
Anomaly Detection Using Hierarchical
Temporal Memory in Smart Homes

Nasser Owaid Alshammari

A thesis submitted in partial fulfillment of the requirement of Staffordshire University for the
degree of Doctor of Philosophy

March 2018

http://www.ressan.me

List of Publications

2 REFEREED JOURNAL PUBLICATIONS

OpenSHS: Open Smart Home Simulator May, 2017

Sensors Journal

2 REFEREED CONFERENCE PUBLICATIONS

Exploring the Adoption of Physical Security Controls in Smart-

phones

August,2015

International Conference on Human Aspects of Information Security, Privacy, and Trust

2 SOFTWARE

OpenSHS http://www.openshs.org

A new open-source, 3D, cross-platform smart home simulator that follows a hybrid
approach for generating representative datasets for smart home research.

i

http://www.mdpi.com/1424-8220/17/5/1003
http://www.openshs.org

Acknowledgements

I would like to thank my supervisors Dr. Mohamed Sedky, Dr. Justin Champion and Dr.

Carolin Bauer for their dedicated supervision during my Ph.D study. Their endless help,

kindness, patience, and thoughtful considerations are greatly appreciated.

I would like to thank my family for their unlimited support which made my Ph.D journey

possible.

I would like to thank the Ministry of Education in Saudi Arabia and Al-Jouf university

for funding and supporting this research.

Thanks also go to my fellow researchers and colleagues for the good time we had in

Staffordshire University.

ii

Contents

List of Publications iii

Acknowledgements v

Table of Contents vii

Abstract xiii

List of Figures xv

List of Tables xix

Abbreviations xxi

1 Introduction 1
1.1 Aim . 2
1.2 Objectives . 2
1.3 Scope of the Investigation . 3
1.4 Contributions to Knowledge . 5
1.5 Methods of Investigation . 6
1.6 Structure of the Thesis . 8

2 Literature Review 11
2.1 Introduction . 11
2.2 The Internet of Things . 12

2.2.1 IoT Issues . 12
2.2.2 Enabling Technologies . 13
2.2.3 Context-awareness . 14
2.2.4 Middlewares . 14

2.3 Intelligence . 16
2.4 Anomaly Detection . 18

2.4.1 Challenges . 19
2.4.2 Anomaly Detection Techniques . 22

2.4.2.1 Classification . 22
2.4.2.2 Nearest Neighbours . 25
2.4.2.3 Clustering . 27
2.4.2.4 Statistical . 28

iii

2.4.2.5 Spectral . 30
2.4.3 Unsupervised Anomaly Detection Algorithms 31

2.4.3.1 k-Nearest Neighbour . 32
2.4.3.2 Local Outlier Factor . 33
2.4.3.3 Connectivity-Based Outlier Factor 33
2.4.3.4 Influenced Outlierness . 34
2.4.3.5 Local Outlier Probability 34
2.4.3.6 Local Correlation Integral 34
2.4.3.7 Approximate Local Correlation Integral 35
2.4.3.8 Cluster-Based Local Outlier Factor 35
2.4.3.9 Local Density Cluster-Based Outlier Factor 36
2.4.3.10 Clustering-Based Multivariate Gaussian Outlier Score . . 36
2.4.3.11 Histogram-Based Outlier Score 37

2.4.4 Anomaly Detection Applications and Domains 37
2.4.4.1 Intrusion Detection . 37
2.4.4.2 Fraud Detection . 38
2.4.4.3 Health and Medical . 39
2.4.4.4 Image and Video . 39
2.4.4.5 Textual Data . 40
2.4.4.6 Wireless Sensor Networks 40

2.5 Hierarchical Temporal Memory . 41
2.5.1 Anomaly Detection Using CLA . 41
2.5.2 Numenta Platform for Intelligent Computing (NuPIC) 43

2.5.2.1 NuPIC Advantages . 43
2.6 Smart Homes . 45

2.6.1 Definition . 46
2.6.2 Applications and Projects . 47
2.6.3 Anomaly Detection in Smart Homes 48
2.6.4 Requirements for Anomaly Detection in Smart Homes 49
2.6.5 Intelligent Services in Smart Homes 50

2.7 Early Experimental Results . 50
2.7.1 Dataset . 51
2.7.2 Preparation for the CLA . 52
2.7.3 CLA Results . 52
2.7.4 DBSCAN Algorithm . 53
2.7.5 Anomalies in the Dataset . 54
2.7.6 Comparing CLA with DBSCAN . 54
2.7.7 Discussion . 55

2.8 Research Gaps . 56
2.9 Summary . 58

3 Hierarchical Temporal Memory 61
3.1 Introduction . 61
3.2 HTM Theory . 61

3.2.1 HTM Principles . 65
3.2.1.1 Hierarchy . 65
3.2.1.2 Regions . 66

3.2.1.3 Sparse Distributed Representations 66
3.2.1.4 Time . 66

3.2.2 The Neurons in HTM Systems . 67
3.2.2.1 HTM Neuron Inputs . 68

3.3 Cortical Learning Algorithm . 69
3.3.1 The Algorithm . 70
3.3.2 The Spatial Pooler . 75
3.3.3 The Temporal Memory . 77

3.4 HTM Implementations . 79
3.5 Summary . 80

4 OpenSHS 83
4.1 Introduction . 83
4.2 Related Work . 86

4.2.1 Real Smart Home Testbeds . 86
4.2.2 Smart Home Simulation Tools . 87

4.2.2.1 Model-Based Approach 87
4.2.2.2 Interactive Approach . 88

4.2.3 Analysis . 90
4.3 OpenSHS Architecture and Implementation 93

4.3.1 Design Phase . 94
4.3.1.1 Designing Floor Plan . 94
4.3.1.2 Importing Smart Devices 94
4.3.1.3 Assigning Activity Labels 94
4.3.1.4 Designing Contexts . 95

4.3.2 Simulation Phase . 95
4.3.2.1 Fast-Forwarding . 96
4.3.2.2 Activities Labelling . 96

4.3.3 Aggregation Phase . 97
4.3.3.1 Events Replication . 97
4.3.3.2 Dataset Generation . 100

4.3.4 Implementation . 101
4.3.4.1 Blender . 101
4.3.4.2 Python . 102

4.4 OpenSHS Usability . 102
4.5 Conclusion . 105

5 HI-SDR Encoder 107
5.1 Introduction . 107
5.2 Sparse Distributed Representations . 107

5.2.1 Notations . 108
5.2.2 SDRs Properties . 109

5.3 NuPIC Encoders . 114
5.3.1 Proprieties of Good Encoders . 114
5.3.2 Standard NuPIC Encoders . 116

5.3.2.1 Numerical Data Types . 116
5.3.2.2 Categorical Data Types 121

5.3.2.3 Specialised Encoders . 124
5.4 Smart Home Dataset and NuPIC Encoders 125

5.4.1 Scalar Encoder . 127
5.4.2 Category Encoder . 128
5.4.3 SDR-Category Encoder . 129
5.4.4 Results . 130
5.4.5 Analysis . 130

5.5 The HI-SDR Encoder . 137
5.5.1 HI-SDR Encoder Results . 139
5.5.2 The Algorithm . 145

5.6 Summary . 146

6 Test and Evaluation 149
6.1 Introduction . 149
6.2 Methodology . 149

6.2.1 Smart Home Design . 150
6.2.1.1 Why the Sensors are Binary? 153
6.2.1.2 Contexts . 153

6.2.2 The Participants and the Datasets 154
6.2.2.1 Dataset Aggregation . 154
6.2.2.2 The Anomalies . 157

6.2.3 Experiment Design . 157
6.2.3.1 Anomaly Scoring Metric 159
6.2.3.2 Twiddle . 162
6.2.3.3 Experiment Parameters 163

6.3 Results . 167
6.3.1 HTM Based . 167

6.3.1.1 SDR-Category Encoder 167
6.3.1.2 HI-SDR encoder . 172
6.3.1.3 SDR-Category Encoder versus HI-SDR 175

6.3.2 Nearest Neighbour Based . 177
6.3.3 Cluster and Density Based . 181
6.3.4 Statistics Based . 182

6.4 Discussion . 183
6.5 Summary . 191

7 Conclusions and Future Work 193
7.1 Research Contributions . 195
7.2 Conclusion and Future Work . 196

A Spatial Pooler and Temporal Memory 199
A.1 Spatial Pooler . 199

A.1.1 Initialisation . 199
A.1.2 First Phase: Overlap . 200
A.1.3 Second Phase: Inhibition . 200
A.1.4 Third Phase: Update . 201

A.1.5 Functions and Data Structures . 202
A.2 Temporal Memory . 204

A.2.1 Inference Mode . 204
A.2.1.1 First Phase: Active Cells 204
A.2.1.2 Second Phase: Predictive Cells 204

A.2.2 Learning Mode . 205
A.2.2.1 First Phase: Active Cells 205
A.2.2.2 Second Phase: Predictive Cells 206
A.2.2.3 Third Phase: Update . 206

A.2.3 Functions and Data Structures . 207

B Datasets 209

C OpenSHS Documentation 231
C.1 Requirements . 231
C.2 Quick Start . 231
C.3 Manual . 232

C.3.1 Start Command . 232
C.3.1.1 Examples . 232

C.3.2 Status Command . 232
C.3.2.1 Examples . 232

C.3.3 Aggregate Command . 233
C.3.3.1 Examples . 233

References 235

Abstract

This work focuses on unsupervised biologically-inspired machine learning techniques

and algorithms that can detect anomalies. Specifically, the aim is to investigate the ap-

plicability of the Hierarchical Temporal Memory (HTM) theory in detecting anomalies

in the smart home domain. The HTM theory proposes a model for the neurons that is

more faithful to the actual neurons than their usual counterparts in Artificial Neural Net-

works (ANN) based on the current Neuroscience understanding. The HTM theory has

several algorithmic implementations, the most prominent one is the Cortical Learning

Algorithm (CLA). The CLA model typically consists of three main regions: the encoder,

the spatial pooler and the temporal memory. Studying the performance of the CLA in the

smart home domain revealed an issue with the standard encoders and high-dimensional

datasets. In this domain, it is typical to have high-dimensional feature space represent-

ing the collection of smart devices. The standard CLA encoders are more suitable for

low-dimensional datasets and there are encoders for categorical and scalar data types.

A novel Hash Indexed Sparse Distributed Representation (HI-SDR) encoder was pro-

posed and developed, to overcome the high-dimensionality issue. The HI-SDR encoder

creates unique representation of the data which allows the rest of the CLA regions to

learn from. The standard approach when creating HTM models to work with datasets

with many features is to concatenate the output of each encoder. This work concludes

that the standard encoders produced representations for the input during every time-

step that were similar and less distinguishable for the HTM model. This output similarity

confuses the HTM model and makes it hard to discern meaningful representations. The

proposed novel encoder manages to capture the required properties in terms of sparsity

and representations.

To investigate and validate the performance of a proposed machine learning technique,

there has to be a representative dataset. In the smart home literature, there exists

many real-world smart home datasets that allow the researchers to validate their mod-

els. However, most of the existing datasets are created for classification and recognition

of Activities of Daily Living (ADL). The lack of datasets for anomaly detection appli-

cations in the domain of smart homes required the development of a simulation tool.

OpenSHS (Open Smart Home Simulator) was developed as an open-source, 3D and

cross-platform smart home simulator that offers a novel hybrid approach to dataset gen-

eration. The tool allows the researchers to design a smart home and populate it with

the needed smart devices. Then, the participants can use the designed smart home and

simulate their habits and patterns.

Anomaly detection in the smart home domain is highly contextual and dependent on

the inhabitant’s activities. One inhabitant’s anomaly could be the norm for another,

therefore the definition of anomalies is a complex consideration. Using OpenSHS, seven

participants were invited to generated forty-two datasets of their activities. Moreover,

each participant defined his/her own anomalous pattern that he/she would like the

model to detect. Thus, the resulting datasets are annotated with contextual anomalies

specific to each participant.

The proposed encoder has been evaluated and compared against the standard CLA en-

coders and several state-of-the-art unsupervised anomaly detection algorithms, using

Numenta Anomaly Benchmark (NAB). The HI-SDR encoder scored 81.9% accuracy, on

the forty-two datasets, with 17.8% increase in accuracy compared to the k-NN algo-

rithm and 47.5% increase over the standard CLA encoders. Using the Principal Compo-

nent Analysis (PCA) algorithm as a preprocessing step proved to be beneficial to some

of the tested algorithms. The k-NN algorithm scored 39.9% accuracy without PCA and

scored 64.1% accuracy with PCA. Similarly, the Histogram Based Outlier Score (HBOS)

algorithm scored 28.5% accuracy without PCA and 61.9% with PCA.

The HTM-based models empirically showed good potential and exceeded in perfor-

mance several algorithms, even without the HI-SDR encoder. However, the HTM-based

models still lack an optimisation algorithm for its parameters when performing anomaly

detection.

List of Figures

1.1 The scope of the investigation. 4

1.2 The research onion model (Saunders, 2011). 6

1.3 Methods and strategies of research (De Villiers, 2005). 7

2.1 AI techniques used in 109 context-aware applications (Lim & Dey, 2010). 16

2.2 Point anomalies in a two dimensional space (Chandola et al., 2009). . . . 20

2.3 Contextual anomalies in a monthly temperature data (Chandola et al.,
2009). 20

2.4 Collection anomaly in a human electrocadriogram (Chandola et al., 2009). 21

2.5 Anomaly detection and the approaches with availability of training and
testing data (Goldstein & Uchida, 2016). 22

2.6 Classification based anomaly detection techniques (Chandola et al., 2009). 23

2.7 Data points with varying densities (Chandola et al., 2009). 26

2.8 LOF and COF density measurement (Chandola et al., 2009). 26

2.9 The global anomalies x1, x2 and the local anomaly x3 (Goldstein & Uchida,
2016). 31

2.10 Categorisation of unsupervised anomaly detection algorithms. 32

2.11 The k-nearest neighbour anomaly scoring of an artificial sample dataset
(Goldstein & Uchida, 2016). 32

2.12 The INFLO algorithm compared to the LOF algorithm (Goldstein & Uchida,
2016). 34

2.13 The unweighted Cluster-Based Local Outlier Factor (uCBLOF) algorithm
(Goldstein & Uchida, 2016). 36

2.14 NuPIC predicting the sine wave. 44

2.15 NuPIC anomaly score. 44

2.16 NuPIC small errors in predicting the sine wave. 45

2.17 A sample of the dataset. 51

2.18 Anomaly likelihood scores. 52

2.19 Overview of Scikit-learn clustering algorithms. 53

2.20 DBSCAN results on the dataset. 54

2.21 The CLA and DBSCAN results combined. 55

2.22 The CLA and DBSCAN anomaly results. 55

x

3.1 The neocortex regions of the visual system in the macaque monkey (Felle-
man & Van Essen, 1991). 62

3.2 The layers of the neocortex from Gray’s Anatomy (Williams et al., 1980). . 62

3.3 The neurons structure (Devineni, 2015). 63

3.4 Sparse Distributed Representations (SDRs). 66

3.5 An HTM neuron and a real neuron (Hawkins & Ahmad, 2016). 68

3.6 An HTM system workflow. 69

3.7 Flattened neurons in an HTM system. 71

3.8 Two sequences and how they are represented in the CLA over time. 71

3.9 Predicting the next word in a learned sequence. 72

3.10 Predicting multiple ambiguous words in a learned sequence. 72

3.11 The CLA performing inhibition (Jeff Hawkins, 2014). 73

3.12 The CLA changes over time (Jeff Hawkins, 2014). 74

3.13 Higher order memory(Jeff Hawkins, 2014). 74

3.14 A mini-column in the SP and its receptive field. 76

3.15 Two formed segments in the TM. 78

4.1 The workflow of real and simulated smart homes testbeds. 84

4.2 The design phase. 95

4.3 The simulation phase. 96

4.4 The activity selection and fast-forwarding dialogue. 96

4.5 The aggregation phase. 97

4.6 Twenty-nine binary sensors’ output and the corresponding activity labels. . 98

4.7 Navigating the smart home space through the first-person perspective. . . 102

4.8 The result of System Usability Scale (SUS) questionnaire for the researchers’
group. 104

4.9 The result of System Usability Scale (SUS) questionnaire for the partici-
pants group. 105

5.1 The growth of the number of active bits in the union set as a function of
the number of SDRs in the set. 113

5.2 Encoding multiple scalar values [1, 2, 3, 100] with the parameters n =
100, w = 3,minV al = 1,maxV al = 100. 117

5.3 Using SDRs to encode natural language (Jeff Hawkins, 2014). 125

5.4 Using multiple scalar encoders to encode the smart home dataset. 126

5.5 Using multiple category encoders to encode the smart home dataset. . . . 126

5.6 The activities of each bit of the SDRs after reading 10,000 records using
the Scalar encoder. 132

5.7 The activities of each bit of the SDRs after reading 10,000 records using
the Category encoder. 133

5.8 The activities of each bit of the SDRs after reading 10,000 records using
the SDR-Category encoder. 134

5.9 The bursting columns activity after reading 10,000 records. 135

5.10 The sequence sleep → personal → eat → work SDRs produced by the
Scalar encoder. 136

5.11 The sequence sleep → personal → eat → work SDRs produced by the
Category encoder. 136

5.12 The sequence sleep → personal → eat → work SDRs produced by the
SDR-Category encoder. 137

5.13 The HI-SDR encoder. 138

5.14 The activities of each bit of the SDRs after reading 10,000 records using
the proposed HI-SDR encoder. 140

5.15 The sequence sleep → personal → eat → work SDRs produced by the
HI-SDR encoder. 141

5.16 The bursting columns activity produced by the HI-SDR encoder. 141

5.17 The HI-SDR results with the optimised parameters for the SP and the TM. 143

5.18 The sequence sleep → personal → eat → work SDRs by the HI-SDR
encoder with the optimised parameters. 144

5.19 The bursting columns activity by produced the HI-SDR encoder with the
optimised parameters. 145

6.1 The floor plan’s design of the smart home. 150

6.2 The experiment design. 158

6.3 An example data with anomalies (Lavin & Ahmad, 2015). 160

6.4 NAB scoring function (Lavin & Ahmad, 2015). 161

6.5 A portion of dataset d1-1m-0tm that shows the sensors’ readings. 164

6.6 Scoring an HTM system with HI-SDR encoder on dataset d1-1m-0tm. . . . 165

6.7 Part of the last 20% section of the dataset d1-1m-0tm and the anomaly
period. 166

6.8 SDR-Category encoder results with different minThreshold values. 168

6.9 SDR-Category encoder with activationThreshold values equals to minThresh-
old. 169

6.10 SDR-Category encoder results and synPermInactiveDec parameter. 169

6.11 SDR-Category encoder results with different activationThreshold values. . 170

6.12 SDR-Category encoder with activationThreshold values ranging from 11
to 16. 171

6.13 SDR-Category encoder with activationThreshold values ranging from 17
to 22. 172

6.14 HI-SDR with different MaxBoost values. 173

6.15 HI-SDR with different CellsPerColumns values. 173

6.16 HI-SDR with different connectedPermanence values. 174

6.17 HI-SDR with different numActiveColumnsPerInhArea values. 175

6.18 HI-SDR with different synPermInactiveDec values. 175

6.19 k-NN model results. 178

6.20 COF model results. 179

6.21 LoOP model results. 180

6.22 INFLO model results. 180

6.23 The results of all evaluated models. 184

6.24 The first 10,000 records of the d4-2m-10tm dataset encoded with SDR-
Category encoder and with model parameters A. 185

6.25 The first 10,000 records of the d4-2m-10tm dataset encoded with HI-SDR
encoder and with model parameters A. 186

6.26 The first 10,000 records of the d4-2m-10tm dataset encoded with both
encoders with model parameters B. 187

6.27 The SP with both encoders and with model parameters A. 188

6.28 The SP with both encoders using model parameters B. 189

6.29 The TM with SDR-Category encoder and with model parameters A. 189

6.30 The Temporal Memory with HI-SDR encoder and with model parameters
A. 190

6.31 The TM with SDR-Category encoder and with model parameters B. 190

6.32 The Temporal Memory with HI-SDR encoder and with model parameters
B. 190

List of Tables

2.1 Comparing Grok against other anomaly detection methods (Hawkins,
2014). 42

2.2 CLA vs DBSCAN. 56

3.1 HTM implementations anomaly detection score using NAB. 80

4.1 Analysis of smart home simulation tools. 91

4.2 A set of recorded samples for a particular context. 98

4.3 Ten replicated copies based on the samples from Table 4.2. 99

4.4 A sample of the final dataset output. 101

5.1 The results of using the Standard NuPIC encoders. 130

6.1 All smart home sensors and dataset columns. 152

6.2 The forty-two test datasets and the corresponding number of records. . . . 155

6.3 the anomalies defined by the participants. 158

6.4 LOF model results. 178

6.5 LOCI model results. 179

6.6 CBLOF model results. 181

6.7 LDCOF model results. 182

6.8 CMGOS model results. 182

6.9 DBSCAN model results. 182

6.10 HBOS model results. 183

6.11 rPCA model results. 183

6.12 SDR-Category encoder and HI-SDR encoder results using two identical
sets of parameters. 187

A.1 Spatial Pooler data structures. 202

A.3 Spatial Pooler functions and their returned values types. 203

A.5 Temporal Memory data structures. 207

A.7 Temporal Memory functions and their returned values types. 208

xiv

Abbreviations

ADL Activities of Daily Living

AI Artificial Intelligence

ANN Artificial Neural Network

aLOCI approximate LOcal Correlation Integral

CBLOF Cluster-Based Local Outlier Factor

CMGOS Clustering-Based Multivariate Gaussian Outlier Score

CNN Convolutional Neural Networks

CLA Cortical Learning Algorithm

COF Connectivity-Based Outlier Factor

HI-SDR Hash Indexed Sparse Distributed Representations

HBOS Histogram-Based Outlier Score

HTM Hierarchical Temporal Memory

IoT Internet of Things

KNN K Nearest Neighbour

LDCOF Local Density Cluster-Based Local Outlier Factor

LOF Local Outlier Factor

LOCI LOcal Correlation Integral

LoOP Local Outlier Factor

NAB Numenta Anomaly Benchmark

NuPIC Numenta Platform for Intelligent Computing

OpenSHS Open Smart Home Simulator

PCA Principal Component Analysis

PSO Particle Swarm Optimisation

RFID Radio Frequency IDentification

SDR Sparse Distributed Representations

SP Spatial Pooler

TM Temporal Memory
xv

“The key to artificial intelligence has always been the representation.”

Jeff Hawkins

Chapter 1

Introduction

The Internet of Things (IoT) paradigm imposes several challenges on today’s technolo-

gies. With the increasing demands of the IoT, a revolution on the hardware and software

levels is required. Taking into account the huge amount of data generated by the smart

devices in the IoT vision, anomaly detection becomes a valuable tool in managing and

controlling that flood of data. In a study conducted by Gartner (2017), the number of

connected “Things” is 8.4 billion devices in 2017. This number grew by 31% from 2016

and the study predicts that the number will continue to grow and will reach 20.4 billion

connected devices by 2020. Moreover, the spending on IoT services that provide design,

development, and implementation of IoT solutions will reach $273 billion by the end of

2017.

Today’s smart homes are equipped with many sensors and actuators that generate a

stream of spatio-temporal data representing the state of the home and the inhabitants.

Recent advancements in hardware and communication protocols allowed the vision of

the IoT to become a reality. Under the IoT paradigm, many of the smart home devices

gain the ability to connect to the public Internet and perform complex tasks. This ne-

cessitates the existence of a management and controlling mechanism for these smart

devices. The challenge is how to integrate and evaluate the collected data to recog-

nise abnormal activities, such as leaving the main door left open overnight. The smart

home literature studies many areas and applications with machine learning playing an

important role in these areas and can progress the capabilities of the smart home middle-

wares. One of the applications that machine learning models offer is the ability to detect

anomalous activities in a dataset. Anomaly detection is essential for many applications

in the smart home such as privacy, security, and elderly care. Current machine learning

techniques fall short of reaching the full potential of anomaly detection. However, we

know that the human brain is more than capable of detecting anomalous patterns. Thus,

1

Chapter 1 Introduction 1.1. Aim

machine learning techniques that simulate what actually happens in the human brain

will help pushing the research towards smarter anomaly detection.

One of the recent advancements and efforts to understand how the human brain per-

forms some of its cognitive operations is the Hierarchical Temporal Memory (HTM)

theory (Hawkins & Ahmad, 2016). Backed by recent findings in Neuroscience, the HTM

theory suggests an overarching view of how the neocortex learns from sensory input.

The Cortical Learning Algorithm (CLA) (Ahmad et al., 2017) is an algorithm influenced

by the principals of the HTM theory that can perform anomaly detection in streams of

data without the need for supervision.

Detecting anomalies is one of the important challenges facing smart home research.

Anomaly detection in the smart home domain can serve many purposes in many ar-

eas such as detecting abnormal power consumption, detecting suspicious activities and

monitoring the elderly especially those who live independently. Anomaly detection can

help in providing intelligent services that are context-aware of the smart home user.

However, one of the challenges facing any machine learning model is how to model

the context and daily patterns and behaviour of the smart home user. This is challeng-

ing due to how random and noisy these patterns are. Another challenge in the smart

home research field is having a good dataset that captures the different interactions that

happen between the inhabitants and their environment.

This research could be used to implement an anomaly detection interface that can be

used in an IoT middleware. Let us consider an example of a smart home user that goes

to work on weekdays, and he/she always picks up his/her car keys before leaving the

house. In the case where he/she forgets to take the car keys, the anomaly detection layer

should detect this as an anomaly, and it is the middleware’s responsibility to provide the

appropriate action.

1.1 Aim

The aim of this research is to investigate the use and application of the HTM theory to

propose an intelligent and adaptive anomaly detection technique that can be used as a

part of a middleware layer for the smart home user in the IoT era.

1.2 Objectives

The objectives of this research are to:

2

Chapter 1 Introduction 1.3. Scope of the Investigation

1. Conduct a literature review of existing IoT middlewares and to critically evaluate

their strengths and weaknesses,

2. Conduct a literature review of anomaly detection research in the context of smart

homes,

3. Investigate the use of HTM as an adaptive anomaly detection method for smart

homes,

4. Propose a design and an implementation of a simulation and testing environment

for smart homes under the IoT vision,

5. Build a dataset using the simulation environment that simulates the smart home

user’s daily patterns,

6. Study different context modelling methods in the IoT paradigm,

7. Propose a novel semantic representation to facilitate context modelling in an IoT

smart home environment,

8. Evaluate the proposed context modelling representation to detect anomalies in a

smart home setting against state-of-the-art machine learning algorithms.

1.3 Scope of the Investigation

The IoT vision requires many revolutions on many fronts. It will be impossible to study

and address all the issues that are facing the full adoption of the IoT vision. Therefore,

this research will make some assumptions and will position itself in a well-defined place

to address some of the research gaps.

The smart home domain is one of the realisations of the IoT vision. The research at hand,

focuses on detecting anomalous patterns of the smart home inhabitants via machine

learning models. However, there are many aspects and issues that surround the actual

implementation of such techniques and it would be impossible to address all of these

issues. Therefore, the following points are the main assumptions that this research

assumes:

• Reliable communication: The research will not address low-level issues regard-

ing the transportation of packets in the network. The assumption here is that all

the devices and the network are capable of providing a reliable networking and

transportation. Also, the research will not address the different protocols or means

of communication, like communicating over WiFi or Bluetooth, etc.

3

Chapter 1 Introduction 1.3. Scope of the Investigation

• Reliable addressing: How the devices will be identified in the network and what

addressing scheme will be used is outside of the scope of the research.

• Reliable storage: Storage and retrieval of data for all components are assumed to

be reliable and capable of good performance.

• Reliable processing: The smart devices are assumed to have enough processing

power to allow them to perform the desired tasks.

FIGURE 1.1: The scope of the investigation.

Figure 1.1 illustrates the three broad fields that this research touches on and the inter-

action of them which are the focus and scope of this work. In Chapter 2, the IoT issues

and applications in general will be presented. However, the key part from that domain

is the smart home as one of the IoT prominent applications.

Anomaly detection as a field of study is a well-established discipline and many mathe-

matical and statistical research efforts were dedicated to investigate the various aspects

of detecting outliers out of a collection of data. However, due to the influx of data that

the state-of-the-art techniques provide, the interest of this field is rising. The nature of

the data and the requirement for fast anomaly detection impose several challenges on

any proposed technique.

The data in a smart home setting is streaming and spatio-temporal. Moreover, the in-

habitants’ activities are very subjective and differs from on inhabitant to another. This

4

Chapter 1 Introduction 1.4. Contributions to Knowledge

subjectivity makes it hard to decide what an anomaly actually is. Therefore, this research

will focus on unsupervised anomaly detection techniques because these techniques do

not require the existence of labels to train from. The unsupervised techniques will learn

from the data and predict if a certain activity is an anomaly or not based on the inhabi-

tant’s own daily patterns.

The HTM theory, which will be presented in details in Chapter 3, takes the time as

an important factor and as one of its principal components in the learning process.

Moreover, the theory proposes a flexible representation of the data that is inspired by

the recent advancements in Neuroscience. Many implementations of the theory exists

in the literature. These implementations provide classification, prediction, and anomaly

detection services. However, the investigation of the application of this theory in a smart

home setting to detect anomalies has not been studied in the literature.

1.4 Contributions to Knowledge

The novel contributions of this work are summarised as:

• The primary contribution is a novel HTM encoder suitable for detecting anomalies

in smart homes. The standard HTM scalar encoders and categorical encoders did

not produce good results when encoding high-dimensional datasets. The novel

encoder, the Hash-Indexed Sparse Distributed Representation encoder (HI-SDR)

(see Chapter 5), is able to capture the required properties for good HTM encoders

(see Section 5.3.1) and encode high-dimensional dataset into a representation that

allows the rest of the HTM model components to learn and detect anomalies with

better accuracy.

• A secondary contribution of this work is OpenSHS (see Chapter 4). OpenSHS is A

new open-source, 3D, cross-platform smart home simulator that follows a hybrid

approach for generating representative datasets for smart home research,

• Another secondary contribution is the creation of forty-two smart home datasets

created by seven participants using OpenSHS specifically for anomaly detection

problems. One of the significant contributions of these datasets is that the prob-

lematic definition of anomalies in the context of smart homes has been dealt with

in a user-centric way. Each participant, performed a series of anomalous events

according to their habits and behaviour. Thus, ensuring the datasets are a good

test for the generalisability and adaptability of any proposed anomaly detection

model.

5

Chapter 1 Introduction 1.5. Methods of Investigation

1.5 Methods of Investigation

Saunders (2011) proposed the research onion model which illustrates the stages of a

research project starting with the philosophy behind a research and ending with the

data collection methods and strategies. The research onion is a popular model and it is

applicable to many research types.

FIGURE 1.2: The research onion model (Saunders, 2011).

As shown in Figure 1.2 The outermost layer of the research onion model deals with

the philosophical foundation behind any knowledge pursuit. The positivism view about

reality state that reality exists and can be observed and described objectively and in-

dependently from the observing subjects (Newman & Benz, 1998). These observations

should also be repeatable and applicable. Positivism can also be referred to as empiri-

cism and usually applied to hard science. What is commonly thought of as an opposite

to the positivist view is the interpretivist view. The interpretivism view about reality

assumes the existence of many realities that are dependant on the interpretation of the

observing subjects, and these realities are dependant on time and context (De Villiers,

2005). Interpretivism is also referred to as constructionism and usually applied to social

science.

The second layer of the onion model deals with the approaches suitable for every philo-

sophical view of reality. The deductive approach develops a hypothesis based on an

existing theory. Based on gathered observations, this hypothesis is either accepted or

rejected. Therefore, the deductive approach goes from the general to the specific. The

inductive approach, on the other hand, goes from the specific to the general. It starts

6

Chapter 1 Introduction 1.5. Methods of Investigation

by gathering observations. Then, trying to find patterns in these observations to create

hypothesis from which a theory will eventually emerge.

FIGURE 1.3: Methods and strategies of research (De Villiers, 2005).

The choice of data types for a particular research can be categorised into two categories:

quantitative and qualitative data types. Quantitative and qualitative research are not

mutually exclusive and both can be used in what is referred to as mixed methods. The

quantitative research deals with large quantitative data that can be measured and anal-

ysed using statistical methods (May, 2011). The quantitative research is usually asso-

ciated with deductive approaches guided by positivist philosophical views. However, it

can be used with other approaches, in social sciences for example, which are usually in-

ductive. The qualitative research is usually associated with interpretivism and inductive

approaches and tries to interpret the subject’s realities. Figure 1.3 shows the strategies

and methods that are suitable for the corresponding data and philosophical views.

This research deals with a big number of quantitative data gathered by simulating the

habits and patterns of a smart home inhabitant. This data is statistically analysed and

evaluated to measure the performance of an HTM machine learning model at detecting

anomalous patterns. The machine learning model is built under the guidance of the

HTM theory and the hypothesis that the HTM theory is able to develop a machine learn-

ing model capable effectively of detecting anomalies. Therefore, this research follows

a positivist view of reality by a deductive approach on quantitative data gathered by

simulations.

The main steps taken in this research can be summarised chronologically as follows:

7

Chapter 1 Introduction 1.6. Structure of the Thesis

• Conducting a comprehensive literature review of the IoT and smart homes, anomaly

detection algorithms and specifically unsupervised biologically-inspired anomaly

detection algorithms,

• Studying the HTM theory and its algorithmic implementation and their capabilities

in detecting anomalies without supervision,

• Developing a novel smart home simulator, OpenSHS (see Chapter 4), to design a

virtual smart home,

• Generating representative synthetic smart home datasets using OpenSHS by vol-

unteering participants,

• Developing a biologically-inspired anomaly detection model based on the HTM

theory,

• Developing a novel encoder, HI-SDR (see Chapter 5), that solves the issue with the

HTM model and high-dimensional datasets,

• Evaluating and analysing the performance of the novel encoder against the state-

of-the-art unsupervised anomaly detection algorithms.

1.6 Structure of the Thesis

This thesis is organised into seven chapters as follows:

• Chapter 1: Is an introduction to the thesis that describes the aims and objectives

of this work along with the novel contributions to knowledge and methods of

investigations used in this research.

• Chapter 2: Provides a literature review of the research efforts in the domain of

anomaly detection, smart homes, HTM theory and IoT.

• Chapter 3: Focuses on the HTM theory and its algorithmic implementation, the

CLA.

• Chapter 4: Presents OpenSHS, a new smart home simulator, and its implementa-

tion details.

• Chapter 5: Studies the first region of the HTM models, the encoder. The Chapter

also presents the novel encoder “HI-SDR”, which is developed to overcome the

issue of high-dimensional datasets with HTM systems.

8

Chapter 1 Introduction 1.6. Structure of the Thesis

• Chapter 6: Evaluates the novel encoder on the forty-two datasets generated by

OpenSHS and compares the results with the standard HTM encoders and with

state-of-the-art unsupervised anomaly detection algorithms.

• Chapter 7: The thesis concludes with this Chapter which summarises the out-

comes of the research and the recommendations for future work.

9

Chapter 2

Literature Review

2.1 Introduction

This Chapter starts with an introduction to the IoT paradigm and its enabling technolo-

gies and their issues. The concept of context-awareness is presented and how mid-

dleware solutions are used to provide the user with intelligent services. These intelli-

gent services can use Machine Learning models that are capable of detecting anomalies.

These models can be used as infrastructure for a middleware solution to provide better

context-aware and intelligent services.

Anomaly detection is a well-established field of research. In this Chapter, a literature

review of different anomaly detection techniques is presented and critiqued as well as

their application domains.

One of the recent advancements in Machine Learning models is the introduction of the

HTM theory which is an overarching theory of how the neocortex in the brain works.

The theory suggests a more complex model to the neuron than what is typically found

in Artificial Neural Networks (ANNs). The Cortical Learning Algorithm (CLA) is the

algorithmic implementation of this theory. The theory is briefly presented in this Chapter

and studied in details in the next Chapter.

One of the prominent applications of the IoT vision is the smart home. A definition

of what constitutes a smart home, is presented in this Chapter as well as its applica-

tions. The role of anomaly detection in the smart home and what it can provide is also

presented.

The Chapter is concluded by an initial study of the CLA on a small dataset generated by

a prototype smart home simulation tool (which later became OpenSHS, see Chapter 4)

and the results are compared to the DBSCAN clustering algorithm.

10

Chapter 2 Literature Review 2.2. The Internet of Things

2.2 The Internet of Things

Kevin Ashton first coined the term “Internet of Things” in 1999 (Ashton, 2009) to express

the idea that all of the information on the Internet today is captured by humans and

by having smart objects1 assessing the humans in capturing or even taking the role of

capturing the information. The research of Auto-ID Labs (2003) in the Radio-frequency

identification (RFID) field gave the IoT popularity and attention. Since the IoT research

field is evolving, there are different definitions of the term. Tan & Wang (2010) defined

it as: “Things have identities and virtual personalities operating in smart spaces using

intelligent interfaces to connect and communicate within social, environment, and user

contexts”. Also, according to Vermesan et al. (2011): “The Internet of Things could

allow people and things to be connected Anytime, Anyplace, with Anything and Anyone,

ideally using Any path/network and Any service”. In this research proposal, the author

believes that the latter definition captures the overall picture of the IoT future vision.

2.2.1 IoT Issues

The realisation of the IoT ultimate vision is faced with many obstacles. As with any

new technology, standardisation is one important obstacle to overcome. For instance, in

the RFID field, the Electronic Product Code (EPCglobal) standard by Global Standards

One (2003) promotes a global adaptation of the Electronic Product Code (EPC). The

IEEE 802.15.4 (Molisch et al., 2004) is the physical and Media Access Control (MAC)

layer standard for low-rate wireless personal area networks which is the basis for the

Internet Engineering Taskforce (IETF) IPv6 over Low power Wireless Personal Area Net-

works (6LoWPAN) standard (Kushalnagar et al., 2007). 6LoWPAN allows IPv6 packets

to be transferred over networks following the IEEE 802.15.4 standard. The same IEEE

802.15.4 standard is built upon by proprietary technologies like ZigBee (ZigBee, 2006).

Such proprietary solutions will hinder the realisation of the IoT vision and will con-

tribute greatly to the fragmentation and lack of standardisation. The success of the

current Internet could be attributed to its transparency and openness which is impor-

tant to a worldwide network used by billions of users. The necessity of open standards

is a crucial aspect of a network that will span everything around us.

In addition to the standardisation issue, a survey by Atzori et al. (2010) identified other

technical issues such as the addressing of the things in the IoT. Since the number of

the connected things will be huge, IPv6 is an appealing choice, but due to the differ-

ent incompatible technologies implemented, more effort is needed in this regard. The

1Smart objects, things and devices are used interchangeably.

11

Chapter 2 Literature Review 2.2. The Internet of Things

6LoWPAN standard is an example of such efforts. Furthermore, there is a need for a

naming service analogous to the Domain Name System (DNS) of the current Internet.

Concepts like the EPCglobal’s Object Naming Service (ONS) (Brock, 2001) could be

valuable. Also, the scalability and reliability of the network is another important issue

to be tackled taking into consideration the demands of things in the IoT paradigm.

The research activities in the IoT field regarding the Internet network stack itself could

be categorised into two categories. One category promotes the use of the existing In-

ternet infrastructure and standards without any modification and that stance is led by

the Web of Things (WoT) research (Guinard, 2011; Trifa, 2011). The other category

proposes the change or modification of the Internet infrastructure. An example of the

latter is the Constrained Application Protocol (CoAP)(Bormann et al., 2012) which is a

lighter alternative to the Hypertext Transfer Protocol (HTTP).

Security in the IoT context is another major open issue. With the abundance of wire-

lessly connected devices, issues like the man-in-the-middle attack could be a real threat

(Li et al., 2012). Furthermore, the sheer number of connected devices could make

Distributed Denial of Service (DDoS) attacks trivial to achieve. Bandyopadhyay & Sen

(2011) identified several open security issues such as securing the IoT architecture and

the proactive identification of malicious software and attacks. Considering the huge

number of connected things in the IoT paradigm, privacy and ownership management

is another important open issue. In the same paper, the researchers identified several

challenges such as data privacy, location privacy and tools for identity management of

users and objects.

The IoT paradigm requires the ability for anything to connect and communicate using

any available means. This requirement was identified by many researchers and typically

referred to as the problem of heterogeneity of the things and lack of interoperability

(Haller et al., 2009).

2.2.2 Enabling Technologies

The IoT vision could be a reality due to advancement in the RFID and Wireless Sensor

Networks (WSN) fields. For instance, a group of researchers (Welbourne et al., 2009)

managed to build a miniature IoT network using RFID technology and conducted a

study for the users’ reactions. Fosstrack (Floerkemeier et al., 2007) is an open source

RFID platform that implements the GS1 EPC standards. Also, WSN could play a ma-

jor role in the IoT. Molla & Ahamed (2006) presented ten key obstacles that must be

considered when building a middleware for sensor networks and also the researchers

conducted a survey of existing middlewares. Mohamed & Al-Jaroodi (2011) surveyed

12

Chapter 2 Literature Review 2.2. The Internet of Things

service-oriented middlewares for WSN. Gubbi et al. (2013) showed how RFID and WSN

are important enabling technologies and predicted they will play an important role for

the future IoT.

2.2.3 Context-awareness

Due to the enormous number of smart devices envisioned in the IoT paradigm, manag-

ing and controlling each smart device individually will be cumbersome for the user. The

smart device’s interaction with the user should not be intrusive and should be intelligent

and able to adapt to the user’s habits. Moreover, the interaction should take into account

the current situation of the user. Awareness of the present environment of the user is

called context-awareness which is a term first coined by Schilit & Theimer (1994) in

1994. Dey et al. (2001) surveyed and critiqued the different definitions of the term. Per-

era et al. (2014) conducted a comprehensive survey of context awareness from the IoT

perspective and 50 projects from the last decade were compared and critically evaluated

to conclude lessons for the future research in this field. Moreover, the study conducted a

comparison of the AI techniques used in different middlewares to model and represent

context. According to Dey et al. (2001), the definition of Context is: “Context is any

information that can be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the interaction between a user and

an application, including the user and applications themselves.”

Also from the same paper, the definition of Context-awareness is: “A system is context-

aware if it uses context to provide relevant information and/or services to the user,

where relevancy depends on the user’s task.” (Preuveneers & Berbers, 2008) identified

context-awareness as a key part to the realisation of the IoT ultimate vision.

2.2.4 Middlewares

Issarny et al. (2007) defines the middleware as software that acts as a mediator between

the applications and the distributed operating system providing services to well-known

issues such as heterogeneity, security and interoperability. The middleware could be

looked at as an operating system which allows software applications to interact with the

smart devices via an Application Programming Interface (API). The middleware layer at

hand tries to solve some of the issues facing the adoption of the IoT paradigm in domes-

tic smart home settings. Mainly, the management of the vast number of the connected

devices and detecting the user’s usage patterns.

13

Chapter 2 Literature Review 2.2. The Internet of Things

The literature is full of projects and research activities each with its own focus and scope.

One interesting work was presented by Kawsar (2009); Kawsar & Nakajima (2009)

where a document based and user-centric framework for smart objects was proposed.

The document based approach was influenced by the design of the World Wide Web,

which enabled the exchange of information in a platform agnostic way. The framework

utilises this approach to overcome the heterogeneity problem of smart objects. Smart

objects present their services in XML documents to a governing body called FedNet.

FedNet manages the requests coming from the applications and connect them with the

available services of smart objects. Furthermore, the framework presented user-centric

tools built on top of the system to aid in the management of the users’ devices. The

framework also presented abstractions and design methodologies helpful for the appli-

cation developers and manufacturers. The framework, however, could be improved in

many ways to meet the needs of the IoT vision.

Soma Bandyopadhyay et al. (2011) conducted a survey and a comparison of existing IoT

middlewares. Some of the comparison factors were the device management, interoper-

ation, context-awareness, security and privacy. The survey showed a lack of interest in

the context-awareness aspect and more work could be done to improve the state of the

current IoT middlewares.

The open source Robot Operating System (ROS) (Quigley et al., 2009) was successfully

used in a study by Kranz et al. (2010b) to build a smart office environment where

everything in the office can send updates via Twitter. Contiki (Dunkels et al., 2004) is

also a popular tiny, lightweight and event-driven operating system suitable for devices

with scarce resources.

Previous work was done by Roalter et al. (2010) to use ROS as an IoT middleware and

the simulations tools of ROS were used to create an intelligent environment called the

Cognitive Office.

There are many methods to model context. Each method has its strengths and weak-

nesses. Perera et al. (2014) surveyed some of the ways to model context such as:

• Key-Value pairs

• Markup and tags

• Graphical-based

• Object-based

• Logic-based

14

Chapter 2 Literature Review 2.3. Intelligence

• Ontology-based

Lim & Dey (2010) conducted a survey of 109 context-aware applications and the AI

techniques used in these applications. Figure 2.1 shows a pie-chart of traditional AI

techniques used in these applications. The majority of these context-aware applications

use simple conditional statements to construct rules.

FIGURE 2.1: AI techniques used in 109 context-aware applications (Lim & Dey, 2010).

In a study conducted on 192 participants, the author explored some of the participants

habits with regard to their smart devices. 68% of the participants reported that they

have a smart device other than a smart phone. Most of these smart devices are tablets

(81.4%). When asked if the participant would like to have a software that manages

all of their smart devices, 70.7% said yes. This indicates that having a middleware to

manage the smart devices is a popular choice (Alshammari et al., 2015).

2.3 Intelligence

The AI field is one of the oldest fields in computer science history. AI was pioneered by

prominent figures such as Alan Turing, Marvin Minsky and John McCarthy. AI as an aca-

demic discipline started in the 1950’s and John McCarthy defined the study of AI as ‘the

science and engineering of making intelligent machines’ (McCarthy, 1998). The English

mathematician and computer scientist Alan Turing laid some of the theoretical founda-

tions of AI by introducing the Turing test in his seminal paper ‘Computing Machinery

and Intelligence’ (Turing, 1950). The Turing test is devised to assess the existence of

intelligence in a machine. This consists of three parties, a human interrogator, another

human in an isolated room and a machine in another isolated room. The interrogator

communicates with the two parties through written text in a natural language (or any

neutral communication means such as a computer screen). If the interrogator is not able

15

Chapter 2 Literature Review 2.3. Intelligence

to successfully identify the responses of the machine from the human, then the machine

is then said to have intelligence.

Jeff Hawkins in his book ‘On Intelligence’ (Hawkins & Blakeslee, 2004) criticises the

traditional view of intelligence in the AI field. To Hawkins, intelligence was not formally

defined, and the AI field only looks at the brain as a computing machine. A paper pub-

lished in 1943 by McCulloch & Pitts (1943) described how it is possible for the neurons

to operate as logical gates. This paper helped in solidifying the view that the brain is just

a computational machine similar to a Turing machine. At the beginning, the AI research

seemed the correct approach to achieve true intelligence, and many success stories were

happening such as IBM’s Deep Blue (Campbell et al., 2002) beating Gary Kasparov in

a game of chess. It was claimed that what kept AI from reaching its full potential was

just a limitation of hardware and speed according to traditional AI research. But never-

theless, the AI winter came, and the field seemingly reached a dead end. The success

stories of these intelligent machines were very specific to a particular domain and appli-

cation. AI did not provide a flexible and human-like intelligence and over time the need

for alternative approaches to achieve true intelligence became pressing.

From a philosophical point of view, this idea of viewing what the brain does as simply

computations and the intelligence of the brain can only be measured and assessed by the

behaviour it produces, this find its roots in the philosophical theory of behaviourism. For

the behaviourist, all that can be known about a state of mind is through its behaviour.

This philosophical idea gave birth to other schools of thought in the philosophy of mind

fields such as functionalism and computationalism.

John Searle famously criticised this view and came up with a thought experiment as

an argument against the behaviourist view (Searle, 1980). In Searle’s Chinese Room

argument, Searle proposes the idea of him being in a locked room, and he receives a

letter written in Chinese which he does not understand nor speak. Along with the letter

he also receives another letter written in English which contains instructions on how

to manipulate these Chinese symbols in certain ways. According to Searle, the Chinese

symbols are just abstract symbols that do not mean anything to him. So he follows

the instructions in the English letter which instructs him to manipulate the Chinese

symbols by writing a symbol in one place and erasing another and so on. He follows the

instructions blindly until the last instruction that tells him to submit the Chinese letter. A

Chinese outside observer takes the letter and reads it. The Chinese letter was a story and

there were some questions which Searle had to answer. To the Chinese outside observer,

the answers are correct and indicate to him that Searle did understand the story because

he correctly responded to the questions. Searle on the other hand, did not understand

what the story is about. He had blindly followed the instruction letter.

16

Chapter 2 Literature Review 2.4. Anomaly Detection

Searle explains that the English letter is similar to a software program; Searle was the

CPU executing blindly the instructions set without real understanding of what the Chi-

nese story really means, this intelligent behaviour is called weak AI. If the story letter

was in English and Searle understood the meanings of the English words and was able

to answer the questions, then he calls this behaviour strong AI.

Searle did not offer an explanation of what it means to be an intelligent machine. His

objection was that no Turing machine will be able to produce real and human-like intel-

ligence. Russell Stuart and Peter Norvig in their book (Russell & Norvig, 2009) stated

that most of AI research accepts the weak AI hypothesis and does not care about whether

what their program doing is really intelligent or just a mere simulation of intelligence.

The important thing is that the program is able to do what it is suppose to do.

An interesting research initiated by Jeff Hawkins (Hawkins & Blakeslee, 2004) takes a

drastically different approach to intelligence than traditional AI techniques. Hawkins

argues that traditional AI was built on a false premise. The premise that the brain does

compute and that intelligence is fundamentally just computations. According to Hawkins,

traditional AI research was built on the work of Alan Turing who never formally defined

what intelligence really is. For Hawkins, Alan Turing proposed an existence test for

intelligence, the famous Turing test, but he did not worry about the nature of intelligence

and what intelligence means. To Hawkins, this approach is what hindered traditional AI

from reaching its full potential. The argument that the brain is much faster at computing

which traditional AI proponents believe is simply not true. With the advancements in

Neuroscience, the brain seems slower than the computers that we have today. Hawkins

praised some of the work done in neural network’s research but he argues that even

some of the neural networks research suffers from an over-simplified simulation of what

really happens in the brain. Also, the neural network’s research still views intelligence

fundamentally as computations.

2.4 Anomaly Detection

Anomalies are rare data points that are different from the majority of the data. (Hawkins,

1980) Defined anomalies formally as:

“An outlier is an observation which deviates so much from the other observa-

tions as to arouse suspicions that it was generated by a different mechanism.”

The term anomaly is not the only term used in the literature. Outliers, abnormalities

and deviants are other terms used in the literature to mean the same thing. Anomaly

17

Chapter 2 Literature Review 2.4. Anomaly Detection

detection techniques are used when the anomalies are of particular interest to the user.

