
I 

 

 

 

 

 

 

 

IMAGE UNDERSTANDING OF MOLAR PREGNANCY BASED ON 

ANOMALIES DETECTION 

 

 

 

PATISON PALEE 

 

 

 

A thesis submitted in partial fulfilment of the requirement of Staffordshire University 

for the degree of Doctor of Philosophy 

 

 

 

 

May 2015

 



I 

 

Abstract 

Cancer occurs when normal cells grow and multiply without normal control. As the 

cells multiply, they form an area of abnormal cells, known as a tumour. Many tumours 

exhibit abnormal chromosomal segregation at cell division. These anomalies play an 

important role in detecting molar pregnancy cancer. 

Molar pregnancy, also known as hydatidiform mole, can be categorised into partial 

(PHM) and complete (CHM) mole, persistent gestational trophoblastic and 

choriocarcinoma. Hydatidiform moles are most commonly found in women under the age 

of 17 or over the age of 35. Hydatidiform moles can be detected by morphological and 

histopathological examination. Even experienced pathologists cannot easily classify 

between complete and partial hydatidiform moles. However, the distinction between 

complete and partial hydatidiform moles is important in order to recommend the 

appropriate treatment method. Therefore, research into molar pregnancy image analysis 

and understanding is critical. 

The hypothesis of this research project is that an anomaly detection approach to 

analyse molar pregnancy images can improve image analysis and classification of normal 

PHM and CHM villi. The primary aim of this research project is to develop a novel method, 

based on anomaly detection, to identify and classify anomalous villi in molar pregnancy 

stained images.  

The novel method is developed to simulate expert pathologists’ approach in 

diagnosis of anomalous villi. The knowledge and heuristics elicited from two expert 

pathologists are combined with the morphological domain knowledge of molar pregnancy, 

to develop a heuristic multi-neural network architecture designed to classify the villi into 

their appropriated anomalous types. 

This study confirmed that a single feature cannot give enough discriminative power 

for villi classification. Whereas expert pathologists consider the size and 

shape before textural features, this thesis demonstrated that the textural feature has a 

higher discriminative power than size and shape. 

The first heuristic-based multi-neural network, which was based on 15 elicited 

features, achieved an improved average accuracy of 81.2%, compared to the traditional 

multi-layer perceptron (80.5%); however, the recall of CHM villi class was still low (64.3%). 

Two further textural features, which were elicited and added to the second heuristic-based 

multi-neural network, have improved the average accuracy from 81.2% to 86.1% and the 

recall of CHM villi class from 64.3% to 73.5%. The precision of the multi-neural network 
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has also increased from 82.7% to 89.5% for normal villi class, from 81.3% to 84.7% for 

PHM villi class and from 80.8% to 86% for CHM villi class. 

To support pathologists to visualise the results of the segmentation, a software 

tool, Hydatidiform Mole Analysis Tool (HYMAT), was developed compiling the 

morphological and pathological data for each villus analysis.   

 

 

Keywords: anomaly detection, image analysis of molar pregnancy stained slides and 

heuristic-based multi-neural network architecture. 
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Chapter 1: Introduction 

 

1.1. Context of the Investigation of molar pregnancy 

Molar pregnancy, also known as hydatidiform mole (HM), occurs as a result of an 

abnormality when a sperm fertilises the egg. HM is a genetically abnormal and nonviable 

conception, normally associated with high risk of developing complications due to 

persistence of abnormal trophoblast and resulting in a miscarriage. It is an immature 

placenta characterised by a massive fluid accumulation within the villi. In general there is 

an absence of fetal blood vessels (Benirschke et al., 2006). HM is classified into four 

distinct clinicopathologic entities: partial hydatidiform mole (PHM), complete hydatidiform 

mole (CHM), persistent gestational trophoblastic and choriocarcinoma. Persistent 

gestational trophoblastic is the disease caused by HM growing from the uterus surface to 

the muscle layer around the uterus surface namely myometrium.  Choriocarcinoma is a 

rapidly growing cancer found during pregnancy. This disease is caused by the abnormal 

CHM tissue that continues growing. CHM are diploid androgenetic and lack normal fetal 

blood vessels; the villi have an abnormal budding architecture and show trophoblast 

proliferation. PHM are paternal triploid and have some normal villi mixed with abnormally 

shaped villi; the villi are irregularly shaped and identified by their only focal abnormal 

trophoblastic proliferation (Sebire, 2010). The morphological characteristics of CHM and 

PHM are different from normal placental villi (Figure 1.1). These categories of hydatidiform 

mole can be distinguished by means of gross morphologic and histopathological 

examination. Persistent trophoblastic disease is when women who have had treatment to 

remove a molar pregnancy still have some molar tissue left behind whereas 

choriocarcinoma happens when cells that were part of a normal pregnancy or a molar 

pregnancy become cancerous. Management of molar disease relies heavily on its early 

histological identification and subsequent surveillance, in order to provide early effective 

treatment (Sebire, 2010).  

Histopathology is the microscopic study of diseased tissues. Histology studies 

tissues are cut into thin slices, which usually come from a surgery, biopsy or autopsy. The 

tissues are sectioned into very thin 2-7 micrometre sections. The slices are thinner than 

the average cell and they are stained with one or more pigments to enhance the contrast 

of the cells and to allow a visual microscopic examination. The histological slides are 

examined under a microscope by a pathologist who fills a report describing his/her finding 

and recommendations. 
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Figure 1.1. A picture of normal villi, PHM and CHM villi; 

 (a) normal villi, (b) PHM and (c) CHM villi. 

 The distinction between complete or partial hydatidiform moles is important for 

determining the appropriate treatment of patients. Sebire et al. (2003), Sumithran et al. 

(1996) and Howat et al. (1993) explain that the diagnosis of these moles continues to be a 

problem for many practicing and experienced histopathologists because in early 

pregnancy CHM and PHM may be difficult to distinguish morphologically from other 

abnormal pregnancies. Further studies by Landolsi et al. (2009) and Kim et al. (2009) 

confirm the challenges of histopathological diagnosis of molar pregnancy and conclude 

that even experienced pathologists cannot easily distinguish between Complete 

Hydatidiform Moles (CHM), Partial Hydatidiform Moles (PHM), and Hydropic Abortion 

(HA) in the early gestational period. There are several critical areas that can lead to 

diagnostic error, namely the diagnosis of early complete mole as partial mole, the over-

diagnosis of hydatidiform mole in tubal pregnancy and the diagnosis of placental site non-

villous trophoblast as placental site trophoblastic tumour or choriocarcinoma (Wells, 

2007). Paul et al. (2010) explain that the diagnosis is difficult because morphological 

analysis is inadequate to mark confident diagnoses in many cases, and the histological 

features of complete mole at an early gestation are frequently confused with partial mole, 

hydropic miscarriage or non-molar chromosomal abnormalities. The characteristics of 

complete and partial hydatidiform moles in histopathological examination are anomalous 

from normal placenta cells and different from each other. The complete hydatidiform mole 

lacks blood vessels, and “the villi are connected to one another by their strands of 

connective tissues” (Benirschke et al., 2006: 797), whereas partial hydatidiform moles are 

characterised by having some normal villi and focal trophoblastic proliferation. A visual 

glossary of the medical terms used in the thesis is provided in Appendix A.  

In a minority of cases (15% of CHM and 0.5% of PHM), HM can develop into a 

persistent disease such as choriocarcinoma, a malignant form of gestational trophoblastic 

disease. Hence it is of critical importance to identify and distinguish hydatidiform moles 

 

(a)         (b)                      (c)  
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from non-molar specimens. The development of new methods that help differentiate these 

diagnoses in doubtful cases could be critical for treatment purposes. Hydatidiform moles 

are most commonly found in women under the age of 17 or over the age of 35. In the 

United States, the hydatidiform mole incidence is about one in 2,000 pregnancies (Smith, 

2003); the incidence is about one in 1,000 in the UK. However, Gul et al. (1997) and 

Khaskheli et al. (2007) report higher rates of hydatidiform moles in Asia and Africa (20 

cases per 1000). 

 

1.2. Aims and objectives of this thesis  

The literature review of computational cancer image analysis is concerned 

primarily with breast, lung, skin, cervical and prostate cancers; any research review 

involved with molar pregnancy tends to focus solely on the management and treatment 

aspects. As a result, research into molar pregnancy image analysis and understanding is 

still unexplored. Cancer occurs when normal cells grow and multiply without normal 

control. As the cells multiply, they form an area of abnormal cells, known as a tumour. 

Many tumours exhibit abnormal chromosomal segregation at cell division (Gisselson, 

2001). These anomalies play an important role for detecting cancerous cells. 

 The hypothesis of this research project is that an anomaly detection approach to 

analyse molar pregnancy images can achieve a better image analysis and classification of 

molar pregnancy types than the current approaches. The focus of this thesis is the study 

of the two most critical hydatidiform moles, CHM and PHM; the aim is to develop a novel 

method that combines the theory of anomaly detection with pathologists’ heuristics to 

identify PHM and CHM cancerous cells in molar pregnancy stained slides. The author of 

this thesis collaborated with two pathologists, one based at Great Ormond Hospital, 

London, and the other based at the Bristol University Hospital. 

To achieve the aims the following objectives are carried out: 

(i) To conduct a literature review to survey current approaches to cancer detection from 

tissues slides and investigate criteria for validation. 

(ii) To undertake a theoretical study of existing methods of anomaly detection. 

(iii) To collect stained slides of molar pregnancy for analysis from open source website 

data. 

(iv) To capture and depict pathologists’ expert and strategic knowledge and the 

morphological features of molar pregnancy in an ontological representation. 

(v) To develop a novel method of anomaly detection of cancerous cells from stained 

slides of molar pregnancy based on the above ontological representation. 
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(vi) To apply the novel method to the data and to carry out experiments to classify the 

slides into their appropriate clinicopathologic category. 

(vii) To validate the results using well known performance measures, namely accuracy, 

sensitivity and specificity factors, as well as using the knowledge of expert 

pathologists. 

(viii) To compare the results against other current approaches. 

(ix) To write a thesis and publish at least two papers. 

1.3. Novel contributions 

The novel contributions of this thesis are summarised as follows: 

(i) A new application domain: the automated analysis of histopathology molar pregnancy 

tissues. 

(ii) A new image understanding method that combines image processing and artificial 

intelligence techniques, guided by pathologists’ heuristic knowledge and strategies. 

The proposed method is based on the anomaly detection of HM morphological 

features (e.g. villi, trophoblast, stroma) as identified by the experts’ knowledge 

(Figure1.2).  

(iii) A cognitive approach to image analysis: the development of an algorithm that mirrors 

the heuristic approach to diagnosing anomalies in villi.  

1.4. Methods of investigation 

Research methods can be categorised into three types: qualitative, quantitative 

and mixed methods. A qualitative method is related to inductive approaches, because this 

method is used to make sense of phenomena, to understand the reasons, motivations 

and opinions of people, based on empirical materials such as interviews, observations, 

historical texts. Ticehurst and Veal (2000) explain that there is a linkage between 

quantitative methods and positivism because the quantitative approach is also known as 

management science or operational research, linking disciplines with philosophy. They 

also argue that quantitative and qualitative methods are linked to positivist and 

interpretivist epistemologies, as shown in Figure 1.3. The research method selection is 

critical because the applied research method should direct/guide research purposes to the 

correct goal (Crotty, 1998). However, the research method is also involved with research 

approaches and philosophies, for example, a quantitative method is used to apply 

positivism and a qualitative method is used to apply interpretivism, but it can be modified 

depending on the particular characteristics of a research project (Karl, 2004).  
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Figure 1.2. A new image understanding method diagram. 

 

A quantitative method tends to be based on numerical measurements (e.g. 

graphs, surveys, and statistical data) and experimentation (Saunders et al., 2009). It 

seeks to test hypotheses and/or seek explanations and predictions. This method is 

commonly used with a deductive approach based on a positivist philosophy, as shown in 

Figure 1.3. The deductive approach is based on using knowledge and information to 

perceive or produce an opinion about something, and a positivist philosophy believes in 

the scientific evidence (i.e. experiments and statistics) instead of ideas. Therefore, 

research based on a positivist philosophy usually uses a quantitative method and 

deductive approach to extract proved facts, predictions or trends. A mixed method is 

applied to analyse data by using quantitative and qualitative methods. 

 

Figure 1.3. Approaches and methodologies (Ticehurst & Veal, 2000). 

  

In this research, the quantitative method, based on the deductive approach and 

positivist philosophy as shown in Figure 1.4, is used to verify the hypothesis that image 

processing and analysis based on anomaly detection techniques and pathologists’ 

heuristics can classify HM images into normal cells, complete and partial molar pregnancy 

cells. Positivism is suitable for this research because this research can validate the 
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classification results with expert pathologists. The basic steps used in this research are 

outlined below: 

 A literature review to survey related work to cancer detection and relevant anomaly 

detection algorithms. 

 A deep understanding of molar pregnancy and normal cells will be understanding in 

order to identify anomalies within stained slides. 

 Elicitation of pathologists’ expertise and strategies in identifying anomalies in molar 

pregnancy stained slides. 

 Ontological representation of molar pregnancy morphological and clinicopathologic 

characteristics following elicitation of pathologists’ heuristics. 

 Data collection and experimentation of stained slides of molar pregnancy. Development 

of a novel method based on anomaly detection and molar pregnancy ontology using 

image processing techniques and artificial intelligence techniques.  

 Implementation of the above methods to stained slides images, and further 

experimentation. 

 Validation of final results and comparison with other related work and ground truths that 

are verified by expert pathologists.  

 

Figure 1.4. The research ‘onion’ (Saunders et al., 2009). 

1.5. Structure of the thesis 

The structure of the thesis consists of seven chapters as follows: 

 In Chapter 1, the introduction of the domain of study is described. The molar 

pregnancy is first defined, then the aims of the research and its novel contributions 

and method of investigation are explained. 
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 In Chapter 2, the literature review, image processing techniques for cancer image 

analysis are reviewed and categorised. The four steps of traditional image analysis 

methods are pre-processing, segmentation, feature extraction and classification 

steps. The pros and con of each technique are also discussed in this chapter.   

 The review of anomaly detection is presented in Chapter 3. This chapter starts with 

the fundamental approaches of anomaly detection, the nature of input data and the 

types of anomalies. Then, anomaly detection techniques are explained and the 

techniques are grouped as follows: statistical anomaly detection, machine learning 

based anomaly detection and other approaches. Anomalies detection issues, 

applications of anomaly detection, and discussion are at the end of this chapter.  

 Chapter 4 consists of two main parts. The first part describes the data used in this 

research project and explains how the pathological and morphological features 

that are elicited from both, the expert pathologists and medical documents, are 

represented ontologically. The second part introduces the novel approach of image 

analysis and classification guided by the ontological representation and the 

heuristics of the experts. It also provides a description of steps associated with the 

low level image processing and analysis, namely the pre-processing, segmentation 

and feature extraction steps.  

 Chapter 5 discusses the high level processing of image analysis and classification. 

The early sections focus on identifying and ranking the critical features of the 

hydatidiform mole villi. The middle sections describe   the heuristic multi-neural 

network approach to anomalies detection based on 15 and then 17 features villi. 

The experimental results of the proposed method are analysed and compared with 

the traditional multi-layer perceptron (MLP).  

 Chapter 6 describes the Hydatidiform Moles Analysis Tool (HYMAT) developed to 

support low level processing tasks.  

 Chapter 7 presents the conclusions of this research, its novel contributions and 

future work related to the study of hydatidiform mole villi.     
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Chapter 2: Literature Review: Image 

Processing and Classification Techniques 

 

2.1. Image processing and classification techniques 

This chapter reviews current image processing techniques and classification 

methodologies that are applied to cancer classification, detection or diagnosis of various 

types of images such as histological images, digital mammograms, ultrasound images 

and skin images. 

The traditional approach used in cancer image analysis consists of four steps 

(Figure 2.1). The first step, i.e. the pre-processing step, is to remove unwanted objects 

(such as noise) and improve the quality of an image. The second step is the image 

segmentation step, aimed at selecting objects of interest or regions of interest from the 

background. The purpose of the third step is to extract noticeable features that can be 

used to classify the objects. The final step is used to classify or categorise the objects, 

using the features extracted from the previous step. The next sections describe the 

current methods and approaches associated with each one of the listed steps. 

 

Figure 2.1. The four cancer image analysis steps 

2.2. Pre-processing step 

The pre-processing step is one of the important image processing tasks and it is 

used to improve the performance of the segmentation and feature extraction processes. It 

ensures that some objects that might be interesting are not removed and that useful 

details in the images are not eliminated. For instance, the Gaussian smoothing filter can 

remove noise, but this filter can also eliminate texture information in the image (Waheed 

 



9 

 

et al., 2007). Histogram equalisation improves the contrast in the ultrasound images, for 

example (Han et al., 2007). The methods used in the pre-processing step can be grouped 

into noise removal and image enhancement algorithms.  

The purpose of noise removal is to remove unwanted objects and background. 

Crisan et al. (2007) use thresholding to separate the bright regions from the dark regions, 

while Sang  et al. (2008) apply Otsu's automatic threshold selection to select suspicious 

regions and to distinguish between the breast tissues and the background in 

mammographic images (Xin et al., 2004). Otsu’s threshold is also applied to distinguish 

between skin cancer regions and background (Dhinagar et al., 2011), whereas Elizabeth 

et al. (2012b) apply the thresholding technique, based on convex edge and the centroid of 

a cancerous area, to select the lung area of interest from lung cancer tomography images. 

In their paper Xu et al. (2011) advocate the use of a double thresholding method to 

separate cancer stem cells from background and remove noise. The results show that the 

proposed method yields accurate segmentation results with fast execution time. Haneishi 

et al. (2001) combine thresholding with a labelling method to select lung cancer regions 

from x-ray CT images. The various thresholding techniques are captured in Figure 2.2. 

 

 

Figure 2.2. Thresholding techniques. 

 Other statistical methods include Gaussian filter of colour images for smoothing 

Fine Needle Aspiration Cytology (FNAC) images (Niwas et al., 2010a), Discrete Wavelet 

Transforms (DWT) for eliminating the low frequency image components in a digital 

mammogram (Lahmiri et al., 2011), background masking, based on entropy measures, for 

separating the background from cells (Kazmar et al., 2010), and median filtering for 
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removing all irrelevant data in images for better classification (Xing-Li et al., 2008). 

Salvado et al. (2005) also apply DWT to remove the low frequency sub-band of breast 

cancer digital mammograms, and then a reconstructed image is created by the high 

frequency sub-bands. The results show that the reconstructed image can be used to 

improve the contrast of digital mammograms for further diagnosis. In the paper by Lin et 

al. (2014), DWT is used to improve a breast cancer mammogram image quality. The mass 

signals of transformed images are enhanced before extracting features. The results show 

that the masses in enhanced images are easier to identify than in the original images. 

Markelj et al. (2012) review 3D and 2D data registration methods for creating an image 

containing more information for analysis from a cone-beam CT, CT, MR, or ultrasound 

image. These data registration techniques are suitable for applications where 2D and 3D 

images information is necessary, for example, 3D anatomical structure reconstruction.       

 Acceptable and widely used image enhancement methods are histogram 

equalisation, data normalisation, gradient enhancement, mean contrast enhancement, 

discrete wavelet transform and Gaussian filter. Histogram equalisation is used to improve 

the intensity distribution in images (Raman et al., 2010), in MRI images (Naghdy et al., 

2010) and in ultrasound images of prostate cancer (Seok et al., 2007). Data normalisation 

is applied to eliminate the effect of the variance of scale and to give robustness to the 

algorithm (Hui et al., 2008). In some applications, researchers change the colour space to 

enhance image quality. To improve the textural and statistical features of gynaecological 

cancer images, Neofytou et al. (2008) change RGB images to the YCrCb colour system 

and the results indicate that the Y, Cr and Cb channels make a significant difference for 

statistical and textural features. Boquete et al. (2012) also apply YCrCb colour space to 

segment thermal infrared images of breast cancers. Furthermore, RGB pathological 

images are converted to HSV images and the H and V elements are used to extract 

textural features in feature extraction processes (Xiangmin et al., 2008). In addition, the 

smoothed Fine Needle Aspiration Cytology (FNAC) image is converted into the hue, 

saturation, and intensity (HSI) colour system, because this yields better classification 

results than the RGB and CIE-Lab colour spaces (Niwas et al., 2010a). Doyle et al. (2012) 

also apply the HSI colour system to RGB digital needle biopsies of prostate cancer. The 

advantage of the HSI colour system is that the colour information is separated from 

brightness. Therefore, further analysis can be done with more robust information, whereas 

Mouelhi et al. (2013a) use Fisher’s linear discriminant to reduce the information of RGB 

and saturation values to two new features for breast cancer nuclei segmentation. The 

results indicate that the proposed method achieves better segmentation results than other 

methods. The colour spaces applied to enhance image quality for cancer image analysis 

are shown in Figure 2.3. In the paper by Gavrilovic et al. (2013) a blind method for colour 
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decomposition of histological images is used to deal with stain image intensity variation. 

The method is an extension of an ordinary linear decomposition method. Other image 

enhancement methods include discrete wavelet transform on digital mammogram images 

(Hamdi et al., 2008), gradient, mean contrast, discrete wavelet transform and Gaussian 

filter on raw digital mammogram images (Chui-Mei et al., 2008). Allwin et al. (2010) apply 

a set of morphological operators on a grey scale cyto image of cervical cancer, whilst 

Linguraru et al. (2009) and Cui et al. (2010) employ anisotropic diffusion to enhance the 

contrast of CT and microscopy images. To overcome the limitation of lung functional 

single-photon emission computed tomography (SPECT) images, Haneishi et al. (2001) 

create syntactic images from x-ray CT and SPECT images. The syntactic images can give 

the location information from x-ray CT images and the details for analysis from SPECT 

images. 

 

 

Figure 2.3. Colour spaces 

2.3. Segmentation step 

 Segmentation is the process that aims to separate the region of interest (ROI) from 

the background, as this leads to better feature extraction and classification processes. 

Segmentation can be categorised into two major approaches: region-based and 

boundary-based approaches (Demir & Yener, 2005). In spite of several decades of 

research, segmentation remains a challenging problem. Two main challenges include 

over-segmentation and under-segmentation.  

 The region-based approach 

 The region-based approach is based on either statistical approaches or machine 

learning algorithms. The simple region-based segmentation thresholding is widely used to 

segment the Region of Interest (ROI) in various applications.  

In the paper by Naghdy et al. (2010) the intensity threshold is used to segment 

brain cancer regions from MRI images, whereas Hamdi et al. (2008) use Local 

Thresholding (LT) in digital mammograms for separating micro-calcifications from 

background. The pathological prostate cancer image segmentation is improved by 
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converting the RGB colour space image to HSV colour space, and by computing the H 

and V components. The area filter based on threshold values of 300 and 50 pixels is 

applied to the H and V components. Not only does this filter separate between lumens 

and artefacts in H components, but also between nucleus and artefacts in V components 

(Xiangmin et al., 2008). Chang et al. (2012) apply the Multi-Reference Graph Cut (MRGC) 

method to deal with technical variations in sample preparation in glioblastoma multiform 

segmentation. A statistical based segmentation method is one of the common 

segmentation methods. Boquete et al. (2012) use the automated detection method based 

on Independent Component Analysis (ICA) to detect high tumour risk areas, whereas 

Yaguchi et al. (2011) apply the segmentation method based on an expectation 

maximization (EM) algorithm, to segment stomach cell components.     

Other approaches combine two methods for improving the performance of the 

region based segmentation. Sang et al. (2008) use a region-based approach after 

thresholding for better segmentation results. Connected threshold region growing 

segmentation is used to extract features from a seed defined by a user on the threshold 

image, whereas Raman et al. (2010) perform region growing segmentation after applying 

the threshold to improve a low intensity and maximise a peak in the histogram of digital 

mammograms. Hadavi et al. (2014) also apply region growing based on thresholding to 

segment CT images of lung cancer. Kazmar et al. (2010) utilise Radial Symmetry 

Decomposition (RSD) and Blob-like Keypoint (BK) detection to segment the ROI. RSD is 

used as the gradient voting approach for each pixel and blob-like keypoint, with a 

Gaussian filter applied to select cells from the background. Mata et al. (2000) apply the 

wavelet transform to decompose the image into sub-band images and use the details 

responded to each scale to segment micro-calcification regions by the Gaussianity test. 

Karnan & Gandhi (2010) combine Markov Random Field (MRF) with a Hybrid Population 

based Ant Colony (HPACO) algorithm to detect the micro-calcifications from mammogram 

images. Rabiei et al. (2007) propose a primary segmentation based on a binary region 

mask that is defined by a user. A user helps this segmentation to eliminate as much as 

possible the background pixels from images by the blob number of the blob combiner. 

Then, the blob combiner is performed for separating between normal, benign, suspicious 

and malignant, to enhance Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) 

images. Kang et al. (2011) apply the k-means clustering algorithm with the information of 

neighbours and boundaries, to segment breast cancer regions in breast MRI images, 

whereas Mohapatra et al. (2011) apply the k-means algorithm to detect leukemia in blood 

cell microscopic images. In the paper by Mouelhi et al. (2013b), an enhanced watershed 

method is applied after a fuzzy active contour model to improve an automatic breast 
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cancer cell image segmentation method. The results show that the proposed method 

performs better than other current segmentation methods.  

The machine learning approach to region based segmentation is adopted by Taher 

& Sammouda (2011) who propose Hopfield Neural Networks (HNN) and a Fuzzy c-Means 

(FCM) clustering algorithm to identify lung cancer on sputum colour images. HNN can 

segment the overlapping cytoplasm classes and is very sensitive to intensity change, 

whereas FCM cannot segment the overlapping cytoplasm areas. Naghdy et al. (2010) use 

k-means algorithm to separate the nuclei and cytoplasm from the background and Yue et 

al. (2010) combine k-means algorithm with Otsu’s algorithm to separate the abnormal 

nuclei regions from all nuclei regions in cancer microscopic images. Waheed et al. (2007) 

used a watershed algorithm to separate overlapping nuclei. Rathore et al. (2013) apply k-

means algorithm with textural features to segment colon biopsy image of colon cancer, 

and the results indicate that the proposed method achieves better segmentation results 

than a segmentation method based on circular primitive techniques, Instead of applying k-

means algorithm with textural features, Vijayaraghavan et al. (2014) apply k-means 

algorithm with L*a*b* colour system to segment abnormal regions in digital mammograms 

of breast cancer.  Acosta-Mesa et al. (2005) apply the Naive Bayes classifier (NB), based 

on a supervised learning approach, to classify the parabola features of cervical cancer of 

microscopic images, whereas Kekre et al. (2010) use the vector quantisation technique 

and Linde Buzo-Grey algorithm (LBG) to segment MRI images of breast cancer. In the 

paper by Marcomini & Schiabel (2012) a Self-Organizing Map (SOM) is applied to 

segment the suspicious masses boundary. The results show that the proposed algorithm 

still suffers from speckle noise. For skin cancer image segmentation, Amelio et al. (2013) 

apply genetic algorithms to segment skin lesions, and the proposed method achieves 

promising segmentation results. The segmentation techniques based on region-based 

approach are shown in Figure 2.4. 

 The boundary-based approach 

The boundary-based approach is the method based on finding out the border of 

the objects. Morphological methods are commonly used in a wide range of applications. 

The simple morphological segmentation approach is manual segmentation. Alolfe et al. 

