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Abstract 

Abstract 

A kernel function is an important component in the support vector machine (SVM) kernel-based classifier. 

This is due to the elegant mathematical characteristics of a kernel, which amount to the mapping of non-

linearly separable classes to an implicit higher-dimensional feature space where they can become linearly 

separable, and hence easier to classify. Such characteristics are those prescribed by the underpinning positive 

semi-definite (PSD) property. The properties of this feature space can, however, be difficult to interpret, to 

customize or select an appropriate kernel for the classification task at hand. Moreover, the high-

dimensionality of the feature space does not usually provide apparent and intuitive information about the 

natural representations of the data in the input space, as the construction of this feature space is only implicit. 

On the other hand, SVM kernels have also been regarded as similarity functions in many contexts to measure 

the resemblance between two patterns, which can be from the same or different classes. However, despite the 

elegant theory of PSD kernels, and its remarkable implications on the performance of many learning 

algorithms, limited research efforts seem to have studied kernels from this similarity perspective. Given that 

patterns from the same class share more similar characteristics than those belonging to different classes, this 

similarity perspective can therefore provide more tangible means to craft or select appropriate kernels than 

the properties of the implicit high-dimensional feature spaces that one might not even be able to calculate. 

This thesis therefore aims to: (i) investigate the similarity-based properties, which can be exploited to 

characterise kernels (with focus on the so-called “orthogonal polynomial kernels”) when used as similarity 

functions, and (ii) assess the influence of these properties on the performance of the SVM classifier. An 

appropriate similarity-based model is therefore defined in the thesis based on how the shape of an SVM 

kernel should ideally look like when used to measure the similarity between its two inputs. The model 

proposes that the similarity curve should be maximized when the two kernel inputs are identical, and it 

should decay monotonically as they differ more and more from each other. Motivated by the pictorial 

characteristics of the Chebyshev kernels reported in the literature, the thesis adopts this kernel-shape 

perspective to also study some other orthogonal polynomial kernels (such as the Legendre kernels and 

Hermite kernels), to underpin the assessment of the proposed ideal shape of the similarity curve for kernel-

based pattern classification by SVMs. 

The analysis of these polynomial kernels revealed that they are naturally constructed from smaller kernel 

building blocks, which are combined by summation and multiplication operations. A novel similarity fusion 

framework is therefore developed in this thesis to investigate the effect of these fusion operations on the 

shape characteristics of the kernels and on their classification performance. This framework is developed in 

three stages, where Stage 1 kernels are those building blocks constructed from only the polynomial order n 

(the highest order under consideration), whereas Stage 2 kernels combine all the Stage 1 kernel blocks (from 

order 0 to n) using a summation fusion operation. The Stage 3 kernels finally combine Stage 2 kernels with 

another kernel via a multiplication fusion operation. The analysis of the shape characteristics of these three-

stage polynomial kernels revealed that their inherent fusion operations are synergistic in nature, as they bring 

their shapes closer to the ideal similarity function model, and hence enable the calculation of more accurate 

similarity measures, and accordingly score better classification performance. Experimental results showed 
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that these summative and multiplicative fusion operations improved the classification accuracy by average 

factors of 17.35% and 19.16%, respectively, depending on the dataset and the polynomial function employed. 

On the other hand, the shapes of the Stage 2 polynomial kernels have also been shown to oscillate after a 

certain threshold within the standard normalized input space of [-1,1]. A simple adaptive data normalization 

approach is therefore proposed to confine the data to the threshold window where these kernels exhibit the 

sought after ideal shape characteristics, hence eliminate the possibility of any data point to be located outside 

the range where these oscillations are observed. The implementation of the adaptive data normalization 

approach accordingly leads to a more accurate calculation of similarity measures and improves the 

classification performance. When compared to the standard normalized input space, experimental results 

(performed on the Stage 2 kernels) demonstrate the effectiveness of the proposed adaptive data normalization 

approach, with an average accuracy improvement factor of 11.772%, depending on the dataset and the 

polynomial function utilized. 

Finally, a new perspective is also introduced whereby the utilization of orthogonal polynomials is perceived 

as a way of transforming the input space to another vector space, of the same dimensionality as the input 

space, prior to the kernel calculation step. Based on this perspective, a novel processing approach, based on 

vector concatenation, is proposed which, unlike the previous approaches, ensures that the quantities 

processed by each polynomial order are always formulated in vector form. This way, the attributes embedded 

in the structure of the original vectors are maintained intact. The proposed concatenated processing approach 

can also be used with any polynomial function, regardless of the parity combination of its monomials, 

whether they are only odd, only even, or a combination of both. Moreover, the Gaussian kernel is also 

proposed to be evaluated on vectors processed by the polynomial kernels (instead of the linear kernel used in 

the previous approaches), due to the more accurate similarity shape characteristics of the Gaussian kernel, as 

well as its renowned ability to implicitly map the input space to a feature space of higher dimensionality. 

Experimental results demonstrate the superiority of the concatenated approach for all the three polynomial-

kernel stages of the developed similarity fusion framework and for all the polynomial functions under 

investigation. When the Gaussian kernel is evaluated on the vectors processed using the concatenated 

approach, the observed results show a statistically significant improvement in the average classification 

accuracy of 22.269%, compared to when the linear kernel is evaluated on the vectors processed using the 

previously proposed approaches. 
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Chapter 1                   

Introduction 

 

This chapter presents the context and rationale of the research work undertaken in this 

thesis. It also highlights the research problem addressed, the aim and objectives, the 

research methodology, and the novel contributions to knowledge introduced by the 

conducted research. 

The chapter starts with a generic background on pattern recognition systems and kernel 

methods, in general and as applied to the Support Vector Machine (SVM) kernel-based 

classification algorithm in particular. The research problem and motivations of this work 

are then clarified, followed by the aim, objectives, and the methodology followed by the 

conducted research. Finally, the main contributions of the work are highlighted, followed 

by the outline of the thesis. 

 

1.1 Background Concepts 

1.1.1 Pattern Analysis and Recognition 

Pattern analysis deals with the automatic search, detection, or recognition of patterns in 

data, and plays a central role in many modern artificial intelligence (AI) and computer 

science problems [1]. Patterns are defined as any characterising relations, regularities, or 

structure in the data. Therefore, by detecting a pattern in some available data, a system can 

expect to make predictions about new (unseen) data coming from the same source which 

produced the data that was originally available. This way, the system is said to have 

acquired some ‘generalization’ power by ‘learning’ something about the source generating 

the data. Generalization is therefore defined as the activity of inferring, from specific 

examples, a general rule which can also be applied to new examples [2]. As such, building 

a model capable of generalizing requires detecting and exploiting regularities (or patterns) 

in the data. 

The general task of pattern analysis or recognition is therefore to find and study general 

types of relations or regularities depending on the task at hand (e.g., clusters, rankings, 

principal components, correlations, classifications) in general types of data (e.g., text 

documents, sets of points, vectors, graphs, images, videos, etc.). There are many complex 
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problems in AI and computer science that can currently be solved using only this approach, 

as it is often difficult or even impossible to specify an explicit standard theoretical or exact 

closed form solution for them (e.g., recognising genes in DNA sequences or recognising a 

face in a photo). Learning systems, therefore, can offer an alternative methodology by 

exploiting the knowledge extracted from a sample of data to infer an approximate solution 

for tackling such problems. In general, this learning approach is usually referred to as the 

“data driven” approach, in contrast to the “theory driven” approach that adopts precise 

specifications for an explicitly defined problem. Examples of problems that can only be 

tackled using this data driven approach are: text categorization, email filtering, gene 

detection, protein homology detection, image classification, handwriting recognition, etc. 

[1]. 

A pattern recognition system is therefore a system that adopts this data driven learning 

methodology to discover patterns in the data, and hence gain the ability to make 

predictions when presented with new data. Pattern recognition is the study of how to 

implement such systems into machines to get them to observe the environment, learn to 

distinguish areas or aspects of interest, and make reasonable decisions about the different 

categories observed [3, 4]. Overall, the best pattern recognizers that are currently available 

are humans, yet it is still not fully understood how humans recognize patterns. 

 

1.1.2 Pattern Classification 

The aim of many pattern recognition systems is classification, in which an observation is 

assigned to one of known predefined pattern classes. In statistical learning methods of 

pattern recognition, where it is mostly assumed that the data is represented in vector form, 

the relations (or patterns) in the data can be represented as classification rules, regression 

functions, or cluster structures. Many of these methods are usually referred to as ‘statistical 

pattern recognition’. On the other hand, ‘syntactical’ or ‘structural pattern recognition’ 

represents an alternative approach that aims to detect classification rules among for 

example strings, which are often represented in the form of grammars or equivalent 

abstractions [1, 3]. A pattern is therefore understood as any relation present in the data, 

whether it is exact or approximate, depending on the nature of the recognition problem at 

hand.The basic design of an operating (machined) pattern classification system usually 

consists of the following main components, as shown in Figure 1.1: sensor or data 

acquisition device, pre-processing, feature extraction and selection, classifier, and post 

processing. 
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Figure 1.1 Main components of a pattern classification system. 

 

The sensor or the data acquisition device (e.g., a camera) aims to gather raw information 

about the surrounding environment or the physical observation of interest, where patterns 

are sought. Some pre-processing is usually carried out on this raw data to assist in the 

better representation of the acquired information and hence facilitate the detection of 

patterns. Examples of these processes include, but are not limited to, separating (within an 

image) the areas of interest from the background or any insignificant information, 

removing noise, and normalizing the data. As the name implies, the feature extraction and 

selection step then aims to extract and select the most appropriate features that 

significantly discriminate the potential classes within the pattern sought and represent them 

in a feature space suitable for the employed classifier. In statistical pattern classification, 

for example, this feature space is an abstract space, where the data is usually represented in 

a vector form, whereby each data input is represented by a set of m features, or attributes. 

This is viewed as an m-dimensional feature vector in a multivariate (or multi-dimensional) 

space, where the number of dimensions in this space is equal to the number of extracted 

and selected features used to describe the input data. 

The classification process then comes at the heart of the pattern recognition system, where 

each input data is recognised as belonging to one of many predetermined classes. As the 

number of classes and the similarity between these classes increase, the pattern recognition 

task becomes more challenging. This is known as the multi-class classification. Binary 

classification, on the other hand, is the case where the feature space contains only two 

classes, and it is a much easier classification task to solve than its multi-class counterpart. 

Some recognition systems also require some sort of post-processing before a final decision 

about the class label of the input data can be made. For example, when more than one 
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classifier is used to solve a multi-class classification problem, a post-processing unit is 

required to combine the decisions of individual classifiers. 

A number of commercial products are already available for use, based on the utilization of 

the above described statistical pattern classification approach, such as: machine printed 

character recognition, speech recognition systems, and automatic number plate recognition 

systems [3]. The process of constructing such operational systems, however, includes 

many challenging tasks, where residing at the core of the classifier is the utilization of a 

learning algorithm that produces the classifier used in the categorization process. This is 

commonly referred to as the training or the learning step. 

In this step, the learning algorithm usually utilizes some available data from the same 

operating environment, known as the training set, to partition the selected feature space 

into class-labelled decision regions, such that examples from the same region share similar 

feature values, and examples from different regions have dissimilar feature values. The 

classification of a new input data includes finding out which decision region this input data 

belongs to and assigning it to that class. As such, this partitioning process involves the 

construction of an abstract function, sometimes referred to as a decision or hypothesis 

function, which separates each of the recognised classes. Statistical learning theory models 

this process as a function estimation problem [5], and the produced function is actually the 

classifier that will eventually be used to classify future data points.  

The input feature space for the learning algorithm should be the same as the one used in 

the classification or operational process, and hence one of the critical steps of the training 

process is also to determine beforehand the best pre-processing, feature extraction, and 

feature selection procedures to be used in a given environment or pattern classification 

problem. 

Following the training step, the classifier is then tested using a separate dataset, referred to 

as the test dataset, whose data points are not present in the original training dataset. This 

test method primarily determines the generalisation ability of the classifier and provides an 

indication about its performance in classifying future data points which were not used 

during the training stage. If the results are not satisfactory (according to a predefined 

performance measure), a feedback strategy might be used to optimize not only the model 

parameters of the learning algorithm, but also the pre-processing and feature extraction or 

selection strategies, if need be, to produce a better classification perfomance. This 

optimization process is usually repeated several times before the overall pattern 

classification system can have a robust performance for a given problem. 
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As such, each of the components of the pattern classification system bears its own 

responsibility towards determining the overall performance of the system. Besides the 

nature and complexity of the environment or the classification problem itself, there are also 

many other system factors and parameters that collectively contribute towards determining 

such a performance. For example, a degradation of the performance could be attributed to 

the misclassification of some, or all of, the new unseen input test samples. As the 

classification of such test samples is carried out using the classifier or decision rule 

constructed during the training stage, this therefore means that such a decision rule may 

not have been constructed properly to separate the different classes in the pattern 

classification problem under consideration. 

The improper construction of a classifier or decision rule, which eventually leads to poor 

generalization ability, can be attributed to many factors. These include, but are not limited 

to [3]: (1) insufficient number of available training samples, (2) noisy or random values of 

the training samples themselves, (3) the number of features is too large compared to the 

number of training samples (the curse of dimensionality problem), (4) the classifier is too 

intensively optimized on the training set (the overtraining or overfitting problem), (5) large 

number of unknown classifier model parameters compared to the number of training 

samples. 

There is an ample amount of research approaches in the literature that try to address each 

of the above-mentioned system problems (which are outside the scope of this thesis). In 

many real-life applications, however, it is usually the complex structure of the patterns, 

which are hidden in the data, which really makes the classification task itself a quite 

challenging problem to solve. In pattern classification terms, this is usually due to 

overlapped or non-linearly separable classes. 

 

1.1.3 Kernel Methods and SVM 

Classifying patterns that are linearly separable represents the first evolution of automated 

algorithms (e.g., the Perceptron) for pattern recognition in the 1960s [1, 2]. Nowadays, 

linearly separable classes represent a relatively easy and a well-founded classification task. 

Non-linearly separable classes, on the other hand, require the construction of more 

complex classifiers to enable their separation in the input feature space, which is a lot more 

challenging than the linear case. Several reasons can lead to the classes being non-linearly 

separable, such as: the actual classes themselves are indeed non-linearly separable, noise 
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intrusion (e.g., during the data acquisition process), poor extraction or selection of input 

features, etc. 

In the mid 1980s, the field of machine learning underwent a ‘non-linear revolution’ to 

tackle this problem with the introduction of an ample of pattern recognition and learning 

algorithms. These include, but are not limited to: neural network (NN) algorithms (e.g., 

feed forward NNs, Multi-layer perceptron NN, Recurrent NN, Back propagation NN, etc.), 

decision tree predictive models (e.g., the iterative Dichotomiser 3 (ID3) and the C4.5 

algorithms), instance-based learning algorithms (e.g., the k-nearest neighbour algorithm 

and RBF networks), and Bayesian classifiers. Such approaches for the first time made it 

possible to efficiently learn non-linear decision rules, and hence deeply influenced the 

evolution of many fields and paved the way for the creation of entire fields such as data 

mining and bioinformatics [2]. However, despite the huge amount of research attracted by 

the powerful setting of the non-linear rules devised by such algorithms, yet, most of them 

were based, to a great extent, on gradient decent and greedy heuristics, as opposed to the 

attractive theoretical elegance and practical convenience of the linear systems of the 1960s. 

As such, most of them frequently suffered from such problems as local minima and 

overfitting [1, 2]. 

It was not until the mid 1990s when the emergence of an innovative class of algorithms, 

known as kernel-based learning methods or kernel methods, managed to introduce a more 

systematic approach to address the problem of non-linearly separable classes. These 

kernel-based learning algorithms utilize techniques from optimization, statistics, and 

functional analysis to achieve maximal generality, flexibility, and performance, both in 

terms of generalization and computational cost [2]. They are explicitly based on a 

theoretical model of learning rather than on loose analogies with natural learning systems 

or other heuristics. Such methods enabled researchers to classify non-linearly separable 

patterns with the efficiency, foundational concept, and computational convenience that had 

previously been a characteristic for linear algorithms [1]. They were also able to overcome 

the problems of local minima and overfitting that were typical to neural networks and 

decision trees, as their training amounts to convex optimization. Moreover, these kernel-

based algorithms have also proved to be effective for a wide variety of data types ranging 

from strings, text documents and images to more complex data types, for example those 

associated with biosequences, graphs, and grammars [1]. 

Kernel methods are now well renowned for tackling several machine learning tasks, as 

their ease of use, theoretical appeal, and remarkable performance have made them a system 
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of choice for many machine learning problems [2]. Research efforts have shown that they 

have been successfully applied to solve a wide range of practical applications from text 

categorization through handwriting recognition, to classification of gene expressions. A 

wide range of algorithms (e.g., kernel principal component analysis (KPCA), and kernel 

Fisher discriminant analysis) have also appeared in the machine learning community as 

successful examples of implementing the kernel-based learning methods [6-8]. The first 

and most popular implementation of the kernel-based approach, however, was the support 

vector machine (SVM), a supervised learning algorithm for pattern classification; which is 

the focus of the research work conducted in this thesis, as will be explained in Section 1.2.  

The principal idea behind this kernel-based class of algorithms emerged from the 

observation that complex (or non-linear) patterns can be mapped to a different structure of 

regularities by changing the representation of the data such that they become easier to 

discover [1, 9]. This mapping process, usually to a higher-dimensional feature space, is 

carried out in the ‘hope’ that in this higher-dimensional feature space the data could 

become more easily separated or better structured. When tackling a non-linearly separable 

classification problem, the kernel-based SVM algorithm, for example, works by utilizing a 

‘kernel function’ that maps the input space to an implicit higher-dimensional feature space, 

where the classes could become linearly separable, and hence easier to classify. Figure 1.2 

illustrates this basic concept using a simple toy binary dataset example. It shows how the 

relation between the two different non-linearly separable classes becomes linearly 

separable when the data is represented in 2D instead of 1D. 

 

Figure 1.2  Illustrative example of the principal idea of the kernel-based SVM algorithm for pattern 

classification. 
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Unlike Artificial Neural Networks (ANNs), which followed a heuristic path, with 

applications and extensive experimentation preceeding theory, the development of SVMs, 

on the other hand, involved sound theory first then implementation and experiments. With 

their introduction in 1995 [10], SVMs marked the beginning of a new era in the learning 

from examples paradigm. Rooted from the statistical learning theory developed by V. 

Vapnik [11], SVMs quickly gained attention from the pattern recognition community due 

to a number of theoretical and computational merits. 

For example, a significant advantage of SVMs is that whilst ANNs can suffer from 

multiple local minima, the solution to an SVM, on the other hand, is global and unique. 

Moreover, they present a simple geometrical interpretation and optimization of the margin 

and give a sparse solution. Furthermore, unlike ANNs, the computational complexity of 

SVMs does not depend on the dimensionality of the input space, and they are also a lot less 

prone to the problem of overfitting. The biggest attribute of SVMs, however, is perhaps the 

utilization of kernel functions which amount to mapping the input data to a higher-

dimensional feature space, where overlapped classes can be linearly separable, as briefly 

explained above. 

 

1.2 Research Problem and Motivations 

Despite these attractive advantages of SVMs, they, however, have some drawbacks. For 

example, they can be abysmally slow, both in training and testing phases, when dealing 

with large datasets, and their employed quadratic programming can sometimes require 

extensive memory in large-scale tasks. The biggest limitation of SVMs, on the other hand, 

is perhaps the choice of the kernel function, and how it can be properly selected (together 

with any associated kernel parameters) to meet the needs of the classification task at hand.  

As can be realized from the toy example illustrated in Figure 1.2, pattern classification 

using SVMs is, therefore, a two-stage approach [1]. The first stage is to map the input data 

to a higher-dimensional feature space, using a suitable kernel function, such that the 

classes become linearly separable. This higher-dimensional feature space is constructed 

implicitly using, what is known as, the ‘kernel trick’ (see Section 2.3.4 for detail). The 

second stage is then to apply one of the standard linear pattern classification algorithms to 

the transformed data. As such, the kernel function represents the key core of the SVM 

kernel-based learning algorithm for pattern classification, and therefore the resulting 

classification performance largely depends on the characteristics of the chosen kernel [12]. 
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Extensive theoretical research has therefore been conducted in order to specify what 

characteristics such a function must have [1, 2, 7-9, 13-15]. This is because a valid kernel 

function is required to provide: (i) the notion of mapping the input space to implicit higher-

dimensional feature spaces (so that linear separability between overlapped classes can be 

improved); (ii) the mathematical guarantee that it calculates the inner product between the 

mapped image vectors in the higher-dimensional feature space (so that the linear SVM 

algorithm can be used to establish linear separating hyperplanes in that space). This dual 

requirement can be expressed in an inner product mathematical form as 

= )(),(),( zxzxk , where ( )  is the mapping function1, and x and z are the input 

patterns. 

To achieve this purpose, the existing literature seems to have reached a generic consensus 

that for a function to be a valid kernel, it needs to be positive semi-definite (PSD), or 

equivalently, meet Mercer’s condition [1, 2, 7, 9, 13, 16]. Moreover, the positive semi-

definiteness property is also said to ensure that the optimization problem employed by the 

SVM algorithm can be efficiently solved using convex quadratic programming, otherwise, 

optimum parameters can be too difficult or computationally expensive to obtain [16, 17]. 

So far, a rich list of kernel functions, or even classes of kernels, have been reported to 

target the solution of many different problems; the most common of these functions are the 

Gaussian radial basis function (RBF), Polynomial, and Sigmoidal kernels [1, 9, 18]. 

At the same time, by calculating the inner-product between the mapped vectors in some 

high-dimensional feature space, as set by the positive semi-definiteness property shown 

above, a kernel function has also been defined as a generalised ‘similarity measure’ tool in 

manifold contexts [9, 16, 19], to calculate the similarity between its two input arguments. 

However, despite the elegant former theory of positive semi-definite kernels as being 

mapping tools to implicit higher-dimensional features spaces, and its remarkable 

implications on the performance of the SVM algorithm in various applications, yet, it 

seems to have dominated over the later definition of kernels as similarity measures. In 

other words, few research efforts seem to have studied SVM kernels from the ‘similarity 

measure’ perspective rather than the positive semi-definiteness point of view. 

Paying more attention to kernels as tools to measure the similarity can, however, enable a 

machine learning practitioner (in the design process) to craft SVM kernels using some 

natural and intuitive ‘similarity-based’ properties (that describe how the input data 

belonging to same or different classes resemble or differ from each other). These are more 

                                                 
1 See Example A.1 in Appendix A for a simple illustrative example. 
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tangible properties than the ‘mathematical’ properties of the implicit high-dimensional 

feature spaces, which one might not even be able to calculate [20-23]. Moreover, 

restricting kernels to positive semi-definite functions may rule out several natural notions 

of similarity that arise in many practical applications, which are not positive semi-definite, 

and yet, can be used successfully for learning to achieve reasonable generalisation levels, 

as demonstrated by some researchers, such as [24-29]. 

The research presented in this thesis addresses the problem of investigating what intuitive 

similarity-based properties can be utilized to characterise SVM kernels when used as 

similarity functions to measure the degree of resemblance between its two input 

arguments, rather than the mathematical properties of the implicit high-dimensional feature 

spaces. Given that a typical similarity function returns a scalar quantity indicative of how 

its two inputs resemble each other (where the larger the similarity, the more alike the two 

inputs are, and vice versa) [30], the thesis explores the utilization of these ‘similarity-

based’ properties to define appropriate criteria of how one would intuitively wish a good 

SVM kernel to perform, and investigates the implications of these properties on the 

resulting SVM classification performance. 

 

1.3 Aim and Objectives 

The aim of the research presented in this thesis is to investigate the utilization of 

appropriate and intuitive similarity-based properties to characterise kernels when used as 

similarity functions to measure the degree of resemblance between its two input patterns, 

and to assess the influence of these properties on the resulting SVM classification 

performance. 

The outreach of this research will therefore open new opportunities to craft or select 

kernels based on how patterns from the same/different classes are similar to (or different 

from) each other, which are more tangible quantities than the mathematical properties of 

the implicit high-dimensional feature spaces that one might not even be able to calculate. 

To accomplish this aim, the objectives of the research were as follows: 

1- Conduct a detailed study on the properties of kernel functions, together with their role 

in kernel-based learning algorithms in general and in the SVM for pattern 

classification in particular. 
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2- Review the existing open problem of kernel function selection and the previous 

approaches that utilize the properties of kernels to devise a series of kernel-

combination strategies that aim to automatically select the most suitable kernel to the 

classification task at hand. 

3- Investigate the characteristics and role of (dis)similarity functions in metric-based 

learning algorithms and their relationship to kernel functions, being defined as 

similarity measures.  

4- Devise appropriate ‘similarity-based’ criteria for SVM kernel functions and 

investigate their potential impact on achieving correct class-label decisions when 

implemented within the kernel-based SVM classification algorithm. 

5- Analyse the effectiveness of utilizing the devised ‘similarity-based’ criteria in the 

calculation of accurate similarity measures between the two input patterns of the 

underpinning SVM kernel function, with focus on the so-called “orthogonal 

polynomial kernels”. 

6- Conduct a comprehensive set of experiments, using suitable benchmark datasets, to 

evaluate the proposed similarity-based approach on the resulting SVM classification 

performance.  

 

1.4 Research Methodology 

A key outcome of the research work presented in this thesis is the development of intuitive 

and easily interpretable similarity-based properties, exemplified by the shape 

characteristics of a kernel, to demonstrate how a typical kernel (being defined as a 

similarity function) should ideally look like when calculating the degree of resemblance 

between its two input patterns, for SVM classification. Motivated by the pictorial 

characteristics of the isotropic stationary class of kernels reported by Genton [18] in 

general, and the Chebyshev kernel plots reported by Ozer et al. [17] in particular, the thesis 

adopted the previously reported orthogonal polynomial kernels (such as the Chebyshev 

[31-33], Legendre [34], and Hermite [35] polynomials) to propose a number of novel 

approaches that investigate how the appropriate utilization of the developed similarity-

based shape properties can effectively influence the performance of the SVM classifier. 

The systematic methodological customization of the proposed approaches using these 

orthogonal polynomial kernels is briefly summarised as follows: 
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▪ First, a comprehensive study and analysis of the role of kernel functions in kernel-based 

methods in general, and as applied to SVM classification in particular, has been 

conducted. The aim of this study was to highlight the identified problem, where the 

utilization of the kernels’ mapping characteristics to implicit high-dimensional feature 

spaces dominates the study of, and the potential benefits that can be gained from, 

utilizing their similarity-based properties. 

▪ A detailed analysis is afterwards conducted on the kernels constructed from orthogonal 

polynomials (e.g., Chebyshev, Legendre, and Hermite) to investigate how their resulting 

SVM classification performance can be explained by their exhibited shape 

characteristics. 

▪ A three-stage similarity fusion framework is developed (in Chapter 4), within which the 

hierarchical construction of these polynomial kernels is formally articulated and their 

resulting SVM classification performance is evaluated. 

▪ An appropriate method is afterwards implemented (in Chapter 5), using a simple 

adaptive data normalization approach, to confine the input data to the regions (within 

the normalized input space), where the polynomial kernels demonstrate the sought after 

ideal shape characteristics. This normalization approach eliminates the possibility of 

any data point to be located outside this region, which, consequently, led to more 

accurate calculation of similarity measures and, hence, improved their resulting 

classification performance. 

▪ Finally, a new perspective is also proposed (in Chapter 6) whereby the utilization of 

orthogonal polynomials is perceived as a way of transforming the input space to another 

vector space, of the same dimensionality, prior to the kernel calculation step. Based on 

this perspective, a novel processing approach, implemented using vector concatenation, 

is proposed which, unlike the previous processing approaches, ensures that the 

polynomial-processed quantities are always formulated in a vector form for any 

polynomial order, and hence maintains the attributes embedded in the structure of the 

original vectors intact. It can also be used with any polynomial function, regardless of 

the parity combination of its monomials, whether they are only odd, only even, or a 

combination of both. Moreover, the Gaussian kernel is also proposed to be used to 

evaluate the similarity between the transformed vectors using the concatenated 

approach (instead of the linear kernel used with the previous approaches), due to its 

more accurate calculation of similarity measures (in terms of its exhibited shape 

characteristics), as well as its renowned ability to implicitly map the input space to an 
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infinite-dimensional feature space. The influence on the SVM classification 

performance, as a result of implementing these approaches, was also assessed 

quantitatively using all the three kernel stages of the developed similarity fusion 

framework and all the polynomial functions under investigation. 

As such, the conducted investigations involved the development of theoretical framework 

models and algorithms, their implementation in software (using MATLAB and a number 

of relevant toolboxes), and their evaluation and assessment using comprehensive and well-

designed experiments, utilizing a number of benchmark datasets, anchored on quantitative 

performance assessment methods.  

The ethical implications of the research presented in this thesis have also been considered 

and it was concluded that it does not result in any issues, and hence there was no need to 

apply for any formal ethical approvals throughout the course of the research programme. In 

accordance with Staffordshire University Ethical Review Policy, this is because: 

1- The research does not involve human or animal participants. 

2- The research does not present an indirect risk to non-participants (human or animal). 

3- The research does not raise ethical issues due to the potential social or environmental 

implications of the study. 

4- The research does not re-use previously collected personal data which is sensitive in 

nature or enables the identification of individuals. 

 

1.5 Contribution to Knowledge 

Having successfully tackled and validated the proposed solutions to the research problem 

identified in Section 1.2, the main contribution of this thesis is multi-faceted: 

1- A new analytical approach is proposed to exploit the potential benefits on the SVM 

classification performance when utilizing appropriate similarity-based 

characteristics, as exhibited by the shape of the underpinning kernels (being thought 

of as a similarity measures), as well as their standard definition as mapping tools to 

implicit high-dimensional feature spaces, as prescribed by their positive semi-

definiteness property. 

2- By adopting the previously proposed orthogonal polynomial kernels, a novel three-

stage similarity fusion framework has been developed. This framework aims to 
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demonstrate that the summative and multiplicative fusion operations, inherent in 

their natural hierarchical structure, synergistically contribute towards the calculation 

of more accurate similarity measures, as demonstrated by their shape characteristics, 

and hence, lead to an improved classification performance. 

3- A new method is also developed, based on an adaptive data normalization approach, 

to show that when the shape of the kernel is as close as possible to the characteristics 

of the ideal similarity function, more accurate similarity measures can be calculated 

than otherwise; and accordingly, better classification performance can be obtained. 

This is achieved by confining the data to the regions within the normalized input 

space where the shape of the polynomial kernels demonstrates the sought after ideal 

characteristics, and hence eliminate the possibility of any data points to be located 

outside this region where their shape oscillates in a wavy pattern. 

4- Finally, a new perspective has also been proposed whereby the utilization of 

orthogonal polynomials is viewed as a way of transforming the input data to another 

vector space, prior to the kernel calculation step. Based on this view, a novel 

processing approach (Referred to in this thesis as the ‘concatenated’ processing 

approach) has also been developed, which, unlike the previous processing 

approaches, ensures that the polynomial-processed quantities are always formulated 

in a vector form for any polynomial order, and hence maintains the attributes 

embedded in the structure of the original vectors intact. The proposed concatenated 

processing approach can also be used with any polynomial function, regardless of the 

parity combination of its monomials. Furthermore, the Gaussian kernel is proposed 

to be used in conjunction with the concatenated approach, instead of the linear 

kernel, due to its more accurate calculation of similarity measures, as exhibited by its 

shape characteristics, as well as its renowned ability to map the input space to an 

implicit high-dimensional feature space. 

To the knowledge of the author, no previous work in the literature has identified or 

addressed the research problem highlighted in this thesis, and no previous work has 

presented the above solutions or approaches for SVM pattern classification, nor have the 

experimental investigations conducted in this thesis ever been done before. As such, the 

comparative analyses, research investigations, and the empirical assessments conducted in 

this thesis are all considered herein as novel and original contributions to the knowledge. 
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1.6 Thesis Outline 

This thesis is organised as follows: 

Chapter 1 presents some generic background concepts about pattern recognition and 

classification in general, and as applied by the SVM kernel-based classifier in particular. 

This presentation is aimed at articulating a narrowing down hierarchy that smoothly drives 

the reader towards the main research problem identified and addressed by the thesis. The 

aim and objectives of the conducted research are afterwards clarified, followed by the 

methodology used in the research and the contributions to knowledge achieved. Finally, 

the thesis organization and outline are herein detailed.  

In Chapter 2, an analytical review of the SVM classifier is presented to elaborate on the 

kernel module within which the work of this thesis is focused on. The characteristics and 

properties of SVM kernel functions are afterwards critically investigated, to highlight the 

main problem identified and addressed by the thesis. 

Chapter 3 then analyses in more detail the identified research problem: namely, the 

utilization of the similarity-based characteristics of kernels, along side with their standard 

definition as mapping tools to implicit high-dimensional feature spaces, as prescribed by 

their positive semi-definiteness property. Based on the definition of a kernel as a measure 

of similarity between its two input arguments, the chapter then defines some appropriate 

criteria, based on the shape characteristics of the ideal similarity function, in terms of how 

one would intuitively wish a kernel function to behave. A detailed comparative analysis is 

then conducted between such an ideal shape characteristic model and the shape exhibited 

by the previously proposed orthogonal polynomial kernels, such as the Chebyshev, 

Legendre, and Hermite kernels, to assess the accuracy of their calculated similarity 

measures and the expected impact on their resulting SVM classification performance. 

The analysis of such polynomial kernels revealed that they are naturally constructed from a 

mixture of summative and multiplicative base kernel building blocks, which synergistically 

contribute towards the calculation of more accurate similarity measures, as demonstrated 

by their shape characteristics. Such behaviour is therefore formally defined within a new 

three-stage similarity fusion framework developed in Chapter 4, whereby the hierarchical 

composite structure of the polynomial kernels is broken down to their individual kernel 

components and the effect on their resulting SVM classification accuracy, based on their 

exhibited shape characteristics as well as their synergistic fusion power, is experimentally 

explored. 
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Chapter 5 then proposes a simple method, based on an adaptive data normalization 

approach, to confine the input data to the regions within the normalized vector space, 

where the employed polynomial kernels demonstrate the sought after ideal shape 

characteristics. Hence eliminate the possibility of any data point to be located outside these 

regions, which could result in the calculation of inaccurate similarity measures, and hence 

lead to a degraded classification performance. The effectiveness of this approach is also 

assessed experimentally using the shape characteristics exhibited by the polynomial 

kernels under investigation. 

Due to the extensive study of the polynomial kernels paradigm (such as the Chebyshev, 

Legendre, and Hermite kernels), Chapter 6 then introduces a new perspective whereby the 

utilization of these polynomials to process the input vectors is perceived as a way of 

transforming the input space to another vector space of the same dimensionality, prior to 

the kernel calculation step. To appropriately implement such a transformation perspective, 

the chapter then proposes a new processing approach, based on vector concatenation, to 

ensure that the processed quantities will always be formulated in a vector form for any 

polynomial order applied, and hence the transformed image vectors will be good 

representatives of their original vectors, as no information will be lost during the 

transformation process. The concatenated processing approach is also designed in a way 

such that it can also be used with any polynomial function, regardless of the parity 

combination of its monomials. The chapter also proposes to evaluate the Gaussian kernel 

on the polynomial-processed vectors, instead of the linear kernel used in previous 

approaches, due to its more accurate calculation of similarity measures, as exhibited by its 

shape characteristics, as well as its renowned ability to map the input space to an implicit 

high-dimensional feature space. The effectiveness of this proposed concatenated approach 

is afterwards experimentally assessed using all the kernel stages of the developed similarity 

fusion framework and all the polynomial kernels under investigation. 

Finally, Chapter 7 discusses the conclusions of the work presented in this thesis and offers 

some directions for future work. 
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Chapter 2                      

Literature Review on the Support Vector 

Machine and the Properties of Kernel 

Functions 

 

2.1 Introduction 

This chapter presents a systematic and critical survey on kernel functions in general and as 

utilized by the SVM kernel-based classifier in particular. The aim is to conduct a deep 

study on the role and properties of kernels to set the scene for the underpinning 

investigations and analytical solutions proposed in this thesis to tackle the identified 

research problem.  

The chapter therefore starts with a quick review of the well established SVM classifier to 

elicit the kernel module upon which the thesis is focused. The characteristics and 

properties of kernels are afterwards detailed with a focus on the legitimate operations (and 

previous research efforts) used to construct more complex kernels from smaller building 

blocks to enable the solution of more sophisticated classification tasks. Framed by this 

study, the identified research problem is afterwards elaborated and the rationale for 

devising its solution is briefly discussed. 

 

2.2 SVM: The kernel-based pattern classification algorithm 

Kernel methods first appeared when applied to solve statistical non-linear classification 

problems [5, 36]. This yielded the Support Vector Machine (SVM) algorithm in 1992 [2, 6, 

10], a supervised learning algorithm that was able to overcome the local minima and 

overfitting difficulties of the previous generation learning algorithms. Since then, the SVM 

has been extensively studied, greatly generalized, and successfully applied to a number of 

different pattern recognition problems, mainly classification and regression [7, 14, 37-46]. 

Due to its elegant characteristics and robust performance, the SVM has attracted the 

attention of a wide community of researchers from many different disciplines to an extent 

that made it the best known element in the class of algorithms adopting the kernel-based 

approach to pattern recognition [13]. 
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2.2.1 SVM for pattern classification 

When training a classifier, it is often desirable to maximize the classification performance 

for the training data [12]. However, if the classifier fits the data too closely, the 

classification ability for unknown data, i.e., the generalization ability, is degraded. This 

phenomenon is called overfitting. Therefore, there must be a trade-off between the 

generalization ability and fitting to the training data. In the pattern classification literature, 

various methods have been proposed to prevent overfitting. One of the main ideas is (as 

applied in support vector machines) to add a regularization term which controls the 

generalization ability of the objective function. 

For a binary classification problem, a support vector machine is trained so that the decision 

function maximizes the generalization ability. This is achieved by utilizing a quadratic 

programming problem that is solved to separate the two classes using an optimal 

separating hyperplane. Therefore, given a set of training examples, each marked as 

belonging to one of two classes, the SVM builds a model that assigns new examples into 

one class or the other. Moreover, the SVM model is built so that the examples of the 

different classes are divided by a clear gap that is as wide as possible. New examples are 

then processed using that model and predicted to belong to a class based on which side of 

the gap they fall on.  

The following sub-sections discuss how this process takes place for the different types of 

training datasets. If the training dataset is linearly separable in the input space, the problem 

is solved by what is known as the hard-margin or linear SVM. This is afterwards extended 

to the soft-margin SVM case where the training dataset is non-linearly separable. In this 

case, the SVM utilizes the so-called kernel function to map the input space to a high-

dimensional feature space to enhance the linear separability in the feature space. This 

mapping process is key to the operation of the soft-margin SVM and is an important 

element behind its remarkable performance in tackling non-linearly separable classification 

tasks.  

 

2.2.2 Hard-margin support vector machines 

Suppose some given data points each belongs to one of two classes, and the aim is to 

decide which class a new data point will belong to. In SVM binary classification, a data 

point is viewed as an m-dimensional vector, and we want to know whether we can separate 

such points in two classes with an (m-1) dimensional hyperplane. This is called a linear 
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classifier. There are, however, many hyperplanes that might be able to classify the data, as 

shown in Figure 2.1. One reasonable choice as the best hyperplane, is the one that 

represents the largest separation, or margin, between the two classes. The SVM finds the 

hyperplane so that the distance from it to the nearest data point on each side is maximized 

[47]. 

 

Figure 2.1 H1 does not separate the classes. H2 does, but only with a small margin. H3 separates them with 

the maximum margin [47]. 

 

Therefore, given some m-dimensional finite training dataset S =  l

iii y
1

,
=

x , where xi  m   

and the associated labels yi = +1 for Class 1 and yi = -1 for Class 2. Each xi is an m-

dimensional real vector. The aim is to find the maximum-margin hyperplane that divides 

the points having yi = +1 from those having yi = -1. Any hyperplane can be written as the 

set of points x satisfying  

<w, x> - b = 0 (2.1) 

where w is the normal vector to the hyperplane and b is a bias term. The parameter 
w

b
 

determines the offset of the hyperplane from the origin, as shown in Figure 2.2. 
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Figure 2.2 Maximum-margin hyperplane and margins for an SVM trained with samples from two classes. 

Samples on the margin are called the support vectors [47]. 

 

If the training data is linearly separable, two hyperplanes can be selected in a way that they 

separate the data and there are no points between them, and then try to maximize the 

distance between them. These two hyperplanes can be described by:  

<w, x> - b = 1 

and 

<w, x> - b = -1 

where the distance between these two hyperplanes, given by 
w

2
, is called the margin. As 

the main objective is to maximize this margin, w  must be minimized. Since no data point 

from S can fall into the margin, the data points need to satisfy the following constraints: 

<w, xi> - b   1 for xi of the first class 

and 

<w, xi> - b   -1 for xi of the second class 

Collectively, for all the dataset points i = 1, …, l, this can be written as  
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( ) 1, −by ii xw  (2.2) 

Consequently, the main task now is to minimize w  so that the margin is as large as 

possible, subject to ( ) 1, −by ii xw . In the SVM, this is achieved by solving the 

following quadratic programming convex optimization problem for obtaining both w and 

b, and hence, the optimal separating hyperplane can be found: 

minimize     ( ) 2

2

1
, ww =bQ  (2.3) 

subject to   ( ) 1, −by ii xw     for all i = 1, …, l. (2.4) 

An important characteristic about the SVM that stems from the above optimization 

problem is the fact that the optimal separating hyperplane is obtained from the two 

hyperplanes that define the maximum margin. This means that the only data points 

required to calculate the optimal separating hyperplane are those touching the margins 

(highlighted in Figure 2.2 as the bold and shaded circles), which are usually a lot less than 

the total number of examples in the training dataset. This means that we can obtain the 

same optimal separating hyperplane even if we delete all the other data points that satisfy 

the strict inequality in (2.4), i.e., those which satisfy only the >1 constraint, and use only 

the data points that satisfy the equality, i.e., =1, constraint. These points are usually 

referred to as the support vectors. An important outcome of this observation is the fact that 

the optimal separating hyperplanes established by the SVM algorithm depend only on the 

number of support vectors, and not on the number of features, whether this be the number 

of features of the dataset in the input space or, as will be shown later, the number of 

features of the mapped dataset to a higher-dimensional feature space. This is the main 

reason why the SVM algorithm is not prone to the problem of the curse of dimensionality. 

