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Abstract

Conventionally, a human has to learn to operate a machine by himself / herself. Human Adaptive
Mechatronics (HAM) aims to investigate a machine that has the capability to learn its operator
skills in order to provide assistance and guidance appropriately. Therefore, the understanding of
human behaviour during the human-machine interaction (HMI) from the machine’s side is
essential. The focus of this research is to propose a model of human-machine control strategy
and performance evaluation from the machine’s point of view. Various HAM simulation

scenarios are developed for the investigations of the HMI.

The first case study that utilises the classic pendulum-driven capsule system reveals that a
human can learn to control the unfamiliar system and summarise the control strategy as a set of
rules. Further investigation of the case study is conducted with nine participants to explore the
performance differences and control characteristics among them. High performers tend to
control the pendulum at high frequency in the right portion of the angle range while the low
performers perform inconsistent control behaviour. This control information is used to develop
a human-machine control model by adopting an Artificial Neural Network (ANN) and 10-time-
10-fold cross-validation. Two models of capsule direction and position predictions are obtained

with 88.3% and 79.1% accuracies, respectively.

An Electroencephalogram (EEG) headset is integrated into the platform for monitoring brain
activity during HMI. A number of preliminary studies reveal that the brain has a specific
response pattern to particular stimuli compared to normal brainwaves. A novel human-machine
performance evaluation based on the EEG brainwaves is developed by utilising a classical target
hitting task as a case study of HMI. Six models are obtained for the evaluation of the
corresponding performance aspects including the Fitts index of performance. The averaged
evaluation accuracy of the models is 72.35%. However, the accuracy drops to 65.81% when the
models are applied to unseen data. In general, it can be claimed that the accuracy is satisfactory
since it is very challenging to evaluate the HMI performance based only on the EEG brainwave

activity.
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Chapter 1 Introduction

1.1 Background

Automated robots have been embraced unconsciously in day-to-day life. There are a growing
number of intelligent domestic appliances, smart cars, prostheses, smart organs, robotic
furniture, and robots for traffic monitoring that designed to improve quality of living and to
make life easier [1], [2], including co-working or co-inhabiting robots in the home environment

that are a promising prospect for elderly care [3].

Anrtificial intelligence is technologically advanced. An arm prosthesis, illustrated in Figure 1.1,
is a benchmark of a novel human re-engineering, the disabled can efficiently utilise it with
confident. The future of human re-engineering has been projected in [4], for instance; soft robot
actuators, modular prosthesis, artificial white blood cell, printed bones, bionic lens, lab-grown
liver etc. Humanoid robots in many science fiction are not so imaginative at all in the not-too-

distance future.

Figure 1.1 The robot arm prosthesis [4].
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In terms of developing human-friendly and safe robots, the interaction is considerable concern
as humans are expected to participate in many critical applications such as medical applications
or dexterous machine controls. A real benefit is to have a surgeon who holds not only knowledge
but also knows how to apply a robot device that has high accuracy. Nevertheless, these robots
need to interact considerately and appropriately to various types of users and must be practically
adaptable according to spontaneous situations in order to achieve the overall optimum system

performance.

1.2 Motivation

The author completed a BSc in Computer Engineering with the project “3D Solar System
Simulator”. The project and personal interests in the field of graphics programming have driven
the author to game development. After several years in the game development business, the
author has been recruited as a game development lecturer in the Department of Animation,
College of Arts, Media and Technology, Chiang Mai University, Thailand. While being a
lecturer, the author completed an MSc in Software Engineering in order to improve the
knowledge in systematic software development and the MSc project was on the design aspect
of computer games. The author also conducted the research in common elements in a game
design and produced a conference paper which is [5]. The inspiration of [5] is the design and
development of the adaptive game based on a player skill level. The adaptive gaming balances
the amount of challenge to match the player skill to improve the player experience by avoiding
too much boredom or anxiety. This balance would maximise the enjoyment experienced by a
player. The concept of this balancing is known as ‘flow’, the psychology of optimal experience

[6].

The nature of a lecturer career has encouraged the author to pursue further education to improve
the maturity in a specific domain of knowledge. Therefore, the author has secured the offer for
pursuing a Doctor of Philosophy (Ph.D.) in the United Kingdom at Staffordshire University
provided by the Erasmus-Mundus Sustainable eTourism.
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The connection and motivation between the previous knowledge and experiences of the author
to the Ph.D. study is the adaptive manner of the software and machine intelligence. The concept
of Human Adaptive Mechatronics (HAM) is similar to adaptive game development that aims to

produce adaptive behaviour according to the individual human skill.

Although steady advances in technology continue to evolve a machine to become more
automated, some machines still require a human for the operation and interaction. The
interaction can be roughly categorised into fully manual, semi-manual, supervisory, regulatory,
attached interaction etc. Despite the types of interaction, there has been an increasing
improvement on the interaction ergonomics, especially in the adaptive manner. The examples
of adaptive interaction come from a variety of applications including anti-locked brake (ABS)
system, traction control system, car driving assistance, vehicle manipulation assistance, a
computer mouse cursor aiming or snapping system, smart watch, adaptive wheelchair, adaptive

prosthesis, human walking support system etc.

To provide an adaptable interactive machine, the machine is required to understand the human
operator as shown in Figure 1.2. It does need to recognise the current state of the human action.
It does need to know the competency of the action i.e. performance evaluation model. It does

require understanding the model of the interaction.

Interaction
Human Machine

Adaptive guidance

Information required for producing adaptive guidance |
- Human intention recognition E
- Human skill level identification !
- Human-machine interaction model !
- Human-machine performance evaluation model '

Figure 1.2 The requirements for a human-machine adaptive interaction system.
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Hence, the understanding of HMI to provide the adaptive interaction is the particular interest of
this research especially the modelling and performance evaluation of the interaction.
Considering an example of a walking support system for an elderly or disabled person as shown
in Figure 1.3, the system needs to understand the interaction behaviour of the human wearing it

in order to provide the intuitive assisting interaction.

Figure 1.3 A fully lower limbs exoskeleton support system [3], [4].

1.3 Aim

The aim of this research is to investigate a Human Adaptive Mechatronics (HAM) based HMI
system by focusing on the understanding of human heuristic learning, human-machine control
modelling, and human-machine performance evaluation modelling from the human brainwave

using Artificial Neural Network.

1.4 Objectives and deliverables

The objectives with the corresponding deliverables are summarised in Table 1.1.
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Table 1.1 Research objectives and deliverables.

Objective 1. To investigate the concept, component and mechanism of the HAM particularly on

the HMI and performance evaluation modelling.

Deliverable 1. The literature review and this research documentation (This Ph.D. thesis).

Objective 2. To set up a human-machine interaction environment for the investigations and data

acquisitions for model developments.

Deliverable 2. A HAM simulation platform that provides the interaction environment and models
a case study machine for human participants to perform a given scenario to evaluate and model

performance (Chapter 3).

Objective 3. To study a human heuristic control and learning transformation according to the

Rasmussen’s skills, rules, and knowledge model.

Deliverable 3. The investigation on a human heuristic learning control with an unfamiliar
machine system for control strategy identification and transformation into a set of rules and

knowledge (Chapter 4).

Objective 4. To study human-machine control skills, and characteristics by comparing the
performance outcome from a number of participants and developing a model from the control

information.

Deliverable 4. The development of a model for the human-machine interaction and control

information with a case study of an inverted pendulum-driven capsule system (Chapter 4).

Objective 5. To develop a model of human-machine interaction performance evaluation based on

the human brainwave.

Deliverable 5. A proposed model of HMI performance evaluation that links between the control

performance and the EEG brainwave. (Chapter 5, Chapter 6)
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1.5 Ethical issue

This research carries out an in-depth analysis of HMI. Experiments are confidentially conducted
with a number of participants in a suitable environment. Preliminarily, the participants have
informed a detailed explanation about the purpose and nature of the experiment(s) and
volunteered to participate. Participants have the right to end the participation at any time.
Participants’ personal information is recorded and treated as confidential information. A
university’s fast track ethical form has been submitted to and officially approved by the
corresponding committee. All the relevant documents e.g. consent form template etc. can be
found in the Appendix A and B.

1.6 Resources

The listings below are the resources used in this research.

e A personal computer that can support running of the interactive simulation platform in
3D.
o Microsoft Visual Studio 2010.
o Microsoft XNA Game Studio 4.0.
o DigitalRune engine for graphic user interface (GUI) within the simulation.
o A joystick control interfaces i.e. Microsoft XBOX Joystick, Logitech 3D Force
Feedback.
e An Emotiv EPOC headset for the brain activity measurement (Electroencephalogram,
EEG).
o Emotiv EPOC software development kit (SDK).
e MathWorks MATLAB for data analysis.
o EEGLAB - an open source software package for electrophysiological signal
processing.
e Access to Staffordshire University’s library resources.
e Access to Chiang Mai University’s on-line research library resources.

e Documentation
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o Microsoft Word and Excel.

o Zotero for reference management.

o Apache OpenOffice Draw.

o Adobe Photoshop and Adobe Illustrator.

o FreeMind — an open source mind map drawing.

e Adigital camera for taking photographs of devices and experiment settings.

1.7 Project plan

This research outlines a modified waterfall project plan as shown in Figure 1.4. The

corresponding timeline of the project plan is shown in Table 1.2.
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Table 1.2 A timeline of the project plan.

Task

2011

2012

2013

2014

2015

Literature review

Identify research aim and objectives

Q4

Design, development, and implementation

Conduct the experiments

Analysis and model developments

Generate documents
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1.8 Contributions

The contributions of this thesis are listed underneath.

e Avreview of the human interaction with the man-made systems i.e. HAM, HRI, HSC etc.
that leads to the importance of human-machine interaction performance modelling and
evaluation. To develop the interaction performance model between human and machine,
a review of model development approaches, perspectives, and the modelling algorithm
is given. The human EEG brain activity monitoring system is reviewed in order to
develop a novel model of human-machine performance evaluation based on the EEG
brain activity — 1.10.

e The design, development and implementation of the human adaptive mechatronics
(HAM) simulation platform to conduct the investigations on the human interaction with
the case study scenarios. The design and implementation of the descriptive-predictive
10-time-10-fold cross-validation model development procedure — Chapter 3.

e The investigation of human heuristic learning that emphasises the concept of skills,
rules, and knowledge (SRK). The analysis for the extension of the SRK to include
wisdom into the cycle of human heuristic learning — Chapter 4.

e The analysis of human-machine control performance and model developments by
applying the descriptive-predictive approach and artificial neural network (ANN) —
Chapter 4.

e The studies and implementations of the HMI scenarios simultaneously with the human
brainwave monitoring system that lead to the development of a novel performance

evaluation models based on the human brainwave — Chapter 5, Chapter 6.
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1.9 Organisation of the thesis

The thesis is organised into chapters as follows.

Chapter 2 reviews the importance of human existence in man-made systems. A human and a
machine are becoming close by the advancement of innovative technology. Nevertheless, a
human is still the primary entity who makes use of the machine. To develop the HMI and
performance evaluation model, the review related to human skill, performance, and machine are
given. Moreover, a deep understanding of the HMI behaviour can be gained by the investigation
of the human brain activity from the Electroencephalography (EEG) system. Many
investigations related to EEG are reviewed with the primary objective of modelling an HMI
performance evaluation based on the brain activity.

Chapter 3 gives the focus and methodology adopted in this research. The HAM platform, design,
and implementation of the investigations are described. The model development procedure is
employed in the latter chapters for the development of human-machine control model and the

six EEG-based human-machine performance evaluation models.

Chapter 4 primarily provides the investigations on the human-machine heuristic learning, skill

acquisition, rule formulation, performance differences, and control model development.

Chapter 5 presents the preliminary studies on the EEG brain monitoring based human-machine

interaction.

Chapter 6 provides the development of a novel EEG-based human-machine performance

evaluation models.

Chapter 7 draws conclusions from each of the investigations, states the research limitation, and

suggests possible future works after the completion.
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Chapter 2 Literature review

2.1 Introduction

This chapter reviews related literature rooted from the concept of HAM by focusing on the
human interaction, learning and modelling of the human behaviour in a system. A human is the
most difficult part to understand because of the unpredictable behaviour. Therefore, several
aspects and research projects relating to the human interaction with a system are carried out in
order to identify the approach and the model development methodology aimed at understanding
HMI. Moreover, the innovation of the affordable human brainwave monitoring system has made
the possibility to study the human interaction behaviour with a machine system from the

brainwave aspect. The related literature is given in the latter part of the chapter.

Figure 2.1 shows a mind map of the literature review in this chapter. The review starts with the
motivation mentioned in Section 1.2 i.e. a human-machine adaptive interaction. A generic view
of the interaction between a human and a man-made system is introduced in Section 2.2 to
support the reason for the emergence of many HMI research fields. However, a HAM is the root
motivation of this research because of its attractive concept. The literature is reviewed and
categorised by the three key components of the HAM based HMI concept as shown in Figure
2.1. Then, the review is extended to the other relevant areas that are required to fulfil the

objectives and the aim of this research.
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Human Adaptive Mechatronics (HAM)

Human and man-made systems | Human Robot Interaction (HRI)

\_ Haptic Shared Control (HSC)

HMI intention recognition

The 3 components for the adaptive HMI |  HMI adaptive assistance

"\-..Lite;rature Rﬂ.ie“_—l..;fi \_ HMI performance modelling

Application of HMI ~ Forms of HMI

- Control modes of HMI

\ N\ ~ Model development tools and methods

Machine modelling

_ Electroencephalography (EEG)

Figure 2.1 A mind map of the literature review.

The review extends to the areas of the application that would benefit from the improvement of
the adaptive HMI in various forms of interaction i.e. the Forms of HMI. A review of control
modes of the HMI provides various types of machine control activity that can be located and
can be studied for the improvement of HMI e.g. pursuit tracking, balancing control, target hitting
control etc. Furthermore, the review covers the model development, machine modelling, and

the human EEG brainwaves monitoring that are applied in this research.

2.2 Human and man-made systems

Modern concepts such as HAI [9], HMI [10], HRI [11], and HAM [12] regularly use the word
‘human’, additionally with other words like ‘machine’, ‘automation’, ‘robot’, and
‘mechatronics’ to refer to a human in relation to a man-made system. These additional words

are defined with some subtly different meanings by the Oxford dictionary [13] as follows.

Machine: (noun) “An apparatus using mechanical power and having several parts,
each with a definite function and together performing a particular

task. ”

Automation: (houn) “The use or introduction of automatic equipment in a manufacturing

or other process or facility. ”
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Robot: (noun) “A machine capable of carrying out a complex series of actions

automatically, especially one programmable by a computer. ”
Mechatronics (noun) “Technology combining electronics and mechanical engineering.”

Despite the subtle different meaning of these additional words, the HRI, HMI, HAI, and HAM
concepts always strive for a common goal i.e. the interaction between human and a man-made

system.

To avoid ambiguity, the term human-machine interaction (HMI) will be used to refer to the

human interaction with a man-made system. Otherwise, a specific term will be clearly stated.

2.2.1 Human adaptive mechatronics (HAM)

A human adaptive mechatronics (HAM) is a concept that originated from the Centre of
Excellence (COE) Tokyo Denki University Japan in 2005 [14]. In a conventional human-
machine system, learning and skill expertise are the sole responsibility of a human. A HAM
introduces an intelligent concept of adaptive capability that assists operators to learn and
improve, based on individual skill level and environment to achieve the optimum system
performance [12], [15]-[20].

The holistic view of HAM as depicted in Figure 2.2, demonstrates the major disciplines and
their relationships required to convey the HAM ideas. Each pair of the disciplines, including
‘human’, ‘mechatronics’, ‘intelligent control’, and ‘computer network’, forms cross-related
disciplines that require further study to understand the collaboration and application between
them. Human and mechatronics form a human-machine system or human-in-the-loop system.
Human-computer interaction (HCI) is established between human and computer network. The
mechatronics controlled by intelligence makes an ordinary machine into a robotic one. In an
attempt to mimic human intelligence and knowledge, cognitive science is applied to machine
intelligence. The dashed line between mechatronics and computer network composes the
network facility for the machine to be monitored and controlled over the network systems.

As a human-in-the-loop machine system, the human is considered the main beneficiary during

operation. Mechatronics, itself, is a relatively vast research area including many system-
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modelling studies from a simple pendulum to a complicated vehicular model. Intelligence and
control mechanisms function as a brain behind all the system. Computer and network participate
in remote controlling over an underlying infrastructure, e.g. urban search and rescue (USAR),

supervisory and monitoring, off-site control, remote laboratory etc.

Al & INTELLIGENCE

COGNITIVE MACHINE

SCIENCE \

NETWORKED MONITOR &
CONTROL SYSTEMS

ROBOTICS

/
/
[

MECHATRONICS

HUMAN-COMPUTER
INTERACTION

HUMAN & MACHINE
SYSTEMS

Figure 2.2 The holistic view of HAM multi-disciplinary [19].

2.2.2 Human-robot interaction (HRI)

Human-robot interaction (HRI) is a multidisciplinary research for investigating the interaction
between a human and a robot. Similarly to the HAM, the HRI incorporates multiple disciplines
such as engineering, computer science, artificial intelligence, robotics, social science, and
humanities [11]. The challenging issues of HRI are the intuitive and safe interaction between
these pairs of the interacting agent; human and robot, robot and robot, or both pairs
simultaneously [21]-[24]. Furthermore, the survey in [25] shows a growing trend towards the
interaction in dynamic environments rather than a stationary one. The design of HRI needs to
be suitable for the particular applications. For examples, an autonomous robot should take a
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little effort to operate. In contrast with a robot in a serious application such as USAR, medical
surgery application, or nuclear handling etc., the interaction should be designed by focusing on
speed, efficiency, accuracy, reliability etc. Furthermore, a robot task may be dissimilar to
human’s task for the same type of operation. For example, a vacuum cleaner robot needs a clear
space to operate properly whereas a human can do the same operation without the space

clearance [26].

2.2.3 Haptic shared control (HSC)

Haptic shared control (HSC) is an approach that combines a force feedback device to an active
assistive system in a shared control manner [27]. The shared control between human and
machine means that the control authority could be taken from both the operator and machine
depended on a certain circumstance. As illustrated in Figure 2.3, in one particular task, the
operator exert force Fo to a special designed haptic device, concurrently the device estimates
and balances active force feedback back to the operator to assist with the operation. For instance,
a force feedback steering wheel for a lane-keeping task renders assistance to a driver based on
the error of a car heading direction. This seamless assistance has managed to reduce the effort
for steering, stress, attention demand, and improve safety and accuracy of the driving by 16%
[28].

<—2—| Haptic Control

< Output
T} Interface |y, —>

System

Human Operator

Figure 2.3 A haptic shared control approach.

2.2.4 The evaluation of the HMI

Section 2.2 introduces some concepts that aim to improve the quality of HMI using different
approaches. An HSC focuses on utilising a haptic device that actively assists a human during

HMI. An HRI gives a top view and general idea of the interaction improvement and awareness
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between a human and a machine. A HAM based HMI aims to provide a machine adaptability in
active, passive or in a combined manner. However, in practical, there are three key components
in order to realise the HAM conceptual machine i.e. intention recognition, performance
evaluation and adaptive assistance. The following sections review literature that corresponded
to the three components i.e. Section 2.3 HMI intention recognition, Section 2.4 HMI adaptive

assistance and Section 2.5 HMI performance modelling.

2.3 HMI intention recognition

Since HMI is a human-in-the-loop system, the intention of the interaction from a human is one
of the important components in achieving the improvement of HMI. For a machine to assist the
human operator appropriately, the recognition of a human’s intentions is considered necessary.
Although a human behavioural intention is rather difficult to predict, it is possible to recognise
and estimate the HMI intention from a goal-oriented task by applying a pattern recognition

technique.

An example of the pattern recognition applied to decode and estimate a covert human intention
is studied in neuroscience [29]-[32]. The use of spatial information from various section shows
the improvement in the recognition accuracy compared to the usage of a single spatial
information. This improvement conforms to the fact that the human brain utilises several
sections cooperatively to perform a task. Another interesting human intention study shows that
the behavioural intention is influenced by a human’s personal experiences [33]. There are
convincing pieces of evidence that the human brain simulates internal motions after the
observation of biological motions. Consequently, the subsequent intentions of actions are the

result of the internal imagination of motions.

2.3.1 Hidden Markov Model based intention
recognition
A Hidden Markov Model (HMM) has been applied to discriminate the state of human intentions

in order to improve the HMI performance in [34]-[40]. The states of unconscious hand touching

on the desk during a pattern drawing task are classified using HMM. The hand states are the
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indications of fine and rough movements of pattern drawing modes. Therefore, the classified
state is used to improve the micro teleoperation performance by automatic switching between
fine and rough movement modes [34].

Active cooperation between a human and a robot arm has been realised using the recognition of
human intention by applying the HMM to learn the characteristic of forces exerted on the robot
arm gripper [35]. The scenario has been applied to a transportation task in which a human
control to balance the payload during the human-robot arm cooperation. There are three stages
in this active cooperation system; force-torque signal processing, force pattern recognition using
HMM, and the cooperative trajectories generation. The experimental result suggests that both
time and frequency domain information should be taken into account to obtain the most out of
system robustness.

Telemanipulation with virtual fixture assistance also has benefited from knowing the intentions
of the working operator. A virtual fixture is a form of constraint that is applied to limit the range
of e.g. movements, paths, or angles to guide the operator. An HMM model is used to classify
the human intentions from motion and velocity profile in [36]. As a consequence of the intention
classification outcomes, one of three types of the virtual fixture is activated. Path following with
virtual fixture direction, aiming at the target with helping of attractive force field, and obstacles
avoidance with the help of repulsive force field are the examples of the task with guidance.
Combined recognition of intention and appropriate activation of guidance has proved
improvements in both less operation execution time and less error during the teleoperation.
Furthermore, suggestions for improving the accuracy of intention recognition could be done by
giving sufficient training data, expanding the dimension of states in HMM, which only increase
linear time complexity as long as the states are independent from each other.

Although the use of virtual fixtures helps the overall teleoperation system’s performance in both
time and accuracy, a typical virtual fixture is inflexible. An adaptive virtual fixture is introduced
which can be adapted by tuning the fixture factor according to operator current estimated
trajectories or intentions [37]. The algorithms such as K-means clustering, HMM, and Support
Vector Machines (SVMs) are used in combination in the proposed system. The system shows

an acceptable tolerance to the untrained situations.
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A Layered Hidden Markov Model (LHMM) is used for intention recognition systems based on
the motion of robot-assisted applications [38], [39]. This type of HMM has several HMMs
running concurrently with their corresponding purpose for each level of HMMs. For example,
the lowest level HMM may correspond to estimate primitive motions such as translation or
rotation of robot manipulator while the higher level HMM is responsible for aggregate
recognition from the primitive actions i.e. task level recognition. Two more advantages over a
typical HMM are the smaller amount of training data and the independence of training for each
level of HMM. In conclusion, it is stated that the LHMM has more recognition power than a
typical HMM and has more robustness in case that misclassification occurred in the lower level

but the overall system still able to recognise the tasks.

An HHMM, i.e. a hierarchy of multiple HMMs is used to implement smart assisted living
systems for elderly [40]. Information used to identify intention is obtained from a single inertial
sensor worn on a finger, which can provide several data for intention identification such as 3D
acceleration, orientation (gyro), magnetic data, and temperature. Five types of hand gesture are
being recognised and mapped to command the robot actions for elderly people. The comparison
between normal HMM and HHMM shows that the latter has more accuracy. This is because

HHMM contains multi-level recognition steps.

2.3.2 Self-organising map (SOM) based intention
recognition

A type of ANN called self-organising map (SOM) combined with Bayesian filtering technique
is applied to estimate human intention [41]-[45]. The justification for applying SOM can be
explained as follows. Firstly, there is no need to define finite automata states like other graph-
based models e.g. HMMs. Secondly, it is stated that a human intention should be recognised
from inside the human brain activity rather than the recognition of the external activity of the
human behaviour. Thus, the use of SOM in this work is claimed to be a model of the cerebral
cortex area in the human brain. Besides, SOM is able to map a relatively large amount of
dimensional data to much lesser dimensional data and with no loss of topology information. As
a result, the computation complexity is decreased. Finally, the advantage of Bayes filtering

algorithm over other methods is the ability to handle non-Gaussian data distribution of human
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intention. Implementation of Bayes filtering is done by a statistical particle filtering algorithm.
The test bed based on this proposed method is a remote operation task where the operator has
to control two types of the truck in a miniature environment via remote interfaces and control
panels. Large amounts of information are monitored during the operation, for example, infrared
light markers for truck position tracking, potentiometers for rotations tracking and control panel

switches etc.

2.3.3 The evaluation of the HMI intention
recognition

Section 2.3 reviews some of the literature relating to HMI intention recognition. Several studies
show that HMI improvement can be achieved by applying the knowledge of the human’s
intention to provide assistance and adaptation. However, most of the works has weaknesses e.g.
lack of performance evaluation related to the corresponding intention, fine tuning of the
provided assistance etc. The only the work that tries to introduce an adaptive virtual fixture

based on the current operator’s intended trajectory is proposed by [37].

2.4 HMI adaptive assistance

The aim of adaptive assistance is to achieve the optimum system performance by providing help
to a human operator. The assistance can be divided into passive and active. A direct assistance
such as a physically assistive movement is considered as the active one [20], [46]. There are
proofs that show the improvement in learning efficiency from the system’s active force
assistance during the HMI task performed in many research experiments [47]-[50]. The HSC is
one of the active assistance methods, which is introduced in Section 2.2.3. Passive assistance,
on the other hand, is an internal adaptation of a system i.e. an automated system’s parameter
tuning [51], [52].
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2.4.1 Dynamic system with virtual fixture and shared
control guidance

The effectiveness of the active assistance for performance and training enhancements has been
studied [27]. As experimented in [53], the dynamic system is a mass-spring—damper as shown
in Figure 2.4. This dynamic system can be controlled and moved in a two-dimensional space
with 4 Degrees of Freedom (DOF) i.e. (X1, y1) and (X2, y2). A 2-DOF force feedback joystick is
used to control the system’s dynamic. A direction and magnitude are directly applied to the mass
m1 to force the mass m; at the other end to move and reach a target. The system is classified as

an underactuated system since the mass m. is moved involuntarily.

Figure 2.4 A two-mass spring damper dynamic system [53].

There are three scenarios compared in this classical target-hitting/reaching i.e. no assistance,
virtual fixture assistance, and shared control. For virtual fixture assistance, a pair of virtual walls,
modelled as a spring and damper, would automatically give feedback via the joystick to put the
operator back on track when the mass tends to stray from the path. This kind of penalty-based
passive assistance does nothing unless the object position is out of range. The virtual fixture
could be either repulsive or attractive depended on the design, while the shared control scenario

is implemented based on the HSC concept.

Both virtual fixture and shared control assistance obviously boost the performance of the
operation but the latter is in the lead because of its generality. However, they are inapplicable
in the case of training enhancement. The effectiveness of training enhancement is equivalent in
all of the three scenarios [27], [53].
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2.4.2 Confliction among the interacting agents

A conflict commonly occurs when two or more agents participated in any cooperative task. It
has been shown that one prefers to control the operation by himself/herself without interference
[54], [55]. In the case of active assistance from an HSC machine, this conflict becomes
unavoidable. Therefore, it is a good idea to pay more attention to the detail of the operator.
Neuromuscular information from the operator leads to a real understanding of the operator

control behaviour such as in a car lane-changing task [56].

Humans learn to cooperate and share intention with each other since the beginning of life and a
set of intuitive cooperation behaviours are developed during this time. Based on this fact, it is
an attractive idea to identify these learning ways and mimic them for the development of an
intuitive human-robot cooperation [55]. This kind of study gives mutual benefit to at least two
research fields i.e. developmental psychology and robotics. Developmental psychology requires
the experimental testing scenario for its human-being related theories whilst the research in
robotics gains psychological knowledge to implement a robot that accurately mimics the human
behaviour since it is impossible to develop a robot that behaves like a human being based solely

on an ordinary sequential programming.

2.4.3 Challenging issues in shared control

2.4.3.1 Degree of support

Although HSC has been proven in training improvement, a degree of assistance in HSC system
should be carefully tuned because an excessive amount of support is likely to result in a
lacklustre performance, worse than a task without any HSC support. This issue has to be
clarified in the long run [27], [57].

2.4.3.2 Authority

Apart from the comfort derived from the autonomy, the authority to take control is critical [57].
Policy must be explicitly formulated over a level of automation (LoA) and a level of haptic

authority (LoHA) on any certain circumstances.
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There are two approaches to shared control in [58], “input-mixing shared control” and “haptic
shared control”. The former allows mixing of control inputs from machine intelligence and
human before evaluating the final control outcome to the actuators. The latter allows either a
human or a machine to take over the machine simultaneously with a degree of negotiable
authority through the haptic control interface. The “haptic shared control” shows better design
potential over the “input-mixing shared control” because the operator stands in the loop

constantly to overrule the elaborate system and to evaluate some erratic situation [28].

Instead of giving full authority to an actual haptic device to calculate and return force feedback
to the operator, a study alters the human-robot shared control situation with two human
participants. The two participants mutually control an on-screen object and obtain force
feedback from each other via the haptic devices. Unfortunately, the result suggests that a human
prefers to make a control decision solely on his/her own without interference from the partner
[54].

2.4.3.3 Overreliance

A machine is a man-made tool or a piece of equipment with limitations covered by its design
and functionality. It is at risk of relying merely on the autonomous machine. Overreliance or
over trust on autonomous systems could be a problem. Appreciating natural human ability of
learning and problem solving, the system needs to be kept under the supervision of the operator.
To avoid the overreliance or over trust issue, an HSC design should come up with situation
awareness (SA) alerts at regular intervals.

2.4.3.4 Dependency and skill retention

In spite of experimental evidence indicating benefit over tradition manual control, the HSC
experiments provide too small sample sizes compared to the real world. Overdependence of the
system tends to confront with a long-term problem in which the operator would be unable to
work without any support and influences to retention of skill as well [57]. There are many

aspects of the HSC system still to be experimented in a long-term usage.
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2.4.4 The evaluation of the HMI adaptive assistance

Section 2.4 reviews the adaptive assistance component of the HAM concept. Apparently, HSC
appears to be the concept that plays the major role in this component because of its active
assistance mode by the utilisation of a haptic force feedback device. Many investigations e.g.
[27], [53] etc. show that the HMI enhancement can be achieved when the active assistance is
applied. However, it is not effective in some situations e.g. the case of training enhancement.
However, there are still gaps and challenging issues in this particular aspect of HMI to be
improved. These issues are the degree of support, the authority, the overreliance, the dependency
and retention. All of the four issues may be solved by the investigation to the degree of support.
The reason is that the degree of skill performance of each individual human operator is unique.
Therefore, it is vital to evaluate an HMI performance prior to fine tuning of the degree of
support. This reason is also applicable to the authority as the individual performance can vary,
therefore, the offered authority must be adjusted accordingly. The aspect of overreliance may
be improved by applying a different degree of active support to a human. The dependency and
retention of skill would be improved by providing a different degree of support according to
each stage of learning and performance levels of a human operator e.g. the support might be
high at the beginning of the learning to use a machine, then it is gradually decreased. In
summary, the basis of all aspects comes from the performance evaluation.

2.5 HMI performance modelling

A HMI performance modelling can provide valuable information for the enhancement and
evaluation of the system design prior to the actual system implementation [59]-[61]. In addition
to the pre-implementation benefit, with recent advancements in sensor and actuator
technologies, a HMI performance model can be used in an online manner to provide adaptive
guidance and assistance [12], [20], [51]. To understand the HMI performance model, many
research projects have attempted to investigate the HMI aspects such as human skills, human
sensory-motor skill performance, human skill learning stages, skills-rules-knowledge, human

capacity etc.
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2.5.1 Definition of human skill performance

Over the decades, continued studies of human skill performance in various features take place
in areas of research including psychology, sports, human factor engineering, cognitive science
etc. [62]-[64]. Human skills can be described by two following perspectives [65]. In the first
perspective, ‘skills’ is an ability to repeatedly perform sequences of action in the same task and
similar environment with maximum certainty, minimal visual attention, and highly predictable
pattern. Ideally, the outcome performance is identical from trial to trial. This skill perspective is
also known as ‘open-loop skills’. It is commonly found in skilled workers in an assembly line,

musician performance and vehicle manipulation skills etc.

The next is a human skill in a dynamic system. A dynamic system is uncertain in both time and
space of environment. Control in dynamic system requires tracking information for an operator
therefore; it can be viewed as ‘closed-loop skills’. Examples of a tracking control task in
dynamic environment are vehicle road driving and computer-based cursor positioning. As
compared to the former definition, it can be noted that good vehicle manipulation skill does not

necessary mean good driving on a road.
The characteristics of open loop and closed loop skills are summarised in Table 2.1.

Table 2.1 Characteristics of ‘open-loop’ and ‘closed-loop’ skills.

Characteristic of skills
Open-loop Closed-loop
e Processing time

Bandwidth

o A rate of information transmission

e High level of practice

e Low attention demand

e Single-response selection

. Prediction and anticipation
e Consistency of outcome P

Resources processing and management

In general, a skilled operator performs a task with intimate knowledge [66]. A sequence of
actions is formulated beforehand and is able to be adapted according to a change of
circumstances. Controversially, an unskilled performer tends to perform the task without the

knowledge and is likely to result in a disappointing performance.
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Ability to extract only useful information by ignoring any redundant piece of information is
another personal characteristic of a skilful person. For example, a skilful restaurant server is
able to take a long verbal order that at times includes irrelevant information.

It is commonly mentioned that ‘skill learning years’ is in the ages between eight to twelve years
old [63]. In fact, this statement is not necessarily true. A person can acquire a new skill through
a learning process at any ages. Skills such as car driving, skiing, riding a motorcycle etc. can be
learned at any ages. It is a term ‘skill acquisition’ typically used in traditional psychology,

philosophy, education, movement science, and performance development [67].

2.5.2 Human sensory-motor skill performance

Measurement of human sensory-motor skill performance is scaled by three general metrics i.e.
time, magnitude, and accuracy. Timing is designed to evaluate reaction speed of perception in
a task that related to sensory and reaction response. According to [64], motor timing
measurement used especially in laboratory setting is the total ‘response time” which is a period
begun from the first appearance of stimuli appearance until the end of the task. The response
time is divided into reaction time (RT) and movement time (MT) as shown in Figure 2.5. An
RT starts from an appearance of stimuli until responding movement takes place and an MT starts

from the movement to task completion.

Movement complete
Movement start /

\ MT

RT

I ;

Stimulus onset

Time

Figure 2.5 A diagram of reaction time (RT) and movement time (MT).

The magnitude aspect of skill performance is measured in terms of distance, weight, force and

height etc. The magnitude appears inconsistent for the sensory-motor skill measurement because
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accumulation tends to appear from trial to trial depending on personal ergonomics such as body

strength, body size, body weight, etc.

According to [64], there are three terms of accuracy measurement - absolute error (AE), constant
error (CE) and variable error (VE). The number of samples is denoted by sk. A trail of each
performance outcome i.e. the outcome of an action is denoted by TOC. A trial target is denoted
by TT.

Absolute error (AE) is computed by averaging error values from trials out, disregarding a sign
by applying an absolute mathematic operator. The AE calculation shows average error without
direction, which is given by (2.1).

_XITOC —TT|

= (2.1)

AE

Constant error (CE), as given by (2.2), is quite similar to AE except for the absolute
mathematical operator i.e. a sign of each error is taken into account. The metric indicates average
and direction of error from the trials.

_ X(TOC —TT)

= (2.2)

CE

Variable error (VE), as named, gives a variability value of the performance trials i.e. a
consistency of the outcomes. The VE can be calculated by (2.3). A low variable error does not

confirm high accuracy as consistency may occur at either low or high accuracy.

VE = \]M — CE2 (2.3)

sk

2.5.3 Fitts and Posner three stages model of skill
learning

Fitts and Posner [68] suggest a three-stage model of skill learning, consisting of the cognitive
stage, associative stage, and autonomous stage as depicted in Figure 2.6. At a cognitive stage
that is the lowest stage of the model, a learner develops the basic movement necessary to
accomplish a task. A learner is still consciously aware of every movement. The movements are

finely tuned and become smoother. Skill is developed to a middle stage of the model called the
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associative stage. At the highest stage of the model, the autonomous stage, the movements

become virtually automatic. The skill for a particular task is fully acquired.

Time

Autonomous
Stage

Associative
Stage

Stage

‘ Cognitive

[

Practise

Figure 2.6 Fitts 3 stages model of skill learning.

2.5.3.1 Fitts’ law

Fitts’ law is a well-known method for quantitative measurement to evaluate the capacity of the

human motor system associated with the amplitude movement control [69]. It is used as a
performance indicator for pointing devices [70] and HCI research [71]. A formulation of Fitts’

law can be expressed as follows.

] 2D (2.4)
Movement Time (MT) = a + blog, (W) seconds
s 2Dy . (2.5)
Index of dif ficulty (ID) = log, (W) bits
(2.6)

ID
Index of performance (IP) = MT bits/second

Equation (2.4) defines movement time (MT) where D is an amplitude or a distance of movement

and W is a target width. Figure 2.7 shows an example of the scenario. The term log, (ZD) is

w
defined as an "index of difficulty” (I1D) of the task (2.5). This formula shows a speed-accuracy
trade-off for a target reaching/hitting task. An index of performance (IP) can be calculated with

(2.6). Equation (2.5) is basically the same as (A.1) in Appendix F, which is the amount of
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information conveyed in binary format. By dividing (2.5) with MT, Equation (2.6) becomes

similar to (A.4) in Appendix F which is the information capacity of a communication channel.

The Target

Starting
Position

- D »>

(@)

«—W—>

TARGET

/ ANPLITUDE

(b)

Figure 2.7 Fitts’ law target hitting task [70].

2.5.4 SKills, rules and knowledge (SRK)

Rasmussen divides human behaviour into 3 levels; skill, rule, and knowledge [72]. First, the
skill level behaviour is the low-level behaviour. An action is voluntary and automated without
consciousness. The movement is seamlessly integrated, smooth, and hardly to be decomposed
without unwanted attention. Musical performance is considered a low-level skill behaviour as

professional musicians such as violinist, guitarist, and cellist cannot give precise detail of their
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performance [73]. The skilled behaviour is directly influenced by repetitive practising and can
be described by the Fitts and Posner model (Section 2.5.3).

Secondly, the rule level behaviour, a human adheres to rules, know-how, or instructions learned

from previous experience either in person or from others.

Thirdly, the highest level, known as knowledge behaviour, occurs in an unfamiliar situation
since rules and know-how is impractical. The situation leads to “trial and error” learning where
critical thinking and plan modifying is tested. These suggested three levels of behaviour indicate
personal capability and draw up guidelines for human-machine performance development

model.

A signal, sign, and symbol are type of information flowing amongst the three levels of
behaviour. A signal is continuous sensory raw data from any interested matter, for example;
room temperature, ambient light, dust level, humidity etc. Sign is an indicator associated with a
certain signal to inform or suggest the corresponding actions to deal with. A symbol is a
conceptual information used for further reasoning. The symbol differentiates from the sign as
described in the following statement, “a sign is part of the physical world of being while a
symbol is part of the human world of meaning”. These concepts of information flow are useful

for modelling human performance.

2.5.5 Human capacity

The idea of human perception capacity borrows a formulation from an information theory.
Figure 2.8 shows measurement of perception capacity using a concept of transmitted
information. An intersection between the input and the output is used to refer to an amount of
information transmitted from the input to the output. In other words, it measures a degree of
recognition according to the given samples. The intersection could cover a fragment or the
entirety of the input depends on the perception. Experimentally, a number of samples are given
to a person for a particular aspect to be perceived i.e. the input circle in Figure 2.8. Later, a
perceptive judgement i.e. the output circle in Figure 2.8 is obtained from him/her. By doing this
repeatedly on a number of human subjects, the covariance of the input and the output is
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calculated (the intersection in Figure 2.8) which is an indicator of an amount of information

transmitted in a particular experiment.

Transmitted Information

Correlation (Covariance)

Figure 2.8 Transmitted information between input and output.

2.5.5.1 Human perceptions capacity

An absolute perception judgement on a particular aspect is made by human capacity [74]. Unit
of measurement is in bit or entropy as in the information theory (Appendix F). Table 2.2
summarises human perception capacity on the one-dimensional variable. Experimentally,
capacity for each aspect of human perception e.g. visual, hearing, and tasting is calculated from
the ability to spot differences. These human capacities are measured for a single aspect without

any extra information.
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Table 2.2 Channel capacity of a human absolute judgement on the one-dimensional variable.

Aspect | Capacity (bits)
Visual

Points presented on a line interval 3.25
Area 2.6
Angle 3
Hue 3.1
Curvature 2.2
Square size 2.2
Brightness 2.3
Size 2.8
Hearing

Pitch tone 2.5
Loudness 2.3
Tasting

Taste intensity (of salt solution) | 1.9

The capacity of human perception is increased when supplied with extra information and more
variables for the judgement. As summarised in Table 2.3 there are two variables at the time of
the judgement.