(2008, 2009) apply a window of 32×32 pixels to select the group of ROI of the training and 

testing sets for feature extraction processes and Vani et al. (2010) manually segment the 

suspicious regions in digital mammograms as ROI.  
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Figure 2.4. Segmentation techniques based on region-based approach.
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The contour based algorithm takes advantage of the border of objects for 

segmentation. Crisan et al. (2007) apply the automatic contour trace algorithm to the 

digital mammograms to find out the boundary of the lesions from the images, whereas 

Naik et al. (2007) combine the contour-based approach with a level set algorithm, 

initialised by a user, to enhance the performance of the prostate tissue image 

segmentation. In a paper by Linguraru et al. (2009), a combination of fast marching and 

geodesic active contour level sets is applied to segment renal lesions of renal cancer. The 

snake technique is another boundary-based segmentation approach, based on internal 

forces and external forces in the image. Doukas et al. (2010) apply active contour 

techniques (snake) to microscopic images for cell death (apoptosis) segmentation. 

However, cell overlapping is one of the problems of active contour algorithms. To improve 

the segmentation results, Parolin et al. (2010) use an edge map that utilises the Wavelet 

Transform (WT) to guide the Gradient Vector Flow Snakes (GVF snake) to segment the 

lesion in dermatological images. Sakkalis et al. (2009) apply the magic wand and snake 

algorithms to segment MRI tomographic images. The results show that the segmented 

images can be used for further analysis. Another snake technique improvement is 

proposed by Chaddad et al. (2011). A progressive division of the image dimensions is 

used to improve the execution time of the snake technique, and the results indicate that 

the proposed method is more than 50% faster than an ordinary snake. In such research, 

the boundary-based greedy snake and region-based region growing algorithms are 

applied to select the ROI of lung cancer tomography images (Elizabeth et al., 2012a). A 

greedy snake is used as a primary segmentation tool, then a region growing algorithm is 

applied to refine the segmentation results. Jayadevappa et al. (2011) review segmentation 

algorithms based on deformable models, which are boundariy-based segmentation 

models using internal and external forces to guide their construction. Deformable models 

can be categorised into parametric and geometric methods. Parametric methods consist 

of classic and GVF snake (Xu & Prince, 1998), whereas geometric models consist of 

Geometric Active Contour (GAC) model (Caselles et al., 1993), (Malladi et al., 1995), 

geodesic active contour model (Caselles et al., 1997), level sets (Osher & Sethian, 1988) 

and variational level sets (Wang et al., 2007), (Li et al., 2005). The weak point of these 

segmentation algorithms is that the deformable models still require clear boundaries to 

achieve satisfactory segmentation results.   

Other approaches that take advantage of the boundary and morphological features 

are Hough transforms on thermal infrared images, and line-scanning based on 

morphological features. Kuruganti et al. (2002) apply the Hough transform of a parabola to 

thermal infrared images of breast cancer for segmenting the ROI from background, 

whereas Qi et al. (2001) use the parabolic shapes of lower breast borders in thermal 
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infrared images that are detected by the Hough transform, in order to classify any 

abnormalities. Filipczuk et al. (2013) combine the Hough transform with a quadratic 

discriminant to segment nuclei of fine needle biopsies of breast cancer cytological images. 

The proposed techniques can remove unwanted red blood cells and overlapping nuclei 

and improve system robustness. Instead of using a quadratic discriminant, George et al. 

(2013) use Otsu’s thresholding and FCM to improve the robustness of circular Hough 

transform segmentation results for breast cancer cytological image classification. 

Furthermore, Chang et al. (2009) use line-scanning, based on the morphological features 

of a cell in segmentation processes, to improve the quality of the cell image by using grey-

level and energy methods. The overview of segmentation techniques based on the 

boundary-based approach is shown in Figure 2.5. 

 
 

 

Figure 2.5. The overview of segmentation techniques based on the boundary-based 
approach. 

  



17 

 

 2.4. Feature extraction step 

 Feature extraction aims at extracting the relevant features that can be applied to 

classify or categorise the objects of interest from each other. Types of feature extraction 

can be classified into statistical, textural, morphological, fractal-based and topological 

features, discussed in the next section. The major challenge of feature extraction is 

identifying the optimum number of relevant features. 

 Statistical features 

 The simple statistical approaches in the feature extraction step are 

standard deviation, variance, mean, bias and kurtosis. For example, these five statistical 

measures are extracted from digital mammograms of the breast cancer diagnosis system 

and classification by proposed Xing-li et al. 2008. Allwin et al. (2010) use mean, standard 

deviation, skewness and kurtosis to identify the cervical cancer stages on cyto images. 

However, the results of the experiments of Kuruganti et al. (2002) show that mean and 

entropy cannot improve the accuracy of the breast cancer thermal infrared (TIR) image 

detection system. 

 To investigate critical features, Naik et al. (2007) apply standard deviation, 

variance, compactness and smoothness to prostate cancer tissue images as the features 

for classification processes. These features are not only used to distinguish between 

cancerous and normal prostate tissues, but also to discriminate between 3 and 4 Gleason 

grades. Neofytou et al. (2008) use mean, variance, median, mode, skewness, kurtosis, 

energy and entropy to detect textures features from hysteroscopy images of the 

endometrium for gynaecological cancer classification. The results demonstrate that the 

statistical and Grey Level Difference Statistics (GLDS) yield the highest correct 

classification score with a support vector machine classifier, whereas Chui-Mei et al. 

(2008) use the mean, variance, Drect Cosine Transform (DCT) coefficients and entropy as 

features. DCT coefficients and entropy are the most useful features of micro-calcifications 

due to the sensitivity of grey level changes. Vani et al. (2010) use fifteen features (mean 

grey level, variance of grey level, mean of gradients, variance of gradients, energy, inertia, 

entropy, homogeneity, correlation, smoothness, skewness, kurtosis, z-score, moment and 

range) to classify breast cancer from digital mammograms. The statistical features and 

application domains are shown in Table 2.1. 
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Table 2.1. The statistical features and application domains 

Statistical features Application domains Authors 

Standard deviation Cervical cancer 

Prostate cancer tissue images 

Allwin et al. (2010) 

Naik et al. (2007) 

Variance Digital mammograms 

 

 

Prostate cancer tissue images 

Gynaecological cancer images 

Lung cancer tomography images  

Chui-Mei et al. (2008) 

Xing-li et al. (2008) 

Vani et al. (2010) 

Naik et al. (2007) 

Neofytou et al. (2008) 

Elizabeth et al. (2012a) 

Mean Digital mammograms 

 

 

Cervical cancer 

Breast cancer (TIR) images 

Gynaecological cancer images 

Lung cancer tomography images 

Chui-Mei et al. (2008) 

Xing-li et al. (2008) 

Vani et al. (2010) 

Allwin et al. (2010) 

Kuruganti et al. (2002) 

Neofytou et al. (2008) 

Elizabeth et al. (2012a) 

Median Gynaecological cancer images Neofytou et al. (2008) 

Mode Gynaecological cancer images Neofytou et al. (2008) 

Bias Digital mammograms Xing-li et al. (2008) 

Kurtosis Digital mammograms 

 

Cervical cancer 

Gynaecological cancer images 

Xing-li et al. (2008) 

Vani et al. (2010) 

Allwin et al. (2010) 

Neofytou et al. (2008) 

Skewness Cervical cancer 

Gynaecological cancer images 

Digital mammograms 

Allwin et al. (2010) 

Neofytou et al. (2008) 

Vani et al. (2010) 

z-score Digital mammograms Vani et al. (2010) 

  

The features based on the wavelet transform are used in various types of 

applications, such as micro-calcification classification on digital mammograms (Alolfe et 

al., 2008), breast cancer cytological image classification (Niwas et al., 2010b) and skin 

cancer image classification (Dhinagar et al., 2011). Lahmiri et al. (2011) use the discrete 

wavelet transform with Gabor filters and uniformity and entropy measures as features to 

detect suspicious regions from digital mammograms. 
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Other statistical methods include the Average Higuchi Dimension of Radio 

Frequency Time series (AHDRFT), proposed as a new feature for prostate cancer 

detection on ultrasound images, leading to an improvement of the performance of the 

classification system (Moradi et al., 2006). Furthermore, the Aceto-white response 

functions (AwRFs) is applied to extract features from colposcopy images of cervical 

cancer; however, these features need the specific pre-processing step to enhance images 

before the feature extraction step (Acosta-Mesa et al., 2005).  Torrent et al. (2010) use a 

dictionary database filter bank (a bank of filters, four Gaussian derivatives, a Laplacian 

filter, a corner detector, and two Sobel filters) extracted from digital mammograms for their 

automatic micro-calcification detection system. 

 Textural features 

 A textural feature is the feature extracted by measuring the surface variations of 

the object of interest or ROI, such as smoothness, coarseness, and regularity (Demir & 

Yener, 2005). Various textural features are proposed for use as features in cancer 

classification domains, such as forty-eight textural features computed from a Spatial Grey 

Level Dependence (SGLD) matrix by weighted combination of the elements of the matrix 

(Hamdi et al., 2008), textural features calculated by Grey Level Co-occurrence Matrix 

(GLCM) (Naghdy et al., 2010), and texture edges based on Gabor filter for object structure 

description (Deepak et al., 2012).   

To enhance the system robustness and accuracy, the textural features are 

combined with statistical and morphological features, such as: Dual-Tree Complex 

Wavelets Transform (DTCWT) based decomposition method (Niwas et al., 2010b), Grey 

Level Difference Matrix (GLDM) (Kaman et al., 2010), and morphological features (e.g. 

line length, area fraction, quotient and Euler number) (Xiangmin  et al., 2008). Neofytou et 

al. (2008) apply textures features, Spatial Grey Level Dependence Matrices (SGLDM) and 

Grey Level Difference Statistics (GLDS), and statistical features extracted from the 

converted hysteroscopy images (YCrCb colour space) for the gynaecological cancer 

classification system. The textural features computed from each Y, Cr and Cb channels 

give better results than the system that only uses the GLDS and statistical features from 

the Y channel. Mohapatra et al. (2011) also combine textural features with morphological 

features (area, perimeter, compactness, solidity, eccentricity, elongation and form factor) 

to detect abnormal regions in blood microscopic images, while Elizabeth et al. (2012a) 

use eight textural features (namely, smoothness, contrast, homogeneity, dissimilarity, 

energy, entropy, eccentricity, correlation) and other features (such as area, major axis 

length, minor axis length, mean, standard deviation, orientation and proximity), for lung 

cancer tomography image classification. Deshpande et al. (2013) apply eighteen 
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statistical and textural features based on GLCM for breast cancer mammogram 

classification. Torheim et al. (2014) compare the GLCM extracted from Brix parameter 

maps with first-order features (i.e. statistical features) as used for cervical cancer MR 

image classification, and the experimentation results show that the GLCM features give 

better classification results than such first-order features. In the paper by Doyle et al. 

(2012), more than 900 statistical and textural features are used as the features of a 

boosted Bayesian multi-resolution (BBMR) classifier to classify digital needle biopsies of 

prostate cancer.  

In addition, Han et al. (2007) use the multi-resolution autocorrelation and the 

brightness of tissues in ultrasound images as the features for prostate cancer detection 

system. The experiment results show that the multi-resolution autocorrelation can be used 

as an important feature of a cancer tissue. For prostate cancer classification, a set of 102 

graph-based, morphological and textural features extracted from histological image is 

used as a set of features of the prostate cancer classification system. The experiment 

results show that the textural features can identify the difference in tissue patterns (Doyle 

et al., 2007). Deepa et al. (2012) combine DTCWT with statistical features as a feature set 

of the breast cancer classification application. Waheed et al. (2007) use fractal dimension, 

ratio of area eccentricity and textural features (correlation, contrast, energy, homogeneity 

and entropy) extracted from pathological images as the features. These features are 

selected semi-automatically by a user for refining the results, and the system yields 

satisfactory results for renal cell carcinoma tissue classification. Kazmar et al. (2010) 

apply the fourteen Haralick textural features, extracted from nucleus, membrane, halo, 

structured border, float and the background, to measure the difference of six cellular 

objects, giving satisfactory classification results of the cancerous cells in breast cancer 

cell images. Yuan et al. (2006) apply a set of textural feature vectors as the features of 

skin cancer classification system, using local auto-regression and Gabor filter banks. 

Then, these textural features are fed to the Support Vector Machine (SVM). The 

experiment results show that the skin cancer classification system that used only textural 

features can give average accuracy of about 70%. So, the system needs further 

investigation to achieve better results. Ganeshan et al. (2012) use entropy and uniformity 

as features to detect oesophageal lesion regions. The results show that the proposed 

features can be applied to identify the lesion regions and that these features relate to 

biological features of oesophageal cancer. In the paper of Muthukarthigadevi et al. (2013), 

Laws’ texture energy measures and Haralick’s texture features are used as features to 

classify breast cancer regions in digital mammograms.  Textural features and associated 

application domains are summarised in Table 2.2. 
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Table 2.2. Textural features and application domains. 

   

 Morphological features 

A morphological feature is the feature based on the size and shape characteristics 

of the object of interest or ROI. The size can be described by radius, area, perimeter of 

the object and the shape can be described by the compactness, roundness, smoothness, 

length of the major and minor axis, symmetry, concavity as well as perimeter (Demir & 

Yener, 2005).  The seven boundary features, such as area of overlap, distance, perimeter, 

compactness and smoothness, are extracted from the prostate cancer tissue, in the study 

Textural features Application domains Authors 
Spatial Grey Level 
Dependence (SGLD) 
matrix 

Digital mammograms 
Gynaecological cancer images 

Hamdi et al. (2008) 
Neofytou et al. (2008) 

Grey Level Co-
occurrence Matrix 
(GLCM) 

MRI images of brain cancer 
Cervical cancer MR images 
Breast cancer mammograms 

Naghdy et al. (2010) 
Torheim et al. (2014) 
Deshpande et al. (2013) 

Grey Level Difference 
Matrix (GLDM) 

Gynaecological cancer images 
Pathological images of prostate 
cancer 
Digital mammograms 

Neofytou et al. (2008) 
Xiangmin  et al. (2008)  
 
Kaman et al. (2010) 

Gabor filter Skin cancer images 
Brain, lung, colon, breast and 
retina 

Yuan et al. (2006) 
Deepak et al. (2012) 

Dual-tree complex 
wavelets transform 
(DTCWT) 

Cytological images of breast 
cancer 
Digital mammogram images 

Niwas et al. (2010b) 
Deepa et al. (2012) 

Smoothness Lung cancer tomography images Elizabeth et al. (2012a) 

Contrast Renal cell carcinoma tissue 
images 
Lung cancer tomography images 

Waheed et al. (2007) 
Elizabeth et al. (2012a) 

Homogeneity Renal cell carcinoma tissue 
images 
Lung cancer tomography images 

Waheed et al. (2007) 
Elizabeth et al. (2012a) 

Dissimilarity Lung cancer tomography images Elizabeth et al. (2012a) 

Energy Renal cell carcinoma tissue 
images 
Lung cancer tomography images 

Waheed et al. (2007) 
Elizabeth et al. (2012a) 

Entropy Renal cell carcinoma tissue 
images 
Lung cancer tomography images 
Oesophageal cancer images 

Waheed et al. (2007) 
Elizabeth et al. (2012a) 
Ganeshan et al. (2012) 

Correlation Renal cell carcinoma tissue 
images 
Lung cancer tomography images 

Waheed et al. (2007) 
Elizabeth et al. (2012a) 

Uniformity Oesophageal cancer images Ganeshan et al. (2012) 

Multi-resolution 
autocorrelation 

Prostate cancer ultrasound images Han et al. (2007) 

Haralick textural 
features 

Breast cancer cell images Kazmar et al. (2010) 
Muthukarthigadevi et al. (2013) 

Laws’ texture energy 
measures 

Breast cancer mammograms Muthukarthigadevi et al. (2013) 
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by Naik et al. (2007). In addition, Naghdy et al. (2007) use nuclei, to cytoplasm (N/C) ratio, 

diameter of nuclei, shape factor and roundness of nuclei as the features of cervical 

histology image classification, and the nuclei to cytoplasm ratio gives satisfactory 

classification results. Seok et al. (2007) apply clinical knowledge based features (i.e., the 

cancerous region location and shape) for their prostate cancer detection system as these 

features can decrease the false positive rate of the detection system. Qi et al. (2001) use 

the Hough transform characteristic to classify the breast cancer on thermal infrared 

images, whereas Li et al. (2013) apply enhance roughness index (ERI) as a feature for 

breast cancer classification. 

In some research projects, morphological features are combined with other 

features such as statistical and textural features. For example, the combinations of 

morphological and multi-phase intensity features are used as features for the cysts and 

type of renal cancer classification system (Linguraru et al., 2009). Furthermore, 

morphological features (e.g. line length, area fraction, quotient and Euler number) and 

textural features extracted from the nuclei and cell components, are used to classify 

prostate pathological images. Line length is calculated by the ratio between perimeter of 

the pathological objects and area of the whole binary image. Area fraction is computed by 

the ratio between area of the pathological objects and area of the whole binary image (Xu 

et al., 2008). The morphological feature, namely ratio of area eccentricity, is combined 

with textural features and fractal dimension for the renal cell carcinoma tissue 

classification task. The experiment results show that using the ratio of area eccentricity 

feature alone cannot give satisfactory results for the renal cell carcinoma tissue 

classification: therefore, the combined features are necessary for this difficult task 

(Waheed et al., 2007). Filipczuk et al. (2013) also extract twenty-five features, combined 

with statistical, morphological and textural features for fine needle biopsies cytological 

images of breast cancer classification. The experimentation results emphasise the 

combined feature sets, which play an important role for complex cancer image 

classification applications. The morphological features and application domains are 

summarised in Table 2.3. 

 Fractal-based features 

The concept of a fractal is normally associated with geometrical objects satisfying two 

criteria, namely self-similarity and fractional dimensionality. The widely used and accepted 

methods for measuring the fractal dimension are the box-counting, perimeter-stepping 

and pixel dilation methods (Demir & Yener, 2005). Waheed et al. (2007) apply the spectral 

analysis method for measuring the fractal dimension on pathological images and the 

results indicate that the fractal dimension can improve classification performance. Crisan 
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et al. (2007) use the box-counting algorithm to measure fractal dimension on digital 

mammograms, because the fractal dimension is higher in the cancerous area than in the 

benign area. To classify breast cancer ultrasound images, the fractal dimension features, 

extracted by the fractal Brownian motion model, are used as features for breast lesion 

classification on ultrasound images (Kai et al., 2007). 

Table 2.3. The morphological features and application domains. 

Morphological features Application domains Authors 
Area Prostate cancer tissue images 

Fine needle biopsies cytological 
images 

Naik et al. (2007) 
Filipczuk et al. 
(2013) 

Perimeter Prostate cancer tissue images 
Fine needle biopsies cytological 
images 

Naik et al. (2007) 
Filipczuk et al. 
(2013) 

Compactness Prostate cancer tissue images Naik et al. (2007) 
Smoothness Prostate cancer tissue images Naik et al. (2007) 
Shape factor Cervical histology image Naghdy et al. (2007) 
Roundness Cervical histology image Naghdy et al. (2007) 
Nuclei to cytoplasm (N/C) 
ratio 

Cervical histology image Naghdy et al. (2007) 

Enhance roughness index 
(ERI) 

Digital mammograms Li et al. (2013) 

Line length Contrast-enhanced CT of renal 
cancer 
Pathological images 

Linguraru et al. 

(2009) 

Xu et al. (2008) 

Area fraction Contrast-enhanced CT of renal 
cancer 
Pathological images 

Linguraru et al. 
(2009) 
Xu et al. (2008) 

Quotient  Contrast-enhanced CT of renal 
cancer 
Pathological images 

Linguraru et al. 
(2009) 
Xu et al. (2008) 

Euler number Contrast-enhanced CT of renal 
cancer 
Pathological images 

Linguraru et al. 
(2009) 
Xu et al. (2008) 

Ratio of area eccentricity Renal cell carcinoma tissue images Waheed et al. (2007) 
   

 Topological features 

 Topological features are based on the spatial distribution measuring of objects. 

The Voronoi diagrams and Delaunay triangulations can be applied to measure and record 

the relationship between neighbouring objects. Delaunay triangulations focus on the 

number of cells that are connected together, and on the average length of the object 

connections. The characteristics of the tree connection of the Delaunay triangulation can 

be used as topological features (Demir & Yener, 2005). For example, the Voronoi 

Diagram, Delaunay triangulation, minimum spanning tree (MST) and co-adjacency matrix 

are used to describe the spatial distribution of the nuclei (Doyle et al., 2007).  
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2.5. Classification step 

 Classification is the process of categorising or classifying the objects of interest 

and can be divided into statistical approaches and machine learning approaches. The 

statistical classification approaches include Bayesian decision rule, k-nearest neighbour 

classifier, k-means classification and Gaussian Mixture Model (GMM). The machine 

learning approaches are classification approaches based on artificial intelligence 

approaches such as a Naive Bayes classifier (NB), Gentleboost algorithm, Fuzzy 

classifier, Artificial neural network (ANN), Support Vector Machine (SVM), Linear 

Discriminant Analysis (LDA) classifier, Hopfield neural network (HNN), Fuzzy c-Means 

(FCM) clustering algorithm, Case based reasoning (CBR) classification algorithm, self-

organising map neural network, Kernel Fisher discriminant (KFD), Relevance vector 

machine (RVM) and Extreme learning machine (ELM) algorithm. 

 Statistical classification approaches 

 The classification techniques based on statistical approaches are widely used in 

cancer classification in various types of images. Waheed et al. (2007) use multi-class 

Bayesian decision rule to classify between benign and malignant renal cell carcinoma on 

the pathological images. Qi et al. (2001) apply the k-means classifier to classify breast 

cancer regions from thermal infrared images, while Hamdi et al. (2008) apply Fisher’s 

linear discriminant to categorise the normal and abnormal microcalcifications on digital 

mammograms. In addition, the Quadratic Discriminant Analysis (QDA) method is used to 

classify the features of colon cancer in the histological images, and the results indicate 

that QDA gives better results than Fisher’s score (Esgiar et al., 2007). Meng et al. (2008) 

apply a classifier based on similarity measuring (city block) to compute similarity between 

the data values of ovarian cancer samples. This method is selected because the data 

values extracted from samples are binary values. Zheng et al. (2007) develop a breast 

cancer classification application by combining k-means classification with multilayer 

perceptron network, based on the back-propagation algorithm to train and classify the 

data set of benign and malignant regions in ultrasound images. Niwas et al. (2010b) apply 

a k-nearest neighbour classifier to classify between the cancerous and non-cancerous 

cells on cytological images. Petroudi et al. (2013) also use a k-nearest neighbour classifier 

for breast cancer classification. Li et al. (2012a) use a classification method based on 

GMM to classify breast tumour mammographic images. Statistical classification 

techniques are summarised in Figure 2.6. The main challenge is the assumption that the 

samples or features are independent. However, for some applications, the samples or 

features depend on each other (Demir & Yener, 2005). To find the best classifier for 
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breast cancer diagnosis, Filipczuk et al. (2013) compare the classification performance 

between the statistical based k-nearest neighbour classifier with the machine learning 

based classifiers: naive Bayes, decision tree and support vector machine. The results 

show that the machine learning based classifiers perform better than the k-nearest 

neighbour classifier. 

 

Figure 2.6. Statistical classification techniques. 

 Machine learning classification approaches 

  Machine learning classification approaches take advantage of learning from data 

to classify the classes of objects from each other (Demir & Yener, 2005). The support 

vector machine (SVM) is a common supervised machine learning approach applied to 

cancer applications. It is used by Lahmiri et al. (2011) to classify cancerous breast cells, 

by Allwin et al. (2010) in their study of cervical cancer and by Han et al. (2007) and Naik et 

al. (2007) in their analysis of prostate cancer tissues. Xu et al. (2008) and Doyle et al. 

(2007, 2008) have also applied SVM to classify histology image slides, while Yuan et al. 

(2006) have used SVM based on texture only, with acceptable results, though they 

recommend adding more features to improve the classification. Deepa et al. (2012) and 

Kim et al. (2013) use SVM to distinguish between benign and malignant regions in digital 

mammogram images, whereas Torheim et al. (2014) apply SVM to classify MR images of 

cervical cancer.     

To solve the unclassifiable region problems in SVM and to improve the 

performance of the SVM classifier, Xing-li et al. (2008) propose Fuzzy Support Vector 

Machines (FSVM) to classify the different noise levels of digital mammograms of breast 

cancer. The experiments yield better results and decrease the computational cost. 



26 

 

Furthermore, Alolfe et al. (2008) use four classifiers, such as a SVM, k-nearest neighbour, 

neural network and fuzzy classifiers, to classify micro-calcification on digital 

mammography. Due to the small number of samples, the classification results are not 

satisfactory. To improve the classification, Alolfe et al. (2009) apply a new classification 

method, combining a SVM classifier with Linear Discriminant Analysis (LDA) to classify 

the breast cancer in digital mammograms, and the results show that the proposed 

classifier gives greater accuracy than SVM, LDA, and Fuzzy c-Means (FCM) classifiers, 

whereas Kounelakis et al. (2012) apply SVM and Relief-F to classify statistical and 

biological features of brain gliomas.  

As well as SVM, artificial neural networks (ANNs) are widely used for cancer 

applications. They are used by Niwas et al. (2010a) to classify images of breast tissue 

samples and by Karnan & Gandhi (2010) in their study of digital mammograms. Moradi et 

al. (2006) have applied multi-layer perceptron neural networks, based on the back 

propagation algorithm, to classify cancer and non-cancer regions, while Mini et al. (2011) 

apply Probabilistic neural network (PNN) to classify breast cancer in digital mammograms. 

To improve the classification of ANNs, Neofytou et al. (2008) combine PNN with 

SVM, while Zheng et al. (2007) apply a multilayer perceptron network and the k-means 

classification method to classify ultrasound images of tumours. Naghdy et al. (2010) also 

apply ANN and neuro-fuzzy classifiers to a real time brain cancer classification 

application. The results demonstrate that the proposed classifiers give precisie 

classification results. Chui-Mei et al. (2008) combine a Self-Organising Map (SOM) neural 

network with a fuzzy criterion classifier, to classify microcalcification on digital 

mammograms, whereas Elizabeth et al. (2012a) apply a Radial Basis Function Neural 

Network (RBFNN) to classify lung cancer tomography images. The experiment’s results 

show that the proposed method yields 94.44% accuracy.  

A decision tree classifier has also been used in various applications. In the paper 

by Peng et al. (2010a), C4.5 decision tree is applied to classify the cervical nuclei on 

microscopic images. The results demonstrate that the proposed method yields a 

promising accuracy (97.8%). To improve the classification of cervical nuclei on 

microscopic images, Peng et al. (2010b) use a C4.5 decision tree as classifier and F-

score as a feature selection algorithm. The results demonstrate that the computational 

cost can be reduced by F-score.        

Other classifiers have also been applied to cancer classification applications. 

Acosta-Mesa et al. (2005) use the Naive Bayes classifier (NB) to classify cervical cancer 

from colposcopic images. Raman et al., (2010) propose a performance based Cased 

Based Reasoning (CBR) classification algorithm to classify breast cancer in digital 

mammograms. Vani et al. (2010) apply the Extreme Learning Machine (ELM) algorithm to 
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classify the masses in digital mammograms and the results demonstrate that the ELM 

algorithm is not affected by local minima, whereas Yaguchi et al. (2011) apply Linear 

Discriminant Analysis (LDA) to classify biopsy images of stomach cancer. Torrent et al. 

(2010) propose the Gentleboost algorithm, based on the concept that the sum of weak 

classifiers can deliver a strong classifier, and the proposed algorithm improve the 

robustness of the system. Wei et al. (2005) compare the performance of classifiers such 

as SVM, Kernel Fisher Discriminant (KFD), Relevance Vector Machine (RVM) and 

committer machines based on Adaptive Boosting algorithm. The results show that SVM, 

KFD and RVM yield the best performance for microcalcification classification in digital 

mammograms. George et al. (2013) compare four machine-learning based classifiers, 

namely, Multilayer Perceptron (MLP), PNN, Learning Vector Quantisation and SVM for 

breast cancer cytological image classification applications. The results show that the two 

best classifiers of this image type are PNN and SVM. In the paper of Lin et al. (2014), 

Particle Swarm Optimisation (PSO) is applied to classify anomalous areas in digital 

mammograms of breast cancer. The classification techniques based on machine learning 

approaches and the application domains are summarised in Table 2.4. 

