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Highlights  

 Individual leaf size, shape and micromorphology had a significant impact on capturing and 

retaining PM1, PM2.5 and PM10 while other influential variables were standardised.  

 Smaller leaves and complex leaf shapes showed a greater potential to capture and retain 

particles. 

 Leaf hair/trichomes, epicuticular wax, and surface-ridges are favourable to capture PM and 

presence of leaf hairs/trichomes found to be most influential.  
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Abstract 

The ability of vegetation to capture and retain atmospheric Particulate Matter (PM) is directly dependent 

on the interactions between PM and plant surfaces. However, the impact of individual leaf traits in this 

respect is still under debate due to variations in published findings. This study employed standardised 

experimental designs with natural and synthetic leaves in three experiments to explore the impact of 

individual leaf traits on traffic-generated PM accumulation whilst other influential variables were 

controlled. The impact of leaf size on PM deposition was explored using synthetic leaves of different 

sizes (small, medium and large) but with the same shape and surface characteristics (n = 20 for each 

category). The impact of leaf shape was examined using another set of synthetic leaves of different 

shape (elliptical, palmately-lobed and linear) but with same surface area and the same surface 

characteristics (n = 20 for each category). PM accumulation (PM1, PM2.5 and PM10) on these leaves 

was quantified using an Environmental Scanning Electron Microscope (ESEM) and ImageJ software. 

Any differences in PM capture levels due to leaf size and leaf shape were identified using one-way 

Anova and Tukey’s pairwise comparison. In a subsequent experiment, equal-sized, square-shaped leaf 

sections obtained from four plant species (n = 20 for each species) with different micromorphology were 

exposed to traffic-generated pollution and any PM capture differences due to leaf micromorphology 

identified employing the same SEM/ImageJ and statistical approach. The results of all three 

experiments showed significant differences in PM accumulation between different leaf sizes (p <0.001), 

between different leaf shapes (p< 0.001) and between different leaf micromorphology (p< 0.001) 

suggesting that all these characters are influential in the capture and retention of PM on leaves. Smaller 

leaves and complex leaf shapes (lobed leaves) showed a greater potential to capture and retain PM. 

Leaf surfaces with hair/trichomes, epicuticular wax, and surface-ridges accumulated more PM 

compared to smooth surfaces; of these characters, leaf hairiness/ presence of trichomes was found to 

be the most important. Species sharing most of these important leaf traits are recommended as effective 

PM filters.  

Key words: Traffic-generated pollution; Living walls; Green walls; Green infrastructure; Leaf shape; Leaf 

size; Micromorphology 

 

1. Introduction

Three different size fractions of Particulate Matter (PM) are of particular concern based upon their ability 

to be inhaled and toxicity: coarse particles/PM10 (aerodynamic diameter ≤10 µm), fine particles/PM2.5 

(aerodynamic diameter ≤ 2.5 µm) and ultra-fine particles/PM0.1 (aerodynamic diameter ≤0.1 µm) (Chow 

et al., 2006; Solomon et al., 2012). Long-term exposure to coarse particles diminishes lung function and 

increases cardiovascular mortality (Gilmour et al., 1996). PM2.5 can reach the narrower spaces in lungs 

(Brunkeef & Holgate, 2002) and cause lung cancer and cardio-vascular mortality associated with acute 

ischemic events (Solomon et al., 2012). Ultra-fine particles are more dangerous than the other size 

ranges as they can cross cell membranes and influence intracellular functions (Riddle, 2009). According 

to Seaton et al. (1995), PM0.1 can cause systemic inflammatory changes by entering the blood stream 
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or influence phagocytosis by accumulating in alveolar macrophages. They can also enter the brain via 

the olfactory nerves (Solomon et al., 2012) which may cause central nervous system disorders (e.g. 

Alzheimer’s disease and Parkinson’s disease) depending on their chemical composition and toxicity 

(Allsop et al., 2008; Maher et al. 2013).  

Vegetation has been known as a sink for atmospheric PM for some time (Smith, 1975; Zulfacar, 1979) 

and the PM filtering behaviour of different types of vegetation has been studied using a range of different 

techniques (Beckett et al., 2000; Dover, 2015; Freer-Smith et al., 2004; Leonard et al., 2016; Maher et 

al., 2013; McDonald et al., 2007; Ottelé et al., 2010; Sternberg et al., 2011; Terzaghi et al., 2013; Zhang 

et al., 2017). Vegetation has been found to be more effective in removing PM from air compared to 

other building/land surfaces  due to high air turbulence created by their complex morphology and large 

surface area (Roupsard et al., 2013; Tallis et al., 2011). 

