM 
The schematic diagram of the underactuated pendulum-

driven capsule system [16] shown in Fig.3 is adopted as a 
machine to the proposed virtual simulation system. M is 
mass of a capsule body. The mass m is on the top of the 
weightless link L. The link can rotate 360 degrees around 
the centre. One dimensional movement is defined by a 
position denoted by x and friction f is modelled to point in 
an opposite direction of the body movement base on the 
Coulomb’s friction model. The system is driven only by the 
force from the movement of the ball which is exerted by 
input torque τ and its moving momentum that causes forces. 
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The movement is possible because of both pendulum force 
and surface friction force. 

From Fig.3, the ball position is defined in terms of cart 
position x at the centre as shown in equation (1). Then, the 
ball position equation is differentiated to get velocity and 
acceleration as in equations (2) and (3) respectively. 

  (1) 
 (2) 

    (3) 

Equation (3) and Newton’s law of motion give forces 
from motion of pendulum ball in both x and y directions as 
follows. 

 , and  

 

Also, the input torque to the joint is calculated as follows. 

  
 ;     where  

 
 

 
Figure 3. Pendulum-driven capsule system. 

From above equations, we have  

 

where   
 

 
Equations (4) and (5) are the system equations with the 

single control input torque τ.  

V. IMPLEMENTATION OF REAL TIME SIMULATION 
To conduct real time simulation, the forth order Runge 

Kutta numerical approximation method of ODEs [17] is 
used. From the system model (4) and (5), we have 

 

 

 

 

 
      (8) 
      (9) 

where  

Equations (6), (7), (8), and (9) are then solved by the 
forth order Runge Kutta numerical approximation 
algorithm.  

An implementation of this real time virtual simulation 
system is developed using the industry leading application 
programming interface named Microsoft XNA and C# 
programming language. Sampling time is chosen at 10ms 
although it might change depending on the system 
performance but the system implementation is coded to 
compensate the issue by using elapsed time of each loop as 
a time step. The system parameters are as follows; 
M=0.5kg, m=0.05kg, L=0.3m, g=9.81m/s2, μ=0.01 N*m/s. 

The proposed real time virtual simulation system is 
controlled by the gaming joystick. The only system input is 
the amount of torque applied to the joint. The amount of 
torque can be varied by pushing an analogue stick in which 
its value is range between -1.0 and 1.0 N. In this case, the 
mapping is straightforward i.e. [-1.0, 1.0], value from an 
analogue stick is mapped to the input torque, τ, to drive the 
underactuated pendulum-driven capsule robot. However, it 
is noticed that the aimed system time step is 10ms. 
Therefore, the torque pushed by the joystick in real time is 
applied to the system at every time step of the system loop.  

The screenshot of the simulation display is shown in 
Fig.4 when the system is simulated. The capsule body and 
its inner swinging shaft with the attached pendulum ball are 
displayed for the user to observe the capsule robot. Also, 
additional features for output information data are shown as 
online oscilloscope like a graphing system for both user 
observation and validation purposes.  

Observations and manual controls are an inevitable 
couple in the human-in-the-loop control system. The 
proposed online simulation system displays necessary 
information on the monitor for observation while the user 
control amount of input torque via a joystick is shown in 
Fig.4. The user has an assigned task in mind while 
observing the pendulum movement on the screen and react 
to the dynamic behaviour of the system in real time to 
achieve desire control motions. In this case motion is in one 
dimensional movement i.e. moving to the left or vice versa.  

Both input and output raw data during runtime 
experimentation of controlling are logged and saved for 
further analysis. Angle θ, angular velocity ω, capsule 
position x, capsule velocity v, and input torque τ are those 
variables that have been recorded. Also, an extra variable 
such as sign ( ) of the friction term is logged for more 
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clarification and validation of the implemented friction 
model.  