2.6. Conclusion 

The review of the literature related to the computational image analysis of cancer 

demonstrates a much research activity, though limited to the study of breast, lung, skin, 

cervical and prostate cancers. The literature covering molar pregnancy is confined to the 

management and care of molar pregnancy (Gul et al., 1997; Khaskheli et al., 2007; 

Sebire, 2010). Common techniques applied in particular to image processing and 

segmentation include either statistical methods or artificial intelligence and machine 

learning approaches. In the study carried out by Yu et al. (2010), the C4.5 decision tree 

yields the most promising accuracy (97.8%) in cervical classification of microscopic 

images. Xiaojing et al. (2006), who apply a set of textural feature vectors and SVM to 

classify skin cancer with 70% accuracy, suggest further investigation to achieve better 

results. This study applies the traditional approach to analyse the cancer images 

consisting of pre-processing, segmentation, feature extraction and classification steps. 

Segmentation is based on fuzzy c-means clustering and HSV colour space as advocated 

by Niwas et al. (2010a) and Doyle et al. (2012) to extract the regions of interest of the 

cancer stained slides. The literature review also shows that knowledge and expert 

heuristics are still unexplored and have not been included in these computational 

approaches. Such expertise has the potential of improving the performance of the 

proposed neural network configuration aimed at classifying cancerous cells into their 

appropriate types. Consequently, this project puts great emphasis on eliciting expert 
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knowledge to guide the system in detecting abnormal cells. It is believed that pathologists’ 

intuitive and tacit knowledge is crucial to guide the novel neural network configuration and 

to enhance the accuracy of the classification system. 

Table 2.4. Classification techniques based on machine learning approaches. 

Classification techniques Application domain Authors 

Support vector machine (SVM) Cancerous breast cells Lahmiri et al. (2011) and 
George et al. (2013) 

 Cervical cancer Allwin et al. (2010) and 
Torheim et al. (2014) 

 Prostate cancer tissues Han et al. (2007) and  
Naik et al. (2007) 

 Histology image slides Doyle et al. (2007, 2008) 
and Xu et al. (2008) 

 Skin cancer images Yuan et al. (2006) 

 Digital mammogram images Deepa et al. (2012) and  
Kim et al. (2013) 

SVM classifier with linear 
discriminant analysis (LDA) 

Digital mammograms Alolfe et al. (2009) 

SVM and Relief-F Brain gliomas Kounelakis et al. (2012) 

Fuzzy support vector machines 
(FSVM) 

Digital mammograms Xing-li et al. (2008) 

Fuzzy classifiers Digital mammography Alolfe et al. (2008) 

Neural network Digital mammography Alolfe et al. (2008) 

 Images of breast tissue 
samples 

Niwas et al. (2010a) 

 Digital mammograms Karnan & Gandhi (2010) 

Multi-layer perceptron neural 
networks 

Prostate cancer images Moradi et al. (2006) 

 Cancerous breast cells George et al. (2013) 

Probabilistic neural network 
(PNN) 

Digital mammograms Mini et al. (2011) 

 Cancerous breast cells George et al. (2013) 

PNN with SVM Gynecological cancer Neofytou et al. (2008) 

Multilayer perceptron network 
and k-means 

Ultrasound images of tumours Zheng et al. (2007) 

ANN and neuro-fuzzy classifiers Brain cancer Naghdy et al. (2010) 

Radial basis function neural 
network (RBFNN) 

Lung cancer tomography 
images 

Elizabeth et al. (2012a) 

Self-organising map (SOM) 
neural network with a fuzzy 
criterion classifier 

Digital mammograms Chui-Mei et al. (2008) 

C4.5 decision tree Cervical microscopic images Peng et al. (2010a) 

C4.5 decision tree as classifier 
and F-score 

Cervical microscopic images Peng et al. (2010b) 

Naive Bayes classifier (NB) Cervical cancer images Acosta-Mesa et al. (2005) 

Cased based reasoning (CBR) Digital mammograms Raman et al., (2010) 

Extreme learning machine 
(ELM) 

Digital mammograms Vani et al. (2010) 

Gentleboost algorithm Skin cancer images Torrent et al. (2010) 

Learning vector quantisation Cancerous breast cells George et al. (2013) 

Particle swarm optimisation 
(PSO) 

Digital mammograms Lin et al. (2014) 
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Chapter 3: Literature Review: Anomaly 

Detection 

 

3.1. Introduction 

The philosophical approach adopted by the study is based on the fact that 

cancerous cells are best understood by analysing anomalies detected in cancer slides. As 

Genest (2001) explains, irregular clinicopathological features are an important for 

scientific study and are utilised by pathologists for supporting their diagnostic classification 

of problematic cancerous cells. This has led to the investigation of anomaly detection 

theory and approaches. Anomaly detection aims to detect data patterns that are irregular, 

or at demonstrating unusual or abnormal behaviour, for example, the detection of unusual 

traffic patterns in computer networks (Kumar, 2005), or uncommon credit card 

transactions (Aleskerov et al., 1997). These irregular data patterns are called anomalies, 

outliers, discordant observations, contaminants, surprises or peculiarities, depending on 

the context of investigation. While most research projects tend to discard these 

irregularities, this study considers them as important and critical to the diagnostic 

classification of cancerous cells. The aims of this chapter are to review current anomaly 

detection approaches in order to select the most appropriate methods for cancer cell 

classification. 

 Anomalies are data patterns that exhibit abnormal behaviour when compared 

against defined normal behaviour. For example, in a simple spatial data set, as shown in 

Figure 3.1, a region (Normal) is considered as a normal region. The points, V, W, X, Y and 

Z, which are far away from a normal region, are considered as anomalies.  

    Noise removal and noise accommodation are related but distinct from anomaly 

detection (Rousseeuw & Leroy, 1987; Teng et al., 1990). They are proposed for removing 

unwanted noise in a data set. Noise is a data pattern of no interest to the study being 

carried out, and tends to obstruct access to the interesting data. Noise removal is a 

process that aims at removing the contaminated data before data analysis techniques are 

applied. Noise accommodation improves statistical model estimation for protecting the 

system from anomalous observations (Huber, 1974). Anomaly detection and novelty 

detection are also related. However, novelty detection aims at finding out previously 

undetected data patterns (Markou & Singh, 2003a; Markou & Singh, 2003b; Saunders & 

Gero, 2000), so the difference between novel patterns and anomalies is that novel 

patterns are not integrated into the model of the system until relevant data patterns are 
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detected. Also anomaly detection focuses on the abnormal data patterns at the beginning 

of the analysis. 

 

 

Figure 3.1. An example of anomaly data in two-dimensional data distribution (Blake & 
Merz, 1998). 

3.2. Challenges 

 Anomalies are data patterns that do not exhibit expected behaviour. An anomaly 

detection approach defines a normal behaviour region and any data pattern that does not 

lie in a normal region is considered anomalous. However, this simple anomaly detection 

approach becomes complex and challenging because of the following factors (Chandola 

et al., 2009):       

 (i) It is difficult to define a normal region that can cover all possible normal 

behaviour data patterns. The imprecise nature of the boundary between normal and 

abnormal behaviour makes the normal region hard to define. Observations close to the 

boundary may be considered as normal behaviour. 

 (ii) Anomalies are also difficult to detect in the detection of criminal or malicious 

behaviour where this is disguised as normal behaviour. So, in this case, defining normal 

behaviour is more difficult because malicious actions by criminals can change over time.    

 (iii) The definition of an anomaly is different depending on the domain. For 

instance, a small deviation in data value in the stock market domain may be considered 

as normal, whereas in the medical diagnosis domain it may be considered as an anomaly. 

So, detection techniques that can operate and yield satisfactory results in one domain 

may not be applicable in other domains.  
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 (iv) The availability of data for anomaly detection systems for training, testing and 

validation is another critical challenge. 

 (v) Noise can be confused with actual anomalies and can make the detection task 

more difficult. So, noise removal techniques that can remove noise and retain the 

anomalies must be cautiously applied. 

 Because of these challenges, anomaly detection is a difficult problem to resolve. 

Most anomaly detection techniques are applied to solve specific problems in specific 

domains. So, when the factors are changed the anomaly detection techniques need to be 

adapted to suit appropriate contexts. Consequently, researchers have applied a variety of 

anomaly detection techniques from different perspectives, some are statistically based 

and others use machine learning, data mining, spectral theory, and information theory, all 

applied in a range of domains from industrial intrusion detection, financial fraud detection, 

to medical diagnostic detection.  

 

3.3. Fundamental approaches of anomaly detection  

  This section describes the relevant factors that need to be taken into consideration 

when developing appropriate anomaly detection systems. The relevant factors consist of 

the nature of input data, data labels, types of anomalies and the output of anomaly 

detection.   

 

3.3.1. Nature of input data 

 The nature of input data is an important issue in anomaly detection techniques. 

Input can include sets of collection data such as points, objects, records, patterns, 

vectors, events, samples, cases, entities and observations (Tan et al., 2005).  A set of 

attributes can be used to describe each set of collection data. These attributes can be 

classified into three types: binary, categorical and continuous.  

 Sets of data can be involved with others; for example, sequence data are sets of 

data that are ordered by linear function, such as data recorded in time-series, sequences 

of genome data and sequences of protein data. In addition, spatial data are sets of data 

related to neighbours in a spatial domain, such as traffic data and ecological data. Graph 

data includes sets of data connected by a graph relationship.   

3.3.3. Data availability 

Anomaly detection can deal with unusual data patterns in real-world problems, and 

new types of data: normal and anomalous classes need, to be defined before further 

analysis can take place (Dunning & Friedman, 2014).    
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Data labels are applied to mark a data sample whether it is in a normal or 

anomalous class. The labelling process is expensive and normally undertaken by an 

expert. In addition, this process takes time and several attempts to get labelled data for 

training processes. In general, in anomaly labelling tasks, a set of anomalous data is more 

difficult to label than a set of normal data because (i) accessing all possible types of 

anomalous behaviour is a challenge, (ii) anomalous data patterns are often dynamic in 

nature, and (iii) new anomalies may arise for which no training data is labelled and 

available (Chandola, 2009). In addition, when new anomalous data this needs to be 

labelled and added to a set of anomalous data. Anomaly detection can be categorised into 

three modes based on the available labels of samples, described below. 

 Supervised anomaly detection 

 The anomaly detection techniques that train the data set in a supervised mode are 

called supervised anomaly detection techniques. These techniques assume that a training 

data set of normal classes and anomalous classes are both available. Therefore, the 

system is trained by both normal and anomalous classes. Two major issues need to be 

considered when supervised anomaly detection is applied. First, the unbalanced in class 

distribution makes the training process more difficult; the population in the anomalous 

class is usually smaller than that for the normal class. This issue also occurs in data 

mining and machine learning application domains. Second, the accuracy and 

representative labels in an anomalous class are difficult to obtain.        

 Semi-supervised anomaly detection 

 The anomaly detection techniques that train the data set in a semi-supervised 

mode are called semi-supervised anomaly detection techniques. These techniques 

assume that, in a training data set, only a normal class is labelled and an anomalous class 

is not. Therefore, the system is only trained with a normal class. These techniques can be 

applied to a wider range of applications than supervised anomaly detection techniques. 

 Unsupervised anomaly detection 

 The anomaly detection techniques that do not train the data set are called 

unsupervised anomaly detection techniques. These techniques assume the values of 

normal data are far away, in term of geometrical distance, from the values of anomalous 

data, and distant enough to classify by the classification techniques. Thus, the system can 

operate without a training process. However, these techniques may have a high false 

alarm rate when the boundaries of normal and anomalous classes cannot be clearly 

distinguished.     
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3.3.2. Types of anomalies 

 Anomalies can be categorised into three categories: point anomalies, contextual 

anomalies and collective anomalies. 

 Point Anomalies 

 A point anomaly is a data sample with different individual characteristics from the 

rest of samples. For example, points V, W, X, Y and Z in Figure 3.1 are considered 

anomalous, due to their position and distance with respect to the region labelled “Normal”. 

In financial transactions the exceptionally high amount spent on a recurring item can be 

considered as a point anomaly.    

 Contextual Anomalies 

 A contextual anomaly is a data sample considered to be anomalous in a specific 

context. This type of anomaly is also referred to as conditional (Song et al., 2007). Two 

types of attributes are identified: contextual and behavioural attributes. Contextual 

attributes are attributes defined for the neighbourhood or the context of a sample of data; 

for instance, the longitude and latitude of a location or the position in x-axis and y-axis are 

the context attributes in spatial domains. Behavioural attributes are those determined by 

non-contextual characteristics. For example, in a dataset of the average world rainfall in a 

given year, a behavioural attribute is the amount of rainfall at a specific location, whereas 

the longitude and latitude of a rainfall location are its contextual attributes.  

 Collective Anomalies 

 A collective anomaly is a collection of data that is different from the entire data set. 

Some data samples are not considered an anomaly as individual data values, but when 

collected together, may be considered as a collective anomaly. For example, in the 

human electrocardiogram output  shown in Figure 3.2 (Dunning & Friedman, 2014), the 

samples of data between 1206 and 1210 in the x-axis are collective anomalies because 

they remain at the same at low value for long time.  
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Figure 3.2. Collective anomaly samples in a human electrocardiogram output (Dunning & 

Friedman, 2014; 13). 

3.3.4. Output of anomaly detection   

 An important issue in anomaly detection is how to report the results. The traditional 

outputs, which are given by anomaly detection techniques, can be categorised into types: 

scores and labels.   

 Scores 

 Scoring techniques are applied to assign the anomaly score to each data sample. 

The anomaly score depends on the degree to which a data sample is considered an 

anomaly. Users or the system can select a certain number of the more significant 

anomalies to analyse, or can select the interesting anomalies by using a threshold. 

 Labels 

 Labelling are techniques that assign a label to an instance as normal or 

anomalous. The user can use a threshold to select the interesting anomalies when 

scoring techniques are applied. On the other hand, label techniques do not allow the user 

to control directly the outputs, so the user needs to control the labelling process indirectly 

by changing the parameters in each technique.  

3.4. Anomaly detection techniques  

  In this section, various techniques applied to detect anomalies are described. The 

techniques are based on statistical, machine learning, information theoretic and spectral 

approaches.   
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3.4.1. Statistical anomaly detection techniques 

  Statistical techniques are the primary means whereby anomalies are detected 

(Hodge & Austin, 2004). Statistical techniques assume that in a given stochastic model 

anomalies appear in its regions with low probability, whereas normal data instances 

appear with high probability. Parametric and nonparametric techniques are both applied to 

fit a statistical detection model. These two techniques are discussed in the next two 

sections. 

3.4.1.1. Parametric techniques 

 The evaluation time of parametric techniques is fast when the techniques are used 

to test a new data instance, and these techniques are appropriate for large data sets.   

Parametric techniques are based on the assumption that normal data can be generated 

by a parametric distribution calculated by a probability density function  𝑓(𝑥, 𝛩) where 𝛩 is 

estimated from the given data and 𝑥 denotes an observation. The anomaly score of each 

observation 𝑥 can be computed by the inverse of the probability function. Sometimes, 

another statistical hypothesis test based on discordancy test might be used (Barnett & 

Lewis, 1994). If the statistical test rejects the null hypothesis, then the observation  𝑥 is 

declared anomalous. Parametric techniques can be classified into three sub-groups as 

follows:    

-  Gaussian model 

 Some techniques are based on the assumption that the data is generated from a 

Gaussian distribution. Maximum likelihood estimates (MLE) are used to calculate the 

distance between the estimated mean and a data instance, and used as the anomaly 

score for that instance. Shewhart (1931) proposes a basic outlier detection technique for 

his quality control domain application. This technique defines the data instances that are 

more than  3𝜎 from the mean 𝜇, as outliers. Another simple statistical technique is the box 

plot rule technique, which is applied to detect both univariate and multivariate anomalies 

in medical domain applications (Laurikkala et al., 2000; Horn et al., 2001; Solberg & Lahti, 

2005), and in the data of turbine rotors (Guttormsson et al., 1999). A box plot depicts 

graphically the data using summary attributes in quartiles.  

 Grubbs’ test (known as the maximum normed residual test) is based on the 

assumption that data is generated by a Gaussian distribution, and this test is applied to 

detect anomalies in a univariate data set (Grubbs, 1969; Stefansky, 1972; Anscombe & 

Guttman, 1960). The standard deviation and mean are calculated and a Z  score (i.e. a 

standard score) for each test data instance is declared an anomaly if 
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where 𝑁 is the size of the data and  𝑡𝛼/(2𝑁),𝑁−2
2  is defined as a threshold for separating the 

anomalous and normal data instances. Laurikkala et al. (2000) apply the Grubb’s test to 

multivariate data and reduce multivariate data samples to univariate scalars using the 

Mahalanobis distance, which is a measure of the distance between a point and a 

distribution. This distance is calculated by the following equation:  
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Where  𝑥 and  �̅� are a test data instance and the mean of the sample, respectively, and  𝑆 

is the variance-covariance matrix of the sample. Other approaches using variants of 

Grubbs’ test are applied to deal with multivariate data sets (Aggarwal & Yu, 2001; 2008; 

Laurikkala et al., 2000). Shekhar et al. (2001) apply the test to handle graph-structured 

data and Sarawagi et al. (1998) propose online analytical processing (OLAP) data cubes. 

Surace & Worden (1998) and Surace et al. (1997) apply the t-test to detect damages in 

the structure of beams.  

-  Regression model 

Regression model, based anomaly detection techniques, has been extensively 

explored in time series data (Abraham & Chuang, 1989; Abraham & Box, 1979; Fox 

1972). The traditional regression model involves two steps. First, the data is used to fit a 

regression model. Second, the residual of each data instance, which cannot be fitted by a 

regression model, is used to determine the anomaly score.  

Anomalies in the training data can affect the regression model and give inaccurate 

results. To solve this problem, Rousseeuw & Lerory (1987) proposed a robust regression 

to deal with anomalies when fitting a regression model, whereas Bianco et al. (2001) and 

Chen et al. (2005) proposed Autoregressive Integrated Moving Average (ARIMA) models, 

based on a similar approach to robust regression. Tsay et al. (2000) improved ARIMA 

models using a variant to operate in multivariate data, and to develop ARMA further 

Galeano et al. (2004) transformed the multivariate time series to a univariate time series 

by linearly combining the multivariate time series components. 

-  Hybrid approach 

 These techniques are based on modelling the data using a mixture of parametric 

statistical distributions. These techniques can be categorised into two groups. The first 

group uses the mixture of parametric distributions to model both normal and anomalous 
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data instances. It is concerned with classifying the data instance into normal or anomalous 

distributions. Abraham & Box (1979) propose the technique using the assumption that 

normal data is generated from a Gaussian distribution (𝑁(0, 𝜎2)) while the anomalies, 

calculated from a Gaussian distribution, have larger variance (𝑁(0, 𝑘2𝜎2)) than normal 

data with the same mean. The same labelling techniques, using the Grubbs’ test on both 

normal and anomalous data, are used by Lauer (2001), Eskin, (2000) Abraham & Box 

(1979), Box & Tiao (1968) and Agarwal (2005).  The second group of techniques 

generates a mixture model of the normal instances. So, the data instances that cannot be 

classified into the trained models are defined as anomalies. Agarwal (2006) uses 

Gaussian mixture models to create a model of the normal data instances. This second 

group has been applied by Hickinbotham & Austin (2000a) and Hollier & Austin (2002) to 

detect airframe strain data, by Spence et al. (2001) and Tarassenko (1995) to detect 

anomalies in mammographic images, to detect network intrusion (Yamanishi & Takeuchi, 

2001; Yamanishi et al., 2004) and in biomedical signal data (Roberts & Tarassenko, 1994; 

Roberts, 1999; 2002). Byers & Raftery (1998) use a mixture of Poisson distributions to 

create the model of normal data instances for anomaly detection. 

3.4.1.2. Nonparametric techniques 

 Nonparametric techniques detect anomalies based on nonparametric statistical 

models and on assumptions regarding the data, for example smoothness or density, to 

create the model. Nonparametric techniques can be categorised into two sub-groups as 

follows: 

-  Histogram 

 Histogram based techniques use histograms to represent data instances, based 

on frequency or counting. Histogram based techniques are commonly used to detect fraud 

(Fawcett & Provost, 1999) and intrusion detection (Eskin, 2000; Eskin et al., 2001; 

Denning, 1987). The simple histogram based anomaly detection technique for univariate 

data can be categorised into two steps. First, a histogram is built on the different values of 

the training data features. Second, the test instance is tested by the built histogram. The 

test instance is declared an anomaly if the instance does not fall into any bin of the built 

histogram. An anomaly score for each instance is computed by a variant of the frequency 

(height) of the bin in which it falls. The key to the performance of a histogram based on 

anomaly detection technique is the size of the bin. If the size of the bins is too small the 

technique will give a high false alarm rate, and if the size of the bins is too large, the 

technique will give a high negative rate. For this reason, the optimal size of the bins is a 

challenge in this histogram technique. 
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 This technique is also applied to multivariate data to detect anomalies in various 

applications, such as in system call intrusion data (Endler, 1998), network intrusion 

detection (Ho et al., 1999; Yamanishi & ichi Takeuchi, 2001; Yamanishi et al., 2004), 

structure damage detection (Manson, 2002; Manson et al., 2001; 2000), web-based attack 

detection (Kruegel & Vigna, 2003; Krügel et al., 2002), text data detection (Allan et al., 

1998), fraud detection (Fawcett & Provost, 1999). Packet Header Anomaly detection 

(PHAD) and Application Layer Anomaly Detection (ALAD) are a variant of the simple 

histogram technique used in network intrusion detection (Mahoney & Chan, 2002) and 

online wireless sensor network anomaly detection (Xie et al., 2012).   

-  Kernel function 

 Kernel functions based on anomaly detection techniques are related to a non-

parametric technique and apply probability density estimation, called Parzen windows 

estimation (Parzen, 1962). The difference between a kernel function-based technique and 

Parzen windows estimation is the way density is estimated. A semi-supervised statistical 

technique, based on kernel functions is introduced to find anomalies (Desforges et al., 

1998). A test data instance located in the low probability area is classified as an anomaly. 

Chow & Yeung (2002) use this technique in network intrusion detection applications, while 

Bishop (1994) applies it for novelty detection in oil flow data instances. Tarassenko (1995) 

uses a similar technique for a mammographic image analysis application. 

3.4.2. Machine learning based anomaly detection techniques 

Machine learning is a means of learning a model (classifier) from a set of labelled 

data (training sets). Then, the trained classifier is then used to classify the unknown data 

sets into the classes of the learned model. In the training step, these techniques learn a 

model using the available labelled data, and then, a set of test data is classified into 

normal or anomalous class by the classifier in the testing step. The assumption of 

machine learning based anomaly detection techniques is that a classifier can be trained 

by features from a feature space to classify between normal and anomalous classes. The 

learning steps of machine learning based anomaly detection techniques are illustrated in 

Figure 3.3.  

 Neural networks 

Stefano et al. (2000) and Odin & Addison (2000) divide a neural networks-based 

anomaly detection technique into two steps. First, a set of normal data is fed to a neural 

network that learns the difference between normal classes. Second, the trained neural 

network is applied to classify the test input. If the classification system accepts the input, 
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the input data is categorised into normal classes and if the network rejects the input data 

then it is categorised into an anomalous class.  

    

Figure 3.3. Machine learning based anomaly detection techniques (Thottan et al., 2010). 

Hawkins et al. (2002) and Williams et al. (2002) apply Replicator Neural Networks 

to detect anomalies. A multi-layer feed forward neural network is generated and used to 

train the data using three hidden layers. Multi layered percreptrons (MLPs) are used for 

anomaly detection in various application domains, such as satellite imagery (Augusteijn & 

Folkert, 2002), digit recognition (Cun et al., 1990), Cushing's syndrome data (Sykacek, 

1997), intrusion detection (Ghosh et al., 1999; 1998), fraud detection in mobile phone 

networks (Barson et al., 1996), jet engine vibration data (Nairac et al., 1997) and airframe 

strain data (Hickinbotham & Austin, 2000b). The reliable comparisons of neural networks 

such as MLPs, Gaussian MLP (GMLP) and radial basis function (RBF) networks are 

studied in the paper of Vasconcelos et al. (1995; 1994). The studies show that RBF is the 

most reliable among three networks for two dimensional synthetic data. In addition, 

Martinez (1998) proposes neural competitive learning trees to identify novelty in a driving 

performance overtime data set, and the proposed method yields better performance than 

other methods (standard competitive learning (standard CL) and frequency sensitive 

competitive learning (FSCL)).  

Auto-associative networks are also applied to detect anomalies in diverse research 

areas, for example, novelty detection in dynamic behaviour (Aeyels, 1991), syntactic data 

(Byungho & Sungzoon, 1999; Ko & Jacyna, 2000; Song et al., 2001), helicopter gearbox 

fault detection (Japkowicz et al., 1995), standard Reuters data (Manevitz & Yousef, 2000), 

motor failure detection (Petsche et al., 1996), synthetic data of hard disk drives (Sohn et 

al., 2001), turbine generator rotors (Streifel et al., 1996), network hub CPU usage data 

(Thompson et al., 2002), damage of structure (Worden,  1997) and motor vibration data 

(Diaz & Hollmen, 2002). Instead of using auto-associative networks, Moya et al. (1993) 

apply an adaptive resonance theory based technique to identify anomalies in satellite 
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images, whereas Dasgupta & Nino (2000) use this technique for a network intrusion 

detection application. Caudell & Newman (1993) also apply the adaptive resonance theory 

based technique to detect anomalies in time series and databases. Albrecht et al. (2000) 

use a technique based on radial basis function for anomaly detection in a speech 

recognition application, while Bishop (1994) applies this technique to identify anomalies in 

oil flow data instances. Radial basis function-based techniques are also applied to detect 

anomalies in various applications, such as military aircraft (Brotherton & Johnson, 2001), 

a diesel engine cooling system (Li et al., 2002), jet engine vibration data (Nairac et al., 

1999; 1997), a credit card fraud detection application (Ghosh & Reilly, 1994), and fault 

detection in the automotive industry (Jakubek & Strasser, 2002). 

Anomaly detection techniques based on Hopfield networks are used in various 

applications. For instance, Jagota (1991) uses Hopfield networks to detect anomalies in 

large memory collections, whereas Crook & Hayes (2001) and Crook et al. (2002) apply 

the networks to detect novelty in robot behaviour. Addison et al. (1999) study the effect of 

feature extraction to novelty detection by Hopfield networks, while Murray (2001) applies 

the networks to embedded systems.  

Oscillatory networks are other networks used to detect anomalies. Ho & Rouat 

(1997; 1998) apply the oscillatory networks to detect a novelty in digit number datasets 

and the results indicate that the proposed method is better than Hopfield and 

backpropagation networks. Kojima & Ito (1999) also apply the oscillatory networks to 

identify novelty in character patterns. Borisyuk et al. (2000) propose sparse distributed 

memory neural networks based on oscillatory networks. The proposed method is tested 

with syntactic data and the results show that the networks can detect novelty in the 

storage of input signals. Martinelli & Perfetti (1994) apply a cellular neural network (CNN) 

based on oscillatory networks to identify novelty in two-dimensional syntactic data. The 

results show that the proposed method is robust to noise, but further experiments need to 

be carried out to verify the method.  

 Bayesian networks 

Bayesian networks are used to evaluate a set of normal and anomalous classes. 