Dry deposition of PM on vegetation takes place via sedimentation under gravity, impaction (via turbulent 

transfer), interception, and diffusion (Slinn, 1982; Wang et al., 2006); processes antagonistic to 

deposition include aerodynamic resistance (resistance exerted on particles by the air), boundary layer 

resistance (reduced ability  to cross the laminar air layer immediately adjacent to the deposition surface) 

and surface resistance (due to the properties of the deposition surface) (Davidson & Wu, 1990). The 

aerodynamic behaviour of different particle size fractions has been studied comprehensively under 

different meteorological conditions (Legg and Powel, 1979; Slinn, 1982; Petroff et al., 2008b). Wind 

speed, wind turbulence, humidity and rainfall all had a considerable influence on PM deposition on 

vegetation (Litschke & Kuttler, 2008; Tomasević et al., 2005). PM deposition is also driven by the 

interactions between the particles and plant surfaces including the latter’s geometrical properties such 

as shape, size, orientation and surface morphology (Chen et al., 2016; Freer-Smith et al., 2005; Leonard 

et al., 2016; Litschke & Kuttler, 2008; Petroff et al., 2008a; Tomasević et al. 2005). Understanding the 

impact of such leaf traits on particulate deposition is thus crucial in the design and use of vegetation as 

an environmental control filter of particulate pollution. Legg and Powell (1979) modelled coarse particle 

impaction and sedimentation using fungal spores, and found that collection efficiency depended on the 

nature of the deposition surface. When the inertia of particles is too high to follow the wind flow 

deviations in the mean air flow around an object, they collide with it and deposit via impaction which 

can be, again, influenced by surface characteristics (Petroff et al., 2008a).  When particles with smaller 

inertia, which thus follow the wind flow deviations in the mean airflow, pass over plant surfaces with 

less than half a diameter distance between the centre of the particle and the plant surface they can 

deposit via interception; this process is also influenced by the micro-topography of the plant (Slinn, 

1982). Despite several studies that have examined these interactions, there remains much debate on 

the relative importance of different leaf characteristics on PM capture.  

For example, coniferous species with leaf needles have been frequently cited as being good PM filters 

compared to broad-leaved species (Beckett et al., 2000; Dzierzanowski et al., 2011; Wang et al. 2011), 

and Shackleton et al. (2010) found “grass-like” (linear leaved) species to be the best PM filters out of 

the 16 species they tested. In contrast, Leonard et al. (2016) found significantly higher PM levels on 

lanceolate leaves compared to needle-like or linear leaves. The effects of epicuticular wax and leaf 
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hairs have also produced mixed results. According to Dzierzanowski et al. (2011), the relationship 

between PM deposition and epicuticular wax does not depend on the amount of wax but on the structure 

and composition of the wax. Liu et al. (2012) found a negative impact of epicuticular wax in capturing 

particles but identified stomata, deep grooves, and leaf size as critically important characters. In 

contrast, Sæbø et al. (2012) found that PM deposition was a function of epicuticular wax content. Hairy 

leaves were found to be effective in accumulating PM in several different studies (Beckett et al., 2000; 

Kardel et al., 2012; Ram et al., 2012); conversely, Perini et al. (2017) found a negative impact of leaf 

hair on PM capture.  

These discrepancies in findings could be attributed to various interactive effects of different leaf traits 

on PM capture. Standardising the influence of non-target leaf variables should facilitate the investigation 

of the impact of each leaf character on PM accumulation. Assuming that positive characteristics are at 

least additive, and at best synergistic, in value, species carrying a collection of such leaf traits should 

result in high PM capture efficiency and hence be most appropriate to employ as PM filters. As these 

characters are inherent and not manipulatable in natural leaves, use of leaf models or synthetic leaves 

can help in standardising the influence of non-target variables. We therefore explored the individual 

impact of leaf size, shape and micromorphology on PM accumulation on leaves using manipulative 

experimental designs with natural and synthetic leaves whilst controlling for the influence of additional 

variables. We believe this is the first attempt to use such standardised designs in the evaluation of the 

impact of individual leaf characters on PM accumulation. This study is a contribution to the optimisation 

of living walls (vertical, irrigated, greenery systems typically carrying multiple non-climbing or twining 

plant species) as urban PM filters (Weerakkody et al. 2017) and hence the experimental designs 

employed relate to the configuration of vertical greenery systems. Since traffic-generated pollution has 

become the major source of PM in the UK (DEFRA, 2015) and categorised as the most toxic class of 

PM globally (WHO, 2005), PM generated through road traffic was focused on in this study.  

  

2. Materials and Method 

2.1 Site description 

Stoke-on-Trent is a city located in Staffordshire, United Kingdom with an estimated population of 

259,140 and population density of 6,640 persons/km2 (ukpopulation, 2017). Leek Road is one of the 

busiest single carriageways in Stoke-on-Trent, categorised as an A Road (Fig. 1), with a traffic density 

of 20,251 Average Daily Flow in 2016 (Department for Transport, 2017). Given the continuous pollution 

generation due to road traffic, a linear, grassed area, 11.5 m in width at Staffordshire University, located 

parallel to Leek Road (4.5 m distance from the road) (Fig. 1) was selected to erect experimental rigs.  