For example in a bank account, the transactions pattern is usually predictable and when

an anomalous transaction happens, this is probably an indication of an unauthorised use

of the bank account. There are many applications for anomaly detection, such as: credit

card fraud, intrusion detection, medical diagnosis, earth science, law enforcement and

sensor networks attacks (Aggarwal, 2013).

2.4.1 Challenges

The anomaly detection problem can be considered abstractly as identifying patterns or

data points that do not lie in a normal region. Therefore, the problem can be approached

by recognising a normal region and anything outside this normal region is flagged as an

anomaly. However, the problem in practice is very challenging (Chandola et al., 2009).

Here are several issues that explores the difficulty associated with anomaly detection:

• Defining what is normal is hard and usually there is no clear distinction between

what can be considered normal and abnormal,

• The normal behaviour is ever changing and evolving and different from one do-

main to another,

• Anomalies have various forms and types specific to the domain they reside in,

• Availability of representative datasets with or without labels,

• Distinguishing true anomalies from noisy data.

Therefore, the task of anomaly detection is not trivial and varies from domain to domain.

Chandola et al. (2009) claim that most of the existing anomaly detection techniques are

formalised to solve a particular domain problem and are not generally applicable to

other domains.

The nature of the anomalies is an important aspect in anomaly detection. Anomalies

can be categorised into three types:

• Point anomalies: Where anomalous data points are regarded so different from the

rest of the data. In Figure 2.2, regions N1 and N2 are considered normal because

most of the data points are in these two regions. On the other hand, O1, O2 and

O3 are far from the normal regions and considered anomalies.

18

Chapter 2 Literature Review 2.4. Anomaly Detection

FIGURE 2.2: Point anomalies in a two dimensional space (Chandola et al., 2009).

• Contextual anomalies: Where the context of the data points is anomalous and

not the data point itself. As shown in Figure 2.3, the data point t1 is identical to

the data point t2 but the latter point is considered anomalous because it appears

in an anomalous context.

FIGURE 2.3: Contextual anomalies in a monthly temperature data (Chandola et al.,
2009).

• Collective anomalies: Where a collection of data points is considered anomalous

not because of the data point themselves but because of the collection of these

data points together. In Figure 2.4, The data points in the electrocardiogram are

considered anomalies because of their appearance as a collection in this data and

not because of the data points themselves.

19

Chapter 2 Literature Review 2.4. Anomaly Detection

FIGURE 2.4: Collection anomaly in a human electrocadriogram (Chandola et al., 2009).

Another important aspect in anomaly detection is the availability of data labels. It is

possible to categorise anomaly detection techniques with regards to the availability of

the data labels into three categories:

• Supervised: The assumption here is that there is a training data set with labels

identifying normal and abnormal data points.

• Semi-supervised: The assumption here is that the available training data is all

normal and the deviation from these normal data points is considered an anomaly.

• Unsupervised: The assumption here is that the data is not labelled and no training

data is needed. The techniques in this category assume that the majority of the

data points are normal and thus, these techniques group or cluster the data points

into clusters and any isolated points are considered anomalies.

20

Chapter 2 Literature Review 2.4. Anomaly Detection

Model

Testing Data

Training Data

Result

(A) Supervised anomaly detection.

Model

Testing Data

Training Data

Result

(B) Semi-supervised anomaly detection.

Unsupervised
Model

Unlabeled Data

Result

(C) Unsupervised anomaly detection.

FIGURE 2.5: Anomaly detection and the approaches with availability of training and
testing data (Goldstein & Uchida, 2016).

2.4.2 Anomaly Detection Techniques

In this Section, several approaches and techniques to detect anomalies will be presented.

The fundamental technique that each approach is based on will be the categorisation

factor used.

2.4.2.1 Classification

The techniques here need labelled data points for the models to learn from. The main

idea is to train a classifier on the normal data points and then evaluate the accuracy

of the model on never been seen data points, called the testing data points. From the

perspective of how many classes can be learned, these techniques can be further divided

into two categories: one-class and multi-class anomaly detection techniques. The one-

class assumes that the training data points are all normal. Therefore, the model learns

the characteristics of these data points and classify them as normal. Any data point that

does not fall into this normal class, will be classified as an anomaly by the model. As

21

Chapter 2 Literature Review 2.4. Anomaly Detection

shown in Figure 2.6a, the one-class model will group all normal data points as one big

class and any points residing outside this class are flagged as anomalies. To learn the

normal region, several algorithms can be used. One popular algorithm is the Support

Vector Machine (SVM) (Schölkopf et al., 2001; Heller et al., 2003; Manevitz & Yousef,

2001). Roth (2006) used Kernel Fisher model to learn the normal class.

The multi-class category is similar to one-class except that instead of learning one nor-

mal region, multiple regions can be learned, as shown in Figure 2.6b. Barbara et al.

(2001); De Stefano et al. (2000) used multi-class classification techniques to detect

anomalies.

(A) One-class classification. (B) Multi-class classification.

FIGURE 2.6: Classification based anomaly detection techniques (Chandola et al., 2009).

The classification techniques can be organised based on the algorithm used by the model

into several categories, Support Vector Machines, Artificial Neural Networks, Bayesian

networks and rules.

The SVM (Vapnik, 2013) can learn the normal region from the training data samples

and with the kernel trick (Boser et al., 1992) the model can lean non-linear regions in

hyperplanes. Extending the algorithm with kernels like the Radial Basis Function (RBF)

kernel allows the model to learn complex regions. Many extensions to the support vector

machine have been proposed to be applied in the context of anomaly detection. King

et al. (2002) proposed a technique to detect novelty in power plants. Davy & Godsill

(2002) extended the SVM algorithm to identify anomalies in audio signals. The SVM

algorithm is a popular technique to detect computer host intrusions as done by Heller

et al. (2003); Davy & Godsill (2002); Lazarevic et al. (2003). Ma & Perkins (2003b,a)

applied SVMs in temporal sequences of data. Song et al. (2002) proposed a variant of

SVM called robust SVM (RSVM) which is more robust to anomalies during the training

phase. Hu et al. (2003) applied RSVM to compute host intrusion detection.

Artificial neural networks can be applied to one-class and multi-class classification prob-

lems. The technique trains a neural network model on a portion of the dataset. Then,

22

Chapter 2 Literature Review 2.4. Anomaly Detection

the testing data points are fed to the network and when the network rejects the data

point, it is flagged as an anomalous data point (De Stefano et al., 2000; Taylor & Addi-

son, 2000). Many different types of neural networks have been used in the literature.

Augusteijn & Folkert (2002) used Multi-Layered Perceptrons (MLP) to detect novelties.

Thompson et al. (2002); Diaz & Hollmén (2002) used variations of auto-associative net-

works to detect anomalies. Crook & Hayes (2001); Crook et al. (2002); Murray (2001)

used Hopfield neural networks. Williams et al. (2002); Hawkins et al. (2002) applied

Replicator Neural Networks (RNNs) for one-class anomaly detection.

Bayesian networks based techniques can be applied for multi-class classifications. These

techniques can be used with univariate and multivariate datasets. The main idea is

to use a Naive Bayesian network and train it on a training set to estimate the prior

probabilities. Then, a testing set of data points will be fed to the network and for each

data point, the data point with the biggest posterior score will be the class or the label.

Sebyala et al. (2002); Barbara et al. (2001); Valdes & Skinner (2000) used Bayesian

networks to detect intrusions in computer networks. Diehl & Hampshire (2002) applied

Bayesian networks to identify anomalies in surveillance footage. Baker et al. (1999)

applied Bayesian networks in the context of detecting anomalies in textual datasets and

(Wong et al., 2003) for detecting diseases outbreaks.

Anomaly detection techniques that are based on rules learn from normal data points and

any data point that does not conform to any learned rule, is considered an anomaly. The

main idea in this technique is to train a model on a training set so the model can derive

rules. Every rule is assigned a confidence score, a ratio of the correctly classified data

points by this rule. During the testing phase, the model will search for the best matching

rule for each testing data point. The anomaly score for each testing data point will be the

inverse of the confidence score of the best matching rule. Decision Trees and association

rule learning are popular rule based models in the literature. Salvador et al. (2004); Fan

et al. (2004) proposed extensions to fit rule learning to the context of anomaly detection.

Tandon & Chan (2007); Chan et al. (2003); Mahoney & Chan (2003); Otey et al. (2003);

Mahoney & Chan (2002) used association rules to detect computer networks intrusions.

He et al. (2004) proposed an anomaly detection technique for categorical datasets. Yairi

et al. (2001) used a rule based technique to detect fraud.

The previously presented classification techniques have several advantages. One of the

advantages of these techniques is the abundance of classification models that will give

the research the ability to choose an appropriate model to the problem at hand. Another

advantage is that once a model is trained, it is usually computationally fast to test and

query a data point to classify it as an anomaly or not.

23

Chapter 2 Literature Review 2.4. Anomaly Detection

On the other hand, these approaches have several disadvantages. One of the disadvan-

tages is the availability of correctly annotated training datasets which are difficult to

obtain in some domains. Another disadvantage is that the output of these techniques is

a label and not an anomaly score. This can be restrictive for further elaboration on the

dataset by other models that rely on scalar values and not binary values.

2.4.2.2 Nearest Neighbours

The anomaly detection techniques in this category rely on computing a distance measure

between two data points and based on this distance, the data points are organised in

neighbourhoods to understand the structure of the dataset. The distance measures used

depend on the type of the variables or the feature space. Usually for numerical data

points, the Euclidean distance is used (Tan et al., 2006). For categorical features, Jaccard

distance can be used and other methods (Chandola et al., 2008). The algorithms in this

category can be further divided into two sub-categories: algorithms based on the Kth

nearest neighbour and algorithms based on the density of the data points.

The Kth nearest neighbour distance can be used as an anomaly score for a collection

of data points. Guttormsson et al. (1999) used k = 1 nearest neighbours to detect

anomalies in the operation of turbine motors. A threshold can be set by a field expert to

separate anomalous data points from normal ones. This basic idea saw several improve-

ments and extensions in the literature. Zhang & Wang (2006a) defined the anomaly

score as the sum of the data point’s distances to its k nearest neighbours. Bolton et al.

(2001) used similar anomaly score definition to detect fraud in credit card transactions.

Another technique used in the literature is to simply count the data points that are in

a neighbourhood of a specific distance (Knorr & Ng, 1997; Knorr et al., 2000). Other

techniques and extensions were proposed for dealing with categorical data types such

as Kou et al. (2006); Otey et al. (2006); Palshikar (2005); Wei et al. (2003).

The density based techniques measure the density of data points neighbourhoods. Any

data point that resides in a low density neighbourhood is flagged as an anomalous data

point. The techniques here rely on having close to uniform densities for the data points.

Figure 2.7 shows sample data points with different densities to illustrate this issue. To

a human observer, it is obvious that point p1 and p2 are anomalies. The simple den-

sity based techniques will fail to flag p1 as an anomaly because the distance between

p1 and the neighbourhood/cluster C2 is shorter than the distances of the points in C1.

To mitigate this issue, Breunig et al. (2000) proposed the popular Local Outlier Factor

(LOF) density based algorithm that takes into account the ratio of the average density

in each neighbourhood or cluster. To calculate the density of a neighbourhood, a radius

24

Chapter 2 Literature Review 2.4. Anomaly Detection

of a small hypersphere is defined for a neighbourhood with a data point at its centre.

Then, the hypersphere volume is divided by the number of data points in the neigh-

bourhood and the resulting number is the density score for this neighbourhood. The

anomalous data points can be easily defined as the data points that reside outside of the

neighbourhood. Therefore, LOF can detect that p1 and p2 are anomalies in Figure 2.7.

FIGURE 2.7: Data points with varying densities (Chandola et al., 2009).

Many extensions in the literature to the LOF algorithm were proposed that improve the

calculation time and reduce the complexity of the algorithm. Hautamaki et al. (2004)

proposed Outlier Detection using In-degree Number (ODIN) which simplifies the density

calculation. Some extensions change the way the density calculation is performed. One

popular extension is the Connectivity-based Outlier Factor (COF) that was proposed by

Tang et al. (2002). COF computes the members of a neighbourhood incrementally and

step by step. Starting with the closest data point and gradually adding new data points

until the neighbourhood data points reach the kth size. Figure 2.8 shows the difference

of how this calculation is performed. The anomaly score calculation is done the same

way it is done in LOF.

FIGURE 2.8: LOF and COF density measurement (Chandola et al., 2009).

25

Chapter 2 Literature Review 2.4. Anomaly Detection

The nearest neighbour techniques have many advantages. One of the attractive points

to use these techniques is when the anomaly detection problem requires the operation

in an unsupervised fashion. From what was presented, these techniques try to arrange

and assemble the data points in groups or clusters based on a certain distance measure.

Therefore, they do not require the availability of target labels for every data point. An-

other advantage of using nearest neighbours techniques is that they can work with any

type of data assuming there is an appropriate distance measure defined for each data

type, they also can work in a semi-supervised fashion.

The main disadvantages of these techniques is that they rely on the normal data to

have a cluster structure. Moreover, these techniques can be computationally expensive

depending on how the distance is calculated. Some of the techniques have O(N2) com-

plexity in the number of data points since the distance for each data point is calculated

against all data points.

2.4.2.3 Clustering

Clustering based anomaly techniques have many similarities to the nearest neighbours

techniques. The nearest neighbours techniques perform the calculation between a data

point and its local nearest neighbour. While the clustering based techniques perform the

calculation between each data point and the group or the cluster that it belongs to; based

on a similarity measure. Clustering techniques work in an unsupervised fashion and can

also work in a semi-supervised fashion. A family of the clustering techniques assume

that the normal data has a cluster and any data point outside of this cluster is flagged

as an anomalous data point. Usually the main objective of the clustering algorithms is

to find structures in datasets. Thus, they are used to perform exploratory analysis of

datasets and are used in recommender systems. Some of these clustering techniques

allow data points to reside outside the cluster they build. The algorithms that allow for

this condition can be used to perform anomaly detection. Examples of these techniques

are DBSCAN which was proposed by Ester et al. (1996), ROCK (Guha et al., 2000) and

SNN (Ertöz et al., 2003). Due to the nature of how these algorithms work, the output of

these models is binary.

Another family of these techniques perform under the assumption that normal data

points are organised around the cluster centre or centroid. The data points that are

not close to the centre are identified as anomaly data points. The general procedure of

these techniques starts by using a clustering algorithm to group the data points. Then

for every data point, the distance from the data point to the cluster centroid is defined

as the anomaly score. Several algorithms were successfully used to achieve this goal

26

Chapter 2 Literature Review 2.4. Anomaly Detection

such as Self-Organising Maps (SOMs) (Kohonen et al., 2001), Expectation Maximisation

(EM) and K-means algorithms (Smith et al., 2002).

The third family of these clustering techniques assumes that normal data points reside in

dense clusters and anomalous data points are grouped into low density clusters. There

are many algorithms in the literature that follow this assumption. Examples of these

algorithms are Cluster-Based Local Outlier Factor (CBLOF) which is proposed by He

et al. (2003), Pires & Santos-Pereira (2005) and Jiang et al. (2001). Similar to the

other families, many extensions to these algorithms were proposed in the literature to

improve the performance of these algorithms (Sun & Chawla, 2004; Eskin et al., 2002;

Chaudhary et al., 2002; Portnoy et al., 2001).

The advantages of the clustering based techniques are similar to the nearest neighbours

techniques as both can operate in an unsupervised and semi-supervised fashion. They

also can work with many data types. Much like the nearest neighbours techniques,

the performance of these techniques relies on the performance of the clustering algo-

rithm used. Moreover, computational complexity can be high. Some of the clustering

techniques are not mainly geared towards anomaly detection but they are extended to

perform anomaly detection which can make the performance of these approaches less

than optimal.

2.4.2.4 Statistical

The statistical approaches to detect anomalies are a well established and old research

field. This quote from Anscombe (1960) defines what anomalies means in the statistical

approaches:

“An anomaly is an observation which is suspected of being partially or

wholly irrelevant because it is not generated by the stochastic model as-

sumed ”

Statistical techniques try to fit a statistical model on the normal data points distribution.

Then, statistical tests can be used to identify whether a data point is normal or anoma-

lous. The statistical techniques for anomaly detection problems can be divided into two

categories, parametric and non-parametric techniques.

Parametric techniques assume the existence of a distribution and its parameters can be

learned from the data points. The distribution parameter is referred to as Θ, which

is estimated from the training data points, and the probability density function (pdf)

27

Chapter 2 Literature Review 2.4. Anomaly Detection

is f(x,Θ) for any given data point x. The anomaly score is defined as the inverse of

f(x,Θ). This category can be classified based on the distribution model used.

One of the popular distributions is the Gaussian model. The parameter for this model

can be calculated by the Maximum Likelihood Estimates (MLE) and the anomaly score is

defined as the distance of the data point from the distribution mean. When the model is

defined, simple thresholds can be applied to filter out the normal data from the anoma-

lous data. One of the oldest works that use this simple approach is Shewhart (1931).

Examples of more elaborate works are Beckman & Cook (1983); Barnet (1976); Barnett

& Lewis (1964). If the data is normally distributed, Grubb’s test can be used to detect

anomalies (Grubbs, 1969; Stefansky, 1972). Grubb’s test can be used with univariate

datasets. An extension to this statistical test was proposed by Laurikkala et al. (2000)

to make it work with multivariate datasets. The student t-test has been used to detect

anomalies by Surace et al. (1998). Chi-squared (χ2) test was used by Ye & Chen (2001)

to detect intrusions. A mixture of several Gaussian models or any parametric model can

also be used to detect anomalies (Agarwal, 2007; Yamanishi et al., 2000).

Another category of parametric techniques uses a regression model to detect anomalies.

These techniques usually are used in time-series analysis (Abraham & Chuang, 1989;

Fox, 1972). These techniques fit a regression model based on the training data points

and then the anomaly score for a data point is calculated as how far this testing data

point is from the regression model. Rousseeuw & Leroy (2005) proposed the popular

robust regression model which can deal with anomalies present in the training dataset.

Another robust regression models that has been proposed on Auto-Regressive Integrated

Moving Average models (ARIMA) (Da et al., 2005; Bianco et al., 2001; Lauer, 2001).

Non-parametric techniques do not assume the existence of a distribution of the data

points. Rather, distribution of the data is derived from the data points. These techniques

can be further divided into histogram based and kernel function based techniques. For

the histogram approaches, a histogram is generated from the training data points. Then

for the testing data points, a test is performed to determine if the data point lies in

one of the histogram bins or not. If it does, then it is flagged as a normal data point.

Otherwise, it is flagged as an anomalous data point. Examples of this approach are

Dasgupta & Nino (2000); Helman & Bhangoo (1997); Anderson et al. (1995) and for

multivariate datasets Yamanishi et al. (2000); Manson (2002); Kruegel & Vigna (2003).

Kernel based techniques use kernel functions to estimate the density of the dataset.

These techniques are similar to the parametric techniques shown earlier with the excep-

tion of how the density function is computed. Examples of these techniques are Yeung

& Chow (2002); Tarassenko et al. (1995); Bishop (1994).

28

Chapter 2 Literature Review 2.4. Anomaly Detection

Statistical approaches in general have several advantages. When the dataset distribution

is known, many algorithms and options are available to perform anomaly detection.

The output of the anomaly detection models is a scalar value which allows for more

sophisticated approaches to be carried out based on this score. Most of these techniques

can operate in a supervised and semi-supervised fashion. However, some techniques

that can deal with anomalies in the training datasets can also work in an unsupervised

fashion.

The main disadvantage of statistical approaches is the reliance on the existence of a

distribution of the datasets which is often not the case in real-world data. Even if there

is a known distribution of the data points, finding the appropriate statistical test can be

a challenge. Multivariate datasets can be a difficult task especially for histogram based

techniques.

2.4.2.5 Spectral

Spectral techniques or subspace anomaly detection techniques try to capture a meaning-

ful representation of the data points by reducing the dimensions of the datasets to lower

dimensions that could reveal structures not visible in the original form of the dataset.

The reduction step is also referred to as embedding or projecting the data point to lower

dimensions. These techniques work in an unsupervised fashion and can be used in con-

junction with other models. They can also be used to perform pre-processing for the

data points before feeding the data to the model.

The prominent algorithm in this category is the Principal Component Analysis (PCA)

(Jolliffe, 2002). Agovic et al. (2008) used PCA to project the data points to lower dimen-

sions where it is easy to identify the anomalies. Sun et al. (2007) developed Compact

Matrix Decomposition (CMD) to detect anomalies in matrices. Idé & Kashima (2004)

used spectral techniques to identify anomalies present in time series datasets. Shyu

et al. (2003) proposed an extension to PCA called robust PCA that is able to calculate

the principal components using the covariance matrix of the training data points.

One of the main advantages of using spectral techniques is their ability to handle high di-

mensional datasets. Reducing the feature space to lower dimensions makes it easier for

the model to learn the characteristics of the data. Thus, spectral techniques can be used

with other models that cannot handle high dimensionality. The ability for the spectral

techniques to operate in unsupervised fashion is also another advantage point. On the

other hand, these techniques can only perform well if the data is separable when pro-

jected to lower dimensions. Another disadvantage is that they can be computationally

costly especially when dealing with big datasets.

29

Chapter 2 Literature Review 2.4. Anomaly Detection

2.4.3 Unsupervised Anomaly Detection Algorithms

In this Section, unsupervised anomaly detection algorithms will be presented because

of their relevancy to this thesis. The main objective of unsupervised anomaly detection

techniques is to arrange the data points into groups or clusters in a way that allows

the algorithm to identify data points that are isolated and deviating from the normal

clusters. This operation is unsupervised because there are no target labels for each data

point fed to the model to learn from and draw associations. These models are completely

driven by the data points they receive.

FIGURE 2.9: The global anomalies x1, x2 and the local anomaly x3 (Goldstein & Uchida,
2016).

There is a notion of global anomalies and local anomalies in the literature. To explore

this notion, Figure 2.9 illustrates this point. The data points x1 and x2 are clearly anoma-

lies. Global anomaly detection techniques should be able to identify these point as such.

However, the data point x3 will cause an issue to global techniques and is likely to be

mislabelled as a normal data point because it is close to the c2 cluster. Thus, when ap-

proaching the anomalies in this sample dataset in a global manner, the algorithm is said

to be a global anomaly detection algorithm. If the algorithm approaches each cluster

individually, then it is likely to flag the data point x3 as an anomaly and hence the al-

gorithm will be referred to as a local anomaly detection algorithm. It is worth noting

that c3 lies in a grey area and could impose a challenge to anomaly detection algorithms.

Should it be flagged as an anomaly or a normal cluster? This is part of the challenge that

anomaly detection faces and usually, to determine to which class this cluster belongs, a

domain human expert opinion is needed.

30

Chapter 2 Literature Review 2.4. Anomaly Detection

The unsupervised family of algorithms can be categorised as shown in Figure 2.10.

Nearest Neighbours

Global Local

k-NN LOF

COF

INFLO

LoOP

LOCI

aLOCI

Clusters

Global Local

CBLOF

uCBLOF

LDCOF

CMGOS

Statistical

HBOS

Spectral

rPCA

CMGOS

FIGURE 2.10: Categorisation of unsupervised anomaly detection algorithms.

2.4.3.1 k-Nearest Neighbour

The k-NN algorithm is a global anomaly detection algorithm and it could face problem

detecting local anomalies such as the one illustrated in Figure 2.9. This group of algo-

rithms can be further classified into two groups: kth-nearest neighbours and k-nearest

neighbours. The first group, kth-nearest neighbours (Ramaswamy et al., 2000), defines

the anomaly score by calculating for each data point, the distance to the kth nearest

neighbour. The second group, k-nearest neighbours (Angiulli & Pizzuti, 2002), defines

the anomaly score by calculating the average distance of the k-nearest neighbours.

FIGURE 2.11: The k-nearest neighbour anomaly scoring of an artificial sample dataset
(Goldstein & Uchida, 2016).

31

Chapter 2 Literature Review 2.4. Anomaly Detection

Figure 2.11 shows the result of applying the k-nearest neighbour algorithm on a sample

artificial dataset. The red data points represent the anomalous data points and their

radius corresponds to the anomaly score they got. In this algorithm, the k parameter

must be set before running the algorithm. In this example k = 10. It can be seen how

the algorithm assigns low anomaly scores for the data points closer to the green clusters.

2.4.3.2 Local Outlier Factor

The LOF (Breunig et al., 2000) is one of the popular local anomaly detection techniques

and many extensions and improvements have been proposed for it in the literature. The

algorithm operation can be summarised into three steps:

1. Calculating the k-NN for every data point,

2. Calculating the local density based on the previous k-NN scores (Nk) by using the

local reachability density (LRD) function for a data point x and an object o:

LRDk(x) = 1/

∑

o∈Nk(x)

dk(x, o)

|Nk(x)|

 (2.1)

dk(x, o) is the reachability distance function,

3. Calculating the LOF score by comparing the LRD function of a data point with the

LRD of its k-nearest neighbours.

LOF (x) =

∑
o∈Nk(x)

LRDk(o)
LRDk(x)

|Nk(x)|
(2.2)

In words, the LOF score is simply the ratio of the local densities. Therefore, normal data

points will have densities similar to their local densities and the calculated anomaly

score will be 1.0. The anomalous data points will get much larger score depending on

how different is the data point density from its neighbours.

2.4.3.3 Connectivity-Based Outlier Factor

The COF (Tang et al., 2002) algorithm is similar to LOF but it differs in the way the

density is calculated. In LOF, the distances are Euclidean distances calculated using

a hypersphere centred on a data point. Whereas COF calculates the distance in an

incremental manner by finding the shortest paths between data points. This change in

the way the distances are calculated was illustrated previously by Figure 2.8.

32

Chapter 2 Literature Review 2.4. Anomaly Detection

2.4.3.4 Influenced Outlierness

The INFLO is an extension to LOF proposed by Jin et al. (2006) to solve a shortcoming

of LOF when there are two clusters of varying density close to each other. LOF mislabels

the data points at the edges of the adjacent clusters. The INFLO overcomes this issue

by incorporating a reverse nearest neighbours set of data points. To illustrate this idea,

Figure 2.12 shows two clusters of varying densities. The red data point is flagged as

an anomaly by LOF because in the hypersphere (the grey circle) there are 5 nearest

neighbours which have high local density. INFLO will incorporate the reverse nearest

neighbours set of data points (the blue data points) which will make it less likely for

INFLO to consider the red point as an anomaly.

FIGURE 2.12: The INFLO algorithm compared to the LOF algorithm (Goldstein &
Uchida, 2016).

2.4.3.5 Local Outlier Probability

The LoOP was proposed by Kriegel et al. (2009) to address the interpretation of anomaly

scores of the previous algorithms. As explained earlier, some anomaly detection algo-

rithms’ output is binary which is limiting in some application. Other algorithms’ output

is a scalar value that measures how anomalous a data point is. Depending on the data

points in the data set, this anomaly score can take arbitrary values which makes it hard

to interpret the output of the algorithm. LoOP tries to mitigate this issue by producing

a probability score of how anomalous a data point is.

2.4.3.6 Local Correlation Integral

The Local Correlation Integral algorithm (LOCI) is yet another improvement to the al-

gorithms shown so far. The algorithm was developed by Papadimitriou et al. (2003).

The main improvement that LOCI brings is providing a way to estimate a good value for

33

Chapter 2 Literature Review 2.4. Anomaly Detection

the crucial k parameter. The algorithm arrives at the best k score by iterating different

values of k for each data point and the maximum score is taken for the corresponding

k. This approach, however, is computationally expensive. Usually the k-NN approaches

have O(N2) complexity whereas LOCI complexity can reach O(N3).

2.4.3.7 Approximate Local Correlation Integral

The approximate Local Correlation Integral algorithm (aLOCI) is an extension to LOCI to

address the complexity issue. The algorithm speeds up LOCI operation by incorporating

quad trees.

2.4.3.8 Cluster-Based Local Outlier Factor

The algorithms shown so far share in common their reliance on nearest-neighbours ap-

proaches. The Cluster-Based Local Outlier Factor algorithm (CBLOF) (He et al., 2003)

relies on using clustering approaches to identify anomalies. Any clustering algorithm

can be used in conjunction with CBLOF as a first step. It is common to use k-means be-

cause of the low computational complexity it has. CBLOF then groups the clusters from

the clustering algorithm into big and small clusters. The anomaly score is calculated as

the distance of each data point to the cluster centroid times the number of data points in

that cluster. An extension to CBLOF called unweighted CBLOF (uCBLOF) was proposed

by Amer & Goldstein (2012) that excludes this scaling factor from the calculation as they

noted that this factor could introduce issues when calculating the densities. Figure 2.13

shows the result of applying uCBLOF on a dataset. The different colours correspond to

the clusters identified by the clustering algorithm used and the radius of the data points

corresponds to the anomaly score assigned by uCBLOF to each data point.

34

Chapter 2 Literature Review 2.4. Anomaly Detection

FIGURE 2.13: The unweighted Cluster-Based Local Outlier Factor (uCBLOF) algorithm
(Goldstein & Uchida, 2016).

2.4.3.9 Local Density Cluster-Based Outlier Factor

One of the issues with CBLOF is its use of the number of a cluster data points as a density

measure. The Local Density Cluster-Based Outlier Factor (LDCOF) (Amer & Goldstein,

2012) proposes a density measure of the identified clusters. It follows a similar approach

to CBLOF by using any clustering algorithm as a first step. Then, the average distances

from a cluster centroid to the data points that belongs to it are calculated. The anomaly

score for LDCOF is calculated by dividing a data point distance to the cluster centroid

by the cluster average.

2.4.3.10 Clustering-Based Multivariate Gaussian Outlier Score

As its name suggests, the Clustering-Based Multivariate Gaussian Outlier Score (CM-

GOS) (Goldstein & Uchida, 2016) depends on using a clustering algorithm as a first

step. CMGOS the cluster density is calculated using a multivariate Gaussian model with

Mahalanobis distance as the measurement function. After identifying the clusters by a

clustering algorithm, a covariance matrix for each cluster is calculated. The anomaly

score is then defined by dividing the Mahalanobis distance of a data point by the χ2

distribution of the confidence interval.

35

Chapter 2 Literature Review 2.4. Anomaly Detection

2.4.3.11 Histogram-Based Outlier Score

The Histogram-Based Outlier Score algorithm (HBOS) (Goldstein & Dengel, 2012) is a

statistical anomaly detection algorithm that assumes that the feature space is indepen-

dent. The algorithm’s main idea is to build a histogram for every variable (feature or

dimension) in the dataset. For each data point, the height of the bin represents a den-

sity estimator. The final score is the multiplication of the inverse of estimated densities.

Although the assumption that the features are independent is limiting, this assumption

gives HBOS an advantage when dealing with high dimensional dataset as the algorithm

complexity is linear in relation to the input size.

2.4.4 Anomaly Detection Applications and Domains

Anomaly detection can play important roles for different applications. Various anomaly

and outlier detection methods can be applied on datasets as a pre-processing step to

prepare the data. Other techniques can be used to build models that are able to detect

anomalies in different scenarios. The domains that anomaly detection can be applicable

to are broad. In this Section, several domains and applications of anomaly detection will

be presented.

2.4.4.1 Intrusion Detection

Intrusion detection is a form of abusing a computer system by an unauthorised access

for malicious intents. Detecting these malicious activities is of a particular interest to

computer security experts. Different anomaly detection techniques can be used to iden-

tify these anomalies. One of the major issues in this domain is the sheer amount of data

that needs to be inspected. Another issue is the need to detect these anomalies as soon

as possible. Therefore, online detection techniques are important here. The anomaly

detection models in this domain can learn the normal behaviour of a computer system

since the data of the normal operation of the computer system are available. Thus, the

models in this domain generally learn in a semi-supervised approach (Chandola et al.,

2009).

This domain can be further categorised into two sub-categories, host and network in-

trusion. The anomaly detection in the first category tries to identify when an adversary

tries to gain access to a host computer system without permission. The data usually

form a sequence of system calls and the anomaly detection techniques task is to detect

any abnormal sequence of system calls. Examples of this approaches is what Cabrera

36

Chapter 2 Literature Review 2.4. Anomaly Detection

et al. (2001) has done by using sequences of Unix system calls generated by various

programs to classify a given activities as normal or abnormal. Eskinand & Stolfo (2001)

modelled the system calls using dynamic window sizes. Marceau (2001) used N-grams

representing the strings of the system calls to detect anomalous activities. Heller et al.

(2003) used One-Class Support Vector Machine (OCSVM) to classify anomalous access

to Microsoft’s Windows registry. Hu et al. (2003) used Robust Support Vector Machines

(RSVMs) and compared their performance against traditional Support Vector Machines

(SVM) on the 1998 DARPA intrusion dataset Kendall (1999).

For network intrusion, generally the anomalies form point anomalies [2.4.1] but there

are techniques in the literature that model the anomalies as collective anomalies [2.4.1]

similar to (Gwadera et al., 2005; Atallah et al., 2004). In this category, outside intruders

try to gain access to a computer network. The available data has a temporal dimension

and usually is in the form of network packets and other network metrics. These metrics

can be high-dimensional and of various numerical and categorical types. Kruegel & Vi-

gna (2003) developed an intrusion detection for web servers using different statistical

techniques. Chan et al. (2003) proposed a clustering algorithm called Clustering for

Anomaly Detection (CLAD) to identify anomalies. Yeung & Chow (2002) used a density

based approach with Parzen-window estimators and Gaussian kernels to detect anoma-

lies in computer networks. Sun et al. (2007) proposed a dimensionality reduction tech-

nique called Compact Matrix Decomposition (CMD) to lower the dimensionality of the

data in computer networks. Ramadas et al. (2003) used Self-Organising Maps (SOMs)

to detect anomalies in network traffic.

2.4.4.2 Fraud Detection

In this domain, anomaly detection techniques are used to detect fraudulent transactions

for credit cards, banks, commercial companies. Criminal activities such as identity theft

can also use forms of anomaly detection techniques to identify the criminals. A profile of

the normal behaviour of a customer is maintained by a Bank, for example, and when ab-

normal activities are detected such as withdrawals from unusual locations, the anomaly

detection technique sends an alert.

Detecting fraud for credit cards and insurance is similar in that the data is usually in

the form of a user ID and their transactions are measured with different metrics. The

anomaly type can be classified as point anomaly [2.4.1] because when a fraudulent

transaction happens, it usually has a different characteristics from the normal transac-

tions performed by the customer. The difference could be the time when this transac-

tion occurred, the location, or the quantity. One of the main challenges in this domain

37

Chapter 2 Literature Review 2.4. Anomaly Detection

is having an anomaly detection technique that is able to quickly detect the abnormal

behaviour. Therefore, online techniques are preferred.

Aleskerov et al. (1997) used an auto-associative neural network model to develop a

technique called CARDWATCH to detect fraudulent credit card transactions. Similarly,

Brause et al. (1999) used neural networks to detect anomalies with low rate of false

alarms. Bolton et al. (2001) applied unsupervised fraud detection based on clustering

techniques on several credit card datasets. Phua et al. (2004) developed a method

that uses a back-propagation algorithm with a Naive Bayes model to detect fraud on

an automobile insurance company dataset. Brockett et al. (1998) used Kohonen’s Self-

Organising Feature Maps to classify fraudulent automobile bodily injury claims.

2.4.4.3 Health and Medical

Public health and medicine can make use of several anomaly detection techniques for

several purposes such as detecting recording mistakes. The data in this domain is the

patient’s records with many different types such as the patient’s name, age, weight,

blood type, condition, etc. The data have spatial and temporal characteristics. Most

of the anomaly techniques in this domain deal with point anomalies [2.4.1] and semi-

supervised approaches are used because of the availability of healthy patients records.

The temporal aspect can play an important role when dealing with Electrocardiograms

(ECG) data and Electroencephalograms (EEG). There is also collective anomaly detec-

tion research such as the work done by (Lin et al., 2005).

A mistake in identifying an anomaly in this domain could have dire consequences be-

cause of the sensitivity of the subject. Wong et al. (2003) used Bayesian networks to

detect outbreaks of diseases. Solberg & Lahti (2005) used statistical techniques to de-

tect anomalies in medical laboratory reference data as a pre-processing step. Suzuki

et al. (2003) applied probabilistic mixture model to visualise outliers in medical test

data.

2.4.4.4 Image and Video

In this domain, anomaly detection techniques are used to detect changes in still im-

ages, stream of images and video clips. Several sub-domains can be categorised under

this domain such as video surveillance, spectroscopy, hand writing recognition, satellite

imagery, audio analysis etc. One of the biggest challenges in this domain is the high di-

mensionality and the sheer number of data points. For example, an image is composed

of pixels and each pixel can be described by three colour components (red, green, blue).

38

Chapter 2 Literature Review 2.4. Anomaly Detection

In 3D imaging, other information is associated with the data points such as texture and

luminosity.

Pokrajac et al. (2007) proposed an extension to the Local Outlier Factor (LOF) algorithm

called incremental LOF to detect anomalies in data streams. The technique was evalu-

ated on a dataset of video clips. Singh & Markou (2004) proposed a framework that uses

neural networks as classifiers to classify anomalous regions of images. Davy & Godsill

(2002) proposed a machine learning algorithm based on SVMs to find sudden changes

in audio streams. Da et al. (2005) proposed a regression model to detect anomalies in

multivariate near-infrared spectroscopic data sets.

2.4.4.5 Textual Data

Anomaly detection can be used in this domain to detect emerging stories and news. For

example, analysing Twitter traffic to identify breaking news. The data here usually has

high dimensional features and has temporal aspects. Srivastava & Zane-Ulman (2005)

detected anomalies in large textual datasets by applying a clustering technique based

on Von Mises-Fisher distribution and compared their techniques with two techniques

based on k-means and Gaussian mixture models. Miller et al. (2014) applied clustering

techniques to detect spam in Twitter traffic. Manevitz & Yousef (2001) used One-Class

Support Vector Machine (OCSVM) to detect anomalies in the Lewis (1997) dataset.

2.4.4.6 Wireless Sensor Networks

Anomaly detection in the Wireless Sensor Networks (WSNs) domain uses readings from

sensors distributed across a network to detect intrusion or identify faulty sensors. The

types of data in this domain can be in several numerical discrete or continuous form,

categorical, video, audio, etc. The data suffer from a high degree of noise and missing

data points due to sensors failure, environmental conditions and communication means

issues. One of the requirements for most of the anomaly detection techniques in this do-

main is to operate in an online fashion. Moreover, the data is collected from distributed

sources which requires approaches applicable to their nature (Chatzigiannakis et al.,

2006). Also, the data contains a fair amount of noise which makes anomaly detection

more difficult.

Janakiram et al. (2006) used Bayesian Belief Networks (BBNs) to detect spatial and

temporal anomalies in the sensors streaming data. Van Phuong et al. (2006) proposed a

statistical anomaly detection algorithm to detect security attacks in WSNs. Branch et al.

(2013) proposed a rule-based algorithm to detect anomalies in WSNs and validated

39

Chapter 2 Literature Review 2.5. Hierarchical Temporal Memory

the results using SENSE wireless sensor network simulator (Chen et al., 2005b). Idé

et al. (2007) proposed a technique based on nearest neighbours to detect changes in

correlated streams of sensors.

2.5 Hierarchical Temporal Memory

The network traffic generated online nowadays is huge and gigantic. Chen (2012) re-

ported that the estimation of the Internet traffic produced by 20 houses in the year 2012

will be more than the whole Internet traffic in the year 2008. Moreover, in 2003 the

world population was 6.3 billion people and the number of online connected devices

was 500 million and in 2010, the world population was 6.8 billion and the number of

connected devices was 12.5 billion which meant that the number of devices per person

is more than 1 for the first time in history (Evans, 2011).

Taking the human ear and how it receives sound, for example. There are around 30

thousand receptors (sensors) in the cochlea that receive sound vibration and send these

vibrations up the hierarchy for further processing. So the brain is capable of processing

this huge number of ever changing input streams coming via thousands of sensors with

ease.

In the IoT paradigm, the number of sensors and data generated will be huge and there

is a biological machine that is capable of dealing with such number which is the human

brain. HTM takes the brain as its source of inspiration and design guidelines, using an

algorithmic implementation called the CLA.

2.5.1 Anomaly Detection Using CLA

Anomaly detection in HTM is unsupervised and is targeted at streaming or time series

data. There is a commercial product for IT analysis called Grok2 built from the same

open source code base of NuPIC. Grok for IT is one of several products that Numenta

created. The interesting thing about these products is that they all share the same

algorithm and the same code base even though the applications of these products are in

different domains. Here is a list of all the products that Numenta produces:

• HTM for stocks: detects anomalies in stock market.

• Rogue behaviour detection: detects abnormal behaviour of individuals in a com-

pany such as accessing an unauthorised file or abnormal downloading activities.
2http://numenta.com/grok/

40

Chapter 2 Literature Review 2.5. Hierarchical Temporal Memory

• Geo-spacial tracking: detects anomalies in geo-spacial data.

Table 2.1 shows a comparison of different anomaly detection techniques used in unsu-

pervised streaming data. The numbers (1, 2, 3, 4) represent different anomaly types and

how well a given technique will detect them (Hawkins, 2014). Here is an explanation

of the types of anomalies that Grok can detect:

• Anomalies of type 1: Easily detectable anomalies due to huge shift in the data.

• Anomalies of type 2: Subtle anomalies in periodic data.

• Anomalies of type 3: Anomalies in highly noisy data.

• Anomalies of type 4: Anomalies that a human monitor will likely not notice.

TABLE 2.1: Comparing Grok against other anomaly detection methods (Hawkins,
2014).

Technique 1 2 3 4

Simple Threshold Yes No No No

Complex Statistical Yes Maybe Yes No

Time Series Analysis Yes Yes No No

Distance based Yes Maybe No No

Supervised Methods N/A N/A N/A N/A

Grok (HTM based) Yes Yes Yes Yes

The simple threshold techniques use simple statistical models and requires manual con-

figurations and maintenance. Some of the more complex statistical techniques can catch

the anomalies of type 2. Time series techniques such as Holt-Winters, Autoregressive In-

tegrated Moving Average (ARIMA), Support Vector Regression (SVR) can detect anoma-

lies of type 2 if the period of the time series is manually set. Distance based techniques

are unsupervised techniques. On the other hand, the supervised techniques such as

Replicator Neural Networks (RNNs), Bayesian Networks, Rule-based, Support Vector

Machines (SVMs) rely on the availability of training data with accurate labels which is

hard to do in an online, streaming fashion. On the other hand, the HTM based and

commercial product Grok was able to detect the anomalies of type 3 and 4 (Hawkins,

2014).

41

Chapter 2 Literature Review 2.5. Hierarchical Temporal Memory

2.5.2 Numenta Platform for Intelligent Computing (NuPIC)

NuPIC is an open source project that implements the CLA based on the ‘memory-prediction’

or the HTM theory of Jeff Hawkins.

2.5.2.1 NuPIC Advantages

• Online Learning

In most machine learning work flows, there is a training dataset that is used to train

the model and then the performance of the model is evaluated against another testing

dataset. After that, the model can be applied on new datasets. NuPIC does not follow

this work flow, the model is constantly learning and producing results. The accuracy

of the model improves over time and produces better results. This flexibility is needed

for a smart home environment that will receives a huge number of data streams from

different smart devices. Also, since NuPIC is a memory system, there is no need to store

all of the data streams to be able to perform predictions and anomaly detection. The

data streams come as an input to the model to shape and morph the model over time.

• Noise tolerance

NuPIC uses Sparse Distributed Representations (SDRs) to encode the data. SDRs are

very resilient against noisy data and the nature of the data in a smart home setting is

very noisy.

• Predictions and anomaly detection

NuPIC is able to predict values that are multiple time steps in the future. In addition to

the prediction capabilities, NuPIC scores an anomaly detection value for each incoming

input record.

• Human-like intelligence

In one of the introductory examples on the NuPIC web site3, there is a sample exper-

iment for predicting the values of a sine wave. This example is interesting because it

reveals how the implementation of NuPIC is faithful to how our intelligence is. Fig-

ure 2.14 shows a snapshot of the performance of NuPIC predicting the sine wave. The

3https://github.com/subutai/nupic.subutai/tree/master/swarm examples

42

Chapter 2 Literature Review 2.5. Hierarchical Temporal Memory

actual sine plot is coloured blue and the value that NuPIC is predicting is coloured red.

At the beginning, NuPIC will just predict the same value that it just received. This is why

a trailing behaviour at the beginning is observed. Looking at Figure 2.15 which shows

the anomaly score that NuPIC assigns to every prediction value, at the beginning stages

the anomaly score is high but gradually the score is lowered for each cycle of the sine

wave.

FIGURE 2.14: NuPIC predicting the sine wave.

FIGURE 2.15: NuPIC anomaly score.

The interesting thing about this example is how NuPIC predicts the wrong values. Fig-

ure 2.16 shows that even after some time NuPIC cannot predict the values exactly even

though the pattern of the data is perfect and cyclic. These spikes in the predictions man-

ifest the human-like intelligence that NuPIC possess. If one tries to teach a youngster

how the sine wave works by giving him pairs of values that represent the input and out-

put values of the sine wave and then the teaching process will be based completely on

remembering that when he/she is asked about a certain input value, the answer will be

the other output value. The youngster undoubtedly will make wrong answers because

43

Chapter 2 Literature Review 2.6. Smart Homes

it is hard to remember all of these pairs. It will take a lot more time to learn how the

sine wave works by following this method compared to mathematically explaining how

the sine wave function works. It turns out that NuPIC is not the best technique to use if

the nature of the data can be explained easily by a mathematical equation.

FIGURE 2.16: NuPIC small errors in predicting the sine wave.

The nature of the data generated in a smart home environment is derived from the

human user behaviour. This human-like intelligence that NuPIC has might help in pro-

ducing better anomaly detection results than other machine learning techniques.

• Generalisability

Having a good solution for one smart home setting, will allow us to generalise the

solution for all homes. This is due to the way the system functions, and how it is not a

domain specific learning algorithm.

2.6 Smart Homes

Smart home research can be thought of as a subset of ubiquitous computing research.

A smart home should exhibit forms of intelligent behaviours and reactions to the home

inhabitants. The areas in which these forms of intelligence take place can be safety,

healthcare, privacy, security, energy consumption, entertainment and comfort. Com-

pared to traditional homes, a smart home provides its inhabitants with better living

standards. Learning from the inhabitants’ habits and behaviours allows the smart home

to automate repetitive tasks, ease control over the home, and provide assistive smart

services.

44

Chapter 2 Literature Review 2.6. Smart Homes

2.6.1 Definition

Lutolf (1992, pg. 277) defined a smart home as:

“The smart home concept is the integration of different services within a

home by using a common communication system. It assures an economic,

secure and comfortable operation of the home and includes a high degree of

intelligent functionality and flexibility.”

The previous definition comes from a home automation background and does not convey

the importance of intelligence and context-awareness.

Another definition of the concept of smart home can be found in the work of van Berlo

et al. (1999, pg. 4) who defined it as:

“A home or working environment, which includes the technology to allow

the devices and systems to be controlled automatically, may be termed a

smart home. ”

This definition is broad and generic and can be applicable to smart homes and other

forms of smart environments.

Briere et al. (2011, pg. 16) defined the smart home as:

“a smart home as a harmonious home, a conglomeration of devices and

capabilities based on home networking.”

This definition is also broad and does not establish what a smart home is.

A more refined definition is what Intertek (Alam et al., 2012, pg. 1191) published in

2003 and defined a smart home as:

“A smart home is a dwelling incorporating a communication network that

connects key electrical appliances and services and allows them to be re-

motely controlled, monitored, or accessed.”

According to Intertek, the smart home concept needs three components:

• Network

45

Chapter 2 Literature Review 2.6. Smart Homes

• Intelligent control

• Home automation

The network component can be of any type whether wired or wireless. The intelligent

control is a gateway or a dashboard that allows the home inhabitant to control and

manage the home. The home automation is the capability for the smart home to connect

and work with services outside the premise of the home.

Satpathy (2006, pg. 43) defined the smart home concept as:

“A home which is smart enough to assist the inhabitants to live indepen-

dently and comfortably with the help of technology is termed as smart home.

In a smart home all the mechanical and digital devices are interconnected to

form a network, which can communicate with each other and with the user

to create an interactive space.”

A more comprehensive definition is proposed by Alam et al. (2012, pg. 1191):

“we can define the smart home as an application of ubiquitous computing

that is able to provide user context-aware automated or assistive services in

the form of ambient intelligence, remote home control or home automation.”

2.6.2 Applications and Projects

There are many applications and uses for smart homes and these applications are evolv-

ing and emerging as new technologies and advancements are taking place. The IoT

paradigm is one of the recent advancements that pushed the capabilities and applica-

tions of the smart home. Though these applications are diverse and different, Alam

et al. (2012) proposed categorisation of the smart home applications according to the

intended services:

• Comfort

• Healthcare

• Security

46

Chapter 2 Literature Review 2.6. Smart Homes

The inhabitants comfort entails recognising and identifying the inhabitants activities

and automating repetitive tasks. Remotely accessing the home and controlling it is also

another example of smart home applications that increase the comfort and quality of

life for the inhabitants.

Healthcare care is one of the most prominent applications of smart home especially for

the elderly as life expectancy is increasing and many elderly prefer living independently

in their homes. Healthcare can be local for the inhabitants in the home or remote by

allowing trained personnel to monitor and observe the activities of the elderly.

Security is another important application of the smart home especially as the vision of

the IoT is becoming a reality. It is vital for the home inhabitant to be able to authenticate

and securely access and control his/her smart home.

2.6.3 Anomaly Detection in Smart Homes

Anomaly detection has many applications and many research interests in the smart home

field. One of these research interest is health monitoring for the elderly and assisted

independent living. Using the MavHome project (Cook et al., 2003a), Jain et al. (2006)

generated a week worth of inhabitants’ data. The generated data was 1400 events per

day of the week. Part of that work was to detect anomalies in the data and they used

a simple statistical anomaly detection technique (z-scores) that flags an event as an

anomaly if its value is extremely high or low compared to whole data.

Novak et al. (2012) proposed an unobtrusive anomaly detection technique for the el-

derly in a smart home environment. The authors used the MavHome project dataset

and built a clustering anomaly detection algorithm using Self Organising Maps (SOM),

which are a type of artificial neural networks, that detect several types of anomalies such

as unusual long or short periods of inactivity, unusual presence or absence and changes

in the daily rhythms.

Shin et al. (2011) proposed a method for detecting anomalous living patterns for the

elderly who are living alone. The anomaly detection technique used a Support Vector

Data Description (SVDD) method to classify a given pattern as normal or abnormal.

The dataset for this project collected infrared (IR) motion sensors installed in elderly

inhabitants homes. The test subjects were suffering from mild to sever diseases. The

data collection lasted for seven months.