The probabilities estimated by a Bayesian network indicate whether the test data belongs 

to a normal or anomalous class. This technique is applied to detect network intrusion 

(Barbara et al., 2001; Sebyala et al., 2002; Valdes & Skinner, 2000; Mingming, 2000; 

Bronstein et al., 2001), anomaly in text data (Baker et al. 1999) and outbreaks (Wong et 

al., 2002; 2003). Mascaro et al. (2014) apply static and dynamic Bayesian network models 

to detect anomalies in vessel tracking applications. The overall performance of combined 

models is better than using a static or dynamic model alone. Dereszynski & Dietterich 
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(2007) also apply a dynamic Bayesian network model for anomaly detection in remote 

sensors.  

 Support vector machines 

 Ratsch et al. (2002) apply SVM based on a one-class learning technique to learn 

the training boundary of data sets. The common radial basis function (RBF) is used as the 

Kernel of SVM. In the testing phase, the input data sets are fed to the classification 

system. If the system accepts the input, the input data is classified into the normal class 

and if the network rejects the input data, it is categorised as the anomalous class. SVM 

based on anomaly detection techniques are applied to detect audio signal data (Davy & 

Gosil, 2002), to intrusion detection systems (Eskin et al., 2002). King et al. (2002) 

proposed a novelty detection method based on SVM in power generation plants, whereas 

Catania et al. (2012) apply an autonomous labelling approach to label well-known attacks 

to improve the performance of a novelty detection system based on SVM. Görnitz et al. 

(2013) integrate an automatic filter to SVM to enhance the performance of a network 

intrusion detection system, whereas Song et al. (2013) modify a filtering process to 

improve SVM performance of an intrusion detection application. Song et al. (2002) 

proposed a robust support vector machines (RSVM) to identify the anomalies in training 

data sets.  Instead of applying RSVM to improve training sets, Hu et al. (2003) implement 

the RSVM to detect anomalies in intrusion detection systems, and the results show that 

the RSVM achieves a better accuracy and lower false alarms than a nearest neighbour 

based method.  

 Rule-based approach 

 The steps of a basic rule-based technique can be separated into two stages. First, 

a set of normal data is used to train a rule learning algorithm, namely decision trees 

and/or RIPPER with associated confidence values (Paredes-Oliva et al., 2012). Second, 

the classification system uses these rules to classify the test input. The anomaly score is 

based on the inverse of the confidence associated with the best rule. Agrawal & Srikant 

(1995) use association rule mining for anomaly detection classification with an 

unsupervised mode to create the rules from customer transaction data, whilst Tan et al. 

(2005) apply a support threshold to improve the robustness of the generated rules. 

Association rule mining techniques are used by Mahoney & Chan (2002; 2003) for 

intrusion detection, Lee et al. (2000) apply the technique in system call intrusion detection, 

whereas Brause et al. (1999) apply them to detect credit card fraud and Yairi et al. (2001) 

for fraud detection in spacecraft housekeeping data. 
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3.4.3. Other approaches 

3.4.3.1. Nearest neighbour-based anomaly detection techniques 

 The nearest neighbour based anomaly detection techniques assume that 

anomalies occur far from their nearest neighbours, whereas normal data group in 

neighbourhood. These techniques need distance or similarity measurement tools to 

measure distance or similarity between two data sets. Euclidean distance is typical for 

continuous data. Nevertheless, for other types of data, Boriah et al. (2008) and Chandola 

et al. (2008) use a simple matching coefficient and more sophisticated distance measures 

for categorical data. For multivariate data, Tan et al. (2005) compute distance and 

similarity for each data attribute and combine distance or similarity together. Nearest 

neighbour based anomaly detection techniques can be categorised into two major groups:  

 Techniques that calculate the anomaly score using the distance between 

a data set and its kth nearest neighbour.  

Byers & Raftery (1998) use this technique for land mines detection on satellite 

ground images, and Guttormsson et al. (1999) use this for anomaly detection in DC field 

windings of large synchronous turbine generators. To improve the performance of this 

basic technique, various approaches are proposed. The anomaly score of a set of data is 

calculated by the sum of the distances with its k-nearest neighbours (Eskin et al., 2002; 

Angiulli & Pizzuti, 2002; Zhang & Wang, 2006), and is used in peer group analysis in 

credit card fraud detection (Bolton & Hand, 1999), whereas Knorr et al. (2000) propose a 

different way of computing the anomaly score by counting the number of nearest 

neighbours that are at a defined distance. Om & Kundu (2012) combine k-means, k-

nearest neighbour and Naive Bayes to reduce the false alarm rate of intrusion detection 

systems. Xie et al. (2013) apply k-nearest neighbours based on hypergrid intuition to 

detect anomalies in wireless sensor networks (WSNs) and which solves a lazy learning 

issue of the traditional k-nearest neighbours for WSNs anomaly detection. 

 Techniques that calculate the anomaly score using the relative density of 

each data set. 

The data instance located in a low-density neighbourhood is classified into an 

anomalous class, and the data instance located in a high-density neighbourhood is 

classified into a normal class.  The disadvantage of this technique is that it operates 

unsuccessfully in regions with varying density. In Figure 3.4, the data instance p1 is 

detected as an anomaly but the instance p2 will not be detected, because the low density 

of the cluster C1 makes the distance between the instances in the cluster C1 greater than 

the distance between p2 and the instances in the cluster C2. Nevertheless, the instance p2 

might be considered as an anomaly because the distance is greater than the instances in 
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both the C1 and C2 clusters. To solve the low density problem, Breunig et al. (1999; 2000) 

propose a local outlier factor (LOF) that can compute the ratio of the average local density 

of the k-nearest neighbours of an instance and the data instance local density. With LOF 

the number k of k-nearest neighbours is divided by the size of the defined hypersphere, 

whereas COF (connectivity based outlier factor) estimates densities by the shortest path 

of neighbours (Tang et al., 2002). COF can capture some regions better than LOF, for 

example, the straight line, as shown in Figure 3.5. Hautamaki et al. (2004) propose outlier 

detection using in-degree number (ODIN), a simple version of LOF and the anomaly score 

of the instance can be computed by the inverse of ODIN. Papadimitriou et al. (2002) 

introduce Multi-Granularity Deviation Factor (MDEF) that uses the variance of LOF as the 

density value of the data instance and the inverse of the standard deviation is defined as 

the anomaly score. 

 

 

Figure 3.4. Advantages of local density-based techniques over global density-based 

techniques (Chandola et al., 2009; 15:25). 

 

 

Figure 3.5. Difference between the neighbourhoods computed by LOF and COF 

(Chandola et al., 2009; 15:25). 
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3.4.3.2. Clustering 

 The major difference between clustering-based and nearest neighbour-based 

techniques is that nearest neighbour-based techniques evaluate each data instance 

relative to its local neighbour data instances, whereas clustering-based techniques 

validate each data instance relative to the cluster that the instance belongs to.  

Clustering is applied to categorise data instances that have similar characteristics 

or behaviour into groups or clusters. Basu et al. (2004) extend one technique from an 

unsupervised technique to semi supervised clustering. Clustering based anomaly 

detection techniques can be categorised into three groups. 

 The first group of clustering based techniques depends on the assumption that 

anomalies cannot be categorised into any cluster, while normal data instances can be 

categorised into a cluster. Ester et al. (1996) propose an algorithm based on this 

assumption and this algorithm is called DBSCAN. Guha et al. (2000) propose the ROCK 

algorithm and Ertoz et al. (2003) propose SNN clustering. Yu et al. (2002) develop the 

FindOut algorithm extended from the WaveCluster algorithm (Sheikholeslami et al., 1998). 

The primary objective of these techniques is to find clusters, and not to detect anomalies. 

 The second group of clustering based techniques depends on the assumption that 

anomalies are located far from the closest cluster centroid, whereas normal data 

instances are located close to the closest cluster centroid. The techniques relying on this 

assumption can be divided into two steps. First, a clustering algorithm is applied to 

categorise the data. Second, the distance to the closest centroid of each data instance is 

computed and used as the anomaly score. Anomaly detection techniques based on this 

assumption are widely used. Smith et al. (2002) apply k-means clustering, self-organising 

maps (SOM) and expectation maximisation (EM) to categorise training data, and used the 

clusters to categorise the test data. Kohonen (1997) uses SOM based on anomaly 

detection in semi-supervised mode for the classification system. In addition, Labib & 

Venuri (2002), Smith et al. (2002) and Ramadas et al. (2003) apply the SOM technique to 

intrusion detection application domains, whereas Harris (1993), Ypma & Duin (1998) and 

Emamian et al. (2000) use the SOM technique for fraud detection applications. 

Furthermore, to deal with sequence data, various techniques are proposed (Blender et al., 

1997; Bejerano & Yona, 2001; Vinueza & Grudic, 2004; Budalakoti et al., 2006). 

 However, the techniques in the second group are unable to detect the anomalies 

that form clusters by themselves. So to solve this problem, the third group of clustering 

based anomaly techniques has been introduced. This group depends on the assumption 

that anomalies lie in sparse clusters while normal data instances lie in large and dense 

clusters. Therefore, clusters that have a smaller size or less density than the defined 

threshold are anomalous. He et al. (2003) define an anomaly score, called Cluster-Based 



45 

 

Local Outlier Factor (CBLOF) using the FindCBLOF technique. This score measures the 

size of the cluster as well as the distance of a data instance from the centroid of its 

cluster. To improve the performance of the previous techniques, Eskin et al. (2002) and 

Portnoy et al. (2001) apply fixed width clustering, called a linear time approximation 

algorithm. They define the width of clusters by a user-specified parameter, whereas 

Mahoney et al. (2003) define the width  of clusters from the data. The k-d trees based 

anomaly detection techniques are used to segment the linear time data in astronomical 

datasets (Chaudhary et al., 2002) and the modified k-d trees technique using the partition 

hyperplane method (namely special cut) is applied to separate data into clusters.      

     

3.4.3.3. Information theoretic approach 

 The information content of a data set is analysed by information theoretic 

techniques, which use different measures, for example, Kolmogorov complexity, entropy 

and relative entropy. Kolmogorov complexity refers to the shortest object descriptive code 

and can be used to describe an object, whereas entropy is an uncertainty measure of a 

random variable, and relative entropy is a distance measure of two probability 

distributions. Information theoretic anomaly detection techniques are based on the 

assumption that the irregularity information content of the data set is influenced by 

anomalous data in the data set. These techniques compute the complexity C  of a data 

set D . It finds the minimal subset of instances, I , that maximise the following equation: 

)()( IDCDC   

The data instances in the subset are declared to be anomalies. Various measuring 

methodologies of the complexity of a data set )(C  are proposed Li & Vitanyi (1993) 

introduced Kolmogorov complexity, which was used by Arning et al. (1996) to measure 

the size of the regular expression, and by Keogh et al. (2004) to measure the size of the 

compressed data. Other measuring theories, such as entropy and relative uncertainty, 

have also been applied (Lee & Xiang, 2001; He et al., 2005; 2006; Ando, 2007). He et al. 

(2006) apply a Local Search Algorithm (LSA) to estimate a subset of linear data and use 

entropy to measure the complexity, whereas Ando (2007) applies the same technique to 

measure the complexity of information bottleneck data 

 Lin et al. (2005), Chakrabarti et al. (1998) and Arning et al. (1996) apply the 

information theoretic technique to sequential data, whereas Noble & Cook (2003) apply 

this technique to graph data. Additionally, Lin & Brown (2006) apply spatial data. The key 

challenge of information theoretic based anomaly detection techniques is the optimal size 

of the substructure that can give satisfactory results. 



46 

 

3.4.3.4. Spectral anomaly approach 

Spectral anomaly detection techniques estimate the data by using a combination 

of attributes that can take the volume of unsteadiness in data. These techniques are 

based on the assumption that normal data instances appear differently from anomalies 

when data are embedded to a lower dimensional subspace but anomalous data instances 

show different results.  

Principal component analysis (PCA) is a typical Spectral anomaly detection 

technique. Robust PCA (Huber, 1974) is applied to calculate the principal components 

from the normal training data covariance matrix (Shyu et al., 2003). An anomaly score can 

be computed by using their distance from the principal components.  

Spectral anomaly detection based on robust PCA is used for the network intrusion 

detection application domains (Shyu et al., 2003; Lakhina et al., (2005); Thottan & Ji, 

2003), whereas Fujimaki et al. (2005) apply this technique to detect anomalies in 

spacecraft components. Lee et al. (2013) propose an over-sampling principal component 

analysis (osPCA) algorithm to deal with two-dimensional synthetic data and real-world 

data sets, and the results show that osPCA achieves better accuracy and efficiency than a 

traditional PCA. Jolliffe (2002) apply PCA to project data into a subspace, whist Parra et 

al. (1996) use the projection of data instances that are the results of PCA to distinguish 

between normal and anomalous data. Dutta et al., (2007) also apply this method for 

anomaly detection in astronomy catalogues.  

 Sun et al. (2007) implement an anomaly detection technique using Compact 

Matrix Decomposition (CMD) to identify anomalies in a sequence of graphs. The proposed 

method uses the estimated errors as criteria for anomaly detection. A spectral technique 

is also applied to detect anomalous data in a time series of graphs (Ide & Kashima, 2004). 

3.5. Anomalies Detection Issues 

 Based on the above review of current anomaly detection methods, it is important 

to identify their strengths as well as their limitations before deployment. 

One of the key aspects of anomaly detection techniques that it is necessary to 

consider is the computational complexity. Machine learning and statistical techniques 

require expensive training times, but in the testing stage, the techniques often operate 

rapidly. These two types of anomaly detection techniques can be usually trained in an 

offline mode and the test data instances can be tested in a real-time. On the other hand, 

nearest neighbour-based, information theoretic and spectral techniques do not require a 

training process but these techniques have expensive testing times.  
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 To detect anomalies in complex data sets, nearest neighbour and clustering 

approaches cannot cope with a high dimensionality, because their distance measures 

cannot distinguish normal from anomalous instances. Spectral techniques perform well 

because they can map high dimensionality data to lower dimension. Machine learning 

techniques require labels for normal and anomaly instances, which are difficult to get.  

Generally, anomaly detection techniques are based on the assumption that anomalies 

rarely occur in data sets. However, this assumption is not always true for some 

applications, such as worm detection in computer networks, because the worm traffic 

anomalies are more frequent than the normal traffic. So, unsupervised techniques are 

difficult to operate in this case, whereas supervised and semi-supervised techniques 

perform well in detecting bulk anomalies (Sun et al., 2007; Soule et al., 2005).  

3.6. Applications of anomaly detection 

 Anomaly detection is applied to many applications such as intrusion detection, 

fraud detection, industrial damage detection, medical and public health anomaly detection 

applications. This section focuses primarily on medical image processing applications. 

 

3.6.1. Medical and public health anomaly detection 

In medical and public health application domains, anomaly detection techniques 

operate with the patient records, such as abnormal patient conditions, errors of 

instruments and errors of recording, focusing on data related to age of patients, blood 

types and weights. Wong et al. (2003) use a contextual anomaly detection method based 

on a Bayesian network for disease outbreak detection, whereas Lin et al. (2005) apply 

collective anomaly detection techniques to detect anomalies in Electrocardiograms (ECG) 

and Electroencephalograms (EEG). On the other hand, Li et al. (2012b) use k-nearest 

neighbours to detect anomalies in ECG and to visualise and analyse the ECG signals. 

Salem et al. (2013) apply the anomaly detection method based on Haar wavelet 

decomposition and Hampel filters to identify anomalies in online medical wireless sensor 

data, achieving high accuracy and reducing false alarm rates. Neural networks are applied 

to explore the detection of possible breast lesions in medical digital imaging (Ferrero et 

al., 2006), to detect signs of acute myocardial infarction (AMI) in ECGs. Burke et al. 

(1995) conclude that the prediction accuracy of neural networks was more accurate than 

statistical methods in predicting 5-year survival of 25 cases used in their study. Hauskrech 

(2007) investigate probabilistic models such as Bayesian networks to detect unusual 

patient-management decisions. Their aim is to develop computational tools using 

collected patient data to detect unusual patient-management patterns that can eventually 



48 

 

alert clinicians to unusual treatment choices. Babbar & Chawla (2010) propose Bayesian 

networks as a technique to capture real outliers and represent causal knowledge of two 

medical domains: hepatitis and breast cancer. Churilov et al. (2005) describe a clustering 

method to extract risk-grouping rules for prostate cancer patients making use of the 

patient’s age, tumour stage, Gleason score, and PSA level.  Goldstein & Dengel (2012) 

present an unsupervised histogram-based anomaly detection algorithm to model 

univariate feature densities using histograms with a fixed or dynamic bin width. These 

histograms are used to compute an anomaly score for each data instance from the breast 

cancer data set. They conclude that the Histogram-based Outlier Score (HBOS) is up to 5 

times faster than clustering based algorithms and up to 7 times faster than nearest-

neighbour based methods. 

3.6.2. Image processing related applications 

Anomaly detection techniques are applied in various types of static images, for 

example, satellite imagery (Augusteijn & Folkert, 2002; Byers & Rafter, 1998; Moya et al., 

1993; Torr & Murray, 1993; Theiler & Cai, 2003), spectroscopy (Chen et al., 2005; Davy & 

Godsill, 2002; Hazel, 2000), functional magnetic resonance imaging (Scarth et al., 1995), 

bullet hole image classification (Song et al., 2002), digit recognition (Cun et al., 1990) and 

mammographic image analysis (Spence et al., 2001; Tarassenko, 1995). Furthermore, to 

detect anomalies in hyperspectral images, various techniques are proposed. Khazai et al. 

(2011) apply a adaptive support vector method based on a global Support Vector Data 

Description (SVDD) to detect anomalies in hyperspectral images and propose a fast-

adaptive support vector method to improve the performance of the previous anomaly 

detection technique (Khazai et al., 2013), whereas Messinger & Albano (2011) propose an 

anomaly detection technique based on a graph theoretic approach. This technique has a 

comparable performance with the traditional anomaly detection based on Mahalanobis 

distance, namely the RX algorithm. Liangliang et al. (2010) improve the kernel RX 

algorithm by applying an anomaly detection technique based on background endmember 

extraction. This technique can improve the performance of anomaly detection based on 

the kernel RX algorithm. Ma et al. (2010) use local tangent space alignment (LTSA) to 

reduce the dimension of hyperspectral image data sets. Mousazadeh & Cohen (2010) 

apply an anomaly detection technique based on non-causal autoregressive-

autoregressive conditional heteroskedasticity, which is a statistical measure used to 

calculate the different variance of random variables from others, (AR-ARCH) to detect 

anomalies in sonar images. Liu & Zheng (2011) propose the technique based on discrete 

cosine (DC) parameters extracted from JPEG images. This technique gives better 

performance than a YUV (Y is the brightness component and U and V are colour 
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components) image data processing method. Anderson et al. (2012) apply a combination 

of anomaly techniques based on size-contrast filters and mean shift clustering, Gaussian 

mixture model and maximally stable extremal regions algorithms to detect explosive 

hazards on a road. The results show that the proposed techniques can detect explosive 

hazard on a road as well as human visual inspection.  

Another task of anomaly detection in image processing is video surveillance (Diehl 

& Hamshire, 2002; Singh & Markou, 2004; Pokrajac et al., 2007; Saligrama & Chen, 

2012). Li et al. (2014) use an anomaly detection method based on a mixture of dynamic 

texture models for crowd scenes detection. The results confirm that the proposed method 

is better than a traditional anomaly detection method. Instead of using anomaly detection 

for video surveillance applications, Khazai et al. (2013) apply a single-feature based 

anomaly detector (SFAD) to detect anomalies in sub-pixels of hyperspectral images and 

the proposed method achieves promising detection results. The types of anomalies in this 

application domain are point and contextual anomalies. The major challenge in this 

domain is the large amount of data input, and anomaly detection techniques need to 

operate online with video data. 

3.6.3. Other domains 

 Anomaly detection techniques are applied to various application domains listed 

below.  

 Intrusion detection 

Intrusion detection refers to the detection of dangerous activity or malicious 

behaviour that can harm a computer system (Phoha, 2002). Anomaly detection 

techniques are appropriate for intrusion detection applications because the intrusion 

behaviour is different from the ordinary behaviour of the system. The challenge of 

anomaly detection in these applications is the dynamic changes in data introduced by 

intruders, which make detection very challenging.      

Jeong et al. (2010) apply a hierarchical approach to detect anomalies (e.g. 

scanning attacks, Distributed Denial of Service (DDos) and Worm) in computer network 

systems, whereas Wang et al. (2010) use a fast anomaly detection technique based on 

the estimation of Hurst parameter for network traffic anomaly detection.  

Zhao et al. (2010) apply the Bayesian inference of statistical methods to improve 

the performance of a machine learning anomaly detection technique in network intrusion 

detection, whereas Om & Kundu (2012) apply an intrusion detection system integrating k-

means, k-nearest neighbour and Naive Bayes classifiers to detect anomalies in KDD-99 

data set, to reduce the false alarm rate. Shanbhag et al. (2010) evaluate six algorithms in 
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network traffic: Holt-Winter forecasting, cumulative sum, wavelet analysis, k-means, 

support vector machine (SVM) and one-class neighbour machine (OCNM). They conclude 

that a combination of algorithms provides a better accuracy than one single algorithm, and 

accurate anomaly detection is achieved by applying a diversity of algorithms. Paredes-

Oliva et al. (2012) use frequent item-set mining (FIM) and C5.0 algorithms to recognise 

network traffic anomalies. On the other hand, Choraś et al. (2012) apply an anomaly 

detection framework based on Matching Pursuit (MP) algorithm to detect anomalies in 

network traffic.   

In network intrusion, Catania et al. (2012) use an autonomous labelling approach 

to improve a novelty detection system based on SVM, whereas Görnitz et al. (2013) 

propose a semi-supervised anomaly detection method based on SVM. Tartakovsky et al. 

(2013) apply an online anomaly detection based on Shiryaev–Roberts’s procedure to 

detect intrusion activities. In the paper of Khorchani et al. (2012), a modal logic, namely 

visibility logic (VL), is applied to detect anomalies in firewall rules. To improve anomaly 

detection based on hidden Markov models (HMMs), Khreich et al. (2012) propose an 

intrusion detection system based on a receiver operating characteristic (ROC), and 

efficiently adapt ensembles of HMMs (EoHMMs).  

 

 Fraud detection 

 Fraud detection involves criminal activity detection in commercial and financial 

organisations. This type of detection is divided into credit card fraud detection, mobile 

phone fraud detection, insurance claim fraud detection and insider trading detection. Noto 

et al. (2012) apply feature regression and classification (FRaC) to study mobile phone 

fraud detection problems by monitoring their usage activity. Statistical profiling using 

histograms is applied by Donoho (2004) and Aggarwal (2005) and an information theoretic 

approach is adopted by Arning et al. (1996). Gaber et al. (2013) implement a user’s 

behaviour model for fraud detection in mobile transaction data. The primitive results show 

that the proposed model can be used as a prototype for fraud detection, whereas Wei et 

al. (2013) propose online banking fraud detection method based on data mining, namely 

ContrastMiner. The results indicate that the proposed method achieve better detection 

results than traditional fraud detection methods. Instead of using a data mining based 

technique, Anderka et al. (2014) apply sequence-based anomaly detection to detect 

anomalies in ATM data. 

 Anomaly detection in textual data 

Anomaly detection plays an important role in detecting new topics or new articles 

in text data. A clustering based anomaly detection technique is one of the techniques 
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applied to detect anomalies in text data, for example, anomalies in text reports (Srivastava 

& Zane-Ulman, 2005) and anomalies in reports of aerospace problems (Srivastava, 2006). 

Instead of using a clustering technique, Manevitz & Yousef (2000) apply neural networks 

to retrieve information in the standard Reuters data set, and the results show that the 

proposed method can be used to detect anomalies in text data. Manevitz & Yousef (2002) 

also test one-class support vector machines for information retrieval in the standard 

Reuters data set. The experimentation results confirm that neural networks are more 

robust than SVM for anomaly detection in text data.  

 Sensor networks 

Anomaly detection techniques are applied in a network of sensors, to detect fault 

in a sensor. Failures of sensor events are unusual, so the anomaly detection techniques 

are appropriate tools to identify sensor failures events. The challenge of this application is 

the need to operate with online data from a network of sensors.  

Various techniques are applied to detect anomalies in sensor networks. Bayesian 

networks are used to identify outliers in wireless sensor networks (Janakiram et al., 2006) 

and to detect anomalies in data streams of remote sensors (Dereszynski & Dietterich, 

2007). Instead of using Bayesian networks-based techniques, Curiac & Volosencu (2012) 

propose a detection technique combining a set of classifiers based on average based 

classifier, autoregressive linear predictor, neural networks, neural network autoregressive 

predictor and adaptive neuro-fuzzy inference system (ANFIS), to detect anomalies in 

wireless sensor networks. Moshtaghi et al. (2014) use the anomaly detection method 

based on an adaptive model of clustering ellipsoids, to detect attacks and fault sensors in 

the IBRL dataset (Intel Berkeley research lab). The proposed method achieves better 

detection results than using a traditional method solely based on clustering ellipsoids.   

3.7. Summary 

     In this chapter, a review of types of anomalies, current techniques and associated 

challenges have been discussed. A description of some important domain applications 

has also been presented, and issues have been discussed.  

This research advocates the adoption of anomaly detection techniques to the 

analysis of stained slides of molar pregnancy; this approach is novel for molar pregnancy 

cancer. The literature review reveals that most image processing approaches have 

focused on MRI, digital mammograms, ultrasound images or histological images while this 

research is focused on stained slide images that represent a new type of images. The 

primary focus of current approaches is either on improving segmentation or classification 

of images. The focus of this research is to identify anomalies in stained slides, combining 
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artificial intelligence techniques with experts’ strategic knowledge. The anomaly detection 

approach has been useful in non-medical domains and some medical domains such as 

disease outbreak detection (Wong et al., 2003), anomaly detection in online medical 

wireless sensors (Salem et al., 2013), anomalies in Electrocardiograms (ECG) (Lin et al., 

2005; Li et al., 2012), and Electroencephalograms (EEG) (Lin et al., 2005). This has 

inspired us to extend this approach to the novel medical domain of molar pregnancy. As 

seen from the literature review and anomaly detection applications, this approach has not 

yet been applied to molar pregnancy cancer and to this type of medical images.  

The elicitation of expert pathologists and histopathologists’ knowledge is aimed at 

guiding the anomaly detection approach in identifying the types of anomalies, discussed in 

Section 3.3.2, which can be related to the morphological characteristics of partial and 

complete hydatidiform mole villi. These types of anomalies are represented ontologically 

and guide the segmentation and classification stages in identifying anomalies at each 

image analysis step, to allow the handling of any uncertainties and fuzziness in the 

images. 
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Chapter 4: A Heuristic Based Approach to 

Anomalies Detection of Hydatidiform Mole 

Villi (Low Level Processing) 

 

4.1. Introduction 

 This chapter describes a novel approach to analyse the villi of hydatidiform mole 

(HM) stained sides. This approach focuses on detecting anomalies of HM by analysing 

computationally the morphological features (e.g. red blood cells, trophoblast, and stroma) 

of its villi. The analysis of villi and detection of their anomalies is based on the elicitation of 

pathologists’ heuristic knowledge and strategies, which are embedded in the image 

analysis and anomalies detection. This approach is based on a cognitive understanding of 

image analysis, to mirror the pathologists’ heuristic diagnosis of anomalies in villi.  
This chapter reviews the important contribution of expert knowledge to medical 

image analysis and explains how the pathologists’ tacit knowledge and strategies are 

elicited and integrated in the developed heuristic approach aimed at detecting anomalies 

in HM slides. The analysis and anomalies detection is divided into two main phrases: low 

level processing, which is discussed in this chapter, and high level processing, described 

in the next chapter. 