VI. LEARNING OF MOTION CONTROL PATTERNS  
One of the useful functionality of the real-time 

simulation system is apparent for heuristic strategy 
experimentation. In the following section, searches and 
results of motion control patterns for the pendulum-driven 
capsule system are presented. Control characteristics were 
experimented by the heuristic strategy. Ability to control 
this dynamical system is depended on the user’s skill and 
understanding of the system. However, once understood, 
control characteristics can be identified and used as a pattern 
of control strategy. 

 
Figure 4. User using the joystick to control virtual simulation system.  

The system initial values θ, ω, x, v, and τ are 180 degrees, 
0 rad/s, 0 m, 0 m/s, and 0 N.m/s respectively. At the 
beginning the system stays still with the pendulum shaft and 
the ball lying straight down. When a small torque is applied, 
the pendulum begins to swing and the capsule start to move 
to the left and to the right repeatedly according to forces 
from the ball and the surface friction model as shown in 
Fig.5. The capsule is unintentionally displaced to the right 
by small torque after it finally comes to the steady state.  

After several tries to control movement of the pendulum-
driven capsule, the control strategy is developed. The 
system begins at the steady state and is intentionally 
controlled using the identified control patterns to move a 
capsule to the left and then to the right (Appendix 1). The 
identified control patterns to move a capsule by an input 
torque is summarised by the following strategies. 

Step 1) Generate a torque by pushing the joystick to 
allow the pendulum to swing freely around, and then 
release the joystick (Fig.6). 

Step 2) If one wants to move the capsule to the left, while 
the pendulum is freely swinging to the left side, the 
human operator needs to push the torque backward 
suddenly only in an appropriate short period of time. 
Moving to the right is done in the opposite way 
(Fig.7). 

More precisely, to move to the left, the user needs to push 
the torque in the middle of rising or falling of angular 
velocity. In other words, one needs to push the torque at the 
edge of sine curves. These torque control strategies allow 
the user to control the pendulum driven capsule in the 
desired directions.  

 
Figure 5. Single pushed torque. 

  

Figure 6. Control characteristics for step 1. 
 

 
Figure 7. Control characteristics for step 2. 

572



VII. CONCLUSIONS AND FUTURE WORK 
 A framework of the human-in-the-loop control scheme 
using real time virtual simulation has been proposed. The 
software architecture and implementation of the 
underactuated pendulum-driven capsule robot system have 
been developed. Usefulness of real time simulation is 
apparent because of an interactivity nature of this type of 
systems. The system dynamic model can be realised 
experimentally. As a result, systematic motion control 
patterns can be identified. The system also exposes an 
important of human controlling ability. Different user 
controlling skills appear to be an important factor in the 
human-in-the-loop system control. The human controlling 
skill is depended on user’s perceptions, brain processing of 
particular circumstances, and control actions. Overall 
performance of the system is another aspect compared to 
user skills that control the system.  
 The identified patterns of motion control for the joint 
torque seem similar to a walking cycle of human. The 
inverted bottom half circle of leg movements is shown in 
Fig.8. For example, given that desired movement is to move 
to the right, at first push the pendulum to swing freely from 
A to B and vice versa. At the moment that the pendulum 
ball nearly reaches point B, the torque should add in the 
opposite way. This will make the capsule move to the right 
because of both pushed torque and friction. This is working 
in the same way as human walking habits.  

 

 
Figure 8. Human walk cycle. 

In future works, closed loop control of an underactuated 
pendulum-driven capsule robot and a more complex model 
of double underactuated pendulum-driven robot [18] will be 
implemented as well as realization of an assisting control 
system based on human adaptive mechatronics. Also, the 
important adaptive mechanisms that would affect and 
optimise the learning curve of training will be experimented. 
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Abstract — This paper investigates human learning and skill 
performance to control an underactuated pendulum-driven 
capsule system within an interactive virtual simulation 
environment. A number of experiments is conducted with 9 
participants who learned to control the capsule using a physical 
joystick. The results show differences in learning and skill 
performance among the participants. Right-handed and left-
handed participants achieve their highest trial on the opposite side 
of their handedness. The high learners tend to achieve great final 
performance whereas the moderate learners produce stable low or 
moderate performance. The variance of the displacements 
achieved appears to be a learning indicator while the high 
frequency of joystick oscillation at the right portion and interval 
gives high performance results. 