On the other hand, the variables of the convex optimization problem given by (2.3) and 

(2.4), which are usually referred to as the primal solution, are w and b. Because w is a 

vector of the same dimensionality (m) as the input data, the total number of variables is 

therefore equal to the number of features plus 1: m+1 [12]. When the number of input 

variables is small, the quadratic programming technique can handle solving (2.3) and (2.4). 

However, as will be discussed later, because we map the input space into a higher-

dimensional feature space, it is therefore important to convert (2.3) and (2.4) into their 
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equivalent dual representation2 whose number of variables is the number of samples in the 

training data instead [12, 48]. 

Another important reason for adopting the dual representation is to prepare the algorithm 

for, as will be shown later, the non-linear mapping process that takes place during the 

‘kernelization’ of the algorithm to enable its application to solve non-linear classification 

problems. In other words, it is the dual representation of the convex optimization problem 

that will formalize the solution in terms of inner products of the training examples. 

This can be achieved by applying the Lagrangian multipliers method that reduces the 

optimization problem to the following dual form: 

maximize Q(α) = 
==

−
l

ji

jijiji

l

i

i yy
1,1

,
2

1
xx     (2.5) 

subject to  
=

=
l

i

iiy
1

0 , and 0i  for i = 1, …, l.   (2.6) 

where α = ( )l ,,1   and i are the non-negative Lagrangian multipliers. 

This formulated dual form of the optimization problem is known as the hard-margin SVM. 

Finally, the decision function can be given by 

=)(xf  sign 







+



byα i

i

ii xx ,
SV

      (2.7) 

where SV is the set of support vector indices and b is averaged over all of the support 

vectors and can be defined as [12] 

( )


−=
SV

,
SV

1

i

iiyb xw .       (2.8) 

The SVM then uses (2.7) to find the label of a new test data x as: 

 Class 1  if f(x) > 0, 

 Class 2  if f(x) < 0.      (2.9) 

                                                 
2 In mathematical optimization theory, duality means that optimization problems may be viewed from either 

of two perspectives, the primal (minimization) problem or the dual problem (the duality principle). 

However, in general for quadratic programming convex optimization problems, the values of the primal 

and dual problems coincide (i.e., are equal) at the optimal solutions. This is called the zero-duality gap. 
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If f(x) = 0, then x is on the boundary and therefore is unclassified. Accordingly, if the 

training data is linearly separable, the region of x where 1 > f(x) > -1 is the generalization 

region [12]. 

 

2.2.3 Soft-margin support vector machines 

The hard margin SVM described in the previous sub-section assumes that the training data 

are linearly separable; i.e., there exists a solution to (2.5). If, however, the data are non-

linearly separable, there is no feasible solution, and the hard-margin SVM is unsolvable. 

In 1995, however, Corinna Cortes and Vladimir N. Vapnik suggested a modified 

maximum margin idea that allows for some examples to be misclassified when non-

linearly separable data are separated by a hyperplane [10]. In simple terms, this idea states 

that: if there exists no hyperplane that can explicitly split the Class 1 and Class 2 examples, 

then the Soft-margin SVM method will choose a hyperplane that splits the examples as 

cleanly as possible, while still maximizing the distance to the nearest cleanly split 

examples. A large margin in this sense would mean how optimum or how clean the 

hyperplane would separate the two classes, as some examples will now have to be allowed 

to fall into the margin. 

This is achieved by introducing what is referred to as non-negative slack variables, 0i , 

which measure the degree of misclassification of data point xi. Using these slack variables, 

feasible solutions always exist. For the training data xi, if 0 < i  < 1, then the data do not 

have the maximum margin but are still correctly classified. However, if 1i , then the 

data are misclassified by the optimal hyperplane. To obtain the optimal hyperplane, in 

which the number of training data that do not have the maximum margin (i.e., the number 

of training data that are misclassified) is minimum, the optimization problem is then 

reformulated to introduce a trade-off between a large margin and a small error penalty. 

This is given in the primal form as 

minimize ( ) 
=

+=
l

i

p

i
p

C
bQ

1

2

2

1
,,  ww      (2.10) 

subject to ( ) iii by −− 1,xw  , 0i    for all i = 1, …, l,  (2.11) 

where C is the margin parameter, known as the penalization parameter, that determines the 

trade-off between the maximization of the margin and the minimization of the 
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classification error. The value of the constant p is selected as either 1 (for linear penalty 

function) or 2 (for quadratic penalty function). When p = 1, the support vector machine is 

known as L1 soft-margin support vector machine (L1 SVM), and when p = 2 it is known 

as the L2 soft-margin support vector machine (L2 SVM). As the L1 SVM is the most 

commonly used in the machine learning literature, the L2 SVM will not be discussed 

further herein.  

Similar to the hard-margin case, the primal form of the optimization problem in (2.10) is 

converted to its dual form counterpart using the non-negative Lagrange multipliers, which 

then reduces the optimization problem to: 

maximize Q(α) = 
==

−
l

ji

jijiji

l

i

i yy
1,1

,
2

1
xx     (2.12) 

subject to  
=

=
l

i

iiy
1

0 , and 0 iC   for i = 1, …, l.   (2.13) 

where α = ( )l ,,1   and i are the non-negative Lagrangian multipliers. The only 

difference then between this L1 SVM and the hard margin SVM is that i  cannot exceed 

C. Also notice that the advantage of using a linear penalty function (i.e., L1 SVM with p = 

1 as mentioned above) is that the slack variables vanish from the dual problem leaving 

only the constant C as an additional constraint on the Lagrange multipliers. 

Similarly, the decision function is also the same as the hard-margin SVM and is given by: 

=)(xf  sign 
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ii xx ,
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      (2.14) 

where SV is the set of support vector indices and b is averaged over all of the support 

vectors as explained before. An unknown data sample x is then classified as:  

 Class 1  if f(x) > 0, 

 Class 2  if f(x) < 0.      (2.15) 

If f(x) = 0, then x is on the boundary and is therefore unclassified, which is the same as the 

hard-margin SVM. 

For this soft-margin formulation and its huge impact in practice, Cortes and Vapnik 

received the 2008 Association for Computing Machinery (ACM) Paris Kanellakis Award 

[47]. 



 25 

2.2.4 Kernelized SVM for non-linear pattern classification 

Although the soft-margin SVM in (2.12) and (2.13) obtains an optimal hyperplane, yet it 

may not have a high generalization ability because the training data is not linearly 

separable. In other words, it is still a linear classifier that is producing a hyperplane that is 

splitting non-linearly separable data. However, having already prepared the algorithm to 

accept only the inner-products in the input space (by representing the optimization problem 

in the dual form as explained earlier in Section 2.2.2), it is now ready to be converted to its 

non-linear classifier version counterpart. Here is where the kernel methods approach is 

implemented in pattern classification as described earlier in this chapter, such that the 

SVM can now be a non-linear classifier instead. 

This idea was first proposed, in 1992, by Bernhard E. Boser, Isabelle M. Guyon, and 

Vladimir N. Vapnik [6] who suggested a way to create non-linear classifiers by applying 

what is known as the ‘kernel trick’ to linear classifiers which produce maximum margin 

hyperplanes. This idea was triggered by the observation that the overlapped classes in the 

input space can become linearly separable (or at least linear separability between them can 

be improved) if they are mapped to a higher-dimensional feature space via a kernel 

function that should still be able to calculate the inner-products between the mapped image 

vectors in this high-dimensional feature space instead of the original vectors in the input 

space. To do this, the inner-product in the linear algorithm is simply replaced by a kernel 

function with specific characteristics. This will then have the effect of fitting a maximum-

margin hyperplane in the transformed high-dimensional feature space rather than the input 

space. As such, the constructed linear hyperplane classifier in the high-dimensional feature 

space is equivalent to the sought after non-linear classifier in the input space, and this way, 

non-linearly separable data can now be classified using the robust generalization power of 

the ‘kernelized’ SVM. 

Therefore, as long as the kernel is a symmetric function that satisfies  

( ) 0,
1,


=

l

ji

jiji khh xx  , for all l, xi, and hi  , (2.16) 

where l takes on a natural number and hi take on real numbers, then this means that there 

exists a mapping function, Φ(x), that maps x into the inner-product feature space, and also 

satisfies 

k(xi, xj) = ΦT(xi) Φ(xj). (2.17) 



 26 

If (2.17) is satisfied, then the condition in (2.16) is also satisfied as follows: 
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  (2.18) 

The condition in (2.18) is important to guarantee that k(xi,xj) is a valid kernel; i.e., it does 

indeed equate to the inner-product between the image vectors in some high-dimensional 

feature space and hence the optimization problem solved by the SVM classifier will be 

convex and the solution found will be unique. This condition is commonly known as the 

‘Mercer’s condition’ and a function that satisfies it is usually referred to as the a ‘positive 

semi-definite’ (PSD) kernel [12]. 

By utilizing the kernel trick, we do not need to treat the high-dimensional feature space 

explicitly, and therefore, the kernel function k(xi, xj) is applied directly to the input space 

both in the training and testing phases. Therefore, using kernels, a non-linear SVM 

classifier can then be created by reformulating the dual form of the optimization problem 

as: 

maximize Q(α) = 
==

−
l
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jijiji
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i kyy
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xx         (2.19) 

subject to  
=

=
l

i

iiy
1

0 ,   and Ci 0    for i = 1, …, l .       (2.20) 

As mentioned earlier, because k(xi, xj) is a PSD kernel, then the optimization problem is a 

concave quadratic programming problem. And because α = 0 is a feasible solution, then 

the problem has a global optimum solution. This is one of the advantages of SVM over 

neural networks, which can have local minima [12].  

As such, the decision function can be given as: 
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and unknown data are classified using the decision function as:  
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If f(x) = 0, then x is unclassifiable. 

It is important to note here that for binary classification, the output of the SVM algorithm 

is one of three possibilities (Class 1, Class 2, and unclassifiable), and not only the two 

binary classes possibilities, as sometimes mistakenly assumed. There are various variants 

of support vector machines available in the literature; and if the word regular support 

vector machine or standard support vector machine is used, it denotes the above non-linear 

version of the L1 soft-margin SVM in (2.19) and (2.21). As this is the most commonly 

used type of SVM (and to be consistent with similar work in the literature), it will be the 

one used in this thesis to develop the solutions proposed for the identified research 

problem.  

To successfully tackle non-linearly separable pattern classification tasks, the process of 

mapping the input space via the utilization of an appropriately constructed kernel function 

is critical to the performance of the SVM classifier. As the work presented in this thesis is 

focused on the kernel module, and to enable the formulation of robust solutions to the 

identified research problem, it was necessary to conduct careful investigation and detailed 

study on the properties of such kernels. This investigation constitutes an important part of 

the work presented in this thesis and is summarised in the following sub-sections.  

 

2.3 Definition and role of SVM kernel functions 

If the candidate function is a valid Mercer’s kernel, this means that the condition in (2.17) 

is also satisfied. This is another important property of kernels that enables their indirect 

calculation of the inner products between two vectors in the feature space which are the 

images of their counterpart original input data points pair, as shown in Figure 2.3. In the 

general setting of kernel-based learning algorithms, if the adopted algorithm is adapted to 

use only the inner products between the input data points, then it can be combined with a 

kernel function that indirectly calculates the inner product between two data points in the 

feature space which are the images of their counterpart original input data points pair. If 

this process is conducted successfully, the algorithm is then said to have been ‘kernelized’. 

As for the SVM, it has been shown earlier in (2.12) how it was adapted to accept only 

inner products. It was therefore possible to ‘kernelize’ it, in the way shown in (2.19), by 
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replacing the inner-product with the kernel function, being also represented in an inner-

product form, though in a different feature space. 

Given a training dataset, the values of these pairwise inner products, computed directly 

from the original data points via the evaluation of the kernel function k, eventually make 

up what is referred to as the kernel matrix which contains all the information required by 

the SVM algorithm to formulate a hyperplane function in the high dimensional feature 

space, during the training phase. It is this hyperplane function that the SVM uses 

afterwards in the testing phase to classify unseen examples that were not originally present 

in the training dataset.  

 

 

 

 

 

 

 

 

Figure 2.3 Embedding the input data into a feature space, using a mapping function Φ, thereby solving the 

non-linearly separable classification problem by mapping the input data into a higher-dimensional feature 

space in which it becomes linearly separable. The kernel function k computes the inner products of the 

mapped data points in the feature space directly from the original input data points. The two classes of the 

training points shown are indicated by the red circles and the blue squares. 

 

As such, kernel functions constitute an important concept throughout the kernel methods 

literature [1, 9, 18, 49]. They have been extensively researched to examine their properties, 

investigate what algorithms can take advantage of them, and their use in general pattern 

recognition applications. The main reason for such large attention to kernel functions is 

because they make possible the use of feature spaces with an exponential or even infinite 

number of dimensions, something that would seem impossible if a reasonable efficiency 

requirement is to be satisfied [1]. 
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2.3.1 Kernels as similarity measures 

The notion of inner products alluded to in the above section constitutes an important aspect 

in the identification of kernels. To formalize the presentation of SVM kernels, consider the 

problem of supervised learning where the input space is denoted by X and the output target 

domain is denoted by Y. If X is a vector space, it is usually a subset of 
m , a non-empty 

set from which the input data is taken; i.e., 

mX   

where the input vectors xi are given as m-dimensional row vectors, each denoted as 

xi = (x1, x2, . . ., xm), 

where m is the number of features. Each row vector in the input space X represents one of 

the input instances (also sometimes referred to as cases, inputs, observations, or patterns3).  

For a supervised learning task, the training set is usually denoted by 

( ) ( )  ( )lll YXyyS = ,,,, 11 xx  , (2.23) 

where l is the number of the training examples xi and yi are the class labels or targets. For 

unsupervised learning, this simplifies to  

  l

l XS = xx ,,1  . (2.24) 

The problem of supervised learning aims to produce a function 

f : X → Y, 

given the dataset S that can be used to predict a value y given an xX. In statistical terms, 

this function f is usually referred to as the estimator, hypothesis, or more explicitly the 

classifier. Without delving into any further statistical analysis, this is usually approached in 

two steps. First, a set of possible candidate hypotheses f is defined. This set is usually 

referred to as the hypothesis space F.  Afterwards, using a defined error criterion, the best 

or optimum candidate is selected from within the hypothesis space F.   

                                                 
3 A large part of the existing literature uses the term ‘pattern’ to refer to the individual observations. Others, 

however, reserve it to refer to the sought after regularities that could be present in the data. The former might 

be the more commonly used in the field of machine learning, however, the latter is probably closer to the 

meaning of the term. For this reason, this thesis will therefore endeavor to stick to the latter meaning.  
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In the simple case of binary classification, there are only two classes and the targets of the 

training set can simply be represented as  1=iy . The problem of pattern classification, 

however, requires the generalization to unseen data points. This means that given a new 

instance xX, the aim is to predict the corresponding label y. Loosely speaking, this means 

that y should be chosen such that both x and its corresponding label y  are in some sense 

similar to the data points and their corresponding labels of one of the classes in the training 

examples [9]. 

It is therefore important to formalise some notions of ‘similarity’ both in the input X and in 

the output Y. Characterizing similarity for the outputs  1=iy  is usually an easy task: in 

binary classification, for example, only two situations can occur: two labels can either be 

identical or different. The choice of a similarity measure for the inputs, however, is a rather 

challenging task and lies at the core of the kernel methods field.  

In the context of statistical pattern recognition, for example, where the input data domain X 

is formulated as a vector space of the input observations, a ‘similarity measure’ would 

typically be characterized as a function that, given two instances x and z, returns a real 

number characterizing how they resemble each other [9]. That is 

k : X   X →   

(x,z) → k(x,z). 

Based on such a definition, probably the simplest similarity measure in this case would be 

the linear dot-product between the two input vectors x and z given by [9]: 


=

==
n

i

ii

T zx
1

, zxzx  (2.25) 

The dot-product here means the projection of x onto z, multiplied by the magnitude of z. In 

other words, how much overlap do x and z have in their feature space; i.e., how similar 

they are to each other. 

Recall that the key role of a kernel function is to calculate the pairwise dot-products of the 

embedded data points in the transformed high-dimensional feature space (as per Definition 

2.1 below), therefore, intuitively, kernels indeed also do arise as generalised similarity 

measure functions because of their definition as dot-products in the so-called feature space 

[9, 12, 49]. 
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Definition 2.1  [1, 9] A kernel k is a function that for all vectors x, z  X satisfies 

( ) )(),(, zxzx =k  (2.26) 

where Φ is a mapping function from the m-dimensional input space X to a higher N-

dimensional feature space F, denoted as 

Φ :  x  
m      Φ(x)  F   

N  (2.27) 

where the choice of the map Φ aims to convert the non-linear relations into linear ones. 

 

Formally speaking, a kernel k is a function that takes two inputs x and z  
m  and 

produces a real number indicative of how similar they are; i.e., k: → mm
. As 

such, if one is looking to solve a particular pattern recognition task, say image 

classification, then a typical kernel should assign a high score to a pair of images that 

contain the same object, and a low score to a pair of images with different objects. 

Similarly, in text processing tasks, for instance, a good kernel would assign a high score to 

a pair of similar strings and a low score to a pair of dissimilar strings. This is basically 

what a kernel function is, however, in order to be used in most common machine learning 

algorithms, such as the SVM under study, there is an additional mathematical condition 

(explained in Section 2.4.2) that also needs to be met by the kernel so that these algorithms 

can work properly. There are a number of equivalent methodologies that can be used to 

check whether or not this condition is met, and, hence, whether a given candidate function 

is a valid kernel; i.e., it corresponds to an inner-product in some high-dimensional feature 

space, as illustrated in the above definition. 

 

2.3.2 Distances and similarity measures in learning algorithms 

2.3.2.1 Why the need for distance and similarity measures? 

A brief review of distance and similarity measures in data analysis has been recently 

conducted by Abou-Moustafa [30]. The author presented a good systematic high-level 

explanation about the need for learning algorithms that can process digitally recorded 

data, in whichever form these could be (e.g., text, speech, images, video, etc.). That is, to 

automatically (i.e., using machines) extract some knowledge and meaningful information 
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from such data that could have been otherwise very difficult, or even impossible, to be 

extracted by humans due to its size and/or complexity. Weather prediction, finger print 

recognition, analysis of genomic data are just few examples of such learning tasks that 

cannot be performed by humans without the help of computing machines that can learn 

from experience. 

To enable such a ‘machined’ learning approach, various learning algorithms have 

historically relied on some notion of distance (or similarity) between the objects of the data 

set, due to their robust ability in revealing the natural groupings, structure, and patterns 

hidden in the data that are typical sought after ‘goals’ by the underpinning learning 

algorithm. The appropriate selection, construction or customization of a faithful distance 

(or similarity) measure for the learning task at hand can improve the effectiveness and 

performance of the employed learning algorithm. As such, when using such learning 

algorithms for a particular problem, the algorithm designer, or the practitioner, is usually 

faced with the question of: What could be a suitable faithful distance (or similarity) 

measure for the dataset at hand? A major part of the research in this area is dedicated to 

answer this question. 

 

2.3.2.2 What are distance and similarity measures? 

These two terms (‘distance’ and ‘similarity’ measures) carry common notions regarding 

how two different objects are ‘distinct from’ or ‘resemble’ each other. As defined by 

Abou-Moustafa [30], a distance function is a measure of the difference (or dissimilarity) 

between two objects from the same dataset. The larger the distance, the more different the 

two objects are (see illustrative simple example shown in Figure 2.4). As such, one would 

expect a suitable distance function to be minimized (ideally to be zero) when the two 

objects are identical, and increased as they get different (i.e., further apart) from each 

other. 

A similarity function, on the other hand, measures the resemblance between two objects 

from the same dataset [30]. The larger the similarity, the more alike the two objects are. To 

reflect this meaning (which is converse to its ‘distance function’ counterpart), one would 

expect a good similarity function to be maximized when the two objects are identical and 

decreased (monotonically) when they differ from each other. 
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Figure 2.4 Distance versus similarity. An illustrative example of two data vectors x and y. The distance 

between them can be measured using the Euclidean distance (the dotted line), whereas the similarity can be 

measured using the dot-product operation [30]. 

 

2.3.2.3 Off-the-shelf distance and similarity measures 

If the data are in the form of vectors or matrices, or have been transformed by feature 

extraction methods to such structures, then various off-the-shelf distance and similarity 

measures can be used [30, 50]. For example: Minkowski distances, the Mahalanobis 

distance, Matsushita distances, the chi-squared distance, the Hamming distance, cosine 

similarity, dot-products, kernels, angles between subspaces, and the Grassmann distance. 

 

2.3.2.4 Adaptive distance functions 

Although such off-the-shelf pre-defined distance and similarity functions have 

demonstrated reasonable success for various applications to date, they are not expected to 

be suitable for all data types. In other words, a pre-defined distance (or similarity) function 

will need to be adapted to the dataset at hand so that it can best capture its intrinsic 

structure and any patterns hidden in it [30]. A number of data-specific and data-dependent 

approaches have emerged (usually known as adaptive distance functions) to tailor the 

employed distance or similarity function to the data under consideration. 

Examples of such adaptive distance functions approaches are the dynamic programming-

based distances, such as the dynamic time wrapping (DTW) distance for time series and 

sequential data, developed originally for speech recognition [30]. A number of methods 

have also been proposed to adapt the metric rule of the k-nearest neighbour pattern 

classification algorithm, such as the flexible metric method by Friedman [51], the 
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discriminant adaptive method developed by Hastie and Tibshirani [52], the locally adaptive 

metric method by Domeniconi et al. [53], and the extremely simple adaptive distance 

measure by Wang et al. [54]. 

 

2.3.2.5 Metric learning algorithms 

Handcrafting a good distance or similarity measure for a specific problem is generally a 

difficult task. This has led to the emergence of an alternative approach, commonly known 

as ‘metric learning’ that aims at automatically learning a metric from the data and has 

attracted the attention of many researchers from within the machine learning (and other 

related fields) community. 

Metric learning directly addresses the problem of learning the appropriate distance or 

similarity metric from the dataset at hand rather than adapting a pre-defined metric for it. A 

good survey about these modern algorithms can be found in [55-57]. Within the kernel 

methods community, the concept of kernel-alignment (originally introduced by [58]) and 

the multiple kernel learning (MKL) technique [59], explained later in Section 2.6.3, can be 

categorized under this metric learning umbrella. 

 

2.3.3 SVM: a similarity-based classifier using kernels 

Referring back to the dual optimization problem in (2.12), one can now realize that the 

optimum value for   will certainly depend on the similarity measures calculated by the 

dot-products of all the pairs of the training data points <xi,xj>, which consequently affects 

the decision being made in (2.14) during the test phase, where the similarities between the 

test sample x and the set of labelled support vectors are also being measured in <x,xi>. 

Replacing the dot-product by the kernel in the kernelized SVM in (2.19) and (2.21), to 

implicitly transform the input space to a higher-dimensional feature space, so that linear 

separability between overlapped classes can be improved, will certainly give us a lot more 

choices (than the crude dot-product), by which the similarity between the inputs can be 

measured, hence enable us to address a lot more of the challenging and complex 

classification tasks that were before very difficult or even impossible to solve using the 

traditional linear approaches. However, within the context of its definition as a similarity 

measure, as explained earlier, a good kernel choice should still produce a high score, when 

its two inputs are similar, and a low score, when they are different. 
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As described by Chen et al. [19], the SVM classifier is therefore said to estimate the class 

label of a test sample based on: 

1- The pairwise similarities between the training samples calculated by the underpinning 

kernel, which is a key factor in determining the optimum model parameters when 

solving the dual optimization problem in (2.19) during the training phase, and 

2- The similarities between the test sample and the labelled set of support vectors in 

(2.21), calculated by the same kernel that was used in the training phase. 

In fact, similarity-based classification has been shown to be useful in solving a variety of 

problems in computer vision, bioinformatics, information retrieval, natural language 

processing, amongst others [19]. A brief review of how similarity functions were adopted 

within similarity-based classification can be found in [19]. Crafting an appropriate SVM 

kernel, based on some intuitive and accurate similarity-based measure criteria, is however 

discussed in more detail in Chapter 3 together with the consequent implication on its 

resulting SVM classification performance. 

 

2.3.4 Non-linear feature mapping using the kernel trick 

The idea behind the kernel trick is that the inner products between the mapped vectors in 

the feature space can be computed more efficiently (i.e., a lot cheaper in terms of 

computation complexity) as a direct function from the input space [7, 9, 60]. This means 

that it is not even required to explicitly compute the mapping Φ. This is what is basically 

achieved by applying a kernel function in the form shown in (2.26). In other words, the 

step of explicitly constructing a feature vector space representation can be by-passed using 

kernel functions. Appendix A1 shows a simple toy example (reproduced from [9]), which 

illustrates how the inner products in the feature space can be effectively calculated directly 

from the input space by means of a suitably chosen kernel. It also shows how the 

complexity of the kernel function can be a lot less than the dimension of its corresponding 

feature space H. 

In fact, the range of valid kernels is very large. Some are given in closed forms; others can 

only be computed by means of a recursion or other algorithms. Surprisingly, in most cases, 

the actual feature mapping corresponding to a given kernel function is even not known; 

only a guarantee that the data can be embedded in some feature space that gives rise to the 

chosen kernel. Therefore, provided the function can be evaluated efficiently and it 
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corresponds to computing the inner products of suitable images of its two arguments, it 

constitutes a potentially useful kernel [1, 9]. Selecting the best kernel from amongst this 

extensive range of possibilities is a critical stage in applying kernel-based algorithms (such 

as SVM) in practice. In most cases, such selection usually relies on our prior knowledge 

about the data and the types of patterns that we can expect to identify [1].  

Hence, if a learning algorithm can be adapted to use only inner products between inputs, it 

can therefore be combined with a kernel function (sometimes referred to as the algorithm 

being ‘kernelized’) that calculates the inner product between the projections of two inputs 

in a feature space. Hence, making it possible to implement the algorithm in a high-

dimensional feature space. This is how the SVM took advantage of this approach as it has 

been previously explained in Section 2.2.4.  

 

2.4 Properties of Kernels 

Within the generic setting of kernel-based algorithms, kernel functions provide a powerful 

and principled way of classifying non-linearly separable patterns using a theoretically well 

understood linear algorithms in an appropriate feature space. This section provides a brief 

study about the fundamental properties that characterise kernel functions. However, as 

indicated earlier, it should be noted that the prior knowledge and experience also play an 

important role in kernel-based learning machines; i.e., kernels must be chosen for the 

problem at hand with a view to capture our prior belief of the potential regularities/patterns 

in the data, showing that a universal machine is not (yet) possible.  

 

2.4.1 Inner products and the Hilbert space 

The kernel-based approach to pattern recognition embeds the data into a high dimensional 

feature space whereby patterns can become linearly separable and hyperplane functions are 

equivalent to non-linear functions in the input space. The use of kernels enables this 

technique to be applied without paying the computational penalty implicit in the number of 

dimensions of the feature space, since it is possible to evaluate the inner product between 

the projections of two inputs in a feature space without explicitly computing their 

coordinates. 

This means that pattern recognition algorithms can be applied to the projections of the 

training data in the feature space through the indirect evaluation of the inner products. A 
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function that returns the inner product between the images of two inputs in some feature 

space is the kernel function. It is therefore obvious that the notion and properties of inner 

products play an important part in the characterization of kernel functions and in the 

verification that a potential candidate function can indeed be a valid kernel.  

 

Definition 2.2 An inner product space can be defined as a vector space X over the reals   

if there exists a real-valued symmetric bilinear map , that satisfies [1]: 

0, xx . 

This bilinear map is known as the inner product; and for the vector space 
m , the standard 

inner product is given by: 
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Inner product spaces are also known as L2 spaces, where p=2 in the following generic norm 

form: 
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If, however, p ≠ 2, then the space is a normed space, but not an inner product space, 

because this norm does not satisfy the parallelogram equality required of a norm to have an 

inner product associated with it. 

 

 

Definition 2.3 An inner product space is usually arbitrary referred to as a Hilbert space H, 

although strictly speaking a Hilbert space requires the additional statistical properties of 

being complete (defined by the Cauchy sequence property) and separable (which ensures 

that the minimum difference between the space elements is always non-negative) [1]. 

 

 

Without delving into unnecessary analytical explanation of these properties, the important 

point to consider here is that these two properties ensure that the transformed inner product 

feature space can be given a coordinate system [1]. However, as the kernel implicitly 

defines such a space, there will be no need to construct the feature vectors.  
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2.4.2 Characterisation of kernel functions 

As there is no need to explicitly construct the feature space (via the utilization of the kernel 

trick) to compute the inner products between the images of the mapped data, there is a 

necessary requirement for creating kernels without explicitly constructing this feature 

space. In other words, we need to have some sort of guarantee that if we used a certain 

function to directly process the input data, then this will indeed be equivalent to their inner 

products in some high-dimensional feature space. The traditional way that has been shown 

so far to verify that a candidate function is a kernel, is that to construct a feature space for 

which the function corresponds to first performing the feature mapping and then 

computing the inner product between the two images [1].  

However, there are few other alternatives available in the literature of kernel methods [1, 

9]. These are equivalent methods of demonstrating that a candidate function is a valid 

kernel. Such methods not only can be used to verify that a function is a kernel, but they can 

also provide solid theoretical tools to create new kernels for complex pattern recognition 

applications. Some of these methods are briefly described in the following sub-sections. 

 

2.4.2.1 Gram and kernel matrix 

In linear algebra, given a non-empty set of vectors,  lS xxx ,,, 21 =  in an inner product 

space, the Gram matrix G is defined as the l   l Hermitian matrix of inner products whose 

entries are Gij = ji xx ,  [1], given by: 
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In the kernel methods context, where a kernel function k is used to evaluate the inner 

products in a feature space with the feature map Φ, the entries of the Gram matrix will be 

the evaluation of the kernel function on each pair of vectors in the dataset of the input 

space as: 

Gij = ),()(),( jiji k xxxx = .  (2.30) 

In this case, the matrix is referred to as the kernel matrix denoted by K as follows 
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Kij = ),( jik xx ,  for i, j =  1, 2, …, l. 

Kij = 
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 (2.31) 

Appendix A2 demonstrates a numerical example to illustrate how such a kernel is 

calculated using a small artificial dataset.  

As illustrated by (2.31), the kernel matrix contains all the information available in order to 

perform the learning step, with the sole exception of the output labels in the case of 

supervised learning [1]. In other words, all the information the pattern recognition 

algorithm can glean about the training data and chosen feature space is contained in the 

kernel matrix together with any labelling information available. It is therefore important to 

bear in mind that it is only through the kernel matrix that the learning algorithm obtains 

information about the feature space and the input training data itself.  

In this view, it is perhaps not surprising that some properties of this matrix can be used to 

assess the generalisation performance of the learning system. These properties, however, 

vary according to the type of the learning task and the subtlety of the pattern recognition 

process. However, in general, it plays a central role both in the derivation of generalisation 

bounds and their evaluation in practical applications [1]. 

The kernel matrix is, therefore, viewed as the information bottleneck that must transmit 

enough information about the data for the algorithm to be able to perform its task. 

Accordingly, it is natural to analyse the properties of these matrices, how they are created, 

how they can be adapted, and how well they are matched to the task being addressed.  

 

2.4.2.2 Kernel matrix and the finitely positive semi-definite property 

The evaluation of the kernel function on the pairs of vectors of an input training dataset of 

size l produces an l   l kernel matrix as shown in (2.31). The kernel matrix is a square 

matrix of the same size l as the number of examples in the dataset. 
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The kernel matrix is also symmetric since Kij = Kji, that is KT = K where the (i, j) entry 

equals the (j, i) entry, for all i and j, where KT is the transpose of K. Another important 

property that underpins the characterisation of both kernel matrices and kernel functions is 

what is known as the finitely positive semi-definite (PSD) property. A matrix K can be 

shown to be PSD in a number of ways [1]; however, below we only highlight the most 

common. 

 

Definition 2.4 Positive semi-definite matrices [1, 9] 

A real symmetric l   l matrix K is positive semi-definite if and only if its eigenvalues  ’s 

are all non-negative (i.e., greater than or equal 0). This condition can only be achieved if 

and only if  

aT K a   0  (2.32) 

for all vectors a m . 

Similarly, a real symmetric l   l matrix K is positive definite, if its eigenvalues are 

positive, or equivalently,  

aT K a > 0  (2.33) 

for a  0. 

 

As such, a matrix can be checked for this property using either the former (eigenvalues) 

condition or the latter (inequality) condition, whichever is easier to apply to the problem at 

hand. 

 

Definition 2.5 Eigenvalues and eigenvectors [1] 

Given a matrix K, the real number   and the vector x are the eigenvalue and the 

corresponding eigenvector of K if 

K x =  x  (2.34) 

The eigenvalues of K are determined by solving the determinant equation:  

det(K- I) = 0 (2.35) 
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where I is the l   l identity matrix 

Il = 
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Investigating this positive semi-definite property of symmetric matrices into kernel 

matrices has revealed the following important proposition. 

 

Proposition 2.1 Gram and kernel matrices are positive semi-definite. This can be shown as 

follows [9]: 

Recalling that  

Kij = k(xi,xj) = )(),( ji xx  ,  for i, j = 1, …, l,  
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Because of the great analytical appeal that this proposition had on the theory of kernels, 

Appendix A3 shows a simple example that aims to clarify how it could be applied. 

 

2.4.2.3 Finitely positive semi-definite functions 

The pairwise evaluation of a valid kernel function on a finite set of points gives rise to a 

positive semi-definite matrix, as shown in the above sub-section. It can therefore be clearly 

observed how the kernel function and its corresponding kernel matrix are intimately 

related. Such a relation is what enables the formalization of an alternative method of 
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characterising and verifying that a candidate function is a valid kernel. In other words, the 

kernel matrix formed by evaluating a valid kernel on all pairs of any set of points is 

positive semi-definite [1]. This can be formally summarised as follows. 

 

Proposition 2.2  Finitely positive semi-definite functions [1] 

A function  

k : X   X →   

satisfies the finitely positive semi-definite property if it is a symmetric function for which 

the matrices formed by evaluating it on any finite subset S =  lxxx ,,, 21   of the space X 

are positive semi-definite [1].  

It is therefore important to ensure that the chosen candidate function is characterised by the 

positive semi-definite property, for it to be a valid kernel. As such, if the function is PSD, 

it can be used to calculate dot-products in the feature space H. This is what can briefly be 

summarised in the following proposition. 

 

Proposition 2.3  Characterisation of kernels [1] 

A function  

k : X   X →   

which is either continuous or has a finite domain, can be decomposed into dot products  

k(x, z) = )(),( zx   

using an implicitly defined feature map Φ within a feature space H, applied to both of its 

arguments followed by the evaluation of the inner products in H, if and only if it satisfies 

the finitely positive semi-definite property [1]. 

Appendix A4 demonstrates a simple example that shows how to apply this proposition to 

verify that a candidate function is a valid kernel.  

It can therefore be summarised that the relation  

k(x, z) = )(),( zx   

means that, given a PSD function k, there exists a mapping function Φ such that the 

evaluation of the kernel on vectors x and z is equivalent to calculating the dot-product 

between Φ(x) and Φ(z) in some (perhaps unknown) Hilbert space. 
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In the literature of kernel methods, however, a number of additional (but equivalent) 

analytical methods have emerged to verify that a candidate function meets the PSD 

property and therefore is a valid kernel. The most common of which are known as the 

Reproducing Kernel Map and the Mercer condition [1, 9, 61-64]. These are briefly 

summarised in the following sub-sections. 

 

2.4.2.4 The reproducing kernel map 

This method works by a reverse engineering approach. It assumes that k satisfies the PSD 

property and proceeds to explicitly construct its corresponding space of functions Fk, 

which then should be an inner product space in which its elements satisfy the real-valued 

symmetric and bilinear properties [1, 9].  

In this sense, given a function k that satisfies the PSD property, its corresponding function 

space Fk is usually referred to as the Reproducing Kernel Hilbert Space (RKHS) H and the 

function that produced it is the Reproducing kernel. Formally speaking, if a symmetric 

function ),( k satisfies the reproducing property in a Hilbert space of functions F 

)()(),,( xx ffk
F
= , 

then k satisfies the finitely positive semi-definite property. 

 

2.4.2.5 Mercer’s condition 

The statistical analysis of the reproducing map described in the previous sub-section shows 

that any PSD kernel can be represented as an inner product in a linear space by explicitly 

constructing a (Hilbert) space that does the job. This sub-section, however, briefly 

describes another tool, based on the Mercer’s theorem, which essentially constructs 

another Hilbert space for a valid kernel that is in fact defined by a one-to-one relation to 

the RKHS [65]. This tool has played a crucial role in the understanding of many kernel-

based learning algorithms, such as SVMs, and provides valuable insight into the geometry 

of feature spaces. Instead of delving into intensive analytical explanation of the 

construction of the Mercer’s map and its corresponding Hilbert space, this section will just 

confine itself to stating the theorem and explaining how it can be used to construct useful 

kernels.  
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The Mercer’s theorem itself dates back to 1909 when Mercer defined the general form of 

inner products in Hilbert spaces [5]. This theorem states that the general form of the inner 

product in a Hilbert space is defined by the symmetric positive definite function k(x, z) that 

satisfies the following: 

0)()(),(  zxzxzx ddffk , (2.37)  

for all functions f(x) and f(z) satisfying the inequality [5] 

 xx df )(2 . 

To be a valid SVM kernel, for any finite function f(x), the condition in (2.37) should 

always be satisfied for the given kernel function k(x, z) [9, 36] . If the kernel does not 

satisfy this Mercer condition, the SVM quadratic programming optimization problem may 

not find optimal parameters, but rather it may find suboptimal parameters [17]. Also, if the 

Mercer condition is not satisfied, the kernel matrix in turn may also not be PSD.  

At the same time, any function k(x, z) satisfying the above Mercer’s condition is a valid 

kernel and can be used to construct non-linear decision functions in the input space that are 

equivalent to constructing optimum separating hyperplanes in some linear high-

dimensional feature space. Furthermore, it has also been shown that Mercer kernels and 

positive definite kernels can both be represented as inner products in Hilbert spaces, and 

therefore can be considered equivalent [9]. This means that the Mercer’s theorem is an 

equivalent formulation of the finitely positive semi-definite property for vector spaces [9]. 

 

2.4.3 Legitimate operations on kernels 

The analysis provided in Section 2.4.2  showed that the function k(x, z) is a valid kernel 

provided that its kernel matrix is positive semi-definite for all training sets S, the so-called 

finitely semi-definite property [1, 9]. This fact enables the manipulation of kernels without 

necessarily considering the corresponding feature space. Provided that the finitely positive 

semi-definite property is maintained, it is guaranteed that we have a valid kernel. That is, 

there exists a feature space for which k is the corresponding kernel function. The intrinsic 

modularity of kernel machines also means that any kernel function can be used provided it 

produces symmetric positive semi-definite kernel matrices. Similarly, any kernel-based 

algorithm can be applied as long as it can accept as input such a kernel matrix together 

with any labelling information.  
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The characterisation of kernel functions and kernel matrices is useful not only for deciding 

whether a given candidate function is a valid kernel. One of its main consequences is that it 

can also be used to justify a series of rules for manipulating and combining simple kernels 

to obtain more complex and useful ones. Such operations on one or more kernels can be 

shown to preserve the finitely positive semi-definiteness property. These also can include 

operations on both the kernel functions and the kernel matrix. In other words, as long as we 

can guarantee that the result of an operation will always be a positive semi-definite 

symmetric matrix, we will still be embedding the data in some inner product feature space, 

as required. 

An example of creating a new kernel from an existing one is provided by normalizing a 

kernel. This has the effect of normalizing the feature space, a process that is usually used to 

take place at the pre-processing step. Given a kernel k(x,z) that corresponds to the feature 

mapping Φ, the normalized kernel k’ is given as:  

k’(x,z) = 
),(),(

),(

zzxx

zx

kk

k
. (2.38) 

Similarly, operations that manipulate the kernel matrix using the finitely positive semi-

definite property can also be viewed as an intermediate processing step designed to 

improve the representation of the data, and, hence, the overall performance of the system, 

before it is passed to the learning algorithm. One simple example is the addition of a 

constant to the diagonal of the kernel matrix. This has the effect of introducing a soft 

margin in classification or equivalently regularisation in regression.  

Therefore, using a family of simple operations, usually referred to as the closure properties 

[1], more complicated kernels can be created from simple building block kernels. The 

approach demonstrates that the new functions are kernels by showing that they are finitely 

positive semi-definite. This is sufficient to verify that the function is a kernel and to sculpt 

an appropriate new kernel for a particular application. A full list of the legitimate kernel 

operations, together with their proofs, can be found in [1] and [9]. Below, however, is just 

a highlight of the main operations that are utilized in this thesis.  