Table 2.3 Channel capacity of a human absolute judgement on the two-dimensional variable.

Aspect | Capacity (bits)
Visual

Position of a dot in a square 4.6
Colours 3.6
Hearing

Loudness and pitch | 3.1
Tasting

Intensity of mixed salt and sugar | 2.3

In fact, human beings are able to discriminate things more accurately and more efficiently than
the capacity values shown in Table 2.3. In real life, there exists multiple supplement information
or contexts that help improve the human perception. As a multi-dimensional confirmation, the

surrounding information help ensures the judgement.

Furthermore, a special experiment with six variables of frequency, intensity, rate of interruption
on time fraction, total duration, and spatial location is set up. Approximately 150 different
variations are discriminated with 7.2 bits capacity. It is able to conclude that the variables help

represent features or properties of objects and provide relevant for the perception judgement.
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The more the number of variables raises, the more the capacity increase and tends towards the

real human-being world.

2.5.5.2 Redundancy of information for human perception

The redundancy of information is occasionally necessary for human perception. An example,
shown in Figure 2.9, illustrates a monitor display of a single decimal number. Apparently, an

additional bar graph under an identical number affects clear and easy perception for human eyes.

Alternative example is a pixel containing 28 = 256 bits of information on a colour display
monitor. Human eyes are likely to encounter difficulty in perceiving and working with a single

pixel although it supplies plenty amount of information.

4 4

(@) (b)

Figure 2.9 A single decimal number monitoring (a) a single number (b) a single number with

an additional bar graph.

2.5.6 Human performance index (HPI)

[75] proposes a human performance index (HPI) as a generic performance evaluation
framework. The framework consists of two layers of evaluation. The first layer is a collection
of performance variables that evaluate the raw competency of actions. The second layer, so
called performance criterions, is a weighted condition integrated to variables in the first layer.
Ordinarily, performance criteria such as speed and accuracy are used in competency

measurement metric.

The weighted concept of HPI measurement can be simplified as grading evaluation in school.
Scores from paper works, examinations, and attendance are weighted with different percentage

values according to an importance of each piece of work separately in the subject. Grading point
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average (GPA) is finally calculated from weighted credits of each subject. Therefore, the HPI is
the final result of GPA while performance criterions are subjects, and raw evaluations are

scoring.

In addition, HPI framework could be used in two modes; open and closed form. The open form
is located at the second layer i.e. performance criterions which are able to use in any applicable

closed form. The closed form is located at the final accumulation evaluations i.e. the HPI.

2.5.7 Human-robot information pipeline

A human-robot information model or HRI based on a pipeline of information exchange has been
proposed by [76]. A robot equipped with a colour web-camera, which has the capability to
record a video at 640*480 resolutions. Each pixel in a recorded frame consists of three colours
with eight bits of the colour intensity scale. The robot is used to report the status of a cup of
coffee from one room to another room i.e. the coffee monitoring task. This scenario is an
example of the information exchange pipeline. The camera can transfer 640*480*3*8 = 921,600
bytes of information per second. However, the task requires only 1 bit to report the status i.e.

ready (R) or not ready (NR). The value is calculated from standard entropy equation in (2.7).
H = —0.5log, 0.5 — 0.5log, 0.5 = 1 bit of entropy 2.7

It is denoted from (2.7) that the two statuses are equally occurred with 50% probability. If the
coffee is likely to be ready (R) than not ready (NR) with 75% of probability, the conveyed

information can be calculated from (2.8).
H = —0.75log, 0.75 — 0.25log, 0.25 = 0.8113 bit of entropy (2.8)

It is clear that only the relevant information is needed for the coffee monitoring task. The
information for the coffee status indicator is relatively small when compared to the robot that
equipped with a high capacity of information from the camera. It is indicated a redundancy of
information for a robot for this type of task. However, this redundancy of information is required

for a human as discussed in Section 2.5.5.2.

The information exchange is partially restricted to the capacity of the control interface. For

instance, Atari gaming joystick has a single fire button and an eight-direction movement control
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as demonstrated in Figure 2.10 (a). The Atari joystick provides log,(8) + 1 equals to 4 bits of

information per sample.

NES (Nintendo Entertainment System) gamepad, in Figure 2.10 (b), consists of four directional
navigators, two fire buttons which could be pressed either separately or simultaneously and two
middle ‘select’ and ‘start’ buttons have to be pressed separately. The NES gamepad has 3 +

log, (22 + 2) equals to 5.6 bits per sample.

Atari Joystick )
J
(a)
~
‘ NES Gamepad
CSelecD C Start ) )

Figure 2.10 The layout of (a) Atari joystick, and (b) NES gamepad.

2.5.8 HMI modelling perspectives and approaches

There exist four perspectives in modelling human interaction with a machine as described in
[61] i.e. control theoretic, task network, information processing, and knowledge base.

Description of the four perspectives is given in Table 2.4.
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Table 2.4 The four perspectives in HMI performance modelling.

Perspective

Description

Knowledge base

The knowledge base perspective models HMI based on the human
ability to solve a problem at hands especially in the occurrence of an
unfamiliar situation. A human needs to apply knowledge to interact

and solve a problem heuristically.

Information

processing

This perspective models HMI based on the human ability to identify
a problem from the surrounding information. For example, an
operator ability to diagnose a problem from the huge amount of

information from monitoring consoles.

Task network

The task network models HMI based on the ability to formulate a
sequence of actions to accomplish a particular task. For instance, an
expert has the ability to perform a sequence of actions without a
wrong order of actions. As oppose, a novice could perform a
sequence of actions chaotically.

Control theoretic

This control theoretic perspective models HMI based on ability to
perform certain action skilfully. This approach can be compared to

a human skill modelling.

Apart from the above four perspectives in HMI performance modelling, a model development

approach should also be in consideration. Several approaches in model development can be

applied e.g. descriptive, predictive, top down, bottom up etc. A pair of model development

approaches and description is shown in Table 2.5 [61].
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Table 2.5 A list of pairing between the model development approaches.

Model development o
Description
approach

Process vs. Output The process modelling focuses on modelling the activity
within a process while the output modelling focuses on the

relationship between input-output of a system.

Predictive vs. Descriptive | The predictive modelling anticipates the output from a certain
circumstance while the descriptive modelling describes the

existing data with a model.

Prescriptive vs. The prescriptive modelling explains instructively how ones
Descriptive should perform a system task while the descriptive modelling

tells that how the operator is likely to perform a system task.

Top-down vs. Bottom-up | The top-down views from the overall system goal to the
primitive activities while the bottom-up is vice versa i.e.
modelling from primitive elements and actions up to the

overall system goal.

Single task vs. Multitask Model for a single specific task versus general modelling that

can universally apply to multiple types of task.

2.5.9 The evaluation of HMI performance modelling

Section 2.5 reviews the literature related to HMI performance modelling. This topic is an
extensive research area that incorporates many human-related disciplines such as the study of
human skill and learning, the study of human capacity and performance, the study of HMI
performance etc. A few of the research projects have focused on the development of online
performance model which is considered to be the mandatory factor for achieving improvement
of adaptive HMI.
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2.6 Forms of HMI

This section presents three forms of HMI i.e. proximity interaction, remote interaction, and
wearable robotics as illustrated in Figure 2.11. These three forms of HMI can be considered as

the application that would benefit from the HMI improvement in both practical and academic

aspects.

@
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Figure 2.11 The three forms of HMI.

2.6.1 Proximity interaction

Figure 2.11(a) shows the proximity or face-to-face interaction that arises directly and physically

within close range and immediate environment. A service robot with some kind of physical
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interacting medium like a robotic arm or hand is one of the examples of a robot that can interact

with a proximity range.

2.6.2 Remote Interaction

A remote controlled interaction, also called telerobotics, teleoperation, or telemanipulation,
occurs between an operator and robot situated in distant sites such as USAR and telemedicine.
Depicted in Figure 2.11(b), a robot is remotely operated through a communication network via
a local control interface. The interaction has to deal with time delay, telepresence, and situation

awareness on a control screen over the network.

2.6.2.1 Telerobotics

Telerobotics is the study of robots that can be interacted with from a remote environment. Many
terms can refer to the same as telerobotics including teleoperated robots, robot telemanipulation,

and robot teleoperations.

According to a distinguishing characteristic and its usefulness, remotely operated robots have
been utilised in many applications. This remote indirect interaction (Figure 2.11 (b)) has
emerged over decades for nuclear material handling operations [77] and space exploration. In a
life-saving situation where every minute is counted, rescuers capably attempt a rescue from a
remote site, exert less energy, and stay completely safe [24], [78]. Medical applications are
greatly contributed by teleoperated robotics. In telesurgery, telemedicine, telehealthcare, and
teleexamination, experts or doctors are able to perform operations from a physical distance [79],
[80]. The teleoperations are employed in military battlefields in the same way. Hazardous
operations such as explosive ordinance disposal [81], radioactive material handling [82] and
operations in a poisonous environment, which are considered exceedingly dangerous for the
human operators, demands control with dexterity and precision from teleoperations. Exploration
tasks in inaccessible or hardly accessible areas such as space [83]-[86], underwater [87], [88],
underground [89], and those relatively different in size of the operating environment compared
to a human [90]-[96] (i.e. different in scale, either smaller or bigger) can be accomplished by
teleoperated robotics. To reduce cost and to avoid loss of life, teleoperated vehicles are
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frequently used in harsh terrain or environments [97]. These telerobotics applications help to

enhance human capabilities.

Besides the potential advantages, a remote connection poses problems of time delays,
information loss, and distortion in the communication channel. A feeling of control is also
problematic. As compensation, numerous control strategies are surveyed, compared, and
summarised [98]-[100] e.g. force reflection, shared compliance control, predictive control etc.
For example, bilateral teleoperations are the master controller and slave actuator systems that

render force feedback over a transmission channel feeling from master to slave and vice versa.

Advances in technologies have made hard tasks easier. For instance, the introduction of touch-
screen interfaces makes a teleoperated mobile control possible with just a fingertip by touching
and specifying a robot’s trajectory through a touch panel [101]. To gain better teleoperations,
telerobotics is facilitated by developments in 3D real time rendering hardware, computer
graphics software, gaming industries [78], [102] and highly integrated technologies such as
Nintendo Wii [103] and Microsoft Kinect [104]-[106].

Situation awareness (SA) is a significant aspect of display interface design e.g. teleoperator
interfaces, interfaces for aeroplanes, interfaces for power plants, and manufacturing [107],
[108]. The experiment conducted in [102] is the comparative experiments between novice and
expert users using altered 3D teleoperation interfaces for general domestic duties. There is a
confirmation from the experiments that the novel mixed perspective visual display, designed to
improve the SA, help to improve novice performance. The SA can be viewed as one of the

assistive information provided to improve the efficiency of the operation.

2.6.3 Wearable robotics

Wearable robotics as shown in Figure 2.11(c) is an emerging technology of an intelligent device
which is constituted as a part of the wearer as a prosthesis or a supportive device [109]. As a
prosthetic device, it is used to replace amputated limbs. A supportive device is a device that aids

the wearer in walking, carrying heavy loads, improving accuracy etc.
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2.7 Control modes of HMI

There exist several control modes depending on the situation and design of the control task e.g.
pursuit tracking, balancing, on-off intermittent, aiming, and oscillatory control etc. Some of the
daily life activities such as riding a bicycle require several control modes acting simultaneously.
The rider has to maintain balance and turn the pedals to move forward simultaneously while the
hands control the handlebar to keep the bicycle on track.

2.7.1 Pursuit tracking and compensatory control

A characteristic of human operators in manual control systems is identified by a simple pursuit
and compensatory control. When a human functions as a servo, it can be modelled by families

of quasi-linear transfer functions and other functions of frequency [110].

In [111], a human-to-human interaction study has been conducted to examine a relationship
between the sharing control of a pursuit tracking task. The approach extends the McRuer’s
cross-over model [112], [113] to cope with two operators. Undertaking the cooperative task, a
result concludes that each of the operators tends to adapt to the other. The explored relationship

is established to advance a natural and intuitive HMI.

2.7.2 Balancing control

A mop or an inverted pendulum balancing is the example of this type of control mode that can
be extended to the studies such as a study of human posture balancing, development of a robot
arm posture, development of a crane vehicle etc. Many investigations have applied this type of
control mode to study human control behaviour [16], [114], [115]. It is found that a skilful
operator exhibits an on-off intermittency control strategy in balancing an inverted pendulum
task. This intermittent control can be described by a linear model of time and velocity shifts
[16]. Likewise, a human balancing control strategy is turned towards a discrete like control
strategy when delay is introduced, also known as the bang-bang strategy [114]. This bang-bang
control strategy is considerable to be a proportional-derivative (PD) type of automatic controller.
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2.7.3 Oscillatory control

An oscillatory control mode happens when there is a vibrating element with a damping ratio
below 0.35 [116]. This oscillation limits a human ability to track the position of the system while
operating it. To recover the tracking ability, a technique called ‘input shaping’ is enabled to
suppress the oscillations. A crane system is an example that is likely to have the oscillatory
dynamics while the human operator controls the payload through the obstacles as shown in
Figure 2.12 [117], [118].

L

Figure 2.12 A crane system [117], [118].

2.7.4 Target hitting/reaching control

Target hitting or reaching is a simple control task that comprises of reaching or moving from
one target to another target. The task can be either in the physical or virtual worlds. One
examples of a physical target reaching task is to move a physical object from one position to
another. In a virtual world, an example is the manipulation of a mouse cursor from one position
to another. Fitts” law (which is discussed in Section 2.5.3.1) is usually the formulation for
performance measurement in a target hitting task, especially for a pointing device in HCI
research [70], [119]. The target hitting task based on Fitts’ law definition is shown in Figure 2.7
in Section 2.5.3.1.
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2.7.5 Other studies

The human control strategies discussed in the previous sections are considered as basic control
tasks that are less complicated than a task in real life situations. Human control for a virtual ball
juggling task is studied under the HAM assisting control [46], [120]. Car driving behaviour is
particularly interested in the HSC research [28], [121].

2.8 Descriptive and predictive model
developments

It is well-known that human behaviour is complicated and unpredictable. Therefore, it is
difficult to develop a model analytically. A descriptive model development seems to be an
appropriate approach for the model development of HMI performance modelling because it
creates a model based on the observations.

The descriptive approach is successfully applied in a number of HMI studies including a human
car control strategy study [122], a crane control operation [117], a set of rules to control the

level of a water tank [123], balancing an inverted pendulum under time delay [114].

According to Table 2.5, opposition to the descriptive approach is a predictive modelling
approach, which anticipates output from a given set of observations. The example of the
predictive modelling approach can be found in [124], [125] for the modelling of human control
in pursuit tracking task. The two opposite approaches can be developed in combination in order
to obtain a reliable model. The combination is proceeded by dividing the observation data into
two datasets. One part is used for the descriptive model development and another part is used to

test the validity of the obtained descriptive model i.e. the predictive approach.

2.8.1 Model development procedure

A generic descriptive model development procedure is shown in Figure 2.13. The procedure
consists of four main steps with one optional step. First, raw data is obtained from an

experimental observation. Secondly, the raw data is segmented into an object of interest.
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Thirdly, features are extracted from the segmented data. Then, the feature can be transformed if
necessary depended on circumstances such as dimensionality reduction. Finally, the dataset is
ready for a model development for a selection of modelling algorithms.

At the optional block in Figure 2.13, the following data transformation technique could be
applied. The principal component analysis (PCA) is a statistical technique for data or feature
transformation into another space of an equal number of variables i.e. principal component (PC).
However, the PCs in the principal component space is ranged from high to low importance in
term of redundancy of information linearly combined from the original feature space i.e. each
PC is a linear combination of the original space variables. That is, the variance among the PCs

IS maximised [126].

Raw observation data

v

Segmentation

\ 4

Feature extraction

| Feature !
E transformation |
- (Optional ) |

Dataset for model
development

Figure 2.13 The generic descriptive model development procedure.

2.8.2 Cross-validation

The descriptive modelling approach utilises data obtained from an empirical observation to

develop a model. It is obvious that there is a limitation of the data samples for the model
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development. A cross-validation method is often applied for model training with this limitation
[127]. The method divides data into two parts i.e. training and testing datasets. Obviously, the
training dataset is used for training a model. The testing dataset is used to test the obtained model
from the training. The model performance is evaluated from the testing result. By proceeding

this model development for one time, it is a single fold cross-validation.

Although there is some debates on the division ratio between training and testing datasets, a ten-
fold cross-validation seems to be the standard in practical applications [127]. The tenfold cross-
validation separates data into two parts at a time i.e. 90% for training and 10% for testing. The
tenfold procedure proceeds for ten times i.e. ten folds by rotating the parts accounted for training
and testing. The model performance is measured from averaging the ten testing outcomes.
Furthermore, to obtain a reliable result, the overall tenfold procedure is repeated for ten
iterations i.e. ten times. Therefore, the name of the entire procedure is ten times ten folds cross-

validation.

2.8.3 Model performance evaluation

A model evaluation by a single dimension may not adequate and could mislead the interpretation
of the performance [128]. The additional metric can be produced to support the single dimension
evaluation such as confusion matrix [129], receiver operating characteristic (ROC) curve [130],
precision-recall (PR) curve [131].

A confusion matrix or contingency table for a two-class prediction problem is given in Table
2.6. The two classes are denoted by positive and negative. The table shows the four possible
prediction outcomes which are true positive (TP), false positive (FP), false negative (FN), and
true negative (TN). Equation (2.9) indicates the overall accuracy of the prediction. The true
positive rate (TPR) is the proportion where positives are correctly predicted. The TPR is also
known as recall or sensitivity. The false positive rate (FPR) is the proportion where negatives
are incorrectly classified as positives. The TPR and FPR are calculated using (2.10) and (2.11),
respectively. The true negative rate (TNR) is the proportion where negatives are classified
correctly and the false negative rate (FNR) is the proportion where positives are incorrectly

classified as negatives. They are calculated using (2.12) and (2.13), respectively. Finally, a
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precision which is the proportion of predicted positives that are correct. The precision (P) is

calculated using (2.14).

Table 2.6 A two-class confusion matrix.

Predicted Class
Positive Negative

Positive | True positive (TP) | False negative (FN)

Actual
Class

Negative | False positive (FP) | True negative (TN)

p 10— TP +TN 29)
ceuracy (AC) = 5 TN + FP + FN '
True Positive Rate (TPR) or Recall = P (2.10)

rue Positive Rate or Recall = mm——m :

o _ 2.11
False Positive Rate (FPR) FPLTN (2.11)
i = 2.12

False Negative Rate (FNR) TPTFN (2.12)
True Negative Rate (TNR) = N (2.13)

rue Negative Rate ( “FPTTN -

TP
. _ 2.14

Precision (P) TP+ FP (2.14)

These additional evaluations provide a deeper understanding of the classifier performance
instead of a single dimension evaluation. Additionally, a plot between precision and recall i.e.
PR curve can reveal the analytical performance of a classifier ability to predict certain positive
cases with a particular precision.

An ROC curve is another addition metric for model performance evaluation adopted from signal
detection theory. ROC curve is a plot between TPR and FPR on y and x axes, respectively. A
curve characteristic and an area under an ROC curve (AUC) reveal the performance of a
classifier [132], [133]. The area closer to 1.0 is the ideal classifier performance.
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2.9 Artificial neural network (ANN)

Anrtificial neural network (ANN) is a statistical learning model inspired by a nervous system of
the brain. Dating back to the 1940s, a nervous system is first mathematically modelled by
McCulloch and Pitts [134]. Followed by the perceptron invented by Rosenblatt in 1962 [135],

it is the less complicated by receiving one or more inputs and producing a single output.

As stated in [136], “even though a computer is a million times faster in raw switching speed,
the brain ends up being a billion times faster at what it does”, that because of the massiveness
of concurrent function of the brain. A complex task, for example, face or speech recognition
requires less than a second to perform by the brain. Comparing to a computer, there are billions
of cycle needed to be completed. In human-like tasks, a neural network model represents
remarkable achievement over other traditional artificial intelligence techniques. In addition, the
neural network is an inductive learning algorithm meaning that parameters are modifiable

during training.

As a classification and pattern recognition model, an ANN is applied in plenty areas of research
including assessment of HMI flight operation [137], control systems and applications [138]-
[141], modelling and optimisation of human car control strategy [122], modelling human
decision making [142], [143], predicting human trajectories in a novel vision-based robotic
[144], a control of nonlinear structural systems [145], a tracking control of underactuated surface

vessels [146] etc.

An ANN mainly consists of interconnected entities, inputs, and outputs. The interconnected
entities, called neurons or units U, mimic the biological neurons the human brain. An illustration

of a neuron in neural network is shown in Figure 2.14.
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Figure 2.14 A single neuron in a neural network [147].

An input vector Z has an associated weight vector W that represents strength of each input i. A
net input at each neuron is computed by net =Y z;w;. An output o of each neuron is a
calculation of the activation function f,y given the net input and a bias value b. The simplest
activation function is a linear function f,y(net — b) = A(net — b) where A is a constant slope
of a function. There are other frequently used functions e.g. step function, ramp function that is
a combination of linear and step function, sigmoid function, hyperbolic tangent, and Gaussian

function.

An adaptive learning rule is a prominent component of the ANN. During training, the input
vector is provided repetitively. The weight and bias value is allowed to adjust according to the
learning rule to meet criterion until the best weight and bias value is retrieved corresponding to

the output vector.

There are three strategies for learning; supervised, unsupervised and reinforcement learning. In
supervised learning, a labelled dataset with known answers, so called a training dataset, is used
in the training process to infer prediction functions for a new test dataset. Instead, the training
dataset of unsupervised learning is supplied without labels. The model tries to extract patterns
or features of the dataset from the environment without any supervision. It is widely known as
cluster analysis. Lastly, the reinforcement learning is an intuitive trial and error paradigm of
learning from previous experiences. Actions are rewarded or penalised from the feedback of the
environment. Without prior knowledge, the paradigm aims to take actions that gain the highest

reward.
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2.10 Machine modelling

2.10.1 An inverted pendulum-driven (IPD) capsule
system

An inverted pendulum is a classic dynamical system. Several studies have been conducted on
the mechanism of the inverted pendulum-driven cart pole [148]-[150]. The IPD capsule is
generally the same as IPD cart in which the inverted pendulum is enclosed by a capsule body.

Applications of the capsule type of IPD systems are intestine diagnosis and tube inspection etc.

The schematic diagram of IPD systems is shown in Figure 2.15(a) and Figure 2.15(b) for IPD
cart pole and IPD capsule, respectively. The system consists of a body of mass M, a shaft of
negligible mass attached via a rotatable joint to the upper midpoint of the body with length L,
and a small mass m attached to the end of the shaft. With proper rotation of the upper shaft, the
system can be displaced. An input torque t applied to the joint causes the rotation of the shaft.
6 is an angle between y-axis and the shaft. The displacement is measured in x direction that has

surface friction f. The mathematical model in this section is adopted from [148].
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(b) Inverted Pendulum-Driven Capsule System
Figure 2.15 The inverted pendulum-driven cart-pole system and inverted pendulum-driven capsule

system.

According to Figure 2.15, the equations for ball position, velocity, and acceleration can be

expressed by (2.15), (2.16), and (2.17) respectively. The subscription b stands for ball.

Xp] _ [x — Lsin®
[y ] a [ LcosO (2.19)
[5%] _ [x - Lécose] (2.16)
Vb LOsind '
[Xb] _|x- LBcos6 + LO2sind (2.17)
Vb —(LBsind + LO2cosH) '
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The forces resulted from the small mass m movement in x and y directions can be formulated

by (2.18) and (2.19), respectively. By putting (2.17) into (2.18) and (2.19), the equation of
motion and force from the ball mass i.e. (2.20) can be derived.

Fpy = =M%}, (2.18)

Fpy —mg = myj, (2.19)

S iy e

According to [148], the input torque at the joint is calculated as follows.

T = (—mLcos8)¥ + (mL*)6 — mgLsin6 (2.21)
Fpy — f = MX%; where f = uNsgn(x) (2.22)
N =Mg + Fby (223)

From equation (2.21), (2.22) and (2.23), the (2.24) and (2.25) can be obtained

P fo, + 8Lmcos6 — 6L msiné (2.24)
M+m

where o, = —g(M +m) + 62Lmcos6 + GLmsinf

. Lmcos6X + 7+ gLmsinf
0= Zm (2.25)

2.11 Inclusion of human brain monitoring
system

It is a reasonable idea to include the knowledge of the human brain into the investigation for a
better understanding of the human operator and thus can provide proper assistance based on this
knowledge. It is proposed that an internal model exists inside human brain [151]. The role of
the internal model is that the brain inside is adapting iteratively to model the interaction with
the outside world. The adaptation makes the human motor skill progressive from feedback
control towards feed-forward control once the brain mastered the skill. When a skill is mastered,
the prediction and anticipation come into play for the feedforward control strategy. This

existence of the internal model conforms with the evidence from neuroscientist that human
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internally learns to simulate motion and reveal to the actual action in the future consequences
[33]. Likewise, it is found that the human brain behaves like a Smith predictor which is agreed
with the feed forward anticipation behaviour [152]. Furthermore, the researchers from
neuroscience show that the internal brain activities can be decoded to understand a human

intention from the spatial location of brain images [29], [31], [153].

2.12 Human brain regions and functions

The human brain is a living organ located in a head of a body that plays major roles in the central
nervous system. As depicted in Figure 2.16(a), there are two principle components of the
nervous system; the central nervous system (CNS) consists of the brain and spinal cord and the
peripheral system (PNS) consists of sensory and motor nerve cells (neurons). Outside the brain
and spinal cord, widespread networks of PNS nerve cells are built up across the body. Two-way
communication from receptors in skins, motor connections in body muscles, and sensors in
internal body organs to the brain are established through the networks. Sensory and motor
information are gathered and delivered to the brain. A tremendous amount of the information is
transmitted along the specialised plasma membranes of nerve cells through synapses in the form
of electrical signals called nerve impulses. Subsequent to the interpretation of the information

by the brain, instructions are sent back to the target parts of our body about how to react.
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Figure 2.16 The human nervous system and the brain structure [154], [155].

The nerve cell is the basic unit of the whole nervous system. A complex tissue structure of the
brain is estimated to be made up of 100 billion nerve cells [155]. There are two particular regions
of a nerve cell, cell body and extensions, as shown in Figure 2.17(a). The cell body, so called a
soma, a core region of a nerve cell, contains nucleus and organelles of an endomembrane system,
like another ordinary cell cytoplasm. The extensions or processes are subdivided into two types,
dendrites and axon. The dendrites are small tubular branches extended from the cell body that
collects impulses from other cells. The axon is a lengthy single fibre connected to the cell body

at an axon hillock like a root, responded for an impulse conduction. A nerve cell has many
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dendrites but only one axon. The end of each axon is divided into branch structures. The branch
termination has a knob called synaptic bouton or synaptic knob. These knobs locate relatively
close to dendrites of other cells that form almost-connected junctions, called synapses, as
depicted in Figure 2.17(b). The nerve impulses are transmitted toward the axon to the nearby

cells through these knobs.
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Figure 2.17 Structure of nerve cell and synapse sites [154], [156].

The human brain composes of three major parts: the cerebrum, the cerebellum, and the
brainstem. The cerebrum (the forebrain), the biggest and most developed part of the brain,
influences in conscious behaviours, whereas the brainstem influences in most unconscious
behaviours [155]. The second largest part in the back of the brain is the cerebellum. It is utilised
in learning skill and movement control. Movement control of the body is direct to the side of
the cerebellum. The right size of the cerebellum controls the right side of the body while the left

side of the cerebellum controls the left side [154].
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The cerebrum (the forebrain), itself, as the biggest and most developed part of the brain, is
evenly divided by a longitudinal fissure into left and right cerebral hemispheres as shown in
Figure 2.16(b). The hemispheres are covered by cerebral cortex that is a thin layer of nervous
tissue. Each hemisphere is subdivided into four lobes: frontal lobe, parietal lobe, temporal lobe,
and occipital lobe as shown in Figure 2.16(c). They are named after skull bones that they lie
underneath [154]. The frontal lobe locates at the front of the brain. The parietal lobe is at the top
of the brain behind the frontal lobe. The temporal lobe locates under the parietal lobe at the side
of the brain. The occipital lobe is at the back. The frontal lobe involves in motor function,
executive function, attention, memory, language, emotion, and personality [157]. On the other
hand, the other three lobes serve mostly in sensory function, the parietal lobe serves in tactile
functions, the temporal lobe functions in visual, auditory, and gustatory and the occipital
functions in visual. Unlike the cerebellum, control of the body is opposite to the side of the
hemisphere. The right size of the hemisphere controls the left side of the body, while the left
side of the hemisphere controls the right side [154].

Together with the spinal cord, the brain entirely dominates personalities, body functions,
physical abilities, sensing, behaviours, automatic functions such as the heart beating, digestion,
blood circulation, and lung inflation and much more. The spinal cord is cylindrical tissue
enveloped in vertebrae, lying along the backbone of the body. Serving as a normal channel of
communication between the brain and the rest of the body, information from skin, tissue,
muscles and internal organ are relayed through the spinal cord. Apart from the relay duties,
some of the movement instructions such as reflex are operated independently by the spinal cord.
In the case of spinal cord injuries, there could be effects on bodily functions according to
position and severity of injuries such as breathing, food digestion, leg paralysis, and temperature

and pain sensation.

2.13 Electroencephalography (EEG)

An electroencephalography (EEG) is a non-invasive measurement of electrical activities of the
cerebral cortex, familiarly known as brainwaves. It is considered to be a macroscopic

measurement. Figure 2.18 shows an example of EEG signal recorded from a 12-channel headset.
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The x-axis is time measured in seconds while the y-axis is the electrical voltage that is usually

measured in microvolts (UV).
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Figure 2.18 An example of 12 channels EEG signal.

The prior EEG research is conducted on animals by Richard Caton in 1875 [158], [159]. In
1929, the first human EEG was contributed by German psychiatrist Hans Berger [160]. The
electrical activities are record of information transmission in the human brain neuron networks
during synaptic excitation by placing the electrodes on a head scalp [154]. The EEG pattern
significantly changes as behaviour or mental attitude changes. Despite a sleep mode, the signal
still changes dramatically [155]. For decades, the EEG has been used to study human brain
functions by psychologists, neuroscientists, physiologists etc. [161]-[163]. Also, it has been
applied for the continuous monitoring of the cerebral cortex activity of a patient suffered from
symptoms such as obtund and comatose [164]. The experimental report of the EEG for
functional localisation of brain regions mentions that the left frontal hemisphere has a higher
level of activity while listening to joy and happy musical excerpt. In contrast, a level of activity
of the right frontal hemisphere rises when subjects listen to frightened and sad music excerpts
[165].
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2.13.1 The 10-20 international system

The standard 10-20 international system is the specification for theplacement of electrodes. The
electrodes are placed radially around the scalp surface to cover spatial areas across the cerebral
cortex regions. The examples of electrodes and cap used for EEG signal recording are shown in
Figure 2.19.

Figure 2.19 The electrodes and caps for EEG data acquisition [166].

The distances between adjacent electrodes are 10% or 20% of the front-to-back or left-to-right
point of the skull, as depicted in Figure 2.20. Each electrode is labelled with an alphabet and a
number associated with the cerebral hemisphere lobe underneath the areas. The label ‘F’, ‘P’,
“T” and ‘O’ are used as the prefix for frontal lobe, parietal lobe, temporal lobe, and occipital
lobe, respectively. The label ‘C’ stands for the centre and ‘Z’ means zero, used to refer to the
electrodes along the nasion-inion line. The ‘A1’ and ‘A2’ are usually used as the ground i.e. the

point of voltage reference for the other electrodes.
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Figure 2.20 the 10-20 international system of electrode placements [166].

2.13.1.1 EEG rhythms

Within 1-30 Hz range, the EEG brainwave can be categorised into rhythms of interests

corresponding to a particular brain activity, frequency, amplitude, shape, and the location of the

electrode. The frequency rhythms are specified as shown in Table 2.7 [166].

Page 59 of 319



Table 2.7 EEG rhythms [166].

Example of
Rhythm | signal within Frequency | Amplitude . .
name 1-second band range V) Locations Example of activity
window
JAVAN
Delta <4 Hz 50-350 Vary Deep sleep, drowsiness
f
A
Theta 4-8Hz 10-150 Vary Deep sleep, drowsiness
N\
My _
Alpha 8-13Hz | 20100 | Posterior | ~ciaxed wakefulness with
eyes closed.
AW
WWHVIVASWM
Beta L ST 13 - 30 Hz 10-30 Fgci)ir__lft:leor Cognitive activities
Rl
Relaxed and wakefulness
with either both eyes open
TV or close. The mu rhythm is
Mu 7-12 Hz 10-50 Central | then blocked (event related
AWMLY desynchronisation or ERD)
by limb movements such as
hand movement.
Sharp
transients of - i .
Lambda | W\ 200-300ms Below 50 | Occipital | Visual exploration
duration

The Delta rhythms are the slowest signal oscillation below 4 Hz. The Delta rhythms are usually
occurred during a deep sleep state. During a normal sleep or a drowsiness activity, the signal is
categorised as the Theta rhythms. The Alpha rhythms of the brainwave oscillate around 8-13
Hz at the posterior region during relaxed and wakefulness states with eyes closed. The Beta

rhythms are categorised by the brainwave oscillated around 13-30 Hz and occurred during the

cognitively oriented activities.
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Mu rhythms are a subset of the Alpha rhythms that are associated with limb movements during
relaxed and wakefulness state [167], [168]. The Mu rhythms block or desynchronise the
ongoing brainwaves. In other words, there is the identifiable change in the ongoing train of the
signal [169]-[171].

2.13.1.2 EEG artefacts

Due to the very low electric voltages on the scalp surface, the signal contamination tends to

happen easily by many non-brain sources [172] such as eyes blinks, eyes movements, muscle
movements, head movements, body movements, electrode defect etc. The sources of EEG
artefacts can be divided into two categories biological and technical sources, as summarised in
Table 2.8 [166]. Some examples of the EEG artefacts are shown in Figure 2.21. Distinctly from
the typical EEG signal, some abnormal characteristics of the signal are obviously shown in the
artefacts. These artefacts need to be identified and dealt before any meaningful analyses.
Fortunately, some research projects have been accounted for these artefacts [173]-[175] e.g. the
wavelet analysis for artefact removal, the independent component analysis (ICA) etc. These

techniques are fully discussed in Section 2.13.4.

Table 2.8 The sources of EEG artefacts [166].

Source of EEG artefacts

Biological Technical
Muscle activity (EMG) Defective electrodes, wires, ground
Electrocardiogram (ECG) Loose electrodes
Heartbeat/pulse Electrostatic disturbances
Eye movements Electromagnetic interference
Wet skin (sweating) AJ/C power sources (50/60 Hz)
Body movements, breathing
Tongue movements
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Figure 2.21 The examples of EEG artefact [166].

2.13.2 Advantages and disadvantages of EEG

The fact that the weakness of the signals retrieved from the human scalp, which is likely to be
contaminated, is considered as one of the disadvantages of the EEG recording. An amplifier is

usually utilised to boost the relatively weak electric potential to gain the useable signal [154].

The advantages of an EEG monitoring system outweigh its downside. The cost of EEG
recording is rather low. The method is non-invasive. Although the EEG’s spatial resolution is

low, the temporal resolution of the EEG is high.

The advancement in headset technologies makes the EEG monitoring processes easier and more
comfortable especially for patients such as children and elderly [176], [177]. The Emotiv EPOC
is an example of a lightweight and wireless headset, as shown in Figure 2.22. The felt sensors,
as shown in Figure 2.23, are moistened with saline solution and attached to the headset’s
placeholders. The headset sends signals through a wireless USB dongle shown in Figure 2.24

to a computer. The sampling interval depends on a headset. The Emotiv EPOC headset can
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provide 128 Hz of the sampling rate (2048 Hz internal) while the Biosemi Active can give 2048
Hz of sampling rate [178]. The 128 Hz is a reasonable sample rate because the oscillation of the
EEG brain activity falls between 1 Hz to approximately 30 Hz. Therefore, the acquired signal
is typically band-pass filtered to a range of the interested frequencies e.g. 1-30 Hz, or 1-60 Hz.

Besides the general advantages, the number of brain monitoring systems and techniques
including positron emission tomography (PET), functional magnetic resonance imaging (fMRI),
magneto-encephalography (MEG), optical topography (NIRS) is compared and criticised in
HAM studies together with the EEG [16].

The reliability of the EEG method in brain activity measurements has been proven over a period
of months on many types of subjects [179]-[181]. In disabled subjects, the EEG is effectively
utilised as a brain-computer interface (BCI) to help subject with limbs movement problem to

control an object without any physical limb movements [178], [182].

Figure 2.22 The Emotiv EPOC headset.
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Figure 2.23 Felt sensors.

Figure 2.24 USB dongle for wireless data acquisition with the Emotiv EPOC headset.

2.13.3 Stimulus-locked event or event-related
potential (ERP)

An event-related potential (ERP) or a stimulus-locked event is an identifiable change of ongoing
EEG signals reacting to given stimulus events e.g. visual, auditory, imagery, sensorimotor, etc.
[172], [183], [184]. Figure 2.25 demonstrates the ERP that takes place at the time of the onset
of the stimuli within the reading window of -500ms to 1500ms. The ERP signals or voltages are
quite small e.g. around 1 to 30 microvolts compared to the background EEG signals [185].

By a low signal-to-noise ratio of the EEG signal, the conventional method to detect the ERP is

to average the EEG signal out around the stimulus onset time. To the event of interest, mental
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preparation and response are expressed in the averaged ERP. The noises or artefacts are
deadened, and the signal-to-noise is improved as well. Still, some cancellation of important
brain related activities are revealed in this averaging method [186], [187]. That makes this

method unsuitable for a research project that bases on a single trial brain response analysis.

During the analysis, it is important to eliminate interferences from other sources e.g. eye blinks,
heartbeats etc. For example, an independent component analysis (ICA) in EEGLAB [188] is
used to remove those artefacts in [189].

4 epoch epoch on-going EEGs epoch 4
AV AV WA AW -
AF3} AW

AFAN M AW V"‘Nm/"\/\/\ [ ‘ R A O

stimulus onsef time  stimulus onsef time stimulus onsef time SﬁmUITS onset time
time  -500ms 1500ms
-500ms Oms 1500ms -500ms Oms 1500ms -500ms Oms 1500ms

Figure 2.25 Event-related potential (ERP) averaging method.

There is a study using the ERP to investigate the origins of memory sources [162]. The study
uses an old-new discrimination scenario to differentiate the ERPs from the occipital lobe and
the frontal lobe. It has been concluded that the frontal lobe is the important region for memory

source monitoring.

2.13.3.1 P300 speller ERP

A P300 speller is human-brain-thinking spelling based on the ERP brain responses [177], [178],

[190]. Regularly, a P300 ERP can be interpreted from the central-parietal lobe of the brain. The
common features of ERP waveform are the amplitude, the latency, and the scalp distribution.

The letter ‘P’ refers to a positive deflection of the EEG signal after stimulated and the number
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300’ is the latency of the deflection measured in milliseconds. If a deflection is bounced back

towards the negative scale then a letter ‘N’ is used instead.

An example of P300 is depicted in a graph in Figure 2.26. The Emotiv EPOC headset is used in
a P300 ERP experiment in [177], [190]. The wave is returned from an electrode Cz at the centre
of a human head shown in Figure 2.20. The P300 ERP shows five deflections from an onset of
a stimulus. The first deflection is a positive deflection P1 occurring around 100ms, followed by
a negative deflection N1. Around 200ms after the stimulus, another positive deflection P2
occurs. The signal bounces towards negative scale again at N2 and gradually moves towards

positive at P3 at around 400ms.
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Figure 2.26 P300 event-related potential [190].

2.13.4 Analysis and signal processing methods

2.13.4.1 Filtering

In most cases, the frequency of the brainwaves falls between 1 Hz to 30 Hz agreeing to the
rhythms definition, as summarised in Table 2.7 in Section 2.13.1.1. Therefore, it is mandatory
to band pass filter the signals to the frequency range of interest. For example, the Butterworth
band-pass filter is applied to limit the acquired signals to fall between 1 Hz to 12 Hz in a study
of P300-based BCI for disabled subjects [178]. The immediate effect of filtering is that power

line frequency, which normally is 50/60 Hz, is cancelled out as well.
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2.13.4.2 Windsorisation

Windsorisation is an amplitude trimmings or truncation during pre-processing to make the EEG

signal stay within the range of interest. Spikes, unwanted, and extreme amplitude caused by
strange noise or artefact are eliminated. This technique is employed in pre-processing of [178].
Figure 2.27 shows truncated boundary of the method. The signals that exceed the two red lines

are clipped off.
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Figure 2.27 The example of windsorisation or truncation.