 

 

 2.2 Manufacturing the synthetic leaves and sampling natural leaves.  
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Synthetic leaves used in these experiments were hand-made, using stiffened Poplin. A 1.0 m x 1.4 m 

section of commercially available Poplin (125.0 gm-2 ), was stiffened by painting a sago solution (15 g  

of sago boiled in a 1 L of water) on the fabric to ensure synthetic leaves had no pleats or folds. 

Cardboard templates of different sizes and shapes (sizes and shapes are detailed in sections 2.4 and 

2.5) were used to outline and cut the leaves from the fabric as required. Commercially available floral 

stems (plastic-paper covered stem wire, Handicrafts Ltd.) were stuck on one side of each of the leaves 

using fabric glue (Hobby glue gun- 230 V,15 W, Powerbox International Ltd.) dried for 20 minutes. Using 

the same fabric, without any pleats or folds, produced artificial leaves with exactly the same surface 

characteristics and roughness (Fig. 2). Natural leaves required for the experiments were obtained from 

a free-standing living wall system (an experimentally manipulated system designed for our work on PM 

pollution, manufactured and installed by Nemec Cascade Garden Ltd., Czech Republic) (Fig. 1) located 

at the same site, facing Leek Road. Sampling and experiments were conducted on several occasions 

during March and April 2017. The mean temperature, mean humidity and mean wind speed of the study 

site was recorded as 12.8 0C, 68% and 2.3 m s-1 during this period.  

2.3 Scanning Electron Microscope (ESEM)/ImageJ approach to quantifying PM densities on natural 

and artificial leaves 

PM accumulation on both natural and synthetic leaves used in this study were quantified using an 

Environmental Scanning Electron Microscope (ESEM) (Model: JSM-6610LV) (Ottele et al., 2010; 

Sternberg et al., 2010; Weerakkody et al., 2017) and ImageJ image analysis software (Collins, 2007). 

Sampling numbers and methods of each experiment are detailed in the relevant sections below. In 

experiments where complete leaves were exposed to pollution all the leaves were synthetic (sections 

2.4 and 2.5)  and three leaf sections (5 mm x 5 mm) from every leaf blade were cropped out and 

mounted on aluminium stubs using double-sided carbon adhesive tabs for microscopic analysis. In the 

experiment in which only leaf sections were exposed to pollution (all from natural leaves) (section 2.6), 

whole leaf sections were mounted without cropping. Both natural and synthetic leaves were scanned 

under a low vacuum in the ESEM at x450 and x1,000 magnifications using Back Scattered Electrons, 

without any conductive coating following the same approach used in Weerakkody et al. (2017) to 

visualise natural leaves. The high carbon content of the fibres used in the synthetic leaves minimises 

conductive charging, and PM accumulation was also clearly imaged using this approach. Micrographs 

were taken at three random points on each leaf section (natural or synthetic), maintaining the same 

working distance and consistent contrast/brightness to help define the threshold in image processing. 

The smallest particle that could clearly be visualised using this approach was 0.1 µm in diameter. 

Considering their different health effects and different aerodynamics, the number of PM1 (PM0.100 - 

PM1.000) PM2.5 (PM1.001 - PM2.500) and PM10 (PM2.501 - PM10.000) on all the micrographs were quantified 

using ImageJ. The most appropriate threshold available in the auto-threshold menu was carefully 

selected using ten random micrographs to minimise potential human error of using a user-defined 

threshold. PM accumulation on each leaf section was estimated as PM density (number of PM per 1 

mm2) using the mean PM count on three random micrographs taken for each leaf section. In the 
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experiments where whole leaves were used, mean PM density on each leaf was estimated taking the 

mean PM density of three leaf sections (see further, section 2.4 and 2.5).  

2.4 The impact of leaf size on PM capture  

Synthetic leaves were manufactured for the following three size ranges: small (1.7 cm2) medium (28.9 

cm2) and large (59.6 cm2) with 40 leaves in each range (Fig. 3a). The leaves were of the same basic 

elliptical shape and the same surface characteristics (i.e. same fabric). The size of natural leaves in the 

Nemec living wall outside the Science Centre were used as an approximate guide for the size ranges. 