4.2. Review of experts’ knowledge medical image analysis 

The literature shows that experts’ knowledge plays an important role in medical 

image analysis. For example, Hamarneh et al. (2009) apply expert segmented binary 

masks of the cardiac muscle of each of the images to construct the shape histograms and 

the histograms, are used to guide the watershed algorithm in the segmentation step, 

whereas Martin et al. (2010) use MRI images that are manually segmented by experts to 

construct atlas-based-segmentation-methods of a deformable model. Kang et al. (2013) 

apply the Fuzzy c–Means (FCM) based clustering algorithm and qualitative medical 

knowledge on geometric properties of different tissues for the tissue classification system. 

McKenna et al. (2012) use anonymous knowledge works trained by manually segmented 

premalignant colorectal polyps image, to improve the interpretation of computer-aided 

detections for CT colonography. Pitiot et al. (2004) apply a series of rules derived from 

analysing template's dynamics, based on experts’ experience, to develop deformable 

templates for classifying MRI of brain images, whereas Perner (2002) uses expert 
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knowledge to develop a decision tree algorithm to diagnose Hep-2 cell-images. McInerney 

et al. (2002) develop a deformable model based on expert strategies to analyse MRI brain 

images. The organisms of the deformable model are created by expert analysis routines. 

The current contributions of expert domain knowledge tend to be limited to 

diagnosis, segmentation or evaluation purposes. This approach captures not only their 

expertise but also, more importantly, their heuristics and strategies in dealing with 

uncertainties and fuzziness. The overall aim is to support histopathologists in detecting 

anomalies and classifying hydatidiform moles into their appropriate types. The proposed 

approach is implemented in two phases: the low-level processing phase consists of 

segmentation and feature extraction steps for processing HM slides obtained from the 

pathologists, and the high-level processing focuses on classification of slides. The 

pathologists’ heuristic knowledge and strategies for identifying anomalies in the 

morphological features of the villi are applied at both levels and represented ontologically. 

The following sections discuss the steps taken to process the HM slides at the low level 

processing: the high level processing is explained in the next chapter. The two levels are 

illustrated in Figure 4.1. 

 

4.3. Anomaly detection in molar pregnancy villi 

 One of the many challenges of this research is that, in early pregnancy, CHM and 

PHM cannot be easily distinguished from other anomalous pregnancy diseases (Sebire et 

al., 2003). The distinction between CHM and PHM is important for determining the 

appropriate counselling and treatment of patients. The diagnosis of these moles continues 

to be a problem for many practicing and experienced histopathologists because, in early 

pregnancy, CHM and PHM are difficult to distinguish morphologically from other abnormal 

pregnancy products (Sebire et al., 2003; Sumithran et al., 1996; Howat et al., 1993). Paul 

et al. (2010) explain that in many cases morphological analysis is inadequate for making a 

confident diagnosis and that the histological features of complete moles at an early 

gestation are frequently confused with partial moles, hydropic miscarriage or non-molar 

chromosomal abnormalities.  
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Figure 4.1. The system architecture. 
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The analysis faces other challenges, some of which are related to the limited 

material available for analysis, a problem shared by the expert histopathologists 

themselves, and others to the angle of sectioning these villus samples, which is entirely 

random. Also some villi may have a perfect cross-section, whereas others are sectioned 

either longitudinally or obliquely. This may in part explain the variation in size and shape 

of villi within samples. One particular concern expressed by the expert pathologists is that 

PHM stained slides can contain PHM and normal placenta villi, which emphasises the 

complexity of the detection task. To address some of these issues, it was agreed that the 

analysis of each villus is best carried out with respect to other villi in the image. 

 Given the above challenges, the detection of anomaly types is based on the study 

and detection of irregular features of villi. Four main types of anomalies are identified. For 

example, a point anomaly is used to analyse abnormal percentage of red blood cells 

(RBC), based on the knowledge that normal villi contain a higher proportion of RBC than 

CHM and PHM. Contextual anomalies help analyse the relative percentage of stroma 

region inside a given villus, as a high percentage of the stroma region is usually found in 

normal placental and PHM villi and a low percentage is found in CHM villi. Morphological 

anomalies relate to villi shape and size. An example of a contextual anomaly is the size of 

the stroma region in normal villi (Figure 4.2 (a)), which is larger than the stroma regions 

found in PHM (Figure 4.2(b)) and CHM villi (Figure 4.2(c)).  Density anomalies refer to villi 

that display markedly reduced vessel density or show significantly more staining. These 

anomalies, which are elicited from experts and from medical documents, are described 

below in Section 4.7. 

 

Figure 4.2. (a) Average percentage of stroma regions of normal placental villi. 
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Figure 4.2. (b) Average percentage of stroma regions of PHM. 

 

Figure 4.2. (c) Average percentage of stroma regions of CHM. 

4.4. Knowledge elicitation of HM anomalies 

 Knowledge elicitation is the expert knowledge acquisition process that can be used 

to capture the knowledge not only from experts but also from many sources (Shadbolt & 

Smart, 2015). This process is used to develop and to deploy knowledge-based systems. 

High-quality knowledge acquisition to create a robust and useful system is an expensive 

activity and time-consuming. The knowledge elicitation technique can be categorised into 

interviews, protocol analysis, critical decision method, concept sorting, repertory grids, 

laddered grids, limited information task and concept mapping and process mapping. 

An interview technique aims at extracting the elicit information about how a 

specific task is executed or how to make an accurate decision, whereas protocol analysis 
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(PA) aims at developing essential structure, rules and processes from the protocols. A 

critical decision method (CDM) combines interviewing and protocol analysis (Zsambok & 

Klein, 1997) while concept sorting uses experts’ knowledge to sort the priority of a fixed 

set of concepts. The repertory grids technique aims at revealing a conceptual map of a 

domain created by the concept sorting technique (Shaw & Gaines, 1987), whereas 

laddered grids are designed to create a hierarchy graph representing the relationship 

between domain and problem-solving elements. A limited information task technique aims 

at extracting the experts’ strategies by using the questions that experts ask the elicitor to 

narrow down the information scope required by the elicitor (Hoffman, 1987). Concept 

mapping and process mapping are based on diagramming techniques focusing on 

developing a 2-dimensional network of labelled grids and nodes (Milton, 2012).  

The limitations of knowledge elicitation are categorised as follows: 

(i) Knowledge elicitation techniques are different, and no official techniques can 

be a universal and effective tool (Hart, 1985). 

(ii) The problems of the interview technique are that experts might repeat 

themselves when they try to explain their knowledge. So the elicitor needs to 

focus on the important issues during the interview. 

(iii) The protocol analysis is effective when recorded case histories are available. 

The difficulty in extracting tacit knowledge from experts is a well-known challenge. 

One of the difficulties related to the fact that experts’ knowledge resides in their head and 

often it is stored subconsciously. The conversion of their tacit knowledge and heuristics to 

explicit knowledge is the most challenging process, as experts may find it difficult to 

communicate or may not be consciously aware of the knowledge (Tagger, 2005). This 

was evident in this research project as knowledge elicitation from the two expert 

pathologists was carried out over seven meetings taking 2-3 hours each. In the early 

stages of meetings, two expert pathologists provided guidance to understand fundamental 

knowledge of molar pregnancy, and essential strategies to build the molar pregnancy 

ontological representation. The following two meetings discussed the critical 

morphological features of normal placental, PHM and CHM villi used by the experts to 

distinguish between these three types of villi. This was followed up by three further 

meetings to discuss the developed ontological representation of hydatidiform moles and 

the results obtained from the segmentation and classification tasks. In addition, frequent 

phone calls, skype meetings and emails were used to clarify unclear issues, to elicit 
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further knowledge, to request additional villi samples, and to discuss the need for 

supplementary experimentation results. The phone calls and skype meetings varied 

between 30 - 45 minutes.  The elicitation of the knowledge and strategies of pathologists 

evolved during these sessions and allowed them to identify additional hidden strategies. 

These meetings have helped gaining an understanding of how to analyse and interpret 

the villi in the stained slide images.  In addition to the experts’ knowledge the researcher 

extracted the domain knowledge of molar pregnancy from the medical documents; these 

two types of knowledge were captured in an ontological representation (Palee et al., 

2013). 

4.5. Ontological representation of anomalies in villi 

Gruber defines ontology as `the specification of conceptualisations, used to help 

programs and humans share knowledge' (Gruber, 1993).  The conceptualisation 

expresses knowledge about the world in terms of entities (things, relationships and 

constraints). The specification is the representation of this conceptualisation in a concrete 

form, encoded in a knowledge representation language. As yet, there are no standardised 

methodologies for building ontologies, so a pragmatic and task-oriented approach to 

building an ontology was taken. The ontological representation of the morphological 

features of HM and of their anomalies has been developed with the help of the two expert 

pathologists. It consists of concepts representing the entities of the HM domain and their 

critical regions: the vessel, trophoblast, RBC and stroma regions (Figure 4.3). Each region 

is further described in terms of its specific/anomalous characteristics and their relationship 

to a given region.  

 

Figure 4.3. Villus’ morphological features. 

(http://www.pathologyatlas.ro/uterine-curretage-biopsy.php) 

http://www.pathologyatlas.ro/uterine-curretage-biopsy.php
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In summary, villi are ramifications of placenta with fetal vessels that are the 

“business end” of the placenta, covered with trophoblast. Stroma is the connective 

tissue core of an organ. Trophoblast is the epithelium that covers the placenta 

(Benirschke et al., 2006). The morphological features of normal placental villi are a 

regular trophoblast, non-stroma fibrosis, a reticular (like a net) stroma structure, defined 

red cells and rounded villi. The PHM villi are marked by: an excess of focal trophoblast, 

irregular trophoblast proliferation, stroma hydrops and mild stroma, scalloping and dentate 

stroma, collapsed vessel, fetus present in a vessel, and presence of some red blood cells. 

The CHM villi are detected by their oval or irregular trophoblast, enlarged and irregular 

stroma, stroma karyorrhexis, collapsed and inconspicuous vessel, absence of fetus, few 

or no red blood cells and irregular villi shape. The CHM trophoblast appearance is usually 

thicker than PHM and normal placental villi, due to the non-polar proliferation. The 

stroma’s texture, its irregular shape and size are also significant features in CHM, PHM 

and normal placental villi (Seckl et al., 2010). The top level of ontological representation of 

hydatidiform moles is shown in Figure 4.4; further description of the ontology is given in 

Appendix B. 

 

4.6. HM Data 

Tissues, which are obtained via spontaneous or surgical uterine evacuation, are 

processed, embedded and then sectioned into thin 2-5 micrometers sections and then 

stained, usually with haematoxylin and eosin, to enhance the contrast of the nucleus and 

cytoplasm within cells for microscopic examination. These stained slide images are 

examined by the pathologists to classify the type of hydatidiform mole. 

The analysis is carried out on the stained slide images captured and pre-classified 

and pre-labelled as normal, PHM, CHM. by the pathologists who were based at the 

University Hospital Bristol and London Great Ormond Street Hospital, using a microscope 

at 40-times-magnification and 20-times magnification. These two levels of magnification 

are important: although the 40-times-magnification can capture more villi details such as 

trophoblast thickness and stroma structure, it cannot capture large villi because of the 

narrow field of view as shown in Figure 4.5a. To capture complete villi the analysis is also 

applied to the 20-times magnification stained slide images (Figure 4.5b). A total of 986 villi 

were analysed, consisting of 215 pre-classified complete hydatidiform moles (CHM), 467 
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partial hydatidiform moles (PHM) and 304 normal villi images, extracted from 52 stained 

slide images (10 normal, 21 PHM and 21 CHM villi slide images). An example of each 

type of HM is shown in Figure 4.6. The villi in each stained slide, which was provided by 

the pathologists, are assigned a new identification number. For example, Nxx-yy denotes 

normal placental villi, PHMxx-yy denotes partial hydatidiform moles and CHMxx-yy 

denotes complete hydatidiform moles. So, N03-21 denotes normal placental villi no. 21 of 

a villi slide image no. 3. Further details of pre-labelled villi images used in feature 

extraction steps are discussed in Section 4.10. 

 

 

Figure 4.4. A top level of ontological representation of hydatidiform moles.  
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Figure 4.5. (a) A 40-times-magnification HM 

 

Figure 4.5. (b) A 20-times-magnification HM 

 

               

Figure 4.6 (a) A 20-times-magnification 

normal placenta stained slide image. 

Figure 4.6. (b) A 20-times-

magnification PHM stained slide image 

Stroma hydrops and mild 
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Figure 4.6. (c) A20-times-magnification CHM stained slide image 

 

4.7. Image analysis guided by the ontological 

representation 

The ontological representation of HM morphological features and their anomalies, 

described in Section 4.5 and Figure 4.4, is integrated at the segmentation and feature 

extraction steps, which are the low level phase of the image processing analysis. This 

phase combines HSV colour space with Fuzzy c-Means (FCM) clustering algorithm to 

analyse the stained HM slides against a set of four critical morphological features and 

associated anomalies (Table 4.1): 

1) Red blood cell (RBC) feature: density and distribution within given villi: 

a)  The percentage of red blood cells inside stroma regions is calculated by 

computing the percentage of segmented red blood cells located inside 

stroma boundaries.  

 

2) Villi’s shape and size: 

a) Villi pixels are measured by counting all pixels segmented as villi regions by 

the segmentation algorithms.  

b) The major axis is the longest axis of villi boundaries. As shown in Figure 4.7 

the major axis is the diameter of an object. 
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c) The minor axis is the shortest axis of villi boundaries. The minor axis is the 

distance between villi’s boundaries located along the line that is perpendicular 

to the major axis as shown in Figure 4.7.  

d) The elongation ratio is the ratio between major and minor axis. 

e) The difference area between villi’s bounding box and villi areas is measured by 

subtracting the villi areas from villi bounding box. This feature is applied to 

capture the irregularity of villi shape. 

f) The notion of four quadrants (e.g. A, B, C and D in Figure 4.7), which is 

proposed by the two experts, is applied when the shape of PHM and CHM villi 

is non-rounded and irregular.  

g) The number of villi boundary corner points detected by the corner detection 

algorithms. 

h) The ratio between the number of villi boundary corner points and all pixels 

belonging to villi perimeter is computed. This feature indicates scale 

robustness. 

 

 

Figure 4.7. Major and minor axes. 

 

3) Stroma’s morphological and textural characteristics:  

a) The percentage of stroma regions inside the villi is measured by calculating 

the proportion of segmented stroma areas located inside villi boundaries 

and villi regions. 

b) The percentage of edge pixels inside stroma regions is calculated by 

computing the percentage of edge pixels detected by the canny edge 

detector located inside stroma boundaries. 

A B 

C D 
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c) The variance of greyscales of stroma regions is applied to measure the 

texture of stroma regions. This feature is calculated by the variance of 

greyscale of segmented stroma areas. 

  

4) Trophoblast thickness and proliferation:  

a) The percentage of trophoblast inside the villi is calculated by computing the 

proportion of segmented trophoblast regions located inside villi boundaries 

and villi regions. 

b) The trophoblast skeleton per trophoblast perimeter ratio is computed by the 

ratio between all skeletonized pixels of trophoblast areas and all pixels 

belonging to trophoblast perimeter. 

c) Trophoblast analysis is based on the experts’ knowledge and strategies 

that indicate that the shape of PHM and CHM trophoblast is irregular. 

Therefore, this feature is computed by the different trophoblast areas within 

the four quadrants defined by the centroid of villi. 

 

Based on experts’ heuristics, this study came across a few major difficulties. The 

first issue relates to the RBC’s density and distribution within a given villus, which is a 

distinguishing feature that can be used to separate normal placental villi from CHM and 

PHM. However, the RBC feature depends on the time period taken between staining and 

examination, as well as on gestation age. If pathologists leave a tested stained slide for a 

certain period of time before examining it under a microscope, the RBC inside the villi die 

and the dead red blood cells are difficult to identify, whereas if the examination follows 

staining immediately, the live red blood cells can be observed by microscope. The second 

issue relates to the pregnancy period. The red blood cells inside villi are fewer in the early 

pregnancy stage but they increase significantly in later stages. However, HM slides of 

later pregnancy stages are unavailable because of pregnancy termination. The third issue 

involves the shape and size of villi, which can be a significant discriminatory feature. The 

size of normal placental villi is usually smaller than CHM and PHM villi. Additionally, the 

number of villi boundary corner points of PHM and CHM villi is usually higher than in 

normal placental villi, because the shape of normal villi is rounded, whereas the shape of 

PHM and CHM villi boundary is irregular, consisting of corners and curves (Figure 4.6). 

These size and shape features can be used to distinguish between the three categories of 
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villi, but abnormal cases in each category make the analysis more difficult. For example, if 

the size of an abnormal case of a normal placental villus is larger than the average size of 

normal placental villi, the villi might be classified as CHM or PHM due to their irregular 

size, although they are a normal placental villus. Therefore, this last descriptive feature is 

necessary but not sufficient on its own. The last issue relates to the fact that some villi in 

some stained slide images are incomplete and it is difficult to extrapolate their boundaries. 

Table 4.1. Elicited morphological features and associated anomalies. 

Morphological features 

given by expert 

pathologists 

The proposed features Types of anomalies 

RBC factor: density and 
distribution within a given 

villi 

Percentage of red blood cells 
inside stroma regions 

 
Point anomaly 

Villi: shape and size 
Villi size 

 
Morphological anomaly 

 
Number of villi boundary 

corner points 
 

Morphological anomaly 

 
Different area between villi’s 
bounding box and villi area 

Morphological anomaly 

 Major axis Morphological anomaly 

 Minor axis Morphological anomaly 

 Elongation ratio Morphological anomaly 

 

Ratio between number of villi 
boundary corner points and 
all pixels belonging to villi 

perimeter 

Morphological anomaly 

 The notion of four quadrants Morphological anomaly 

Stroma’s morphological 
characteristics 

Percentage of stroma regions 
inside villi 

Contextual anomaly 

Stroma’s textural 
characteristics 

Percentage of edge inside 
stroma regions 

Contextual anomaly 

 
Variance of grey scale of 

stroma regions 
Point anomaly 

Trophoblast thickness and 
proliferation 

Percentage of trophoblast 
inside villi 

Contextual anomaly 

 
Trophoblast skeleton per 

trophoblast perimeter ratio 
Density anomaly 

 Trophoblast analysis Morphological anomaly 
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4.8. A heuristic approach to anomaly detection in image 

segmentation 

An important process of an image analysis system is image segmentation, and this 

process can impact on later image processing steps such as feature extraction and 

classification. However, current image segmentation algorithms still have limitations for 

complex structures of various shapes and fuzzy boundaries. Thus, to address these 

problems the segmentation approach in this study is guided by the ontological 

representation of villi and their associated anomalies. 

Based on the study by Niwas et al. (2010a) and Doyle et al. (2012), the 

segmentation algorithm applies fuzzy c-means clustering on HSV colour space to extract 

the four regions of interest (ROI): villi, red blood cells, trophoblast and stroma regions. The 

HSV or HSI colour space is used to describe the colours in terms of human interpretation, 

and is suitable for image processing techniques (Gonzalez & Woods, 2002).  HSV colour 

space contains three colour channels: hue, saturation and value. The hue is a circular 

colour model containing the range from 0 to 360 degree as shown in Figure 4.8. The 

saturation value describes the density of the colour and the range is from 0 to 1, whereas 

the value channel measures the brightness of the colour and the range is from 0 to 1. H, S 

and V are mathematically defined below (Su et al., 2011), where R, G and B relate to the 

intensity of red, green and blue channels of RGB colour space. 
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To deal with the limitations of Euclidean distance measurement different 

techniques are applied. For the hue channels, circular distance measurement techniques 

(Lu et al., 2010) based on cosine and sine functions are applied to measure the circular 

value in a hue channel (0 – 360 degree) as shown in Figure 4.9 (Lu et al., 2010). 

For a grey pixel (S<0.1 or V<0.15), only the value channel is considered and the 

distance measurement is only computed by the Euclidean distance:  



 

 

 

68 

 

 

 

  ikik VVvxd ),(       (4) 

where Vi and Vk are the intensity of the value channel in pixels i and k. 

For a colour pixel, the circular distance measurement is applied to transform hue, 

saturation and value to C1, C2 and C3. These parameters are calculated by the following 

equations: 

ValueC

HSC

HSC







3

2

1

)sin(

)cos(

     (5) 

 Then, the new parameters are used as features of segmentation or classification 

methods. 

 

 

 

 

 

 

 

Figure 4.8. HSV colour space (Su et al., 2011). 

                  

Figure 4.9. The cosine and sine functions of hue value in HSV colour space. 

The Fuzzy c-Means clustering (FCM) technique is a popular tool to categorise data 

points. The k-means clustering technique is based on a discrete membership value, 

whereas FCM technique uses a variable membership value instead of using a discrete 

value (Dhawan, 2003). The technique aims at minimising the objective function and 

updates a membership value. The objective function ),( vUJm
 is defined as below: 
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10  iju   for all ji,  
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1

1 for all j   and  



n

j

ij nu
1

0   for all i   (7) 

Note that 𝑛 is the number of data points, 𝑐 is the number of clusters, 𝑣𝑖 is the centre vector 

for cluster 𝑖, 𝑢𝑖𝑗
𝑚 is the degree of membership for the 𝑗th data point 𝑥𝑗 in cluster 𝑖, 𝑚 is 

weighting exponent and 𝑑𝑖𝑗
2  is squared distance. The computing and updating steps of 

fuzzy c-means clustering are the same as the k-means clustering steps, but the fuzzy c-

means clustering technique uses equation (6) as the objective function and (7) as the 

updating function. 

 RBC segmentation 

The circular distance measurement is used to deal with the limitations of the 

distance measurement on HSV colour space. The FCM clustering technique is used to 

classify red blood cell regions from the background and other cell components. If some 

villi contain undesirable artefacts such as Hofbauer cells, purple rounded cells, 

(Benirschke et al., 2006) in the segmented red blood cells, FCM is applied iteratively using 

two different redness measurements (H and S) to remove these artefacts from those 

RBCs. If the average H value of the segmented cells is less than 0.1 or the average S 

value is equal or greater than 0.2, then the segmented cells belong to RBC, otherwise 

they are removed. This is also used to solve the over-segmentation problems by removing 

the red blood cell regions located outside stroma or cell’s boundary regions, as shown in 

Figure 4.10.  

 Trophoblast and stroma segmentation 

FCM is also applied to segment trophoblast regions from stroma regions and their 

background, based on saturate channel of HSV colour space. The ROI can be classified 

into three groups: background, trophoblast and stroma regions. Because the saturation 

channel is sensitive to a bright pixel, the brighter regions classified by FCM are labelled as 

stroma regions, whereas the dark regions are classified as trophoblast regions. Any other 

purple regions, which overlap with stroma regions, are removed. Because the Euclidian 

distance is limited to measuring the range of the red colour in hue channel between 0 and 

20 degrees, the circular distance measurement based on sine and cosine functions is 
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selected. This algorithm improves the accuracy of trophoblast segmentation but cannot 

segment the red blood cell regions – which are outliers- located near trophoblast regions, 

as shown in Figure 4.11. 

 Villus segmentation 

To segment the placenta’s villus boundary regions, histogram equalisation is 

applied first, to improve the quality of the villus image by adjusting image intensities and 

enhancing contrast; this helps separate villus boundary regions from their background. 

Then, FCM based on the circular algorithm is applied to segment the ROI (placenta villus 

boundary regions) from the background, as shown in Figure 4.12.  

 The stroma region located inside the villus boundary is correctly segmented by the 

proposed algorithm: the bright regions located inside the villous region are segmented by 

the algorithm as shown in Figure 4.13.  This algorithm cannot select unconnected regions 

of stroma which are rare cases as shown in Figure 4.14. Furthermore it can only locate 

the largest region located inside the villus boundary and cannot deal with multiple stroma 

regions within a given villus. Over- and under-segmentation problems are discussed in 

Section 4.9.   

 

(a) 

 

(b) 

 

(a) 

 

(b) 

Figure 4.10. (a) Segmentation based on Euclidean distance measurement technique,  

(b) Segmentation based on the circular measurement technique.            
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 Figure 4.11. Outliers  (i.e. red region) located between the villus’ boundary and 
trophoblast region. 

 

Figure 4.12. Segmentation of the trophoblast and villus boundary regions. 

 

Figure 4.13. Stroma regions segmented by the proposed algorithm. 
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Figure 4.14. Example of multiple stroma regions. 

4.9. Discussion of segmentation results 

The proposed FCM on HSV colour space approach has been applied to segment 

986 villi images, 304 normal placental villi, 467 PHM villi and 215 CHM villi. The 

segmentation results suffer from over- and under-segmentation problems, as shown in 

Table 4.2. Over-segmentation produces a region larger than the actual ROI (regions of 

interest), whereas under-segmentation ignores critical regions. Before subjecting the villi 

to the segmentation algorithm each villus is manually extracted from the slide. The 

algorithm correctly segmented 773 villi out of 986 (78.4%); the best segmentation was 

achieved with PHM villi (83.5%) followed by normal villi (82.2%) and the lowest score 

referred to CHM villi (62%); 185 villi were incorrectly segmented because of over-

segmentation problems and 26 villi were under-segmented. Over- and under-

segmentation problems are caused by artefacts such as incomplete villi, villous tissues 

and red blood cells in intervillous space, as shown in Figure 4.15a, and Figure 4.15b, and 

Appendix C.  

 To address the problem of over-segmentation, a careful manual extraction of each 

villus was carried out to help reducing the artefacts of the selected images and improving 

the segmentation results (Figure 4.15c and Figure 4.15e). This involved the user to draw a 

line closer to the villus’ boundaries and avoid undesirable artefacts attached to the villus   

(Figure 4.15d). The number of correctly segmented villi increased from 78.4% to 94.5%, 

and the correctly segmented CHM villi increased from 61.9% to 85.6%. Though over 

segmented normal placental villi were resolved, 8 villi were still under-segmented (Table 

4.3). In the future, additional textural features may be further elicited and added to the 

algorithm to address the under-segmentation problems. 
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The segmentation method has a few limitations. It assumes that a villus contains 

one stroma region, and therefore cannot cope with multiple-stroma regions. Additionally, 

the boundaries of some villi are missing and the boundaries between the trophoblast and 

red blood cells are fuzzy. Finally, the outliers that are located outside the villus boundaries 

remain unresolved. 

 

N05-19 

Figure 4.15. (a) Over-segmentation case  

 

CHM19-3 

Figure 4.15. (b) Under-segmentation case. 

 

N05-19 

Figure 4.15. (c) Over-

segmentation problem 

         

 

N05-19 

Figure 4.15. (d) The manual 

extraction of villi. 

         

 

N05-19 

Figure 4.15. (e) Improved 

segmentation result. 
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Table 4.2. Segmentation results based on FCM and HSV colour space. 

Type of 

Images 

Total 

number 

of villi 

samples 

Number of 

correct 

segmented 

villi 

Number of 

incorrect 

segmented 

villi 

Percentage 

of correct 

segmented 

villi 

Over-

segmented 

villi 

Under-

segmented 

villi 

Normal 304 250 54 82.2% 46 6 

PHM 467 390 77 83.5% 70 7 

CHM 215 133 82 61.9% 69 13 

Total 986 773 213  185 26 

        

Table 4.3. Improved segmentation results based on FCM and HSV colour space   

Type of 

Images 

Total 

number 

of 

samples 

Number of 

correct 

segmented 

villi 

Number of 

incorrect 

segmented 

villi 

Percentage 

of correct 

segmented 

villi 

Over-

segmented 

villi 

Under-

segmented 

villi 

Normal 304 296 8 97.4% 0 8 

PHM 467 452 15 96.8% 8 7 

CHM 215 184 31 85.6% 18 13 

Total 986 932 54  26 28 

 

4.10. Feature extraction step 

As the data consists of villi whose boundaries are ill-demarcated and contain 

interruptions, this step and the subsequent steps are carried out solely  complete and 

intact placental villi. In this study Nxx denotes the normal placental images, consisting of 

294 normal placental villi, whereas the PHM (455 complete villi) and CHM images (190 

complete villi) are denoted by PHMxx and CHMxx respectively, as shown in Table 4.4. 