Keywords-human factor; human adaptive mechatronics; virtual 
simulation; human skill; human learning 

I.  INTRODUCTION 
Although advances in technology have evolved a machine to 

become more autonomous/automated, many machines still 
require human operators to operate and interact with them either 
fully manual, semi-manual, or supervisory controls especially in 
human centred machine such as lower limbs walking support 
structure for elderly or disabled, prosthesis, wheelchair etc.  As 
a consequence, human control behaviour and performance have 
become the main focus in human adaptive mechatronics (HAM) 
research. 

A HAM concept aims to improve a machine with the 
capability to adjust itself based upon the performance level of 
the human user [1], [2], [3], [4], [5]. The main idea behind HAM 
comes from that humans can learn to operate machines. In 
contrast, it is interesting to develop a machine that could learn to 
provide assistance to its user based on an individual skill 
performance. To achieve this type of machine, several methods 
and techniques such as human behaviour study, pattern 
recognition of the human operator actions, human skill 
performance evaluation during the machine operation, the 
interaction model between human and machine, the machine 
system modelling are being studied. 

Human machine control performance and evaluation are the 
important HAM components because they provide a basis for the 
machine to give the appropriate adjustment and assistant. 
Without the knowledge of human operation performance, the 
machine would have no information for the adaptive adjustment 

and assistant. In this paper we investigate human learning and 
performance to control an underactuated pendulum-driven 
capsule system within an interactive virtual simulation 
environment.    

The paper is organised into the following sections. A review 
of the related works is presented in Section II. The proposed 
human interaction model appears in Section III. The 
experimentation procedures and settings are presented in Section 
IV. The results from the experiments are summarised in Section 
V. The discussion and conclusion are presented in Section 0 and 
VII, respectively. 

II. RELATED WORKS 
Human skills have been long studied in a number of classical 

research fields e.g. psychology, sports, human factor 
engineering etc. [6], [7], [8]. However, there exist few studies on 
the human skill performance evaluation when operating a 
machine according to the HAM concept.  

In a research area called haptic shared control (HSC) several 
studies have focused on human sharing control simultaneously 
with the machine. A special haptic force feedback device has 
been employed to help assist human driver in a car lane keeping 
task which proven to reduce the control activity by 16% [9], [10]. 
A performance and training enhancement by applying HSC to 
give a virtual force field a.k.a. ‘virtual fixture’ has proven to 
improve the performance. However, for a training enhancement 
it is ineffective because the operator tend to rely on the existence 
of the shared assistance [11]. 

Rasmussen divided the human performance behaviour into 
three levels i.e. skill, rule, and knowledge [12]. At the skill level 
behaviour, manipulations by humans are merely based upon 
voluntary movements, which behave like an automated action 
without consciousness. Those actions are extremely integrated, 
smooth, and can hardly be decomposed into elements without 
careful attention. This human low-level skill phenomenon is also 
confirmed in the study of professional musicians such as 
violinists and cellists who are hardly able to specifically describe 
the components to their performance [13]. At the rule level 
behaviour, the human use the stored rules, know-how, or 
instruction to control their actions. In other words, control is 
ruled by past successful experiences either from personal or 
vicarious/indirect experiences. At the highest level, knowledge 
level behaviour usually occurs in unfamiliar situations because 
previous experiences, rules, or know-how cannot be applied 
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directly. Critical thinking, problem solving strategy and a 
modified plan of actions are tested against the desired goal 
heuristically. 

In [14], four approaches to human performance modelling; 
information processing, control theory, task network, and 
knowledge based are studied for a number of useful applications  
e.g. in system design, system development, and system 
evaluation. Having a human performance model has many 
benefits such as reducing risk, cost, and danger prior to the actual 
system implementation.  