Prior to use, the synthetic leaves were washed using a spray bottle and then dipped and shaken in 

deionised water in large beakers to remove existing particles. Subsequently, they were dried in a closed 

drying chamber (with controlled light and temperature regimes), thereby reducing contamination by 

indoor particulates. Twenty leaves from each size category were then scanned, to visualise any PM 

remaining on their surfaces, using the SEM/imageJ approach (see section 2.2); any significant variation 

in baseline PM levels between size ranges were identified using a one-way Anova (R statistical software 

version 3.2.5: R Core Team, 2016). The remaining 20 leaves of each size category were then exposed 

to traffic pollution generated from Leek Road by mounting them on a wooden garden trellis. Leaves 

were attached to the trellis by their petioles using thin wires at 1.0 m -1.5 m height from the Road 

surface, keeping a similar configuration as vertical greenery systems (i.e. facing the road). Leaf 

arrangement was random using a Latin Square design to avoid any variation relating to columns and 

rows. The trellis was erected at the roadside edge of the grassed area, 4.5 m distance from the roadside 

and leaves were left exposed to traffic pollution for five consecutive dry days. Subsequently, leaves 

were taken to the laboratory using sealed storage boxes to provide minimal disturbance and PM 

densities were quantified using the ESEM/imageJ. Identification of baseline PM levels prior to exposure 

was carried out to identify if there were significant differences in the different leaf categories, and hence 

allow for adjustment of the experimental data by subtracting the mean baseline levels from the PM 

densities found on the roadside-exposed leaves (i.e. PM density on exposed leaves – mean baseline 

PM density) if required. Differences in PM levels captured by different sizes of leaves were identified 

using a one-way Anova followed by Tukey’s pairwise comparison (n = 20). The leaf perimeter/leaf 

surface area ratio in each category was calculated to explain any differences in PM accumulation due 

to variable edge effects; the leaf perimeter was measured using ImageJ image analysis software. 

2.5 The impact of leaf shape on PM capture  

Synthetic leaves with exactly the same surface area (28.9 cm2) and surface characteristics were made 

in three common leaf-shapes (elliptical, palmately-lobed and linear) (Fig. 3b); 40 leaves were made for 

each shape category. Leaves were washed using the same approach followed in section 2.4 to remove 

existing particles and dried in a closed drying chamber avoiding contamination from indoor particulates. 

Twenty leaves from each shape category were then tested for their baseline PM levels using 

SEM/imageJ analysis. The remaining twenty leaves of each shape category were simultaneously 

exposed to traffic pollution on Leek Road for five consecutive days using a wooden garden trellis 

following the same approach given in section 2.4. Subsequent transfer of leaves to the lab, visualisation 
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and counting of particulates, and statistical analysis followed the approach in Section 2.4 (n = 20). The 

Leaf perimeter/ surface area ratio in each category was calculated to explain any differences in PM 

accumulation due to variable edge effects. 

 2.6 The impact of leaf micro-morphology on PM capture  

Sixteen square holes (1 cm x 1 cm) were cropped-out from plastic laminating pouches (ImageLast 125 

Micron, Lyreco) in 4 equally spaced parallel rows. Four species of plant with different surface textures 

(e.g. hairy, smooth, rough and velvety) (Geranium macrorrhizum L., Bergenia cordifolia (L.) Fritsch, 

Helleborus x sternii and Heuchera villosa Michx. var. macrorhiza) used in the Nemec living wall (Fig. 1) 

were selected for this experiment. The leaf shape and size was standardised in this experiment so that 

differences in PM capture due to surface characteristics (micromorphology) could be identified. Forty 

leaves per species were randomly collected from the living wall and carefully washed by dipping and 

slowly shaking in cold deionised water to remove existing PM. Leaves were dried at 22 0C in a closed 

drying chamber for one hour. Subsequently, 1.5 cm x 1.5 cm sections were excised from every leaf 

blade and twenty leaf sections of each species were immediately tested for their baseline PM levels. 

Remaining leaf sections were attached to the back of the laminating paper replacing the empty squares 

in a randomised order (Latin Square design) using thin sticky tapes; this resulted in a grid of equal sized 

leaf squares with different micro-morphology (Fig. 4). Five such rigs, each holding 16 leaf sections (4 

leaf sections from each species) were made to hold a total of 80 leaf sections (20 leaf sections per 

species). The back of the laminating papers were then covered with wet layers of gauze to prevent 

dehydration of leaves, and inserted into plastic frames with water retentive backing. The plastic frames 

holding the leaf sections, with supportive material, were then exposed to traffic pollution generated from 

Leek Road (4.5 m distance from the roadside) for five consecutive days. Gauze layers were kept moist 

by spraying deionised filtered water through holes in the back of the plastic frames each day to avoid 

any structural changes in leaf sections due to dehydration. These experimental rigs were taken to the 

laboratory with minimal disturbance using the same approach followed in section 2.4 and 2.5. Leaf 

sections were carefully removed from the holding frames and PM densities on leaf sections were 

quantified using SEM/ImageJ analysis. Statistical analysis followed the approach in Section 2.4 (n = 

20). Specific leaf micromorphological characters (hairs, trichomes, epicuticular wax, ridges) of the leaf 

sections were observed using the ESEM at a range of magnifications as appropriate.   