This study aims at extracting the remarkable morphological features and 

categorise them into four regions (RBC, villi, stroma and trophoblast). Then, the 

anomalies of PHM and CHM are analysed and are compared with the features of normal 

placental villi. 

The feature extraction, also guided by the ontological representation of HM, aims 

to extract the anomalies associated with the four villi components listed in Table 4.1 and 

illustrated in Figure 4.16. This step applies a set of statistical measures on the villi pixels 

to analyse morphological and texture characteristics of the villi components for normal, 

PHM and CHM slides, described below. 
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 Villi 

A number of features are analysed:  

First, the villi size (in terms of pixels) and the number of villi boundary corner points 

are used as the morphological features of villi. With the exception of slide images N01-22, 

N05-21 and N07-20, the size of normal villi is relatively constant (Figure 4.17a), whereas 

the size of PHM villi shows some variety but is still confined to a small boundary range 

(Figure 4.17b) and the size of CHM villi identifies a number of high peaks in Figure 4.17c. 

The graph in Figure 4.18 reveals a clear boundary between CHM villi and normal and 

PHM villi; this can be a useful distinctive feature to separate CHM villi from the other two 

types. Further graphs are included in Appendix D.   

 

Table 4.4. Hydatidiform Moles dataset. 

Image 
No. 

Total    
No. of 

villi 

No. of  
intact 
villi    

Image 
No. 

Total    
No. of 

villi 

No. of  
intact villi    

Image 
No. 

Total    
No. of 

villi 

No. of  
intact villi    

N01 25 22 PHM01 18 18 CHM01 13 13 

N02 28 26 PHM02 28 27 CHM02 7 7 

N03 34 34 PHM03 21 20 CHM03 21 18 

N04 32 32 PHM04 17 17 CHM04 18 15 

N05 21 21 PHM05 23 22 CHM05 9 7 

N06 38 37 PHM06 13 13 CHM06 9 9 

N07 20 20 PHM07 24 24 CHM07 9 9 

N08 40 40 PHM08 24 24 CHM08 15 15 

N09 37 37 PHM09 27 27 CHM09 22 22 

N10 29 25 PHM10 17 16 CHM10 11 11 

Total 304 294 PHM11 26 25 CHM11 4 3 

   PHM12 32 29 CHM12 8 7 

   PHM13 22 22 CHM13 7 6 

   PHM14 16 16 CHM14 2 2 

   PHM15 18 18 CHM15 7 5 

   PHM16 34 34 CHM16 5 4 

   PHM17 14 14 CHM17 13 11 

   PHM18 20 20 CHM18 11 6 

   PHM19 25 23 CHM19 12 9 

   PHM20 20 20 CHM20 5 4 

   PHM21 28 26 CHM21 7 7 

   Total 467 455 Total 215 190 
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Figure 4.16. Villi‘s features. 

 

  

Figure 4.17. (a) Average villi size of normal placental villi. 

(e.g. N01 denotes the slide number and 22 the number of villi in N01) 
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       Figure 4.17. (b) Average villi size of PHM. 

 

Figure 4.17. (c) Average villi size of CHM. 

Second, the villi boundary corner points are used to measure the shape of villi. 

Normal villi have a rounded shape, whereas PHM and CHM villi are irregular and have a 

large number of villi boundary corners (Figure 4.19). The ratio between number of villi 

boundary corner points and all pixels belonging to villi perimeter of PHM and CHM is 

higher than for normal villi, outlining their irregular shape (Figure 4.20). 

Third, the major axis, minor axis and elongation ratio of villi are used to measure 

the degree of shape irregularity. The values of the major axis, minor axis and elongation 

ratio of PHM and CHM villi tend to be higher than for normal placental villi, as shown in 

Figure 4.21 and Figure 4.22. However, all of these three features are not stable. 

Therefore, a further fourth anomalous characteristic measure is required to deal with 

uncommonly shaped villi in normal placental, PHM and CHM slides. Consequently, the 

different area between the villi’s bounding box and villi area, and the notion of four 

quadrants are analysed to check if, compared to normal placentas, their values, in PHM 

and CHM samples are higher, due to their irregular and uneven shapes, or smaller, due to 

their rounded and smoothed shapes, as shown in Figures 4.23 and 4.24. 

0
20000
40000
60000
80000

100000
120000

P
H

M
0

1
-1

8

P
H

M
0

2
-2

7

P
H

M
0

3
-2

0

P
H

M
0

4
-1

7

P
H

M
0

5
-2

2

P
H

M
0

6
-1

3

P
H

M
0

7
-2

4

P
H

M
0

8
-2

4

P
H

M
0

9
-2

7

P
H

M
1

0
-1

6

P
H

M
1

1
-2

5

P
H

M
1

2
-2

9

P
H

M
1

3
-2

2

P
H

M
1

4
-1

6

P
H

M
1

5
-1

8

P
H

M
1

6
-3

4

P
H

M
1

7
-1

4

P
H

M
1

8
-2

0

P
H

M
1

9
-2

3

P
H

M
2

0
-2

0

P
H

M
2

1
-2

6

Average villi size of PHM: pixels

0
50000

100000
150000
200000
250000
300000

C
H

M
0

1
-1

3

C
H

M
0

2
-7

C
H

M
0

3
-1

8

C
H

M
0

4
-1

5

C
H

M
0

5
-7

C
H

M
0

6
-9

C
H

M
0

7
-9

C
H

M
0

8
-1

5

C
H

M
0

9
-2

2

C
H

M
1

0
-1

1

C
H

M
1

1
-3

C
H

M
1

2
-7

C
H

M
1

3
-6

C
H

M
1

4
-2

C
H

M
1

5
-5

C
H

M
1

6
-4

C
H

M
1

7
-1

1

C
H

M
1

8
-6

C
H

M
1

9
-9

C
H

M
2

0
-4

C
H

M
2

1
-7

Average villi size of CHM: pixels



 

 

 

78 

 

 

 

 

Figure 4.18. Average villi size. 

 

Figure 4.19. Average number of villi boundary corner points 
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Figure 4.20. Ratio between number of villi boundary corner points and all pixels belonging to villi perimeter. 

 

Figure 4.21. (a) Major axis.  
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Figure 4.21. (b) Minor axis. 

 

Figure 4.22. Elongation ratio.  
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Figure 4.23. Different area between villi’s bounding box and villi area. 

 

Figure 4.24. The notion of four quadrants. 

0

50000

100000

150000

200000

250000

300000

Average different area between villi’s bounding box and villi area

0
5000

10000
15000
20000
25000
30000
35000

N
0

1
-2

2

N
0

2
-2

6

N
0

3
-3

4

N
0

4
-3

2

N
0

5
-2

1

N
0

6
-3

7

N
0

7
-2

0

N
0

8
-4

0

N
0

9
-3

7

N
1

0
-2

5

P
H

M
0

1
-1

8

P
H

M
0

2
-2

7

P
H

M
0

3
-2

0

P
H

M
0

4
-1

7

P
H

M
0

5
-2

2

P
H

M
0

6
-1

3

P
H

M
0

7
-2

4

P
H

M
0

8
-2

4

P
H

M
0

9
-2

7

P
H

M
1

0
-1

6

P
H

M
1

1
-2

5

P
H

M
1

2
-2

9

P
H

M
1

3
-2

2

P
H

M
1

4
-1

6

P
H

M
1

5
-1

8

P
H

M
1

6
-3

4

P
H

M
1

7
-1

4

P
H

M
1

8
-2

0

P
H

M
1

9
-2

3

P
H

M
2

0
-2

0

P
H

M
2

1
-2

6

C
H

M
0

1
-1

3

C
H

M
0

2
-7

C
H

M
0

3
-1

8

C
H

M
0

4
-1

5

C
H

M
0

5
-7

C
H

M
0

6
-9

C
H

M
0

7
-9

C
H

M
0

8
-1

5

C
H

M
0

9
-2

2

C
H

M
1

0
-1

1

C
H

M
1

1
-3

C
H

M
1

2
-7

C
H

M
1

3
-6

C
H

M
1

4
-2

C
H

M
1

5
-5

C
H

M
1

6
-4

C
H

M
1

7
-1

1

C
H

M
1

8
-6

C
H

M
1

9
-9

C
H

M
2

0
-4

C
H

M
2

1
-7

Average the notion of four quadrants

85 

8
1
 

 



 

 

 

82 

 

 

 

 Red blood cells 

These cells, which are located inside the stroma region, are an important feature 

used to distinguish normal placental villi from PHM and CHM villi. The density of RBCs 

indicates the percentage of segmented red blood cells located inside stroma boundaries 

in terms of pixels. The analysis is based on the assumption that normal villi contain a 

higher proportion of RBCs than CHM and PHM, so the density of RBC values in the three 

villi types (Figure 4.25) needs to be considered in the classification step. 

 Stroma’s morphological characteristics  

These are important contextual anomalies expressed in terms of three measures. 

The first measure focuses on the percentage of stroma regions inside villi and it is high in 

normal placental and PHM and low in CHM villi, because of their trophoblast proliferation. 

If the percentage of stroma regions inside the villi in a given slide is low (e.g. N03 and 

PHM21) or high (e.g. CHM08, CHM09, CHM10 and CHM18) these villi can be labelled as 

anomalous (Figure 4.29). 

 The second measure, which computes the percentage of edge pixels inside stroma 

regions, is used to capture textural characteristics of stroma surfaces. High values of this 

measure are commonly found in normal placental and CHM stroma regions, and low 

values in PHM stroma regions. Therefore, the high values of the percentage of edge 

inside stroma regions of PHM samples can be considered as anomalous (Figure 4.26). 

The third measure analyses the variance of greyscale of stroma regions. This 

measure is referred to as a point anomaly. The variance of greyscales of stroma regions 

is commonly high in CHM samples and low in PHM and normal placental villi samples 

(Figure 4.27). This is because the stroma structure of normal placental villi is reticular 

whereas it is scalloped dentate and mild in PHM and enlarged, irregular and karyorrhectic 

in CHM. 

 Trophoblast thickness and proliferation 

The percentage of trophoblast inside villi, and trophoblast skeleton per trophoblast 

perimeter ratio are examples of contextual and density anomalies; they are used to 

measure trophoblast thickness and proliferation. The percentage of trophoblast inside 

normal and PHM villi should be low, but the villi in N03, N10 and PHM04 slides reveal 

some anomalies because of their high percentage of trophoblast inside their villi. 

However, the percentage of trophoblast inside CHM villi are expected to be high, but the 
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villi in CHM10 and CHM19 contain a low percentage of trophoblast inside their villi (Figure 

4.28). 

The density anomaly is captured by the trophoblast skeleton per trophoblast 

perimeter ratio, which is low in normal and PHM villi but high in CHM villi. However, Figure 

4.29 shows exceptional cases, such as the slides N03, N10, PHM04, PHM09, CHM08, 

CHM09 and CHM10. 

The analysis of trophoblast is an example of a morphological anomaly and it is 

particularly relevant to PHM and CHM trophoblasts, which show strong irregularities in 

CHM, some irregularities in PHM and mild changes in normal placental villi (Figure 4.30).  

 

4.11. Summary 

 This chapter focused on describing the novel heuristic approach to detecting 

anomalies in villi, based on the two low level image processing steps:  segmentation and 

feature extraction. The tacit knowledge elicited from experts in detecting anomalies is 

ontologically represented and integrated into the segmentation and feature extraction 

algorithms. The knowledge and strategies evolved during this study, as the findings were 

not conclusive and allowed the experts to identify additional hidden strategies. The 

segmentation method based on FCM applied to HSV colour space has achieved high 

accuracy in normal placental (82.2%) and PHM villi (83.5%) but low accuracy for CHM villi 

(61.9%), caused by over- and under-segmentation problems. This was partially caused by 

the fact that the extraction of villi was carried out with a large margin (see Figure 4.15c). 

By reducing that margin (see Figure 4.15e) the segmentation was improved and the total 

number of correctly segmented villi increased from 78.4% to 94.5% and from 61.9% to 

85.6% in CHM.   

The low level experimental study has indicated that no single feature has enough 

discriminating power to deal with fuzzy and complex villi shapes and sizes. It has also 

revealed inconsistencies of villi characteristics within each component and within each 

type of villi. There are some basic common properties but also a set of exceptions that 

emphasises the complexity of the task on hand. Further meetings with the experts have 

led to the elicitation of additional tacit features which have been added and integrated into 

the next high level of processing (i.e. the classification step); these are discussed in the 

next chapter. 
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Figure 4.25. Density of RBC per villi. 

 

Figure 4.26. Percentage of edge inside stroma regions. 
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Figure 4.27. Variance of grey scale of stroma regions.  
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Figure 4.28. Average stroma size and trophoblast proliferation 
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Figure 4.29. Average trophoblast skeleton per trophoblast perimeter ratio. 

 

Figure 4.30. Trophoblast analysis. 
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Chapter 5: A Heuristic Neural Network 

Approach to Anomalies Detection of 

Hydatidiform Mole Villi 

 

5.1. Introduction 

This chapter focuses on the second phase of the novel approach, which relates to 

the high level processing of the villi stained sides. The aim of this chapter is twofold: to 

identify and rank the most critical features for investigating their discriminative power, and 

to classify the anomalies of the villi using neural networks that are designed to simulate 

experts’ cognitive processes.  

 Whilst the low level processing step (i.e. segmentation step) is based on 986 villi 

and has included complete and incomplete villi, the high level processing phase is based 

on intact and complete villi and includes 939 villi (i.e. 294 normal, 455 PHM and 190 CHM 

villi) selected from a total of 52 stained slide images (10 normal, 21 PHM and 21 CHM). 

The first part of this chapter describes the four sets of experiments carried out to select 

the most discriminative features, using principal component analysis. The ranking of these 

features is determined using five criteria, described in Section 5.3.2. These features are 

then used to train a multi-neural network, consisting of three sub-networks, to classify the 

villi into their appropriate anomalous types. The second part describes the tool that was 

developed to support these low level and high level analyses of the villi. The findings are 

summarised in the conclusion. 

5.2. The novel classification approach 

An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 

An ANN is a computational machine–learning approach based on a biological neuron 

system of a human brain. It is composed of a set of interconnected neurones designed to 

solve specific problems. An artificial neuron consists of input and activation functions. The 

input function is the summation of input signals multiplied by weights, and the activation 

function is the function that is applied to determine the neuron output. If the value of the 

input function is greater than or equal to the activation level of the activation function, then 

an output signal equal to the activation value is sent through the neuron output. Typical 

activation functions are step, sign, linear, and sigmoid functions (Negnevitsky, 2005). The 
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diagram of a neuron is shown in Figure 5.1. An ANN is configured through a learning 

process for a specific application, such as pattern recognition or data classification. 

 

Figure 5.1. Diagram of a neuron (Negnevitsky, 2005) 

 This study focuses on an artificial neural network, namely a multilayer perceptron. 

A multilayer perceptron is a neural network containing an input layer, one or more hidden 

layers and an output layer. The input layer comprises input nodes connected to sources or 

to features, and the outputs of these input nodes are linked to the hidden layer containing 

hidden nodes. The outputs of the hidden nodes are used as inputs to output nodes in the 

output layer (Russell & Norvig, 2010), as shown in Figure 5.2. Generally, input nodes 

receive signals from input sources and transfer the received signals to all the hidden 

nodes in the hidden layer. Then, the hidden nodes in the hidden layer process the signals 

and apply the weights and bias. Next, the output layer determines the output signals 

(Negnevitsky, 2005). The activation function is the function that the hidden nodes use to 

decide their outputs. In this study, the sigmoid function is chosen as hidden nodes 

activation function, in order to achieve practical and continuous outputs.  

The choice of the number of hidden layers and of the number of nodes for each 

layer is one of the most critical problems in constructing the ANN. Each added hidden 

layer could increase the computational cost (Negnevitsky, 2005). The Kolmogorov’s 

theorem states that a single hidden layer is enough for a multilayer perceptron to solve 

any linear and non-linear problem and the number of hidden nodes is between the 

number of input nodes and output nodes (Blum, 1992). Therefore, the number of hidden 

layers and hidden nodes need to be as small as possible, to enable the network to 

generalise whilst at the same time encapsulate the requisite complexity (Karsoliya, 2012).  
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Figure 5.2. Three layers and nodes of MLP 

 This thesis has developed a novel neural network configuration approach that 

simulates the heuristic approach of the experts for detecting anomalies in villi. The 

following sections describe the development of this novel configuration approach based 

on the elicitation of experts’ heuristics. Much of their medical expertise lies in laid-down 

experience, gathered over a number of years, and becomes so “routinised” that they find it 

difficult to articulate it, or it is taken for granted. Experts may not always agree in their 

approach and may differ among themselves. In developing the neural network 

configuration approach a task analysis approach is adopted to capture experts’ heuristics, 

and each task is divided into subtasks that are further explored in terms of a set of 

experiments, in order to manage the complexity of the task.  

 The development of the novel approach was initially based on the set of 15 

features, described in the previous chapter, to train the MLP and classify the villi. As the 

villi samples used in the segmentation step contained incomplete villi, it was agreed with 

the experts that the classification should be based only on complete and intact villi, a 

practice adopted by the experts themselves. Consequently, the classification is based on 

939 villi out of the original 986, consisting of 294 normal, 455 PHM and 190 CHM intact 

and complete villi.    

5.3. Experimental study 1 

 The first task adopted by the experts and by this experiment is to focus on the 

analysis of normal and CHM villi slides, to distinguish clear boundaries between these two 

types of villi. The 15 features extracted from these normal and CHM villi are fed into a 

feed forward and back propagation MLP. Based on Kolmogorov theorem, this MLP uses 

one hidden layer with hidden nodes ranging from one to 15, as shown in Figure 5.3.   
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Figure 5.3. MLP for normal and CHM villi classification. 

To validate the classifier, in this experiment a 10-fold cross-validation and a 

repeated 10-fold cross validation are conducted. Refaeilzadeh et al. (2009) explain that 

recent theoretical and experimental studies have shown that the k-fold cross-validation is 

the better informed estimation method out of the five popular strategies for computing the 

accuracy of a classifier. Table 5.1 summarises the limitations and benefits of each 

strategy. 

 The number k can be any number, but the most typical number is ten, which is 

selected in this experiment. Cross validation is carried out in terms of two major steps. 

First, the data is divided into ten portions. Second, ten iterations of training and validation 

are executed. In each iteration, one portion is sequentially taken out and used as a 

validation set, while the other nine portions are used as a training set, as illustrated in 

Figure 5.4. The samples in each portion need to be stratified to ensure that each portion 

represents the approximately equal samples of each class. The repeated 10-fold cross- 

validation method is the method that repeats the 10-fold cross-validation N times by 

shuffling sampling sets and then computes the average and standard deviation of their 

accuracies. In this experiment, the number N is set as five, to validate the accuracy and 

reliability of MLP. A confusion matrix is also applied to measure the results in terms of 

accuracy, recall, false positive rate, true negative rate, false negative rate and precision 

(Dhawan, 2003). It is also used to compare the predicted results against its actual outputs 

(Figure 5.5). Accuracy is the portion of correctly predicted samples out of the total number 

of analysis samples, whereas precision is the percentage of predicted samples that are 

relevant, and recall is the percentage of relevant samples that are predicted.  
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Table 5.1. Validation method comparisons (Refaeilzadeh et al., 2009). 

 

 

 

Figure 5.4. 10-fold cross validation. 
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Figure 5.5. A confusion matrix (Dhawan, 2003). 

The results of the classifier, based on five sampling sets, indicate that the lowest 

average accuracy of validation sets is 89.3%, based on nine hidden nodes, and the 

highest value is 91.0%, based on 14 hidden nodes (Table 5.2). However, the standard 

deviation of the classifier with 14 hidden nodes is higher (1.3) than other hidden node 

settings, namely 1, 6, 11, 12 and 13 hidden nodes. 

Additionally, the graph in Figure 5.6 of the average accuracy of validation sets of 

five sampling sets of 10-fold cross-validation shows that the reliability of MLP with 14 

hidden nodes achieves above 90%, which is higher than for the other ANNs settings. The 

standard deviation of the 14 hidden nodes MLP is 1.3, which is higher than for the MLP 

with 1, 6, 11, 12 and 13 hidden nodes. The one hidden layer MLP with six hidden nodes 

yields high average accuracy and low standard deviation. Therefore, the optimal MLP 

setting achieving high average accuracy and low standard deviation is one hidden layer 

MLP with six hidden nodes (90.3% average accuracy and 0.5 standard deviation), as 

shown in Table 5.3. To improve the classification results, principal component analysis is 

applied in the next section to deal with dimensional complexity.   

 

Figure 5.6. The average accuracy of validation sets of five sampling sets of 10-fold cross-

validation. 
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Table 5.2. Results of five sampling sets of 10-fold cross-validation. 

 

 Sampling set: 1  Sampling set: 2  Sampling set: 3 

Number 
of 

hidden 
nodes 

Average 
of % 
Train 

accuracy 

Average 
of % Test 
accuracy 

 

Average 
of % 
Train 

accuracy 

Average 
of % Test 
accuracy 

 

Average 
of % 
Train 

accuracy 

Average 
of % Test 
accuracy 

1 92.8 90.3  92.9 90.3  92.2 90.9 

2 92.5 90.3  93.2 90.9  89.3 86.5 

3 92.9 90.9  92.7 89.7  92.8 89.7 

4 92.4 89.1  92.1 88.6  93.2 90.3 

5 92.8 90.7  93.5 89.9  92.3 91.5 

6 94.1 90.1  92.4 89.7  93.0 90.1 

7 93.9 90.5  93.0 90.9  92.6 89.5 

8 93.4 90.3  94.3 89.7  94.1 91.3 

9 94.0 89.3  94.0 89.4  94.3 87.8 

10 94.4 90.1  94.9 91.9  94.1 91.5 

11 94.3 88.8  94.2 90.9  93.9 90.1 

12 94.5 90.3  93.9 89.5  94.6 90.5 

13 94.8 91.3  94.6 90.9  94.2 90.5 

14 94.7 91.9  94.4 91.7  94.6 92.2 

15 93.9 88.4  95.2 90.7  94.3 87.8 

 

 Sampling set: 4  Sampling set: 5 

Number 
of 

hidden 
nodes 

Average 
of % 
Train 

accuracy 

Average 
of % Test 
accuracy 

 

Average 
of % 
Train 

accuracy 

Average 
of % Test 
accuracy 

1 92.8 89.0  92.7 90.1 

2 92.8 89.5  92.6 89.9 

3 92.6 88.8  92.6 92.2 

4 93.4 90.1  93.2 91.7 

5 93.2 88.4  92.7 90.5 

6 92.4 90.3  93.4 91.1 

7 94.3 91.3  93.8 88.7 

8 94.2 88.0  93.6 91.3 

9 93.9 89.3  93.4 90.7 

10 94.2 89.5  94.9 90.9 

11 94.2 89.5  94.7 90.5 

12 94.5 90.1  94.3 90.3 

13 94.9 90.3  94.3 90.9 

14 94.8 89.3  94.4 90.1 

15 95.0 89.2  94.7 91.7 
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Table 5.3. Average accuracy and standard deviation of five sampling sets of 10-

fold cross-validation. 

 
Average accuracy Standard deviation 

Number of hidden 
nodes 

Training set Validation set Training set Validation set 

  1 92.7 90.1 0.3 0.7 

  2 92.1 89.4 1.6 1.7 

  3 92.7 90.3 0.1 1.3 

  4 92.9 90.0 0.6 1.2 

  5 92.9 90.2 0.5 1.2 

  6 93.0 90.3 0.7 0.5 

  7 93.5 90.2 0.7 1.1   

8 93.9 90.1 0.4 1.4   

9 93.9 89.3 0.3 1.0   

10 94.5 90.8 0.4 1.0   

11 94.3 90.0 0.3 0.8   

12 94.4 90.1 0.3 0.4   

13 94.6 90.8 0.3 0.4   

14 94.6 91.0 0.2 1.3   

15 94.6 89.6 0.6 1.6   

 

5.3.1. Principal component analysis 

The first subtask is to reduce the dimension of the set of correlated features while 

retaining the essential information. To this end, the principal component analysis (PCA) is 

applied, aimed at transforming orthogonally a set of correlated variables into a new set of 

uncorrelated components. The principal components (PCs) are found by computing the 

eigenvectors and eigenvalues of the data covariance matrix. For example, the correlated 

two dimensional data in Figure 5.7a is difficult to classify, so PCA can maximise the 

variance. The plotted data of two PCs in Figure 5.7b show less correlated data than the 

original data (Jolliffe, 2002).  

To reduce the dimension of a data set, PCs selection is necessary.  The retained 

number of PCs is supposed to represent the information of the original data as much as 

possible. A threshold method is common for the PCs selection. The primary threshold 

method for PC selection is the cumulative percentage of variation. This method is based 

on the cumulative percentage of information on data that PCs can contribute (Jolliffe, 

2002). The typical threshold is between 70% and 90%, but the threshold can be higher or 

lower than the conventional threshold, depending on the type of application and the nature 

of its data.  
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Figure 5.7. (a) Two dimension data (Jolliffe, 2002). Figure 5.7. (b) Two PCs (Jolliffe, 

2002). 

In this experiment PCA is applied to the projected data features (PCs), and the 

cumulative percentages of data contained in each of these projected features are shown 

in Table 5.4. We can choose the threshold in term of the percentage of the information on 

data that we want to feed to the classifier. For example, if we select six principal 

components, we will have six dimensions of features containing 91.38% of data 

information. The cumulative percentages of data given by ten principal components 

provide less than 1% of data information, and the addition of 10-15 components can only 

increase the data information by 2.49%. In this experiment, nine principal components are 

selected as they contain 97.51% of data information. Although, nine components are 

optimal in this experiment, 15 components have been further tested to investigate the 

discriminating power of 2.49% of data information.  

Once the optimal nine principal components are selected, they are trained by MLP 

with 10-fold cross-validation. The experiments are run with five shuffling sampling sets; 

the average accuracy and standard deviation are reported in Tables 5.5 and 5.6. The 

results indicate that the lowest average accuracy is 89.2%, based on four and five hidden 

nodes, and the highest average accuracy is 90.5%, based on one hidden layer and nine 

hidden nodes, with a standard deviation of 0.6.  Based on the rule of thumb of MLP, which 

recommends that the number of hidden nodes should be as small as possible to keep the 

model generalisation, this study uses a MLP with six hidden nodes and one hidden layer, 

as it achieves 90% average accuracy and a low standard deviation of 0.7.  
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Table 5.4. The cumulative percentage of data of each principal component 

Principal components Cumulative percentage 

1 40.38 

2 63.96 

3 74.12 

4 81.50 

5 87.10 

6 91.38 

7 94.62 

8 96.19 

9 97.51 

10 98.34 

11 98.93 

12 99.46 

13 99.77 

14 99.95 

15 100.00 

 

 

 Table 5.5. Average accuracy and standard deviation of five sampling sets of 10-fold 

cross-validation of nine principal components 

 
Average accuracy Standard deviation 

Number 
of 

hidden 
nodes 

Training 
set 

Validation 
set 

Training 
set 

Validation 
set 

  1 91.3 89.5 0.1 1.1 

  2 91.5 89.9 0.2 1.4 

  3 91.6 89.6 0.1 0.5 

  4 91.3 89.2 0.2 0.4 

  5 92.4 89.2 0.4 1.2 

  6 92.5 90.0 0.2 0.7 

  7 92.5 89.4 0.4 0.6   

8 92.9 89.4 0.2 1.1   

9 93.4 90.5 0.2 0.6   
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Table 5.6. Average accuracy and standard deviation of five sampling sets of 10-fold cross-

validation of 15 principal components 

 
Average accuracy Standard deviation 

Number 
of 

hidden 
nodes 

Training 
set 

Validation 
set 

Training 
set 

Validation 
set 

  1 92.9 90.7 0.3 0.6 

  2 92.7 89.4 0.4 0.8 

  3 93.3 90.5 0.3 0.7 

  4 92.7 89.5 0.7 0.8 

  5 93.4 89.3 0.4 1.0 

  6 93.7 90.1 0.2 0.9 

  7 93.4 90.2 0.4 0.8   

8 94.2 90.2 0.2 0.8   

9 94.2 90.3 0.5 1.9   

10 94.1 91.1 0.6 1.3 

  11 94.7 90.6 0.4 0.7 

  12 94.8 91.0 0.3 1.2 

  13 94.7 91.1 0.4 0.9   

14 94.5 89.9 0.5 1.1   

15 94.8 90.6 0.4 1.4   

 

5.3.2. Feature ranking 

The second subtask is to investigate the ranking of these 15 features to 

understand the relationship between the ranked features, based on their information 

content and pathologists’ knowledge and strategies.  