Another research interest is monitoring power consumption for smart homes and detect-

ing anomalies when they occur. Jakkula & Cook (2010) used the CASAS smart environ-

ment project Cook et al. (2009) to generate the power consumption dataset along with a

47

Chapter 2 Literature Review 2.6. Smart Homes

synthetic dataset. The real dataset contained three months worth of data. The synthetic

dataset contained twelve months worth of data. The authors then injected anomalies

in the datasets. The anomaly detection technique in this research was a simple statisti-

cal algorithm that uses the t-score to flag an extreme event value as an anomaly. Later

on, the authors used a clustering approach with k-Nearest Neighbour (k-NN) algorithms

which gave better accuracy in detecting anomalies over their real and synthetic datasets.

Kang et al. (2010) used a Hierarchical Hidden Markov Model (HHMM) to recognise

and predict the states of a smart home inhabitant and proposed an algorithm based on

that model to detect anomalies in the inhabitants behaviour. 77 sensors were installed

in two single-person apartments and gathered data for two weeks. The sensors were

installed on devices such as refrigerators, drawers, etc. Inspired by the work of Intille

et al. (2003), an Experience Sampling Method (ESM) were used to label the activities

and the patterns.

2.6.4 Requirements for Anomaly Detection in Smart Homes

For an intelligent system to be able to detect anomalies in smart homes, it needs to have

certain qualities that enable it to cope with the nature of the data in this domain. One

of the main requirements is the ability for the system to operate in unsupervised fashion

without the interference of a human agent to train or tweak the systems parameters.

This requirement is essential since it is hard to define what an anomaly is for a smart

home inhabitant. Each person possess unique daily habits and therefore, the notation

of anomalous behaviour is very subjective construct. Thus, the unsupervised techniques

are suitable to detect anomalies in a smart home setting.

Another important characteristic of an anomaly detection system for smart homes is

the ability to work in online fashion. Late detection of anomalies in most cases is not

beneficial, the system should be able to detect anomalies as early as possible. The

streaming nature of the data in smart homes, requires the system to be able to cope

with the volume of the incoming data. The system should also be fast enough to produce

results in close to real-time as possible.

From the perspective of the smart home sensors, the anomalies in smart home could be

spatial. Meaning an unusual configuration of activities in the sensors’ readings should

signal an anomaly. Moreover, temporal anomalies are also important anomalies to be

detected. For example, if a smart home has several Passive Infrared (PIR) sensors in the

living room, it is not usual to have them active at the same time when someone is at

the living room (spatial configuration). However, if the same sensors are active at 3:00

48

Chapter 2 Literature Review 2.7. Early Experimental Results

am, this could be a security issue. So, the time dimension should be taken into account

when detecting anomalies.

2.6.5 Intelligent Services in Smart Homes

Learning the habits of a smart home user is an important and difficult task to be achieved.

The survey by Soma Bandyopadhyay et al. (2011), shows that most of the middleware

projects focus on device management and neglect context-awareness and interoperabil-

ity. After reviewing and analysing 50 IoT and smart home middlewares, Perera et al.

(2014) concluded that the context-awareness aspect has not been fully addressed. Ma-

chine Learning could have the potential to achieve good context-aware services provided

by the middlewares. By incorporating multiple Machine Learning models, sophisticated

assemblies of these models can open the doors to many innovations and intelligent ser-

vices.

An example of these Machine Learning intelligent services is what have been done by

Google’s Android mobile system to provide an intelligent service to locate a parking car.

When one drives a car and parks at a certain location, a mixture of multiple Machine

Learning models work in tandem to provide a useful service to the user. There is a clas-

sification model that can identify whether the user is walking, running, cycling, riding

a train, or driving a car. When the user transitions from ‘driving’ a car to ‘walking’, the

system infers that the user had parked his car. The system then takes note of the car

parking location using the GPS enabled phone. When the user walks towards the direc-

tion of the parking space, the phone intelligently and contextually shows a notification

to the user of where his car is located.

For the smart home, an anomaly detection system could be a valuable Machine Learning

model that can be used in many creative and context-aware intelligent services for many

applications.

2.7 Early Experimental Results

Since the HTM theory and its algorithmic implementation, the CLA, have not been tested

for anomaly detection in a setting where many sensors generating streaming data con-

stantly, a quick experimental study have been conducted to evaluate how good the re-

sults will be. A prototype simulation tool has been built (which later on became Open-

SHS, see Chapter 4) to generate a dataset of an inhabitant living in a smart home with

49

Chapter 2 Literature Review 2.7. Early Experimental Results

multiple sensors. Ten artificial anomalies have been injected into the dataset and the

performance of the CLA and DBSCAN have been evaluated.

2.7.1 Dataset

The researcher performed simulations using a simulation tool of typical daily habits of

a smart home inhabitant. All of the simulations were made manually to ensure a level

of realism of the recorded data. Several considerations were made while creating the

dataset:

• All of the simulations took place roughly at the same time of the day.

• A small time period at the beginning of the home inhabitant’s day was the target

time for this dataset. The interest was on the early morning habits of the inhabi-

tant.

• Since the simulations were done in real-time, similar patterns are not identical and

varied from day to day.

• There were two distinct patterns, one for the weekdays and the other for the

weekends.

• The actions performed varied from day to day. For example, sometimes the bed

room lights are turned on when the avatar wakes up and sometimes they are left

off.

The early experimental dataset is 4400 records long and captured 3 months worth of

data of that early morning period of the inhabitant’s habits. Figure 2.17 shows a sample

of the dataset records and columns.

FIGURE 2.17: A sample of the dataset.

50

Chapter 2 Literature Review 2.7. Early Experimental Results

2.7.2 Preparation for the CLA

Before feeding the data into the CLA, a process called swarming must be performed to

tune the parameters of the model on the data set. The swarm process evaluates many

models and chooses the best one according to an error metric. One thing to note is that

the swarming process is optimised for classification problems. More work is needed to

make the swarm optimised for anomaly detection problems.

After running the swarm process, the best model parameters and encoders are identified

and a model was built using these parameters. Then, the dataset records were fed to

the model record by record to allow the model to learn from the data. After a certain

amount, the learning was stopped and the model was put in a testing phase. Figure 2.18

shows the anomaly likelihood of the dataset. The anomaly likelihood is a percentage

score from 0% to 100% where zero means there is no anomalies detected and 100%

means an anomaly happened with high certainty.

2.7.3 CLA Results

As shown by Figure 2.18, the anomaly likelihood starts at 50% and stays at that level

until sufficient data is fed. The anomaly likelihood starts decreasing once it learns the

habits of the smart home user. After the 3400th record, the training was stopped and

the evaluation process started. There were 10 anomalies introduced in the remaining

dataset records that will be discussed in the following Sections.

FIGURE 2.18: Anomaly likelihood scores.

51

Chapter 2 Literature Review 2.7. Early Experimental Results

2.7.4 DBSCAN Algorithm

The DBSCAN algorithm (Ester et al., 1996) is a famous clustering algorithm and cited

a lot in the literature. In 2014, the DBSCAN won the Test of Time Award from the

prestigious KDD conference 4. In this experiment, this algorithm was chosen to compare

it against the performance of the CLA. The BDSCAN algorithm was chosen because it

is a well-known clustering algorithm and operates in an unsupervised fashion to detect

anomalies. Scikit-learn5 was used, which is a Python library used in machine learning

research and development. Figure 2.19 shows some of the clustering algorithms avail-

able in the library6 and also shows a comparison between all of these algorithms on

some samples. The DBSCAN correctly clustered the data points and outperformed the

other algorithms on the Scikit-learn sample datasets. In the Scikit-learn implementation

of the algorithm, when feeding a record to the algorithm, it will output a zero or positive

number representing the cluster label that the record belongs to. If the record does not

belong to any cluster, it will consider it an outlier and outputs the label -1.

FIGURE 2.19: Overview of Scikit-learn clustering algorithms.

Figure 2.20 shows the results of feeding the dataset to the DBSCAN algorithm. All of

the data points below 0 are considered anomalies.

4http://kdd.org/awards/view/2014-sikdd-test-of-time-award-winners
5http://scikit-learn.org/
6http://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods

52

Chapter 2 Literature Review 2.7. Early Experimental Results

FIGURE 2.20: DBSCAN results on the dataset.

2.7.5 Anomalies in the Dataset

The simulation tool was used to introduce ten anomalies in the later part of the dataset

(from the 3400th record onward). Some of the anomalies were strong and obvious and

some were subtle. For example, one of the strong anomalies is leaving the main door

open when leaving the house. Another example of the subtle anomalies is doing a usual

pattern such as waking up in the morning and going to the bathroom and then going

to watch TV but in a different context. That pattern usually happens in weekends and

usually the user do not watch TV in the morning because he leaves for work.

Because the focus was on a small period of time (the early morning habits) for each day

in the dataset, the whole period was annotated as an anomaly to simplify the evaluation

process. In the future when bigger dataset are used, the anomaly annotation will be fine

grained to each individual pattern.

2.7.6 Comparing CLA with DBSCAN

Figure 2.21 shows both of the algorithms on the same dataset. It is worth noting that

the CLA outputs an anomaly percentage and the DBSCAN outputs a -1 label for the

anomalies. Because of the different outputs, the CLA output was thresholded to match

that of the DBSCAN. The highest number the DBSCAN outputted was 23.

53

Chapter 2 Literature Review 2.7. Early Experimental Results

FIGURE 2.21: The CLA and DBSCAN results combined.

Figure 2.22 shows a zoomed view on the latter part of the dataset where the anomalies

are introduced. The anomalous days are highlighted in red which are 10 anomalies.

Some of them are adjacent to each other and that is why the highlighting seems wide in

these instances.

FIGURE 2.22: The CLA and DBSCAN anomaly results.

2.7.7 Discussion

When considering the case of detecting at least a single anomaly within the anomalous

period, and a threshold value greater than 99% for the CLA algorithm, as our metric for

counting correctly identified anomalies, both of the algorithms correctly detected 7 out

of the 10 anomalies. Table 2.2 shows a summary of the results. In the anomaly number

3, the CLA had a spike in the anomaly score and the value was 50%. If the threshold of

what is considered an anomaly was lower than 50%, the CLA will score 8 out of 10 in

this small experiment.

54

Chapter 2 Literature Review 2.8. Research Gaps

TABLE 2.2: CLA vs DBSCAN.

Anomaly CLA DBSCAN Notes

1 Detected Not Detected Strong anomaly

2 Detected Detected Strong anomaly

3 Not Detected Detected Subtle anomaly, CLA anomaly score is 50%

4 Detected Detected Strong anomaly

5 Detected Detected Strong anomaly

6 Not Detected Not Detected Subtle anomaly

7 Detected Detected Strong anomaly

8 Detected Detected Strong anomaly

9 Not Detected Not Detected Subtle anomaly

10 Detected Detected Strong anomaly

The CLA results seem promising even though the swarm process had not being optimised

for anomaly detection. Also, the dataset used here is small and a bigger dataset that

spans longer periods of time will be built by the simulation software.

2.8 Research Gaps

Anomaly detection research in the context of smart homes had been studied in the litera-

ture but more research efforts are needed. The anomaly detection challenges identified

at the beginning of this Chapter (Section 2.4.1) do apply to the smart home domain.

When taking these challenges into account and analysing the currently available liter-

ature, the lack of well-studied anomaly detection in the smart home domain becomes

apparent.

Novak et al. (2012) used Self Organising Maps (SOM) to detect anomalies in a smart

home. The aim of the authors’ study was to develop an unobtrusive anomaly detec-

tion technique based on the presence of the inhabitants. They used a dataset from the

MavHome project (Cook et al., 2003a) and made modification to the dataset to suit their

needs. For each room in the dataset, the sensors’ readings were merged into one logical

sensor reading. This preprocessing step made it simpler to feed the data to the machine

learning model. Although this simplification is suitable for their aim, it can potentially

lead to over-simplification and loss of valuable information that can be learned from the

55

Chapter 2 Literature Review 2.8. Research Gaps

data. The authors created artificial anomalies and injected them in the dataset. They

defined anomalies as:

• Unusual long inactivity,

• Unusual short activity,

• Unusual presence.

An issue arises here, how to decide what unusual really means. The authors decided to

have fixed thresholds for what is unusually short or long activity and inactivity respec-

tively. However, the anomalies are highly contextual and subjective to the inhabitants’

patterns.

The lack of real-world smart home datasets targeted at anomaly detection problems

specifically is another gap in the literature. Usually, smart home datasets that are gener-

ated for classification problems is used. An augmented notion of anomalies is introduced

to the datasets after the fact. These introduced anomalies could be manually injected

and annotated in the datasets by the researcher Jakkula & Cook (2008), or introduced

using a definition of anomalies produced by the researcher and not by the participants,

such as using temporal relations representation Jakkula & Cook (2011). To ensure a

level of validity to these anomalies, the burden of defining what an anomaly is, should

be left for the participants in the generation of the datasets to decide.

The issue of defining what an anomaly is can be relatively easy such as in the work

done by Jain et al. (2006), where they used simple z-scores to detect anomalies in blood

pressure and heart rate for the inhabitants. An anomalous blood pressure is medically

defined. Thus, the use of simple statistical tests were sufficient.

Making a smart home aware of the user’s context requires a level of intelligence. Cur-

rent machine learning techniques fall short from reaching the full potential of anomaly

detection and context-awareness. However, the human brain is more than capable of dis-

cerning context, and maybe machine learning techniques that simulate what happens in

the human brain could help pushing the research towards intelligent anomaly detection.

Recent advances in Neuroscience could assist in figuring out what makes us intelligent

agents and also aid in developing more intelligent machine learning algorithms.

The use of HTM theory and the CLA to detect anomalies in a smart home setting has not

been studied in the literature due to the lack of good datasets. This research project will

try to fill some of the knowledge gaps in this area by testing the CLA on several datasets

generated specifically for anomaly detection.

56

Chapter 2 Literature Review 2.9. Summary

The IoT paradigm envisions the smart home to be filled with smart devices performing

many functionalities. To study such environment, there has to be a test bed that can be

used to simulate what will happen in that situation. Building a real world smart home

with the characteristics that the IoT envisions is infeasible and costly for this research.

Therefore, there is a need to build a virtual smart home environment that can be used

to simulate typical daily activities of a smart homeowner. Moreover, having a virtual

environment will give the researcher the flexibility to test different ideas and situations

with minimum cost.

One of the identified gaps is the lack of a standard dataset that can be used as a bench-

mark for anomaly detection. Most of the real-world datasets available in the literature

are not built with anomaly detection as their focus, and usually artificial anomalies are

injected into the datasets after the real data have been collected.

Detecting anomalies is a challenging task. By definition, anomalies are rare and abnor-

mal events. From this realisation and from the lack of real datasets of smart homes in

the IoT era, the need to develop a testing and simulation environment became appar-

ent. Thus, one of the goals of this project is to develop a simulation software that mimics

the envisioned IoT smart homes and create test beds that will allow the researcher to

evaluate the CLA performance in detecting anomalies.

Another identified issue related to the evaluation methodologies. The anomaly detection

in the domain of smart homes studies usually use traditional evaluation methods such

as recall and precision. These methods do not take into account the role of time in the

evaluation process. Early anomaly detection is better than late detection and should be

rewarded. Therefore, this research will investigate an evaluation method that takes the

time aspect when scoring the performance of a proposed anomaly detection technique.

The research at hand will investigate the use and application of the HTM theory in order

to detect abnormal behaviour generated by inhabitants of a smart home environment

and will propose a novel anomaly detection model. The definition of an abnormal be-

haviour is a tricky subject and it is addressed in Section 6.2.2.2. Moreover, the anomaly

detection is performed in an unsupervised fashion and only relies on the raw readings

form the sensors and/or the smart devices.

2.9 Summary

In this Chapter, the IoT vision and paradigm and the major issues facing the realisation

of the IoT vision along with the enabling technologies were presented. A review of the

57

Chapter 2 Literature Review 2.9. Summary

middleware solutions available and how these middlewares model context and facilitate

context-aware applications was presented and explored.

The challenges facing anomaly detection techniques were discussed along with the dif-

ficulty associated with defining what an anomaly is and how it is highly contextual and

domain dependent.

A review of anomaly detection using different techniques was carried out and their ad-

vantages and disadvantages were discussed. The reviewed techniques cover classifica-

tion, nearest neighbour, clustering, statistical, and spectral techniques. A more focused

review was dedicated towards the unsupervised anomaly detection techniques because

of how relevant these techniques are to detecting anomalies in the smart home domain

and the scope of this research. The applications and domain of anomaly detection tech-

niques were reviewed and grouped into the following domains: intrusion detection,

fraud detection, health, text, image, video, and wireless sensor networks.

The smart home, as a prominent application of the IoT vision, was defined and reviewed.

As well as the current applications and projects available with focus on anomaly detec-

tion techniques. A critical evaluation of the requirements to have an anomaly detection

techniques in a smart home setting was presented.

The HTM theory, the CLA and NuPIC were reviewed and an initial experiment was

conducted to quickly test and evaluate the potential of the CLA to detect anomalies in a

smart home setting.

The Chapter concludes with the identified research gaps in the literature for anomaly

detection in the smart home domain.

58

Chapter 3

Hierarchical Temporal Memory

3.1 Introduction

In this Chapter, Jeff Hawkins’s theory of how the neocortex works will be presented

(Hawkins & Ahmad, 2016). The theory is known as the HTM theory or sometimes

referred to as the sequence memory theory. This Chapter starts with an introduction to

the current scientific understanding of Neuroscience of how the brain biologically works

and how the HTM theory is influenced by recent advancements in this field. The HTM

theory focuses on the neocortex specifically because it is envisaged to be where our

intelligence resides. The principals of the HTM theory will be explored and from these

principals the CLA is built. The main components of CLA will be presented, including

the Encoder, the Spatial Pooler (SP) and the Temporal Memory (TM). The CLA learns

the spatial features of its inputs and predicts the transitions from one input to the other.

The Chapter will be concluded by a review of several actual implementations of the

HTM theory that are currently available for the research community.

3.2 HTM Theory

The neocortex is the outer wrinkly surface of the brain. It is around 2 to 4 millimetres

thick and has billions of brain cells, also known as neurons. The neurons are vertically

connected in a columnar structure, and they form a huge and complicated network of

hierarchical regions. A famous study done by (Felleman & Van Essen, 1991) studied the

layout of the regions associated with vision in the macaque monkey and as shown in

Figure 3.1 the study identified many regions of neurons that are connected in a hierar-

chy. Each region receives information from the region below and passes it up to higher

59

Chapter 3 Hierarchical Temporal Memory 3.2. HTM Theory

regions. These regions are similar in structure and each region can be divided into six

horizontal layers of neurons as shown in figure 3.2. These layers are named layer 1, 2/3,

4, 5 and 6. Layer 2 and 3 are usually grouped into one layer. The connections between

the neurons go both ways, horizontal and vertical.

FIGURE 3.1: The neocortex regions of the visual system in the macaque monkey (Felle-
man & Van Essen, 1991).

FIGURE 3.2: The layers of the neocortex from Gray’s Anatomy (Williams et al., 1980).

60

Chapter 3 Hierarchical Temporal Memory 3.2. HTM Theory

The neuron structure in general is shown in figure 3.3. The main components of a

neuron are the cell body (the soma), the dendrites (the branches near the cell body),

the axon and the synapse (the gap between the tip of the axon of the previous neuron

and the dendrites of the next neuron). The synapse gap is changing constantly over

time and it can grow and the gap becomes smaller, meaning the two cells have stronger

connections. Or it can shrink and the gap widens and the connection is weaker. These

changes are known in Neuroscience as Neuroplasticity and these changes are mainly

responsible for learning. From this concept comes the idea of the weights of the cells in

artificial neural networks (ANNs). For every neuron, there is a number of other neurons

that could form connections. The synapses could be fully connected and could be fully

disconnected.

There are many types of neurons in the neocortex but in this Chapter the focus will

be on two main types, the pyramidal and the interneuron neurons. Pyramidal neurons

excite and charge neurons, while interneurons do the opposite, they inhibit neurons.

Both types perform similar tasks. When signals are coming to a neuron, they will charge

the neuron and cause it to fire a signal (an action potential) that travels from the cell

body through the axon until it reaches the tip of the axon. The difference between the

two types comes from what they emit to the next neuron. Pyramidal neurons will act as

neurotransmitters that cause the next neuron to charge up. While interneurons will emit

another type of neurotransmitters that will inhibit the next neuron from firing signals.

The dendrites on the next neuron receive this signal.

FIGURE 3.3: The neurons structure (Devineni, 2015).

The charging process is complex. When a neuron receives a signal, it will not always

cause the neuron to fire unless some conditions are met. Also, the neurons do not hold

the charge for a long time. If they do not receive enough charges in certain time interval,

the neuron will not fire and the charge will fade away.

There are two types of inputs coming to every neuron. The input coming to the neuron

through the proximal dendrites (the dendrites near the cell body) and the input coming

61

Chapter 3 Hierarchical Temporal Memory 3.2. HTM Theory

through the distal dendrites (the dendrites far away from the cell body). The proxi-

mal dendrites receive feed-forward signals coming from the senses and lower regions.

Charging happens here in a linear fashion, up until it passes a threshold which will then

cause the cell to fire a signal to all connected neurons.

On the other hand, the input coming through the distal dendrites comes laterally from

other neurons, mostly from neurons in the nearby region. If enough signals are received

to pass the threshold in a short time period, and also in a close segment of the dendrite,

this will cause a dendritic signal that will depolarise the neuron.

As mentioned earlier, the synapse is the gap between a previous cell and the dendrites of

the next cell. The synapses can be thought of as the connections between two neurons.

Around 90% of the synapses are formed on the distal dendrites and the rest are formed

on the proximal dendrites (Hawkins & Ahmad, 2016). The signals coming from the

proximal dendrites affect the cell in a major way. On the other hand, signals coming

from the distal dendrites seemed to have little effect on the cell activity (Major et al.,

2013). There have been studies that suggested an active role of the distal dendrites as

processing units (Antic et al., 2010; Major et al., 2013). When several distal synapses

located closely in time and space are activated, they can generate a local dendritic N-

methyl-D-aspartate (NMDA) spike which will cause the cell to sustain depolarisation

for longer time. This suggestion motivated more studies to investigate the role of the

distal dendrites and whether they can function as an independent processing units that

recognise patterns (Polsky et al., 2004; Poirazi et al., 2003).

Not all the synapses are connected all the time. Actually, the strength of these connec-

tions changes quite fast and ranges form fully connected to fully unconnected synapses.

Furthermore, the synapses can only form up to certain distance which means that for

a given neuron, there is a group of synapses that can form connections to it. These

synapses are called potential synapses to the given neuron.

In Neuroscience, there is no prevailing and accepted theory of how the neocortex works.

There are much evidence and large number of studies that focus on small aspects of

the neocortex, but there is no overarching theory so far. Jeff Hawkins presented his

HTM theory (also known as the memory-prediction theory) in his book ‘on intelligence’

(Hawkins & Blakeslee, 2004). The theory tries to provide a top-down approach of how

the neocortex works. According to Hawkins, intelligence is fundamentally all about

predictions. The memory-prediction theory of intelligence takes into consideration three

factors that Hawkins believes are crucial for intelligence. The three factors are:

• Time,

62

Chapter 3 Hierarchical Temporal Memory 3.2. HTM Theory

• Feedback,

• The physical hierarchical structure of the brain.

Hawkins criticises most of the neural networks because of the over simplification of

what really happens in the brain (Hawkins & Ahmad, 2016). Often one or more of the

three factors are not/or poorly considered. For example, the cell body receives its input

from the proximal dendrites near the cell body. These dendrites constitute about 10%

of the number of all the dendrites in the neuron. The other 90% are distal dendrites.

Despite the huge differences in numbers between the two types of dendrites, usually the

neural networks model of a neuron does not take into account distal dendrites. They are

ignored and the focus will be on the weights and strengths of the connections between

neurons in the network.

The neocortex deals with many complicated problems, such as natural languages, vision,

touch and hearing. Each functionality has regions in the neocortex associated with it.

Yet, all of these functions seems to be performed via a common process in each region.

There are many evidences from Neuroscience that suggest that there is a common algo-

rithm performed by each region in the neocortex. This is what led to the development

of the CLA which will be explained in the following Sections.

3.2.1 HTM Principles

The HTM theory has the following principles: hierarchy, regions, sparse distributed

representations and time.

3.2.1.1 Hierarchy

The HTM system is essentially a memory system similar to the brain. There is no special

part that stores data and another part that processes it. This memory system is organised

in a hierarchy of regions. Each region is a collection of cells (neurons) arranged in

columns. This memory system is different from the traditional flat memory system used

in computers today. Of course, it is possible to simulate the hierarchy in software but

this will add an overhead. The Von Neumann architecture (Von Neumann, 1993) of

computers today could be improved to take into consideration a hierarchical memory

system such as this.

63

Chapter 3 Hierarchical Temporal Memory 3.2. HTM Theory

3.2.1.2 Regions

As shown in figure 3.1, there are regions in the brain that are responsible for a given

functionality. The same idea is presented here in the HTM. Each region is a collection

of layered neurons arranged in columnar structure. The lower regions usually receive

input from the senses. The output of the region is the input to the higher regions in the

hierarchy.

3.2.1.3 Sparse Distributed Representations

As mentioned in the previous Section, the output of a region is the input to a higher

region. But what is the nature of this input and output? In each region at a given time,

a sparse formation of active neurons is happening. When looking at any region at any

time, something similar to what is shown in figure 3.4 will be seen. Approximately, only

2% of neurons are in an active state at a given time. These formations or representa-

tions are actually one of the cornerstone ideas of the theory and are called the Sparse

Distributed Representations or shortly, the SDRs.

FIGURE 3.4: Sparse Distributed Representations (SDRs).

3.2.1.4 Time

The HTM system is actually a sequence of memories and time plays an important role

here. Here is a thought experiment to explain the importance of time in this theory,

imagine a blindfolded subject is asked to identify an object that is being placed on their

palm. Assuming the object is an apple, that is placed on the subject’s hand, and they are

asked to identify it without moving their hand and feeling the object. It will be nearly

impossible to identify the object as they need to feel and touch the object to be able

to correctly identify it. These sensations are essentially sequences of SDRs travelling

from the senses to the different regions in the neocortex. The same happens to hearing,

64

Chapter 3 Hierarchical Temporal Memory 3.2. HTM Theory

one cannot identify a song by only hearing a single note of a melody. Time is needed to

construct the memory sequence of that sound. However, it is not that apparent in vision.

The eyes are actually constantly moving in what is known as a saccade but this subtle

and rapid movement of the eyes is not noticeable.

3.2.2 The Neurons in HTM Systems

The HTM neuron model is more complex than their usual counterparts in ANNs as

shown in Figure 3.5. The ANN neurons usually compute the sum of all the weights of the

connected synapse to that neuron. This concept, which is referred to as a ‘point neuron’

is the basic building block for most of the ANNs used in spiking neural networks (Maass,

1997) and deep learning (LeCun et al., 2015). Figure 3.5 (A) shows a representation of

a point neuron.

Figure 3.5 (B) shows a real neuron and the three sources of input it can receive. Namely,

feed-forward input coming for lower regions (highlighted in green), context input com-

ing laterally from neighbouring neurons and feedback input coming from higher regions.

Figure 3.5 (C) shows an HTM neuron and how the three inputs affect the neuron. In

green, the connections coming through the proximal dendrites (feed-forward) and in

blue the connections coming through the distal dendrites (context) and the apical den-

drites (feedback). The filled circles indicate that a signal was fired to the cell from an-

other cell that is connected to the dendrite. When enough active dendrites are formed

on the feed-forward input, the neuron (the grey triangle) will become active and fire

an action potential. The feedback input coming to the neuron from its apical dendrites

in higher regions biases the neuron to certain input by depolarising the cell (Spruston,

2008). The input values coming from the distal or the apical dendrites depolarise the

neuron without causing it to fire an action potential (Rah et al., 2013; Petreanu et al.,

2009; Yoshimura et al., 2000). Hawkins & Ahmad (2016) claim this depolarisation is a

mechanism for prediction that this cell is making. In other words, when enough signals

are causing depolarisation, the cell is predicting it will be active in the next time step. It

is a bias mechanism for the cells in reaction to the received input. Several studies showed

that the activation of 8-20 synapses close in time and in space will cause an NMDA spike

(Major et al., 2013; Schiller & Schiller, 2001; Schiller et al., 2000; Larkum et al., 1999).

Unlike the inputs coming from the proximal dendrites, these synapses combine their sig-

nals non-linearly till they exceed a threshold. The number of these firing synapses seems

small to recognise large pattern reliably. But if the spareness aspect of these input values

was added, then the recognition process will be robust. As suggested by Olshausen &

Field (2004), sparse encoding seems to be a prevailing mechanism in sensory neurons.

The HTM theory uses sparse distributed representation (SDRs) to model all the inputs.

65

Chapter 3 Hierarchical Temporal Memory 3.2. HTM Theory

The SDRs have many interesting mathematical properties that can be seen in details in

Chapter 5.

FIGURE 3.5: An HTM neuron and a real neuron (Hawkins & Ahmad, 2016).

3.2.2.1 HTM Neuron Inputs

Hawkins & Ahmad (2016) propose three zones to be the source of input to an HTM

neuron. Namely, the proximal, basal and apical zones. As shown in Figure 3.5 (C),

these zones correspond to feed-forward, context and feedback input respectively.

The proximal zone input has several hundred synapses that define the receptive field

of the neuron (Spruston, 2008). The synapses in this zone have a large effect on the

neuron to fire an action potential. The synapses in this zone learn to recognise feed-

forward patterns coming through the cell receptive field.

The basal (or distal) synapses form lateral connections to nearby cells in region. They

anticipate the neuron activation by recognising other neurons activities in proceeding

time steps. Once a pattern is detected on the basal dendrites, they emit an NMDA spike

which depolarises the neuron but not to the point of firing an action potential (Major

et al., 2013; Antic et al., 2010). This mechanism gives an upper hand to the depolarised

neuron to be active in the next time step if enough feed-forward input received. To

Hawkins & Ahmad (2016), the basal synapses are responsible for learning the transitions

of patterns in time.

When recognising some patterns, the dendrites formed on the apical zone of a neuron

also generate NMDA spikes (Cichon & Gan, 2015). The NMDA spike coming from the

apical dendrites affects the cell body indirectly. They cause a Ca2+ spike in the apical

dendrite (Golding et al., 1999; Larkum et al., 1999). Just one of these Ca2+ spikes is

66

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

enough to depolarise the neuron but not enough to cause an action potential (Antic

et al., 2010). Although, this is an area under research (Larkum, 2013), to Hawkins &

Ahmad (2016) this is another form of prediction similar to the one performed by the

basal dendrites. This apical prediction provides a mechanism for higher regions to send

feedback expectations to the lower regions and to bias them towards a certain activity.

The CLA currently does not implement this feedback mechanism and it is under active

research.

3.3 Cortical Learning Algorithm

The previously presented HTM neuron model is the theoretical HTM neuron. This sec-

tion presents the algorithmic implementation of the HTM theory which is known as the

CLA. It is worth noting that the concept of the neuron in the CLA is based on the previ-

ously explained HTM neuron model. In this section when the term “neuron” is used, we

refer to the CLA neuron.

Figure 3.6 shows an overall view of how an HTM system works. The system receives

streaming input data. The input data can be of any type, numerical, categorical or

others. There must be an appropriate encoder for that input data (For more details

on encoders see Chapter 5). The encoder then produces an SDR representing that input

instance. The SDR is fed to the cubical structure shown in Figure 3.6 which is a collection

of cells (neurons). This cubical structure is the HTM model of layer 2/3 of the neocortex.

The input to this cubical structure is received by the Spatial Pooler (SP) which operates

on the columns in that structure. Then, the Temporal Memory (TM) will operate on the

columns by activating and deactivating the cells within the columns. These columns are

referred to as the ‘mini-columns’ in the HTM literature. The CLA is the algorithm that

describes how the SP and the TM work. Currently, the CLA implements some parts of

the HTM theory and some aspects are still under active research.

EncoderStreaming Data SDR
Anomaly Detection

Classi�ication

PredictionSpatial Pooler

Temporal Memory
&

FIGURE 3.6: An HTM system workflow.

In the CLA, the SDRs are represented as a sequence of 1’s and 0’s. At any given time,

an SDR will have around 2% of its bits active. This is an important property of the

67

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

SDRs and of the whole CLA and leads to many interesting results (More details are in

Chapter 5). Another important difference between the SDRs and, for example, the usual

representations (encodings) in computers today, is that every bit is not significant. For

instance, when taking the ASCII encoding and changing one single bit, this will create a

new and totally different meaning of the code. This is not the case in the SDRs. If you

change one bit in an SDR, it will not have any effect on the representation. This makes

the SDRs robust to noisy data streams.

The SDRs are first created by an encoder that receives the input and converts it to a

sparse array of active and inactive bits. Then, the SDR is fed to the SP which performs

several operations based on the SDR configuration and consequently the output of the

SP is fed in to the TM. The output of the TM is a collection of inactive, active and

predictive cells that represent the knowledge that the HTM system learned from the

world by receiving this sequence of SDRs.

Every neuron in the CLA can be in one of the following three states, inactive, active and

predictive. The inactive state indicates that the cell did not yet receive enough signals

either from its proximal or distal dendrites. The active state indicates that the cell is

active due to signals coming from the proximal dendrites. The predictive state is caused

by receiving enough signals on the distal dendrites as discussed earlier.

In the CLA, the synapses have binary weights, either connected or not. The strength of

the connections of the synapses is a ratio ranging from 0 to 100%. In several places in

the CLA, there are thresholds or permanences of each synapse. If the strengths of the

connections passes these thresholds, then the synapse will be connected.

3.3.1 The Algorithm

The CLA algorithm input is an SDR generated by an encoder that corresponds to a

certain record in a dataset. The output of the CLA is a collection of inactive, active and

predictive cells.

The cubical structure shown in Figure 3.6 is the CLA main data structure. It is composed

of mini-columns and single cells (neurons). The SP operates based on mini-columns

and the TM operates on individual cells. This arrangement allows the HTM system

to simultaneously represent the feed-forward input and the context input. Figure 3.7

shows the same cubical structure but in a 2 dimensional configuration to make it easier

to see the individual states of the cells.

68

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

FIGURE 3.7: Flattened neurons in an HTM system.

FIGURE 3.8: Two sequences and how they are represented in the CLA over time.

To explore how the CLA works, let us consider two sequences, Mice→ like→ eating →
cheese and Dolphins → like → eating → krill. Each word will be fed to the HTM

system one at a time. Figure 3.8 shows the two sequences and each word representation.

Notice that the sub-sequence like, eating is presented in both sequences. The figure

shows two phases, before and after training for both sequences. Every word has an

encoding of different mini-columns, similar to barcodes. Now assuming the system has

learned the two sequences, and it is now being tested on new data. When the system first

sees the words Mice or Dolphins, it will anticipate that the word like is likely to follow.

The issue here is that there are two like’s. How can the system distinguish between

the first like′ from the second like′′ which is in a different context both sequences. The

algorithm here uses single cells in the same mini-columns that represent the word like

to encode for the different contexts that the word like appears in. This gives the CLA

a huge capacity to remember long sequences in different contexts while retaining the

mini-columnar representation of each word.

Notice that after the system has been trained, the first word for each sequence always

activates all the cells in the mini-columns. This is the HTM system’s way of representing

69

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

an unknown sequence and this representation is referred to as bursting columns in the

HTM literature. Since the system did not see the words Dolphins and Mice in any prior

context it will bursts all the mini-columns.

Now let us consider the following case. Suppose that the HTM system already learned

the two previous sequences. Figure 3.9 shows how the HTM system performs predictions

for the subsequent words. If the system first sees the word Mice, it will predict the

following word to be like′. Notice the second panel in Figure 3.9 that the predicted cells

(yellow cells) are the ones corresponding to the word like′ in the sequence Mice →
like→ eating → cheese. If the following word in the sequence is indeed like′ as shown

in the third panel, the system will predict the following word to be eating′ and so on.

Whenever the system correctly predict a word, its belief and understanding of the world

will be stronger and the synapses will become more connected. On the other hand,

whenever a prediction is wrong, the synapses will be weakened. The fourth panel in

the same figure shows the distal segment (in green) for one of the cells that learned

this sequence. These segments will be formed and destroyed throughout the life of an

HTM system, and their connections will be strengthened and weakened depending on

whether the system’s prediction are correct or not.

predict like�Mice predict eating�like�

FIGURE 3.9: Predicting the next word in a learned sequence.

Another interesting scenario can happen when feeding the system the sequence like →
eating as shown in Figure 3.10. The system will not recognise the word like coming

as the first word in the sequence. It knows the word like but this sequence is novel to

the system. This will make the system burst all the mini-columns that are corresponding

to the word like. More interestingly, the system will predict both words eating′ and

eating′′ since it does not know if eating will be the one coming for the Mice sequence

or the Dolphins sequence. As shown in the second panel of the same figure, both words

cells will be in a predictive state. When indeed the next word is eating, the system still

does not know which word will come after that. Is it cheese or krill? Therefore, the

system will predict both words. Notice that some cells can be in two states at the same

time. They can be active and predictive as shown in one of the cells in the fourth panel.

Like eating predict cheese & krillpredict eating� & eating��

FIGURE 3.10: Predicting multiple ambiguous words in a learned sequence.

70

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

Here is another look at the same process but using the cubical structure presented in

Figure 3.6. In Figure 3.11 (a), we see one layer or a slice of that cubical structure

(not to be confused with the six layers in the neocortex) of a region and each cube

represents a neuron. The layer receives input from lower regions and the colour intensity

corresponds to the cell charge, the darker the colour is, the more likely the cell will

fire. In (b), a cell is passing the threshold of firing. When this happens, the cell will

inhibit the neighbouring cells and reset their charges. The area of the inhibition is

configurable. It can cover part of the available space as shown in the figure or it can

cover the whole space. When the inhibition covers all the available space it is referred

to as global inhibition within the HTM literature. Figure 3.11 (c), shows the result of the

whole process, a sparse and distributed representation.

FIGURE 3.11: The CLA performing inhibition (Jeff Hawkins, 2014).

Figure 3.12 shows what happens in a single layer over time. In (a), an SDR at a given

time step followed by another SDR at the next time step (b). When a cell becomes active

in the next time step, it strengthens and/or makes new connections with the neighbour-

ing cells that were active in the past time step as shown in (c). These connections are the

‘segments’ for this current input. What this means is, in the future, when the highlighted

cell in (c) sees that the cells that it is connected to became active, this is like a signal

for the highlighted cell to anticipate and prepare itself to be active in the next time step.

This is where the predictions happen in the SDRs. So ideally at any given time, looking

at a layer, the cells in this layer should have around 2% of the cells active, and other

cells in a predictive state for the next input. If the predictions are correct, the strength

of the connections will be increased and vice versa. This is shown in (b), the red cells

are the active cells, and the yellow cells are the predictive cells. Note that the segments

are formed on the same layer and on any layer in the region.

71

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

FIGURE 3.12: The CLA changes over time (Jeff Hawkins, 2014).

If only one layer is used in the HTM system, it will only be able to remember one step

back in history. It does not have the capacity to remember longer sequences. To solve this

issue, the HTM systems usually have multiple layers, similar to the columnar structure

of the real neurons as shown in figure 3.13.

FIGURE 3.13: Higher order memory(Jeff Hawkins, 2014).

Overall, after the encoder converts the input into SDRs, the CLA process can be sum-

marised by three steps:

• Learn the spatial features of the input SDRs and convert it to a sparse collection

of active mini-columns (which are considered as SDRs if the mini-columns are

viewed as active cells),

• Learn the transitions of these SDRs over time and activate cells that represent these

transitions,

• Predict the next coming SDR by learning from the past transitions and put cells in

a predictive state.

72

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

To achieve these steps, the CLA uses two major components in its algorithm which

are the SP and the TM. Both of these components have similar concepts. Learning,

in essence, is performed by creating and/or destroying synapses (or connections) from

a potential collection of synapses. A synapse is considered connected when its perma-

nence exceeds a certain threshold. The value of the permanence is updated in a Hebbian-

like rule (Hawkins & Ahmad, 2016). Therefore, the synapses have binary weights unlike

many ANNs where the weights are scalar values.

The synapses in HTM systems form connections to dendrite segments. Currently, the

CLA implements two dendrite zones, the proximal and the distal/basal dendritic zones.

The proximal segment establishes connections with a subset (receptive field) of the feed-

forward input. When there are enough active synapses formed on this subset of the

input, the cell will be activated. The number of active synapses are linearly summed

up. The distal segment forms lateral connections with nearby cells in the same region.

When there are enough active synapses on the distal segments, the cell will be put in a

predictive state. For a single cell, there are many distal segments available. Therefore,

the logical operation OR will be performed on the active synapses on all distal segments

for this cell.

In the following two subsections, the SP and the TM will be discussed in more details.

3.3.2 The Spatial Pooler

The main function of the SP is to take the input from the encoder and convert it to a

sparse distributed representation. The name of the SP comes from the fact that it is

trying to pool or group inputs that are spatially similar into one representation. The

input from the encoder can be sparse or not. The SP is responsible for ensuring the

sparsity of this input. Figure 3.14 shows the SP activating a subset of the mini-columns.

The highlighted active mini-column is connected to a subset of the input space (the

output of the encoder). The radius of this potential connection (or the receptive field)

can be configured, but generally it is not covering the whole input space. Therefore, a

mini-column will have a natural centre with the input space underneath it.

73

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

Active Mini-Columns

Inactive Mini-Columns

Input Space

Spatial Pooler

Active Input

Inactive Input

Po ential Connections

FIGURE 3.14: A mini-column in the SP and its receptive field.

The SP uses a fixed number of mini-columns which need to be setup before training the

HTM system. Therefore, the SP must ensure the best utilisation of this fixed amount

of resources. One way to achieve this, is to make sure that a large number of the

mini-columns are contributing in the learning process. In the SP, this is achieved by

implementing a ‘boosting’ mechanism that makes the losing mini-column more aggres-

sive and compete to represent the coming inputs. Determining the level of activity for

a certain mini-column is done by measuring the activity of a given mini-column and its

neighbouring mini-column activities. Over time, the mini-columns will be specialised

and more sensitive to certain SDRs.

The inhibition process will limit the number of the actual winning mini-column to a

fixed sparsity. As shown in Figure 3.11, the number of the winning mini-columns will

stay constant throughout the life of the HTM system. This fixed number is one of the

configurable parameters that an HTM user can change and experiment with.

The SP can form stable representation of its input. A mini-column need to have several

active synapses active to become active itself. Controlling the number of the needed

active synapses is a way to avoid learning noisy data. It could be the case that one

mini-column has too many true connections, to counter this issue, the SP will decrease

the permanence value for the synapses which are not contributing to a winning mini-

column.

The SP has these balancing measures that ensure the contributions of all available mini-

columns. These aforementioned measures make the HTM system flexible and adaptive

to the input it is receiving. This is an important quality to have for on-line machine

74

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

learning systems. This flexibility and plasticity has its inspiration from the brain plas-

ticity and how regions of the brain can adapt to perform other functions when damage

happens.

Here is a high level description of the steps the SP algorithm performs:

1. Receive a one dimensional array of bits generated by an encoder or by a lower

region in the hierarchy. For the SP, this input is referred to as the input space.

2. Allocate a fixed number of mini-columns. Each mini-column has a potential con-

nection to a subset of the input space. Each potential connection has a permanence

value and this value will determine if the connection is active or not. That is, if the

permanence value exceeds the connection threshold.

3. For a given SDR, calculate how many synapses are connected to an active bit in

the input space. This is referred to as the overlap score.

4. Multiply the number of the active synapses by a boosting factor. As discussed

before, this boosting factor is determined by how active a mini-column is. The less

active a mini-column is compared to its neighbouring mini-columns, the higher

the boosting factor.

5. After boosting, the mini-column with the highest number of active synapses will

become active. The number of these winning mini-columns can be configured by

the HTM system user through setting a threshold. This will effectively generate

a result similar to what was shown in Figure 3.11. In other words, the winning

mini-columns will inhibit their neighbouring mini-columns form winning.

6. Update several permanence values. The permanence value for the synapses that

are connected to active bits in the input space are increased. The synapses that are

connected (or potentially connected) to inactive bits in the input space will have

their permanence value decreased. The increase and decrease in the permanence

values will cause synapses to connect and disconnect to segments of the input

space.

For more details about the actual algorithm code and the data structures used, see Ap-

pendix A.

3.3.3 The Temporal Memory

The TM main aim is to learn the transitions of the SDRs generated by the SP and predict

future sequences. When a neuron or a cell becomes active, it forms lateral connections

75

Chapter 3 Hierarchical Temporal Memory 3.3. Cortical Learning Algorithm

with the cells that were active in the prior time step. In the future when these cells

will be active, the cell that formed the lateral connections will be in predictive state.

This process is the essence of learning the transitions in the TM. Figure 3.15 shows two

formed lateral segment connections. Similar to what was done in the SP in terms of

increasing and decreasing the permanence of these connections, the TM will increase

the permanence of correctly predicted sequences and punish the wrong prediction by

decreasing their permanence values. Therefore, the whole HTM system is a memory

system that learns about the world and encodes this knowledge in the cells states. There

is no storage unit that records the information the HTM learned about the world. Since

this knowledge is distributed across many cells, the HTM system is robust to noise and

there is no issue when a cell or several cells fail.

FIGURE 3.15: Two formed segments in the TM.

In Hawkins et al. (2016), there is an example that shows the importance of having sparse

inputs and how the TM exploits the SDRs properties to reduce the memory footprint.

The examples assume an HTM system with 10,000 cells out of which 200 are active at

any given time. One might assume that for the TM to recognise an input, it needs to

match all 200 active cells with what it knows. This is not the case, in fact, as little as 20

active bits are needed to recognise the input with very low probability of false positives.

Therefore, the TM only needs a subset of these active bits, a process known in HTM

literature as ‘sub-sampling’. More on the SDRs properties are presented in Chapter 5.

Here is a high level description of the steps the TM algorithm does:

1. Receive the active mini-columns generated by the SP. For every mini-column, check

if there are any cells in a predictive state and activate them. If no predictive cells

are present in a mini-column, activate all the cells in this mini-columns.

2. For all the cells in the region, go through their dendrite segments and count the

connected synapses of active cells. If their number passes a threshold, make this

segment as an active segment. All the cells that have active dendrite segments are

put into a predictive state. All the cells that have no active dendrites and are not

active due to feed-forward input stay inactive.

76

Chapter 3 Hierarchical Temporal Memory 3.4. HTM Implementations

3. Update the permanence values for any dendrite segment that became active. For

all synapses in this dendrite segment, increase the permanence of the synapses

connected to active cells and decrease the permanence of synapses connected (or

potentially connected) to inactive cells. The list of permanence updates are put on

hold and marked temporary until the next step is performed.

4. When a cell become active because of feed-forward input, all the potential synapses

in this cell are searched and any temporary marks are removed. Therefore, the

permanence updates are only applied when the prediction is correctly realised.

5. When a cell switches from being active to inactive, discard all the permanence

updates for this cell because the prediction is wrong.

For more details about the actual algorithm code and the data structures used, see Ap-

pendix A.

3.4 HTM Implementations

The HTM theory inspired many projects and has many implementations currently avail-

able in the literature. In this Section, these projects will be presented and the results of

some of these implementations performing anomaly detection on a dataset are reported.

The reference and state-of-the-art implementation for the HTM theory is Numenta Plat-

form for Intelligent Computing (NuPIC). This implementation has the most active de-

velopment and commercial products have been built on top of the code base. Here is a

list of some products that are based on NuPIC:

• HTM for stocks: Detects anomalies in stock market.

• Grok: Detects anomalies in servers and applications.

• Rogue behaviour detection: Detects abnormal behaviour of individuals in a com-

pany such as accessing an unauthorised file or abnormal downloading activities.

• Geo-spacial tracking: Detects anomalies in geo-spacial data.

NuPIC is written in Python and C++ but there are projects developed by the community

for other programming languages, such as htm.java1 which is written in Java. Clortex is

an implementation of HTM written in Clojure2.
1https://github.com/numenta/htm.java
2https://github.com/htm-community/clortex

77

Chapter 3 Hierarchical Temporal Memory 3.5. Summary

Comportex3 is another implementation of the HTM theory written in Clojure. Com-

portex is not a re-write in another language implementation. It is an experimental

implementation different from NuPIC.

Table 3.1 shows a comparison between NuPIC, htm.java and Comportex at anomaly

detection using Numenta Anomaly Benchemark (NAB) framework (see Section 6.2.3.1

for more details). NAB has several real-world datasets with annotated anomalies and

synthetic datasets as well (Lavin & Ahmad, 2015).

TABLE 3.1: HTM implementations anomaly detection score using NAB.

Implementation Standard Profile Reward Low FP Reward Low FN

NuPIC 70.1% 63.1% 74.3%

HTM Java4 65.5% 53.2% 70.4%

Comportex5 64.6% 58.8% 69.6%

At the time of writing, NuPIC is considered the state-of-the-art of the HTM implementa-

tions. It is under an active development by researchers and members of the community.

3.5 Summary

In this Chapter, the current Neuroscience understanding of how parts of the neocortex

works was presented. The HTM theory based on these evidences builds an overarching

theory that proposes the existence of a common algorithm performed across all regions

of the brain, as opposed to having an algorithm specific for each region of the brain.

The CLA is proposed as a common algorithm that describes how the brain learns from its

inputs. The HTM theory proposes a different and more realistic neuron model compared

to the point neurons that are usually used in ANNs. The point neurons only model

the feed-forward input as varying weights guided by the fact that feed-forward input

coming from proximal dendrites has the largest effect on real neurons. However, the

real neurons only have 10% of their dendrites located at the proximal zone. The other

90% of the dendritic connections are formed laterally to neighbouring neuron across

the region. The HTM theory proposes that these 90% distal dendrites are playing an

important role in performing predictions.

The CLA is under active development and research and currently implements only parts

of the HTM theory principals. The SP and the TM are the two main components of this

3https://github.com/htm-community/comportex

78

Chapter 3 Hierarchical Temporal Memory 3.5. Summary

algorithm. The SP learns how to group and pool similar inputs and learn their spatial

features. While the TM is responsible of learning the changes or the transitions between

these inputs.

There are several actual code implementations available for the CLA and the HTM theory

in the literature. A review of these projects was presented in the context of anomaly

detection. These projects were tested on NAB datasets and their scores were presented.

As shown earlier, NuPIC is considered the state-of-the-art implementation of the HTM

theory, hence it will be used and adopted for this study.

79

Chapter 4

OpenSHS

4.1 Introduction

With the recent rise of the IoT, analysing data captured from smart homes is gaining

more research interest. Moreover, developing intelligent Machine Learning techniques

that are able to provide services to the smart home inhabitants are becoming popular

research areas.