3. Results 

3.1 Impact of leaf size on PM capture using synthetic leaves of the same shape  

Baseline PM levels on synthetic leaves were not significantly different between different size categories 

for all particle size fractions (p >0.05) hence they were not deducted from the PM levels on synthetic 

leaves exposed to roadside air pollution. Roadside-exposed leaves showed differential PM densities 

on leaves of different sizes (Fig. 5) (PM1: F =114.9, p <0.001, PM2.5: F =41.68, p <0.001, PM10: F =76.53, 

p <0.001) in all particle size fractions. The highest mean PM densities in all particle size fractions (PM1 

=2,233 mm-2, PM2.5 =1,122 mm-2 and PM10 =303 mm-2) were found on the smallest leaves and these 

levels were significantly higher than the PM levels in both medium and large-sized leaves (p< 0.001). 
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The second highest mean PM densities in all PM size fractions were found on medium-sized leaves; 

the density of PM10 on medium sized leaves was significantly higher compared to larger leaves (p< 

0.001). However, densities of PM1 and PM2.5 on medium sized leaves were not significantly different 

from larger leaves (p =0.06 and p =0.22 respectively). The leaf perimeter/surface area ratio was 0.2, 

0.07 and 0.04 for small, medium and large sized leaves respectively (ratio between sizes, small: 

medium: large = 27 : 7 : 4).   

3.2 Impact of leaf shape on PM capture using synthetic leaves of the same area 

Baseline PM densities on leaves of different shape categories were not significantly different (p >0.05) 

and hence were not deducted from the PM densities on synthetic leaves exposed to roadside air 

pollution. There were differential PM levels on roadside-exposed leaves with different shapes (Fig. 6) 

in all PM size fractions (PM1: F =21.06, p <0.001; PM2.5: F =31.09, p <0.001; PM10: F =37.9, p <0.001). 

The highest PM densities in all particle size fractions (PM1 =2,226 mm-2, PM2.5 =652 mm-2 and PM10 

=211 mm-2) were found in palmately-lobed leaves and these densities were significantly higher than for 

both elliptical and linear leaves. The second highest PM densities were found on linear leaves in all 

particle size fractions and the density of PM10 on linear leaves was significantly higher compared to PM 

density on elliptical leaves (p =0.01). However, these levels were not significantly different for smaller 

PM sizes (PM1: p =0.37 and PM2.5: p =0.88). The leaf perimeter/surface area ratio was 0.07, 0.09 and 

0.16 for elliptical, lobed and linear leaves respectively (ratio between shapes:- elliptical : lobed : linear 

= 7 : 9 : 16). 

3.3 Impact of micromorphology on PM capture by the adaxial surface of natural leaves with leaf area 

and shape held constant 

Leaf micrographs of four species of plants (Fig. 8) showed their different surface micromorphologies 

and are detailed in Table 1. Baseline PM densities on leaf sections of different species were not 

significantly different (p >0.05) after washing-off and hence were not deducted from the PM densities 

of leaf sections subsequently exposed to roadside air pollution. There were differential PM levels on 

roadside-exposed leaf sections of different species (Fig. 7) in all PM size fractions (PM1: F =10.38, p 

<0.001; PM2.5: F =12.27, p <0.001; PM10: F =140.9, p <0.001). Leaf sections of G. macrorrhizum showed 

the highest mean PM densities in all particle size fractions (PM1 =7,424 mm-2, PM2.5 =1,902 mm-2 and 

PM10 =383 mm-2). PM1 densities on G. macrorrhizum H. villosa and H. sternii were significantly higher 

than on B. cordifolia (p <0.001) but not significantly different (p >0.05) from one another. The density of 

PM2.5 on G. macrorrhizum was significantly higher than B. cordifolia (p <0.001) and H. villosa (p =0.03) 

but not significantly different from H. sternii (p =0.13).  B. cordifolia showed the lowest mean PM density 

in all particle size fractions (PM1 =3,539 mm-2, PM2.5 =790 mm-2 and PM10 =69 mm-2) which were 

significantly lower (p <0.05) than the rest of the species. PM levels on H. villosa and H. sternii were not 

significantly different in the smaller PM size fractions (p >0.05). PM10 levels were more varied between 

species compared to other size fractions and the densities of PM10 on leaf sections of each species 

were significantly different from each other.  
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4. Discussion  

4.1 Impact of leaf size on PM accumulation on leaves  

As synthetic leaves with the same leaf shape and same surface characteristics were arranged 

randomly, at the same height, and with the same pollution exposure levels and timings, the different 