Given that k1(x, z) and k2(x, z) are two valid kernels over the space S = X X, where 

X
m  and a is a positive real constant +a , the following propositions hold true to 

produce new valid kernel functions [1].  
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Proposition 2.4  The multiplication of two valid kernels is also a valid kernel; i.e.,  

k(x, z) = k1(x, z)   k2(x, z)  

is also a valid kernel. Such combination of kernels is often referred to as the Schur product 

which is obtained by getting the tensor product of each of the kernel functions’ matrices, 

and hence the result is also a positive semi-definite matrix. 

Proposition 2.5 The addition of two (or more) valid kernels is also a valid kernel; i.e.,  

k(x, z) = k1(x, z) + k2(x, z)  

is also a valid kernel, which is probably the simplest and most natural operation one can 

think of to combine two existing kernels. Similar to the previous proposition, this again 

stems from the fact that the addition of the respective kernel matrices of the combined 

kernels also preserves the positive semi-definite property.  

Proposition 2.6  The multiplication of a positive real constant by a valid kernel also 

produces a valid kernel; i.e.,  

k(x, z) = a k1(x, z) 

is also a valid kernel, which also preserves the positive semi-definite property, as long as 

+a . 

 

2.5 Selection of the right kernel 

2.5.1 The problem of kernel function selection 

The kernel function is a central and crucial element in the design of a kernel-based learning 

algorithm. It needs to be carefully selected to perform the mapping into the correct feature 

space, such that the sought after linearly separable classes can be formulated. But how can 

kernel functions be selected? What function should one choose in order to achieve the best 

possible representation of the data for a given problem? These questions have brought up 

the problem of ‘kernel function selection’, which, to some extent, still remains a mystery.  

It has already been demonstrated in Section 2.4.2 that kernel functions need to be positive 

semi-definite to enable the implicit establishment of a high-dimensional feature space, for 

which the function computes the corresponding inner products. However, there are many 
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functions that can be shown to preserve this property, so which one is the best? Is there an 

‘ideal’ kernel that can be used to solve any pattern classification problem? 

In fact, the choice of the kernel is an open problem that usually amounts to using our prior 

expectation about the possible patterns hidden in the data that the algorithm is expected to 

learn. As it is not always possible to make the right expectations a priori, it is a common 

practice to search, from within a family of kernels, for the best possible kernel that can 

achieve the best possible representation of the dataset in the transformed feature space. 

Ideally, this is usually empirically inferred from the performance of the adopted kernel-

based pattern recognition system (such as SVM) on a particular dataset.  

The choice of the most appropriate kernel is highly dependent on the problem at hand, 

since it depends on the nature of the patterns or the kind of information we are expecting to 

extract from the data. A polynomial kernel, for example, allows us to model feature 

conjunctions up to the order of the polynomial. The Gaussian kernel function, on the other 

hand, allows to pick out circles (or hyperspheres), in contrast to the linear kernel, which 

only allows to pick out hyperplanes or lines [15]. This means that not all kernels have the 

same data representation power. 

As mentioned earlier, the range of valid kernels is very large, especially if we thought 

about all the different permutations and operations discussed earlier that can be used to 

create new composite kernels from smaller kernel building blocks. Below is a list of the 

most commonly used and traditional kernel functions that are available from the existing 

literature [1, 12, 15]. 

 

▪ Linear kernel 

This is the simplest kernel function given in a dot-product form as: 

k(x, z) = zx, . (2.39) 

It does not, however, amount to any transformation to higher number of dimensions, and, 

hence, it does not help with enhancing linear separability between non-linearly separable 

classes. However, if the classification problem is already linearly separable in the input 

space, there is no need to map the input space into a high-dimensional space, and in this 

case the linear kernel can be used [12]. 
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▪ Polynomial kernel 

The polynomial kernel is the immediate generalisation of the linear kernel raised to the 

polynomial order n where n + . It is usually used in either one of two types: either the 

homogeneous polynomial kernel, given by: 

k(x, z) = ( )nzx,  (2.40) 

or the inhomogeneous polynomial kernel, given by:  

k(x, z) = ( )nc+zx,  (2.41) 

where c is a constant usually equal to 1. 

▪ Gaussian kernel 

This is probably the most commonly used kernel due to its good empirical performance in 

picking up non-linear relations [1, 15]. The Gaussian kernel is an example of the radial 

basis function used in a number of applications, such as neural networks. It is given by: 

k(x, z) = exp ( )2
zx −− , (2.42) 

where the kernel parameter γ = 
22

1


 plays an important role in the performance of the 

kernel and is usually subject to careful tuning to the problem at hand. If   is 

overestimated, the exponential will behave almost linearly, and the higher-dimensional 

projection will start to lose its non-linear power. Conversely, if   is underestimated, the 

function will lack regularization and the decision boundary will be highly sensitive to noise 

in training data [15]. 

The widespread use of the Gaussian kernel is probably due to the high dimensionality of its 

equivalent feature space. The process of constructing the Gaussian kernel stems from the 

use of the Taylor expansion of the exponential function [1]: 

exp(x) = 


=0 !

1

i

ix
i

, 

As such, the Gaussian kernel is actually equivalent to a polynomial kernel of infinite 

degree. Hence, its corresponding feature space is of infinite dimensions with all possible 

monomials of input features with no restriction placed on the degrees.  
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▪ Exponential kernel 

The exponential kernel is the same as the Gaussian kernel but with the square of the norm 

left out. It is also a radial basis function kernel, given by [66] 

k(x, z) = exp ( )zx−− , (2.43) 

where the kernel parameter γ will also still need to be empirically optimized.  

▪ Tan Sigmoid kernel 

The hyperbolic Tangent Sigmoid kernel is also a popular SVM kernels given by [15] 

k(x, z) = tanh ( ) +zx, , (2.44) 

whose two adjustable kernel parameters are the slope α and the intercept constant  . It 

originates from neural networks whereby it was often used as an activation function for the 

artificial neurons. Surprisingly, although the Sigmoid kernel is known to not strictly fulfil 

Mercer’s condition (i.e., Mercer’s condition is satisfied only for some values of α and ) 

[7, 60], yet, it has been reported to perform well in a number of practical applications. A 

more detailed insight into the Sigmoid kernels for SVMs can be found in [67]. 

 

2.5.2 The statistics perspective of kernel classes 

Due to the wide diversity of kernels throughout the different machine learning disciplines, 

Genton [18] conducted an interesting study on positive definite kernels that aimed to 

categorize them based on how they are expressed in terms of the two input vector 

examples x and z. Table 2.1 shows a summary of the kernel categories investigated, 

namely: anisotropic stationary kernels, isotropic stationary kernels, compactly supported 

stationary kernels, locally stationary kernels, non-stationary kernels, and separable non-

stationary kernels. Based on this categorization, one can easily identify which class would 

the SVM kernels mentioned in the previous sub-section belong to. For example, since the 

Gaussian kernel is expressed in terms of the lag vector zx− , it would fall under the 

isotropic stationary kernels category, whereas the homogeneous polynomial kernel, 

expressed in terms of  zx, , would fall under the non-stationary kernels.  
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Table 2.1 Classification of kernel functions from the statistics perspective, as introduced in [18]. 

Stationary kernels 

Locally stationary kernels 
Non-stationary 

kernels 

Separable non-

stationary 

kernels 
Anisotropic Isotropic 

Compactly 

supported 

The kernel 

function depends 

on both the length 

and direction of 

the difference 

vector between 

the two input 

vectors 

 

)(),( zxzx −= Skk  

The kernel 

function depends 

only on the 

magnitude of the 

lag vector between 

the two input 

vectors and not on 

the direction, and 

therefore is only 

function of 

distance 

 

)(),( zxzx −= Ikk  

These are kernels 

that vanish 

whenever the 

distance between 

the two vector 

inputs is larger than 

a certain cut-off 

distance; e.g., the 

spherical kernel is 

compactly 

supported because  

0)( =− zxIk  

when  

− zx  

These are kernel functions that are usually expressed in the 

form of  

( )zx
zx

zx −






 +
= 21

2
),( kkk  

Where k1 is a non-negative function and k2 is a stationary 

kernel. Stationary kernels are a special case of locally 

stationary kernels if k1 is a positive constant. Other special 

cases of locally stationary kernels also include: 

▪ The exponentially convex kernel 

)(),( 1 zxzx += kk  

▪ The white noise kernel 

( )zx
zx

zx −






 +
= 

2
),( 1kk  

where   is the positive definite kernel which is equal to 1 

if x=z and 0 otherwise. 

These are the most 

general class of 

kernels which 

depend explicitly 

on the two input 

vector examples x 

and z. For example, 

the homogeneous 

polynomial kernel 

defined by 

nk = zxzx ,),(  

where n is the 

degree of the 

polynomial kernel. 

Is a special case of 

non-stationary 

kernels expressed 

in the form of  

)()(),( 21 zxzx kkk =

 

where k1 and k2 

are stationary 

kernels evaluated 

separately on the 

two input vector 

examples x and z, 

respectively.  

 

 

 

 

 

 



 51 

Genton’s study on the classes of kernels was conducted from a statistics perspective 

whereby he utilized the spectral representation theory to show how positive definite 

kernels can be constructed in each class. However, he was still not able to advocate which 

kernel, or classes of kernels, could be useful to certain applications or best suited to target 

the solution of a particular problem. Of particular interest to the work of this thesis (as will 

be discussed later in Chapter 3), however, is the study he conducted on the isotropic 

stationary kernels (which are explicitly defined in terms of the lag vector zx− ) and the 

graphical examples he demonstrated for them, such as the circular, spherical, rational 

quadratic, exponential, Gaussian, and wave kernels. These are replicated in Figure 2.5 and 

Table 2.2 below, where   is the kernel parameter. 

 

Figure 2.5 Examples of isotropic stationary kernels, as illustrated by [18]: (a) circular; (b) spherical; (c) 

rational quadratic; (d) exponential; (e) Gaussian; (f) wave. 
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Table 2.2 Examples of commonly used isotropic stationary kernels, as illustrated by [18]. 

 

 

Given that the norm of the isotropic kernels zx − defines the distance between the two 

input vectors x and z, it identifies a straightforward indication as to what extent the two 

examples are closely related. In statistical pattern classification terms, this provides a 

measure about how far away these two vectors are from each other and, accordingly, how 

similar they are to each other, and as such, as to whether or not they belong to the same 

class. Given that kernels are also considered as measures of similarity, where the higher the 

similarity, the more alike the two vectors are (and vice versa), as discussed earlier in 

Section 2.3.1, the shape characteristics (as represented by these isotropic kernels, for 

example) can be well utilized to investigate what further properties an SVM kernel would 

also need to exhibit when measuring the similarity between its input patterns, and hence, 

aid in the decision process as to whether or not they belong to the same class. This subject 

is not investigated in Genton’s work and will be discussed in more details in Chapter 3 

within the context of the solutions proposed in this thesis.  
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2.6 Kernel fusion via hybridization and multiple kernel 

learning 

Despite the long list of kernels within each of the classes mentioned in the previous sub-

section, it is still difficult to explicitly determine which kernels are best suited to a 

particular problem. Moreover, there are many complex pattern classification applications 

that cannot be handled easily by a single kernel. It was therefore a natural practice for 

researchers to investigate how would a combination of kernels help to tackle complex 

pattern classification problems, especially because of the readily available salient algebraic 

properties, represented by the ‘closure properties’ discussed earlier in Section 2.4.3, that 

admit the legitimate combination of kernels while still preserving their semi-definite 

properties. The ‘multiplication’ and ‘summation’ properties (defined by Propositions 2.4 

and 2.5, respectively), seem to be the two most commonly used approaches adopted for 

creating kernel combination strategies in the literature of this specialised field. 

Accordingly, the two main streams that appeared in this area were mostly the linear and 

non-linear kernel combination. 

For example, Tan et al. [68] were amongst the firsts to utilize the summative and 

multiplicative closure properties of Mercer kernels to construct a hybrid kernel from the 

existing common kernels via the non-negative linear combination and the non-linear 

product of Mercer kernels, and come up with a more flexible and efficient kernel for 

SVMs. They conducted some experiments on the hybrid SVM kernel constructed from 

both the linear combination and the non-linear product of the cubic polynomial kernel (n = 

3) and the Gaussian kernel. Their reported results revealed that the hybrid kernel is 

consistently superior in terms of classification performance compared to when each of the 

individual kernels are used on their own. 

A similar work conducted by Song et al. [69] analysed the areas where different kernels 

could provide complementary information about different aspects of the data, and 

accordingly defined kernels in two categories: global kernels (e.g., the linear kernel), 

where samples far from each other can affect the value of the kernel function, and hence, 

are better at extracting global features of data; and local kernels (e.g., Gaussian) that only 

allow samples close to each other to influence the value of the kernel function and hence 

they are good at extracting local features of data, but short at extracting global features of 

samples. As such, the authors proposed the construction of an additive compound kernel, 

named ‘CombKer’, from both the linear and Gaussian kernels, in the form of: 
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where 10    ,    , 

to take advantage of the good prediction ability of the linear kernel, as well as the good 

learning ability of the Gaussian kernel. Again, their experimental results revealed that the 

CombKer outperforms the single individual kernels in terms of classification accuracy. 

Similar investigations were also reported in [52] and [70], whereby the linear summative 

combination of two or more commonly used kernels (e.g., Polynomial, Gaussian, and 

Sigmoid) experimentally shown to consistently outperform the classification performance 

of the single individual kernels. Non-linear combination techniques of kernels have also 

shown promise in some other reported work, such as [71] and [72]. 

The approach of kernel combination or hybridization has probably emerged as a result of 

being motivated by the information fusion theory, as defined, for example, by Dasarathy 

[73]: “Information fusion encompasses the theory, techniques and tools conceived, 

developed, and employed for exploiting the synergy in the information acquired from 

multiple sources (sensors, databases, human sources, etc.) such that the resulting decisions 

or actions are in some sense better (qualitatively or quantitatively, in terms of accuracy, 

robustness, etc.) than what would be possible if any of these sources are used individually 

without such synergy exploitation”. Within the context of this definition, researchers all 

over the world have been making important contributions to this field in a variety of topics 

and targeting to solve a range of problems in different applications and disciplines. These 

include, but are not limited to: defence and military applications, such as automatic target 

detection, tracking, identification, and recognition [74, 75], anti-personnel landmine 

detection [76], guidance for autonomous vehicles [77]; and non-military and civilian 

applications, such as industrial measurements and testing [78], remote sensing [79], robotic 

applications [80, 81], medical imaging and diagnosis [82, 83], etc. 

 

2.6.1 Classifier fusion 

Amongst all the previously mentioned applications that benefited from the information 

fusion concept, the pattern recognition or classification community is also not an 

exception. Traditionally, pattern recognition systems used to focus on designing only one 

classifier to achieve the best possible classification performance for the task at hand. 
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However, having realised the benefits of fusion, a vastly growing literature on modern 

pattern classification techniques has already adopted the same concept in utilizing a 

combination of classifiers and fusing their ‘opinions’ [84, 85]. Experimental investigations 

revealed that different classifier designs could potentially offer complementary information 

about the patterns to be classified, and hence, if appropriately integrated or fused together, 

could improve the performance of the classification task at hand [86]. A bulk of research 

has also shown that many complex classification problems can only be reliably solved by 

fusing the experiences of multiple classifier models together. As such, these observations 

motivated the research on combining classifiers so that not to rely on a single decision-

making scheme. Instead, all designs are to be combined or fused together to collectively 

contribute towards achieving a better consensus decision. 

To date, various classifier fusion schemes have been developed and shown to outperform a 

single best classifier. Coarsely, these schemes could be classified according to whether the 

fusion process is taking place at the input (i.e., features) or the output (i.e., decisions) of the 

classifier. Feature fusion strategies deal with the selection and combination of features to 

remove redundant and irrelevant features that could confuse the classifier and cause it to 

poorly perform. The resulting set of features is then fused together to obtain a better 

discriminative feature set, which is then fed to a classifier to obtain the final result [87]. In 

decision fusion, on the other hand, an ensemble of classifiers (which could be of the same 

or different type; e.g., k-nearest neighbour, neural network, SVM, etc.) is usually used and 

their outputs merged together by various methods to obtain the final output. A good review 

of the techniques and algorithms devised within each of these categories can be found in 

[88]. 

 

2.6.2 Kernel fusion 

By analogy, the use of different SVM kernel functions amounts to the construction of 

different classifier models that captures different aspects of the data. As such, similar to the 

classifier fusion mentioned in the previous sub-section, the use of different kernels can also 

provide complementary information about the input data, and therefore the performance of 

the classifier constructed from multiple kernels fused together would be expected to 

outperform that of a single kernel. 

Given that the kernel function is the element that defines how the SVM classifier model 

will be formulated, combining or fusing kernels is therefore perceived to be analogous to 
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the approach of combining classifiers, with the obvious difference of combining the heart 

of the classifiers rather than their peripheral inputs or outputs. Consequently, the kernel 

methods research community has also started to realize the benefits of combining kernel 

functions and apply the same concept in kernel-based learning algorithms to fuse or 

combine them together. An interesting study, conducted by Lee et al. [89], comparing the 

two approaches (i.e., kernel combination versus classifier combination) has revealed that 

the former approach is usually preferred over the latter when a dataset has a varying local 

data distributions. However, classifier combination methods are sometimes more stable 

with small size training datasets. 

A crucial question, however, was how to combine kernels whilst maintaining their positive 

semi-definite properties intact. Fortunately, a good answer to this question was provided by 

the salient ‘closure properties’ of positive semi-definite kernels, as explained earlier in this 

section, which permits the construction of more complicated kernels from simpler building 

blocks using a number of methods, without affecting their Mercer’s properties [1]. 

 

2.6.3 Multiple kernel learning (MKL) 

One of the main drawbacks of the SVM is that the selection of the right kernel to solve a 

certain task has always relied on the experience of the user and his a priori knowledge of 

the processing data and the problem at hand. In practice, users usually specify a family of 

kernels and use the training data to select the kernel that scores the best performance, a 

problem which is known as learning kernels [72]. This is, however, very time consuming 

and researchers started to realize that there is an increasing demand to automate the process 

of automatically selecting the right kernel for a given application rather than leaving it to 

the user’s choice. Recent advances in kernel combination research have managed to move 

a step forward towards achieving this goal, by providing extensive theoretical analysis of 

this problem both in classification and regression. 

It has been noticed that the kernels’ closure properties also permit the use of weights (as 

defined by Proposition 2.6), whilst still retaining their semi-definite properties intact [1]. 

This means that the construction of linear and/or non-linear combinations of kernels could 

be weighted, and hence assign an ‘importance’ coefficient to each kernel. Although the 

choice of the best kernel that suits a certain classification task is not yet a completely 

solved problem, recent advances in optimization strategies showed that these weights can 

be automatically learnt from the training data at hand [90]. And hence, in an indirect way, 
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by calculating the best/optimum weights, one can determine the most important kernel to 

be used to solve a certain classification task from an ensemble of kernels being ‘weighted’ 

combined (linearly and/or non-linearly).  

Lanckriet et al. [91] were amongst the firsts to investigate this subject by adopting a semi-

definite programming approach to automatically learn the weights of a linear kernel 

combination in the form of a convex combination of basis kernels, as: 

),(),(
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and M is the total number of kernels combined and i are the assigned weights. Lanckriet 

et al.’s work have paved the way to create a series of similar approaches in a variety of 

optimization strategies addressing the problem of not only automatically learning the 

combination of weights from the input training data, but also the hyperparameters of the 

associated discriminative classifier [71, 92-96]. This work has amalgamated under a 

relatively new and interesting research topic known as Multiple Kernel Learning (MKL). 

A good review of the several MKL approaches proposed in the literature can also be found 

in [59]. Targeting the same goal, similar work adopting genetic programming and 

evolutionary strategies has also showed promising results in [97] and [98]. 

Whichever MKL methodology is adopted, the calculated weights would depend on the 

training dataset (i.e., the problem at hand). As such, some of the kernels in the adopted 

ensemble would be highly important at some datasets and least important at others, which 

is what the weights can reveal. While the use of hybrid or a combination of kernels 

demonstrates improved classification performance in many occasions, this is done at the 

expense of more parameters to be determined by solving a series of additional optimization 

problems, which results in a higher computation complexity and longer computation time. 

However, it reduces the problem of kernel selection to the task of determining the weights 

rather than the kernels; i.e., by automatically learning the best weights that suit the 

classification task at hand, one is therefore able to automatically determine which kernel is 

best suited to a specific problem, and hence move a step forward in solving an important 

open problem. 
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2.7 Summary 

This chapter presented a survey on the SVM classification algorithm, together with a 

critical analysis and study of the properties of kernel functions which it adopts to tackle 

non-linearly separable classification problems. The aim was to highlight the main research 

problem addressed by the thesis, where the use of kernels as similarity functions has been 

overlooked in previous literature. The chapter also briefly analyzes previous kernel 

combination strategies, within the context of information fusion; a concept which will play 

a central role in the solution devised by the thesis (especially in Chapter 4) to address the 

identified research problem.    

As such, if this problem is addressed properly, researchers would therefore be able to craft 

kernels using some natural and intuitive ‘similarity-based’ properties (which describe how 

the examples belonging to the same or different classes resemble (or differ from) each 

other) which are more tangible quantities than the ‘mathematical’ positive semi-definite 

properties of the implicit high-dimensional feature spaces which one might not even be 

able to calculate. Moreover, restricting kernels to positive semi-definite functions may rule 

out several natural notions of similarity that arise in many practical applications which are 

not positive semi-definite, and yet can successfully be used for learning to achieve 

reasonable generalisation levels. 

The research work presented in this thesis therefore addresses this problem by utilizing the 

SVM kernel as a tool to measure the similarity between its two input vector arguments, 

alongside with its standard definition as an implicit mapping tool to higher-dimensional 

feature space, as prescribed by its positive semi-definitness property. As such, the 

subsequent chapters explore what appropriate similarity-based properties can be exploited 

to characterise SVM kernels, when used as similarity functions, and to assess the influence 

of these properties on the SVM classification performance. 
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Chapter 3                                                               

Proposed Similarity-Based Characteristics 

for SVM Kernel Functions 

 

3.1 Introduction 

This chapter aims to highlight the importance of studying kernel functions in terms of their 

definition as similarity measures alongside with their standard definition as implicit 

mapping tools to high-dimensional feature spaces using the positive semi-definiteness 

property (or Mercer’s condition). This study will enable a machine learning practitioner to 

design kernels in terms of some natural and intuitive ‘similarity-based’ properties which 

are more tangible quantities than the ‘mathematical’ properties of the implicit high-

dimensional feature spaces that one might not even be able to create. 

The chapter presents a theoretical investigation on kernels, when used to measure the 

similarity between its two input instances, for pattern classification by SVMs. It proposes 

some appropriate and intuitive criteria, based on how the shape of a kernel should typically 

look like, when measuring the similarity between its inputs. Motivated by the previously 

proposed plots for the Chebyshev kernel, the chapter then adopts the orthogonal 

polynomial kernels paradigm (such as Chebyshev, Legendre, and Hermite kernels), to 

inform the underpinning theoretical analysis of the proposed similarity-based shape 

characteristics, and to assess their effectiveness in aiding the SVM classifier to achieve 

more correct classification decisions.   

 

3.2 The need for intuitive kernel-design criteria 

3.2.1 Why positive semi-definite kernels? 

It has been explained in Chapter 2 how a positive semi-definite function k corresponds to 

the inner product of the images of the input data (under some mapping function  ) in 

some high-dimensional feature space, as: 

= )(),(),( zxzxk . (3.1) 
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This observation enabled the ‘kernelization’ of the soft-margin SVM4, by directly 

replacing the inner product in its dual optimization problem by another function5 that is 

proven to be positive semi-definite (or equivalently meet Mercer’s condition), as positive 

semi-definite functions are also inner products but in another high-dimensional space. 

Although this mapping to the high-dimensional space is never explicitly performed in 

practice6, it can enhance the linear separability of the overlapped classes in the input space, 

when the number of dimensions increases7. As such, the implicit mapping to high-

dimensional spaces, embedded in the utilization of positive semi-definite kernels, enables 

solving non-linearly separable classification problems in the input space by calculating 

linear decision boundaries in the high-dimensional feature space, where the classes can 

become linearly separable. This is how the kernelized SVM has gained its popular non-

linear classification power via the adoption of a positive semi-definite kernel function that 

has the effect of implicitly mapping the non-linearly separable classes in the input space to 

a higher-dimensional feature space where they can become linearly separable, and hence 

easier to classify. 

Extensive theoretical and mathematical research have been conducted in order to specify 

what characteristics such a kernel must have, and the existing rich literature seems to have 

reached a generic consensus that it does indeed need to be positive semi-definite (or 

equivalently meet Mercer’s condition) to enable the direct replacement of the inner product 

in the dual optimization problem and, at the same time, provide the notion of implicit 

mapping to high-dimensional spaces, where classes can become linearly separable. The 

positive semi-definiteness property also ensures that the SVM can be efficiently solved 

using convex quadratic programming, otherwise convex solutions can be very challenging 

to achieve8 [16]. 

 

                                                 
4 And many other learning-based algorithms that are configured to accept only inner products between the 

input data. 
5 See Eqs. (2.12) and (2.19) in Chapter 2. 
6 Because of the kernel trick that enables the kernel function to be applied directly to the input data, as 

explained in Section 2.3.4. 
7 See for example Figure 2.3 in Chapter 2 and Figure A.1 in Appendix A, and the popular youtube video in: 

https://www.youtube.com/watch?v=3liCbRZPrZA&list=PLqS2sO7F2t3V0T25Aoj4-ScgHJqJ7aUG0 
8 Although some research, such as [19, 23-29], were actually able to demonstrate that indefinite similarity 

functions can also achieve reasonable generalisation levels and, hence, can successfully be used for learning, 

arguing for the need for the kernel to be only restricted to positive semi-definite functions. 

https://www.youtube.com/watch?v=3liCbRZPrZA&list=PLqS2sO7F2t3V0T25Aoj4-ScgHJqJ7aUG0
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3.2.2 Positive semi-definite versus similarity measure kernels 

Being defined as inner products in some high-dimensional space, positive semi-definite 

kernel functions have also been defined as legitimate ‘similarity measure’ tools in many 

contexts [9, 16, 19]. However, limited efforts seem to have studied kernels from the 

‘similarity measure’ perspective rather than the positive semi-definiteness point of view. 

Amongst the few who actually started to recognize this deficiency, is the line of work of 

Balcan et al. [20-22] and Kar et al. [23], who realized the drawbacks of limiting the kernel 

studies to only their implicit mapping theory defined by the positive semi-definite 

property. For example, some of the reported drawbacks include: 

1- The theory does not directly correspond to one’s intuition of what a good kernel 

should offer as a good ‘measure of similarity’. As such, it may be difficult for a 

domain expert to use the theory to construct or customize an appropriate kernel (as a 

similarity measure tool) for the learning task at hand [20, 21, 99]. 

2- Different types of kernel functions, if viewed as similarity functions, could describe 

different notions of similarity between objects, which does not correspond to any 

intuitive or easily interpretable high dimensional representation. This is due to the fact 

that the underlying high-dimensional feature space is usually not apparent in ‘natural’ 

representations of the data in the input space, as its construction is only implicit [20, 

21, 99]. 

3- It can sometimes be unsatisfactory and unclear to explain the effectiveness of a 

learning algorithm in terms of the properties of an implicit high-dimensional feature 

space that one might not even be able to calculate. There is also a prosaic explanation 

of what it is that makes a kernel useful for a given learning problem [20]. 

4- The requirement of positive semi-definiteness may rule out several natural notions of 

similarity that arise in many practical scenarios that are not positive semi-definite. In 

other words, many practical similarity functions do not actually satisfy the 

mathematical properties of an inner product [19], as defined by the positive semi-

definiteness property or the Mercer’s condition, and thus, the subsequently produced 

similarity matrix can be indefinite. For this reason, some methods have been proposed 

to modify similarities into kernels [19, 100], for example by applying some spectrum 

transformation procedures (such as Spectrum Clip, Flip, Shift, and Square) to the 

similarity matrix to change it to a positive semi-definite matrix. However, these 
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methods can be quite complicated and could require substantial work, possibly 

reducing the quality of the function, to coerce it into a ‘legal’ form [20]. 

For these reasons, Balcan et al. [20-22] developed a theory for learning with similarity 

functions that addresses a number of these issues. It is more general and in terms of more 

tangible quantities than the standard theory of kernel functions. It is also based upon some 

natural and intuitive ‘similarity-based properties’ that do not require reference to implicit 

high-dimensional spaces, nor do they require that the similarity function be positive semi-

definite or even symmetric. Simply put, their approach is based on developing a 

mathematical definition of a ‘goodness’ criterion that describes a notion of what it means 

for a pairwise function to be a ‘good’ similarity function and how it should behave. This is 

basically stemming from the idea that the ‘output’ of the similarity function should be 

indicative (as one might intuitively want it to be) about the fact that data examples 

belonging to the same class are ‘expected’9 to be more similar to each other than those 

belonging to different classes. In other words, the ‘intra-class’ similarity should be 

sufficiently large compared to the ‘inter-class’ similarity. If a similarity function satisfies 

such a ‘good’ criterion, then, given l training examples, there must exist a linear separator 

that has a specifiable error at some maximum margin. By this way, Balcan et al. [20-22] 

were able to show why a kernel function under the usual definition can also be a good 

similarity function under this ‘goodness’ definition. Such a kernel-to-similarity translation 

is therefore regarded as the first formal theoretical justification to the standard intuition 

about kernels and to their good empirical performance. 

A direct implication of the theory proposed by Balcan et al. is that one can think (in the 

design process) of the usefulness of a kernel function in terms of more intuitive ‘similarity’ 

properties that can be applied directly to the data in their original input space without 

needing to refer to implicit mapping to high-dimensional feature spaces. The work 

presented in this thesis follows some footsteps akin to that of Balcan et al. to investigate 

some further intuitive characteristics that should naturally be embedded in kernels as 

similarity functions based on their shape properties. It studies how similarity measure 

kernels should graphically look like and adopts the previously proposed orthogonal 

polynomial kernels as an example to explore the implications of their shape characteristics 

upon the resulting SVM classification performance. 

 

                                                 
9 Hence the repeated calculations of the probabilistic expectations E in their theory. 
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3.3 Intuitive shape properties of similarity functions 

Being regarded as similarity measures, it has been explained in Section 3.2.2 why some 

researchers, such as Balcan et al. [20], advocate the need for thinking about the usefulness 

of a kernel function in terms of more intuitive ‘similarity-based’ properties instead of its 

‘mathematical’ properties as defined by the Mercer’s (or positive semi-definite) condition. 

However, although Balcan et al. [20] developed a number of alternative mathematical 

conditions, based on one’s intuition of what a similarity function is expected to achieve, it 

was still not very clear what such kernels could be, or how to construct them. There is also 

a lack of empirical investigations to validate their theory and explore if it actually holds 

true. 

The work presented in this thesis is inspired by such ‘similarity-based’ intuitive 

perspective. Unlike previous work, however, the thesis addresses this subject from more 

tangible quantities stemming from the shape characteristics of the kernel as dictated by the 

definition of similarity measures. In other words, the investigations presented herein are 

mainly based on how the typical kernel shape should look like, being thought of as a tool 

to measure similarity between two input vectors. This is thought to provide a more tangible 

and straightforward resource to readily help the designer of the SVM kernel to intuitively 

either select or adapt an appropriate kernel for the dataset at hand. 

 

3.3.1 Ideal shape characteristics of kernels as measure of similarity 

Kernel-based learning algorithms, such as the SVM for pattern classification (which is the 

subject of study in this thesis), utilize a kernel function to measure the similarity between 

two input objects [30]. It can be seen as a generalization for the inner-product operation in 

vector spaces. As explained in Chapter 2, the function does so by computing the inner-

product between the images of two input vectors projected into some high-dimensional 

feature space. Being considered as a similarity measure between its two input vector 

arguments x and z, an SVM kernel is expected to follow the same typical definition of 

‘similarity functions’ mentioned in Section 2.3.2.2; i.e., its value increases, when the two 

vectors are more similar to each other (and vice versa), and be maximized, when the two 

vectors are identical to each other. In pattern classification, this would typically mean that 

it should assign a higher similarity score to any pair of vectors that belong to the same 

class than it does to any pair of vectors from different classes [101]. This would be the case 

if the implicit mapping by the kernel function brings similar objects close together and 

takes dissimilar objects apart from each other in the higher-dimensional feature space. 
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Assuming that input vectors belonging to the same class usually share more similar 

characteristics than those belonging to different classes, and given that the pairwise 

calculation of the SVM kernel is essentially a scalar quantity (reflecting the degree of 

similarity between its two input vectors), it would be expected that the calculated kernel 

value is high, when its two input vectors are highly similar (and therefore belong to the 

same class), and it is maximized when they are identical, and it decreases monotonically10 

as they depart away from each other. 

One can depict these intuitive characteristics into a graph of what such an ideal kernel 

should look like by thinking of it as a bell-like shape curve if plotted against the absolute 

length (or magnitude) of the lag vector between the two input vector arguments zx − . In 

a typical normalized vector space, one can therefore intuitively interpret the normalized 

shape of such an ideal kernel (as the one illustrated in Figure 3.1), as being maximized, 

when the two inputs are identical, and decaying monotonically (i.e., decreasing and never 

increasing back), when they depart away from each other. If these properties are not 

strictly satisfied, the subsequently calculated similarity measure could be inaccurate, in the 

sense that it does not reflect the true resemblance of the kernel’s two input vector 

arguments, a fact, which can have a negative effect on the subsequent classification 

performance. 
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Figure 3.1 A typical example of the shape characteristics of an ideal kernel defined as a similarity function. 

The kernel value is maximized when the two vectors are identical, and decays monotonically when the 

distance between them increases. 

                                                 
10 A monotonically decreasing function is a function that is entirely decreasing; i.e., f(x) is not allowed to 

increase as x increases.  
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One can straight away realize that this is actually the shape of the well-known radial basis 

function defined by the Gaussian kernel: 

( )2
exp),( zxzx −−= k , (3.2) 

which perhaps explains the reason behind its popularity in SVM classification tasks11, as it 

clearly demonstrates the properties of what would be intuitively expected from an ideal 

kernel being thought of as a similarity measure. 

Furthermore, if we refer back to the dual optimization problem of the non-linear kernel-

based SVM (in (2.19) - Section 2.2.4) during the training phase, one can notice that the 

maximisation of Q(α) (which is essential to ensure a maximum margin, and, hence, an 

optimum decision boundary, is obtained) requires that ),( jijiji kyy xx has a high 

negative value, given that 0i  and 0j . This value will be negative if iy  and jy  

have opposite signs (i.e., the two vectors ix  and jx  are from different classes), and it will 

be high if i , j  and ),( jik xx  are all high. Thus, Q(α) is maximised when ix  and jx , 

from different classes, are highly similar (thus the value produced by the kernel ),( jik xx  

is high), and their corresponding i  and j  are assigned high values by the optimisation 

process. In effect, the optimization problem in (2.19) searches for the most similar vectors 

that belong to different classes; these are the support vectors. 

The same kernel is also used during the testing or classification phase, as shown by the 

decision function in (2.21). It can be seen from the equation that the support vectors most 

similar to the test vector x will contribute high values to the sum, and can thus tip the 

decision of the classifier towards the correct class label of the test vector. The higher the 

similarity measure calculated by the underpinning kernel between the support vectors most 

similar to the test vector x, the more likely a correct decision is obtained. 

This shows that, during both the training and classification phases of the SVM algorithm, 

the higher the similarity between two inputs, the stronger their influence on the selection of 

support vectors, and on the classification decision, respectively. The SVM algorithm thus 

requires a similarity measure that outputs a high value, when its two input arguments are 

most similar, and outputs decreasing values, as they become less and less similar. The 

proposed ideal similarity function model illustrated in Figure 3.1 can therefore well fulfil 

these similarity-based measure characteristics. 

                                                 
11 Together with its renowned ability to implicitly map the input space to a feature space of infinite 

dimensionality. 
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3.3.2 Shape of isotropic stationary kernels 

Clearly the SVM Gaussian kernel is already explicitly expressed in terms of the lag vector 

between its two input arguments zx − , and, hence, it was easy to plot its value against 

the magnitude of this lag vector straightaway and investigate its shape. Actually, a number 

of other well-known kernels are also explicitly expressed in terms of the magnitude of this 

lag vector. A fact which encouraged Genton [18] to easily plot some examples of them, as 

shown in Figure 2.5 and Table 2.2, and categorized them, from his statistics perspective, as 

being ‘isotropic stationary kernels’. 

Although Genton managed to plot some examples of these isotropic stationary kernels, he 

did not actually reflect upon the usefulness of these plots in characterising the properties of 

what would be expected from them as being regarded as similarity measures instead of 

positive definite kernels, and how could this impact upon their performance in pattern 

classification tasks. His main aim was rather to present a categorization of kernels for 

machine learning from a statistics perspective. 

As can be observed, apart from the wave kernel, all the other examples shown in Figure 

2.5, do actually illustrate different variations of the properties of the ideal kernel being 

thought of as a similarity measure, as explained earlier in Figure 3.1; i.e., the kernel value 

is maximized when the distance between the two vectors is zero (i.e., when the two vectors 

are identical) and decreases monotonically as the distance between them increases. The 

wave kernel illustrated in Figure 2.5 (f) is shown to be maximized, when the two vectors 

are identical, and decreases, as the distance between them starts to increase; however, after 

a certain threshold, the kernel increases again and then fluctuates in a wavy pattern. As this 

is obviously not a monotonically decreasing behaviour, the subsequently calculated 

measure of similarity could be wrongly evaluated, and, therefore, the classification 

performance of this kernel could be affected destructively. 

 

3.4 Shape characteristics of orthogonal polynomial kernels 

Many other kernels, however, are not explicitly expressed in terms of the lag vector 

between its two input vector arguments (e.g., the locally stationary and the non-stationary 

kernels – see Table 2.1), and can be tricky to plot. Motivated by the Chebyshev polynomial 

kernels plots reported by Ozer et al. [17], this section will explore how these kernels were 

plotted, and extend the authors’ work to investigate and analyse the shape characteristics of 

SVM kernels that are constructed from some other orthogonal polynomials as well, such as 
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the Chebyshev [31-33], Legendre [34], and Hermite [35] polynomials. The following 

subsection will first briefly review previous work on SVM kernels constructed from 

orthogonal polynomials as reported in the literature. 

 

3.4.1 Construction of SVM kernels from orthogonal polynomials  

SVM kernels constructed from orthogonal polynomials have been proposed several times 

in the literature [11, 17, 31-35, 102-109]. Reported experimental results have shown that 

they exhibit some salient characteristics, such as they display minimum data redundancy in 

the feature space and they require less support vectors to construct a discriminative 

classifier. This means that less memory and execution time are required for solving the 

quadratic programming problem [110]. Moreover, they have also demonstrated superior 

classification performance over traditional kernels in some occasions. 

Orthogonal polynomials are various families of polynomials, which are useful in solving 

differential equations arising in physics and engineering. In general, they have many 

important applications in such areas as mathematical physics, interpolation theory, the 

theory of random matrices, computer approximations, and many others [102]. The first few 

orders of some of these orthogonal polynomials are shown in Table 3.1, and more details 

about them can be found in Appendix A5. 

In fact, the potential use of orthogonal polynomials to construct SVM kernels was first 

pointed out by V. N. Vapnik in 1998 [11]. As an example, he showed that Hermite 

polynomials can be used to construct one-dimensional Hermite kernels (i.e., for scalar 

inputs) in the form of: 
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where q is a convergence factor that can be chosen in the range of 10  q . 

However, it was not until 2006 when the usefulness of orthogonal polynomials to construct 

SVM kernels started to attract wider attention by the machine learning community, through 

the work of Ye et al. [31]. By following a similar approach to Vapnik, Ye et al. proposed to 

use the Chebyshev polynomials of the first kind to construct SVM kernels. They utilized 

the approximation equation theory to show that Chebyshev polynomials could be 

decomposed into an inner product of a series of coefficients and orthogonal radix, and 

hence satisfy Mercer’s condition. Later on, Zhou et al. [102] extended this work to derive a 

generic formulation of SVM orthogonal polynomial kernels (OPKs) that can be applicable 
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to any orthogonal polynomial family, and not only the Chebyshev. They adopted an 

alternative theoretical approach based on the Fourier series of square-integrable functions 

where the orthogonal polynomials, defined as a positive semi-definite inner product on 

pairs of polynomials, are used as their basis. 

Interestingly, both theories (of Ye et al. [31] and Zhou et al. [102]) agreed that the 

polynomial element of the SVM kernel constructed from these polynomials (i.e., without 

being combined with any weighting functions) should be formulated for ‘scalar inputs’ as: 
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where )(P  denotes the evaluation of the polynomial (i.e., Chebyshev, Legendre, etc.) on 

the first and second input kernel arguments x and z, respectively, and n is the highest 

polynomial order utilized in the kernel. This polynomial element of the kernel, shown in 

(3.4), is referred to in this thesis as the ‘unweighted’ polynomial kernel, for short. 
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Table 3.1 Comparing the first few orders of some orthogonal polynomials. 
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In most of the pattern recognition applications, however, the input data are in 

multidimensional vector format. Therefore, to extend the one-dimensional polynomial 

kernel in (3.4) to multidimensional input vectors, two approaches have been previously 

proposed. The following sub-sections analyse each of these approaches in detail to 

investigate how the unweighted polynomial kernel in (3.4) is evaluated on ‘vectors input’. 