A brain monitoring system to investigate voluntary motion is 
studied to reveal the relation between brain activation area and 
skilled motion [15]. A near-infrared spectroscopy (NIRS) brain 
monitoring technique is used while the participants are asked to 
perform a drawing task by looking at the mirror instead of 
looking at the paper directly. The proposed index is used to 
evaluate and classify the skill levels into three categories high-
skilled (HS), middle-skilled (MS), and low-skilled (LS). High-
skilled persons show that there is activation in a premotor cortex 
(PMC) and supplementary motor area (SMA) during the early 
phase of the task performance which decreases gradually later 
on as an indicator of becoming a normal skilled action. 

 Discrete operator’s hands movement during machine 
console operation have been investigated to evaluate the 
operator performance in [16], [17]. Fitts’ law is applied and 
validated in the study for the task which has partly visual 
feedback such as machine console operation [18]. The machine 
console operation is considered as partly visual feedback 
because it does not intensively require perception through the 
eye. The outcome indicates that it is possible to use discrete hand 
motion to estimate skill level of the machine operator. In other 
words, there is a difference in the sequences of hand movement 
between novice and expert operators. A novice seems to prone 
to unnecessary sequence of motions while the expert motions are 
optimised. In addition, eye gaze tracking is applied to gather the 
operator eyes gaze while performing machine console operation 
[19]. 

A human performance index (HPI) is a method to evaluate 
human operator performance by scoring the chosen performance 
variables such as speed and accuracy variables and then applying 
multilayer weighting criteria to obtain the performance index 
value [20]. The method is validated using an on screen mouse 
target hitting task to measure a user’s time taken to reach a circle 
target on the screen, an average time used across the number of 
trials, a cursor path accuracy, and an accuracy on the clicked 
target. The Fitts’ law is also applied in this study to validate the 
speed-accuracy trade-off of the task.  

The work presented in this paper follows the concept from 
[21] which provides an interactive virtual simulation 
environment to allow human interaction with the system based 
on the HAM principle. In the previous work, a single human 
operator has learned heuristically to control and identify the 
possibilities of angle profile pattern of the virtual pendulum-
driven capsule system. In this work, a number of subjects 
participate in this work allow performance measurement 
analysis from their heuristic learning and control trials.  

III. HUMAN OPERATOR AND CAPSULE SYSTEM  
In this section, a human operator interaction model with the 

capsule system is proposed and the details of the pendulum-
driven capsule system are presented.  

A. Human-capsule system interaction model 
Fig. 1 shows the human-capsule system interaction model in 

this study. The model consists of 4 building blocks which pass 
the control information throughout system paths. The human 
operator is given the goal of the task to be performed. The 
internal processing of human brain processes the provided 
information and takes action via the joystick interface to control 
the pendulum-driven capsule system. The joystick actions then 
translate into the inverted pendulum angle. A proper rotation of 
the inverted pendulum will drive the capsule system towards 
desire direction. However, this rotation is the main control that 
the individual human operator has to learn. The appearance of 
pendulum orientation and capsule position on the display acts as 
the feedback information to the human operator eyes to be 
perceived and react. Then, it is returned to the human operator 
internal processing to process the information and make progress 
to the capsule position as required by the given task goal. 

 
Figure 1 The human interaction model with the pendulum-driven capsule 

system. 
Fig. 1 contains time-varying variables passing the information 

throughout the system paths. r(t) is the reference or the given 
task goal, p(t) is  an internal processing of an individual human 
brain, and h(t) is the result of an internal brain processing output 
as a hand motion to control the joystick interface. j(t) is the 
output from the joystick which is generated by the human 
operator hand movement, u(t) is the control output from the PID 
controller to the pendulum-driven capsule simulation according 
to the desired angle. (t) and x(t) are outputs from the simulation 
model which appear on the screen of the virtual simulation 
platform and they act as feedback to the human operator visual 
perception. ep(t) is the simulation output information plus any 
external disturbances such as environmental distractions and 
unrelated activities on the screen.  

