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Abstract—Automatic analysis of videos for traffic monitoring
has been an area of significant research in the recent past. In this
paper, we proposed a system to detect and track illegal vehicle
parking using Gaussian Mixture Model and Kalman Filter. i-
LIDS dataset is used to test and evaluate the algorithm by
comparing the results with the ground truth provided, we have
tested the system using 4 full videos from i-LIDS to detect parked
vehicle whiten specific area. Region of interest has been used to
detect Vehicle parks in a no parking zone over sixty seconds and
remains stationary.

Within the scope of this work, we highlighted the compo-
nents of an automated traffic surveillance system, including
background modeling, foreground extraction, Kalman filter and
Gaussian mixture model.

Index Terms—tracking, detection, kalman, illegal parking,

I. INTRODUCTION

With the continuous increase in vehicle population, traffic
accidents and on-road fatalities have been a major concern in
the United Kingdom over the past ten years. According to the
road accidents and safety statistics published by Department
for transport in the United Kingdom [1], road accidents caused
five deaths per day on average in the year of 2013. As
a result, there has been a growing demand from both the
traffic safety authorities and general public to utilize the state-
of-the-art technologies to facilitate greater safety, effective
traffic control and monitoring, on-road assistance, etc. In this
context, automated vehicle and pedestrian detection, tracking,
traffic surveillance, behavioral pattern analysis, and anomaly
detection have received significant attention from the research
community over the past ten years [2]. This paper will focus
on the existing camera and sensing technologies as well as
video processing for automated traffic analysis, surveillance
and vehicle tracking, emergency event detection, etc.

video sensors provide a reliable, efficient, and scalable
approach to different traffic applications due to their low
deployment and maintenance cost as well as the wide area
of coverage, such as, traffic monitoring and surveillance
applications [3], driver assistance [4], on video processing-
based traffic flow monitoring and traffic monitoring with the
assistance of unmanned aerial vehicles [5], [6].

This paper is structured as follows: Section II components of
an automated traffic surveillance system, including foreground

extraction and background modeling. Section III demonstrates
the proposed system , Section IV experimental results and
evaluations, Finally, Section V presents our conclusions.

II. COMPONENTS OF AN AUTOMATED TRAFFIC
SURVEILLANCE SYSTEM

This section presents an overview of a generic video
analysis-based traffic monitoring and surveillance system. Any
video camera-based traffic monitoring system that can perform
automated incident detection typically comprises multi-stage
processing of video data obtained from the traffic sensors.
Depending on how the processing is performed, a video-based
traffic monitoring system can be divided into two categories:
i) top-down approach and ii) bottom-up approach [7]. In a top-
down or object-based approach, the first stage involves back-
ground modeling and foreground detection, which involves
modeling the background (static) scene and isolating any mov-
ing object as foreground. This is typically performed based
on a statistical modeling approach followed by a few post-
processing to preserve connectedness of the moving object.
Once the foreground object pixels are detected, they are passed
to an object classification module [8], [9], [10]. The objective
here is to utilize the previously observed training examples to
detect the object class and assign a label. Since this approach
involves representing the whole moving object as a collection
of pixels, it is called the object-based or top-down approach.

On the other hand, bottom-up approaches involve detection
of different parts of an object from the image scene which
in turn are utilized to construct a holistic scene representation
[11], [12]. A typical bottom-up algorithm will focus on parts of
the image to determine whether a partial object is present (e.g.
certain body parts of a vehicle or a pedestrian). These types
of methods are trained with prior examples of different partial
objects which are then analyzed spatially and temporally to
obtain an overall scene description. In this section, different
components of an automated traffic surveillance system are
discussed in detail.

A. Foreground Object Extraction

Moving object (foreground) detection from the background
is a key component for a wide-variety of video analytics and



