

THE INVESTIGATION INTO A COST EFFECTIVE METHOD FOR RETRIEVING BAREFOOT PRINT CONTROL SAMPLES FOR THE DEVELOPMENT OF A BAREFOOT PRINT DATABASE

Dr Claire Gwinnett and Mr Paul Jira, Prof Wesley Vernon, Forensic and Crime Science Department, Staffordshire University, UK

BARE FOOTPRINT IDENTIFICATION:

BACKGROUND TO PROJECT

PODIATRISTS' APPROACH TO BARE FOOTPRINT IDENTIFICATION

- Analysis: The independent assessment of questioned and reference bare footprints, looking to describe size, form and recognisable features
- Comparison: Of the size, form and recognisable features of questioned and reference bare footprints
- Evaluation: Of the comparisons made what aspects of size form and feature matched, what mismatched and what was the significance of the matched and mismatched features in relation to commonality?
- Verification: Independent working through, checking and (hopefully) confirmation of the above conclusions

EXAMPLES OF BARE FOOTPRINT ANALYSIS

INTERPRETATION OF BARE FOOTPRINTS

- In the UK, the likelihood ratio approach is then used to suggest the levels of individuality represented by these features
- Size, form and features considered need to be independent variables

Publishedsworks,

derived opinion

- survey data,
- personal experience used for a ted? inform/support the

Cassidy (1987) - Observed 1:90 Bodziak (2000) - Distinguished 1:1,000 Freedman et. al. (1945) - Observed 1:6,700 Rossi et. al. (1983) – Observed 1:6,800 Kennedy (2005) – Distinguished 1:24,000 Statistically suggested charice match >1:1.27 billion

LIMITATIONS OF CURRENT DATA/SURVEYS

POPULATION QUESTION

In the absence of further information how do we know whether the sizes, forms and features we are interested in during casework relate to the person or the population type (i.e. whether they represent general features of the Caucasian, Afro-Caribbean, Asian, Germanic etc. populations?

COULD A BARE FOOTPRINT DATABASE AID INTERPRETATION?

RVT CASE [2010] EWCA CRIM 2439

- Court of Appeal for England and Wales rejected the testimony of an expert who had used likelihood ratios to assess the probative value of shoe-print evidence
- basis for the judgment was the reliance on an insufficiently large database, the FSS's Footwear Database.
- Reliability of such databases need identifying
- Data needs to be deemed as `sufficient'

NEED FOR A BARE FOOTPRINT DATABASE

 Need for data collection for interpretation of bare footprint impressions in order to create a more robust interpretation

Subjective, Evaluative Opinion Objective, transparent

- Need for extensive database of different populations to interpret particular case scenarios
- Not for identification purposes but could be used for intelligence

CURRENT CHALLENGES IN DATABASE PRODUCTION

atabase Requirements

- Robust data
- Representative
- Able to be easily contributed to
- Inexpensive to populate and maintain
- Samples fit-forpurpose

- Limited number Challenges
 - of forensic podiatrists
 - Expensive method for
 - obtaining control prints
 - Varied methods of collecting samples in custody

- Engage solutions forensic science
 - students/podia trists

STAFFORDSH JNIVERSITY

- Possible • Develop SOP's and proficiency test schemes
 - Develop fit-forpurpose and inexpensive collection method

PROJECT AIMS

- 1. To identify a robust, reliable and cheap method for the continued collection of bare footprint impressions
- 2.To design a database that allows bare footprint impressions to be analysed and qualitative and quantitative measurements to be searched against.
- 3.To develop quality assurance procedures for people contributing data to the database
- 4.To query the collected data so as to determine intra and inter variability within different populations of bare footprints.

THE CURRENT PRACTICES FOR COLLECTING BARE-FOOTPRINT(S) SAMPLES

STAFFORDSH UNIVERSITY

THE CRÈME AND THERMOCHROMIC PAPER (AKA FAX) IN FINGER-MARKS DEVELOPMENT

Bond, J.W., 2013. Capturing finger and palm impressions using a hand cream and thermo-chromatic paper. Journal of forensic sciences, 58(5), pp.1297–9.

CRÈME AND THERMOCHROMIC PAPER

(Bond 2013)

STAFFORDSH UNIVERSITY

AIMS OF CRÈME/FAX PAPER STUDY

- To identify whether the new crème and thermochromic paper method;
 - is easy to use
 - is comparable to extant methods
 - is more cost effective for large sample collection
- To identify optimum crème development and storage conditions
- To ascertain the extent of variation within sampling procedure and analyst measurement technique

Creating the Optimum Crème and Thermochromic Paper System

MATERIALS FOR CRÈME DEVELOPMENT

500mL Triple distilled
water200mL Glycerol30g Glyceryl stearate
200mL Glycerol30g Glyceryl stearate
35g Cetearyl alcohol45mL Butylene glycolHot plates x2Thermometers x2

(Bond 2013)

METHOD FOR CRÈME DEVELOPMENT

(Bond 2013)

TESTING THE CRÈME ON THERMO-CHROMIC PAPER

(Bond 2013)

METHOD FOR TESTING OPTIMUM TEMPERATURES

- 6x pieces of Roltech Fax paper measuring +/- 6 cm x 6cm:
- Thermal Paper 1(TP1), Thermal Paper 2 (TP2) etc.
- Thermo Scientific Laboratory oven, equipped with a temperature regulator switch. Temperature is increased by 6°C for each sample from 22°C to 52°C.
- Fingerprint sample created and placed immediately in the oven and observed at 5 minute intervals.

