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Abstract

Wireless Visual Sensor Networks (WVSNs) have gained significant importance

in the last few years and have emerged in several distinctive applications. The

main aim of this research is to investigate the use of adaptive Compressive Sens-

ing (CS) for efficient target detection and tracking in WVSN-based surveillance

applications. CS is expected to overcome the WVSN resource constraints such

as memory limitation, communication bandwidth and battery constraints. In ad-

dition, adaptive CS dynamically chooses variable compression rates according to

different data sets to represent captured images in an efficient way hence saving

energy and memory space. In this work, a literature review on compressive sens-

ing, target detection and tracking for WVSN is carried out to investigate existing

techniques. Only single view target tracking is considered to keep minimum num-

ber of visual sensor nodes in a wake-up state to optimize the use of nodes and save

battery life which is limited in WVSNs. To reduce the size of captured images

an adaptive block CS technique is proposed and implemented to compress the

high volume data images before being transmitted through the wireless channel.

The proposed technique divides the image to blocks and adaptively chooses the

compression rate for relative blocks containing the target according to the sparsity

nature of images. At the receiver side, the compressed image is then reconstructed

and target detection and tracking are performed to investigate the effect of CS on

the tracking performance. Least mean square adaptive filter is used to predicts

target’s next location, an iterative quantized clipped LMS technique is proposed

and compared with other variants of LMS and results have shown that it achieved

lower error rates than other variants of lMS. The tracking is performed in both in-

door and outdoor environments for single/multi targets. Results have shown that

with adaptive block compressive sensing (CS) up to 31% measurements of data are

required to be transmitted for less sparse images and 15% for more sparse, while

preserving the 33dB image quality and the required detection and tracking perfor-

mance. Adaptive CS resulted in 82% energy saving as compared to transmitting

the required image with no CS.
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Chapter 1

Introduction

This chapter gives an overview introduction on wireless visual sensor network with

the characteristics and constraints. It discusses the requirements and various areas

in the field of surveillance applications. Aims and objectives of this work are then

presented.

1.1 Context of investigations

Wireless Visual Sensor Networks (WVSNs) have gained significant importance in

the last few years and have emerged in several distinctive applications [1, 2]. While

traditional wireless sensor networks (WSNs) are limited to scalor sensors and 1D

data sets such as measuring temperature, humidity or magnetic field, WVSNs de-

ploy visual sensors to the network platform producing 2D and 3D data sets [1].

Hence targeting a number of application scenarios beyond the scope of traditional

WVSNs ranging from civil and military applications, surveillance and security

applications, tracking, environmental monitoring, detecting natural disasters, to

modern health care applications such as monitoring elderly or patients.

1
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Due to the evolvement of new technologies and techniques, there are immediate

needs for automated energy-efficient surveillance systems. WVSN has targeted

various surveillance applications in commercial, law enforcement and military pur-

pose as well as traffic control, security in shopping malls and amusement parks.

Systems have been developed for video surveillance including highway, subway and

tunnel monitoring, in addition to remote surveillance of human activities such as

elderly or patients care.

Visual sensor nodes are resource constraint devices bringing the special characteris-

tics of WVSNs such as energy, storage and bandwidth constraints which introduced

new challenges [2–5]. For instance, within WVSNs each sensor node is powered

by an attached battery and embeds a visual sensor(can be integrated with other

types of sensors), digital signal processing unit, memory and a wireless transceiver.

Due to the limited battery power, optimum energy utilization is necessary where

all processing must be done energy-efficiently in addition to energy-efficient trans-

mission through the wireless channel to save power and maximize the lifetime of

the network. Moreover, visual sensor nodes are required to capture large data sets

such as videos, and still images from the environment requiring high storage and

high bandwidth for transmission which are limited. As well as higher complexity

of local data processing.

Visual sensor nodes have to perform some local processing (such as compres-

sion, filtering, object detection, tracking and recognition) with minimum process-

ing power and complexity on the extracted data before transmitting it in the

bandwidth-constrained wireless channel to the receiver side or sink node (base

station). Hence, energy efficient processing and efficient compression techniques

are required to overcome such constrains of WVSNs while efficiently transmitting

data through the wireless channel. Among the many diverse application domains

of WVSNs, Object detection and tracking (object can be a human being, a vehicle

or any targeted object) are of the most important tasks. It is required to mini-

mize the energy consumption during processing without compromising detection
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reliability and tracking performance. At the same time, there is scope to achieve

the same by minimizing the volume of data required to serve the purpose. An im-

portant issue that arises in WVSNs is the complex image processing algorithms,

which are both memory and computational intensive. Data encoding/decoding

involves significant processing, much more than the processing required for sensed

data [6–8]. These requirements make image processing a challenging problem as

sensor nodes are resource constrained devices. Memory limitations, local compu-

tational energy cost and processor speed are therefore to be considered in image

processing in order to guarantee real-time response.

There exists several WSN standards [9], the most commonly used is the IEEE

802.15.4 Wireless personal area network, which supports a total of 16 channels

in the 2.4-GHz band, 2MHz bandwidth each. It targets low power and data rate

applications and supports a maximum of 250Kb/s data rate. IEEE 802.11b/g

wireless local area network supports 14 channels in the 2.4-GHz band, each with a

bandwidth of 22 MHz, it supports real time video streaming however at the expense

of more power dissipation. The IEEE 802.15.1 Bluetooth standard operates in

79 channels in the 2.4-GHz band and a 1-MHz bandwidth each. The number

of nodes in the networks controls the bandwidth available to each transmitter

node (i.e., its average transmission rate). Therefore, there is a tradeoff between

number of nodes and allocated bandwidth. Moreover, size of transmitted data

leads to high bandwidth requirement per transmitter, which in turn decreases the

number of sensors that can be accommodated by the WVSN. Hence, reducing the

size of transmitted data via low power compression and processing leads to lower

bandwidth requirement and as a result increasing the number of sensor nodes in

the network [10].

As for high volume data sets are acquired for WVSN-based surveillance applica-

tions, data should be represented in such a way that it requires optimum storage,

energy, and allow reliable transmission due to the constraint on the physical and



Chapter 1. Introduction 4

radio resources. Suppose for a surveillance application within WVSN, an image

is captured and required to be sampled for storage as well as to be transmitted

through wireless channel. According to Shannon-Nyquist sampling theory the min-

imum number of samples required to accurately reconstruct a set of data without

losses is twice its maximum frequency [11]. It is always challenging to reduce this

sampling rate as much as possible, hence reducing the computation energy and

storage. Compressive Sensing (CS) is promising to overcome the above mentioned

limitations. CS theory shows that a set of data is expected to be reconstructed

from far fewer samples than required by Nyquist theory as it is always challeng-

ing to reduce the sampling rate as possible, provided that the set of data is sparse

(where most of its energy is concentrated in few non-zero coefficients) or compress-

ible in some basis domain [12]. CS is a simple and low energy consumption process

which is suitable for power constraint sensor nodes where complex computations

are just done at the receiver side.

The WVSNs have strict resource limitations hence make it desirable to design

energy-efficient target deection and tracking techniques. In this work, CS-based

single/multi target detection and tracking algorithm for energy efficient visual

surveillance application within WVSN is proposed, with minimum energy-expenditure

but efficient tracking reliability which will be represented as minimal mean square

error (MSE) and accurate trajectory tracking. MSE measure is used to com-

pare two signals/images by providing a quantitative score describing the degree

of similarity or in other words, the level of error/distortion between them. Due

to the battery constrain of sensor nodes, there is an immediate need to increase

the WVSN’s lifetime, energy consumption is reduced by periodically switching On

and OFF the visual sensors. Each sensor node is assumed to be in ’wake-up’ state

according to a predefined duty cycle.
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1.2 Visual Surveillance requirements and Appli-

cations

The purpose for visual surveillance is to provide constant operational information,

in order to detect specific events or targeted objects to maintain security or intru-

sion detection at the monitored locations. Due the evolvement of new technologies

and techniques, WVSN has targeted various Surveillance applications and can be

applied in public places, such as banks, supermarkets, homes, department stores,

amusement parks, parking lots, or football match attendance. Systems have been

developed for visual surveillance including highway monitoring, subway monitor-

ing, tunnel monitoring, intelligent video communication and indoor/quasi-outdoor

monitoring, and in the remote surveillance of human activities such as elderly or

patients care [13].

Each of the above-mentioned areas is potential to threats and requires situational

awareness to the possible effective response of the relevant enforcement agencies,

hence, there are immediate needs for automated surveillance systems. In addition

to security applications, visual surveillance technology is used in transport applica-

tions, such as airports, sea environments, railways, underground, and motorways

to observe traffic flow, detect accidents on highways and monitor congestion in

public spaces. In addition to numerous military applications including patrolling

national borders, measuring the flow of refugees in troubled areas, monitoring

peace treaties, and providing secure perimeters around bases and embassies.

The followings are some of applications and situation specific visual surveillance

• One of the requirements for a WVSN-based surveillance applications is to

monitor specific places such as stations, shopping areas and faculties for

intrusion detection or abnormal behavior. A multimodal video surveillance

for the safety and security of a faculty entrance has been proposed in [14].

The authors aim to design efficient and robust target detection and tracking
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algorithm to detect intrusion or abnormal events. To save battery power of

camera nodes, Passive Infra Red (PIR) sensors are integrated with multiple

cameras, where when he PIR detects the presence of targets then triggers the

corresponding cameras to get to wake up state. Moreover, for robust tracking

PIR sensors resolve occlusion as they can detect changes in direction during

occlusion.

• Another intrusion detection algorithm is introduced in [15], the require-

ment of this application is to reduce the energy consumed by each sensor

node while ensure reliable detection and tracking. Multiple cameras are dis-

tributed over the monitored area and instead of wasting energy in continuous

monitoring, each camera is given a probability of monitoring according to

visibility regions.

• Various applications are present in the field of elderly care where there has

been considerable recent interest in addressing the problem of object finding

both in academia and industry such as in [16]. A video surveillance for

detection, recognition and classification of objects (a small set of pre-selected

common objects) has been proposed as a tool for assisting living for elderly.

A technique that is less complex and consumes less energy but can still enable

robust image recognition is the main aim. This ia achieved by composing

the WVSN of two-tiered system which means a low power and a high power

tier. The low power tier contains low power sensor nodes. While the high

power tier contains high end processing sensor nodes. The field of view of

both cameras is same because of being closely mounted. The system uses

low power tier for still target detection and high power tier is being used for

energy efficient accurate target recognition and classification.

• In [17] a smart home care system is designed to track elderly or patients and

detect abnormal behavior such as a sudden fall. In these types of applica-

tions sensor nodes are to be sensitive to sudden changes for the safety of the
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monitor person. In this paper, they integrated the video cameras with sen-

sors to detect falls then triggering the most appropriate camera for detecting

the target and classifying either the target is human or non-human.

• Compliance monitoring is useful in industries where standard operating pro-

cedures have to be strictly followed. Through video surveillance cameras,

managers of restaurants or hotels can determine whether or not their staffs

are following proper sanitation measures. Video surveillance cameras are also

useful in cosmetics and pharmaceutical industries. They can monitor vital

parts of the production process, such as processing and packing. For these

applications high quality images is not a constraint as compared to the abil-

ity of sensors to continuously monitor the required area in an energy-efficient

manner.

• Another field for surveillance applications is for environmental monitoring. A

WSN can be installed in a forest to detect when a fire has started. The nodes

can be equipped with sensors to measure temperature, humidity and gases

which are produced by fire in the trees or vegetation. The early detection

is crucial for a successful action of the fire-fighters. In [18], it is required to

provide the fire fighting community the ability to safely and easily measure

and view fire and weather conditions to better predict fire behavior. Hence,

the sensitivity of sensors is highly required in addition to increasing the

lifetime of sensor nodes.

• Remote telepresence is another kind of visual surveillance applications that

requires the cameras to be positioned in locations not accessible to humans,

which includes sensing volcanoes, earthquakes, oceans, glaciers or forests

[19]. Examples of these locations include the ocean, the bottom of the sea,

desert landscapes, or the insides of a human body. Data from this highly

specialized use of visual surveillance cameras are used in various practical

applications, such as solving medical problems, investigating disputes over

natural resources, habitat monitoring and saving endangered species where
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there is great concern about the potential impacts of human presence in mon-

itoring plants and animals in field conditions, as in [20] the authors designed

a surveillance application to study the behavior of animals particularly ze-

bras..

• Another important and critical WVSN application is military applications,

they include several scenarios; in battlefields to position and track hostile

targets, operations in urban environments such as patrolling national bor-

ders or measuring the flow of refugees in troubled areas, or other than war

missions such as peacekeeping by monitoring peace treaties, and providing

secure perimeters around bases and embassies. Military missions may last

for months or years, hence requires energy aware schemes to maximize the

network’s lifetime as human interaction is not allowed.

1.3 Aim and objectives

The aim of this work is to investigate the impact of CS in designing efficient ob-

ject detection and tracking techniques for WVSNs-based surveillance applications,

without compromising the energy constraint which is one of the main character-

istics of WVSNs. As mentioned previously, in WVSN-based surveillance appli-

cations large data sets such as video, and still images are to be retrieved from

the environment requiring high storage and high bandwidth for transmission. As

well as higher complexity of data processing and analysis for object detection and

tracking which are all quite costly in terms of energy and memory requirements

as visual sensor nodes are resource and bandwidth constrained. CS is expected

to reduce the size of sampled data with a low power simple process hence saving

space, energy of processing and transmission as well as channel bandwidth as the

size of transmitted data is reduced.

The following objectives have been identified:
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• To carry out a literature review on WVSNs, target detection, tracking and

compressive sensing.

• To investigate existing target detection and tracking techniques with their

strengths and weaknesses.

• To identify a WVSN model for a surveillance application, to meet some

criteria such as energy efficiency and minimum communication overhead.

• To investigate existing work of CS in the context of target detection and

tracking along with their strengths and weaknesses for a required perfor-

mance.

• To identify and design an adaptive CS technique suitable for WVSNs con-

straints to overcome the shortcomings of high computational techniques

present in the literature while achieving higher compression rates and least

reconstruction mean square error.

• To design efficient target detection and tracking techniques for WVSN-based

surveillance applications.

• To evaluate the performance of the proposed target detection and tracking

schemes for surveillance applications in WVSN compared to other techniques

in the context of resource requirements

• To derive an analytical framework to examine the impact of selecting node’s

duty cycles and dynamically choosing the appropriate compression rates for

captured images and videos on the detection performance.

1.4 Thesis organization

The remainder of the thesis is organized as follows:
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Chapter 2 gives a literature review on WNSNs and related work on different target

detection and tracking techniques with their pros and cons. In addition, related

work on compressive sensing is next presented with a discussion on various appli-

cations of compressive sensing in the context of WVSNs. Later, adaptive CS is

discussed with related applications.

The theoretical aspects behind the proposed investigations are discussed in chap-

ter 3 with respect to target detection and tracking, shortcomings of previous tech-

niques, methods to overcome these shortcomings together with the motivation for

the proposed work. A complete theoretical aspects of CS is then presented in-

cluding the entire CS process and image reconstruction. In addition, an overview

of a typical WVSN model is presented together with the main characteristics of

WVSN.

Chapter 4 describes the proposed detection and tracking model based on compres-

sive sensing. First, the detection algorithm with the chosen background modeling

technique and morphological operations are presented, next the proposed adap-

tive block CS algorithm is introduced describing CS techniques, adaptive CS and

block CS. Finally, the LMS algorithm for target tracking is proposed with different

variants of LMS.

Chapter 5 presents the experimental results of the proposed model. The model

handles single and multi-moving targets, indoor and outdoor monitoring. The

performance is evaluated using the following performance indicators: mean square

error (MSE), peak signal-to-noise ratio (PSNR), correlation coefficient, detection

probability, trajectory tracking and energy dissipated.

Chapter 6 derives an analytical framework to inspect the impact of node’s duty

cycles and other network’s parameters and the effect of dynamically choosing the

appropriate compression rates for captured images and videos on the detection

performance which is characterized in terms of the probability of missing a target.

Finally Conclusion and future work are discussed in chapter 7



Chapter 2

Literature review

2.1 Introduction

This chapter first presents literature review on surveillance WVSNs and related

applications in the context of target detection and tracking. Next, literature review

on target detection techniques and background modeling are discussed with their

pros and cons. Related work and different target tracking algorithms are then

illustrated. Finally, an overview on compressive sensing is presented, in addition

to related work and applications of CS in the field of imaging, target detection

and tracking within visual sensor networks.

2.2 WVSNs

Recently WVSNs has emerged as a powerful distributed systems, that has been

widely used in several applications specially in target surveillance because of its

outstanding performance in sensing and signal processing [21]. Much work is

present in the literature for surveillance applications within WVSNs. In [21], the

authors introduced a multiview visual-target-surveillance system in WVSN, which

11



Chapter 2. Literature review 12

implements target classification and tracking with collaborative online learning and

localization. In [22], a practical target tracking WSN system is proposed based

on the auto regressive moving average (ARMA) model in a distributed peer-to-

peer (P2P) signal processing framework. Wireless sensor nodes act as peers that

perform target detection, feature extraction, classification and tracking, whereas

target localization requires the collaboration between wireless sensor nodes for

improving the accuracy and robustness. A distributed multi-view tracking sys-

tem using collaborative signal processing in distributed wireless sensor networks is

proposed in [23]. In the tracking system, target detection and classification algo-

rithms are based on single-node processing and target tracking is performed in sink

node, whereas target localization algorithm is carried out by collaboration between

multi-sensors. A progressive distributed data fusion is proposed to overcome the

disadvantages of client/server based centralized data fusion. A multimodal video

surveillance for the safety and security of a faculty entrance has been proposed in

[14]. The authors aim to design efficient and robust target detection and tracking

algorithm to detect intrusion or abnormal events. To save battery power of cam-

era nodes, Passive Infra Red (PIR) sensors are integrated with multiple cameras,

where when he PIR detects the presence of targets then triggers the corresponding

cameras to get to wake up state. Moreover, for robust tracking PIR sensors resolve

occlusion as they can detect changes in direction during occlusion. As battery en-

ergy is a crucial issue, in [24, 25] the authors distributed the processing on sensor

nodes by sleep and wake up periodically, according to proper duty cycles, sensing

and communication modules of wireless sensor nodes. Making these modules work

in discontinuous fashion by random scheduling where it is probably the easiest to

implement in sensor networks as it requires no coordination among nodes.

Several existing techniques for target detection and tracking present in the litera-

ture [21, 26–40] are presented next in Sec.2.2.1 and 2.2.2. However most techniques

for target detection and tracking focus mainly on the reliability of the detection

and tracking process without taking the energy-efficiency factor into consideration



Chapter 2. Literature review 13

as there is always a trade off between energy consumption and quality of service

in terms of detection reliability and robustness. CS has been considered for differ-

ent aspects of surveillance applications due to its energy efficient and low power

processing as reported in [41, 42]. Brief description of these techniques for surveil-

lance applications in the context of the proposed investigation is presented next

in Sec.2.3

Target detection and tracking are of the most important tasks within WVSN-

based surveillance applications. Although detecting isolated targets is relatively

simple but the challenge remains in detecting and tracking multiple targets in

complex backgrounds, especially in cases of deformation of objects (scale or pose

variation), change in speed, occlusion and dynamic background. Most of the

existing techniques [7, 30, 43, 44, 44] are not robust under certain conditions such

as sudden illumination changes, heavy fog or moving background objects like trees.