Fig. 1. Current video analytic techniques

motion tracking applications. While the concept of moving
object or foreground is trivial to human perception, it is
typically treated as a challenging problem in the domain of
computer vision. Here, the term foreground refers to any
object which is not stationary in a video sequence. However,
motion in an image scene can also be caused by camera
instead of the object itself, which makes the problem of
foreground extraction a non-trivial problem in an uncontrolled
environment. Different foreground detection techniques can be
found in existing literature, which can be divided into two
major categories: i) background modeling based approaches
and ii) object appearance-based approaches. In a background
modeling approach, the background scene is first modeled
when the moving object is not present in the scene. This acts
as a generic point of reference when a moving object enters the
scene as the foreground pixels could then be easily represented
by the error between the new frame and the previously
obtained background frame. However, this approach is typi-
cally limited to stationary cameras since camera motion can
change the background scene, thus rendering the previously
constructed background model ineffective. Appearance-based
approaches address this issue by utilizing prior knowledge
about the moving object to construct an appearance-based
representation of that object, which is then tracked over time.
This type of approaches typically utilizes different appearance
characteristics of the moving object (e.g. color, texture, etc.)
to model the object instead of the background. As a result,
such approaches can withstand changes occurred from camera
movements. From a traffic surveillance and monitoring point
of view, foreground object detection based on background
modeling is a strong match since prior knowledge about the
moving object is often unavailable and the cameras usually re-
main stationary over time. The following sections discuss both
background modeling and object appearance-based foreground
object detection.

1) Frame Differencing: Frame differencing is one of the
most commonly-known foreground extraction method that
utilizes the difference between two consecutive frames as a
moving object detection mask. Being a simple moving object
detection technique, frame differencing offers fast computa-
tion, however, suffers under the presence of random noise,
non-monotonic illumination variations as well as repeated or
periodic appearances of certain objects in the scene. K. Park
and D. Lee in [13] utilized frame differencing in their work
on the detection of street parking rule violations. Another
approach in [14] detected motor-cycles on the road based on
frame differencing and multi-modal particle filtering approach.
However, since frame-differencing based foreground object

detection techniques are susceptible to random noise, image
sequences are required to carefully be per-processed to remove
noise.

2) Background Subtraction: While frame-differencing in-
volves computing the error between two consecutive frames,
background subtraction-based approaches focus on construct-
ing a generic representation of the background. Once a
background model is constructed, each subsequent frame is
compared against the model frame to determine the foreground
object. This is typically identified by the error between the
two frames which is then thresholded (static or dynamic) to
obtain a mask [8]. Different types of background modeling
approaches can be found in the literature. The following
section provides an overview of a few well-known background
modeling approaches.

• Frame Averaging: Given a current image sequence
frame ft, the frame averaging-based background mod-
eling will consider the mean of all prior frames
f1, f2, ..., ft−1 as the background model. While this
approach provides a computationally inexpensive way
of modeling the background, it often yields unexpected
tracking results due to the contribution of the foreground
pixels from the previous frames in the background model.
To address this issue, in [8] and [15] proposed to exclude
the detected object in the current frame while averaging
it with the background model to use for the next frame.
This method, named the ”instantaneous background” thus
cancels some errors caused by the augmentation of mov-
ing object pixels in the background model construction
by replacing those pixels with previous background pixels
computed for the same location. One of the researcher, in
[16] presented a vehicle tracking approach that utilized
a similar background modeling approach for cameras
placed on lower ground thant typical traffic cameras.
However, the selection of frame averaging method was
motivated due to the lower computational cost as their
proposed method utilizes expensive 3D perspective pro-
jection computation for the tracking purpose.

• Single Gaussian: The single Gaussian-based background
modeling approach extend the frame averaging method by
also constructing a separate image representing the vari-
ance of the all previous frames along with the mean im-
age. A pixel in the current frame is labeled as foreground
or background depending on its position in the Gaussian
distribution. From a statistical point of view, the single
Gaussian distribution can be compared with a dynamic
thresholding technique. B. Morris and M. Trivedi in [17]
presented a vehicle classification and tracking approach in
their work where they classified a vehicle in the scene as
one of the sedan, semi, or suv+truck+pickup class. Here,
the single Gaussian method was used for background
modeling.

• Mode of Pixel History: Another approach of modeling
the background is to utilize the mode of the history of
a pixel, as proposed by J. Zheng and Y. Wang in [18].
Their non-parametric estimation of the background model



using a fixed-length window on the historical values of a
pixel location and then label the most frequently occurred
value as part of the background. Intuitively, for some
pixel to be considered as the background, the value of
that pixel should be the same over a certain period of
time. This is a fundamental assumption regrading the
property of a background pixel, which is also used in
the Gaussian mixture models (GMM). However, unlike
the GMM approach, mode estimation-based background
modeling is sensitive to the selection of bin size due to
its dependence on the presence of a peak or resonant
structure in the distribution.

• Kalman Filtering: Kalman filtering can also be utilized
to construct the background model of an image, where
each pixel of the image sequence is modeled based on
an individual Kalman filter [19].