Intelligent services, such as classification and recognition of Activities of Daily Living

(ADL) and anomaly detection in elderly daily behaviour, require the existence of good

datasets that enable testing and validation of the results (Buchmayr et al., 2011; Rod-

ner & Litz, 2013; Youngblood et al., 2005; Helal et al., 2011). The medical field also

recognised the importance of analysing ADLs and how these techniques are effective

at detecting medical conditions for the patients (Tapia et al., 2004). These research

projects require either real or synthetic datasets that are representative of the scenar-

ios captured from a smart home. However, the cost to build real smart homes and the

collection of datasets for such scenarios is expensive and sometimes infeasible to many

projects (Synnott et al., 2015; Helal et al., 2011; Mendez-Vazquez et al., 2009; Lei et al.,

2010; Armac & Retkowitz, 2007). Moreover, several issues face the researchers before

actually building the smart home such as finding the optimal placement of the sensors

(Helal et al., 2010), lack of flexibility (Armac & Retkowitz, 2007; Fu et al., 2011), finding

appropriate participants (Helal et al., 2011; Mendez-Vazquez et al., 2009), and privacy

and ethical issues (Poland et al., 2009).

Even though there exist real smart home datasets (Cook et al., 2003b; Alemdar et al.,

2013; Munguia Tapia, 2003), sometimes they do not meet the needs of the conducted

research project. Such as, the need to add more sensors or to control the type of the

80

Chapter 4 OpenSHS 4.1. Introduction

generated scenarios. Very few of such datasets record the readings of the sensors in real-

time and provide a detailed time-stamped field like the ARAS dataset (Alemdar et al.,

2013). Moreover, preparing a real dataset could be a laborious task, and if not done

with care, it could lead to producing erroneous output.

When building real smart home testbeds, several challenges are facing the preparation

of real datasets. One challenge is having a robust and continuous capturing mechanism

for the sensors’ data. Another challenge is following an appropriate annotation method

for the inhabitants’ activities.

(A) A real testbed. (B) A simulated testbed.

FIGURE 4.1: The workflow of real and simulated smart homes testbeds.

The existence of a dataset simulation tool overcomes the drawbacks/challenges of gen-

erating real datasets. Such tools facilitate fast dataset generation and offer robust meth-

ods to capture the sensors’ data. Additionally, they can offer solutions such as the

ability to pause and fast-forward the simulation to enable more accurate activity an-

notation. When developing Machine Learning models, targeting specific functionalities,

researchers rely on the existence of good representative datasets. A common practice in

Machine Learning is to divide the dataset into two parts, training and testing. The model

creation starts by initialising its parameters and training on a portion of the dataset.

Then, the model will be tested on another part of the same dataset and its results will

be evaluated. The results of the evaluation could reveal the need to redesign the smart

home by adding or removing smart devices or changing the scenarios generated, etc. In

the case of a real smart home, if the results revealed the need to change something, this

is usually a costly and infeasible choice to make. Therefore, the researcher could only

be able to tweak the model parameters as shown in Figure 4.1a. On the other hand,

81

Chapter 4 OpenSHS 4.1. Introduction

with a simulated smart home, this can be easily done, and the researcher can go back

and modify the smart home design as shown in Figure 4.1b.

The approaches for the smart home simulation tools can be divided to model-based and

interactive approaches. The model-based approaches use statistical models to generate

datasets while the interactive approaches relies on real-time capturing of fine-grained

activities using an avatar controlled by a human/simulated participant. Each approach

has its advantages and disadvantages.

From what was mentioned earlier, it is apparent that the virtual simulation tool should

offer far greater flexibility and lower cost than conducting an actual and physical smart

home simulation (Synnott et al., 2015). The new recent advances in computer graphics,

such as Virtual Reality (VR) technologies can provide immersive and semi-realistic ex-

periences that could come close to the real experience. The simulation tool should also

be open and readily available to both, the researchers and the test subjects.

Although there are some research efforts available in the literature for smart home sim-

ulation tools, they suffer from some limitations. The majority of these tools are not

available in the public domain as an open-source project, or limited to a particular plat-

form. Also, most of the publicly available simulation tools lack the flexibility to add and

customise new sensors or devices.

When generating datasets, the model-based approaches are capable of generating bigger

datasets but the granularity of captured interactions are not as fine as the interactive

approaches. However, the interactive approaches usually take longer time to produce

the datasets as they capture the interactions in real-time.

This research proposes a novel smart home simulation tool called OpenSHS which is a

new hybrid, open-source, cross-platform 3D smart home simulator for dataset genera-

tion. Its significant contribution is that OpenSHS offers an opportunity for researchers

in the field of IoT and Machine Learning to produce and share their smart home datasets

as well as testing, comparing and evaluating their models objectively. Following a hy-

brid approach, OpenSHS combines advantages from both interactive and model-based

approaches. This method reduces the time and efforts required to generate simulated

smart home datasets. OpenSHS includes an extensible library of smart devices that

facilitates the simulation of current and future smart home environments. A replica-

tion algorithm for extending and expanding a dataset was designed. A small sample

dataset produced, by OpenSHS, can be extended without affecting the logical order of

the events. The replication provides a solution for generating large representative smart

82

Chapter 4 OpenSHS 4.2. Related Work

home datasets. Moreover, OpenSHS offers a feature to shortening and extending the du-

ration of the generated activities. In this Chapter, the architecture and implementation

of OpenSHS is presented

The rest of this Chapter is structured as follows: the following Section reviews existing

real smart home testbeds and simulation tools, this Section is concluded by analysing

existing smart home simulation tools and comparing them with our proposed tool, Open-

SHS. Section 4.3 presents the architecture of OpenSHS and its implementation. Section

4.4 presents two usability studies for using OpenSHS by researchers and participants.

Followed by the conclusion of this Chapter.

4.2 Related Work

The literature is rich with efforts that focus on generating datasets for smart home ap-

plications. These efforts can be classified into two main categories, datasets generated

either from real smart homes testbeds or using smart home simulation tools.

4.2.1 Real Smart Home Testbeds

One of the recent projects for building real smart homes for research purposes was

the work carried out by the Centre for Advanced Studies in Adaptive Systems (CASAS)

(Cook et al., 2013) where they created a toolkit called ‘smart home in a box’ which is

easily installed in a home to make it able to provide smart services. The components

of the toolkit are small and can fit in a single box. The toolkit has been installed in

32 homes to capture the participants’ interactions. The datasets are publicly available

online (CASAS, 2009).

The TigerPlace (Skubic et al., 2009) project is an effort to tackle the growing ageing

population. Using passive sensor networks implemented in 17 flats within an elder care

establishment. The sensors include motion sensors, proximity sensors, pressure sensors

and other types. The data collection took more than two years for some testbeds.

SmartLab (Nugent et al., 2009) is a smart laboratory devised to conduct experiments in

smart living environments to assess the development of independent living technologies.

The laboratory has many types of sensors such as pressure, passive infrared (PIR), and

contact sensors. The participants’ interactions with SmartLab are captured in an XML-

based schema called homeML (McDonald et al., 2013).

83

Chapter 4 OpenSHS 4.2. Related Work

The Ubiquitous Home (Yamazaki, 2007) is a smart home that was built to study context-

aware services by providing cameras, microphones, pressure sensors, accelerometers,

and other sensor technologies. The home consists of several rooms equipped with dif-

ferent sensors. To provide contextual services to each resident, the Ubiquitous home

recognises the resident by providing Radio-Frequency Identification (RFID) tags and by

utilising the installed cameras.

PlaceLab (Intille et al., 2006) is a 1000 sq.ft. smart flats that has several rooms. The flats

has many sensors distributed throughout each room, such as electrical current sensors,

humidity sensors, light sensors, water flow sensors, etc. Volunteering participant can

live in PlaceLab to generate a dataset of their interaction and behaviour. The project

produced several datasets for different scenarios (PlaceLab, 2005).

HomeLab (De Ruyter et al., 2005) is a smart home equipped with 34 cameras distributed

around several rooms. The project has an observation room that allows the researcher

to observe and monitor the conducted experiments. HomeLab aims to provide datasets

to study human behaviour in smart environments and investigate technology acceptance

and usability.

The GatorTech smart home (Helal et al., 2005) is a programmable and customisable

smart home that focuses on studying the ability of pervasive computing systems to

evolve and adapt to future advances in sensors technology.

4.2.2 Smart Home Simulation Tools

Smart home simulation tools can be categorised into two main approaches, according

to Synnott et al. (2015), model-based and interactive approaches.

4.2.2.1 Model-Based Approach

This approach uses pre-defined models of activities to generate synthetic data. These

models specify the order of events, the probability of their occurrence, and the dura-

tion of each activity. This approach facilitates the generation of large datasets in a short

period. However, the downside of this approach is that it cannot capture intricate inter-

actions or unexpected accidents that are common in real homes. An example of such

approach is the work done by Mendez-Vazquez et al. (2009).

PerSim 3D (Lee et al., 2015) is a tool to simulate and model user activities in smart

spaces. The aim of this tool is to generate realistic datasets for complex scenarios of the

inhabitant’s activities. The tool provides a Graphical User Interface (GUI) for visualising

84

Chapter 4 OpenSHS 4.2. Related Work

the activities in 3D. The researcher can define contexts and set ranges of acceptable

values for the sensors in the smart home. However, the tool is not available freely in the

public domain.

SIMACT (Bouchard et al., 2010) is a 3D smart home simulator designed for activity

recognition. SIMACT has many pre-recorded scenarios that were captured from clini-

cal experiments, which can be used to generate datasets for the recognition of ADLs.

SIMACT is a 3D open-source and cross-platform project developed with Java and uses

Java Monkey Engine (JME) (JME, 2003) as its 3D engine.

DiaSim (Jouve et al., 2009) is a simulator developed using Java for pervasive computing

systems that can deal with heterogeneous smart home devices. It has a scenario editor

that allows the researcher to build the virtual environment to simulate a certain scenario.

The Context-Aware Simulation System (CASS) (Park et al., 2007) is another tool that

aims at generating context information and test context-awareness applications in a

virtual smart home. CASS allows the researcher to set rules for different contexts. A rule

can be, for example, turn the air conditioner on if a room reaches a specific temperature.

The tool can detect conflicts between the rules of the pre-defined contextual scenarios

and determine the best positioning of the sensors. CASS provides a 2D visualisation GUI

for the virtual smart home.

The Context-Awareness Simulation Toolkit (CAST) (Kim et al., 2006) is a simulation tool

designed to test context-awareness applications and provides visualisations of different

contexts. The tool generates context information from the users in a virtual smart home.

CAST was developed with the proprietary technology Adobe Flash and is not available

in the public domain.

4.2.2.2 Interactive Approach

Contrary to the previous approach, the interactive approach can capture more inter-

esting interactions and fine details. This approach relies on having an avatar that can

be controlled by a researcher, human participant or simulated participant. The avatar

moves and interacts with the virtual environment which has virtual sensors and/or ac-

tuators. The interactions could be done passively or actively. One example of passive

interactions is having a virtual pressure sensor installed on the floor and when the avatar

walks on it, the sensor should detect this and emit a signal. Active interactions involve

actions such as opening a door or turning the light on or off. The disadvantage of this ap-

proach, however, is that it is a time-consuming approach to generate sufficient datasets

as all interactions must be captured in real-time.

85

Chapter 4 OpenSHS 4.2. Related Work

Park et al. (2015) presented a virtual space simulator that can generate inhabitants data

for classifications problems. In order to model inhabitant’s activities in 3D, The simulator

was built using Unity3D (2005).

The intelligent environment simulation (IE Sim) (Synnott et al., 2014) is a tool used to

generate simulated datasets that capture normal and abnormal ADLs of inhabitants. It

allows the researcher to design smart homes by providing a 2D graphical top-view of

the floor plan. The researcher can add different types of sensors such as temperature

sensors, pressure sensors, etc. Then, using an avatar, the simulation can be conducted to

capture ADLs. The format of the generated dataset is homeML (McDonald et al., 2013).

To the knowledge of the author, IE Sim is not available in the public domain.

Ariani et al. (2013) developed a smart home simulation tool that uses ambient sensors

to capture the interactions of the inhabitants. The tool has a map editor that allows the

researcher to design a floor plan for a smart home by drawing shapes on a 2D canvas.

Then, the researcher can add ambient sensors to the virtual home. The tool can simulate

binary motion detectors and binary pressure sensors. To simulate the activities and in-

teractions in the smart home, they used the A* pathfinding algorithm (Hart et al., 1968),

to simulate the movement of the inhabitants. During the simulation, all interactions are

sampled at 5 Hz and stored into an XML file.

UbiREAL (Nishikawa et al., 2006) is a Java-based simulation tool that allows the devel-

opment of ubiquitous applications in a 3D virtual smart space. It allows the researcher to

simulate the operations and communications of the smart devices at the network level.

V-PlaceSims (Lertlakkhanakul et al., 2008) is a simulation tool that allows a smart home

designer to design a smart home from a floor plan. Then, allows multiple users to

interact with this environment through a web interface. The focus of this tool is the

improvement of the designs and management of the smart home.

In addition to the outlined above simulation tools, there are other commercial simulation

tools targeting the industry such as FlexSim (FlexSim Software Products, Inc., 1993),

Simio (LLC, 2006) and Arena (Automation, 2000).

Generally, the model-based approach allows the researcher to generate large datasets

in short simulation time but sacrifices the granularity of capturing realistic interactions.

On the other hand, the interactive approach captures these realistic interactions but

sacrifices the short and quick simulation time and therefore, the generated datasets are

usually smaller than the ones generated by model-based approach.

86

Chapter 4 OpenSHS 4.2. Related Work

4.2.3 Analysis

Synnott et al. (2015) identified several challenges that face the smart home simulation

research. One of the key challenges is that many of the available simulation tools (Fu

et al., 2011; Stahl & Schwartz, 2010; Lertlakkhanakul et al., 2008; Armac & Retkowitz,

2007; Park et al., 2007; O’Neill et al., 2005; Nishikawa et al., 2006; Barton & Vija-

yaraghavan, 2002) focus on testing applications that provide context-awareness and

visualisation rather than focusing on generating representative datasets. Few of the

available tools do focus on generating datasets (Buchmayr et al., 2011; McGlinn et al.,

2010; Poland et al., 2009; Krzyska, 2006). Another key challenge is to have the flexibil-

ity and scalability to add new/customised types of smart devices, change their generated

output(s), change their positions within the smart home, etc. The multiple inhabitants’

support is also one of the limitations facing the currently available tools as this feature

is known to be difficult to implement (Synnott et al., 2015).

The review of available smart home simulation tools reveals that the majority of the

reported work lacks the openness and availability of the software implementation, which

hinders their benefit to the wider research community. Moreover, less than half of the

reviewed tools (10 out of 23) do not support multiple operating systems which can be

an issue when working with research teams and/or test subjects. Table 4.1 shows the

analysis and comparison of the proposed tool, OpenSHS, with the existing simulation

tools. SIMACT (Bouchard et al., 2010) and UbiWise (Barton & Vijayaraghavan, 2002)

were the only open-source and cross-platform simulation tools available, however, the

data generation approach used in that tool is based on a pre-defined script that the

researcher plays back within the 3D simulation view.

Apart from the work by Lundström et al. (2015), this analysis shows that none of the

reviewed simulation tools follows a hybrid approach i.e. a tool that combines the ability

of model-based tools to generate large datasets in a reasonable time while keeping the

fine-grained interactions that are exhibited by the interactive tools.

This review shows that fewer simulation tools focus on generating datasets while the

majority of the reviewed tools focus on visualisation and context-awareness applications.

Supporting the simulation of multiple inhabitants is a tricky task especially for the tools

that focus on generating datasets. Most of these tools have an avatar controlled by a

single participant at a given time. To allow multiple participants to conduct a simulation

at the same time is one of the identified challenges.

87

C
hapter

4
O

penSH
S

4.2.R
elated

W
ork

TABLE 4.1: Analysis of smart home simulation tools.

Tool/Author(s) Date Open-source 3D Cross-platform Approach Focus Multi-inhabitants Fast-forwarding

OpenSHS 2017 Yes Yes Yes Hybrid Dataset generation Partially Yes

Park et al. (2015) 2015 No Yes Yes Interactive Visualisation No Yes

PerSim 3D (Lee et al., 2015) 2015 No Yes Yes Model-based Dataset generation No Not applicable

IE Sim extended (Lundström et al., 2015) 2015 No No No Hybrid Dataset generation No Yes

IE Sim (Synnott et al., 2014) 2014 No No No Interactive Dataset generation No No

Kormányos & Pataki (2013) 2013 No No No Model-based Visualisation No Not applicable

Ariani et al. (2013) 2013 No No No Interactive Dataset generation Yes No

Fu et al. (2011) 2011 No No Yes Interactive Visualisation Yes No

Jahromi et al. (2011) 2011 No No No Model-based Visualisation No Not applicable

Buchmayr et al. (2011) 2011 No No No Interactive Dataset generation No No

SimCon (McGlinn et al., 2010) 2010 No Yes Yes Interactive Dataset generation No No

YAMAMOTO (Stahl & Schwartz, 2010) 2010 No Yes Not reported Interactive Visualisation No No

SIMACT (Bouchard et al., 2010) 2010 Yes Yes Yes Model-based Visualisation No Not applicable

Poland et al. (2009) 2009 No Yes Yes Interactive Dataset generation No No

ISS (Van Nguyen et al., 2009) 2009 No No No Interactive Visualisation Yes No

DiaSim (Jouve et al., 2009) 2009 No No Yes Model-based Visualisation No Not applicable

V-PlaceSims (Lertlakkhanakul et al., 2008) 2008 No Yes No Interactive Visualisation Yes No

Armac & Retkowitz (2007) 2007 Not reported No Not reported Interactive Visualisation Yes No

CASS (Park et al., 2007) 2007 No No No Model-based Visualisation Yes Not applicable

Krzyska (2006) 2006 No No Yes Interactive Dataset generation Yes No

CAST (Kim et al., 2006) 2006 No No No Model-based Visualisation No Not applicable

UbiREAL (Nishikawa et al., 2006) 2006 No No Yes Interactive Visualisation Yes No

TATUS (O’Neill et al., 2005) 2005 No Yes Not reported Interactive Visualisation Yes No

UbiWise (Barton & Vijayaraghavan, 2002) 2002 Yes Yes Yes Interactive Visualisation Yes No

88

Chapter 4 OpenSHS 4.2. Related Work

When comparing OpenSHS against the available simulation tools reviewed in Table 4.1,

unlike the majority of such tools, OpenSHS is based on Blender and Python which are

open-source and cross-platform solutions, this offers the following benefits:

• Improves the quality of the state-of-the-art datasets by allowing the scientific com-

munity to openly converge on standard datasets for different domains,

• Allows easier collaborations between research teams from around the globe,

• Facilitates developments and lower entry barriers,

• Facilitates the objective evaluations and assessments.

OpenSHS allows the simulations to be conducted in 3D from a first-person perspective.

The only open-source tools identified in the literature were SIMACT (Bouchard et al.,

2010) and (Barton & Vijayaraghavan, 2002). However, both of these tools are not focus-

ing on generating datasets. SIMACT does not allow the participant to create specialised

simulations. Instead, it relies on pre-recorded data captured from clinical trials.

IE Sim (Synnott et al., 2014) was extended to use a probabilistic model (Poisson distri-

bution) to augment the interactively recorded data by IE Sim. Therefore, the extended

version of IE Sim uses a hybrid approach. However, IE Sim is a 2D simulator which

takes part of the realism out of the simulation. This might be a problem when 3D mo-

tion data is important to the researcher, for example in anomaly detection algorithms,

as identified by Lundström et al. (2015).

The fast-forwarding feature makes the simulation less cumbersome especially when the

simulation has long periods of inactivity as in elder care research. This feature is relevant

to interactive and hybrid approaches. OpenSHS’s fast-forwarding mechanism stream-

lines the performance of the simulation and allows the participant to skip in time while

conducting a simulation.

Although, OpenSHS currently supports the simulation of one smart home’s inhabitant,

however multiple inhabitants simulations are partially supported. The current imple-

mentation of this feature does not allow real-time simulation of multiple inhabitants.

Instead, the first inhabitant records his/her activities and then the second inhabitant

can start another simulation. The second inhabitant will be able to see the first inhabi-

tant’s actions played back in the virtual environment.

The approach that OpenSHS uses to generate datasets can be thought of as a middle

ground between the model-based and interactive approaches. The replication mecha-

nism that OpenSHS adapts, allows for a quick dataset generation, similar to the model-

based approaches. Moreover, the replications have richer details as the activities are

89

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

captured in real-time, similar to the interactive approaches. Overall, the advantages of

OpenSHS can be summarised as follows:

1. Accessibility: The underlying technologies used to develop OpenSHS allowed it to

work on multiple platforms, thus ensuring a better accessibility for the researchers

and the participants alike.

2. Flexibility: OpenSHS gives the researchers the flexibility to simulate different

scenarios according to their needs, by adding and/or removing sensors and smart

devices. OpenSHS can be easily modified and customised in terms of positioning

and changing the behaviour of the smart devices in the virtual smart home to meet

the needs of a research project.

3. Interactivity: Capturing the interactions between the participant and the smart

home in OpenSHS was done in a real-time fashion which facilitates the generation

of richer datasets.

4. Scalability: The proposed simulation tool is scalable and easily extensible to add

new types of smart devices and sensors. OpenSHS has a library of smart devices

that can be developed and updated as new types of smart devices become avail-

able.

5. Reproducibility: By being an open-source project, OpenSHS does have the advan-

tage of facilitating reproducibility and allowing research teams to produce datasets

to validate other research activities.

4.3 OpenSHS Architecture and Implementation

This thesis proposes a new hybrid, open-source, and cross-platform 3D smart home

simulation tool for dataset generation, OpenSHS (Alshammari et al., 2017a), which is

downloadable from http://www.openshs.org under the GPLv2 licence (GNU, 1991).

OpenSHS tries to provide a solution to the issues and challenges identified by Synnott

et al. (2015). OpenSHS follows a hybrid approach, to generate datasets, combining the

advantages of both model-based and interactive approaches. This Section presents the

architecture of OpenSHS and the technical details of its implementation, which is based

on Blender (1995) and Python. In this Section, two entities will be referred to, the

researcher and the participant. The researcher is responsible for most of the work with

OpenSHS. The participant is any person volunteering to simulate their activities.

Working with OpenSHS can be divided into three main phases: design phase, simulation

phase, and aggregation phase. The following subsections will describe each phase.

90

http://www.openshs.org

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

4.3.1 Design Phase

In this phase, as shown in Figure 4.2, the researcher builds the virtual environment,

imports the smart devices, assign activities’ labels and design the contexts.

4.3.1.1 Designing Floor Plan

The researcher designs the 3D floor plan by using Blender which allows the researcher to

easily model the house architecture and control different aspects such as the dimensions

and the square footage. In this step, the number of rooms and the overall architecture

of the home is defined according to the requirements of the experiment.

4.3.1.2 Importing Smart Devices

After the design of the floor plan, the smart devices can be imported into the smart home

from the smart devices’ library, offered by OpenSHS. The current version of OpenSHS

includes the following list of active and passive devices/sensors:

• Pressure sensors (e.g. activated carpet, bed, couch, etc.),

• Door sensors,

• Lock devices,

• Appliance switches (TV, oven, fridge, etc.),

• Light controllers.

The Smart devices’ library is designed to be a repository of different types of smart

devices and sensors. This list is extensible as it is programmed with Python. Moreover,

the researcher can build a customised sensor/device.

4.3.1.3 Assigning Activity Labels

OpenSHS enables the researcher to define an unlimited number of activities’ labels.

The researcher decides how many labels are needed according to their experiment’s

requirements. Figure 4.4 shows a prototype where the researcher identified five labels.

Namely, ‘sleep’, ‘eat’, ‘personal’, ‘work’ and ‘other’. This list of activity labels represents

a sample of activities, which the researchers can tailor it to their needs.

91

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

4.3.1.4 Designing Contexts

After designing the smart home model, the researcher designs the contexts to be sim-

ulated. The contexts are specific time frames that the researcher is interested to simu-

late e.g. morning, afternoon, evening contexts. For instance, if the researcher aims to

simulate the activities that a participant performs when he/she comes back from work

during a weekday; then the researcher will design a context for that period. Finally, the

researcher specifies the initial states of the devices for each context.

FIGURE 4.2: The design phase.

4.3.2 Simulation Phase

Figure 4.3 shows the overall architecture of the simulation phase. The researcher starts

the tool from the OpenSHS interface module which allows the researcher to specify

which context to simulate. Each context has a default starting date and time and the

researcher can adjust the date and time if he/she wants. Every context has a default

state for the sensors the 3D position of the avatar. Then, the participant starts simulating

his/her ADLs in that context. During the simulation time, the sensors’ outputs and the

state of different devices are captured and stored in a temporary dataset. OpenSHS

adapts a sampling rate of one second by default, which the researcher can re-configure

as required. Once the participant finishes a simulation, the application control is sent

back to the main module to start the simulation of another context.

The simulation phase aims to capture the granularity of the participants’ realistic inter-

actions. However, capturing these fine-grained activities in extended periods of time

adds a burden on the participant(s) and sometimes becomes infeasible. OpenSHS offers

a solution that mitigates this issue by adapting a fast-forwarding mechanism.

92

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

FIGURE 4.3: The simulation phase.

4.3.2.1 Fast-Forwarding

OpenSHS allows the participant to control the time span of a certain activity, fast-

forwarding. For example, if the participant wants to watch the TV for a period and

does not want to perform the whole activity in real-time (since there are no changes in

the readings of the home’s sensors), the participant can initiate that activity and spawn

a dialogue to specify how long this activity lasts. This feature allows the simulation pro-

cess to be quick and streamlined. The tool will simply copy and repeat the existing state

of all sensors and devices during the specified time period. Figure Figure 4.4 shows the

activity fast-forwarding dialogue during a simulation.

FIGURE 4.4: The activity selection and fast-forwarding dialogue.

4.3.2.2 Activities Labelling

The researcher is responsible for familiarising the participant with the available activity

labels to choose from. During a simulation and before transitioning from one activity to

another, the participant will spawn the activity dialogue shown in Figure 4.4 to choose

the new activity from the available list. To ensure a clean transition from one activity

to another, OpenSHS will not commit the new label at the exact moment of choosing.

93

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

Instead, the new label will be committed when a sensor changes its state. For example,

in Figure 4.6 the transition from the first activity (sleep) to the second (personal) is

committed to the dataset when the sensor bedroomLight changes its state even though

the participant did change the label a couple of seconds earlier.

4.3.3 Aggregation Phase

After performing the simulation by the participants, the researcher can aggregate the

participants’ generated sample activities i.e. events, in order to produce the final dataset.

The results of the simulation phase forms a pool of sample activities for each context.

The aggregation phase aims to provide a solution for the generation of large datasets in

short simulation time. Hence, this work develops an algorithm that replicates the output

of the simulation phase by drawing appropriate samples for each designated context.

This feature encapsulates model-based approach advantage with the interactive ap-

proach adapted by the simulation phase, which allows OpenSHS to combine the benefits

of both approaches, a hybrid approach.

FIGURE 4.5: The aggregation phase.

4.3.3.1 Events Replication

It was evident from the beginning of the development of this simulation tool that it

is not feasible for a participant to sit down and simulate his/her ADLs for a whole day.

Moreover, capturing the interactions between the inhabitant and the smart home in real-

time was needed. At the same time, the process should be less tedious and streamlined

as much as possible. These requirements brought up the concept of real-time context

simulations. Instead of having the user simulating his/her ADLs for extended periods

of time, the user simulates only a particular context in real-time. For example, let us

assume the researcher is interested in an ‘early morning’ context and wants to capture

94

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

the activities that the inhabitant is doing in this time frame, such as, what is usually done

in the weekdays compared to the weekends in the same context (The ‘early morning’

context). The user will only perform sample simulations of different events in real-time.

The more the number of samples simulated, the richer the generated dataset will be.

To gain more insight of how OpenSHS works, a virtual smart home environment con-

sisting of a bedroom, a living room, a bathroom, a kitchen, and an office was built. Each

room is equipped with several sensors totalling twenty-nine sensors of different types.

The sensors are binary, and they are either on or off at any given time step.

The result of performing a context simulation can be illustrated by Figure 4.6. The

sample consists of three activity labels, namely ‘sleep’, ‘personal’, and ‘other’. Each

activity label corresponds to a set of sensors’ readings. The sensors’ readings in the

previous figure are readings of binary sensors and the small circles correspond to an

‘ON-state’ of that sensor.

bathroomCarp

bathroomDoor

bathroomDoorLock

bathroomLight

bed

bedTableLamp

bedroomCarp

bedroomDoor

bedroomDoorLock

bedroomLight

couch

fridge

hallwayLight

kitchenCarp

kitchenDoor

kitchenDoorLock

kitchenLight

livingCarp

livingLight

mainDoor

mainDoorLock

etc ...1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

sleep personal other

FIGURE 4.6: Twenty-nine binary sensors’ output and the corresponding activity labels.

TABLE 4.2: A set of recorded samples for a particular context.

SAMPLE 1 sleep personal work eat other

SAMPLE 2 sleep personal other

SAMPLE 3 sleep personal other

SAMPLE 4 sleep eat personal other

SAMPLE 5 sleep eat personal other

95

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

It is not realistic to aggregate the final dataset by trivially duplicating the contexts sam-

ples. This will create exact duplicates of the samples. There is a need for an algorithm

that can replicate the recorded samples to generate a larger dataset. A replication algo-

rithm for extending and expanding the recorded samples was designed. A small number

of simulated events can be extended without affecting their logical order.

To explain the replication algorithm, it is best illustrated by an example. Table 4.2 shows

a set of five samples with their activity labels for a certain context. The first sample has

five activities and the second sample has three activities and so on. When the researcher

aggregates the final dataset, the samples of every context are grouped by the number of

activities in each sample. So for the previous example, sample 1 will be in one group,

sample 2 and 3 will be in a second group, and sample 4 and 5 will be in a third group.

Then, a random group will be chosen and from that group, a sample will be drawn for

each activity. For example, let us take the second group which contains sample 2 and

3. The number of activities in this group is three. So, for the first activity, the algorithm

will either pick the ‘sleep’ activity from sample 2 or the ‘sleep’ activity from sample 3.

The same procedure will be done for the second and third activities. The output will

resemble what is shown in Table 4.3.

TABLE 4.3: Ten replicated copies based on the samples from Table 4.2.

i Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

1. sample 1 sleep sample 1 personal sample 1 work sample 1 eat sample 1 other

2. sample 4 sleep sample 5 eat sample 5 personal sample 4 other

3. sample 3 sleep sample 3 personal sample 2 other

4. sample 3 sleep sample 3 personal sample 2 other

5. sample 5 sleep sample 4 eat sample 5 personal sample 5 other

6. sample 1 sleep sample 1 personal sample 1 work sample 1 eat sample 1 other

7. sample 2 sleep sample 2 personal sample 2 other

8. sample 5 sleep sample 5 eat sample 5 personal sample 5 other

9. sample 4 sleep sample 4 eat sample 4 personal sample 5 other

10. sample 2 sleep sample 2 personal sample 2 other

The context samples shown in Table 4.2 will produce 25 unique replicated copies. In

general, the number of unique replicated copies for a single context can be calculated

by the Equation (4.1). Let G denotes the number of the groups of unique length of

activities, and let Sg denotes the number of samples for the group g, and let A denotes

the number of activities within a sample Sg. The total number of unique replicated

copies R is:

96

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

R =
G∑
g=1

SAg (4.1)

OpenSHS can modify the original duration of a performed activity by shortening and/or

expanding it. To preserve the structure of a certain activity, the algorithm looks for

the longest steady and unchanged sequence of readings. Then, the proposed algorithm

randomly chooses a new duration for this sequence. The new modified sequence length

can vary between 5% of the original sequence length, up to its full length. The researcher

can use this feature by passing the variable-activities option to the aggregation

parameters as will be shown next.

The researcher can configure a number of parameters to control the generated output

such as:

• days: the number of days to be generated,

• start-date: specifies the starting date for the dataset,

• time-margin: the variability of the starting time for the replicated events. For

example, assuming a sample that was recorded at 7:30 am and the time margin

specified to be 10 minutes. The replicated sample could start anytime from 7:25

am up to 7:35 am,

• variable-activities: make the duration for each activity variable.

4.3.3.2 Dataset Generation

After running the aggregation algorithm, the researcher can combine all the scenarios,

generated by different participants, into one final comma separated values (CSV) dataset

output. Table 4.4 shows a sample generated dataset.

97

Chapter 4 OpenSHS 4.3. OpenSHS Architecture and Implementation

TABLE 4.4: A sample of the final dataset output.

timestamp bedTableLamp bed bathroomLight bathroomDoor . . . Activity

2016-04-01 08:00:00 0 1 0 0 . . . sleep

2016-04-01 08:00:01 0 1 0 0 . . . sleep

2016-04-01 08:00:02 0 1 0 0 . . . sleep

2016-04-01 08:00:03 0 1 0 0 . . . sleep

2016-04-01 08:00:04 1 1 0 0 . . . sleep

2016-04-01 08:00:05 1 0 0 0 . . . sleep

2016-04-01 08:00:06 1 0 0 1 . . . personal

2016-04-01 08:00:07 1 0 0 1 . . . personal

2016-04-01 08:00:08 1 0 1 1 . . . personal

2016-04-01 08:00:09 1 0 1 1 . . . personal

2016-04-01 08:00:10 1 0 1 1 . . . personal
...

...
...

...
...

...

The time-margin parameter does add a level of sophistication to the timing of the

recorded activities. This is useful for applications that rely heavily on the time dimension

of activities, for example, in anomaly detection research.

4.3.4 Implementation

OpenSHS implementation relies on Blender and its game engine. Blender’s game engine

is programmable by Python.

4.3.4.1 Blender

Blender was chosen to build the majority of the simulation tool and to act as an infras-

tructure for OpenSHS. The reasons for this choice can be summarised as:

• Open-source: Blender is an open-source 3D modelling and animation software

and an actively developed project by the open-source community. It allows the

user to create 3D models and visual effects. The Game Engine component of

Blender allows the user to build complex 3D interactive games and script them

with Python which is an important feature for OpenSHS.

• Cross-platform: Blender is available for the three major operating systems. Namely,

GNU/Linux, Microsoft Windows, and Apple macOS. Blender uses OpenGL (1992)

for its Game Engine which is also, a cross-platform 3D technology available for the

major operating systems.

98

Chapter 4 OpenSHS 4.4. OpenSHS Usability

• The Blender Game Engine: Blender’s Game Engine allowed us to add the interac-

tivity to the simulations. The physics engine facilitates the simulation of different

types of real sensors and devices. For example, blender has a ‘Near’ sensor which

will only be activated when the 3D avatar controlled by the user is physically near

other objects in the scene. Therefore, such sensor could be used to simulate a

proximity sensor easily.

4.3.4.2 Python

The interaction with the simulation tool is done by controlling a 3D avatar that navigates

the smart home space through a first-person perspective similar to most first-person

games. Figure 4.7 shows the 3D avatar navigating the living room. Since Blender’s

Game Engine uses Python as a programming language, all the logic and interactions

between the avatar and the virtual environment was developed with it. Moreover, all of

OpenSHS modules are programmed by Python.

FIGURE 4.7: Navigating the smart home space through the first-person perspective.

4.4 OpenSHS Usability

Measuring the usability of a software tool is a challenging and tricky task since it involves

subjective qualities and depends on the context used. Brooke et al. (1996) defines it

as “The general quality of the appropriateness to a purpose of any particular artefact”.

He developed the widely used System Usability Scale (SUS) which is a questionnaire

consisting of ten questions that measure various aspects of the usability of a system.

The score of SUS ranges from 0 to 100.

99

Chapter 4 OpenSHS 4.4. OpenSHS Usability

To assess OpenSHS usability, a usability study using SUS was conducted. Our sample

consists of graduate students and researchers interested in smart home research. Multi-

ple sessions were carried out and each session started by introducing OpenSHS and then

by presenting its functionalities. After that, any questions the participants had in mind

were answered. Afterwards, the participants were allowed to use OpenSHS and explore

its features. Finally, the participants were asked to answer few questions, such as how

frequently do they use their computer on daily basis and whether they play first-person

3D video games or not. Then, the participants were asked to fill the SUS questionnaire.

Two usability studies were carried out. One form the perspective of the researchers

and the other from the perspective of the participants using OpenSHS. The researchers’

group were asked to evaluate OpenSHS usability throughout the three phases (design,

simulation, aggregation). The participants group were only requested to evaluate the

simulation phase.

For the researchers’ group, data from 14 researchers were collected, 85.7% were male,

and 14.3% female. The average age of the researchers was 36 (minage = 31,maxage =

43). All the researchers reported that they do use their computers on a daily basis and

93% of them did play 3D first-person games. The aspects that the SUS questionnaire

investigates can be summarised as:

1. Frequent use (FU): I think that I would like to use this system frequently.

2. System complexity (SC): I found the system unnecessarily complex.

3. Ease of use (EU): I thought the system was easy to use.

4. Need for support (NS): I think that I would need the support of a technical person

to be able to use this system.

5. System’s functions integration (FI): I found the various functions in this system

were well integrated.

6. System inconsistencies (SI): I thought there was too much inconsistency in this

system.

7. Learning curve (LC): I would imagine that most people would learn to use this

system very quickly.

8. How cumbersome the system is (CU): I found the system very cumbersome to

use.

9. Confidence in the system (CO): I felt very confident using the system.

100

Chapter 4 OpenSHS 4.4. OpenSHS Usability

10. Need for training before use (NT): I needed to learn a lot of things before I could

get going with this system.

Figure 4.8 shows the results of our SUS questionnaire for the researchers’ group. The

odd-numbered statements contributes positively to the overall score if the participant

agrees with them (Figure 4.8a). On the other hand, the even-numbered statements

contributes negatively if the researcher agrees with them (Figure 4.8b). Calculating the

score of our sample revealed that the average SUS score of OpenSHS is 71.25 out of 100

(scoremin = 40, scoremax = 85).

FU EU FI LC CO
Components

1

2

3

4

5

Sc
al
e

(A) The positive components.

SC NS SI CU NT
Components

1

2

3

4

5

Sc
al
e

(B) The negative components.

FIGURE 4.8: The result of System Usability Scale (SUS) questionnaire for the re-
searchers’ group.

For the participants’ group, 31 participants were asked to answer the SUS question-

naire. 77.5% were male, and 22.5% female and average age of the participants was

27 (minage = 21,maxage = 36). 97% did play first-person games and all of the par-

ticipants reported that they use their computers on daily basis. Figure 4.9 shows the

participants’ group results. The SUS score for this group is 72.66 out of 100 (scoremin =

50, scoremax = 87).

The usability results for both groups are promising but, at the same time, they indicate

that there is room for improvements. Both groups agree that the learning curve (LC)

component of the questionnaire needs improvement. The results also show the need for

support from a technical person to use the system.

101

Chapter 4 OpenSHS 4.5. Conclusion

FU EU FI LC CO
Components

1

2

3

4

5

Sc
al
e

(A) The positive components.

SC NS SI CU NT
Components

1

2

3

4

5

Sc
al
e

(B) The negative components.

FIGURE 4.9: The result of System Usability Scale (SUS) questionnaire for the partici-
pants group.

4.5 Conclusion

Many smart home research projects require the existence of representative datasets for

their respective applications and research interests and to evaluate and validate their

results. Many simulation tools available in the literature focus on context-awareness

and few tools have set dataset generation as their aim. Moreover, there is a lack of open-

source simulation tools in the public domain. OpenSHS, an open-source, 3D and cross-

platform simulation tool for smart home dataset generation was developed. OpenSHS

has many features that allow the researchers to easily design different scenarios and

produce highly intricate and representative datasets. Our tool offers a library of smart

sensors and devices that can be expanded to include future emerging technologies.

OpenSHS allows the researchers to generate seeds of events rapidly. A replication algo-

rithm that can extend the simulated events to generate multiple unique large datasets

was introduced. Moreover, conducting a simulation with a participant can be done in a

reasonable time and the tools that streamline the process such as fast-forwarding were

provided.

The proposed tool divides the dataset generation process into three distinct phases,

design, simulation and aggregation. In the design phase, the researcher creates the ini-

tial virtual environment by building the home, importing smart devices and creating

contexts. In the simulation phase, the participant uses the virtual home to generate

context-specific events. In the final stage, the researcher applies the replication algo-

rithm to generate the aggregated dataset.

102

Chapter 4 OpenSHS 4.5. Conclusion

A usability study using the System Usability Scale (SUS) to assess how usable OpenSHS

was conducted. The results of this study were promising, yet they left room for more

improvements.

One of the identified issues in smart home simulations tools, is having the support for

multiple inhabitants. This is a challenging task both for the simulation tool and for

the participants. Currently, OpenSHS offers partial support for multiple inhabitants. To

increase the realism of the simulations, integrating VR technologies into OpenSHS in

the future is planned. The accessibility for both the researchers and the participants is

an important feature. Hence, a port of the implementation of OpenSHS to run in a web

browser is planned.

103

Chapter 5

HI-SDR Encoder

5.1 Introduction

All HTM systems have an encoding region that converts the raw input data to an SDR,

the basic data structure of any HTM system. Due to the nature of the input data, whether

numerical, categorical, single-column or multi-columnar, the encoder’s job is to convert

this input in a way that allows the HTM system to learn and recognise the patterns. Hav-

ing good encoders is a crucial requirement for the whole system to perform well. These

play the role of our senses that translate what we see, hear or touch to a representation

that our brains can process.

This Chapter proposes a novel encoder and starts by presenting a formal definition of

SDRs and the mathematical notations used in this work and in the HTM literature in

general. The Chapter presents what makes an encoder produce good SDRs and the

properties which are required for this. The standard NuPIC encoders and a study of

their behaviour will be presented. The issue with the standard NuPIC encoders when

dealing with multi-columnar datasets as seen in the smart home datasets will be ex-

plored. Several experiments will be conducted to highlight these issues and analyse the

encoders’ performance. The Chapter will conclude with the novel Hash Indexed Sparse

Distributed Representation encoder (HI-SDR) that does resolve these issues.

5.2 Sparse Distributed Representations

The SDR is the basic information representation and one of the main building blocks in

any HTM system. This Section presents a mathematical formalisation of the SDRs and

the basic operations that can be performed on them.

104

Chapter 5 HI-SDR Encoder 5.2. Sparse Distributed Representations

5.2.1 Notations

The notations and definitions used in this Section is based on the work presented by

Ahmad & Hawkins (2015). The following listing is a set of definitions and mathematical

notations that will be used throughout this work:

SDR: is a one-dimensional binary array consisting of mostly zeros and very small per-

centage of ones (active bits). The active bits usually constitute around 2%. The total

number of bits in an SDR is referred to by n. An SDR x has n-length array of binary com-

ponents bi where i is the index of the component in the array. e.g. x = [b0, b1, . . . , bn−1].

The total number of components with the value 1 for the SDR x is denoted by wx. The

variable w was chosen as a shorthand for width. The 1-valued components are referred

to as active bits since they represent a firing/active neuron. Here is an example of an

SDR x with n = 10 and w = 3:

x =
[
0 0 1 1 1 0 0 0 0 0

]
(5.1)

The set of active bits w does not have to be consecutive. In the following sections

different types of SDRs will be presented where the active bits are distributed across the

available space.

Overlap: One of the primitive operations done on SDRs is comparing the similarity

between two SDRs and is referred to this operation as the overlap score. The name

‘overlap’ was chosen because when two SDRs are overlaid on top of each other, the sim-

ilarity between them is determined by the number of active bits that are in the same

location for both SDRs. Thus, the similarity score equals to the number of bits overlap-

ping between any two SDRs. The overlap score can also be expressed as the dot product

of two SDRs, for example, x and y as such:

overlap(x, y) = x · y (5.2)

Match: The notion of having two SDRs matching each other can be realised with the aid

of the previously mentioned ‘overlap’ function. We introduce a variable θ to denote the

threshold which determines if there is a match or not for any two given SDRs. Therefore,

a ‘match’ can be expressed by:

match(x, y) = overlap(x, y) ≥ θ (5.3)

105

Chapter 5 HI-SDR Encoder 5.2. Sparse Distributed Representations

The variable θ is less than or equal to the active bits for any given SDR (θ ≤ w).

Sparsity: is the ratio of the active bits w to the total number of bits n. This function is

denoted by s. For example, for an SDR x, the sparsity of this SDR will be:

s(x) =
w

n
(5.4)

5.2.2 SDRs Properties

The number of unique SDRs that can be generated under different parameters can be

formalised by:

(
n

w

)
=

n!

w!(n− w)!
(5.5)

The numerator of equation 5.5 represents the factorial of the total number of bits

whether being active or inactive. The denominator is the factorial of the number of

active bits multiplied by the number of inactive bits.

To take a simple case, assuming n = 16, w = 1. This results in 16 unique SDRs that can

be used. By increasing w to 2, the capacity will increase to be 120. That is because the

two active bits can be arranged in more unique ways in the available space.

When plugging in the values n = 40, w = 4, the number of unique SDRs that can be

generated will be 91390. This number might seems small when compared against a

dense binary representation such as ASCII coding which will generate 2n unique repre-

sentations. However, practically speaking, HTM encoders usually have n = 2048, w = 40

which gives 2.37× 1084 unique representations (Ahmad & Hawkins, 2015).

To calculate the probability of having two SDRs (x, y) being identical, based on the same

n and w:

P (x = y) =
1(
n
w

) (5.6)

To explore the past two equations with concrete numbers, let us assume n = 1024, w = 2,

this will produce 523776 unique representations and the probability of having two SDRs

being identical will be 0.000001909. The probability will continue to decrease as the

value of w increases to a point where number reaches a global minimum. Past that point

and as w increases, the probability will increase. Therefore, there is an optimal value

where the chance of having two identical SDRs is at its global minimum.

106

Chapter 5 HI-SDR Encoder 5.2. Sparse Distributed Representations

In the HTM literature there is the idea of overlap set which is a set of SDRs with the

same n and w and matching a certain overlap score. This idea allows us to explore

some mathematical properties of SDRs when doing more complex operations on groups

of SDRs. The number of the members of the overlap set Ω for the SDR x with the

parameters n and w under the condition of having exactly b overlapping bits between

the SDR x and the members of the overlap set is:

|Ωx(n,w, b)| =
(
wx
b

)
×
(
n− wx
w − b

)
(5.7)

This is under the assumptions that b ≤ wx and b ≤ w. The first term in equation 5.7

is the number of subsets of SDR x with b active bits. The second term is the number

of other SDRs with n − wx total bits and w − b active bits. Let us see the simplest case

possible, assuming n = 600, wx = 40, w = 40, b = 40, there is only one SDR that satisfy

these conditions. If a little more relaxed condition n = 600, wx = 40, w = 40, b = 39 was

taken, this will give us 22400 SDRs that fall into this overlap set.

Practically, the HTM system does not require to have exact matches where θ = w. This is

to combat the noise in the input signal. There is a trade off between increasing θ value

and the system tolerance and sensitivity. Increasing θ will increase the system sensitivity

and vice versa. For instance, let us assume an SDR x and a copy of it with 50% noise

x′. If w = 40 and θ = 20, then the system will still consider x and x′ the same input.

However, lowering θ will make the system consider a signal identical to another falsely,

increasing the false positives. (Ahmad & Hawkins, 2015).

To calculate the probability of false positives in an HTM system under certain conditions,

that is, the probability of overlap(x, y) ≥ θ will be:

fpnw(θ) =

∑w
b=θ |Ωx(n,w, b)|(

n
w

) (5.8)

Taking the previous parameters n = 600, wx = 40, w = 40, b = 39, the chance of having

a false positive match is very low (5.17×10−59). Lowering b = 20, the chance is still very

low (8.53× 10−16). Taking it to the lowest θ = 1, the chance of false positive is 18%.

The SDRs, as shown earlier, have good noise robustness. This robustness can be ex-

ploited to achieve a couple of interesting capabilities. Using just a subset of the active

bits when performing a matching operation and reliably know that the match is correct

and not a false positive. To formalise this idea, let us take an SDR x and a sub-sampled

107

Chapter 5 HI-SDR Encoder 5.2. Sparse Distributed Representations

copy of it x′ with wx′ ≤ wx. To calculate the probability of falsely matching the sub-

sampled SDR x′ with another random SDR y the overlap set of x′ has to be calculated

as follows:

|Ωx′(n,wy, b)| =
(
wx′

b

)
×
(
n− wx′
wy − b

)
(5.9)

The probability of a false positive will be:

fpnwy
(θ) =

∑wx′
b=θ |Ωx′(n,wy, b)|(

n
wy

) (5.10)

To plug concrete numbers in the previous equation, assuming n = 1024 for all the

SDRs in this example. The original SDR x has wx = 8, the sub-sampled SDR x′ has

wy = 4, and a random SDR y has wy = 8. So our sub-sampling ratio is 50%. And let us

assume that the condition for a match θ = 2. The probability of a false positive will be

0.000317. When increasing θ = 3, the probability will be 0.00000125. Increasing it to

the maximum allowed value under our assumptions θ = 4 will give us a small chance of

having false positive match (1.54× 10−9).

One of the properties of SDRs is that an SDR can be recognised and identified correctly

from a group of SDRs. Let us assumeX to be a set of uniqueM SDRs,X = x1, x2, . . . , xm

where every SDR in that set is different from all the other SDRs in the same set, that is:

∀x∈X∀y∈X,y/∈xmatch(x, y) = false (5.11)

A random SDR y is said to belong to this set when:

y ∈ X ≡ ∃xi∈Xmatch(xi, y) = true (5.12)

Now, given a noisy SDR xi from the set X, and xi has t bits of noise, under the as-

sumption that t ≤ (w − θ), the probability of falsely recognising it out of all the SDRs in

the set X can be given by the following inequality that gives us an upper bound to this

probability:

fpx(t) ≤
M∑
i=1

fpnwxi
(t) (5.13)

If all the SDRs in the set X are of the same w, the upper bound will simply be:

108

Chapter 5 HI-SDR Encoder 5.2. Sparse Distributed Representations

fpx(θ) ≤Mfpnw(θ) (5.14)

Assuming a set of 100 SDRs all of them are n = 256, w = 4, θ = 4, The probability of

falsely recognising one SDR in that set with another SDR in the same set is 5.72× 10−7.

In a typical HTM system the parameters are usually in the range of n = 2048, w = 40, θ =

30, which gives a probability of a false positive = 1.03× 10−47.

Therefore, a set of SDRs can be stored and retrieved back with high confidence. Again,

this shows how the SDRs are noise tolerant if the parameters are set to a reasonable

range.

There is another important property of SDRs that is commonly referred to as the ‘union

property’ in the HTM literature. It is possible to store and merge many SDRs into one

representation by performing a logical OR operation on all the SDRs. Because of the

sparsity and the previously mentioned properties of the SDRs, it is possible to reliably

store these SDRs without corrupting any of them, provided that there is sufficiently large

bits. Here is an example of a union set of two SDRs of n = 10, w = 1:

x1 = [0 1 0 0 0 0 0 0 0 0]

x2 = [0 0 0 1 0 0 0 0 0 0]

They can be merged into one SDR by applying the logical OR operation. The resulting

SDR X will be:

X = [0 1 0 1 0 0 0 0 0 0]

The sparsity of x1 and x2 is 1% and the resulting SDR X sparsity is 2%. In this simple

example, it is possible to correctly know if a random SDR y is a member of this union set

or not. i.e. is match(X, y) true or not. From this example it might seem that the sparsity

of the merged set is a linear function with respect to the number of the members in

union set. However, This is not the case when having more typical encoder’s parameters

(see Figure 5.1).