2.13.4.3 Time and frequency domain analysis

The extraction of frequencies from a time series signal provides the extra dimension of data
inthe time domain signal analysis. Fourier Transform (FT) is a method used for transforming
data from time domain to frequency domain. The transformation extracts frequency and
amplitude information from the periodic data. The process is reversible, so it is possible to
transform from the time domain to the frequency domain and vice versa. The advantage of the
analysis in the frequency domain is that the filtering is performed faster and sometimes the noise
is easier to be filtered out. Therefore, the method is frequently applied to the EEG study [180],
[191]-[195].

Any periodic sequence f(t) can be defined in terms of a linear combination of sines and cosines

of different frequency. It is known as a Fourier series (2.26).

f) = Z Ay cos(2rwyt) + By sin(2mwyt) (2.26)
k=1

Where A is an amplitude, w is a frequency.
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The Fourier transform of f(t) is defined as (2.27)

Flw) = jjif(t)e‘znm”dt (2.27)
And the inverse Fourier transform is defined as (2.28)

f(t)zzjjiF(w)e”ﬁwtdw (2.28)

In case of a discrete periodic sequence f (k) where k is an integer at a period N.

A Discrete Fourier Transform (DFT) can be defined as (2.29)

N-1 0<j<N-1 (2.29)
F()= ) flle2riki/N
The inverse Discrete Fourier Transform is defined by (2.30)
0<k<N-1 (2.30)

N-1
FU) == Y F(ermii/y
=0

The faster algorithm to the Discrete Fourier Transform is the Fast Fourier Transform (FFT),
which uses O(N log N) instead of O(N?) operations [196], [197].

The major drawback of the Fourier Transform is that the time domain information is completely
lost after the transformation. The other drawback of the Fourier Transform is that it works well
only with the stationarysignal. The Fourier Transform produces decent results when it is applied
to stationary data, unfortunately, the EEG signal is non-stationary. Hence, the alternative version
of the Fourier Transform called Short-Time Fourier Transform (STFT) or Gabor transform
[198] is invented to deal with the mentioned drawback. The STFT method pays more attention
to the time window of a local segment of the signal. Although the STFT has overcome the

stationary problem, it is still lack of time resolution.
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2.13.4.4 Wavelet Analysis

Wavelet analysis is an alternative to the shortcomings of the Fourier analysis. A basic concept
of the wavelet analysis and a tutorial on application to the neuroelectric or EEG data are supplied
in [199]. The wavelet has a time-varying shape that can be stretched, shrunk or translated over
a time scale. Figure 2.28 shows a B-spline wavelet and its variations. Various works in the EEG
including de-noising [187], ocular artefacts removal [174], [175], feature extraction [200], [201]
etc. has applied the analysis in many ways.
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Figure 2.28 A B-spline wavelet stretching, shrinking, translation and the corresponding

frequency spectrum [199].

The potential advantage of the wavelet analysis is that it maintains both frequency and time
domain data of the transformed signal. Basically, in the Fourier Transform, the sine and cosine
waves are used for sampling the signal of interest. The sine and cosine waves are localised in a
frequency domain but spread infinitely in a time domain. Conversely, the wavelet
transformation utilises a wavelet shape instead of the sine/cosine waves to transform the signal
of interest. A set of variations of a wavelet shape is called a wavelet family. The examples of
well-known wavelet shapes are shown in Figure 2.29. By utilising a wavelet family, the wavelet
transformation is localised in both time and frequency domain. In theory, scale and translation

are infinite, but practically it is limited to particular levels.
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Figure 2.29 Some of the wavelet shapes [199].

2.13.4.5 Independent component analysis (ICA)

The independent component analysis (ICA) is a method for training or learning spatial filters
that focuses on one source of information in the data while processing the data collected from
many scalp locations [172], [188], [202]. It is a statistical blind source separation problem.
Figure 2.30 shows the basic illustration of the ICA. Given that there are two sinusoidal signals
A and B, which have different frequency and phase, Figure 2.30(a). They are linearly mixed
using equations (2.31) and (2.32). The mixed signals are shown in Figure 2.30(b). By applying
the ICA algorithm to M1 and M2, the sources A and B can be revealed. The revealed signals
are shown in Figure 2.30(c), which are approximately the same as the sources. The amplitude
of both uncovered signals is slightly different from the sources. It is required to invert the phase

of the revealed signal that seems to be the source B.
M1=A-2B (2.31)

M2 = 1.734 + 3.41B (2.32)
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(c) ICA uncovers A and B activation from M1 and M2
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Figure 2.30 The ICA process.

The ICA can be applied for removal of eye activity artefacts as explained in [203]. The process
of eye artefact removal using ICA is shown in Figure 2.31. A multiple channels of EEG data is
unmixed into independent component Figure 2.31(a). The suspicious eye activity artefactual
components are marked for exclusion, then the remaining components are mixed in order to

form the original EEG signal without the eye activity artefacts.
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Figure 2.31 ICA applied for eye activity artefact removal [203].
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2.13.4.6 EEG feature extraction

In order to be able to create a model from EEG brainwaves, it is required to analyse the

characteristic / feature of the EEG signals. Several analysis perspectives can be applied to extract

features from the EEG signal including statistical analysis [191], [204], [205], time domain

analysis, ERP analysis [172], frequency domain analysis [191]-[193], time-frequency domain

analysis [194], [195], wavelet transform [199]-[201] etc. Summaries of EEG feature extraction

domains and algorithms are given in Table 2.9. Some of the reviewed works for human emotion

recognition by applying statistical features is given in Table 2.10. Most of the works apply six

statistical features referred from [192]. The advantage of using statistical features is that it can

be computed online with less calculation effort.

Table 2.9 The EEG feature extraction domains and algorithms.

Feature extraction domain

Algorithms

Related works

Means, median, standard

deviation, root mean square,

[191], [192], [195], [204]-[206]

Time domain parameters (TDP)

Statistical o
skewness, kurtosis, minimum,
maximum, peak-to-peak
) ] Event related potential (ERP),
Time domain [172], [193], [207], [208]

Frequency domain

Fast Fourier transform (FFT),
Power spectral density (PSD),
autoregressive (AR),

Eigenvector

[191]-[193]

Time-frequency domain

Wavelet transform, Common
spatial pattern (CSP), Time

frequency distribution

[194], [199]-[201]

Space-time-frequency domain

Parallel factor analysis

(PARAFAC), STAT-PCA

[209]-[211]
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Table 2.10 Reviewed works on human emotion recognition based on statistical features.

Reviewed work Recognition Signals / data Statistical Time Frequency Time- Classifier Accuracy Additional
size analysis domain domain frequency algorithms information
analysis analysis domain
analysis
[204] - 6 subjects, 64 - N/A N/A N/A Back 95% N/A
6 statistical .
channels EEG, features plus 5 propagation
. 256 Hz piut ANN
5 emotions . transformation
sampling rate L
of statistical
- 150 for
o features
training
[206] - multi-modal 3 N/A N/A N/A SVM 41.7% N/A
bio-potential
. sensors (EEG, 6 statistical
5 emotions .
pulse, skin features
conductance)
- 12 subjects
[192] - single subject N/A 4 features of N/A k-NN, MAP 81% features
- 5 physiological power transformation:
8 emotions states; spectral sequential
o electromyogram, _— density (PSD) floating
recognition 6 statistical
from blood-volume features forward search
pressure, heart (SFFS) and
rate, skin fisher
conductivity, projection (FP)
respiration
[191] - 3 subjects min, max, N/A FFT for N/A N/A N/A salient features
- EEG BIOPAC | skewness, frequency Only provide
with 3 kurtosis, peak- spectrum an analysis no
7 emotions electrodes to-peak, conclusion
median, accuracy
standard
deviation
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[205] - 11 subjects baseline, N/A FFT N/A Simplecart 84.42% Parkinson
parkinson -EEG 9 stan_da'rd disease
. channels deviation, WEKA
diseases
classification means software
11 folds cross-
validation
[195] - EEG 63 energy, N/A N/A discrete Fuzzy C-Means N/A Cluster
biosensors recoursing wavelet (FCM) analysis
6 emotions - 6 healthy energy transform
detection subjects efficiency, root
- 256 Hz mean square

sampling rate

Remarks: k-nearest neighbour (k-NN) classifier, Maximum a Posteriori (MAP) classifier, support vector machine (SVM), artificial neural network

(ANN).
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2.13.5 Visualisation
2.13.5.1 ERP image

An ERP image is a single-trial visualisation tool which is drawn alongside with the averaged

ERP to show every trial that is averaged for the ERP [212]. The example of the ERP image from

an electrode AF3 is shown in Figure 2.32. The averaged ERP graph is shown at the bottom of

Figure 2.32. The ERP is averaged from 293 epochs. All of the 293 epochs is shown by the

colour-coded value of amplitude as shown at the top of Figure 2.32. The colour-code is shown

on the right side of Figure 2.32.
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Figure 2.32 An example of ERP image.
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2.13.5.2 2D topography map

A 2D topography is an EEG activation mapping across the scalp surface. It is represented in a
colour-coded scale from the top view. The colour gradation expresses amplitude of the brain
activity at the given time. An example of 2D topography is shown in Figure 2.33. The figure
shows an EEG activation at 200ms, 300ms, 400ms, and 500ms, respectively. The colour-coded

scale ranges from -7.2 to 7.2 uV in blue to red colour.

300 ms

500 ms

7.2

2D Topography

Figure 2.33 An example of 2D topography.

2.13.5.3 3D topography map

Likewise, a 3D topography represents a three-dimensional mapping of EEG activations across
the scalp. An example of 3D topography is shown in Figure 2.34. The figure shows colour-
coded EEG activation in 3D scalp head at 200ms, 300ms, 400ms, and 500ms. The voltage code
is range from -7.9 to 7.9 1V from blue to red colour. The colours that represented EEG activation
are derived from the voltage value at the location of the sensor on the scalp at the specified time.

The colour of the topography other than the exact sensor location is interpolated.
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Figure 2.34 An example of 3D topography.

2.13.6 Apparatus

The Emotiv EPOC is a wireless EEG headset as shown in Figure 2.35. The headset has 16
electrodes, as depicted in Figure 2.35. Fourteen electrodes are used for the EEG recording while
the other two i.e. CMS and DRL are used as the reference. The CMS and DRL stand for
“Common Mode Sense” and “Driven Right Leg”, respectively. The sampling rate of the headset
IS 128 Hz (2048 Hz internal).

Some literature has proven that the Emotiv EPOC headset can provide a good quality of EEG
brain activity signal for various applications including a replication of visual P300 ERP speller
[190], an auditory ERP study [189], and mental actions BCI classification [213]. A study by
[189] compares the Emotiv headset simultaneously with a research grade Neuroscan 4.3 headset
by placing them on top of each other while subjects listen to the auditory stimuli to capture the
auditory ERP and can be concluded that the Emotiv headset can record a reliable EEG signal.

The portability of the headset provides flexibility for EEG recording. Children and cognitive
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disorder adults benefit from this advantage. The outdoor EEG recording also benefits from this
advantage [176]. The wireless capability of the headset makes it possible to integrate the headset
to a mobile phone for a novel phone BCI dialling application by adopting a P300 speller

paradigm with a lightweight classifier running on the phone [177].

Figure 2.35 The locations of Emotiv EPOC electrodes on the scalp [190].

The localisation or coordinates of the electrodes of the Emotiv EPOC headset can be found in
Appendix C. These values can be used with EEGLAB [188], [214], [215] or other software for
a plotting of scalp topography maps.

2.14 The analysis and the identification of
research gap

It is found from the literature review that most of the research projects are lacks of the important
component i.e. the online HMI performance modelling and evaluation. This component is the
centre of the machine’s capability to give the adaptive assistance based on the individual
performance level. Although the study related to a human performance has been investigated
for decades, it is rather different from the HMI performance modelling point of view. It is the
performance of the interaction between a human and a machine that is the basis for the adaptive

capability of a machine.
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There exist some of the recent research projects on the analysis and understanding of HMI
performance in various type of applications such as forestry manipulation [216], air traffic
control [217]. The work in [216] focuses on the performance analysis of a hydraulic
manipulator’s trajectories operated by two different operators. It is the offline performance
analysis of the manipulation trajectory that would be useful in the future for the implementation
of an adaptive machine. The work in [217] proposes a model of human performance from the
perspective of decision-making ability i.e. the decision of a sequence of actions from the air
traffic control application. Apparently, it is a study of human performance models from the task

network perspective of HMI performance modelling [61].

Recent work based on the HAM concept implements an assistive steering wheel from a driving
simulation scenario [218]. The assistive controller is adjusted based on the classification of the
driving behaviours of an expert and a non-expert drivers. A classifier is used to compare the
similarity distance between them in order to adjust the parameter of the assistive controller.
There is no apparent performance evaluation model but the comparison between the two
different drivers by using a classifier. It is lack of a performance evaluation method. Another
HAM based research work focuses on a comparison of skill index algorithms for the evaluation
of human operator performance on the driving skill [219]. However, the comparison is rather

brief, unclear, and there exists the limitation mentioned on the paper i.e. it is subject-dependent.

The improvement of HMI requires multiple studies in the related fields e.g. a machine, a human,
interaction, intention recognition etc. However, a human can be considered as the main body
who uses a machine, and it is the most unpredictable part of an HMI system. Hence, the inclusion
of an EEG device to record the internal inherent of the human brain processing activity could
reveal the relationship of the HMI activity and provide the establishment to create a model of
HMI performance evaluation. This establishment can be considered as the bridge between the

internal of a human intention to the outcome of the HMI actions.

2.15 Summary

This chapter reviews research works related to human and machine interaction especially the

HAM concept. The HAM concept has emerged from a simple idea of machine intelligent and
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learning i.e. the machine capability to give the assistance or guidance to its user. The HAM
realisation requires knowledge and methodology from many research fields. However, the HAM
research is still in its infancy stage. It still has many challenging issues to be addressed such as
human-machine interaction modelling, human-machine performance evaluation modelling,

human intention modelling etc.

A review on HRI, HMI, HAI, HSC, and HAM reveals the important similarity among these
man-made systems i.e. the human interaction with them. Although the interaction may be

slightly different, a human is a primary body within these human-in-the-loop systems.

There exist several forms of human-machine interaction (HMI) including proximity, remote,
and wearable. A control interface is the mandatory interacting medium in any forms of the
interaction. The advancements of the human-machine control interface have improved the many
aspects the interaction e.g. performance, ergonomic, efficiency, energy conservation etc. A brief
review of telerobotics is given to addressing the importance of the remote controlled robot
applications that could be accomplished by the improvement from human-machine interaction

research.

An adaptive interaction requires several components working as a system; recognition of human
intention, human-machine performance evaluation, adaptive assistance, shared control etc. The

details and reviews of these components are given.

Although the concept of adaptive and shared control interaction would successfully improve the
quality of interaction towards the positive direction, this is idealistic. Many issues regarding the

conflict, degree of sharing, authority in control, overreliances etc. have been discussed.

It is vital to understand a model of human performance since the human is the primary beneficial
body of the interaction. Various aspects of human performance modelling including the
definition of human skill, characteristic of the skilful operator, human capacity, stages of skill

learning, Fitts’ law, and Rasmussen model of SRK etc. have been given.

A review of some particular aspects of human control modes e.g. pursuit tracking, compensatory
control, balancing control, oscillatory control, target hitting control etc. have been given. These

control strategies can be thought as a primitive human-machine interaction.
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Several perspectives can be adopted in the HMI model development. The selection of
perspectives depends on the particular level of interaction. For example, a supervisory
interaction can apply the knowledge base perspective while a low level of interaction can apply
the control-theoretic perspective for HMI performance modelling. Apart from the perspective
selection, a choice of modelling approaches depends on the available data. The descriptive
modelling approach is often used for human modelling since the human behaviour is relatively
difficult to model analytically. The review of these perspectives and approaches are presented.

Particularly, the descriptive and predictive approaches are suitable for the development of HMI
model. A cross-validation method ensures the consistency of the modelling outcome. Additional
model performance evaluation methods are reviewed to confirm the validity of the model
accuracy. The bio-inspired artificial neural networks (ANN) machine learning is reviewed for

using along with the selected perspective and approach.

To conduct the investigation on HMI, a model of a pendulum-driven capsule system is reviewed,

and the mathematical model is examined for the simulation platform.

In order to achieve in depth understanding to HMI, the introduction of brain monitoring system
can be employed. The brain regions and functions are reviewed in conjunction with a non-
invasive measurement of brain electrical activity of cerebral cortex, EEG. Some technical
aspects related to the EEG system, fundamental, analysis methods etc. are introduced. Finally,
the apparatus used in this research i.e. the Emotiv EPOC headset is investigated.
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Chapter 3 Method of investigation,
platform design and
Implementation

3.1 Introduction

This chapter describes the investigation method, design, and implementation in order to fulfil
the aim and objectives of this research. Since this research aims at studying human interaction
with a machine under the motivation from the HAM concept, two main stakeholders are
obviously involved i.e. a human and a machine. A human can be any person who can interact
with a robot / machine in order to accomplish a certain task. It is well known that to conduct
research on an actual machine can cost tremendous budget, time, and effort. Also, a physical
machine requires a certain amount of effort from a human participant to conduct an experiment.
Safety is also a serious issue that needs to be taken into account to a physically based research.
Alternatively, simulation is a powerful method that can help avoid the previously mentioned
issues and can give an accurate result before a physically based research. Hence, this research
is based on the simulation where a machine is simulated using a mathematical model. However,
the operator side is still performed by an actual human rather than a simulated one.
Consequently, a hardware interfacing between a simulated machine and a human is still required

in order to acquire the interaction behaviour.

A HAM simulation platform is developed by this research in order to conduct the investigations.
The platform is responsible for simulating a machine model, interface with external hardware,
and handle the interaction between the machine and a human. The design, architecture, and

implementation of the platform are discussed in Section 3.4.
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3.2 Focus of the research

To describe the focus of this research, the four approaches of human performance modelling
from a review in Section 2.5.8 is used to clarify the focus area of the investigation. The
approaches can be hierarchically represented by the arrangement from low to high level of HMI
as shown in Figure 3.1. The ‘knowledge base’ circle can be considered as a high level of
interaction to a machine such as supervisory control. The ‘information processing’ involves the
processing of information and notification of any occurrences of a meaningful signal from a
machine system i.e. monitoring. The ‘task network’ requires a human to interact with a machine
in a correct sequence of actions in order to achieve the best performance e.g. a sequence of
making a dish of salad. The ‘control theoretic’ is the focus of this research in which the

interaction is focused on the low-level interaction with a machine e.g. vegetable chopping.

It can be noted from Figure 3.1 that it is possible to develop the corresponding performance and
control model at each level. Since this research focuses at the low level, the design and method
of investigation are proposed to develop control and performance model at this level.
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Figure 3.1 Hierarchical of approaches for a modelling of HMI.
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Although HMI modelling can be defined in a number of ways, this research develops a view on
the perspective of HMI modelling which is shown in Figure 3.2. A human can be modelled in
terms of e.g. mental model, cognition model, and human physical attributes etc. A system can
be anysystems such as a robot, a car, a factory plant, a computer etc. A task can be designed
based on the goal of a particular problem. The intersections of each pair form a meaningful
relationship. A ‘human-system’ forms a human machine interface or man-machine interface
(MMI1) which defines ergonomic and interaction between human and machine. A ‘human-task’
forms a relation for a task understanding. A ‘system-task’ forms a relation that specifies the
capability of the system to do a task. The centre of the three blocks forms the HMI modelling.
Also, the environment modelling is an inevitable part that covers all of the blocks because the

participating bodies have to work within an environment.

Human machine interface
- Ergonomic
- Control interface

Environment Modelling

Humqn System
Modelling Modelling
Task HMI modelling
Modelling

Task

Understanding System capability for a

particular task

Figure 3.2 This research view on the perspective of HMI modelling.
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3.3 Research methodology and design of the
investigations

This research is based on a positivism research paradigm/philosophy where the research
approach is to investigate, analyse, and develop a model based on conductions of an empirical
study. An experimental scenario is designed and developed in order to execute an empirical
study by enquiring a human participant to perform the scenario on a simulation platform. The
data acquired during the experimental scenario is used for analysis, deductive reasoning and
development of a model. The establishment of a relationship between a human-machine

interaction performance and the scenarios is drawn from these analysis and model development.

A systematic research onion model has been presented in [220]. This research has adopted some
parts of the onion model which are shown by the red dashed lines in Figure 3.3. The justification

for choosing the onion components are given below.

Philosophies
Approaches
l'\ Cross-sectional |
s - Strategies
\\“

collection ¥

and data /
Choices
Time

horizons

Archival research

Techniques and
procedures

Figure 3.3 The research methods applied in this research are indicated by the red dashed lines

from the view of research onion [220].
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e Philosophies
o Positivism - The nature of this research is a multidiscipline science based on the
observation of the phenomena of HMI.
e Approaches
o Deductive - the investigations are designed to fulfil the research aim and
objectives.
e Strategies
o Experiment and case study - the strategy of this research is to design case studies
and experiments to fulfil the research aim and objectives.
e Choices
o Mixed methods - both qualitative and quantitative methods are applied.
However, the quantitative is the key method because the main motive is to obtain
and analyse data from the empirical experiments.
e Time horizons (Cross-sectional)
o Cross sectional - this research is conducted based on short periods in time horizon
because of the constraints of the Ph.D. duration and resources.
e Techniques and procedures
o Data collection and analysis - this research obtains data empirically from the

experimentation which are performed by participants.

Figure 3.4 shows a simplified diagram of the focus of the investigation from Figure 3.1.
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Analysis,
performance, model
development

Figure 3.4 A simplified diagram of the investigation.

According to the paradigm and methods of the research, there are three main scenarios designed

for the empirical investigations.

1. A human heuristic learning to control and identify a machine control rule.
2. A human heuristic learning and control performance analysis.

a. Development of a human-machine control model based on the data observation.
3. A development of HMI performance evaluation model based on the features of EEG

brainwaves.

3.4 HAM simulation platform

A simulation is a powerful tool for realising a system prior to an actual development,
implementation, and deployment. Therefore, to study the HAM concept, a virtual platform is
developed which provides an environment for a robot / machine simulation based on a
mathematical model. In addition, the platform intends to provide real-time interaction with a

human operator / participant in order to acquire their control information.

A diagram of interconnection blocks between a human and the platform is shown in Figure 3.5.
A human operates a machine with the platform via an interface device such as a joystick,
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keyboard, mouse, etc. The operator perceives a feedback and interact by their intention and turns
out to be an action based on his/her skills and knowledge. It is noted that the operation is driven
by a task goal. The process is reciprocal as a learning cycle. The action is based on skill. A
human has the capability to learn to operate a machine by training until a particular skill is
acquired. The skill is transformed into a set of rules. Eventually, a set of rules is formulated into

knowledge. Ultimately, knowledge revolutionises into wisdom.

The HAM simulation platform is responsible for providing a simulation environment that is
including a machine model simulation, a scenario based on a task, data acquisition, interface
management, rendering the virtual appearance of the simulation etc. It is noted that the platform
wirelessly acquires data from the Emotiv EPOC headset through the manufacturer provided
API.
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Figure 3.5 A building block of the platform.

3.4.1 The internal architecture of the platform

An internal architecture of the simulation platform is shown in Figure 3.6. The simulation begins
with the specified initial conditions such as an initial pendulum angle, a zero model velocity,
etc. Then, it enters the loop that sequentially processes the blocks inside the loop. The loop is
aimed to maintain the specified time step. However, this depends on many factors e.g.
complexity of the model and the simulation calculation method, speed of the computer etc. The

simulation loop contains the equation solver, input management, graphic rendering, on-screen
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graph drawing, a logging system, and the optional adaptation computation for active / passive
assistance. The equation solver is implemented with ordinary differential equation (ODE) solver
using 4™ Order Runge-Kutta numerical method [221], [222]. After the simulation is completed,

the platform saves logged data to files for further analysis.
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Figure 3.6 The HAM simulation platform internal architecture.
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The platform is implemented using Microsoft C# programming language and the XNA as the
graphical rendering package. The XNA is a powerful cross-platform library for graphics and

game development.

3.5 Variations of pendulum-driven capsule
models

A pendulum-driven capsule model explained in Section 2.10.1 is chosen as the case study
because of its dynamics and challenges to control by a human. The study of the pendulum
control mechanism is useful in many applications such as a human standing posture, an
excavator arm structure etc. Furthermore, the pendulum-driven capsule is an underactuated
mechanical system that required the particular level of skill, rule, and knowledge to learn to
control it. There are two variations of the pendulum-driven model in this research i.e. Model |
in Section 3.5.1 and Model Il in Section 3.5.2.

3.5.1 Model I: A pendulum-driven capsule

A mathematical model of the pendulum-driven capsule Model I is obtained from the modelling
explained in section 2.10.1. The model is required to be in a proper form for the numerical
simulation by the platform. Thereby, the equations of motion (2.24) and (2.25) need to be
transformed into the state-space form as follows.

(2M + 2m) (o, + uSo;) — w?Lmsin(6) (3.1)

v (M +m)(2ZM + m — mcos(20) — uSmsin(20))
cos(0)(t + gLmsin(0))
where g, =
L
Lmsin?(0) + tsin(0

and o5 = g (L) © — g(M +m) + w?Lmcos(0)

. (2M + 2m)(t + gLmsin(0) — o,) (3.2)

@= L>m(2M + m — mcos(20) — uSmsin(26))
where g,
_ Lmcos(6)(uS(Mg + mg — w?Lmcos(6)) + w?Lmsin(6))
- M+m

X=v (3.3)
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0 =w (3.9

The equations (3.1), (3.2), (3.3), and (3.4) are in the appropriate form for the numerical
simulation using the implemented ODE solver in the platform simulation loop. A diagram of
the pendulum-driven capsule input / output is shown in Figure 3.7. Input is the torque t that
controls the pendulum at the joint attached to the capsule body as illustrated in Figure 2.15. The
outputs are the pendulum rotation angle and the capsule position according to the underactuated

mechanism.

0(t)
(t) Pendulum-Driven
—

Capsule >
x(t)

Figure 3.7 Input / output of pendulum-driven capsule model.

3.5.2 Model Il: A PID controlled inverted pendulum-
driven capsule

In this section, the model in Section 3.5.1 is modified to integrate an additional proportional-
integral-differential (PID) i.e. Model Il. A diagram of the modified model is shown in Figure
3.8. The PID controller is used to control the amount of torque required to maintain the
pendulum angle at the desired value 4. Therefore, a pendulum-driven capsule becomes an
inverted pendulum-driven capsule system by applying the PID controller to maintain the
pendulum angle at the upright position (6=0) while there is no control input from a human
operator. The simulation for this model is programmed to limit the range of pendulum angle to
match the physical appearance of the capsule i.e. 90 < § < -90. Unlike the model in Section 3.5.1
where the raw control input is the amount of torque. The raw input for the Model 11 is the desired
angle 0. In other words, a human operator can concentrate on the pendulum angle to
underactuate the capsule system to move in desired directions. The amount of torque is

automatically computed by the PID controller to rotate the pendulum to the target angle.
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Figure 3.8 Input / output of PID controlled inverted pendulum-driven capsule model.

The justification for utilising a PID controller is explained here. The PID controller closely
mimics the control behaviour of a human in balancing an inverted pendulum which is discussed
in Section 2.7.2. A human can compensate the control in only two aspects i.e. the instantaneous
compensation (proportional component) and the compensation over short consecutive actions
(derivative component). The extra integral controller component is responsible for
compensating the accumulated error over a period of time which is hardly achievable by a
human being. Therefore, the use of PID controller can provide a smooth control to a human

participant with the additional benefit of the integral component.

3.5.3 Human interaction with the machine models

The models described in Section 3.5.1 and 3.5.2 can be illustrated when they are operated by a
human participant as shown in Figure 3.9 and Figure 3.10, respectively. The human operator is
given the goal of the task that acts as the reference. The human brain processes the information
and takes the action via the joystick interface to control the pendulum-driven capsule system.
Then, the joystick action is transformed into the input to control the pendulum model. The
Model I is controlled directly via the joystick output that is mapped into the amount of torque.
The Model 11 has the PID controller to transform the desired pendulum angle into the amount
of torque required to control the pendulum angle. A proper rotation of the inverted pendulum
can drive the capsule system towards the desired direction. This rotation strategy is the control
task that the human operator needs to learn. The appearance of pendulum orientation and capsule
position on the display acts as feedback information to the human operator. Then, the loop is

iterated aim at completing the task goal.

The models contain time-varying variables that pass the information throughout the system loop.

The signal r(t) is the reference or the given task goal. The p(t) is the internal processing of the
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individual human brain. The h(t) is the result of an internal brain processing output as a hand
motion to control the joystick interface. The signal j(t) is the output from the joystick that is
generated by the human operator’s hand movement. u(t) is the control output from the PID
controller to the pendulum-driven capsule simulation to achieve the desired angle. The 6(t) and
X(t) are the outputs from the simulation model that appear on the screen of the virtual simulation
platform. These outputs act as the feedback to the human operator’s visual perception. The
signal ep(t) is the simulation output information plus any external disturbances such as

environmental distractions and unrelated activities on the screen.

p(t)
rocessing
r(t) h(® | Joystick | () mapstort
task goal Human >
g Interface
'Y
ep(t)
eyes perception Pendulum-Driven |_
Capsule B
\ \
x(t) O(t)

Figure 3.9 A human interaction with the pendulum-driven capsule system (Model I).

p(t)
rocessing
1(t) h(® | Joystick | i(® u(t)
> »| PID Controller
task goal Human Interface
AA ]
ep(t)
eyes perception Inverted Pendulum- | _
Driven Capsule |
\ Y
x(t) 6(t)

Figure 3.10 A human interaction with the PID controlled inverted pendulum-driven capsule

system (Model II).
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3.6 10-time-10-fold cross-validation

It is mentioned in Section 3.3 that the investigation includes a model development. The model
development requires dataset acquired from the empirical experimentation. Then, the dataset is
developed into a model by one of the modelling algorithms such as ANN, SVM, HMM, linear
regression etc. In this research, an ANN is adopted as a model development tool because of its
flexibility and the ability to solve both linear and nonlinear problems. Furthermore, the structure
of an ANN is the artificial resemblance of the human’s brain. Also, a review of several machine
learning algorithms in [223] indicates that the ANN is the most suitable and widely adopted

over the other methods for the EEG brainwave model development such as BCI.

The procedure shown in Figure 3.11 proceeds to ensure the consistency and validity of the model
development. Firstly, the dataset is divided into two parts i.e. training and blind test datasets.
The condition for dataset dividing depends on the application. Then step 1, the training dataset
is fed into the 10-time-10-fold cross-validation procedure as shown in details in a flowchart in
Figure 3.13. The procedure is adopted from Section 2.8.1. The training dataset is shuffled and
partitioned into ten equal portions as shown in Figure 3.12. It is noted that the partitioning is
done along with stratification. The stratification distributes the equal number of types of class
into each portion to avoid the situation where there is a single type of class in a portion. Then,
the 1% portion out of ten portions is preserved for testing while the rest is used for training a
model. This process is the 1% fold. The 2" fold is continued by using the 2" portion as the
testing and the rest as the training. This process is repeated for ten folds. Then, this entire process
IS repeated for ten times i.e. 10-time-10-fold cross validation. It is noted that the previous
training is for a single configuration of a model. In order to find the optimal model configuration,
several of model configuration and parameter need to be put into the procedure e.g. number of

hidden neurons.

The purpose of the 10-time-10-fold cross-validation procedure is to locate the best model
configuration and parameter, given the training dataset. It is noted that configuration and
parameter can be anything that affects the performance of the developing model e.g. number of
hidden neurons in an ANN, training algorithm, initial condition etc. In this research, the

configuration is determined only by a number hidden neuron within a single hidden layer design
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of an ANN. A single hidden layer with the proper number of hidden neurons and activation
function is sufficient to solve both linear and non-linear problems [224], [225]. The 10-time-10-
fold cross-validation loops 100 iterations for each configuration. This method ensures the
consistency of the outcome since the best model is selected from the averaged performance of
this procedure that is indicated by step 2 of Figure 3.11. Then, the selected best model is trained
with the entire training dataset. This is the outcome of the model development. The final model
Is tested with unseen dataset i.e. the blind test dataset in order to test the effectiveness of the

model when it is applied in general.

A result of training and testing
accuracies for the maximum
specified number of hidden
neurons averaged from 10

times
A 4 Results
— —» 1)10-time-10-fold cross validation - Aplot of bar graph of

training/testing accuracies

A\ 4

2) Select the best configuration of The best configuration is

. selected based on the accuracy
number of hidden neurons of testing result

\ 4

A training result from the

3) Train the mOdel _With t_he selected model configuration
- —» selected configuration with all 10 |- with the number of hidden
portions . neurons
Results

- A confusion matrix
- A precision recall curve

- AROC curve
A 4 )
I 4) The trained model is tested [ Arresult from blind test dataset
"= =1 with blind test dataset with the selected and trained
\ model from step 2 and 3,

"\ respectively

Results
v - A confusion matrix
- A precision recall curve
END - AROC curve

Figure 3.11 An overall process of training and blind testing with 10-time-10-fold cross

validation.
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Figure 3.12 Dataset partitioning and stratification (a) the entire dataset (b) the dataset
partitioned into ten portions (c) each portion contains an equal number of rows and equal type

of classes.
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Figure 3.13 A flow chart of 10-time-10-fold cross-validation procedure.
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3.7 List of the investigations

This section summarises the investigations have been completed in this research. A list of the

investigation is shown in Table 3.1.

Table 3.1 List of the investigations completed in this research.

CHERED Objectives

No. Description

/section | fulfilment

Single participant learning to control pendulum-driven 4.2 1,2,4
capsule system (Model I)

o ldentification of a set of rules to control the system

Nine participants learning to control a PID controlled 4.3 1,2,4,5

pendulum-driven capsule system (Model 11)

o Nine participants

2 o A comparison of performance outcome between
participants in terms of final capsule displacement

o A characteristic of low and high performance control

signals are identified

Development of a human-machine control model based on 4.4 1,2,3,4
the control data and information from the investigation No.
2

o A set of rules of capsule control law from human control

3 information is developed into a model.

o Feature extraction from the control information

o Develop two model by adopting ANN as the modelling
algorithm

o The procedure in Section 3.6 is applied.
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A study on brainwaves from EEG measurement

o Preliminary study on EEG with the Emotiv EPOC headset
o The main investigation is the ERP for certain stimuli e.g.
auditory, click, simple target hitting task.

Chapter 5 2

A human EEG brainwaves and human-machine interaction
performance evaluation

o Atarget hitting task is adopted as the investigation scenario
to capture the human EEG brainwaves.

o The corresponding target hitting task performance metrics
are RT, MT, DT, MA, HA and the Fitts IP.

o Development of 6 ANN models which can be used to
evaluate a human-machine interaction performance based
on the EEG brainwaves.
= Six ANN models are obtained corresponding to each

performance indicator.

o The procedure in Section 3.6 is applied.

Chapter6 | 1,2,3,4,5

An implementation of hardware inverted pendulum driven-
capsule system

Appendix J Not

applicable
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3.8 Summary

This chapter presents a research methodology adopted in this research i.e. positivism paradigm
with quantitative approach. The focus area of the research has been clarified that is the
investigation at the lowest level of the four approaches to hierarchical modelling of human-
machine performance. Then, the paradigm and the focus are formulated into the method and
design of the investigations that are realised by the implementation of the HAM simulation
platform. The platform is functioned as a machine simulation and the interaction interface

between human and machine instead of using a physical machine.

The experiment data of each scenario are acquired via the platform. The analysis and model
development of the acquired data is done offline. The model development procedures that
ensure the consistency of the obtained model has presented i.e. the 10-time-10-fold cross
validation. A table that summarises all of the investigations completed in this research is given

along with a reference to the corresponding sections of this thesis.
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Chapter 4 Human-machine interaction —
learning, performance, and
model development

4.1 Introduction

This chapter presents the investigation on an HMI with the two machine models presented in
Section 3.5i.e. Model I and 1. The Model 1 is applied in the study of heuristic learning to control
the machine in Section 4.2. The Model 11 is applied in the investigation with nine participants
in Section 4.3. The control information from Section 4.3 is further analysed in order to develop

a human-machine control model in Section 4.4.

4.2 A heuristic learning to control the
pendulum-driven capsule system

The Model 1 in Section 3.5.1 is applied in order to understand a heuristic learning of a human.
A participant is asked to learn and figure out how to control the machine according to the given

instruction.

A sampling rate or the simulation time step is 100Hz or 10ms per loop. The only input of Model
| is the torque at the joint as shown in Figure 2.15 which is mapped directly to the movement of
a thumbstick of the joystick to control the amount of torque. A photo of the thumb stick is shown
in Figure 4.1. It can be noted that the system time step is 10ms. Therefore, the torque pushed by

the joystick in real time is applied to the system at every step of the simulation loop.
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Figure 4.1 A photo of the joystick which indicates the thumbstick.

4.2.1 Heuristic learning and identification of control
strategy

Apparently, one of the advantages of a real-time interactive simulation is that it is useful for
heuristic learning and practising. The underactuated nature of the pendulum-driven capsule
system is rather challenging for a human operator to learn to control especially the control of a
capsule body movement rather than the pendulum itself.

The experimentation is conducted by having a participant try to control the capsule system to
move the capsule body to the desired direction either left or right. The interaction loop is shown
in Figure 3.9 which diagrams transfer of control information around the system loop. A
participant needs to interact with the system by the mentioned control mechanisms i.e. control
of a thumb stick to actuate the amount of torque at the pendulum joint. The outputs of the system
are the pendulum angle 6(t) and the capsule body movement x(t). These outputs act as feedback
to a human, and the overall system becomes closed loop.
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The capsule system parameters are configured as follows; M=0.5kg, m=0.05kg, L=0.3m,
0=9.81 m/s?, p=0.01 N*m/s. The initial conditions — 6, w, X, v, and 7 are 180 degrees, 0 rad/s, 0
m, 0 m/s, and O N.m/s respectively. The illustration of the system configurations and the initial

conditions are shown in Figure 4.2.

AY
|
T [
o f\_ _____ | x
=180 L~0.3m
m=0.05kg
M=0.5kg f

TTT77 777777777 A7 7777 7777777777

Figure 4.2 The system configuration, parameters, and initial conditions.

In the beginning, the system stays still with the pendulum shaft and the ball lying straight down
because of the gravity and the absence of any disturbances. The pendulum start to swing when
asmall torque is applied by a user via the joystick as shown by the short-time downward impulse
of the blue dashed line in Figure 4.3 (a). The capsule body starts to move to the left and the right
repeatedly according to the forces produced from the pendulum ball movements and the surface
friction as shown in Figure 4.3 (b). The capsule is unintentionally displaced to the right after it
finally comes to the steady state as indicated by the ending position at approximately 0.15m of
the capsule body position graph in Figure 4.3 (b). A screenshot of the simulation and the
experiment is shown in Figure 4.4. A human participant learns to control the simulated machine

by control the amount of torque via the joystick as shown in Figure 4.4.
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Figure 4.3 A small activation of torque 7 at near the 2" second (blue dashed line) causes the

pendulum to swing, and the capsule starts to move.
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Aimed sampling time: 10ms)
Timing: 00:00:14.5000000
Aimed sampling time : 10 ms
Elapsed milis: 0.010 s

x (m) {DispScaling 10.00)
245(3.10)

Torque (N.m/0.010s) (DispScaling 50.00)
-0.75(0.00)

Theta {deg) (DispScaling 0.10)
24279 (216 .59)

w

v (mfs) (DispScaling 100.00)
045(0.38)

sgn (DispScaling 40.00)
-1.00 {-1.00)

Figure 4.4 A screenshot of a human heuristic learning to control a pendulum-driven capsule system.
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4.2.2 The identification of rules for the machine
control

After several tries of control the movement of the pendulum to drive the capsule into the desired
direction, a set of control rules is developed. Figure 4.5 shows the identified control rules of the
capsule system. The identified control rules can be summarised and explained by the following

steps.

Step 1) Generate a pulse of torque by pushing the joystick to allow the pendulum to swing freely
and then release the joystick as shown at approximately around the 1% second in Figure 4.5(a).
Figure 4.6(a) shows the close-up moment where a small impulse of torque is generated (solid
red line), and the angular velocity of the pendulum starts to accelerate (solid green line). Then,

the pendulum freely oscillates in the same behaviour as shown in Figure 4.3(a).

Step 2) If an operator wants to control the capsule to the left direction. The human operator
needs to push the torque backwards suddenly and only in a short period (impulse liked) while
the pendulum is freely swinging back to the left side as shown at the approximately 3™ second
of Figure 4.5(a), technically at the middle of the swinging back. The close-up detail of this
moment is shown in Figure 4.6(b). The instructions for moving the capsule body to the right

direction can be achieved in a similar way.