Feature selection techniques can be categorised into three groups: wrappers, 

embedded methods and filters (Guyon & Elisseeff, 2003). Wrappers use a black-box 

machine learning approach to score variables according to their predictive power, 

whereas embedded methods perform variable selection in the process of training.  

Instead of using a machine-learning approach, the filter methods select variables 

based on the characteristics of the variables. To measure their discriminative power this 

study focused on the filter method and applied five evaluation criteria: (i) t-test, (ii) entropy, 

(iii) minimum attainable classification error (Chernoff bound), (iv) area between the 

empirical receiver operating characteristic (ROC) curves and the random classifier slope, 

and (v) absolute value of the standardised u-statistic of a two-sample unpaired Wilcoxon 

test (Mann-Whitney). A linear classifier is applied to measure the discriminative power of 

each feature.  
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 T-test results  

The results of the feature ranking method based on t-test show that the most 

important feature is the variance of grey scale of stroma regions, achieving accuracy of 

85.3% (Table 5.7). The second group of ranked features consists of the percentage of 

trophoblast per villi, percentage of stroma per villi, corner per perimeter ratio and corner 

points, achieving from 73.4 to 75.8% accuracy respectively. The least significant feature is 

the percentage of red blood cells per villi (53.3% accuracy).  

The feature ranking method based on t-test is applied to rank features by using the 

distance calculated from the mean of each class. Although this method cannot guarantee 

the discriminating power ranking of the listed features, it gives a ranking of the features 

that relate well to the classification results of a linear classifier, as shown in Figure 5.8. 

Table 5.7. The features ranked by t-test. 

Ranking Features Accuracy % 

1 Variance of grey scale of stroma regions 85.3 

2 % TB/villi 75.8 

3 % Stroma/villi 74.6 

4 Corner/villi's perimeter ratio 74.2 

5 TB skeleton /TB's perimeter ratio 74.0 

6 Corner points 73.4 

7 Trophoblast analysis 70.9 

8 Major axis 62.4 

9 Villi’s bounding box and villi areas 68.2 

10 The notion of four quadrants 65.1 

11 Villi pixels 61.6 

12 Minor axis 55.0 

13 Elongation ratio 61.2 

14 % Edge/stroma 56.6 

15 % RBC/villi 53.3 

 

 Entropy 

Entropy is implemented to measure the uncertainty of information content in data. 

The results of the feature ranking method based on entropy show that the top three 

essential features are: trophoblast analysis, the number of villi boundary corner points, 

and the variance of grey scale of stroma regions (Table 5.8). The less significant features 

include the percentage of edge inside stroma regions, the percentage of red blood cells 

and elongation ratio. The ranked features indicate the development of the discriminative 

power of the features, but some of the listed features are still not associated with the 

results of the linear classifier, such as the variance of grey scale of stroma regions, the 
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notion of four quadrants, the different area between villi’s bounding box and villi areas, villi 

pixels, major axis and the percentage of red blood cells inside stroma regions (Figure 5.9).    

 

Figure 5.8. The accuracy of features ranked by t-test. 

 ROC curves criterion 

The results of the feature ranking method based on the area between the empirical 

receiver operating characteristic (ROC) curves and the random classifier slope, show that 

the features ranked by this criterion are related to the classification results of a linear 

classifier. The top six features are: the variance of grey scale of stroma regions, the 

percentage of trophoblast per villi, the percentage of stroma per villi, the ratio between 

number of villi boundary corner points and all pixels belonging to villi perimeter, the 

number of villi boundary corner points and the trophoblast skeleton per trophoblast 

perimeter ratio (Table 5.9). The ranked features show that the most important feature is 

the variance of grey scale of stroma regions, followed by the second group consisting of 

the percentage of trophoblast per villi, the percentage of stroma per villi, the ratio between 

number of villi boundary corner points and all pixels belonging to villi perimeter, the 

number of villi boundary corner points, and the trophoblast skeleton per trophoblast 

perimeter ratio (Figure 5.10). The least significant features include the minor axis, the 

percentage of edge pixels inside stroma regions and villi pixels. This criterion can be used 

to order the features using their discriminating aspect.  
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Table 5.8. The features ranked by entropy. 

Ranking Features Accuracy % 

1 Trophoblast analysis 70.9 

2 Corner points 73.3 

3 Variance of grey scale of stroma 

regions 

85.3 

4 The notion of four quadrants 65.1 

5 Villi’s bounding box and villi areas 68.2 

6 Villi pixels 61.6 

7 % TB/villi 75.8 

8 % Stroma/villi 74.6 

9 TB skeleton /TB's perimeter ratio 74.0 

10 Corner/villi's perimeter ratio 74.2 

11 Minor axis 55.0 

12 Major axis 62.4 

13 Elongation ratio 61.2 

14 % RBC/villi 53.3 

15 % Edge/stroma 56.6 

 

 

Figure 5.9. The accuracy of features ranked by entropy. 
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Table 5.9. The features ranked by area between ROC and the random classifier slope. 

Ranking Features Accuracy % 

1 Variance of grey scale of stroma 

regions 

85.3 

2 % TB/villi 75.8 

3 % Stroma/villi 74.6 

4 Corner/villi's perimeter ratio 74.2 

5 Corner points 73.3 

6 TB skeleton /TB's perimeter ratio 74.0 

7 Trophoblast analysis 70.9 

8 Villi’s bounding box and villi areas 68.2 

9 The notion of four quadrants 65.1 

10 % RBC/villi 53.3 

11 Major axis 62.4 

12 Elongation ratio 61.2 

13 Villi pixels 61.6 

14 % Edge/stroma 56.6 

15 Minor axis 55.0 

 

 

Figure 5.10. The accuracy of features ranked by the area between ROC and the random 

classifier slope. 
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 Chernoff bound criterion 

Minimum attainable classification error (Chernoff bound) is used to measure the 

distance that the expected value of a random variable can diverge from the mean of data. 

The important features, listed by this criterion, are: trophoblast analysis, number of villi 

boundary corner points, and variance of grey scale of stroma regions. The less important 

features are: percentage of edge pixels inside stroma regions, elongation ratio, and 

percentage of red blood cells (Table 5.10). The ranked features show the trend of the 

discriminative power of the features, but some of the listed features are still not related to 

the classification results of the linear classifier, for example, the notion of four quadrants, 

villi pixels, major axis and the percentage of red blood cells inside stroma regions (Figure 

5.11).    

 

Table 5.10. The features ranked by minimum attainable classification error (Chernoff 

bound). 

Ranking Features Accuracy % 

1 Trophoblast analysis 70.9 

2 Corner points  73.3 

3 Variance of grey scale of stroma 

regions 

85.3 

4 The notion of four quadrants 65.1 

5 Villi pixels 61.6 

6 Villi’s bounding box and villi areas 68.2 

7 % TB/villi 75.8 

8 % Stroma/villi 74.6 

9 TB skeleton /TB's perimeter ratio 74.0 

10 Minor axis 55.0 

11 Corner/villi's perimeter ratio 74.2 

12 Major axis 62.4 

13 % RBC/villi 53.3 

14 Elongation ratio 61.2 

15 % Edge/stroma 56.6 
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Figure 5.11. The accuracy of features ranked by the minimum attainable classification 

error (Chernoff bound). 

 

 Wilcoxon test 

The absolute value of the standardised u-statistic of a two-sample unpaired 

Wilcoxon test (Mann-Whitney) is a non-parametric statistical test applied to measure the 

difference between data distributions in two different conditions. The top three important 

features selected by this criterion are: percentage of stroma per villi, percentage of red 

blood cells inside stroma regions, and percentage of edge inside stroma regions, whereas 

the least significant feature listed is the number of villi boundary corner points (Table 

5.11). The results show that the features ranked by this criterion are unrelated to the 

classification results of the linear classifier, as shown in Figure 5.12.   
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Table 5.11. The features ranked by absolute value of the standardised u-statistic of a two-

sample unpaired Wilcoxon test (Mann-Whitney). 

Ranking Features Accuracy % 

1 % Stroma/villi 74.6 

2 % RBC/villi 53.3 

3 % Edge/stroma 56.6 

4 Minor axis 55.0 

5 Villi pixels 61.6 

6 Elongation ratio 61.2 

7 Major axis 62.4 

8 The notion of four quadrants 65.1 

9 Variance of grey scale of stroma 

regions 

85.3 

10 Villi’s bounding box and villi areas 68.2 

11 Trophoblast analysis 70.9 

12 % TB/villi 75.8 

13 TB skeleton /TB's perimeter ratio 74.0 

14 Corner/villi's perimeter ratio 74.2 

15 Corner points 73.3 

   

 

Figure 5.12. The accuracy of features ranked by absolute value of the standardised u-

statistic of a two-sample unpaired Wilcoxon test (Mann-Whitney). 
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Based on the above evaluation criteria, the three most important features are 

identified as: variance of grey scale of stroma regions, percentage of trophoblast per villi, 

and percentage of stroma per villi (Table 5.12). The t-test and ROC criteria have ranked 

the variance of grey scale of stroma regions as the most important feature, with 85.3% 

accuracy. They have also listed the percentage of trophoblast per villi as the second 

criterion, with 75.8% accuracy. The percentage of stroma per villi appeared to be the third 

criterion identified by t-test and ROC, with 74.6% accuracy. However, it is ranked as the 

first criteria by Wilcoxon test. 

The least important feature by t-test, entropy, Chernoff bound and ROC criteria is 

the percentage of red blood cells inside stroma regions, although Wilcoxon test ranked it 

second, similarly the percentage of edge inside stroma regions.  

This feature ranking experiment shows that the textural feature (e.g. variance of 

grey scale of stroma regions) is more important than the size and shape of villi, whereas 

the experts claim to consider the size and shape first, before texture. As the experts 

explain, the distinction between PHM and CHM villi is the most difficult task. The ranked 

features can be good indicators to help distinguish PHM from normal and CHM villi. 

5.4. Experimental study 2 

Having identified the distinguishing features between normal and CHM villi, the 

experts set out to include PHM villi in the comparative analysis of anomalous villi. The aim 

of the second task and experiment 2 is to classify villi images into these three categories: 

normal, PHM and CHM villi. Experiment 2 uses a traditional multilayer perceptron 

consisting of the same 15 input nodes as experiment 1, but with output nodes set to three 

classes. The number of hidden layers is again set to one layer, and the number of hidden 

nodes is between one and 15 (Figure 5.13). In this experiment, repeated 10-fold cross-

validation is also applied to evaluate the results and validate the accuracy and reliability of 

MLP. The accuracy, precision and recall are also applied to measure the MLP 

performance.  
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Table 5.12. The features ranked by the five criteria.  

Ranking T-test Entropy ROC Chernoff bound Wilcoxon test 

1 
Variance of grey scale 

of stroma regions 
Trophoblast analysis 

Variance of grey scale of 
stroma regions 

Trophoblast analysis % Stroma/villi 

2 % TB/villi Corner points % TB/villi Corner points % RBC/villi 

3 % Stroma/villi 
Variance of grey scale of 

stroma regions 
% Stroma/villi 

Variance of grey 
scale of stroma 

regions 
% Edge/stroma 

4 
Corner/villi's perimeter 

ratio 
The notion of four 

quadrants 
Corner/villi's perimeter 

ratio 
The notion of four 

quadrants 
Minor axis 

5 
TB skeleton /TB's 

perimeter ratio 
Villi’s bounding box and 

villi areas 
Corner points Villi pixels Villi pixels 

6 Corner points Villi pixels 
TB skeleton /TB's 

perimeter ratio 
Villi’s bounding box 

and villi areas 
Elongation ratio 

7 Trophoblast analysis % TB/villi Trophoblast analysis % TB/villi Major axis 

8 Major axis % Stroma/villi 
Villi’s bounding box and 

villi areas 
% Stroma/villi 

The notion of four 
quadrants 

9 
Villi’s bounding box and 

villi areas 
TB skeleton /TB's 

perimeter ratio 
The notion of four 

quadrants 
TB skeleton /TB's 

perimeter ratio 

Variance of grey 
scale of stroma 

regions 

10 
The notion of four 

quadrants 
Corner/villi's perimeter 

ratio 
% RBC/villi Minor axis 

Villi’s bounding box 
and villi areas 

11 Villi pixels Minor axis Major axis 
Corner/villi's 

perimeter ratio 
Trophoblast 

analysis 

12 Minor axis Major axis Elongation ratio Major axis % TB/villi 

13 Elongation ratio Elongation ratio Villi pixels % RBC/villi 
TB skeleton /TB's 

perimeter ratio 

14 % Edge/stroma % RBC/villi % Edge/stroma Elongation ratio 
Corner/villi's 

perimeter ratio 

15 % RBC/villi % Edge/stroma Minor axis % Edge/stroma Corner points 

111 

1
0
7
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Figure 5.13. The MLP diagram of normal, PHM and CHM villi images classification. 

The MLP classification results of ten sampling sets of 10-fold cross-validation 

indicate that the number of hidden nodes achieving the best average accuracy (80.5%) 

and standard deviation (0.5) of validation sets is five hidden nodes. Although, 12 hidden 

nodes MLP yields 81.1% average accuracy, the average standard deviation of validation 

sets is higher (0.9) than for five hidden nodes, as shown in Table 5.13. The graph of the 

average accuracy of validation sets indicates that the performance of MLP in term of 

efficiency is steady from 2 to 15 hidden nodes, as illustrated in Figure 5.14. Furthermore, 

the one hidden layer MLP with five hidden nodes achieves 81.3% precision for the normal 

villi class, 81.2% for the PHM villi class and 80.1% for the CHM villi class. The MLP also 

achieves high recall for the normal (83.2%) and PHM (86.2%) villi classes but the MLP 

yields low recall for the CHM villi class (62.8%) as shown in Table 5.14. 

 

Figure 5.14. Average accuracy of validation sets. 
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Table 5.13. MLP classification results of ten sampling sets of 10-fold cross-validation. 

 
Average accuracy Standard deviation 

Number 
of 

hidden 
nodes 

Training 
set 

Validation 
set 

Training 
set 

Validation 
set 

  1 69.1 67.7 1.3 1.6 

  2 82.2 79.6 0.7 0.9 

  3 82.8 80.1 0.4 0.6 

  4 83.4 80.3 0.3 0.8 

  5 83.7 80.5 0.3 0.5 

  6 83.9 79.9 0.6 0.7 

  7 84.3 80.5 0.4 1.1   

8 84.7 80.4 0.5 0.6   

9 84.8 80.0 0.4 0.7   

10 85.1 80.7 0.5 0.7   

11 85.0 80.8 0.6 0.9   

12 85.3 81.1 0.6 0.9   

13 85.7 80.5 0.5 1.1   

14 85.9 80.6 0.6 0.5   

15 85.8 81.0 0.6 0.9   

   

Table 5.14. The precision and recall of MLP. 

 

Normal PHM CHM 

Precision 81.3 81.2 80.1 

Recall 83.2 86.2 62.8 

 

 These results confirm the difficulty of villi classification when the PHM villi are 

added to the analysis. The expert pathologists claim that the early stage of PHM and CHM 

are difficult to distinguish by using solely morphological features. To improve the accuracy 

and recall of MLP, meetings with experts helped improve the configuration of the neural 

network discussed in the next section.     

5.5. Experimental study 3 

The aim of this experiment is to capture the heuristic approach of the expert 

pathologists in improving the design of traditional MLP. The pathologists’ approach to the 

detection of anomalies begins by first separating normal villi from non-normal villi, then 

they focus on the non-normal villi and separate PHM from CHM villi. This approach is 

reflected in the novel multi-neural network configuration. 

This novel multi-neural network configuration consists of three sub-networks, 

namely NN1, NN2 and NN3 (Figure 5.15). NN1 is applied to classify normal from non-
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normal villi. Then, the villi classified as non-normal villi are trained by NN2 to distinguish 

between PHM and CHM villi. The villi classified as normal villi are further trained by NN3 

to classify normal villi from PHM villi. The primary settings of NN1, NN2 and NN3 consist 

of 15 input nodes, one hidden layer, hidden nodes varying from one to 15, and two output 

nodes.  

Normal
PHM 
CHM

NN1 N
N N

PHM PHM PHM

PHM PHM PHM

CHM
CHM CHM

Classified as 
CHM 

(PHM + CHM)

Classified as 
Normal

NN2

NN3

  

Figure 5.15. Multi-neural network architecture. 

The results of the three sub-neural networks indicate that the best number of 

hidden nodes is six, with 93.1% average accuracy for NN1, three with 89.0% average 

accuracy for NN2, and five with 91.4% average accuracy for NN3.   

The multi-neural network classification results based on the repeated 10-fold 

cross-validation show that the overall average accuracy is slightly higher (81.2%) than the 

traditional MLP (80.5%) with standard deviation of 1, as shown in Table 5.15.  

The multi-neural network configuration has improved the classification 

performance in term of average accuracy, precision and recall, achieving 81.2% average 

accuracy (Table 5.16), and achieved high precision for all three classes: normal (82.7%), 

PHM (81.3%) and CHM (80.8%) villi. The recall has also increased for normal (83.0%), 

PHM (87.1%) and CHM (64.3%). However, the improvement in average accuracy is still 

limited to a small gain compared to MLP results.  
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Table 5.15. Average accuracy of multi-neural network approach. 

 
Average accuracy of validation set 

Sampling 
set 

NN1 = 6 NN2 = 3 NN3 = 5 
Overall 

accuracy 

  1 93.3 88.5 92.2 80.4 

  2 93.2 89.1 91.4 81.4 

  3 93.2 89.4 90.6 80.4 

  4 93.5 89.0 90.9 81.3 

  5 93.6 88.8 91.4 80.2 

  6 92.8 89.2 91.2 81.1 

  7 92.4 88.9 91.2 80.5   

8 93.3 88.1 92.1 83.2   

9 93.3 89.2 90.8 82.4   

10 92.6 89.7 92.1 81.4   

       

Average 93.1 89.0 91.4 81.2   

Standard 
deviation 

0.4 0.5 0.6 1.0 
  

 

Table 5.16. The precision and recall of MLP vs. Multi-neural network (MNN). 

ANNs 
Precision Recall Average 

accuracy Normal PHM CHM Normal PHM CHM 

MLP 81.3 81.2 80.1 83.2 86.2 62.8 80.5 

MNN 82.7 81.3 80.8 83.0 87.1 64.3 81.2 

 

5.6. Experimental study 4 

 The previous limited improvement led to elicitation of two additional features, 

namely dark regions inside stroma, and dark regions inside trophoblast. Dark regions 

inside stroma and dark regions inside trophoblast represent the texture of stroma and 

trophoblast regions respectively. The dark regions inside stroma are high in normal 

placental and low in PHM and CHM villi samples (Figure 5.16). In normal placental villi the 

structure of the stroma is a net-like structure, whereas it is scalloping, dentate and mild in 

PHM and enlarged, irregular and karyorrhectic in CHM. The dark regions inside 

trophoblast are also used to capture the textural features of trophoblast thickness and 

proliferation of villi. The values of dark regions inside trophoblast are high in CHM and low 

in PHM and normal placental villi samples (Figure 5.17). This is due to the trophoblast 

regions in CHM villi being thicker and more proliferated than in normal placental and PHM 

villi. 
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 These two additional features are added to the 15 features and used to train both, 

the MLP and the MNN based on the same settings as previous experiments, except that 

the number of input nodes is configured to 17 and the number of hidden nodes ranges 

from one to 17. 

 The MLP results indicate that the highest average accuracy (85.1%) and lowest 

standard deviation (0.6) are achieved with five hidden nodes (Table 5.17). Although, the 

MLPs with 12, 14, 16 and 17 hidden nodes achieve slightly better accuracies (Figure 5.18) 

their standard deviation is higher than for the five hidden nodes. The MLP with nine 

hidden nodes yields 85.2% average accuracy and 0.5 standard deviations, which are 

slightly lower than the MLP with five hidden nodes. However, to keep the number of 

hidden nodes as small as possible in order to maintain the classifier generalisation, it is 

concluded that the MLP with five hidden nodes is the best setting for the 17 features 

classification. The average accuracy of the MLP is significantly improved from 80.5% to 

85.1% by adding these two textural features. 

Table 5.17. MLP classification results of ten sampling sets of 10-fold cross-validation. 

 
Average accuracy Standard deviation 

Number of 
hidden nodes 

Training 
set 

Validation 
set 

Training 
set 

Validation 
set 

  1 70.4 69.5 1.6 1.8 

  2 85.4 82.9 2.6 2.7 

  3 87.1 84.3 1.3 1.2 

  4 87.8 84.3 0.3 0.6 

  5 88.1 85.1 0.4 0.6 

  6 88.3 84.4 0.3 0.6 

  7 88.6 84.2 0.2 0.6   

8 88.7 84.9 0.4 0.9   

9 88.9 85.2 0.6 0.5   

10 89.3 85.1 0.6 0.6   

11 89.9 84.7 0.6 0.7   

12 89.8 85.3 0.4 0.8   

13 89.6 84.7 0.4 0.7   

14 90.2 85.2 0.5 0.6   

15 90.2 85.0 0.5 0.9   

16 90.4 85.6 0.4 0.7   

17 90.7 85.6 0.3 0.7   
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Figure 5.16. Dark regions inside the stroma. 

 

Figure 5.17. Dark regions inside the trophoblast.   
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Figure 5.18. Average accuracy of validation sets of MLP with 17 features. 

 The results of the multi-neural networks show that the best numbers of hidden 

nodes for NN1, NN2 and NN3 hidden nodes are five, with 96.7% average accuracy, eight, 

with 92.8% average accuracy and 14, with 94.9% average accuracy respectively. The 

repeated 10-fold cross-validation indicates that the average accuracy is slightly better 

(86.1%) than MLP (85.1%) with a standard deviation of 0.6 (Table 5.18). 

Table 5.18. Average accuracy of multi-neural network approach with 17 features. 

 
Average accuracy of validation set 

Sampling set NN1 = 5 NN2 = 8 NN3 = 14 
Overall 

accuracy 

  1 96.9 92.4 94.9 85.0 

  2 96.5 92.7 95.2 86.7 

  3 96.5 93.0 94.7 85.5 

  4 96.6 92.7 94.1 86.8 

  5 96.9 93.2 94.9 85.9 

  6 97.1 93.5 94.9 86.1 

  7 96.7 92.8 94.6 86.4   

8 96.0 92.8 95.4 85.9   

9 96.6 92.6 95.0 85.7   

10 96.8 92.5 95.4 87.0   

       

Average 96.7 92.8 94.9 86.1   

Standard 
deviation 

0.3 0.3 0.4 0.6 
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In summary, these additional two features have improved the average accuracies 

of MLP and MNN, and MNN has reached an average accuracy higher than MLP (i.e. 

86.1% vs. 85.1%). Furthermore, the precision of the multi-neural network has increased 

from 82.7% to 89.5% for normal villi class, from 81.3% to 84.7% for PHM villi class and 

from 80.8% to 86% for CHM villi class. Similarly, the recall has improved from 83.0% to 

87.7% for the normal villi class, from 87.1% to 90.3% for the PHM villi class and from 

64.3% to 73.5% for the CHM villi class.  

Table 5.19. Precision and recall of 15 and 17 features classified by MLP and MNN. 

15 FS 
ANNs 

Precision Recall Average 
accuracy Normal PHM CHM Normal PHM CHM 

MLP 81.3 81.2 80.1 83.2 86.2 62.8 80.5 

MNN 82.7 81.3 80.8 83.0 87.1 64.3 81.2 

 

17 FS 
ANNs 

Precision Recall Average 
accuracy Normal PHM CHM Normal PHM CHM 

MLP 86.2 84.6 86.5 87.5 88.0 74.3 85.1 

MNN 89.5 84.7 86 87.7 90.3 73.5 86.1 

 

5.7. Post-processing study 

To further improve the results, a majority voting technique is applied to the above 

findings. This is a practice followed by expert pathologists for finalising their diagnosis by 

taking a holistic view. For example, if a hydatidiform mole slide image contains ten villi and 

eight are identified as normal placental villi, then the two remaining villi are classified as 

normal, even though they contain a few CHM villi characteristics. The results of majority 

voting indicate that the average portion of villi classified as normal (91.4%) in normal 

slides is higher than in PHM (8.2%) and CHM (0.5%) (Table 5.20). The average portion of 

villi in PHM slides classified as PHM (91.5%) is also higher than the portions classified as 

normal (4.5%) and as CHM (4.0%). The average portion of CHM villi in CHM slide is 

81.6%, which is lower than normal villi (91.4%) in normal slides and PHM villi (91.5%) in 

PHM slides. However, the average portion of CHM (81.6%) is higher than normal (2.8%) 

and PHM villi (15.6%) in CHM slides. 

The maximum and minimum values of the portions of the three classes (normal, 

PHM and CHM villi) are shown in the range of variation of classified villi. The maximum 

and minimum values of the portions in normal slides are 97.5% and 76.5% for normal villi, 

23.5% and 2.5% for PHM villi and 4.5% and 0% for CHM villi. The gap between maximum 

and minimum values indicates that the distribution of classified villi is low and the low 

standard deviation of each class also confirms the low distribution behaviour of normal 
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slide classification (Table 5.20). The trends of PHM slides are the same as in normal 

slides, whereas the ranges between minimum and maximum values of classified villi 

portions represent the high distribution of classification results, for example, 0 – 18.2% for 

normal villi, 0 – 42.9% for PHM villi and 54.5 – 100% for CHM villi. The standard 

deviations of classified normal, PHM and CHM villi are 5.9, 15.9 and 17.5, which 

emphasises the high variation of the classification results of CHM slides. Although, the 

classification results of CHM slides show high variation, the minimum of CHM villi portion 

(54.5%) is still more than 50%. Therefore, majority voting can be used to reduce the 

misclassifications in the whole slide images (Figure 5.19).       

5.8. Conclusion 

This chapter describes the second phase of the novel approach, which relates to 

the high level processing of the villi stained slides.  

The first task is to apply principal component analysis (PCA) and feature ranking to 

deal with the complexity of dimensions and to rank the 15 features. The variance of grey 

scale of stroma regions is ranked as the most critical feature, with 85.3% accuracy, by the 

t-test and ROC criteria, and the percentage of trophoblast per villi is selected as the 

second criteria, with 75.8% accuracy, followed by the percentage of stroma per villi with 

74.6% accuracy. The least important features are the percentage of red blood cells inside 

stroma regions and the percentage of edge inside stroma regions. This feature ranking 

experiment indicates that a textural feature, namely the variance of grey scale of stroma 

regions, is more significant than the morphological features (size and shape) of villi, while 

the experts consider the size and shape before texture as the most important features. 