• Wavelets: [20] presented a wavelet-based background
modeling approach where a probability density function
is estimated for each pixel of an image based on the Marr
wavelet kernel. The proposed method was demonstrated
to be robust against gradual lighting changes, while it
could detect both moving vehicles and pedestrian in the
urban road image scene.

III. THE PROPOSED SYSTEM

In our case, the system should give an alarm if a vehicle
parks in a no parking or stops within a no parking zone
and remains stationary for over sixty seconds using Gaussian
mixture model and Kalman filter, see Fig. 2 for the no parking
zone.

Fig. 2. i-LIDS Dataset No Parking zone

A. Gaussian Mixture Model (GMM)

Segmentation of a moving foreground object in a video
scene typically involves modeling the background without
the moving object and then computing the error between the
modeled background and the current sequence image. Among
the different existing methods for background model con-
struction and foreground extraction, Gaussian mixture model
(GMM) has established itself as one of the most reliable and

computationally efficient approaches. Originally introduced
by [21], [22], the GMM approach models each pixel of an
image as a mixture of Gaussian distributions. Intuitively, a
pixel resulted from a single surface under a fixed illumination
condition and sensor noise can be modeled using a single
Gaussian distribution. Here, illumination changes over time
could also be accommodated by utilizing an adaptive Gaus-
sian. However, in real-world scenarios, a single pixel color
could be contributed by multiple surfaces present in the image
scene, along with the illumination changes over time. As a
result, to model a scenario like this, the GMM method utilizes
a mixture of adaptive Gaussian distributions. Foreground and
background pixels are then differentiated based on the variance
and persistence of each Gaussian in the mixture.

In a Gaussian mixture model, values observed for a particu-
lar pixel over time is treated as a “pixel process”. In practice,
a “pixel process” incorporates a time series of how the pixel
value (gray-scale or R, G, B values) changed over time. Hence,
at any given point of time t, a pixel (x, y) is represented by
its history:

{X1, ..., Xt} = {I(x, y, i) : 1 ≤ i ≤ t} (1)

Here, I is the gray-scale or R, G, B values of the pixel (x, y)
at time i. Each pixel value in an image scene corresponds to
the surface radiance of the closest object encountered by the
optical axis of the pixel toward the direction of the camera.
Under the presence of a fixed background and illumination
condition, the changes in the pixel value over time would
be negligible. Hence, with the assumption that independent
Gaussian noise was introduced through image acquisition and
sampling, its density could be represented as a single Gaussian
distribution with the mean pixel value as the center of the
distribution. However, video sequences captured under un-
controlled environment would contain lighting changes along
with background and foreground changes. Hence, any back-
ground subtraction-based moving object detection technique
needs to track lighting changes in the scene. In addition, the
constructed background model should also account for newly
added background objects in the scene that was not present in
the original model. However, this scenario poses a challenge
for methods that require the newly added background object
to be present longer than the previous object to be considered
as part of the background. During this time window, the
new object is typically considered as foreground and thus it
introduces unexpected or poor tracking results. Based on these
observations, Stauffer and Grimson in [21] argued that more
recent observations should be emphasized when estimating the
parameters of the Gaussian distributions.

Another important aspect related to background modeling is
determining the characteristics of moving objects and station-
ary objects (background) in the scene. According to Stauffer
and Grimson in [21] and [22], it is safe to assume that any
moving object, even with relatively uniform surface area would
exhibit more variance in terms of pixel values than stationary
objects. On the other hand, stationary objects or background



would provide consistent observations over time due to their
repetitions.

All these observations contribute to how the Gaussian
mixture model (GMM) creates and updates the background
model. First, the recent history of each pixel (Eq. 1) is modeled
using a mixture of K Gaussian distributions. For a particular
pixel (x, y), the probability that it takes the current value Xt

can be defined as:

P (Xt) =

K∑
i=1

wi,t × η(Xt, µi,t,Σi,t) (2)

Here, K represents the number of Gaussian distributions in
the mixture, wi,t is a weight factor for the i-th Gaussian at
time t, and µi,t and Σi,t represent the mean and covariance
matrix of that Gaussian. Lastly, η(Xt, µi,t,Σi,t) represents the
probability density for the current Gaussian. The value of K
is typically set between 3 and 5, depending on the availability
of resources such as memory and computational power.