 

3.4.1.1 The pairwise processing approach 

In order to utilize orthogonal polynomials to construct SVM kernels for multidimensional 

input vectors, Vapnik developed a theorem whereby the evaluations of the one-

dimensional kernel on the individual features of the input vectors represent coordinatewise 

basis functions that should be directly multiplied by each other to formulate the overall 

multidimensional kernel [11, 108]. In Vapnik’s words, this means that “the kernel that 

defines the inner product in the m-dimensional basis is the product of m one-dimensional 

kernels” [11]. As such, the author proposed to construct the multidimensional OPK in the 

form of tensor product of one-dimensional kernels as: 
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Ye et al. afterwards followed a similar approach to construct multidimensional Chebyshev 

kernels from the Chebyshev polynomials of the first kind [31]. Their approach is based on 

a decomposition technique whereby the Chebyshev polynomials first process each 

corresponding scalar feature pair of the two input vectors x and z and multiplies them 

together in a pairwise fashion; and then, to evaluate the overall kernel, these scalar 

pairwise kernels are afterwards multiplied by each other [31]. Therefore, for m-

dimensional input vectors x and z m  given by  mxxx ,,, 21 =x  and 

 mzzz ,,, 21 =z , Ye et al.’s unweighted Chebyshev kernel, constructed by following this 

approach, is formulated as: 
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where )(T  are the Chebyshev polynomials. Due to the nature of its evaluation on the 

pairwise features of the input vectors, this processing methodology is referred to in this 

thesis as the “pairwise” processing approach. 
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Following the pairwise processing approach proposed by [31], Pan et al. [34] have 

similarly exploited the unity weighting function of the Legendre polynomials, w(x)=1, to 

propose the Legendre kernels for multidimensional input vectors as: 
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Being constructed without a weight, Pan et al. explained that the Legendre kernel is faster 

(e.g., compared to the Chebyshev kernel) during classification and saves more time. 

Although this pairwise processing approach was the first to propose a methodology by 

which orthogonal polynomials process input data vectors, and this same methodology has 

also been followed afterwards by Zhou et al. [102], Pan et al. [34], and Wei and Pan [32] 

for some other orthogonal polynomials, such as Legendre and Hermite, it suffers from the 

problem of multiplying the kernels evaluated on the individual features of the input 

vectors, as shown in (3.5). As explained by Ozer et al. [17], kernels that are constructed in 

this form via a multiplication operation on the jth elements of the vector pair x and z can 

actually lead to poor generalization if it happens that one of the kernels being multiplied is 

close to zero at the time, when the two vectors x and z are actually quite similar to each 

other. 

 

3.4.1.2 The vectorial processing approach 

The second approach, by which the orthogonal polynomials process the input data, is the 

one proposed later on by Ozer et al. [17]. Their main aim was to tackle the multiplication 

problem identified in the pairwise approach, and hence improve the generalization 

capabilities of the underpinning OPKs. Again, focused on only the Chebyshev 

polynomials, Ozer et al. proposed to apply them to the input vectors as a whole, rather than 

to their individual feature components, and therefore defined the generalized Chebyshev 

polynomials for vector inputs, as shown in Table 3.2, for the first few orders. By applying 

the polynomials to the input vectors as a whole, this approach is referred to in this thesis as 

the “vectorial” processing approach. 

Of particular importance later in this thesis (in Chapter 6), is to highlight the observation 

that the odd orders of the generalized Chebyshev polynomials shown in Table 3.2 produce 

vector quantities, whereas the even orders produce scalar quantities. 
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Table 3.2 First few orders of the Generalized Chebyshev polynomials, as proposed by Ozer et al. [17]. 

Order Generalized Chebyshev polynomials 

0 T0(x) = 1 

1 T1(x) = x 

2 T2(x) = 2<x,x> – 1 

3 T3(x) = x(4<x,x> – 3) 

4 T4(x) = 8(<x,x>)2 – 8<x,x> + 1 

5 T5(x) = x(16(<x,x>)2 – 20<x,x> + 5) 

6 T6(x) = 32(<x,x>)4 – 48(<x,x>)2 + 18<x,x> - 1 

 

Having applied the Chebyshev polynomials to the input vectors as a whole (in the way 

shown in Table 3.2), Ozer et al. then defined the ‘unweighted’ generalized Chebyshev 

kernel in a dot-product form, as: 
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and eventually they defined the overall ‘composite’ generalized Chebyshev kernel 

(combined by multiplication with its corresponding weighting function) as: 
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where m is the dimension (i.e., number of features) of the input vectors. The experimental 

results reported by Ozer et al. showed the superiority of their proposed vectorial approach 

over the pairwise approach, on a number of datasets, though using only the Chebyshev 

polynomials. They explained that this is believed to be due to the fact that the generalized 

Chebyshev polynomials are now processing the input vectors as a whole, rather than their 

individual scalar feature components, and therefore they avoid the multiplication problem 

that the pairwise approach suffers from. Interestingly, Qu et al. [109] have actually utilized 

the generalized Chebyshev kernel defined by (3.9) to effectively classify various states of 

viscoelastic sandwich structures; whereas Zhao et al. [107] introduced a new technique to 

combine the Chebyshev polynomial kernels of the first and second kinds to propose a new 

kernel, which they referred to as the ‘unified Chebyshev kernel’, for support vector 

regression. Following [17], Tian and Wang [105] have also utilized the vectorial approach 

to propose the generalised Legendre kernels, based on the generalised Legendre 

polynomials, as [105, 108]: 
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On the other hand, by utilizing the kernels’ closure property that states that the 

multiplication of two valid kernels is also a valid kernel (see Section 2.4.3), Ozer et al. also 
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showed how the generalised Chebyshev kernel can be modified to produce other kernels 

by replacing the weighting function with another kernel, such as the exponential Gaussian 

kernel. As such, they proposed the ‘Modified Chebyshev kernel’ as [17]: 
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where  is the Gaussian kernel’s parameter. This approach has motivated some researchers 

to investigate how the combination of different kernels with OPKs can constructively 

influence the performance of the SVM algorithm. For example, Zhang et al. [106] have 

proposed the modified Legendre kernels by combining the generalised Legendre kernels in 

(3.9) with the Gaussian kernel as: 
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Similarly, Jafarzadeh et al. [33] have also proposed two new kernels based on the 

multiplicative combination of the generalised Chebyshev kernel with the Gaussian and 

wavelet kernels in the following formats: 
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where a is the kernel parameter of the wavelet kernel. 

Moghaddam and Hamidzadeh [35], on the other hand, decided to adopt the summative 

closure property instead, to propose a new set of kernels based on the summation of the 

probabilists’ Hermite kernels (denoted by He(x), and formulated using the pairwise 

approach) with the wavelet, Gaussian, and Chebyshev kernels, which they constructed for 

scalar inputs respectively as: 
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Recently, Tian and Wang [108] have also combined (by multiplication) the generalised 

Chebyshev and Legendre kernels (formulated using the vectorial approach) with the 



 74 

Triangular kenel [111] to propose what they referred to as the ‘triangularly modified 

Chebyshev kernel’ and the ‘triangularly modified Legendre kernel’, which they defined 

respectively as: 
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where the (.)+ ensures that the kernel is a positive semi-definite function. 

Most of these studies on the construction of SVM kernels from orthogonal polynomials are 

summarised and compared by the recent work of Tian and Wang in [108]. One can notice, 

however, that the pairwise and vectorial processing approaches only differ from each other 

when the polynomial basis functions process multidimensional input vectors, whereas 

when the inputs are scalars, these two processing approaches are mathematically the same.  

 

3.4.2 How to plot a polynomial kernel?  

3.4.2.1 Chebyshev polynomial kernels 

Although Ye et al. [31] were among the firsts to make use of the Chebyshev polynomials 

of the first kind to construct SVM kernels for pattern classification in 2006, it was not until 

2011 when Ozer et al. [17] provided a clear method to plot them in 2D and briefly reflected 

upon their shape characteristics. They reported the plots of two versions of their 

generalised Chebyshev kernel: the first one is the kernel constructed with the sum, as 

defined in (3.9), which involves all the polynomial orders from 0 up to n, and the second 

one is the kernel constructed from only the polynomial order n without summing up any of 

the preceding orders, defined as: 

−
=

zx,

zx
zx

m

TT
k

nn )(),(
),(  (3.20) 

It is not very clear though why Ozer et al. reported the second version of the kernel without 

the sum in (3.20), and the only comment they made is that it cannot be used in SVM for 

the similarity purpose, without providing much further justification/detail as to why this is 

the case.  

However, for simplicity and to view the shape of the kernel in 2D, Ozer et al. [17] assumed 

that the data are scalars (i.e., m=1) instead of vectors. As such, the dot-product operation 
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appearing in (3.9) and (3.20) reduce to a simple multiplication, and therefore can be re-

written as: 

xz

zTxT
zxk

n

i ii

−


=
 =

1

)()(
),( 0  (3.21) 

xz

zTxT
zxk nn

−


=

1

)()(
),(  (3.22) 

As the kernels in (3.21) and (3.22) are functions of two variables x and z, to plot them in 

2D, Ozer et al. have chosen to affix one of them (namely the x-value) and then plot the 

kernel against the other z variable within the normalized range of [-1,+1]. Following this 

technique, they plotted each of these kernels at three specific x-values of: -0.77, 0, +0.77 

(Although again it is not very clear in their paper why these x-values have been chosen in 

specific). 

This means that the authors plotted the kernel in (3.21) three times as: 
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 = ,  shown in Figure 3.2 (b) (3.23) 
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zk ,  shown in Figure 3.2 (d) (3.24) 
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 = , shown in Figure 3.2 (f) (3.25) 

And similarly, they also plotted the kernel in (3.22) three times as: 
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= , shown in Figure 3.2 (a) (3.26) 
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= , shown in Figure 3.2 (c) (3.27) 
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=− , shown in Figure 3.2 (e) (3.28) 

 



 76 

 

Figure 3.2 Plots of the generalized Chebyshev kernels evaluated with and without sum (b,d,f) as per Eq. 

(3.21) and (a,c,e) as per Eq. (3.22), respectively, at the three fixed x-values of +0.77, 0, -0.77, as reported by 

Ozer et al. [17]. 
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However, as both of the kernel’s input arguments x and z are real-valued scalar quantities 

that can take any value within the normalized range [-1,+1], it is still possible to investigate 

how the kernel value changes in 3D shape with respect to both of these two real-valued 

variables, as reported for example by Qu et al. [109] for the generalized Chebyshev kernel 

illustrated in Figure 3.3 (although it is not clear what polynomial order this kernel is). At 

the same time, it is much easier to analyze the shape characteristics of these kernels from 

their 2D plots in the way illustrated by Ozer et al. 

 

Figure 3.3 3D illustration of the generalized Chebyshev kernel, as reported by Qu et al. [109]. 

 

By following the same 2D plotting procedures used in [17] for the generalised Chebyshev 

kernels, Tian and Wang [108] have also recently extended this work to plot some other 

one-dimensional orthogonal polynomial kernels (constructed with the sum) that have been 

previously proposed, as illustrated in Figure 3.4. While the kernels’ input arguments are 

assumed to be scalars, one can therefore notice that the shape of the kernels constructed 

using the pairwise approach is the same as those constructed using the vectorial approach. 

For example, this can be easily observed from the shape of the generalised Chebyshev 

kernels in Figure 3.4 (a) and the Chebyshev kernels in Figure 3.4 (h). Similarly, the 

generalised Legendre kernels in Figure 3.4 (b) are also the same as the Legendre kernels in 

Figure 3.4 (i). 
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(a) Generalized Chebyshev kernel, 

kG-Che(x,0.64), as per (3.9) 
 (b) Generalized Legendre kernel, 

kG-Leg(x,0.64), as per (3.10) 

   
(c) Hermite kernel, kHer(x,0.64), as 

per (3.3) 

(d) Triangul. modified Chebyshev, 

kTri-Che(x,0.64), as per (3.18) 

(e) Triangul. modified Legendre, 

kTri-Leg(x,0.64), as per (3.19) 

   
(f) Exp. modified Chebyshev,     

kExp-Che(x,0.64), as per (3.11) 

(g) Exp. modified Legendre,     

kExp-Leg(x,0.64), as per (3.12) 

(h) Chebyshev kernel, kChe(x,0.64), 

as per (3.6) 

 

 

 
(i) Legendre kernel, kLeg(x,0.64), 

as per (3.6) 
 (j) Unified Chebyshev kernel, kU-

Che(x,0.64), as proposed in [107]. 

Figure 3.4 Comparison of ten different orthogonal polynomial kernels, as reported by  [108]. 
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This is basically the technique that Ozer et al. [17] and Tian and Wang [108] have both 

used to plot in 2D some of the previously proposed OPKs, as illustrated in Figures 3.2 and 

3.4. Therefore, this chapter will also follow the same procedure to investigate in more 

detail the shape charateristics of these polynomials kernels, especially those that are 

constructed with and without the sum. However, for a fair comparison and analysis of the 

shape characteristics of the different polynomial kernels, it is important to first eliminate 

the weighting function from the equation so that all the polynomial kernels are fairly 

compared to each other under their ‘unweighted’ status (i.e., without being affected by any 

combining or corresponding weighting functions). 

For example, if we remove the weighting function from the generalized Chebyshev kernels 

for vector inputs in (3.9) and (3.20), they can then be redefined as:  

 =
=

n

i ii TTk
0

)(),(),( zxzx  (3.29) 

)(),(),( zxzx nn TTk =  (3.30) 

And by following the same assumption of scalar inputs above (to enable plotting them in 

2D), they can then be defined as: 

 =
=

n

i ii zTxTzxk
0

)()(),(  (3.31) 

)()(),( zTxTzxk nn =  (3.32) 

And again, if we affix the x-value to 0, these Chebyshev kernels can be evaluated as: 

 =
=

n

i ii zTTzk
0

)()0(),0( , shown in Figure 3.5 (b) (3.33) 

)()0(),0( zTTzk nn = , shown in Figure 3.5 (a) (3.34) 

Similarly, if we affix the x-value at +0.77, the Chebyshev kernels can be evaluated as: 

 =
=

n

i ii zTTzk
0

)()77.0(),77.0( , shown in Figure 3.5 (d) (3.35) 

)()77.0(),77.0( zTTzk nn = , shown in Figure 3.5 (c) (3.36) 
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(a) Chebyshev kernels without sum at x=0, as per (3.34) (b) Chebyshev kernels with sum at x=0, as per (3.33) 
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(c) Chebyshev kernels without sum at x=0.77, as per (3.36) (d) Chebyshev kernels with sum at x=0.77, as per (3.35) 
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(e) 10th order Chebyshev kernel without sum at different 

x-values, as per (3.38) 

(f) 10th order Chebyshev kernel with sum at different x-

values, as per (3.37) 

Figure 3.5 Illustration of the shape characteristics of the Chebyshev kernels without the weighting function 

formulated with and without the sum at different polynomial orders and x-values. 

 

For vector inputs, however, it can be seen from the above formulas that the kernel shape 

will be obtained by adding the shapes of the kernel outputs for each order over a multi-

dimensional space. As the axes of this multi-dimensional space are essentially the 

individual vector components (i.e., the scalar features), the inference is that the kernel 

shape in the multi-dimensional vector space will also exhibit similar characteritics to those 
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plotted in the single-dimensional space. To keep the analysis of the kernels’ shapes as 

simple as possible, this thesis assumes that the derived shape characteristics of the kernels 

plotted in case of single-dimensional vector inputs (i.e., scalars) are also valid kernel 

characteristics in case of multi-dimensional vector inputs. 

Another important point to consider (especially for the work presented in the next chapter) 

is that the kernels evaluated with and without the sum (i.e., those kernels in (3.33) and 

(3.34), respectively) should be plotted at the same scale to easily observe the difference 

between their shape characteristics when compared to each other side by side. Unlike the 

plots reported by Ozer et al. [17], both of the Chebyshev kernels evaluated with and 

without the sum, illustrated in Figure 3.5, are plotted at the same scale to achieve this 

purpose. 

As briefly pointed out by Ozer et al. [17], the generalized Chebyshev kernels do alter their 

shape based on the input values, and perhaps that is the reason why they were interested to 

show how their shape changes at the x-values of +0.77 and -0.77 from how their shape 

looked like at x=0. The Chebyshev kernels constructed without the weighting function also 

tend to follow the same rule; i.e., they alter their shape with the changes in the input x-

value. This is demonstrated in Figures 3.5 (c) and (d) when the first few orders of the 

Chebyshev kernels without the weighting function are plotted at the x-value of +0.77, 

which clearly demonstrate that this alteration in the shape of the kernel is stemming from 

the employed Chebyshev polynomials and not from their corresponding weighting 

function. However, to further elaborate the effect of the variations in the x-value on the 

shape of the kernel, Figures 3.5 (f) and (e) also plot the Chebyshev kernel of order n=10 

(as an illustrative example) with and without sum, respectively, at some other x-values of 

[0, 0.1, 0.2, …, 0.9], using the equations below: 

 === =
10

0]9.0,,1.0,0[10 )()(),(
i iix

WithSum
n zTxTzxk  , shown in Figure 3.5 (f) (3.37) 

)()(),( 1010]9.0,,1.0,0[10 zTxTzxk x
WithoutSum
n ===  , shown in Figure 3.5 (e) (3.38) 

 

Having now focused on the polynomial element of the Chebyshev kernels (by eliminating 

the weighting function factor) and plotted their two versions evaluated with and without 

the sum at the same scale, we can now reflect upon their shape characteristics within the 

context of the definition of kernels as similarity measures explained earlier in Section 3.3.1 

via comparing them to the shape of the ideal similarity measure kernel back in Figure 3.1. 
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First, it is important to clarify that the Chebyshev kernels illustrated in Figure 3.5 are 

plotted against their second input argument z, which is spanning the normalized region of 

[-1,+1], and at a fixed value of its first argument x (0, 0.77, etc.). This means that if the 

chosen fixed x-value coincides with z anywhere within the set region [-1,+1], this would 

then be the instant, where the two input kernel arguments are identical to each other, and 

accordingly, one should intuitively expect the value of the kernel to be at its maximum 

peak, based on the definition of the ideal similarity measure kernels explained earlier. 

Moreover, as the z-value departs away from the chosen fixed x-value, this means that the 

two input kernel arguments are becoming less and less similar to each other (and hence are 

more likely to be belonging to different classes) and accordingly one should also expect the 

value of the kernel to start decreasing in a monotonic behaviour. 

If we analyse closely the shape characteristics of the Chebyshev kernels with sum in Figure 

3.5 (b), we can actually observe that they exhibit some of these characteristics already as 

the order increases at x=0; i.e., they develop a maximum peak at the point, where the two 

input arguments are identical (i.e., at x=0 in this case), and then decrease as z departs from 

the chosen fixed value of x. More importantly, however, is the fact that the Chebyshev 

kernels with sum continue to develop this maximum peak wherever else in the normalized 

vector space where their two input arguments happen to be identical, as demonstrated for 

example in Figure 3.5 (d) and (f), as opposed to their counterparts constructed without 

sum, shown in Figure 3.5 (a), (c), and (e), which only tend to change their amplitude and 

polarity as the x-value changes, with no dominant maximum value (compared to the other 

kernel values within the normalized region of [-1,+1]) at the instances, where the two 

inputs happen to be identical to each other. 

This demonstrates that the Chebyshev kernels with sum are better similarity measure tools 

than their counterparts without the sum, simply because they resemble more the shape 

characteristics of the ideal similarity measure kernel demonstrated back in Figure 3.1. They 

are however, not identical to it. For example, one can clearly observe that the Chebyshev 

kernels with sum in Figure 3.5 (b), (d) and (f) do not actually decrease monotonically as z 

departs away from the chosen fixed x-value. Instead, their decrease behaviour only lasts for 

up to a certain threshold after which the kernel value starts to increase again and then 

fluctuates in a wavy pattern, similar to the wave kernel shown in Figure 2.5 (f). In other 

words, the region where the Chebyshev kernels with sum exhibit a complete monotonic 

decrease behaviour is unfortunately smaller than the normalized data region of [-1,+1], 

meaning that if the data points happen to be located outside this monotonic window 

(dictated by the threshold of each kernel), this can result in the kernel calculating an 
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incorrect similarity measure, which can accordingly misclassify the input data; a problem 

which will be addressed later on in Chapter 5. 

On the other hand, recall that the Gaussian kernel, when the data are vectors, is defined as: 

( )2
exp),( zxzx −−= k  (3.39) 

whereas when the data are scalars, it can be written as: 

( )( )2
exp),( zxzxk −−=   (3.40) 

where one can now can plot it in 2D in exactly the same way as we did before with the 

Chebyshev kernels, within the range of z=[-1,+1], to investigate how its shape is affected 

by the variations in the input x-values, using the equations below which are plotted in 

Figure 3.6. 

( )( )2
0exp),0( zzk −−=  , shown in Figure 3.6 (a) (3.41) 

( )( )2
77.0exp),77.0( zzk −−=  , shown in Figure 3.6 (b) (3.42) 

( )( )2
]9.0,...1.0,0[ exp),( zxzxk x −−==  , shown in Figure 3.6 (c) (3.43) 
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(a) Gaussian kernel at x=0, as per (3.41) (b) Gaussian kernel at x=0.77, as per 

(3.42) 

(c) Gaussian kernel at                          

x = [0, 0.1,...,0.9], as per (3.43) 

Figure 3.6 Effect of the variation in the input x-value on the shape of the Gaussian kernel. 

 

One can notice that the shape of the Gaussian kernel is a typical example of the definition 

of the ideal similarity function (as explained earlier in Section 3.3.1), because it clearly 

develops a peak whenever its two input arguments happen to be identical anywhere within 

the normalized vector space, as well as decreases monotonically when they depart away 

from each other. Recall also that the Gaussian kernel amounts to mapping the input space 

to an infinite-dimensional feature space [1, 12], where the linear separability of overlapped 

classes can be improved. So, possessing these two important characteristics is perhaps the 

reason behind the good performance and popularity of this kernel in solving a variety of 

pattern classification tasks. It can also be noticed from the Gaussian shapes in Figure 3.6 

that it is not structurally altered by the variations in the input x-values and it is rather just a 
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transitional change dictated by the lag vector zx − . Hence, the only parameter that can 

structurally alter the shape of the Gaussian kernel is its associated parameter   which was 

kept constant at 1=  for all the plots illustrated in Figure 3.6, for simplicity. 

Using the same procedure, we can also plot some of the other widely used kernels, such as 

the linear and traditional polynomial kernels, to analyse how good their calculated 

similarity measures are when compared to the shape characteristics exhibited by either the 

Gaussian kernel above or the ideal similarity function demonstrated back in Figure 3.1. 

Starting by the simplest linear kernel, defined by the dot-product as per (2.39), Figure 3.7 

demonstrates its shape characteristics at various x-values within the normalized vector 

space. As indicated by its name, one can notice that its shape demonstrates a basic linear 

behaviour and the variations in the x-value only change its slope, with no peaks developed 

at all at the instances where the two input arguments happen to be identical to each other, 

as is the case for example with the Gaussian and Chebyshev (with sum) kernels. Moreover, 

one can also notice that its shape is far from being monotonically decreasing (in fact it can 

actually increase instead), when the two input arguments depart away from each other. 

As such, based on what one would intuitively wish a similarity function to pictorially look 

like when calculating the similarity between two vectors, we cannot admit that the linear 

kernel provides a good indication as to how two vectors resemble each other, whether they 

are identical or not, and therefore would argue the fact that it can actually be regarded as a 

good similarity measure tool. Furthermore, recall also that it does not amount to any 

mapping to higher number of dimensions in the feature space, as explained earlier in 

Section 2.5.1, it is also therefore not a suitable candidate kernel to be used to solve non-

linearly separable classification problems. 
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Figure 3.7 Analysis of the shape characteristics of the linear kernel at different x-values of x=0, 0.1, …, 0.9. 

 

Two other types of traditional polynomial kernels have also been in common use. These 

are the homogeneous and inhomogeneous polynomial kernels, defined by (2.40) and 

(2.41), respectively. The shape characteristics of these traditional polynomial kernels have 

also been studied in this thesis via Figures 3.8 and 3.9, respectively, for the first 10 orders 

and at various x-values. Although the higher orders of such polynomial kernels amount to 

higher number of dimensions in the feature space [9], which can be high enough to 

establish a linear separation between classes in some datasets, yet, one can still observe 

that both of them were also not able to exhibit the sought after shape characteristics of the 

ideal similarity function, neither when the two input arguments are identical nor when they 

are different from each other. 
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(a) First 10 orders of the homogeneous polynomial 

kernel, as per (2.40), at x=0. 

(b) First 10 orders of the homogeneous polynomial kernel, 

as per (2.40), at x=0.77. 
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(c) 2nd order homogeneous polynomial kernel, as per 

(2.40), at various x-values = 0, 0.1, …, 0.9. 
(d) 5th order homogeneous polynomial kernel, as per (2.40), 

at various x-values = 0, 0.1, …, 0.9. 

Figure 3.8 Analysis of the shape characteristics of homogeneous polynomial kernels at various orders and x-

values. 
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(a) First 10 orders of the inhomogeneous polynomial 

kernel, as per (2.41), at x=0. 

(b) First 10 orders of the inhomogeneous polynomial 

kernel, as per (2.41), at x=0.77. 
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(c) 4th order inhomogeneous polynomial kernel, as per 

(2.41), at various x-values = 0, 0.1, …, 0.9. 

(d) 5th order inhomogeneous polynomial kernel, as per 

(2.41), at various x-values = 0, 0.1, …, 0.9. 

Figure 3.9 Analysis of the shape characteristics of the inhomogeneous polynomial kernels at various orders 

and x-values. 

 

3.4.2.2 Legendre polynomial kernels 

To further investigate the shape characteristics of orthogonal polynomial kernels based on 

their similarity measure properties, it was a natural practice to extend Ozer et al.’s work 

[17] to conduct a comparative graphical analysis with some other families of orthogonal 

polynomials, rather than being confined to only the Chebyshev polynomials. This section 

explores the shape characteristics of the kernels constructed from the Legendre 

polynomials12 using the same plotting procedures followed in the previous sub-section for 

the Chebyshev polynomials, for consistency. Recall that the Legendre polynomials, 

                                                 
12 Legendre polynomials are named after Adrien Marie Legendre (1752-1833), and in mathematics, they are 

most commonly used as solutions to Legendre differential equations [112]. They are also frequently 

encountered in physics and other technical fields, in particular when solving Laplace’s equation in spherical 

coordinates [112]. 
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denoted by Ln(x), are characterised by their unity weighting function w(x)=1, and as such, 

can be simpler to implement when used to construct SVM kernels and computationally 

faster than their Chebyshev counterparts [34]. Table 3.1  lists the first few orders of the 

Legendre polynomials, however, as with most other orthogonal polynomials, given the first 

two polynomials in the family, one can construct a recursive formula from which any other 

polynomial order can be generated, as follows [112]: 

Given that the first two orders of the Legendre polynomials are: 

L0(x) = 1, and 

L1(x) = x, 

one can produce any other Legendre polynomial order using the following recursion 

formula: 

)()1()()12()( 21 xLnxxLnxnL nnn −− −−−=  (3.44) 

Following the vectorial processing approach proposed by Ozer et al. (and explained earlier 

in Section 3.4.1.2), one can define the SVM kernels constructed from the Legendre 

polynomials for vector inputs (with and without sum, respectively) as: 

 =
=

n

i ii LLk
0

)(),(),( zxzx  (3.45) 

)(),(),( zxzx nn LLk =  (3.46) 

However, similar to the plotting procedures followed with the Chebyshev kernels, it is also 

necessary to assume that the inputs are scalars to facilitate the plotting of the Legendre 

kernels in 2D. As such, (3.45) and (3.46) can then be written for scalar inputs as: 

 =
=

n

i ii zLxLzxk
0

)()(),(  (3.47) 

)()(),( zLxLzxk nn =  (3.48) 

And now we can plot the first few orders of these Legendre kernels at x=0 using:  

 =
=

n

i ii zLLzk
0

)()0(),0( , shown in Figure 3.10 (b) (3.49) 

)()0(),0( zLLzk nn = , shown in Figure 3.10 (a) (3.50) 

And at x=0.77 using: 

 =
=

n

i ii zLLzk
0

)()77.0(),77.0( , shown in Figure 3.10 (d) (3.51) 

)()77.0(),77.0( zLLzk nn = , shown in Figure 3.10 (c) (3.52) 

And the 10th order (as an illustrative example) Legendre kernel at various x-values using: 
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 === =
10

0]9.0,,1.0,0[10 )()(),(
i iix

WithSum
n zLxLzxk  , shown in Figure 3.10 (f) (3.53) 

)()(),( 1010]9.0,,1.0,0[10 zLxLzxk x
WithoutSum
n ===  , shown in Figure 3.10 (e) (3.54) 
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(a) Legendre kernels without sum at x=0, as per (3.50) (b) Legendre kernels with sum at x=0, as per (3.49) 
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(c) Legendre kernels without sum at x=0.77 as per (3.52) (d) Legendre kernels with sum at x=0.77 as per (3.51) 
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(e) 10th order Legendre kernel without sum at different 

x-values, as per (3.54) 

(f) 10th order Legendre kernel with sum at different x-

values, as per (3.53) 

Figure 3.10 Illustration of the shape characteristics of the Legendre kernels formulated with and without the 

sum at different polynomial orders and x-values. 

 

On analysing the Legendre kernels illustrated in Figure 3.10, one can observe that they 

actually share some common shape characteristics with their Chebyshev counterparts 
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demonstrated in the previous sub-section. For example, the Legendre kernels with sum also 

develop a maximum peak value anywhere in the normalized region [-1,+1], where the two 

input arguments happen to be identical, as shown in Figure 3.10 (b), (d) and (f), as opposed 

to the Legendre kernels without the sum, shown in Figure 3.10 (a), (c) and (e), where they 

only tend to change their amplitude and polarity with no dominant maximum value within 

the normalized region of [-1,+1] at the instances where the two inputs happen to be 

identical. 

This means that the Legendre kernels with sum are also expected to be better similarity 

measure tools than their counterparts without the sum, as their shape characteristics get 

closer to the ideal similarity function as the polynomial order increases. On the other hand, 

similar to the Chebyshev kernels, the Legendre kernels with sum have shown not to exhibit 

a complete monotonic decrease behaviour within the region [-1,+1] as z departs away from 

the chosen fixed x-value; a problem which will again be dealt with in Chapter 5. 

 

3.4.2.3 Hermite polynomial kernels 

This section complements the investigation on the similarity-based properties of 

orthogonal polynomial kernels via the analysis of the shape characteristics of the 

physicists’ Hermite polynomials. Although some previous work, such as [102] and [35], 

have studied the construction of SVM kernels from Hermite polynomials in the past, their 

shape characteristics have not been investigated and analysed before in the way shown in 

this section. Usually denoted by Hn(x), where n is the polynomial order, the physicists’ 

Hermite polynomials are defined over the domain x=[- , ] where they are orthogonal to 

each other with respect to the Gaussian weighting function 
2

)( xexw −= . Table 3.1  shows 

the first few orders of the Hermite polynomials, and they can also be generated from the 

first two polynomials using the following recursive formula. 

Given that  

H0(x) = 1, and 

H1(x) = 2x,  

Any order of Hermite polynomial can be generated using the following recursive formula 

(reformulated from [113]): 

)( )1(2)( 2)( 21 xHnxHxxH nnn −− −−=  (3.55) 
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Again, whilst focusing only on the polynomial element of the kernel, to eliminate the 

influence of any weighting function, and by following the same vectorial processing 

approach proposed by Ozer et al. [17], one can define the Hermite polynomial kernels for 

vector inputs (with and without sum, respectively) as: 

 =
=

n

i ii HHk
0

)(),(),( zxzx  (3.56) 

)(),(),( zxzx nn HHk =  (3.57) 

And again, to plot them in 2D, (3.56) and (3.57) can be defined for scalar inputs as: 

 =
=

n

i ii zHxHzxk
0

)()(),(  (3.58) 

)()(),( zHxHzxk nn =  (3.59) 

Table 3.3 illustrates the plots of the first 10 orders of these Hermite polynomial kernels at 

x=0 using: 

 =
=

n

i ii zHHzk
0

)()0(),0(  (3.60) 

)()0(),0( zHHzk nn =  (3.61) 

whereas Table 3.4 illustrates their plots at x=0.77 using: 

 =
=

n

i ii zHHzk
0

)()77.0(),77.0(  (3.62) 

)()77.0(),77.0( zHHzk nn =  (3.63) 

Figure 3.11 demonstrates the effect of the variation in the input x-value on the shape 

characteristics of the 10th order Hermite kernel (as an illustrative example) with and 

without sum using: 

 === =
10

0]9.0,,1.0,0[10 )()(),(
i iix

WithSum
n zHxHzxk   (3.64) 

)()(),( 1010]9.0,,1.0,0[10 zHxHzxk x
WithoutSum
n ===   (3.65) 

One can notice, however, that the coefficients of the Hermite polynomials are quite sparse 

causing the amplitudes of the Hermite kernels to be significantly elevated from one order 

to another. For this reason, the first 10 orders of Hermite kernels in (3.60-3.63) have been 

plotted separately in Tables 3.3 and 3.4 to enable a clear analysis of their original shape 

characteristics, before they are combined in one figure at an absolute logarithmic scale at 

the bottom of each table. 
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Table 3.3 Comparison of the shape characteristics of the first 10 orders of the Hermite polynomial kernels 

with and without sum, as per (3.60) and (3.61) respectively, at x=0. 

 Hermite kernels without sum, at x=0 Hermite kernels with sum, at x=0 
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 Hermite kernels without sum, at x=0 Hermite kernels with sum, at x=0 
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 Hermite kernels without sum, at x=0 Hermite kernels with sum, at x=0 
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Table 3.4 Comparison of the shape characteristics of the first 10 orders of the Hermite polynomial kernels 

with and without sum, as per (3.62) and (3.63) respectively, at x=0.77. 

 Hermite kernels without sum, at x=0.77 Hermite kernels with sum, at x=0.77 
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 Hermite kernels without sum, at x=0.77 Hermite kernels with sum, at x=0.77 
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 Hermite kernels without sum, at x=0.77 Hermite kernels with sum, at x=0.77 
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(a) 10th order Hermite kernel without sum at different x-

values as per (3.65) 
(b) 10th order Hermite kernel with sum at different x-

values as per (3.64) 

Figure 3.11 Effect of the variation of the input x-value on the shape characteristics of the 10th order Hermite 

polynomial kernel with and without sum as per (3.64) and (3.65), respectively. 

 

On analysing the shape characteristics of the Hermite kernels plotted in Tables 3.3, 3.4 and 

Figure 3.11, and comparing them to their Chebyshev and Legendre kernels counterparts 

from the previous two sub-sections, one can immediately observe the following differences 

in their similarity-based shape properties. Unlike the Chebyshev and Legendre kernels, the 

Hermite kernels, on the other hand (either with or without the sum), were found to 

generally fail to develop a dominant maximum peak at the locations where the two inputs 

happen to be identical. Although the plots in Table 3.3 (at x=0) show that the Hermite 

kernels with sum has got a peak at x=0, yet, this peak is not the dominant maximum value 

within the normalized region of [-1,+1] as one would expect from an ideal measure of 

similarity. 

Even worse, the location of this peak is not actually following the instances, where the two 

inputs happen to be identical wherever else in the input space (as was the case for example 

with the Chebyshev and Legendre kernels analysed in the previous sub-sections), as 

demonstrated by the plots shown in Table 3.4 and Figure 3.11. In other words, the Hermite 

kernels (either with or without the sum) tend to only change their amplitude and polarity 

with the variations in the input x-value, instead of developing a dominant maximum peak 

at its location. As such, it is clear that the Chebyshev and Legendre kernels with sum are 

capable of calculating more accurate similarity measures than those utilizing the Hermite 

polynomials, and would therefore be expected to yield better classification performance, as 

will be experimentally investigated later on in Chapters 4 and 6. 

On the other hand, although the shape characteristics of the Hermite kernels with the sum 

(illustrated in Tables 3.3 and 3.4) do not develop a dominant maximum peak at identical 

inputs, yet, one can still notice that their values at identical inputs are still higher (although 
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infinitesimal) than their counterparts without the sum. As such, it would also be expected 

that the Hermite kernels with the sum to yield better classification performance than their 

counterparts without the sum, as will also be experimentally investigated later on in 

Chapters 4 and 6. 

 

Finally, a common observation amongst all the three polynomial kernels (i.e., Chebyshev, 

Legendre, and Hermite) is that as the order increases, the region where the kernels with 

sum exhibit a monotonic decay behaviour also decreases. This means that more data points 

are likely to fall outside the monotonic window where the kernel tend to oscillate in a wavy 

pattern and is therefore more likely to yield inaccurate similarity measures leading to a 

degraded classification performance; a problem which will also be addressed in Chapter 5. 

 

3.5 Summary 

This chapter proposed a solution to the main research problem identified and addressed by 

the thesis, whereby the utilization of SVM kernels as implicit mapping tools to high-

dimensional feature spaces has dominated majorly over their use as similarity functions in 

the literature. The theoretical foundation of this proposed solution is based on the shape 

characteristics exhibited by the underpinning kernel (being thought of as a measure of 

similarity) and how these characteristics should typically look like, to reflect the level of 

similarity between the kernel’s two input patterns, and hence aid the classifier’s decision as 

to whether they belong to the same or different classes. 

Given that patterns from the same class share more similar characteristics than those 

belonging to different classes, the chapter therefore defined a similarity-based pictorial 

model which proposes that the similarity curve should typically be maximized when the 

two kernel inputs are identical, and it should decay monotonically as they differ more and 

more from each other. Motivated by the previously reported plots of some orthogonal 

polynomial kernels, such as the Chebyshev, Legendre, and Hermite kernels, the chapter 

then adopted their exhibited pictorial characteristics to underpin the assessment of the 

proposed similarity-based pictorial model for SVM pattern classification.  

The chapter critically analyzed different configurations of these polynomial kernels (e.g., 

with and without sum; at identical and non-identical inputs, etc.) together with their shape 

characteristics corresponding to each case. It was observed that these polynomial kernels 
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exhibit different pictorial characteritics at each of these configurations, which, under 

certain conditions, can closely match the characteristics of the proposed similarity-based 

pictorial model, and hence enable the polynomial kernel to calculate more accurate 

similarity measures, and hence score better classification performance, as will be validated 

in the experimental investigations in the following subsequent chapters. 

To the best knowledge of the author, the similarity-based pictorial model proposed in this 

chapter provides the first logical and easily understood theoretical foundation as to why 

some kernels can lead to better classification performance than others. This theoretical 

foundation provides new valuable and easy means for kernel design for the machine 

learning community. The analyses of the shape characteristics of the adopted orthogonal 

polynomial kernels, and how they relate to the proposed similarity-based pictorial model, 

have also never been done before in the way presented in this chapter. 
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Chapter 4                                                               

Orthogonal Polynomial Kernels in a 

Similarity Fusion Framework Context 

 

4.1 Introduction 

It can be shown from the study of orthogonal polynomial kernels (OPKs) conducted in 

Sections 3.4.1 and 3.5.2 that they are naturally constructed from a mixture of summative 

and multiplicative combination of base kernel blocks that synergistically contribute 

towards calculating better similarity measures, as exhibited by their shape characteristics. 

Framed by the information fusion theory, this chapter presents a novel similarity fusion 

framework within which the hierarchical structure of OPKs can be characterised and 

defined. To the extent that the individual kernel blocks of OPKs can provide 

complementary information (e.g., similarity measures) about the input data, the resulting 

performance of the classifier constructed from their fused kernel components is expected to 

outperform that of the best individual kernel building block. 

A number of comprehensive experiments are conducted in this chapter to validate the 

synergy in both the summative and multiplicative fusion operations inherent in the 

hierarchical structure of OPKs, together with a critical comparison with the performance 

gained from other traditional SVM kernels that have been in common use. 

 

4.2 Inherent fusion architecture of orthogonal polynomial 

kernels  

Section 3.4.1 (in Chapter 3) explained the original mathematical construction of SVM 

kernels from orthogonal polynomials. That is, for scalar inputs, the kernel is constructed by 

summing up all the polynomial orders from 0 to n, as per (3.4). It has also been explained 

in Sections 3.4.1.1 and 3.4.1.2 how (3.4) was adopted to be also applicable to vector 

inputs, via the previously proposed ‘pairwise’ and ‘vectorial’ processing methodologies, 

introduced by [31] and [17], respectively, using the Chebyshev polynomials. Given that the 

vectorial approach has already been shown (through the work of [17]) to outperform its 

pairwise counterpart, all the investigations conducted in this chapter will continue to adopt 
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the vectorial approach13 proposed by [17], in which case (3.4) can be re-written for vector 

inputs in a generic form as: 

 ==
==

n

i ii

n

i

T
ii PPPPk

00
)(),()()(),( zxzxzx , (4.1) 

where P(x) and P(z) are the evaluations of the employed orthogonal polynomial (be it 

Chebyshev, Legendre, etc.) on the first and second input vector kernel arguments as a 

whole, as shown, for example, in Table 3.2 for the Chebyshev polynomials case. 

Based on the closure property of kernels, which states that the addition of valid kernels 

also yields a valid kernel, one can think about the kernel in (4.1) as being the summation of 

smaller valid kernel building blocks as: 

),(),(),(     ),(),( 10
0

zxzxzxzxzx n

n

i
i kkkkk +++== 

=

 , (4.2) 

where each of the ith order individual kernel blocks (ki’s) being summed up is a valid 

kernel (and therefore is a legitimate tool to measure the similarity between its two input 

vectors) representing the evaluation of each individual polynomial order kernel on the 

input vectors, and are given by: 

)(),(),( 000 zxzx PPk =  

)(),(),( 111 zxzx PPk =  

. . . 