On the other hand, target tracking in surveillance applications with low power

devices as in WVSN is challenging, as most of the target tracking techniques are

computationally intensive and sometimes require real-time data processing [26–

28]. Moreover, energy efficiency is another challenging factor as processing is

performed by visual sensor nodes which have limited battery power and might be

kept for long period of times without any human interactions. Energy consumption

and reliability of the existing algorithms are therefore required to be investigated

to obtain an energy efficient solutions for WVSN. Following subsections give a

discussion on related work in the context of target detection and tracking within

WVSNs.

2.2.1 Target detection

A target to be tracked within a WVSN is expected to be visually separable from

its background In the context of surveillance applications, moving objects have

made target detection more challenging. Generally, target detection techniques



Chapter 2. Literature review 14

can be categorized into three main approaches; optical flow, temporal difference

and background subtraction based on their signal manipulation process [26, 45].

Optical flow-based target detection relies on flow vectors of moving objects over

time to identify foreground in an image. Optical flow is time consuming and re-

quires complex computations making it not an appropriate candidate for WVSNs

and real time applications [46]. Temporal difference-based target detection con-

sists of subtracting consecutive images followed by thresholding the difference.

Frame differencing is simple and suitable for WVSNs, it can operate with low

memory requirements, no floating point operations and relatively adaptive to dy-

namic changes. However, it is not very reliable, and fails to detect all interior

object pixels. Hence, it is challenging to detect steady, slow moving targets or

occluded as well as targets with uniform texture, as such techniques are solely

dependent on pixel-based feature extraction [26, 29]. The most commonly used

algorithms for target detection are based on basic background subtraction [30, 45].

Background subtraction is a simple approach to detect the presence of targets in

a video sequences as each current frame is subtracted from the background frame

and to classify each pixel as background or foreground is achieved by comparing

this difference by a predefined threshold. Background subtraction schemes provide

better detection results but are sensitive to dynamic changes in the scene such as

lighting, rain, trees, etc.. This is considered as a binary hypothesis test problem

with only two possible hypotheses; background and foreground. The background

may need to adapt to several situations to get acceptable results. In recent years,

many background modeling techniques have been proposed to adapt to changes

and update the background.

Although this problem can be solved by updating the background by pre-processing

and post-processing. There are different background modeling techniques ranging

from simple ones to more complex and accurate ones that can handle variations in

the scene but still its challenging to find a technique that is suitable for low power

applications such as WVSN [30, 31].
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In [31, 32] several background subtraction techniques for outdoor visual surveil-

lance applications have been studied; Basic background subtraction, Lehigh Omni-

directional Tracking System (LOTS) proposed in [47], single gaussian model [48],

mixture of Gaussian model (MoG) [49] and w4 [34]. All are compared under the

same lighting and background conditions. Basic background subtraction method

achieved high probability of detection but also higher false detections. Authors

have reported that LOTS, provides the best detection probability and with lower

rate of false alarm. The detection performance of the Single Gaussian model is

sensitive to illumination changes and moving background targets. However, MoG

improves the detection probability with sharper illumination gradient in compar-

ison to Single Gaussian model; but requires extensive computational complexity

[6, 44]. Subsequently, it is expected that MoG is not suitable for low-power appli-

cations. On the other hand, W 4 a real time visual surveillance system for detecting

and tracking multiple objects and monitoring produces the lowest probability of

detection and higher probability of false alarm reaching up to 90% with respect

to manually labeled ground truth. Another technique for background subtraction

is Kernel Density Estimation (KDE) [50] where a probability density function is

estimated for each pixel colour then the foreground detection is done according to

a defined threshold. Though, KDE is slow and consumes higher memory space.

In [51], an enhanced version of MoG technique is proposed which is combined

with Hole Filling Algorithm (HF) to alleviate the problems of MoG background

modeling such as false classification due to noisy image. This situation may arise

because several conditions in the video input such as, waving trees, rippling wa-

ter, and illumination changes. The experimental result shows that the proposed

method improved the accuracy up to 97.9%. However, it still requires extensive

computational complexity hence still not suitable for low-power WVSN appli-

cations. Adaptive median filtering (AMF) is proposed in [52] to overcome the

shortcomings of the Temporal Median Filter. AMF uses a simple recursive filter
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to estimate the median where it simply increments the background model inten-

sity by one, if the incoming intensity value (in the new input frame) is larger than

the previous existing intensity in the background model. The reverse is also true,

meaning that when the intensity of the new input is smaller than background

model the corresponding intensity will be decreased by one. It has been proved

by [52] that this trend will converge to the median of the observed intensities over

time without requiring storing any frames in a buffer and tries to update the es-

timated background model online. Hence it is extremely fast and suitable for real

time applications.

Running average background model in [53] dynamically update the background

image to adapt to the scene changing by using the weighed sum of the current

image and background image. Running average background needs to compute the

weighted sum of two images, so it has low space and computational complexities

satisfying the fundamental requirements for WVSN platforms such as in Cyclops

[54]. Moreover, dynamically updating the background makes this model adaptive

to very complex scenes.

Most VSN platforms implemented some type of background subtraction [45], such

as Cyclops used a running average filter due to its simplicity to estimate the back-

ground [54]. For MicrelEye [45], the MicrelEye node is used for target detection

where it implemented background subtraction assuming a fixed background. While

in MeshEye to reduce the computations, it performed background subtraction and

stereo matching on low resolution images (30 × 30) pixels first. Once detecting

and matching the object, high-resolution images are triggered to take snapshots

of regions of interest. When matching objects, simple features such as position,

velocity, and bounding box were extracted [45].

One of the other major challenges that affects the detection performance of tech-

niques based on background subtraction is to obtain an optimum threshold. To

overcome the problems of thresholding, Absolute Difference Edge-Based detection
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technique [8] that applies Sobel edge detector is proposed to get away from the

problems of thresholding. Nevertheless, it is scene constrained where it does not

perform well under all conditions such as in an outdoor scene with heavy fog.

Another direction for target detection is the codebook model [55], where for each

pixel, a codebook is constructed consisting of codewords based on some predefined

features. For each pixel in a new frame, a codeword match is performed to classify

the pixel as either foreground or background. The codebook model has the advan-

tage of being fast and unlike MoG model which compute probabilities using costly

floating point operations, this method does not involve probabilistic estimation.

Indeed, it simply computes the distance of the sample from the nearest cluster

mean. It requires low memory space and works well on dynamic backgrounds.

However, using normalized colors is undesirable because of their high variance at

low brightness levels, one necessarily sacrifices sensitivity at high brightness.

2.2.2 Target tracking

Once moving targets have been identified, the next task of a surveillance system

is to generate tracks of these targets over successive frames. Target tracking,

by definition, is to track a target or multiple targets over a sequence of images.

Target tracking is critical in many computer vision applications such as secu-

rity and surveillance, perceptual user interfaces, augmented reality, smart rooms,

target-based video compression, and driver assistance. Hence, target tracking is

important as provide better sense of security using visual information, analyze

shopping behavior of customers and to enhance building and environment design.

In addition to video abstraction to obtain automatic annotation of videos and to

generate target-based summaries, traffic management to analyze flow and to de-

tect accidents [56]. Target tracking is a challenging tasks in terms of reliability

and computational sensitivity. Difficulties can arise due to many factors, such as
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non-static background and changes in targets appearance due to pose or scale vari-

ation, full or partial occlusion, different illumination conditions or abrupt motion

[56].

As for target tracking, there is much literature for target tracking using visual sen-

sor network which can provide higher accuracy [21, 27, 28, 33, 35–38, 57]. However,

having the power constraint into consideration, there are few target tracking algo-

rithms reported in the literature for WVSN-based surveillance applications that

requires higher reliability [57]. Template correlation matching [33] is a method

for tracking where a template is taken from previous frames and correlated with

regions in next frame to find which region best accommodates the template. How-

ever, template correlation is not efficient in the presence of changes in the targets

appearance (such as change in size, intensity, orientation). Classical active con-

tour [38] for target tracking fails in tracking multiple targets when they partially

or fully occlude, so occlusion problem is the main challenge. Hence, a modifica-

tion to the active contour is proposed in [39]. It resolves the occlusion problems

by performing merging and splitting without requiring preprocessing nor motion

estimation, subsequently is suitable for real-time applications. Moreover, it sup-

ports the tracking of non-rigid targets in outdoor environments. However, there

is probability that the target may get lost if the targets speed is high making the

displacement of the target between two consecutive frames to be large.

Particle filtering [28, 36] which is known to be suitable for real time tracking and

non-linear non-Gaussian processes, relies on motion parameter and other proba-

bilistic parameter estimation. The number of particles that are used in the filter

mainly determines the tracking precision where the tracking error decreases by

using a larger number of particles and vice versa [58]. However, increasing the

number of particles is restricted in WVSNs due to memory constraints. Sub-

sequently, the performance of the particle filter in terms of tracking reliability

decreases and false detection increases with low resolution frames. Tracking of

deformable targets exploiting particle filters is challenging as it may require much
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more particles to obtain the targeted tracking reliability [37].

Kalman filtering [27] is relatively the best linear estimator based on the accuracy

of target tracking. Kalman filters are robust in terms of tracking accuracy un-

der optimal conditions, otherwise adaptive approaches are needed to solve these

problems and non-linearity which can be either computational expensive or not

always applicable in real time tracking. Although, Adaptive Kalman filters can be

used for non-linear systems and has been successfully used in various applications

[35, 37]. However, this kind of nonlinear methods can lead to problems in stability

and convergence. Moreover, a practical difficulty faced in the implementation of

such adaptive filters is the requirement of prior information from previous images.

This apriori information may not be available in certain cases. In [59], a visual

surveillance system for moving object detection and tracking has been presented.

The object is first detected using simple background subtraction then it is tracked

along its path by estimating the object’s location using kalman filter. In [60] an

algorithm of feature-based using Kalman filter motion to handle multiple objects

tracking has been proposed. The system is fully automatic and requires no man-

ual input of any kind for initialization of tracking. The authors in [61] proposed

a multiple object tracking algorithm that seeks the optimal state sequence which

maximizes the joint state-observation probability. The algorithm is capable of

tracking multiple objects whose number is unknown and varies during tracking.

In [62], objects randomly chosen by a user are tracked using scale invariant fea-

ture transform descriptor (SIFT) and a Kalman filter. After sufficient information

about the objects are accumulated, exploiting the learning to successfully track

objects even when the objects come into the view after it had been disappeared for

a few frames. However, these kinds of filtering require lots of matrix manipulation

and is usually avoided despite its robustness [45].

Adaptive filters such as least mean square (LMS) and recursive least square (RLS)

algorithms are the two fundamental adaptive filtering algorithms [63, 64] that work
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Table 2.1: Computational complexity for tracking algorithms

Tracking technique Computational complexity

LMS filter O(3p)
Kalman filter O(3D3

s + 3D2
sDo +Ds(D

2
o +Do) + Tinv(Do))

Particle filter O(23D3
s +D2

s + 162Ds + 13)

satisfactorily in the absence of apriori information, in contrast to Kalman filter-

ing. They have been widely used in several applications such as motion estimation,

tracking time variations in signals, vision applications in addition to system iden-

tification, inverse system modeling, 1D and 2D signal prediction and interference

Cancelation. Among various estimation methods that have historically been used,

LMS has received considerable attention in the past and has been used to solve the

problem of estimation and tracking [65]. The reason behind this is that the LMS

algorithm is relatively simple, has much lower computational complexity than the

original Kalman filters and other adaptive algorithms as it does not require cor-

relation function calculation nor does it require matrix inversions [66]. Moreover,

suitable for real time images applications [64, 67, 68]. In [58], a performance anal-

ysis is carried out comparing the computational complexities of different tracking

algorithms; LMS, Kalman and particles filters in terms of number of multiplica-

tion operations required. The analysis is illustrated in Table.2.1 , it shows that

the complexity of the LMS algorithm is O(3p), where p is the order of the poly-

nomial used in the LMS filter. On the other hand, the complexity of Kalman

filtering is O(3D3
s + 3D2

sDo +Ds(D
2
o +Do) +Tinv(Do)), where Ds is the dimension

of the state vector, Do is the dimension of observation vector and Tinv(Do) is the

time complexity of matrix inversion. Whereas, the complexity of particle filter is

O(23D3
s +D2

s + 162Ds + 13)

Furthermore, the LMS filter has satisfied overall performance than the RLS filter

for visual target tracking in noisy environments where the PSNR is low. Also the

simplicity of implementation of the LMS filter causes new developments for this

algorithm that enhance the capability and performance of this filter. Although for
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some step sizes and filter lengths, the LMS has lower convergence rate, as com-

pared to RLS. Nevertheless, LMS algorithm still has better tracking performance

compared to RLS algorithm, as the fast convergence rates of RLS comes at the

cost of high computational complexity, complicated implementation and sensitiv-

ity to noise that accumulates due to recursive computations which may results in

instability [69–71]. Tracking potential of LMS has received considerable interest

in the literature; in [72], the authors introduced an edge directional 2D LMS filter

for small target detection in infrared (IR) images. Generally, the 2D LMS filter

functions as a background prediction to apply to IR small target detection field.

A new small moving target object (such as car, bikes, etc.) tracking algorithm is

proposed in [73] which is based on a new clipping technique in the field of adaptive

filter algorithms. The uncertainty and occlusion of such objects in noisy environ-

ment leads towards the requirement to introduce new clipping technique which can

control noise in prediction. In [74], an analysis of the steady-state MSE conver-

gence of the LMS algorithm was carried out when deterministic functions are used

as reference inputs for the applications of biomedical signals. A new model for

adaptive filter with LMS scheme is presented [75] to train the mask operation on

low resolution images within an energy constrained surveillance system for mov-

ing object detection and tracking. In The work in [76] presented a novel method

for local image registration based on adaptive filtering techniques, where a 1-D

and 2-D LMS adaptive filters were utilized to estimate and track correspondences

among multiple images containing overlapping views of common scene regions.

Based on the above literature, there is no generalized dynamic integrated algo-

rithm which attains a trade off between computational complexity and detection

and tracking accuracy in the context of energy constrained WVSN found in the

literature. Yet, results can be obtained but with restrictions as pre-processing and

post-processing that require high computational overhead. However, a suitable

image processing scheme that can provide intended target detection and tracking
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accuracy with optimal pre-processing and post-processing is expected to be effi-

cient for the WVSN’s energy constraint nature. Within the scope of the authors

knowledge, recently proposed CS [11] is expected to be the strongest candidate to

provide this. A brief overview of the existing work on CS in the context of WVSN

based target detection and tracking applications is given below.

2.3 Compressive Sensing

Previous work [77, 78] have shown that CS can be a useful imaging tool when the

underlying signal is compressible in a known basis or representation even under

noisy conditions such sensing noise or channel noise which is generally modeled

as additive white Gaussian noise under noise conditions such sensing noise or

channel noise which is generally modeled as additive white Gaussian noise. CS

is a new paradigm for data acquisition and processing. It was originally devel-

oped for the efficient storage and compression of digital images [79, 80], it has

been widely used in several applications such as image processing, steganography

and image watermarking[81, 82]. Moreover, CS offers an advantage especially if

the signal is sparse or in high SNR imaging environments over conventional sam-

pling and compression techniques such as the H.264 and MPEG4 video coding

which are considered the most recent coding standard of video stream. H.264

and MPEG4 are based on complex encoders and simple decoders as the encoder

performs intra-frame coding and exploits statistical dependence between frames

in the source video signal to perform inter-frame coding. This configuration is

suitable for many applications such as video broadcasting but for WVSNs it is

different due to the limited energy and computational capabilities [83]. Moreover,

although H.264 achieves high coding performance but at the expense of huge com-

putational complexity as predictive encoding such as H.264 and MPEG4 requires

complex processing algorithms, which lead to high energy consumption [84]. In
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contrast to CS which is designed to aim simple encoders with very low compu-

tational complexity whereas complex computations are left at the decoder side

which is not battery-powered. A comparative study between CS and traditional

coding techniques is carried out in [83, 84], The H.264 quality decreases when the

bit error rate increases above 10−4. However, for CS the reconstruction quality

will not be affected until the bit error rate increases above 5×10−3. CS as a result

can tolerate a fairly large amount of bit errors before the received video quality is

affected. This is certainly not the case for predictive video encoding, and not even

for transform-based image compression standards such as JPEG. This could result

in significant transmission power savings or a significant decrease in the amount of

forward error correction. Furthermore, the processor load is significantly lower for

CS than for H.264 as predictive encoding requires complex processing algorithms,

which lead to high energy consumption, in contrast to CS which is designed to aim

simple encoders. This results in a reduction in the energy needed to encode the

video. In addition, for H.264 and MPEG4, PSNR is affected by the frame type,

whether I, P, or B frame due to inter-frame coding (Where I-frame is the key frame

with highest quality and least compression, P-frames are predicted frames from

previous I-frames or P-frames and B-frames are bi-directional predicted frames).

However, for CS, size of measurement matrix (compression rates) satisfying a lower

bound constraint guarantees more satisfactory quality.

Moreover, in a traditional signal processing system sampling is carried out accord-

ing to Nyquist theory at a frequency which is at least twice the highest frequency

component found in the signal. This is to guarantee signal recovery, where after-

wards, the sampled signal can subsequently be subjected to further compression.

This can be computationally intensive and unpractical in the case of battery-

powered sensors. However, CS can sample at a lower than Nyquist rate while

reducing computational complexity without threatening signal recovery. Further-

more, it is reported that CS has achieved higher PSNR and lower reconstruction

error compared to traditional compression techniques such as JPEG and DCT
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[85].

CS has been used within WVSNs for target detection and tracking but existing

work did not focus on all parameters to be achieved, such as energy efficiency,

accurate and reliable detection and tracking. In [41] compressive sensing for back-

ground subtraction is proposed where only the target in the difference image is

recovered as a solution of a convex optimization known as basis pursuit or an or-

thogonal matching pursuit problem using the compressive measurements without

any auxiliary image reconstruction. The difference image is always sparse (which

is a fundamental requirement to apply CS) regardless of the sparsity nature of the

original images. After the target has been detected, target tracking is performed

and experiments have shown that the detection and tracking are not affected by

CS. However, in this paper the focus has been in achieving target detection and

tracking without focusing on the energy constraint.

Other work in compressive sensing for surveillance applications has been proposed

in [86], where an image is projected on a set of random sensing basis yielding

some measurements. In this paper, not only the background subtracted image is

compressed but the whole captured image. At the receiving node or base station

there is no interest to reconstruct the full image, however only specific targets of

interest present in the image are reconstructed. Traditional reconstruction tech-

niques reconstructs the compressed measurements yielding the original image, in

contrary to reconstruct only specific parts in the image an adaptation to the re-

construction algorithm has been proposed in [86] through minimizing the weighted

version of the l-2 norm to only reconstruct specific parts of the image. However,

further research is required to address the selection of the weights and fully un-

derstand their impact on the target-specific reconstruction problem while taking

into account the energy-efficiency parameter. In [87], compressive measurements

are used for multi-view tracking where the measurements from the multiple cam-

eras are sent to a central server or base station, where CS inversion needs to be

performed at every time step.
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In [42] a novel compressive particle filter for tracking one or more targets in video

is presented using a reduced set of observations. It is shown that, by applying

compressive sensing ideas in a multi-particle-filter framework, it is possible to pre-

serve tracking performance while achieving considerable dimensionality reduction,

avoiding costly feature extraction procedures. Additionally, the target locations

are estimated directly, without the need to reconstruct each image. However, the

proposed algorithm failed to provide acceptable performance for fast moving tar-

gets. In addition, it is not designed for WVSN applications thus constraints of

WVSN such as energy and memory constraints were not taken into consideration.