Once a mixture of Gaussian is computed for a particular
pixel, every new observation for that pixel is matched against
the mixture in order to find a distribution within a threshold
standard deviation of 2.5. If a match is found for the new pixel,
the parameters of the corresponding Gaussian distribution are
updated. However, if no match is found, then a search is
conducted for the least probable component of the corre-
sponding mixture, which is then replaced by a new Gaussian
distribution, modeling the newly observed pixel value. Stauffer
and Grimson in [21], [22] treated the prior weights for each
of the Gaussian distribution in the mixture as:

wk,t = (1− α)wk,t−1 + α(Mk,t) (3)

Here, α represents the learning rate of the model, while the
value of Mk,t could be either 1 (for the distribution for which a
match was found) or 0 (all other distributions). The parameters
mean µ and standard deviation σ for any unmatched distribu-
tion remain the same for the newly observed pixel value. On
the other hand, the parameters of the Gaussian for which a
match was found is updated as follows:

µt = (1− ρ)µt−1 + ρXt (4)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt) (5)

Here, µt−1 represents the previous mean of the distribution,
while σ2

t−1 represents the variance. A second learning rate ρ
is also introduced here, which can be defined as:

ρ = αη(Xt|µk, σk) (6)

The last step involves determining which Gaussian distribu-
tions in the obtained mixture represent the background model.
Intuitively, appearance of a moving object in the image scene
would result in pixel values that either do not match any of the
existing distributions in the mixture or cause high variations
in existing distributions. Hence, only the distributions with
the least variation and high repetitions should be selected as

background processes. To achieve this, the distributions in
the mixture are ranked based on the w/σ value to obtain a
measure of relevance, which is then utilized to select the top
B distributions as follows:

B = argminb(

b∑
k=1

wk > T ) (7)

Here, T is a threshold that represents what portion of the
data needs to be considered for constructing the background
model.

Fig. 3. i-lids dataset video input

Fig. 4. Foreground Detection

B. Kalman Filter for Motion Tracking

Once the object of interest is detected in an image scene,
the next step involves tracking the motion of that object over
time. Among the different motion tracking methods found
in literature, Kalman filter [23] is one of the most well-
known techniques. Also referred as linear quadratic estimation
(LQE), the Kalman filter provides methodologies to estimate
the state of a linear process using a recursive approach, with an
objective function that minimizes the mean squared error. Due
to the low computational complexity and the ability to provide
optimal solution to any 1-D linear system under the presence



of Gaussian noise [24], Kalman filter has been used in a wide
range of applications over the last 50 years, which include
motion tracking, global positioning and navigation systems,
multi-modal information fusion, etc. [25].

In Kalman filtering-based motion tracking [26], the location
of an object that we want to track in the image scene is first
represented a series of states (history information). Then, any
variation in the state over time can be modeled using a linear
system:

Xt = AtXt−1 + η (8)

Here, η represents a Gaussian white noise component hav-
ing a covariance matrix Ση . Now, the state and the mea-
surement can be related through the following measurement
equation:

Yt = DtXt + ε (9)

Here, Dt represents a measurement matrix, while ε corre-
sponds to another independent white noise component having
a covariance matrix Σε. The objective here is to estimate the
current state Xt by utilizing the state history information.
In other words, given a series of measurements over time
represented as (Y1, Y2, ..., Yt), we need to find the probability
density function p(Xt|Y1, ..., Yt).

In theory, Kalman filter utilizes a recursive Bayesian filter
to estimate an optimal solution in two stages: i) the prediction
step and ii) the correction step. The prediction step involves
finding the prior probability distribution using dynamic equa-
tion and the probability density function computed for all
previously observed states stored in the state history. In
the correction step, the posterior probability distribution is
estimated using a likelihood function.