)(),(),( zxzx nnn PPk =  (4.3) 

On the other hand, as part of their study of the SVM kernels constructed from the 

Chebyshev polynomials, Ye et at. [31] and Ozer et al. [17] both showed that their 

corresponding weighting function is also a valid kernel, and therefore, by utilizing the 

multiplicative closure property, which states that the multiplication of two (or more) valid 

kernels also yields a valid kernel, the authors in [31] and [17] constructed their proposed 

overall composite Chebyshev kernels in the form of: 

),(),(),( 21 zxzxzx kkk =  (4.4) 

where ),(1 zxk  is the summative Chebyshev polynomial element of the overall composite 

kernel, and ),(2 zxk  is its corresponding weighting kernel function. There is, however, no 

                                                 
13 Although later, Chapter 6 will be proposing another new processing approach and will be showing, both 

theoretically and experimentally, that it outperforms both of the previously proposed vectorial and pairwise 

approaches. 
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theoretical guarantee that the best classification performance will be achieved if the 

corresponding weighting function of the Chebyshev polynomials ),(2 zxk  is the kernel that 

should be used to be combined with its sister polynomial kernel ),(1 zxk . Recall that the 

ultimate aim is to improve the classification performance (rather than retaining the 

orthogonality of the underpinning polynomial kernels unnecessarily), which might be the 

reason why the authors in [17] were urged to propose to replace the corresponding 

weighting function of the Chebyshev polynomials with the commonly used Gaussian 

kernel instead, to construct what they referred to as the ‘Modified Chebyshev kernel’. 

Their reported experimental results showed that such practice (of combining the 

summative polynomial kernel ),(1 zxk  with some other more robust kernels instead of their 

corresponding weighting functions) could indeed be useful in achieving even better 

classification performance, and hence, showed that the choice of ),(2 zxk  should not only 

be restricted to the weighting function of the employed polynomials. 

As such, one can generalize this approach, by defining the construction of the composite 

vectorial polynomial kernels as: 

),()(),(),(),(),(
0

21 zxzxzxzxzx wPPkkk
n

i
ii 








== 

=

, (4.5) 

where P(.) is the evaluation of the orthogonal polynomials (be it Chebyshev, Legendre, 

etc.) on the input vectors, and w(x,z) can be either their corresponding weighting function 

or any other valid kernel. 

So, by analysing closely the composite structure of the kernel in (4.5), and inline with the 

various kernel fusion and hybridization or combination strategies explained back in 

Section 2.6, one can therefore realize that such a composite kernel structure is inherently 

formulated from a mixture of summative and multiplicative combinations of base kernel 

building blocks that could synergistically produce better similarity measures and, hence, 

collectively contribute towards their enhanced classification performance. Viewing this 

approach from a synergistic similarity fusion perspective is what has unfortunately been 

overlooked in previous literature to appropriately characterise the behaviour and justify the 

performance of these composite polynomial kernels when implemented within the SVM 

algorithm. To the extent that each of the individual kernel blocks in (4.5) can provide 

complementary information (e.g., similarity measures) about the input data, the resulting 

performance of the classifier constructed from the fused kernels is expected to outperform 

that of the best individual kernel building block. 
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4.3 Hierarchical development of the synergistic similarity 

fusion framework for orthogonal polynomial kernels 

To investigate if this perspective of fusion of OPKs holds true, this section will define the 

hierarchical structure of the composite kernel in (4.5) within a novel three-stage similarity 

fusion framework. This is achieved by breaking down the composite kernel into its 

individual base kernel building blocks and analysing their synergistic fusion behaviour in 

terms of their exhibited shape characteristics introduced earlier in the previous chapter. 

The extended investigations conducted herein will continue to adopt the kernels 

constructed from not only the Chebyshev, but also the Legendre and Hermite polynomials; 

and hence, it is worth to re-present their plots again (side by side) in Figures 4.1 – 4.6 for 

comparative convenience and ease of analysis.  

 

4.3.1 Similarity fusion framework: First stage 

In the first stage, the nth order kernel is constructed using only the nth order of the 

polynomial without summation and without being combined with any other kernel 

function, in the form of: 

)(),(),( zxzx nnn PPk = , (4.6) 

where )(nP  is the employed generic form of the orthogonal polynomial of order n. 

Applying this first stage of the framework to the orthogonal polynomials under 

investigation would yield: 

)(),(),(1 zxzx nn
S
n TTk =  (4.7) 

)(),(),(1 zxzx nn
S
n LLk =  (4.8) 

)(),(),(1 zxzx nn
S
n HHk =  (4.9) 

where )(T , )(L , )(H , denote the first stage (S1) in the construction of the composite 

OPKs without the sum using the Chebyshev, Legendre, or Hermite polynomials, 

respectively. Figure 4.1 and Figure 4.3 illustrate the shape characteristics of the first 10 

orders of each of these kernels at x=0 and x=0.77, respectively; whereas Figure 4.5 

demonstrates the effect on their 10th order kernels’ shape due to the variation of the input 

x-values in the range of [0, 0.1, …, 0.9]. 
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Although these Stage 1 kernels are valid Mercer kernels, and are therefore legitimate tools 

to measure similarity, how good their yielded similarity measures are14, is a different story. 

As such, the purpose here is to explore the SVM classification performance as a result of 

implementing such Stage 1 kernels evaluated using only the nth order of the employed 

polynomial. 

 

4.3.2 Similarity fusion framework: Second Stage 

In Stage 2 kernels, all the ith order polynomial kernels from 0 up to n are combined 

together via a summation fusion operation, as per (4.1). Recall that each of the ith order 

individual kernel blocks being summed up is a valid Mercer kernel (and therefore is a 

legitimate tool to measure the similarity), and, their fusion by summation is expected to be 

synergistic. This means that the fused kernel should be able to yield better measures of 

similarity between the two input vectors than if each of these ith order individual kernel 

blocks are used on their own. Such a hypothesis can now be validated by re-analysing the 

shape characteristics of the Stage 2 (S2) Chebyshev, Legendre, and Hermite kernels, 

demonstrated in Figures 4.2, 4.4, and 4.6, and given respectively by: 

 =
=

n

i ii
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n TTk

0
)(),(),(2 zxzx , (4.10) 

 =
=

n

i ii
S
n LLk

0
)(),(),(2 zxzx , and (4.11) 
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n

i ii
S
n HHk

0
)(),(),(2 zxzx . (4.12) 

On analysing the shape characteristics of Stage 2 kernels illustrated in Figure 4.2 at x=0, 

one can observe that as the order increases, the peak kernel value of both the Chebyshev 

and Legendre kernels increases. This indicates that the higher number of ith order kernels 

fused together by summation, the more the kernel shape gets closer to the characteristics of 

the ideal similarity function illustrated back in Figure 3.1, showing that the addition of 

these ith order kernels do actually help each other to achieve a better kernel (i.e., a better 

measure of similarity). This shows that the fusion by summation operation is indeed 

synergistic because it makes every nth order Stage 2 kernel ( 2S
nk ) yield better similarity 

measures compared to its corresponding nth order Stage 1 counterparts ( 1S
nk ) which do not 

exhibit any dominant maximum peaks, as illustrated by their plots in Figure 4.1. 

                                                 
14 Compared, for example, to their Stage 2 counterparts. 
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(a) Stage 1 Chebyshev kernels for x=0, 

as per (4.7) 

(b) Stage 1 Legendre kernels for x=0, 

as per (4.8) 

(c) Stage 1 Hermite kernels for x=0, 

as per (4.9) 

Figure 4.1 First 10 orders of Stage 1 Chebyshev, Legendre, and Hermite kernels for x =0.
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(a) Stage 2 Chebyshev kernels for x=0, 

as per (4.10) 

(b) Stage 2 Legendre kernels for x=0, 

as per (4.11) 

(c) Stage 2 Hermite kernels for x=0, as 

per (4.12) 

Figure 4.2 First 10 orders of Stage 2 Chebyshev, Legendre, and Hermite kernels for x =0. 
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Figure 4.3 First 10 orders of Stage 1 Chebyshev, Legendre, and Hermite kernels for x =0.77. 
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Figure 4.4 First 10 orders of Stage 2 Chebyshev, Legendre, and Hermite kernels for x =0.77.
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Figure 4.5 Effect of the variations in the x-value on Stage 1 Chebyshev, Legendre, and Hermite kernels of 

polynomial order n = 10. 
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polynomial order n=10, as per (4.10) 

(b) Stage 2 Legendre kernels of 

polynomial order n=10, as per (4.11) 

(c) Stage 2 Hermite kernels of 

polynomial order n=10, as per (4.12) 

Figure 4.6 Effect of the variations in the x-value on Stage 2 Chebyshev, Legendre, and Hermite kernels of 

polynomial order n = 10. 

 

To exacerbate this situation, one can even notice that if the two input vectors happen to be 

identical at the origin (i.e., at x=0), the odd order Stage 1 kernels actually fail to calculate 

any measures of similarity at all (i.e., the kernel value is equal to zero) throughout the 

normalized data region of [-1,+1], as shown in Figure 4.1, even when their two inputs are 

identical. Stage 2 kernels, on the other hand, do not suffer from this catastrophic situation 

as they sum up all the Stage 1 kernels from polynomial order 0 to n, and as such, at x=0, 

their odd orders end up being the same as their preceding even orders, as demonstrated in 

Figure 4.2. One can also observe that although the Stage 2 kernels tend to oscillate in a 

wavy pattern after a certain threshold, yet, unlike their Stage 1 counterparts, the peak-to-

peak amplitude of these oscillations tend to decay as the two inputs depart further away 

from each other, as shown in Figures 4.1 – 4.6; which is another reason why the similarity 

measures calculated by Stage 2 kernels should be more accurate than those calculated by 

their Stage 1 counterparts, and should therefore yield better classification performance. 

As for the kernels constructed from the Hermite polynomial, although they do not tend to 

get closer to the characteristics of the ideal similarity function as the order increases (as 
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their Chebyshev and Legendre counterparts do), yet, the value of their Stage 2 kernels at 

identical inputs have still shown to be higher than the value of their Stage 1 counterparts. 

Although this infinitesimal difference might not be very obvious in their logarithmic plots 

in Figure 4.2 (c) and Figure 4.1 (c), for their Stage 2 and Stage 1 formulations, 

respectively, yet, as discussed before in the previous chapter, one can observe this 

difference from their original scale plots demonstrated in Table 3.4. However, similar to 

their Chebyshev and Legendre counterparts, one can also observe that the odd orders of 

Stage 1 Hermite kernels shown in Figure 4.1 (c) do also fail to calculate any measures of 

similarity at all when x=0, rendering their Stage 2 counterparts a lot better similarity 

measures, as in this case their odd orders also end up being the same as their preceding 

even orders, as shown in Figure 4.2 (c). 

Based on these theoretical analyses of the similarity-based fusion and shape characteristics 

of the kernels constructed from the Chebyshev, Legendre, and Hermite polynomials that 

are under investigation, one can conclude that the Stage 2 kernels tend to exhibit better 

similarity measure characteristics (due to the fusion by summation operation that 

inherently takes place within their mathematical construction) than their Stage 1 

counterparts; and as such, they should be able to produce better classification performance 

when implemented within the SVM algorithm; a hypothesis which will be experimentally 

validated later in this chapter. 

 

4.3.3 Similarity fusion framework: Third stage 

Although the Stage 2 kernels demonstrated superior similarity measure characteristics over 

their Stage 1 counterparts, as explained in the previous sub-section, they might still not be 

good enough to compete with the existing traditional SVM kernels to produce the sought-

after classification performance. Therefore, in this final third stage of the similarity fusion 

framework, the Stage 2 kernels are fused by a multiplication operation with either their 

corresponding weighting function or a more robust kernel, to produce a composite-Stage 3 

kernel in the form of equation (4.5), as explained back in Section 4.2. To investigate the 

effect on the classification performance as a result of this fusion by multiplication 

operation, this section will focus on the study of the following vectorial-composite kernels: 

▪ Stage 3 generalized Chebyshev kernel [17]: 

−
= = zx

zxzx
,

1
)(),(),(

0
3

m
TTk

n

i ii
S
n , (4.13) 
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▪ Stage 3 Modified Chebyshev kernel [17]: 

( )2

0
exp)(),(),(3 zxzxzx −−= =


n

j ii
S
n TTk , (4.14) 

▪ Stage 3 Modified Legendre kernel:  

( )2

0
exp)(),(),(3 zxzxzx −−= =


n

i ii
S
n LLk , (4.15) 

▪ Stage 3 Composite Hermite kernel:  

( )2

0
exp)(),(),(3 zxzxzx −−= =


n

i ii
S
n HHk , (4.16) 

where m is the number of dimensions (i.e., features) of the dataset, as defined by [17] and 

  is the Gaussian kernel parameter. Note that the corresponding weighting function of the 

Legendre polynomials is 1)( =xw , and hence its modified version proposed here in (4.15) 

will give us the chance to explore their resulting classification performance when they are 

combined with another kernel, such as the Gaussian. 

On the other hand, fusing (by multiplication) Stage 2 kernels with the Gaussian kernel will 

also provide us with an additional parameter   which will give us more control over the 

behaviour of the polynomial kernels to tailor their shape to the ideal sought after 

characteristics, and hence enable the calculation of better similarity measures. Figures 4.7 

– 4.9 demonstrate how this process can be achieved for the Stage 3 Chebyshev, Legendre, 

and Hermite kernels, respectively, when different values of   are used. One can observe 

that by appropriately selecting suitable values for  , the peak-to-peak oscillations can be 

greatly reduced, hence enabling more accurate similarity measures to be calculated by the 

underpinning kernels. It is therefore envisaged that this multiplication fusion operation, 

implemented in the composite-Stage 3 kernels in (4.13 - 4.16), will also be synergistic 

causing them to not only score better classification accuracies than their Stage 2 

counterparts, but also compete with other traditional SVM kernels in common use. Again, 

this will be validated experimentally in the following sections. 
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(d) 1=  (e) 5=  (f) 10=  

Figure 4.7. Shape characteristics of the Stage 3 Chebyshev kernels with different   values, at x = 0. 
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Figure 4.8. Shape characteristics of the Stage 3 Legendre kernels with different   values, at x = 0. 
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(g) n = 6 (h) n = 7 
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Figure 4.9. Shape characteristics of the Stage 3 Hermite kernels with different   values, at x = 0. 
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4.4 Experimental validation of the similarity fusion framework 

for orthogonal polynomial kernels  

This section presents a series of comprehensive experiments to test and validate the 

synergy of the summative and multiplicative fusion operations inherent in the hierarchical 

construction of the polynomial kernels defined within the 3-stage similarity fusion 

framework discussed in the previous section. Section 4.4.4 shows the effect of the 

summative fusion operation by comparing the SVM classification performance scored by 

the Stage 2 versus Stage 1 kernels. Similarly, Section 4.4.5 also shows the effect of the 

multiplicative fusion operation by comparing the SVM classification performance of the 

composite Stage 3 kernels versus their Stage 2 counterparts. 

The following sub-sections will first explain the experimental setups, the classification 

performance assessment metric utilized, and the datasets employed in the experiments. 

 

4.4.1 Experimental setup and model parameter selection 

All the experiments were conducted using the C-SVM algorithm [12, 114] and the SVM 

toolbox in [115]. Using the standard grid search [116, 117], the penalization parameter C 

that yielded the best performance was found to be within the range [10-3, 103]; similarly, 

the range of the Gaussian kernel parameter   which yielded the best performance was 

[0.001, 100]. The experiments conducted on multi-class datasets adopted the well-known 

‘one-versus-all’ multi-class decomposition technique [85, 118] to train the SVM on each 

class-group separately. 

To be consistent with previous work, such as [17], the classification performance 

assessment metric used in all experiments is the classification accuracy. This is defined as 

the percentage of unseen examples that the classifier was able to ‘correctly’ classify during 

the testing phase. Although this performance metric does not tell us what has exactly 

happened with the ‘un-correctly’ classified examples (i.e., whether they have been 

classified to the opposite class, or were not classifiable at all – as explained back in Section 

2.2.4), it is important to use it for a fair comparison of the achieved experimental results 

with previous work. 
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4.4.2 Dataset selection and methodology for estimating classification 

accuracy 

In this thesis, careful deliberation has been made during the selection of different types of 

datasets used in the experimental work to assess and validate the similarity fusion 

framework presented in this chapter, as well as the approaches proposed in subsequent 

chapters. Several aspects have been taken into consideration, such as: 

1- The problem of non-linearly separable class boundaries, as this is the main issue that 

the SVM kernel-based classifier is tackling by mapping the input space to a higher-

dimensional feature space, where linear separability between overlapped classes can 

be improved.  

2- A wide variety of dataset attributes are taken into account to reflect, as much as 

possible, the characteristics of real-world practical applications; such as: the 

dimensionality of the dataset (i.e., small, medium, and large number of features), 

binary and multi-class datasets, and most importantly is the the distribution of the 

data points throughout the normalized vector space and hence the severity of the non-

linearity profile between the class labels. 

3- The use of standard datasets available to the machine learning and pattern 

classification research community. This creates a unified environment for the fair 

comparison of the performance of different classification algorithms, as the data 

points to be used for training and testing are fixed and explicitly defined. 

4- Consistency with previous published literature, which again enables a fair 

comparison with similar previous research work which used the same datasets to find 

out and assess how the performance of the approaches proposed in this thesis 

compares. 

Accordingly, six benchmark datasets (summarised in Table 4.1) from the UCI repository 

have been used in the experiments conducted in this section [119]. Below is a brief 

summary of how these datasets have been utilized to estimate the classification accuracy 

during the testing phase of each of the conducted experiments. 
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Table 4.1 Benchmark datasets used in the experiments. 

 BREAST 

CANCER 
IONOSPHERE TWO SPIRALS 

IMAGE 

SEGMENTATION 
IRIS THYROID 

NO. OF 

CLASSES 
2 2 2 7 3 3 

NO. OF 

EXAMPLES 
569 351 194 2310 150 7200 

NO. OF 

FEATURES 
30 34 2 18 4 21 

 

4.4.2.1 Breast Cancer Wisconsin dataset 

This is a binary dataset that consists of 569 examples where each data vector has 30 

features [119]. The features describe the characteristics of breast cells nuclei present in an 

image, and the aim of the classification algorithm under test is to be able to classify each 

data vector as belonging to one of two classes: malignant and benign. There are 357 and 

212 benign and malignant data vectors, respectively. To be consistent with previous 

literature, such as [17], the first 50 data points of each class were used for training while 

the remaining 469 data points were used for testing. 

 

4.4.2.2 Ionosphere dataset 

This is another binary dataset originating from some radar data collected by a phased array 

system consisting of 16 high frequency antennas in Goose Bay (located in Labrador, 

Canada) [119]. The system targets free electrons in the ionosphere layer, and ‘Good’ radar 

return signals means that there is some type of atmospheric structure in the ionosphere, 

whereas ‘Bad’ returns are those signals which pass through the ionosphere. The dataset 

consists of 225 ‘Good’ examples and 126 ‘Bad’ examples, respectively. The Goose Bay 

receiver system produced 17 pulse numbers, with two attributes each, resulting in a total of 

34 features. Inline with previous work, such as [120] and [121], we used the first 200 

training examples to classify the remaining 151 test examples. 

 

4.4.2.3 Two Spirals dataset 

This is a toy dataset that represents a highly non-linear problem that has challenged the 

pattern recognition research community since the 1990s [122-125]. This is because it 

incorporates important characteristics often found in real-time applications and several 

natural and physical domains [124]. The version of the Two Spirals dataset used in this 

thesis is the one available in [126] that consists of a balanced 194 two-dimensioanal binary 
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examples of two intertwined spirals, as shown in its normalized form in Figure 4.10 (a). 

The objective of the learning algorithm is to discriminate between the data points that are 

distributed on these two distinct strands (each representing a class) in the x-y plane. Hence, 

for a new data point, the classifier should be able to map it as belonging to either Class +1 

or Class -1. 
x 2
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 (a) Optimum decision boundary of the Two 

Spirals normalized dataset 

 (b) A pictorial example of data points on a 

uniformly distributed test grid created for the 

Two Spirals dataset 

Figure 4.10 Visualization of the Two Spirals dataset used in the experiments. 

The experiments presented in Sections 4.4.4 and 4.4.5 adopted the 10-fold cross validation 

technique to estimate the SVM classification accuracy corresponding to each kernel 

produced from the different stages of the similarity fusion framework. The experiments 

conducted in Section 4.4.6, however, took advantage of the 2D representation of the Two 

Spirals dataset to visualize the classification performance of the Stage 3 composite kernels 

and compare it to some of the traditional SVM kernels in common use. To achieve this 

purpose, all the 194 examples in this dataset were used for training. If the classifier is 

successful in appropriately learning the challenging non-linear function of this dataset, it 

should ideally be able to compute the decision regions and the decision boundaries 

between the two classes of this dataset to be as close as possible to the one shown in Figure 

4.10 (a). For testing, however, a new uniformly distributed grid of test data points is 

created within the normalized interval of [-1,+1], similar to the one that is pictorially 

illustrated in Figure 4.10 (b). 

Upon testing each data point in this test grid, the classification algorithm should classify it 

as either Class +1 or Class -1, based on its pre-calculations of the decision boundaries and 

regions during the training step. This can be visually observed by plotting each of the 

tested points for the two classes with a different shape/colour within their corresponding 
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calculated contours or decision regions, as shown in Section 4.4.6 for the results of the 

performance of the different kernels under investigation. For excellent comparative visual 

assessment, the plotted results also display the original training data points on top of the 

predicted data points. Note that, to avoid clutter, only the decision boundaries were plotted 

and the margins were ignored, as they are of minor importance in the context herein. 

Following this procedure, only the best results achieved for each kernel are reported in 

Section 4.4.6. 

 

4.4.2.4 Image Segmentation dataset 

This is a balanced multi-class dataset containing a total of 2310 data vectors each 

representing a randomly drawn image of 7 different outdoor environments (330 images for 

each class) [119]. These are: brickface, sky, foliage, cement, window, path, and grass. The 

task is to classify the centre pixel of a 3x3 patch of each image as belonging to one of these 

7 categories, based on 18 image processing features of the patch with different minimum 

and maximum values. Note that the third feature was not used in the experiments as it is 

the same for all the classes and therefore does not contain any discriminative information. 

Following [17], we have also divided this dataset such that the first 30 data points of each 

class were used for training, and the remaining 2100 data points were used for testing, in 

all the experiments. 

 

4.4.2.5 Iris dataset 

This is one of the well known standard datasets in the machine learning and pattern 

recognition literature [119]. It consists of a balanced 3-class set of 150 multivariate data 

examples where each vector has 4 features. Each class refers to a species of a flowering 

plant called “Iris”. These are: Setosa, Versicolour, and Virginica. The features that 

characterize each species are the length and the width of the sepals and petals in 

centimetres. Based on the combination of these four features, the role of the classifier is to 

distinguish these species from each other. In all the experiments, the training dataset is 

formulated from the first 15 data examples from each class, and the remaining 105 data 

examples were used to form the testing dataset. 
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4.4.2.6 Thyroid dataset 

This is another multi-class (3-class) dataset available from the UCI repository [119]. It 

consists of a total of 7200 examples, 21-features each, and the problem is to decide 

whether a patient (i.e., a data example) is diagnosed to be ‘normal (not hypothyroid)’, 

‘hyperfunction’, or ‘subnormal’ functioning. The dataset is configured to use the first 3772 

examples for training and the remaining 3428 examples for testing. This sets the train/test 

ratio amongst the 3-classes to be respectively equal to 93/73, 191/177, and 3488/3178. 

 

4.4.3 Normalization of the range of each vector component 

To be consistent with previous literature, such as [17, 31], feature values in all the datasets 

were normalized (where necessary) to be in the range [-1,+1]. Following the 

recommendation by Ozer et al. [17], each feature was normalized by considering its own 

maximum and minimum values throughout the entire dataset. As such, for a vector in the 

form of x =  mxxx ,,, 21  , each jth element of x was normalized with respect to the 

maximum and minimum values for that jth element in the whole dataset. The normalized 

value for each element was then calculated as: 

( )
1

MinMax

Min2
−

−

−
=

jj

jjnew
j

x
x  (4.17) 

where Minj and Maxj are the minimum and maximum values of the jth feature amongst all 

the vectors in the dataset, respectively. 

 

4.4.4 Experimental results and discussions for Stage 1 and Stage 2 

kernels of the similarity fusion framework 

It has been demonstrated in Section 4.3.2, via the analysis of the shape characteristics of 

Stage 1 and Stage 2 kernels, how the fusion by summation of the ith order Stage 1 kernels 

exhibit a synergistic complementary behaviour to contribute positively towards the 

calculation of an improved measure of similarity between their two input vector 

arguments. The experiments conducted in this section aim to validate such a hypothesis by 

exploring the resulting SVM classification accuracy scored by the Chebyshev, Legendre, 

and Hermite Stage 2 kernels, which are formulated with the sum (as defined in (4.10 - 

4.12)), compared to the classification accuracy scored by their Stage 1 counterparts, which 

are formulated without the sum (as defined in (4.7 – 4.9)). 
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Figures 4.11 – 4.16 illustrate pairwise graphical comparisons of the best classification 

accuracies scored by the first few orders of these Stage 1 and Stage 2 kernels using all the 

datasets described earlier in Section 4.4.2. As shown, the kernels under test have 

demonstrated different performances across the polynomial orders and the datasets 

investigated. However, in general, one can clearly observe the consistent superiority of the 

classification accuracies scored by the Stage 2 kernels over their Stage 1 counterparts for 

most, if not all, of the polynomial orders and datasets under study, which clearly validates 

the synergy in the fusion by summation operation inherent in the construction of such 

polynomial kernels. 

For example, in some datasets, such as the Breast Cancer, Ionosphere, and Two Spirals 

datasets, the improvement in the classification accuracy introduced by the Stage 2 kernels 

tend to be more dominant in higher order polynomial kernels than lower orders. Whereas 

in other datasets, such as the Image Segmentation and Iris datasets, it is the lower orders 

which benefited the most out of the fusion by summation process. Surprisingly, however, it 

also can be observed that the Hermite kernel was the one that benefited the most out of the 

fusion by summation process in the Thyroid dataset with only an infinitesimal 

improvement demonstrated by the Stage 2 Chebyshev and Legendre kernels, as shown in 

Figure 4.16. 

Of particular interest, however, is the observation that the classification accuracy obtained 

from Stage 1 kernels can at times score a 0% accuracy, as shown for example in the results 

obtained from the Breast Cancer and the Ionosphere datasets, in Figures 4.11 and 4.12, 

respectively. Such a poor performance indeed indicates that Stage 1 kernels can at times 

struggle to decide on their own as to what is the correct class label of a test example that 

they have not seen before during the training phase, and hence a fusion by summation of 

their preceding ith orders is essential to constructively contribute towards improving their 

generalization capabilities and hence their classification performance, as demonstrated by 

their Stage 2 kernels counterparts. 

As these instances of 0% accuracy is an extreme case, the output of the SVM algorithm (as 

implemented by the employed Matlab toolbox) was investigated in more detail to find out 

what has exactly happened with the SVM classifier, both during the training and testing 

phases. As a result, it was found that at these instances the algorithm actually failed to 

make any decisions at all during the testing phase, and it was not even able to calculate a 

decision boundary during the training phase. The 0% accuracy observed at these instances 

therefore indicates a ‘classification inability’ status and not a ‘classification to an opposite 
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class’ status, as explained earlier in Section 2.2.4. In Matlab language, the parameters of 

the dual optimisation problem calculated during the training phase, as well as the output of 

the decision function during the testing phase, were found to be not a number (NaN). 

Furthermore, recall that Stage 1 kernels calculate relatively poor measures of similarity 

when their two inputs happen to be identical within the normalized vector space of [-1,+1], 

as explained in Section 4.3.2, as compared to the developed peaks of their Stage 2 

counterparts. The superior results of Stage 2 over Stage 1 kernels illustrated in this section 

therefore demonstrate that such improvements in the calculated measures of similarity 

obtained by the synergistic fusion by summation of the ith order Stage 1 kernels do indeed 

reflect constructively upon the resulting classification performance obtained from the Stage 

2 kernels. 
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Figure 4.11 Classification accuracy scored by Stage 1 

and Stage 2 kernels, using the Breast Cancer dataset 

Figure 4.12 Classification accuracy scored by Stage 1 

and Stage 2 kernels, using the Ionosphere dataset 
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Figure 4.13 Classification accuracy scored by Stage 1 

and Stage 2 kernels using the Two Spirals dataset 

Figure 4.14 Classification accuracy scored by Stage 1 

and Stage 2 kernels using the Image Segmentation 

dataset 
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Figure 4.15 Classification accuracy scored by Stage 1 

and Stage 2 kernels using the Iris dataset 

Figure 4.16 Classification accuracy scored by Stage 1 

and Stage 2 kernels using the Thyroid dataset 

 

A further investigation has also been conducted on only Stage 2 kernels to explore how 

their performances compare within the datasets under test, and in particular in relation to 

their exhibited shape characteristics discussed earlier in Chapter 3 – Sections 3.4.2.2 and 

3.4.2.3). Figure 4.17 therefore focuses on comparing these results obtained from only the 

Stage 2 kernels to show that the performance of the Stage 2 Chebyshev and Legendre 

kernels are relatively close to each other, and also relatively better than the results obtained 

from the Hermite kernels. Again, recall that the Stage 2 Chebyshev and Legendre kernels 

have shown to exhibit some common good shape characteristics that are not shared with 

the Hermite kernels, this could explain the reason behind their classification performance 

being closer to each other and better than the Hermite kernels, as observed in most of the 

results in this figure. 

One can notice, however, that despite the Stage 2 Chebyshev and Legendre kernels have 

demonstrated a relatively superior performance to their Hermite counterpart for the Two 

Spirals, Ionosphere, Breast Cancer, Image Segmentation, and Iris datasets in Figure 4.17, 
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due to their better acquisition of similarity measures as discussed above, yet, this does not 

seem to be the case in the Thyroid dataset, especially in higher polynomial orders. This 

exceptional unique behaviour suggests that the influence of the similarity measures 

calculated by the underpinning kernels, as dictated by their shape characteristics, is not 

always prevail in all datasets (and hence in all pattern classification tasks), and that other 

factors (e.g., the uplifted dimensionality of the feature space, the severity of the non-

linearity profile of the dataset at hand, the ratio of the train / test number of examples, etc.) 

can at times have a stronger influence on the kernels’ classification performance. A deeper 

investigation into this point is indeed a subject of further research to explore in more detail 

what these possible factors could be.  
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(e) Stage 2 kernels - Iris (f) Stage 2 kernels - Thyroid 

Figure 4.17 Comparison of the classification accuracy results for Stage 2 Chebyshev, Legendre, and Hermite 

kernels. 

To further demonstrate the influence of the synergistic fusion by summation operation, 

Figure 4.18 also illustrates the obtained results in a different format using bar chart 

comparisons of the average classification accuracy scored by the first 10 orders of each of 

the Chebyshev, Legendre, and Hermite Stage 1 and Stage 2 kernels under test. One can 

observe the consistent superiority of the average classification accuracy scored by Stage 2 
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kernels over their Stage 1 counterparts for all the datasets investigated. As explained 

earlier, such improvement is evidently attributed to the synergistic fusion by summation 

process inherent in the Stage 2 kernels. 
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(e) Image segmentation (f) Two Spirals 

Figure 4.18 Bar chart comparative results of the average classification accuracy scored by the first 10 orders 

of Stage 1 and Stage 2 kernels of the developed similarity fusion framework. 



 125 

The classification accuracies scored by the Stage 1 and Stage 2 kernels are also analyzed 

more deeply in Table 4.2 to get a more quantitative assessment of how much improvement 

is gained as a result of the fusion by summation process. As such, the table is used to 

calculate the average improvements in the classification accuracy over the first 10 

polynomial orders for all the datasets by directly subtracting the accuracies scored by Stage 

1 kernels from their Stage 2 counterparts. As illustrated at the bottom of the table, the 

average improvement factors were calculated to be equal to 17.574%, 18.219%, and, 

16.249% for the Chebyshev, Hermite, and Legendre polynomial kernels, respectively, 

making up an average accuracy improvement factor of 17.347% over all the datasets 

experimented. 

Another observation worth noting is that the fusion by summation operation taking place in 

Stage 2 kernels resulted in rectifying the cases where their Stage 1 counterparts suffered 

from the ‘classification inability’ instances where they produced 0% accuracy, as 

demonstrated, for example, by the Breast Cancer and Ionosphere datasets in Figures 4.11 

and 4.12, respectively. Consequently, one can therefore notice that the Stage 2 kernels 

have exhibited a relatively smoother performance across the spectrum of polynomial 

orders compared to their Stage 1 counterparts, as the amplitude of the accuracy oscillations 

have been reduced considerably amongst the polynomial orders. 

To quantify this observation, Table 4.2 has also been used to calculate the standard 

deviation of the average improvement factors (shown in brackets), as well as the minimum 

and maximum improvement factors (shown in bold), introduced by the fusion by 

summation operation inherent in Stage 2 kernels. As it can be noticed, the standard 

deviation of the average improvement factors can be quite sparse and even higher than the 

mean, as shown for example in the Two Spirals and Image segmentation datasets, due to 

the huge difference between the two sets of results across the polynomial orders. 

Conversely, however, one can also realize the steadiness of the results by examining the 

standard deviation of the accuracy values themselves, reported in the statistical analysis 

tests tabulated in Appendix B.1, where the standard deviation of the classification 

accuracies scored by Stage 2 kernels is relatively smaller than the mean, compared to their 

Stage 1 counterparts, for most of the results obtained.  
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Table 4.2 Quantitative assessment of the average improvement in classification accuracy when using Stage 2 

over Stage 1 kernels of the developed similarity fusion framework. 

 Stage 1 & Stage 2 Cheb. Kernels Stage 1 & Stage 2 Hermite kernels Stage 1 & Stage 2 Legendre kernels 
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AAI 17.574 (23.85) 18.219 (25.023) 16.249 (21.551) 

TAI 17.347 (23.402) 

N1 Classification accuracy of Stage 1 kernels  

N2 Classification accuracy of Stage 2 kernels  

I Improvement = N2-N1 

AI Average Improvement for the first 10 orders 

AAI Average of Average Improvements of the first 10 orders over all the datasets under investigation 

TAI Total Average Improvement over all datasets and all kernels under investigation for the first 10 

orders 

 

It should not be forgotten, however, that despite such a substantial improvement in the 

classification performance demonstrated by Stage 2 kernels, due to the fusion by 

summation of the ith order Stage 1 kernels, yet, they are still not robust enough to compete 

with existing kernels to reliably solve real-world classification problems. Hence, a 

progression towards fusing them (i.e., Stage 2 kernels) with other kernels is necessary to 

up-scale their generalisation capabilities and hence improve their classification 

performance even further. This is achieved via the construction of the Stage 3 kernels of 

the similarity fusion framework presented in this chapter, and their classification 

performance is explored in the next section. 
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4.4.5 Experimental results and discussions for Stage 2 and Stage 3 

kernels of the similarity fusion framework 

The experiments conducted in this section aim to explore the resulting effect on the SVM 

classification accuracy due to fusing (by multiplication) Stage 2 kernels with other kernels 

(e.g., the Gaussian kernel) to formulate the composite Stage 3 kernels of the similarity 

fusion framework. To be specific, the comparative experiments were conducted between 

the Stage 2 kernels, defined in (4.10 – 4.12), versus their composite Stage 3 counterparts, 

defined in (4.13 – 4.16). 

Figures 4.19 – 4.24 demonstrate pairwise graphical comparisons of the best classification 

accuracies scored by the first few orders of these Stage 2 and Stage 3 kernels using all the 

datasets described earlier in Section 4.4.2. As shown, the kernels under test have once 

again demonstrated different performances across the polynomial orders and the datasets 

investigated. However, on average, it can be clearly observed that Stage 3 kernels have 

demonstrated a quite superior performance over their Stage 2 counterparts, for most of the 

polynomial orders and datasets investigated. 

Despite this performance superiority (of Stage 3 over Stage 2 kernels), yet, the 

improvement in the classification accuracy introduced by the Stage 3 kernels over the 

polynomial orders does not seem to be consistent throughout all the datasets. In other 

words, depending on the characteristics of the dataset (e.g., number of features, number of 

classes, the severity of the non-linearity profile of the overlapped class labels, etc.) the 

improvement in the classification accuracy introduced by the Stage 3 kernels can be more 

dominant in higher polynomial orders than lower orders, as can be observed, for example, 

in the Image Segmentation, Iris, and Thyroid datasets, shown in Figures 4.19, 4.23, and 

4.24, respectively. Whereas in other datasets, such as the Two Spirals and Ionosphere 

datasets, shown in Figures 4.21 and 4.22, respectively, it is the lower orders which 

benefited the most out of the fusion by multiplication process. 

Either way, this demonstrates that the fusion by multiplication process of Stage 2 kernels 

by their corresponding weighting functions, or other kernels (such as the Gaussian), is 

indeed synergistic as it leads to better classification performance. Inline with the 

information fusion theory explained earlier in this chapter, this observation validates that, 

to the extent that each of the Stage 2 kernels and their combining kernels provide 

complementary information about the input data, the performance of the classifier 

constructed from their fused combination does indeed outperform the performance 

achieved when the Stage 2 kernels are used on their own. 
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Another observation also worth noting is the fact that when Stage 2 kernels are fused with 

a more robust kernel than their own corresponding weighting functions, they can actually 

score even better classification accuracies, showing that the weighting functions are not 

always guaranteed to be the optimum choice. For example, this can be clearly observed 

here from the results obtained from the Legendre kernels. One can recall that the 

corresponding weighting function of the Legendre polynomials is 1)( =xw  [34], and 

therefore constitute the Stage 2 status in the framework presented in this chapter. For their 

Stage 3 counterpart, however, it has been combined with the Gaussian kernel instead, as 

per (4.15) (hence the name Modified Legendre kernel), which resulted in a substantial 

improvement in the classification accuracy, as demonstrated in the majority of the results 

herein, such as the Image Segmentation, Breast Cancer, and Two Spirals datasets, shown 

in Figures 4.19, 4.20, and 4.21, respectively. A similar behaviour can also be observed 

with the Stage 2 Chebyshev kernels, where they tend to score higher classification 

accuracies when combined with the Gaussian kernel (i.e., the Stage 3 Modified Chebyshev 

kernels) compared to when combined with their corresponding weighting function (i.e., the 

Stage 3 Generalized Chebyshev kernels), as can be realized for example from the results 

obtained from the Image Segmentation and the Iris datasets shown in Figures 4.19 and 

4.23, respectively. Thanks to the kernels’ multiplicative closure property (amongst the 

others) that allows us to legitimately adapt the kernels to achieve best possible 

performance, as this is what we are ultimately aiming for, rather than retaining the 

orthogonality of the underpinning polynomial kernels unnecessarily. 
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(a) Stage 2 Chebyshev & Stage 3 Generalised Chebyshev kernels (a) Stage 2 Chebyshev & Stage 3 Generalised Chebyshev kernels 
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(b) Stage 2 Chebyshev & Stage 3 Modified Chebyshev kernels (b) Stage 2 Chebyshev & Stage 3 Modified Chebyshev kernels 
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(c) Stage 2 Hermite & Stage 3 Composite Hermite kernels (c) Stage 2 Hermite & Stage 3 Composite Hermite kernels 
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(d) Stage 2 Legendre & Stage 3 Modified Legendre kernels (d) Stage 2 Legendre & Stage 3 Modified Legendre kernels 

Figure 4.19 Classification accuracy scored by Stage 2 

and Stage 3 kernels using the Image Segmentation 

dataset 

Figure 4.20 Classification accuracy scored by Stage 2 

and Stage 3 kernels using the Breast Cancer dataset 

 

 

 

 

 



 131 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Polynomial Order

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

Stage 2 Chebyshev

Stage 3 Generalized Chebyshev

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Polynomial Order

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

Stage 2 Chebyshev

Stage 3 Generalized Chebyshev

 
(a) Stage 2 Chebyshev & Stage 3 Generalised Chebyshev kernels (a) Stage 2 Chebyshev & Stage 3 Generalised Chebyshev kernels 
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(b) Stage 2 Chebyshev & Stage 3 Modified Chebyshev kernels (b) Stage 2 Chebyshev & Stage 3 Modified Chebyshev kernels 
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(c) Stage 2 Hermite & Stage 3 Composite Hermite kernels (c) Stage 2 Hermite & Stage 3 Composite Hermite kernels 
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(d) Stage 2 Legendre & Stage 3 Modified Legendre kernels (d) Stage 2 Legendre & Stage 3 Modified Legendre kernels 

Figure 4.21 Classification accuracy scored by Stage 2 

and Stage 3 kernels using the Two Spirals dataset. 

Figure 4.22 Classification accuracy scored by Stage 2 

and Stage 3 kernels using the Ionosphere dataset. 

 

 

 

 

 



 132 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Polynomial Order

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

Stage 2 Chebyshev

Stage 3 Generalized Chebyshev

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10
Polynomial Order

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

Stage 2 Chebyshev

Stage 3 Generalized Chebyshev

 
(a) Stage 2 Chebyshev & Stage 3 Generalised Chebyshev kernels (a) Stage 2 Chebyshev & Stage 3 Generalised Chebyshev kernels 
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(b) Stage 2 Chebyshev & Stage 3 Modified Chebyshev kernels (b) Stage 2 Chebyshev & Stage 3 Modified Chebyshev kernels 
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(c) Stage 2 Hermite & Stage 3 Composite Hermite kernels (c) Stage 2 Hermite & Stage 3 Composite Hermite kernels 
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(d) Stage 2 Legendre & Stage 3 Modified Legendre kernels (d) Stage 2 Legendre & Stage 3 Modified Legendre kernels 

Figure 4.23 Classification accuracy scored by Stage 2 

and Stage 3 kernels using the Iris dataset. 