Another promising direction is the adaptive CS, where CS dynamically chooses

the compression rate according to the sparsity nature of frames which varies from

one dataset to another. In contrast to static compression rates, different datasets

have different sparsity levels, hence if the same dimension of the measurement

matrix is used for more sparse images this will result in a waste of energy where

more compression could have been applied. And for less sparse images, the qual-

ity after reconstruction will be affected which in returns degrades the detection

performance. However, most existing adaptive CS techniques are computation-

ally extensive making them not suitable for the constraints of WVSNs. In [88],

energy efficient data collection in WSN using adaptive compressive sensing is pro-

posed. An adaptive approach is proposed to select a routing path by choosing

sensors required to transmit their data. However, in this approach adaptive CS

is only applied for sensor nodes selection and no compression is performed on the

transmitted data. A heuristic to solve the optimization problem (which is proven

NP-hard) is proposed in [89] to find a measurement matrix that maximizes the

information gain per energy expenditure. It was shown that under suitable condi-

tions, one can reconstruct an (N ×N) matrix from a small number of its sampled

measurements. This is done by solving an optimization problem, provided that

the number of measurements has a lower bound as a function of N , exact ma-

trix recovery would be guaranteed with a reduced number of measurements. In
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[90, 91], an adaptive approach to compressed sensing is proposed using a single

pixel camera. Instead of using a representation (such as pseudo-random binary

masks) that is incoherent with a conventional transform (as wavelets) to acquire

the visual data. The image is sampled directly in the wavelet domain by tuning the

Digital Micro-Mirror Device (DMD) of the single pixel camera to directly collect

only the significant wavelet coefficients.

Adaptive CS is expected to outperform traditional CS as by choosing measure-

ment matrices according to nature of datasets results in higher compression rates

consequently saves energy. However, most adaptive techniques found in the lit-

erature use heuristics and np-hard techniques in choosing measurement matrices

hence making them not suitable for WVSNs. To design adaptive techniques with

simple and low power computations is therefore a great challenge in the context

of data representation within WVSNs.

2.4 Chapter summary

Related work in the context of WVSNs has been presented, with various surveil-

lance applications. Moreover, target detection and tracking applications in the

context of WVSNs are discussed as they are considered the most important tasks

within WVSNs. Next different target detection techniques are presented in addi-

tion to background modeling techniques. Among the presented background mod-

eling, most of the techniques are robust but not suitable for WVSNs constraints

due to either their high computational or high space complexities except for AMF

and Running average can result in competitive performance as MoG with more

simple implementation making them candidates to WVSNs constraints. Target

tracking algorithms are then introduced with their advantages and disadvantages

with respect to WVSNs. The LMS algorithm is chosen as the tracking technique

due to its simplicity and its lower computational complexity compared to other

tracking techniques such that Kalman filters. Finally, compressive sensing has
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been presented in this chapter with some related applications. In addition, related

work for adaptive CS has been identified showing its advantages over traditional

compressive sensing. Based on the literature presented, there is no generalized

dynamic integrated algorithm which attains a trade off between computational

complexity and the accuracy of target detection and tracking in the context of

energy constrained WVSN. CS has shown that it is expected to be a strong can-

didate to provide our aim in reducing the size of captured images with simple

computations. Hence, CS is to be investigated in designing target detection and

tracking techniques for an energy-efficient surveillance system. Most of the CS

algorithms proposed in the literature are non-adaptive which means the random

measurement matrix is not chosen according to information collected neither to

nature of images. However, an important issue is to make the measurement matrix

adaptive to achieve higher compression rates. Subsequently, most existing work in

adaptive compressive sensing use heuristic techniques which are computationally

expensive, hence taking only into consideration the accuracy of the approximate

data field without considering the energy factor which is one of the main con-

cerns for WVSNs. Designing adaptive CS techniques with simple computations is

therefore an important issue to be considered to provide better performance en-

ergy efficiently. Considering the resource constraint within WVSN for surveillance

applications, the feasibility of such feature specific adaptation of CS for target

detection and tracking is the major focus of the proposed investigations, while

providing the intended detection and tracking performance with minimum energy

requirement to obtain optimal utilization of energy for wireless transmission with

the cost of a set of nominal preprocessing. Before presenting the system model and

the proposed detection and tracking techniques, the theoretical aspects behind the

proposed investigations in target detection, tracking and compressive sensing are

discussed in the next chapter. Besides, some shortcomings of the previous tech-

niques, methods to overcome these shortcomings together with the motivation for

the proposed work are presented.



Chapter 3

Theoretical aspects of the

proposed investigations

3.1 Introduction

WVSN is considered to be the main focus of the proposed work. Resource con-

straints and radio constraints are the major characteristics of WVSNs, where sen-

sor nodes have limited energy power and limited memory space, in addition the

wireless channel has limited communication bandwidth. There has been a signif-

icant mount of literature in the field of WVSNs and image processing, however

our main concern is to address the problems of resources and radio constraints

over WVSNs without compromising the detection and tracking performance. As a

result, designing detection and tracking algorithms for WVSN-based surveillance

systems is the aim to provide intended probability of detection and minimizing the

chances of false detection. In addition, to be able to perform this with optimized

energy-expenditure and minimum memory space. For this reason, the theoretical

background of the intended investigations for target detection, tracking and CS

are provided in this chapter. Various techniques for target detection, background

28
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modeling and tracking are investigated with their pros and cons in terms of compu-

tational complexity and memory space required. Moreover, complete theoretical

aspects of CS is presented including the entire CS process and image reconstruc-

tion. First an overview of a typical WVSN model is presented in the next section

with the main characteristics of WVSN that differentiate it from other traditional

WSNs and are the key constraints in designing a surveillance WVSN application.

3.2 General WVSN model

A typical WVSN is composed of visual sensor nodes, where each sensor node is re-

sponsible of capturing the image frame, performs some preprocessing (which might

involve several operations such as foreground extraction, noise removal methods,

blob formation,etc) and image processing (such as compression, target detection,

tracking, classification, etc). According to the applications some processing such

as detection and tracking can be performed at the base station or sink node instead

of at the battery-powered sensor nodes which may relax the power constraint. The

processed data is then transmitted to the sink or base station through the wire-

less channel or through other sensor nodes for decompression and postprocessing

if required. Hence visual sensor nodes act as transmitters while the base station

receives the transmitted data. A general WVSN model is demonstrated in Fig.3.1

3.2.1 Characteristics of WVSNs

Wireless visual sensor networks differs from other types of sensor networks in the

nature of how the image sensors perceive information from the environment. Most

sensors provide sensed data as 1D data signals. However, visual sensors captures

2D data. The additional dimensionality of the data results in richer information

content as well as in a higher complexity of data processing and analysis bringing

unique characteristics to WVSNs which are described in following subsection:
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Figure 3.1: Typical WVSN model

3.2.1.1 Energy, storage and bandwidth constraint

Visual sensor nodes are resource constrained devices bringing the special char-

acteristics of WVSNs such as energy, storage and bandwidth constraints which

introduced new challenges [2–5]. For instance, within WVSNs each visual sensor

node is powered by an attached battery and embeds a visual sensor(can be inte-

grated with other types of sensors), digital signal processing unit, memory and a

wireless transceiver. Energy is consumed by a sensor node due to any of the fol-

lowing tasks; image capturing, local data processing(such as target detection and

tracking) and data transmission. Due to the limited battery power, the challenge

of any WVSN design is to maximize the network’s lifetime, hence optimum energy

utilization is necessary.

Furthermore, visual sensor nodes are required to capture large data sets such as

video, and still images from the environment requiring storage and large bandwidth

for transmitting captured data which are quite costly in terms of energy, much

more than for other types of sensor networks as visual sensor nodes are resource

constraint. As well as higher complexity of data processing for object detection

and tracking. To save storage and communication bandwidth, the size of captured
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data can be reduced by performing some processing and compression to send only

the vital data. Simple and energy-efficient compression techniques are required to

reduce the size of data energy-efficiently.

Moreover, a great concern is the energy consumed during data transmission as in

WVSNs most energy dissipated is during transmission. Since visual sensor nodes

are required to capture large data sets such as video, and still images from the

environment requiring high storage and high bandwidth for transmission which

are also limited. Hence minimizing transmission energy can have more impact in

energy saving and as a result maximizing the lifetime of the network [92, 93], where

the energy consumed for processing is very low as compared with the transmission

energy. The energy needed to transmit 1 KB over a 100m distance is approximately

equivalent to the energy necessary to carry out 3 million instructions [94–96].

3.2.1.2 Local processing

Visual sensor nodes are fitted with onboard processing as local processing of the

raw image helps reduce the the size of data to be transmitted through the band-

width constrained communication channel. Instead of sending the whole captured

image, the visual sensor node uses its processing ability to carry out simple pro-

cessing and transmit only the required and locally processed data. Depending on

the application, local processing can involve simple image processing algorithms

such as background substraction (to send only the background subtracted image)

or more complex image processing algorithms such as feature extraction or object

classification. Moreover, for high volume datasets, compression is a very useful

tool to reduce the size of raw images and transmit the compressed data.
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3.2.1.3 Scalability

Most systems are configured in a variety of topologies to meet the requirements

of specific applications. Configurations can be easily changed from independent

networks satisfying small number of users to full infrastructure networks of thou-

sands of users. Large number of sensor nodes may be required which can reach

an extreme values of millions. Aside from the use of mobile sensors, sensors de-

ployed on ocean surfaces and robotic sensor in military and other applications,

most nodes in smart sensor networks are stationary, hence scalability is a major

issue in the sense that the performance of the WVSN should not be affected by

any changes in the network size. In several cases, recharging or replacing nodes’

batteries are not applicable, hence adding new sensor nodes is the only way to

maintain the functioning of the network. In such cases, the network should easily

integrate any new sensor nodes, with minimal degradation of functionality.

3.2.1.4 Self-configuration

WVSNs consist of a large number of nodes and their potential placement is likely

to be in hostile locations, it is necessary that the network be able to self-configure

as manual configurations is not always feasible. Moreover, incase of sensor nodes

failure which could be due to whether lack of energy or physical destruction, new

nodes may join the network. To maintain a high degree of connectivity, the WVSN

must be able to reconfigure itself to continue functioning.

Subsequent sections give an overview on the theoretical aspects of existing target

detection and tracking techniques.
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3.3 Target detection

The initial phase of visual data processing is object detection, hence if the detection

is not achieved correctly, accurate tracking and higher level processing cannot be

guaranteed.

Target detection using optical flow assumes a constant brightness denoted by E,

where the gradient value of a pixel expected not to vary due to displacement of

object[97], it is described as minimizes an energy cost function as follows:

E =

∫ ∫
[(Ixux + Iyvy + It)

2]dxdy (3.1)

Where, I(x, y, t) represents the brightness value of pixel (x, y) at time t. Ix, Iy

and It are the partial derivatives of the brightness values with respect to x, y, and

t. (ux, vy) are the velocity vectors of optical flow estimation about I(x, y, t), and

(u, v) is the gradient operators of I(x, y, t). The optical flow algorithm produces

two equations for the velocity vectors (ux, vy) The brightness constancy assumes

that the motion vectors are constant within small windows and that the image

brightness values will not change significantly over a short period of time, this

assumption is expressed as:

4I(x, y, t) = 4I(x+ u, y + v, t), |4u|2 + |4v|2 = 0 (3.2)

pxvx + pxyvy + pxt = 0 (3.3)

pxyvx + pyvy + pyt = 0 (3.4)

Where, px, pxy, py, pxt, pyt are the products of the partial derivatives Ix and Iy. It

is clear from the above equations describing the optical flow, all computations are

based on partial derivatives that is computational expensive in terms of WVSNs.
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As stated in previous chapter, background subtraction is a simple approach to de-

tect the presence of targets in a video sequences as each current frame is subtracted

from the background frame and to classify each pixel as background or foreground

is achieved by comparing this difference by a predefined threshold. However, it

is sensitive to dynamic changes in the scene such as lighting, rain, trees, etc..

The background may need to adapt to several situations to get acceptable re-

sults. In recent years, many background modeling techniques have been proposed

to adapt to changes and update the background. Background modeling uses the

new video frame to calculate and update a background model. This background

model provides a statistical description of the entire background scene. Back-

ground modeling can be categorized into non-recursive and recursive techniques

[98, 99] as follows:

3.3.1 Non-recursive techniques

A non-recursive technique uses a sliding-window approach for background esti-

mation. It stores a buffer of the previous L video frames, and estimates the

background image based on the temporal variation of each pixel within the buffer.

Non-recursive techniques are highly adaptive as they do not depend on the history

beyond those frames stored in the buffer. On the other hand, the storage require-

ment can be significant if a large buffer is needed to cope with slow-moving traffic.

Given a fixed-size buffer, this problem can be partially alleviated by storing the

video frames at a lower frame-rate. Some of the commonly-used non-recursive

techniques are described below:

1. Frame Differencing: Arguably the simplest background modeling tech-

nique [98], frame differencing uses the video frame at time t − 1 as the

background model for the frame at time t. Since it uses only a single previ-

ous frame, frame differencing may not be able to identify the interior pixels
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of a large, uniformly-colored moving object. This is commonly known as the

aperture problem.

2. Temporal Median filter (TMF): TMF computes the median intensity

for each pixel from all the stored frames in the buffer, where the estimate of

the background is defined as the median at each pixels of all previous frames.

The background Xbt at time t is modeled as Xbt(x, y) = median(Xt−i(x, y)),

where, Xt−i are a set of previous frames. For each subsequent frame if

Xt(x, y)−Bt(x, y) > TH then a foreground object has been detected, where

TH is a predefined threshold value to extract the foreground from the image.

The disadvantage of the median filter is that a buffer is needed to store

previous frames for modeling the background; as sensor nodes are memory

constrained this technique is not a suitable candidate. Moreover, it does not

perform well in noisy background situations[100].

Considering the computation complexity and storage limitations it is not

practical to store all the incoming video frames and make the decision ac-

cordingly. Hence the frames are stored in a limited size buffer. Admittedly

the estimated background model will be closer to the real background scene

as we grow the size of the buffer. However, speed of the process will reduce

and also higher capacity storage devices will be required. In some cases the

number of stored frames is not large enough (buffer limitations), therefore

the basic assumption will be violated and the median will estimate a false

value which has nothing to do with the real background model. This prob-

lem is partly due to the poor background estimation since the median is not

correctly detected from the frames in the buffer and partly the incapability

to handle the multi-modal scenes (shaking leaves are incorrectly detected as

foreground).

3. Kernel density function: For the Kernel density function, a histogram of

the L most recent pixel values (which could range from tens of frames up

to hundreds according to the level of changes in the background, adaptation
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rates and the available buffer size) xi are used to represent the background

density function, each smoothed with a kernel (specifically, a Gaussian ker-

nel). An estimate of the density function is given by Eq.(3.5)

p̂(x) =
1

L

L∑
i=1

Kh(x− xi) (3.5)

Kh is the kernel function with a scaling factor h. Kernel density estimator is

able to adapt quickly to the changes in the background process and able to

detect targets with high sensitivity. Nevertheless, the main drawback of the

kernel density estimator is its computational cost, the complexity is O(NF)

evaluations of the kernel function, multiplications and additions, where F

is the number of most recent pixel values(number of training images) and

N is the number of image pixels. However, several pre-calculated lookup

tables for the kernel function values can be used to reduce the burden of

computations but still will consume high memory space [50].

3.3.2 Recursive techniques

Recursive techniques do not maintain a buffer for background estimation. Instead,

they recursively update a single background model based on each input frame.

As a result, input frames from distant past could have an effect on the current

background model.

1. Single Gaussian: Among the background subtraction techniques, single

Gaussian is one of the simplest background removal techniques where it

calculates an average image of the scene, subtract each new frame from this

image, and threshold the result to decide the presence of a target. The

Gaussian distribution (or normal distribution) is a very common continuous

probability distribution used in statistics to represent real-valued random

variables whose distributions are not known. This basic Gaussian model
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can adapt to slow changes in the scene (for example, gradual illumination

changes). For each pixel in every frame Xt(x, y) is represented according

to normal distribution by its mean and standard deviation in the current

color space. Then it is determined whether it is background pixel or not by

comparing its probability of the current value with a predefined estimated

threshold. Since single gaussian distribution is based only on means and

variance, only two parameters for the background distribution are needed to

be stored [6, 31]. The gaussian distribution is as defined in Eq.(3.6)

P (Xt(x, y)) =
1√

(2Piσ2)
exp

(−Xt(x, y)− µ)2

2σ2
(3.6)

Where, µ and σ are the mean and variance of the gaussian distribution

respectively. The mean is the average of possible values in a given distribu-

tion and the variance measures the spread of a given distribution from the

mean. For the background to adapt to gradual illumination changes, the

single Gaussian model is updated by running average, the updated mean

and variance µt+1 and σt+1 are updated as follows; µt+1 = αBt + (1 − α)µt

and σt+1 = α(Bt − µt)
2 + (1 − α)σt

2. Here, µt and σt are the mean and

variance of the current pixel in the t0 image frame at the tth time instant,

Xbt is the background frame, α is a constant update rate ranging between 0

and 1.

If each pixel intensity would result from specific lighting or from single mode

background intensities then it would be feasible to represent the pixel value

samples over time with a single distribution but unfortunately in real sit-

uation often multiple surfaces along with different illumination conditions

appear in the pixel view. Hence, when a single gaussian is insufficient to

model the distribution of pixel values as this model is sensitive to illumina-

tion changes and moving background targets. It is desired to model the back-

ground using Gaussian distributions, a finite mixture of Gaussians (MOG)

may be used to model each pixel instead of a single one.
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2. Mixture of Gaussians (MoG): MoG model is designed such that the

foreground segmentation is done by modeling the background and subtract-

ing it out of the current input frame, and not by any operations performed

directly on the foreground objects (i.e. directly modeling the texture, color

or edges). Second the processing is done pixel by pixel rather than by region

based computations, and finally the background modeling decisions are made

based on each frame itself instead of benefiting from tracking information

or other feedbacks from previous steps. In the mixture model each pixel is

modeled as a mixture of Gk-Normal distributions, where Gk Gaussian dis-

tributions are fitted to the intensities seen by each pixel up to the current

time t. Having a mixture model containing Gk Gaussians, the parameters

of this model have the same number of mean values, covariance matrices,

and scaling factors to weight the relevance importance of each Gaussian. A

weighted sum of gk component Gaussian densities as given by Eq.(3.7)

p(f(λ)) =
k∑
i=1

wgig(f |µi,Σi) (3.7)

Where, f is a measurements or features vector, wgi are the mixture weights,

µi,Σi are the mean vector and covariance matrix, g(f |µi,Σi) is the com-

ponent gaussian mixtures, λ is the notation where the Gaussian mixture

model is parameterized by the mean vectors, covariance matrices and mix-

ture weights from all component densities.