The example above omits an important issue, what if there are collisions? In other

words, what is the probability of getting false positives when matching with the union

set? By starting with the simpler case, looking for exact matches i.e. when θ = w,

meaning all active bits in our query SDR must match with our union set. Having M

SDRs in union set X, when M = 1, the probability of any bit to be 0 is 1 − w
n . For any

M SDRs, the probability is:

109

Chapter 5 HI-SDR Encoder 5.2. Sparse Distributed Representations

p0 = (1− w

n
)M (5.15)

After merging M SDRs into our union set X, the probability of any bit being active, in

the resulting union set, is 1 − p0. Now the probability of a false positive where all the

bits in our query SDR y matching our union set X is:

pfp = (1− p0)w

= (1− (1− w

n
)M)w

(5.16)

Considering 10 SDRs with n = 600, w = 2, the probability of false positive is 0.0011. If w

is increased to be 4, the probability of false positive rapidly goes down to be 1.75×10−5.

Increasing w yet again to be 6 gives a probability of 7.64 × 10−7. Taking more typical

parameters n = 2048, w = 40 and 20 SDRs in the union set, the probability of false

positive is 3.37× 10−20 which is extremely low.

The more SDRs added in the union set, the more likely that there will be a false positive.

Now the question is how quickly does the function of the number of SDRs in the union

set increases? The number of expected active bits in the union set is n × (1 − p0). This

function increases slower than a linear function after a certain threshold as shown in

figure 5.1.

0 25 50 75 100 125 150 175 200
Number of merged SDRs (M)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f a
ct

iv
e

bi
ts

Union
Linear

FIGURE 5.1: The growth of the number of active bits in the union set as a function of
the number of SDRs in the set.

The previous analysis of the union set assumed that θ = w, meaning that we are look-

ing for exact and free of noise matching. Now let us explore the common case of not

110

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

requiring exact matching i.e. θ < w. In this case, the expected number of active bits in

the union set X is w̃x = n(1 − p0) under the assumption that n ≥ w̃x ≥ w, the overlap

set size will be:

E[|ΩX(n,w, b)|] =

(
w̃X
b

)
×
(
n− w̃X
w − b

)
(5.17)

For a match to be true, there have to be an overlap of θ bits or more but not exceeding

w. Therefore, the probability of false positives is approximately:

ε ≈
∑w

b=θ |ΩX(n,w, b)|(
n
w

) (5.18)

Practically, in the equation 5.18, the first term of the sum does dominate. Thus, the

previous equation can be simplified to:

ε ≈ |ΩX(n,w, b)|(
n
w

) (5.19)

Lowering the threshold θ will increase the probability of a false positive (Ahmad &

Hawkins, 2016). However, increasing n will lower the chance of false positive and this

is one of the trade offs in an HTM system (Ahmad & Hawkins, 2015).

All the operations on SDRs are performed on the active bits w. Therefore, the time

complexity of the operations is O(w) and the size of all the bits in an SDR n does not

influence these calculations. Since the SDRs are sparse, in practice the w is much smaller

than the overall number of bits n.

5.3 NuPIC Encoders

5.3.1 Proprieties of Good Encoders

According to Purdy (2016), any HTM system to function well and to produce good

results it must have the following properties:

1. Deterministic: Given an input, the resulting SDR should always be the same when

given the same input again.

2. Fixed in dimensions: The resulting SDRs should always have a fixed number of

total bits.

111

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

3. Fixed in sparsity: The resulting SDRs should have fixed number of active bits.

4. Capturing semantics: Any two similar inputs should have an overlapping set of

active bits.

Having a deterministic encoder is an important property for a good encoder and with-

out it any HTM system will not function properly. When an HTM system is learning a

sequence of SDRs and if the representations of the original values is changing over time,

this will cause the HTM system not to recognise these SDRs and henceforth learn their

succession over time.

The dimensionality of the encoder’s output should be preserved throughout the life span

of the learning process. This requirement becomes apparent when we realise that many

of the primitive operations that take place in the SP and in the TM actually rely on

bit-wise comparisons between a succession of SDRs. When the dimensionality of these

SDRs is changing over time, this will lead to false calculations by the HTM system’s

components. Therefore, it is important to have the total number of bits fixed.

Similarly, the sparsity or the ratio of the active bits to the total number of bits, should

be also fixed. Again, this is due to how the HTM system’s primitive operations are

calculated. How sparse should an encoder be? Is an open question and it might be

application specific but generally it can range from 1% to 35% as suggested by Purdy

(2016).

Defining what exactly is meant when saying that two inputs are semantically similar is a

difficult task and it is highly dependent on the data type in question. Taking the natural

numbers, for example, it is fairly easy to define the notion of semantic similarity between

two natural numbers in a dataset if the value space for these numbers is known. By

‘value space’ the author means the range of values present in a dataset from a minimum

known value to a maximum known value. For instance, taking the numbers 1 and 2 the

minimum value allowed is 1 and the maximum value allowed is 100, it can be said that

the numbers 1 and 2 are semantically similar in this value space. And the numbers 1

and 100 are semantically the most dissimilar.

Purdy (2016) presented a formal mathematical description of the encoding procedure of

semantically similar input and the number of overlapping active bits. This mathematical

formalisation is as follows:

Let A be an input space and let S(n, k) be the set of SDRs of length n with k active bits.

An encoder f is a function that A → S(n, k). Let a distance score dA be a function that

A×A→ R and satisfy the following conditions:

112

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

∀x, y ∈ A, dA(x, y) ≥ 0 (5.20)

∀x, y ∈ A, dA(x, y) = dA(y, x) (5.21)

∀x ∈ A, dA(x, x) = 0 (5.22)

Equation (5.20) simply states that the similarity distance function should be positive or

zero and equation (5.21) states that the distance function is symmetric and equation

(5.22) states that for the same input, the distance is zero.

Moreover, Purdy (2016) provides a mathematical way of evaluating an encoder by com-

paring the distance scores with the number of overlapping active bits. Taking two inputs

with a low distance score, the number of the overlapping active bits should be high. This

evaluation procedure is formalised as:

For s and t being two resulting SDRs from an encoder, let O(s, t) be the number of

overlapping active bits of the two SDRs s and t. Then, an encoder f : A → S(n, k) and

∀w, x, y, z ∈ A:

O(f(w), f(x)) ≥ O(f(y), f(z))⇔ dA(w, x) ≤ dA(y, z) (5.23)

5.3.2 Standard NuPIC Encoders

At the time of writing NuPIC has several built-in encoders for various data types. It

is possible to divide the data types into two big categories: Numerical and Categorical

data. In this Section, the currently available encoders in the NuPIC project and how they

deal with the different data types will be presented.

5.3.2.1 Numerical Data Types

NuPIC has several encoders that work well with numerical data types. Figure 5.2 shows

the Scalar encoder which is used to encode any scalar value. For each input, the resulting

SDR is depicted as grid of dark (active bits) and light (inactive bits) squares. This 2D

depiction is just for illustration purposes, while in reality, an SDR is just a 1D array. For

this encoder to work it requires the user to specify the minimum and maximum values

113

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

for the data to be encoded. Also, it requires the total number of bits to be specified.

These parameters have direct influence on the semantics of the data. In Figure 5.2, the

minimum value to be specified is 1, the maximum value is 100, the total number of bits

to be 100, and the width (denoted by w) to be 3. The width parameter is the number

of active bits for any given input. Given the constraints imposed by these parameters,

the number 1 and the number 2 share two overlapping bits, namely the second bit and

the third bit. The number 1 and the number 3 only share one bit, namely the third bit.

This configuration allows the HTM system to recognise that the number one and two are

closely related than the number one and the number three. On the other hand, taking

the number 100 it is possible to see that it shares no overlapping bits with any of the

previously mentioned inputs.

Scalar Encoder

1

(A)

Scalar Encoder

2

(B)

Scalar Encoder

3

(C)

Scalar Encoder

100

(D)

FIGURE 5.2: Encoding multiple scalar values [1, 2, 3, 100] with the parameters
n = 100, w = 3,minV al = 1,maxV al = 100.

In the HTM encoders literature there is this notion of buckets. The buckets are another

way to specify the total number of bits (n) for a given scalar encoder. The number of

buckets can be calculated as: n − w + 1. Therefore, the buckets can be thought of as

the set of all the unique SDRs that can be produced given specific encoder parameters.

It might be easier to explore this idea by an example. Assuming an encoder with the

following parameters: n = 10, w = 3,minV al = 1,maxV al = 10, here are all the values

from 1 to 10 and their resulting SDRs that this encoder can produce are:

114

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

1 → [1 1 1 0 0 0 0 0 0 0]

2 → [0 1 1 1 0 0 0 0 0 0]

3 → [0 0 1 1 1 0 0 0 0 0]

4 → [0 0 1 1 1 0 0 0 0 0]

5 → [0 0 0 1 1 1 0 0 0 0]

6 → [0 0 0 0 1 1 1 0 0 0]

7 → [0 0 0 0 0 1 1 1 0 0]

8 → [0 0 0 0 0 1 1 1 0 0]

9 → [0 0 0 0 0 0 1 1 1 0]

10 → [0 0 0 0 0 0 0 1 1 1]

Every number in the previous example had a unique SDR except the numbers (3 & 4)

and (7 & 8) each had the same SDR. When calculating the number of unique SDRs, it

will be 8 which is also the number of buckets (10− 3 + 1).

The Scalar encoder interface provides several ways to specify the total number of bits so

that the encoder will reflect the desired semantic properties for a given dataset. One of

these alternative interfaces to the parameter n is the resolution parameter. Let us take an

encoder with the following parameters: resolution=0.5, w=3, minVal=1, maxVal=5,

it will be able to uniquely encode the following values:

1.0 → [1 1 1 0 0 0 0 0 0 0 0]

1.5 → [0 1 1 1 0 0 0 0 0 0 0]

2.0 → [0 0 1 1 1 0 0 0 0 0 0]

2.5 → [0 0 0 1 1 1 0 0 0 0 0]

3.0 → [0 0 0 0 1 1 1 0 0 0 0]

3.5 → [0 0 0 0 0 1 1 1 0 0 0]

4.0 → [0 0 0 0 0 0 1 1 1 0 0]

4.5 → [0 0 0 0 0 0 0 1 1 1 0]

5.0 → [0 0 0 0 0 0 0 0 1 1 1]

From the previous listing it can be seen that every half a step in the range of values from

1 to 5, there is a unique SDR for that value. Therefore, the resolution parameter can be

useful if the numerical values in a dataset are increasing by a fixed interval.

The Scalar encoder suffers form an issue that does not make it suitable to all scalar

data. The encoder requires the minimum and maximum value to be defined before

the user is able to encode the data with it. Moreover, the minimum and maximum

values are set from the get-go, and they cannot be changed during the lifetime of the

learning process. This limitation is inspired by biological sensors as they have fixed

115

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

range of values they are sensitive to. An example of this is the human eye sensitivity

to the electromagnetic spectrum or the visible light. The human eye is only sensitive to

a fraction of that spectrum ranging approximately from 380 nm to 800 nm. However,

NuPIC does provide several other numerical encoders that offer a solution to overcome

this issue, the Adaptive Scalar encoder is one of these encoders.

The Adaptive Scalar encoder works by keeping track of the minimum and maximum

values as they are fed to the encoder and then adapting to these changes. To explore

this idea let us take an Adaptive Scalar encoder with the following parameters: n =

10, w = 3, and feed the encoder the scalar values 1, 2, . . . , 10 twice to see the changes

to the resulting SDRs. Here are the results of the first pass:

1 → [1 1 1 0 0 0 0 0 0 0]

2 → [0 0 0 0 0 0 0 1 1 1]

3 → [0 0 0 0 0 0 0 1 1 1]

4 → [0 0 0 0 0 0 0 1 1 1]

5 → [0 0 0 0 0 0 0 1 1 1]

6 → [0 0 0 0 0 0 0 1 1 1]

7 → [0 0 0 0 0 0 0 1 1 1]

8 → [0 0 0 0 0 0 0 1 1 1]

9 → [0 0 0 0 0 0 0 1 1 1]

10 → [0 0 0 0 0 0 0 1 1 1]

And now the second pass of the same scalar values (1, 2, . . . , 10):

1 → [1 1 1 0 0 0 0 0 0 0]

2 → [0 1 1 1 0 0 0 0 0 0]

3 → [0 0 1 1 1 0 0 0 0 0]

4 → [0 0 1 1 1 0 0 0 0 0]

5 → [0 0 0 1 1 1 0 0 0 0]

6 → [0 0 0 0 1 1 1 0 0 0]

7 → [0 0 0 0 0 1 1 1 0 0]

8 → [0 0 0 0 0 1 1 1 0 0]

9 → [0 0 0 0 0 0 1 1 1 0]

10 → [0 0 0 0 0 0 0 1 1 1]

In the first pass, it can be seen that the first value (The number 1) considered to be the

minimum value and the second value fed in (The number 2) is considered to be the

maximum value as it happened to be bigger than the first. From the second value up to

116

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

the last, the resulting SDRs are identical and the active bits are occupying the maximum

allowed representation. The encoder produced the same representation at each step

because it keeps changing the maximum value to be the currently fed-in value and since

these scalar values are increasing at each step, each one is taking the maximum value

representation. However, on the second pass, the SDRs are adapting. It can be seen that

the values’ representations are shifting and creating a sliding window of active bits that

cover the range of the values seen so far. It is worth noting that the Adaptive Scalar

encoder interface does not provide a resolution parameter.

NuPIC also provides another dynamic encoder called Random Distributed Scalar en-

coder which overcomes the issue of having to specify the minimum and maximum values

upfront. It utilises a hashing function to uniquely represent scalar values. This encoder

keeps track of every scalar input and assign it a unique representation and as the input

space grows, it dynamically grows the representations given the available space set by

the encoder parameters. The Random Distributed Scalar encoder keeps and maintains

the semantics meanings of the input (the number of overlapping bits). The way it does

that can be explained by the aid of an example. Let us take a Random Distributed Scalar

encoder with the following parameters resolution=1, w=3, n=33 and let us encode

the following values:

1 → [000000001000100000000000000000010]

2 → [000000001010100000000000000000000]

3 → [000000001010000000000000100000000]

10 → [000000000001000000100000000010000]

99 → [010000000000100010000000000000000]

As shown in the example above, the number 1 and 2 have unique distributed represen-

tations, but they share two active bits out of the total three bits. The same is true for the

numbers 2 and 3, they only differ in one bit. However, the larger the entered number

is, the larger the differences in the resulting representation. The Random Distributed

Scalar encoder uses a hashing function to randomise and distribute the active bits over

the SDR space. This example might be restrictive as the number of bits (n) should be

larger in practice (The default value for n is 400). It is worth noting that there is no

need to specify the parameter n and only use the resolution parameter to initialise the

encoder, but that was done just for the sake of simplicity and illustration of how this

encoder works. There is one aspect of this encoder which is not present in the other

encoders presented in this Chapter, it does keep an internal state of all the encoded

values it sees. It does that because it needs to know the mapping between the scalar

values and the buckets before creating a new representation. This state ensures that the

117

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

resulting SDR capture the semantic meanings of the entered values. On the other hand,

if the number of the entered values is big, this will require more memory and slower

execution times.

Another encoder called the Log encoder that can be used with numerical values that

exhibit log-like properties. Taking a Log encoder with the following parameters: n=10,

w=3, minVal=1, maxVal=1000, then the results of the following values are:

1 → [1 1 1 0 0 0 0 0 0 0]

2 → [0 1 1 1 0 0 0 0 0 0]

10 → [0 0 1 1 1 0 0 0 0 0]

100 → [0 0 0 0 0 1 1 1 0 0]

1000 → [0 0 0 0 0 0 0 1 1 1]

Another numerical encoder available is the Delta encoder which could be useful when

the user wants to capture a numerical aspect about the input data which is not the actual

values themselves but rather the rate of change of these values, for example.

Some numerical encoders offer the option to encode periodic data. For instance the

Scalar encoder has a boolean flag named periodic which allows the user to specify

whether the nature of the encoded data is cyclical and reoccurring. An example of

numerical cyclical data could be the time of day. Capturing this property of the input

data will allow the HTM system to better understand and learn the data. Having this flag

enabled, will cause the active bits (w) to wrap around the allocated output space. Let us

take an encoder with the following parameters: n = 10, w = 3,minV al = 1,maxV al =

10, periodic = True, and examine some values and their corresponding SDRs:

1 → [1 1 0 0 0 0 0 0 0 1]

2 → [1 1 1 0 0 0 0 0 0 0]

3 → [0 1 1 1 0 0 0 0 0 0]

9 → [0 0 0 0 0 0 0 1 1 1]

As the example illustrate, the active bits for the number 1 and the number 9 share a

wrapping bit.

5.3.2.2 Categorical Data Types

NuPIC offers a categorical encoder called Category encoder which, as the name suggests,

encode categorical data inputs. As previously mentioned, a good encoder should capture

118

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

the semantic meanings for the input data. This could be the case for some categorical

data, as will be seen later in this Section, but usually the categorical data is discrete and

unrelated. The Category encoder works well for unrelated data types and its interface

has the following parameters: w and categoryList. It does not require the total number

of bits for the SDRs because that can be derived from the number of the categories list

and the width of the active bits (w). A concrete example could shed some light on how

this encoder works. Let us take a Category encoder with the following parameters: w=3,

categoryList=[’cat’,’dog’]. Here we have two categories, cat and dog. Feeding in

these values to the encoder will produce the following SDRs:

cat → [0 0 0 1 1 1 0 0 0]

dog → [0 0 0 0 0 0 1 1 1]

other → [1 1 1 0 0 0 0 0 0]

As explained earlier, no overlapping bits are there between the SDRs of cat and dog

values. One interesting thing is that the first three bits are reserved to any categorical

value not present in the categoryList.

The interface to the Category encoder suffers from an issue similar to the issue en-

countered with the Scalar encoder regarding the knowledge of all the possible values

that could be entered to the encoder. To overcome this issue, NuPIC provides the SDR-

Category encoder which allows the user to encode categorical data without knowing all

the possible values that could be fed in. This is an important property to have especially

if the HTM system is working in online fashion as the user cannot guarantee all possible

inputs. Let us take an instance of the SDR-Category encoder with the following param-

eters n = 10, w = 3 and examine the resulting SDRs for the following values in order

[’cat’, ’dog’, ’other’]:

cat → [1 1 0 1 0 0 0 0 0 0]

dog → [0 1 0 0 0 0 0 1 1 0]

other → [0 0 0 1 0 0 0 1 0 1]

The SDR-Category encoder tries to assign each categorical input a unique representa-

tion. It keeps track of all the values seen so far and randomly assign unique SDRs to

each value. When instantiating a new SDR-Category encoder instance with the same set

of parameters and fed the same values but in a slightly different order ([’dog’, ’cat’,

’other’]), the following SDRs will be produced:

dog → [1 1 0 1 0 0 0 0 0 0]

cat → [0 1 0 0 0 0 0 1 1 0]

other → [0 0 0 1 0 0 0 1 0 1]

119

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

As illustrated by the last two examples, the SDR-Category encoder assign unique SDRs

and tries to neglect and minimise any overlapping active bits between them.

One of the common data types that can be found in many dataset are date and time

fields. This type of data can come in many flavours and variations. For instance, there

can be a days field in a dataset which indicates the day of the week in which a data

point is recorded. For such field, the whole column can be treated as a categorical data

and the Category encoder can be used to do the job. But sometimes the HTM system

could use more information from the days field, such as knowing which time of the day

the data was recorded. If the application at hand requires this level of understanding,

NuPIC provides a Date encoder which has many parameters that can allow the HTM

system to gain more insight and information out of the data.

The Date encoder is actually an abstraction over the normal Scalar encoder with the

periodic flag turned on and other useful parameters that allows the user to customise

the encoder according to the needs of the application. Here are all the parameters that

can be specified for the Date encoder:

• timeOfday: Which specifies the time during a day in hours (midnight = 0).

• dayOfWeek: Which specifies which day it is (Monday = 0).

• weekend: A boolean value which indicate whether the date is a weekend or not.

• holiday: A boolean value which indicate whether the date is a holiday or not.

• season: Which indicates the season in the year whether is summer, winter, etc.

The above parameters are not mutually-exclusive and can be used in conjunction with

each other. Depending on the needed properties of the input, the user can specify the

applicable parameter. Let us take a couple of date and time entries and pass them to a

Date encoder with the following parameters timeOfday=3:

2016-02-01 10:30 Am → [0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0]

2016-02-01 11:30 Am → [0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0]

2016-02-01 12:30 Pm → [0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0]

2016-02-01 11:30 Pm → [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]

Every hour the resulting SDRs will shift and slide the active bits according to the time

of the day. As mentioned earlier, the Date encoder uses the normal Scalar encoder with

the periodic command set to True as indicated by the last entry which shows how the

active bits are wrapping around as we get closer to the midnight time.

120

Chapter 5 HI-SDR Encoder 5.3. NuPIC Encoders

When specifying more than one parameter to the Date encoder, the encoder will gener-

ate separate SDRs for each parameter and then combine and concatenate all the SDRs

into one unified representation. Let us take a Date encoder with the following parame-

ters timeOfday=3, weekend=3:

2016-02-01 10:30 Am → [111000000000111000000000]

2016-02-06 10:30 Am → [000111000000111000000000]

The first date entry is Monday, February 1st which is a weekday. The second date entry

is Saturday which is a weekend, the two entries have the same time. It is possible

to see that the encoder allocated the first six bits to express this fact about the date.

Then, the encoder concatenated the weekend/weekday representation with the time

representation and unified them into one big SDR. The same procedure is followed for

the rest of the available parameters.

5.3.2.3 Specialised Encoders

Having a good encoder is an important and essential requirement for the rest of any

HTM system to function well. The encoders presented so far are good for most cases

and applications. But there are some data types where these generic encoders will not

capture the semantic qualities of the input. It is generally advised to develop a custom

encoder that adheres to the required properties mentioned earlier in this Chapter, for

these types of problems that cannot work well with the generic encoders.

An example of these specialised encoders is the Geo-spatial Coordinate encoder which,

as the name suggests, allows the user to encode Global Positioning System (GPS) data. It

also can model the speed of the object in conjunction with the location. The Geo-spatial

Coordinate encoder is actually a special case of the more general Coordinate encoder

which allows the user to model any number of coordinates in their HTM systems Purdy

(2016).

Natural language can be encoded into SDRs and a prominent work in this field is what

De Sousa Webber (2015) have been doing. Discussing the implementation of their work

is outside of the scope of this project, but it is worth noting how they adhered to the

required properties of a good encoder as mentioned earlier. In Figure 5.3, it can be seen

that three SDRs rendered as 2D arrays. The blue and red dots represent active bits.

The first SDR is for the word ‘Apple’, the second SDR is for the word ‘Fruit’, and the

last SDR is for the word ‘Computer’. To illustrate how this encoding technique captures

a deeper semantic meaning for the respective words, the ‘Fruit’ SDR can be subtracted

121

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

from the ‘Apple’ SDR and the resulting SDR is the ‘Computer” SDR. This procedure takes

the fruitiness out of the word ‘Apple’, which will leave us with something referred to as

an ‘Apple’ but it is not a fruit. Meaning Apple, the computing company. Also, the SDR of

the word ‘Computer’ is very similar to other words shown in the figure, like Macintosh,

Linux, Operating system, etc.

FIGURE 5.3: Using SDRs to encode natural language (Jeff Hawkins, 2014).

5.4 Smart Home Dataset and NuPIC Encoders

All the previously mentioned encoding techniques are suitable for a single dimension

(or a single column) of input data to the HTM system. The advised way of encoding

multiple values is to concatenate each dimension SDR and merge them into one SDR

that gets fed to the HTM system sequentially. However, having too many dimensions

could make it difficult for any machine learning model to learn from the data and will

lead to what is known as ‘The curse of dimensionality’ (Bellman, 2015). To overcome

this issue, it is possible to increase the training samples which can be a costly option and

might not be practical depending on the application at hand. A more practical option is

to try to reduce the number of dimensions by utilising techniques such as Principal com-

ponent analysis (PCA) or using feature selection techniques that will put more weight

or eliminate features (columns) with little or no contributions to the accuracy of the

model.

As shown previously in Chapter 4 in Table 4.4 the dataset has twenty-nine binary sensors

that are fed to the HTM system. The question now becomes, how can we represent

or encode this multi-dimensional input? In the HTM literature, the usual solution to

this problem is to concatenate the output of several encoders into one SDR. But the

question still remains, what type of encoders can be used to encode each column? The

scalar encoders can be used to represent the binary state of each sensor and also the

categorical encoders. The important thing here is to capture the required properties for

good encoders mentioned earlier in Section 5.3.1.

122

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

Let us explore the standard NuPIC encoders with the smart home dataset. Each record

in the dataset represents all the states of the sensors in the smart home, captured every

second. Let us assume having a Scalar encoder for each column in the dataset with

these parameters n=6, w=3, minVal=0, maxVal=1, figure 5.4 shows an illustration of

this process. The author feeds each record of the dataset to the twenty-nine scalar

encoders and their output, the small 6-bits long SDRs are concatenated into one large

174-bits long SDR.

Scalar

Encoder

1

Scalar

Encoder

0

Scalar

Encoder

1

Scalar

Encoder

1

+ +

...

FIGURE 5.4: Using multiple scalar encoders to encode the smart home dataset.

That was one way to encode the dataset. Another way is to use category encoders in-

stead of scalar encoders. Using the parameters w=3, categoryList=[0, 1], the results

are illustrated in figure 5.5. The results are very close to the result of using scalar en-

coders with the exception of adding 3-bits to each column which will represent any input

that is not in the categoryList. This is how the category encoder operates (see section

5.3.2.2). The resulting SDR will be 261-bit long SDR.

Category

Encoder

1

Category

Encoder

0

Category

Encoder

1

Category

Encoder

1

+ +

...

FIGURE 5.5: Using multiple category encoders to encode the smart home dataset.

To test the performance of detecting anomalies of the previous encoders, the author will

evaluate their performance using an anomaly scoring metric based on NAB (see Section

6.2.3.1). The author will be using forty-two datasets and identical HTM model with

identical parameters. Note that our test methodology using NAB is a bit harsh because

123

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

there is one anomaly per dataset and taking into account the false positives. Also, due

to the nature of anomalies, the probability to get good scores is low.

5.4.1 Scalar Encoder

The Scalar encoder parameters that were used in these experiments are: n=6, w=3,

minVal=0, maxVal=1. The following are several records that were fed to the encoders

and the resulting SDR:

Record [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0]

⇓
Final SDR [1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0]

Record [1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0]

⇓
Final SDR [0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0]

As shown in the previous examples, a 29-bit long record will produce 174-bit long SDR.

Every digit in the record is mapped to six bits of the resulting SDR. Any column with the

value 0 will get this encoding [1 1 1 0 0 0] and this encoding [0 0 0 1 1 1] for any

1 value.

54 bits have been allocated for the timestamp column and the Date encoder was used

and concatenated with the above SDR. The HTM model parameters used are:

SpatialPooler(

inputDimensions =(300,),

columnDimensions =(300,),

synPermConnected =0.2,

synPermActiveInc =0.003 ,

synPermInactiveDec =0.0005 ,

globalInhibition=True ,

124

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

numActiveColumnsPerInhArea =40,

maxBoost =1.0,

potentialPct =0.8,

seed =1956)

TemporalMemory(

columnDimensions = (300,),

cellsPerColumn= 32,

initialPermanence =0.21,

minThreshold =10,

maxNewSynapseCount =20,

permanenceIncrement =0.1,

permanenceDecrement =0.1,

activationThreshold =13,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32,

seed =1960)

LISTING 5.1: The SP and TM parameters

5.4.2 Category Encoder

Using the Category encoder is not much different from using the Scalar encoder. The

only difference is that instead of having 6-bit long SDRs per column, it produces 9-bit

long SDRs because it uses an additional w-bits long for the ‘unknown’ class as explained

in Section 5.3.2.2. The following parameters w=3, categoryList[0, 1] were used

and using the same parameters for the HTM model that were used in the previous

experiment. Here are two samples that show the final SDRs:

Record [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0]

⇓
Final SDR [0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0]

125

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

Record [1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0]

⇓
Final SDR [0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0]

The columns with the value 0 will get this encoding [0 0 0 1 1 1 0 0 0]. The columns

with value 1 will be encoded as [0 0 0 0 0 0 1 1 1].

5.4.3 SDR-Category Encoder

In this experiment, the SDR-Category encoder was used with these parameters n =

6, w = 3 and used the same HTM model used in the previous two experiments.

Record [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0]

⇓
Final SDR [1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1

0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1]

Record [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0]

⇓
Final SDR [0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1

0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1]

As shown above, the SDR-Category encoder assigned any column with the value 0 this

encoding [1 0 0 1 0 1] and any column with the value 1 this encoding [0 0 0 1 1

1].

126

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

5.4.4 Results

Table 5.1 shows the results of the previous three experiments. The reported scores

is the average score that each encoder achieved on the forty-two datasets. The low

scores obtained could be attributed to the SP and the TM parameters that were used

(see Listing 5.1). The parameters that are recommended1 for doing anomaly detection

on datasets that have two columns were used, a timestamp and a scalar value. These

parameters are not optimised for our dataset and in the following Chapter these param-

eters will be explored in more details. The only change the author made is changing the

input space and the columns dimension from 2048 bits to 300 just to make the experi-

ments easier to explore and explain. The author used the same SP and TM parameters

across all experiments so that the only factor affecting the results is the encoder.

TABLE 5.1: The results of using the Standard NuPIC encoders.

Encoder Avg Score

Scalar encoder 14.98%

Category encoder 10.0%

SDR-Category encoder 26.46%

5.4.5 Analysis

From the previous tests, it can be seen that the encoders are struggling to produce good

results. The best results are obtained from the SDR-Category encoder in Table 5.1. To

analyse the issues with these encoders, there is a need to investigate their qualities

against the recommended good qualities for any encoder (see Section 5.3.1).

All the tested standard NuPIC encoders ensure that a given input will get the same

representation. Thus, preserving the deterministic quality of a good encoder. Also, all

the encoders tested do have fixed number of bits at all times and have fixed sparsity.

The issue with the previous encoders is in the quality of a good encoder, i.e. capturing

semantics.

Capturing the semantics between two inputs, or in other words, any two similar inputs

should have similar SDRs, is the problem with the previous encoding approaches. To

understand this issue a bit more clearly, if we refer back to figure 5.2 where there are four

SDRs that encode the scalar values 1, 2, 3, 100. Given that the minimum and maximum

values are known, which sets the context for deciding if two inputs are semantically

1https://github.com/numenta/nupic/blob/master/src/nupic/frameworks/opf/common models
/anomaly params random encoder/best single metric anomaly params tm cpp.json

127

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

similar or not, it can be said that the number 1 and 2 are semantically similar. Thus,

they should have similar SDRs with high number of overlapping bits. As shown in figure

5.2, it can be seen that the number 1 and 2 share the most number of overlapping bits

which is two bits. However, this is not always the case. For instance, when having the

minimum value set to be 1 and the maximum value set to be 2, the two numbers should

not share any overlapping bits.

The concept of semantically similar inputs is domain specific. It is well-defined in the

case of scalar numbers when we know which contexts these numbers are in. Another

example that touches on this idea is what was shown in section 5.3.2.3 and the work of

(De Sousa Webber, 2015) to encode the semantic meanings for English words.

In our smart home case, what makes two inputs similar? For example, considering the

following records:

Record TV bed couch fridge main door

A → 0 1 0 0 0

B → 0 1 0 0 0

It can be seen that the bed sensor is active in record A and B. Which means, the inhab-

itant is laying on the bed. From the HTM system point of view, the record A and B are

identical, and they will get the same SDR. However, it cannot be known if the inhabitant

is sleeping or taking a quick nap or if he/she is awake and lying on the bed. There is not

enough information to distinguish between ‘sleeping’ and ‘napping’ activity, for example

using our dataset. However, when adding the time dimension with the input, it can be

possible to distinguish between a ‘sleeping’ activity and a ‘napping’ activity since each

one has its own time frame. This issue is accounted for by concatenating the time-stamp

column in the dataset with the final SDR of each record. In our tests for the NuPIC

encoders, the time-stamp field was included.

The following three figures (Figures 5.6 to 5.8) show a 2D heat-map of the activities

of every bit in the SDRs generated by the encoder and the SDRs generated by the SP.

The SDRs are 1D vectors but converted to 2D just for illustrative purposes. The author

have processed 10,000 records for all of these experiments. Looking at Figure 5.6a

which shows the SDR generated using the Scalar encoder without concatenating the

date column. This is just to focus on how active each bit that the encoder generates. It

can be seen that the active bits are laid out in 3-bit configuration because the parameter

w was set to be 3. It can also be seen that most of the bits are quite active (falling in

the red spectrum). Figure 5.6b shows the SDR with the date column encoded by the

Date encoder and taking the bottom portion of the whole SDR. It can be seen that the

128

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

bits activities are higher in the top portion than the bit activities for the date encoding.

Figure 5.6c shows the SDR that the SP is outputting. This SDR can be thought of as

a top-down view on the active columns and their activities. The columns activities are

scattered and most of it is happening in the bottom portion which corresponds to the

date column. This is an indication that the bottom portion is actually more specialised

in recognising the date column because of the topological configurations of the input

space with the SP. As explained in Section 3.3, when overlaying the input space and

the generated columns from the SP, every bit in the input space is more likely to form

connections with the neighbouring columns in a certain radius. Therefore, it can be

concluded that the date portion of the input space is more connected than the sensors

portion.

0

2000

4000

6000

8000

10000

(A) Scalar encoder SDR without date.

0

2000

4000

6000

8000

10000

(B) Scalar encoder SDR with date.

2000

4000

6000

8000

10000

(C) The SP active columns.

FIGURE 5.6: The activities of each bit of the SDRs after reading 10,000 records using
the Scalar encoder.

129

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

The Category encoder produced similar results as shown in Figure 5.7 which was ex-

pected since the Category encoder is very similar to the Scalar encoder with our param-

eters.

The SDR-Category encoder also did not produce much different results. The activities of

the bits are more scattered as shown in Figure 5.8a which was the expected behaviour

as explained in Section 5.3.2.2. The impact on the active columns is also very similar to

what was produced from using the previous two encoders.

0

2000

4000

6000

8000

10000

(A) Category encoder SDR without date.

0

2000

4000

6000

8000

10000

(B) Category encoder SDR with date.

0

2000

4000

6000

8000

10000

(C) The SP active columns.

FIGURE 5.7: The activities of each bit of the SDRs after reading 10,000 records using
the Category encoder.

130

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

0

2000

4000

6000

8000

10000

(A) SDR-Category encoder SDR without date.

0

2000

4000

6000

8000

10000

(B) SDR-Category encoder SDR with date.

0

2000

4000

6000

8000

10000

(C) The SP active columns.

FIGURE 5.8: The activities of each bit of the SDRs after reading 10,000 records using
the SDR-Category encoder.

There is another indicator that could give us some insights on what is happening in

the previous three experiments. That indicator is the number of the bursting columns

generated by the TM. As explained in Section 3.3, a column is said to be a bursting

column when all the cells (or the bits) are activated after their SDR is processed by the

TM. The columns burst when the TM cannot recognise a sequence. Figure 5.9 shows

the activities of the bursting columns while reading the 10,000 records from the dataset.

the total number of bursting columns the Scalar encoder generated is 15,856 columns.

The Category encoder generated 2,262 columns. The SDR-Category encoder generated

4,741 columns. It is worth noting that having less bursting columns is not always an

indication that the system is performing well. It means the system learned something,

131

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

but we do not know if it is the right thing or not. In other words, it shows that the

system is not surprised by the input. Of course, we do not need a system that it is too

relaxed nor a system that is too sensitive, the biasvariance trade-off comes to play in this

situation.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

(A) Scalar encoder bursting columns.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

(B) Category encoder bursting columns.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

(C) SDR-Category encoder bursting columns.

FIGURE 5.9: The bursting columns activity after reading 10,000 records.

To get more insights let us investigate a sequence of the inhabitant’s activities and the

representations that the encoders produced for each activity. For example, assuming

the following sequence sleep → personal → eat → work, the following figures (Fig-

ures 5.10 to 5.12) show the sequence and the SDRs using the three encoders used in

our experiment.

132

Chapter 5 HI-SDR Encoder 5.4. Smart Home Dataset and NuPIC Encoders

0.0

0.2

0.4

0.6

0.8

1.0

(A) Sleep SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(B) Personal SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(C) Eat SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(D) Work SDR.

FIGURE 5.10: The sequence sleep → personal → eat → work SDRs produced by the
Scalar encoder.

0.0

0.2

0.4

0.6

0.8

1.0

(A) Sleep SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(B) Personal SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(C) Eat SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(D) Work SDR.

FIGURE 5.11: The sequence sleep → personal → eat → work SDRs produced by the
Category encoder.

133

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

0.0

0.2

0.4

0.6

0.8

1.0

(A) Sleep SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(B) Personal SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(C) Eat SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(D) Work SDR.

FIGURE 5.12: The sequence sleep → personal → eat → work SDRs produced by the
SDR-Category encoder.

From the previous figures, it can be seen that the main problem with standard NuPIC en-

coders. For each encoder, the SDRs generated for different activities (e.g. sleep, eat, etc.)

look very similar. This representation makes it hard for the HTM system to recognise

the activity spatially and hence, making it harder to recognise the overall sequence over

time. In the following Section, we present our novel encoder that overcomes the prob-

lems presented in this Section and their results.

5.5 The HI-SDR Encoder

The author developed a novel encoder, the Hash-Indexed Sparse Distributed Represen-

tation (HI-SDR) encoder, that adheres to the required properties of good encoders men-

tioned in Section 5.3.1. Our encoder is deterministic. Given two identical inputs, it will

produce the same SDR for both inputs. The sparsity and the number of bits are fixed thus

meeting the first three requirements for good encoders. The problematic property for

the encoders explored in the previous Section is the fourth property, capturing seman-

tics. The standard NuPIC encoders produced very similar SDRs for very different inputs.

Thus, confusing the HTM system and not giving it enough information to distinguish

and recognise the inputs.

134

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

To meet the requirement for the fourth property, there is a need for a way to encode

every record uniquely and maintain the determinism and sparsity of the generated SDR.

This research proposes a solution using a hash function and passing it the input records

to produce a digest. The author used the produced digest to position w-bits in the

resulting SDR uniquely. When encountering the same record again, the hash function

will produce the same digest. Thus, maintaining the determinism and creating unique

SDRs for every input configuration.

Figure 5.13 shows how the HI-SDR encoder works at a high level. It takes a whole

dataset record (e.g. [0, 1, 0, 0, . . . , 0]) and pass it to a hashing function that generates a

hash digest. The digest is used then to place the active bits in the SDR. By taking every

digit of the digest and using it as the index of the active bit placement, a result similar to

what is shown in Figure 5.13 is obtained. There are several parameters for the HI-SDR

encoder explained in detail in Section 5.5.2.

[0,1,0,0,0,1,0,0,0,...,0]

0 1 2 3 4 5 6 7 8 9

Hash

[193421...]

FIGURE 5.13: The HI-SDR encoder.

The author tested and experimented with different hashing functions. The require-

ments, in this research, were speed and how random is the produced digest. For the

speed requirement, the author excluded all cryptography hashing functions as they are

slow by design to make it hard to crack. The author experimented with several non-

cryptographical hashing function such as the Python implementation of CRC322, and

Adler-323. The author decided to use the xxHash (Collet, 2015) function due to its

speed and the randomness of the generated digests.

2https://docs.python.org/2/library/zlib.html#zlib.crc32
3https://docs.python.org/2/library/zlib.html#zlib.adler32

135

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

5.5.1 HI-SDR Encoder Results

The HI-SDR encoder scored 33.28% on the same forty-two datasets used to test the

standard NuPIC encoders. The best score for the standard NuPIC encoders was by SDR-

Category encoder which scored 26.46% (see Section 5.4.4). The parameters for HI-SDR

encoder were n = 300, w = 3, p = 2. Again, an unoptimised parameters for the SP

and the TM were used which affects the results. Later on in this Section, the results of

using an optimised parameters will be presented to show the potential of the proposed

encoder. The author used the same (unoptimised) parameters for all four encoders just

to take the SP and the TM parameters out of the equation and make the encoder solely

the factor affecting the score.

It can be seen that the drastic difference in the heat-map shown in Figure 5.14 of the

proposed encoder compared to the standard NuPIC encoders. In Figure 5.14a, which

does not include the date column, it can be seen how active the input bits are. The

activity is more spread across the SDR space. In Figure 5.14b, which does include the

date column, it can be seen that most of the activity is happening in the bottom portion

of the SDR. Unlike the standard encoders, the upper portion is less active in the proposed

encoder. This is a more faithful representation of what is happening in the dataset. The

time-stamp column is presented in every record and it is cyclical and wraps around.

Therefore, it covers the same area in the input space. Compare that to the standard

encoders SDRs which have the upper portion much more active than the date portion.

Figure 5.14c shows the SP active columns. It can be seen how balanced is the activity

between the upper portion (which is corresponding to the sensors input), and the lower

portion. This means that the SP is recognising and learning from both portions, giving

a better picture for the HTM system.

136

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

0

2000

4000

6000

8000

10000

(A) HI-SDR output without date.

0

2000

4000

6000

8000

10000

(B) HI-SDR output with date.

0

2000

4000

6000

8000

10000

(C) The SP active columns.

FIGURE 5.14: The activities of each bit of the SDRs after reading 10,000 records using
the proposed HI-SDR encoder.

Figure 5.15 shows the same sequence that was explored in the previous Section (sleep→
personal → eat → work) and the resulting SDR for every activity performed by the

inhabitant. It can be seen how the proposed encoder uniquely assigns a representation

for every activity. The proposed encoder uses different places to position the active bits

across the input space. This helps the SP to learn much faster and distinguish the inputs

more clearly compared to the standard encoders.

137

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

0.0

0.2

0.4

0.6

0.8

1.0

(A) Sleep SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(B) Personal SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(C) Eat SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(D) Work SDR.

FIGURE 5.15: The sequence sleep → personal → eat → work SDRs produced by the
HI-SDR encoder.

The proposed encoder is capable of uniquely representing any input regardless of the in-

put density. A record that contains no active bits (e.g. [0, 0, 0, 0, ..., 0]) and a record that

is fully dense (e.g. [1, 1, 1, 1, ..., 1]), both will get a unique SDR with fixed sparsity and

fixed active w-bits. Thus, fulfilling the required properties of a good encoder. This is im-

portant if we want the encoder to work with any number of sensors in an unsupervised

fashion.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

FIGURE 5.16: The bursting columns activity produced by the HI-SDR encoder.

138

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

Figure 5.16 takes a look at the bursting columns while processing the 10,000 records

of the dataset. It can be seen that the columns are bursting quite often. In fact, the

total number of the bursting column throughout the experiment was 28,045 columns.

The highest number of bursting columns was the Scalar encoder with 15,856 bursting

columns. This in an indication that the parameters of the SP and the TM are not tuned

for this dataset. However, even with this misconfigured parameters, the HI-SDR encoder

outperformed the standard encoders.

SpatialPooler(

inputDimensions =(600,),

columnDimensions =(600,),

synPermConnected =0.1,

synPermActiveInc =0.05,

synPermInactiveDec =0.00005 ,

globalInhibition=True ,

numActiveColumnsPerInhArea =44,

maxBoost =20.0,

potentialPct =0.8)

TemporalMemory(

columnDimensions = (600,),

cellsPerColumn= 10,

initialPermanence =0.21,

connectedPermanence =0.1,

minThreshold =4,

maxNewSynapseCount =20,

permanenceIncrement =0.5,

permanenceDecrement =0.001 ,

activationThreshold =9)

LISTING 5.2: The optimised SP and TM parameters

Just to see the potential of the proposed encoder, the author ran another experiment

using the same forty-two datasets with an optimised parameters for both the SP and the

Temporal Memory. The HI-SDR encoder scored 76.59% using the parameters shown in

Listing 5.2. The parameters for the HI-SDR encoder were n = 600, w = 3, p = 8.

Figure 5.17 shows the SDRs with the optimised parameters and the active columns

generated by the SP. Figure 5.18 shows the SDRs for the sequence sleep→ personal →
eat → work, as done before. The author notice that the SDRs are more active than the

previous experiment and that is due to the number of partitions (e.g. the p parameter

of the proposed encoder). The details of the HI-SDR parameters and the algorithm are

presented in Section 5.5.2.

139

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

0

2000

4000

6000

8000

10000

(A) HI-SDR output without date.

0

2000

4000

6000

8000

10000

(B) HI-SDR output with date.

2000

4000

6000

8000

10000

(C) The active columns.

FIGURE 5.17: The HI-SDR results with the optimised parameters for the SP and the
TM.

140

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

0.0

0.2

0.4

0.6

0.8

1.0

(A) Sleep SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(B) Personal SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(C) Eat SDR.

0.0

0.2

0.4

0.6

0.8

1.0

(D) Work SDR.

FIGURE 5.18: The sequence sleep → personal → eat → work SDRs by the HI-SDR
encoder with the optimised parameters.

The total number of the bursting columns with the optimised parameters is 4,531.

This shows a large difference than the old number with the unoptimised parameters

which was 28,045 columns. Moreover, Figure 5.19 shows the behaviour of the bursting

columns, while processing the 10,000 records. It can be seen that this gradual decrease

in the number of bursting columns which is an indicator that the HTM system is actually

learning the pattern that the inhabitant is doing throughout the day.

141

Chapter 5 HI-SDR Encoder 5.5. The HI-SDR Encoder

0 2000 4000 6000 8000 10000
0

10

20

30

40

FIGURE 5.19: The bursting columns activity by produced the HI-SDR encoder with the
optimised parameters.

5.5.2 The Algorithm

The algorithm can be divided into two parts, the hashing part and the SDR construction

part.

For the first part, the array of the sensors readings were fed to the hashing function to

obtain the hash digest. The author has tested several non-encryption hashing functions

and the results of the xxHash function produced the best results on our datasets.

For the second part, which is the construction of the SDR based on the hash digest.

Algorithm 1 presents the pseudo-code of the actual implementation of construction al-

gorithm. The algorithm receives four parameters, namely:

• hash: which is the hash digest.

• n: the total number of bits of the SDR.

• w: the number of active bits in the SDR.

• p: the number of the partitions.

142

Chapter 5 HI-SDR Encoder 5.6. Summary

Algorithm 1 SDR construction algorithm.

1: procedure CONSTRUCT-SDR(hash, n,w, p)

2: SDR← [0] ∗ n . SDR is n length zero array

3: skip← INT(n/partitions)

4: hashDigits← STR(hash) . Converts the hash digits to string

5:

6: if w > (skip/10) then . Divide by 10 because there are 10 digits

7: Raise ValueError

8: end if

9:

10: for d in hashDigits do

11: i← INDEX(d)

12: if i == p then

13: break

14: end if

15:

16: ri← INT(d) + 1 . Calculating the relative index position

17: pct← FLOAT(ri)/10

18: ri← ROUND(skip ∗ pct)− 1

19:

20: for j in RANGE(w) do

21: diff ← (w − 1)

22: SDR[ri+ (i ∗ skip) + j − diff] = 1

23: end for

24:

25: end for

26: return SDR

27: end procedure

5.6 Summary

In this Chapter, a formal definition of the SDRs and the mathematical notations of this

concept were presented. The SDRs properties and the operations that can be performed

with them were explored. The required properties for the encoders to produce good

SDRs were explained. The most challenging property was capturing the semantic mean-

ing where any two similar inputs should result in similar SDRs. The other required

143

Chapter 5 HI-SDR Encoder 5.6. Summary

properties were having a deterministic encoder, having a low density of active bits, and

having a fixed number of total bits generated by the encoder.

Standard NuPIC encoders for different numerical, categorical and specialised data types

were explored. The smart home datasets and the problems with using standard NuPIC

encoders to represent the datasets records were presented. Then, several experiments

were conducted and how standard encoders do actually encode the datasets’ records

and the effects for these encoding on the SP active columns and on the TM bursting

columns. Guided by the required properties for good encoding, the author proposed

and developed a novel encoder and compared its results with the standard ones. The

Chapter concludes with the algorithm for the hash encoder.

The experiments shown in this Chapter were conducted to highlight the issues with the

standard encoders are very brief and lack the needed depth and analysis. The next

Chapter will evaluate the standard encoders and the novel encoder thoroughly and will

present the adopted evaluation methodology.

144

Chapter 6

Test and Evaluation

6.1 Introduction

In this Chapter, the evaluation methodology adopted in this study is presented by show-

ing the virtual smart home plan designed using OpenSHS and the chosen context to be

simulated by the participants. Following that, the datasets generated by the participants

and the type of anomalies are presented. A detailed explanation of how the experiment

is designed by showing the anomaly scoring methodology and the different experiment

parameters are presented. The results of executing several unsupervised anomaly detec-

tion algorithms are reported and the Chapter concludes by a discussion of these findings.

6.2 Methodology

This Section provides details on the virtual smart home plan that was designed by the

researcher for the participants to conduct their daily activities in. In Chapter 4, the

concept of simulating specific context of interest can accelerate the simulation time for

the participants. In this Section, a detailed discussion about the chosen contexts to

simulate are presented.

The process of generating the datasets is explained in the following Section along with

the procedure that was applied by the participants. The specific parameters used in

OpenSHS to aggregate the datasets are also presented. The types of the anomalies in

each dataset are also presented in this Section and the reasons for the author’s choice of

binary sensors in the virtual smart home. The Chapter concludes by a detailed explana-

tion of the evaluation process.

145

Chapter 6 Test and Evaluation 6.2. Methodology

6.2.1 Smart Home Design

A smart home consisting of bedroom, living room, bathroom, kitchen, and home office

as shown in figure 6.1 was designed, each with several types of sensors.

FIGURE 6.1: The floor plan’s design of the smart home.

The smart home is equipped with twenty-nine binary sensors as show in Table 6.1. Each

binary sensor has two states, on (1) and off (0). The sensors can be divided into two

groups, passive and active. The passive sensors do not explicitly require the participant

to interact with them. Instead, they react to the participant movements and positions.

An example of this type is the carpet sensors, which turn on when the participant walks

over them.

It is worth noting that type of the sensors, in terms of being passive or active, has

no implications on the performance of the evaluated models. This distinction is not

included in the generated datasets.

The other type of sensors are the active sensors. This type requires explicit action from

the participant to change their state. For example, when opening a door or when turning

on the light.

The activities’ labels (as discussed in Section 4.3.1.3) that were decided to be included

in this dataset are: sleep, eat, personal, work, leisure, other. The anomalies have an

additional label anomaly.