Figure 4.24 Classification accuracy scored by Stage 2 

and Stage 3 kernels using the Thyroid dataset. 

 

Figure 4.25 illustrates bar chart comparisons of the average classification accuracy scored 

by the first 10 orders of each of the Stage 2 and Stage 3 kernels under test, again 

demonstrating the substantial classification accuracy improvement resulting from the 

synergistic fusion by multiplication process, for most, if not all of, the kernels and the 

datasets investigated. To quantify this improvement, Table 4.3 is also used to calculate the 

average improvement factors gained in the classification accuracy as a results of using 

Stage 3 kernels over their Stage 2 counterparts. By averaging over the first 10 orders for all 
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the datasets, these improvement factors were calculated to be equal to 14.571%, 20.479%, 

19.672%, and 21.91%, for the Stage 3 Generalized Chebyshev, Modified Chebyshev, 

Composite Hermite, and Modified Legendre kernels, respectively, making up an average 

accuracy improvement factor of 19.158%. 
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(a) Two Spirals (b) Breast Cancer 
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(c) Iris (d) Image segmentation 
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(e) Ionosphere (f) Thyroid 

Figure 4.25 Bar chart comparative assessment of the average classification accuracy scored by the first 10 

orders of Stage 2 and Stage 3 kernels of the developed similarity fusion framework. 
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Table 4.3 Quantitative assessment of the average improvements in classification accuracy when using Stage 3 over Stage 2 kernels of the similarity fusion framework. 
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AI 19.434 (39.228) 28.979 (44.609) 0.945 (0.803) 28.973 (44.492) 

AAI 14.571 (27.807) 20.479 (30.347) 19.672 (26.686) 21.910 (29.466) 

TAI 19.158 (28.567) 

N1 Classification accuracy of Stage 2 kernels  

N2 Classification accuracy of Stage 3 kernels  

I Improvement = N2-N1 

AI Average Improvement for the first 10 orders 

AAI Average of Average Improvements of the first 10 orders over all the datasets under investigation 

TAI Total Average Improvement over all the datasets and all the kernels under investigation for the first 10 orders 
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Furthermore, one of the remarkable implications of the fusion by multiplication process is 

that it makes the Stage 3 kernels substantially rectify the abrupt oscillating changes in the 

classification accuracy amongst the polynomial orders which both of the the Stage 1 and 

Stage 2 kernels suffered from. This can be clearly observed in the graphical representations 

of the experimental results illustrated in Figures 4.19–4.24. As shown, the Stage 3 kernels 

have exhibited a lot more stable and consistent classification performance throughout the 

spectrum of polynomial orders, compared to their Stage 2 counterparts, for all the datasets 

investigated. 

To quantify this observation, Table 4.3 has also been used to calculate the standard 

deviation of the average improvement factors (shown in brackets), as well as the minimum 

and maximum improvement factors (shown in bold), introduced by the fusion by 

multiplication process taking place in Stage 3 kernels. As it can be noticed, due to the 

difference between the two sets of results, which can be huge at times due to the oscillating 

nature of the Stage 2 kernels, the standard deviation of the average improvement factors 

can therefore be quite sparse and even higher than the mean, as shown for example in the 

Breast Cancer and Ionosphere datasets. Conversely, however, one can also realize the 

consistency of the results by examining the standard deviation of the accuracy values 

themselves, reported in the statistical analysis tests tabulated in Appendix B.2, where the 

standard deviation of the classification accuracies scored by Stage 3 kernels is consistently 

smaller than their Stage 2 counterparts, for all the datasets experimented. 

Such a significant improvement in the classification accuracy scored by the Stage 3 kernels 

over their Stage 2 counterparts clearly shows that using Stage 2 kernels on their own is not 

a recommended approach as they do not produce a consistently reliable and robust enough 

performance that can compete with existing kernels in solving real-world classification 

problems. To this end, one would therefore be interested to compare the performance of 

the composite Stage 3 kernels with some of the existing traditional kernels to explore how 

they compare and whether or not they can actually compete with them. This is investigated 

in more detail in the next sub-section. 

 

4.4.6 Comparative experimental evaluation for the composite Stage 3 

kernels and some traditional SVM kernels 

Being combined with Stage 2 kernels of the similarity fusion framework, Stage 3 kernels 

therefore represent the final combined kernel formulated using both the summative and 

multiplicative similarity fusion operations. This section presents a comparison between the 
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classification performance obtained from these composite Stage 3 kernels and some of the 

traditional SVM kernels that have been in common use, to explore if they can actually 

compete with them. The following traditional SVM kernels have therefore been selected to 

conduct a further set of experiments to compare their performance with those yielded by 

the Stage 3 kernels: 

▪ Linear kernel 

k(x, z) = zx,  (4.18) 

▪ Homogeneous polynomial kernel 

k(x, z) = 
n

zx,  (4.19) 

▪ Inhomogeneous polynomial kernel 

k(x, z) = n)1,( +zx  (4.20) 

▪ Gaussian kernel 

( )2
exp),( zxzx −−= k  (4.21) 

The first set of experiments designed for this purpose utilized the 2D characteristics of the 

Two Spirals dataset to visualize and assess the generalization capabilities and classification 

performance of the kernels under test in picking up its highly non-linear boundaries. Figure 

4.26 shows the best results obtained by the traditional kernels selected in (4.18 – 4.21), 

whereas Figure 4.27 shows the best results obtained by the Stage 3 composite kernels, 

together with their model/kernel parameters. 

As demonstrated in Figure 4.26, the linear kernel and both traditional SVM polynomial 

kernels have failed to capture the highly non-linear boundaries of the Two Spirals dataset. 

The Gaussian kernel, however, demonstrated a robust performance in equally splitting the 

two classes from each other, although without any attempt to follow the circular path of the 

spirals when they terminate at the edges. 

Stage 3 kernels (shown in Figure 4.27), on the other hand, outperform the linear and 

traditional polynomial kernels in picking up the spiral shape of this dataset. Some have 

also demonstrated a competitive performance compared to the Gaussian kernel with the 

added advantage of being able to generalize outside the data region (as shown for example 

with the Stage 3 Composite Hermite kernel in Figure 4.27 (d)). Another interesting 

observation that can also be drawn from Figure 4.27 is the fact that the Modified 

Chebyshev kernel (Figure 4.27 (b)) demonstrated superior performance over the 

Generalised Chebyshev kernel (Figure 4.27 (a)). Similarly, the Stage 3 Modified Legendre 
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kernel (Figure 4.27 (f)) also demonstrated superior performance over the Stage 2 Legendre 

kernel (Figure 4.27 (e)). Such observation again supports the earlier discussion that the 

corresponding weighting function is not necessarily the best kernel to be fused with the 

Stage 2 kernels, and multiplying by a better kernel can indeed enhance the generalisation 

capabilities of the overall kernel and improve the classification performance even further. 

Table 4.4 also shows the maximum classification accuracy scored by each of the kernels 

under comparison, using the same accuracy estimation methods used in the experiments 

conducted in the previous section for each dataset. The highest accuracy obtained for each 

dataset amongst all the kernels under test are those shown in bold. Inline with the previous 

research on the construction of SVM kernels from orthogonal polynomials, such as [17, 34, 

35, 102], the numerical results illustrated in Table 4.4 show that the accuracies scored by 

Stage 3 kernels do indeed demonstrate that they can offer performance which is 

competitive, if not superior, to those offered by traditional SVM kernels that have been in 

common use. It must be noted, however, that this superior performance can only be 

achieved when these Stage 3 kernels are well prepared by synergistically combining (by 

multiplication) their summative polynomial element (i.e., Stage 2 kernels) with another 

robust kernel, which does not necessarily have to be their corresponding weighting 

function. 
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 (a) Linear kernel (C=0.1)  (b) Homogeneous polynomial kernel (n=2, C=1000) 
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 (c) Homogeneous polynomial kernel (n=3, C=10 000)  (d) Homogeneous polynomial kernel (n=5, C=1000) 
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 (e) Inhomogeneous kernel (n=5, C=1000)  (f) Gaussian kernel (γ=50, C=100) 

Figure 4.26 Visual assessment of the classification performance of some traditional SVM kernels using the 

Two Spirals dataset. 
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 (a) Stage 3 Generalized Chebyshev kernel (n=8, C=100)  (b) Stage 3 Modified Chebyshev kernel (n=4, C=100, 

γ=100) 
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 (c) Stage 3 Composite Hermite kernel (n=3, C=100, 

γ=100) 

 (d) Stage 3 Composite Hermite kernel (n=17, C=100, 

γ=180) 
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(e) Stage 2 Legendre kernel (n=7, C=100) 

 (f) Stage 3 Modified Legendre kernel (n=5, C=100, 

γ=100) 

Figure 4.27 Visual assessment of the classification performance of Stage 3 kernels of the developed 

similarity fusion framework using the Two Spirals dataset. 
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Table 4.4 Comparative results of the classification accuracy scored by Stage 3 kernels of the similarity 

fusion framework and some of the most commonly used traditional SVM kernels. 

 
Two Spirals Breast Cancer Iris 

Image 

Segmentation 
Ionosphere Thyroid 

 Accuracy (%) & 

parameter (s) 

Accuracy (%) & 

parameter (s) 

Accuracy (%) & 

parameter (s) 

Accuracy (%) & 

parameter (s) 

Accuracy (%) & 

parameter (s) 

Accuracy (%) & 

parameter (s) 

Homogeneous 

polynomial 

57.41 

n=1 

96.84 

n=4 

87.62 

n=3 

92.48 

n=2 

96.03 

n=2 

97.72 

n=3 

Inhomogeneo

us polynomial 
56.27 

n=3 

97.01 

n=4 

97.14 

n=4 

92.86 

n=5 

97.35 

n=2 

97.78 

n=2 

Gaussian 90.62 

γ=10 

98.29 

γ=0.01 

98.10 

γ=3 

93.33 

γ=0.5 

98.01 

γ=0.1 

97.11 

γ=0.5 

Stage 3 

Generalized 

Chebyshev  

98.42 

n=11 

98.29 

n=2 

97.14 

n=1 

92.62 

n=3 

96.03 

n=1 

96.67 

n=8 

Stage 3 

Modified 

Chebyshev 

96.84 

n=6, γ=10 

98.72 

n=1, γ=0.01 

99.05 

n=3, γ=2 

92.90 

n=2, γ=1 

98.01 

n=1, γ=0.1 

97.29 

n=1, γ=0.1 

Stage 3 

Composite 

Hermite 

94.83 

n=12, γ=100 

98.24 

n=2, γ=0.1 

99.05 

n=5, γ=2 

92.90 

n=1, γ=0.1 

98.01 

n=1, γ=0.01 

97.35 

n=1, γ=0.1 

Stage 2 

Legendre 

98.42 

n=13 

98.24 

n=2 

95.24 

n=3 

92.14 

n=1 

96.69 

n=2 

95.54 

n=7 

Stage 3 

Modified 

Legendre 

100 

n=9, γ=10 

98.42 

n=1, γ=0.1 

98.1 

n=2, γ=1 

93.00 

n=2, γ=0.01 

98.01 

n=1, γ=0.1 

97.29 

n=1, γ=0.1 

 

4.4.7 Validation of the experimental setup via a comparison with 

previously reported results 

To check the validity of the experimental results presented in this chapter, as well as those 

results that will also be presented in the next chapters, it is also important to demonstrate 

that the experimental setup being used in the experiments conducted in this thesis is 

correct, valid, and is also consistent with what other researchers have used, specifically 

those, who are used to compare results with (i.e., Ozer et al. [17]). To achieve this purpose, 

this section is dedicated to demonstrate that the experimental setup used in this thesis was 

able to produce the same results as those reported by Ozer et al. under the same 

experimental parameters (e.g., dataset used, train/test ratio, kernel function, Matlab 

toolbox, SVM model parameters, normalization process, etc.). Needless to mention that if 

one wishes to explore how the classification performance is affected when different kernels 

are used, it is important to keep all other experimental parameters unchanged, which is 

what most of the work presented in this thesis is all about. Note that exactly the same 

kernel plots were produced as the ones reported by Ozer et al. (as per Figure 3.5 in Section 

3.4.2.1), which demonstrates the correctness of the mathematical formulation of the 

kernels that have been implemented in the proposed experimental setup. 
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4.4.7.1 Comparative experimental results on the Two Spirals dataset 

Ozer et al. did not mention from where they obtained the Two Spirals dataset that they 

used in their experiments [17], whereas the one used in the experiments conducted in this 

thesis is the standard dataset obtained from [126]. Although they look similar, the 

examples in the dataset used in this thesis are more interwined over each other than the 

dataset used by Ozer et al. (especially the data points located close to the centre of the 

vector space). This renders the classification of the dataset used here to be more 

challenging than the classification of the dataset used by Ozer et al., as its class boundaries 

are more interwined over each other, and hence poses a more challenging non-linearly 

separable classification task. Despite this challenge, the experimental setup used in this 

thesis was still able to produce very close performance to the results reported by Ozer et al. 

when the same kernel functions are used, as shown below. 

Figure 4.28 shows a comparison between the classification performance of the Modified 

Chebyshev kernel (as per Eq. (4.14)) produced by the experimental setup used in this thesis 

with its counterpart reported by Ozer et al. As can be observed, both results are nearly 

identical at the same polynomial order, which demonstrates that the experimental setup 

used in this thesis is correct, valid, and is consistent with what Ozer et al. have also used, 

which is important for a fair comparison. Analysing closely both results, one can also 

notice that the generalization performance of the proposed experimental setup is better than 

Ozer et al.’s because the original data points are shown to be located exactly in the middle 

of the decision region of each class (as shown in Figure 4.28 (b)), which is what one would 

wish to visualize from a maximum margin classifier like the SVM; whereas in the result 

reported by Ozer et al. (shown in Figure 4.28 (a)), most of the data points appear to be on 

the decision boundary itself, which does not demonstrate a very good generalization 

performance. 

The same observation can also be noticed from the experimental results obtained when the 

Gaussian kernel (defined in (4.21)) is used, as shown in Figure 4.29, which, although also 

demonstrate that both results are close to each other, the result produced from the proposed 

experimental setup shows a better generalization ability. This difference in performance, 

however, might be due to a poor grid search conducted by Ozer et al. over the 

hyperparameter C (which they did not mention what value it was set to in their 

experiments) and the kernel parameter . They mentioned that they used  =1, but they did 

not mention that this was the value that produced the best results, so may be if they 

searched along the range of possible values (rather than using just a single value), they 

might have been able to produce better results than the ones reported here. In the 
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experiments conducted in this thesis, however, a comprehensive grid search over these 

parameters was carried out and the parameters that produced the best results are reported, 

as shown in Figures 4.28 and 4.29. 

Figure 4.30 also shows a comparison of the results obtained on the Generalized Chebyshev 

kernel as defined in (4.13). When conducting the experiments, Ozer et al. mentioned that 

they modified this kernel by adding a small value   to its denominator to eliminate the 

possibility of dividing by zero. This means that the Generalized Chebyshev kernel used in 

their experiments is formulated in the form of: 

−+
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zx

zx
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)()(

),( 0

m
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k

n

i

T
ii


. (4.22) 

However, there is no mention as to what value they decided to use for  , so that one can 

try and reproduce their results. In all the experiments conducted in this thesis, the 

Generalized Chebyshev kernel has been implemented (whenever used) as defined in (4.13) 

without being modified. Together with the more challenging non-linear spiral flow of the 

version of the dataset used in this thesis (and again the absence of information about the 

penalization parameter C), perhaps explains the reason why the two results shown in 

Figure 4.30 (a) and (b) are not exactly identical to each other as in the case of the Gaussian 

and the Modified Chebyshev kernels.  
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(a) Classification performance of the Modified Chebyshev 

kernel (n=4), as reported by Ozer et al. [17]. 
 

(b) Classification performance of the Modified 

Chebyshev kernel (n=4, C=100, γ=100) produced 

by the experimental setup used in this thesis. 

Figure 4.28 Comparison of the classification performance achieved using the Modified Chebyshev kernel. 
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(a) Classification performance of the Gaussian kernel 

(γ=4.59), as reported by Ozer et al. [17]. 
 

(b) Classification performance of the Gaussian kernel 

(γ=50, C=100) produced by the experimental setup 

used in this thesis. 

Figure 4.29 Comparison of the classification performance achieved using the Gaussian kernel. 
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(a) Classification performance of the Generalized 

Chebyshev kernel (n=4), as reported by Ozer et al. [17]. 
 

(b) Classification performance of the Generalized 

Chebyshev kernel (n=4, C=100) produced by the 

experimental setup used in this thesis. 

Figure 4.30 Comparison of the classification performance achieved using the Generalized Chebyshev kernel. 
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4.4.7.2 Comparative experimental results on the Breast Cancer dataset 

Whilst focusing on comparing the experimental results obtained in terms of the test 

accuracy as per the reported train/test ratio, one can notice that Ozer et al. presented their 

results on this dataset in two formats [17]: (1) in terms of the maximum test accuracy 

scored by each of the experimented kernels, and (2) in a graphical format to show how the 

classification accuracy of the different kernels is affected with the variation in the 

polynomial order. Both formats are compared with the results obtained from the 

experimental setup used in this thesis in Table 4.5 and Figure 4.31. 

Table 4.5 shows the comparative results scored by the Gaussian, Modified Chebyshev, 

Generalized Chebyshev, and the polynomial kernels on the Breast Cancer dataset. As can 

be observed, when the experimental setup is configured to use the same reported kernel 

parameters, the produced test accuracies are nearly the same as those reported by Ozer et 

al. Interestingly, all the kernels have also produced exactly the same number of support 

vectors, which further demonstrates the consistency of the experimental setup used in this 

thesis. Moreover, with a more comprehensive grid search on the kernel and penalization 

parameter, the experimental setup proposed here was able to produce even better test 

accuracies than those reported by Ozer et al., again with exactly the same reported number 

of support vectors. 

Figure 4.31 also shows that the results obtained by Ozer et al. for the first few orders of the 

Generalized Chebyshev, Modified Chebyshev, and polynomial kernels (shown in Figure 

4.31 (a)) are very close to those produced by the experimental setup used in this thesis for 

the same kernels (shown in Figure 4.31 (b)). Note that the figure reported by Ozer et al. in 

Figure 4.31 (a) was edited here to remove the graphical results of the kernels that are 

irrelevant to this comparison, for easier analysis. 
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Table 4.5 Comparison between the maximum classification accuracy scored using the Gaussian, Modified 

Chebyshev, Generalized Chebyshev, and the polynomial kernels. 

 Ozer et al. 

reported 

results 

Experimental 

results with same 

kernel parameters  

Best scored 

experimental 

results 

Gaussian 

kernel 

Test % 95.52 97.65 98.29 
  0.0034722 0.0034722 0.01 

C  1000 1000 

SV no. 30 30 30 

Modified 

Chebyshev 

kernel 

Test % 97.01 97.23 98.72 

n 8 8 1 
  0.25 0.25 0.01 

C  10 10 

SV no. 30 30 30 

Generalized 

Chebyshev 

kernel 

Test % 97.23 97.87 98.29 

n 3 3 2 

C  0.01 1 

SV no. 30 30 30 

Polynomial 

kernel 

Test % 96.38  95.95 97.65 

n 9 9 2 

C  1 0.01 

SV no. 30 30 33 
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(a) Classification accuracy of the Generalized 

Chebyshev, Modified Chebyshev, and 

polynomial kernels at different orders, as 

reported by Ozer et al. [17]. 

(b) Classification accuracy of the Generalized 

Chebyshev, Modified Chebyshev, and 

polynomial kernels at different orders produced 

by the experimental setup used in this thesis.  

Figure 4.31 Graphical comparison of the classification accuracy obtained using the Breast Cancer dataset. 

 

4.4.7.3 Comparative experimental results on the multi-class datasets 

The other datasets used by Ozer et al. are the Iris and Image Segmentation multi-class 

datasets [17]. In their reported results, however, it is not clear why they preferred to report 

the scored test accuracy of successfully classifying each class individually rather than 

reporting the test accuracy of all the correctly classified data points in the whole test 

dataset for all the classes, as they did, for example, with the Breast Cancer dataset. Also, 
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the reported graphical results (which show how the test accuracy varies with the kernel 

parameter) are not consistent between the Iris and Image Segmentation dataset, which 

makes the comparison even harder. For example, in the Iris dataset, they decided to present 

the results of all the kernels on each individual class on a separate plot (as shown in Figure 

4.32), whereas in the Image Segmentation dataset, they did the complete opposite; i.e., 

they plotted the results of all the classes on each individual kernel on a separate plot (as 

shown in Figure 4.33). In most of the plots, it is also difficult to differentiate between the 

different graphs due to the poor selection of the colours/legends. 

   
(a) Kernel parameter vs. test 

performance for Virginica Class 

(b) Kernel parameter vs. test 

performance for Versicolour Class 

(c) Kernel parameter vs. test 

performance for Setosa Class 

Figure 4.32 Classification accuracy on the Iris dataset, as reported by Ozer et al. [17]. 

   
(a) Generalized Chebyshev kernel 

parameter vs. performance 

(b) Modified Chebyshev kernel 

parameter vs. performance 

(c) Polynomial kernel parameter vs. 

performance 

Figure 4.33 Classification accuracy on the image segmentation dataset, as reported by Ozer et al. [17]. 

 

Due to this confusion, this section will compare the best scored test accuracy calculated 

from all the correctly classified examples in the whole test dataset produced from the 

experimental setup used in this thesis, with the ‘average’ test accuracy over the individual 

classes reported by Ozer et al., as illustrated in Table 4.6. Although this comparison is 

conducted between the results obtained from two different experimental setups, especially 

because Ozer et al. seem to have reported different kernel parameters for each class (which 

is another unexplained behaviour), the results shown in Table 4.6 illustrate that they are 

reasonably close to each other, and hence demonstrates the effectiveness of the utilized 

kernels in both experimental setups. 
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Table 4.6 Comparing the experimental results on the Iris and image segmentation multi-class datasets. 

 Iris Image segmentation 

Total Average 

Test Accuracy 

reported by Ozer 

et al. (%) 

Best scored 

experimental 

results (%) 

Total Average 

Test Accuracy 

reported by Ozer 

et al. (%) 

Best scored 

experimental 

results (%) 

Gaussian 98.41 98.10 98.19 93.33 

Generalized 

Chebyshev 
97.46 97.14 97.24 92.62 

Modified Chebyshev 99.37 99.05 98.36 92.90 

Polynomial 98.73 97.14 97.97 92.86 

 

4.5 Summary 

This chapter proposed a novel similarity fusion framework within which the pictorial 

similarity-based characteristics of the adopted orthogonal polynomial kernels are analysed 

and their corresponding empirical classification performance is assessed. It has been shown 

that such polynomial kernels are naturally constructed from a mixture of summative and 

multiplicative combination of base kernel building blocks that synergistically contribute 

towards calculating more accurate similarity measures, as exhibited by their pictorial 

characteristics. Hence, the resulting performance of the classifier constructed from the 

fused kernels is expected to outperform that of the best individual kernel building block. 

To validate this hypothesis, the proposed similarity fusion framework was therefore set to 

analyse and assess the performance of these polynomial kernels at three hierarchical 

stages. The first stage was defined as the dot-product between the evaluation of the 

employed nth order polynomial on the kernel’s two input vectors, whereas the second stage 

implemented the fusion by summation operation where all the nth order Stage 1 kernels are 

summed up from order 0 to n. Using the Chebyshev, Legendre, and Hermite polynomials, 

the experimental results presented in this chapter revealed that such a summative fusion 

operation is indeed synergistic and that it can introduce an average classification 

improvement factor that can be as high as 17.347%, depending on the datasets utilized and 

the polynomials employed. 
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The third stage of the similarity fusion framework, on the other hand, combined by 

multiplication the Stage 2 kernels with another kernel which can either be their 

corresponding weighting function or any other valid kernel. Experimental results on four 

different Stage 3 kernels, defined in (4.13 – 4.16), have also revealed that such a 

multiplicative fusion operation is also synergistic and that it can introduce a further 

average classification improvement factor of 19.158%, depending on the datasets utilized 

and the polynomials employed. The experimental results have also shown that the OPKs’ 

corresponding weighting functions are not necessarily the best choice to be combined by 

multiplication with the Stage 2 kernels, and that combining them with more robust kernels 

can indeed yield even better results. 

Finally, it has also been shown in this chapter that the Stage 3 kernels can be very 

competitive alternatives (if not even superior) to some of the traditional SVM kernels that 

have been in common use, such as the linear, homogeneous and inhomogeneous 

polynomial kernels, and the Gaussian kernel. It must not be forgotten, however, that these 

Stage 3 kernels have demonstrated such a competitive performance even though the Stage 

2 kernels that they are combined with are still suffering from the problem (alluded to in the 

previous chapter) of decreasing their monotonic decay window as the order increases. One 

would therefore expect that if this problem is properly addressed, such kernels can 

demonstrate even more superior performance. This is the subject of investigation of the 

next chapter. 
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Chapter 5                  

Solving the Monotonic Decay Window 

Problem of Stage 2 Polynomial Kernels 

 

5.1 Introduction 

This chapter addresses the problem alluded to in Section 3.4.2, where the Stage 2 

polynomial kernels exhibit a monotonic decay shape behaviour over a narrower range than 

the normalized data region of [-1,+1]. The aim is to demonstrate that when the kernel 

exhibits a complete monotonic decay behaviour, throughout the whole vector space where 

the data is located, the classifier will perform better than if the kernel exhibits this 

behaviour within only a partial region within the standard normalized vector space, and 

then oscillates afterwards. This is because similarity measurements calculated between any 

two data points that happen to be located outside this monotonic threshold window would 

then be inaccurate and could result in the SVM misclassifying the input data. Stage 2 

kernels are therefore a typical example that can be used to conduct this investigation, due 

to their shape characteristics that have shown to be suffering from this drawback, rather 

than, for example the Stage 3 kernels which can avoid this problem via the appropriate 

selection of the kernel parameter γ during the fusion by multiplication process, as exhibited 

by their shape characteristics illustrated in Section 4.3.3. 

To solve this problem, this chapter proposes a simple adaptive data normalization approach 

to confine the data to the regions where the kernel demonstrates the sought after ideal 

monotonic characteristics. This way, the possibility of any data point to be located outside 

the monotonic threshold window of the employed kernel is eliminated, and therefore the 

underpinning kernel should be able to calculate more accurate similarity measures between 

its input arguments. Experimental results on a number of benchmark datasets validate the 

effectiveness of this approach in improving the resulting SVM classification accuracy. 

Customizing a solution to this problem via this proposed adaptive data normalization 

approach demonstrates that the study of kernels as similarity measure tools, rather than 

their standard definition as positive semi-definite functions, can enable the machine 

learning practitioner to use more tangible and intuitive properties (such as the shape 

characteristics of the ideal similarity function utilized in this chapter) to design more 

effective kernels than relying on only their implicitly constructed high-dimensional feature 

spaces that one might not even be able to calculate. 
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5.2 The monotonic decay window problem of orthogonal 

polynomial kernels 

It has been explained in Chapter 3 how the study of kernels in terms of their similarity-

based properties defined by their shape characteristics could indeed be a useful approach to 

design better kernels than relying on only their mathematical properties defined by their 

positive semi-definiteness property. It has also been explained (in Section 3.3.1) that if a 

kernel is regarded as a measure of similarity, it would be expected to return a high value 

when the two vectors are close to each other (i.e., highly similar and therefore belong to 

the same class) and maximized, when the two vectors are identical, and decreases 

monotonically as the two vectors depart away from each other (as typically demonstrated 

in Figure 3.1). 

The shape illustrations of Stage 2 kernels of the similarity fusion framework developed in 

Chapter 4 have also revealed that they share some essential characteristics with this ideal 

similarity function. For example, as the order increases, the Stage 2 Chebyshev and 

Legendre kernels have shown to develop a dominant maximum peak wherever the two 

inputs happen to be identical, and then decrease in value as the two inputs depart away 

from each other. It has also been observed, however, that as the distance between the two 

inputs increases, the kernel value keeps on decreasing but only up to a certain threshold, 

after which it increases again and then fluctuates in a wavy pattern similar to the wave 

kernel. For ease of comparative assessment of such a problem, the graphs of the first 10 

orders of each of the Stage 2 Chebyshev, Legendre, and Hermite polynomial kernels under 

investigation are plotted again individually in Table 5.1.  

On re-examining the figures, one can notice that this is obviously not a complete 

monotonic decay behaviour throughout the whole normalized data region of [-1,+1] as it is 

the case with the ideal similarity function. Even worse, the window of monotonic decay 

(determined by the threshold) of each kernel has also been observed to shrink as the order 

increases. The trouble is that any measures of similarity calculated between any data points 

that happen to be located outside this monotonic decay window would therefore be 

inaccurate. To exacerbate this situation, one can notice that this window actually shrinks as 

the order increases, meaning that the chance of more data points falling outside this 

monotonic window will increase leaving more measures of similarity wrongly evaluated, a 

fact which can have a destructive effect on the resulting classification performance. 

Furthermore, the threshold of this monotonic window is different from one kernel to 

another at a given polynomial order, meaning that a solution devised to tackle this problem 
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for one kernel might need to be adapted before it can work on another kernel to suit its 

characteristics.  

 

Table 5.1 Comparison of the first 10 orders of the Stage 2 polynomial kernels, at x=0. 
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5.3 Customizing the solution via adaptive data normalization 

5.3.1 Kernel shape modification versus data adaptation 

To rectify this problem, one can think of modifying the shape of the kernel so that it gets 

closer to the shape of the ideal similarity function. Various operations can be implemented 

to achieve this purpose, for example, weighting, scaling, stretching etc. However, such 

operations could actually affect the positive semi-definiteness of the employed kernel 

(which is important to be kept intact), as well as changing the form of the kernel itself. 

Remember that it is also important in this context to keep the shape of the Stage 2 kernels 

intact so as to enable a fair comparison between the different types of polynomials (e.g., 

Chebyshev, Legendre, etc.) to explore and assess their robustness as stand-alone kernels in 

tackling classification problems. So, if every kernel is modified in a different way to match 

its shape to that of the ideal similarity function, comparing their resulting performances 

would be unfair. 

For these reasons, this section proposes a simple alternative solution that actually adapts 

the data itself to the sought-after characteristics of the utilized kernel rather than adapting 

the kernel to match the shape characteristics of the ideal similarity function. Assuming that 

the shape of the polynomial kernel is not altered by the input data, this approach simply 

works by imposing a further data normalization step to confine the input data to the 

monotonic decay windows of the polynomial kernels where they demonstrate the ideal 

similarity measure characteristics. Recall that the data normalization region was initially 

selected to be [-1,+1], following the domain of common definition of the polynomial 

kernels considered in this thesis. To further confine the data to the ideal monotonic 

windows of the polynomial kernels, an additional data normalization step is introduced. By 

this way it is guaranteed that the measures of similarity calculated by the employed kernel 

are accurate and reflect the true level of similarity between the two input arguments. 

 

5.3.2 Choosing a common monotonic window for data normalization 

The problem in implementing this solution is that the thresholds of this monotonic window 

differ from one kernel to another and also from one order to another (as explained earlier, 

the thresholds decrease as the polynomial order increases). This would mean that the input 

data would need to be normalized to different scales for every type of polynomial kernel 

(i.e., Chebyshev, Legendre, etc.) and for every order of each kernel. For example, one can 

observe from the plots (at x = 0) of the first 10 orders of the Stage 2 kernels under 
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investigation illustrated in Table 5.1, that as the order increases, the thresholds decrease, 

and they can also be different from one kernel to another. Table 5.2 summarises these 

thresholds for the first 10 orders for each of these Stage 2 kernels under investigation. 

Table 5.2 Stage 2 Chebyshev, Legendre, and Hermite kernels’ monotonic windows. 

      Kernel 

                                                                                   

Order 

Stage 2 

Chebyshev 

Stage 2 

Legendre 

Stage 2 

Hermite 

1 [-1,+1] [-1,+1] [-1,+1] 

2 [-1,+1] [-1,+1] [-1,+1] 

3 [-1,+1] [-1,+1] [-1,+1] 

4 [-0.8,+0.8] [-0.8,+0.8] [-1,+1] 

5 [-0.8,+0.8] [-0.8,+0.8] [-1,+1] 

6 [-0.6,+0.6] [-0.6,+0.6] [-0.9,+0.9] 

7 [-0.6,+0.6] [-0.6,+0.6] [-0.9,+0.9] 

8 [-0.5,+0.5] [-0.5,+0.5] [-0.8,+0.8] 

9 [-0.5,+0.5] [-0.5,+0.5] [-0.8,+0.8] 

10 [-0.4,+0.4] [-0.4,+0.4] [-0.7,+0.7] 

Common 

monotonic 

region 

[-0.4,+0.4] [-0.4,+0.4] [-0.7,+0.7] 

 

To prove the concept, however, and to facilitate the implementation of this approach, a 

common monotonic region has been selected for all the first 10 orders of each of the 

polynomial kernels under investigation. As this monotonic window shrinks as the order 

increases, the common monotonic region for all the first 10 orders would be the one 

prescribed by the 10th order of each kernel. From Table 5.2, one can see that these regions, 

for the Stage 2 Chebyshev, Legendre, and Hermite kernels, are [-0.4,+0.4], [-0.4,+0.4] and 

[-0.7,+0.7], respectively. By this way, all the first 10 orders of each kernel will be 

processing the data that are normalized to this common monotonic window, rather than 

making each order process the data which are normalized to its own monotonic window. 

As such, the experiments conducted in the next section report the results achieved when 

the first 10 orders of each kernel were used to process the data that are confined to the 

common monotonic regions amongst all of them. 
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5.4 Experimental evaluation of the proposed adaptive data 

normalization approach 

5.4.1 Implementation of the adaptive data normalization process 

The additional normalization step to confine the data to the monotonic decay windows of 

each kernel would have the same effect as modifying the kernel shape itself to that of the 

ideal similarity function throughout the original data region of [-1,+1]. As such, the 

underlying kernel should be able to calculate more accurate measures of similarity (and 

hence better classification accuracies) than the kernels that process the ‘untreated’ data in 

the way explained above. 

The experimental investigations conducted in this section will explore the effect of this 

additional adaptive data normalization step on the classification performance of the Stage 2 

kernels under investigation, when implemented within the SVM algorithm. As a natural 

practice, pairwise comparisons are conducted on the classification accuracies scored by 

each order of the employed kernel in two cases. The first case is when the data are 

normalized to the standard domain of definition of the employed polynomial kernels, 

which is [-1,+1]. This will be referred to in the experimental results as the ‘Standard 

normalization’, for short. The second case is when the additional data normalization step is 

applied to confine the data to the common monotonic region of all the first 10 orders of the 

employed kernel, as shown in Table 5.2. Similarly, this will be referred to in the 

experimental results as the ‘Monotonic normalization’, for short. This additional 

normalization step is achieved by down-scaling the standard normalized data by a certain 

factor for each kernel to confine them to common monotonic region of the first 10 orders 

of each kernel. Modified from (4.18), this additional downscaling normalization step can 

be formally defined as: 

( )
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where Mini and Maxi are the minimum and maximum values of the ith feature amongst all 

the vectors in the dataset, respectively. 

 

5.4.2 Experiments design and setup 

With the exception of data normalization, all the other design and setup of the experiments 

conducted in this chapter are the same as those presented earlier in Chapter 4 (Sections 
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4.4.1 and 4.4.2). In other words, for consistency, the experiments conducted in this chapter 

will still utilize the classification accuracy as the method of assessment of the classification 

performance scored by the employed kernel before and after implementing the proposed 

approach. The same train/test data division technique for each dataset, as explained back in 

Section 4.4.2, will be followed for the experiments conducted in this section. The 

commonly used C-SVM will also be utilized as per its implementation in the toolbox 

utilized from [115]. 

The experiments conducted in this chapter are focused on only the Stage 2 kernels, which 

have been shown to outperform those of Stage 1. As such, the selection of the model and 

hyperparameters is restricted to only the penalization parameter C and the polynomial 

order capped to n=10. Again, a comprehensive grid search amongst these parameters was 

conducted, and only the best results scored by each kernel are reported. 

Lastly, the experiments conducted in this section will be utilizing the Stage 2 kernels when 

they are employed to process the input data vectors using the vectorial processing approach 

proposed by [17] (explained back in Section 3.4.1.2), as this has already been shown to 

outperform the pairwise approach, originally proposed by [31]. The next chapter will, 

however, present an alternative approach, which has been shown to be superior in 

classification performance to these two previously proposed in the literature. 

 

5.4.3 Experimental results and discussions 

The experimental results achieved are presented below in three different formats: graphical 

representations of the maximum accuracies scored, average accuracies, and their bar chart 

representations of the first 10 polynomial orders. The aim is to provide a comprehensive 

analysis of the results obtained so that the performance improvement gained as a result of 

implementing the proposed adaptive data normalization approach can be properly assessed. 

Six datasets are utilized to conduct the experimental investigation herein. These are: the 

Breast Cancer, Iris, Image Segmentation, Ionosphere, Thyroid, and Two Spirals datasets; 

where the training and test examples for each dataset were selected as per the explanation 

in Section 4.4.2. 

Table 5.3 illustrates the experimental results obtained in a pairwise graphical format of the 

best classification accuracy scored by the first 10 orders of the Stage 2 kernels under test 

for both the standard normalization and the proposed monotonic normalization approaches. 

As shown, the kernels under test have demonstrated different behaviours across the 
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datasets and the polynomial orders investigated. However, in general, it can be observed 

that the proposed monotonic normalization approach outperforms the standard 

normalization for most of the orders and the datasets experimented. Given that the only 

difference between the two sets of results is the implementation of the proposed adaptive 

data normalization approach, which confines the data to the monotonic decay regions, 

where the employed kernel demonstrates ideal similarity measure characteristics, it can be 

concluded that the implementation of such an approach did indeed make the employed 

kernels produce more accurate measures of similarity, a fact, which is reflected 

constructively on their resulting classification performance, as can be observed in the 

results herein. 

In terms of the polynomial orders, one can also observe (for example, from the results 

obtained from the Image Segmentation and Thyroid datasets in Table 5.3) that the 

classification performance of the standard normalization drops significantly at higher 

orders. This is believed to be attributed to the fact that the monotonic decay window 

threshold of these Stage 2 kernels shrinks as the order increases, which increases the 

chance of more data points, that happen to be located outside this window, to be prone to 

miscalculation of the measures of similarity amongst them, due to the oscillating wavy 

pattern of these polynomial kernels, as explained earlier in Section 5.2. As the proposed 

monotonic normalization approach does not suffer from this symptom, as it is specifically 

designed to rectify this problem, its experimental results have therefore demonstrated a 

relatively steady classification performance across the polynomial orders compared to 

when the datasets are normalized to the standard region of [-1,1].   

Moreover, by eliminating the chance of data points falling outside the kernels’ monotonic 

decay window threshold, where the kernels oscillate in a wavy pattern, the proposed 

monotonic normalization approach also avoids any fluctuations in the calculated measures 

of similarity by correcting the cases where standard normalization fails. This can be 

observed, for example, in the oscillations appearing in the Breast Cancer dataset and the 

major collapse in the classification accuracy scored by the 5th order kernels in the 

Ionosphere dataset. Consequently, the monotonic normalization approach was therefore 

able to produce a more consistent and steady classification accuracies, across the spectrum 

of polynomial orders, than the results obtained from the standard normalization. This can 

also be quantitatively realized by directly comparing the standard deviation (in relation to 

the mean) of the two sets of results (as listed in the tabulated statistical analysis tests in 

Appendix B.3) where the standard deviation of the monotonic normalization results is 
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consistently smaller than the standard deviation of the results obtained from its standard 

normalization counterpart. 

For a further quantitative assessment of these results, Table 5.4 also lists the actual values 

of the best classification accuracy scored by the Stage 2 kernels under test, for each of the 

data normalization approaches implemented. By directly subtracting the two sets of results 

from each other for each order, one can get an average figure of how much improvement in 

classification accuracy can be gained by implementing the proposed adaptive data 

normalization approach. At the bottom of the table, this was calculated to be equal to 

16.48%, 15.04%, and 3.795% for the Stage 2 Chebyshev, Legendre, and Hermite kernels, 

respectively, making up a total average improvement factor of 11.772%, depending on the 

dataset and the polynomial utilized. 

It should be noted, however, that the improvement amongst the polynomial orders is quite 

diverse (due to the oscillating performance of the standard normalization in some datasets, 

as explained earlier) and can sometimes vary significantly throughout the spectrum of 

polynomial orders. For this reason, Table 5.4 has also been used to calculate the standard 

deviation of the average improvement factors introduced by the proposed monotonic 

approach, which is shown in the table in brackets beside every average improvement factor 

calculated. The minimum and maximum values of the improvement factors achieved are 

also shown in bold in the table. Unlike the standard deviation of the actual results of the 

classification accuracies (alluded to above and listed in the statistical analysis tables in 

Appendix B.3), one can notice, however, that the standard deviation of the average 

improvement factors shown in Table 5.4 is quite sparse and can actually be larger than the 

mean at times, which clearly indicates how diverse the difference between the results are.  