The results of PCA and feature ranking also confirm that no single feature can give 

enough discriminative power for villi classification.  

The second task aims at classifying the villi into normal placental, PHM and CHM 

villi, based on the 15 features defines in Section 4.7. The traditional MLP approach has 

provided low recall, whereas the heuristic MLP approach has improved the precision of all 

three classes and the recall of PHM and CHM villi classes, as well as the overall average 

accuracy. The multi-neural network configuration has helped to show which features are 

more important. While the experts claim that the important features are the size and 

shape of villi, the experimental studies have confirmed that texture features are more 

important than the size and shape of villi. Although the results of the multi-neural network, 

which are based on 15 anomalous features, show an improvement in average accuracy 

(81.2%), the recall of CHM villi class is still low (64.3%). The two additional textural 

features, namely dark regions inside the stroma and dark regions inside the trophoblast, 
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have increased the average accuracy of multi-neural network configuration (experiment 4) 

from 81.2% to 86.1%, and the recall of CHM villi class from 64.3% to 73.5%. 

To support this study, HYMAT is developed to assist pathologists by visualising 

the results of the segmentation and provide them with a tool to further analyse the villi and 

explore further properties. This is described further in the next chapter.  
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Table 5.20. The majority voting results of normal, PHM and CHM slides classified by the multi-neural network. 

 
Normal slides 

 
Normal PHM CHM 

Max % 97.5 23.5 4.5 

Min % 76.5 2.5 0.0 

Average % 91.4 8.2 0.5 

SD 6.4 6.5 1.4 
 

 
PHM slides 

 
Normal PHM CHM 

Max % 16.7 100.0 15.4 

Min % 0.0 77.8 0.0 

Average % 4.5 91.5 4.0 

SD 4.9 7.0 4.3 
 

 
CHM slides 

 
Normal PHM CHM 

Max % 18.2 42.9 100.0 

Min % 0.0 0.0 54.5 

Average % 2.8 15.6 81.6 

SD 5.9 15.9 17.5 
 

    

 

Figure 5.19. The majority voting results of normal, PHM and CHM slides. 
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Chapter 6: Hydatidiform Mole Analysis Tool 

(HYMAT) 

6.1. Introduction 

One of the main goals of this research is to support pathologists in distinguishing 

complete hydatidiform moles (CHM) from partial hydatidiform moles (PHM). The 

distinction between these two types is challenging, yet important, because CHM has a 

greater malignant potential than PHM and each mole produces a different prognosis and 

patient management. Although these moles can be identified using clinical, 

ultrasonographic, gross morphological, histological and genetic criteria, the final diagnosis 

must be confirmed by pathologists (Vassilakos et al., 1977; Petignat et al., 2003).  Many 

experienced pathologists confirmed the difficulties in distinguishing these moles. Their 

histological examination aims at analysing trophoblast proliferation, villus contour and its 

scalloping shape, and the presence of red blood cells in fetal vessels (Sebire et al., 2003).  

Most misclassifications relate to the absence of strict morphological criteria that can help 

differentiate the PHM from CHM and normal placenta, because of the significant overlap 

of features.  Some typical cases are not easily detected by focusing solely on 

morphological criteria. Misclassifications can also occur if no fresh tissue is available, and 

if abundant tissue of maternal origin is present (Bell et al., 1999). The heuristic approach 

described in chapter 4 has provided a series of strategies, which have been transformed 

into a set of software tools, designed to support the low level processing of the stained villi 

slides. These tools, referred to herewith as Hydatidiform Moles Analysis Tool (HYMAT), 

focus on the pre-processing, segmentation, feature extraction and analysis tasks, and are 

described further in the next sections.  

 

6.2. Hydatidiform Moles Analysis Tool (HYMAT) 

The system architecture of HYMAT is based on the heuristic approach of expert 

pathologists and consists of four main steps: pre-processing, segmentation, feature 

extraction and analysis steps (Figure 6.1). The pre-processing step aims at enhancing the 

image quality and removing noise or unwanted regions.  The histogram equalisation 

algorithm is applied to support segmentation and enhance the contrast of foreground and 

background in the pre-processing step (Figure 6.2). The output of this algorithm is 

illustrated in Figure 6.3.   
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Figure 6.1. The system architecture. 
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Figure 6.2. Histogram equalisation algorithm. 

 

 

(a) An original villus image     (b) a processed image 

Figure 6.3. A histogram equalisation result. 

 

Segmentation is the process of dividing an image into segments that share similar 

spectral, spatial, and texture characteristics. In this step, the Fuzzy c-Means (FCM) 

clustering technique, based on HSV colour space, is implemented to segment villi 

boundaries, red blood cells (RBC), trophoblast and stroma regions. The most common 

algorithms applied are boundary–based segmentation techniques, active contour 

techniques, gradient vector flow snakes (GVF snake) and Hough transforms, which can 

// Create a cumulative histogram  

for ( i=0; i < SIZE_OF_ HISTOGRAM; ++i ) 

{ 

    sum += histogram[i]; 

    sum_Histogram[i] = sum; 

} 

// transform image using sum_Histogram  

for ( i = 0; i < pixel_Count; ++i ) 

{ 

Output_Image[i] = sum_Histogram[image[i]]*MAX_INTENSITY/ pixel_Count; 

} 
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achieve promising segmentation results when they are applied to segment clear boundary 

objects. However, as our villi‘s boundaries are unclear, fuzzy and broken, the boundary-

based techniques cannot yield satisfactory results. In addition, active contour algorithms 

cannot cope with overlapping cells (Doukas et al., 2010). To deal with unclear and fuzzy 

boundaries of villi components, the literature review showed that the FCM technique is the 

most suitable segmentation approach for the histopathological analysis of placental villi. 

The RGB (i.e Red Green Blue) villi images are converted to HSV (i.e. Hue Saturation 

Value) images because HSV colour space can provide more discriminating power in 

terms of colour and this colour space is similar to a human visual system. The outputs of 

this step are given in Figures 6.4 and 6.5, showing the four segmented regions, namely 

villi boundary, RBC, stroma and trophoblast regions.  

The third step focuses on extracting meaningful parts of the stained slide, such as 

characteristics related to the morphological and pathological villi features, as elicited from 

the experts.  This step consists of algorithms responsible for encoding the image contents 

in a descriptive way. The algorithms combined HSV colour space with FCM associated 

anomalies, as described in Table 4.1. 

The fourth step aims at analysing and interpreting the results achieved from the 

previous steps and producing a descriptive summary for each villus stored in a Microsoft 

Excel sheet (Figure 6.6), as requested by the experts. The analysis results include raw 

morphological and analysed feature groups. The raw morphological feature group 

contains villi, RBC, trophoblast and stroma areas in terms of pixel, whereas the analysed 

feature group contains the percentage of red blood cells inside stroma regions, the 

percentage of stroma regions inside villi, the percentage of trophoblast inside villi and the 

trophoblast skeleton per trophoblast perimeter ratio. These two groups are also displayed 

next to the original image window and the thumbnail images resulting from the 

segmentation step are displayed below the original image window as shown in Figure 6.4.    
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Figure 6.4. HYMAT GUI. 

 

6.3. Implementation of HYMAT 

 HYMAT is developed using MATLAB, which is a high-level language and 

interactive tool that allows modelling, simulation and visualisation of data using 

automation capabilities and built-in functions. HYMAT uses features available from the 

MATLAB Image Processing Toolbox, namely a set of standard functions associated with 

image segmentation and image enhancement. In addition to these MATLAB features, 

algorithms related to FCM, fuzzy clustering, and circular distance measurement are 

developed within MATLAB to support the segmentation and feature extraction steps.  

MATLAB also provides a graphical user interface (GUI) based on the point-and-

click control approach, which is used to design the interface of HYMAT as illustrated in 

Figure 6.4. The outputs of the segmentation and feature extraction steps are stored into 

an Excel sheet that provides the segmented villus and its statistical, morphological and 

textual features (Figures 6.5 and 6.6). HYMAT is developed in 32 and 64 bit versions, to 

be compatible with the pathologists’ computers. 
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Figure 6.5. Segmentation results of HYMAT. 

 

   

Figure 6.6.Analysis results of villus N01-2 stored in Microsoft Excel. 
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6.4. Discussion and conclusion 

HYMAT is software developed as part of this research to support solely the low 

level processing of the heuristic approach discussed in the previous chapters. This tool is 

also a great asset to the pathologists, who are interested in using it to support their 

histopathological analysis. It is hoped that the pathologists can use the tool to acquire 

more stained slides and expand the analyses of villi for future knowledge discovery 

applications.  

The current tool, however, suffers from a few limitations. Currently, the extraction 

of each single villi from the stained slide is carried out manually by the user: once the villi 

is extracted HYMAT can pre-process, segment, feature extract and analyse the villi 

computationally. It is intended to develop the tool in the future so that the system can 

extract each single villus without need of a user. Though the developed segmentation 

techniques of HYMAT can handle fuzzy boundary regions, they suffer from over- and 

under-segmentation problems. Further work is required to (i) extend the current 

segmentation algorithms so that not only intact villi but also villi with broken/missing 

boundaries can be processed by HYMAT, and (ii) to integrate the high level processing 

into HYMAT. The approach used in HYMAT can also be applied to other types of 

cancerous cells images such as breast, prostate and brain cancerous cells.  
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Chapter 7: Conclusions and Future work 

7.1. Introduction 

Molar pregnancy, also known as hydatidiform mole (HM), is an unsuccessful 

pregnancy resulting from the over-expression of paternal genes and the proliferation of 

tissue that should develop into the placenta during pregnancy. The classification between 

complete or partial hydatidiform moles is important for choosing an appropriate treatment 

method. Kim et al. (2009) describe the challenges of the histopathological diagnosis of 

molar pregnancy and state that even experienced pathologists cannot easily distinguish 

between Complete Hydatidiform Moles (CHM) and Partial Hydatidiform Moles (PHM). To 

address this challenge, a novel image understanding, based on anomaly detection guided 

by experts’ heuristic knowledge and strategies, is developed to assist pathologists in HM 

classification tasks. 

The hypothesis of this research project is that an anomaly detection approach for 

analysing molar pregnancy images can achieve a better image analysis and classification 

of molar pregnancy types than the current approaches. In this research, three types of 

villi, normal placental, PHM and CHM, are analysed.  

In this study, experts’ heuristic knowledge and strategies play an important role, 

and the definition of their heuristics is an essential aspect of the development of this 

approach. The definition of a heuristic is: anything that gives a direction guidance to solve 

a problem. However, heuristics cannot guarantee the final solution (Koen, 1985).  

A cognitive approach is a tool for developing an algorithm that mirrors heuristic 

approach to analyse anomalies in villi. The limitations of the cognitive approach need to 

be considered before the approach is applied to create the algorithm. One of the important 

limitations is that experts solve problems mentally, and it is difficult for them to 

communicate their experience and approaches (Hinds & Pfeffer, 2003). Furthermore, the 

steps of problem solving, as explained by experts, are more conceptual and abstract 

representations than the steps described by novices. This can make the expert knowledge 

difficult to capture.      

The developed novel approach is based on capturing the normal and anomalous 

features associated with the three types of HM (i.e. normal, partial and complete HM) from 

the experts and the medical documents. These tacit and explicit types of knowledge are 

used to guide the analysis and classification of villi. The segmentation of the villi image 
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has primarily been based on Fuzzy c-Means clustering (FCM) and HSV colour space, 

whereas feature extraction has applied statistical measures to study the morphological 

and textural features of villi. The classification of the villi was carried out using a multi-

neural network architecture that simulated the experts’ heuristics. 

The heuristic multi-neural network (MNN) configuration is applied to classify the 

villi into three classes: normal placental, PHM and CHM, based on the 15 features 

explained in Chapter 4. The results indicate that the multi-neural network improves the 

classification results, as compared with traditional multi-layer perceptron (MLP) in terms of 

the overall average accuracy (80.5% to 81.2%), the precision of the three classes and the 

recall of PHM and CHM villi classes. However, the recall of the CHM villi class is still low 

(64.3%) Two textural features, namely dark regions inside the stroma and dark regions 

inside the trophoblast are added to improve the classification results, and the results 

indicate that the 17 features increase the average accuracy of MNN from 81.2% to 86.1% 

and the recall of the CHM villi class from 64.3% to 73.5%. 

     

7.2. Research contributions 

The novel contributions of this research project are summarised as follows: 

(i) A new application domain: this research has focused on the study of the 

histopathology of molar pregnancy images. The literature review of computational 

cancer image analysis tends to focus on breast, lung, skin, cervical, and prostate 

cancers. The current research into molar pregnancy focused solely on the 

management and treatment aspects. To the best of our knowledge, until now no 

analysis and classification of these aspects have been carried out. Therefore, 

research into molar pregnancy image analysis and understanding is still widely 

open. 

(ii) A new image understanding method is developed, combining image processing 

and artificial intelligence techniques with guidance by experts’ knowledge and 

heuristics. The proposed method focuses on the anomaly detection of hydatidiform 

mole features. This approach is able to classify the anomalies into four categories, 

namely: point, contextual, morphological and density anomalies. To our 

knowledge, this approach has not been adopted in the HM medical diagnosis 

papers. 
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(iii) A novel multi-neural network architecture that simulates experts’ heuristics. This 

approach is an attempt at modelling computationally the way expert pathologists 

detect anomalies in villi. 

(iv) A cognitive approach to image analysis: the development of an algorithm that 

mirrors heuristic approach to diagnosing anomalies in villi. What distinguishes this 

work from others involving experts’ knowledge is as follows: 

 Whilst current research extracts the morphological knowledge of the expert 

to analyse their images, this research focuses solely on the anomaly 

detection of the villi and the critical features in terms of density, size, shape 

and proliferation. 

 Our research has identified new essential features, such as:  

o the number of villi boundary corner points used to describe the 

shape of villi,  

o the trophoblast skeleton per trophoblast perimeter ratio applied to 

measure trophoblast thickness and proliferation,  

o the dark regions inside the stroma and the dark regions inside the 

trophoblast, used to capture stroma and trophoblast surface 

characteristics. 

(v) The development of a tool to support the extraction of critical features, which is 

used to analyse anomalies. This tool is referred to herewith as HYMAT 

(hydatidiform mole analysis tool). Though HYMAT is a minor research contribution, 

it has been found to be a very useful tool and has been adopted by the two expert 

pathologists involved in this project.  

7.3. Limitations 

 Although this research has achieved significant improvements, there are a number 

of limitations that have influenced its development. These are listed below. 

(i) The villi used in this study belong to the early trimester and the distinction between 

PHM and CHM is usually unclear; even experienced pathologists cannot easily 

distinguish between them. 

(ii) The study is based on 986 villi; however, the analysis could only be carried out on 

939 villi that are intact. It was difficult to obtain a larger set of villi, due to the fact 
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that HM is a rare disease and the availability and access to the villi samples is 

extremely difficult. 

(iii) The complexity of the pathologists’ task in articulating their strategies and 

heuristics. The meetings with the experts demonstrated the difficulty in obtaining 

consensus, as they have their personal approach to the detection of anomalous 

villi.  

(iv) The proposed approach can segment the four villi regions defined in Chapter 4 

and can deal with fuzzy boundary regions. However, the segmentation results still 

suffer from over- and under-segmentation problems. This requires further research 

to improve the segmentation. 

(v) The current approach can segment the placental image containing complete villi 

but fails to segment a villus containing multi-stroma regions. The developed 

method is limited to a villus with one stroma region.  

(vi) The current version of HYMAT works in the semi-automatic mode that requires a 

user to operate the tool. This task is time-consuming, and the user has to learn 

how to run the tool. Further improvements are to be conducted for future work.  

7.4. Conclusions and future work 

This research has proposed a new image understanding, based on image 

processing and artificial intelligence techniques guided by experts’ heuristic knowledge 

and strategies, to analyse three types of villi, consisting of normal placental, PHM and 

CHM. The anomaly detection of HM features is applied to analyse villi images.  

Initially, the pathologists relied on 15 features to detect anomalous villi. This study 

has identified two additional features that could be used to improve the detection of 

anomalies. It has also identified the most critical features, which are now adopted by the 

pathologists. The final analysis results show that a textural feature, namely the variance of 

grey scale of stroma regions, is more important than the morphological features (size and 

shape) of villi, whereas the experts believed previously that they had focused on the size 

and shape before texture. Furthermore, the analysis has confirmed that there is no single 

criterion that can reliably distinguish the villi. 

In the future, more villi samples should be added to the current data set to improve 

the segmentation phase and classification results of the proposed method. The current 

segmentation is primarily based on colour intensity. It is believed that texture could be 
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used in addition to colour intensity to reduce over and under-segmentation. This research 

has identified textural features to be important criteria in classifying the villi.  As this 

research demonstrated that the textural feature has a higher discriminative power than 

size and shape, future work would benefit from the experts exploring further textural 

features. The developed heuristic neural network configuration could be enhanced by 

integrating fuzzy systems into the hidden layers to address the issue of fuzziness of villi 

characteristics. The current research is based on normal placental, PHM and CHM villi; 

other types of abnormal villi, such as persistent gestational trophoblastic and 

choriocarcinoma, could be investigated to support pathologists in their complex and 

challenging classification of HM. Further development of the HYMAT tool should be 

carried out to include the classification of HM and to improve the GUI interface.   
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Appendix A. Glossary  

 

Terms Description 

Androgenetic 
diploid  

The state of a cell comprising of two sets of chromosomes, 
derived from the father and from the mother respectively; in 
humans, the diploid number is 46. 
 
Androgen is a generic term referring to usually a hormone (e.g.  
androsterone, testosterone) which stimulates activity of the 
accessory male sex organs, 

 
 
 
 
 
 
 

 Courtesy of Miller-Keane Encyclopedia and Dictionary of 
Medicine, Nursing, and Allied Health, Seventh Edition. (2003). 
Retrieved July 28 2015 from http://medical-
dictionary.thefreedictionary.com  
 

Choriocarcinoma A malignant tumour of trophoblasts 
 

 
 
Courtesy of Retrieved July 28 2015 from Geneva Foundation for 
Medical Education and Research 
“http://www.jmedicalcasereports.com/content/figures/1752-1947-
4-379-1-l.jpg” 

  
 
 

 

http://medical-dictionary.thefreedictionary.com/androgen
http://medical-dictionary.thefreedictionary.com/androgen
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Terms Description 

Complete 
hydatidiform 
moles (CHM) 

It is an abnormal placenta but no fetus (Benirschke et al., 2006). 
 

  
 (Source: HYMAT tool) 
 

Epithelium Epithelium, the cellular covering of internal and external surfaces 
of the body, consists of cells joined by small amounts of 
cementing substances. 

 
 
Courtesy of Retrieved July 28 2015 from University of New 
England “http://faculty.une.edu/com/abell/histo/villusweb.jpg” 
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Terms Description 

Focal abnormal 
trophoblastic 
proliferation 

 

 
(Source: HYMAT tool) 
 

Histopathological 
examination (or 
histopathology) 

The study of the microscopic anatomical changes in diseased 
tissue (Benirschke et al., 2006). 
 

Hydatidiform 
(mole) 

A rare placental mass of growth resulting from the proliferation of 
the trophoblast and the degeneration of the chorionic villi, 
indicating an abnormal pregnancy (Benirschke et al., 2006). 

Karyorrhexis 
(n.) Karyorrhectic 
(adj.) 
 

The fragmentation of nucleus in a cell. 
 

  
 
Courtesy of Retrieved July 28 2015 from University of Pittsburgh 
School of Medicine 
“http://path.upmc.edu/cases/case127/images/micro8.jpg” 

Morphology The form and structure of a particular organism, tissue, or cell. 

  

Karyorrhexis 
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Terms Description 

Non-polar 
proliferation 

Nonpolar atoms and molecules do not interact freely with water. 
This is relevant in cell biology because water is a large 
component of living organisms. 
 

 
(Source: HYMAT tool) 
 

Partial 
hydatidiform 
moles (PHM) 

It is an abnormal placenta and some fetal development 
(Benirschke et al., 2006). 
 

 
(Source: HYMAT tool) 
 

Paternal triploid A chromosomal abnormality affected by the presence of an 
entire extra chromosomal set. 
 

 
 
 
 
 
 
 
 

 
(Van den Veyver & Al-Hussaini, 2006) 
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Terms Description 

Placenta An organ that connects between the developing fetus and the 
uterine wall to exchange nutrient, waste, and gas between 
mother and fetus.  
Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, 
and Allied Health, Seventh Edition. (2003). Retrieved July 28 
2015 from http://medical-dictionary.thefreedictionary.com/villus 
 

Regions of 
Interests (ROI) 

It is a portion of an image used to filter or perform some 
operations on. 

Reticular Resembling a net.  

 
(Source: HYMAT tool) 
 

Scalloping 
dentate and mild 
(in PHM) 

A series of indentations on a normally smooth margin of a 
structure 
 

 
(Source: HYMAT tool) 

Stroma Connective tissue core of an organ (Benirschke et al., 2006). 

 
(Source: HYMAT tool) 

  

Stroma 

http://medical-dictionary.thefreedictionary.com/villus


 

 

 

176 

 

 

 

Terms Description 

Stroma hydrops 
and mild 

Swelling from excessive accumulation of watery fluid in stroma 
of villi. 
 

 
(Source: HYMAT tool) 
 

Trimester images 
of PHM and CHM 

PHM and CHM images are only available at first trimester. With 
the increasing use of ultrasonography to assess complicated 
pregnancies these moles are normally evacuated before 12 
weeks’ gestation (Seckl et al., 2010). 
 

 
PHM at first trimester (Source: HYMAT tool). 

 
CHM at first trimester (Source: HYMAT tool). 
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Terms Description 

Trophoblasts Trophoblasts are specialised cells of the placenta with an 
important role in embryo implantation and interaction with the 
maternal uterus (Benirschke et al., 2006). 
 

 
(Source: HYMAT tool) 

Villus (pl. vílli) A small vascular projection from the surface, especially of a 
mucous membrane Villi are covered with epithelium that diffuses 
and transports fluids and nutrients.  
 
Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, 
and Allied Health, Seventh Edition. (2003). Retrieved July 28 
2015 from http://medical-dictionary.thefreedictionary.com/villus 
 

 
(Source: HYMAT tool) 

 

  

Villus 

Trophoblast 

T 

http://medical-dictionary.thefreedictionary.com/villus
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Appendix B. Ontological Representation of 

Hydatidiform Moles 

  

Figure B.1. Ontological representation of normal placental villi. 
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Figure B.2. Ontological representation of partial hydatidiform moles. 



 

 

 

181 

 

 

 

 

Figure B.3. Ontological representation of complete hydatidiform moles. 
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Appendix C. Over- and Under-Segmentation 

Examples 

Notation: N denotes normal placental villi, PHM denotes partial hydatidiform moles and 

CHM denotes complete hydatidiform moles. 

Example: N03-21 denotes normal placental villi slide no. 3 with villi no. 21. 

 

N03-21 

 

N03-25 

 

N05-19 

 

N06-1 

Figure C.1. Over-segmentation examples of normal placental villi 
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PHM01-5 
 

PHM01-15 

 

PHM02-8 

 

PHM03-9 
 

Figure C.2. Over-segmentation examples of PHM villi 
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CHM01-1 

 

 

CHM03-20 

 

CHM04-2  

CHM04-8 
 

Figure C.3. Over-segmentation examples of CHM villi 
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N01-4 

 

 

N01-17 

 

 

N02-20 

 

 

N10-13 
 

Figure C.4. Under-segmentation examples of normal placental villi 
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PHM10-11 

 

PHM11-10 

 

 

PHM12-4 

 

 

PHM19-9 
 

Figure C.5. Under-segmentation examples of PHM villi 
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CHM03-6 

 

 

CHM04-12 

 

 

CHM12-6 

 

 

CHM19-3 
 

Figure C.6. Under-segmentation examples of CHM villi 
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Appendix D. Figures of the 15 Features 

  

 (a) Average villi size of normal placental villi. 

 

       (b) Average villi size of PHM. 

 

 (c) Average villi size of CHM. 

Figure D.1. Average villi size of molar pregnancy images. 
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 (a) Average number of villi boundary corner points of normal placental villi. 

 

       (b) Average number of villi boundary corner points of PHM. 

 

 (c) Average number of villi boundary corner points of CHM.  

Figure D.2. Average number of villi boundary corner points of molar pregnancy images. 
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 (a) Ratio between number of villi boundary corner points and all pixels belonging to villi 

perimeter of normal placental villi. 

 

       (b) Ratio between number of villi boundary corner points and all pixels belonging to 
villi perimeter of PHM. 

 

 (c) Ratio between number of villi boundary corner points and all pixels belonging to villi 
perimeter of CHM. 

Figure D.3. Ratio between number of villi boundary corner points and all pixels belonging 

to villi perimeter of molar pregnancy images.   
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 (a) Major axis of normal placental villi. 

 

 (b) Major axis of PHM.  

 

 (c) Major axis of CHM.  

Figure D.4. Major axis of molar pregnancy images. 
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 (a) Minor axis of normal placental villi. 

 

 (b) Minor axis of PHM. 

 

 (c) Minor axis of CHM. 

Figure D.5. Minor axis of molar pregnancy images. 
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 (a) Elongation ratio of normal placental villi.  

 

 (b) Elongation ratio of PHM. 

 

 (c) Elongation ratio of CHM. 

Figure D.6. Elongation ratio of molar pregnancy images. 
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(a) Different area between villi’s bounding box and villi area of normal placental villi. 

 

(b) Different area between villi’s bounding box and villi area of PHM. 

 

(c) Different area between villi’s bounding box and villi area of CHM. 

Figure D.7. Different area between villi’s bounding box and villi area of molar pregnancy 
images. 
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(a) The measure of four quadrants of normal placental villi. 

 

 (b) The measure of four quadrants of PHM. 

 

 (c) The measure of four quadrants of CHM. 

Figure D.8. The measure of four quadrants of molar pregnancy images. 
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 (a) Density of RBC per villi of normal placental villi.  

 

 (b) Density of RBC per villi of PHM. 

 

 (c) Density of RBC per villi of CHM. 

Figure D.9. Density of RBC per villi of molar pregnancy images. 
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(a) Percentage of edge inside stroma regions of normal placental villi. 

 

(b) Percentage of edge inside stroma regions of PHM. 

 

(c) Percentage of edge inside stroma regions of CHM. 

Figure D.10. Percentage of edge inside stroma regions of molar pregnancy images. 
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(a) Variance of grey scale of stroma regions of normal placental villi. 

 

(b) Variance of grey scale of stroma regions of PHM. 

 

(c) Variance of grey scale of stroma regions of CHM. 

Figure D.11. Percentage of edge inside stroma regions of molar pregnancy images. 
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(a) Average stroma size and trophoblast proliferation of normal placental villi. 

 

(b) Average stroma size and trophoblast proliferation of PHM. 

 

(c) Average stroma size and trophoblast proliferation of CHM. 

Figure D.12. Average stroma size and trophoblast proliferation of molar pregnancy 
images. 
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 (a) Average trophoblast skeleton per trophoblast perimeter ratio of normal placental villi. 

 

(b) Average trophoblast skeleton per trophoblast perimeter ratio of PHM. 

 

(c) Average trophoblast skeleton per trophoblast perimeter ratio of CHM. 

Figure D.13 Average trophoblast skeleton per trophoblast perimeter ratio of molar 
pregnancy images. 
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(a) Trophoblast analysis of normal placental villi.  

 

(b) Trophoblast analysis of PHM. 

 

(c) Trophoblast analysis of CHM. 

Figure D.14 Trophoblast analysis of molar pregnancy images. 
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