Originally, the Kalman filter was introduced to provide
a methodology for estimating the current state of a linear
system where the states follow a Gaussian distribution. In
the prediction step, current state of a given variable or set
of variables is estimated using the following state model:

Xp
t = AXt−1 (10)

Σpt = AΣt−1A
T + Σηt (11)

Here, Xp
t represents the predicted state, while Σpt represents

the predicted covariance matrix at a given time t. Here, the
purpose of At is to provide a relationship between the states
observed at time t and t − 1. Hence, it is called the state
transition matrix. Once Xp

t and Σpt have been estimated, the
correction step involves utilizing them to obtain the current
state of the variable(s):

Xt = Xp
t +Gt[Yt −DtX

p
t ] (12)

Gt = ΣptD
T
t [DtΣ

p
tD

T
t + Σεt]

−1 (13)

Σt = Σpt −GtDtΣ
p
t (14)

Here, Gt represents a gain component referred as Kalman
gain. This component is used for information propagation
from one state to the other. Another important aspect of
Kalman filtering is that the estimated current state Xt follows
a Gaussian distribution. The above formulation can also be
adopted for nonlinear systems, where Taylor series expansion
is used to construct an extended Kalman filter. Here also, the
underlying assumption that the states of the variable(s) follow
a Gaussian distribution holds true.

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

The algorithm has been tested on i-LIDS dataset and the
proposed technique implemented in MATLAB R2016a with
the following system specifications:

• Processor: Intel(R) Xeon(R) CPU E5 - 1650 v3 @ 3.50
GHz

• Memory (RAM) 16 GB

A. i-LIDS Dataset

The Imagery Library for Intelligent Detection Systems (i-
LIDS) is one of well known dataset in computer vision and
video processing, i-LIDS dataset developed by the Centre for
Applied Science and Technology (CAST) in partnership with
the Centre for the Protection of National Infrastructure (CPNI)
[27], provides an event detection for the following scenarios:

• Doorway surveillance.
• Abandoned baggage detection.
• Sterile zone monitoring.
• Parked vehicle detection with alarm events consisting of

suspiciously parked vehicles in an urban setting.

B. i-lids Ground Truth

i-LIDS dataset is supplied with an XML based index
describing at a high level the content and alarm events present
in each video file. Table I illustrates the i-LIDS illegal parking
dataset ground truth.

Event Detection performance on a scenario is rated using
a weighted harmonic mean of a systems recall and precision
known as the F1 measure. where are a , b and c as following:

• (a) True positive alarms (TP) : System alarms in response
to a genuine alarm event.

• (b) False positive alarms (FP) : System alarms without
the presence a genuine alarm event.

• (c) False negative alarms (FN) : Genuine alarm events
not resulting in a system alarm.

According to i-LIDS [27] ”Systems have ten seconds to
report an alarm state after an alarm event begins in the
evaluation footage. During this time multiple alarm reports
will be disregarded; an alarm event is either detected or not.
After this ten second window, any further alarms reported will
be deemed false positives”, see Fig. 5 for i-lids event detection
evaluation.

The recall (Detection rate): r = a/(a + c) The precision
(probability of an alarm being genuine):p = a/(a+ b)

F1 =
(α+ 1)rp

r + αp
(15)



TABLE I
I-LIDS ILLEGAL PARKING DATASET GROUND TRUTH

File Name Duration Time Rain Snow Alarm Events
PVTEA101a 01:21:29 Day YES NO 26
PVTEA101b 00:24:40 Night No NO 8
PVTEA102a 00:51:56 Day NO NO 18
PVTEA102b 00:42:07 Day Yes NO 16
PVTEA103a 01:03:54 Day NO NO 16
PVTEA103b 00:27:13 Dusk NO NO 7
PVTEA104a 00:32:11 Night NO NO 8
PVTEA104b 00:32:11 Night NO NO 9
PVTEA201a 00:18:50 Dusk NO NO 4
PVTEA201b 00:41:38 Day Yes NO 9
PVTEA201c 00:32:28 Night NO NO 12
PVTEA201d 00:29:05 Day NO NO 8
PVTEA202a 00:24:02 Day NO NO 5
PVTEA202b 01:05:23 Day Yes NO 17
PVTEA301a 00:15:29 Day NO NO 3
PVTEA301b 00:28:07 Day Yes NO 8
PVTEA301c 00:27:09 Day NO Yes 6
PVTEA301d 00:16:15 Dusk NO NO 3
PVTEA301e 00:20:27 Day NO NO 6
PVTEN102d 00:19:43 Day NO NO 1
PVTEN201a 00:29:56 Day Yes NO 2
PVTEN201b 00:30:00 Day NO NO 1
PVTEN201c 00:20:05 Day NO NO 2
PVTEN201d 00:19:54 Day Yes NO 2
PVTEN202a 00:19:54 Night NO NO 7
PVTEN202b 00:30:01 Dusk NO NO 4
PVTEN202c 00:30:00 Day NO NO 7
PVTEN301b 00:29:59 Day NO NO 2
PVTEN301c 00:19:58 Day Yes NO 2

Fig. 5. Ilids Event Detection evaluation

where α is the recall bias = 0.55.
The first scenario PVTEA101a.mov with a duration of

01:21:29 and it has 27 illegal parking events in raining weather
condition, the result shows that 24 evens detected and 4 evens
were missed detected, shown in Table II.