The bar charts in Figure 5.1 also illustrate a pairwise comparative assessment of the 

average classification accuracy scored by the first 10 orders of the Stage 2 kernels for each 

of the data normalization approaches under test. Again, it can be observed that the 

proposed adaptive monotonic data normalization approach demonstrated a superior 

average performance over its standard data normalization counterpart in most of the 

datasets under test; which again shows that the employed kernels are now able to calculate 

more accurate measures of similarity, and hence enable the subsequent SVM classification 

performance to improve. 
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Table 5.3 Experimental results of the best classification accuracies scored by the first 10 orders of Stage 2 kernels using the standard vs. the proposed monotonic data normalization approach. 
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 Stage 2 Chebyshev kernels Stage 2 Legendre kernel Stage 2 Hermite kernel 
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Table 5.4 Quantitative assessment of the classification improvements gained by implementing the proposed 

adaptive monotonic data normalization approach. 
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(a) Breast Cancer 
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(b) Iris 
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(c) Image segmentation 
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(d) Ionosphere 
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(e) Thyroid 
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(e) Two Spirals 

Figure 5.1 Bar chart comparative assessment of the average classification accuracy scored by Stage 2 kernels 

with standard data normalization and the proposed adaptive monotonic data normalization approach. 
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On the other hand, despite the superiority of the proposed monotonic approach over its 

standard normalization counterpart demonstrated in the majority of the results shown 

above, yet, one can still notice that there are cases where the monotonic normalization 

approach does not actually introduce any improvement at all and that the standard 

normalization is still superior. This can be observed in Table 5.3, for example, in some 

polynomial orders in some datasets, such as the higher orders Hermite kernel in the 

Ionosphere and Thyroid datasets, and the higher order polynomial kernels experimented on 

the Two Spirals dataset. To further investigate the potential reason behind this 

phenomenon, another set of experiments have also been conducted that took advantage of 

the 2D dimensionality of the Two Spirals dataset to enable the visualization of the 

classification performance amongst the two normalization approaches under investigation 

and throughout the first 10 polynomial orders of the kernels under test. 

As such, Tables 5.5, 5.6, and 5.7 illustrate the visualization assessment of the classification 

performance on the Two Spirals dataset using the Stage 2 Chebyshesh, Legendre, and 

Hermite kernels, respectively. This is achieved via a pairwise comparison of the behaviour 

of each kernel for the two normalization approaches under investigation and for each of the 

first 10 orders under test. A common observation amongst the three kernels that can easily 

be realized from the figures is that as the polynomial order increases, both of the standard 

and monotonic normalization approaches try to gradually follow the spiral flow of the 

dataset. Hence higher polynomial orders will tend to score higher classification accuracies 

than lower polynomial orders, which is actually inline with the graphical results of this 

dataset, shown earlier in Table 5.3. 

However, due to the high non-linearity profile of this dataset, which increases towards the 

origin, where the two spiral strands become more and more intertwined over each other, 

the implementation of the monotonic normalization approach results in squeezing the data 

more towards the origin. This increases the severity of the non-linearity between the two 

class labels around the immediate vicinity of the origin rather than distributing it around 

the normalization region; a fact which makes the classification algorithm struggle to 

separate the two classes. In other words, the experimental results of the Two Spirals dataset 

illustrated in Tables 5.5 – 5.7 seem to suggest that the proposed monotonic normalization 

approach works better when the non-linearity profile between the overlapped class labels is 

distributed throughout the normalization region rather than being condensed around the 

origin.  
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Table 5.5 Visualization assessment of the classification performance on the Two Spirals dataset using the 

Stage 2 Chebyshev kernels. 

n Stage 2 Chebyshev Standard Normalization Stage 2 Chebyshev Monotonic Normalization 
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n Stage 2 Chebyshev Standard Normalization Stage 2 Chebyshev Monotonic Normalization 
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Table 5.6 Visualization assessment of the classification performance on the Two Spirals dataset using the 

Stage 2 Legendre kernels. 

n Stage 2 Legendre Standard Normalization Stage 2 Legendre Monotonic Normalization 
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n Stage 2 Legendre Standard Normalization Stage 2 Legendre Monotonic Normalization 

6 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 

7 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 

8 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 

9 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 

10 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

 



 171 

Table 5.7 Visualization assessment of the classification performance on the Two Spirals dataset using the 

Stage 2 Hermite kernels. 

n Stage 2 Hermite Standard Normalization Stage 2 Hermite Monotonic Normalization 
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n Stage 2 Hermite Standard Normalization Stage 2 Hermite Monotonic Normalization 
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5.5 Summary 

This chapter proposed a solution to the problem where the Stage 2 polynomial kernels 

were found to oscillate in a wavy pattern after a certain threshold within the standard 

normalized vector space. The solution was based on applying an adaptive normalization 

approach to the input data to confine them to the regions where the adopted polynomial 

kernels exhibit the desired monotonic decay behaviour. Hence eliminate the possibility of 

any data point to be located outside this region, and accordingly enable the underpinning 

polynomial kernel to calculate more accurate similarity measures. 

The effectiveness of this approach on the resulting classification performance was then 

assessed experimentally on the Stage 2-Chebyshev, Legendre, and Hermite polynomial 

kernels, and using all the six datasets previously selected in this thesis. Pairwise 

comparative analyses of the results demonstrate the superiority of the classification 

accuracy when the data are confined to the monotonic regions of the kernels as compared 

to when they are normalized to their standard region of [-1,+1]. 

On average, the analyses of the experimental results have shown that the classification 

performance of the kernels can be improved by a factor of 11.772% when implementing 

the proposed adaptive data normalization approach, but with a standard deviation factor of 

30.0189%, due to the oscillating behaviour of the standard normalization amongst the 

polynomial orders in some datasets. The experimental results have also shown that in cases 

where the non-linearity profile of the dataset is quite severe around the immediate vicinity 

of the origin, the proposed monotonic normalization approach is not as effective as its 

standard normalization counterpart. 
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Chapter 6               

Transformation of Multi-Dimensional Vectors 

Using Polynomial Kernels 

 

6.1 Introduction 

So far, the analyses conducted in this thesis on SVM kernels that are constructed from 

orthogonal polynomials, together with the previously proposed methodologies, by which 

these polynomials process multi-dimensional input vectors (referred to in this thesis as the 

‘pairwise’ and ‘vectorial’ processing approaches), revealed that the application of these 

polynomial functions to the input vectors amounts to an explicit transformation of the input 

vectors to another vector space of the same dimensionality, prior to the kernel calculation 

step. Motivated by the reported empirical advantages of the kernels constructed from such 

polynomials (e.g., less number of support vectors, less memory and execution time, 

superior accuracy, etc.) over the traditional kernels that have been in common use, this 

chapter investigates this transformation perspective in more detail to construct a novel 

framework within which the use of such polynomials is appropriately articulated and 

defined to construct similarity measure kernels. 

The chapter starts with a detailed analysis of this new transformation perspective using the 

Chebyshev, Legendre, and Hermite polynomials, and proposes the utilization of the 

Gaussian kernel (as opposed to the linear kernel used in previous approaches) to facilitate 

the linear separability of overlapped classes in the high-dimensional feature space. The 

chapter then proposes a new processing approach, based on vector concatenation, by which 

the polynomials process the input vectors, to ensure that the transformation process will 

always produce vector quantities, as well as rectifying the drawbacks identified in its 

‘pairwise’ and ‘vectorial’ predecessor approaches. 

A comprehensive set of experiments is conducted afterwards to explore the effect of this 

new approach on all the three kernel stages of the similarity fusion framework (proposed in 

Chapter 4) when using all the three different polynomials under study. 

6.2 Transformation perspective of input data vectors 

From the investigations conducted in the previous chapters on orthogonal polynomial 

kernels, one can notice that the different families of orthogonal polynomials investigated in 

this thesis (i.e., Chebyshev, Legendre, and Hermite polynomials) mainly differ from each 
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other in the coefficients of their monomials (see Table 3.1, in Chapter 3). Being utilized to 

process the input data vectors, these polynomials are perceived in this chapter as some 

transformation ‘agents’, whereby the different polynomials will be ‘transforming’ or 

‘processing’ the input data vectors, using each one’s own ‘key’; i.e., coefficients, to 

another vector space, before applying a kernel function on the transformed vectors instead 

of the original input vectors. 

 

6.2.1 Transforming the input data using Chebyshev polynomials 

Recall that the vectorial processing approach (explained earlier in Section 3.4.1.2 and 

originally proposed by Ozer et al. [17]) constructs the Stage 1 and Stage 2 Chebyshev 

kernels  for vector inputs in the form of: 

)(),(),(1 zxzx nn
S
n TTk =  (6.1) 

 =
=

n

i ii
S
n TTk

0
)(),(),(2 zxzx  (6.2) 

where T(.) denotes the Chebyshev polynomials of order n and S1 and S2 denote the Stage 1 

and Stage 2 kernels, respectively. 

Framed by the data transformation perspective introduced in this chapter, it is important to 

realize that two things happen in the kernels constructed in the form of (6.1) and (6.2): 

1- A certain family of orthogonal polynomials (in this case, it was the Chebyshev) of a 

certain order n is chosen to ‘transform’ or ‘process’ the input vector argument x to 

produce a new vector quantity denoted by T(x). The same procedure is also done with 

the input vector z to produce the other vector quantity denoted by T(z). In other words, 

T(x) and T(z) are perceived to be the ‘transformed’ image vectors of x and z, 

respectively, in some new polynomial vector space (of the same dimensionality) 

embodying the image vectors that are the result of mapping the original vectors in the 

input space using a certain polynomial, which in this case is the Chebyshev.  

2- And then, a ‘valid Mercer kernel function’ is chosen to calculate how similar T(x) and 

T(z) are to each other (since a valid Mercer kernel is considered a legitimate tool to 

measure similarity, as explained in Chapter 3). In this case, one can notice that this 

‘valid Mercer kernel function’ just happened to be the ‘Linear kernel’15 (although it 

does not have to be), which is the standard dot-product taking place between the two 

                                                 
15 Linear kernel: k(x,z) = <x,z> 
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transformed vector quantities T(x) and T(z) in (6.1) and (6.2). Note that the shape 

characteristics of such a ‘Chebyshev-linear’ Stage 1 and Stage 2 kernel formulations is 

what have been studied before in Figure 4.1 (a) and Figure 4.2 (a), respectively, in 

Section 4.3.2. 

As such, the utilization of the Chebyshev polynomials to construct SVM kernels using the 

vectorial approach illustrated in (6.1) and (6.2) is perceived in this chapter as a way of 

‘transforming’ the input vectors (prior to the kernel calculation step) using a polynomial 

function (which, in this case, just happened to be the Chebyshev) to produce another set of 

vectors, upon which the kernel is to be afterwards evaluated. 

Recall, however, that the core theory behind the use of kernel functions is to implicitly 

map the input space to a higher-dimensional feature space, so that overlapped classes can 

‘hopefully’ become linearly separable. One can therefore notice that with the introduction 

of the additional transformation process via the Chebyshev polynomials, the overall kernel 

calculation process is becoming a three-fold operation: 

1. First, the input vectors are explicitly processed by means of a certain polynomial 

function (which in this case are the Chebyshev polynomials T(.) under study - 

although they do not have to be), to produce a new set of image vectors in some new 

polynomial vector space of the same dimensionality as the original input space. 

2. The next step is then to apply a valid Mercer kernel function on the transformed image 

vectors rather than on the original input vectors directly. As shown in (6.1), this kernel 

function was chosen by the authors in [17] to be the linear (dot-product) kernel. 

3. As explained before, the utilization of a valid Mercer kernel has also got the effect of 

mapping the ‘polynomial-transformed’ vectors to an implicit higher-dimensional 

feature space, where linear separability between overlapped classes can be improved. 

However, although the linear kernel is indeed a valid Mercer kernel, it does not actually 

amount to any transformation to a higher number of dimensions in feature space, and 

hence it is more suitable for linearly separable classification tasks, which is not the usual 

case in many practical applications. Moreover, the linear kernel does not provide relatively 

accurate measures of similarity between its two input vector arguments, as exhibited by 

their shape characteristics discussed earlier in Figure 3.7 (Section 3.4.2.1).  

To rectify these issues, this chapter proposes to use the Gaussian kernel instead. This is 

because of two reasons. The first reason is the renowned ability of the Gaussian kernel to 
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implicitly map the input space to an infinite-dimensional feature space, and, hence, it can 

improve the separability between classes when tackling non-linearly separable 

classification problems. The second reason is its shape characteristics, which are close to 

those of the ideal similarity function (as discussed earlier in Figure 3.6 – Section 3.4.2.1), 

and, hence, its calculated similarity measures would be a lot more accurate than those 

calculated by the linear kernel. 

Consequently, the alternative versions of the (6.1) and (6.2) would then be calculated as: 
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The similarity-based shape properties of the Stage 1 and Stage 2 linear kernel evaluation 

on the Chebyshev-processed inputs have been analysed before in Figure 4.1 (a) and Figure 

4.2 (a), respectively, in Section 4.3.2. For a similar comparison, Figure 6.1 below 

investigates the behaviour of the Gaussian kernel evaluation on the Chebyshev-processed 

inputs for the same kernel stages, as per (6.3) and (6.4), for the first 10 polynomial orders, 

at x = 0, and where the Gaussian kernel parameter   is set to 1, for simplicity. 

Similar to the linear kernel evaluation on the Stage 1 and Stage 2 Chebyshev-processed 

inputs, one can observe (from the analysis of the kernel plots in Figure 6.1) that the 

summation fusion operation taking place in (6.4) is synergistic, as it enables the kernels to 

calculate better similarity measures by bringing their shape closer to the ideal similarity 

function model. One can also note that the odd orders of the Stage 1 Gaussian kernel 

evaluations (shown in Figure 6.1 (a)) do not fail anymore to contribute towards the 

calculation of the overall measure of similarity, as was the case with the Stage 1 linear 

kernel evaluations (shown in Figure 4.1 (a)), at x = 0. More importantly, however, is the 

fact that the Stage 2 Gaussian kernel evaluations on the Chebyshev-processed inputs 

(shown in Figure 6.1 (b)) have got oscillations with a lot less peak-to-peak amplitude than 

their counterparts evaluated using the linear kernel (shown in Figure 4.2 (a)), which is 

another reason why the utilization of the Gaussian kernel would enable the calculation of 

more accurate similarity measures, and, hence, it should lead to better classification 

performance. 
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(a) Stage 1 Chebyshev-processed-Gaussian kernel (b) Stage 2 Chebyshev-processed-Gaussian kernel 

Figure 6.1 Comparison of the Stage 1 and Stage 2 Gaussian kernel evaluations on the Chebyshev-processed 

input data, for x=0. 

 

6.2.2 Transforming the input data using Legendre polynomials 

In a similar manner, one can choose any other polynomial function to process the input 

data instead of the Chebyshev polynomial, before the kernel calculation step. For example, 

one can choose the Legendre polynomials to process the input data vectors and then 

evaluate the similarity between them using the linear kernel, as we did before; in which 

case, the resulting Stage 1 and Stage 2 Legendre-processed-linear kernels can be defined 

as: 
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whose similarity-based shape and fusion characteristics were also analysed before in 

Figure 4.1 (b) and Figure 4.2 (b), in Section 4.3.2. 

And again, if we choose to apply the Gaussian kernel, instead of the linear kernel, to 

calculate the similarity between the Legendre-processed inputs, the resulting Stage 1 and 

Stage 2 kernels would then be defined as: 
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whose shape characteristics are also compared in Figure 6.2 below at x=0 and 1= . One 

can notice that the same observations derived from the shape characteristics of the 

Chebyshev-processed-Gaussian kernels (in the previous sub-section) also applies to the 

Legendre-processed-Gaussian kernels demonstrated in Figure 6.2, where in this case the 

oscillations are almost eliminated. 
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(a) Stage 1 Legendre-processed-Gaussian kernel (b) Stage 2 Legendre-processed-Gaussian kernel 

Figure 6.2 Comparison of the Stage 1 and Stage 2 Gaussian kernel evaluations on the Legendre-processed 

input data, for x=0. 

 

6.2.3 Transforming the input data using Hermite polynomials 

To complete the investigation, this section shows how the input data can also be processed 

using the Hermite polynomials, and then evaluate the similarity measures using either the 

linear kernel, as per (6.9) and (6.10) for the Stage 1 and Stage 2 kernels respectively, or 

using the Gaussian kernel instead, as per (6.11) and (6.12) below.  
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Again, the similarity-based shape characteristics of (6.9) and (6.10) have been analysed 

before in Table 3.3, Figure 4.1 (c), and Figure 4.2 (c); whereas the characteristics of (6.11) 

and (6.12) can also be compared via Figure 6.3 below, at x=0 and 1= , as an example. 

One can notice that although the same observations derived from the Chebyshev- and 
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Legendre-processed-Gaussian kernels, illustrated in the previous two sub-sections, also 

apply to the Hermite-processed-Gaussian kernels herein, what is quite obvious is that the 

large peak-to-peak oscillations that used to exist in the linear kernel evaluations (as shown 

in Table 3.3) are completely eliminated with the Gaussian kernel evaluations, as shown in 

Figure 6.3 (b). Also, the quite elevated difference between the kernel values from one 

order to another disappears when the Gaussian kernel is applied, hence it was possible to 

plot all the first 10 orders of the Stage 1 and Stage 2 kernels together within the same 

figures, as shown in Figure 6.3. 
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(a) Stage 1 Hermite-processed-Gaussian kernel (b) Stage 2 Hermite-processed-Gaussian kernel 

Figure 6.3 Comparison of the Stage 1 and Stage 2 Gaussian kernel evaluations on the Hermite-processed 

input data, for x=0. 

 

6.2.4 Shape characteristics of the Stage 3 Gaussian kernel evaluation on 

the polynomial-transformed input vectors 

Similar to the investigation conducted on the shape characteristics of the Stage 3 linear 

kernel evaluation on the polynomial-transformed inputs in Section 4.3.3, this section will 

also investigate the effect of the fusion by multiplication operation of the Gaussian kernel 

evaluation on the polynomial-transformed vectors with another kernel. For consistency, the 

Gaussian kernel will also be multiplied by the Stage 2 Chebyshev, Legendre, and Hermite 

kernels, given in (6.4), (6.8), and (6.12), respectively, to achieve this purpose. As such, the 

resulting composite Stage 3 kernels studied in this section are defined as: 
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Figures 6.4 – 6.6 demonstrate the shape characteristics of each of these composite Stage 3 

polynomial kernels, respectively, at different values of the Gaussian kernel parameter  . 

One can observe that the fusion by multiplication operation has also got the effect of 

getting the shape of the kernels closer to the ideal similarity measure function, and when an 

appropriate value for the Gaussian kernel parameter is selected, the polynomial oscillations 

can be completely eliminated. 
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 (a) 1.0=   (b) 1=  (c) 10=  

Figure 6.4. Shape characteristics of the Stage 3 Gaussian kernel evaluation on the Chebyshev-processed 

input vectors, as per (6.13), at different values of   and for x=0. 
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Figure 6.5. Shape characteristics of the Stage 3 Gaussian kernel evaluation on the Legendre-processed input 

vectors, as per (6.14), at different values of   and for x=0. 
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Figure 6.6. Shape characteristics of the Stage 3 Gaussian kernel evaluation on the Hermite-processed input 

vectors, as per (6.15), at different values of   and for x=0. 
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6.3 Advantages of the proposed transformation perspective of 

input data vectors 

In the light of the polynomial-transformation approach discussed in the previous section, 

one can define the general construction of kernels from such polynomials to be a two-step 

process, where the first step is to process each data vector in the input space to produce 

another vector as dictated by the unique coefficients of the polynomial being applied. In 

other words, this step amounts to constructing some new ‘polynomial space’ of vectors (of 

the same dimensionality as the original input space), which contains the polynomial-

processed image vectors of the original input space data. The second stage is then to apply 

whichever valid Mercer kernel function on the ‘image vectors’ in the newly created 

polynomial space, rather than the vectors in the original input space. 

One question naturally arises as a result of introducing this additional transformation 

process: Why do we need to produce image versions of the input vectors (using whichever 

employed transformation function) and then apply the Mercer kernel afterwards, instead of 

just following the standard technique of applying the kernel directly to the original input 

vectors? In other words, what benefit is gained from doing the transformation step prior to 

the kernel calculation step? Does the transformation step help to better structure the data in 

a way that can facilitate the recognition of patterns amongst them and therefore enhance 

the classification performance?  

Experimental results reported in the literature have showed that some advantages can be 

gained from the use of orthogonal polynomials to construct SVM kernels (e.g., superior 

classification accuracy, minimum data redundancy, low number of support vectors, less 

memory and execution time, etc.). However, there is very little, if any, theoretical 

justification as to why such experimental observations are happening. However, if one 

thinks of it from the data transformation perspective, introduced in this chapter, and from 

the definition of kernels as similarity measures, discussed in Chapter 3, one can realize that 

this transformation process is done in the ‘hope’ that the new vectors can better reveal how 

similar to each other their original vectors are in the original input space; and hence if the 

transformation function is successful to achieve this purpose, the resulting classification 

performance could be improved. This is in a sense similar to the notion of the implicit 

kernel mapping to the high-dimensional feature space, which is also performed in the 

‘hope’ that the overlapped classes can become linearly separable, or linear separability 

between them can be improved. 
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It is, however, important to note that the Chebyshev, Legendre, and Hermite polynomials 

are not the only processing functions that can best be used to perform such a 

transformation process. Their promising empirical performance, however, encourages 

further investigations into this subject that can help define a ‘measure of goodness’ which 

can be used to appropriately select a good transformation function to the problem at hand, 

which can better reveal the (possibly) hidden similarity between the input data vectors. For 

example, with the three polynomial families studied in this thesis (i.e., the Chebyshev, 

Legendre, and Hermite polynomials) it has been shown that this measure of goodness 

could be the accuracy of the similarity measures calculated by their corresponding kernels 

as exhibited by their pictorial characteristics. 

 

6.4 Construction of the transformed polynomial vector space 

6.4.1 Previously proposed processing approaches of SVM orthogonal 

polynomial kernels (re-visited) 

On re-analysing the previously proposed approaches, by which orthogonal polynomials 

process input data vectors (explained back in Section 3.4.1) to construct kernels for SVM 

pattern classification, one can notice that the ‘pairwise’ approach, initially proposed by Ye 

et al. [31] using the Chebyshev polynomials, does not actually fit in very well within the 

transformation framework presented in this chapter. This is because it does not produce 

transformed image ‘vectors’ of the input data, as explained in Section 6.2. Instead, it 

applies the polynomial to each corresponding feature pair and then multiplies the result to 

calculate the overall value of the kernel. 

Ozer et al. [17] have also explained why this multiplication process can be problematic, 

and to avoid it, they proposed the ‘vectorial’ approach, where they applied the Chebyshev 

polynomials to the input vector as a whole rather than to its individual features, as 

previously illustrated in Table 3.2 (Section 3.4.1.2). They then decided to adopt the linear 

kernel as a tool to measure the similarity between the Chebyshev-processed quantities T(x) 

and T(z), and evaluated their Stage 2 Chebyshev kernel for vector inputs in the form of: 
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where the 6th order Chebyshev-processed linear kernel of such a vectorial formulation is 

shown in Figure 6.7 below, as an example. 
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Figure 6.7 Evaluation of the 6th order Stage 2 Chebyshev-processed linear kernel using the ‘vectorial’ 

approach proposed by Ozer et al. [17], where a=<x,x>, b=<z,z>, and c=<x,z>. 

 

However, on analysing closely the first few orders of the Chebyshev-processed quantities 

shown in Table 3.2, one can notice that although the odd orders of the vectorial processing 

approach yielded processed-image ‘vectors’ of the input vectors, yet the even orders did 

not, as they ended up being evaluated as scalar quantities rather than vectors. In other 

words, when the even order polynomials are applied, the processing operation drops down 

the input vector to a scalar quantity calculated from the term <x,x>, which corresponds to 

the length (or the square of the norm) of vector x. As such, only partial information about 

the input vectors is conveyed to the classifier by the even-order polynomials, because 

vector orientation is discarded. Furthermore, during the experiments, each vector 

component is scaled to the normalized region [-1, +1] (see Section 4.4.3) which may 

distort class-specific vector length information and, hence, might reduce the reliability of 

using vector lengths to represent the input vectors. 

Another drawback, that can also be realized from the odd order terms of the kernels 

utilizing this vectorial approach, is the amalgamation of x and z into the dot-product 

c=<x,z>, as demonstrated for example by the 6th order kernel shown in Figure 6.7. One can 

notice that this operation was mathematically possible to be achieved due to the common 

factor operation that was performed back in Table 3.2, which was also only possible due to 

the fact that the odd orders of the Chebyshev polynomials consist of only odd monomials 

(and similarly, the even orders consist of only even monomials). Although some other 

orthogonal polynomials (e.g., the Legendre or Hermite polynomials) share this same 

characteristic, other polynomials (e.g., the Laguerre polynomials) do not; a fact which 

renders this vectorial approach inapplicable and not mathematically feasible to be 

generalized to any orthogonal polynomial family. 
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One can also notice that the Stage 2 kernel of the vectorial approach in (6.16) is evaluated 

in the form of: 

),(),(
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2 zxzx 
=

=
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S
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),(....),(),( 10 zxzxzx nkkk +++= , (6.17) 

where the ki’s are the linear kernels evaluated on the Chebyshev-processed quantities. 

Based on the closure property that says that the addition of valid kernels also produces a 

valid kernel, this means that each of the ki’s in (6.17) is also a valid kernel, and, hence, is a 

legitimate tool to measure similarity. As explained earlier, however, the utilization of the 

linear kernel is not a good choice, because it is neither a good tool to measure the similarity 

between the Chebyshev-processed quantities T(x) and T(z), nor does it trigger a 

transformation to a higher number of dimensions so that the classifier can tackle non-

linearly separable classification problems. That is why this chapter investigates the 

proposition of applying the Gaussian kernel instead, as explained earlier. 

 

6.4.2 Customizing a solution via vector concatenation 

In order to come up with a polynomial-processing approach that really fits well within the 

transformation perspective presented in this chapter, and at the same time rectify the 

pitfalls identified in the pairwise and the vectorial approaches, this section proposes a new 

processing methodology, which ensures that when any polynomial function is utilized to 

process the input data vectors, the result will always be a new vector and, hence, maintains 

the attributes embedded in the structure of the original vectors. To achieve this purpose, the 

transformation process is performed as follows. 

Consider the two m-dimensional input vectors  mxxx ,,, 21 =x  and  mzzz ,,, 21 =z . 

Similar to the ‘pairwise’ approach, in this new processing methodology, the ith order 

polynomial will also be utilized to process the individual scalar features of the input 

vectors. Unlike the ‘pairwise’ approach, however, this methodology will not be applied in 

a pairwise fashion and multiply the results. Instead, the evaluations of the polynomial will 

be restricted to the features of each of the two input vectors separately, and then the 

individual results are ‘concatenated’ to form two new vectors, denoted by Ci(x) and Ci(z), 

where Ci(x) is the transformed image vector of x given by: 

 )(,),(),()( 21 miiii xPxPxP =xC , (6.18) 
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and similarly, Ci(z) is the transformed image vector of z given by: 

 )(,),(),()( 21 miiii zPzPzP =zC , and (6.19) 

)(iP  is the chosen ith order polynomial (e.g., Chebyshev, Legendre, etc.). 

This process is represented pictorially in Figure 6.8 below for two 4-dimensional input 

vectors x1 and x2, as an example. Due to the nature of concatenating the processed features 

into the two new vectors Ci(x) and Ci(z), this approach is referred to in this thesis as the 

‘concatenated’ processing approach. 

x1 = 

Pi(x11) 

x11

Pi(x12) Pi(x13) Pi(x14) { }

x12 x13 x14{ }

Pi(x) Pi(x) Pi(x)Pi(x)

, ,,

, , ,Ci(x1)= 
 

x2 = 

Pi(x21) 

x21

Pi(x22) Pi(x23) Pi(x24) { }

x22 x23 x24{ }

Pi(x) Pi(x) Pi(x)Pi(x)

, ,,

, , ,Ci(x2)= 
 

Figure 6.8 An illustrative example of two vectors x1 and x2, four features each, to pictorially clarify the 

mathematical procedure of the proposed concatenated approach on multi-dimensional input data vectors. 

 

Unlike the vectorial approach, the concatenated approach, which is illustrated in Figure 

6.8, clearly shows that the resulting processed quantities Ci(x1) and Ci(x2) are always 

formulated in a vector form for any polynomial order applied, whether odd or even. As 

such, every input vector will always be represented by another image vector transformed in 

some new polynomial vector space of the same dimensionality as the original input space. 

Furthermore, the implementation of such a concatenated approach is also not restricted to a 

certain polynomial family (as was the case with the vectorial approach); i.e., any 

polynomial can be used regardless of its monomial order combination, whether it is only 

odd, only even, or a combination of both. As such, a comparative analysis can be 

effectively conducted amongst various polynomial functions to investigate which one 

would be the best achieving polynomial for a given application. This is explored in the 

experiments conducted in the next section on the Chebyshev, Legendre, and Hermite 
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polynomials, as an example, by comparing the resulting classification accuracy scored by 

each. 

As explained earlier, the next step is then to apply whichever valid Mercer kernel on these 

two transformed vectors Ci(x) and Ci(z). So, if one decides to adopt the linear kernel to 

calculate the similarity between these two transformed image vectors, the Stage 1 (without 

sum) and Stage 2 (with sum) kernels would then be formulated as: 

• Stage 1 – linear kernel – concatenated: 

= )(),(),(1 zCxCzx nn
S
nk  (6.20) 

• Stage 2 – linear kernel – concatenated: 
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However, as mentioned earlier, one can also choose to apply any other kernel. For 

example, if we apply the Gaussian kernel instead, the Stage 1 and Stage 2 kernels would 

then be formulated as: 

• Stage 1 – Gaussian kernel – concatenated: 






 −−=

2
)()(exp),(1 zCxCzx nn

S
nk   (6.22) 

• Stage 2 – Gaussian kernel – concatenated: 


=
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6.5 Experimental evaluation of the proposed concatenated 

approach 

6.5.1 Polynomial kernel functions under test 

The set of experiments conducted in this section explore how the proposed concatenated 

processing approach performs, compared to the other existing methods, in terms of the 

classification accuracy. However, given that the superiority of the vectorial (over the 

pairwise) approach has already been demonstrated through the work of Ozer et al. [17], the 

comparative experiments conducted herein will only be performed between the 

concatenated approach and its vectorial counterpart. 

Furthermore, to highlight the effectiveness of the proposed concatenated approach, the 

experiments are conducted on three different polynomials: the Chebyshev, Legendre, and 
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Hermite polynomials; as opposed to the work of Ye et al. [31] and Ozer et al. [17], who 

both used only the Chebyshev polynomials to demonstrate the performance of their 

pairwise and vectorial approaches, respectively. Furthermore, for a comprehensive 

evaluation of the proposed concatenated approach, a separate set of experiments is 

conducted for every stage of the kernels produced from the similarity fusion framework 

presented earlier in Chapter 4 using each of these chosen polynomials (i.e., Chebyshev, 

Legendre, and Hermite). As such, Sections 6.5.2.1, 6.5.2.2, and 6.5.2.3 demonstrate the 

comparative experimental results achieved from the Stage 1, Stage 2, and Stage 3 kernels, 

respectively, using the same experimental setup and datasets explained earlier in Chapter 3. 

 

6.5.2 Experimental results and discussions 

6.5.2.1 Comparative experimental results on Stage 1 kernels 

This section presents the comparative classification accuracy results scored by the Stage 1 

kernels that are evaluated on the Chebyshev-, Legendre-, and Hermite-processed image 

vectors using the new proposed concatenated approach versus its vectorial counterpart. 

Furthermore, the experiments also aim to explore how the Gaussian kernel performs, when 

evaluated on the polynomial-processed inputs, instead of the linear kernel, as explained in 

Section 6.2. To achieve this purpose, two sets of experiments have been developed in this 

section to evaluate each of these propositions separately. To be clear, the first set of 

experiments evaluates the empirical performance when the linear kernel is evaluated on 

both the vectorial- and concatenated-processed inputs, using the Chebyshev, Legendre, and 

Hermite polynomials under study, as depicted in Table 6.1. The second set of experiments, 

on the other hand, utilizes the evaluation of the Gaussian kernel on the concatenated-

processed vectors compared to the linear kernel evaluations on the vectorial-processed 

inputs, as depicted in Table 6.2.  

 

Table 6.1. Mathematical formulations of the Stage 1 linear kernel evaluation on the vectorial- and 

concatenated inputs using the Chebyshev, Legendre, and Hermite polynomials. 

 
Vectorial-linear kernel  Concatenated-linear kernel 

Chebyshev )(),(),(1 zxzx nn
S
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Legendre )(),(),(1 zxzx nn
S
n LLk =      =   )(,),( , )(,),(  ),( 11

1
mnnmnn

S
n zLzLxLxLk zx  

Hermite )(),(),(1 zxzx nn
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1
mnnmnn

S
n zHzHxHxHk zx  
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Table 6.2. Mathematical formulations of the Stage 1 Gaussian kernel evaluation on the concatenated vectors 

versus the linear kernel evaluation on the vectorial-processed inputs using the Chebyshev, Legendre, and 

Hermite polynomials. 

 
Vectorial-linear kernel  Concatenated-Gaussian kernel 

Chebyshev )(),(),(1 zxzx nn
S
n TTk =   ( )2

11 )](,),([)](,),([exp),(1
mnnmnn

S
n zTzTxTxTk  −−= zx  

Legendre )(),(),(1 zxzx nn
S
n LLk =  ( )2

11 )](,),([)](,),([exp),(1
mnnmnn

S
n zLzLxLxLk  −−= zx  

Hermite )(),(),(1 zxzx nn
S
n HHk =  ( )2

11 )](,),([)](,),([exp),(1
mnnmnn

S
n zHzHxHxHk  −−= zx  

 

Recall that although the Stage 1 kernels have been shown in Chapter 4 to demonstrate a 

relatively low classification performance compared to their Stage 2 counterparts, due to 

their weak acquisition of similarity measures, utilizing them to formulate a comparison 

between the concatenated and vectorial approaches will demonstrate a straightforward 

assessment of how the proposed concatenated approach performs in terms acquiring more 

accurate similarity measures and accordingly an enhanced classification performance. 

The figures shown in Table 6.3 demonstrate the experimental results in a graphical format 

(in terms of the best scored classification accuracy) obtained by the first 20 orders of the 

Stage 1 linear kernels constructed using the concatenated and vectorial approaches. As 

shown, the implementation of the proposed concatenated approach has had a different 

influence on the classification performance of the kernels under test amongst the datasets 

investigated depending on each dataset’s own characteristics. However, on average, one 

can still clearly observe that the kernels constructed using the concatenated approach have 

demonstrated a quite superior performance over their vectorial counterparts for most of the 

datasets and the polynomial orders tested. 

As can be observed, some datasets have shown a relatively huge improvement in the 

classification accuracy introduced by the concatenated approach than other datasets. For 

example, in most of the results, such as the Breast Cancer, Image Segmentation, and 

Thyroid datasets, the proposed concatenated approach has shown to significantly 

outperform its vectorial counterpart, especially for higher polynomial orders. In the Iris and 

Two Spirals datasets, on the other hand, the concatenated approach has shown a relatively 

smaller overall improvement over the vectorial approach, compared to the significant 

improvements observed in the other datasets. This observation can also be realized by 

examining the bar chart comparisons, shown in Figure 6.9, which demonstrate the average 

accuracy scored by the first 20 orders of the concatenated and the vectorial approaches, for 
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each of the datasets experimented. As can be observed, the concatenated approach 

demonstrated a consistent superior average accuracy over its vectorial counterpart for most 

of the datasets experimented, with only an infinitesimal improvement in the Iris and Two 

Spirals datasets. 

To enable a crisper quantitative evaluation of how much improvement in classification 

accuracy can the concatenated approach achieve over its vectorial counterpart for these 

Stage 1 kernels, Table 6.4 has also been used to calculate the average improvement in 

classification accuracy for the first 20 orders experimented. As shown at the bottom of the 

table, the average accuracy improvement factors (in %) introduced by the concatenated 

approach for the Stage 1- Chebyshev, Legendre, and Hermite kernels was calculated to be 

equal to 26.857%, 27.212% and 17.649%, respectively; making up a total average 

accuracy improvement factor of 23.906% depending on the kernel and the dataset used; 

which clearly demonstrates the outperformance of the proposed concatenated approach 

over its vectorial counterpart. 

Of particular importance, however, is the observation that some polynomial orders of the 

vectorial-linear kernels in some datasets are still unable to recognize any examples at all 

during the testing phase, as shown for example in the experimental results on the Breast 

Cancer and Ionosphere datasets, illustrated in Table 6.3, and discussed before in Section 

4.4.4. On examining closely the results at the orders tested, one can notice that it is mostly 

the even orders that suffer from this recognition inability. Recall that one of the drawbacks 

of the vectorial approach is that when the even orders process the input vectors as a whole, 

they produce scalar quantities rather than vectors, and hence only partial information about 

the input vectors is conveyed to the classifier, as vector orientation is discarded (see the 

theoretical discussion/justification in Section 6.4.1). Such defect in the even-order vectorial 

kernels can therefore explain the reason behind their classification inability observed in the 

results herein. 

On the other hand, the transformation of the input data vectors using the proposed 

concatenated approach does not suffer from this defect, as it is intentionally designed in a 

way that ensures that when any polynomial with any order is utilized to process a certain 

input vector, it will always produce an image vector transformed into the newly 

constructed polynomial vector space. This way, whichever kernel we then choose to apply, 

will always be guaranteed to be getting the correct input vector arguments and, hence, 

should be able to calculate more accurate similarity measures and produce better 

classification performance than the kernels applied to the quantities processed using the 
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vectorial approach, as shown in the results illustrated in Table 6.3, not only for the even 

orders, but also for most of the odd orders too. 

Consequently, and as can be clearly observed from most of the results illustrated in Table 

6.3, the concatenated approach has therefore demonstrated a lot more steady and consistent 

classification accuracy across the spectrum of polynomial orders, with a significant 

reduction in the abrupt oscillating behaviour between the even and odd orders, as is the 

case with the vectorial approach. To quantify this observation, Table 6.4 has also been 

used to calculate the standard deviation of the average improvement factors (shown in 

brackets), as well as the minimum and maximum improvement factors (shown in bold), 

introduced by the proposed concatenated approach. 

As it can be observed, the standard deviation of the average improvement factors can be 

quite large relative to the mean, as shown for example in the Breast Cancer, Ionosphere, 

and Iris datasets, due to the huge difference between the two sets of results across the 

polynomial orders. Conversely, however, one can also realize the steadiness of the results 

by examining the standard deviation of the accuracy values themselves, reported in the 

statistical analysis tests tabulated in Appendix B.4, where not only the mean of the 

concatenated kernels is consistently larger than the mean of the vectorial kernels, but also 

the standard deviation of the classification accuracies scored by the concatenated kernels is 

a lot smaller than the mean, compared to the standard deviation calculated for the vectorial 

kernels, for most of the results obtained. 
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Table 6.3 Comparative experimental results of Stage 1 concatenated-linear and vectorial-linear kernels. 
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Table 6.4 Quantitative assessment of the average improvements in the scored classification accuracy of Stage 1 concatenated-linear and vectorial-linear kernels. 
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Stage 1 Chebyshev kernels Stage 1 Legendre kernels Stage 1 Hermite kernels 
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Stage 1 Chebyshev kernels Stage 1 Legendre kernels Stage 1 Hermite kernels 
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N1 Classification accuracy of Stage 1 kernels implemented using the vectorial approach & the Linear dot-product kernel 

N2 Classification accuracy of Stage 1 kernels implemented using the concatenated approach & the Linear dot-product kernel 

I Improvement = N2-N1 

AI Average Improvement for the first 20 orders 

AAI Average of Average Improvements of the first 20 orders over all the datasets under investigation 

TAI Total Average Improvement over all datasets and all kernels under investigation for the first 20 orders 
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(a) Breast Cancer (b) Image segmentation 
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(c) Ionosphere (d) Iris 
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Figure 6.9 Bar chart comparative assessment of the average classification accuracy scored by the first 20 

orders of the Stage 1 concatenated-linear and vectorial-linear kernels. 
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The same set of experiments conducted on Stage 1 kernels was carried out again below to 

assess the performance of the concatenated approach versus its vectorial counterpart when 

using the Gaussian instead of the linear kernel, as per their mathematical formulations 

shown in Table 6.2 for the Stage 1- Chebyshev, Legendre, and Hermite polynomials. The 

highest classification accuracy scores are shown in the comparative graphical results 

illustrated in Table 6.5, whereas the average accuracy scored by the first 20 orders are 

shown in Figure 6.10. 

Inline with the results achieved from the linear kernel, one can also still observe that in the 

experiments conducted using the Gaussian kernel, the proposed concatenated approach 

was actually able to achieve even more superior performance than its vectorial counterpart. 

For example, in the graphical results illustrated in Table 6.5, one can notice that the 

concatenated-Gaussian kernels demonstrated a more superior performance than the 

concatenated-linear kernels, resulting in even bigger improvement relative to the vectorial-

linear kernels, not only for the higher polynomial orders, but also for some of the lower 

orders too. This observation can be realised, for example, from the results achieved from 

the Breast Cancer, Image Segmentation, and Thyroid datasets. 

Similar to the results obtained form the concatenated-linear kernels, however, one can also 

still observe that the improvement in the classification performance introduced by the 

concatenated-Gaussian kernels can still be relatively smaller in some datasets than others, 

as can be observed, for example, from the Iris and Two Spirals datasets in Table 6.5. 

Despite this small improvement relative to the vectorial-linear kernels, yet, the Gaussian 

kernel was still able to constructively influence the classification performance in these 

datasets by increasing the scored classification accuracies compared to when the linear 

kernel is evaluated on the concatenated processed vectors. 