PM capture levels that resulted (Fig. 5) can only be attributed to their size. In contrast to the findings of 

Sæbø et al. (2012), large differences in PM densities were found in all PM size fractions which 

demonstrates that size is an important trait to consider in assessing PM accumulation on leaves. Similar 

to the findings of Freer-Smith et al. (2005) and Leonard et al. (2016), and in contrast to Liu et al. (2012), 

high PM accumulation on smaller-sized leaves demonstrates their greater potential to capture and 

retain PM. A pilot study we carried out (unpublished data) on the distribution of particulates on leaf 

surfaces found elevated PM levels on leaf edges and tips except for linear-shaped leaves where there 

was no apparent change in density with distance from the leaf edge. The relatively larger edge effect 

present in smaller sized leaves (due to their high perimeter/surface area ratio) may have resulted in 

high levels of PM impaction on leaves. However, this pattern was only significant for PM10 and not for 

the smaller particles size fractions (PM1 and PM2.5); this difference may result from the different 

aerodynamic behaviour of different particle sizes (Slinn, 1982). Increased turbulence in the boundary 

layer around a deposition surface increases PM accumulation via turbulent transfer which is more 

important for smaller particle size fractions (Petroff et al., 2008a; Slinn, 1982). More turbulence around 

leaf edges can result from leaves by swaying with the wind flow. There is a substantial difference in 

perimeter/surface area ratios between small and medium-sized leaves but this is much smaller between 

medium and larger leaves (small : medium : large =  27 : 7: 4). This might explain the large differences 

in PM levels between small and medium sized leaves and the smaller differences evident between 

medium and larger leaves.  

4.2 Impact of leaf shape on PM accumulation on leaves  

The shape of the deposition surface can directly influence the airflow pattern around the surface and 

hence, has a marked influence on PM deposition (Davidson & Wu, 1990; Petroff et al., 2009), and this 

experiment with synthetic material showed that there were large differences in PM accumulation on 

leaves with different shapes. As additional factors (e.g. surface area, surface characteristics, exposure 

to weather and PM exposure levels) were held constant, the different levels of PM accumulation can 

only be attributed to the shape of the leaves. Although the different leaf shapes had different 

perimeter/surface area ratios (elliptical : lobed : linear = 7 : 9 : 16), they did not explain the differential 

PM accumulation by different shapes. Variable shapes generate different drag forces on them due to 

wind (Gemba, 2007), changing their influence on surrounding air flow patterns; the response of leaves 

to such forces can be by swaying, bending or fluttering (Gillies et al., 2002) and hence different levels 

of turbulence can result. The pattern of PM accumulation between species was consistent for all PM 

size fractions (Fig. 6); palmately lobed leaves showed a greater potential to capture and retain PM, 

probably due to their complex shape. Lobed leaves create more than one “leaf-tip-like” area creating a 

more complex morphology; results of an unpublished pilot study (see section 4.1) showed elevated PM 
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accumulation at leaf tips. Similar to the results of Leonard et al. (2016), PM accumulation on our elliptical 

and linear leaves was relatively poor. Even though linear leaves can be predicted to be good PM filters 

on the basis of their larger perimeter, they can also bend more readily with the wind flow (as these 

lengthy leaves are connected to a petiole with a narrow leaf base) without swaying with the wind 

currents, potentially resulting in lower levels of turbulence. However, despite having a linear shape, leaf 

needles are frequently cited as good PM filters (Beckett et al., 2000a; Freer-Smith et al., 2005; Mori et 

al., 2015; Räsänen et al., 2013), in addition to their epicuticular wax helping to provide a sticky surface 

to retain PM, this may also be attributed to their rigid/stiff nature compared to “grass-like” linear leaves. 

Further research in this area is clearly warranted. 

4.3 Impact of leaf micro-morphology on PM accumulation on leaves  

Significant variations in PM levels on real leaf sections with different micromorphology but with area 

and shape held constant clearly demonstrated that leaf micromorphology has an impact on PM capture 

and retention and hence is an important leaf trait to consider where vegetation is being proposed for 

PM removal. Variation in PM10  levels were particularly interesting, where differential PM capture abilities 

were evident between all the species examined. In addition to turbulent deposition, capture by 

sedimentation is more important for PM10 compared to smaller particles (Petroff et al., 2008a) and 

surface texture is known to be very important in preventing heavy PM rebounding from surfaces 

(Davidson & Wu, 1990). The greater potential of G. macorrhizum to capture and retain PM in all size 

fractions can be attributed to its complex micromorphology, with densely arranged trichomes and 

glandular hairs (Fig. 8) (Table 1). H. villosa is also slightly hairy and also showed relatively high PM 

accumulation supporting this argument. Leaf hairs are known to be important in increased PM 

accumulation (Beckett et al., 2000; Leonard et al., 2016; Räsänen et al., 2013; Ram et al., 2012; Sæbø 

et al., 2012) by increasing surface area (for capture) and by preventing re-suspension of captured PM 

(Prusty et al., 2005; Qiu et al., 2009). Having such protruding structures can also create complex micro-

topography on leaf surfaces which also facilitates capture and retention of PM compared to smooth 

leaves. In addition, the hydrophobicity of some leaf hairs is known to have a positive impact on attracting 

metal-based charged particles (Fernández et al., 2014).  