146

Chapter 6 Test and Evaluation 6.2. Methodology

During the simulation, when the participants want to change their activity, they can

do so by using the dialogue box shown in figure 4.4. It is worth noting that when the

participants change their activity label, it does not immediately change in the dataset.

The activity label changes when one of the sensors states have changed. This approach

ensures a clean separation when the participants transition from one activity to another.

147

Chapter 6 Test and Evaluation 6.2. Methodology

TABLE 6.1: All smart home sensors and dataset columns.

i name type Description Active/Passive

1 bathroomCarp binary Bathroom carpet sensor Passive

2 bathroomDoor binary Bathroom door sensor Active

3 bathroomDoorLock binary Bathroom door lock sensor Active

4 bathroomLight binary Bathroom ceiling light Active

5 bed binary Bed contact sensor Passive

6 bedTableLamp binary Bedroom table lamp Active

7 bedroomCarp binary Bedroom carpet sensor Passive

8 bedroomDoor binary Bedroom door sensor Active

9 bedroomDoorLock binary Bedroom door lock sensor Active

10 bedroomLight binary Bedroom ceiling light Active

11 couch binary Living room couch Passive

12 fridge binary Kitchen fridge Active

13 hallwayLight binary Hallway ceiling light Active

14 kitchenCarp binary Kitchen carpet sensor Passive

15 kitchenDoor binary Kitchen door sensor Active

16 kitchenDoorLock binary Kitchen door lock sensor Active

17 kitchenLight binary Kitchen ceiling light Active

18 livingCarp binary Living room carpet sensor Passive

19 livingLight binary Living room ceiling light Active

20 mainDoor binary Main door sensor Active

21 mainDoorLock binary Main door lock sensor Active

22 office binary Office room desk sensor Passive

23 officeCarp binary Office room carpet sensor Passive

24 officeDoor binary Office door sensor Active

25 officeDoorLock binary Office door lock sensor Active

26 officeLight binary Office ceiling light Active

27 oven binary Kitchen oven sensor Active

28 tv binary Living room TV sensor Active

29 wardrobe binary Bedroom wardrobe sensor Active

30 Activity String The current participant activity

31 timestamp String The timestamp every second

148

Chapter 6 Test and Evaluation 6.2. Methodology

6.2.1.1 Why the Sensors are Binary?

As shown in table 6.1, all the sensors in the smart home are produce output in binary.

This design choice can be justified by several reasons:

• most of the sensors states can be binary,

• easier to implement in existing middlewares,

• closer to the way HTM encoders work.

Most of the smart devices states are naturally binary, including anything that can be

opened and closed or anything that can detect presence or absence of some object. Of

course this binary simplification can not cover all the states that a device can have, but

for the purposes of anomaly detection, this is sufficient. For example, a smart TV can be

in many states such as being fully on and playing a channel, it can be in a sleep mode

where it uses less power, or it can be fully turned off. For detecting the daily patterns of

the inhabitant it is more important to know whether the TV is on or off than knowing if

the TV is off or in a sleeping mode.

If a middleware implementation wants to add an anomaly detection service using the

proposed technique, all it has to do is to set thresholds either manually by the user or

using more sophisticated techniques to set the thresholds for each device. Setting these

thresholds will turn the output of any sensor into binary reading that can be incorporated

into this work.

Working with binary data directly is closer to how the encoders in HTM systems work

using SDRs. Therefore, this choice gave us more freedom to integrate all smart home

outputs with the proposed HTM system.

6.2.1.2 Contexts

In this work, two contexts in the day and two contexts in the week were chosen to be

simulated by the participants. Totalling four different contexts per participant. The day

contexts are ‘morning’ and ‘evening’ contexts. The week contexts are ‘weekday’ and

‘weekend’ contexts.

149

Chapter 6 Test and Evaluation 6.2. Methodology

6.2.2 The Participants and the Datasets

The participants in this work were chosen randomly but all of them have jobs. They

also have experience with first-person games which will reduce the learning curve of the

tool.

The number of participants was seven and the average time it took to conduct the sim-

ulation was 50 minutes (mintime = 30,maxtime = 75, stdtime = 14.43).

For each participant, the following procedures was followed:

1. The researcher guides the participant and shows him/her the virtual smart home.

2. The participant was asked to play with the virtual smart home to get familiar with

it.

3. Test the participant familiarity with the virtual smart home by asking him/her to

perform specific tasks.

4. The actual simulation takes place, and the participant will be asked to give their

actual starting times for each context.

5. After the simulation of his/her normal behaviour, the participant is asked to per-

form an anomalous simulation that he/she would like the system to identify as an

anomaly.

6. The participant is asked to fill the usability questionnaire.

The researcher did not impose any restrictions or limitation on the participants during

the simulation phase. The participants had the freedom to perform any activity and for

any length of time.

6.2.2.1 Dataset Aggregation

For each participant, six datasets with unique parameters were generated. The parame-

ters used to generate each dataset are as follows:

1. days: 30 and 60 were chosen.

2. start-date: 2016-02-01 was chosen.

3. time-margin: the values 0 minutes, 5 minutes, and 10 minutes were chosen.

150

Chapter 6 Test and Evaluation 6.2. Methodology

The above parameters generate one month and two months worth of data. For the one-

month dataset, there are 3 variants with 0, 5, and 10 time-margins. The same goes for

the two-month dataset. This ensures that the generated datasets are different in the

time dimension. Table 4.4 shows a sample of the final dataset. The total number of

datasets is forty-two and for each one the corresponding anomalous event was injected.

TABLE 6.2: The forty-two test datasets and the corresponding number of records.

Name Records

d1-1m-0tm 18,121
d1-1m-5tm 18,097
d1-1m-10tm 18,045
d1-2m-0tm 35,034
d1-2m-5tm 34,968
d1-2m-10tm 35,066
d2-1m-0tm 35,359
d2-1m-5tm 35,680
d2-1m-10tm 35,542
d2-2m-0tm 74,172
d2-2m-5tm 72,164
d2-2m-10tm 72,752
d3-1m-0tm 40,604
d3-1m-5tm 40,065
d3-1m-10tm 41,682
d3-2m-0tm 88,092
d3-2m-5tm 88,092
d3-2m-10tm 87,553
d4-1m-0tm 30,032
d4-1m-5tm 30,924
d4-1m-10tm 29,646
d4-2m-0tm 61,115
d4-2m-5tm 59,445
d4-2m-10tm 56,830
d5-1m-0tm 41,344
d5-1m-5tm 39,725
d5-1m-10tm 40,818
d5-2m-0tm 78,268
d5-2m-5tm 79,049
d5-2m-10tm 78,628
d6-1m-0tm 88,884
d6-1m-5tm 90,435
d6-1m-10tm 88,943
d6-2m-0tm 174,810
d6-2m-5tm 174,190
d6-2m-10tm 169,655
d7-1m-0tm 53,322
d7-1m-5tm 51,973
d7-1m-10tm 52,263
d7-2m-0tm 99,194
d7-2m-5tm 102,341
d7-2m-10tm 100,975

Total 2,743,897

151

Chapter 6 Test and Evaluation 6.2. Methodology

The naming convention used for the dataset files is d{x}-{y}m-{z}tm where:

• x: is an index number to uniquely identify a dataset,

• y: is the number of months generated,

• z: is the time-margin value.

6.2.2.2 The Anomalies

In some contexts, the definition of an anomaly is clear and can be quantified, for ex-

ample, the heart rate for a patient. A heart rate that ranges from 60 to 100 beats per

minutes is considered a normal resting heart rate for an adult. However, in the context

of an inhabitant’s behaviour in their smart home environment, the definition of what

an anomalous behaviour is? Can difficult and hard to quantify. Anomalous behaviour

becomes much more subjective and varies from one inhabitant to another. It is for this

reason the anomalies in the datasets were not injected, after the simulations were con-

ducted, based on the researcher’s idea of what an anomaly is.

To overcome the issues with defining what is an anomaly for an inhabitant, the re-

searcher left this definition to the persons capable of defining these anomalies, the par-

ticipants themselves.

Each participant performed an additional simulation that is intended to represent an

anomaly from the point of view of the participant. All the anomalies are defined by

the participants and no restrictions were imposed by the researcher. Table 6.3 shows

each participant’s anomaly that he/she simulated. Although there are seven anomalies

in total, each anomaly is injected into six different contexts based on the user behaviour.

The anomalies in this work were defined at the level of the individuals. This decision was

made because of the unnecessarily added complexity of defining the anomalies at the

group/inhabitants level. As suggested by Novak et al. (2012), adding an RFID tag can

easily identify each person behaviour in the smart home. Therefore, when the problem

is solved efficiently at the individual level, this solution can be trivially extended to the

group by separating each inhabitant from another by their RFID tags.

6.2.3 Experiment Design

Figure 6.2 shows the overall design of the experiment. After the preparation of the

forty-two datasets, the records of each dataset are fed to a Machine Learning model.

152

Chapter 6 Test and Evaluation 6.2. Methodology

TABLE 6.3: the anomalies defined by the participants.

participants anomaly definition

participant 1 leaving the fridge door open.

participant 2 leaving the oven on for long time.

participant 3 leaving the main door open.

participant 4 leaving the fridge door open.

participant 5 leaving the bathroom light on.

participant 6 leaving tv on.

participant 7 leaving light bedroom and wardrobe open.

The model produces an anomaly score for each record it reads. No labels are fed to

the Machine Learning model, as this process is completely unsupervised. The output of

the model is a dataset with the records’ number and the associated anomaly score. To

evaluate the performance of the model, the author derived an anomaly scoring metric

based on NAB (see Section 6.2.3.1) that takes the model’s output and scores it based on

the correct labels (ground truth). The anomaly score will be referred to as ‘NAB’ score

throughout the thesis. The higher the score is, the better performance the model has in

detecting anomalies.

Model
Feeding

Data

Dataset A

Dataset B

Anomaly

Scores
NAB

Evaluation

Score
Twiddle

Optimising Score

Best

Score

FIGURE 6.2: The experiment design.

It is worth noting that at every experiment, a set of fixed parameters for one model were

used to run on all the forty-two datasets. For each of the datasets, the model is initialised

and re-set as if it is the first time it sees the currently used dataset.

With the exception of DBSCAN, most of the evaluated models produce a scalar anomaly

score, the question is: How can this score be interpreted? The common answer is to

consult experts in the field and set a fixed threshold for which a score greater than this

threshold is considered an anomaly. But there is an issue with this approach with smart

home datasets. The experts are the smart home inhabitants and what is considered an

anomaly for one, might not be an anomaly for another inhabitant. Therefore, having

a fixed threshold for all dataset is not an optimal solution. To overcome this issue,

an optimisation algorithm (for more information about Twiddle see Section 6.2.3.2)

153

Chapter 6 Test and Evaluation 6.2. Methodology

was used. Twiddle tries many thresholds and chooses a threshold that yields the best

performance. As shown in Figure 6.2, Twiddle optimises the anomaly score by iteratively

trying different thresholds and reporting the best threshold as the final score.

Each tested model received all data generated from all the sensors at a fixed sampling

rate (every one second). The choice for feeding all the data to the model was based

on the intuition that the model should be able to capture a holistic patterns of the

inhabitants. There is a natural progression of these patterns and an emerging time-

dependency of these activities. If a dedicated model for each sensor was used, this

time-dependency or this sequencing of activities would be lost.

The Machine Learning model produces an anomaly scalar score ranging from 0.0 to 1.0

representing how anomalous a given record is to the model. Some models has this fixed

range by default and some of them does not have an upper limit of this value. For the

algorithms that do not have an upper limit, the scores were normalised and limited to

the range 0.0 to 1.0.

6.2.3.1 Anomaly Scoring Metric

Anomaly detection evaluation is a tricky and challenging task due to the nature of the

anomalies. Traditional evaluation metrics such as recall and precision are not suitable

for evaluating real time anomalies as they do not take into consideration the time aspect

in the evaluation process. An early anomaly detection is better than a latter detec-

tion. This fact is not reflected and rewarded when using recall and precision evaluation

techniques. Therefore, a new anomaly detection framework called Numenta Anomaly

Benchmark (NAB) for real time data was proposed by (Lavin & Ahmad, 2015). The

proposed evaluation method values early detection of anomalies.

NAB is an open source benchmarking framework1 used for evaluating the performance

of real time anomaly detection algorithms. NAB relies on three components to do its

evaluation: an anomaly window, a scoring function and an application profile. The frame-

work takes a dataset with labelled anomalies and establishes anomaly windows around

every anomaly and whenever the tested algorithm detects an anomaly in that window,

a positive score will be added to the algorithm’s performance. If the algorithm detects

multiple anomalies within the same anomaly window, only the first one will be scored.

Figure 6.3 shows a sample data with anomalies marked by red dots. The red shaded re-

gions are the anomalies” windows and the purple shaded region is a grace period where

the algorithm under test is not evaluated in this period.

1https://github.com/numenta/nab

154

Chapter 6 Test and Evaluation 6.2. Methodology

FIGURE 6.3: An example data with anomalies (Lavin & Ahmad, 2015).

The anomaly window’s length is defined to be 10% of whole length of the data file

divided by the number of the anomalies. This decision stems from the assumption that

anomalies are rare events and the author has tested different values for the anomaly

window length, and they found that 10% is a good approximation.

Figure 6.4 shows multiple anomalies (denoted by the red and green crosses) and also

shows the scoring function. The first anomaly is a false negative that was not detected by

the tested algorithm and therefore it receives a -1.0 score for that anomaly. The second

anomaly was correctly detected and was detected relatively early and therefore received

a +0.9999 score. The third anomaly was correctly detected but since it is within the

anomaly window, its score was ignored. The fourth anomaly was not detected with high

confidence by the algorithm and therefore it received a -0.8093 score.

155

Chapter 6 Test and Evaluation 6.2. Methodology

FIGURE 6.4: NAB scoring function (Lavin & Ahmad, 2015).

Some applications value false positives detection more than false negatives. NAB takes

this into consideration by providing application’ profiles that vary the weights of the

severity of false positives and false negatives. NAB comes with three profiles:

• Standard profile: Which assigns equal weights for true positives, false positives

and false negatives.

• Reward low false positives profile: Which assigns more weight and penalties for

false positives.

• Reward low false negatives profile: Which assigns more weight and penalties

for false negatives.

The NAB framework also includes datasets of real-world data and synthetic data. Ev-

ery dataset defines its own anomalies. The anomalies could be spatial anomalies (point

anomalies) or temporal anomalies (contextual anomalies). The datasets are coming

from different domains and applications, for example, there is a dataset for CPU util-

isation in Amazon Web Service (AWS). Another example is the value of a stock in the

market. The diversity of the datasets adds to the generalisability test for a proposed

technique. The full datasets are publicly available at Lavin & Ahmad (2015).

All of NAB datasets are time-series data and every dataset has two columns, a time stamp

column and a scalar value. Some datasets contains anomalies that are known and the

cause of these anomalies is identified. An example of such dataset is the nyc-taxi

156

Chapter 6 Test and Evaluation 6.2. Methodology

dataset which contains a 30 minute aggregate of the number of passengers in New York

City Taxis. There are five anomalies that occur which are NYC marathon, Thanksgiving,

Christmas, New Years day, and in a snow storm. The other datasets that do not have a

known cause of the anomalies are labelled by hand. The labelling process follows a set

of steps that can be found in the project’s website. The labels are not used to train any

tested model as all the models are working in an unsupervised fashion. The labels are

only used after running the model on the dataset to score and evaluate its performance.

6.2.3.2 Twiddle

Twiddle is a local hill-climbing algorithm that can be used to find a local optimum

(Thoma, 2014). In this research it was used to find the best threshold that separates

normal data points from anomalous ones.

Algorithm 2 The Twiddle algorithm.

1: procedure TWIDDLE(p, dp,A, θ)
2: bestErr ← A(p)
3:

4: while SUM(dp) > θ do
5: for i← 0, LEN(p) do
6: p[i]← p[i] + dp[i]
7: err ← A(p)
8:

9: if err < bestErr then . Found improvement
10: bestErr ← err
11: dp[i]← dp[i]× 1.1
12: else . No improvement found
13: p[i]← p[i]− (2× dp[i]) . Search in the other direction
14: err ← A(p)
15:

16: if err < bestErr then
17: bestErr ← err
18: dp[i]← dp[i]× 1.05
19: else . No improvement found
20: p[i]← p[i] + dp[i]
21: dp[i]← dp[i]× 0.95 . Decrease step size
22: end if
23: end if
24: end for
25: end while
26: end procedure

The Algorithm 2 receives four parameters, namely p, dp,A, θ. These parameters are:

• p: The initial parameters for the function that will be optimised,

157

Chapter 6 Test and Evaluation 6.2. Methodology

• dp: The step size for the search,

• A: The error/cost function that will be optimised,

• θ: The tolerance threshold (not to be confused with the SDR’s θ).

p and dp can be a single value or a vector of values for the cost function A.

6.2.3.3 Experiment Parameters

As explained earlier, every dataset has one anomaly identified by each participant ac-

cording to their daily habits. The participants had total freedom to define what they

would like the system to recognise as an anomaly. Therefore, every participant had dif-

ferent anomaly periods. To follow a similar evaluation procedure, the anomaly period

was set to be at least five minutes long (300 records in the dataset as the sampling

was done once every second). The modification are applied only for the labels while

the sensors’ readings are left intact. Figure 6.5 shows one of the datasets used in the

experiment.

A probationary period that is not scored is defined for every dataset to allow the model

to learn the participant’s normal habits from his/her data. This probationary period is

set to be the first 80% of the dataset under test. Figure 6.6 shows this period highlighted

and all the anomaly metrics are set as 50% and are not scored. The scoring only happens

for the last 20% of the dataset.

Figure 6.7 shows a zoomed view on part of the last 20% of the dataset. The red-

highlighted section is what the participant defined to be the anomaly period. The figure

also shows several anomaly scores which will be scored according to NAB. Any false

negative or false positive will contribute negatively to the overall score and only true

positives will contribute positively to the overall score.

As shown earlier in Section 6.2.3.1, NAB has the concept of application profile which

allows for customising the scoring methodology to put more weight on false positives

or on false negatives. In this experiment, a profile very similar to the standard profile

provided with NAB was used. True positives weight 100%, false positives weight 20%

and false negatives weight 100%. Therefore, with the profile used in this research, a

single false positive will reduce the overall score by 20%.

158

C
hapter

6
Test

and
Evaluation

6.2.M
ethodology

FIGURE 6.5: A portion of dataset d1-1m-0tm that shows the sensors’ readings.

159

C
hapter

6
Test

and
Evaluation

6.2.M
ethodology

FIGURE 6.6: Scoring an HTM system with HI-SDR encoder on dataset d1-1m-0tm.

160

C
hapter

6
Test

and
Evaluation

6.2.M
ethodology

FIGURE 6.7: Part of the last 20% section of the dataset d1-1m-0tm and the anomaly period.

161

Chapter 6 Test and Evaluation 6.3. Results

6.3 Results

Several unsupervised anomaly detection techniques and algorithms were tested and this

Section presents the results and findings. The techniques can be categorised into four

categories: HTM based, Nearest Neighbour based, Cluster and Density based, and Statis-

tics based techniques.

6.3.1 HTM Based

This Section presents the results of running two similar HTM based models with the

exception of the encoder used. The first model used the SDR-Category encoder because

it produced the best results as shown in Section 5.4.4. The second model uses the HI-

SDR encoder and all other aspects of the HTM model are similar.

The tested HTM models have three distinct regions. The encoder region, the SP region

and the TM region. The raw anomaly score is the ratio of the wrongly predicted active

columns to the total number of columns. In other words, at any given time t, to calculate

the anomaly score, count the number of active columns that were predicted at time t−1

but are not present in time t and divide it by the total number of all columns. This ratio

represents the prediction mistakes of the HTM system.

The raw anomaly score is one of the metrics that can be used to perform anomaly

detection and can be useful on its own in certain situations. However, this metric is not

the only one used. The anomaly likelihood is another anomaly metric that uses the raw

anomaly score to calculate a moving average and predict the probability of seeing this

raw anomaly score.

The anomaly metric used in this experiment is the log likelihood of the raw anomaly

score. The likelihood anomaly score, explained earlier, can be high and taking the log

scale of these values does improve the separation of these anomalies and improve the

overall anomaly score.

In Figures 6.6 and 6.7, the three anomaly metrics are show in different colours. The raw

anomaly score is coloured blue, the anomaly likelihood is coloured in orange, and the

log likelihood is coloured green.

6.3.1.1 SDR-Category Encoder

In this experiment, NuPIC version 0.5.5 and NuPIC Bindings version 0.4.5 were used.

Several model parameters for the SP and the TM were used and tested on the forty-two

162

Chapter 6 Test and Evaluation 6.3. Results

anomaly datasets generated by the participants. Using one set of parameters, a model is

created for each dataset to learn the inhabitant’s habits and the performance is scored

using NAB (See 6.2.3.1). Finally, the average NAB scores for the forty-two datasets is

reported. In the following figures, every data point represents the average NAB score

over the forty-two datasets with specific model parameters.

1 2 3 4 5 6 7 8 9 10
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

activationThreshold=9

activationThreshold=10

activationThreshold=11

activationThreshold=12

activationThreshold=13

FIGURE 6.8: SDR-Category encoder results with different minThreshold values.

Due to the lack of an optimisation algorithm suitable for HTM systems in high dimen-

sional datasets, several experimental model parameters were used to assess the perfor-

mance. Figure 6.8 shows the performance of several HTM models with different values

for the parameters activationThreshold versus the minThreshold parameter.

163

Chapter 6 Test and Evaluation 6.3. Results

1 2 3 4 5 6 7 8
activationThreshold = minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

FIGURE 6.9: SDR-Category encoder with activationThreshold values equals to
minThreshold.

In the first four passes in Figure 6.8, it seemed that the performance of the models have

improved when the values of activationThreshold and minThreshold are closer to-

gether, towards the right-hand side of the graph. Therefore, another pass of performance

evaluation was carried out in Figure 6.9 where activationThreshold and minThresh-

old are equal to each other. However, the results show no significant improvements.

1 2 3 4 5 6 7 8 9
synPermInactiveDec 1e 4

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

A

0.6 0.7 0.8 0.9 1.0
synPermInactiveDec 1e 5

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

(B)

FIGURE 6.10: SDR-Category encoder results and synPermInactiveDec parameter.

164

Chapter 6 Test and Evaluation 6.3. Results

Figure 6.10 shows the performance of the HTM model with different values of the pa-

rameter synPermInactiveDec which specifies the amount of decrement to the inactive

synapses. The results of these passes show that around the value of 0.000008 there is

an improvement of the model performance. Therefore, in Figure 6.11 two evaluation

passes were carried out with the synPermInactiveDec parameter set to the best value

identified so far (0.0000081). In the first pass in Figure 6.11, the parameter minThresh-

old was set to 10 and in the second pass it was set to 9. In both passes, the parameter

activationThreshold was evaluated at values ranging from 1 to 15.

2 4 6 8 10 12 14
activationThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

minThreshold=9

minThreshold=10

FIGURE 6.11: SDR-Category encoder results with different activationThreshold values.

In Figures 6.12 and 6.13, several performance passes are carried out to test the be-

haviour of the HTM model with respect to the parameters activationThreshold and

minThreshold. Throughout all of these passes, the models could not exceed the 40%

NAB accuracy mark.

165

Chapter 6 Test and Evaluation 6.3. Results

1 2 3 4 5 6 7 8 9 10
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=11

A

2 4 6 8 10 12
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=12

(B)

2 4 6 8 10 12 14
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=13

(C)

2 4 6 8 10 12
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=14

(D)

2 4 6 8 10 12
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=15

(E)

2 4 6 8 10 12 14
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=16

(F)

FIGURE 6.12: SDR-Category encoder with activationThreshold values ranging from 11
to 16.

166

Chapter 6 Test and Evaluation 6.3. Results

2 4 6 8 10 12 14
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=17

A

2 4 6 8 10 12 14 16
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=18

(B)

2 4 6 8 10 12 14 16
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=19

(C)

2 4 6 8 10 12 14 16 18
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=20

(D)

5 10 15
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=21

(E)

5 10 15 20
minThreshold

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

synPermInactiveDec=0.0000081, activationThreshold=22

(F)

FIGURE 6.13: SDR-Category encoder with activationThreshold values ranging from 17
to 22.

6.3.1.2 HI-SDR encoder

This Section presents the results of using a similar HTM model to the one showed in the

previous Section with the exception of the first region in the model. The encoder used in

167

Chapter 6 Test and Evaluation 6.3. Results

here is the novel HI-SDR encoder. As explained earlier, the lack of a good optimisation

algorithm motivated an empirical experimentation to pick suitable model parameters.

10 20 30 40 50 60
MaxBoost

0

20

40

60

80

100
NA

B
Sc

or
e

(P
er

ce
nt

)

FIGURE 6.14: HI-SDR with different MaxBoost values.

Figure 6.14 shows the behaviour of the model when changing the MaxBoost parameter.

Similarly, Figure 6.15 shows the performance of the model with different values of the

parameter CellsPerColumns.

5 10 15 20 25 30
CellsPerColumns

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

FIGURE 6.15: HI-SDR with different CellsPerColumns values.

168

Chapter 6 Test and Evaluation 6.3. Results

In Figure 6.16 the HTM model was evaluated with different connectedPermanence val-

ues ranging from 0.1 to 0.19.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
connectedPermanence

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

A

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
connectedPermanence 1e 1

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

(B)

FIGURE 6.16: HI-SDR with different connectedPermanence values.

Figure 6.17 shows the performance of the model when changing the parameter numAc-

tiveColumnsPerInhArea. The NAB score shows a steady increase when increasing the

number of active columns per inhibition area, up to the 80% mark. Since this parameter

is directly related to the number of active bits at any given moment, it is expected to

have low performance with low number of active bits because there will not be enough

space for the model to store the state of the world in. However, after a certain value,

the performance steadily decreases. In this model the total number of bits n is 600.

The interval where the model produced the best results was between 20 to 40 bits. The

ratio of active bits in this interval is around 3% to 6% which aligns well with the HTM

literature recommendation of the number of active bits for a given model.

169

Chapter 6 Test and Evaluation 6.3. Results

20 30 40 50 60 70 80 90
numActiveColumnsPerInhArea

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

FIGURE 6.17: HI-SDR with different numActiveColumnsPerInhArea values.

1 2 3 4 5
synPermInactiveDec 1e 5

0

20

40

60

80

100

N
A
B

S
c
o
r
e

(
P
e
r
c
e
n
t
)

FIGURE 6.18: HI-SDR with different synPermInactiveDec values.

6.3.1.3 SDR-Category Encoder versus HI-SDR

In this Section, the results of using identical sets of model parameters for two HTM

models with different encoders. The idea in this Section is to eliminate the influence

170

Chapter 6 Test and Evaluation 6.3. Results

of the model parameters on the model results and narrow down the difference between

the two models to the type of encoder used.

SpatialPooler(

inputDimensions =(3590,),

columnDimensions =(2048 ,) ,

synPermConnected =0.1,

synPermActiveInc =0.05,

synPermInactiveDec =0.05015 ,

globalInhibition=True ,

numActiveColumnsPerInhArea =40,

maxBoost =1.0,

potentialPct =0.8),

TemporalMemory(

columnDimensions = (2048,),

cellsPerColumn =32,

initialPermanence =0.21,

minThreshold =11,

maxNewSynapseCount =20,

permanenceIncrement =0.1,

permanenceDecrement =0.1,

activationThreshold =14,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32)

LISTING 6.1: The suggested model parameters by the swarm optimiser.

Using the model parameters shown in Listing 6.1, the average NAB score of the HTM

model with SDR-Category encoder on the forty-two datasets was 12.46%. Using the

same model parameters with an HTM model equipped with the novel HI-SDR encoder,

the average NAB score was 36.88%.

From our empirical experimentation of finding the best model parameters for HI-SDR

encoder, the parameters shown in Listing 6.2 produced the best results. The average

NAB score was 81.89%. Using the same model parameters with an HTM model equipped

with the SDR-Category encoder, the average NAB score was 2.14%.

SpatialPooler(

inputDimensions =(600,),

columnDimensions =(600,),

synPermConnected =0.1,

synPermActiveInc =0.05,

synPermInactiveDec =0.00001 ,

globalInhibition=True ,

numActiveColumnsPerInhArea= 38,

maxBoost =38.0,

potentialPct =0.8),

TemporalMemory(

columnDimensions = (600,),

cellsPerColumn =2,

171

Chapter 6 Test and Evaluation 6.3. Results

initialPermanence =0.21,

connectedPermanence =0.20 ,

minThreshold =4,

maxNewSynapseCount =20,

permanenceIncrement =0.5,

permanenceDecrement =0.001 ,

maxSegmentsPerCell =128,

maxSynapsesPerSegment =32,

activationThreshold =9)

LISTING 6.2: The best parameters found for HI-SDR models.

6.3.2 Nearest Neighbour Based

In this Section, several nearest neighbour models are evaluated using RapidMiner2 ver-

sion 7.4 and the anomaly detection3 extension version 2.3. Each model’s anomaly score

is normalised to the range 0.0 to 1.0. The higher the value is, the higher the likelihood

of an anomaly occurring.

Starting with k-Nearest Neighbour (k-NN), the algorithm requires the parameter k to

be set. Testing the algorithm with different values of k and their results are shown in

Section 6.3.2 for values ranging from 2 to 7. Since several features are in the datasets,

using Principal Component Analysis (PCA) as a preprocessing step was also tested and

the results are shown in Section 6.3.2 for values for k ranging from 2 to 13. Reducing

the dimensionality of the input using PCA seems to have improved the results of the

algorithm.

2https://rapidminer.com/
3http://madm.dfki.de/rapidminer/anomalydetection

172

Chapter 6 Test and Evaluation 6.3. Results

2 4 6 8 10 12
k

0

20

40

60

80

100

NA
B

Sc
or

e
(P
er

ce
nt
)

k-NN & PCA
k-NN

FIGURE 6.19: k-NN model results.

Table 6.4 shows the results of the Local Outlier Factor (LOF) algorithm with PCA as

a preprocessing step and without it. The implementation of the LOF algorithm in the

anomaly detection extension for RapidMiner runs several values of k and uses the best

score. Unlike the previous algorithm, using PCA does not seem to improve the results of

the model.

TABLE 6.4: LOF model results.

LOF & PCA LOF

k NAB Score k NAB Score

2-10 11.56% 2-10 15.0%

Section 6.3.2 shows the results of the Connectivity Based Outlier Factor (COF) with PCA

and without it. Several k values were tested for both models. The application of PCA

seems to have improved the results slightly.

173

Chapter 6 Test and Evaluation 6.3. Results

2 3 4 5 6 7 8 9
k

0

20

40

60

80

100

NA
B

Sc
or

e
(P
er

ce
nt
)

COF & PCA
COF

FIGURE 6.20: COF model results.

Two models using the Local Correlation Integral (LOCI) algorithm results are shown

in Table 6.5 one with PCA as a preprocessing step and the other model without a di-

mensionality reduction algorithm. The algorithm seems to achieve better performance

without the dimensionality reduction step.

TABLE 6.5: LOCI model results.

LOCI & PCA LOCI

NAB Score NAB Score

32.89% 41.13%

The Local Outlier Probability (LoOP) results are shown in Section 6.3.2 with PCA and

without it. With low values of k the model was not able to detect the anomalies without

the dimensionality reduction step. However, with values of k > 6 the application of PCA

seems to increase the performance of the model.

174

Chapter 6 Test and Evaluation 6.3. Results

2 3 4 5 6 7 8 9 10 11
k

0

20

40

60

80

100

NA
B

Sc
or

e
(P
er

ce
nt
)

LoOP & PCA
LoOP

FIGURE 6.21: LoOP model results.

The Influenced Outlierness (INFLO) algorithm, in similar fashion, was run with PCA

and without it and its results are shown in Section 6.3.2. The results are slightly better

without the dimensionality reduction using PCA.

2 3 4 5 6 7 8 9 10 11
k

0

20

40

60

80

100

NA
B
Sc

or
e
(P

er
ce
nt
)

INFLO & PCA
INFLO

FIGURE 6.22: INFLO model results.

175

Chapter 6 Test and Evaluation 6.3. Results

6.3.3 Cluster and Density Based

In this Section, several clustering and density based models are evaluated using Rapid-

Miner version 7.4 and the anomaly detection extension version 2.3. Similar to the pre-

vious Section, every model’s anomaly score is normalised to the range 0.0 to 1.0. The

cluster based algorithms require a clustering algorithm to be used in conjunction with

an anomaly detection algorithm.

Using the Cluster Based Local Outlier Factor (CBLOF) algorithm, the results of two mod-

els are shown in Table 6.7. The difference between the two models is the choice of the

clustering algorithm used. The k-means and its extension, the X-means algorithms were

chosen in this Section. The X-means algorithm tries to overcome the issue of choos-

ing an appropriate k value for the clustering algorithm. Thus, only one model result

is presented in conjunction with the X-means algorithm. The results shows very lit-

tle difference between the best k-means score and the X-means score with the CBLOF

algorithm.

TABLE 6.6: CBLOF model results.

k-means X-means

k NAB Score k NAB Score

2 7.40% 2-60 14.79%

3 10.50%

4 15.50%

5 16.07%

6 9.80%

7 15.60%

8 15.42%

9 13.18%

The Local Density Cluster Based Outlier Factor (LDCOF) results in Table 6.7 tell a similar

story to the previous algorithm. The X-means score is very close to the best score of the

k-means model.

176

Chapter 6 Test and Evaluation 6.3. Results

TABLE 6.7: LDCOF model results.

k-means X-means

k NAB Score k NAB Score

2 9.78% 2-60 14.79%

3 14.90%

4 12.05%

5 9.07%

6 5.78%

The Clustering-based Multivariate Gaussian Outlier Score (CMGOS) can be categorised

under the statistical based anomaly detection algorithm because it uses Gaussian model

to determine the anomalies. Table 6.8 shows the results of using CMGOS with k-means

and X-means.

TABLE 6.8: CMGOS model results.

k-means X-means

k NAB Score k NAB Score

2 10.58% 2-10 18.66%

3 13.93%

4 3.31%

5 0.0%

DBSCAN algorithm was not available for the anomaly detection extension in Rapid-

Miner. The Scikit-Learn DBSCAN implementation version 0.18.1 4 was used in this

experiment. Using PCA as a preprocessing step did improve the results slightly as shown

in Table 6.9.

TABLE 6.9: DBSCAN model results.

DBSCAN & PCA DBSCAN

NAB Score NAB Score

27.14% 23.72%

6.3.4 Statistics Based

Similar to the previous Sections, RapidMiner version 7.4 and the anomaly detection

extension version 2.3 were used to assess two statistical anomaly detection algorithms.
4http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

177

Chapter 6 Test and Evaluation 6.4. Discussion

TABLE 6.10: HBOS model results.

HBOS & PCA HBOS

NAB Score NAB Score

61.90% 28.51%

The Histogram Based Outlier Score (HBOS) algorithm results are shown Table 6.10 with

the application of PCA and without applying it. The model results did improve signifi-

cantly with the PCA application as a dimensionality reduction step of the features. The

results of the Robust Principal Component Analysis Anomaly Score (rPCA) are shown in

Table 6.11.

TABLE 6.11: rPCA model results.

NAB Score

9.50%

6.4 Discussion

After assessing the anomaly detection performance of several algorithms and techniques,

the best scores identified by the experiment design, explained in Section 6.2.3, for each

algorithm and techniques are summarised in Figure 6.23. The Figure shows that the

HTM based model with the novel HI-SDR encoder is capable of competing and ex-

ceeding the performance of the state-of-the-art algorithms. The k-NN and the HBOS

models, with dimensionality reduction preprocessing step, produced the second best

performance with a slight edge for the k-NN model.

178

Chapter 6 Test and Evaluation 6.4. Discussion

0 10 20 30 40 50 60 70 80
NAB Score (Percent)

COF

rPCA

LOF & PCA

LDCOF & X-means

LoOP & PCA

CMGOS & k-means

CBLOF & X-means

LDCOF & k-means

INFLO & PCA

LOF

CBLOF & k-means

CMGOS & X-means

INFLO

COF & PCA

DBSCAN

DBSCAN & PCA

HBOS

LOCI & PCA

LoOP

SDRCategoryEncoder

k-NN

LOCI

HBOS & PCA

k-NN & PCA

HI-SDR

9.2%

9.5%

11.6%

12.0%

12.7%

13.9%

14.8%

14.9%

15.0%

15.0%

16.1%

18.7%

20.6%

22.6%

23.7%

27.1%

28.5%

32.9%

33.2%

34.4%

39.9%

41.1%

61.9%

64.1%

81.9%

FIGURE 6.23: The results of all evaluated models.

Goldstein & Uchida (2016) carried out a study to evaluate several unsupervised anomaly

detection algorithms and models on ten datasets from various domains such as in image

dataset of breast cancer, handwriting dataset, a speech accent dataset, and others5.

Their findings suggest that algorithms that are designed to detect local anomalies such

as LOF and COF produce poor results especially when the dataset only contains global

anomalies. On the other hand, global anomaly detection methods such as k-NN and

HBOS produce better results and on datasets with local anomalies their performance is

average. Thus, they recommend the use of global anomaly detection algorithms unless

the dataset strictly contains local anomalies. The results shown in Figure 6.23 show

similar findings. Indeed, the k-NN algorithm and the HBOS algorithm produced the best

results other than the HTM model with the HI-SDR encoder. One interesting finding is

that the LOCI algorithm was not recommended by Goldstein & Uchida (2016) for global

anomalies. However, in this study the algorithm is the fourth best performing algorithm.

This is an indication that the forty-two datasets generated by OpenSHS are diverse.

Another comprehensive study of unsupervised anomaly detection conducted by Campos

et al. (2016) on large collection of datasets with different data types from various do-

mains concluded that the k-NN algorithm is one of the state-of-the-art algorithms for

5All datasets are available at http://dx.doi.org/10.7910/DVN/OPQMVF

179

http://dx.doi.org/10.7910/DVN/OPQMVF

Chapter 6 Test and Evaluation 6.4. Discussion

unsupervised anomaly detection. The findings of this study do agree with their conclu-

sion as k-NN is the second best performing algorithm on the smart home datasets.

As for the HTM based algorithms, the novel HI-SDR encoder did significantly improve

the performance over a standard HTM model with an SDR-Category encoder. The

standard HTM model did produce acceptable results compared to other unsupervised

anomaly detection techniques. However, the HI-SDR encoder provided the HTM model

with significant increase from 34.42% NAB score using the SDR-Category encoder to

81.89% (an increase of 137.91%).

0

2000

4000

6000

8000

10000

FIGURE 6.24: The first 10,000 records of the d4-2m-10tm dataset encoded with SDR-
Category encoder and with model parameters A.

To analyse the reason behind this significant improvement in performance, a closer look

at what is happening in the HTM model over time is needed. For example, looking at

the first 10,000 records of the dataset d4-2m-10tm and how the SDR-Category encoder

encodes these records over time should provide an insight and highlight the main issue

with the encoder. The heat map in Figure 6.24 clearly shows that a large number of

active bits in the generated SDRs are activated at each record. This high number of

similar signatures of the inputs makes it hard for the HTM model to distinguish the

records. It is worth noting that the SDRs are actually one dimensional array and are

shown here as two-dimensional matrices just for visualisation purposes.

180

Chapter 6 Test and Evaluation 6.4. Discussion

0

2000

4000

6000

8000

10000

FIGURE 6.25: The first 10,000 records of the d4-2m-10tm dataset encoded with HI-SDR
encoder and with model parameters A.

Contrast the previous heat map with the one generated by the HI-SDR encoder shown

in Figure 6.25. The active bits’ activities are distributed across the available space in a

more even manner. The highest active portion of the SDR are in the 5,000 range while

in the previous example, they were in the 10,000 range. This issue was discussed in

detail in Section 5.4.4.

One of the important points raised by Campos et al. (2016) when evaluating unsu-

pervised anomaly detection is the issue of choosing appropriate model parameters. A

misconfigured model could perform poorly even if the algorithm or the technique used

is appropriate to the task. To rule out this issue when comparing the two HTM models in

this study, in Section 6.3.1.3 two identical sets of parameters where used in two models.

One with the SDR-Category encoder and the other with the novel HI-SDR encoder. Let

us refer to the model parameters shown in Listing 6.1 as A and model parameters shown

in Listing 6.2 as B. The set of model parameters A were suggested by a particle swarm

optimisation (PSO) technique commonly used with HTM models to arrive at good model

parameters. The swarm process is mainly used with classification problem in HTM lit-

erature and this may explain the poor results of the suggested model parameters A. In

the HTM literature there is a recommended set of model parameters for anomaly detec-

tion but it is best suited for datasets with a single scalar feature. Therefore, that set of

parameters did not perform well in this dataset which has high dimensional categorical

features. The model parameters B are the best parameters identified in this study for

the HI-SDR encoder.

181

Chapter 6 Test and Evaluation 6.4. Discussion

Table 6.12 shows a comparison of the NAB scores of the two models using the two model

parameters sets A and B. In both sets of parameters, the model equipped with HI-SDR

encoder excels.

TABLE 6.12: SDR-Category encoder and HI-SDR encoder results using two identical
sets of parameters.

Encoder Parameters A Parameters B

SDR-Category encoder 12.46% 2.14%

HI-SDR 36.88% 81.89%

To gain more insight on why the results are better when using the HI-SDR encoder, let

us look at the resulting SDRs of the encoders, what is happening in the SP region, and

what is happening in the TM region.

The previously shown Figure 6.26 illustrates the generated SDRs by the SDR-Category

encoder and the HI-SDR encoder using the model parameters A.

0

2000

4000

6000

8000

10000

(A) SDR-Category encoder

0

2000

4000

6000

8000

10000

(B) HI-SDR encoder

FIGURE 6.26: The first 10,000 records of the d4-2m-10tm dataset encoded with both
encoders with model parameters B.

Figure 6.27 shows the two models with parameters B. Very similar outcome is observed

and illustrated in the generated SDRs. The HI-SDR encoder manages to produce more

evenly distributed active bits across the available space of the SDR which gives the

subsequent regions of the HTM model the ability to easily distinguish the input. While

182

Chapter 6 Test and Evaluation 6.4. Discussion

the SDR-Category encoder reuses and activates similar active bits which leads to similar

inputs to the subsequent HTM regions.

The SP region is the next region in the HTM system and it is directly affected by the

SDRs generated by the encoders. Figure 6.27a shows the SDR-Category encoder with

model parameters A. The heat map shows very similar features, high activities are

concentrated in very small parts of the SP.

0

2000

4000

6000

8000

10000

(A) SDR-Category encoder

0

2000

4000

6000

8000

10000

(B) HI-SDR encoder

FIGURE 6.27: The SP with both encoders and with model parameters A.

Contrasting that with what is shown in Figure 6.27b which shows an evenly distributed

activities the available SP region. This indicates that different parts of the SP are learning

much more characteristics about the input than the previous model.

Figure 6.28 shows the two models with the model parameters B and again, very simi-

lar findings. High and concentrated activities of the SP region with the SDR-Category

encoder and evenly spread activities with the HI-SDR encoder.

183

Chapter 6 Test and Evaluation 6.4. Discussion

2000

4000

6000

8000

10000

(A) SDR-Category encoder

2000

4000

6000

8000

10000

(B) HI-SDR encoder

FIGURE 6.28: The SP with both encoders using model parameters B.

To analyse what is happening in the TM, one useful metric is the number of bursting

columns and their behaviour over time. Figure 6.29 shows the bursting columns for the

first 10,000 records of the dataset d4-2m-10tm of the model equipped with the SDR-

Category encoder. The number of the bursting columns is 6061 columns. While the

HI-SDR equipped model shown in Figure 6.30, seems very active with 78094 bursting

columns.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

FIGURE 6.29: The TM with SDR-Category encoder and with model parameters A.

184

Chapter 6 Test and Evaluation 6.4. Discussion

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

FIGURE 6.30: The Temporal Memory with HI-SDR encoder and with model parameters
A.

Figure 6.31 shows the bursting columns with SDR-Category encoder and the number

of the bursting columns is 2305. This model seems very relaxed and not alerted to the

incoming data. The reason for this is that the SDRs generated by SDR-Category encoder

look similar. Thus, the model cannot distinguish between the different input records

and becomes numb. On the other hand, Figure 6.32 shows the HI-SDR encoder bursting

columns which are totalling 4327 columns. The model shows a smooth decrease in the

number of bursting columns over time and yet never going to be completely relaxed.

There seems to be a trade-off between how relaxed and sensitive the model is and its

capabilities to detect anomalies.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

FIGURE 6.31: The TM with SDR-Category encoder and with model parameters B.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

FIGURE 6.32: The Temporal Memory with HI-SDR encoder and with model parameters
B.

185

Chapter 6 Test and Evaluation 6.5. Summary

6.5 Summary

In this Chapter, the design and methodology of the whole experiment were explained.

The virtual smart home (that was built using OpenSHS) was presented and a listing of

all the sensors and smart devices along with the type of data they generate. The smart

home was equipped with twenty-nine binary sensors including various smart devices.

Also, the rationale behind using binary sensors was explained.

The forty-two datasets that were generated using the virtual test bed were presented.

Each of the seven participants were trained and guided by the researcher to use Open-

SHS and then they were asked to perform several tasks to ensure a good level of fa-

miliarity with the simulation tool. After making sure that the participants are comfort-

able with OpenSHS, the actual simulations took place. The participants were asked

to simulate four contexts: ‘morning-weekday’, ‘morning-weekend’, ‘evening-weekday’,

and ‘evening-weekend’ contexts. After that, each participant was asked to perform an

anomaly according to their own definition and patterns. The type of anomalies that the

participant decided to perform and simulate are explained along with the OpenSHS pa-

rameters used to aggregate the final datasets. The forty-two datasets totalled 2,743,897

records worth of data.

A detailed explanation of the experiment design and the evaluation pipeline for all the

tested algorithms was presented and discussed. Each experiment starts by reading one

dataset out of the forty-two datasets and feeding the data to the anomaly detection

model. 80% of the dataset is used to let the model learn from without scoring. The

last 20% of the dataset is used to score the performance of the model. Most of the

tested anomaly detection models score was a scalar value which imposed a challenge

for evaluation. The challenge was figuring out what is the best threshold to choose

to recognise a reading as an anomaly or not. To overcome this issue and to make the

evaluation process fair for all models, an optimisation algorithm (Twiddle) was used and

several iterations were performed for each dataset to find the best threshold possible

for that dataset. The best score was the final score reported for that dataset. Finally,

an average for all the datasets scores was reported as the model overall accuracy in

detecting the anomalies.

The results of several unsupervised anomaly detection algorithms and techniques were

reported on the participant’s generated datasets. The models were grouped by the

primary technique used in the model. The experiments covered HTM based, nearest

neighbour based, cluster and density based and statistics based techniques. A detailed

discussion of these results shows that previously conducted studies about unsupervised

186

Chapter 6 Test and Evaluation 6.5. Summary

anomaly detection techniques on different datasets produced results similar to the re-

sults found by this experiment.

As for the HTM based anomaly detection models, without the novel HI-SDR encoder,

they produced moderate results that could not compete with the state-of-the-art anomaly

detection algorithms. However, with the HI-SDR encoder, the HTM models were able to

compete and exceed these algorithms. The HI-SDR encoder scored 81.9% accuracy, on

the forty-two datasets, with 17.8% increase in accuracy compared to the k-NN algorithm

and 47.5% increase over the standard CLA encoders.

The Principal Component Analysis (PCA) algorithm was used as a preprocessing step

and this step improved the results of some of the algorithms. For example, the k-NN

algorithm scored 39.9% accuracy without PCA and scored 64.1% accuracy with PCA.

Similar results were achieved by the Histogram Based Outlier Score (HBOS) algorithm

which scored 28.5% accuracy without PCA and 61.9% with PCA as a preprocessing step.

One possible improvement for the HTM based models to develop an optimisation algo-

rithm to tune its parameters for anomaly detection problems. A Particle Swarm Opti-

misation (PSO) technique is usually used in the literature, but it is more suitable for

classification and prediction problems.

187

Chapter 7

Conclusions and Future Work

Smart homes are becoming more sophisticated and complicated due to the number of

smart devices that are added to them and the different tasks that these devices are per-

forming. Nowadays, with the realisation of the IoT vision, it is becoming more important

for the smart home inhabitant to take control and manage these devices. The IoT vision

in the smart home faces several challenging issues such as security, privacy, elderly care

and context-awareness. Anomaly detection can play an important role in solving some

of these issues.

The literature review of detecting anomalies in the smart home domain showed a lack

of good datasets that are focused on anomaly detection problems. The existing research

projects in this domain, usually focus on the classification and recognition of ADLs for

the inhabitants and there are many real-world datasets generated from actual smart

homes in the literature. However, few research projects focused on anomaly detection

problems.

The habits and daily patterns of the smart home inhabitants are different and ever-

changing. This fact imposed an interesting challenge to this research. Proposing an

anomaly detection technique based on supervised machine learning algorithms is rather

limiting and not generalisable. Thus, unsupervised machine learning algorithms and

techniques were the target of this research due to their ability to learn from the data

without the need for training labels in the dataset.

The HTM theory introduces an overarching theory that proposes the existence of a com-

mon algorithm performed across all regions of the brain’s neocortex. The algorithmic

implementation of the theory, the CLA, proposes several regions that realise the HTM

theory and make it applicable to real-world problems. The first region is the encoder

188

Chapter 7 Conclusions and Future Work Chapter 7 Conclusions and Future Work

region which is responsible of transforming the streaming input data to a sparse repre-

sentations called SDRs. The next region is the SP which learns the spatial features of

the SDRs and pass this new learned representation to the next region, the TM. The TM

is responsible for learning the transitions from one SDR to the next, thus learning the

temporal features of the streaming data. All of these regions are biologically inspired by

the recent findings in Neuroscience.

The HTM models can learn the state of the world and can be used to perform classifi-

cation, prediction and anomaly detection problems. Although extracting what the HTM

model has learned is currently done with statistical approaches and not by biologically

inspired techniques. Yet, the results of detecting anomalies seems promising.

This work tackled the lack of good representative datasets aimed at anomaly detec-

tion and developed OpenSHS, a new hybrid, open-source, cross-platform, 3D smart

home simulator for dataset generation. OpenSHS reduces the time and effort for the

researcher and the participants and streamlines the process of generating simulated

smart home datasets. Using this tool, forty-two datasets aiming at detecting anoma-

lies of smart home inhabitants’ behaviour were created. Moreover, the anomalies are

defined and annotated by the participants.

The work at hand conducted an evaluation of the current state of the HTM implemen-

tations. There are several implementations of the HTM theory and the most active

implementation is NuPIC. The anomaly detection models in this implementation can

use several encoders that encode the dataset records to be fed to the HTM model. An

evaluation of the available encoders revealed the need to develop an encoder capable

of dealing with datasets generated by a smart home environment. The smart home

environment contains many sensors and this increases dimensionality of features set.