Although, multiple Gaussians model improves the detection probability with

sharper illumination gradient in comparison to Single Gaussian model and

other background modeling algorithms. However, it requires extensive com-

putational complexity and usually the number of Gaussians needs to be

carefully predefined [6, 44]. Furthermore, if a scene remains stationary for

a long period of time, the variances of the background components may be-

come very small. A sudden change in global illumination can then turn the
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entire frame into foreground [98]. Subsequently, it is expected that MoG is

not suitable for low-power applications

3. Adaptive Median Filtering (AMF):

Like the TMF, both of these methods are based on the assumption that

pixels related to the background scene would be present in more than half

the frames of the entire video sequence. This is true in most of the situations

unless in case of stationary foreground objects. AMF was first introduced by

McFaralane and Schofield [52] which uses a simple recursive filter to estimate

the median. This filter acts as a running estimate of the median of intensities

coming to the view of each pixel. AMF applies the filtering procedure by

simply incrementing the background model intensity by one, if the incoming

intensity value (in the new input frame) is larger than the previous existing

intensity in the background model. The reverse is also true, meaning that

when the intensity of the new input is smaller than background model the

corresponding intensity will be decreased by one. It has been proved by [52]

that this trend will converge to the median of the observed intensities over

time. Unlike TMF, this approach does not require storing any frames in a

buffer and tries to update the estimated background model online. Hence it

is extremely fast and suitable for real time applications.

As concluded in [98], where the authors compared the performance of a num-

ber of popular background modeling techniques, AMF offers a simple alter-

native to MoG that produced the best results. AMF achieved competitive

performance with an extremely simple implementation, the only drawback

is that it adapts slowly toward a large change in background.

4. Running average: Running average background model [53] dynamically

update the background image to adapt to the scene changing by using the
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weighed sum of the current image and background image. The new back-

ground Xbt+1 after background update is as follows:

Xbt+1(x, y) = (1− α)Xbt(x, y) + αXt(x, y) (3.8)

Where, Xt is the current frame, Xbt is the current background frame and

α is the updating rate, it reflects the speed of new changes in the scene

updated to the background frame. However, it cannot be too large because

it may cause artificial tails to be formed behind the moving objects. Because

the running average background just needs to compute the weighted sum of

two images, so it has low space and computational complexities satisfying

the fundamental requirements for WVSN platforms such as in Cyclops [54].

Moreover, dynamically updating the background makes this model adaptive

to very complex scenes.

To sum up, most Background modeling techniques are either computational in-

tensive such as MoG or consumes high space such as non-recursive techniques to

adapt to background dynamic changes, or can be simple in terms of implemen-

tation but not robust under all conditions such as sudden illumination change,

fog, etc. However, it is clear from the literature that AMF and Running average

can result in competitive performance as MoG with more simple implementation

making them the strongest candidates to WVSNs constraints

3.4 Target tracking

Among the most of real time tracking algorithms, LMS is the simplest in terms of

implementation as well as realization; which also has much lower computational

complexity than the original Kalman filters and other adaptive algorithms [58].

LMS algorithm is referred to as adaptive filtering algorithm, can adapt to changes
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since the statistics is estimated continuously. Adaptive filters constitute an im-

portant part of the statistical signal and image processing, it estimates a signal or

next states from the received data, by minimizing the error between the reference

input, which closely matches or has some extent of correlation with the desired

output estimate. The LMS algorithm is initiated with an arbitrary w(0) at t = 0.

The successive corrections of the weight vector eventually leads to the minimum

value of the mean squared error. The weight update equations can be given as

[64] by the following set of equations

w(t+ 1) = w(t) + ux(t)e(t) (3.9)

where, x(t) is the input vector, u is the step size parameter, e(t) is the MSE

between the predicted output y(t) and the reference signal d(t) which is given by

e(t) = (d(t)− y(t))2 (3.10)

the output y(t) is calculated as follows

y(t) = x(t)w(t) (3.11)

On the other hand Kalman filter is an estimator predicting next states of a given

process but with more complex computations [35, 60]. The state equation is given

by:

ct+1 = Act + xt + υt t = 0,1, ... (3.12)

where, ct is the tth state vector that summarizes the past behavior, A is the state

transition model, xt is the known input vector, υt is unknown zero mean white

noise with covariance Qt
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The measurement observation equation is

zt = Htct + ωt t = 1, .... (3.13)

Where zt is used later to update the unknown ĉt, H is the observation model

mapping the true state into the observed state and ωt is unknown zero mean

white measurement noise with known covariance Rt

Follows is the time update equations for the state vector ĉ−t and state covariance

C−t :

ĉ−t = Aĉt−1 + xt (3.14)

C−t = ACt−1A
T + Q (3.15)

The objective is to estimate aposteriori estimating ĉt which is a linear combination

of the apriori estimate and the new measurement zt .These equations are given

below

Kg = C−t HT (HC−t HT + R)−1 (3.16)

ĉt = ĉ−t + Kg(zt −Hĉ−t ) (3.17)

Ct = (1−KgH)C−t (3.18)

Kg is the Kalman gain which is a function of the relative certainty between the

measured and the current state estimates.

3.5 Compressive Sensing

As mentioned in previous chapter, CS is unlike traditional signal processing sam-

pling where the sampling is carried out according to Nyquist theory at a frequency

which is at least twice the highest frequency component found in the signal. In
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contrast, CS can sample at a lower than Nyquist rate while reducing computa-

tional complexity without threatening signal recovery [78]. CS has achieved higher

PSNR and lower reconstruction error compared to traditional compression tech-

niques such as JPEG and DCT as reported in [85]. A detailed description of CS

is presented next...

3.5.1 Introduction to CS

Suppose for a given set of data, sampling and compression are performed to keep

only the important coefficients. According to Shannon-Nyquist sampling theory

the minimum number of samples required to accurately reconstruct the image

without losses is twice of its maximum frequency. It is always challenging to

reduce this sampling rate as possible through undersampled measurements, hence

reducing the computation power and storage with the cost of the reliability of the

reconstructed data.

Recently in [12, 79, 101], authors have proposed a promising technique that results

in significant amount of sample reduction while compressing sparse data named

as compressive sampling or compressed sensing (CS). CS is a new paradigm for

data acquisition and processing, which was originally developed for the efficient

storage and compression of digital images. In their proposed theoretical model,

it was reported that CS exploits the sparsity nature of images where most of

the signal’s energy is concentrated in few non-zero coefficients as represented in

Fig.3.2 [102] . Furthermore, it is not necessary for the signal itself to be sparse

but compressible or sparse in some known transform domain according to the

nature of the signal, (for example. smooth signals are sparse in the Fourier basis,

and piecewise smooth signals are sparse in a wavelet basis). Subsequently, CS

compresses the signal during the sampling process using far fewer measurements

to represent the whole set of signals such that it can be represented with far fewer

samples. For example, within images/ image processing applications, this is done

by projecting the image onto a set of random measurement projection matrix of
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smaller size compared to that of the image without having any prior knowledge of

the image. Moreover, CS is a simple process where it enables simple computations

to be executed at the battery-powered encoder side (sensor nodes) whereas all

the complex computations for recovery of images are left at the decoder side or

receiver (not battery-powered).

Figure 3.2: samples in frequency and time domain

3.5.2 Theoretical basis of CS

Suppose image X of size (N × N) is K-sparse where K � N , that is, only K

coefficients of X are nonzero and the remaining are zero, thus the K-sparse image X

is compressible. CS then guarantees acceptable reconstruction and recovery of the

image from lower measurements compared to those required by shannon-Nyquist

theory as long as the number of measurements satisfies a lower bound depending

on how sparse the image is. Hence, X can be recovered from measurements of size

M where M ≥ K logN � N .

Furthermore, it is not necessary for the image itself to be sparse but compressible

or sparse in some known transform domain or basis, named Ψ, according to the

nature of the signal (smooth signals are sparse in the Fourier basis, and piecewise

smooth signals are sparse in a wavelet basis [12, 101]). Suppose X is the image

signal sparse in Ψ domain. Ψ is the basis invertible Orthonormal function of size

(N×N) driven from a transform such as the DCT, Fourier, or Wavelet,, Eq.(3.19)
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Figure 3.3: Compressive sensing example

shows the mathematical representation of X

X = ΨS (3.19)

Where, S is a matrix containing the sparse coefficients of X of size (N ×N), Ψ is

the transform basis to sparsify the image, si =< X, ψTi >= ψTX, S = ΨTX. The

image is represented with fewer samples from X instead of all pixels by computing

the inner product between X and Φ, namely through incoherent measurements Y

in Eq.(3.20)

Y = ΦX = ΦΨS = ΘS (3.20)

Where Φ is a random measurement matrix of size (M×N) where K << M << N .

y1 =< x,φ1 >, y2 =< x, φ2 >,· · · ,ym =< x, φm >. The compressive sensing

process is illustrated in Fig.3.3 [11] showing compressed measurements Y produced

by M different randomly weighted linear combinations of the elements of X.

3.5.2.1 Properties of random measurement matrix Φ

Selection of measurement matrix dimension plays significant role on the recon-

struction of the image. Subsequently, for the selection of the required measure-

ment matrix, the properties of such matrix is expected to play significant role in
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the proposed investigation. Hence, the following key properties of measurement

matrix are highlighted in this section.

• Φ is unstructured and universally incoherent to Ψ which it can be paired

with a variety of sparse basis Ψ, and with every measurement one can pick

up some partial information about the sparse coefficients The coherence be-

tween the sensing measurement basis Φ and the transformation basis Ψ is

measured as follows µ(Φ,Ψ) =
√

nmax(< φ,ψ >). Such as if Φ is delta

Dirac functions φk = δ(t − k) and Ψ is the Fourier basis, then it can be

shown that µ(Φ,Ψ) = 1 that yields maximal incoherence. The interesting

part of CS theory is that if even Φ is selected uniformly at random, then

with high probability, the coherence is about
√

2 log n. Hence, Φ can be

generated by random gaussian, Bernoulli, random wavelet, or fourier mea-

surements. Hence, it does not have to match any structure of the image but

to looks more like random noise than any feature of the image[12].

• If Φ is incoherent, then ΨΦ satisfies the restricted isometry property [RIP].

Let δ be the smallest quantity such that X obeys Eq.(3.21),

(1− δk)||X||2 ≤ ||ΦX||2 ≤ (1 + δk)||X||2 (3.21)

Where, 0 < δ = δk < 1 for k ≤ c(δ)M/ log (N/M). If Φ satisties RIP of

order 2K, then the difference between any two K sparse vectors x1 and x2

must be preserved after the mapping from RN into RM

(1− ε)dist(x1,x2) ≤ dist(Φ(x1),Φ(x2)) ≤ (1 + ε)dist(x1,x2) (3.22)

Where, ε is the error.

• Φ must obey uniform uncertainty principle ’UUP’ and thats if M ≥ K logN .

This can yield to optimal performance



Chapter 3. Theoretical aspects of the proposed investigations 47

• Should be fastly computable for both encoding image and recovery as the

recovery involves repeated application of ΨΦ.

• Φ should be easily implemented in hardware such as optical or analog system,

or single-pixel camera [103].

3.5.3 Image reconstruction

It is required to obtain reconstructed image denoted as Ŝ from the measurements

Y. Since the number of measurements are far less than the original size of the im-

age, recovery of the image from the compressed measurements is under-determined.

This is known as ill-conditioned system as any small variations of the input im-

age can produce large variations of the output Y, respectively. However, if the

image is K-sparse, and Φ obeys UUP, it has been shown in [11, 12] that the

process can be inverted with high probability through the use of special convex

optimization techniques such as exploiting `1-norm minimization to recover back

S as in Eq.(3.23). To accomplish this, the receiver should know the transform

domain/basis or transformation matrix Ψ that sparsifies X.

Ŝ = argmin ‖ S’ ‖1 such that ΘS = Y (3.23)

Hence, CS can exactly recover K-sparse images by `1 norm reconstruction, closely

approximate compressible images with high probability using onlyM ≥ K logN �

N random measurements. Moreover, it does not assume any knowledge about the

number of nonzero coordinates of X, their locations, and their amplitudes which

are assumed to be completely unknown apriori. Non linear recovery by Convex

optimization problem can be reduced to linear programming known as basis pur-

suit or matching pursuit that has a polynomial computational complexity O(N3).

While the CS literature has focused almost exclusively on problems in signal and
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image reconstruction or approximation, reconstruction is frequently not the ulti-

mate goal, as reported. The CS is a simple process, it enables simple computations

at the encoder side or visual sensor nodes and all the complex computations for

recovery and reconstruction of images(if recovery is needed) are left at the decoder

side or receiver node [79, 104], where energy constraint may be relaxed.

Most of the compressive sensing algorithms proposed in [41, 42, 86, 87] are non-

adaptive which means the random sensing measurement matrix is not chosen dy-

namically according to the intensity of the information collected so far. An im-

portant issue is to make Φ adaptive not fixed to give better detection tracking

results. In [88], energy efficient data collection in WSN using adaptive compres-

sive sensing is proposed, it has proved that the choice of coefficients can affect

both the information content and the energy expenses which is critical in WVSNs.

However, target detection and tracking were not in the paper’s scope. Recent

efforts in adaptive compressive sensing show that by choosing the coefficients of

the measurement matrix, the information content is maximized. In the proposed

work, the detection reliability of targets can be improved. In [89] a heuristic to

solve the optimization problem which is proven NP-hard is proposed to find a mea-

surement matrix which maximizes the information gain per energy expenditure. It

was shown that under suitable conditions, one can guarantee reconstruction of an

(N×N) matrix from a smaller number of its sampled measurements by solving an

optimization problem provided that this number has a lower bound on the degree

of sparsity.

3.6 Chapter summary

After exploring the theoretical aspects and shortcomings of previous algorithms for

target detection and tracking. It was shown that, most target detection techniques

are either computational intensive to adapt to background dynamic changes, or



Chapter 3. Theoretical aspects of the proposed investigations 49

can be simple in terms of implementation but not robust under all conditions such

as sudden illumination change, fog, etc. In addition, recursive and non-recursive

background modeling techniques are investigated. Among the presented back-

ground modeling, most of the techniques are robust but not suitable for WVSNs

constraints due to either their high computational high space complexities except

for AMF and Running average can result in competitive performance as MoG with

more simple implementation making them candidates to WVSNs constraints. On

the other hand, among the existing tracking algorithms, LMS is the simplest in

terms of implementation as well as realization; which also has much lower compu-

tational complexity than the original Kalman filters and other adaptive algorithms.

Hence, it is a strong candidate for tracking within WVSN-based surveillance ap-

plications. The theoretical basics of CS shows it is a strong candidate in achieving

our aims where it enables high compression rates through simple computations

to be performed at the sensor nodes. While leaving complex computations of im-

age reconstruction to be done at the receiver side that relax the power constraint

and hence reduce the energy expenditure. To sum up, their is scope to design

an adaptive compressive sensing based on degree of sparsity within the sensing

environment. Besides this, the effect of compressive sensing is to be investigated

in implementing target detection and tracking schemes for low-power surveillance

WVSN applications to give better detection and tracking results.

In the next chapter, the system model for the WVSN-based surveillance applica-

tion is introduced with all the phases involved in the proposed adaptive CS and

the detection and tracking techniques.



Chapter 4

Proposed detection and tracking

model using CS

4.1 Introduction

WVSNs deal with large data sets of videos and images resulting in high demand on

memory space and higher complexity of data processing and analysis. As well as

high bandwidth demand for transmitting the large image data. To represent the

captured data in such a way to save storage due to memory constraint, an adaptive

block CS technique is proposed to represent the data with just few number of

measurements. Consequently, it is expected to save bandwidth requirement for

transmission and processing power. As illustrated in previous chapter, the CS is a

simple process where it enables simple computations to be executed at the encoder

side (sensor nodes) and all the complex computations for recovery of images are

left at the decoder side or receiver. In addition to power and memory constraints,

CS should not affect quality of image (as denoted PSNR) for later detection and

tracking.

50
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In this chapter an outline for our proposed detection and tracking model using CS

is presented with the notations used throughout the thesis. Furthermore, as energy

is a critical constraint in WVSNs, an energy model is described to calculate energy

dissipated which is used later as a performance indicator comparing the proposed

block CS model with traditional CS and without CS. A detailed description of

the proposed adaptive block CS algorithm together with the training/calibration

phase and the phases involved in the detection and tracking techniques including

target extraction, noise removal using morphological operation and LMS tracking

are then described.

4.2 Proposed system model

Consider a WVSN-based surveillance application model, composed of V number

of visual sensor nodes allocated to share a viewable range and cover the required

sensing region, and one or more receiver/sink node (base station) at fusion center.

Lets assume most features of the targets are known to the monitoring center

and the existence and the location of targets are required for monitoring. The

receiver also has prior explicit information of the background (the background is

initially assumed to be static for simplicity). Each sensor node is assumed to be in

’wake-up’ state only with the presence of a target within its area of coverage and

required to capture images to form a video sequence. We assume that only single

view multi-target tracking is achieved to keep minimum number of visual sensor

nodes in a wake-up state to optimize the use of nodes and save battery life which

is limited in WVSNs. Hence, each visual sensor node is responsible of capturing

the image, preprocessing, compressing and transmitting the compressed captured

frame.

For sensor Vi at the time where the sensor node enters a ’wake-up’ state, the time

reference for the frame count is assumed to be t = 0. Hence, a single snapshot at

t = 0 is expected to be stored within the memory allocated at the sensor node; that
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is assumed to be the background for the intended target tracking; will be denoted

as Xb. Following frames Xt with t > 0 are subsequent captured frames in the video

sequence, where Xb and Xt are of size (N ×N). As in the general WVSN model

(Fig.3.1) described in previous chapter, some preprocessing might be required. In

our case, to assure sparsity within the image frame, the foreground target is ex-

tracted first by background subtraction by subtracting Xt from Xb resulting in the

difference frame Xd. Hence, instead of producing the compressed measurements

for Xb and Xt separately, the compressed measurements are produced directly for

Xd, as the difference frame is always sparse regardless the sparsity nature of real

frames.

CS adaptively chooses the compression rate according to the sparsity nature of dif-

ference frames which varies from one dataset to another. The training/calibration

phase is pre the CS phase and is discussed later in Sec.4.3.2.1. Afterwards, the

block CS divides Xd into B blocks Xblk each of size (Nb×Nb) as will be presented

in sec.4.3.2.2. CS is then performed by multiplying blocks Xblk containing the

target by random projection measurement matrices Φ producing the compressed

measurements for each block denoted later as Yblk to be ready for transmission

through the wireless channel. At the receiver side, the received compressed data

is to be decompressed for the reconstruction and recovery of the estimate data

X̂d. As mentioned, Xb is known to the receiver making it possible to estimate

and reconstruct the original test frame denoted as X̂t by adding Xb to X̂d. Fi-

nally, the system detects and tracks the moving targets. The system model of the

proposed processing for the WVSN-based surveillance application at individual

visual sensor nodes and at the sink or base station are shown in Fig.4.1 and 4.2,

respectively.