B. The pendulum-driven capsule model and simulation 
The schematic diagram of a pendulum-driven capsule model 

is shown on Fig. 2. The model is adopted from [22] with 
additional proportional-integral-differential (PID) controller 
applied to control the input torque to achieve the desired angle 
of the pendulum. In other words, the same mathematical model 
in [21] is applied with additional PID controller. The PID 
controller constants – kP, kI, kD are 0.7, 0.7, and 6.0, 
respectively. The control output gain factor is 10. Table I shows 
the parameters for the pendulum-driven capsule system. Fig. 3 
shows the 3D simulation of the model that is used for the 
experimentation. 

���



 
Figure 2 The pendulum-driven capsule system model. 

TABLE I. THE CAPSULE SYSTEM PARAMETERS 

Ball mass 
(kg) 

Capsule 
mass (kg) 

Shaft 
length (m) 

Surface 
friction 

coefficient 

Gravity 
constant 

(m/s2) 
0.2 0.5 0.3 0.5 9.81 

IV. THE EXPERIMENT  
The experiment is designed to investigate the human operator 

learning and skill performance when operating the pendulum-
driven capsule system. This capsule system is chosen because it 
has a number of unique features [23], [24]. It is an underactuated 
mechanism, which can be used to avoid benefit from past 
experience. A direct control of the angle of the pendulum 
requires hand motion skill to swing the pendulum at the right 
oscillation and timing to initiate the capsule robot to displace. As 
a consequence, it requires both learning and skill to operate this 
system. 

As described in the interaction model, a joystick is used as 
the interaction interface for the human operator to operate the 
system. Fig. 4 shows the joystick and the corresponding axis 
used to control the angle of the pendulum directly. The direct 
angle control means that when the joystick is pushed towards 
negative x direction it will rotate the pendulum angle of the 
capsule system to left hand side which means toward the positive 
90 degrees of the pendulum-driven capsule model (Fig. 2). A 
screenshot of the 3D simulation of the pendulum-driven capsule 
system is shown on Fig. 3. The sampling interval was at 10 
milliseconds. 

The given control task in this experiment is a direct 
pendulum angle control to displace the capsule to the specified 
direction i.e. left or right. A human controller has full control 
over the desired angle of the pendulum by pushing the joystick 
handle. The effect of pushing the handle will cause the capsule 
to move erratically back and forth. This is normal because of the 
mechanism of the inverted pendulum-driven capsule system. 
However, it is controllable for the intended displacement 
direction. 

Each session of the experiment for each participant contained 
learning sessions prior to the actual performance trials. The 
actual trials consist of 6 trials separated into 3 trials for right and 
3 trials for left movement. There is no time limitation for the 
learning session while the actual trial is limited to 20 seconds a 
session which means a participant has to control the capsule to 
the specified direction as far as possible within the provided time 
limit. 

 
Figure 3 The screenshot of the simulation platform. 

 
Figure 4 The joystick control interface and the axis uses to control the 

pendulum angle. 
Nine participants ages between 21 and 50 attended this 

experiment. Each of them agreed and signed the consent form 
prior to the experiment session. The participants have different 
personal attributes such as ages, handedness, and knowledge 
about principles related to the machine which could influence 
the control learning and performance. 

V. RESULTS  
This section summarises the results from the 

experimentation conducted by nine participants. They have been 
labelled as P1 to P9 in Figure 5. The ‘R’ and ‘L’ letter indicate 
right or left movement task followed by a trial number in Figure 
5. For examples, ‘R1’ stands for the first right trial, ‘R2’ for the 
second right trial, and so on. Each of the participants did perform 
the experiment for ‘R1’ to ‘R3’ and ‘L1’ to ‘L3’ produced a total 
of 54 trials for the entire experimentation from the nine 
participants. 

The participant’s attributes and knowledge regarding the 
theory related to the capsule system has been shown in Table II. 
Eight of them are male and seven of them are right handed while 
the other two are left handed for handedness. All of them know 
Newton’s law of motion which is a basis to this capsule system 
model and almost all of them know about a pendulum. However, 
approximately half of them know an inverted pendulum and only 
three of them understand the principle on the inverted pendulum. 
None of the participants has tried this experimentation platform 
before. 