The HI-SDR encoder was developed as a novel encoder to overcome the issues discov-

ered when using HTM models to detect anomalies in the smart home domain. The eval-

uation of the current state-of-the-art unsupervised anomaly detection algorithms and

techniques on the forty-two smart home datasets revealed good and promising results.

The HTM model with the HI-SDR encoder was able to achieve 81.9% accuracy using

NAB as an anomaly detection metric with 17.8% increase over the k-NN algorithm and

47.5% increase over the standard CLA encoders.

189

Chapter 7 Conclusions and Future Work 7.1. Research Contributions

7.1 Research Contributions

This work offers several contributions to knowledge and can be summarised as follows:

• The primary contribution of this research is the development of a novel HTM en-

coder (HI-SDR) to solve the issue of high-dimensional datasets in smart homes.

The current implementation of HTM theory, NuPIC, offers several encoders that

are suitable for scalar and categorical data types. However, these encoders are

designed to work with a single feature (a single column) in the dataset or with

few columns. When using several scalar or categorical encoders to encode each

column, the resulting output will be big and less sparse than the HI-SDR encoder.

Keeping the sparsity low for the output of the encoder is an important property as

this will allow the HTM model to form meaningful representations to learn from.

The smart home’s environment usually consists of several sensors and actuators

which affect the performance of the standard encoders. The HI-SDR encoder uses

a hashing technique to reduce the dimensionality of the dataset feature space by

encoding it into a representation that the rest of the HTM model can work with

and produce good anomaly detection results.

• A novel smart home simulation tool, OpenSHS, targeted at researchers who are

interested in smart home research area. OpenSHS represents a new hybrid, open-

source, cross-platform, 3D smart home simulator aiming at dataset generation.

The literature review of the current simulation tools had many shortcomings and

OpenSHS is an attempt to rectify these issues.

• Forty-two datasets of smart home participant’s daily activities with annotated anoma-

lies. One of the issues revealed by the literature review of smart homes is the

lack of a standardised dataset targeted at detecting anomalies in a smart home

environment. Using OpenSHS, the participants simulated their daily habits and

self-annotated these datasets. The collection of these datasets is available pub-

licly online to allow for the whole research community to test and evaluate their

machine learning models.

190

Chapter 7 Conclusions and Future Work 7.2. Conclusion and Future Work

7.2 Conclusion and Future Work

Representing the input as SDRs is one of the main strengths and advantages of using

an HTM based model. As long as the required properties for the encoders are met,

HTM model can work with any type of data unlike some machine learning models.

The HI-SDR encoder has been designed to work with high-dimensional binary datasets.

However, not all the data in a smart home can be modelled into two states, on and off.

Therefore, one of the main tasks for future work is to investigate how to integrate and

fuse several data types into one SDR. Ideally, the encoder should be able to work with

high-dimensional categorical and scalar data types. However, that would make the out-

put of the encoder big and the challenge is to make the output size manageable without

sacrificing needed information. Incorporating dimensionality reduction techniques such

as PCA could provide insightful solutions.

The hierarchical arrangement of regions is one of the HTM theory main principals. How-

ever, the current implementation, NuPIC, does not have a hierarchy of regions and only

implements one region. Therefore, the question is still open for how to create an ef-

ficient hierarchy of regions and how to pass the data between them. Moreover, once

an efficient fusion and integration of hierarchies is implemented, the question will be,

how to arrange these regions and what should each region learn. For example, in image

and video recognition, the Convolutional Neural Network’s (CNN) lower layers learn

and recognise primitive shapes while the higher layers learn bigger shapes. Investigat-

ing how to arrange several HTM regions to detect anomalies where the lower regions

learn smaller features and the higher regions learn more abstract patterns, will be an

interesting challenge.

Another task for future work is to test and evaluate the performance of several full HTM

models dedicated to each column in the dataset. The challenge in this setup is how

to integrate their output and whether or not this approach will outperform the current

setup.

The HTM models have several parameters that need to be tuned and optimised to get

the best possible results. Particle Swarm Optimisation (PSO) was used to optimise the

HTM model’s parameters for classification problems. One of this research results can

be used to provide a heuristic that can improve the selection of good parameters. The

heuristic is the number of bursting columns in the TM. For future work, an investigation

of whether it is possible to propose an optimisation technique based on this heuristic

that could achieve better results in optimising HTM anomaly detection models.

191

Chapter 7 Conclusions and Future Work 7.2. Conclusion and Future Work

Calculating the anomaly was done using statistical techniques. However, investigating

biologically inspired techniques to calculate the anomaly score could improve the results

even further.

The developed smart home simulation tool, OpenSHS, focused on streamlining the sim-

ulation process for the participants and the researchers. The flexibility, scalability and

accessibility of the tool are an ongoing target for improvements. One of the future plans

is to add a floor plan editor to make it easier for the researcher to bootstrap their smart

home design. Adding more smart devices to the library of devices available with Open-

SHS will help the flexibility and scalability of the tool. Since OpenSHS is open-source

tool and publicly available for the research community, the library of simulated devices

could see fast growth as new devices are introduced. As for the accessibility, porting

OpenSHS to other platforms would lower the barriers for using it to conduct simula-

tions. With the recent advancements in web technologies, OpenSHS could be ported to

run in the web browser which will make the tool more accessible.

For future work, full multiple inhabitants support in real-time will be included. More-

over, the smart devices’ library, has few specialised sensors that could be updated to

include new types of sensors and devices. Taking into consideration that OpenSHS is

an open-source project, released under a free and permissive licence, the project could

envisage quick and rapid development that would facilitate the support of the afore-

mentioned features.

The participants in this work used OpenSHS to generate forty-two datasets of their

ADLs and patterns. The participants had total freedom to perform their activities and

no restrictions were imposed by the researcher. The level of variability shown in the

descriptive statistics presented in Section 6.2.2 reflect this fact. However, the main

limitation for any simulation research is that it will not fully substitute an actual and

real-world experiment.

The more realistic the simulation is, the less the need for building actual smart homes to

carry out research. Following the growing advancements in computer graphics, Virtual

Reality (VR) is becoming more accessible and affordable. BlenderVR (Katz et al., 2015)

is an open-source framework that extends Blender and allows it to produce immersive

and realistic simulations. Since OpenSHS is based on Blender, one of our future goals is

to investigate the incorporation of BlenderVR into our tool to provide more true to life

experiences for the smart home simulation and visualisation. In terms of accessibility,

the aim is to make OpenSHS as accessible as possible. Nowadays, the web technologies

and web browsers can be a good platform to facilitate the wider distribution of Open-

SHS. Technologies such as WebGL (2006) can be used to run OpenSHS in different web

browsers and Blender can export to these technologies.

192

Chapter 7 Conclusions and Future Work 7.2. Conclusion and Future Work

Currently, the labelling of activities is performed by the participant during the simulation

phase. OpenSHS does not perform automatic recognition of these activities. As part of a

future work, the possibility of adding automatic recognition of the participants’ activities

can be investigated.

The work presented in this thesis lends itself well to be implemented in a real smart

home provided that a middleware layer is installed. The middleware is responsible for

sampling, aggregating, and cleaning the data generated by the smart devices and the

sensors. If the requirements explained in Section 1.3 are met, the work in this thesis

should provide anomaly detection services to the middleware layer. However, more

research in a real smart home setting is required as there are more potential for new

problems emerging.

One of the important issues facing smart home research is the lack of representative and

standardised datasets for anomaly detection tasks. It is crucial to have good datasets to

validate any proposed anomaly detection technique. However, anomaly detection is a

difficult task to undertake due to the nature of anomalies. Anomalies in a smart home

scenario are rare events and have a subjective quality. Every smart home inhabitant has

their own habits and patterns that makes it difficult to objectively decide whether an

event is an anomaly or not. Due to this subjective quality, in this work the inhabitants

themselves were the ones who decided if an event is anomaly according to their own

habits. This was captured in the forty-two datasets that were generated by the partic-

ipants. For future work, more datasets that follow the same methodology but explore

more complex scenarios and simulate more than a single inhabitant are planned.

To evaluate the ability of an anomaly detection model to adapt to new normal patterns

introduced by the inhabitants, more work is required to create datasets that capture

complex and intricate patterns of the inhabitants. It is common that the normal pat-

terns of the inhabitants will change over time due to changes in the inhabitants’ life

styles. Therefore, testing the adaptability of the anomaly detection model to cope with

these changing patterns is important. For future work, more datasets are needed that

incorporate several changing normal patterns of the inhabitants to test the ability of the

anomaly detection model to recover and recognise the new normal patterns.

193

Appendix A

Spatial Pooler and Temporal

Memory

In this appendix the pseudocode of the Spatial Pooler and the Temporal Memory will be

presented based on the work of Hawkins et al. (2016).

A.1 Spatial Pooler

The Spatial Pooler receives the feedforward input coming from the encoders and learns

the spatial feature of every input. The output of the Spatial Pooler is a set of active

columns. After initialising the Spatial Pooler, the algorithm can be divided into three

phases:

• Calculating the overlap between the columns and the input space.

• Calculating the winning columns after performing inhibition.

• Update the permanence of the synapses.

A.1.1 Initialisation

The first thing that occurs when creating a new Spatial Pooler instance is initialising the

permanence values for the columns. Every column is assigned a random permanence

value. This value is bounded by two conditions, all values should be normally distributed

around the connectedPerm variable (A.1). The second condition is to have every column

permanence biased towards the centre of the input space. Meaning, when overlaying the

194

Appendix A Spatial Pooler and Temporal Memory A.1. Spatial Pooler

input space over the active columns, higher permanence values are assigned to centre

of every column and these values are gradually decreasing the further we go away from

that centre.

A.1.2 First Phase: Overlap

Algorithm 3 Calculating the overlap between the input space and the Spatial Pooler
active columns.

1: for c in columns do

2: OVERLAP(c)← 0

3: for s in CONNECTEDSYNAPSES(c) do

4: OVERLAP(c)← OVERLAP(c) + INPUT(t, s.sourceInput)

5: end for

6:

7: if OVERLAP(c) < minOverlap then

8: OVERLAP(c)← 0

9: else

10: OVERLAP(c)← OVERLAP(c)× BOOST(c)

11: end if

12:

13: end for

A.1.3 Second Phase: Inhibition

Algorithm 4 Calculating the winning columns after the inhibition.

14: for c in columns do

15: minLocalActivity ← KTHSCORE(NEIGHBORS(c), desiredLocalActivity)

16: if OVERLAP(c) > 0 and OVERLAP(c) ≥ minLocalActivity then

17: ACTIVECOLUMNS(t).APPEND(c)

18: end if

19: end for

195

Appendix A Spatial Pooler and Temporal Memory A.1. Spatial Pooler

A.1.4 Third Phase: Update

Algorithm 5 Updating the synapses permanence.

20: for c in ACTIVECOLUMNS(t) do

21:

22: for s in POTENTIALSYNAPSES(c) do

23: if ACTIVE(s) then

24: s.permanence += permanenceInc

25: s.permanence← MIN(1.0, s.permanence)

26: else

27: s.permanence −= permanenceDec

28: s.permanence← MAX(0.0, s.permanence)

29: end if

30: end for

31: end for

32:

33: for c in columns do

34: MINDUTYCYCLE(c)← 0.01× MAXDUTYCYCLE(NEIGHBORS(c))

35: ACTIVEDUTYCYCLE(c)← UPDATEACTIVEDUTYCYCLE(c)

36: BOOST(c)← BOOSTFUNCTION(ACTIVEDUTYCYCLE(c), MINDUTYCYCLE(c))

37:

38: OVERLAPDUTYCYCLE(c)← UPDATEACTIVEDUTYCYCLE(c)

39: if OVERLAPDUTYCYCLE(c) < MINDUTYCYCLE(c) then

40: INCREASEPERMENANCES(c, 0.1× connectedPerm)

41: end if

42:

43: end for

44: inhibitionRadius← AVERAGERECEPTICEFIELDSIZE()

196

Appendix A Spatial Pooler and Temporal Memory A.1. Spatial Pooler

A.1.5 Functions and Data Structures

TABLE A.1: Spatial Pooler data structures.

Data Structure Description

activeColumns(t) A list of the indices of the winning columns.

activeDutyCycle(c) An average number for how active column c was during a

specified period.

boost(c) The value for boosting column c.

columns A list of all the columns.

connectedPerm A threshold of a synapse that if exceeded, the synapse is said

to be connected.

connectedSynapses(c) A list of the connected synapses out of the potential synapses

for column c.

desiredLocalActivity The number of winning columns after the inhibition process.

inhibitionRadius The average connected receptive field size.

input(t, j) The input space items at time t. Its value is 1 if the jth item

bit is on.

minDutyCycle(c) The minimum required activity of column c. If the col-

umn activity is below this threshold, it will be boosted. The

threshold is 1% of the maximum activities of the column

neighbors.

minOverlap The minimum number of active input bits overlapping with

the columns.

neighbors(c) A list of all the columns falling into the inhibitionRadius

of the column c.

overlap(c) The overlap score of column c with the input space.

overlapDutyCycle(c) An average number for how column c been passing the mi-

nOverlap threshold during a specified period.

permanenceDec The amount by which to decrease the synapse.

permanenceInc The amount by which to increase the synapse.

potentialSynapses(c) A list of potential synapses and their performance for col-

umn c.

synapse An object containing a permanence value and the index of

the associated input bit.

197

Appendix A Spatial Pooler and Temporal Memory A.1. Spatial Pooler

TABLE A.3: Spatial Pooler functions and their returned values types.

Function Type Description

kthScore(cls, k) int Returns the kth highest overlap score from

a list of columns cls.

updateActiveDutyCycle(c) float Calculates an average of the activity of

column c after inhibition during a specific

period.

updateOverlapDutyCycle(c) float Calculates an average of how column c

been passing the overlap threshold mi-

nOverlap during a specific period.

averageRecepticeFieldSize() float The average radius of the connected re-

ceptive field size for all columns.

maxDutyCycle(cls) float The maximum active duty cycle of the

columns cls.

increasePermenances(c, s) void Increase the permanence of all synapses

in column c by the factor s.

boostFunction(c) float Returns the boost factor of columns c. The

boost value is ≥ 1. The value is 1 when

the column activity is above the threshold

minDutyCycle

198

Appendix A Spatial Pooler and Temporal Memory A.2. Temporal Memory

A.2 Temporal Memory

A.2.1 Inference Mode

A.2.1.1 First Phase: Active Cells

Algorithm 6 Calculating the active cells in the Temporal Memory.

1: for c in ACTIVECOLUMNS(t) do

2:

3: buPredicted← False

4: for i← 0 to cellsPerColumn− 1 do

5: if PREDICTIVESTATE(c, i, t− 1) == True then

6: s← GETACTIVESEGMENT(c, i, t− 1, activeState)

7: if s.sequenceSegment == True then

8: buPredicted← True

9: ACTIVESTATE(c, i, t)← 1

10: end if

11: end if

12:

13: if buPredicted == False then

14: for i← 0 to cellsPerColumn− 1 do

15: ACTIVESTATE(c, i, t)← 1

16: end for

17: end if

18: end for

19: end for

A.2.1.2 Second Phase: Predictive Cells

Algorithm 7 Calculating the predictive cells in the Temporal Memory.

20: for c, i in cells do

21: for s in SEGMENTS(c, i) do

22: if SEGMENTACTIVE(c, i, s, t) then

23: PREDICTIVESTATE(c, i, t)← 1

24: end if

25: end for

26: end for

199

Appendix A Spatial Pooler and Temporal Memory A.2. Temporal Memory

A.2.2 Learning Mode

A.2.2.1 First Phase: Active Cells

Algorithm 8 Calculating the active cells while learning in the Temporal Memory.

1: for c in ACTIVECOLUMNS(t) do

2:

3: buPredicted← False

4: lcChosen← False

5: for i← 0 to cellsPerColumn− 1 do

6: if PREDICTIVESTATE(c, i, t− 1) == True then

7: s← GETACTIVESEGMENT(c, i, t− 1, activeState)

8: if s.sequenceSegment == True then

9: buPredicted← True

10: ACTIVESTATE(c, i, t)← 1

11: if SEGMENTACTIVE(s, t− 1, learnState) then

12: lcChosen← True

13: LEARNSTATE(c, i, t)← 1

14: end if

15: end if

16: end if

17:

18: if buPredicted == False then

19: for i← 0 to cellsPerColumn− 1 do

20: ACTIVESTATE(c, i, t)← 1

21: end for

22: end if

23:

24: if lcChosen == False then

25: i, s← GETBESTMATCHINGCELL(c, t− 1)

26: LEARNSTATE(c, i, t)← 1

27: sUpdate← GETSEGMENTACTIVESYNAPSES(c, i, s, t− 1,True)

28: sUpdate.sequenceSegment = True

29: SEGMENTUPDATELIST.ADD(sUpdate)

30: end if

31: end for

32: end for

200

Appendix A Spatial Pooler and Temporal Memory A.2. Temporal Memory

A.2.2.2 Second Phase: Predictive Cells

Algorithm 9 Calculating the predictive cells while learning in the Temporal Memory.

33: for c, i in cells do

34: for s in SEGMENTS(c, i) do

35: if SEGMENTACTIVE(s, t, activeState) then

36: PREDICTIVESTATE(c, i, t)← 1

37:

38: activeUpdate← GETSEGMENTACTIVESYNAPSES(c, i, s, t,False)

39: SEGMENTUPDATELIST.ADD(activeUpdate)

40:

41: predSegment← GETBESTMATCHINGSEGMENT(c, i, t− 1)

42: predUpdate ← GETSEGMENTACTIVESYNAPSES(c, i, predSegment, t −
1,True)

43: SEGMENTUPDATELIST.ADD(predUpdate)

44: end if

45: end for

46: end for

A.2.2.3 Third Phase: Update

Algorithm 10 Update the internal variables while learning in the Temporal Memory.

47: for c, i in cells do

48: if LEARNSTATE(s, i, t) == 1 then

49: ADAPTSEGMENTS(SEGMENTUPDATELIST(c, i), True)

50: SEGMENTUPDATELIST(c, i).DELETE()

51: else if PREDICTIVESTATE(c, i, t) == 0 and PREDICTIVESTATE(c, i, t− 1) == 1

then

52: ADAPTSEGMENTS(SEGMENTUPDATELIST(c, i), False)

53: SEGMENTUPDATELIST(c, i).DELETE()

54: end if

55: end for

201

Appendix A Spatial Pooler and Temporal Memory A.2. Temporal Memory

A.2.3 Functions and Data Structures

TABLE A.5: Temporal Memory data structures.

Data Structure Description

activationThreshold The segment activation threshold. If the number of con-

nected synapses in this segment is greater than this thresh-

old, the segment is then active.

activeColumns(t) A list of the indices of the winning columns at time t.

activeState(c, i, t) A binary number that indicates that at column c, the ith cell

at time t is in an active.

cell(c, i) The cells in column c and index i.

cellsPerColumn The number of cells for each column.

connectedPerm If a synapse permanence is greater than this threshold, the

synapse is then connected.

initialPerm The initial synapse permanence value.

learnState(c, i, t) A binary number that indicates that if at column c, the i{th}
cell is chosen to be the learning cell.

learningRadius The area that a cell can form distal connections to.

minThreshold The minimum segment activity for learning.

newSynapseCount The maximum number of synapses to be added to a segment

when learning.

permanenceDec The value by which a synapse permanence is decreased dur-

ing learning.

permanenceInc The value by which a synapse permanence is increased dur-

ing learning.

predictiveState(c, i, t) A binary number that indicates that at column c, the ith cell

at time t is in a predictive state.

segmentUpdate An object with three values: a segment index, a list of

existing active synapses, and a boolean flag that indicates

whether this segment should be the sequence segment.

segmentUpdateList(c, i) A list of segmentUpdate’s for the ith cell in column c.

202

Appendix A Spatial Pooler and Temporal Memory A.2. Temporal Memory

TABLE A.7: Temporal Memory functions and their returned values types.

Function Type Description

segmentActive

(s,t,state)

boolean Returns True if the number of connected

synapses on the segment s that are activated

by state at time t is greater than activa-

tionThreshold. state can be activeState

or learnState.

getActiveSegment

(c,i,t,state)

int Returns a segment index for the ith cell in

column c at time t for which the segment

segmentActive(s, t, state) is True. If

multiple segments exists that satisfy the con-

dition, sequence segments have precedence,

then the segment with the highest activity

getBest -

MatchingSegment

(c,i,t)

int Returns a segment index for the ith cell in col-

umn c at time t for which the segment has

the biggest number of active synapses. Re-

turns -1 if no segments are found.

getBest -

MatchingCell(c)

int Returns a cell index for column c with the

best matching segment. If no cell matches, it

returns the index of the cell with the fewest

segments.

getSegment -

ActiveSynapses

(c,i,t,s,newSynapses)

segment -

Update

Returns a segmentUpdate object with

changes to segment s for the ith cell in

column c at time t. The newSynapses

is a optional boolean flag that defaults

to False. If newSynapses is True then,

newSynapseCount - count(activeSynapses)

random learning synapses are added to

activeSynapses.

adaptSegments (seg-

mentList, positive -

Reinforcement)

void Goes through the list of segmentUpdate

in the segmentList and if positiveRein-

forcement is True, then the active synapses

permanence is increased by permanenceInc.

Otherwise, the synapses permanence is de-

creased by permanenceDec.

203

Appendix B

Datasets

204

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d1
-1

m
-0

tm

205

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d1
-1

m
-5

tm

206

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d1
-1

m
-1

0t
m

207

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d2
-1

m
-0

tm

208

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d2
-1

m
-5

tm

209

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d2
-1

m
-1

0t
m

210

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d3
-1

m
-0

tm

211

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d3
-1

m
-5

tm

212

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d3
-1

m
-1

0t
m

213

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d4
-1

m
-0

tm

214

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d4
-1

m
-5

tm

215

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d4
-1

m
-1

0t
m

216

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d5
-1

m
-0

tm

217

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d5
-1

m
-5

tm

218

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d5
-1

m
-1

0t
m

219

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d6
-1

m
-0

tm

220

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d6
-1

m
-5

tm

221

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d6
-1

m
-1

0t
m

222

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d7
-1

m
-0

tm

223

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d7
-1

m
-5

tm

224

Appendix B Datasets Appendix B Datasets

Th
e

la
st

10
00

0
re

co
rd

s
of

da
ta

se
t

d7
-1

m
-1

0t
m

225

Appendix C

OpenSHS Documentation

C.1 Requirements

This section lists the required dependencies and their corresponding versions for Open-

SHS as follows:

• Blender: version 2.74 or newer,

• Python: version 3.5 or newer,

• Click: version 6.6 or newer.

C.2 Quick Start

To start the simulation demo, from the root directory of OpenSHS, run the following

commands:

cd app/

python openshs start -c morning

This will starts a blender session with the morning context simulation. Start the simu-

lation by clicking <p> on the keyboard. All the interactoins will be captured and saved

into the directory <app/temp>.

After doing mulitple simulations for each context (weekday morning, weekday evenings,

weekend morning, weekend evenings), aggregate the final dataset by running the fol-

lowing command:

python openshs aggregate -d 30 -sd 2016 -02 -01 -tm 10

226

https://www.blender.org
https://www.python.org/
http://click.pocoo.org/6/

Appendix C OpenSHS Documentation C.3. Manual

This will generate 30 days worth of data starting from 2016-02-01 and with a time

margin of 10 minutes. The final dataset will be placed in the directory <app/datasets>.

C.3 Manual

This section describes all the currently available command line options for OpenSHS.

There are three commands available for OpenSHS, status, start, and aggregate. Each

one of these commands has its own options.

C.3.1 Start Command

The start command starts OpenSHS 3D environment with the specified context. This

command has one option --context which specifies the context that should be started.

The --context can be abbreviated as -c.

C.3.1.1 Examples

To start the morning context, for example:

python openshs start --context morning

C.3.2 Status Command

The status shows the status of the simulation session. There are two options for this

command and one of them must be provided. The options are:

• --list-contexts: Lists the available contexts in this simulations. Can be abbre-

viated as -lc.

• --recorded-samples: Shows the status of the recorded contexts samples. Can be

abbreviated as -rs.

C.3.2.1 Examples

To see a list of the available contexts for this simulation:

python openshs status --list -contexts

227

Appendix C OpenSHS Documentation C.3. Manual

Which will output something similar to this:

morning , evening

To see a list of the recorded samples:

python openshs status -rs

Which will output something similar to this:

For context morning , weekdays: 3 Samples.

For context morning , weekends: 2 Samples.

For context evening , weekdays: 3 Samples.

For context evening , weekends: 2 Samples.

C.3.3 Aggregate Command

The aggregate command generates the final dataset from the recorded samples and

store the as <datasets/dataset.csv>. This command has four options, as follows:

• --days: Specifies how many days to be generated. Can be abbreviated as -d.

• --start-date: Specifies the starting date of the dataset. In other words, the first

date for the first record in the dataset. Can be abbreviated as -sd.

• --time-margin: The starting time margin for each replicated sample. More in-

formation on this option are described in Section 4.3.3.1. Can be abbreviated as

-tm.

• --variable-activitie: Make the activities duration variable. Can be abbrevi-

ated as -va.

C.3.3.1 Examples

To aggregate the final dataset, a command similar to the following can be executed:

python openshs aggregate -d 30 -sd 2017 -02 -01 -tm 10 -va

This will aggregate all the recorded samples and generate a month worth of data (30

days) starting from 2017-02-01, with a time margin of 10 minutes and with variable

activity lengths. The final dataset will be saved to the directory <app/datasets/>

228

References

Abraham, B. & Box, G. E. (1979). Bayesian analysis of some outlier problems in time

series. Biometrika, (pp. 229–236).

Abraham, B. & Chuang, A. (1989). Outlier detection and time series modeling. Techno-

metrics, 31(2), 241–248.

Agarwal, D. (2005). An empirical bayes approach to detect anomalies in dynamic multi-

dimensional arrays. In Data Mining, Fifth IEEE International Conference on (pp. 8–pp).:

IEEE.

Agarwal, D. (2007). Detecting anomalies in cross-classified streams: a bayesian ap-

proach. Knowledge and information systems, 11(1), 29–44.

Aggarwal, C. C. (2013). Outlier Analysis - Hull.PDF. Springer Science & Business Media.

Aggarwal, C. C. & Yu, P. S. (2001). Outlier detection for high dimensional data. In Pro-

ceedings of the 2001 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’01 (pp. 37–46). New York, NY, USA: ACM.

Aggarwal, C. C. & Yu, P. S. (2008). Outlier detection with uncertain data. In Proceedings

of the 2008 SIAM International Conference on Data Mining (pp. 483–493).: SIAM.

Agovic, A., Banerjee, A., Ganguly, A. R., & Protopopescu, V. (2008). Anomaly detec-

tion in transportation corridors using manifold embedding. Knowledge Discovery from

Sensor Data, (pp. 81–105).

Ahmad, S. & Hawkins, J. (2015). Properties of Sparse Distributed Representations and

their Application to Hierarchical Temporal Memory. ArXiv e-prints.

Ahmad, S. & Hawkins, J. (2016). How do neurons operate on sparse distributed rep-

resentations? A mathematical theory of sparsity, neurons and active dendrites. ArXiv

e-prints.

Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly

detection for streaming data. Neurocomputing.

229

REFERENCES

Aitenbichler, E., Kangasharju, J., & Mühlhäuser, M. (2007). MundoCore: A light-weight

infrastructure for pervasive computing. Pervasive and Mobile Computing, 3(4), 332–

361.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor

networks: a survey. Computer networks, 38(4), 393–422.

Alam, M. R., Reaz, M. B. I., & Ali, M. A. M. (2012). A review of smart homes—past,

present, and future. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Ap-

plications and Reviews), 42(6), 1190–1203.

Alemdar, H., Ertan, H., Incel, O. D., & Ersoy, C. (2013). Aras human activity datasets

in multiple homes with multiple residents. In 2013 7th International Conference on

Pervasive Computing Technologies for Healthcare and Workshops (pp. 232–235).: IEEE.

Aleskerov, E., Freisleben, B., & Rao, B. (1997). Cardwatch: A neural network based

database mining system for credit card fraud detection. In Computational Intelligence

for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE 1997 (pp. 220–

226).: IEEE.

Alshammari, N., Alshammari, T., Sedky, M., Champion, J., & Bauer, C. (2017a). Open-

shs: Open smart home simulator. Sensors, 17(5).

Alshammari, N., Alshammari, T., Sedky, M., Champion, J., & Bauer, C. (2017b). open-

shs/openshs: First alpha release. https://doi.org/10.5281/zenodo.274214.

Alshammari, N. O., Mylonas, A., Sedky, M., Champion, J., & Bauer, C. (2015). Exploring

the adoption of physical security controls in smartphones. In International Conference

on Human Aspects of Information Security, Privacy, and Trust (pp. 287–298).: Springer

International Publishing.

Amer, M. & Goldstein, M. (2012). Nearest-neighbor and clustering based anomaly de-

tection algorithms for rapidminer. In Proc. of the 3rd RapidMiner Community Meeting

and Conference (RCOMM 2012) (pp. 1–12).

Anderson, D., Frivold, T., & Valdes, A. (1995). Next-generation intrusion detection

expert system (nides): A summary.

Angiulli, F. & Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces. In

European Conference on Principles of Data Mining and Knowledge Discovery (pp. 15–

27).: Springer.

Anscombe, F. J. (1960). Rejection of outliers. Technometrics, 2(2), 123–146.

230

https://doi.org/10.5281/zenodo.274214

REFERENCES

Antic, S. D., Zhou, W.-L., Moore, A. R., Short, S. M., & Ikonomu, K. D. (2010). The

decade of the dendritic nmda spike. Journal of neuroscience research, 88(14), 2991–

3001.

Ariani, A., Redmond, S. J., Chang, D., & Lovell, N. H. (2013). Simulation of a smart

home environment. In Instrumentation, Communications, Information Technology, and

Biomedical Engineering (ICICI-BME), 2013 3rd International Conference on (pp. 27–

32).: IEEE.

Armac, I. & Retkowitz, D. (2007). Simulation of smart environments. In IEEE Interna-

tional Conference on Pervasive Services (pp. 257–266).: IEEE.

Ashton, K. (2009). That ”internet of things” thing. RFiD Journal, 22, 97–114.

Atallah, M., Szpankowski, W., & Gwadera, R. (2004). Detection of significant sets of

episodes in event sequences. In Data Mining, 2004. ICDM’04. Fourth IEEE International

Conference on (pp. 3–10).: IEEE.

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer

Networks, 54(15), 2787–2805.

Atzori, L., Iera, A., & Morabito, G. (2014). From ”Smart Objects” to ”Social Objects”:

The Next Evolutionary Step of the Internet of Things. Communications Magazine,

IEEE, 52(January), 97–105.

Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The Social Internet of Things

(SIoT) - When social networks meet the Internet of Things: Concept, architecture and

network characterization. Computer Networks, 56(16), 3594–3608.

Augusteijn, M. & Folkert, B. (2002). Neural network classification and novelty detection.

International Journal of Remote Sensing, 23(14), 2891–2902.

Auto-ID Labs (2003). Auto-id labs. https://autoidlabs.org/. (accessed on 15 Febru-

ary 2016).

Automation, R. (2000). Arena simulation software. http://www.arenasimulation.

com/. (accessed on 20 December 2016).

Baker, L. D., Hofmann, T., McCallum, A., & Yang, Y. (1999). A hierarchical probabilistic

model for novelty detection in text. In Proceedings of International Conference on

Machine Learning.

Ballagas, R., Szybalski, A., & Fox, A. (2004). Patch panel: enabling control-flow interop-

erability in ubicomp environments. Proceedings of the Second IEEE Annual Conference

on Pervasive Computing and Communications, 2004., (pp. 241–252).

231

https://autoidlabs.org/
http://www.arenasimulation.com/
http://www.arenasimulation.com/

REFERENCES

Bandyopadhyay, D. & Sen, J. (2011). Internet of Things: Applications and Challenges

in Technology and Standardization. Wireless Personal Communications, 58(1), 49–69.

Barbara, D., Wu, N., & Jajodia, S. (2001). Detecting novel network intrusions using

bayes estimators. In Proceedings of the 2001 SIAM International Conference on Data

Mining (pp. 1–17).: SIAM.

Barnet, V. (1976). The ordering of multivariate data (with discussion). Journal of the

Royal Statistics Society, Series A, 139, 318–354.

Barnett, V. & Lewis, T. (1964). Outliers in statistical data. Chichester: John Wiley, 1995.

584p.

Barton, J. J. & Vijayaraghavan, V. (2002). Ubiwise, a ubiquitous wireless infrastructure

simulation environment. HP Labs.

Beckman, R. J. & Cook, R. D. (1983). Outlier. s. Technometrics, 25(2), 119–149.

Bellman, R. E. (2015). Adaptive control processes: a guided tour. Princeton university

press.

Bianco, A. M., Garcia Ben, M., Martinez, E., & Yohai, V. J. (2001). Outlier detection in

regression models with arima errors using robust estimates. Journal of Forecasting,

20(8), 565–579.

Bishop, C. M. (1994). Novelty detection and neural network validation. IEE Proceedings-

Vision, Image and Signal processing, 141(4), 217–222.

Blender (1995). Blender. https://www.blender.org. (accessed on 06 November

2016).

Bolton, R. J., Hand, D. J., et al. (2001). Unsupervised profiling methods for fraud

detection. Credit Scoring and Credit Control VII, (pp. 235–255).

Bormann, C., Castellani, A., & Shelby, Z. (2012). CoAP: An Application Protocol for

Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2), 62–67.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal mar-

gin classifiers. In Proceedings of the fifth annual workshop on Computational learning

theory (pp. 144–152).: ACM.

Bouchard, K., Ajroud, A., Bouchard, B., & Bouzouane, A. (2010). Simact: a 3d open

source smart home simulator for activity recognition. In Advances in Computer Science

and Information Technology (pp. 524–533). Springer.

232

https://www.blender.org

REFERENCES

Box, G. E. & Tiao, G. C. (1968). A bayesian approach to some outlier problems.

Biometrika, (pp. 119–129).

Branch, J. W., Giannella, C., Szymanski, B., Wolff, R., & Kargupta, H. (2013). In-network

outlier detection in wireless sensor networks. Knowledge and information systems,

34(1), 23–54.

Brause, R., Langsdorf, T., & Hepp, M. (1999). Neural data mining for credit card fraud

detection. In Tools with Artificial Intelligence, 1999. Proceedings. 11th IEEE Interna-

tional Conference on (pp. 103–106).: IEEE.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). Lof: Identifying density-

based local outliers. SIGMOD Rec., 29(2), 93–104.

Briere, D. et al. (2011). Smart homes for dummies. John Wiley & Sons.

Brock, D. (2001). The Electronic Product Code (EPC): A Naming Scheme for Physical

Objects. a note.

Brockett, P. L., Xia, X., & Derrig, R. A. (1998). Using kohonen’s self-organizing feature

map to uncover automobile bodily injury claims fraud. Journal of Risk and Insurance,

(pp. 245–274).

Brooke, J. et al. (1996). Sus-a quick and dirty usability scale. Usability evaluation in

industry, 189(194), 4–7.

Buchmayr, M., Kurschl, W., & Küng, J. (2011). A simulator for generating and visualizing

sensor data for ambient intelligence environments. Procedia Computer Science, 5, 90–

97.

Byers, S. & Raftery, A. E. (1998). Nearest-neighbor clutter removal for estimating

features in spatial point processes. Journal of the American Statistical Association,

93(442), 577–584.

Byrne, F. (2015). Real Machine Intelligence with Clortex and NuPIC. Leanpub.

Cabrera, J. B., Lewis, L., & Mehra, R. K. (2001). Detection and classification of intrusions

and faults using sequences of system calls. Acm sigmod record, 30(4), 25–34.

Campbell, M., Hoane, A. J., & Hsu, F.-h. (2002). Deep blue. Artificial intelligence, 134(1-

2), 57–83.

Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B., Micenková, B., Schubert,

E., Assent, I., & Houle, M. E. (2016). On the evaluation of unsupervised outlier

detection: measures, datasets, and an empirical study. Data Mining and Knowledge

Discovery, 30(4), 891–927.

233

REFERENCES

CASAS (2009). Wsu casas datasets. http://ailab.wsu.edu/casas/datasets/. (ac-

cessed on 12 January 2017).

Chan, P. K., Mahoney, M. V., & Arshad, M. H. (2003). A machine learning approach to

anomaly detection. Department of Computer Sciences, Florida Institute of Technology,

Melbourne.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM

Computing Surveys (CSUR), 41, 1–58.

Chandola, V., Boriah, S., & Kumar, V. (2008). Understanding categorical similarity mea-

sures for outlier detection. Technical report 08–008, University of Minnesota.

Chaqfeh, M. & Mohamed, N. (2012). Challenges in middleware solutions for the internet

of things. In 2012 International Conference on Collaboration Technologies and Systems

(CTS) (pp. 21–26).

Chatzigiannakis, V., Papavassiliou, S., Grammatikou, M., & Maglaris, B. (2006). Hier-

archical anomaly detection in distributed large-scale sensor networks. In Computers

and Communications, 2006. ISCC’06. Proceedings. 11th IEEE Symposium on (pp. 761–

767).: IEEE.

Chaudhary, A., Szalay, A. S., & Moore, A. W. (2002). Very fast outlier detection in large

multidimensional data sets. In DMKD: Citeseer.

Chen, D., Shao, X., Hu, B., & Su, Q. (2005a). Simultaneous wavelength selection and

outlier detection in multivariate regression of near-infrared spectra. Analytical Sci-

ences, 21(2), 161–166.

Chen, G., Branch, J., Pflug, M., Zhu, L., & Szymanski, B. (2005b). Sense: a wireless

sensor network simulator. In Advances in pervasive computing and networking (pp.

249–267). Springer.

Chen, Y.-K. (2012). Challenges and opportunities of internet of things. 17th Asia and

South Pacific Design Automation Conference, (pp. 383–388).

Chklovskii, D. B., Mel, B., & Svoboda, K. (2004). Cortical rewiring and information

storage. Nature, 431(7010), 782–788.

Cichon, J. & Gan, W.-B. (2015). Branch-specific dendritic ca2+ spikes cause persistent

synaptic plasticity. Nature, 520(7546), 180–185.

Collet, Y. (2015). xxhash. http://cyan4973.github.io/xxHash/. (accessed on 05

February 2017).

234

http://ailab.wsu.edu/casas/datasets/
http://cyan4973.github.io/xxHash/

REFERENCES

Cook, D., Schmitter-Edgecombe, M., Crandall, A., Sanders, C., & Thomas, B. (2009).

Collecting and disseminating smart home sensor data in the casas project. In Proceed-

ings of the CHI Workshop on Developing Shared Home Behavior Datasets to Advance HCI

and Ubiquitous Computing Research (pp. 1–7).

Cook, D., Youngblood, M., Heierman, E., Gopalratnam, K., Rao, S., Litvin, A., & Khawaja,

F. (2003a). MavHome: an agent-based smart home. Proceedings of the First IEEE

International Conference on Pervasive Computing and Communications, 2003. (PerCom

2003)., (pp. 521–524).

Cook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). Casas: A smart

home in a box. Computer, 46(7).

Cook, D. J., Youngblood, G. M., Heierman III, E. O., Gopalratnam, K., Rao, S., Litvin, A.,

& Khawaja, F. (2003b). Mavhome: An agent-based smart home. In PerCom, volume 3

(pp. 521–524).

Crook, P. & Hayes, G. (2001). A robot implementation of a biologically inspired method

for novelty detection. In Proceedings of Towards Intelligent Mobile Robots Conference.

Crook, P. A., Marsland, S., Hayes, G., & Nehmzow, U. (2002). A tale of two filters-on-

line novelty detection. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE

International Conference on, volume 4 (pp. 3894–3899).: IEEE.

Da, C., Xueguang, S., Bin, H., & Qingde, S. (2005). Simultaneous wavelength selection

and outlier detection in multivariate regression of near-infrared spectra. Analytical

Sciences, 21(2), 161–166.

Dasgupta, D. & Nino, F. (2000). A comparison of negative and positive selection al-

gorithms in novel pattern detection. In Systems, man, and cybernetics, 2000 IEEE

international conference on, volume 1 (pp. 125–130).: IEEE.

Davy, M. & Godsill, S. (2002). Detection of abrupt spectral changes using support vector

machines an application to audio signal segmentation. In Acoustics, Speech, and Signal

Processing (ICASSP), 2002 IEEE International Conference on, volume 2 (pp. II–1313).:

IEEE.

De Ruyter, B., Aarts, E., Markopoulos, P., & Ijsselsteijn, W. (2005). Ambient intelligence

research in homelab: Engineering the user experience. In Ambient Intelligence (pp.

49–61). Springer.

De Sousa Webber, F. (2015). Semantic Folding Theory And its Application in Semantic

Fingerprinting. ArXiv e-prints.

235

REFERENCES

De Stefano, C., Sansone, C., & Vento, M. (2000). To reject or not to reject: that is the

question-an answer in case of neural classifiers. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 30(1), 84–94.

De Villiers, M. (2005). Three approaches as pillars for interpretive information systems

research: development research, action research and grounded theory. In Proceed-

ings of the 2005 annual research conference of the South African institute of computer

scientists and information technologists on IT research in developing countries (pp. 142–

151).: South African Institute for Computer Scientists and Information Technologists.

Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on software

engineering, SE-13(2), 222–232.

Desforges, M., Jacob, P., & Cooper, J. (1998). Applications of probability density es-

timation to the detection of abnormal conditions in engineering. Proceedings of the

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,

212(8), 687–703.

Devineni, A. (2015). How our brains learn. http://www.brains-explained.com/

how-our-brains-learn. (accessed on 11 October 2016).

Dey, A., Abowd, G., & Salber, D. (2001). A Conceptual Framework and a Toolkit for

Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer

Interaction, 16(2), 97–166.

Diaz, I. & Hollmén, J. (2002). Residual generation and visualization for understanding

novel process conditions. In Neural Networks, 2002. IJCNN’02. Proceedings of the 2002

International Joint Conference on, volume 3 (pp. 2070–2075).: IEEE.

Diehl, C. P. & Hampshire, J. B. (2002). Real-time object classification and novelty de-

tection for collaborative video surveillance. In Neural Networks, 2002. IJCNN’02. Pro-

ceedings of the 2002 International Joint Conference on, volume 3 (pp. 2620–2625).:

IEEE.

Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki - a lightweight and flexible oper-

ating system for tiny networked sensors. In In Proceedings of the First IEEE Workshop

on Embedded Networked Sensors Tampa, Florida, USA.

Edwards, W. K., Newman, M. W., Sedivy, J., Smith, T., & Izadi, S. (2002). Challenge:

Recombinant Computing and the Speakeasy Approach. In MobiCom’02 (pp. 279–286).

Endler, D. (1998). Applying machine learning to solaris audit data. In Proceedings of the

1998 Annual Computer Security Application Conference (pp. 268–279).

236

http://www.brains-explained.com/how-our-brains-learn
http://www.brains-explained.com/how-our-brains-learn

REFERENCES

Ertöz, L., Steinbach, M., & Kumar, V. (2003). Finding topics in collections of documents:

A shared nearest neighbor approach. Clustering and Information Retrieval, 11, 83–103.

Eskin, E. (2000). Anomaly detection over noisy data using learned probability distribu-

tions. In In Proceedings of the International Conference on Machine Learning: Citeseer.

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., & Stolfo, S. (2002). A geometric frame-

work for unsupervised anomaly detection. In Applications of data mining in computer

security (pp. 77–101). Springer.

Eskinand, E. & Stolfo, S. (2001). Modeling system call for intrusion detection using

dynamic window sizes. In Proceedings of DARPA Information Survivability Conference

and Exposition.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Kdd (pp. 226–231).

Evans, D. (2011). The Internet of Things - How the Next Evolution of the Internet is

Changing Everything. CISCO white paper, 1(April), 1–11.

Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature

reviews neuroscience, 9(4), 292–303.

Fan, W., Miller, M., Stolfo, S., Lee, W., & Chan, P. (2004). Using artificial anomalies to

detect unknown and known network intrusions. Knowledge and Information Systems,

6(5), 507–527.

Fawcett, T. & Provost, F. (1999). Activity monitoring: Noticing interesting changes in

behavior. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 53–62).: ACM.

Felleman, D. J. & Van Essen, D. C. (1991). Distributed hierarchical processing in the

primate cerebral cortex. Cerebral cortex (New York, N.Y. : 1991), 1(1), 1–47.

FlexSim Software Products, Inc. (1993). Flexsim simulation software. https://www.

flexsim.com/. (accessed on 19 December 2016).

Floerkemeier, C., Roduner, C., & Lampe, M. (2007). Rfid application development with

the accada middleware platform. IEEE Systems Journal, 1(2), 82–94.

Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., & Russo, W. (2013). An agent-based

middleware for cooperating smart objects. In International Conference on Practical

Applications of Agents and Multi-Agent Systems (pp. 387–398).: Springer.

237

https://www.flexsim.com/
https://www.flexsim.com/

REFERENCES

Fortino, G., Guerrieri, A., & Russo, W. (2012). Agent-oriented smart objects develop-

ment. In Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE 16th

International Conference on (pp. 907–912).: IEEE.

Fox, A. J. (1972). Outliers in time series. Journal of the Royal Statistical Society. Series B

(Methodological), (pp. 350–363).

Fu, Q., Li, P., Chen, C., Qi, L., Lu, Y., & Yu, C. (2011). A configurable context-aware sim-

ulator for smart home systems. In 6th International Conference on Pervasive Computing

and Applications (ICPCA) (pp. 39–44).: IEEE.

Galeano, P., Peña, D., & Tsay, R. S. (2006). Outlier detection in multivariate time series

by projection pursuit. Journal of the American Statistical Association, 101(474), 654–

669.

Gartner (2017). 8.4 billion connected things will be in use in 2017, up 31 percent from

2016. http://www.gartner.com/newsroom/id/3598917. (accessed on 26 February

2017).

George, D. & Hawkins, J. (2009). Towards a mathematical theory of cortical micro-

circuits. PLoS Computational Biology, 5(10).

Global Standards One (2003). Global standards one (gs1). http://www.gs1.org. (ac-

cessed on 15 February 2016).

GNU (1991). General public license, version 2. https://www.gnu.org/licenses/

old-licenses/gpl-2.0.en.html. (accessed on 11 January 2017).

Golding, N. L., Jung, H.-y., Mickus, T., & Spruston, N. (1999). Dendritic calcium spike

initiation and repolarization are controlled by distinct potassium channel subtypes in

ca1 pyramidal neurons. Journal of Neuroscience, 19(20), 8789–8798.

Goldstein, M. (2014). Anomaly Detection in Large Datasets. Phd-thesis, University of

Kaiserslautern, München, Germany.

Goldstein, M. & Dengel, A. (2012). Histogram-based outlier score (hbos): A fast unsu-

pervised anomaly detection algorithm. KI-2012: Poster and Demo Track, (pp. 59–63).

Goldstein, M. & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data. PloS one, 11(4), e0152173.

Goumopoulos, C. & Kameas, A. (2009). Smart Objects as Components of UbiComp

Applications. International Journal of Multimedia and Ubiquitous Engineering, 4(3),

1–20.

238

http://www.gartner.com/newsroom/id/3598917
http://www.gs1.org
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

REFERENCES

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Tech-

nometrics, 11(1), 1–21.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT):

A vision, architectural elements, and future directions. Future Generation Computer

Systems, 29(7), 1645–1660.

Guha, S., Rastogi, R., & Shim, K. (2000). Rock: A robust clustering algorithm for

categorical attributes. Information systems, 25(5), 345–366.

Guinard, D. (2011). A Web of Things Application Architecture - Integrating the Real-World

into the Web. PhD thesis, ETH Zurich.

Guttormsson, S. E., Marks, R., El-Sharkawi, M., & Kerszenbaum, I. (1999). Ellipti-

cal novelty grouping for on-line short-turn detection of excited running rotors. IEEE

Transactions on Energy Conversion, 14(1), 16–22.

Gwadera, R., Atallah, M. J., & Szpankowski, W. (2005). Reliable detection of episodes

in event sequences. Knowledge and Information Systems, 7(4), 415–437.

Hachem, S., Teixeira, T., & Issarny, V. (2011). Ontologies for the Internet of Things.

ACMIFIPUSENIX 12th International Middleware Conference, (pp. 3:1–3:6).

Haller, S., Karnouskos, S., & Schroth, C. (2009). The internet of things in an enterprise

context. In Future Internet-FIS 2008 (pp. 14–28). Springer.

Han, D.-m. & Lim, J.-h. (2010). Smart home energy management system using IEEE

802.15.4 and zigbee.

Hardt, D. (2012). The OAuth 2.0 Authorization Framework. Technical report, RFC Editor.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determi-

nation of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,

4(2), 100–107.

Hautamaki, V., Karkkainen, I., & Franti, P. (2004). Outlier detection using k-nearest

neighbour graph. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th

International Conference on, volume 3 (pp. 430–433).: IEEE.

Hawkins, D. M. (1980). Identification of outliers, volume 11. Springer.

Hawkins, J. (2014). The Science of Anomaly Detection. Numenta, Inc.

Hawkins, J. & Ahmad, S. (2016). Why neurons have thousands of synapses, a theory of

sequence memory in neocortex. Frontiers in Neural Circuits, 10, 23.

239

REFERENCES

Hawkins, J., Ahmad, S., Purdy, S., & Lavin, A. (2016). Biological and machine intelli-

gence (bami). Initial online release 0.4.

Hawkins, J. & Blakeslee, S. (2004). On intelligence. New York, NY: St. Martin’s Press.

Hawkins, S., He, H., Williams, G., & Baxter, R. (2002). Outlier detection using replicator

neural networks. In International Conference on Data Warehousing and Knowledge

Discovery (pp. 170–180).: Springer.

Haykin, S. (2005). Cognitive radio: brain-empowered wireless communications. IEEE

Journal on Selected Areas in Communications, 23.

He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern

Recognition Letters, 24(9), 1641–1650.

He, Z., Xu, X., Huang, J. Z., & Deng, S. (2004). A frequent pattern discovery method

for outlier detection. In International Conference on Web-Age Information Management

(pp. 726–732).: Springer.

Healy, G. N., Clark, B. K., Winkler, E. A., Gardiner, P. A., Brown, W. J., & Matthews, C. E.

(2011). Measurement of adults’ sedentary time in population-based studies. American

journal of preventive medicine, 41(2), 216–227.

Helal, S., Kim, E., & Hossain, S. (2010). Scalable approaches to activity recognition

research. In Proceedings of the 8th International Conference Pervasive Workshop (pp.

450–453).

Helal, S., Lee, J. W., Hossain, S., Kim, E., Hagras, H., & Cook, D. (2011). Persim-

simulator for human activities in pervasive spaces. In 7th International Conference on

Intelligent Environments (IE) (pp. 192–199).: IEEE.

Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). The

gator tech smart house: A programmable pervasive space. Computer, 38(3), 50–60.

Heller, K. A., Svore, K. M., Keromytis, A. D., & Stolfo, S. J. (2003). One class support

vector machines for detecting anomalous windows registry accesses. In Proc. of the

workshop on Data Mining for Computer Security, volume 9.