A general description can be explained as follows. In order to control the capsule to the left, a
human operator needs to push the torque in the middle of the rising or falling of the pendulum
angular velocity. In other words, the operator needs to push the torque at the middle edge of the
sine curves. These rules torque control strategy allow the user to control the capsule body to the
desired directions.
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Figure 4.5 The scaled control signals from the heuristic learning to control the system by a

human operator.

Page 109 of 319



N W N
T

n/a

X, V, sgn(v)

v

—

—_—sgn(v) |

time (seconds)

(a) The control characteristics for step 1.

0, 0,1

2

25

n/a

time (seconds)

(b) The control characteristics for step 2.

W T

sgn(v) ___L
J

4

Figure 4.6 The control characteristics for (a) step 1 and (b) step 2.
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Conclusion remarks to the investigation on a human heuristic learning to control the pendulum-
driven capsule system, the identified rules of the control seem similar to a walking cycle of a
human that can be illustrated by Figure 4.7 i.e. an inverted bottom half of a circle of leg
movements. Given that the desired movement is to move to the right, firstly it is needed to push
the pendulum to swing freely from A to B reciprocally. At the moment where the pendulum ball
IS reaching the point B, the torque must be pushed in the opposite way. This will make the
capsule move to the right because of both the pushed torque and the surface friction effects. This

mechanism is working in the same way as a human walking cycle.

Figure 4.7 A simple human walking cycle by swinging a leg from point A to point B.

4.3 Human learning skill and performance to
control an underactuated inverted
pendulum-driven capsule system

The investigation in this section is based on the Model 11, a PID controlled inverted pendulum-

driven capsule system as explained in Section 3.5.2.

4.3.1 Participants

Nine participants age between 21 and 50 attend this experiment. Each of them agreed and signed
the consent form before the investigation. The consent form template can be found in Appendix
A. The participants have different personal attributes such as ages, handedness, and knowledge
about principles related to the machine that could influence the control learning and
performance. The participants are labelled as CH4P1 to CH4P9. The detail of the participants
attributes and knowledge is shown in Table 4.1. One of them is female. Eight of them are right-

handed while two of them are left-handed. All of them know the knowledge on Newtons law of
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motion. Only one of them does not know the pendulum mechanism. Almost half of the
participants do not know the inverted pendulum mechanism. Three out of nine know the
principle of an inverted pendulum. None of them has tried this experiment before this

investigation.

Table 4.1 The participants’ attributes and knowledge.

P G A H N Pe IPe IpeP TBF
CH4P1 | Male 31-35 Right Yes Yes No No No
CH4P2 | Male 36-40 Right Yes Yes Yes No No
CH4P3 | Female | 31-35 Right Yes Yes No No No
CH4P4 | Male 21-25 Right Yes No No No No
CH4P5 | Male 26-30 Left Yes Yes No No No
CH4P6 | Male 26-30 Right Yes Yes Yes No No
CH4P7 | Male 41-45 Left Yes Yes Yes Yes No
CH4P8 | Male 46-50 Right Yes Yes Yes Yes No
CH4P9 | Male 26-30 Right Yes Yes Yes Yes No

P=Participant Identity, G=Gender, A=Ages, H=Handedness, N=Knowledge on Newton
law of motion, Pe=Knowledge on pendulum, IPe=Knowledge on inverted pendulum,
IPeP=Knowledge on inverted pendulum principle, TBF=Has the participant tried this

experiment before

4.3.2 The investigation

The experiment is designed to investigate the human operator learning and skill performance
when operating the underactuated inverted pendulum-driven capsule system i.e. the Model Il in
Section 3.5.2. The PID controlled inverted pendulum-driven capsule system allowed the
participants to concentrate on controlling the pendulum angle rather than the torque. A proper
rotation of the pendulum can underactuate the capsule body to move in the desired direction.
However, it requires both learning and skill to operate and identify the correct control strategy.
The interaction model is shown in Figure 3.10. The simulation appearance in this section has
been upgraded from 2D to 3D simulation as shown in Figure 4.8. However, the model is
basically the model presented in Section 3.5.2. The underlying mathematical model is the one-
dimensional system that can move in either positive or negative x-axis. The 3D appearance

makes the system easy for the operator perceptions.

The joystick axis is mapped to control the angle of the pendulum directly. The mapping means

that when the joystick is pushed towards negative PovX direction (Figure 4.9) it can rotate the
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pendulum angle of the capsule system to left-hand side which means toward the positive 90

degrees of the pendulum-driven capsule model (refer to Figure 2.15).

. mer.000

Figure 4.9 The joystick and the axis mapping to the pendulum angle.
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The PID controller constants — kP, kI, kD are 0.7, 0.7, and 6.0, respectively. The control output
gain factor is 10. The constants and the gain are heuristically tuned so that the maximum
pendulum angle overshoot is achieved as shown in Figure 4.10. Table 4.2 shows the parameters

for the capsule system.

Table 4.2 The capsule system parameters.

Ball Capsule | Shaft Surface | Gravity

mass mass length friction | constant
(kg) (kg) (m) coefficient | (m/s?)
0.2 0.5 0.3 0.5 9.81

Pendulum angle response for the selected PID constants
2.00
1.80
1.60
é 1.40
2 1.20
=4
< 1.00
IS
= 0.80
>
2 0.60
0.40
0.20

0.00
0 014028042056 0.7 084098 1.121.26 1.4 1.54 1.68

Time (Second)

kP = 0.7, klI=0.7, kD=6.0, gain=10.0

Figure 4.10 The pendulum angle response for the selected PID constants.

4.3.3 Task

The control task in this experiment is a direct control of the pendulum angle to displace the
capsule body to the specified direction i.e. left or right. A participant has full control over the
desired angle of the pendulum by pushing the joystick handle. The effect of pendulum rotation
can cause the capsule to move erratically back and forth. This is a normal condition because of
the mechanism of the inverted pendulum-driven capsule system. Nonetheless, it is controllable

for the intended displacement direction.
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Each session of the experiment for each participant contains a learning session before the actual
performance trials. The actual trials consist of 6 trials separated into three trials for right and
three trials for left movement. There is no time limitation for the learning session while the
actual trial is limited to 20 seconds per session which means a participant has to control the

capsule to the specified direction as far as possible within the given time limitation.

4.3.4 Performance analysis

This section summarises the results from the experimentation conducted by the nine
participants. The ‘R’ and ‘L’ letters are used to indicate right or left movement task followed by
a trial number as shown in Figure 4.11. For examples, ‘R1’ stands for the first right trial, ‘R2’
for the second right trial, and so on. Each of the participants performs the experiment for ‘R1’

to ‘R3” and ‘L1’ to ‘L3’ which produces a total of 54 trials for the entire investigation.

Figure 4.12 shows the amount of learning time used by each participant before the actual
performance tracked trials. According to Figure 4.12, the amount of learning time (LT) does not
reflect the performance of the actual trials since the best performance is achieved by ‘CH4P3’
who takes 212.9s learning time while ‘CH4P9’ uses 586.88s to learn to control the capsule
system but achieves the worst outcomes. It is indicated that the participant ‘CH4P9’ spends a
large amount of time to figure out how the capsule system works but could not acquire sufficient
skill to control the capsule system.

The performance is indicated by the final capsule position i.e. the horizontal distance measured
from the start position of the capsule body. The top two high performance trials belong to
‘CH4P2’ and ‘CH4P3’ with their 3" and 2" left trials, respectively. They are denoted by
‘CH4P2-L3’ and ‘CH4P3-L2’ as shown in Figure 4.11. It is apparent that the best performer is
‘CH4P2’ which is shown by the highest amount of accumulated capsule distance as shown in
Figure 4.13.The highest average speed at 2.10 cm/s is also from ‘CH4P2’ as shown in Figure
4.14. At the low ends, it is clear that the lowest performance trial is achieved by ‘CH4P4-R2’
i.e. 0.26 cm. However, ‘CH4P4’ is not the lowest performer because the total accumulated
distance and capsule average speed are still higher than ‘CH4P9’. It is concluded that ‘CH4P9’
achieves the worst performance which is agreed with the statement in the previous paragraph

that the ‘CH4P9’ could not figure out how to control the capsule system.
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Figure 4.11 The absolute values of final capsule position.

Learning Time

\'
o
o

586.88

o o
o O

318.09

9129 260.8

78 29100.76 I I 14197 11 9888 97.51

[T
&

L P
e s

Participant

N Wb OO
o O
o O

o
o

100
0

Learning time (Seconds)

@«z«z«?‘«z"
S

Figure 4.12 The time used for learning from the nine participants.
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Figure 4.14 The average capsule speeds accumulate from all trials.
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Figure 4.15 The average capsule distance from the right trials and left trials of the nine

participants.

It is interesting that almost all of the right-handed participants achieve higher left performance
than right performance as shown in Figure 4.15. Likewise, the left-handed participants, ‘CH4P5’
and ‘CH4P7’ achieve higher performance in their right direction. This phenomenon could be an
effect of a hand grasping orientation on the joystick and the fact of the human brain activation.
A left human brain is activated when the right parts of the body are in action, and vice versa.
This is confirmed from the pieces of evidence from the experimental results as follows. The
highest left direction performance is from the participant ‘CH4P2’ who is right-handed (CH4P2-
L3). The highest right direction performance is from the participant ‘CH4P7’ who is left-handed
(CH4P7-R1).

The variance of the final capsule distance is shown in Figure 4.16. This value indicates the
consistency of performance of each participant across all of their performance trials. It could be
used as a learning index. For example, the participant ‘CH4P3’ gained the highest learning
performance since the three right trials are not performed very well but in the remaining left
trials the participant achieves rather higher performances. Outcomes from ‘CH4P2’ follow the
same trend with slightly less variance. This interpretation is also applied to ‘CH4P1’ and

"CH4P4’ who gain high learning performance indicator or variance. Although the participant
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‘CH4P7’ achieves good performance across all of the trials, the variance is relatively low. This

means there is a low learning achieved by this participant.

Variance of the final capsule distance
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Figure 4.16 The variance of the absolute displacement for each participant.

4.3.4.1 Control characteristics of low and high performers

Figure 4.17 shows characteristics of the control input from two of the best and worst trials.
Obviously, the two best trials are from ‘CH4P2-L3” and ‘CH4P3-L2’ as shown in Figure 4.17
(@) and Figure 4.17 (b), respectively. The worst two performance trials are ‘CH4P4-R2’ and
‘CH4P1-R3’ as shown in Figure 4.17 (c) and Figure 4.17 (d), respectively. The figures also
show a periodogram or frequency characteristic of the corresponding graphs of control input.
The analysis shows that the control input with high frequency i.e. around 5 Hz are from both of
the best trials, ‘CH4P2-L3* and ‘CH4P3-L2’. This frequency of control input oscillation is
performed and maintained across the performance trials. In other words, the oscillation is
performed at consistent frequency across the trials. In contrast, the low skill performers show
rather low frequency of input oscillation and inconsistent across the trial. These control input
characteristics are performed by ‘CH4P4-R2’ and ‘CH4P1-R3’.

Page 119 of 319



(pes) spnujdwy onsAor

N o n/_._o

\N i {"‘ i)

15

g

10
Time(Second)

I

AN

T

U

i’

UH

e

Pl

Joystick amplitude and capsule position (CH4P2-L3)

o _k.u o

(wo) uonisod ajnsden

Periodogram

0.2

25

20

15

10

5

Frequency (Hz)

(@)

(peJ) apnyjdwy onsAor

Lo o]
5 5 . .
N1 T7 Y%
== I
— E——
~ =
.|
1
o ———
o —
b
w ==
== 0
~ ——— -
< —=
O “\\J
> —
o _
Q ——
[ e
w =
=== o
& = e
© ==
ge] =—
c —
@ =
[«b] e
© —
> \HWu
= ——
=3 — o
© E—
X b——"
© ———
= —
P M —
o =
= =1
P 1

o
OTANONT OO
[ R T

(wo) uonisod sjnsded

Time(Second)

Periodogram

04

25

20

15

10

5

Frequency (Hz)

(b)

Page 120 of 319



(pes) spnujdwy onsAor

—

N i o ‘o
H— ~
_

— [—]

2 S S

e —

< Tr—

w [S—

H ”\“\ _

L —= 4

C —_— |

o =T

s =

bt -

o ﬂr“d

o — —

@ —

S| o

a8 e

I =1 —

C p— u

S ~

m [

% Eg| \\u,

3 s

= —

o ~

o I e Lo

© —r

4 I

o

) —r

7] —

Py _JIIW“U

o —

Lo ] B —

] o

<
o

2
0

N

0.
0

(wo) uonisod ajnsded

Time(Second)

Periodogram

| PPN

25

20

15

10

Frequency (Hz)

(©)

(peJ) apnidwy onsAor

— «

N — o 1 o
—= — N
=

—~ e o
M| =
W_u_ =
S ==
w =
—— = T}
~ D — - —
c | ———
o | —/]!/———=
P ———
8| ==
p N{\ww —
m ."\\\‘\‘\jHL
w — — |
— =T | o
w = —
© — R
S = =
[5) e HW
= S
2| =S
= S ——
=
=
© MM
X | =
[&) ——— |
3
P
[}
s
o
8§ N o o ¥
S © S

(wo) uonisod sjnsded

Time(Second)

Periodogram

04

25

20

15

10

Frequency (Hz)

(d)

Figure 4.17 The graphs show control amplitude from the joystick, frequency characteristics,

and the capsule displacement.
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4.3.5 Low-level analysis

In the previous section, skill performance of the human operator to control the capsule is
measured from the final capsule distance. It is interesting to analyse the details of the control
input i.e. the raw control input from the joystick that produces the desired angle of the inverted
pendulum and causes the capsule to displace. From theoretical and mathematical control points
of view [148], [149], [226], the studies are sought to create a profile of pendulum angles which
tend to underactuate a capsule body to displace. These control profiles are designed to be
performed automatically by a machine controller. The rotation profiles are perfect in both time
and frequency of control oscillation. As opposed to a human operator is not a perfect machine
who can reproduce the control profile from the theory although it could be used as purpose

guideline.

Obviously, the underlying outcome of the final performance is from the manual control of the
joystick as indicated in Section 4.3.4.1. The detailed analysis of this manual control signal could
reveal the information which can be used to create a human-machine control model. One of the
detailed analysis is the identification of a control cycle which mimicries the automatic control
profile from [148], [149], [226]. The identification can be accomplished by applying an
approximation algorithm to the control input i.e. a local minimum and maximum as shown in
Figure 4.18. The algorithm finds the peaks and bottoms of sinusoidal waves which are the
approximation as a control cycle. This cycle information can be used to develop a model in
Section 4.4.

Armnplitude g (rad)

Time(Second)

Figure 4.18 An example of the identification of cycles from the joystick control input.
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4.4 Development of human-machine control
model using ANN

In this section, a human-machine control model is investigated based on the control information
from Section 4.3. In Section 4.3, nine participants have been instructed to learn to control a PID
controlled inverted pendulum-driven capsule system. A joystick is the input device which
controls the pendulum angle. Hence, the control information is the time-varying angle of the

inverted pendulum.

The time-varying angle of the inverted pendulum contains a human control strategy that rules
the movement of the capsule body. Therefore, it is required to extract the information from these
control signals in order to develop a control model. According to the literature review, there
exist several approaches for a model development as reviewed in Section 2.5.8. Since a human
control strategy is rather difficult to obtain analytically, a descriptive modelling approach
appears to be a suitable method to develop a model from the given control information. The
opposition is a predictive modelling approach where it makes a prediction based on a set of

given inputs.

Although the two approaches are in opposition, they are often developed simultaneously to

ensure that the obtained descriptive model performance is truly effective.

4.4.1 Model development

An ANN is adopted as a modelling tool in order to develop the model of human-machine
control. Two types of ANN modelling are employed i.e. classification and regression neural
networks, as shown in Figure 4.19. The classification model produces a discrete output that
indicates a class of capsule movements i.e. backward and forward. The regression model
generates a continuous output which is a capsule displacement. The inputs or features are

extracted from the control information in Section 4.3.
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Inputs Classification Outputs
Neural Network )

(9 features) (2 classes i.e.
forward or backward)
Inputs Regression Outputs
Neural Network
(9 features) (displacement value)

Figure 4.19 The block diagrams of ANN classification and regression.

4.4.1.1 Signal segmentation and feature extraction

The procedure to extract control information from a sinusoidal like control signal is shown in
Figure 4.20. It is noted that a trial of the experiment lasts 20 seconds with a sampling rate of
100 Hz. Therefore, the joystick control signal is the equal length. On the right side of the
‘Joystick Control Signal’ from the dashed line is a graph of an example of the control signal
produced by a participant. The graph conveys control information that can be approximated into
a train of simple switch control cycles [226]. The control signal can be approximated i.e.
segmentation by applying local minima and local maxima algorithms as described in Appendix
G. The algorithms find peaks and bottoms of the sinusoidal like control signal as shown by the
dashed line from the ‘Control Cycle Approximation’ block. Any three adjacent bottom-peak-
bottom points form the triangle of a control cycle. A triangle conforms to the stereotype of the
simple switch control profile [226]. The process is repeated until all of the trials are processed.

The graph on the right of the ‘Extract feature’ in Figure 4.20 is the example of an identified
control cycle. A, B and C are the amplitude parameters at each of the corresponding time ta, ts
and tc, respectively. These parameters are used to create features of a control cycle as shown in
Table 4.3. It is noted that the output for a cycle is the net displacement of a capsule measured

from the start to the end of the cycle timing period i.e. ta to tc.
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Figure 4.20 The flow chart of the signal processing procedure to extract the control features.
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Table 4.3 The nine features of a control cycle and description.

Feature No. Cycle Parameter Description

1 A Amplitude value at point A

2 B Amplitude value at point B

3 C Amplitude value at point C

4 Tea=tc—ta Time difference between point C and A

5 Tea=tg—ta Time difference between point B and A

6 Tee=tc-tg Time difference between point C and B

7 CA=C-A Amplitude difference from point C and A
8 BA=B-A Amplitude difference from point B and A
9 CB=C-B Amplitude difference from point C and B

4.4.1.2 Datasets preparation

After completing the process of segmentation and feature extraction as explained in Section
4.4.1.1, the datasets are obtained as shown in Table 4.4 and Table 4.5. It is noted that the data
is normalised and shown only in 3 rows. The tables expand to K=3,685 rows which are the size

of the extracted control cycles from the entire 54 trials.

The procedure in Section 3.4 is applied for models development. Since the procedure requires
two datasets i.e. training and blind test datasets, the control cycles extracted from the best
performance trial from each of the participants are preserved as the blind test dataset which is
equal to 683 rows of the K. Therefore; the remaining 3,002 is for the training dataset as shown

in Figure 4.21.
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Figure 4.21 The datasets preparation for human-machine control modelling.
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Table 4.4 The example of normalised dataset rows for the neural network classification.

Features / Inputs Outputs

Cycle No. A B C Tca Tsa Tcs CA BA CB Forward Backward

1 0.6514 0.0197 0.5655 0.1157 0.4688 0.3612 0.4284 0.0935 0.8569 1 0

2 0.5655 0.0314 0.4363 0.0992 0.4688 0.3524 0.3924 0.1478 0.7776 0 1

3 0.4363 0.0432 0.3618 0.1074 0.4648 0.3612 0.4379 0.2261 0.7290 0 1

K

Table 4.5 The example of normalised dataset rows for the Neural Network Regression.
Features / Inputs Output

Cycle No. A B C Tca Tsa Tce CA BA CB Displacement value

1 0.3284 0.0314 0.4167 0.0909 0.4609 0.3568 0.5735 0.2794 0.7665 0.4735

2 0.4167 0.0314 0.4363 0.0992 0.4609 0.3612 0.5163 0.2304 0.7776 0.3341

3 0.4363 0.0236 0.6319 0.1074 0.4609 0.3656 0.6630 0.2152 0.8921 0.3292

K
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4.4.2 Modelling results

The results are delivered separately for classification and regression models in Section 4.4.2.1
and 4.4.2.2, respectively.

4.4.2.1 Classification model

The classification model training result is shown in Figure 4.22. The figure shows the result
from step 1 of Figure 3.11 i.e. averaged training and testing accuracies from 10 times of running
with a number of hidden neurons range from 1 to 18. The overall trend of the averaged training
accuracies is in an increasing trend as the number of hidden neurons increased. However, the
averaged testing accuracies do not follow the same trend. The best model is selected based on
the best average testing accuracy. Therefore, it is found that a model with seven hidden neurons
gives the best averaged testing accuracy at 86.94%. The structure of the seven hidden neurons
ANN model is shown in Figure 4.23. The corresponding input weight, local weight, and bias
are given in Table 4.6, Table 4.7, and Table 4.8, respectively.

Average Classification Accuracy

Average Training Accuracy  OAverage Testing Accuracy

Accuracy (%)
O 00 0O 0O 0O O 0 O
w b 01 OO N 0O © O

[ee]
N

(00]
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of hidden neurons

Figure 4.22 The classification result using the 10-time-10-fold validation.
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Classification Neural Network

f, : sigmoid function f,: threshold function

Figure 4.23 The classification ANN with seven hidden neurons.

Table 4.6 The input weight (IW) matrix for the ANN classification model.

W
1.398 | 0.141 | 0.914 | 0.542 | 1.744 | -0.691 | -1.237 | -0.494 | -0.379
0.793 | -1.479 | -0.590 | 0.814 | -0.648 | -0.064 | -0.039 | -0.969 | 0.106
2533 | 1.737 | 0.361 | -1.142 | 0.768 | -0.692 | 0.194 | 0.742 | -0.625
2.156 | -0.500 | 0.661 | 0.969 | 1.734 | -1.626 | -1.633 | -1.289 | -0.755
-3.707 | -4.354 | -2.809 | 3.342 | -1.029 | 3.205 | 1.181 | 0.093 | 2.422
5421 | 1670 | 1.522 | -1.491 | -1.846 | -0.340 | -3.459 | -1.566 | -0.382
-1.040 | -3.458 | -0.715 | 0.331 | -1.786 | 1.783 | -0.383 | -1.541 | 1.063

Table 4.7 The local weight (LW) matrix for the ANN classification model.

LW
4981 | -2.542 | -4.699 | -4.565 | -2.000 | 1.523 | 2.589
-4.575 | 3.564 | 4.596 | 2.825 | 2.620 | -1.395 | -2.512

Page 130 of 319



Table 4.8 The bias matrix for the ANN classification model.

bt b2
-0.1589 | -2.1565
-1.2782 | 0.8545
-3.0643
0.3230
7.7591
1.1063
-3.4729

Following step 2 in Figure 3.11, the best model is selected i.e. the model with seven hidden
neurons. Then, the selected configuration is trained with the entire data to obtain the optimum
model. A confusion matrix of the optimum model is shown in Table 4.9. The overall
classification accuracy is 88.3%. A TPR or recall of ‘Forward’ and ‘Backward’ is 86.2% and
89.9%, respectively. The total numbers of ‘Forward’ and ‘Backward’ instances are 1287 and
1715, respectively. The model can retrieve or recall the ‘Forward’ instances equal to 1109 out
of 1287 (86.2%) whereas in the ‘Backward’ case it recalls 1541 instances out of 1715 (89.9%).
An FPR of ‘Forward’ and ‘Backward’ is 13.6% and 10.4%, respectively. It means that 174
instances of ‘Backward’ are incorrectly classified as ‘Forward’ while 178 instances of ‘Forward’
are incorrectly classified as ‘Backward’. A TNR of ‘Forward’ and ‘Backward’ is 86.4% and
89.6%, respectively. It shows that 1109 instances of ‘Forward’ are correctly classified out of the
mixing of 1109 ‘Forward’ and 174 ‘Backward’ instances. An FNR of ‘Forward’ and ‘Backward’
1s 13.8% and 10.1%, respectively. The rate shows that 178 of ‘Forward’ instances are incorrectly
classified as ‘Backward’ and 174 of ‘Backward’ instances are incorrectly classified as ‘Forward’

in proportion to the class instances i.e. 1287 and 1715, respectively.

Then, the trained optimum model is tested with an unseen data which is the process of a blind
test. The preserved 683 data rows are used for this purpose. A confusion matrix of the blind
testing is given in Table 4.10. The overall accuracy is 92.2%. A TPR for ‘Forward’ and
‘Backward’ are 80.0% (144 out of 180 instances) and 96.6% (486 out of 504 instances),
respectively. An FPR is 10.6% and 6.9% for ‘Forward’ and ‘Backward’, respectively. An FNR
is 20.0% and 3.4% for forward and backward, respectively. A TNR is 89.4% and 93.1% for

forward and backward, respectively.
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Table 4.9 The confusion matrix of the classification model with the seven hidden neurons.

Predicted Class

Forward Backward
1109 (TP) 178 (FN) 86.2% (TPR)
2 Forward
5 36.9% 5.9% 13.8% (FNR)
E
g 174 (FP) 1541 (TN) | 89.9% (TPR)
Backward
5.8% 51.3% 10.1 (FNR)
86.4% (TNR) | 89.6% (TNR) | 88.3% (AC)
13.6% (FPR) | 10.4% (FPR) | 11.7% (Error)

Table 4.10 The confusion matrix of the blind test process tested with the seven hidden neurons

model.

Predicted Class

Forward Backward
144 (TP) 36 (FN) 80.0% (TPR)
2 Forward
5 21.1% 5.3% 20.0% (FNR)
E
g 17 (FP) 486 (TN) 96.6% (TPR)
Backward
2.5% 71.2% 3.4% (FNR)
89.4% (TNR) | 93.1% (TNR) | 92.2% (AC)
10.6% (FPR) | 6.9% (FPR) | 7.8% (Error)

Both the optimum model training and blind testing results provide a rather high performance of

classification. However, in some cases, a single value of performance indication e.g. TPR or
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TNR might be misleading. Therefore, precision-recall (PR) and receiver operating characteristic
(ROC) graphs are produced to provide further analysis. The PR and ROC curves from the seven
hidden neurons training i.e. the optimum model are shown in Figure 4.24. The curves confirm
a good classification performance with the area under a curve (AUC) equal to 0.9338 of the
ROC curve. The PR curve is slightly different. The PR curve shows ‘Backward’ marginally
better than the ‘Forward’ case. This is because the actual population of ‘Backward’ class is
higher than the ‘Forward’ class (1715 versus 1287, a summation of the population in each of

the class row).

For blind testing, the AUC of ROC curve is 0.9314 which also confirms the excellence of the
model performance. Nonetheless, PR curve in Figure 4.25 shows that the ‘Backward’ case
performs better than the ‘Forward’ case with the black dotted line closer to the upper right
corner. It is noted that the reason could be the greater number of ‘Backward’ population for
blind testing. The population is calculated by adding the number of populations in the same row

of actual class. The population of ‘Backward’ class is 503 compared to 180 for ‘Forward’ class.

Precision-Recall (PR)

oob

OBf oo

Precision
(=
Q
True Positive Rate
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Recall False Positive Rate

Figure 4.24 The Precision-Recall (PR) and Receiver Operating Characteristic (ROC) curves

of the optimum classification model with seven hidden neurons.
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Figure 4.25 The Precision-Recall (PR) and Receiver Operating Characteristic (ROC) curves of

the classification model applied to blind test dataset.

4.4.2.2 Reqression model

A regression model follows the same procedure in Section 3.4. Figure 4.26 shows the averaged
training and testing results referring to step 1 of Figure 3.11. The result is similar to the
classification modelling in the sense that the accuracy increases as the number of hidden neurons
grow. The best testing accuracy of 73.16% is produced by the model with 14 hidden neurons.
Figure 4.27 shows the structure of the regression model with 14 hidden neurons. The input
weights, local weights and biases are given in Table 4.11, Table 4.12, and Table 4.13,
respectively. Then, 100% of data are used to train the 14-hidden neuron model i.e. the optimum
regression model. By training with 100% of data, the optimum regression model is obtained
with 79.10%. Then, the accuracy is 77.01% when the model is applied to the preserved blind
test dataset.

The regression model is further applied to predict the capsule position using the preserved best
trials for each of the participants. Figure 4.28 shows the capsule position predictions. The x-axis
shows the sequence of the identified control cycles. Most of the capsule position predictions are
fairly accurate except the ‘CH4P6-L3” and ‘CH4P8-L3".
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Figure 4.26 The regression result using the 10-time-10-fold cross validation.

Regression Neural Network

Layer Hidden Layer Output Layer

f, : sigmoid function £ : linear function

Figure 4.27 The ANN regression structure with 14 hidden neurons.
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Table 4.11 The input weight (IW) matrix for the ANN regression model.

W
0.093 | -1.263 | 0.359 0.153 | 0.225 | -0.493 -0.597 -1.494 | 1.050
0.756 | 0.473 3.168 | -2.591 | -2.875 | 3.628 1.484 -0.322 | 2.123
-5.313 | -0.849 | -3.514 | -2.801 | -4.569 | 1.781 1.195 2.778 | -2.419
-1.437 | 0.609 2.855 3.806 | 4.534 | -2.353 2.733 0.724 1.994
0.118 | -2.097 | -1.491 1.006 | 1.032 | -1.968 -1.963 -1.354 | 0.400
0.438 | -2.619 | -1.298 | 0.444 | 2.173 | -0.900 -1.930 -0.863 | 0.020
28.708 | 4.339 | -102.359 | -6.705 | 28.300 | -25.699 | -108.932 | -27.757 | -48.703
2.246 | 0.798 1.389 | -0.010 | -1.654 | 1.001 -2.089 0.493 | -0.682
1.731 | 1.484 1.158 | -0.230 | -1.153 | 1.354 -1.684 -0.971 | -0.899
-0.636 | 0.615 | -1.050 | 0.749 | -0.491 | -0.696 0.305 -0.391 | -0.681
-0.606 | -0.281 | 0.501 0.104 | -1.053 | -0.520 0.541 0.012 | -0.993
1.250 | -0.917 | 0.897 -0.281 | 1.151 | 0.002 -0.490 0.104 | -0.010
-1.822 | -6.108 | -3.485 | -0.624 | -6.016 | 7.917 -1.093 -2.949 | 1.499
1910 | 0.671 | -0.854 | 10.068 | 10.485 | -5.778 -0.115 0.023 | -0.164

Table 4.12 The local weight (LW) matrix for the ANN regression model.

LW

0.887 | 0.323 | -0.132 | -0.055 | -0.769 | 9.767 | 0.174 | -9.285 | 9.384 | 2.720 | 4.629 | 1.842 | 0.071 | 0.058
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Table 4.13 The bias matrix for the ANN regression model.

bl

b2

3.625

3.757

4.349

3.383

1.230

0.191

0.225

122.839

-0.729

-0.877

-1.860

-1.560

1.680

-4.667

5.494
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Figure 4.28 The capsule position prediction using the regression model applied to the

preserved trials.

4.5 Analysis

The Model I in Section 3.5 is learned heuristically by an operator in order to discover a control
law of the model. A set of control rules is identified after several attempts. Apparently, a human
can learn heuristically although the system is rather challenging to manipulate because of the
dynamic behaviour of the pendulum. This identification of control rules obeys Fitts three stages
of learning and the Rasmussen model SRK. The skill to control the dynamic of pendulum via
the joystick is developed into a set of rules. Then, the set of rules is developed into knowledge

when it is applied to compare with a human walking cycle. These skills and rules can be
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developed into the knowledge for the specific machine operation. The knowledge can be
revolutionised and generalised into wisdom over time by applying particular domain of
knowledge into other domains as shown in Figure 4.29.

Wisdom
Machine

Human

(Model I
Knowledge Rules

Figure 4.29 The cycle of skills-rules-knowledge-wisdom.

It can be noted that the Model I is not an inverted pendulum. It is a hanging pendulum attached
to the capsule body. Therefore, it is practically impossible for a human to control the pendulum
to stay upright while managing to underactuate the capsule body movement. A pendulum
balancing alone is one of the classical challenging problems of the investigation in many
research projects [16], [47], [114], [227].

The Model Il is an inverted pendulum-driven capsule system. The model includes a PID
controller in order to control the pendulum angle to stay upright. As a consequence, a human
participant can concentrate to control the pendulum rotation rather concentrate on the dynamic
of pendulum balancing. Nine participants are recruited to participate this scenario of the
investigation. The results indicate that the nine participants show different learning time and
performance outcomes. The performance is indicated by e.g. an amount of absolute value of
final capsule distance, accumulated absolute final capsule distance, average capsule speed etc.
It is interesting that the right-handed and left-handed participants achieve their best performance

on the opposite side of their handed-ness. The variance of the final capsule distance seems to
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indicate a learning index in this investigation. The characteristic of a high and a low performer

is differentiated by the input oscillation frequency, correctness of the oscillation etc.

Although the pendulum rotation angle control profile generated by a human operator differs
from the six steps control strategy in [148] the profile successfully drives the capsule system
forward. The manual control profile is not identical to the automatic control profile. This is
normal as a human being who can heuristically learn and apply knowledge to the facing
circumstance to solve the problem but does not need to be mathematically / objectively perfect

as in the same as the automation.

Further, the manual control information is analysed by the identification of a control cycle which
mimicries the theoretical control profile. The extremum is applied in order to approximate the
manual control signal. These control signals are developed into a model of human-machine

control in Section 4.4.

A coupling of descriptive and predictive modelling approaches is utilised with an ANN for the
model developments. The data of human-machine control information is obtained from the
investigation in Section 4.3. The data is analysed, segmented, and features extracted in order to
develop an ANN model. Two types of ANN i.e. classification and regression models are
developed by applying the 10-time-10-fold cross-validation procedure from Section 3.4. The
procedure reveals that the optimum ANN configurations for classification and regression
models are 7 and 14 number of hidden neurons, respectively. The overall accuracies of the
models are 88.3% and 79.1%, respectively. These accuracies are additionally confirmed by a

plot of precision-recall and ROC curves.

Moreover, the two models are tested with an unseen data i.e. blind test dataset. The blind test
outcomes are 92.2% and 77.01% for classification and regression models, respectively. Once

more, the accuracies are double confirmed by a plot of precision-recall and ROC curves.

Since the regression model gives a continuous output of capsule displacement, therefore, it is

applied to predict a capsule displacement. The prediction results are fairly accurate.
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4.6 Summary

In this chapter, a human-machine heuristic learning and human-machine control model
development have been investigated based on a case study machine i.e. the pendulum-driven
capsule system. It can be concluded from the investigation in Section 4.2 that a human can learn
to control an unfamiliar system and formulate a set of control rules for it. Moreover, these rules
of machine control can be developed into knowledge that can be applied to other similar
mechanisms. From time to time, the knowledge can be evolved into wisdom that can be applied
to other domains. The investigation in Section 4.3 has been conducted with nine participants
which provide more variety of information on the human-machine control. VVarious performance
aspects have been produced to compare and to identify the differences in the control
characteristics among the participants. Further development has been investigated in Section
4.4, the human raw control information from Section 4.3 is extracted in order to develop a
human-machine control model. As a result, two ANN models are obtained with relatively high
accuracy. The classification model is possible to be applied to predict the human-machine
control behaviour i.e. the human operator intention to control the machine to the desired

direction.
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Chapter 5 Electroencephalography —
preliminary investigations

5.1 Introduction

This chapter introduces a new hardware interface into the platform i.e. the Emotiv EPOC
headset. The headset is used to record brainwave activity in the form of electroencephalogram
(EEG) which is the electrical neuro-activity generated from the brain neural system as discussed
in Section 2.13. The chapter conducts preliminary investigations on the fundamental of EEG
recording, EEG data processing, EEG artefacts removal, and to formulate a workflow for the
EEG analysis. In order to perform these investigations, three scenarios are designed and
implemented i.e. 1) Study on brain response to an auditory event, 2) Study on brain response to

a finger movement, and 3) Study on brain response to target hitting task.

5.2 The investigations

The three investigations can be divided into two categories according to the eyes opening
condition i.e. eye closed, and eyes opened. The investigation 1 and 2 are conducted while the
participant eyes are closed. The investigation 3, a simple scenario of a target hitting task is
required that the participant eyes be opened during the experiment. A list of the EEG preliminary

investigation is summarised in Table 5.1

Table 5.1 A list of the EEG preliminary investigations.

Investigation | Description Eyes status Section

1 Study on brain response to an auditory event Closed Section 5.4
2 Study on brain response to a finger movement Closed Section 5.5
3 Study on brain response to target hitting task Opened Section 5.7
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5.3 The integration of EEG brain monitoring
system to the HAM simulation platform

To acquire EEG brain activity data, the HAM platform building block in Figure 3.5 Section 3.4
includes the dashed block diagram where the Emotiv EPOC headset and the API are
implemented for the EEG data acquisition. It can be noted that the communication between the
platform and the headset is wireless via the USB dongle. The platform can acquire the EEG data

simultaneously with the other simulation data via the manufacturer provided API.

5.4 Study on brain response to an auditory event

A brain response to an auditory event is investigated in this section. Previously, it has been
reported that the brain is responded to an auditory by the frontal area of the human’s scalp [189].
Therefore, the AF3 and AF4 (Figure 2.35) electrodes of the Emotiv EPOC are the focus of this

investigation. The investigation consists of a single participant with four experiments.

5.4.1 Experiment procedure

A participant sits in a comfortable chair with both eyes closed while wearing the headset and
earphones. The HAM platform runs and plays a sound effect at certain time intervals while the
headset is recording the EEG brainwave. The markers denoted as ‘1’ are inserted into the marker
channel of the headset when the sound effect ‘Windows Critical Stop.wav’ is played. The sound
effect is played randomly at every 2,000ms to 3,000ms intervals. The marker ‘1 is a target event
i.e. the event of interest. In this case, it is the brain response to the sound. The markers denoted
as ‘2’ are inserted randomly at every 1,000ms to 5,000ms intervals. The marker ‘2’ is a non-
target event which is used to compare with the target response. Figure 5.1 depicts the insertion
process of the two markers during the experiment timeline. It can be noted that the HAM
platform is programmed to prevent the chance of the two events from happening at the same

time.
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Figure 5.1 The markers insertion for the auditory experiment.

The participant is instructed to keep the body movement as low as possible to keep the noises
at the minimum level. However, eyes opening, mouth water swallow, head muscle movement,
coughing, and other activities can happen randomly. These activities cause the unrelated brain
activity signal which is known as artefacts. The artefacts need to be removed in the post-

processing analysis of the recorded data.

A recording session lasts for approximately 3-10 minutes and produces a comma-separated
value (CSV) file. Each experiment repeats for a number of sessions until the headset is removed.

5.4.2 Data processing

Each of the CSV files is imported into MATLAB for processing with the EEGLAB software
toolbox. Each file contains the 14 channels of EEG brainwave plus an additional marker
channel. However, only AF3 and AF4 are selected for the analysis according to [189] for the
study of the brain responded to the auditory stimulus. The data from AF3 and AF4 is band pass
filtered to 1-20 Hz. Then, the epochs i.e. a segment of the two brainwaves at the event markers
are extracted. The major artefacts are manually inspected and the contaminated epochs are
rejected using the epoch rejection tools provided in the EEGLAB. This means some of the
extracted epochs are excluded from the ERP calculation. This processing procedure is shown in
Figure 5.2. This data processing procedure is applied to each experiment session one at a time.
Once all the sessions within the same experiment are processed, they are merged for the ERP
calculation. Then, the ERP and ERP images are produced. The ERP image shows the strength
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of the signal from all epochs within one plot. Each epoch is plotted with the colour-coded value

of amplitude over time along the horizontal view. The entire epochs plot is stacked vertically.

Experiment No. ‘

Session No.

14 Channels |:> (2A(13:}31anAnFeélls)

Band pass
filter 1-20 Hz

Artefacts
removal

Marker
channel

=

All sessions within the experiment are merged.
The ERP graphs and spectrograms are generated.

Figure 5.2 The processing procedure of the auditory ERP data.

5.4.3 Results

The detail of the four experiments is shown in Table 5.2. All of the four experiments have been

conducted with one participant who is at age 33, male, and right-handed. Three experiments are

performed in a quiet environment while the experiment number 2 is performed in an office

environment. Each of the experiments contains an unequal amount of sessions because the time

used for each session is not the same due to the discomfort of the headset. Therefore, the amount

of extracted events (target and non-target) from the marked marker is not the same for each

experiment. After artefact removal, the total number of artefact-free target and non-target

epochs is remained as shown in Table 5.2.
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Table 5.2 The summary of experiment details for the four experiments.

Experiment No. 1 2 3 “ Expeﬁlrlnents
Number of sessions 8 10 3 4 Not applicable
Experiment . . . . .
Environment Quiet Office Quiet Quiet Not applicable
Number of target 267 622 393 429 1711
epochs

Number of non- 164 518 344 51 1414
target epochs

;ar:;geitéggsnon- Figure Figure Figure Figure Figure
comparison Appendix.4 Appendix.5 Appendix.6 Appendix.7 Appendix.8

Experiment 1

Session 1, 2, 3, 4, 5, 6, 8 are merged to calculate the ERP graph. It can be noted that session 7
is excluded from the calculation because it contains few events and most of them are noisy.
Figure Appendix.4 shows the comparison of the ERP from AF3 and AF4 for target and non-
target. It is obvious that the target ERP shows a brain response to the sound effect event. Both
AF3 and AF4 potentials are decreasing (approximately at N200) and then increasing
(approximately at P400).