 

The poor ability of leaves of B. cordifolia to capture and retain PM can probably be attributed to their 

glossy smooth leaf surface. PM can readily rebound from smooth surfaces resulting in the retention of 

only a small fraction of captured particles (Davidson & Wu, 1990). H. sternii also showed relatively high 

PM levels compared to B. cordifolia which could probably be attributed to their deep surface ridges and 

epicuticular wax. While a positive impact of epicuticular wax on PM capture is frequently cited in the 

literature (Barima et al., 2014; Räsänen et al., 2013; Sæbø et al., 2012), several studies found reduced 

PM levels on waxy surfaces due to their variable chemical structure and composition (Faini et al., 1999; 

Kardel et al., 2012; Leonard et al. 2016) and also due to the self-cleansing ability of wax tubules (Wang 

et al., 2011). However, rough leaf surfaces with a large number of ridges were found to be effective in 

PM capture (Kardel et al., 2012; Ram et al., 2012; Zhang et al., 2017) and Barima et al. (2014) found 

significantly higher PM levels on ridged leaf surfaces compared to waxy surfaces. The relatively high 
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levels of PM on H. sternii could either be attributed to their epicuticular wax or ridges or to the collective 

impact of both these characters. However, these levels did not significantly exceed the PM levels found 

on hairy leaves for any particle size fraction, highlighting the importance of leaf hairs in the capture and 

retention of PM. Nevertheless, the actual impact of these species of plants under field conditions, may 

be quite different when they stand as leaves instead of leaf sections. For example, irrespecive of their 

ridged surface, Weerakkody et al. (2017) found very low PM accumulation on leaves and plants of  

H.sternii  citing their wide leaves and low leaf area index as potential reasons. Therefore, the potential 

of leaf surfaces for the capture and retention of PM can be enhanced or limited by other influencial 

variables such as leaf size, shape, location, configuration and leaf area index (Freer-Smith et al., 2005; 

Leonard et al., 2016; Weerakkody et al., 2017). However, selecting species sharing at least a few of 

these micro-morphological characters (e.g. ridged hairy leaf surfaces) would proabably be beneficial to 

increase PM accumulation. 

 

4.4 Implications of the findings  
 

This study showed that there was a considerable impact of all tested leaf characteristics on PM capture 

and retention when they act alone. The discrepancy we find in the literature on the impact of these 

characteristics are probably attributable to their collective impact which can enhance or limit the ability 

of particular plants to capture and retain PM. As the ability of variable leaf surfaces to capture and retain 

PM can be enhanced or limited by other influencial variables it is important to recognise that those 

variations in PM capture did not represent their particular species, but the specific micro-morphological 

features. As smaller leaves, lobed shapes, hairy and rough leaf surfaces were found to have a positive 

impact on PM capture and retention, using a collection of species that share most of these characters 

(e.g. smaller leaves with a complex shape and a rough, hairy surface) combined with a high leaf area 

index (Weerakkody et al. 2017) would probably provide maximised benefits where vegetation is 

intended to be used as a PM filter.  

 

Conclusion   

Size, shape and micromorphology of individual leaves showed a significant impact on capturing and 

retaining all particle size fractions tested. Smaller leaves showed a greater capacity to capture and 

retain particles probably due their larger edge effect. Palmately-lobed leaves showed high PM levels 

compared to elliptical or linear leaves as they may create more turbulence in the boundary air layer with 

their complex shape and “tip-like” areas. Hairy leaves and leaves with rough ridged surfaces with 

epicuticular wax were good at capturing and retaining particles in all size fractions compared to leaves 

with a smooth surface. The real-world effectiveness of these traits to capture and retain PM can be 

enhanced or limited by other influential variables. A selection of species sharing these characters is 

likely to maximise the benefits of vegetation as PM filters.  
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List of figures  

Fig. 1: Upper image: map showing the location of the experiment (circled) on Leek Road, Stoke-on-

Trent, UK Contains OS data ©Crown copyright and database right (2017). Lower image: the grassed 

area adjacent to the Science Centre at Staffordshire University facing the Leek Road and the living wall 

system. The location and direction of the photo taken is marked by the arrow in the (above) map 

Fig. 2: ESEM images of synthetic leaves in different sizes showing their same surface structure (x50) 

Fig. 3: (a) an image of synthetic leaves designed with different leaf sizes but with the same shape and 

micromorphology, and (b) an image of synthetic leaves designed with different shapes but with the 

same surface area and same micromorphology. 