Helman, P. & Bhangoo, J. (1997). A statistically based system for prioritizing in-

formation exploration under uncertainty. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 27(4), 449–466.

Hickinbotham, S. J. & Austin, J. (2000). Novelty detection in airframe strain data. In

Pattern Recognition, 2000. Proceedings. 15th International Conference on, volume 2

(pp. 536–539).: IEEE.

240

REFERENCES

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8), 1735–1780.

Hodge, V. J. & Austin, J. (2004). A survey of outlier detection methodologies. Artificial

intelligence review, 22(2), 85–126.

Horn, P. S., Feng, L., Li, Y., & Pesce, A. J. (2001). Effect of outliers and nonhealthy

individuals on reference interval estimation. Clinical Chemistry, 47(12), 2137–2145.

Hu, W., Liao, Y., & Vemuri, V. R. (2003). Robust anomaly detection using support vector

machines. In Proceedings of the international conference on machine learning (pp. 282–

289).

Idé, T. & Kashima, H. (2004). Eigenspace-based anomaly detection in computer sys-

tems. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 440–449).: ACM.

Idé, T., Papadimitriou, S., & Vlachos, M. (2007). Computing correlation anomaly scores

using stochastic nearest neighbors. In Data Mining, 2007. ICDM 2007. Seventh IEEE

International Conference on (pp. 523–528).: IEEE.

Intille, S. S., Larson, K., Tapia, E. M., Beaudin, J. S., Kaushik, P., Nawyn, J., & Rock-

inson, R. (2006). Using a live-in laboratory for ubiquitous computing research. In

International Conference on Pervasive Computing (pp. 349–365).: Springer.

Intille, S. S., Rondoni, J., Kukla, C., Ancona, I., & Bao, L. (2003). A context-aware

experience sampling tool. CHI ’03 extended abstracts on Human factors in computer

systems - CHI ’03, (pp. 972).

Issarny, V., Caporuscio, M., & Georgantas, N. (2007). A perspective on the future of

middleware-based software engineering. In 2007 Future of Software Engineering (pp.

244–258).: IEEE Computer Society.

Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., Gerosa,

M. A., & Hamida, A. B. (2011). Service-oriented middleware for the Future Internet:

state of the art and research directions. Journal of Internet Services and Applications,

2(1), 23–45.

Jahromi, Z. F., Rajabzadeh, A., & Manashty, A. R. (2011). A Multi-Purpose Scenario-

based Simulator for Smart House Environments. arXiv preprint arXiv:1105.2902, 9(1),

13–18.

Jain, G., Cook, D. J., & Jakkula, V. (2006). Monitoring Health by Detecting Drifts and

Outliers for a Smart Environment. International Conference On Smart homes and health

Telematics, (pp. 114–121).

241

REFERENCES

Jakkula, V. & Cook, D. (2010). Outlier detection in smart environment structured power

datasets. Proceedings - 2010 6th International Conference on Intelligent Environments,

IE 2010, (pp. 29–33).

Jakkula, V. & Cook, D. J. (2008). Anomaly detection using temporal data mining in a

smart home environment. Methods of information in medicine, 47(01), 70–75.

Jakkula, V. R. & Cook, D. J. (2011). Detecting anomalous sensor events in smart home

data for enhancing the living experience. Artificial intelligence and smarter living,

11(201), 1.

Janakiram, D., Reddy, V., & Kumar, A. P. (2006). Outlier detection in wireless sensor

networks using bayesian belief networks. In Communication System Software and

Middleware, 2006. Comsware 2006. First International Conference on (pp. 1–6).: IEEE.

Jeff Hawkins (2014). Principles of hierarchical temporal memory - foun-

dations of machine intelligence. https://www.slideshare.net/numenta/

2014-10-17-numenta-workshop. (accessed on 17 March 2017).

Jiang, L., Liu, D.-Y., & Yang, B. (2004). Smart home research. In Proceedings of 2004

International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826),

volume 2 (pp. 659–663 vol.2).

Jiang, M.-F., Tseng, S.-S., & Su, C.-M. (2001). Two-phase clustering process for outliers

detection. Pattern recognition letters, 22(6), 691–700.

Jin, W., Tung, A., Han, J., & Wang, W. (2006). Ranking outliers using symmetric neigh-

borhood relationship. Advances in Knowledge Discovery and Data Mining, (pp. 577–

593).

JME (2003). Java monkey engine. http://www.jmonkeyengine.com. (accessed on 26

November 2016).

Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.

Jouve, W., Bruneau, J., & Consel, C. (2009). Diasim: A parameterized simulator for

pervasive computing applications. In 2009 IEEE International Conference on Pervasive

Computing and Communications (pp. 1–3).

Kang, W., Shin, D., & Shin, D. (2010). Detecting and predicting of abnormal behav-

ior using hierarchical Markov model in smart home network. Industrial Engineering

and Engineering Management (IE&EM), 2010 IEEE 17Th International Conference, (pp.

410–414).

242

https://www.slideshare.net/numenta/2014-10-17-numenta-workshop
https://www.slideshare.net/numenta/2014-10-17-numenta-workshop
http://www.jmonkeyengine.com

REFERENCES

Karakovskiy, S. & Togelius, J. (2012). The Mario Ai benchmark and competitions. IEEE

Transactions on Computational Intelligence and AI in Games, 4, 55–67.

Katz, B. F., Felinto, D. Q., Touraine, D., Poirier-Quinot, D., & Bourdot, P. (2015).

Blendervr: Open-source framework for interactive and immersive vr. In Virtual Re-

ality (VR), 2015 IEEE (pp. 203–204).: IEEE.

Kawsar, F. (2009). A Document-Based Framework for User Centric Smart Object Systems.

PhD thesis, Waseda University.

Kawsar, F. & Nakajima, T. (2009). A Document Centric Framework for Build-

ing Distributed Smart Object Systems. In 2009 IEEE International Symposium

on Object/Component/Service-Oriented Real-Time Distributed Computing (pp. 71–79).

Tokyo: IEEE.

Kendall, K. (1999). A database of computer attacks for the evaluation of intrusion detection

systems. Technical report, DTIC Document.

Kim, I., Park, H., Noh, B., Lee, Y., Lee, S., & Lee, H. (2006). Design and implementation

of context-awareness simulation toolkit for context learning. In IEEE International

Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), vol-

ume 2 (pp. 96–103).: IEEE.

King, S., King, D., Astley, K., Tarassenko, L., Hayton, P., & Utete, S. (2002). The use

of novelty detection techniques for monitoring high-integrity plant. In Control Ap-

plications, 2002. Proceedings of the 2002 International Conference on, volume 1 (pp.

221–226).: IEEE.

Knorr, E. M. & Ng, R. T. (1997). A unified approach for mining outliers. In Proceedings

of the 1997 conference of the Centre for Advanced Studies on Collaborative research

(pp.1̃1).: IBM Press.

Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: algorithms and

applications. The VLDB JournalThe International Journal on Very Large Data Bases,

8(3-4), 237–253.

Kohonen, T., Schroeder, M., Huang, T., & Maps, S.-O. (2001). Springer-verlag new york.

Inc., Secaucus, NJ, 43, 2.

Kormányos, B. & Pataki, B. (2013). Multilevel simulation of daily activities: Why and

how? In 2013 IEEE International Conference on Computational Intelligence and Virtual

Environments for Measurement Systems and Applications (CIVEMSA) (pp. 1–6).: IEEE.

Kortuem, G., Kawsar, F., Fitton, D., & Sundramoorthy, V. (2010). Smart objects as

building blocks for the Internet of things. IEEE Internet Computing, 14(1), 44–51.

243

REFERENCES

Kou, Y., Lu, C.-T., & Chen, D. (2006). Spatial weighted outlier detection. In Proceedings

of the 2006 SIAM international conference on data mining (pp. 614–618).: SIAM.

Kranz, M., Linner, T., Ellmann, B., Bittner, A., & Roalter, L. (2010a). Robotic service

cores for ambient assisted living. In 2010 4th International Conference on Pervasive

Computing Technologies for Healthcare (PervasiveHealth) (pp. 1–8). IEEE.

Kranz, M., Roalter, L., & Michahelles, F. (2010b). Things that twitter: social networks

and the internet of things. In What can the Internet of Things do for the Citizen (CIoT)

Workshop at The Eighth International Conference on Pervasive Computing (Pervasive

2010) (pp. 1–10).

Kranz, M., Schmidt, A., Rusu, R., Maldonado, A., Beetz, M., Hornler, B., & Rigoll, G.

(2007). Sensing Technologies and the Player-Middleware for Context-Awareness in

Kitchen Environments. In Fourth International Conference on Networked Sensing Sys-

tems (pp. 179–186).

Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009). Loop: local outlier prob-

abilities. In Proceedings of the 18th ACM conference on Information and knowledge

management (pp. 1649–1652).: ACM.

Kruegel, C. & Vigna, G. (2003). Anomaly detection of web-based attacks. In Proceedings

of the 10th ACM conference on Computer and communications security (pp. 251–261).:

ACM.

Krügel, C., Toth, T., & Kirda, E. (2002). Service specific anomaly detection for network

intrusion detection. In Proceedings of the 2002 ACM symposium on Applied computing

(pp. 201–208).: ACM.

Krzyska, C. (2006). Smart House Simulation Tool. PhD thesis, Technical University of

Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark.

Kushalnagar, N., Montenegro, G., & Schumacher, C. (2007). IPv6 over Low-Power Wire-

less Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem State-

ment, and Goals. RFC4919, 10, 1–13.

Lamme, V. A., Super, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback

processing in the visual cortex. Current opinion in neurobiology, 8(4), 529–535.

Lampesberger, H. (2016). Technologies for web and cloud service interaction: a survey.

Service Oriented Computing and Applications, 10(2), 71–110.

Larkum, M. (2013). A cellular mechanism for cortical associations: an organizing prin-

ciple for the cerebral cortex. Trends in neurosciences, 36(3), 141–151.

244

REFERENCES

Larkum, M. E. & Nevian, T. (2008). Synaptic clustering by dendritic signalling mecha-

nisms. Current opinion in neurobiology, 18(3), 321–331.

Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling

inputs arriving at different cortical layers. Nature, 398(6725), 338–341.

Lauer, M. (2001). A mixture approach to novelty detection using training data with

outliers. In European Conference on Machine Learning (pp. 300–311).: Springer.

Laurikkala, J., Juhola, M., Kentala, E., Lavrac, N., Miksch, S., & Kavsek, B. (2000).

Informal identification of outliers in medical data. In Fifth International Workshop on

Intelligent Data Analysis in Medicine and Pharmacology, volume 1 (pp. 20–24).

Lavin, A. & Ahmad, S. (2015). Evaluating Real-time Anomaly Detection Algorithms -

the Numenta Anomaly Benchmark. 14th International Conference on Machine Learning

and Applications (IEEE ICMLA’15).

Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., & Srivastava, J. (2003). A comparative

study of anomaly detection schemes in network intrusion detection. In Proceedings of

the 2003 SIAM International Conference on Data Mining (pp. 25–36).: SIAM.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Lee, J. W., Cho, S., Liu, S., Cho, K., & Helal, S. (2015). Persim 3D : Context-Driven

Simulation and Modeling of Human Activities in Smart Spaces. IEEE Transactions on

Automation Science and Engineering, 12(4), 1243–1256.

Lee, J. W., Helal, A., Sung, Y., & Cho, K. (2013). A context-driven approach to scal-

able human activity simulation. In Proceedings of the 1st ACM SIGSIM Conference on

Principles of Advanced Discrete Simulation (pp. 373–378).: ACM.

Lei, Z., Yue, S., Yu, C., & Yuanchun, S. (2010). Shsim: An osgi-based smart home

simulator. In 3rd IEEE International Conference on Ubi-media Computing (U-Media)

(pp. 87–90).: IEEE.

Leiba, B. (2012). OAuth Web Authorization Protocol.

Lertlakkhanakul, J., Choi, J. W., & Kim, M. Y. (2008). Building data model and sim-

ulation platform for spatial interaction management in smart home. Automation in

Construction, 17(8), 948–957.

Lewis, D. D. (1997). Reuters-21578 text categorization test collection, distribution 1.0.

http://www. research. att. com/˜ lewis/reuters21578. html.

245

REFERENCES

Li, H., Chen, Y., & He, Z. (2012). The Survey of RFID Attacks and Defenses. In 2012 8th

International Conference on Wireless Communications, Networking and Mobile Comput-

ing (WiCOM) (pp. 1–4).: IEEE.

Lim, B. & Dey, A. (2010). Toolkit to support intelligibility in context-aware applications.

In the 12th ACM international conference on Ubiquitous computing - Ubicomp ’10 (pp.

13–22). New York, New York, USA: ACM Press.

Lin, C.-H., Ho, P.-H., & Lin, H.-C. (2014). Framework for NFC-Based Intelligent Agents:

A Context-Awareness Enabler for Social Internet of Things. International Journal of

Distributed Sensor Networks, 2014, 1–16.

Lin, J., Keogh, E., Fu, A., & Van Herle, H. (2005). Approximations to magic: Finding

unusual medical time series. In Computer-Based Medical Systems, 2005. Proceedings.

18th IEEE Symposium on (pp. 329–334).: IEEE.

Lindner, W. L. W. & Meier, J. M. J. (2006). Securing the Borealis Data Stream En-

gine. 2006 10th International Database Engineering and Applications Symposium

(IDEAS’06).

Liu, H. L. H., Bolic, M., Nayak, A., & Stojmenovic, I. (2008). Taxonomy and Challenges

of the Integration of RFID and Wireless Sensor Networks. IEEE Network, 22.

LLC, S. (2006). Simio simulation software. http://www.simio.com/. (accessed on 19

December 2016).

Lu Tan & Wang, N. (2010). Future internet: The Internet of Things. 2010 3rd Interna-

tional Conference on Advanced Computer Theory and Engineering(ICACTE), 5, V5–376–

V5–380.

Lundström, J., Synnott, J., Järpe, E., & Nugent, C. D. (2015). Smart home simulation

using avatar control and probabilistic sampling. In Pervasive Computing and Commu-

nication Workshops (PerCom Workshops), 2015 IEEE International Conference on (pp.

336–341).: IEEE.

Lutolf, R. (1992). Smart home concept and the integration of energy meters into a home

based system. In Metering Apparatus and Tariffs for Electricity Supply, 1992., Seventh

International Conference on (pp. 277–278).: IET.

Ma, J. & Perkins, S. (2003a). Online novelty detection on temporal sequences. In

Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery

and data mining (pp. 613–618).: ACM.

246

http://www.simio.com/

REFERENCES

Ma, J. & Perkins, S. (2003b). Time-series novelty detection using one-class support

vector machines. In Neural Networks, 2003. Proceedings of the International Joint

Conference on, volume 3 (pp. 1741–1745).: IEEE.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural network

models. Neural networks, 10(9), 1659–1671.

Mahoney, M. V. & Chan, P. K. (2002). Learning nonstationary models of normal network

traffic for detecting novel attacks. In Proceedings of the eighth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining (pp. 376–385).: ACM.

Mahoney, M. V. & Chan, P. K. (2003). Learning rules for anomaly detection of hostile

network traffic. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference

on (pp. 601–604).: IEEE.

Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of Wireless Sensor Networks

towards the Internet of Things : a Survey. Software, Telecommunications and Computer

Networks (SoftCOM), (pp. 2–7).

Major, G., Larkum, M. E., & Schiller, J. (2013). Active properties of neocortical pyramidal

neuron dendrites. Annual review of neuroscience, 36, 1–24.

Major, G., Polsky, A., Denk, W., Schiller, J., & Tank, D. W. (2008). Spatiotemporally

graded nmda spike/plateau potentials in basal dendrites of neocortical pyramidal neu-

rons. Journal of neurophysiology, 99(5), 2584–2601.

Manevitz, L. M. & Yousef, M. (2001). One-class svms for document classification. Journal

of Machine Learning Research, 2(Dec), 139–154.

Manson, G. (2002). Identifying damage sensitive, environment insensitive features for

damage detection. In Proceedings of the third international conference on identification

in engineering systems (pp. 187–197).

Manson, G., Pierce, G., & Worden, K. (2001). On the long-term stability of normal

condition for damage detection in a composite panel. In Key Engineering Materials,

volume 204 (pp. 359–370).: Trans Tech Publ.

Manson, G., Pierce, S. G., Worden, K., Monnier, T., Guy, P., & Atherton, K. (2000). Long-

term stability of normal condition data for novelty detection. In SPIE’s 7th Annual

International Symposium on Smart Structures and Materials (pp. 323–334).: Interna-

tional Society for Optics and Photonics.

MANTENUTO, G. (2013). Simulation of ambient sensors in a robotic home for elderly

people.

247

REFERENCES

Marceau, C. (2001). Characterizing the behavior of a program using multiple-length n-

grams. In Proceedings of the 2000 workshop on New security paradigms (pp. 101–110).:

ACM.

Martin, K. A. & Schröder, S. (2013). Functional heterogeneity in neighboring neurons

of cat primary visual cortex in response to both artificial and natural stimuli. Journal

of Neuroscience, 33(17), 7325–7344.

May, T. (2011). Social research. McGraw-Hill Education (UK).

McCarthy, J. (1998). What is Artificial Intelligence? a note.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4), 115–133.

McDonald, H., Nugent, C., Hallberg, J., Finlay, D., Moore, G., & Synnes, K. (2013).

The homeml suite: shareable datasets for smart home environments. Health and

Technology, 3(2), 177–193.

McGlinn, K., O’Neill, E., Gibney, A., O’Sullivan, D., & Lewis, D. (2010). Simcon: A

tool to support rapid evaluation of smart building application design using context

simulation and virtual reality. J. UCS, 16(15), 1992–2018.

Medaglia, C. M. & Serbanati, A. (2010). An overview of privacy and security issues

in the internet of things. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The

Internet of Things (pp. 389–395). New York, NY: Springer.

Mendez-Vazquez, A., Helal, A., & Cook, D. (2009). Simulating events to generate syn-

thetic data for pervasive spaces. In Workshop on Developing Shared Home Behavior

Datasets to Advance HCI and Ubiquitous Computing Research: Citeseer.

Messer, a., Kunjithapatham, A., Sheshagiri, M., & Kumar, P. (2006). InterPlay: A Middle-

ware for Seamless Device Integration and Task Orchestration in a Networked Home.

Fourth Annual IEEE International Conference on Pervasive Computing and Communica-

tions (PERCOM’06), 2(1), 296–307.

Miche, M., Schreiber, D., & Hartmann, M. (2009). Core Services for Smart Products.

Architecture, (pp. 1–4).

Miller, Z., Dickinson, B., Deitrick, W., Hu, W., & Wang, A. H. (2014). Twitter spammer

detection using data stream clustering. Information Sciences, 260, 64–73.

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things:

Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516.

248

REFERENCES

Mohamed, N. & Al-Jaroodi, J. (2011). A survey on service-oriented middleware for

wireless sensor networks. Service Oriented Computing and Applications, 5(2), 71–85.

Molisch, A. F., Balakrishnan, K., Chong, C.-C., Emami, S., Fort, A., Karedal, J., Kunisch,

J., Schantz, H., Schuster, U., & Siwiak, K. (2004). Ieee 802.15. 4a channel model-final

report. IEEE P802, 15(04), 0662.

Molla, M. & Ahamed, S. (2006). A survey of middleware for sensor network and chal-

lenges. In 2006 International Conference on Parallel Processing Workshops (ICPPW’06)

(pp. 223–228).: IEEE.

Munguia Tapia, E. (2003). Activity recognition in the home setting using simple and

ubiquitous sensors. PhD thesis, Massachusetts Institute of Technology.

Murray, A. F. (2001). Novelty detection using products of simple expertsa potential

architecture for embedded systems. Neural Networks, 14(9), 1257–1264.

Mylonas, A., Kastania, A., & Gritzalis, D. (2013). Delegate the smartphone user ? Secu-

rity awareness in smartphone platforms. Computers and Security.

Mylonas, A., Theoharidou, M., & Gritzalis, D. (2014). Assessing privacy risks in android:

A user-centric approach. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8418 LNCS, 21–37.

Newman, I. & Benz, C. R. (1998). Qualitative-quantitative research methodology: Explor-

ing the interactive continuum. SIU Press.

Nishikawa, H., Yamamoto, S., Tamai, M., Nishigaki, K., Kitani, T., Shibata, N., Yasumoto,

K., & Ito, M. (2006). Ubireal: realistic smartspace simulator for systematic testing. In

International Conference on Ubiquitous Computing (pp. 459–476).: Springer.

Noh, S.-K., Kim, Y.-M., Kim, D., & Noh, B.-N. (2006). Network Anomaly Detection Based

on Clustering of Sequence Patterns. Computational Science and Its Applications - ICCSA

2006, (pp. 349–358).

Noury, N., Poujaud, J., Fleury, A., Nocua, R., Haddidi, T., & Rumeau, P. (2011). Smart

sweet home a pervasive environment for sensing our daily activity? In Activity recog-

nition in pervasive intelligent environments (pp. 187–208). Springer.

Novak, M., Binas, M., & Jakab, F. (2012). Unobtrusive anomaly detection in presence

of elderly in a smart-home environment. Proceedings of 9th International Conference,

ELEKTRO 2012, (pp. 341–344).

Nugent, C., Mulvenna, M., Hong, X., & Devlin, S. (2009). Experiences in the develop-

ment of a smart lab. International Journal of Biomedical Engineering and Technology,

2(4), 319–331.

249

REFERENCES

O’Brien, J., Rodden, T., & Hughes, J. (1999). At home with the technology: an ethno-

graphic study of a set-top-box trial. ACM Transactions on Computer Human Interaction,

6(3), 282–308.

Olsen Jr, D. R., Nielsen, S. T., & Parslow, D. (2001). Join and capture: a model for no-

madic interaction. In Proceedings of the 14th annual ACM symposium on User interface

software and technology (pp. 131–140).: ACM.

Olshausen, B. A. & Field, D. J. (2004). Sparse coding of sensory inputs. Current opinion

in neurobiology, 14(4), 481–487.

O’Neill, E., Klepal, M., Lewis, D., O’Donnell, T., O’Sullivan, D., & Pesch, D. (2005). A

testbed for evaluating human interaction with ubiquitous computing environments.

In First International Conference on Testbeds and Research Infrastructures for the Devel-

opment of Networks and Communities (pp. 60–69).: IEEE.

OpenGL (1992). Opengl. https://www.opengl.org. (accessed on 05 November 2016).

Orr, R. J. & Abowd, G. D. (2000). The Smart Floor : A Mechanism for Natural User

Identification and Tracking. Conference on Human Factors in Computing Systems,, (pp.

275–276).

Otey, M., Parthasarathy, S., Ghoting, A., Li, G., Narravula, S., & Panda, D. (2003). To-

wards nic-based intrusion detection. In Proceedings of the ninth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining (pp. 723–728).: ACM.

Otey, M. E., Ghoting, A., & Parthasarathy, S. (2006). Fast distributed outlier detection in

mixed-attribute data sets. Data mining and knowledge discovery, 12(2-3), 203–228.

Palshikar, G. K. (2005). Distance-based outliers in sequences. In International Conference

on Distributed Computing and Internet Technology (pp. 547–552).: Springer.

Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos, C. (2003). Loci: Fast outlier

detection using the local correlation integral. In Data Engineering, 2003. Proceedings.

19th International Conference on (pp. 315–326).: IEEE.

Park, B., Min, H., Bang, G., & Ko, I. (2015). The User Activity Reasoning Model in a

Virtual Living Space Simulator. International Journal of Software Engineering and Its

Applications, 9(6), 53–62.

Park, J., Moon, M., Hwang, S., & Yeom, K. (2007). CASS: A context-aware simulation

system for smart home. In 5th ACIS International Conference on Software Engineering

Research, Management & Applications (SERA) (pp. 461–467).: IEEE.

250

https://www.opengl.org

REFERENCES

Parzen, E. (1962). On estimation of a probability density function and mode. The annals

of mathematical statistics, 33(3), 1065–1076.

Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context Aware

Computing for The Internet of Things: A Survey. IEEE Communications Surveys &

Tutorials, 16(1), 414–454.

Petreanu, L., Mao, T., Sternson, S. M., & Svoboda, K. (2009). The subcellular organiza-

tion of neocortical excitatory connections. Nature, 457(7233), 1142–1145.

Phua, C., Alahakoon, D., & Lee, V. (2004). Minority report in fraud detection: classifi-

cation of skewed data. Acm sigkdd explorations newsletter, 6(1), 50–59.

Pires, A. & Santos-Pereira, C. (2005). Using clustering and robust estimators to detect

outliers in multivariate data. In Proceedings of the International Conference on Robust

Statistics.

PlaceLab (2005). Placelab datasets. http://web.mit.edu/cron/group/house n/data/

PlaceLab/PlaceLab.htm. (accessed on 05 February 2017).

Poirazi, P., Brannon, T., & Mel, B. W. (2003). Pyramidal neuron as two-layer neural

network. Neuron, 37(6), 989–999.

Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection

for data streams. In Computational Intelligence and Data Mining, 2007. CIDM 2007.

IEEE Symposium on (pp. 504–515).: IEEE.

Poland, M. P., Nugent, C. D., Wang, H., & Chen, L. (2009). Development of a smart

home simulator for use as a heuristic tool for management of sensor distribution.

Technology and Health Care, 17(3), 171–182.

Polsky, A., Mel, B. W., & Schiller, J. (2004). Computational subunits in thin dendrites of

pyramidal cells. Nature neuroscience, 7(6), 621–627.

Portnoy, L., Eskin, E., & Stolfo, S. (2001). Intrusion detection with unlabeled data using

clustering. In In Proceedings of ACM CSS Workshop on Data Mining Applied to Security

(DMSA-2001: Citeseer.

Preuveneers, D. & Berbers, Y. (2008). Internet of things: A context-awareness perspec-

tive. In The Internet of Things: From RFID to the Next-Generation Pervasive Networked

Systems (pp. 287–308). Auerbach Publications.

Purdy, S. (2016). Encoding data for HTM systems. CoRR, abs/1602.05925.

251

http://web.mit.edu/cron/group/house_n/data/PlaceLab/PlaceLab.htm
http://web.mit.edu/cron/group/house_n/data/PlaceLab/PlaceLab.htm

REFERENCES

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,

& Ng, A. (2009). ROS: an open-source Robot Operating System. In ICRA Workshop

on Open Source Software, volume 32 (pp. 151–170).

Rabiner, L. & Juang, B. (1986). An introduction to hidden markov models. ieee assp

magazine, 3(1), 4–16.

Rah, J.-C., Bas, E., Colonell, J., Mishchenko, Y., Karsh, B., Fetter, R. D., Myers, E. W.,

Chklovskii, D. B., Svoboda, K., Harris, T. D., et al. (2013). Thalamocortical input onto

layer 5 pyramidal neurons measured using quantitative large-scale array tomography.

Frontiers in neural circuits, 7, 177.

Ramadas, M., Ostermann, S., & Tjaden, B. (2003). Detecting anomalous network traffic

with self-organizing maps. In International Workshop on Recent Advances in Intrusion

Detection (pp. 36–54).: Springer.

Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers

from large data sets. In ACM Sigmod Record, volume 29 (pp. 427–438).: ACM.

Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for

internet of things: A survey. IEEE Internet of Things Journal, 3(1), 70–95.

Rivera, J. & Meulen, R. (2014). Sales of Smartphones Grew 20 Percent in Third Quarter

of 2014.

Roalter, L., Kranz, M., & Möller, A. (2010). A middleware for intelligent environments

and the internet of things. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6406

LNCS (pp. 267–281).

Roberts, S. & Tarassenko, L. (1994). A probabilistic resource allocating network for

novelty detection. Neural Computation, 6(2), 270–284.

Roberts, S. J. (2000). Extreme value statistics for novelty detection in biomedical data

processing. IEE Proceedings-Science, Measurement and Technology, 147(6), 363–367.

Rodden, T. & Benford, S. (2003). The evolution of buildings and implications for the

design of ubiquitous domestic environments. In Proceedings of the SIGCHI conference

on Human factors in computing systems (pp. 9–16).: ACM.

Rodner, T. & Litz, L. (2013). Data-driven generation of rule-based behavior models for

an ambient assisted living system. In IEEE Third International Conference on Consumer

Electronics (pp. 35–38).: IEEE.

252

REFERENCES

Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., & Nahrstedt, K.

(2002). A middleware infrastructure for active spaces.

Roman, R., Zhou, J., & Lopez, J. (2013). On the features and challenges of security and

privacy in distributed internet of things. Computer Networks, 57(10), 2266–2279.

Roth, V. (2006). Kernel fisher discriminants for outlier detection. Neural computation,

18(4), 942–960.

Rousseeuw, P. J. & Leroy, A. M. (2005). Robust regression and outlier detection, volume

589. John wiley & sons.

Roy, N., Roy, A., & Das, S. K. (2006). Context-Aware Resource Management in Multi-

Inhabitant Smart Homes : A Nash H -Learning based Approach. Proceedings - Fourth

Annual IEEE International Conference on Pervasive Computing and Communications,

PerCom 2006, 2006, 148–158.

Russell, S. & Norvig, P. (2009). Artificial Intelligence: A Modern Approach, 3rd edition.

Prentice Hall.

Sajda, P., Spence, C., & Parra, L. (2003). A multi-scale probabilistic network model

for detection, synthesis and compression in mammographic image analysis. Medical

image analysis, 7(2), 187–204.

Salvador, S., Chan, P., & Brodie, J. (2004). Learning states and rules for time series

anomaly detection. In FLAIRS Conference (pp. 306–311).

Sarawagi, S., Agrawal, R., & Megiddo, N. (1998). Discovery-driven exploration of olap

data cubes. In International Conference on Extending Database Technology (pp. 168–

182).: Springer.

Satpathy, L. (2006). Smart Housing: Technology to Aid Aging in Place: New Opportunities

and Challenges. Mississippi State University.

Saunders, M. N. (2011). Research methods for business students, 5/e. Pearson Education

India.

Saxena, N., Roy, A., & Shin, J. (2007). Chase: Context-aware heterogenous adaptive

smart environments using optimal tracking for residents comfort. In International

Conference on Ubiquitous Intelligence and Computing (pp. 133–142).: Springer.

Schilit, B. & Theimer, M. (1994). Disseminating active map information to mobile hosts.

IEEE Network, 8(5), 22–32.

Schiller, J., Major, G., Koester, H. J., & Schiller, Y. (2000). Nmda spikes in basal dendrites

of cortical pyramidal neurons. Nature, 404(6775), 285–289.

253

REFERENCES

Schiller, J. & Schiller, Y. (2001). Nmda receptor-mediated dendritic spikes and coinci-

dent signal amplification. Current opinion in neurobiology, 11(3), 343–348.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001).

Estimating the support of a high-dimensional distribution. Neural computation, 13(7),

1443–1471.

Searle, J. R. (1980). Minds, Brains, and Programs. Behavioral and Brain Sciences, 3,

1–19.

Sebyala, A. A., Olukemi, T., Sacks, L., & Sacks, D. L. (2002). Active platform security

through intrusion detection using naive bayesian network for anomaly detection. In

London Communications Symposium: Citeseer.

Shekhar, S., Lu, C.-T., & Zhang, P. (2002). Detecting graph-based spatial outliers. Intel-

ligent Data Analysis, 6(5), 451–468.

Shewhart, W. A. (1931). Economic control of quality of manufactured product. ASQ

Quality Press.

Shin, J. H., Lee, B., & Park, K. S. (2011). Detection of abnormal living patterns for elderly

living alone using support vector data description. IEEE transactions on information

technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology

Society, 15(3), 438–448.

Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., & Chang, L. (2003). A novel anomaly detec-

tion scheme based on principal component classifier. Technical report, DTIC Document.

Singh, S. & Markou, M. (2004). An approach to novelty detection applied to the classifi-

cation of image regions. IEEE Transactions on Knowledge and Data Engineering, 16(4),

396–407.

Skubic, M., Alexander, G., Popescu, M., Rantz, M., & Keller, J. (2009). A smart home

application to eldercare: Current status and lessons learned. Technology and Health

Care, 17(3), 183–201.

Smith, R., Bivens, A., Embrechts, M., Palagiri, C., & Szymanski, B. (2002). Clustering ap-

proaches for anomaly based intrusion detection. Proceedings of intelligent engineering

systems through artificial neural networks, (pp. 579–584).

Solberg, H. E. & Lahti, A. (2005). Detection of outliers in reference distributions: per-

formance of horns algorithm. Clinical chemistry, 51(12), 2326–2332.

Soma Bandyopadhyay, Sengupta, M., Maiti, S., & Dutta, S. (2011). Role Of Middle-

ware For Internet Of Things: A Study. International Journal of Computer Science &

Engineering Survey, 2(3), 94–105.

254

REFERENCES

Song, Q., Hu, W., & Xie, W. (2002). Robust support vector machine with bullet hole

image classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Ap-

plications and Reviews), 32(4), 440–448.

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration.

Nature Reviews Neuroscience, 9(3), 206–221.

Srivastava, A. N. & Zane-Ulman, B. (2005). Discovering recurring anomalies in text

reports regarding complex space systems. In Aerospace conference, 2005 IEEE (pp.

3853–3862).: IEEE.

Srivastava, L. (2006). Pervasive, ambient, ubiquitous: the magic of radio. In European

Commission Conference From RFID to the Internet of Things, Bruxelles, Belgium.

Stahl, C. & Schwartz, T. (2010). Modeling and simulating assistive environments in

3-d with the yamamoto toolkit. In International Conference on Indoor Positioning and

Indoor Navigation (IPIN) (pp. 1–6).: IEEE.

Stefansky, W. (1972). Rejecting outliers in factorial designs. Technometrics, 14(2), 469–

479.

Stuart, G. J. & Häusser, M. (2001). Dendritic coincidence detection of epsps and action

potentials. Nature neuroscience, 4(1), 63–71.

Sun, J., Xie, Y., Zhang, H., & Faloutsos, C. (2007). Less is more: Compact matrix repre-

sentation of large sparse graphs. In Proceedings of 7th SIAM International Conference

on Data Mining.

Sun, P. & Chawla, S. (2004). On local spatial outliers. In Data Mining, 2004. ICDM’04.

Fourth IEEE International Conference on (pp. 209–216).: IEEE.

Sung, Y., Helal, A., Lee, J. W., & Cho, K. (2013). Bayesian-based Scenario Generation

Method for Human Activities. ACM SIGSIM conference on Principles of advanced discrete

simulation (SIGSIM-PADS), (pp. 147–157).

Surace, C., Worden, K., et al. (1998). A novelty detection method to diagnose damage

in structures: an application to an offshore platform. In The Eighth International

Offshore and Polar Engineering Conference: International Society of Offshore and Polar

Engineers.

Suzuki, E., Watanabe, T., Yokoi, H., & Takabayashi, K. (2003). Detecting interesting

exceptions from medical test data with visual summarization. In Data Mining, 2003.

ICDM 2003. Third IEEE International Conference on (pp. 315–322).: IEEE.

255

REFERENCES

Synnott, J., Chen, L., Nugent, C., & Moore, G. (2014). The creation of simulated activity

datasets using a graphical intelligent environment simulation tool. In Engineering in

Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of

the IEEE (pp. 4143–4146).: IEEE.

Synnott, J., Nugent, C., & Jeffers, P. (2015). Simulation of smart home activity datasets.

Sensors, 15(6), 14162.

Synnott, J., Nugent, C., Zhang, S., Calzada, A., Cleland, I., Espinilla, M., Quero, J. M.,

& Lundstrom, J. (2016). Environment simulation for the promotion of the open data

initiative. In 2016 IEEE International Conference on Smart Computing (SMARTCOMP)

(pp. 1–6).

Tan, L. & Wang, N. (2010). Future internet: The Internet of Things. In 2010 3rd Inter-

national Conference on Advanced Computer Theory and Engineering(ICACTE), volume 5

(pp. 376–380). Chengdu.

Tan, P.-N. et al. (2006). Introduction to data mining. Pearson Education India.

Tandon, G. & Chan, P. K. (2007). Weighting versus pruning in rule validation for detect-

ing network and host anomalies. In Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 697–706).: ACM.

Tang, J., Chen, Z., Fu, A. W.-C., & Cheung, D. W. (2002). Enhancing effectiveness of

outlier detections for low density patterns. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining (pp. 535–548).: Springer.

Tapia, E. M., Intille, S. S., & Larson, K. (2004). Activity recognition in the home using

simple and ubiquitous sensors. In International Conference on Pervasive Computing

(pp. 158–175).: Springer.

Tarassenko, L., Hayton, P., Cerneaz, N., & Brady, M. (1995). Novelty detection for the

identification of masses in mammograms. In 1995 Fourth International Conference on

Artificial Neural Networks (pp. 442–447).: IET.

Taylor, O. & Addison, D. (2000). Novelty detection using neural network technology. In

COMADEM 2000: 13 th International Congress on Condition Monitoring and Diagnostic

Engineering Management (pp. 731–743).

Thoma, M. (2014). https://martin-thoma.com/twiddle/.

Thompson, B. B., Marks, R. J., Choi, J. J., El-Sharkawi, M. A., Huang, M.-Y., & Bunje,

C. (2002). Implicit learning in autoencoder novelty assessment. In Neural Networks,

2002. IJCNN’02. Proceedings of the 2002 International Joint Conference on, volume 3

(pp. 2878–2883).: IEEE.

256

https://martin-thoma.com/twiddle/

REFERENCES

Trifa, M. V. (2011). Building Blocks for a Participatory Web of Things: Devices, Infrastruc-

tures, and Programming Frameworks. PhD thesis, ETH Zurich.

Tsay, R. S., Peña, D., & Pankratz, A. E. (2000). Outliers in multivariate time series.

Biometrika, 87(4), 789–804.

Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.

Unity3D (2005). Unity3d. https://unity3d.com/. (accessed on 22 November 2016).

Uusitalo, M. A. (2006). Global vision for the future wireless world from the wwrf. IEEE

Vehicular Technology Magazine, 1(2), 4–8.

Valdes, A. & Skinner, K. (2000). Adaptive, model-based monitoring for cyber attack

detection. In International Workshop on Recent Advances in Intrusion Detection (pp.

80–93).: Springer.

van Berlo, A., Bob, A., Jan, E., Klaus, F., Maik, H., & Charles, W. (1999). Design guide-

lines on smart homes. A COST 219bis Guidebook (October 1999).

Van Nguyen, T., Kim, J. G., & Choi, D. (2009). Iss: the interactive smart home simula-

tor. In 11th International Conference on Advanced Communication Technology (ICACT),

volume 3 (pp. 1828–1833).: IEEE.

Van Phuong, T., Hung, L. X., Cho, S. J., Lee, Y.-K., & Lee, S. (2006). An anomaly

detection algorithm for detecting attacks in wireless sensor networks. In International

Conference on Intelligence and Security Informatics (pp. 735–736).: Springer.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business

media.

Vermesan, O., Peter, F., Patrick, G., Sergio, G., Harald, Sundmaeker Alessandro, B.,

Ignacio Soler, J., Margaretha, M., Mark, H., Markus, E., & Pat, D. (2011). Internet of

Things: Strategic Research Roadmap. In Internet of Things-Global Technological and

Societal Trends (pp. 9–52). River Publishers.

Vinje, W. E. & Gallant, J. L. (2002). Natural stimulation of the nonclassical receptive field

increases information transmission efficiency in v1. Journal of Neuroscience, 22(7),

2904–2915.

Von Neumann, J. (1993). First draft of a report on the edvac. IEEE Annals of the History

of Computing, 15(4), 27–75.

Waibel, A. (1989). Modular construction of time-delay neural networks for speech

recognition. Neural computation, 1(1), 39–46.

257

https://unity3d.com/

REFERENCES

WebGL (2006). Webgl. https://www.khronos.org/webgl/. (accessed on 05 November

2016).

Wei, L., Qian, W., Zhou, A., Jin, W., & Jeffrey, X. Y. (2003). Hot: Hypergraph-based

outlier test for categorical data. In Pacific-Asia Conference on Knowledge Discovery and

Data Mining (pp. 399–410).: Springer.

Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska, M., &

Borriello, G. (2009). Building the Internet of Things Using RFID: The RFID Ecosystem

Experience. IEEE Internet Computing, 13(3), 48–55.

Williams, G., Baxter, R., He, H., Hawkins, S., & Gu, L. (2002). A comparative study of rnn

for outlier detection in data mining. In Data Mining, 2002. ICDM 2003. Proceedings.

2002 IEEE International Conference on (pp. 709–712).: IEEE.

Williams, P. L. et al. (1980). Gray’s anatomy. London: Churchill Livingstone, 1980.

Wong, W.-K., Moore, A., Cooper, G., & Wagner, M. (2003). Bayesian network anomaly

pattern detection for disease outbreaks. In ICML (pp. 808–815).

Xie, M., Hu, J., & Tian, B. (2012). Histogram-based online anomaly detection in hi-

erarchical wireless sensor networks. In Trust, Security and Privacy in Computing and

Communications (TrustCom), 2012 IEEE 11th International Conference on (pp. 751–

759).: IEEE.

Xu, W. X. W., Xin, Y. X. Y., & Lu, G. L. G. (2007). A System Architecture for Pervasive

Computing. Third International Conference on Natural Computation (ICNC 2007), 5.

Yairi, T., Kato, Y., & Hori, K. (2001). Fault detection by mining association rules from

house-keeping data. In Proc. of International Symposium on Artificial Intelligence,

Robotics and Automation in Space, volume 3: Citeseer.

Yamanishi, K. & Takeuchi, J.-i. (2001). Discovering outlier filtering rules from unlabeled

data: combining a supervised learner with an unsupervised learner. In Proceedings

of the seventh ACM SIGKDD international conference on Knowledge discovery and data

mining (pp. 389–394).: ACM.

Yamanishi, K., Takeuchi, J.-I., Williams, G., & Milne, P. (2000). On-line unsupervised

outlier detection using finite mixtures with discounting learning algorithms. In Pro-

ceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and

data mining (pp. 320–324).: ACM.

Yamazaki, T. (2007). The ubiquitous home. International Journal of Smart Home, 1(1),

17–22.

258

https://www.khronos.org/webgl/

REFERENCES

Yan, L., Zhang, Y., Yang, L. T., & Ning, H. (2008). The Internet of things: from RFID to

the next-generation pervasive networked systems. Auerbach Publications.

Ye, N. & Chen, Q. (2001). An anomaly detection technique based on a chi-square statistic

for detecting intrusions into information systems. Quality and Reliability Engineering

International, 17(2), 105–112.

Yen, S.-C., Baker, J., & Gray, C. M. (2007). Heterogeneity in the responses of adjacent

neurons to natural stimuli in cat striate cortex. Journal of neurophysiology, 97(2),

1326–1341.

Yeung, D.-Y. & Chow, C. (2002). Parzen-window network intrusion detectors. In Pattern

Recognition, 2002. Proceedings. 16th International Conference on, volume 4 (pp. 385–

388).: IEEE.

Yoshimura, Y., Sato, H., Imamura, K., & Watanabe, Y. (2000). Properties of horizontal

and vertical inputs to pyramidal cells in the superficial layers of the cat visual cortex.

Journal of Neuroscience, 20(5), 1931–1940.

Youngblood, G. M., Cook, D. J., & Holder, L. B. (2005). Seamlessly engineering a smart

environment. In SMC (pp. 548–553).

Zhang, D., Yang, L. T., & Huang, H. (2011). Searching in Internet of Things: Vision

and Challenges. 2011 IEEE Ninth International Symposium on Parallel and Distributed

Processing with Applications, (pp. 201–206).

Zhang, J. & Wang, H. (2006a). Detecting outlying subspaces for high-dimensional

data: the new task, algorithms, and performance. Knowledge and information sys-

tems, 10(3), 333–355.

Zhang, L. Z. L. & Wang, Z. W. Z. (2006b). Integration of RFID into Wireless Sensor

Networks: Architectures, Opportunities and Challenging Problems. 2006 Fifth Inter-

national Conference on Grid and Cooperative Computing Workshops.

ZigBee, A. (2006). Zigbee specification. ZigBee document 053474r13.

259

	List of Publications
	Acknowledgements
	Table of Contents
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Aim
	1.2 Objectives
	1.3 Scope of the Investigation
	1.4 Contributions to Knowledge
	1.5 Methods of Investigation
	1.6 Structure of the Thesis

	2 Literature Review
	2.1 Introduction
	2.2 The Internet of Things
	2.2.1 IoT Issues
	2.2.2 Enabling Technologies
	2.2.3 Context-awareness
	2.2.4 Middlewares

	2.3 Intelligence
	2.4 Anomaly Detection
	2.4.1 Challenges
	2.4.2 Anomaly Detection Techniques
	2.4.2.1 Classification
	2.4.2.2 Nearest Neighbours
	2.4.2.3 Clustering
	2.4.2.4 Statistical
	2.4.2.5 Spectral

	2.4.3 Unsupervised Anomaly Detection Algorithms
	2.4.3.1 k-Nearest Neighbour
	2.4.3.2 Local Outlier Factor
	2.4.3.3 Connectivity-Based Outlier Factor
	2.4.3.4 Influenced Outlierness
	2.4.3.5 Local Outlier Probability
	2.4.3.6 Local Correlation Integral
	2.4.3.7 Approximate Local Correlation Integral
	2.4.3.8 Cluster-Based Local Outlier Factor
	2.4.3.9 Local Density Cluster-Based Outlier Factor
	2.4.3.10 Clustering-Based Multivariate Gaussian Outlier Score
	2.4.3.11 Histogram-Based Outlier Score

	2.4.4 Anomaly Detection Applications and Domains
	2.4.4.1 Intrusion Detection
	2.4.4.2 Fraud Detection
	2.4.4.3 Health and Medical
	2.4.4.4 Image and Video
	2.4.4.5 Textual Data
	2.4.4.6 Wireless Sensor Networks

	2.5 Hierarchical Temporal Memory
	2.5.1 Anomaly Detection Using CLA
	2.5.2 Numenta Platform for Intelligent Computing (NuPIC)
	2.5.2.1 NuPIC Advantages

	2.6 Smart Homes
	2.6.1 Definition
	2.6.2 Applications and Projects
	2.6.3 Anomaly Detection in Smart Homes
	2.6.4 Requirements for Anomaly Detection in Smart Homes
	2.6.5 Intelligent Services in Smart Homes

	2.7 Early Experimental Results
	2.7.1 Dataset
	2.7.2 Preparation for the CLA
	2.7.3 CLA Results
	2.7.4 DBSCAN Algorithm
	2.7.5 Anomalies in the Dataset
	2.7.6 Comparing CLA with DBSCAN
	2.7.7 Discussion

	2.8 Research Gaps
	2.9 Summary

	3 Hierarchical Temporal Memory
	3.1 Introduction
	3.2 HTM Theory
	3.2.1 HTM Principles
	3.2.1.1 Hierarchy
	3.2.1.2 Regions
	3.2.1.3 Sparse Distributed Representations
	3.2.1.4 Time

	3.2.2 The Neurons in HTM Systems
	3.2.2.1 HTM Neuron Inputs

	3.3 Cortical Learning Algorithm
	3.3.1 The Algorithm
	3.3.2 The Spatial Pooler
	3.3.3 The Temporal Memory

	3.4 HTM Implementations
	3.5 Summary

	4 OpenSHS
	4.1 Introduction
	4.2 Related Work
	4.2.1 Real Smart Home Testbeds
	4.2.2 Smart Home Simulation Tools
	4.2.2.1 Model-Based Approach
	4.2.2.2 Interactive Approach

	4.2.3 Analysis

	4.3 OpenSHS Architecture and Implementation
	4.3.1 Design Phase
	4.3.1.1 Designing Floor Plan
	4.3.1.2 Importing Smart Devices
	4.3.1.3 Assigning Activity Labels
	4.3.1.4 Designing Contexts

	4.3.2 Simulation Phase
	4.3.2.1 Fast-Forwarding
	4.3.2.2 Activities Labelling

	4.3.3 Aggregation Phase
	4.3.3.1 Events Replication
	4.3.3.2 Dataset Generation

	4.3.4 Implementation
	4.3.4.1 Blender
	4.3.4.2 Python

	4.4 OpenSHS Usability
	4.5 Conclusion

	5 HI-SDR Encoder
	5.1 Introduction
	5.2 Sparse Distributed Representations
	5.2.1 Notations
	5.2.2 SDRs Properties

	5.3 NuPIC Encoders
	5.3.1 Proprieties of Good Encoders
	5.3.2 Standard NuPIC Encoders
	5.3.2.1 Numerical Data Types
	5.3.2.2 Categorical Data Types
	5.3.2.3 Specialised Encoders

	5.4 Smart Home Dataset and NuPIC Encoders
	5.4.1 Scalar Encoder
	5.4.2 Category Encoder
	5.4.3 SDR-Category Encoder
	5.4.4 Results
	5.4.5 Analysis

	5.5 The HI-SDR Encoder
	5.5.1 HI-SDR Encoder Results
	5.5.2 The Algorithm

	5.6 Summary

	6 Test and Evaluation
	6.1 Introduction
	6.2 Methodology
	6.2.1 Smart Home Design
	6.2.1.1 Why the Sensors are Binary?
	6.2.1.2 Contexts

	6.2.2 The Participants and the Datasets
	6.2.2.1 Dataset Aggregation
	6.2.2.2 The Anomalies

	6.2.3 Experiment Design
	6.2.3.1 Anomaly Scoring Metric
	6.2.3.2 Twiddle
	6.2.3.3 Experiment Parameters

	6.3 Results
	6.3.1 HTM Based
	6.3.1.1 SDR-Category Encoder
	6.3.1.2 HI-SDR encoder
	6.3.1.3 SDR-Category Encoder versus HI-SDR

	6.3.2 Nearest Neighbour Based
	6.3.3 Cluster and Density Based
	6.3.4 Statistics Based

	6.4 Discussion
	6.5 Summary

	7 Conclusions and Future Work
	7.1 Research Contributions
	7.2 Conclusion and Future Work

	A Spatial Pooler and Temporal Memory
	A.1 Spatial Pooler
	A.1.1 Initialisation
	A.1.2 First Phase: Overlap
	A.1.3 Second Phase: Inhibition
	A.1.4 Third Phase: Update
	A.1.5 Functions and Data Structures

	A.2 Temporal Memory
	A.2.1 Inference Mode
	A.2.1.1 First Phase: Active Cells
	A.2.1.2 Second Phase: Predictive Cells

	A.2.2 Learning Mode
	A.2.2.1 First Phase: Active Cells
	A.2.2.2 Second Phase: Predictive Cells
	A.2.2.3 Third Phase: Update

	A.2.3 Functions and Data Structures

	B Datasets
	C OpenSHS Documentation
	C.1 Requirements
	C.2 Quick Start
	C.3 Manual
	C.3.1 Start Command
	C.3.1.1 Examples

	C.3.2 Status Command
	C.3.2.1 Examples

	C.3.3 Aggregate Command
	C.3.3.1 Examples

	References