After describing the proposed system model for target and tracking within WVSNs,

an energy model is presented next.
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4.2.1 Energy model

Currently, there is a great research in the area of low-energy radios. In our work,

the same energy model as in [105] is used, where energy cost dissipated by a node

over a distance d is denoted by Etx as shown in (4.1).

Etx = Eelec ∗ k + eamp ∗ k ∗ d2 (4.1)
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Where, k is size of data (samples) transmitted, Eelec = 50nJ/bit, is the energy

being used to run transmitter and receiver circuit, eamp = 100pJ/bit for the trans-

mitted amplifier.

In WVSNs, most energy dissipated is during the transmission and reception, in

our case the reception is the base station node which is assumed not to be battery-

powered. Hence minimizing transmission energy can have more impact in energy

saving [92, 93] where the energy consumed for processing is very low as compared

with the transmission energy. The energy needed to transmit 1 KB over a 100m

distance is approximately equivalent to the energy necessary to carry out 3 million

instructions [94–96].

4.3 Proposed detection and tracking model

This work proposes an adaptive block compressive sensing model which is expected

to reduce energy consumption, space requirements and communication overhead.

Each sensor node is set to capture a target when entering its monitoring area

either by periodic monitoring or if being notified by a neighbor sensor node that

a target is to enter its monitoring area. The sensor node segments the target by

background subtraction followed by morphological operations. The sensor node

afterwards applies the proposed adaptive block CS and transmits the compressed

measurements to the receiver for reconstruction and tracking the target using

the modified LMS technique. Next in subsequent sections, all the procedures

undertaken during the entire surveillance process are illustrated.
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4.3.1 Proposed detection technique

4.3.1.1 Background subtraction

Due to the limitation of resources in WVSN, CS is applied to the background

subtracted frame instead of the whole frame. Hence, background subtraction

needs to be performed first before applying CS to increase the sparsity of images,

as the difference image always provides higher degree of sparsity regardless of the

sparse nature of the original images. As a result, reducing the required size of

transmitted measurements to the base station. Assuming the visual sensor node

has captured an image denoted as X t. The target afterwards is detected based

on thresholding the absolute difference between current frame X t and background

frame Xb, Xd = |Xt −Xb| > γ, where γ is a given threshold to extract the

foreground target as in Eq.(4.2),

Xd(i) =

 |Xt(i)−Xb(i)| (foreground pixel) |Xt(i)−Xb(i)| > γ

0 (background pixel) otherwise
(4.2)

The value for γ is chosen in order to reduce scattered noise that could exist in

the background due to many factors such as rain, dust, illumination changes,

trees movements, etc. Its value is determined as in [106], where the image is

divided into blocks (as will be illustrated in Sec.4.3.2.2 for block CS) and each

block should be identified by a unique value that allows to properly choose the

threshold. Statistic functions are commonly used such as mean, median, mean of

minimum and maximum values of the local intensity distribution as they largely

depends on the input images. In this work, mean value is used as threshold to

describe each image block. The threshold value helps reduce unwanted background

subtraction noise and at the same time without causing disconnected targets as

possible. Where, lower values of γ will result in more noise and higher values will
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result in disconnected targets. In both cases, resulting in either lower probability

to detect the target or more preprocessing to overcome this problem.

To adapt to changes in the background, running average is applied to continuously

update the background with changes such as moving trees, rain, or unwanted

moving objects. As stated previously in Sec.2.2.1 Running average is a simple

background modeling technique with low space and computational complexities.

Background modeling uses the new video frame and previous background frame

to calculate and update the background model to provide a statistical description

of the entire background scene after adapting to changes in the background. The

background update is as follows:

Bt+1(x, y) = (1− α)Bt(x, y) + αXt(x, y) (4.3)

Where, Bt+1 is the updated background model, Bt is the previous background

frame, Xt is the current captured frame and α is the updating rate, it reflects the

speed of new changes in the scene updated to the background frame. However, it

cannot be too large because it may cause artificial tails to be formed behind the

moving objects. Fig.4.3(a) and 4.3(b) show the background frame before and after

background modeling with an update rate α = 0.7, the background subtracted

frame after updating the background is shown in Fig.4.3(c)

4.3.1.2 Morphology operations and blob extraction

Once the foreground is detected, morphology operations as image postprocessing

are then applied for the removal of the remaining noise (if present) after the back-

ground modeling. Morphology is a broad set of image processing operations that

process images based on shapes. Morphological operations probe an image with a

small shape or template known as a structuring element. The structuring element

is a small binary matrix of pixels, each with a value of zero or one specifying

the shape of the structuring element (such as a disc, rectangle, square,etc). The
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(a) Current background frame

(b) Background frame after running average

(c) Background subtracted frame

Figure 4.3: (a) and (b)Background frames before and after background mod-
eling and (c) background subtracted frame
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structuring element is positioned at all possible locations in the image and it is

compared with the corresponding neighborhood of pixels, afterwards, according to

the operation applied some pixels are converted from ones to zeros and vice versa

[107]. The most basic morphological operations are dilation and erosion. Dilation

adds pixels (convert zeros to ones) to the boundaries of targets in an image to help

fill holes and forms connected blobs, while erosion removes excess pixels (noise) to

eliminate small unwanted details by setting these pixels to zeros according to the

structuring element specified. The number of pixels added or removed from an

image containing potential target depends on the size and shape of the structur-

ing element used to process the image[107]. Other morphological operations are a

compound of the basic operations erosion and dilation. The most commonly used

compound operations are the opening and closing. Opening is an erosion followed

by a dilation, it is so called because any regions that have survived the erosion

during noise removal are restored to their original size by the dilation. While clos-

ing is a dilation followed by an erosion where it can fill holes in the regions while

keeping the initial region sizes. The simplicity of Morphological operations made

it one of the strongest candidates for processing within WVSN based applications

[108]

In the context of our work, after background subtraction an opening or closing

operations are then applied depending on the nature of images. Sometimes an

opening operation is performed where erosion is first applied as a noise removal

method by applying the specified structuring element to remove unwanted pixels,

followed by dilation to fill the holes within target objects forming a connected

object blob by linking the unconnected parts of the target. Hence, any regions that

have survived the erosion are restored to their original size by the dilation. Or a

closing operation, obtained by dilation of the image using the specified structuring

element to form a connected object blob, followed by erosion of the resulting image

to restore the original size of objects. It can fill holes in the regions while keeping

the initial region sizes[107]. Fig.4.4 shows the blob formation after background
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subtraction and morphological operations. A bounding box containing the target

is then formed to calculate the target’s coordinates.

In some surveillance scenes where targets are to be tracked in the streets, vehicles

might be present in the scene such as in Fig.4.5(a). Hence, after all objects are

detected, if vehicles are present in the frame, their bounding boxes are ignored

as in Fig.4.5(b) and afterwards unwanted objects are eliminated from the back-

ground subtracted frame by checking the dimensions of the bounding boxes as in

Fig.4.5(c).

4.3.2 Proposed adaptive block Compressive sensing

As mentioned in the previous chapter, instead of producing the compressed mea-

surements Y b and Y t for Xb and X t, respectively. For lowering processing re-

quirement, Xt is subtracted from Xb first as CS exploits the fact that difference

frame Xd are always more sparse regardless the nature of the real frames. Hence,

it is proposed to perform CS on Xd at the visual sensor node by being projected

onto random sensing measurement matrix Φ producing the compressed measure-

ments Y d. These compressed measurements are then transmitted through the

wireless channel to the receiver side for decompression and reconstruction of the

real frame for further processing, where a specified target is to be detected and

tracked. Furthermore, it is required to analyze the relation between the number

of non-zero pixels and the total number of pixels in a given frame to find the opti-

mal number of compressed measurements required to result in accurate tracking.

Below are the steps undertaken during the entire process of CS applied in the

proposed work, next subsections present the proposed adaptive block CS.

• Step 1: Φ is a randomly chosen sensing matrix of size M×N , where M � N

• Step 2: produce the compressed measurements Yd = ΦXd

• Step 3: sensor nodes transmits Yd through the wireless channel
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(a) Dataset 1

(b) Dataset 2

(c) Dataset 3

Figure 4.4: First row in (a)(b) and (c) shows test frames and background
subtraction results in second row
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(a) Bounding boxes for all objects detected

(b) Bounding boxes for only human targets

(c) Background subtracted frame eliminating vehicles

Figure 4.5: Detected objects for dataset”5”
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Figure 4.6: The reconstructed original image for ”Walking men”

• Step 4: at the receiver side, Φ must be known for the decompression of Yd.

X̂d is reconstructed from the compressed measurements Yd, resulting in a

frame with only the foreground target present.

• Step 5: the original image X̂t is then obtained by adding X̂d (the recon-

structed background subtracted image) to the masked background frame

(masking the targets locations), the background frame is also assumed to be

known to the receiver side apriori as in Fig.4.6.

• Step 6: the targets locations are obtained after reconstructing the real frame

producing a trajectory for the complete path of each moving target

4.3.2.1 Proposed Adaptive CS

For any given dataset, different M and Φ are needed, as stated earlier the value

of M is inversely proportional to the degree of sparsity of an image. If the same
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value of M is used for all different datasets, it is expected that the reliability of

target detection will be different as the degree of sparsity varies from one image to

another. For this reason there is a great challenge for adaptive CS by making M

variable depending on how sparse the image is. Adaptive CS dynamically chooses

the compression rate according to the sparsity nature of frames which varies from

one dataset to another. In contrast to static compression rates, different datasets

have different sparsity levels, hence if the same dimension of the measurement

matrix is used for more sparse images this will result in a waste of energy where

more compression could have been applied. And for less sparse images, the qual-

ity after reconstruction will be affected which in returns degrades the detection

performance. As a result, dynamic size of measurement matrices results in saving

energy, space requirements, as well as channel bandwidth. For the adaptive CS,

the aforementioned CS process is preceded by a calibration phase. During that

phase an Automatic Repeat Query (ARQ) transmission protocol is used between

sensor nodes and the receiver side, as a feedback is needed for the adaptation

phase. A dictionary is constructed for different values of M and corresponding

sensing matrices Φ. For each dataset the sparsity level is calculated by finding the

ratio between the number of non-zero pixels and the total number of pixels in a

frame. At the end of each adaptation/calibration phase, the dictionary is updated

with the chosen M and Φ for the equivalent sparsity level that can be used later

for other datasets with the same sparsity levels. Initially, an arbitrary value of M

is chosen according to a sparsity measure and is used to obtain the compressed

measurements Yd. The sensor node is then set to transmit Yd to the receiver

side where the image is to be reconstructed, and based on the reconstruction error

a decision is made whether the reconstruction is satisfactory or not. In case the

reconstruction results are satisfactory, the receiver node sends a ’zero’ flag through

the feedback channel ending the calibration phase; otherwise a ’one’ flag is to be

sent. While the sensor node receives a ’one’ flag, it is expected to change the

value of M and change Φ accordingly, the sensor node repeats the search for an

optimum value of M at the CS adaptation process till it receives a zero feedback
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from the receiver. At this point, the optimum values for M and Φ obtained are

used next in the CS process. Fig.4.7 shows a flow chart summarizing the entire

adaptive CS process.

4.3.2.2 Proposed block CS

To exploit the fact that the difference frame is always sparse, instead of compress-

ing the whole frame, the image is divided into blocks and only blocks with non-zero

pixels (containing the target) are expected to be compressed and transmitted. This

strategy is expected to help reduce the required value of M , subsequently, save

the communication bandwidth and preserve the energy at the transmitter side. To

illustrate this process, Fig.4.8 shows a (256 × 256) background subtracted frame

which is then divided into 16 blocks (64× 64). It can be found that only 7 blocks

have non-zero pixels as shown in Fig.4.9 and the rest of the blocks are all zeros,

hence do not required to be processed. An index for each block is embedded to

the compressed measurements before transmission such that the receiver side can

reconstruct the whole image correctly again in the correct order. It has to be noted

that the missing blocks (which has not been transmitted) are to be considered as

pixels sets with all zero values

The same procedures as in sec.4.3.2 are undertaken with few additional steps to

divide each frame into blocks, below is a summary of the proposed block CS:

• Step 1: A frame with dimension (N ×N) denoted as Xd is divided into B

blocks of size (Nb ×Nb) each, where N2

N2
b

= B, each block is denoted as Xblk

• Step 2: for each block Xblk with non-zero pixels, perform the following

steps

– Step 3: Φ is a randomly chosen sensing matrix of size Mb×Nb, where

Mb �M and Mb � Nb � N

– Step 4: produce the compressed measurements Yblk = ΦXblk
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Figure 4.7: Flowchart for the training phase of the adaptive CS process
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Figure 4.8: Background subtracted frame

(a) block 2 (b) block 3 (c) block 6 (d) block 7 (e) block 10

(f) block 11 (g) block 15

Figure 4.9: Blocks containing the targets (non-zero pixels)



Chapter 4. Proposed detection and tracking model using CS 67

– Step 5: sensor nodes transmits the compressed block Yblk together

with an index of the block number through the wireless channel

– Step 6: at the receiver, Φ is assumed to be known for the decompres-

sion of Yblk. X̂blk is reconstructed from the compressed measurements

Yblk.

• Step 7: using the index number transmitted with every block all received

blocks are placed together in the correct order resulting in a frame X̂d with

only the foreground target present.

• Step 8: the real frame X̂t is then obtained by adding X̂d to the background

frame Xb which is also assumed to be known to the receiver side apriori.

• Step 9: the targets locations are obtained after reconstructing the real frame

producing a trajectory for the complete path of each moving target

4.3.3 Proposed tracking model

4.3.3.1 Least mean square (LMS)

The LMS algorithm, introduced by Widrow and Hoff in 1959 is an adaptive al-

gorithm, which uses the same principles as the method of the Steepest descent,

but where the statistics are estimated continuously. LMS algorithm is referred

to as adaptive filtering algorithm since the statistics are estimated continuously,

hence it can adapt to changes. LMS incorporates an iterative procedure during

the training phase where it estimates the required coefficients to minimize the

MSE. This is accomplished through successive corrections to the expected set of

coefficients which eventually leads to the minimum MSE. LMS algorithm is rela-

tively simple, has much lower computational complexity than the original Kalman

filters and other adaptive algorithms [58]; it does not require correlation function

calculation nor does it require matrix inversions [66]. Moreover, suitable for real
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Figure 4.10: An N-tap LMS adaptive filter

time images applications such as motion estimation and target tracking , where it

showed robustness on fast moving targets and non-linear moving targets even in

noisy environments as reported by the authors in [65, 72, 73, 75].

As shown in Fig.4.10 [68], the outputs are linearly combined after being scaled

using corresponding weights. The weights are computed using LMS algorithm

based on MSE criterion hence the spatial filtering problem involves estimation of

a signal from the received signal, by minimizing the error between the reference

signal, which closely matches or has some extent of correlation with the desired

signal estimate and the output. The LMS algorithm is initiated with an arbitrary

value w(0) for the weight vector at t = 0. The successive corrections of the weight

vector eventually leads to the minimum value of the mean squared error. The

weight is updated as in Eq.(3.9), where x(t) is the input signal, u is the step size

parameter, e(t) is the MSE (as in Eq.(3.10)) between the predicted output y(t)

from Eq.(3.11) and the reference signal d(t).

u is selected by the autocorrelation matrix of the filter inputs. In other words,

the tap-weights can converge to an optimum result if and only if the step-size

parameter u is selected as 0 < u < 1/λmax where, λmax is the maximum eigenvalue

of the autocorrelation matrix which has a relationship of the input signal x(t). If u
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is chosen to be very small then the algorithm converges very slowly. A large value

of u may lead to a faster convergence but may be less stable around the minimum

value. The smallest the eigen value spread the faster the convergence rate. Eigen

value spread is defined as the ratio between the maximum and minimum eigen

values.

4.3.3.2 Variants of LMS

The simplicity of implementation of the LMS filter causes new developments for

this algorithm that enhance the capability and performance of this filter. Although

the LMS adaptive filter is popular for its simplicity but reduction of the complexity

of the LMS filter has received attention in the area of adaptive filters and even

simpler approaches are required for many real-time applications[73]. There are

several variants of the LMS algorithm present in the literature that deal with

the shortcoming of its basic form and aim for lower computational complexity

and faster adaptation processes as it is required for high speed communication as

well as to be applicable in real time applications where the time is critical. A

simple modification of LMS is called the Sign LMS algorithm [109], it uses the

sgn function to update the weights as follows:

sgn(x(t)) =


1 x(t) > 0

0 x(t) = 0

−1 x(t) < 0

(4.4)

Signed LMS uses the sgn of the error to update the weights as in Eq.(4.5)

w(t+ 1) = w(t) + ux(t) sgn(e(t)) (4.5)
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In clipped LMS [73, 110], clipped input is used to update the weight instead of

the input itself, as in Eq.(4.6)

w(t+ 1) = w(t) + u sgn(x(t))e(t) (4.6)

In [73], a new version of the clipped LMS known as quantized LMS is proposed

where a quantization scheme is used to represent the input according to a modified

sign function msgn function where instead of representing the input by a two level

signals, it is quantized into a three level signals as defined below:

msgn(x(t)) =


1 x(t) > %

0 − % < x(t) < %

−1 x(t) < −%

Where % is a specified threshold. The implementation of such a modified adaptive

filter is fast and has a reduced computational complexity as for those times when

the input is less than the specified threshold msgn(x) is to be equal to zero and no

coefficient adaptation for the corresponding weight needs to be performed. This

means that some of the time-consuming operations in the weight update can be

neglected.

Another version of the LMS is the Normalized LMS (NLMS) [110], it forces the

input samples to have a constant norm. Hence, it improves the convergence speed

in a non-static environment by introducing a variable adaptation rate.

w(t+ 1) = w(t) +
ux(t)e(t)

xT (t)x(t)

In the Newton LMS [64, 68], the weight update equation includes whitening in

order to achieve a single mode of convergence. For long adaptation processes

the Block LMS [64, 68]is used to make the LMS faster where, the input signal is

divided into blocks and weights are updated block wise.
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4.3.3.3 Proposed iterative quantized clipped LMS

For the proposed model, LMS is used to predict target’s locations, a quantized

clipped LMS technique is used with threshold values chosen to use the proposed

tracking model [73]. To guarantee least MSE an iterative method is proposed

with a defined threshold of acceptable MSE, in addition to a threshold on the

maximum number of iterations to maintain the algorithm’s applicability for real

time applications which is one of the main WVSNs properties.

mqsgn(x(t)) =


1 x(t) > D1

0 −D2 < x(t) < D1

−1 x(t) < −D2

Where, D1 and D2 are threshold values used to clip the input data. The modified

iterative quantized clipped LMS algorithm consists of two main phases;

• Learning Phase: The LMS algorithm learns the targets locations to esti-

mate new updates for the filter’s weights till minimizing the MSE.

• Prediction Phase: The updated weights from the previous phase are then

used to predict the target’s next locations. The MSE will start rising again

if the target changes its direction or speed, in that case the LMS needs to

undergo the learning phase for further weight updates before next predic-

tions.