Experiment 2

All 10 sessions are included in the data processing. The number of extracted target events (with
marker 1) is 622 epochs. Figure Appendix.5 shows the comparison of channels ERP from AF3
and AF4 electrodes in response to target and non-target events. Although the result from
experiment 2 is not very clear for the ERP responses to the target event when compared to the
experiment 1, the graphs still show the similar pattern with a relatively weak response to the
target sound. This could be the result of the signal recording in an office environment which has
many non-related distractions. However, the non-target ERP obviously shows random

brainwave.
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Experiment 3

Figure Appendix.6 shows the comparison of the channels ERP for the brain AF3 and AF4
electrodes to the target and non-target events. The target ERP shows an identifiable pattern of
the brain response when compared to the non-target response which has no pattern.

Experiment 4

Figure Appendix.7 shows the comparison of channel ERP for the target and non-target events.
Although in this experiment the signals corresponding to target events are not clearly
distinguishable, but it still shows the clearer pattern than the non-target ERP, which shows

random waveforms.

All Experiments

All in all, some of the experiment within this investigation does not show any obvious auditory
ERP e.g. experiment 2 and 3. However, the ERP is highly obvious when all of the 4 experiments
are combined to generate the ERP as shown in Figure Appendix.8. The target EEG deflects
toward negative at around 250ms then bounces back immediately before the 500ms of the event

onset latency. The non-target does not show a significant brain response.

5.5 Study on brain response to a finger
movement

This section presents the study of a human brain response when a human participant clicks on a
computer mouse at his / her intention while both eyes are closed to keep artefacts to the

minimum level.

5.5.1 Experimental procedure

In this study, all of the frontal electrodes — AF3, AF4, F7, F8, F3, F4, FC5, FC6 are included in
the analysis of the ERP. A human participant sits on a comfortable chair in front of a computer
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and grasps a mouse. The participant is instructed to close both eyes and to keep the other
activities to a minimum. The participant can click a mouse at any time at his / her intention when
the HAM platform is running while recording the EEG data. A target marker ‘1’ is marked when
the participant clicks the mouse. A non-target marker ‘2’ is inserted at random intervals in order
to be used as a comparison between the ERP of click event and the human normal ongoing brain

event. The marking procedure is depicted in Figure 5.3.

BCS et e e o

Marker £27 it B 2 2 e 2 2
. 'AL = “. 5 ‘T
l Random time 2 Random tijne i Random time “ Random fime “Random time g Time
T T T T Y
click click

Figure 5.3 The event marking procedure of the study on brain response to a mouse click.

5.5.2 Results

The investigation contains four experiments as shown in Table 5.3. The participant is male aged
33 with right-handedness. Three experiments are performed with the right hand while
experiment 4 is performed with the left hand. The number of target and non-target epochs is
shown in the table. The numbers are not equal because it depends on the amount of time the
participant spends on each session. The ERP graphs for the four experiments are calculated and
shown in Figure Appendix.9, Figure Appendix.10, Figure Appendix.11, and Figure
Appendix.12, sequentially.
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Table 5.3 Summary of the four experiments of the study on brain response to a mouse click.

Experiment No. 1 2 3 4
Nu_mber of target epochs 545 270 359 379
(click)

Number of non-target 493 200 295 979
epochs (random)

Target and non-target Figure Figure Figure Figure
ERPs comparison Appendix.9 | Appendix.10 | Appendix.11 | Appendix.12

It can be noted from all of the four experiments that the ERP of a finger movement is clearly

visible. The brain responds to the voluntary mouse click at around 200ms. For example, Figure

Appendix.9 (a) shows the ERP graph and 2D topography. The 2D topography shows at 244ms

after a mouse click. The brain at the F3 electrodes (refer to Figure 2.35 for the F3 location)

shows the darkest red colour of positive deflection with the surrounding areas having the same

colour fading away. This type of response is the same that is found in experiment 1, 2, and 3.

However, the experiment 4 is different. The right parts around F4 of the brain are activated as

shown in Figure Appendix.12 (a). It is commonly known that when the right parts of the human

body are in use, the left brain takes responsibility to process the action, and vice versa.

Therefore, the study on the brain response to a mouse click confirms this knowledge.
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5.6 A workflow for eye opened experiments

In Section 5.7, the investigation on a simple target hitting task is conducted. It is obvious that
this type of operation is a vision based operation. Therefore, both eyes are required to be open
during the operation. As a consequence, it is necessary to have a workflow which includes a
method to handle the eye related artefacts. The ICA discussed in Section 2.13.4.5 is a technique
that can be used to deal with this type of artefacts. Figure 5.4 shows a workflow for the
investigation in Section 5.7 which includes the ICA analysis which has the capability to remove

eye artefacts.

The process starts with data acquisition via the HAM platform. The HAM platform generates a
CSV file for each session which can be imported directly into MATLAB for further post-
processing. The CSV file contains the EEG signals, marker channel, task-specific data etc. The
EEGLAB toolbox in MATLAB is used to band pass filter the EEG data into the range of brain
normal rhythms i.e. 1-30 Hz. Then, the continuous EEG waves are extracted into epochs by the
specified marker name e.g. ‘5°, ‘10’ etc. The epoch duration can be specified to be e.g. from -
500ms to 1500ms centred at the marker onset time for the ERP analysis. Normally, the EEG
data falls into the particular amplitude range e.g. 10-30 pV of Beta brain rhythm (Table 2.7).
Therefore, the epoch that contains the signal that exceeds the range can be removed. After that,
a manual inspection is performed to exclude the abnormal epochs. Then, the ICA algorithm is
executed on the EEG data to extract the ICA components. After the ICA components have been
extracted, an analysis of the independent component to find the suspicious artefactual
components are performed. Thereby, the suspicious component which contributes to the eyes or
other artefacts is marked to be removed. The marked components are removed in order to obtain
the remaining EEG data without artefacts. The process of ICA for artefact removal can be found

in Section 2.13.4.5. Finally, the cleaned EEG data is ready for the analysis.
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Figure 5.4 A workflow that can deal with eye artefacts by utilising the ICA.
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5.7 Study on brain response to target hitting
task

In this section a study on brain response when a participant performs a simple target hitting task
is reported. This type of task has been discussed in Section 2.7.4.

5.7.1 Experimental procedure

A black target circle is programmed to appear on screen at random positions and time intervals.
A human participant has to move the mouse to click on the appeared target as quick as possible.
A screenshot of the scenario is shown in Figure 5.5. It can be noted that a participant has been
instructed to keep mouse stationary while waiting for a target to appear on the screen. The target
disappears after it has been clicked and the process is repeated. The process lasts for 30
repetitions for each session for each participant. There are two types of event marker in this

experiment for the ERP calculation i.e. 1) target appear, 2) target click.

“ HAMSimulationPlatform ol ® =]
Target remaining: 4/30

Figure 5.5 A screenshot of the simple target hitting task scenario.
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5.7.2 Results

The ERP analysis is focused on the two events i.e. 1) when a black target circle has appeared on
the screen 2) when the target has been clicked. The investigation in this section has been
conducted by two participants as shown in Table 5.4 for the participant and experiment details.
Each participant conducts 10 sessions while each session has been programmed to have 30
appearances of the black circle target. However, some of the epochs have to be excluded due to
artefacts. The number of epochs after the exclusion of artefactual epochs is shown in Table 5.4.
Figure 5.6 and Figure 5.7 show the ERP response to the two events i.e. target appear and target

click, for participant CH5P1 and CH5P2, respectively.

Table 5.4 The participants and experiment details.

Participant CH5P1 | Participant CH5P2
Age 34 35
Handedness Right Right
Number of epochs for target appear event 259 293
Number of epochs for target click event 267 306

The ERP results clearly show that the brain responds to the target appearance events as shown
in (b) and (c) of Figure 5.6 and Figure 5.7. However, it is relatively difficult to differentiate the
ERP at the click event because the ERP is not very clear as shown in (e) and (f) of Figure 5.6
and Figure 5.7. The 2D topography maps of the brain areas activation have been produced as
shown in (d) and (g) of Figure 5.6 and Figure 5.7 for some of the interesting latency after the
events onset time i.e. from 250ms to 360ms with 10ms interval. The 2D topography maps of the
target appear event from participant CH5P1 shows that both frontal and posterior areas activate
downward negative value of EEG. In contrast, frontal and posterior brain areas from participant
CHS5P2 are activated in the opposite direction i.e. the frontal towards positive while the posterior
towards the negative value of EEG. Nevertheless, the posterior ERP from both participants are
identical in which the brainwaves are deflected downward negative and then bounce back
toward positive at around 250ms and 500ms, respectively. It is clear that this is the effect of the
function of the posterior area which functions for visual processing while the frontal areas can

be functioned for multiple types of task.
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Figure 5.6 The brain responses at target-appear and target-click events from Participant
CH5P1.
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Figure 5.7 The brain responses at target-appear and target-click events from Participant
CH5P2.
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5.8 Summary

The investigations in this chapter are mainly the study of the fundamental of EEG brainwaves
data acquisition, data processing, workflow, ERP analysis etc. New hardware for the EEG
recording has been introduced and integrated into the HAM platform in order to perform the
investigations. Three investigations are presented based on the study of the brain response to a
particular stimulus i.e. audio, finger movement, and a simple target hitting task. The first two of
them are performed while the participant’s eyes are closed in order to minimise noises. The last

one requires participant eyes opened in order to perform the task.

The ERP from the particular target stimuli i.e. audio and finger movement are obviously
identifiable. A comparison between the ERP from the target and non-target events reveal that
the brain EEG has a specific response to the stimulus by having a transient spike immediately

after the stimulus onset time.

A simple target hitting task has been implemented in order to study the brain response to the
task events i.e. target appear and click events. This type of task is visually based operation.
Therefore, a workflow for eyes opened EEG analysis is needed. The independent component
analysis (ICA) is an effective method which can deal with this artefactual EEG. The result shows
that the brain responds to the target appearance and the click events differently. The evidence
from these investigations confirms that the Emotiv EPOC headset is able to record a brain-

related activity.
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Chapter 6 Human-machine interaction
performance evaluation based
on brainwave

6.1 Introduction

This chapter presents the investigation of a human-machine operation simultaneously with the
EEG data acquisition system to establish a relationship between task actions and the human
brainwave functions. A target hitting / reaching operation is adopted as a case study for this
investigation based on the following justifications.

1. The task is simple.

2. It is a primitive task that can be in any part of HMI which involves reaching from one
point to another point.

3. The simplicity of the task allows analysis of the EEG brainwaves with a clear focus on
a particular type of action by having a minimum amount of distractions.

4. An aspect of the task and the corresponding performance indicator is well established
by a renowned Fitts and Posner study and a number of followed studies e.g. in HCI

research.

6.2 Experiment design

The experiment is designed to replicate a target hitting task (THT) and is integrated into the
existing HAM platform. THT is simply a task of moving a mouse cursor to reach and hit a target
as fast and as accurate as possible. A literature review of THT is discussed in Section 2.7.4 and
2.5.3.1.

In this study, a THT is designed and explained as follows. A target and mouse cursor are

spawned at a certain time and position within the screen boundary as shown in Figure 6.1 and
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are represented by TP(x,y) and MP(x,y), respectively. They are settled apart at a certain distance.
A target has a diameter of W. The screen has a fixed dimension of 1280 by 720 pixels i.e. width
and height, respectively. The coordinate of the screen is depicted in the figure and can be noted

that the positive X axis is pointed toward the right, and the positive Y is pointed downward.

X_coordinate

v

TP(x.y)
@ :
< ~ \Sample mouse trajectory
= Target N
2 N
3 AN
8 MP(x,y)
> 9

Mouse start position when a target is spawned

Screen size = 1280*720 (Width*Height)

Figure 6.1 A design of target hitting task.

6.2.1 Task pattern

A set of delay spawn time, mouse cursor start position, and the target position is defined as a set
of “task pattern” (TP) initialisation parameters. Fourteen task patterns and a set of initialisation
parameters are pseudos pre-designed as shown in Table 6.1. According to Fitts index of
difficulty (ID) which is defined by (2.5), each task pattern has a certain index of difficulty that
is shown in the last column of Table 6.1. For simplicity, it can be noted that the target size is the

same for all fourteen task patterns i.e. 100 pixels diameter.
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Table 6.1 The pseudo pre-generated ‘task pattern’ with targets delay to spawn with its

position, and mouse start position.

Mouse position, Target position, Taraet Fitts
Task Delay spawn MP TP ;arg Target index of
- diameter . ree
pattern time distance | difficulty
. TW ’
number | (Milliseconds) X y X y . (pixels) , ID
(pixels) .
(bits)
1 2108 640 360 320 180 100 367.15 2.88
2 1190 640 360 960 180 100 367.15 2.88
3 2174 640 360 960 540 100 367.15 2.88
4 1490 640 360 320 540 100 367.15 2.88
5 2014 640 360 640 620 100 260.00 2.38
6 2055 640 360 640 100 100 260.00 2.38
7 1634 640 360 100 360 100 540.00 3.43
8 1969 640 360 1180 360 100 540.00 3.43
9 1552 30 30 1180 620 100 1292.52 4.69
10 1508 30 690 1180 100 100 1292.52 4.69
11 2082 1250 690 100 100 100 1292.52 4.69
12 2349 1250 30 100 620 100 1292.52 4.69
13 1345 30 360 640 360 100 610.00 3.61
14 2627 1250 360 640 360 100 610.00 3.61

A list of task patterns on Table 6.1 is sequentially spawned one by one. For example, once the
simulation is started. 2,108milliseconds are delayed before the first task pattern is spawned on
the screen concurrently with the specified mouse cursor start position. The human participant
moves the mouse to click on a target as fast and accurately as possible. The timeline in Figure
6.2 shows a sequence of fixation and spawn-reaction-click events of a task pattern. Reaction
event is measured from the moment where a target is spawned to the first voluntary reaction of
the participant to move the mouse. The duration of a task pattern is completed with a hit click
on the target within the boundary TW. Then, the next queued task pattern is scheduled to be

spawned by the delay / fixation time. A ‘session’ is completed when all of the 14 task patterns

are spawned and clicked.
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A timeline of task pattern with its delay fixation and events

Initialise mouse (MP) and
target (TP) positions

FIXATION SPAWN REACTION CLICK

_______________________________________________________________________

Figure 6.2 A timeline shows the sequence of task pattern fixation and events - spawn, reaction,

and click.

6.3 EEG data acquisition and synchronisation

The Emotiv EPOC headset (Section 2.13.6) is used to record the EEG signals from scalp
locations across a participant’s head. It is noted that T7 and T8 are excluded from the context of
this investigation since the main focus is in the frontal and posterior region of the human brain
function. The frontal of the brain region is responsible for decision making, planning of
movement etc. The posterior is functioned for visual processing. Therefore, the remaining 12
electrodes are AF3, AF4, F7, F8, F3, F4, FC5, FC6, P7, P8, O1, and O2 as shown in Figure 6.3.
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Figure 6.3 The 12 electrode locations focused in the THT investigation.

The EEG signals are recorded simultaneously with the simulation of the experiment described
in Section 6.2. An event marker of spawn, reaction, and click is invoked to be inserted via the
headset API to be used as the synchronisation points between the brainwave recording and the
simulation system on a computer as shown in Figure 6.4. A simulation of the THT while having
the headset turned on for EEG data acquisition simultaneously can be considered as having two
systems running concurrently i.e. simulation on the computer and the headset. Thus, there is two
timelines i.e. simulation timeline (ST) and headset timeline (HT). The simulation is directly
interacted with a participant while collecting the task information such as a mouse cursor start
position, a target spawn position, a mouse trajectory, a mouse click, and the three main task
events — spawn, reaction, and click. The simulation time is kept track by the high precision clock
on the computer while the headset has its clock for the acquisition of the 12 channels EEG

signals.
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Figure 6.4 The task pattern events, simulation timeline (ST), and headset timeline (HT).

6.4 Experiment procedure

An experiment starts with a brief demonstration to perform the THT operation and the purpose

of the experiment. A participant is instructed as follows.
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e To perform the THT by moving the mouse to click on a spawned target as fast and
accurate as possible.

e Toreactand move a mouse only when atarget is spawned and ready on screen otherwise
keep the mouse at stationary.

e To keep other body part movements and eye blinks at a minimum. However, a
participant is informed and allowed to relax during the delay time since the main focus
of the analysis is from the start of a target spawn, during the movement, and a click
moment of task pattern.

Then, the following sequences of procedure are executed.

1. The 14 electrodes are moistened with saline solution as recommended by the manual. It
is noted that T7 and T8 are recorded but are not used for the analysis.

2. The headset is placed on a participant scalp according to 10-20 international system and
the headset instruction manual.

3. Each electrode is inspected individually to ensure that it is properly contacted with the
participant’s scalp.

4. The headset is switched on to start communication wirelessly with its accompanying
USB data receiver.

5. A “TestBench” software which is provided by the headset manufacturer is launched to
show the brainwaves in real-time.

6. The brainwaves are examined to ensure that the recording contains minimum unrelated

brain activities.

Then, a “session” is started which contains 14 task patterns (Table 6.1). Each participant

performs 15 sessions per “experiment”. Each participant completes 3 experiments.
Furthermore, the following conditions are always met.

1. The same cursor pointing device is used for each participant which is a Logitech
G600 with a sensitivity configured to 3100 dots per inch (DPI) and a report rate of
1000 Hz by default.

2. For each of the ‘experiment’, the headset is removed for relaxation for 10-15

minutes. Then, the process is repeated from the sequences above.
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6.5 Task performance metrics

A number of aspects of the evaluation of the THT performance can be assessed including speed,

accuracy, Fitts and Posner formulation etc.

6.5.1 Speed

An aspect of speed performance is obviously the evaluation based on time measurements. In
this case of the design and implementation, the speed aspect is divided into two metrics i.e.
reaction time (RT) and movement time (MT). Summation between the two is duration time (DT)

of a task pattern measured from spawn to click.

6.5.2 Accuracy

An accuracy aspect of a task pattern can be assessed from two perspectives i.e. a mouse

movement accuracy and a click on target accuracy.

6.5.2.1 Movement accuracy

The mouse movement accuracy can be explained by Figure 6.5 with an example of task pattern.
A mouse cursor and a target are spawned at position PT1 and PTgs, respectively. A mouse
movement is captured by a discrete sampling time of the simulation e.g. a sampling frequency
of 128 Hz means that the movement is captured 128 times in one second. An example of a single
captured mouse position is shown as P2 in Figure 6.5. It can be noted that the best movement
trajectory is a straight line between the two position of the mouse start and the target centre.
Therefore, a relative movement error can be calculated from the perpendicular distance deviated

from the best movement trajectory.
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Best trajectory

Figure 6.5 The analysis diagram of target hitting task trajectory.

A detail of the calculation is described as follows. Vector SEG_A is a vector of segment PT1 to
PT>. Vector SEG_B is a vector segment PTy to PTaz. Therefore, SEG_A and SEG_B can be
formulated by (6.1) and (6.2).

SEG_A = PT, — PT, (6.1)
SEG_B = PT, — PT, (6.2)

Vector dot product between two vectors can be calculated algebraically and geometrically by
(6.3) and (6.4), respectively. Therefore, the angle 6, can be calculated by (6.5).

n
SEG_A.SEG_B = Z SEG_A;SEG_B; (6.3)
i=1
SEG_A.SEG_B = |SEG_A||SEG_B| cos 6, (6.4)
0. = _1( SEG_A.SEG B ) (65)
1= 95 "\|SEG A4||SEG_B| '
Thus, a movement error for the case of Figure 6.5 can be calculated by (6.6)
An error at each point of discrete movement = |SEG_A| sin 6, (6.6)
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All in all, the accumulate movement error for the entire task pattern duration can be calculated
by (6.7).

n

Accumulate movement error = Z |SEG_A|, sin 6, (6.7)
k=1

6.5.2.2 Hit accuracy

A hit accuracy can be calculated by (6.8).

Hit accuracy (%) = |1 —M * 100 (6.8)
Y 0.5TW '

6.5.3 Calculation of task performance

To summarise, the performance metrics for the THT can be categorised as shown in Table 6.2.
The accuracy aspects are measured in pixel and percentage for the MA and HA, respectively.
The aspects of speed are measured in a unit of time i.e. second.

Table 6.2 A summary of the performance metrics for the THT.

Unit of Performance
Aspect Measurement o ) )
measurement indication direction
Reaction time (RT) Second lower is better
Speed Movement time (MT) Second lower is better
Duration time (DT) Second lower is better
Movement accuracy (MA) Pixel lower is better
Accuracy
Hitting accuracy (HA) Percentage higher is better
Rate of information | Index of performance (IP) Bits/Seconds higher is better
processing
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6.6 The establishment of EEG brainwaves and
task performances

In order to establish a relationship between EEG brainwaves and task performances, a sequence
of steps in Figure 6.10 are proceeded to develop a model. The aim is to create a model that can
predict performance based on the EEG signals. Following the sequences in Figure 6.10, each

step can be described as follows.

Step 1) The experiment sessions from all participants are fed into step 1.

Step 2) The independent component analysis (ICA) is applied to each session in order to extract
the independent components (ICs) from the 12 channels of EEG. A measurement of EEG
signal from a single electrode is considered as a resulted from multiple sources such as the
brain related sources and the eyes related artefacts. The ICA tends to separate this
combination into its independent source or component. As a result, the 12 1Cs are obtained

o9
COBLE®
©C

Figure 6.6 The example of 12 ICs from Participant 4 Experiment 3 Session 10 (P4E3S10).

as shown in Figure 6.6.

1 2
6 | 7

Page 167 of 319




Step 3) The 12 ICs are manually inspected in order to distinguish between brain related sources
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and artefacts related sources. Obviously, the eyes blink can be identified by a short spike of

positive EEG amplitude as shown in Figure 6.7 while the eyes move can be identified by a

short square wave of EEG amplitude either negative or positive as shown in Figure 6.8.
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(a) The example of EEG brainwaves containing eyes blinks artefact.
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(b) The example of independent components containing eyes blinks artefact.

Figure 6.7 The example of the EEG brainwaves containing eyes blink artefact and the

corresponding independent component analysis.

Scale

Page 168 of 319



AN N A e P AA T /NN AN ANTEAATNT

Eyes move artefact -

(a) The example of EEG brainwaves containing eyes moves artefact.
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(b) The example of independent components containing eyes moves artefact.

Figure 6.8 The example of the EEG brainwaves containing eyes move artefact and the

corresponding independent component analysis.

Additionally, details of the component properties as shown in Figure 6.9 can be used to identify

the suspicious artefactual components. For example, Figure 6.9(a) shows an eyes blink

component which is identifiable from the 2D topology scalp map where the intensity of red

colour or positive spike is strong in the frontal part of the scalp map. Figure 6.9(b) shows eyes
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move artefactual component where the 2D topology scalp map shows coloured blue and red on

the opposite sides in the front of the scalp which is the characteristic of the eyes move artefact.

IC1

Continous data
18

Trials

0 50 100
Time (ms)
Activity power spectrum

20~

[ [ [

[ [
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Frequency (Hz)

Power 1O*qu0(uV2/Hz)
o

(a) The property of an independent component that contains suspicious eyes blinks artefact.
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Frequency (Hz)
(b) The property of an independent component that contains suspicious eyes move artefact.

Figure 6.9 The examples of independent component property that contains eyes blink and eyes

move artefacts.
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Step 4) Once the suspicious artefactual components are identified, they are used to prune the
original EEG in order to obtain the artefact-free EEG.
Step 5) The artefacts-free continuous EEG is extracted according to a task pattern boundary
with the extension of 1000ms latency times around the boundary. It is because of brainwaves
react to a stimulus both before and after the onset time of the presentation of the stimulus;
therefore, the extension is done for this reason.
Step 6) So far, the EEG brainwaves contain the signals of the frequency range between 1 — 45
Hz. Since the study in this context concerns about the performance of an operation which is
performed during wake up state with hand movement on a computer mouse, the frequency
range of interest is within the alpha rhythm especially Mu and sensorimotor rhythm (SMR).
Hence, the EEG signals are band-pass filtered with 7-16 Hz using EEGLAB filtering
function.
Step 7) A task pattern which contains the corresponding EEG exceeded the extreme values of
the amplitude of interest is automatically excluded. The algorithm is simply a loop through
all of the task patterns and detects its corresponding EEG in every channel whether the signal
contains a sampling amplitude exceed a specified range e.g. -20 to 20 pV.
Step 8) The remaining task patterns are proceeded with the analysis of event-related potential
(ERP) at the spawn-reaction events, and click event.
Step 9) The remaining task patterns from step 7 are used to develop a model of EEG brainwaves
in association with task performance indicators.
Step 10) The remaining task patterns from step 7 are analysed with ERP method at spawn-
reaction event, and click event. The information obtained from this analysis is used by
EEG feature extraction in step 14.

Step 11) The task patterns are separated into two groups i.e. low and high according to the
specified performance criteria / indicator. The separation point is at the median value
of the criteria. Then, it is further separated into 6 sections as shown in Figure 6.10 i.e.
A, B, C, D, E, and F. Sections B and E are used for training of the model. The remaining
sections in each group are reserved for a blind test.

Step 12) Two group of task pattern are attained.

Step 13) The signals from frontal and posterior electrodes are averaged, respectively.

Step 14) The averaged frontal and posterior are feature extracted using the information from

a. Local extremum information
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b. Fourier transform information
c. Information from ERP analysis in step 10

Step 15) Principal component analysis (PCA) is applied in order to transform the features into
an equal number of principal components as the number of features. However, variance
among the principal components is maximised. Therefore, the transformed features
into principal components are good to be used for training.

Step 16) The principal components are ordered from high to low important components. In
other words, only a number of first few principal components can represent over 90%
of the entire number of features. Therefore, the dimension of the original feature space
can be reduced by selecting first few principal components.

Step 17) The selected principal components are used to develop an ANN model by training with
the 10-time-10-fold cross validation method presented in Section 3.4.

Step 18) The procedure is repeated from the connector C for all of six performance indicators
i.e. RT, MT, DT, MA, HA, and IP.
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12 channels continuous EEG signals which are

\ ] J
contaminated with artefacts such as eyes blink and

1) Experiment sessions eyes move.

ICA is applied to the 12 channels EEG to extract
the independent components (ICs) which linearly
combined within the EEG.

\ 4
2) Independent component @
analysis (ICA)

1
3

3|4 |

OS

8 9 |

2
T

2D scalp topology maps of the 12 ICs

AF3
v F7
3) Manually inspect the ICs to FCS s
identify eyes blink / move An example of eyes blink EEG for 2 times

. which can be noticed from frontal electrodes
fi?nrggonents (One session at a such as AF3, F7, F3, FC5 etc.

AFA

An example of eyes move which can be
noticed from the end of the cut section of EEG
as shown above.

Both eyes blink and eyes move can be
identified by a specific 2D scalp maps of the
extracted ICs as shown below.

@ Eyes blink Eyes move

component (IC 1) component (IC3)
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After the artifactual ICs are identified. The
original EEG is pruned with the susptected
ICs. An example of the eyes blink removal is
shown below. The blue line is the EEG before
removal and the red line is the after.

Y

4) Prune with the suspected
artefactual ICs

Then, eyes blink and eyes move artefacts-free
continuous EEG is obtained.

An example of a task pattern

SPAWN  REACTION | CLICK Time

A\ 4

f 1
5) Extr_act continuous EEG 1000ms o ' . 1000ms
according to a task pattern This time course is vary

boundary minus/plus 1000ms according to duration time of
each task pattern performance.

The continuous EEG is extracted into a section
of EEG according to a task pattern boundary
minus/plus 1000ms.

It is noted that there are task performance
metrics associated with the task pattern boundary
e.g. RT, MT, DT, MA, HA, IP.

Apply band pass filter in order to analyse EEG

A 4 in a specific band of interest i.e. alpha band in
6) Apply band pass filter to the the range of Mu and SMR rhythm using
extracted EEG for the range of Mu EEGLAB filtering function
and SMR rhythm (7-16 Hz)

_______________________________________________

i RT: Reaction time, MT: Movement time, DT i
i Duration time, MA: Movement accuracy, HA: Hit |
o i accuracy, IP: Fitts index of performance, SMR: i

Sensorimotor rhythm
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Epochs which contain electrodes amplitude

7) Extreme epochs are excluded greater or lower than the specified threshold are

excluded.
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An analysis of event related potential (ERP) at
the events within a task pattern boundary. The
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10) ERP analysis at events of EEG waves.
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Performance criteria variable
4 Values

11) Separation of task patterns and
the corresponding EEG into high
and low groups by a specified
performance criteria / indicator 5%,

Median

F

»
>

Low group High group  Task
pattern ID
All of the remaining task patterns are sorted
—-———s according to a specified performance
criteria as shown in the above figure. They
12b) Low are separated into 6 sections A, B, C, D, E,
group and F. Sections B and E are used for
training an ANN model while A, C, D, and
F are reserved for blind test.

-~
|
: group

|
12a) High |
I
I

I
I
I
_/l

There are 12 channels of EEG for the
corresponding task pattern boundary. Eight
and four of them accounted for frontal and
posterior areas, respectively. It is obvious
that a single-trial EEG i.e. a single task
pattern barely show identifiable pattern of
response. Therefore, an averaging method
of the ERP analysis is applied to the frontal

13) Average frontal /
posterior group of EEG and posterior areas as shown below.

Frontal

Posterior
Average
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14) EEG feature extraction

14a) Local maximum /
minimum information

information

14c¢) Information from
ERP analysis

1
1
1
1
I | 14b) Fourier transform

15) Principal component analysis
(PCA)

A 4

16) Select first few principal
components which covered for
most of the feature dataset
representation

A\ 4

17) Develop an ANN model with
the selected principal components
by training with the 10-time-10-
fold cross validation

\ 4

18) Repeat from connector C for 6
performance indicators - DT, RT,
MT, HA, MA, IP

A
/W\/\/VWW |

Amplltude Amplitude Frequency
Spawn Cllck Spawn Click
» E VAl /\ AN /\/\'\/\i./\/\ /\ »
v A7
Time . Time
Frontal Posterior

Transformation of features into a principal
component space where the variances among
components are maximised.

Reduce the dimensionality of the features into a
number of principal components which is sufficient
to represent the original feature space.
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Six ANNSs are obtained for each of Six models of ANN are obtained for each of

the performance indicators the performance indicators i.e. RT, MT, DT,
HA, MA, and IP.

A 4

END

Figure 6.10 A workflow for the establishment of a relationship of the EEG brainwaves and the

task performances.

As a result of the procedure in Figure 6.10, there are six ANN models developed according to
each of the performance indicators as shown in Figure 6.11. The six models take the transformed
features of EEG brainwaves and evaluate performance into low and high for each of the model

output.
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The six artificial neural network models for
performance evaluation from EEG brainwaves

EEG brainwaves

Features

/LN
(e (o )(or J[on ) (o ) 7 )

The internal of 6 ANN models of performance predictor

¥

Predict performance in each
aspect into low or high

RT (low/high) MT (low/high)

MA (low/high) DT (low/high)

HA (low/high) IP (low/high)

Figure 6.11 The six ANN models for performance prediction from EEG brainwaves.
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6.7 Results

6.7.1 Participants and the experiment

There are 4 participants in this investigation. The participants agree to conduct the experiment

by signing the consent form as shown in the Appendix B. Each of the participants completes 3

experiments, 15 sessions and 14 task patterns in each session as shown in Figure 6.12. As a

result, a total of 180 sessions and 2,520 task patterns are obtained. The attribute of each

participant is shown in Table 6.3. Three of the participants are male, one of them is female.

Their ages are in the range of 30-35 years. One of them has left-handedness; however, the

participant prefers to use right hand to perform the task.

4 participants

3 experiments

15 sessions

14 task patterns

Figure 6.12 The layered blocks showing the number of participants, experiments, sessions, and

task patterns.

Table 6.3 The attribute of the participants.

Participant ID | Gender | Age Handedness | Hand used to
perform an action
P1 Male |30-35 | Right Right
P2 Male 30-35 Right Right
P3 Male 30-35 Left Right
P4 Female | 30-35 Right Right
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The setup time for each “experiment” according to the experiment procedure as explained in
Section 6.4 is approximately 15 minutes including the preparation of the electrodes and the
installation of the headset on the participant scalp. According to Table 6.1, a total amount of
fixation time in a session excluding a participant’s action time is 26.09 seconds. Thus, it is 6.52
minutes for 15 sessions provided that the experiment is performed continuously. At the end of
each experiment, the headset is removed and the preparation for the next experiment starts.
Therefore, an approximate total experiment time for each participant is 64.56 minutes.

6.7.1.1 Naming notation

To identify a specific participant, experiment, session and task pattern, a hierarchical naming
notation is defined which is shown in Figure 6.13. For example, P3E2S5T2 means participant
1, experiment 2, session 5, and task pattern 1.

PHEH#SHTH

NN

Participant ID  Experiment ID Session ID  Task pattern ID

Figure 6.13 The naming notation for the identification of a participant, experiment, session,

and task pattern.

6.7.2 Time synchronisation

It is important to have time synchronisation between the simulation platform and the EEG data
acquisition device to ensure the validity of the timing of the human-machine operation and the
brainwaves. It is mentioned in Section 6.3 that there is a marker invoked to be inserted as the
synchronisation points. Although a perfect synchronisation between the simulation platform and
the EEG headset system is preferable, practically, slight time drifts between the two systems do
exist which can be depicted in Figure 6.14.
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Simulation timeline (ST)

i SPAWN  REACTION CLICK ;
i SlTS SI-I-R C E
! 1 1 Simulation timej(from computer clock) ;
| 1 1 1 / 1
i 1 1 1 !
Y ___ b Y L ____ '
1 1 |
Headset timeline (HT) J' _____________ . R .
1 1 1 ! :
i SPAWN REACTION : CLICK !
| : : : @ 5
E | HTs | HT, : c l
: i I Headset time'(from headset clock)/ i
! TD, TDg TD ' i
i Time drift Time drift Time drift :

Figure 6.14 The timelines between the simulation and the Emotiv headset showing events and
the time drifts.

Figure 6.14 shows the simulation timeline (ST) and headset timeline (HT) and the three main
events of a task pattern. A target is spawned at time point STs as shown on the simulation
timeline. The simulation system records a “SPAWN” event. The “REACTION” and “CLICK”
events are recorded thereafter when a participant react to move and click on the target. The
Emotiv EPOC API has the capability to insert an event marker for the synchronisation purpose.
With an ideal condition, the appearance of the triggered marker should be fully synchronised
with the simulation timeline. Unfortunately, in a practical situation, the markers appear on the
headset timeline with slight time difference at HTs, HTgr, and HTc. The time differences are

denoted as time drifts between the two systems as TDs, TDr, and TDc as shown in Figure 6.14.

As an example, event timing information from the 14 task patterns from P4E3S1 is calculated
as shown in Table 6.4. The table shows the corresponding time points of each of the 14 task
patterns within a session. For example, the first task pattern, a target is spawned and marked as
‘SPAWN” at 7.258 seconds on the simulation timeline and is also triggered to be marked on the
headset timeline at the same time. However, the ‘SPAWN’ event marker is marked on the

headset timeline at 7.225 seconds on the headset clock which is slightly early with 0.033 seconds
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window of difference. With the second task pattern, a target is marked as ‘SPAWN” at 11.518
seconds on the simulation timeline while it is marked on the headset timeline at 11.519 seconds
which is 0.001 seconds of delay.

Time drifts information TDs, TDr, TDc for all of the 14 task patterns from P4E3S1 are shown
on the right side of the table. The average of time drift at spawn, reaction, and click events are
0.0174, 0.0161, 0.0166 seconds with 0.0102, 0.0113, 0.0093 deviations, respectively. Both
simulation and the headset are set to sample at the same rate at 128 Hz. It is 0.0078125 seconds
between two adjacent sampling windows. Therefore, the average time drift at spawn, reaction,

click events are as large as 2.2272, 2.0608, and 2.1248 times compared to the sampling rate.

A solution is needed to solve the problem of time drifts between the two systems. A computer
for the THT simulation is more powerful and has a higher precision clock than the headset. Also,
the experiment is based on the THT simulation on a computer. The headset is an additional piece
of equipment to acquire brainwave signals in relation to the task operation on the simulation on
a computer. It is reasonable to use the time information of the events base from the simulation
timeline and find the closest time on the headset timeline for the corresponding events. This
solution of time adjustment to be based on the simulation timeline replaces the unreliable

method of marker insertion via the API.
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Table 6.4 The time drifts between headset and simulation from P4E3S1 before the adjustment.

Time drift between
Headset Simulation simulation — headset
BEFORE adjustment
Event time (n" Second) Event time (nt" Second) Time (Second)
Task
Pattern HTs HTr HTc STs STr STc TDs TDr TDc
No.

1 7.225 7.569 8.445 7.258 7.600 8.450 0.033 0.031 0.005

2| 11519 | 11511 | 12,606 | 11518 | 11538 | 12.614 -0.001 0.027 0.008

3 14.763 15.107 15.827 14,771 15.109 15.847 0.008 0.002 0.020

4] 18954 | 19.330 | 20.143 | 18.975| 19.334 | 20.147 0.021 0.004 0.004

5| 22583 | 22927 | 23.615| 22.601 | 22959 | 23.634 0.018 0.032 0.019

6| 26586 | 26.868 | 27.556 | 26.606 | 26.875| 27.564 0.020 0.007 0.008

7| 30559 | 30.778 | 31.716 | 30.576 | 30.803 | 31.720 0.017 0.025 0.004

8| 34313 | 34563 | 35501 | 34319 | 34567 | 35532 0.006 0.004 0.031

9| 38441 | 38817 | 40.067 | 38.461 | 38.820 | 40.088 0.020 0.003 0.021

10 | 42,601 | 42945 | 44165 | 42.604 | 42970 | 44.192 0.003 0.025 0.027

11| 46.636 | 46.855| 47.794 | 46.666 | 46.879 | 47.818 0.030 0.024 0.024

12| 50.827 | 51.171| 52203 | 50.857 | 51.187 | 52.229 0.030 0.016 0.026

13| 55519 | 55.831| 56.519 | 55531 | 55.834| 56.544 0.012 0.003 0.025

14 | 58.834 | 59.210 | 59.898 | 58.860 | 59.232 | 59.908 0.026 0.022 0.010
Average 0.0174 | 0.0161 | 0.0166

Standard deviation 0.0102 0.0113 0.0093

Table 6.5 shows the events timing information from Table 6.4 after adjustment of event timing
points to be based on the simulation timeline. As an example, the first task pattern, a target is
spawned at 7.258 seconds on the simulation timeline. The closest time point on the headset is at
7.264 seconds which is 0.006 seconds of delay. Event timing of the second task pattern remains
the same as before the adjustment. The average event time drift of all the 14 task patterns is
0.0033, 0.0034, and 0.0041 seconds of delay for spawn, reaction, and click events, respectively.
They are only 0.4224, 0.4352, 0.5248 times compared to the sampling rate. Figure 6.16, Figure
6.17 show a graph of time drifts before and after adjustment for the 14 task patterns for spawn,
reaction, and click events, respectively. The graphs clearly show the significant improvement

of time synchronisation between the simulation timeline and the headset timeline.
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Table 6.5 The time drifts between headset and simulation from P4E3S1 after the adjustment.

Headset (aquusted M Simulation simu;gtrirg)enolrrzfeta%esgvtve,:gTER
EERE adjustment
Event time (n" Second) Event time (nt" Second) Time (Second)
Task
Pattern HTs HTr HTc STs STr STc TDs TDr TDc
No.
1 7.264 7.601 8.452 7.258 7.600 8.450 -0.006 -0.001 -0.002
2| 11519 | 11542 | 12614 | 11518 | 11538 | 12.614 -0.001 -0.004 0.000
3 14,771 15.115 15.85 14,771 15.109 15.847 0.000 -0.006 -0.003
4| 18978 | 19338 | 20.151 | 18975 | 19.334| 20.147 -0.003 -0.004 -0.004
5| 22606 | 22966 | 23.639| 22.601| 22959 | 23.634 -0.005 -0.007 -0.005
6 26.61 | 26.875| 27564 | 26.606 | 26.875 | 27.564 -0.004 0.000 0.000
7| 30.582| 30.809| 31.724| 30576 | 30.803| 31.720 -0.006 -0.006 -0.004
8| 34321 | 34571 3554 | 34319 | 34567 | 35532 -0.002 -0.004 -0.008
9| 38465| 38.824 | 40.091| 38.461 | 38.820 | 40.088 -0.004 -0.004 -0.003
10 | 42,609 | 42976 | 44196 | 42.604 | 42970 | 44.192 -0.005 -0.006 -0.004
11| 46.667 | 46.879 | 47.825| 46.666 | 46.879 | 47.818 -0.001 0.000 -0.007
12| 50.858 | 51.187 | 52.235| 50.857 | 51.187 | 52.229 -0.001 0.000 -0.006
13| 55535 | 55839 | 56.551| 55,531 | 55.834| 56.544 -0.004 -0.005 -0.007
14 | 58.865| 59.233 | 59.913 | 58.860 | 59.232 | 59.908 -0.005 -0.001 -0.005
Average -0.0033 | -0.0034 | -0.0041
Standard deviation 0.0018 0.0024 0.0023
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Figure 6.15 The time drifts at the SPAWN event before / after the adjustments from P4E3S1.
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Figure 6.16 The time drifts at the REACTION event before / after the adjustments from
P4E3S1.
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Time drifts at CLICK event
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Figure 6.17 The time drifts at the CLICK event before / after the adjustments from P4E3S1.