Fig. 4: Schematic diagram of an experimental rig holding equally sized and shaped leaf sections with 

different micro-morphology arranged in a random order. 

Fig 5: Mean±1SE PM densities on leaves of different sizes (small: 1.7 cm2, medium: 28.9 cm2, and 

large: 59.6 cm2) but with the same shape and micromorphology (see further Fig. 3a). Species labeled 

with the same letter are not significantly different from each other within the given particle size fraction 

(PM1: a,b; PM2.5: c,d; PM10: e,f,g). 

Fig. 6: Mean ±1SE PM densities on leaves of different shapes but with the same surface area (28.9 

cm2) and micromorphology (see further Fig. 3b). Species labeled with same letters are not significantly 

different from each other within the given particle size fraction (PM1: a,b; PM2.5: c,d; PM10: e,f,g). 

Fig. 7: Mean ±1SE PM densities on real leaf sections with different micromorphology but with same 

surface area and shape. Species labeled with the same letters are not significantly different from each 

other within the given particle size fraction (PM1: a,b; PM2.5: c,d,e; PM10: f,g,h,i). 

Fig. 8: Scanning Electron Microscope images (450x)  of leaf micromorphology of the adaxial surface of 

a) B. cordifolia b) H. sternii c) H. villosa (Heuchera macrorhiza) and d) G. macrorrhizum 
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Fig. 1: Upper image: map showing the location of the experiment (circled) on Leek Road, Stoke-on-

Trent, UK Contains OS data ©Crown copyright and database right (2017). Lower image: the grassed 

area adjacent to the Science Centre at Staffordshire University facing the Leek Road and the living 

wall system. The location and direction of the photo taken is marked by the arrow in the (above) map 
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Fig. 2: ESEM images (x50) of synthetic leaves used in manipulative experiments where size or shape 

were varied whilst holding other variables constant (see further Fig. 3). In this series of images, the 

surface characteristics of small, medium, and large leaves (left to right) are visualized to demonstrate 

their similar surface characteristics.  

 

 

 

 

 

 

 

 

Fig. 3: (a) an image of synthetic leaves designed with different leaf sizes but with the same shape and 

surface characteristics, and (b) an image of synthetic leaves designed with different shapes but with 

the same surface area and surface characteristics. 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Schematic diagram of an experimental rig holding equally sized and shaped leaf sections with 

different micro-morphology arranged in a random order. 
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Fig 4. Mean±1SE PM densities on leaves of different sizes (small: 1.7 cm2, medium: 28.9 cm2, and 

large: 59.6 cm2) but with the same shape and surface characteristics (see further Fig. 3a). Species 

labeled with the same letter are not significantly different from each other within the given particle size 

fraction (PM1: a,b; PM2.5: c,d; PM10: e,f,g). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Mean ±1SE PM densities on leaves of different shapes but with the same surface area (28.9 

cm2) and surface characteristics (see further Fig. 3b). Species labeled with same letters are not 

significantly different from each other within the given particle size fraction (PM1: a,b; PM2.5: c,d; PM10: 

e,f,g). 
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Fig. 7: Mean ±1SE PM densities on real leaf sections with different micromorphology but with the same 

surface area and shape. Species labeled with the same letters are not significantly different from each 

other within the given particle size fraction (PM1: a,b; PM2.5: c,d,e; PM10: f,g,h,i). 

 

Fig. 8 Scanning Electron Microscope images (450x)  of leaf micromorphology of the adaxial surface of 

a) B. cordifolia b) H. sternii c) H. villosa (Heuchera macrorhiza) and d) G. macrorrhizum  
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Table 1: Micromorphological characteristics of different species of plants used in the study 

Species  Common 

name 

Description of leaf micro-morphology  

Bergenia cordifolia (L.) 

Fritsch 

Heart-leaf 

bergenia 

Leaf surfaces were glossy and smooth. Sparsely 

arranged wax glands were present.   

Helleborus x sternii Turrill   Hellebore, 

blackthorn 

strain 

Leaf surfaces were leathery but rough due to 

densely arranged ridges and groves. Epicuticular 

wax layers were slightly prominent.  

Heuchera villosa Michx. 

var. macrorhiza  

(Heuchera macrorhiza) 

Autumn Bride Leaf surfaces were velvety and slightly hairy (49 

hairs per 1 mm2). Epicuticular wax was not 

prominent.  

Geranium macrorrhizum L. Geranium 

macrorrhizum 

Leaf surfaces were covered with densely arranged 

hairs (135 hairs per 1 mm2) and glandular 

trichomes. Epicuticular wax was localised and not 

prominent.  
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