The summary of the application of the LMS algorithm in the proposed tracking

model:

• Prepare the input data and set the filter length

• Learning phase

While MSE < error’s threshold and number of iterations < iteration’s thresh-

old



Chapter 4. Proposed detection and tracking model using CS 72

-Determine the output data using modified iterative quantized

clipped LMS algorithm

-Calculate the MSE

-Update the filters weights according to the MSE

• Repeat the above steps till finishing the learning phase

• Predict the next locations using the updated weights

• If the MSE fell below some defined threshold repeat the learning phase

4.4 Chapter summary

In this chapter the proposed target detection and tracking model using adaptive

block CS for WVSN-based surveillance application has been introduced with all

the phases the algorithm passes through. First an overview on how a new frame

is being captured by the visual sensor node and a complete model for the WVSN-

surveillance application are explained. Next, background subtraction is first ap-

plied to increase the sparsity of image frames and as a result reach higher com-

pression rates. Background modeling using running average is then presented to

update the background with changes followed by morphology operations for noise

removal and connected blob formation. Running average is chosen as it is a simple

background modeling technique with both low space and computational complex-

ities, hence applicable for WVSN’s constraints. The proposed adaptive block CS

phase is then described where the images are divided into blocks and adaptively

applying CS to relative blocks containing the target by choosing the number of

compressed measurements according to the sparsity nature of each dataset. The

proposed adaptive block CS is expected to reduce the size of transmitted data

as only blocks containing the target are transmitted instead of transmitting the

entire image and as a result saves communication bandwidth and transmission
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energy. Moreover, adaptive CS is expected to save energy as appropriate compres-

sion rates are chosen according to sparsity level of datasets. Finally, the iterative

quantized LMS is introduced due to its simplicity and low power computations as

a tracking technique to predict target’s next locations and to test the effect of CS

on the tracking performance, after the compressed image is transmitted through

the wireless channel and reconstructed at the receiver side.

In the following chapter, experiments and results are conducted to illustrate the

performance of the adaptive block CS, the effect of different sensing matrices is

tested on different performance indicators. The performance of the quantized LMS

tracking techniques is then illustrated in terms of MSE and trajectory tracking.



Chapter 5

Experimental work and discussion

of the proposed detection and

tracking model

5.1 Introduction

Based on the system model proposed in previous chapter, simulations and exper-

iments are conducted to evaluate the performance of the adaptive block CS and

the detection and tracking algorithm. Simulations are performed for the WVSN-

based surveillance application in both outdoor and indoor scenes for single and

multi-target tracking.

5.1.1 Experimental setup

Background and target’s appearance are assumed to be static to investigate the ef-

fect of the proposed adaptive CS on the detection and tracking algorithms, accord-

ingly datasets are chosen to reflect these assumptions except for some background

74
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variations such as non-stationary objects(later for the future work simulations will

be performed on dynamic background and target appearance models). Moreover,

to illustrate the relation between the number of compressed measurements required

for CS to guarantee reconstruction and how sparse the image is, simulations are

performed on different schemes resembling both indoor and outdoor schemes from

standard datasets chosen with different sparsity levels to investigate the effect of

sparsity on the compression rates and how dynamically compression rates are se-

lected; dataset”1”:’WalkingMen’ is chosen to resemble an outdoor scenes for multi

target tracking captured by [111]. While dataset”2”:’OneStopNoEnter2front’,

dataset”3”:’Walk1’ and dataset”4”: ’OneStopMoveNoEnter1cor’ filmed for the

Context Aware Vision using Image-based Active Recognition (CAVIAR) data set.

CAVIAR is a project of the European Commission’s Information Society Tech-

nology program found in [112] for indoor scenes tracking a single target from two

different views; top view with a wide angle lens camera and a corridor side view, for

dataset”2” and dataset”3” respectively. dataset”5”:’Walking’ resembles an out-

door scene with a street view for cars and targets tracking from PETS surveillance

datasets [113].

Simulations were carried out on an Intel dual Core i5 2.40GHz CPU with 3M

cache and 4G RAM, code is written using Matlab v.7.6.0 and experiments were

conducted by averaging total number of frame sequences of each dataset. Since

each image frame is divided into blocks and hence each block has different sparsity

nature, constant threshold values for background subtraction will not be applica-

ble. To properly choose the threshold, statistic functions such as mean, median,

mean of minimum and maximum values of the local intensity distribution are

commonly used as they largely depends on the input images. In the simulation,

mean value is used as threshold to describe each image block. The α value for the

running average background update is set to 0.7

As stated in previous chapters, adaptive CS is expected to overcome the WVSN

resource constraints such as memory limitations, communication bandwidth and
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battery constraints. This is illustrated as the reduction in the size of captured

images, which as a result saves memory space and communication bandwidth as

the size of transmitted data is reduced. Furthermore, this reduction results in

energy saving as most energy is dissipated during transmission. First adaptive CS

results are presented comparing MSE, PSNR and correlation coefficient on differ-

ent sensing matrices and compressed measurements, results of examining various

compression rates on the trajectory tracking are shown. The effect of block CS on

increasing compression rates and reducing MSE are then discussed. Next section

illustrates the results of comparing several variants of LMS and different conver-

gence rates with respect to MSE. In addition, comparing the proposed iterative

LMS technique with the ground truth. Next, the LMS tracking is compared with

Kalman filter. Finally, a section on computational complexities summarizes the

energy dissipated for block CS versus traditional CS and without CS. Moreover, it

summarizes the computation time for the proposed block CS and LMS algorithm.

5.2 Adaptive block CS

Percentage MSE and PSNR are used as performance indicators to test the reliabil-

ity of the proposed adaptive block CS. MSE and PSNR are compared for different

number of CS measurements M , where the percentage MSE is the percentage

reconstruction error measured between real and reconstructed frames and PSNR

is measured after frames recovery to reflect the quality of image reconstruction

which will later on reflects the ability of reliable tracking. The background frame

and Φ are known to the receiver node and during the calibration phase, it is as-

sumed that real frames are also known by the receiver. As stated in sec.3.5.2.1

Φ is unstructured and random, two candidate sensing matrices have been com-

pared; normally distributed random numbers using Matlab function ”randn” and

a walsh-hadamard matrices which are shown to have RIP, and have been success-

fully used as measurement matrices in compressive video sensing. Although the
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measurements are defined by a matrix multiplication, the operation of matrix-

by-vector multiplication is seldom used in practice, because it has a complexity

of O(MN) which may be too expensive for real time applications for less sparse

images. When a randomly permutated Walsh-Hadamard matrix is used as the

sensing matrix, the measurements may be computed by using a fast transform

which has complexity of O(K log(N)), as Hadamard matrices have the orthogo-

nal property which is one of the main properties of the random sensing matrices

in contrast to ”randn” which does not have the orthogonal property [114]. The

Hadamard matrix, is an (N ×N) square matrix whose entries are either +1 or -1

and whose rows are mutually orthogonal, the matrix is first randomly reordered

then, M samples are randomly chosen to construct the (M ×N) random sensing

matrix Φ.

The ability of reliable tracking depends on acceptable recovery of images. In other

words, if CS fails in image reconstruction the targets location can not be detected.

Hence, for adaptive CS, M is adaptively chosen depending on the sparsity nature

of images, an initial value of M is selected by the sensor node according to image

sparsity. As long as the image is reconstructed with quality below some defined

threshold; where the image quality is measured in terms of reconstruction PSNR

(denoted by image standard PSNR< 33dB), the receiver requests the sensor node

through a feedback channel retransmission using a different value of M . This adap-

tation process is repeated during the calibration phase until reaching an optimum

value of M . It is clear from the results in Fig.5.1,5.2 and 5.3 for datasets 1, 2 and

3 respectively that for different sparsity levels different values of M and compres-

sion rates are required. When reaching optimum value of M , least MSE and 33dB

PSNR are successfully achieved. For illustration, MSE decreases as M increases

till reaching the optimum value, it has been shown that the lower bound on M is

depending on how sparse the difference frame Xd is or in other words proportional

to the ratio between the number of non-zero coefficients and the total number of

pixels in a frame. For dataset 1, adaptive CS set M to 90 in Fig.5.1(a) to achieve
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Figure 5.1: Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for dataset1

satisfactory results. While for datasets 2 and 3, it is obvious from Fig.5.2(a) and

Fig.5.3(a) respectively that for single-target tracking (where there is lower number

of non-zero coefficients), better MSE is achieved with lower M , reduced to 50 for

dataset 2 and 60 for dataset 3 compared to multi-target tracking (dataset 1) while

maintaining least MSE and 33dB PSNR as in Fig.5.2 and 5.3. As a result, making

CS adaptive helps in increasing the compression rate and avoiding the waste of

using a higher value of M at the times where the image is sparse allowing for
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Figure 5.2: Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for dataset2

lower M . The above discussion reflects the reduction in channel bandwidth using

adaptive CS by 72%, (for ex. the least sparse dataset ”Walking men”) instead of

transmitting the whole (256 × 256) image, the compressed measurements of size

(70×256) are transmitted. Whereas for more sparse images the reduction reaches

82% of the total image size.

As for MSE, Fig.5.1(b), 5.2(b) and 5.3(b) show the effect of M on PSNR for the

3 datasets. For each dataset, according to the number of targets and the size of
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Figure 5.3: Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for dataset3

targets in each set of frames, the number of measurements M required will differ to

obtain guaranteed reconstruction which is defined here in terms of PSNR. For low

values of M it is hard to achieve a good PSNR, to reach the acceptable value, M

should increase till reaching its optimum value as discussed earlier. To illustrate

this for dataset 2, to achieve a PSNR of ≈ 33dB M reached 50, while for dataset

1 if the same M is used, we could not attain a PSNR higher than 25dB unless M

adaptively increases till reaching the lower bound to attain the 33dB PSNR.
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The above simulation were carried out using two different sensing matrices, Randn

and walsh-Hadamard. They are compared with respect to MSE and PSNR as in

Fig.5.1, 5.2 and 5.3. It is clear from the results that when reaching the optimum

value of M both sensing matrices perform nearly the same except in some cases

in Fig.5.2 shows that Randn gives slightly a better performance than Hadamarad.

But this can be negligible when compared to the reduction in complexity and

time gained by using Hadamard matrix due to its orthogonal property which helps

in accomplishing the main objective to save sensor nodes power and as a result

maximizes their lifetime.

Fig.5.4 and 5.5 summarize and demonstrate the effect of the target size ratio on

the number of measurements M needed in terms of reconstruction MSE and PSNR

(the target size ratio is expressed as a ratio between non-zero pixels representing

the target and the total size of the image frame, which reveals how much space

the target acquires and how sparse the image is). It is clear from Fig.5.4 that for

smaller target sizes, lower values of M are used while at the same time achieving the

least MSE and PSNR of ≈ 33dB as in Fig.5.5(a) and 5.5(b), respectively. While

for larger target sizes, a higher M is required to achieve the same performance

achieved for frames with smaller targets. Experiments were carried out using the

same M set to 50 for the 3 datasets (different sparsity levels). For example, frames

with small size targets gave better reconstruction results in terms of least MSE

and a 33dB PSNR as in Fig.5.5(a) and 5.5(b). Whereas, if the targets size grew

bigger such as acquiring 60% space of the total frame size, with M set constant

reconstruction results in high MSE and only 18dB PSNR. In that case M should

be set to 90 or higher based on the adaptive phase to reach a low MSE and a PSNR

of ≈ 30dB that was attained by lower M (M=50) when compressing frames with

targets of size < 10% of the frame size. These results reflect the constraint of

the lower bound of M discussed in sec.3.5.2 and give a key to the problem when

M is required to be kept as small as possible. Where in that case the size of

targets is controlled by zooming or changing the location of sensor nodes during
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Figure 5.4: Relation between the percentage ratio of target size:frame size vs.
M

the calibration phase while bearing in mind to keep the scene of interest in the

camera’s field of view. By taking snapshots from a further location the total space

acquired by the target is hence reduced and as a result M can be reduced, and

the goal of reducing the size of transmitted data is met .

Fig.5.6(a) illustrates the reduction in MSE and the number of measurements M

required when dividing each frame into 16 blocks (64× 64) each, and compressing

only those with non-zero pixels. Compared to Fig.5.1(a) (compressing the whole

frame), ≈ 70% reduction in MSE is achieved without compromising an adequate

PSNR of≈ 33dB attained in Fig.5.1(b), PSNR versus the number of measurements

M for block CS is shown in Fig.5.6(b). Demonstrating the reduction of the number

of measurements needed, as seen in figures, for the normal scenario, M is set to

90 yielding (90 × N) measurements. Whereas, for the blocks scenario ≈ (35 ×

64) measurements are required per block which yields an extra communication

bandwidth reduction by 40% for the total blocks transmitted compared to the

normal CS-scenario which yields a total compression rate of 82%. This saves the

communication bandwidth and resulting in faster transmission while saving energy

at sensor nodes.
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Figure 5.5: Relation between the percentage ratio of target size:frame size
and (a) reconstruction MSE, (b) average PSNR

Another performance indicator is the correlation coefficient. After reconstruct-

ing all blocks and putting them back as a single frame, the correlation coefficient

indicates how likely the reconstructed frame correlates with the original one be-

fore dividing it into blocks for compression. Fig.5.7 shows by increasing M till

reaching its optimum values the correlation coefficients is nearly 100%, this im-

plies that compressing each block separately did not affect the image quality after

recovery, moreover less number of measurements were required reducing the size
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Figure 5.6: Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for block CS

of transmitted data. CS states that when enough measurements are used for

compression, the reconstruction is done with high accuracy depending on a lower

bound of M . Trajectory tracking of moving targets is considered to reflects the

degree of reconstruction accuracy. Fig.5.8, 5.9 and 5.10 show the (x,y) position

plots of the path tracked for the targets in the camera’s scene. Fig.5.8(a) and

5.8(b) show that for lower values of M <optimum value (40 and 70 respectively),
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Figure 5.7: Correlation coefficient for different M

frames can not be reconstructed properly and due to noise there is no unique so-

lution and as a result the targets tracks are not matching their real trajectories

as wrong values for the targets positions are produced, whereas for M reaching 90

(the value selected based on adaptive CS), the trajectory of the tracked targets af-

ter the reconstruction matches those of the real frame before compression. Fig.5.9

and 5.10 illustrates the same for dataset 2 and dataset 3 respectively.

Fig.5.11 shows the probability of detection under different parameters, different

values of measurements M and background subtraction threshold γ. It is clear

from Fig.5.11(a) that for lower values of M the target is misdetected. This reflects

the fact that the reconstruction can not be guaranteed with lower values of M .

The probability of detection increases till reaching 100% as M increases to its

optimum value selected during the adaptive CS process. Fig.5.11(b) demonstrates

the effect of background subtraction threshold γ on the detection problem, where

for lower values of γ, low probability of detection is achieved as the target may be

misdetected due to unwanted noise.

In the simulation results presented, the performance degradation due to channel

impairments was not considered as we were examining the impact of CS on the

tracking performance and MSE and PSNR are used as performance indicators
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(b) M=70
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(c) M=90

Figure 5.8: Comparing trajectory of multi-targets for CS using different M
(dataset1)
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Figure 5.9: Comparing trajectory of single target for CS using different M
(dataset 2)
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Figure 5.10: Comparing trajectory of single target for CS using different M
(dataset 3)



Chapter 5. Experimental work and discussion of the proposed detection and
tracking model 89

30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Number of CS measurements M

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
%

)
Detection probability vs. different M

(a)

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Threshold gamma

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
%

)

 

 

(b)

Figure 5.11: Probability of detection vs. (a) different values of M and (b)
different values of background subtraction threshold γ
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Figure 5.12: Comparing reconstruction MSE and PSNR with and without
considering channel impairments for ”Shopping center 1”
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( which are widely used quality measures of Image reconstruction). However,

considering channel impairments, we have generated the simulation again for one

”Shopping center1” using a 30dB PSNR during wireless transmission of 2Mbps

bitrates and tested the performance of CS reconstruction along with additive white

Gaussian noise in the channel. As seen in Fig.5.12, reconstruction MSE reaches

the same level as that without considering channel noise with the same PSNR by

a slight increase in M (starting from 55) compared to the previous results without

channel noise M reaches 50 for a guaranteed reconstruction.

5.3 LMS tracking

Several variants of LMS are implemented and compared, the basic LMS, clipped

LMS, sign lMS, and the iterative modified quantized clipped LMS. MSE is also

used as an indicator to test tracking reliability which is the error of prediction in

terms of target’s location (pixels) between the real target locations and the esti-

mated target locations predicted by the different LMS algorithms for consecutive

frames after the image recovery. The LMS algorithm is initiated with an arbitrary

value w(0) for the weight vector at t = 0. The thresholds are chosen for the mod-

ified LMS based on experiments and targets locations in each dataset. They are

set as follows; for the first dataset D1 = 200 and D2 = 120, for the second dataset

D1 = 160 and D2 = 140, and for the third dataset D1 = 240 and D2 = 200.

Fig.5.13 show the MSE for the different variants of LMS for the 3 datasets. Ex-

periments have shown that the clipped LMS did not perform better than the basic

LMS as all input data were clipped to value one. The iterative modified LMS have

the least MSE due to the lower bound constraint on the MSE, at the times when

the MSE rises, the algorithm goes into the learning phase again before estimating

new locations. In Fig.5.13(b), the signed LMS gave the same performance as the

modified LMS , whereas the MSE for some datasets as in Fig.5.13(a) and 5.13(c)

is the same as the basic LMS.
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Figure 5.13: Comparing MSE for different variants of LMS for (a)dataset 1
(b) dataset 2 and (c) dataset3
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Figure 5.14: Comparing MSE for different u for dataset 1

Fig.5.14 shows the effect of different values of u (0.00005,0.005,0.5)on the tracking

convergence for ”Dataset1”, for large values of u the algorithm converges faster

with the least MSE as shown in figure. Moreover, the effect of the filter length

is illustrated in Fig.5.15, it is clear that lower MSE is achieved for lower filter

length. However, as the filter length is increased, the speed of convergence of the

LMS adaptive filter decreases, and the MSE increases, as changes in the targets

trajectory are not detected causing the prediction to deviate away from the real

path as reflected in figure where a sudden rise occurred in MSE. Therefore, the

filter length should be chosen as short as possible but long enough to adequately

model the unknown system, as too short a filter model leads to poor modeling

and prediction performance. This problem could be alleviated by more frequent

training to update the filter’s weights to sustain the convergence of minimum MSE.

Tracking reliability is also tested by comparing the moving target’s real and pre-

dicted trajectories using the iterative quantized clipped LMS. As shown in Fig.5.16,

the target’s locations are accurately predicted and the results are closely matching

the real target trajectory.
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Figure 5.15: Comparing MSE for different filter length F for datasets 2 and
3 respectively
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(a) Predicted trajectory tracking for multi-targets using LMS
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(b) Predicted trajectory tracking for single targets using LMS
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Figure 5.16: Comparing trajectory tracking of moving targets for (a) dataset
1, (b) dataset 2 and (c) dataset 3
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Fig.5.17(a) shows trajectory tracking for multi targets for dataset”5” after im-

age reconstruction. The predicted trajectory tracks using LMS is illustrated in

Fig.5.17(b) and compared with the ground truth, the results show that LMS pre-

diction matches ground truth values.