Previously, the problem of time synchronisation and the solution to the time drift has
demonstrated from a single session i.e. PAE3S1. Figure 6.18 (a) shows the averaged time drift
from all of the 15 sessions in experiment 1 from participant 1 before adjustment. Figure 6.18 (b)
shows the averaged time drift after adjustment. It can be noted that before adjustment all 15
sessions show averaged time drift with early marked time of the event on the headset. After
adjustment, the time drifts on the headset are properly marked slightly after the simulation
timeline with the very minimum amount of drift time compared to the before adjustment. Figure
6.19, Figure 6.20, and Figure 6.21 show sessions averaged time drift before / after adjustment

from the first experiment of each participant.
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Figure 6.18 The sessions averaged time drifts between the simulation and the headset

timelines from P1E1.
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Sessions averaged time drifts between simulation and
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Figure 6.19 The sessions averaged time drifts between the simulation and the headset

timelines from P2E1.
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Figure 6.20 The sessions averaged time drifts between the simulation and the headset

timelines from P3EL.
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Figure 6.21 The sessions averaged time drifts between the simulation and the headset

timelines from P4EL1.
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6.7.3 Analysis of task performance

In this section, an analysis of task performance is presented. Statistical information of the
performance metrics in Section 6.5 are calculated and presented. A result of calculation from all

participants is presented at first. Then, an individual result is presented.

6.7.3.1 All participants

General statistical information on the performance metrics — RT, MT, DT, MA, HA, and IP

from all participants is presented in Table 6.6.

The minimum of RT is 0.0s while the maximum is 0.8s. The reason of 0.0s RT is that sometimes
a participant expected a target to appear at a certain time in the incoming time point and starts
to move a mouse cursor before the target is actually spawned. The biggest RT is as large as 0.8s
which is slightly greater than the average of MT which is 0.79s. A box plot of RT, MT, and DT
is shown in Figure 6.22. It is noted that the RT contains outliers in both lower and upper parts
which are dominated in the lower part around RT 0.0s as shown in the distribution of data in
Figure 6.23. MT and DT have a small number of outliers in the upper part of the box plot as
shown in Figure 6.22. Therefore, the data distribution of MT and DT are reasonably a normal

distribution as shown in Figure 6.24, and Figure 6.25, respectively.

A box plot of MA is shown in Figure 6.26. Although there is a huge variation in the upper
outliers of the MA, most of the data are stayed within between the upper adjacent and lower
adjacent as can be observed from the data distribution plot in Figure 6.27. This means although
there are some movement deviations from the perfectly straight lines, most of the performances
stay within the range of deviation from 0.465 pixels (minimum) to 40 pixels (upper adjacent).
In contrast to MA, HA shows most of the outliers in the lower part of a box plot as shown in
Figure 6.28. It is noted that there is one task pattern that contains negative HA. The negative
HA is from the task pattern performed by P2E1S8T3. According to the detailed inspection, it is
found that a target is located at T(960,540) while the mouse hit click moment occurs at
M(996,576). The distance between these two points is 50.91 pixels. The distance is larger than
the target radius, 50 pixels. This is the reason of the negative HA. It is possible to have a negative

HA because of the rounding error from the algorithm used to detect a collision between the
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mouse cursor and the target boundary. The algorithm is implemented by integer calculation so
that an interactive simulation can run smoothly. The algorithm can be found in the Appendix C.
This justification conforms to the highest accuracy of HA values where there exist 8 task
patterns with 100% HA. Apart from both extreme ends, the HA data is distributed around 70-
90% of HA with a standard deviation of 14.993 and the median at 81.56%.

Fitts index of performance (IP) is calculated by (2.6). Outliers of the IP belong to the high
performance area or the upper end of a box plot as shown in Figure 6.30. Although there are
some of the outliers, the overall distribution of IP is normal as shown in Figure 6.31. The highest
performance according to the highest IP of 6.517 bits/seconds belongs to P2E2S14T14. The
lowest of IP 1.565 belongs to P3E1S11T5.

Table 6.6 The performance statistics (All participants).

Speed Accuracy Fitts
RT MT DT MA % IP
(Seconds) | (Seconds) | (Seconds) | (Pixels) HA ) (Bits/s)
Minimum 0.000 0.290 0.530 0.465 -1.823 1.565
Maximum 0.800 1.863 2.130 191.610 100.000 6.517
Average 0.259 0.790 1.049 17.433 77.502 3.412
Median 0.276 0.772 1.028 11.057 81.561 3.382
SRNdandiy 4 5 0.252 0239 | 10653 | 14993 | 0.724
deviation
Data . . . . . .
S Figure Figure Figure Figure Figure Figure
d'sgém'on 6.23 6.24 6.25 6.27 6.29 6.31
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Figure 6.22 The box plot of speed aspects (RT, MT, DT) from all participants.
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Figure 6.23 The reaction time (RT) data distribution.
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Figure 6.24 The movement time (MT) data distribution.

Histogram of duration time (DT) with a distribution fit
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Figure 6.25 The duration time (DT) data distribution.
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Figure 6.26 The box plot of movement accuracy (MA) from all participants.
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Figure 6.27 The movement accuracy (MA) data distribution.
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Figure 6.28 The box plot of hit accuracy (HA) from all participants.
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Figure 6.30 The box plot of Fitts index of performance (IP) from all participants.
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Figure 6.31 The Fitts index of performance (IP) data distribution.
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6.7.3.2 Comparison among participants

In this section, the performance statistics are presented for each participant in order to compare

the performance between them.

Table 6.7 shows the performance statistics for each participant. P3 has the fastest averaged RT
of 0.188s. However, the deviation is quite large at 0.139s. This can be observed from the
participant-ordered plot of RT and a box plot in Figure 6.32(a) and Figure 6.32(b), respectively.
P3 also has the slowest RT of 0.8s as shown in the upper outliers in Figure 6.32(b). P1 has the
slowest averaged RT of 0.309s but the RT performance is rather constant as indicated by the
lowest standard deviation of 0.053s. The minimum RT from all of the participants is as low as

0s which mean there exists the anticipation behaviour for a target appearance.
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Table 6.7 The performance statistics for each participant.

Speed Accuracy Fitts
(Se;-rI—]ds) (Se'(\:/cl)-rl;ds) (Seg)-[\ds) (P'}?(gs) A ) (BiItZ/s)
P1
Minimum 0.007 0.346 0.573 0.57 6.70 2.342
Maximum 0.469 1.110 1.541 58.98 97.17 5.276
Mean 0.309 0.633 0.941 10.46 72.31 3.727
Median 0.304 0.594 0.910 8.28 75.58 3.721
Standard deviation 0.053 0.160 0.181 8.10 15.90 0.525
P2
Minimum 0.000 0.290 0.530 0.98 -1.82 1.698
Maximum 0.640 1.840 2.130 154.11 100.00 6.517
Mean 0.277 0.719 0.997 20.72 72.89 3.659
Median 0.280 0.686 0.960 12.29 75.95 3.641
Standard deviation 0.081 0.272 0.281 24.19 18.29 0.878
P3
Minimum 0.000 0.448 0.593 0.86 40.33 1.565
Maximum 0.800 1.863 2.060 191.61 100.00 4.975
Mean 0.188 0.974 1.163 14.10 85.87 3.050
Median 0.210 0.950 1.146 10.03 86.58 3.072
Standard deviation 0.139 0.219 0.223 15.03 7.69 0.611
P4
Minimum 0.006 0.400 0.655 0.46 21.89 1.822
Maximum 0.572 1.504 1.952 141.42 100.00 5.393
Mean 0.262 0.833 1.095 24.44 78.92 3.214
Median 0.276 0.794 1.062 15.78 80.20 3.181
Standard deviation 0.091 0.200 0.193 23.46 11.54 0.590
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(b) The box plots of each participant reaction time (RT).

Figure 6.32 The plots of reaction time (RT) performance statistics for each participant.
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The fastest MT belongs to P2 for 0.29s though the fastest averaged MT belongs to P1 for 0.633s
as shown in the box plots in Figure 6.33(b). Although P2 possesses the fastest MT, the
participant also exhibits the second slowest MT of 1.840s which is only 0.023s difference from
the slowest one as shown in the upper outliers of the box plots in Figure 6.33(b). The averaged
slowest MT belongs to P3 which is in contrast to P3’s RT performance. P1 has no outliers
whereas the others have outliers lie around the upper end of MT box plot as shown in Figure
6.33(a) and Figure 6.33(b).
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(a) The movement time (MT) plots ordered by the participants.
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(b) The box plots of each participant movement time (MT).

Figure 6.33 The plots of movement time (MT) performance statistics for each participant.

Since DT is the sum of RT and MT, the performance aspect of DT can be largely affected by

the performance of MT in addition to the RT as can be observed from Figure 6.34(b) in

comparison to Figure 6.32(b) and Figure 6.33(b).
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(a) The duration time (DT) plots ordered by the participants.
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(b) The box plots of each participant duration time (DT).

Figure 6.34 The plots of duration time (DT) performance statistics for each participant.
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The averaged MA from all of the participants is in the same range as shown in Figure 6.35. The

maximum MA belongs to P3 with 191.61 pixels deviated from a perfect movement line as

shown in the upper outlier of Figure 6.35(b) for P3. The minimum MA for each participant is

as low as zero which means a perfect movement from the start position to the target click. A

plot of mouse movements for each of the minimum MA from each of the participants is shown
in Figure 6.36(a), Figure 6.36(b), Figure 6.36(c), and Figure 6.36(d), respectively. The plots are
from task pattern PLE3S9T3, P2E2S5T1, P3E3S8T7, and PAE3S13T5, correspondingly. At the

other ends, P3 has the maximum MA, then P2, P3, and P1, orderly. A plot of mouse movements

of these maximums is shown in Figure 6.37(a), Figure 6.37(b), Figure 6.37(c), and Figure
6.37(d), respectively. They are illustrated from task pattern P1E3S10T10, P2E2S3T11,

P3E1S1T10, and PAE1S4T10, respectively.
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(a) The movement accuracy (MA) plots ordered by the participants.
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(b) The box plots of each participant movement accuracy (MA).

Figure 6.35 The plots of movement accuracy (MA) performance statistics for each participant.
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(a) The trajectory plot from the task pattern with the lowest MA from P1.
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(b) The trajectory plot from the task pattern with the lowest MA from P2.
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(c) The trajectory plot from the task pattern with the lowest MA from P3.
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(d) The trajectory plot from the task pattern with the lowest MA from P4,

Figure 6.36 The trajectory plots from the task patterns with the lowest movement accuracy

(MA) for each participant.
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(@) The trajectory plot from the task pattern with the highest MA from P1.
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(b) The trajectory plot from the task pattern with the highest MA from P2.
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(c) The trajectory plot from the task pattern with the highest MA from P3.
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(d) The trajectory plot from the task pattern with the highest MA from P4.

Figure 6.37 The trajectory plots from the task patterns with the highest movement accuracy

(MA) for each participant.
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In term of hit accuracy performance i.e. HA, most participants have the maximum accuracy of
100% except P1 which has the maximum HA at 97.17%. P3 has the highest averaged HA of
85.87%. This high averaged HA conforms to a speed-accuracy trade-off since P3 has the slowest
averaged DT of 1.163s. Likewise, P1 has the lowest averaged HA of 72.31% which also
conforms to the trade-off by having the fastest averaged DT of 0.941s. P3 performs moderately
steady as shown by the standard deviation value of HA. An ordered HA plot and the box plot of
HA for the four participants are shown in Figure 6.38.
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(a) The hit accuracy (HA) plots ordered by the participants.
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(b) The box plots of each participant hit accuracy (HA).

Figure 6.38 The plots of hit accuracy (HA) performance statistics for each participant.

Since IP is calculated based on DT and the distance between start and target positions, it is

obvious that P1 has the highest averaged IP of 3.727 bits/seconds while P4 is the lowest. In

contrast, the minimum and the lowest averaged IP belong to P3 who held the highest averaged

HA with the value of 1.565 and 3.050 bits/seconds, respectively. A plot of ordered IP grouped

by participants and box plots are shown in Figure 6.39.
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(b) The box plots of each participant Fitts index of performance (IP).

Figure 6.39 The plots of Fitts index of performance (IP) performance statistics for each
participant.
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6.7.4 Analysis of event-related potential (ERP)

This section presents results from analysis of the event-related potential (ERP) at the onset of
the task pattern events i.e. spawn, reaction, and click. A definition and calculation method of
ERP can be found in Section 2.13.3. The ERP is calculated from a total number of task patterns
after exclusion of the extreme epochs as described in the 7" step of Figure 6.10. A boundary of
the ERP is between -1000ms and 1000ms from the onset of the analysing event.

It is noted that a reaction event is an immediate consequence from a spawn event. The two
events always come together at a fraction of seconds apart, hence, the ERP is analysed in the

same section.

6.7.4.1 Spawn and reaction events

Figure 6.40(a) and Figure 6.40(b) show the spawn ERP for a group of frontal and posterior
electrodes, respectively. Figure 6.40 shows that frontal EEG brainwaves respond to the onset of
spawn event with a peak positive deflection of F4 at 164.0625ms and 0.5047 pV of amplitude.
The peak deflection is followed by a deflection towards negative value at 203.125ms and -
0.5821 pV of amplitude dominated by FC6 and F4. The magnitude of the amplitude is a little
larger than the first deflection. The next positive deflection comes at 265.625ms at 0.541 uV
dominantly at FC6. Then, the followed spikes are lowered down until back to the normal
oscillation. A sequence of spawn ERP deflections is summarised in Table 6.8. In brief, all of the

frontal electrodes synchronously respond to the onset of a target spawn event.

At the posterior area in Figure 6.40(b), the first deflection comes at the opposite side to the
frontal area at 125ms with a slightly larger magnitude of -0.7446 pV from O1. The next distinct
spike comes at 187.5ms with 1.2178 pV amplitude eminently from the same O1 electrode. It is
followed by the maximum amplitude of deflection at 242.1875ms with -1.2636 pV from OL1.
The O1 signal bounces back once more to the positive side at 315.5ms with a reduced in
magnitude at 0.7409 pV before oscillates down to the normal wave. The other posterior
electrodes other than the O1 have rather normal oscillation except the O2 where it slightly
follows the trend of O1 with smaller amplitudes of deflection. Table 6.9 summarises the

sequence of deflections from posterior electrodes for the spawn ERP.

Page 214 of 319



Spawn ERP (frontal)

o)
o
o
<
— o™
32 o
LS 2 g
°l 3 S
ol O 2 |
N < 1R
<
© g Q@
| || a0 -
© L T
N DN
ﬂl
™
=]
~
N~
<t
o
L
o
o)
l
©
<
<t
©
—
e
o o o Ooon_U

(syjonou01N) apnid

Wy

000°T
8€6
G/8
€18
05/
889
629
€99
00S
8EY
GLE
€Te
0S¢
88T
GeT
€9

£9-
GeT-
881-
05¢-
eTE-
GLe-
8E-
005-
£95-
G29-
889-
05.-
£T8-
G/8-
826-
000'T-

Time (Ms)

F8§ ——FC5 ——FC6

AF3 —+ AF4 = F3 ——F4 ——F7

—

>

312.5, 0.7409
/
|
i
v

P

187.5,1.2178

Spawn ERP (posterior)

242.1875, -1.2636

0.5

(@) The ERP at the spawn event from a group of frontal EEG electrodes.
-0.5

(syjonoso1N) apnidwy

-1.5

000'T
8€6
6.8
€18
09/
889
629
€99
00§
8EY
GLE
€Te
05¢
88T
GeT
€9

£9-
G-
881-
05¢-
£TE-
GLE-
8e-
005-
£95-
G29-
889-
05.-
£18-
G/8-
8€6-
000'T-

Time (ms)

——-02 = PT -o--- P8

~-ee- 01

(b) The ERP at the spawn event from a group of posterior EEG electrodes.

Figure 6.40 The ERP at the spawn event.
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Table 6.8 The sequence of spawn ERP deflections of frontal electrodes.

Sequence of Time Amplitude
] o ) Electrodes
deflections (Milliseconds) (Microvolts)
1 164.0625 0.5047 F4
2 203.125 -0.5821 FC6, F4
3 265.625 0.541 FC6
4 328.125 -0.4303 F8, FC6
5 414.0625 0.4588 FC6, AF4
Table 6.9 The sequence of spawn ERP deflections of posterior electrodes.
Sequence of Time Amplitude
) . ) Electrodes
deflections (Milliseconds) (Microvolts)
1 125 -0.7446 01
2 187.5 1.2178 01
3 242.1875 -1.2636 o1
4 3125 0.7409 01

Figure 6.41(a) and Figure 6.41(b) shows the ERP at the reaction event from frontal and posterior
electrode groups, respectively. Summaries of the sequence of deflections are shown in Table
6.10 and Table 6.11 for frontal and posterior. It is obvious that although the reaction event occurs
with the mean time of 259ms after the spawn event (Table 6.6), the train of deflections from the
previous spawn event is missing. It means that the deviation of reaction times has cancelled out
the spikes of the spawn event when the ERP is calculated at the reaction event. Nevertheless,
the reaction event shows a number of spikes at latencies 109.375ms, 164.0625ms, 234.375ms,
and 296.875ms with the amplitudes of -0.3434 pV, 0.3076 pV, -0.2411 pV, and 0.2008 pV,
respectively. These spikes are mainly from F3, F4, and FC6. In contrast, at the posterior
electrodes, the deflection is not distinguishable from the ongoing train of EEG brainwaves as
shown in Figure 6.41(b).
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Figure 6.41 The ERP at the reaction event.

(b) The ERP at the reaction event from a group of posterior EEG electrodes.




Table 6.10 The sequence of reaction ERP deflections of frontal electrodes.

Sequence of Time Amplitude
) o ) Electrodes
deflections (Milliseconds) (Microvolts)
1 109.375 -0.3434 F3
2 164.0625 0.3076 F3, F4
3 234.375 -0.2411 FC6
4 296.875 0.2008 FC6

Table 6.11 The sequence of reaction ERP deflections of posterior electrodes.

Sequence of Time Amplitude
) o ) Electrodes

deflections (Milliseconds) (Microvolts)

1 7.8125 -0.2217 01

2 46.875 -0.1928 02

3 109.375 0.2105 02

4 171.875 -0.2337 o1

5 234.375 0.2275 01

6.7.4.2 Click event

A click event occurs after the spawn event at the mean latency of 1,049ms according to the mean

duration time in Table 6.6. A trace of spawn ERP can be observed at the far left of the click ERP
at the frontal group of electrodes as shown in Figure 6.42(a). In contrast, a trace of spawn ERP
from posterior electrodes cannot be observed from Figure 6.42(b). From the frontal group of
electrodes, the first deflection can be observed at 23.4375ms with 0.3346 pV from F3. A
summary of the sequence of deflections for the frontal is shown in Table 6.12. The two dominant
spikes from F3 are 0.5251 pV and -0.5217 pV at 156.25ms and 210.9375ms latencies,
respectively. The frontal brainwaves of click ERP have moderate synchronisation compared to
the frontal spawn ERP.
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At the posterior electrodes, the synchronisation is rather chaotic but the ERP is still able to
distinguish from the ongoing brainwaves. Table 6.13 summarises a sequence of deflections from
posterior electrodes for the click ERP. The deflections are dominated by O1 and P8 with the
bottom and peak from O1 at 304.6875ms and 359.375ms, respectively.

Click ERP (frontal)
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(@) The ERP at the click event from a group of frontal EEG electrodes.
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(b) The ERP at the click event from a group of posterior EEG electrodes.

Figure 6.42 The ERP at the click event.

Table 6.12 The sequence of click ERP deflections of frontal electrodes.

Sequence of Time Amplitude
Electrodes

BT (Milliseconds) (Microvolts)

1 23.4375 0.3346 F3

2 85.9375 -0.4202 F3

3 156.25 0.5251 F3, F4

4 210.9375 -0.5217 F3

5 281.25 0.4411 F4

6 343.75 -0.4191 F4

7 398.4375 0.4415 F4

Page 220 of 319



Table 6.13 The sequence of click ERP deflections of posterior electrodes.

Sequence of Time Amplitude
Electrodes

e eemene (Milliseconds) (Microvolts)
1 109.375 -0.4636 P8
2 164.0625 -0.5046 01
3 195.3125 0.878 P8
4 250 -0.9294 P8
5 257.8125 0.6644 01
6 304.6875 -1.2185 01
7 359.375 1.1766 01
8 406.25 -0.5408 01

6.7.4.3 Region averaged ERP

Figure 6.43(a), (b), (c), and (d) show the averaged ERP from the frontal and posterior group of
electrodes for spawn and click events, accordingly. It is noted that the region averaged ERP
makes the ERP more visible provided that the synchronisation among the brainwaves in the area

are consistent.
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(b) The averaged ERP from the posterior group of electrodes at the spawn event.
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(d) The averaged ERP from the posterior group of electrodes at the click event.
Figure 6.43 The averaged ERP at the spawn and click events from the group of frontal and

posterior electrodes.
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6.7.5 Development of model of the human EEG
brainwave in association with task performances

According to step 11 in Figure 6.10, the task patterns are sorted and separated into six sections

one at a time by the particular performance criteria as shown in Figure 6.44. Table 6.14 shows

the number of task patterns in each section when separates with performance criterion i.e. RT,

MT, DT, MA, HA, and IP, respectively. It is noted that the separation is based solely on the

value of performance criteria without the interpretation of the meaning of the value i.e. lower is

better or higher is better. Therefore, the interpretation of the meaning of performance is needed

after the model development.

Performance criteria variable
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Figure 6.44 The separation of task patterns into six sections according to the performance

variable.
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Table 6.14 The number of task pattern in sections A, B, C, D, E, and F when separate with the

particular performance variable.

Performance Number of task pattern in each section
criteria variable

A B C D E F

RT 63 1126 64 63 1133 64

MT 63 1129 64 63 1130 64

DT 63 1127 64 63 1132 64

MA 63 1129 64 63 1130 64

HA 62 1122 63 63 1139 64

IP 63 1128 64 63 1131 64

According to step 14 of Figure 6.10, three areas of information are used for feature extraction
i.e. local extremum, Fourier transform, and information from ERP analyses. A list of features
from all three areas is shown in Table 6.15. Seven, two, and five of features are from local
extremum, Fourier transform, and ERP analysis, respectively. It is noted that these features are
calculated from the averaged ERP of frontal and posterior region for each single-trial of the

EEG in each task pattern. Therefore, there are 28 features in total.
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Table 6.15 The list of EEG features for the model development.

Frontal average EEG Posterior average EEG

Local Extremum

8. Number of peaks
Number of peaks

9. Number of bottoms
Number of bottoms
10. Mean of peaks
Mean of peaks P
11. Mean of bottoms
Mean of bottoms
12. Standard deviation of peaks
Standard deviation of peaks P

o 13. Standard deviation of bottoms
Standard deviation of bottoms

N o a k~ w b PE

14. Accumulated time different of peaks and
Accumulated time different of peaks and P
bottoms
bottoms

Fourier transform

. . 17. Averaged of 6 dominant frequencies
15. Averaged of 6 dominant frequencies

) . (5% of sampling rate i.e. 128 Hz)
(5% of sampling rate i.e. 128 Hz)

) 18. Averaged of power of the 6 dominant
16. Averaged of power of the 6 dominant

. frequencies.
frequencies.

Information from ERP analyses

24. Peak time of spawn ERP

25. Peak amplitude of spawn ERP

26. Peak time of click ERP

27. Peak amplitude of click ERP

28. (Peak time of click ERP) — (Peak time of
spawn ERP)

19. Peak time of spawn ERP

20. Peak amplitude of spawn ERP

21. Peak time of click ERP

22. Peak amplitude of click ERP

23. (Peak time of click ERP) — (Peak time of
spawn ERP)

Since there are 28 features in total which is a rather high dimensionality of feature space. The
proposed 10-time-10-fold cross-validation requires a twice number of the input in order to train
to locate the optimum number of hidden neurons. The PCA is applied in order to reduce the
dimensionality of the original feature space as described in Section 2.8. Table 6.16 shows the

percentages of principal component accountabilities to the original feature space range from
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high to low. For example, the principal component PC1 can represent 31.46% of the whole 28
features. Therefore, the accumulated accountability from PC1 to PC28 is equal to 100%. Figure
6.45 shows the accumulated accountability percentages covered by the first 10 principal
components to the 28 features. It shows that only 10 principal components can cover over 90%

of the original features.

Therefore, a trade-off between percentages of coverage and number of principal components
needs to be decided. The percentages of accountability for 7, 14, and 21 components are 82.94%,
97.03%, and 99.80%, respectively. According to the preliminary training of the 10-time-10-fold
cross-validation for 1 time, it is shown that 7 principal components are sufficient. Furthermore,
by selecting 7 principal components the maximum number of hidden neurons for training is 14

which are half the amount of hidden neurons compared to the case of 14 principal components.

Table 6.16 The percentages of variance explained for the 28 principal components (PC).

Percentages of variance explained for the 28 principal components (PC)
PC1 PC2 PC3 PC4 PC5 PC6 PC7
31.46 23.95 9.84 5.83 4.38 3.99 3.49
PC8 PC9 PC10 PC11 PC12 PC13 PCi14
3.17 2.73 2.47 2.06 1.39 1.20 1.08
PC15 PC16 PC17 PC18 PC19 PC20 PC21
0.80 0.61 0.52 0.31 0.26 0.16 0.09
PC22 PC23 PC24 PC25 PC26 PC27 PC28
0.08 0.06 0.03 0.02 0.01 0.00 0.00
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Figure 6.45 A plot of accountability percentages to the original feature space of the first 10

principal components.

6.7.5.1 The modelling results

The model development follows the process shown in Figure 3.11 of Section 3.4. There are six
developed models i.e. the model based on each performance criteria — RT, MT, DT, MA, HA,
and IP. Several of the modelling outputs are obtained during the development process. Hence,
the summary of the result is presented first in this section. Then, the detailed outputs for each of
the modelling process are given in Appendix 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6 for RT, MT, DT, MA,
HA, and IP, respectively.

The total running time for the 10-time-10-fold cross validation is 14.36 hours for all of the model
training. Figure 6.46 shows total run times for each of the model. The average training time is
143.65 minutes. All of the models is trained with MATLAB pattern recognition neural network

with a set of default training algorithms.
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Figure 6.46 The total training run time for each model by applying the 10-time-10-fold cross

validation.

Summary of the model development is shown in Table 6.17. The results can be referred to the
steps in Figure 3.11. The second column of the table shows that the maximum training accuracy
is 95.32% for the DT model whereas the worst is 66.56% for the HA model. All the training
reaches maximum accuracy with the number of hidden neurons at twice the number of 7
principal component inputs i.e. 14 number of hidden neurons. However, the testing results are
in contrast. The RT, DT, and MA models attain their best accuracy with a single hidden neuron
with the accuracy of 59.87%, 85.73%, and 62.28%, respectively. The best testing accuracy is
still with DT model at 91.95% which is dropped from the training by 3.37%. The worst testing
remains with the HA model at 58.42%.
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Table 6.17 The summary of the model development results.

Step 1 of Figure 3.11 Step 3 of Figure | Step 4 of Figure
3.11 3.11
(10-time-10-fold cross validation)
Performance Best training Best testing Model training Blind test
indicator
Acc Number Acc Number Acc AUC Acc AUC
of of
[0) 0] [0) [0)
| hidden | ® | hidden | ? (%)
neurons neurons

RT 67.01 14 59.87 1 60.3 0.63 58.3 0.59
MT 88.82 14 85.73 2 86.3 0.93 72.0 0.86
DT 95.32 14 91.95 1 92.1 0.98 74.0 0.88
MA 68.23 14 62.28 1 62.8 0.67 66.9 0.76
HA 66.56 14 58.42 8 63.2 0.69 60.7 0.62
IP 71.26 14 64.96 6 69.4 0.76 63.0 0.67
Average 76.2 70.53 72.35 0.77 65.81 0.73

According to step 2 of Figure 3.11, the best configuration for each model is located. Then, all
of the training datasets is used to train the selected configuration i.e. number of hidden neurons.
The result of the training accuracies is shown by the 3 column of Table 6.17 along with the
area under the curve (AUC) of ROC curve. The model training accuracies are improved by small
percentages from the previous testing results. The most accurate model is the DT model with
the accuracy of 92.1% and 0.98 of AUC.

After the models are trained, they are tested with the preserved blind test dataset. The results of
the blind test are shown in the 4" column of Table 6.17. All of the blind testing accuracies is

dropped from the model training except the MA model which gives an improvement by 4.1%.
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The most accuracy drop is the DT model which is dropped by 18.1% from the model training
accuracy. The second accuracy drop rate is the MT model at 14.3% while the rests are dropped
by a small percentage of 2%, 2.5%, and 6.4% for RT, HA, and IP models, respectively. It is the
indication of overtraining for the DT and MT models while the other models stay within the

range of their training accuracy when applying to the unseen dataset.

Details of the results including the averaged classification accuracies from 10-time-10-fold
cross-validation, confusion matrix, PR curve, and ROC curve from model training and blind
testing for each of the model development is presented in the Appendix 1.1, 1.2, 1.3, 1.4, 1.5, and
1.6.

6.7.6 Evaluation of HMI performance based on the
EEG brainwave

Once the six models are developed, they can be used to evaluate a task pattern performance
based solely on the EEG brainwaves as mentioned at the end of Section 6.6. The diagram of the
evaluation is shown in Figure 6.11. It can be noted that the models are developed by separating
the data into two groups based on the value of the performance indicator. The meanings of model

outcomes need to be interpreted for each of the performance indicators as shown in Table 6.18.

Table 6.18 Interpretation of the meaning of model outcomes.

Performance indicator The interpretation of the model outcomes
RT Class Low means high performance and vice versa
MT Class Low means high performance and vice versa
DT Class Low means high performance and vice versa
MA Class Low means high performance and vice versa
HA Class High means high performance and vice versa
IP Class High means high performance and vice versa

The example of performance evaluation is shown in Table 6.19. It is noted that the table shows
the converted interpretation of the outcomes of RT, MT, DT, and MA from 0 to 1 and vice versa.
The outcomes of HA and IP remain the same as the classification model output. The values in
the parenthesis of the task performance values are the median of each performance indicator.
Cells of the table which are shaded with red colour mean that the outcome of the corresponding

evaluation is incorrect according to the separation point at the median value.

Page 231 of 319



Table 6.19 The example of performance evaluation using the six models.

PHE#SHT#

Evaluation of performance based on EEG brainwaves

Task performance values

RT

MT

DT

MA

HA

T

P1E1S1T1

P1E1S1T2

RT
(0.276)

MT
(0.772)

DT
(1.028)

0.622

P1E1S1T3

P1E1S1T4

P1E1S1TS

P2E2S8T14

P2E2S9T1

P2E2S9T2

P2E2S9T3

P2E2S9T4

0.972

MA
(11.05)

HA

P3E254T10

P3E254T11

P3E254T12

P3E254T13

P3E254T14

P4E1S10T7

P4E1S10T8

P4E1S10T9

P4E1S10T10

P4E1S10T11

P|lo|lo|lrRr|lkRr|lololkr|lo|lolr|kPr|lPr|lRPr|R|[R|lojo|jlo|~

olo|o|lo|r|lo|lo|lo|o|lolr|lrir|lrlRr|lRr|lkr|lolr|P

olo|lolr|r|lo|lo|lo|lo|lolr|lr|lPr|lRrlRr|lR|lk|lolo|r

o|lo|lo|lr|o|lo|lo|lo|lo|lolr|krikr|kr|[kr| ok | o|r |~

Ok | Ok | Ol |PIP|PI[P|lOlOCO|lO|O|O|OC|Pr|O|O|O

ok |O|lO|O(RP|O|lCO|OCO|OCO|FP|(P|IPI[P|P|IOC|O[FR|O|F
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6.8 Summary

This chapter has developed a novel human-machine performance evaluation method based on
the human EEG brainwaves. A classic HMI scenario, target hitting task, is employed as a case
study. The task is simple and allows the establishment of the relationship between the human
EEG brainwaves and the task performance become possible with minimal disturbances. The
task is designated with 14 task patterns where a participant performs the main interaction activity
that is the movement of a mouse cursor to hit a target as fast and accurate as possible. The time
course of a task pattern i.e. from target appear to target click, is where the establishment is taken
into account. Since the performance of a task pattern is evaluated from the start of the target
appearance until it is clicked by a mouse cursor. There are two main performance aspects in this
type of task i.e. speed and accuracy which can be separated into more details including reaction
time (RT), movement time (MT), duration time (DT), movement accuracy (MA), hit accuracy
(HA), and the Fitts index of performance (IP). The establishment of the relationship between
human EEG brainwaves and task performances is achieved by relating the six performance
indicators to the features of the corresponding EEG signals. The models are obtained by utilising
the model development methodology presented in Section 3.6 i.e. the descriptive modelling

approach and the 10-time-10-fold cross-validation.

As a result, six models of task performance evaluation based solely on the EEG brainwaves are
achieved. The six models are responsible for the evaluation of each aspect of the task
performance. The averaged evaluation accuracy is 72.35%. The averaged evaluation accuracy
when the models are applied to an unseen data is 65.81%. The overall accuracies are somewhat
acceptable since it is rather challenging to establish the relationship between the human EEG
brainwaves to the performances of the interaction. Furthermore, there exists a number of
limitations i.e. the limitation of the number of electrodes, the limitation of the location of
electrodes especially where the brain region is responsible for limbs movement. Likewise, there
exist external factors other than the EEG brainwave that affects task performance e.g. other
aspects of the brain processing, physical ergonomics, and spinal cord command mechanisms

etc.
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Chapter 7 Conclusion and future work

This chapter concludes the works completed in this research project that lead to the original
contributions. Section 7.1 summarises the research in each aspect i.e. the literature review, the
design and development, and the investigations. The summaries are described along with the
fulfilment of the objectives presented in Chapter 1. Then, the detailed conclusions of the key
investigations in this research are presented in Section 7.2 and Section 7.3. This research project
has provided and improved the understanding of the author as a research student in many
aspects, which can be summarised as the learning experiences in Section 7.4. Section 7.6

discusses on the known limitations and a list of future works are given in Section 7.7.

7.1 Summary of the research works

The works completed in this research project can be categorised into three parts i.e. the literature

review, the design and development, the investigation and the analysis.

7.1.1 The literature review

A review of the state-of-the-art human interaction with the man-made systems has been
completed. The review starts from the concept of HAM and spreads out to the related areas in
order to identify / locate the gaps to improve the HAM research field. This part of the thesis can
be considered as the fulfilment of Objective 1.

7.1.2 The design, development, and implementation
of the HAM experimentation platform
e This research is based on a simulation because of several reasons discussed in the

introduction of Chapter 3. Therefore, a HAM simulation platform has been developed

to fulfil Objective 2 and is employed in all of the investigations in this research.
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The Emotiv EPOC EEG monitoring system is integrated into the HAM simulation
platform for the acquisition of human brainwave simultaneously with the HMI scenarios.
This expansion has been added to meet Objective 2 so that the platform can be used to
conduct the experiments to fulfil Objective 5.
The descriptive-predictive and 10-time-10-fold cross-validation model development
procedures are adopted and modified to be used for the model development in this
research. These parts of the research project are developed to fulfil Objective 4 and 5.
The procedures are developed and applied in both the HMI control model and the
performance evaluation model in Chapter 4 and Chapter 6, respectively.
These simulation and experimentation scenarios are implemented to fulfil Objective 2.

a. An inverted pendulum-driven capsule system i.e. the Model | and the Model 11

in Chapter 4.
b. The scenarios for the EEG-based experimentation in Chapter 5.
c. The target hitting task for the establishment of HMI performance evaluation

models in Chapter 6.

7.1.3 The investigation and analysis

The human heuristic learning control and the identification of control skills-rules-
knowledge (SRK) and wisdom have been investigated in Chapter 4. This part of the
investigation is conducted to fulfil Objective 3 and the outcome shows that a human
follows the SRK with the addition of the wisdom i.e. the extension of the SRK.

The establishment of human-machine control model that fulfils Objective 4 i.e. the
understanding of a human from the machine side so that it can provide the appropriate
assistance.

The thesis establishes a novel HMI performance evaluation models based on the human
brainwave. A target hitting task has been adopted to establish the relationship between
HMI control performance and the human brainwave. This part of the research can be
considered as the fulfilment of Objective 5. The concept of performance evaluation from
the human brainwave from this research project could be applied to other research
projects such as the adaptive adjustments of the computer game difficulty. This is the

example of the application from one domain of knowledge to another.
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7.2 Human-machine interaction heuristic
learning and control model development

Two variations of a pendulum-driven cart pole / capsule system have been employed as a
machine model for the investigation of HMI heuristic learning and control model development
in Chapter 4.

From the investigation of a human heuristic learning and control in Section 4.2, it can be
concluded that a human can learn to identify the control strategy of an unfamiliar machine
mechanism i.e. the Model I, an underactuated pendulum-driven capsule system. A set of rules
of the machine control strategy is developed during the learning stage. It is clear that this finding
complies with the Fitts three stages of learning and the Rasmussen’s model of SRK. The
participant stays in the cognitive stage during the heuristic learning to identify the machine
control mechanism. Then, the learning is transformed into the associative stage when the
participant figures out the machine control mechanism. This phase of learning can be thought
as the process of rules creation in the Rasmussen’s SRK model. Skill is acquired during this
phase of learning. The skill can be developed further by practising until the identified set of
control actions becomes autonomous. These skills and rules are developed into the knowledge
for the specific machine operation. The knowledge can be revolutionised and generalised into

wisdom over time by applying the particular domain of knowledge into other domains.

In order to focus the study on the action of human learning and control on the inverted pendulum
rotation strategy, Model | has been modified to Model Il by the integration of a PID controller.
Therefore, a human participant can concentrate on learning the rotation of an inverted pendulum
to control the machine. The investigation with Model Il has been conducted with nine human
participants that provide the variations of the heuristic control and learning. As a result of the
experiment, the nine participants show different characteristics of skill and strategy to control
the machine e.g. high versus low oscillation of the pendulum, and the rotation range. The control
characteristics and pendulum rotation profile may not be as perfect as the theoretical profile but
a human can learn to identify the control strategy that can effectively produce a good

performance outcome.
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The control information in the investigation of Model Il is further employed for the development
of human-machine control model in Section 4.4. Two types of model are employed i.e.
classification and regression models with the overall accuracies of 88.3% and 79.1%,
respectively. The performance of the models is twofold confirmed by the plot of precision-recall
and ROC curves. Furthermore, the obtained models are applied to an unseen dataset which is
the blind testing process. The blind test accuracies are 92.2% and 77.01% for the classification

and the regression models, respectively.

7.3 Human-machine interaction performance
evaluation based on EEG brainwave

The Emotiv EPOC system has been integrated into the platform in order to simultaneously
acquire the brainwave while a human participant performs the machine operation. The
preliminary investigations with EEG are aimed to understand how the brain responds to a
particular stimuli i.e. event-related potential (ERP) and to develop a workflow for the
development of EEG-based performance evaluation models. Three preliminary investigations
have been conducted which can be divided into two groups according to eyes opening conditions
e.g. eyes closed, and eyes opened in Chapter 5. It can be concluded from the eyes closed
investigation that the human EEG brainwave has the distinguishable responses to the stimulus
e.g. the audio sound effect, and the voluntary limb movement. Moreover, the voluntary limb
movements based experiment shows that the brain is activated on the opposite side of the limb
movement which complies with the well-established knowledge of the human brain functions.

The preliminary study is extended to cope with eyes opened based experiment so that the
workflow can be utilised in the actual HMI which essentially requires eyes to be opened during
the interaction. A simple target hitting task is used to develop this pilot study. The eyes related
artefacts can be removed systematically with the usage of the ICA. The ERP analysis from this
pilot study shows that the human brain has a clear response when a target appears on the screen
especially in the posterior region of the human brain. This region is responsible for visual

processing.
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In Chapter 6, a novel HMI performance evaluation model has been developed based on the
features extracted from the human EEG brainwave. Six models are obtained for the six
performance aspects of the target hitting task. The obtained models can be used for the
prediction of operator performance that will be the guidance for the machine to provide the

adaptive assistance based on the performance level.