Table II illustrates the output result for PTEA101a. The
system has detected 7 (TP) ”True positive alarms” and 11
events after 10 Seconds late from the started parking time, for
example, in the PVTEA101a at 381 seconds, the system has
alarmed at 352 seconds, so it missed 29 seconds compared
to the ground truth. Moreover, the system has missed 4 evens
for example, in the 968 seconds as shows in TableII. After the
evaluate calculation, the recall (Detection rate) is 0.38, and the
precision (P) is 0.388. According to F1 measure 15 the value
of F1 is 39%, see Fig. 7 for the performance matrix.

The next video in the dataset is PVTEA101b with a duration
of 24 minutes at night time and it has 8 alarms, see Table III.

Fig. 6. The Proposed Vehicle Tracking System

TABLE II
THE TRACKING RESULTS FOR PVTEA101A COMPARED TO I-LIDS

DATASET GROUND TRUTH

File Name Groundtruth Detection Error in (Sec) Status
PVTEA101a 381 352 29 (FP)
PVTEA101a N/A 451 (FP) (FP)
PVTEA101a 968 0 (FN) (FN)
PVTEA101a N/A 700 (FP) (FP)
PVTEA101a N/A 878 (FP) (FP)
PVTEA101a 1055 0 (FN) (FN)
PVTEA101a 1137 1083 54 (FP)
PVTEA101a 1138 0 (FN) (FN)
PVTEA101a 1278 1280 -2 (TP)
PVTEA101a 1370 1391 -21 (FP)
PVTEA101a 1455 1455 0 (TP)
PVTEA101a 1643 1644 -1 (TP)
PVTEA101a 1738 1739 -1 (TP)
PVTEA101a 1874 1898 -24 (FP)
PVTEA101a 2080 2081 -1 (TP)
PVTEA101a 2316 2317 -1 (TP)
PVTEA101a N/A 2524 (FP) (FP)
PVTEA101a 2616 2616 0 (TP)
PVTEA101a 2675 2691 -16 (FP)
PVTEA101a 2905 2939 -34 (FP)
PVTEA101a 3016 0 (FN) (FN)
PVTEA101a 3024 3041 -17 (FP)

Fig. 7. PVTEA101a Performance Matrix



TABLE III
THE TRACKING RESULTS FOR PVTEA101B COMPARED TO I-LIDS

DATASET GROUND TRUTH

File Name Groundtruth Detection Error in (Sec) Status
PVTEA101b 360 374 -14 (FP)
PVTEA101b 500 503 -3 (TP)
PVTEA101b 678 678 0 (TP)
PVTEA101b 779 780 -1 (TP)
PVTEA101b 920 919 1 (TP)
PVTEA101b 1019 1021 -2 (TP)
PVTEA101b 1259 1258 1 (TP)
PVTEA101b 1363 1366 -3 (TP)

Table III shows the detection results for PTEA101b. The
system has detected a 7 (TP) true positive alarms and 1 event,
but 14 Seconds late after the event started, for example, in
the PVTEA101b at 360 seconds, the system has given alarm
at 374 seconds, which is 14 seconds late compared to the
ground truth. Moreover, the system did not miss any detection
as shows in table II . The recall (Detection Rate) is %875, and
the precision (P) is 0.875.finally, F1 measure is 88%, see Fig.
8 for the performance matrix.

Fig. 8. PVTEA101b Performance Matrix

The third experiment to detect illegal parking using
the video (PVTEA102a), according to the dataset i-LID,
PVTEA102a is consider as (Level 1) with a duration of
00:51:56 at day time with some cloud, and it has a 26 illegal
parking evens. The result illustrated in Table IV.

The system in PVTEA102a has detected a 7 (TP) within
the maximum 10 seconds late according to the ground truth.
On the other hand, 14 evens have been detected but after
10 seconds, hence they are considered as (FP) false positive.
Moreover, the system did not detect 4 illegal parking evens.
The recall (Detection Rate) 0.38, and the precision (P) is 0.33.
According to f1 measure in eq.15 the value of F1 is 35%. The
performance matrix shown in Fig. 9.