Table III shows the results – learning time prior to the actual 
performance, average displacement achieved and average speed. 
A total absolute displacement and a total average speed are also 
calculated to see an overall performance of each participant. The 
absolute value of final capsule position for each of the trial for 
every participant is plotted and shown on Fig. 5. 

 

���



TABLE II. THE PARTICIPANTS ATTRIBUTES AND KNOWLEDGE 

P G A H N Pe IPe IpeP TBF 
P1 M 31-35 Right Y Y N N N 
P2 M 36-40 Right Y Y Y N N 
P3 F 31-35 Right Y Y N N N 
P4 M 21-25 Right Y N N N N 
P5 M 26-30 Left Y Y N N N 
P6 M 26-30 Right Y Y Y N N 
P7 M 41-45 Left Y Y Y Y N 
P8 M 46-50 Right Y Y Y Y N 
P9 M 26-30 Right Y Y Y Y N 

P=Participant Identity, G=Gender, A=Ages, H=Handedness, N=Knowledge on Newton law of motion, 
Pe=Knowledge on pendulum, IPe=Knowledge on inverted pendulum, IPeP=Knowledge on inverted 

pendulum principle, TBF=Has the participant tried this experiment before 

TABLE III. LEARNING TIME, AVERAGE DISPLACEMENT, AND AVERAGE SPEED   

P 
LT 
(sec) 

Avg 
R 

Dis 
(cm) 

Avg 
R 

Spd 
(cm/s) 

Avg 
L 

Dis 
(cm) 

Avg L 
Spd 

(cm/s) 

Tot.  
ABS 
Dis 
(cm) 

Tot. 
Avg 
Spd 
(cm/s) 

P1 78.79 0.89 0.045 -2.90 -0.145 11.38 0.95 
P2 100.76 3.07 0.154 -5.34 -0.267 25.22 2.10 
P3 212.9 2.12 0.106 -5.15 -0.257 21.79 1.82 
P4 260.8 0.53 0.026 -2.81 -0.141 10.02 0.84 
P5 141.97 2.07 0.104 -2.06 -0.103 12.39 1.03 
P6 318.09 2.42 0.121 -2.02 -0.101 13.33 1.11 
P7 98.88 4.31 0.216 -3.82 -0.191 24.41 2.03 
P8 97.51 0.77 0.038 -1.26 -0.063 6.09 0.51 
P9 586.88 0.60 0.030 -0.90 -0.045 4.50 0.38 

P=Participant identity, LT=Learning time, Avg R Dis=Average right displacement, Avg L Dis=Average 
left displacement, Avg R Spd=Average right speed, Avg L Spd=Average left speed, Tot. ABS Dis=Total 

absolute displacement gained, Tot. Avg Spd=Total average absolute speed (cm/s) 

 

VI. DISCUSSIONS 
In this section, interpretation of the results concerning 

learning and skill performance in the context of the capsule 
system control task is discussed.  

According to Table III the amount of learning time (LT) does 
not reflect the performance of the actual trials. The best total 
absolute displacement achieved belongs to ‘P2’ who took 
100.76s for learning time while ‘P9’ used 586.88 to learn to 
control the robot but the total absolute displacement achieved for 
‘P9’ is the worst among all participants. This indicates that the 
participant ‘P9’ spent a large amount of time to figure out how 
the capsule system works but could not acquire sufficient skill to 
control the capsule system. 

The skill performance indicator is a final position of the 
capsule achieved within the time limitation of 20 seconds for a 
trial. As shown on Fig. 5 the highest performances belong to ‘P2-
L3’ and ‘P3-L2’. It is apparent that the best performer, P2, also 
exhibits the highest total average speed at 2.10 cm/s (Tot. Avg 
Spd) as shown on Table III. ‘P2’ shows consistent performance. 
The lowest trial belong to ‘P4-R2’, however, the total average 
speed is on a moderate level at 0.84 cm/s. 