The performance of the proposed LMS algorithm is compared with state-of-the-

art Kalman filter [58], both algorithms are applied on a standard surveillance

video ’OneStopMoveNoEnter1cor’ from CAVIAR [112](same dataset used by the

authors in [58]). In the video a man is selected for tracking and tracked in subse-

quent frames using both LMS algorithm and Kalman filter. Fig.5.18 shows output

frame number 997 with trajectories of the target moving in the corridor since

its appearance in the video, the figure shows that both LMS and Kalman filter

matches the real trajectory of the target.
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(a) Predicted trajectory tracking for multi-targets using LMS
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(b) Predicted trajectory tracking for single targets using LMS

Figure 5.17: Comparing trajectory tracking of moving targets for dataset ”5”
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Figure 5.18: Comparing predicted trajectory using LMS and Kalman filter

5.4 Computational complexity

Assuming all sensor nodes have the same unit distance d from the receiver side,

Table.5.1 shows the energy dissipated during transmission for different k (number

of data samples transmitted). As illustrated, according to different k (which varies

depending on compression rates due to sparsity levels), there is an 82% energy

saving as compared to transmitting the captured image without CS. In addition,

using block CS will result in 20% more energy saving compared to traditional CS.

Table.5.2 summarizes the computational time for the traditional CS process, block

CS and the LMS tracking technique. As stated in sec.4.3.3.1 the LMS algorithm

is relatively simple, has much lower computational complexity than the original

Kalman filters and other adaptive algorithms and suitable for real time applica-

tions due to its fast convergence as demonstrated.
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Table 5.1: Transmission energy using CS, block CS and without CS for dif-
ferent k

Dataset with/without CS Size of transmitted data k Transmission Energy Etx
”Walking men” Without CS 64K 3.3mJ

CS
”Walking men” 17K 0.85mJ

”Shopping center 1” 15K 0.7mJ
”Shopping center 2” 12K 0.6mJ

”Walking men” Block CS 11K 0.5mJ

Table 5.2: Computational time for CS, block CS and LMS

Computational time

CS process 0.03s
Block CS 0.002s/block

LMS 0.002s

5.5 Chapter summary

In this chapter, experiments were carried out to evaluate the performance of the

adaptive CS and its effect on target detection and tracking. Results have shown

that using adaptive CS, the reconstruction MSE decreases till reaching the lower

bound on the number of compressed measurements while preserving the accept-

able PSNR. In addition, for different datasets where the sparsity nature of each

image differs, CS adaptively chooses the compression rates accordingly. Moreover,

block CS achieved higher compression rates with lower reconstruction MSE saving

the communication bandwidth and resulting in faster transmission. After image

reconstruction, the impact of adaptive CS on target tracking is investigated where

the proposed iterative quantized LMS is performed for target tracking and is com-

pared with other variants of LMS. Results have demonstrated that the proposed

LMS technique achieved the least MSE. Target’s trajectory tracking has been used

as another performance indicator for the LMS algorithm, it is shown that the pre-

dicted path closely matches the target’s real path which illustrates the accuracy

of LMS and that CS has reduced energy consumption and at the same time has

not affected the performance of target detection and tracking .
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The next chapter derives an analytical framework for the selection of node’s duty

cycles and its effect on detection performance. Moreover, the impact of CS versus

adaptive CS to reduce the size of transmitted data on the object detection problem

for WVSNs is analyzed after integrating node’s duty cycles.



Chapter 6

Analytical framework of the

detection model

This chapter addresses the target detection problem within WVSNs where visual

sensor nodes are left unattended for long-term deployment. As battery energy

is a critical issue it is always challenging to maximize the network’s lifetime. In

order to reduce energy consumption, nodes undergo cycles of active-sleep periods

that saves their battery energy by switching sensor nodes ON and OFF, according

to a predefined duty cycles. Moreover, as proven in previous chapter adaptive

compressive sensing dynamically reduces the size of transmitted data through the

wireless channel saving communication bandwidth hence saving energy. The aim

is to derive an analytical framework for the integration of selecting node’s duty

cycles and dynamically choosing the appropriate compression rates for captured

images and videos which is expected to reduce energy waste by reaching the max-

imum compression rate for each dataset without compromising the probability of

detection.

101
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6.1 Introduction

Due to the advancement of new technologies, there are immediate requirements

for automated energy-efficient WVSNs applications. WVSNs have addressed var-

ious applications such as environmental monitoring to study environments condi-

tions and animal behavior, surveillance applications, law enforcement, industrial

automation and military purposes. Visual sensor nodes are resource constraint

devices bringing the special characteristics of WVSNs such as energy, storage and

bandwidth constraints which introduced new challenges [2–5, 115, 116]. Within

WVSNs, each visual sensor node is powered by an attached battery and embeds

a visual sensor(can be integrated with other types of sensors such as vibration

and acoustic sensors), digital signal processing unit, limited memory and a wire-

less transceiver. Hence, due to the limited battery power and communication

bandwidth, energy utilization is necessary to maximize the network’s lifetime.

The target detection problem within WVSNs where visual sensor nodes are left

unattended for long-term deployment. Among the many diverse application do-

mains of WSNs, object detection (object can be a human being, a vehicle or any

targeted object) is of the most important tasks in image processing applications.

As battery energy is a critical issue it is always challenging to maximize the net-

work’s lifetime by minimize the energy consumption due to sensing, processing and

transmission without compromising the detection performance. In order to reduce

energy consumption, nodes undergo cycles of active-sleep periods that saves their

battery energy by switching sensor nodes ON and OFF, according to a predefined

duty cycles.

At the same time, there is a scope to achieve the same energy saving by minimiz-

ing the volume of data required for target detection. The adaptive CS technique

proposed in 4.3.2.1 to represent the data with just small number of measurements

depending on the sparsity of different images is integrated to the target detection
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problem. Consequently, it is expected to save bandwidth requirement for trans-

mission and processing power. In addition to energy, memory constraints and

communication bandwidth, CS should not affect quality of image (as denoted by

PSNR) for later target detection.

The main goal is to maximize the sensor node’s lifetime by setting predefined duty

cycles to visual sensor nodes to switch On and OFF while ensuring the detection of

targets. Due to many factors such as node deployment, number of nodes, velocity

and position of targets, the performance of detection may degrade. Moreover, the

impact of CS versus adaptive CS to reduce the size of transmitted data on the ob-

ject detection problem for WVSNs is analyzed. Due to the integration of adaptive

CS to the detection problem, the performance may features further degradation

than the desired and acceptable level due to other factors such as image spar-

sity, loss of information in compression. Hence, there is always a tradeoff between

energy consumption (network lifetime) and detection performance. As a result,

we focus on deriving an analytical framework for selecting these duty cycles and

dynamically choosing the appropriate compression rate for different images and

videos which is expected to reduce energy waste by reaching the maximum com-

pression rate for each dataset without compromising the probability of detection.

6.2 related work

As battery energy is a crucial issue, in [25] the authors addressed the target de-

tection problem for long lasting surveillance application using unattended WSNs.

In this context, the authors distributed the processing on sensor nodes by switch-

ing ON and OFF according to proper duty cycles the sensing and communication

modules of wireless sensor nodes. Making these modules work in discontinuous

fashion by random scheduling saves energy however it has an impact on the de-

tection problem. In order to maintain a given performance objectives, the authors
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derived an analytical framework to evaluate the probability of missed target detec-

tion. In [24], the authors adopted a model of unsynchronized duty-cycle scheduling

for individual nodes. Where, nodes sleep and wake-up periodically, according to

duty cycles by setting the length of the duty cycle period and the percentage of

time nodes are awake within each duty cycle. However, the wake-up times are not

synchronized among nodes as random scheduling is probably the easiest to imple-

ment in sensor networks since it requires no coordination among nodes. Moreover,

coordination among nodes requires additional energy as it involves some message

exchange. In contrast, random scheduling does not require communication, each

node simply sets its own duty-cycle schedule according to the agreed-upon wakeup

ratio.

A node selection scheme is presented in [117] which gives full consideration to

both the information utility for the quality of tracking and the remaining energy

of nodes to determine the longetivity of nodes. Each sensor node is responsible of

computing the detection probability, whereas the optimal set of sensors performs

target tracking by integrating partial estimations. The node selection is formal-

ized as an optimization problem and solved by genetic algorithms to optimize the

tradeoff between the accuracy of tracking and the energy cost of nodes. While in

[118] energy conservation in target tracking is achieved using different methods.

Prediction-based scheme coupled with selective activation of nodes is one of such

methods where nodes are wakes-up on-demand following the target path. Previous

active nodes collaborate between each other to generate an accurate estimation of

the target.

In [119], the authors integrated reactive mobility of sensor nodes to improve the

target detection performance of WSNs. Sparsely deployed mobile sensors collabo-

rate with static sensors and move in a reactive manner to achieve required detection

performance. Specifically, mobile sensors remain stationary until a possible target

is detected.
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To summarize, in the context of target detection within WVSNs, it is always

a challenge to maximize the WVSN’s lifetime without degrading the detection

performance. Hence, the aim is to provide the intended detection performance with

minimum energy requirement to obtain optimal utilization of energy. Moreover,

to achieve energy-efficient wireless transmission with nominal preprocessing, an

adaptive CS technique is proposed to reduce the size of transmitted data and

compared with the traditional CS in the context of energy saving and detection

reliability. Deriving an analytical framework considering the resource constraints

within WVSNs for target detection to evaluate the impact of energy saving due

to visual sensor nodes’ duty cycles and the integration of adaptive CS is hence the

major focus of the proposed investigations. Next sections describe a general WVSN

model with the integration of node’s duty cycles and an analytical framework for

the detection problem.

6.3 WVSN model

Consider a WVSN-based surveillance application model, composed of N visual

sensor nodes randomly distributed over a specific geographical region of (100m×

100m)as in Fig.6.1. Each sensor node is assumed to have a sensing radius rs allo-

cated to share a viewable range and fully cover the required geographical region,

and one or more receiver/sink node at fusion center. The geographical region is

assumed to be a square area with each side of size ds. It is required to increase the

WVSN’s lifetime by reducing the energy consumption this is accomplished by pe-

riodically switching On and OFF the visual sensors. Each sensor node is assumed

to be in ’wake-up’ state according to a duty cycle βs ∈ [0, 1] over a period ts,

hence each sensor is awake for an interval of length βsts and sleep for an interval

(1− βs)ts as shown in Fig,6.2.
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Figure 6.1: Wireless visual sensor network

Figure 6.2: Scheme for sensor’s duty cycle

6.4 Probability of missed detection

In subsequent sections an analytical framework is derived, first to evaluate the

probability of missed detection as a function of the target’s mobility model due to

the predefined duty cycles. Second, the probability of missed detection is derived

after the integration of adaptive CS to compare the performance of detection with

and without CS.

6.4.1 Probability of missed detection as a function of mo-

bility model of the target

In order to detect a target in a squared geographical area, N sensors are randomly

deployed and set to periodically switch ON and OFF according to a predefined

duty cycle βs. To evaluate the probability of missed detection Pmd, it is required to
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integrate the sensor’s duty cycle. Assume that the target enters the sensing area

at time ta with angle θ and velocity vm/s crossing the sensing area in Tcross = L/v

where L is the length of intersection between the target’s trajectory and the sensing

radius rs as shown below in Fig.6.3

Figure 6.3: Sensor model for (a) linear and (b) non-linear target trajectory

to find the probability of missed detection, assume that ξtarget is the event where

the sensor is ON when the target enter the sensing area and ξdet is the event where

the sensor is ON when the target crosses the sensing area. During a single time

interval ts, any incoming target entering a sensor’s sensing area at time Ta during

the interval βsts (i.e. the sensor is ON) will be detected. However, in the case

where Ta is during the interval (1−βs)ts (i.e. during the sensor’s sleep interval), in

order to successfully detect the target, the target must remain in the sensing area

till the sensor’s next duty cycle where it turns ON again. Hence, the Probability

of detection Pd is defined as in [24] by the total probability theorem as:

Pd = P{ξdet|ξtarget}P{ξtarget}+ P{ξdet|ξtarget}P{ξtarget} (6.1)

Where, P{ξdet|ξtarget} = 1, P{ξtarget} = βs, and P{ξtarget} = (1 − βs), the last

term P{ξdet|ξtarget} in (6.1) denotes the case where the target is detected given it

enters the sensing area during the sensor’s sleep interval (1− βs)ts. This suggests

that either the target’s crossing time Tcross > (1 − βs)ts, as a result the target is

detected. Or the case where Tcross < (1 − βs)ts, in this case the target will only

be detected if it enters the sensing area during the last part of the sleep interval,
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such that the target remains in the sensing area till the sensor turns ON in the

next duty cycle. Hence, as in [24] P{ξdet|ξtarget} is calculated in terms of the joint

probability density function (pdf) as follows:

P{ξdet|ξtarget} =

∫ ∫
D

fTaTcross(t, τ)dtdτ (6.2)

where D is the integration domain described in [24, 120], fTaTcross(t, τ) is the

probability density function expressed as:

fTaTcross(t, τ) =


v

Πς
√
r2s−( vτ

2
)2

if 0 < τ < 2rs/v, 0 < t < ς

0 else
(6.3)

where ς = (1− βs)ts is the time interval where the target enters the sensing area,

hence:

P{ξdet|ξtarget} =


4rs
πςv

if 2rs/v < ς

4rs−2
√

4r2s−ς2v2
πςv

+ 1− 2 arcsin( ςv
2rs

)

π
else

(6.4)

Finally, the Pd is written as:

Pd = βs + (1− βs)P{ξdet|ξtarget} (6.5)

Taking into consideration the independence of the N randomly deployed sensor

nodes, the probability of missed detection can then be evaluated as:

Pmd = (1− Pd)N (6.6)

Pmd = (1− [βs + (1− βs)P{ξdet|ξtarget}])N (6.7)
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After describing an analytical framework for the detection problem as a function

of node’s duty cycles. Next subsection update the analytical framework after

integrating CS to the detection problem.

6.4.2 Probability of missed detection as a function of Com-

pressive Sensing

Integrating CS to reduce the size of transmitted information to the target detection

problem might lower the detection performance, as M the size of compressed

measurements must be M ≥ Klog(N/K), where, the captured image is (N ×N)

and K is the number of non-zero pixels (which defines the sparsity level of the

image). Hence, if M is chosen according to this bound the target is detected with

high probability. Moreover the performance of the detection problem is directly

proportional to the PSNR of the image after reconstruction. First, probability of

detection using CS Pdcs is calculated subject to the constraint that the probability

of false alarm PFA ≤ αf as in [121, 122].

Pdcs = Q(Q−1(αf )−
√
M/N

√
PSNR/

√
K/N) (6.8)

Where, Q(x) ,
∫∞
x
e−t

2/2dt is the complementary error function of x. This gives

a way to measure how much information is lost after the reconstruction, not in

terms of the reconstruction error of the image, but in terms of the ability to detect

the target. To reach an acceptable Pdcs, Φ is dynamically chosen according the

sparsity nature of the image but without relaxing the randomness property of the

projection measurement matrix. Thus the size of Φ (MxN) will be adaptively

changing with respect to K.

The total probability of detection will then be evaluated by integrating adaptive

CS to the detection problem. Hence, the total probability of detection Pdt becomes
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as follows:

Pdt = (βs + (1− βs)P{ξdet|ξtarget})Pdcs (6.9)

Resulting in a total probability of missed detection PmdCS :

PmdCS = (1− [(βs + (1− βs)P{ξdet|ξtarget})Pdcs ])N (6.10)

To maintain a high probability of detection Pdt and a required PSNR while given

the target’s velocity, sparsity level of the image and sensing radius. One can

dynamically find the best value for M that suits these requirements as in (6.12)

by solving the following:

P̂dcs =


Pdt4dsπςv

(2πrs)(βsπςv)+4rs−4rsβs
if 2rs/v < ς

Pdt4ds
2πrsZ

else
(6.11)

Where Z = βs + (1− βs)(
4rs−2
√

4r2s−ς2v2
πςv

+ 1− 2 arcsin( ςv
2rs

)

π
)

M =
(Q−1(αf )−Q−1(P̂dcs))

2k

PSNR
(6.12)

6.4.3 Probability of missed detection for multi-target de-

tection scenario

The analysis of the detection problem is extended to consider the case of multiple

targets entering the monitoring area. In this case it will be useful to evaluate the

probability of missing all targets or missing at least one of the incoming targets.

Assume NT is the number of incoming targets and the probability of missing all

incoming targets is denoted as Pma and since the incoming targets are independent,

then it can be evaluated as follows:
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Pma = (PmdCS)NT (6.13)

Where PmdCS is the probability of missed detection in the case of single target

detection after the integration of CS. The probability of missing at least one of

the NT , denoted as Pmo is expressed as

Pmo = 1− (1− PmdCS)NT (6.14)

6.5 Analysis and discussion

After deriving an analytical framework for integrating node’s duty cycles and CS to

the detection problem, the performance of the duty-cycled WVSN is characterized

in terms of probability of missed target detection. In subsequent sections, the

detection performance has been tested under several parameters; different values

of sensing times ts, duty cycles βs, sensing areas and number of sensor nodes N .

All sensors are assumed to have the same sensing area rs, and targets enter the

monitored area with the same velocity v.

Subsequent sections illustrates the analytical results conducted after testing the

mentioned parameters.

6.5.1 Probability of missed detection as a function of mo-

bility model

Fig.6.4 shows the Pmd as a function of normalized duty cycles time βs for various

values of rs, ts and sensor nodes N , in all cases the target’s velocity is 15m/s.

As illustrated, for lower values of βs, there is a high chance the target enters
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Figure 6.4: Probability of missed detection vs. different duty cycles for (a)
different rs (ts = 15sec, N = 50), (b)different ts (N = 50, rs = 50) and (c)
different number of sensor nodes (ts = 15sec, rs = 50). In all cases the target

enters with velocity v = 15m/s
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and crosses the sensed area during the sleeping interval of the sensor, resulting

in higher probability of missed detection. As βs increases, the sensor node stays

on for a longer time, decreasing the probability of missing a target. In Fig.6.4(a),

the Pmd is evaluated for different rs, while ts is set to 15sec and N to 50 nodes.

As shown, for larger sensing areas, the higher the probability of detecting the

incoming target.

In Fig.6.4(b), Pmd is shown for different values of ts, while rs and N are set to 50.

It is clear from the figure that for lower values of ts, the lower the probability of

missed detection and the lower the impact of βs on the detection problem where

the total sensing period ts is short and sensors switch to the ON state more often.

While for longer ts, βs has a direct impact on the probability of missing a target,

as βs becomes small, the probability a target crosses the sensing area while the

sensor is in the OFF state gets higher leading to a higher Pmd. In contrast, when

βs approaches 1 (sensors remain ON), the Pmd converges for different values of ts

as the effect of ts on the probability of detecting a target becomes negligible.

The impact of different numbers of sensor nodes on Pmd is illustrated in Fig.6.4(c),

where ts is set to 15sec and rs to 50. As shown, as N increases, the Pmd decreases

which explains that by deploying more sensors in the monitoring geographical

area the higher the chance to guarantee more sensing coverage hence reducing the

probability a target is missed. On the other hand, for fewer sensors deployed, the

probability a target enters a non-coverage area is high as a result the probability

the target is missed is higher. Fig.6.5 shows the Pmd as a function of βs for N = 1

and different values of rs, there is significant increase in Pmd > 90% even the effect

of increasing the sensing area on the target detection problem becomes significantly

low.