Table V illustrates the output result for PTEA102b, the
system has detected a 4 TP ”True positive within the maximum
of 10 seconds late of the detection. Moreover, the system
detected 15 (FP) False positives beside an additional of 7
missed detections as false negative . According to the eval-
uation formula, F1 measure is 23%.

TABLE IV
THE TRACKING RESULTS FOR PVTEA102A COMPARED TO I-LIDS

DATASET GROUND TRUTH

File Name Groundtruth Detection Error in (Sec) Status
PVTEA102a 352 381.16 -29 (FP)
PVTEA102a 451 (FN) (FN)
PVTEA102a 700 (FN) (FN)
PVTEA102a 878 967.8 -90 (FP)
PVTEA102a N/A 1054.56 (FP) (FP)
PVTEA102a N/A (FP) (FP)
PVTEA102a N/A (FP) (FP)
PVTEA102a 1083 1136.68 -54 (FP)
PVTEA102a N/A 1137.72 (FP) (FP)
PVTEA102a 1280 1278.16 2 (TP)
PVTEA102a N/A 1369.64 (FP) (FP)
PVTEA102a 1391 (FN) (FN)
PVTEA102a 1455 1454.96 0 (TP)
PVTEA102a 1644 1643.28 1 (TP)
PVTEA102a 1739 1738.24 1 (TP)
PVTEA102a N/A 1873.92 (FP) (FP)
PVTEA102a 1898 1891.72 6 (TP)
PVTEA102a 2081 2079.8 1 (TP)
PVTEA102a N/A 2292.68 (FP) (FP)
PVTEA102a 2317 2316.48 1 (TP)
PVTEA102a 2524 2615.88 -92 (FP)
PVTEA102a 2616 2674.92 -59 (FP)
PVTEA102a 2691 (FN) (FN)
PVTEA102a 2939 2904.84 34 (FP)
PVTEA102a N/A 3016.32 (FP) (FP)
PVTEA102a 3041 3023.96 17 (FP)

TABLE V
THE TRACKING RESULTS FOR PVTEA102B COMPARED TO I-LIDS

DATASET GROUND TRUTH

File Name Groundtruth Detection Error in (Sec) Status
PVTEA102b 509 504.36 5 (TP)
PVTEA102b 664 (FN) (FN)
PVTEA102b N/A 760.08 (FP) FP
PVTEA102b N/A 775.52 (FP) (FP)
PVTEA102b 785 831.2 -46 (FP)
PVTEA102b 864 878.32 -14 (FP)
PVTEA102b N/A 935.88 (FP) (FP)
PVTEA102b N/A 987.24 (FP) (FP)
PVTEA102b 1099 1105.28 -6 (TP)
PVTEA102b 1204 (FN) (FN)
PVTEA102b 1377 (FN) (FN)
PVTEA102b 1590 1597.72 -8 (TP)
PVTEA102b 1630 (FN) (FN)
PVTEA102b 1630 1737.12 -107 (FP)
PVTEA102b 1836 1891.48 -55 (FP)
PVTEA102b N/A 2005.24 (FP) (FP)
PVTEA102b 2059 2085.12 -26 (FP)
PVTEA102b N/A 2106.28 (FP) (FP)
PVTEA102b 2260 2258.16 2 (TP)
PVTEA102b N/A 2331.08 (FP) (FP)
PVTEA102b N/A 2356.64 (FP) (FP)
PVTEA102b N/A 2359.32 (FP) (FP)
PVTEA102b N/A (FP) (FP)



Fig. 9. PVTEA102a Performance Matrix

V. CONCLUSION

In this paper, we presented a tracking technique to detect
illegal parking using i-LIDS dataset. The results shown various
performance of f1 measure. The worst performances can be
observed in PVTEA102b due to the raining weather. During
processing the video, the sun (light source) appears several
times, which causes different reflected light, resulting in lower
performance of 22% compared the to stable weather condition
in PVTEA101b with a duration of 00:24:40 at night time, and
it has a performance of 87%. The low detection and tracking
performance of PVTEA102b PVTEA101a and PVTEA102a is
due to their weather condition, which causes reduced of the
light source. This problem can be dealt by applying Physics
based Image formation models such as illumination estimation
and surface spectral reflectance estimation would be be applied
as future work to tackle the illumination challenge in order to
get better performance and accuracy.
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