Fig. 6 shows the average absolute speed for right and left 
control task. It is interesting that almost all of the right-handed 
participants gained more speed on the control task for the given 
left hand side movement task. Likewise, the left-handed 
participants, ‘P5’ and ‘P7’ achieved more speed on their right 
hand side tasks. This could be an effect of hand grasping 
orientation on the joystick control interface. This interesting fact 
conforms to performance achieved by the best trial which 
belongs to the left movement task by right handed participant 
‘P2-L3’, while the maximum displacement achieved from left 
handed participants belongs to the right movement task ‘P7-R1’. 

 
Figure 5 The absolute value of final capsule position. 
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Figure 6. Graphs of the average absolute speed. 

 
Figure 7. Variance of absolute displacement for each participant. 

The variance of the absolute displacement achieved for each 
participant is calculated and is shown in Fig. 7. This value 
indicates consistency of performance for each of the participant 
across the performance trials. It could be used as a ‘learning 
index’. For example, the participant ‘P3’ gained the highest 
learning performance because the first three right side trials (Fig. 
5) are not very well but in the next three left trials the participant 
achieves almost as long displacement as the highest 
displacement achieved by ‘P2’. This interpretation method is 
also applied to the participant ’P4’ who gained a high learning 
performance indicator (variance). Although the participant ‘P7’ 
achieved good performance across all of the trials, the variance 
is relatively low. This means there was not much learning gained 
by this participant.  

Fig. 8 shows the control input characteristics of two best and 
two worst trials from all of 54 trials. The two best trials from the 
participant ‘P2-L3’ and ‘P3-L2’ are shown on Fig. 8 (a) and Fig. 
8 (b), respectively. The worst two performance trials are from 
participant ‘P4-R2’ and ‘P1-R3’ which are shown in Fig. 8 (c) 
and Fig. 8 (d), respectively.  

The frequency characteristic of the control input from Fig. 8 
shows clues for the high performance trials. The control inputs 
with high frequency i.e. around 1 Hz or more are from both of 
the highest trials, ‘P2-L3’ and ‘P3-L2’. Also, this frequency is 
performed and maintained across the performance trials. In other 
words, it is performed at consistent frequency across the trials. 
In contrast, the low skill performer exhibits low frequency 
action, inconsistent across the trial. These control input 
characteristics were performed by ‘P4-R2’ and ‘P1-R3’. 

VII. CONCLUSIONS AND FUTURE WORKS 
Human learning and skill performance to control an 

underactuated pendulum-driven capsule system is studied in this 
paper. The human interaction model with the capsule system is 
proposed to explain the flow of control data and information 
throughout the system paths. The experimentation is carried out 
with 9 participants to study their learning and skill to control the 
capsule system. These participants exhibit different learning 
strategies, control strategies, and performance outcomes.  

In this study, the learning time used prior to the actual 
performance does not reflect the actual trial sequences. 
However, the variance of the displacements achieved across all 
trials indicates the learning achievement. The final displacement 
of the capsule and the corresponding average speed are skill 
performance indicators. It appears that the participant who is 
able to oscillate the control input at high, consistent frequency, 
and at the appropriate portion on the joystick x-axis has achieved 
relatively high performance. 

Although the angle control pattern generated by human 
operator differs from the 6 steps control strategy in [22] the 
pattern successfully drives the capsule system forward, it is not 
a perfect trajectory as in automatic control. This is normal as a 
human being who can heuristically learn and apply knowledge 
at the facing circumstance to solve the problem but does not need 
to be mathematically/objectively perfect as in the automation. 

In future works, an analysis of the time series of the control 
input will be studied to utilise the details of the participants hand 
control behaviour on the joystick interface, for example 
similarity, trend and seasonality of the control input. In addition, 
future experiment will include biometric measurement such as 
eye gaze, body movement, and surface brain activity during the 
participants control activity. These measurements will give a 
deeper understanding of the human learning, skill performance, 
and control behaviour on the robot system control task under the 
HAM concept. 
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Figure 8 Graphs show normalised control input from the joystick, the frequency characteristics, and the capsule displacement. 
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