7.4 The analysis of the chosen methods

The analysis of the chosen methods that proved to be justified is given below for each aspect.

7.4.1 The simulation

The simulation-based experimentation proves the following advantages to this research project.

e The simulation saves time and effort which allow the project to be completed in time.
Moreover, the simulation unifies all of the investigations completed in this research i.e.
the usage of the same environment throughout the research project.

e There is no harm to the participants with the simulation.

e Many simulation scenarios can be implemented to conduct the experiment.

e The data acquisition is convenient and effective.

7.4.2 The 10-time-10-fold cross-validation and the
ANN

The limited number of dataset in this research can be problematic for the model development.
However, the use of the 10-time-10-fold cross-validation can effectively utilise the dataset and
can locate the best ANN model configuration because it repeatedly uses the data as explained
in Section 3.6. The use of ANN in this research has proved that it can give relatively good
modelling results with the case studies such as the inverted pendulum-driven capsule system

and the human brainwave etc.
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7.4.3 The electroencephalography brainwave
monitoring system

The EEG has several advantages over the others as discussed in Section 2.13.2. This research
mentions that the usage, preparation and maintenance of the EEG headset are the time-
consuming process. However, it is less complicated than other brain monitoring systems. The
obtained brainwave can be utilised straight away after the acquisition in the form of the
computer file. Although the spatial resolution is not good, the temporal resolution is the great
advantage to this research because the HMI usually uses time as the performance indicator e.g.
time to react, time to complete the task etc.

7.5 Research as learning experiences

This section discusses some aspects that are learned from the research process that can be

considered as the valuable experiences and knowledge.

7.5.1 Research area, scope, and focus

A research project ideally is based on the personal interest of the researcher or is generated by
an organisation. A literature review is the fundamental stage that gives the exploration to the
relevant area. Although it is common that the interesting literature in the research area would be
attractive, the review needs to have a definite scope. It is necessary to have the focus and scope
in mind so that the research project can be proceeded within the sensible period of time. The
example from this research project is the multidisciplinary of the HAM. The literature review
and the investigation would have easily strayed away from the focus and scope. There are many
interesting literature such as machine learning methods, mathematical modelling of a machine

and the simulation, the human behaviours, EEG, BCI etc.

7.5.2 Expansion of knowledge

A research project has to seek and open up to the ideas available in the related fields that would

benefit to the focused area. This research starts from the HAM and expands to the related area
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i.e. HRI, HSC, HAI, human intention recognition, model developments, human performance,
human brainwave monitoring etc. However, the focus is maintained in the HAM area i.e. the

HMI performance evaluation.

7.5.3 Know the limitations

A research project is usually bounded by some limitations such as time, resource, technical issue
and budget etc. It is good to keep these limitations in mind. For example, one of the limitations
of this research project is a simulation-based research that may not represent the real world
situation. Furthermore, this research utilises a budget non-research-grade brainwave monitoring
headset which may not give the best brainwave recording quality. The recruitment of the
participants that is sometime rather difficult to access to a good sample that would represent the
aimed population. The limitation of the computing resource such as the personal computer for
the analysis and model development. To accelerate the research, the author uses two computers
to run the analysis and model development while a laptop is used to produce the documentation
simultaneously. Also, the dimensionality of the data is a considerable concern to the computing
power / resource of a computer that would produce the result within the sensible computational

time.

7.5.4 Time management

A good research project has to be completed within the allowed period of time. A well-defined
scope, focus, and a plan of the research are the keys. A researcher would have the imagination
and ambition to do a particular research. However, it is good to know the limitation of a given
period of time and be reasonable for the width and the depth of the research investigations. In
practical, it is needed to allocate spare times for the unforeseen circumstances e.g. the time for
the administration activity, the time needed to collaborate with other people, the time for the

recruitment of the sample participants, the time for the software and hardware problems etc.

7.5.5 Life and balance

It is a good practise to balance the amount of life activities such as doing a research, travelling

and sightseeing, doing sports and exercises, having relaxation etc. Despite the health benefits of
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doing an exercise such as running and playing football which is particularly the famous sports
in the United Kingdom, these activities could help release some stresses during the intensive
research activity and provide a refreshing mood to conduct a research. Moreover, during a
running session, the brain is rather relaxed and there is time to think about the research problem
that is being solved. This thinking might turn out to be the ultimate idea and solution of the
research. Travelling and sightseeing could open up the state of mind and increase personal
experiences that would benefit the research in some ways. For examples, the author thinks about
the skills required to operate the car during a driving for the travelling. The skills to operate a
car are different from the ability to drive carefully. Also, it does not mean that a driver has the

knowledge about the traffic rules and locations etc.

7.6 Limitations in this research

e There is a known limitation of the spatial resolution of any hardware used to record the
EEG brainwaves. The Emotiv EPOC has the capability to record 14 locations on the
human scalp. Headsets with 256 or more electrodes are available in the market.
However, these headsets are very expensive and require the wired connection rather than
a wireless one which can be uncomfortable in many applications.

e The temporal resolution i.e. the sampling rate of the brainwave headset is another
limitation of the research project. Although the Emotiv EPOC headset specification
mentions an internal sampling rate of 256 Hz, it produces a data rate of 128 Hz only.
The higher the sampling rate is, the more detail of the temporal resolution can be
obtained from the recording which will be useful to produce more accurate analysis of
the human brain activities.

e The use of scalp region i.e. frontal and posterior averaged brainwave may limit the
spatial resolution which is already the main drawback of the EEG. However, the
averaged method improves the temporal signal-to-noise ratio. This is the trade-off
between the two choices i.e. spatial and temporal resolutions. This aspect may be
improved in the future from the steady advancements in technology.

e The number of participants and gender i.e. male-female balance are limited because of

time, effort, and ethical issues. For example, for the EEG brainwave based
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investigations, a participant needs to agree to wear the headset which is moistened by
saline solution. Furthermore, the investigation needs to be done in a quiet environment,
takes long time to finish because of the headset preparation and the maintenance
procedures during the experiment etc. However, Table 2.10 shows that the number of
human participants which is 1-12 participants.

This research adopts simulation as the primary HMI activity which may not give fully

realistic situation.

7.7 Future works

A list of possible future works that can be investigated further from this research project is given

below.

An EEG headset with more electrodes and higher sampling rate could be used.
Especially, the electrodes around the central area of the human scalp which are
responsible for limb movements. However, the increased number of electrodes would
introduce the complexity in both the acquisition and the analysis processes e.g.
complexity of the headset wirings, more sensors to be moistened, more computational
power etc.

It is challenging to establish the relationship between the operation performance and the
brain activity i.e. the EEG brainwaves. It might be a good idea to include another
equipment to read muscle activity, spinal cord activity etc. Then, the knowledge of these
muscle and spinal cord activities could be used to discover the understanding of the
relationship among the brain, muscle, and spinal cord activities.

Some other available machine learning and model development methods such as the
SVM, the Genetic algorithms, and the artificial immune system etc. could be applied to
make a comparison among them.

This research project has focused on a primitive HMI task i.e. the target hitting task. It
would be a good idea to extend to the other types / more complicated types of task e.g.

a pendulum balancing task, a task based on the decision making etc.

Page 242 of 319




A future investigation based on a physical machine may give the more realistic HMI.
However, the physical HMI may introduce some safety issues, complexities in the
research procedure, efforts and time to conduct a research etc.

A future work could increase the number of participants with the balance between the
two genders i.e. male-female which may improve the investigation results.

This research project has focused on the performance evaluation part of the HAM
concept. A future work could concentrate on a closed loop HAM adaptive machine i.e.
the intention recognition, the performance evaluation, and the adaptive assistance.

A static design of the computer game difficulty may introduce boredom / anxiety to a
player. The concept of the HAM adaptive machine especially the performance

evaluation could be applied to make a more challenging computer game.
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Appendix

A. Consent form for a low level control of
pendulum-driven robot to measure
performance among participants

Research Ethics Consent Form

Project title: Human adaptive mechatronics (HAM) based human robot interactions (HRI) through

an adaptive virtual simulation platform

Name of the researcher: Keattikorn Samarnggoon, Research Student, Faculty of Computing,

Engineering and Technology

Name of the experiment: A low level control of pendulum-driven robot to measure performance

among participants
The experiment:
Description

A participant will be asked to conduct a low level control of the pendulum-driven robot in a
virtual environment platform using the provided joystick interface. The control information and
internal parameters of the simulation will be collected for further analyses. Video recording of the
participant during the experiment will be made and it will be used as a reference when analysing the

acquired data.
Task

A simple target reaching task will be given to the participant. The participant will learn to

control the pendulum-driven robot in virtual environment.

Protocol

1. The participant read and signs the consent form.
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2. The experiment environment is set up and prepared.

The participant answers pre-experiment questionnaires.

4. The participant will be explained and demonstrated about the simulation software and the
interface that will be used.

5. The firsttrial, 20 seconds will be given to familiarize with the platform and learn to control
the robot.

6. Main trials will last 20 seconds for each trial, the participant will be asked to control the
robot to the right/left as far as possible within 20 seconds.

7. 3trials for right side, 3 trials for left side

w

Please tick in the boxes below:

U I have read all the information provided regarding the experiment description, task, and
protocol which will be conducted during your participation.

[ I agree to participate in this experiment.

Name of participant:

Please answer to the questionnaires behind this page.

Pre-experiment questionnaires

1. What is gender?
(1 Male
1 Female
[ Not applicable
2. How old are you?
[1 Below 20
21-25
26-30
31-35
36-40
41-45
46-50
Above 50

0 O B A |
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What is your handedness? (Choose one)

[1 Righty

U Lefty

(1 Comfortable with either side
Do you know Physics like Newton laws of motion?
[JYes [JNo

Do you know pendulum?

[ Yes [l No

Do you know inverted pendulum?

[ Yes I No [

Do you know the principle behind the inverted pendulum-driven robot?

[ Yes [l No

Have you conducted this experiment before?

I Yes[INo
el
+90 deg | | -90 deg
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B. Consent form for EEG target hitting task
experiment

Research Ethics Consent Form

Project title: Human adaptive mechatronics (HAM) based human robot interactions (HRI) through

an adaptive virtual simulation platform

Name of the researcher: Keattikorn Samarnggoon, Research Student, Faculty of Computing,
Engineering and Technology

Name of the experiment: An EEG based experimentation conduct on a HAM simulation platform
The experiment:
Description

A participant will be asked to conduct the given experiment e.g. target hitting task while
having an Emotiv EPOC headset installed on his / her head in order to record the EEG brainwaves

during the interaction with the given task / operation.
Please tick in the boxes below:

[J 1 have read all the information provided regarding the experiment and task description which
will be conducted during your participation.

[J I agree to participate in this experiment.

Name of participant:
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C. Emotiv EPOC electrode placement
coordinates

The localisation or coordinates of the electrodes of the Emotiv EPOC headset.

Number|labels| ref |theta|radius| X Y Z |sph_theta|sph_phi|sph_radius|type
1 AF3 |-23(0.411|0.885|0.376| 0.276 | 23 16 1 1 1
2 F7 |-540.511|0.587|0.809|-0.0349| 54 -2 1 2 1
3 F3 |-390.333|0.673|0.545| 0.5 | 39 30 1 3 1
4 FC5 | -69 |0.394| 0.339 | 0.883 | 0.326 | 69 19 1 4 1
5 T7 [-90]0.511] O [0.999|-0.0349| 90 -2 1 5 1
6 P7 |-126/0.511| -0.59 |{0.809|-0.0349|126 -2 1 6 1
7 O1 |-162|0.511| -0.95 |0.309|-0.0349| 162 -2 1 7 1
8 02 |162|0.511] -0.95 |-0.309|-0.0349|-162 -2 1 8 1
9 P8 |126/0.511| -0.59 |-0.809|-0.0349|-126 -2 1 9 1
10 T8 |90 |0.511] 0O [0.999|-0.0349| -90 -2 1 10 1
11 FC6 | 69 [0.394| 0.34 |-0.883| 0.326 | -69 19 1 11 1
12 F4 | 39 |0.333| 0.67 |-0.545| 0.5 |[-39 30 1 12 1
13 F8 | 54 |0.511| 0.59 |-0.809|-0.0349| -54 -2 1 13 1
14 | AF4 | 23 |0.411| 0.89 |-0.376| 0.276 | -23 16 1 14 1

D. Circle to circle intersection algorithm

Boolean CircleCirclelntersection (int c1x, int cly,
intrl,
intc2x, int c2y , intr2)
{
intIx = clx - c2x ;
intly =cly - c2y;
intll=Ix*Ix+1ly*ly;
intrl plus r2=rl1+r2;

if (11> ((rl plus_r2)*(rl_plus_r2)))
{
return false ;

}

return true ;
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E. Box plot

A box plot in this research is based on boxplot function from MATLAB. The elements of a box
plot are shown in Figure Appendix.1 . The centre mark in the box is the median. The edges of

the box are 25" and 75" percentiles. Red crossed points outside the box are outliers.

e Outliers

T Upper extreme data points

.............. 75t percentile

Median

25t percentile

-------------- Lower extreme data points
Box plot

Figure Appendix.1 Box plot elements.

F. Information theory

The information theory is used to calculate the amount of information transfer / convey from
one place to another e.g. the concept of human-robot information pipeline in Section 2.5.6. The
amount of information, conveyed by the probability of events having the same degree of
occurrence , equals to log, N where N is number of the events [228]. The amount of information
is expressed in bits. The information transmission rate is expressed in bits/second. In other
words, this information conveying can be described in computing science using a binary

representation where 1 bit of binary digit can convey two possible outcomes which are 0 or 1.
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In general, 2" different possibilities (equally-likely of occurrence) can be expressed using n bits

of binary digits.
H; =log, N bits (A1)

For the case of unequal probability events, the information convey is calculated using the inverse

of the corresponding probability.
1
Hg = log, P bits (A.2)

For a series of information, the average information conveyed can be computed using

summation of the above equation multiply by the corresponding probability.
N 1
Hayerage = Z P; [Ing F] bits (A3)
i=1 ¢
Information capacity of a channel

The information capacity | of a communication channel is defined as (A.4) where W is a
bandwidth, S is a signal, and N is a noise [71], [229], [230].

S+N
I = Wlog,

N bits/second (A4)

Entropy of information

An entropy of information is a measure of uncertainty of the information given the probability

of the events. A standard entropy calculation is defined as follows.

HOO = BylI@)] = ) ~p(x) logp(x) (AS5)

xXeX

In the case of binary information representation, entropy can be calculated as follows.

HX) = = ) p@)log, p() — (1 = p)) log, 1= p(x) (A6)

XEX

The information transmission rate is defined as follows.
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Base equation I = Wlog, [1 + N((]]?) (A7)
Continuous I = fwlogz[ (f)]df (A.8)
0 N )
Discrete = i [ Si(f)
= ) log, |1+ N (f)] (A.9)

S is a signal spectrum while N is a noise spectrum. W is a channel capacity, or bandwidth.
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G. Extremum — local minima and maxima

An absolute maximum or an absolute minimum is an absolute extremum of a function.
Sometimes they are referred to as a global maximum or a global minimum, respectively. Not
every function has both an absolute maximum and an absolute minimum. As shown in Figure
Appendix.2, a function in Figure Appendix.2 (a) has only an absolute minimum whilst a

function in Figure Appendix.2 (b) has only an absolute maximum.

.1 !

Fy ¥
Has no i
absolute
} Absolute
maximum

MAXIMNM

]
Y
e

... - f(c) Has no

Absolute
. absolute
minimum o
MINIMIN
(@) (b)

Figure Appendix.2 Functions with no absolute extremum [231].
For a function f defined on a set S of real numbers and a number c € S.
The absolute maximum and absolute minimum can be defined as
f(c) is the absolute maximum of f on S if f(c) = f(x) forall x € S and
f(c) is the absolute minimum of f on S if f(c¢) < f(x) forall x e S

A local maximum or a local minimum, sometimes referred to as a relative maximum or a relative
minimum, respectively, is a local extremum in a given neighbourhood, as shown in Figure

Appendix.3.
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The local maximum and local minimum can be defined as f(c) is the local maximum of f if
f(c) = f(x) for all x in some open interval containing C. f(c) is the local minimum of f if

f(c) < f(x) for all x in some open interval containing C.

A point ¢ where its derivative f'(c) is zero or undefinable is called a critical point of the
function. The local extrema always occur at the critical point. A local extremum is not necessary
to be equal to an absolute extremum of a function, whereas an absolute extremum and a local

extremum are the same value in the given neighbourhood.

If a continuous function is defined in a closed interval [a, b], an absolute extremum must be

occurred at a boundary point of the interval (at point a or b) or a critical point.

If a function is a piecewise-defined function, all of the absolute extrema must be defined and

then compared for the absolute largest or smallest value.

Local maximum

[/"(d) is undefined]

Local maximum

[f'(b) =10]

Local minimum
[f'(a) = 0]

Local minimum
[ f"(¢) is undefined]

Figure Appendix.3 Local extrema of a function [231].
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H. Preliminary EEG investigation results
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Target Non-target

238 ms

Potential (uV)
Potential (uV)

-1000 -560 0 560 10b0 15b0 -1000 -500 0 500 1000 1500

Latency (ms) Latency (ms)

(a) The F3 (blue) and AF4 (green) ERP responded to the target auditory event.  (b) The AF3 (blue) and AF4 (green) ERP from the non-target event.
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(c) The AF3 ERP image responded to the target auditory event. (d) The AF3 ERP image responded to the non-target event.
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(f) The AF4 ERP image responded to the non-target event.

Figure Appendix.4 The comparison between targets and non-target response for experiment 1.
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Target Non-target

224 ms
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— 1ﬁ —
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5 § o
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-1000 -500 0 500 1000 1500 -1000 -500 0 500 1000 1500
Latency (ms) Latency (ms)
(a) The AF3 (blue) and AF4 (green) ERP responded to the target auditory (b) The AF3 (blue) and AF4 (green) ERP from the non-target event.

event.
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(e) The AF4 ERP image responded to the target auditory event.

Figure Appendix.5 The comparison between targets and non-target response for experiment 2.

(f) The AF4 ERP image responded to the non-target event.
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() The AF3 (blue) and AF4 (green) ERP responded to the target auditory (b) The AF3 (blue) and AF4 (green) ERP from the non-target event.

event.
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(d) The AF3 ERP image responded to the non-target event.

(c) The AF3 ERP image responded to the target auditory event.
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(e) The AF4 ERP image responded to the target auditory event.
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(f) The AF4 ERP image responded to the non-target event.

Figure Appendix.6 The comparison between targets and non-target response for experiment 3.
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Target

224 ms

Potential (uV)

2+

-1000 -500 0 500
Latency (ms)

1000 1500

(@) The AF3 (blue) and AF4 (green) ERP responded to the target auditory

event.

Non-target

227 ms

Potential (uV)
=

2+

-1000 -500 0 500 1000 1500
Latency (ms)

(b) The AF3 (blue) and AF4 (green) ERP from the non-target event.
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(c) The AF3 ERP image responded to the target auditory event.
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(d) The AF3 ERP image responded to the non-target event.
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Figure Appendix.7 The comparison between targets and non-target response for experiment 4.
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(@) The AF3 (blue) and AF4 (green) ERP responded to the target auditory

event.

(b) The AF3 (blue) and AF4 (green) ERP from the non-target event.
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(c) The AF3 ERP image responded to the target auditory event. (d) The AF3 ERP image responded to the non-target event.
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(F) The AF4 ERP image responded to the non-target event.

Figure Appendix.8 The comparison between targets and non-target response from all the 4 experiments.
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(a) Target (the ERP responded to a mouse click)
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Figure Appendix.9 The brain responses to (a) target and (b) non-target (experiment 1).
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Figure Appendix.10 The brain responses to (a) target and (b) non-target (experiment 2).
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Figure Appendix.11 The brain responses to (a) target and (b) non-target (experiment 3).
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Figure Appendix.12 The brain responses to (a) target and (b) non-target (experiment 4).
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|. The modelling results based on each of the

target hitting task performance indicators
(RT, MT, DT, MA, HA, IP)

.1 RT modelling result

10-time-10-fold average classification accuracy when using
reaction time (RT) as a performance indicator

B Average training accuracy ~ E Average testing accuracy

Accuracy (%)

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of hidden neurons

Figure Appendix.13 The 10-time-10-fold cross validation results for RT as a performance

indicator.
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Table Appendix.1 The confusion matrix of the RT classification model with a single hidden neuron.

Predicted Class
Low High
588 (TP) 351 (FN) 62.6% (TPR)
2 Low
5 26.0% 15.5% 37.4% (FNR)
E
g 545 (FP) 775 (TN) 58.7% (TPR)
High
24.1% 34.3% 41.3% (FNR)
51.9% (TNR) | 68.8% (TNR) | 60.3% (AC)
48.1% (FPR) | 31.2% (FPR) | 39.7% (Error)
Precision-Recall (PR)
1 ‘
‘ Low
\“ High
0.9
08
g
a
N
~ SN /f\?
0.6 ’ = T
;Q‘\‘x
0.5
0.4°F . : : . : : - : :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall
(a) The precision-recall curve from the RT model training.
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(b) The ROC curve from the RT model training.

Figure Appendix.14 The RT model training performance curves (a) PR curve (b) ROC curve.
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Table Appendix.2 The confusion matrix of the RT blind test classification model with a single

hidden neuron.

Predicted Class

Low High
72 (TP) 51 (FN) 58.5% (TPR)
2 Low
5 28.3% 20.1% 41.5% (FNR)
E
g 55 (FP) 76 (TN) 58.0% (TPR)
High
21.7% 29.9% 42.0% (FNR)
56.7% (TNR) | 59.8% (TNR) | 58.3% (AC)
43.3% (FPR) | 40.2% (FPR) | 41.7% (Error)

Precision-Recall (PR)

1
\ Low
0.9 \A High |-
0.8 \
0.7 v

Precision
{
3
(
i
]
[
|
!
T
/r
I

0.5 4’ / - 1 4

0.4

035/
b

0.2

0.1 - - -
0 01 02 0.3 04 05 06 07 0.8 0.9 1

Recall

(a) The precision-recall curve from the RT model blind testing.
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(b) The ROC curve from the RT model blind testing.

Figure Appendix.15 The RT blind testing performance curves (a) PR curve (b) ROC curve.
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1.2 MT modelling result

10-time-10-fold average classification accuracy when using
movement time (MT) as a performance indicator

B Average training accuracy O Average testing

Accuracy (%)

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of hidden neurons

Figure Appendix.16 The 10-time-10-fold cross validation results for MT as a performance

indicator.
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Table Appendix.3 The confusion matrix of the MT classification model with the 2 hidden neurons.

Precision

Predicted Class
Low High
955 (TP) 135 (FN) 87.6% (TPR)
2 Low
5 42.3% 6.0% 12.4% (FNR)
E
g 175 (FP) 994 (TN) 85.0% (TPR)
High
7.7% 44.0% 15.0% (FNR)
84.5% (TNR) | 88.0% (TNR) | 86.3% (AC)
15.5% (FPR) | 12.0% (FPR) | 13.7% (Error)
Precision-Recall (PR)
i N B \ Low
o | High
0.9
\\\
0.8
0.7
0.6
0.5
0.4 - : : -
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

(a) The precision-recall curve from the MT model training.
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(b) The ROC curve from the MT model training.

Figure Appendix.17 The MT model training performance curves (a) PR curve (b) ROC curve.
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Table Appendix.4 The confusion matrix of the MT blind test classification model with the 2 hidden

Precision

Low High
92 (TP) 36 (FN) 71.9% (TPR)
2 Low
5 36.2% 14.2% 28.1% (FNR)
E
g 35 (FP) 91 (TN) 72.2% (TPR)
High
13.8% 35.8% 27.8% (FNR)
72.4% (TNR) | 71.7% (TNR) | 72.0% (AC)
27.6% (FPR) | 28.3% (FPR) | 28.0% (Error)
Precision-Recall (PR)
1 r r
L Low
0.95 —— High |
0.9
0.85 ﬂ
0.8 )
0.75
0.7 ML*
0.65 k\i
0.6
0.55
0.5¢ : ' : : '
0 01 02 03 04 05 06 07 08 09 1
Recall

neurons.

Predicted Class
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(a) The precision-recall curve from the MT model blind testing.
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(b) The ROC curve from the MT model blind testing.

Figure Appendix.18 The MT blind testing performance curves (a) PR curve (b) ROC curve.
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1.3 DT modelling result

10-time-10-fold average classification accuracy when using
duration time (DT) as a performance indicator

B Average training accuracy

A O
o O O

Accuracy (%)

N
o

o

5 6

@ Average testing accuracy

7 8 9

10 11

Number of hidden neurons

12 13 14

Figure Appendix.19 The 10-time-10-fold cross validation results for DT as a performance

indicator.

Table Appendix.5 The confusion matrix of the DT classification model with a single hidden neuron.

Predicted Class
Low High

1040 (TP) 86 (FN) 92.4% (TPR)
@ Low
5 46.0% 3.8% 7.6% (FNR)
E
g 92 (FP) 1041 (TN) | 91.9% (TPR)

High

4.1% 46.1% 8.1% (FNR)

91.9% (TNR) | 92.4% (TNR) | 92.1% (AC)

8.1% (FPR) | 7.6% (FPR) | 7.9% (Error)
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(a) The precision-recall curve from the DT model training.
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(b) The ROC curve from the DT model training.
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Figure Appendix.20 The DT model training performance curves (a) PR curve (b) ROC curve.
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Table Appendix.6 The confusion matrix of the DT blind test classification model with a single

Precision

hidden neuron.

Predicted Class
Low High
93 (TP) 32 (FN) 74.4% (TPR)
2 Low
5 36.6% 12.6% 25.6% (FNR)
E
g 34 (FP) 95 (TN) 73.6% (TPR)
High
13.4% 37.4% 26.4% (FNR)
73.2% (TNR) | 74.8% (TNR) | 74.0% (AC)
26.8% (FPR) | 25.2% (FPR) | 26.0% (Error)
Precision-Recall (PR)
1 \,,
\ﬂ Low
0.95 L High |
0.9 V
0.85 ‘ \’L
0.8
0.75 \H L
W/\d
0.7 D
— K%{
0.65
0.6
0.55
0.5 : : : : :
0 01 02 03 04 05 06 07 08 09 1
Recall

() The precision-recall curve from the DT model blind testing.
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(b) The ROC curve from the DT model blind testing.

Figure Appendix.21 The DT blind testing performance curves (a) PR curve (b) ROC curve.
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1.4 MA modelling result

Accuracy (%)
N B D o
o o o o o

10-time-10-fold average classification accuracy when using
movement accuracy (MA) as a performance indicator

B Average training accuracy @ Average testing accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of hidden neurons

Figure Appendix.22 The 10-time-10-fold cross validation results for MA as a performance

indicator.

Table Appendix.7 The confusion matrix of the MA classification model with a single hidden neuron.

Predicted Class
Low High

678 (TP) 388 (FN) 63.6% (TPR)
@ Low
‘—8 30.00% 17.20% 36.4% (FNR)
E
g 452 (FP) 741 (TN) 62.1% (TPR)

High

20.00% 32.80% 37.9% (FNR)

60.0% (TNR) | 65.6% (TNR) | 62.8% (AC)

40.0% (FPR) | 34.4% (FPR) | 37.2% (Error)
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(a) The precision-recall curve from the MA model training.
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Figure Appendix.23 The MA model training performance curves (a) PR curve (b) ROC curve.
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Table Appendix.8 The confusion matrix of the MA blind test classification model with a single

Precision

hidden neuron.

Predicted Class
Low High
81 (TP) 38 (FN) 68.1% (TPR)
2 Low
5 31.90% 15.00% 31.9% (FNR)
E
g 46 (FP) 89 (TN) 65.9% (TPR)
High
18.10% 35.00% 34.1% (FNR)
63.8% (TNR) | 70.1% (TNR) | 66.9% (AC)
36.2% (FPR) | 29.9% (FPR) | 33.9% (Error)
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(a) The precision-recall curve from the MA model blind testing.

ROC (AUC=0.76769)
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(b) The ROC curve from the MA model blind testing.
Figure Appendix.24 The MA blind testing performance curves (a) PR curve (b) ROC curve.
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1.5 HA modelling result

10-time-10-fold average classification accuracy when using
hit accuracy (HA) as a performance indicator

B Average training accuracy

Accuracy (%)

20

5 6

@ Average testing accuracy

7 8 9

10 11

Number of hidden neurons

12 13 14

Figure Appendix.25 The 10-time-10-fold cross validation results for HA as a performance

indicator.

Table Appendix.9 The confusion matrix of the HA classification model with 8 hidden neurons.

Predicted Class

Low High
731 (TP) 423 (FN) 63.3% (TPR)
@ Low
5 32.3% 18.7% 36.7% (FNR)
E
g 408 (FP) 699 (TN) 63.1% (TPR)
High
18.0% 30.9% 36.9% (FNR)
64.2% (TNR) | 62.3% (TNR) | 63.2% (AC)
35.8% (FPR) | 37.7% (FPR) | 36.8% (Error)
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(b) The ROC curve from the HA model training.
Figure Appendix.26 The HA model training performance curves (a) PR curve (b) ROC curve.
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Table Appendix.10 The confusion matrix of the HA blind test classification model with 8 hidden

neurons.

Predicted Class

Low High
86 (TP) 58 (FN) 59.7% (TPR)
@ Low
‘—S 34.1% 23.0% 40.3% (FNR)
E
g 41 (FP) 67 (TN) 62.0% (TPR)
High
16.3% 26.6% 38.0% (FNR)
67.7% (TNR) | 53.6% (TNR) | 60.7% (AC)
32.3% (FPR) | 46.4% (FPR) | 39.3% (Error)
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(b) The ROC curve from the HA model blind testing.

Figure Appendix.27 The HA blind testing performance curves (a) PR curve (b) ROC curve.
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1.6 IP modelling result

10-time-10-fold average classification accuracy when using

Fitts index of performance (IP) as a performance indicator
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Figure Appendix.28 The 10-time-10-fold cross validation results for IP as a performance

indicator.

Table Appendix.11 The confusion matrix of the IP classification model with the 6 hidden neurons.

Predicted Class

Low High
761 (TP) 321 (FN) 70.3% (TPR)
@ Low
‘—8 33.7% 14.2% 29.7% (FNR)
E
g 370 (FP) 807 (TN) 68.6% (TPR)
High
16.4% 35.7% 31.4% (FNR)
67.3% (TNR) | 71.5% (TNR) | 69.4% (AC)
32.7% (FPR) | 28.5% (FPR) | 30.6% (Error)
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(a) The precision-recall curve from the IP model training.
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(b) The ROC curve from the IP model training.

Figure Appendix.29 The IP model training performance curves (a) PR curve (b) ROC curve.
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Table Appendix.12 The confusion matrix of the IP blind test classification model with the 6 hidden

Precision

neurons.
Predicted Class
Low High
77 (TP) 44 (FN) 63.6% (TPR)
@ Low
5 30.3% 17.3% 36.4% (FNR)
E
g 50 (FP) 83 (TN) 62.4% (TPR)
High
19.7% 32.7% 37.6% (FNR)
60.6% (TNR) | 65.4% (TNR) | 63.0% (AC)
39.4% (FPR) | 34.6% (FPR) | 37.0% (Error)
Precision-Recall (PR)
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(a) The precision-recall curve from the IP model blind testing.

ROC (AUC=0.67574)
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(b) The ROC curve from the IP model blind testing.

Figure Appendix.30 The IP blind testing performance curves (a) PR curve (b) ROC curve.
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Real time Virtual Simulation of an Underactuated
Pendulum-Driven Capsule System

Keattikorn Samarnggoon and Hongnian Yu

Abstract— In this paper, a real time virtual simulation
framework which is the foundation for studying human
adaptive mechatronics (HAM) is proposed. This framework
allows researchers to interact and experiment with the system
in real time. Thus, motion control patterns can be identified
and learned with, for example, a heuristic strategy. The
prototype is developed with an underactuated pendulum-
driven capsule robot model. Motion control patterns are
identified and presented. The experimentation results
demonstrate the proposed concept.

Keywords-human adaptive mechatronics, pendulum capsule
robot, underactuated systems, virtual environment, real time
system (key words)

1. INTRODUCTION

Human adaptive mechatronics (HAM) is defined as an
intelligence human machine system in which the system can
be self-adapted intelligently based on the current user
competency level to obtain optimum performance [1-5]. To
achieve the HAM requirements, there must be several
mechanisms working together. The main components of a
HAM system are human operators, the intelligent
discrimination of operator actions, competency evaluation
metrics, human machine interaction mechanisms, and the
machine system.

The work presented in this paper is a part of HAM
research which covers a real time virtual system for
understand the functions of human operators in HAM which
has many invaluable advantages. This kind of virtual
simulation systems running in real time allows researchers to
experiment with dynamic of the modelled system in an
immediate and interactive manner. Robotic researchers
usually design mechanical systems by modelling
mathematical relation of system parts but there exists
troublesome to find control patterns for human operating a
robot. This issue can be overcome by the help of real time
virtual simulation systems. Motion control patterns could be
identified by trial and error (heuristic) experimentation
strategies using this virtual system. Moreover, apart from the
robot mechanical simulation itself, dynamics of the
environment can also be integrated into the simulation, for
examples, different frictions of ground areas, dynamic of
fluid while controlling robot movements, and capsule bots
moving on a simulated deformable surface in medical
application robotics.

Virtual training is also capable with this real time
simulation based on the human-in-the-loop concept of
mechanical systems. Training scenarios can be implemented
with little effort or at no cost. Measurement of performance
improvements can also be done from the feedback within the
environments. This allows users to practice as much as they
want. As a result, the user learning curve could be improved
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drastically. Regarding training environment with virtual real
time simulation, it is a novel concept called human adaptive
mechatronics that could further help optimise the learning
curve of a user while training by its assisting behaviours.
The main contributions of the paper are
e Proposing a real time virtual human and machine
interactions framework. The proposed framework will be a
basis for development and realisation of the HAM concept.
e Developing a human heuristic learning strategy for
learning motion control patterns.
e Conducting the experimental tests to demonstrate the
framework and the HAM concepts.

II. RELATED WORKS

Human is considered the main component of the HAM
systems because the aim of this system is a combination of
an automatic control and adaptive manual control system
which is operated by humans. Normally, humans are
complex and unpredictable, but if they are involved in a
goal oriented task, it is possible to recognise their intentions.
Human has been long studied in many related fields e.g.,
neurophysiological, neuroscience, cognitive science, and
psychophysical. In neuroscience study, Haynes and
colleague successfully read human covert intention by
decoding brain images from various sections simultaneously
[6], [7]. The pattern recognition technique is used in
decoding those human intentions by discriminate patterns
from spatial information from various brain activity areas.
This method of using spatial brain information is claimed to
be more accurate than analysing only specific area of the
human brain. The reason is that when human performing an
activity, several of brain areas are working together
according to its functions. Additionally, human intentions
are influenced from personal experiences. This is indicated
by Blakemore and Decety analysis of the evidences of brain
activity [8]. The evidences show that when human perceive
biological motions there exists brain activity that try to
simulate these motions internally. As a consequence, this
internal simulation would reflect as intentions in future
actions. This basically works in the same way as training
activity to improve personal experience.

Human has good abilities to learn, predict, and process
information. However, these capabilities are depended on
individual. A task that is performed by different persons
might return different results because of individual ability.
Individual ability is usually denoted by word ‘skill’ and the
outcome from using skill to perform an action is called
‘performance’. Learning capability is another magnificence
aspect of human being in which humans have learnt to
improve their skills and as an overall result i.e., overall



performance improvement. The most important part that
ruled all of these capabilities is the thinking inside the
human brain. Consequently, as mentioned earlier, internal
thinking would reflect out as the intentions to do a specified
task. This intended output actions could be identified by
pattern recognition techniques. The intention recognition is
also considered as part of the HAM system.

For the intelligent machine to serve or adapt to human
appropriately, it needs to know human intentions by
estimating from various kinds of related information.
Fortunately, sensor  technologies have advanced
significantly along with the matured field of pattern
recognition. These two combinations are essential for online
human intention  recognition.  Observations  and
measurements from sensors are the inputs to pattern
recognition algorithms to identify or estimate human
intention at time. There exist numbers of information to be
monitored and measured which is depended on the type of
tasks. For examples, patterns of force signals exert on an
arm gripper are recognised to discriminate human operator
actions when performs industrial weight loading operation
using Hidden Markov Models [9], motion and velocity
pattern profiles are the information used to classify human
actions in telemanipulation tasks [10]. The identified actions
are useful for switching among virtual fixture models which
help in different mode of operations. Once the machine has
ability to identify human intention in which step the human
operator is performing. It is functionality of the next
component of the HAM system to evaluate how well the
performing competency.

The aim of competency evaluation is to measure how
well the operator is performing a step of the task so that the
next component of the HAM system can make adaptations
for assisting the operator. A generic performance evaluation
framework, human performance index (HPI), is proposed in
[11]. The framework consists of two layers of evaluation.
The first layer is the collection of performance variables that
evaluate raw competency of actions. The second layer is the
weighted conditional integral of those variables in the first
layer for specific area of measurement e.g. speed, and
accuracy. This layer is called performance criterions. Final
performance conclusion, HPI, is then weighted and
accumulated from the second layer values. On the other
hand, this HPI measurement concept can be viewed as
grading evaluation in education such as school. Evaluations
such as paper works, examinations, and attendance are
scored. These scores are weighted with different percentage
values according to its importance. The subject’s grade is
calculated from these values. Grading point average (GPA)
is finally calculated from weighted credits of each subject.
Therefore, the HPI is viewed as the GPA while performance
criterions are viewed as subjects, and raw evaluations are
viewed as those scorings. In addition, this HPI framework
could be used in two modes, open form and closed form.
The open form is located at the second layer in which these
performance criterions can be used in any applicable future
closed form. The closed form is located at the final
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accumulation evaluations, HPI or GPA. Performance
criterions such as speed and accuracy are the example of
competency measurement metric. This metric is a basis for
the next step of the HAM system, adaptive tuning.

Intelligent adaptation of the HAM system is tuned based
on current operator competency. There are two types of
adaptation i.e., passive and active adaptation. Tuning
parameters inside the machine without interfering the
operator is a passive adaptation [12]. An active adaptation
works in the opposite way. It actively assists the operator
by, as an example, pushing small amount of force to the
controller grip to help achieving the aimed intention easily
[13-15].

The basis system model for this paper is an underactuated
modelling approach and a 6-step motion control strategy to
develop a desired driving profile studied in [16].

Underactuated mechanical systems are a system that has
less control inputs than degrees of freedom of the system to
be controlled. This system may also occur in a full actuated
system because it losses some freedom of control due to
some reasons such as accident or system failure.

III. PROPOSED REAL TIME VIRTUAL SIMULATION SYSTEM

si - Human  Experience
Knowledge ' Brain Processing _ System
.Understanding :
ek
Actions n 7G| Perceptions
Interfaces
Inputs Outputs
- Joystick - Display

System Model
Pendulum-driven capsule

Real Time Virtual Simulation Environment

Figure 1. Diagram of the proposed real time virtual simulation based

on HAM.
In this paper, the framework for the human machine
controlling system in real time virtual simulation

environment is proposed. Fig.l shows a diagram and
components of the system. The human operator interacts
with a real time virtual simulation via the provided
interfaces while perceiving information from the controlling
system through a display monitor. It is the human operator’s
brain that processes information and orders the muscles to
take actions to control an interface to manipulate the
machine for accomplishing the desired task. Information is
retrieved through various perception channels, e.g., eyes
looking at meaningful data on the display screen, ears
hearing the alert sound signal, and feeling of touching
control interfaces. The human operator then observes,
interprets, and processes this information and reacts with



appropriate actions with the aimed goal in mind. Overall,
these activities can be viewed as a human-in-the-loop
control scheme and they are working together to be a
system. Lacks of one of these components could cause the
system failure.

The human block in the proposed framework diagram
(Fig.1) acts as a controller that controls the underlying
virtual simulation system. Loop of brain processing,
perceptions, and actions that related to the human block is
performed simultaneously. To control the system, the
human operator first needs to know the goal of the
controlling task. Then, the control strategy is planned to
reach the goal. For example, the heuristic strategy is one of
many strategy selections. Based on the planned strategy,
series of actions are performed repeatedly. Outcome of each
action may not be as planned but it can be adapted
according to the situation because of adaptability of human.
This process can be viewed as a learning process to control
the system. It is individual skills that affect all blocks in the
human related loop i.e., skill for perceptions, skill for
information processing, and skill for conducting actions.
These inputs (perceptions), outputs (actions), and internal
flows (brain activities) work as a control system that
interacts with the wunderlying virtual simulation
environment.