Another important parameter that has a direct impact on Pmd is the target’s ve-

locity when crossing the sensing area which in return also affects the time required

by the target to cross a given sensing area Tcross. In Fig.6.6, Pmd is analyzed as



Chapter 6. Analytical framework of the detection model 114

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

B
s
 (normalized duty cycles)

N
or

m
al

iz
ed

 P
m

d

 

 
rs=20
rs=35
rs=50

(a)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

B
s
 (normalized duty cycles)

N
or

m
al

iz
ed

 P
m

d

 

 
N=0

(b)

Figure 6.5: Probability of missed detection vs. different duty cycles for (a)
N = 1 and different rs and (b) N = 0. In all cases, ts=15sec and the target

enters with velocity v = 15m/s
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Figure 6.6: Probability of missed detection vs. different duty cycles for dif-
ferent target’s velocity (N = 50, rs = 50, ts = 15sec)

a function of βs for different values of v while other parameters are kept constant

(N = 50, ts = 15sec, rs = 50). For small values of βs (the sensor is ON for short

intervals) there is a high impact of v on Pmd, where Pmd increases as the target’s

velocity increases. The higher the velocity of which the target crosses the sensing

area, the shorter the time where the target crosses the sensing area Tcross and as

a result the target might cross the sensing area during a sensor’s sleeping interval

hence resulting in higher Pmd. On the other hand, for lower velocities, the target

crosses the sensing area for Tcross long enough so that any sensor on the target’s

trajectory will detect it even if the sensor is in sleeping mode when the target

enters its sensing area, there will be a high probability the sensor turns ON before

the target leaves its sensing area. As βs approaches 1, target’s velocity v has a

limited impact on the detection performance and Pmd for different v values con-

verges to reach a lower bound. It is shown that for v = 0 (the target stopped), the

impact of βs on Pmd is again negligible and Pmd becomes constant regardless the

value of βs, in such case, the probability to detect the stationary target is solely

dependent on whether the target is in an area of coverage or not.

Fig.6.7 shows the Pmd as a function of βs for various values of rs and v is set
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Figure 6.7: Probability of missed detection vs. different duty cycles for dif-
ferent rs, v=100m/s, ts = 15sec, N=50

to 100m/s, N to 50 and ts to 15sec. As stated above, higher velocities results

in higher probability of missing a target specially during short βs duty cycles as

the target crosses the sensing area in a short interval of time (the case where the

sensor is OFF when target enters a sensing area and target leaves the sensing area

before the sensor turns On again). However, the impact of high velocities could

be eliminated by longer βs and larger rs, to increase the probability the target

remains in the sensing area for a longer interval of time till detected. This is

reflected in the figure, where for a 100m/s velocity the Pmd decreases as rs and βs

increase.

All analysis previously presented were carried out to address the target detection

problem after applying sensor’s duty cycles and to evaluate the probability of

missing a target under various parameters. Next, the probability of missing a

target is reevaluated after the integration of adaptive CS to the detection problem.
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6.5.2 Probability of missed detection as a function of Com-

pressive sensing

The advantages of adaptive CS to conventional CS will be illustrated in terms

of energy saving and detection performance. First, we show the probability of

detection by applying CS for various compression rates. Then, the impact of CS

on the total probability of missed detection is illustrated.

Fig.6.8 shows the probability of detecting a target Pdcs after image reconstruction

using CS for K = 30% (non-zero coefficients) with respect to various number of

measurements M and reconstruction PSNR in dB. The detection is performed

on the reconstructed images of different compression rates where various sizes of

measurements are produced with different M till reaching M = 70 satisfying (6.12)

as shown in Fig.6.8(a). It is clear from the figures there is a direct relation between

reconstruction PSNR and the size of measurement matrix M (compression rates),

which is reflected in Fig.6.8(b) where lower values of M results in low PSNR

reconstructed images and as a result low Pdcs . On the other hand, as M increases

the Pdcs increases till nearly reaching ≈ 100% and a 35dB PSNR.

Fig.6.9 shows the Pdcs using CS for different sizes of measurement matrices and

different sparsity levels. As shown, for more sparse images the probability of

detection reaches ≈ 100% requiring lower values of M . For instance, Pdcs in images

with K = 3% (which is 97% sparse where only 3% of the total coefficients of an

image are non-zeros, the rest are zeros) reaches ≈ 100% with M = 40. Whereas,

with less sparse images K = 30%, the value of M is increased till reaching 70. This

illustrates the save in energy by dynamically choosing the size of measurement

matrices according to the sparsity of images, where it will be a waste for a 97%

sparse image to be compressed by projecting a measurement matrix with M = 70

at the time it could be compressed with a measurement matrix with M = 40

without compromising the detection probability. Furthermore, if lower values of M
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Figure 6.8: Probability of detecting a target after CS reconstruction vs. (a)
M and (b) reconstruction PSNR
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Figure 6.9: Probability of detection using CS vs. M for different percentage
of sparsity levels

are used with less sparse images, CS fails to achieve a high PSNR of reconstructed

images, and as a result the probability of detection is affected.

Integrating the concept of CS to the detection problem might degrade the prob-

ability of detection by increasing the probability of missed detection if choosing

wrong values of M as shown in Fig.6.10. As previously mentioned, the value

of M should be dynamically altered according to the sparsity nature of images.

For illustration, Fig.6.10(a) and 6.10(b) consider different levels of sparse images

K = 30% and 11%, respectively. If values of M are lower than required, the com-

pressed image cannot be reconstructed properly, hence the probability of missing

a given target increases compared to previous analysis without the integration of

CS. To maintain the same probability of detection as without incorporating CS

to the detection problem, CS adaptively chooses the optimum values of M ac-

cording to sparsity levels. For instance, Fig.6.10(a) shows that for a K = 30%

image, 70 measurements are required to achieve the same Pmd, while to achieve

the same performance of detection for a more sparse image (K = 11%) without

wasting energy of the communication channel bandwidth, Fig.6.10(b) shows that

M is reduced to 40 measurements. If the value of M is kept constant regardless
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Figure 6.10: Probability of missed detection with and without CS vs. different
duty cycles for different sparsity levels and M (a) K = 30% and (b) K=11%

the sparsity nature of different images two cases might occur; (i) if the value of

M is lower than required, the probability of missed detection increases due to low

PSNR reconstructed images, as a result affecting the performance of the detection

problem, or (ii) if the value of M is higher than required, more measurements are

produced whereas more compression could be applied, hence wasting communica-

tion bandwidth.
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Previous results presented so far refer to the cases where a single target enters the

monitored area. However, analyzing the impact of multi-targets entering the mon-

itoring area at the same time on the probability of missed detection is challenging

as illustrated in nest section.

6.5.3 Probability of missed detection for multi-target de-

tection scenario

Analysis are carried out on the CS-integrated target detection scenario to evaluate

the impact of multi-targets on the probability of missed detection. It is assumed

that a single sensor can detect and take a snapshot of multiple targets crossing

its sensing area. Fig.6.11 shows the effect of various number of targets entering

the sensing area at the same time in the CS scenario for a given sparsity level

image and the corresponding adaptively chosen value of CS measurements M .

The targets enter with a velocity v = 15m/s, rs is set to 50, N = 50 sensor nodes

are deployed and ts is set to 50sec. Fig.6.11(a) shows the probability of missing

all incoming targets (2,4 and 6) as a function of βs, by increasing the number of

incoming targets the probability of missing all targets becomes lower than Pmd of

a single-target (solid line). While in Fig.6.11(b), Pmo is shown as a function of βs

for various number of incoming targets (2,4 and 6), it is clear that by increasing

the number of monitored targets, there is a probability that at least one of the

targets is not detected.
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Figure 6.11: Probability of missed detection vs. different duty cycles for dif-
ferent number of targets (a) Probability of missing all targets and (b) probability
of missing at least one target. In both cases different sparsity levels and M are

considered for CS
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6.6 Chapter summary

In this chapter, results of the analytical framework are evaluated where probability

of missed detection is used as a performance indicator. It is tested as a function

of visual sensor’s duty cycles under different parameters characterizing the WVSN

surveillance application such as visual node’s sensing radius, nodes sensing times,

number of visual sensing nodes and target’s velocity while crossing the sensing

region. Evaluation shows the tradeoff of integrating node’s duty cycles to reduce

energy consumption and the detection reliability expressed in terms of probability

of missed detection. Results demonstrated that integrating CS to the detection

problem has not degraded the detection performance given that CS dynamically

chooses appropriate compression rates depending on different sparsity levels of each

video scene. Hence, saving energy while achieving same detection performance.

Finally the probability of missed detection is compared for the detection of multi

targets with respect to single target detection.

Due to many factors such as node deployment, number of nodes, velocity and

position of targets, the performance of detection may degrade. Moreover, by

integrating CS to the detection problem, the performance may features further

degradation than the desired and acceptable level due to other factors such as im-

age sparsity, loss of information in compression. Hence, there is always a tradeoff

between energy consumption (network lifetime) and detection performance. As

a result, we derived an analytical framework for selecting these duty cycles and

dynamically choosing the appropriate compression rate for different images and

videos which is expected to reduce energy waste by reaching the maximum com-

pression rate for each dataset without compromising the probability of detection.

The next chapter briefly summarizes the contribution of the thesis, it starts with

a summary of the work completed, followed by the conclusion. The chapter ends

with a discussion for the future work.



Chapter 7

Conclusions and future work

7.1 Conclusions

In this work characteristics and constraints of WVSNs are presented, together

with various requirements and applications of WVSNs for surveillance applica-

tions. WVSNs are characterized as resource constraints due to limited battery

power, memory space and communication bandwidth. These constraints brought

new implementation challenges to investigate adaptive CS in designing efficient tar-

get detection and tracking techniques for for multi-tracking surveillance WVSN

applications without compromising the tracking performance as well as energy

constraint.

Existing work in the context of WVSNs surveillance applications has been pre-

sented, in addition to target detection and tracking applications together with their

theoretical background as they are considered the most important tasks within

WVSNs. Furthermore, different target detection techniques has been explored

with their strengths and weaknesses. In addition, recursive and non-recursive

background modeling techniques. Among the presented background modeling,

most of the techniques are robust but not suitable for WVSNs constraints due

124
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to either their high computational high space complexities except for AMF and

Running average can result in competitive performance as MoG with more simple

implementation making them candidates to WVSNs constraints. Target track-

ing algorithms are then introduced with their advantages and disadvantages with

respect to WVSNs. Most robust techniques present in the literature are either

computational extensive or high memory consuming, hence the LMS algorithm is

chosen as the tracking technique due to its simplicity and its lower computational

complexity compared to other tracking techniques such that Kalman filters.

Compressive sensing is investigated with some related applications in the con-

text of target detection and tracking along with their strengths and weaknesses.

CS has shown that it is expected to be a strong candidate to provide our aim

in reducing the size of captured images with simple computations. After explor-

ing related work present in the literature in the context of adaptive CS, it has

shown advantages over traditional compressive sensing as compression rates are

chosen according to the sparsity nature of images. However, most existing work in

adaptive compressive sensing use heuristic techniques which are computationally

expensive, which is not suitable for WVSN’s constraints. Designing adaptive CS

techniques with simple computations is therefore an important issue to be con-

sidered to provide intended performance energy efficiently while considering the

resource constraint within WVSN for surveillance applications.

Next, the proposed target detection and tracking model using adaptive block CS

for WVSN-based surveillance application is introduced with all the phases the

algorithm passes through. CS exploited the fact that background subtraction

always results in sparse frames despite the nature or how sparse the real frames

are. Where after a target is being detected, CS is applied on the difference frame for

efficient storage and transmission through the limited bandwidth wireless channel,

afterwards reconstruction and tracking are performed at the receiver side. First,

starting with how a new frame is captured by the visual sensor node and a complete
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model for the WVSN-surveillance application are explained. Next, background

subtraction is applied to increase the sparsity of image frames and as a result reach

higher compression rates. Background modeling using running average is then

applied to update the background with changes followed by morphology operations

for noise removal and connected blob formation. The proposed adaptive block CS

phase is later described where the images are divided into blocks and adaptively

applying CS to relative blocks containing the target by choosing the number of

compressed measurements according to the sparsity nature of each dataset. The

proposed adaptive block CS is expected to reduce the size of transmitted data as

only blocks containing the target are transmitted instead of transmitting the entire

image and as a result saves communication bandwidth and transmission energy.

Moreover, adaptive CS is expected to save energy as appropriate compression

rates are chosen according to sparsity level of datasets. Finally, the iterative

quantized LMS is introduced due to its simplicity and low power computations as

a tracking technique to predict target’s next locations and to test the effect of CS

on the tracking performance, after the compressed image is transmitted through

the wireless channel and reconstructed at the receiver side.

Experiments were carried out to evaluate the performance of the adaptive CS and

its effect on target detection and tracking. MSE is used as an indicator to mea-

sure the accuracy and reliability of tracking, results yields minimum MSE where

it decreases till reaches the lower bound of the number of compressed measure-

ments while preserving the acceptable PSNR, while addressing the problems of

WVSN, such as energy, memory and bandwidth constraints. Results also proved

that for single target tracking fewer number of measurements are needed as the

difference frame is more sparse compared to multi-target tracking, reaching a re-

lation between the the number of compressed measurements and ratio of non-zero

pixels to the total number of pixels. As a result, when higher compression rates

are required, one control the targets size by zooming out or changing the location

of sensor nodes during the CS calibration phase while bearing in mind to keep
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the scene of interest in the camera’s field of view. Moreover, to guarantee CS

reconstruction, trajectory tracking paths of detected moving targets are compared

with real targets locations and results proved the efficiency and feasibility of the

tracking technique.

The adaptive block CS technique has has achieved higher compression rates with

minimum reconstruction error, hence saves memory and communication band-

width, as well as consuming low processing power at sensor nodes. Moreover,

since the compression rates differ according to different datasets, as it depends on

the degree of sparsity from one image to another. For this reason adaptive CS has

proven to achieve relatively high compression rates for each dataset depending on

how sparse an image is. In addition, block CS is energy efficient where it divides

the image frame into blocks and only blocks containing the target is compressed

and transmitted in contrast to basic CS where the whole frame is compressed,

hence saving power of processing. Moreover, the reconstruction has produced ac-

ceptable results which is illustrated by testing the ability of the proposed target

detection and tracking technique to correctly locate and track the desired target

extracted from the reconstructed images. The proposed CS method as a result did

not degrade the performance of detection and tracking. However, the background

and target’s appearances are initially assumed to be static for simplicity. Hence,

there is a direction for future work to handle the cases of dynamic background and

target’s appearance.

Due to many factors such as node deployment, number of nodes, velocity and

position of targets, background movements, the performance of detection may de-

grade. Moreover, by integrating CS to the detection problem, the performance

may features further degradation than the desired and acceptable level due to

other factors such as image sparsity, loss of information in compression. Hence,

there is always a tradeoff between energy consumption (network lifetime) and de-

tection performance. An analytical framework is derived for selecting these duty

cycles and dynamically choosing the appropriate compression rate for different
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images and videos which is expected to reduce energy waste by reaching the max-

imum compression rate for each dataset without compromising the probability of

detection. The results showed that by choosing the appropriate compression rates

according to the sparsity levels of different datasets, the probability of detection

is maintained without further degradation.

7.2 Future work

Since the background is not always static due to several factors such as illumination

changes, rain, fog, or moving background objects as trees, one of the objectives for

future work is to design a robust and reliable object detection technique, to handle

dynamic background, Moreover, the visual sensing node itself might not be fixed

as it could rotate, zoom or tilt. The background as a result should be modeled

in such a way to continuously adapt to any changes or motion in the background

and prevent false detection of any background object as a target.

Visual tracking has always been a challenging problem as the appearance of targets

often changes as a result of different factors as pose, scale variations, full or partial

occlusion, illumination conditions, abrupt motion, or different viewpoints. Hence,

a robust target tracking algorithm is to be established for the future work. The

algorithm is expected to handle the appearance changes of the target by designing

an energy efficient robust target appearance model that is to be updated online

over time to adapt to any changes. In some literature, some model only the target

appearance while others model both the target and the background. The latter

approach has shown that it achieved better results as separating the target from

the background is modeled as a binary discriminative classification problem, this

is related to tracking by detection.

Much work has been proposed in the literature for the problems of appearance

changes in visual tracking. In [123], the authors proposed a feature selection theme
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named Active Feature Selection to select the most discriminative features for sep-

arating the target from the background. This is done like the multiple instance

learning (MIL) tracker [124]; by constructing image patches known as positive and

negative bags but instead of maximizing the log likelihood of the bags to train the

classifier, a bag fisher information function is optimized. Finally a boosting func-

tion is used to update the classifier. In [125], an online tracking algorithm based on

sparse coding is proposed. The authors encode the appearance of both the target

and the background through an online discriminative dictionary. The appearance

model is then trained using the sparse codes. The authors in [126] proposed a

robust tracking algorithm with a local sparse appearance model composed of a

static dictionary for limiting the drifts and a dynamic dictionary represented by

a sparse coding histogram and updated online. Moreover, K-selection scheme is

introduced as a sparse dictionary learning method. Finally, matching the target

and candidate models through the coding histogram and using a voting map to

track the target object.In [127], a linear coding strategy is proposed to represent

the targets appearance while to effectively integrate multiple features by intro-

ducing a multi-cue fusion strategy. A learning approach is developed to update

the dictionary to adapt to changes in targets appearance. This update is done

according to the tracking results.

For the future work, a robust appearance model for the target is to be constructed

after the reconstruction of the compressed measurements (frame). A typical way

of building appearance models is by first computing local descriptors of an image;

where the appearance of a target object can be modeled by various features (such

as color, brightness histograms, edge histogram, shape, texture, etc.). During the

training phase, an initial dictionary is to be constructed from features collected

to represent extracted image patches around the target region (which is manually

detected), the target location is denoted as the tracker location. The reason for

collecting image patches around the target region (that might be overlapping),

is to model different variations of the target appearance to help in tracking in



Chapter 8. Conclusions and future work 130

complex environment (such as occlusion). Subsequently, after the training phase,

these features are to be updated through consecutive image sequences. Each image

patch is associated with a label, that is computed and set as a 1 or -1 during the

training of the dictionary to indicate whether the image patch contains a target

or just the background.

Later, for each new captured frame a new set of image patches are collected around

the previous tracker location of the target forming a set denoted as a feature

bag. Using the dictionary, the new target location is detected by matching the

target model to candidate targets, afterwards the new tracker location is updated

together with the appearance model dictionary to adapt to changes. Fig.7.1 shows

a block diagram that summarizes the future model.

Figure 7.1: Proposed dynamic model for target detection and tracking

Furthermore, the proposed compressive sensing technique achieved good results in

terms of least MSE, PSNR, and targets trajectory tracking. But for future work

the performance of the proposed integrated target detection and tracking schemes

using CS for WVSN-based surveillance applications is to be compared to other

techniques in the context of resource requirements, robustness, and reliability.
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