OPTIMUM TEMPERATURE RESULTS

STAFFORDSH UNIVERSITY

STORAGE

7 days after contact of crème and thermo-chromic paper

90 days after contact of crème and thermo-chromic paper

CRÈME COLLECTION CONCLUSIONS

- Ratio of ingredients needs to be altered for use with bare-footprints
- Optimum temperature depends upon type of fax paper
- Will fade but this can be overcome by scanning asap after collection

COMPARING THE CRÈME SYSTEM TO EXTANT METHODS

Is it fit-for purpose?

QUANTITATIVE & QUALITATIVE ANALYSIS

QUANTITATIVE & QUALITATIVE ANALYSIS

TR

State and State States BW TL LL

Metal plate control sampler

Control Sampler measurements

COMPUTER HARDWARE REQUIREMENTS FOR DATA STORAGE & SOFTWARE FOR ANALYSIS

Hardware

- Laptop or computer with new generation processors
- Flatbed Scanner with optical resolution 150dpi (Set default to RAW or TIFF format to prevent image alteration)
- Camera equipped with a 50mm lens (DiMaggio & Vernon. 2011)
- At least 2gb camera memory card
- At least 250gb storage to cope with large image files or to start with.

Computer Software

- Gimp GNU Image manipulator (open source software), (Reel 2012).
- Adobe Photoshop.
- Clic Morphometrics software (Borstler 2014).
- TPS dig, Geometric Morphometrics software (Domjanic et al 2013).

STATISTICAL ANALYSIS OF QUANTITATIVE MEASUREMENTS

STAFFORD UNIVERSIT

QUALITATIVE RESULTS

Cream on Thermo-chromic paper

Inkless ink and Treated paper

Fingerprint Ink and Paper

QUANTITATIVE RESULTS

n=20

INVESTIGATING VARIATION IN ANALYST MEASUREMENTS

- 3 x static bare footprints from one donor obtained using crème – each of varying quality; low, medium, high
- Each scanned image measured 25x by same analyst across different periods of the day using GIMP

Medium

TESTING THE PRECISION OF MEASUREMENT METHOD

Table 2. Descriptive Statistics of the Precision of Measurement Method (High, Medium and Low Quality of Static Bare-footprints Measurements)

Quality	Mean	SD	Max	Min
High_TL1	251.44	0.2566	252	251
Medium_TL1	256.464	0.4405	257.2	255.4
Low_TL1	252.62	0.3	253.1	252
High_TL2	247.292	0.2272	247.9	246.9
Medium_TL2	248.196	0.3984	248.8	247
Low_TL2	247.08	0.2255	247.6	246.6
High_TL3	237.732	0.2376	238.3	237.4
Medium_TL3	238.652	0.3137	239.2	238.2
Low_TL3	236.532	0.2561	237.2	236
High_TL4	228.86	0.255	229.5	228.5
Medium_TL4	230.052	0.2417	230.5	229.6
Low_TL4	228.472	0.2475	229.1	228
High_TL5	209.604	0.2336	210	209
Medium_TL5	212.008	0.2957	212.7	211.4
Low_TL5	211.704	0.3553	212.9	211.3
High_WB	106.788	0.5585	107.7	106.1
Medium_WB	105.456	0.9111	107.2	103.4
High_HB	56.32	0.2021	56.7	56
Medium_HB	54.968	0.5483	55.9	54.3

Descriptives

CAN WE USE THE CRÈME AND THERMAL PAPER?

- Results indicate that;
 - Qualitatively the crème/thermal paper are comparis de la compari becomparablestoæxtantemethods,
 - Quawhativether factorsesholalehbe slight
 - difference to the campler considered before choosing which
 analysts method of measurement some variability seen method?
 - Reproducibility of sampler

COST BENEFITS

Ink/Paper

- 7.9p/sample, \$0.12/sample, € 0.11/sample
- Approx £1.58/\$2.48/€2.24 per individual
- Unlimited shelf life, no storage issues.

Treated paper/Inkless Pad

- 70p/sample, \$1.10/sample, € 0.99/sample
- Approx £14/\$22/€20 per individual
- 1 year shelf life

Crème/Thermal Paper

- 7.4p/sample, \$0.12/sample, € 0.11/sample
- Approx £1.48/\$2.32/€ 2.10 per individual
- Unlimited shelf life but careful storage

NEXT STEP FOR BARE-FOOTPRINT DATABASE PRODUCTION & PROJECT

- Crème system to be utilised
- Create an SOP for the use of the crème that is fit-for-purpose for obtaining controls from suspects/participants.

– Survey of current international practices

- Initially, 6 population groups (minimum of 25 participants/group
- Investigate data for correlations in features within and between groups
- Creation of a sustainable database

THANK YOU FOR LISTENING

paul.jira@staffs.ac.uk c.gwinnett@staffs.ac.uk