There is a ‘task’ block located in conjunction between a
human controller and the system (Fig.l1). Task
understanding is needed to be given first so that the human
operator is able to plan actions ahead in mind. For example,
the given task as controlling a robot to the right, an operator
might think ahead about how to control to reach the given
goal. Thus, it is very important to describe the task goal to
the human operator.

The proposed real time virtual simulation environment
needs software components to compose the system. These
components are responsible to simulate the dynamical
system, in this case the pendulum-driven capsule robot, to
interface with the input system, to render the outputs to the
display interface, and in the future functionalities; to
recognise human intention and to calculate assisted tuning
parameters and forces. The blocks component of this
simulation environment from the software architecture point
of view is shown in Fig.2.

Software architecture design for this proposed system in
Fig.2 is designed centred on the following system functional
requirements: 1) simulating dynamics in real time, 2)
allowing the user to interact with the simulated dynamic via
some controlling interfaces, 3) displaying adequate
information for the user to perceive, 4) recognising and
adapting the system behaviour based on the current user’s
competency, and 5) logging and saving experiment data for
future analysis. It starts with initial conditions and enters the
main simulation loop with the aimed sampling time step.
The simulation loop continues running until the software is
terminated. Inside of the simulation loop, there are particular
components executing to serve the whole functionalities of
this virtual system. The ordinary differential equation
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solver, ODE Solver block, is used for solving ordinary
differential equations with the implemented method and
algorithm. The equations are based on the mathematical
model of the mechanical system. The input system is
responsible to handle an interface between the human
operator and the virtual system. The input values from the
device are transformed into the model’s input at every single
step of simulation loops. The display output is drawn by the
underlying graphic rendering system to visualize the
simulating environment. Additional features such as the log
system and the real time oscilloscope alike, the graphing
system are essential for analysing immediate simulating
values as well as logged values for later analysis.
Realisation of HAM cannot be achieved without the
following components; adaptation computation based on
human intention and its corresponding competency,
adaptation computation which is divided into passive and
active tuning (Shaded blocks in Fig.2).

Initial Conditions
R —
ODE Solver

| Péssive édapﬁve

The Model ‘| Adaptation

Computation

© Active adaptive
Input System: - .

Rendering System

-

Simulation loop

(Time Step)

Additional Features

‘ Graphing System ‘

‘ Logging Sytem ‘

'

Saving Logs

L

END

Figure 2. The software architecture.

IV. MODEL OF THE DYNAMICAL SYSTEM

The schematic diagram of the underactuated pendulum-
driven capsule system [16] shown in Fig.3 is adopted as a
machine to the proposed virtual simulation system. M is
mass of a capsule body. The mass m is on the top of the
weightless link L. The link can rotate 360 degrees around
the centre. One dimensional movement is defined by a
position denoted by x and friction f is modelled to point in
an opposite direction of the body movement base on the
Coulomb’s friction model. The system is driven only by the
force from the movement of the ball which is exerted by
input torque T and its moving momentum that causes forces.



The movement is possible because of both pendulum force
and surface friction force.

From Fig.3, the ball position is defined in terms of cart
position x at the centre as shown in equation (1). Then, the
ball position equation is differentiated to get velocity and
acceleration as in equations (2) and (3) respectively.

ball position = (x — Lsin0)i + (Lcos0)] (1)
ball velocity = (x - Lécos@)i — (LBsin)j (2)
ball acceleration = (X — LOcos@ + LézsinB)i -

(LOsinb + LO2cos)j 3)

Equation (3) and Newton’s law of motion give forces
from motion of pendulum ball in both x and y directions as
follows.

Fpy = —mX) , and Fp,, — mg = my),

Fo= Fbx] _ [—ma’c’ +mLfcos® — mLO?sind
= =

Fpy mg — mLBsin — mLO2cosO

Also, the input torque to the joint is calculated as follows.

7 = (—mLcos@)i + (mL?)d — mgLsin@
Fpo — f =MX; where f = uNsgn(x)
N = Mg +F,,

Figure 3. Pendulum-driven capsule system.

From above equations, we have
. foi +0Lmcos® — 6Lmsin®
= M+m .
where g, = —g(M + m) + 6%LmcosO + 6Lmsin6

C))

b= Lmcos@X + t + gLmsinf )
- L2m
Equations (4) and (5) are the system equations with the
single control input torque 7.

V. IMPLEMENTATION OF REAL TIME SIMULATION

To conduct real time simulation, the forth order Runge
Kutta numerical approximation method of ODEs [17] is
used. From the system model (4) and (5), we have

(2M + 2m)(o, + uSos) — w?Lmsind

= 6
v (M +m)(2M + m — mcos26 — uSmsin20) ®
cosO(t + gLlmsin®)
where 0, = L
gLmsin?6 + tsin6
and o3 = — g(M +m) + w?LmcosO

L
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(2M + 2m)(t + gLmsin6 — a,)

@= L>m(2M + m — mcos20 — uSmsin26) Q)
where g,
_ Lmcosf(uS(Mg + mg — w?Lmcos6) + w?Lmsind)
h M+m
X=v 8)
0=w 9)

where § = sgn(x)

Equations (6), (7), (8), and (9) are then solved by the
forth order Runge Kutta numerical approximation
algorithm.

An implementation of this real time virtual simulation
system is developed using the industry leading application
programming interface named Microsoft XNA and C#
programming language. Sampling time is chosen at 10ms
although it might change depending on the system
performance but the system implementation is coded to
compensate the issue by using elapsed time of each loop as
a time step. The system parameters are as follows;
M=0.5kg, m=0.05kg, L=0.3m, g=9.81m/s*, u=0.01 N*m/s.

The proposed real time virtual simulation system is
controlled by the gaming joystick. The only system input is
the amount of torque applied to the joint. The amount of
torque can be varied by pushing an analogue stick in which
its value is range between -1.0 and 1.0 N. In this case, the
mapping is straightforward i.e. [-1.0, 1.0], value from an
analogue stick is mapped to the input torque, T, to drive the
underactuated pendulum-driven capsule robot. However, it
is noticed that the aimed system time step is 10ms.
Therefore, the torque pushed by the joystick in real time is
applied to the system at every time step of the system loop.

The screenshot of the simulation display is shown in
Fig.4 when the system is simulated. The capsule body and
its inner swinging shaft with the attached pendulum ball are
displayed for the user to observe the capsule robot. Also,
additional features for output information data are shown as
online oscilloscope like a graphing system for both user
observation and validation purposes.

Observations and manual controls are an inevitable
couple in the human-in-the-loop control system. The
proposed online simulation system displays necessary
information on the monitor for observation while the user
control amount of input torque via a joystick is shown in
Fig4. The user has an assigned task in mind while
observing the pendulum movement on the screen and react
to the dynamic behaviour of the system in real time to
achieve desire control motions. In this case motion is in one
dimensional movement i.e. moving to the left or vice versa.

Both input and output raw data during runtime
experimentation of controlling are logged and saved for
further analysis. Angle 0, angular velocity ®, capsule
position x, capsule velocity v, and input torque t are those
variables that have been recorded. Also, an extra variable
such as sign (sgnx) of the friction term is logged for more



clarification and validation of the implemented friction
model.

VI. LEARNING OF MOTION CONTROL PATTERNS

One of the useful functionality of the real-time
simulation system is apparent for heuristic strategy
experimentation. In the following section, searches and
results of motion control patterns for the pendulum-driven
capsule system are presented. Control characteristics were
experimented by the heuristic strategy. Ability to control
this dynamical system is depended on the user’s skill and
understanding of the system. However, once understood,
control characteristics can be identified and used as a pattern
of control strategy.

,‘;\;23}‘ b

Figure 4. User using the joystick to control virtual simulation system.

The system initial values 6, ®, x, v, and t are 180 degrees,
0 rad/s, 0 m, 0 m/s, and 0 N.m/s respectively. At the
beginning the system stays still with the pendulum shaft and
the ball lying straight down. When a small torque is applied,
the pendulum begins to swing and the capsule start to move
to the left and to the right repeatedly according to forces
from the ball and the surface friction model as shown in
Fig.5. The capsule is unintentionally displaced to the right
by small torque after it finally comes to the steady state.

After several tries to control movement of the pendulum-
driven capsule, the control strategy is developed. The
system begins at the steady state and is intentionally
controlled using the identified control patterns to move a
capsule to the left and then to the right (Appendix 1). The
identified control patterns to move a capsule by an input
torque is summarised by the following strategies.

Step 1) Generate a torque by pushing the joystick to
allow the pendulum to swing freely around, and then
release the joystick (Fig.6).

Step 2) If one wants to move the capsule to the left, while
the pendulum is freely swinging to the left side, the
human operator needs to push the torque backward
suddenly only in an appropriate short period of time.
Moving to the right is done in the opposite way

(Fig.7).
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More precisely, to move to the left, the user needs to push
the torque in the middle of rising or falling of angular
velocity. In other words, one needs to push the torque at the
edge of sine curves. These torque control strategies allow
the user to control the pendulum driven capsule in the
desired directions.
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VII. CONCLUSIONS AND FUTURE WORK

A framework of the human-in-the-loop control scheme
using real time virtual simulation has been proposed. The
software  architecture and implementation of the
underactuated pendulum-driven capsule robot system have
been developed. Usefulness of real time simulation is
apparent because of an interactivity nature of this type of
systems. The system dynamic model can be realised
experimentally. As a result, systematic motion control
patterns can be identified. The system also exposes an
important of human controlling ability. Different user
controlling skills appear to be an important factor in the
human-in-the-loop system control. The human controlling
skill is depended on user’s perceptions, brain processing of
particular circumstances, and control actions. Overall
performance of the system is another aspect compared to
user skills that control the system.

The identified patterns of motion control for the joint
torque seem similar to a walking cycle of human. The
inverted bottom half circle of leg movements is shown in
Fig.8. For example, given that desired movement is to move
to the right, at first push the pendulum to swing freely from
A to B and vice versa. At the moment that the pendulum
ball nearly reaches point B, the torque should add in the
opposite way. This will make the capsule move to the right
because of both pushed torque and friction. This is working
in the same way as human walking habits.

Figure 8. Human walk cycle.

In future works, closed loop control of an underactuated
pendulum-driven capsule robot and a more complex model
of double underactuated pendulum-driven robot [18] will be
implemented as well as realization of an assisting control
system based on human adaptive mechatronics. Also, the
important adaptive mechanisms that would affect and
optimise the learning curve of training will be experimented.
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1 Introduction

An inverted pendulum-driven (IPD) cart or capsule system has
been intensively studied recently because of its remarkable unique
characteristics. One of the particular unique features is that it can move
without external moving parts, which means it is minimally invasive for
applications such as the human body diagnosis in medicine (endoscopy),
tube inspection, and slippery surface movement. Moreover, it is an
underactuated system which is the system whose independent inputs is
less than its degree of freedom (DoF). It is in contrast to the fully
actuated system which has equal or more actuators compared to the DoF
(Liu and Yu, 2013; Spong, 1998). Even though in the fully actuated
system, an underactuated situation could occur if failure of any actuator
happens.

Yu (2008a) investigated a six-step tracking control law for a 1D
IPD capsule. A further improved control method called ‘switch control’
was proposed by Yu (2008b). However, those studies are based on a
single pendulum rotation in a fixed plane which implies that the possible
movement is in one direction only. Liu (2012) studied a double IPD cart
to allow movement in 2D space with the identical principle. Moreover, a
similar underactuated mechanism using inner mass movement to displace
a capsule robot without legs was also studied in (Li, 2006; Liu, 2008a;
Liu, 2008b; Yu, 2011).

This paper presents an alternative implementation of a single
IPD capsule system which is able to change the plane of rotation of the
pendulum rather than fixed. The change of the plane of the pendulum
rotation implies that the force exerted on the capsule base is also changed
which allows the system to move in the direction which differs from a
straight line. The paper presents the requirement, design, configuration,
implementation and experimental results of a physical mobile 2D IPD
capsule system. This system is intended to be used in HAM to study the
human function as a controller to learn to use this uncommon system
which is slightly difficult to control. A preliminary study on virtual
simulation was conducted in (Samarnggoon and Yu, 2012).
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2 Requirements, Design, Configuration, and Implementation
This section presents the requirements, configuration and
implementation of the physical mobile 2D IPD capsule system.

2.1 The Requirements

The following requirements are summarised based on the
modelling by Yu (2008a) plus requirements for the HAM experiment on
human control skill (Samarnggoon and Yu, 2012).

The pendulum: 1) The pendulum rotation range is 1800 with a
mass attached on its far end; 2) The rotation speed is quick enough to
respond the control input; The base of the capsule body: 3) The base can
rotate around z-axis to allow the change of rotation plane of the inverted-
pendulum located above; Overall system requirement: 4) The system
mobility is required to avoid spring effect on the electrical wirings. Thus,
it requires battery powered and wireless controlled.

2.2 The Design and Configuration

The sketch capsule system shown in Figure 1 consists of the base
which is a flat surface and has no external moving parts, the rotatable
plate on top of the base which attached to the pendulum. The plate can
rotate within -900 and 900 (B angle). The pendulum is rotated by [J
angle. The coordinate of the plate is denoted by X, y, and z while the
capsule coordinate is denoted by X, Y, and Z. The capsule weight is M
while the pendulum weight is m.
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Figure 1 sketch diagram of design of the capsule systemn.

The microcontroller unit in Figure 2 is an Arduino connected to
two servo motors through the analogue input/output pins, Al and A2.
The serial communication Tx and Rx pins are connected to the
corresponding pins on the XBee wireless communication unit. The PC is
connected to another XBee unit which allows wireless communication
between them. The PC acts as a controller which can be either
automatically or manually (a joystick) controls the capsule robot. In this
study, the pre-generated control cycles are used as the control signals.

Micro Controller Unit Servo 1 Personal Computer

= Angle profil ratol
(Arduing) | (Base Rotation) e e t;:::ﬂ D‘er
Al

" Sewd I Jaystick :
N oys
(Pendulum Rotation) } ool b '

I
Tx Wireless Comm. Unit Wireless Comm. Unit

fx (Xbee) or
Figure 2 schematic diagram of the system configuration.

2.3 The Implementation

Figure 3 shows the hardware implementation of the capsule
robot system.
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Figure 3 a hotoh of the plsical capsule robot prototype.

The bottom parts comprise of a Plexiglas plastic capsule base
attached with the MCU, XBee, batteries, and Servol. Servo 1 connects
between the capsule base and the upper plate. The upper plate is attached
to Servo2 for the pendulum rotation. The attachment of Servol and the
upper plate allows the upper plate to be rotated around the z-axis (Figure
1) which can change of the plane of rotation of the pendulum. In other
words, in Figure 1 at the initial settings, =00, the pendulum is rotated
about the y-axis. When the upper plate is rotated either toward non-zero
+p or -p angle, the axis of rotation of the pendulum is changed.

The requirement for Servol is that it can rotate quickly enough
to respond to the human hand movement on the joystick otherwise it will
frustrate the operator due to the delay. Thus, the GoTech servo model
GS-D9257 is chosen which provides the speed of 0.07s/600 and the stall
torque at 4.2 kgem, which is proper to tolerate torque of the pendulum
rotation. Thus, it can rotate at the speed of 1.16ms per degree. Moreover,
an additional advantage from this servo is its lightweight (26g).
However, this servo has the limited range of 1200. The base servo is
Power HD model HD-1705MG with 17.5¢g, 2.0 kgem stall torque, and
speed at 0.05s/600. The microcontroller unit (MCU) is an Arduno Uno
R3. The wireless module is XBee model XB24-Z7PIT-004. The MCU is
powered by 9v battery while the 2 servos are powered by a separated 6v
battery.
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3 The Experimentation

The experiment aimed at finding the feasibility of an automatic
control of the capsule system commanded via the wireless
communication between the PC and the mobile capsule in a 2D space. 4
types of angle profiles (the slow and fast swing, and the simple switch
control) were used to control the capsule in this experiment (Yu, 2008a).
The parameters for the total time for a cycle, slow swing time, fast swing
time and the range of swing angles for each of the profile are shown in
Table 1. Generally, there are two sets of angle range i.e. full range (I and
II) and half range (Il and IV). Within the same set, they are divided into
two different swing frequencies.

Table 1 the parameters for each of cyele type.

Type Total cycle Frequency Slow swing Fast swing tune 6 Angle Range
tme (Hertz) time (Seconds) (Degrees)
(Seconds) (Seconds)
0.875 1.14 0.850 0.025 60 to =60
0.450 222 0.425 0.025 60 to -60
il 0450 | 222 | 0.425 0.025 6010 0
IV 0.250 4 0.225 0.025 60 to 0

The physical capsule was placed on a wood table top. This
means it is the surface friction between wood and Plexiglas plastic.
Calibration tape was attached to the table top as a reference axis and
distance metric for the position tracking software (Figure 3). A small
black dot was marked on the capsule base as a position tracking point.
The position tracking software, Tracker, was used to track the position of
the capsule (Brown, 2009). A digital single lenses reflex attached with
macro lenses was used when capturing the video record of the capsule
which gives minimal distortion to the plane of the capsule movement.

There are eight experiments conducted in this paper. The
abbreviation E followed by the number of the experiment is used. For
example, E1 stands for the first experiment while E2 stands for the
second experiment and so on. The four types of control input cycle were
applied to control with the initial capsule settings shown in Table 2.
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Table 2 the settings for each of the experiment trial.

Experiment B (Degree) Input Cycle Type
El 0 I
E2 0 I
E3 0 11
E4 0 IV
ES 45 1
E6 -45 |
7 45 IV
E8 -45 IV
4 Results

Prior to the experiments, the total mass and weight distributions
of the capsule are measured with M= 420g, m=42g. The eight points of
weight distribution around the base are measured using the calibrated
Flexiforce force sensor (Hollinger, 2006). Refer to Figure 1 the following
are weight measured from each point; 1)142g, 2)200g, 3)196g, 4)300g,
5)194¢g, 6)236g, 7)158g, and 8)214g. It is normal that the weight
distribution varies because the placements of hardware on top of the
capsule base.

The capsule displacement results for all of the eight experiments
are illustrated in Figure 4. The X and Y trajectories are illustrated using
thin solid line (blue colour) and thick solid line (red colour) respectively.
The capsule displacement performance is summarised in Table 3. The
error between the aimed angle and the actual capsule trajectory is
calculated and shown on the most right column.

Table 3 average speeds. desired and actual heading direction.

Experiment | Average X Average Desired Direction Actal Error (degree)
(and type of Speed Y Speed (Tnatial B) Direction

input) (em/s) (em's) (degree) (degree)
El () 0.0744 -0.0033 0 | 253 2.53
E2 (IT) 0.4400 -0.0593 0 7.67 7.67
E3 (IIM) 0.2678 -0.0341 0 125 T25
E4(IV) 0.3611 -0.0524 0 8.25 8.25
ES (I) 0.0420 -0.0209 45 26.45 18.55
E6 (I) 0.0654 0.0142 -45 -12.25 32.75
E7(IV) 0.1634 -0.0675 45 22.44 22.56
ES (IV) 0.3156 0.0210 | 15 [ 380 41.20
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5 Discussions

The capsule straight line displacements controlled with input
cycle of type 1, II, 111, and IV started with the desired initial angle  equal
to zero (Table 3, E1 to E4) move with a slight angle error of 2.53, 7.67,
7.25, and 8.25 degrees correspondingly. The E1 is controlled with an
input cycle of type I while E2 is controlled with an input cycle of type 1L
Both types of control input are based from the same range of pendulum
rotation angle except the different in the swing frequency i.e. type Il is
higher than type L.

For a straight line movement, it is obvious that the average
capsule speeds from the same set of pendulum rotation range with the
higher pendulum swing frequency are faster than the lower ones i.e. the
average capsule speed from E2 (II) and E4 (IV) are faster than E1 (I) and
E3 (IIl) respectively. However, this does not apply across the different
sets of the two angle ranges. E4 (IV) which was controlled with a higher
frequency of 4 Hz with a half range gives lower average capsule speed
than E2 (II) which was controlled from a full range with a lower
frequency of 2.22 Hz.

The attempts to control the capsule system displacement with the

initial B angle at +450 and -450 are E5 (I) and E7 (IV), E6 (I)
and E8 (IV) respectively. E5 (I) which controlled by the input control
cycle type I make the capsule displacement towards the desired 450
direction with the error of 18.550 while the opposite E6 (I) also make
progress towards the desired direction with the higher direction error of
32.750. The average speed of E6 (1) is slightly faster than that of E5 (I).
E7 (IV) and E8 (IV) were controlled with the half range rotation type of
input control cycle IV. The results from E7 (IV) and E8 (IV) have the
same trend as E5 (I) and E6 (I) i.e. the direction error and the speed. E7
(IV) which aims at +450 makes smaller directional error of 32.750
compared to 41.200 from E8 (IV). However, the average speed from E8
(IV) is faster than from E7 (IV). This agrees the same trend from E5 (I)
and E6 (I). These trends confirmed with the weight distributions across
the capsule base. The direction towards the lighter weight gives faster
capsule displacement i.e. point 1 compared to point 3 (Figure 1). Also,
the total weight for the above parts of the capsule system is lighter.
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Figure 4 capsule displacement results from experiment E1 to ES.
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6 Conclusions and Future Works

We conducted the experiments to control the physical capsule
system in a 2D space. Although the displacements at £450 [ angle are
not accurate as desired, it can move at an angle rather than only a straight
line. A straight line movement is quite accurate with small error. This
hardware prototype could be improved further by using precision
manufacturing to build the system with more accurate for mass balance
as in the same way as wheel balance in vehicular system like car, truck,
and motorcycle.

The contributions of this paper are as follows. A physical system
prototype of the capsule robot can displace in a 2D space by changing
the plane of pendulum rotation. Two main pendulum angle profiles with
different cycle timings are adopted from the references for a control
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signal commanded over wireless communication channel. The empirical
studies on the feasibility of the capsule system to displace in a 2D space
have been conducted.

This capsule hardware system will be the platform to study a
human control function in HAM. The system has some degrees of
difficulty to control which is a good point to study the human learning
function and to measure a skill performance from a number of subjects
which is the main concern of HAM to build a system that can adaptively
adjust to a skill level of user performance.
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Abstract — This paper investigates human learning and skill
performance to control an underactuated pendulum-driven
capsule system within an interactive virtual simulation
environment. A number of experiments is conducted with 9
participants who learned to control the capsule using a physical
joystick. The results show differences in learning and skill
performance among the participants. Right-handed and left-
handed participants achieve their highest trial on the opposite side
of their handedness. The high learners tend to achieve great final
performance whereas the moderate learners produce stable low or
moderate performance. The variance of the displacements
achieved appears to be a learning indicator while the high
frequency of joystick oscillation at the right portion and interval
gives high performance results.

Keywords-human factor; human adaptive mechatronics; virtual
simulation; human skill; human learning

L

Although advances in technology have evolved a machine to
become more autonomous/automated, many machines still
require human operators to operate and interact with them either
fully manual, semi-manual, or supervisory controls especially in
human centred machine such as lower limbs walking support
structure for elderly or disabled, prosthesis, wheelchair etc. As
a consequence, human control behaviour and performance have
become the main focus in human adaptive mechatronics (HAM)
research.

INTRODUCTION

A HAM concept aims to improve a machine with the
capability to adjust itself based upon the performance level of
the human user [1], [2], [3], [4], [5]. The main idea behind HAM
comes from that humans can learn to operate machines. In
contrast, it is interesting to develop a machine that could learn to
provide assistance to its user based on an individual skill
performance. To achieve this type of machine, several methods
and techniques such as human behaviour study, pattern
recognition of the human operator actions, human skill
performance evaluation during the machine operation, the
interaction model between human and machine, the machine
system modelling are being studied.

Human machine control performance and evaluation are the
important HAM components because they provide a basis for the
machine to give the appropriate adjustment and assistant.
Without the knowledge of human operation performance, the
machine would have no information for the adaptive adjustment
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and assistant. In this paper we investigate human learning and
performance to control an underactuated pendulum-driven
capsule system within an interactive virtual simulation
environment.

The paper is organised into the following sections. A review
of the related works is presented in Section II. The proposed
human interaction model appears in Section III. The
experimentation procedures and settings are presented in Section
IV. The results from the experiments are summarised in Section
V. The discussion and conclusion are presented in Section 0 and
VII, respectively.

IL

Human skills have been long studied in a number of classical
research fields e.g. psychology, sports, human factor
engineering etc. [6], [7], [8]. However, there exist few studies on
the human skill performance evaluation when operating a
machine according to the HAM concept.

RELATED WORKS

In a research area called haptic shared control (HSC) several
studies have focused on human sharing control simultaneously
with the machine. A special haptic force feedback device has
been employed to help assist human driver in a car lane keeping
task which proven to reduce the control activity by 16% [9], [10].
A performance and training enhancement by applying HSC to
give a virtual force field a.k.a. “virtual fixture’ has proven to
improve the performance. However, for a training enhancement
it is ineffective because the operator tend to rely on the existence
of the shared assistance [11].

Rasmussen divided the human performance behaviour into
three levels i.e. skill, rule, and knowledge [12]. At the skill level
behaviour, manipulations by humans are merely based upon
voluntary movements, which behave like an automated action
without consciousness. Those actions are extremely integrated,
smooth, and can hardly be decomposed into elements without
careful attention. This human low-level skill phenomenon is also
confirmed in the study of professional musicians such as
violinists and cellists who are hardly able to specifically describe
the components to their performance [13]. At the rule level
behaviour, the human use the stored rules, know-how, or
instruction to control their actions. In other words, control is
ruled by past successful experiences either from personal or
vicarious/indirect experiences. At the highest level, knowledge
level behaviour usually occurs in unfamiliar situations because
previous experiences, rules, or know-how cannot be applied



directly. Critical thinking, problem solving strategy and a
modified plan of actions are tested against the desired goal
heuristically.

In [14], four approaches to human performance modelling;
information processing, control theory, task network, and
knowledge based are studied for a number of useful applications
e.g. in system design, system development, and system
evaluation. Having a human performance model has many
benefits such as reducing risk, cost, and danger prior to the actual
system implementation.

A brain monitoring system to investigate voluntary motion is
studied to reveal the relation between brain activation area and
skilled motion [15]. A near-infrared spectroscopy (NIRS) brain
monitoring technique is used while the participants are asked to
perform a drawing task by looking at the mirror instead of
looking at the paper directly. The proposed index is used to
evaluate and classify the skill levels into three categories high-
skilled (HS), middle-skilled (MS), and low-skilled (LS). High-
skilled persons show that there is activation in a premotor cortex
(PMC) and supplementary motor area (SMA) during the early
phase of the task performance which decreases gradually later
on as an indicator of becoming a normal skilled action.

Discrete operator’s hands movement during machine
console operation have been investigated to evaluate the
operator performance in [16], [17]. Fitts’ law is applied and
validated in the study for the task which has partly visual
feedback such as machine console operation [18]. The machine
console operation is considered as partly visual feedback
because it does not intensively require perception through the
eye. The outcome indicates that it is possible to use discrete hand
motion to estimate skill level of the machine operator. In other
words, there is a difference in the sequences of hand movement
between novice and expert operators. A novice seems to prone
to unnecessary sequence of motions while the expert motions are
optimised. In addition, eye gaze tracking is applied to gather the
operator eyes gaze while performing machine console operation
[19].

A human performance index (HPI) is a method to evaluate
human operator performance by scoring the chosen performance
variables such as speed and accuracy variables and then applying
multilayer weighting criteria to obtain the performance index
value [20]. The method is validated using an on screen mouse
target hitting task to measure a user’s time taken to reach a circle
target on the screen, an average time used across the number of
trials, a cursor path accuracy, and an accuracy on the clicked
target. The Fitts’ law is also applied in this study to validate the
speed-accuracy trade-off of the task.

The work presented in this paper follows the concept from
[21] which provides an interactive virtual simulation
environment to allow human interaction with the system based
on the HAM principle. In the previous work, a single human
operator has learned heuristically to control and identify the
possibilities of angle profile pattern of the virtual pendulum-
driven capsule system. In this work, a number of subjects
participate in this work allow performance measurement
analysis from their heuristic learning and control trials.
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III.

In this section, a human operator interaction model with the
capsule system is proposed and the details of the pendulum-
driven capsule system are presented.

HUMAN OPERATOR AND CAPSULE SYSTEM

A. Human-capsule system interaction model

Fig. 1 shows the human-capsule system interaction model in
this study. The model consists of 4 building blocks which pass
the control information throughout system paths. The human
operator is given the goal of the task to be performed. The
internal processing of human brain processes the provided
information and takes action via the joystick interface to control
the pendulum-driven capsule system. The joystick actions then
translate into the inverted pendulum angle. A proper rotation of
the inverted pendulum will drive the capsule system towards
desire direction. However, this rotation is the main control that
the individual human operator has to learn. The appearance of
pendulum orientation and capsule position on the display acts as
the feedback information to the human operator eyes to be
perceived and react. Then, it is returned to the human operator
internal processing to process the information and make progress
to the capsule position as required by the given task goal.

p@)
Op.ocessmg
1)

h(t i it
Human O 'Joystlck i® PID controller u(t)
task goal interface
ep(t)
eyes perception Pendulum-Driven
Capsule
|
Y
x(t) 6(t)

Figure 1 The human interaction model with the pendulum-driven capsule

system.

Fig. 1 contains time-varying variables passing the information
throughout the system paths. 1(t) is the reference or the given
task goal, p(t) is an internal processing of an individual human
brain, and h(t) is the result of an internal brain processing output
as a hand motion to control the joystick interface. j(t) is the
output from the joystick which is generated by the human
operator hand movement, u(t) is the control output from the PID
controller to the pendulum-driven capsule simulation according
to the desired angle. 6(t) and x(t) are outputs from the simulation
model which appear on the screen of the virtual simulation
platform and they act as feedback to the human operator visual
perception. ep(t) is the simulation output information plus any
external disturbances such as environmental distractions and
unrelated activities on the screen.

B. The pendulum-driven capsule model and simulation

The schematic diagram of a pendulum-driven capsule model
is shown on Fig. 2. The model is adopted from [22] with
additional proportional-integral-differential (PID) controller
applied to control the input torque to achieve the desired angle
of the pendulum. In other words, the same mathematical model
in [21] is applied with additional PID controller. The PID
controller constants — kP, kI, kD are 0.7, 0.7, and 6.0,
respectively. The control output gain factor is 10. Table I shows
the parameters for the pendulum-driven capsule system. Fig. 3
shows the 3D simulation of the model that is used for the
experimentation.
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Figure 2 The pendulum-driven capsule system model.

TABLE I. THE CAPSULE SYSTEM PARAMETERS

Ball mass Capsule Shaft Surface Gravity
(kg) mass (kg) | length (m) friction constant
coefficient (m/s?)
0.2 0.5 0.3 0.5 9.81

IV. THE EXPERIMENT

The experiment is designed to investigate the human operator
learning and skill performance when operating the pendulum-
driven capsule system. This capsule system is chosen because it
has a number of unique features [23], [24]. It is an underactuated
mechanism, which can be used to avoid benefit from past
experience. A direct control of the angle of the pendulum
requires hand motion skill to swing the pendulum at the right
oscillation and timing to initiate the capsule robot to displace. As
a consequence, it requires both learning and skill to operate this
system.

As described in the interaction model, a joystick is used as
the interaction interface for the human operator to operate the
system. Fig. 4 shows the joystick and the corresponding axis
used to control the angle of the pendulum directly. The direct
angle control means that when the joystick is pushed towards
negative x direction it will rotate the pendulum angle of the
capsule system to left hand side which means toward the positive
90 degrees of the pendulum-driven capsule model (Fig. 2). A
screenshot of the 3D simulation of the pendulum-driven capsule
system is shown on Fig. 3. The sampling interval was at 10
milliseconds.

The given control task in this experiment is a direct
pendulum angle control to displace the capsule to the specified
direction i.e. left or right. A human controller has full control
over the desired angle of the pendulum by pushing the joystick
handle. The effect of pushing the handle will cause the capsule
to move erratically back and forth. This is normal because of the
mechanism of the inverted pendulum-driven capsule system.
However, it is controllable for the intended displacement
direction.

Each session of the experiment for each participant contained
learning sessions prior to the actual performance trials. The
actual trials consist of 6 trials separated into 3 trials for right and
3 trials for left movement. There is no time limitation for the
learning session while the actual trial is limited to 20 seconds a
session which means a participant has to control the capsule to
the specified direction as far as possible within the provided time
limit.
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Figure 3 The screenshot of the simulation platform.

Figure 4 The joystick control interface and the axis uses to control the

pendulum angle.

Nine participants ages between 21 and 50 attended this
experiment. Each of them agreed and signed the consent form
prior to the experiment session. The participants have different
personal attributes such as ages, handedness, and knowledge
about principles related to the machine which could influence
the control learning and performance.

V. RESULTS

This section summarises the results from the
experimentation conducted by nine participants. They have been
labelled as P1 to P9 in Figure 5. The ‘R’ and ‘L’ letter indicate
right or left movement task followed by a trial number in Figure
5. For examples, ‘R1’ stands for the first right trial, ‘R2’ for the
second right trial, and so on. Each of the participants did perform
the experiment for ‘R1’ to ‘R3” and ‘L1’ to ‘L3’ produced a total
of 54 trials for the entire experimentation from the nine
participants.

The participant’s attributes and knowledge regarding the
theory related to the capsule system has been shown in Table I1.
Eight of them are male and seven of them are right handed while
the other two are left handed for handedness. All of them know
Newton’s law of motion which is a basis to this capsule system
model and almost all of them know about a pendulum. However,
approximately half of them know an inverted pendulum and only
three of them understand the principle on the inverted pendulum.
None of the participants has tried this experimentation platform
before.

Table III shows the results — learning time prior to the actual
performance, average displacement achieved and average speed.
A total absolute displacement and a total average speed are also
calculated to see an overall performance of each participant. The
absolute value of final capsule position for each of the trial for
every participant is plotted and shown on Fig. 5.
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Figure 5 The absolute value of final capsule position.

TABLE II. THE PARTICIPANTS ATTRIBUTES AND KNOWLEDGE

P G A H N Pe IPe | IpeP | TBF
Pl M | 31-35 | Right Y Y N N N
P2 M | 36-40 | Right Y Y Y N N
P3 F 31-35 | Right Y Y N N N
P4 M | 21-25 | Right Y N N N N
P5 M | 26-30 Left Y Y N N N
P6 M | 26-30 | Right Y Y Y N N
P7 M | 4145 Left Y Y Y Y N
P8 M | 46-50 | Right Y Y Y Y N
P9 M | 26-30 | Right Y Y Y Y N

P=Participant Identity, G=Gender, A=Ages, H=Handedness, N=Knowledge on Newton law of motion,
Pe=Knowledge on pendulum, [Pe=Knowledge on inverted pendulum, IPeP=Knowledge on inverted
pendulum principle, TBF=Has the participant tried this experiment before

TABLE III. LEARNING TIME, AVERAGE DISPLACEMENT, AND AVERAGE SPEED

LT Avg Avg Avg | AvgL | Tot. | Tot.

P (sec) R R L Spd ABS | Avg
Dis Spd Dis (cm/s) Dis Spd

(cm) | (cm/s) (cm) (cm) (cm/s)

P1 78.79 | 0.89 | 0.045 | -2.90 | -0.145 | 11.38 | 0.95
P2 100.76 | 3.07 | 0.154 | -5.34 | -0.267 | 25.22 | 2.10
P3 2129 | 212 | 0.106 | -5.15 | -0.257 | 21.79 | 1.82
P4 260.8 | 0.53 | 0.026 | -2.81 | -0.141 | 10.02 | 0.84
P5 141.97 | 2.07 | 0.104 | -2.06 | -0.103 | 12.39 | 1.03
P6 318.09 | 242 | 0.121 | -2.02 | -0.101 | 13.33 | I.11
P7 98.88 | 431 | 0216 | -3.82 | -0.191 | 2441 | 2.03
P8 97.51 | 0.77 | 0.038 | -1.26 | -0.063 6.09 | 0.51
P9 586.88 | 0.60 | 0.030 | -0.90 | -0.045 4.50 | 0.38

P=Participant identity, LT=Learning time, Avg R Dis=Average right displacement, Avg L Dis=Average
left displacement, Avg R Spd=Average right speed, Avg L Spd=Average left speed, Tot. ABS Dis=Total
absolute displacement gained, Tot. Avg Spd=Total average absolute speed (cm/s)
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In this section, interpretation of the results concerning
learning and skill performance in the context of the capsule
system control task is discussed.

DISCUSSIONS

According to Table III the amount of learning time (LT) does
not reflect the performance of the actual trials. The best total
absolute displacement achieved belongs to ‘P2’ who took
100.76s for learning time while ‘P9’ used 586.88 to learn to
control the robot but the total absolute displacement achieved for
‘P9’ is the worst among all participants. This indicates that the
participant ‘P9’ spent a large amount of time to figure out how
the capsule system works but could not acquire sufficient skill to
control the capsule system.

The skill performance indicator is a final position of the
capsule achieved within the time limitation of 20 seconds for a
trial. As shown on Fig. 5 the highest performances belong to ‘P2-
L3’ and ‘P3-L2’. It is apparent that the best performer, P2, also
exhibits the highest total average speed at 2.10 cm/s (Tot. Avg
Spd) as shown on Table III. ‘P2’ shows consistent performance.
The lowest trial belong to ‘P4-R2’, however, the total average
speed is on a moderate level at 0.84 cm/s.

Fig. 6 shows the average absolute speed for right and left
control task. It is interesting that almost all of the right-handed
participants gained more speed on the control task for the given
left hand side movement task. Likewise, the left-handed
participants, ‘P5” and ‘P7’ achieved more speed on their right
hand side tasks. This could be an effect of hand grasping
orientation on the joystick control interface. This interesting fact
conforms to performance achieved by the best trial which
belongs to the left movement task by right handed participant
‘P2-L3’°, while the maximum displacement achieved from left
handed participants belongs to the right movement task ‘P7-R1°.
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The variance of the absolute displacement achieved for each
participant is calculated and is shown in Fig. 7. This value
indicates consistency of performance for each of the participant
across the performance trials. It could be used as a ‘learning
index’. For example, the participant ‘P3’ gained the highest
learning performance because the first three right side trials (Fig.
5) are not very well but in the next three left trials the participant
achieves almost as long displacement as the highest
displacement achieved by ‘P2’. This interpretation method is
also applied to the participant P4’ who gained a high learning
performance indicator (variance). Although the participant ‘P7’
achieved good performance across all of the trials, the variance
is relatively low. This means there was not much learning gained

by this participant.

Fig. 8 shows the control input characteristics of two best and
two worst trials from all of 54 trials. The two best trials from the
participant ‘P2-L3” and ‘P3-L2’ are shown on Fig. 8 (a) and Fig.
8 (b), respectively. The worst two performance trials are from
participant ‘P4-R2’ and ‘P1-R3’ which are shown in Fig. 8 (¢)
and Fig. 8 (d), respectively.

The frequency characteristic of the control input from Fig. 8
shows clues for the high performance trials. The control inputs
with high frequency i.e. around 1 Hz or more are from both of
the highest trials, ‘P2-L3” and ‘P3-L2’. Also, this frequency is
performed and maintained across the performance trials. In other
words, it is performed at consistent frequency across the trials.
In contrast, the low skill performer exhibits low frequency
action, inconsistent across the trial. These control input
characteristics were performed by ‘P4-R2’ and ‘P1-R3’.
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Human learning and skill performance to control an
underactuated pendulum-driven capsule system is studied in this
paper. The human interaction model with the capsule system is
proposed to explain the flow of control data and information
throughout the system paths. The experimentation is carried out
with 9 participants to study their learning and skill to control the
capsule system. These participants exhibit different learning
strategies, control strategies, and performance outcomes.

CONCLUSIONS AND FUTURE WORKS

In this study, the learning time used prior to the actual
performance does not reflect the actual trial sequences.
However, the variance of the displacements achieved across all
trials indicates the learning achievement. The final displacement
of the capsule and the corresponding average speed are skill
performance indicators. It appears that the participant who is
able to oscillate the control input at high, consistent frequency,
and at the appropriate portion on the joystick x-axis has achieved
relatively high performance.

Although the angle control pattern generated by human
operator differs from the 6 steps control strategy in [22] the
pattern successfully drives the capsule system forward, it is not
a perfect trajectory as in automatic control. This is normal as a
human being who can heuristically learn and apply knowledge
at the facing circumstance to solve the problem but does not need
to be mathematically/objectively perfect as in the automation.

In future works, an analysis of the time series of the control
input will be studied to utilise the details of the participants hand
control behaviour on the joystick interface, for example
similarity, trend and seasonality of the control input. In addition,
future experiment will include biometric measurement such as
eye gaze, body movement, and surface brain activity during the
participants control activity. These measurements will give a
deeper understanding of the human learning, skill performance,
and control behaviour on the robot system control task under the
HAM concept.
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