To better quantify the constructive effect of the Gaussian kernel on the performance of the 

concatenated polynomial kernels, Table 6.6 has also been similarly used to calculate the 

average accuracy improvement factors between the Stage 1 concatenated-Gaussian kernels 

and their Stage 1 vectorial-linear counterparts. At the bottom of the table, these average 

improvement factors were calculated to be equal to 32.999%, 33.857%, and 21.445% for 

the Stage 1- Chebyshev, Legendre, and Hermite kernels respectively; making up a total 

average accuracy improvement factor of 29.434% depending on the kernel and the dataset 

used; which again clearly demonstrates the outperformance of the proposed concatenated 

approach over its vectorial counterpart. Compared to its corresponding average 

improvement factor using the concatenated-linear kernel (23.906%), this result clearly 
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demonstrates the effectiveness of utilizing the Gaussian instead of the linear kernel by 

introducing a further average improvement factor of 5.528%. This empirical superiority of 

the Gaussian kernel over its linear counterpart, when evaluated on the concatenated 

polynomial-processed input vectors, is believed to stem from its renowned ability of 

mapping the input space to an infinite dimensional feature space, as well as it accurate 

similarity measure shape characteristics, as explained earlier in Section 6.2. 

Another benefit gained from utilizing the Gaussian kernel to evaluate the similarity 

between the concatenated-processed input vectors is that it resulted in a lot smoother 

classification performance of the overall concatenated-Gaussian polynomial kernels than 

the concatenated-linear polynomial kernels, across the spectrum of polynomial orders. This 

behaviour can be realized by comparing the two sets of results from Tables 6.5 and 6.3, 

respectively, which is quite evident especially in the Hermite kernels in the Ionosphere 

dataset where the abrupt oscillating changes in the classification accuracy between the 

polynomial orders are significantly reduced. Consequently, this resulted in even more 

dispersed improvements in the classification accuracies between the concatenated-

Gaussian and the vectorial-linear kernels, which can also be quantitatively evaluated from 

the standard deviation of the average improvement factors (shown in brackets), as well as 

the minimum and maximum improvement factors (shown in bold) which are also 

calculated in Table 6.6. 
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Table 6.5 Comparative experimental results of Stage 1 concatenated-Gaussian and vectorial-linear kernels. 
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Table 6.6 Quantitative assessment of the average improvements in the scored classification accuracy of Stage 1 concatenated-Gaussian and vectorial-linear kernels. 
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Stage 1 Chebyshev kernels Stage 1 Legendre kernels Stage 1 Hermite kernels 

Order no. Order no. Order no. 
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Figure 6.10 Bar chart comparative assessment of the average classification accuracy scored by the first 20 

orders of the Stage 1 concatenated-Gaussian and vectorial-linear kernels. 
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6.5.2.2 Comparative experimental results on Stage 2 kernels 

Stage 2 kernels might be the most appropriate kernels that can be used to establish a fair 

comparison between the classification performance of the concatenated and the vectorial 

processing approaches under investigation. This is mainly because, as previously explained 

in Chapter 4 via the analysis of their shape characteristics, they are actually able to acquire 

more accurate similarity measures than their Stage 1 counterparts due to their inherent 

fusion by summation process. Their calculated similarity measures will also be a faithful 

indication of what the unweighted polynomial kernel can produce, because it is not being 

affected by any other weighting or combining kernel (as is the case for example with the 

Stage 3 kernels), although this can be quite useful to elevate the classification accuracy, as 

previously shown in Chapter 4. 

Similar to Stage 1 kernels, Tables 6.7 and 6.8 also show the mathematical formulation of 

each of the Stage 2 kernels utilized in the comparative experiments conducted in this 

section between the concatenated and vectorial approaches, when adopting both the linear 

and Gaussian kernels. 

Table 6.7. Mathematical formulations of the Stage 2 linear kernel evaluation on the vectorial- and 

concatenated-processed inputs using the Chebyshev, Legendre, and Hermite polynomials. 
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Table 6.8. Mathematical formulations of the Stage 2 Gaussian kernel evaluation on the concatenated-

processed vectors versus the linear kernel evaluation on the vectorial-processed inputs using the Chebyshev, 

Legendre, and Hermite polynomials. 
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The graphical experimental results shown in Table 6.9 compare the best scored 

classification accuracies obtained from the first 20 polynomial orders of the Stage 2 

kernels shown in Table 6.7, where the linear kernel is evaluated on both the vectorial- and 

concatenated-processed inputs for the same datasets investigated. Inline with the results 

obtained from Stage 1, the results from Stage 2 kernels also demonstrate not only the 

superiority of the concatenated approach over its vectorial counterpart, but also the fact 

that the kernels constructed using the concatenated approach are less sensitive to the 

changes between the parity of the orders of the employed polynomials, compared to their 

counterparts constructed using the vectorial approach. It is believed by the author that this 

more stable performance of the concatenated approach is mainly due to its ability to 

produce transformed image vectors of the input data for any polynomial order, as opposed 

to the vectorial approach, which does this only with the odd orders, as previously explained 

in Section 6.4.1. 

One can also observe that, depending on the characteristics of the dataset, both the 

vectorial- and concatenated-linear kernels can have different behaviours. For example, at 

the time when the classification performance of the kernels increases as the polynomial 

order increases in the Two Spirals dataset, as shown in Table 6.9, yet, in other datasets, 

such as the Thyroid and Image Segmentation datasets, it is usually the lower orders which 

score the highest accuracies. 

Furthermore, it can also be clearly observed that the improvement in the classification 

accuracy introduced by the proposed concatenated approach can be very large in some 

datasets than others. For example, in the majority of the results illustrated in Table 6.9, 

such as the Breast Cancer, Image Segmentation, Ionosphere, and Thyroid datasets, the 

proposed concatenated approach has shown to significantly outperform its vectorial 

counterpart mostly in higher polynomial orders. A similar behaviour has also been 

observed in the experimental results of Stage 1 kernels in Section 6.5.2.1. 

In the Two Spirals dataset, however, although the concatenated approach has still 

demonstrated a better performance than its vectorial counterpart, yet, the introduced 

improvement is quite infinitesimal and tends to vanish as the order increases, especially for 

the Chebyshev and Legendre kernels. A similar behaviour can also be observed in the Iris 

dataset, where the concatenated approach has also demonstrated a relatively small 

improvement over its vectorial counterpart, apart from some weird few orders which tend 

to form a convex hull in the Chebyshev and Legendre kernels where the vectorial approach 

collapses considerably.  
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One can also evaluate the amount of improvement introduced by the proposed 

concatenated approach by examining the bar chart comparisons, shown in Figure 6.11, 

which demonstrate the average accuracy scored by the first 20 orders of the concatenated 

and the vectorial approaches, for each of the datasets experimented. As can be observed, 

the concatenated approach demonstrated a consistent superior average accuracy over its 

vectorial counterpart for all the datasets experimented, but with varying amounts of 

improvements from one dataset to another. 

To quantify this variation in the improvements scored for each dataset, Table 6.10 has also 

been similarly used to calculate the average accuracy improvement factors that the 

concatenated approach was able to achieve over its vectorial counterpart for the first 20 

orders of the Stage 2 kernels under test. As shown at the bottom of the table, the average 

accuracy improvement factors introduced by the concatenated approach for the Stage 2- 

Chebyshev, Legendre, and Hermite kernels was calculated to be equal to 29.369%, 

28.456% and 11.224%, respectively; making up a total average accuracy improvement 

factor of 23.016%, which clearly demonstrates the outperformance of the proposed 

concatenated approach over its vectorial counterpart, even with the linear kernel 

implemented. 

On the other hand, similar to the behaviour of the Stage 1 concatenated kernels illustrated 

in Section 6.5.2.1, one can also clearly observe that the Stage 2 concatenated kernels has 

also demonstrated a lot more steady and consistent classification accuracy across the 

spectrum of polynomial orders than their Stage 2 vectorial counterparts, with a significant 

reduction in the abrupt oscillating behaviour between the even and odd orders, as shown 

for example in the Breast Cancer and Ionosphere datasets in Table 6.9. To quantify this 

observation, Table 6.10 has also been used to calculate the standard deviation of the 

average improvement factors (shown in brackets), as well as the minimum and maximum 

improvement factors (shown in bold), introduced by the Stage 2 concatenated kernels. 

As it can be observed, the standard deviation of the average improvement factors can also 

be quite large relative to the mean, due to the huge difference between the two sets of 

results across the polynomial orders. Conversely, however, one can also evaluate the 

steadiness of the results by examining the standard deviation of the accuracy values 

themselves, reported in the statistical analysis tests tabulated in Appendix B.5, where, not 

only the mean of the Stage 2 concatenated kernels is consistently larger than the mean of 

the vectorial kernels, but also their standard deviation is a lot smaller for most of the results 

obtained. 
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Table 6.9 Comparative experimental results of Stage 2 concatenated-linear and vectorial-linear kernels. 

 Stage 2 Chebyshev kernels Stage 2 Legendre kernels Stage 2 Hermite kernels 
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Table 6.10 Quantitative assessment of the average improvements in the scored classification accuracy of Stage 2 concatenated-linear and vectorial-linear kernels. 
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Stage 2 Chebyshev kernels Stage 2 Legendre kernels Stage 2 Hermite kernels 
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Stage 2 Chebyshev kernels Stage 2 Legendre kernels Stage 2 Hermite kernels 
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AI 1.972 (3.179) 2.925 (4.53) 7.794 (3.993) 

AAI 29.369 (33.787) 28.456 (34.059) 11.224 (21.085) 

TAI 23.016 (31.307) 

N1 Classification accuracy of Stage 2 kernels implemented using the vectorial approach & the Linear dot-product kernel 

N2 Classification accuracy of Stage 2 kernels implemented using the concatenated approach & the Linear dot-product kernel 

I Improvement = N2-N1 

AI Average Improvement for the first 20 orders 

AAI Average of Average Improvements of the first 20 orders over all the datasets under investigation 

TAI Total Average Improvement over all datasets and all kernels under investigation for the first 20 orders 
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Figure 6.11 Bar chart comparative assessment of the average classification accuracy scored by the first 20 

orders of the Stage 2 concatenated-Linear and vectorial-Linear kernels. 
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As the proposed concatenated approach provides a more meaningful processing technique 

to the data transformation perspective introduced in this chapter than its previously 

proposed vectorial counterpart (due to the reasons explained in Section 6.4.1), one can 

utilize the achieved concatenated results to establish a comparative analysis between the 

employed polynomials under study (i.e., the Chebyshev, Legendre, and Hermite 

polynomials) within the context of their exhibited similarity measure shape characteristics, 

explained in Sections 3.4.1 and 4.3. To achieve this purpose, Figure 6.12 studies the results 

obtained from these Stage 2 concatenated kernels separately for each of the datasets 

experimented. 

On investigating these results, one can observe the quite similar performance of the Stage 2 

Chebyshev and Legendre kernels, which were actually able to score higher classification 

accuracies compared to their Stage 2 Hermite counterparts, especially in higher polynomial 

orders. Inline with the analysis of the shape characteristics of these Stage 2 kernels in 

Section 3.4.2, which revealed that both of the Chebyshev and Legendre kernels exhibit 

common similarity measure characteristics that are more accurate than the Hermite kernels, 

the results observed herein do indeed validate that the better similarity measures acquired 

by the Chebyshev and Legendre kernels are reflected accordingly on their classification 

performance compared to the Hermite kernels. 

However, similar to the observation drawn from the experimental results of the Stage 2 

vectorial-linear kernels back in Section 4.4.4, one can still notice that the Thyroid dataset 

remains an interesting exception to this rule, as shown in Figure 6.12 (e), where the 

classification performance of the Stage 2 concatenated-linear Hermite kernel outperforms 

its Chebyshev and Legendre counterparts. This consistent observation, therefore, 

strengthens the earlier implication that there must be other factors which can at times have 

a stronger influence on the classification performance than the similarity measure shape 

characteristics of the underpinning kernels, which can be an interesting subject of future 

research.  
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Figure 6.12 Classification performance comparison of Stage 2 kernels implemented using the proposed 

concatenated approach on the various datasets experimented. 
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Similar to the experimental investigation conducted in Section 6.5.2.1 on the Stage 1 

kernels, the second set of experiments presented in this section is also aimed at assessing 

the effectiveness of evaluating the Gaussian kernel, instead of the linear kernel, on the 

polynomial-processed inputs. This is achieved by comparing the results obtained from the 

evaluation of the Gaussian kernel on the concatenated-processed vectors against those 

obtained from the linear kernel evaluations on the vectorial-processed inputs, using the 

kernels illustrated in Table 6.8. 

Table 6.11 illustrates the graphical comparative results of the highest classification 

accuracy scored in each of these two cases for the Chebyshev, Legendre, and Hermite 

polynomials, whereas the average accuracy scored by the first 20 orders is also shown in 

Figure 6.13. Inline with the previous results obtained in this section from the concatenated-

linear kernels, one can also observe that the concatenated-Gaussian kernels were actually 

able to achieve even better classification performance than their vectorial-linear 

counterparts. By comparing the two sets of graphical results in Tables 6.9 and 6.11, this 

observation can be evidently realized, for example, from the classification performance of 

the Hermite kernels in the Breast Cancer, Image Segmentation, and Iris datasets, especially 

in higher polynomial orders. The Chebyshev and Legendre kernels have also exhibited 

some improvements in the other datasets experimented, which are relatively steady along 

the spectrum of polynomial orders. However, they are not as significant as their sister 

Hermite kernels.  

The overall improvement introduced by the evaluation of the Gaussian kernel on the 

concatenated-processed vectors can therefore be better assessed quantitatively by 

calculating the average accuracy improvement factors as shown in Table 6.12. These were 

found to be equal to 32.287%, 30.446%, and 29.657% for the Chebyshev, Legendre, and 

Hermite polynomials, respectively; making up a total average accuracy improvement 

factor of 30.796% depending on the kernel and the dataset used. Compared to its 

corresponding average improvement factor using the concatenated-linear kernel 

(23.016%), this result also clearly demonstrates the effectiveness of utilizing the Gaussian 

instead of the linear kernel by introducing a further average improvement factor of 7.78%. 

This superiority of the Gaussian kernel over its linear counterpart, when evaluated on the 

polynomial-processed inputs, is also believed to stem from its renowned ability of mapping 

the input space to an infinite dimensional feature space, as well as it accurate similarity 

measure shape characteristics, as explained earlier in Section 6.2. 
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Inline with the behaviour observed in the Stage 1 concatenated-Gaussian kernels in Section 

6.5.2.1, one can also realize that the Stage 2 concatenated-Gaussian kernels have also 

demonstrated a lot smoother classification performance than the Stage 2 concatenated-

linear kernels, across the spectrum of polynomial orders. This behaviour can again be 

easily realized by comparing the two sets of results from Tables 6.11 and 6.9, respectively, 

which is quite evident, especially in the Breast Cancer, Image Segmentation, and Iris 

datasets where the abrupt oscillating changes in the classification accuracy between the 

polynomial orders are significantly reduced. Consequently, this resulted in even more 

dispersed improvements in the classification accuracies between the Stage 2 concatenated-

Gaussian and the Stage 2 vectorial-linear kernels, which can also be quantitatively 

evaluated from the standard deviation of the average improvement factors (shown in 

brackets), as well as the minimum and maximum improvement factors (shown in bold) 

calculated in  Table 6.12. 
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Table 6.11 Comparative experimental results of Stage 2 concatenated-Gaussian and vectorial-Linear kernels. 
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Table 6.12 Quantitative assessment of the average improvements in the scored classification accuracy of Stage 2 concatenated-Gaussian and vectorial-Linear kernels. 
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Stage 2 Chebyshev kernels Stage 2 Legendre kernels Stage 2 Hermite kernels 
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AAI 32.287 (33.984) 30.446 (34.21) 29.657 (30.402) 

TAI 30.796 (32.838) 

N1 Classification accuracy of Stage 2 kernels implemented using the vectorial approach & the Linear dot-product kernel 

N2 Classification accuracy of Stage 2 kernels implemented using the concatenated approach & the Gaussian kernel 

I Improvement = N2-N1 

AI Average Improvement for the first 20 orders 

AAI Average of Average Improvements of the first 20 orders over all the datasets under investigation 

TAI Total Average Improvement over all datasets and all kernels under investigation for the first 20 orders 
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(a) Breast Cancer (b) Image segmentation 
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(c) Ionosphere (d) Iris 
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(e) Thyroid (f) Two Spirals 

Figure 6.13 Bar chart comparative assessment of the average classification accuracy scored by the first 20 

orders of the Stage 2 concatenated-Gaussian and vectorial-Linear kernels. 
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To further analyse the results obtained from the three different kernel approaches under 

test (i.e., vectorial-linear, concatenated-linear, and concatenated-Gaussian kernels), Table 

6.13 illustrates the maximum classification accuracy scored by each of the Stage 2 kernels 

experimented in this section for the first 20 orders and for all the datasets under test. As 

can be observed, for the three different polynomials under study (i.e., Chebyshev, 

Legendre, and Hermite), the maximum accuracies scored by the concatenated-linear and 

concatenated-Gaussian kernels are better than those scored by the vectorial-linear kernels, 

for most of the results. This again demonstrates the effectiveness of the proposed 

concatenated processing approach as well as the utilization of the Gaussian kernel (instead 

of the linear kernel), when evaluating the similarities between the polynomial-processed 

inputs. 

 
Table 6.13. Maximum classification accuracy scored by the Stage 2 linear and Gaussian kernels evaluation 

on the vectorial- and concatenated-polynomial processed inputs. 

  Breast 

Cancer 

Image 

Segmentat. 

Ionosphere Iris Thyroid Two Spirals 

  Test % n Test % n Test % n Test % n Test % n Test % n 

Chebyshev 

Vectorial-linear 97.868 2 92.143 1 96.689 2 95.238 3 95.683 7 100 17 

Concatenat-linear 97.441 3 93.857 11 98.013 15 97.143 4 97.666 6 100 17 

Concatenat-Gauss 97.228 1 95.81 10 98.013 1 98.095 5 97.856 6 100 17 

Legendre 

Vectorial-linear 97.868 2 92.143 1 96.689 2 95.238 3 95.537 7 100 17 

Concatenat-linear 97.655 2 94.286 12 98.013 12 98.095 7 97.054 3 100 16 

Concatenat-Gauss 97.228 1 94.714 18 98.013 1 98.095 4 97.546 7 100 15 

Hermite 

Vectorial-linear 97.868 3 92.190 1 97.351 2 94.286 3 95.478 1 65.469 7 

Concatenat-linear 97.441 2 92.524 3 96.689 2 99.048 4 96.865 7 66.412 14 

Concatenat-Gauss 96.802 5 93.524 3 90.066 2 98.095 2 97.953 7 75.585 13 

 

6.5.2.3 Comparative experimental results on Stage 3 kernels 

It has been demonstrated (back in Section 4.3.3) how the fusion by multiplication 

operation of Stage 2 kernels by another kernel was able to tailor the overall shape of the 

resulting composite Stage 3 kernels closer to the ideal similarity function, and, hence, 

enabled the acquisition of more accurate similarity measures, and accordingly enhanced 

the classification performance. One can notice, however, that although the combining 

kernel (e.g., the Gaussian) in Stage 3 has got nothing to do with how the polynomials are 

utilized to process the multi-dimensional vector inputs, it is still important to assess the 

classification performance of the overall composite Stage 3 kernels adopting the proposed 

concatenated processing approach in comparison with those using its previously proposed 

vectorial counterpart. 
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To achieve this purpose, another two sets of experiments are also conducted in this section, 

using the three composite kernels shown in Tables 6.14 and 6.15. These are: the ‘Modified 

Chebyshev kernel’, the ‘Modified Legendre kernel’, and the ‘Composite Hermite kernel’. 

Similar to previous sections, the first set of experiments conducted in this section utilizes 

the evaluation of the linear kernel on both of the vectorial- and concatenated-processed 

inputs, using the composite kernels depicted in Table 6.14. Whereas the second set of 

experiments utilizes the evaluation of the Gaussian kernel on the concatenated-processed 

vectors compared to the linear kernel evaluations on the vectorial-processed inputs, using 

the same composite kernels, as shown in Table 6.15. 

 
Table 6.14. Mathematical formulations of the composite Stage 3 linear kernel evaluation on the vectorial- 

and concatenated-processed inputs using the Chebyshev, Legendre, and Hermite polynomials. 
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Table 6.15. Mathematical formulations of the composite Stage 3 Gaussian kernel evaluation on the 

concatenated-processed vectors versus the linear kernel evaluation on the vectorial-processed inputs using the 

Chebyshev, Legendre, and Hermite polynomials. 
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Table 6.16 illustrates the experimental results of the first set of experiments conducted in 

this section using the Stage 3 composite kernels shown in Table 6.14. The graphical results 

demonstrate the best SVM classification accuracy scored by the first 20 orders of each of 

these composite Stage 3 kernels when the linear kernel is evaluated on both the 

concatenated and vectorial processing approaches under comparison. Inline with the 

experimental results obtained from Stage 1 and Stage 2 kernels, it can also be observed 

from the Stage 3 results that the proposed concatenated approach continues to outperform 

the vectorial approach for all the composite kernels under comparison and for most, if not 

all, of the tested polynomial orders and the datasets experimented. 

A common observation that can be realized, however, is that the classification performance 

of most of the Stage 3 vectorial-linear kernels tends to asymptotically decrease as the 

polynomial order increases, as shown for example in the Breast Cancer, Image 

Segmentation, and Ionosphere datasets in Table 6.16. The performance of the Stage 3 

concatenated-linear kernels, on the other hand, tends to stay relatively stable at a higher 

level than their vectorial-linear counterparts across the spectrum of polynomial orders. This 

behaviour results in making the performance improvement introduced by the proposed 

concatenated approach more significant at higher polynomial orders than at lower orders, 

although the classification performance demonstrated by the Stage 3 Modified Chebyshev 

and Legendre kernels in the Two Spirals dataset seems to be an exception to this rule. 

One can also evaluate the amount of improvement introduced by the proposed 

concatenated approach on the Stage 3 kernels by examining the bar chart comparisons, 

shown in Figure 6.14, which demonstrate the average accuracy scored by the first 20 

orders of the Stage 3 concatenated-linear and the vectorial-linear kernels, for each of the 

datasets experimented. As can be observed, the concatenated approach again demonstrated 

a consistent superior average accuracy over its vectorial counterpart for all of the Stage 3 

kernels under test, but with varying amounts of improvements across the datasets 

experimented. One can easily notice, however, that due to the fusion by multiplication 

operation taking place in the Stage 3 kernels, their corresponding classification accuracy 

has therefore been uplifted for both of the vectorial and concatenated approaches. This 

results in the amount of improvements scored by the concatenated approach over its 

vectorial counterpart in the Stage 3 kernels to be relatively smaller than their equivalents in 

the Stage 1 and Stage 2 kernels. 

To enable a better quantitative assessment of the improvements introduced by the Stage 3 

concatenated kernels over their vectorial counterparts, the average accuracy improvement 
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factors for the first 20 polynomial orders of each kernel have also been calculated in Table 

6.17. At the bottom of the table, these average accuracy improvement factors were 

calculated to be equal to 4.865%, 4.365% and 6.927% for the Stage 3 Modified 

Chebyshev, Modified Legendre and Composite Hermite kernels, respectively; making up a 

total average accuracy improvement factor of 5.385%, which again demonstrates the 

outperformance of the proposed concatenated approach over its vectorial counterpart, even 

with the linear kernel implemented. 

Furthermore, besides the overall superior performance demonstrated by the Stage 3 

concatenated kernels over their vectorial counterparts, and inline with the similar 

behaviour exhibited by the Stage 1- and Stage 2-concatenated kernels in Sections 6.5.2.1 

and 6.5.2.2, it can also be observed that concatenated approach continues to rectify the 

cases where the vectorial approach encounters sudden abrupt changes in the classification 

accuracy across the polynomial orders. This behaviour can be clearly observed in the 

graphical results illustrated in Table 6.16, such as the Iris, Thyroid, and Two Spirals 

datasets. To quantify this observation, Table 6.17 has also been used to calculate the 

standard deviation of the average improvement factors (shown in brackets), as well as the 

minimum and maximum improvement factors (shown in bold), introduced by the Stage 3 

concatenated kernels. 

As it can be observed, the standard deviation of the average improvement factors can also 

be quite large relative to the mean, due to the oscillating difference between the two sets of 

results across the polynomial orders in some datasets. Conversely, however, one can also 

evaluate the steadiness of the results by examining the standard deviation of the 

classification accuracy values themselves, reported in the statistical analysis tests tabulated 

in Appendix B.6, where, not only the mean of the Stage 3 concatenated kernels is larger 

than the mean of the vectorial kernels, but also their standard deviation is a lot smaller for 

most of the results obtained. 
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Table 6.16 Comparative experimental results of Stage 3 concatenated-linear and vectorial-linear kernels. 
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Table 6.17 Quantitative assessment of the average improvements in the scored classification accuracy of Stage 3 concatenated-linear and vectorial-linear kernels. 
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Stage 3 Modified Chebyshev kernels Stage 3 Modified Legendre kernels Stage 3 Composite Hermite kernels 
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Stage 3 Modified Chebyshev kernels Stage 3 Modified Legendre kernels Stage 3 Composite Hermite kernels 
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Figure 6.14 Bar chart comparative assessment of the average classification accuracy scored by the first 20 

orders of the Stage 3 concatenated-linear and vectorial-linear kernels. 
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Similar to the experimental investigations conducted in Sections 6.5.2.1 and 6.5.2.2 on the 

Stage 1 and Stage 2 kernels, respectively, the second set of experiments conducted in this 

section explores the effect of using the Gaussian kernel, instead of the linear kernel, on the 

polynomial-processed inputs, as per their composite Stage 3 mathematical formulations 

shown in Table 6.15. Table 6.18 illustrates the graphical comparative results of the highest 

classification accuracy scored in each of these two cases for the Modified Chebyshev, 

Modified Legendre, and Composite Hermite kernels, whereas the average accuracy scored 

by the first 20 orders is also illustrated in the bar charts in Figure 6.15. 

Inline with the results obtained in this section from the Stage 3 concatenated-linear kernels, 

one can also observe that the Stage 3 concatenated-Gaussian kernels were actually able to 

achieve even better classification performance than their vectorial-linear counterparts. By 

comparing the two sets of graphical results in Tables 6.18 and 6.16, for the Stage 3 

concatenated-Gaussian and Stage 3 concatenated-linear kernels, respectively, such a 

constructive effect on the classification performance of the concatenated approach that the 

Gaussian kernel introduces can probably be observed in the Thyroid, and Two Spirals 

datasets, and the Hermite kernel performance in the Ionosphere and Iris datasets. 

The overall improvement introduced by the evaluation of the Gaussian kernel on the 

concatenated-processed vectors can, however, be better assessed quantitatively by 

calculating the average accuracy improvement factors for each kernel in each dataset, as 

shown in Table 6.19. These were found to be equal to 5.899%, 4.861%, and 8.973% for the 

Stage 3 Modified Chebyshev, Modified Legendre, and Composite Hermite kernels 

respectively; making up a total average accuracy improvement factor of 6.577% depending 

on the kernel and the dataset used. Compared to its corresponding average improvement 

factor using the Stage 3 concatenated-linear kernels (5.385%), this result again shows that 

the Gaussian kernel was able to introduce a further accuracy improvement factor of about 

1.192%, due to the reasons explained earlier in Section 6.2. 

Besides this additional improvement that the Gaussian kernel brings to the Stage 3 

concatenated polynomial kernels, it can also be observed from the results in Table 6.18 that 

the Stage 3 concatenated-Gaussian kernels are also a lot more consistent and steady across 

the polynomial orders than their vectorial-linear counterparts, and even smoother than the 

Stage 3 concatenated-linear kernels. This observation can also be assessed quantitatively 

using Table 6.19 by comparing the standard deviation (shown in brackets), as well as the 

minimum and maximum improvement factors (shown in bold), to the average 

improvement factors for each kernel and dataset experimented. 
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Table 6.18 Comparative experimental results of Stage 3 concatenated-Gaussian and vectorial-linear kernels. 
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Table 6.19 Quantitative assessment of the average improvements in the scored classification accuracy of Stage 3 concatenated-Gaussian and vectorial-linear kernels. 
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Stage 3 Modified Chebyshev kernels Stage 3 Modified Legendre kernels Stage 3 Composite Hermite kernels 
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Stage 3 Modified Chebyshev kernels Stage 3 Modified Legendre kernels Stage 3 Composite Hermite kernels 
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Figure 6.15 Bar chart comparative assessment of the average classification accuracy scored by the first 20 

orders of the Stage 3 concatenated-Gaussian and vectorial-linear kernels. 
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6.6 Re-evaluation of the similarity fusion framework using 

the proposed concatenated processing approach 

Although the experimental results illustrated in the previous section demonstrate the 

superiority of the proposed concatenated processing approach over its vectorial 

counterpart, the hierarchical structure of the kernels constructed from orthogonal 

polynomials, as defined by the developed similarity fusion framework in Chapter 4, is still 

the same. In other words, regardless of which kernel (e.g., Linear, Gaussian, etc.) is being 

evaluated on the polynomial-processed vectors, one should still expect the fusion by 

summation process taking place in Stage 2 concatenated kernels to continue to be 

synergistic and hence produce better classification performance than their Stage 1 

counterparts. Similarly, the fusion by multiplication process taking place in Stage 3 kernels 

would also be expected to be synergistic and produce better classification performance 

than their Stage 2 counterparts. The following two sub-sections demonstrate the 

experimental results which explore whether these two hypotheses continue to hold true, 

when the input vectors are processed using the newly proposed concatenated approach. 

Both the linear and Gaussian kernels are used, as an example. 

 

6.6.1 Evaluation of the summative fusion process via the comparative 

experimental results of the concatenated-Stage 1 and Stage 2 

kernels 

Tables 6.20 and 6.21 demonstrate the comparative experimental results of the scored 

classification accuracy of the concatenated-Stage 1 and Stage 2 kernels when both the 

linear and Gaussian kernels are utilized, respectively. Inline with the experimental results 

presented back in Section 4.4.4 (Chapter 4), it can be observed from the results obtained 

herein, that the concatenated-Stage 2 kernels have been able to score a lot higher 

classification accuracy than their Stage 1 counterparts for most, if not all, of the 

polynomial orders and datasets investigated. This clearly validates that the fusion by 

summation process inherent in Stage 2 kernels is indeed synergistic, a fact which has been 

attributed in Chapter 4 to their complementary fusion properties leading to more accurate 

acquisition of similarity measures than their Stage 1 counterparts, as exhibited by their 

shape characteristics. 

On analyzing closely the results obtained amongst the kernels and datasets investigated, 

however, one can also draw the following observations. First, the amount of improvement 

in the classification accuracy introduced by the fusion by summation process tends to 



 243 

increase as the polynomial order increases. This can be clearly realized from the 

performance of the Stage 2 kernels compared to their Stage 1 counterparts in some 

datasets, such as the Breast Cancer, Iris, and Image Segmentation, in both of the results 

illustrated in Tables 6.20 and 6.21. Recall that as the polynomial order increases, the Stage 

2 kernels tend to measure more accurate similarity measures, as their shape characteristics 

get closer to the ideal model of similarity function, therefore, this can probably explain the 

reason behind their superior performance over their Stage 1 counterparts in higher order 

polynomials as observed in the results herein. A similar behaviour has also been observed 

in the results obtained from the Stage 1- and Stage 2- vectorial-linear kernels in Section 

4.4.4. 

Second, both of the Stage 1- and Stage 2- concatenated kernels have actually demonstrated 

different performances depending on the characteristics of the datasets investigated. For 

example, at the time when their asymptotic performance increases as the order increases, 

as shown for example in the results obtained from the Two Spirals dataset in Tables 6.20 

and 6.21, yet, in other datasets, such as the Thyroid and Image Segmentation, it is mostly 

the lower orders which score the highest accuracies. Moreover, the amount of 

improvement introduced by the fusion by summation process tends to be a lot higher in 

some datasets than others. For example, as shown in the results illustrated in Tables 6.20 

and 6.21, both the Stage 2 Chebyshev and Legendre kernels have demonstrated a huge 

improvement over their Stage 1 counterparts in some datasets, such as the Iris and Image 

Segmentation, as opposed to a relatively smaller improvement in other datasets, such as the 

Ionosphere and Thyroid datasets. 

A remarkable observation, however, is the fact that both the Stage 1 and Stage 2 

concatenated kernels demonstrated a lot smoother and consistent performance across the 

polynomial orders than their vectorial counterparts. Consequently, this resulted in a smooth 

transitional change in the amount of improvement introduced by the fusion by summation 

operation, as demonstrated by their classification performance in most of the datasets, 

especially when the Gaussian kernel is evaluated on the concatenated processed input 

vectors (as shown in the results illustrated in Table 6.21) as compared to when the linear 

kernel is used instead (as shown in the results illustrated in Table 6.20).   
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Table 6.20 Comparison between the concatenated-Stage 1 and Stage 2 linear kernels to validate the fusion by summation hypothesis. 
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Table 6.21 Comparison between the concatenated-Stage 1 and Stage 2 Gaussian kernels to validate the fusion by summation hypothesis. 
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6.6.2 Evaluation of the multiplicative fusion process via the 

comparative experimental results of the concatenated-Stage 2 and 

Stage 3 kernels 

Tables 6.22 and 6.23 also demonstrate the comparative experimental results of the scored 

classification accuracy of the concatenated-Stage 2 and Stage 3 kernels when both the 

linear and Gaussian kernels are utilized, respectively. In line with the experimental results 

presented in Section 4.4.5 (Chapter 4), it can be observed from the results obtained herein, 

for all of the polynomials and datasets investigated, that the concatenated-Stage 3 kernels 

have been able to score higher classification accuracy than their Stage 2 counterparts for 

most, if not all, of the polynomial orders tested. This again clearly confirms that the fusion 

by multiplication process, which takes place in the Stage 3 kernels, is also synergistic in 

nature as it acquires more accurate similarity measures than the Stage 2 kernels and, hence, 

improves the classification performance. 

An observation worth noting, however, is that when a good kernel, such as the Gaussian, is 

used to measure the similarity between the image vectors processed using the concatenated 

approach, the resulting classification performance is very satisfactory, and only an 

infinitesimal improvement can be obtained by combining this kernel with another kernel. 

This can be observed, for example, from the results obtained from the Iris and Image 

Segmentation datasets in Table 6.23, where only a small improvement can be achieved 

when the concatenated-Stage 2 Gaussian kernels are fused by multiplication with another 

Gaussian kernel.  

One can also notice that the fusion by multiplication process has also had a further 

smoothness influence on the classification performance of the Stage 3 kernels (alongside 

the smoothing effect already introduced by the concatenated approach). This can be clearly 

observed, for example in the Ionosphere, Iris, and Image Segmentation datasets, shown in 

Table 6.22, where the fusion by multiplication taking place in the Stage 3 concatenated-

linear Hermite kernels tends to correct the sudden abrupt changes in the classification 

accuracy encountered in their Stage 2 counterparts. Interestingly, one can also notice that 

the utilization of the Gaussian kernel (instead of the linear kernel) in the experimental 

results illustrated in Table 6.23, has actually introduced a further level of smoothness 

amongst the polynomial orders, resulting in hardly any abrupt changes in the classification 

performance can be observed. 
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Table 6.22 Comparison between the concatenated-Stage 2 and Stage 3 linear kernels to validate the fusion by multiplication hypothesis. 
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Table 6.23 Comparison between the concatenated-Stage 2 and Stage 3 Gaussian kernels to validate the fusion by multiplication hypothesis. 
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6.7 Summary 

This chapter introduced a new framework within which the construction of OPKs is 

perceived as a way of transforming the input space to another vector space (of the same 

dimensionality), using the employed orthogonal polynomial ‘processing agents’ (e.g., 

Chebyshev, Legendre, Hermite, etc.), prior to the kernel calculation step using a legitimate 

Mercer kernel. As such, the transformed space requires the data to always be formulated in 

a vector form regardless of the transformation function used to process the original input 

data vectors. 

To achieve this purpose, the chapter proposed a new processing approach, based on vector 

concatenation, by which the employed polynomials process the input data vectors. Unlike 

the processing approaches previously proposed in the literature, referred to in this thesis as 

the pairwise and vectorial approaches, the concatenated approach proposed in this chapter, 

on the other hand, guarantees that when any polynomial function with any order processes 

an input data vector, it always produces another vector representing the transformed image 

of the original input vector in some new polynomial vector space of the same number of 

dimensions as the original input space. The chapter also proposed to apply the Gaussian 

kernel on the transformed image vectors (instead of the linear kernel used in previous 

approaches) to benefit from its renowned ability of implicitly mapping the input space to 

an infinite-dimensional feature space, as well as its accurate calculation of similarity 

measures, as exhibited by its shape characteristics. 

Experimental results have shown the consistent superiority of the proposed concatenated 

approach over its vectorial counterpart for all the kernel stages of the similarity fusion 

framework. When using the linear kernel for both the concatenated and vectorial 

approaches, the overall average classification accuracy improvement factors were 

calculated to be: 23.906%, 23.016%, and 5.385% for the Stage 1, Stage 2, and Stage 3 

kernels, respectively, depending on the polynomial and dataset used; making up a total 

average accuracy improvement factor of 17.436%, which clearly demonstrates the 

superiority of the proposed concatenated approach over its previously proposed vectorial 

counterpart. 

Moreover, when the Gaussian kernel is utilized instead of the linear kernel, the observed 

classification accuracy improvements were even better. Similarly, the average 

classification accuracy improvement factors when utilizing the Gaussian kernel with the 

concatenated approach (over the linear kernel with the vectorial approach) were calculated 

to be: 29.434%, 30.796%, and 6.577% for the Stage 1, Stage 2, and Stage 3 kernels, 
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respectively, depending on the polynomial and dataset used; making up a total average 

accuracy improvement factor of 22.269%. Compared to the above calculated improvement 

scored by the linear kernel (17.436%), this figure of 22.269% clearly demonstrates the 

superiority of the Gaussian kernel over the linear kernel in terms of the resulting SVM 

classification performance. 

Finally, the chapter ends with a re-evaluation of the developed similarity fusion framework 

using the newly proposed concatenated processing approach when both the linear and 

Gaussian kernel are used. Inline with the experimental results obtained from the vectoial 

approach back in Section 4.4, the results obtained in this chapter using the concatenated 

approach have also revealed that both of the summative and multiplicative fusion 

operations taking place in Stage 2 and Stage 3 kernels, respectively, are indeed synergistic 

as they were able to consistently score better results than if such exploitation of synergy 

was not achieved. 
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Chapter 7               

Conclusions and Directions for Future Work 

 

7.1 Conclusions 

The research work presented in this thesis investigated the utilization of SVM kernels as 

similarity functions, in terms of how the input data are related to each other, rather than the 

mathematical properties of the implicit high-dimensional feature space, which one might 

not even be able to calculate. Given that a similarity function returns a scalar quantity 

indicative of how its two input vector arguments resemble each other (i.e., the larger the 

similarity, the more alike the two vectors are, and vice versa) [30], the thesis utilizes this 

intuitive ‘similarity-based’ property to define the shape characteristics of what one would 

wish a typical similarity measure kernel to look like, as illustrated in Figure 3.1. The 

similarity curve should be maximized, when its two input arguments are identical, and it 

should decay monotonically, when they depart away from each other, and are therefore 

more likely to belong to different classes. As such, by following some footsteps akin to 

Balcan et al. [20-22], the investigations conducted in this thesis demonstrate that the study 

of kernels as similarity measures can enable a machine learning practitioner to design 

kernels in terms of some natural and intuitive ‘similarity-based’ properties (e.g., the shape 

properties), which are more tangible quantities than the ‘mathematical’ properties of the 

implicit high-dimensional feature spaces, which one might not even be able to create. 

Motivated by the plots of the Chebyshev kernel, reported by Ozer et al. [17], the thesis 

adopts the previously proposed SVM kernels that are constructed from orthogonal 

polynomials to explore how the classification performance is affected by how close the 

shape of the kernel is to the shape of the ideal similarity function. Chapter 3 extends Ozer 

et al.’s work to include a deep analysis on the shape characteristics of not only the kernels 

that are constructed from the Chebyshev polynomials, but also from other polynomials, 

such as the Legendre polynomials and Hermite polynomials. However, for a fair 

comparison among the graphical results of the polynomial kernels being investigated, the 

chapter focused on only the polynomial element of the kernel formulated with and without 

the sum in the form of  =
=

n

i ii PPk
0

)(),(),( zxzx  and )(),(),( zxzx nn PPk = , 

respectively, to eliminate the effect of any other weighting or combining function. The 

chapter also presents a comparative analysis with the shape characteristics exhibited by 
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some of the traditional kernels that have also been in common use, such as the Gaussian, 

linear, homogeneous, and inhomogeneous polynomial kernels. 

The outcome of the analyses of the shape characteristics of these two forms of polynomial 

kernels (i.e., with and without sum) revealed that, as the polynomial order increases, the 

kernels constructed with the sum have generally exhibited shape characteristics closer to 

the ideal similarity function than the kernels constructed without the sum, in terms of 

developing a maximum peak wherever the two input arguments are identical, and then 

decrease in value (although not in a monotonic behaviour), when the inputs depart away 

from each other. It was therefore apparent that the summation of the individual kernel 

components that takes place in the kernels with the sum does actually produce a synergistic 

effect on the accuracy of the similarity measures calculated by the underpinning kernels. 

This phenomenon was investigated in more detail in Chapter 4 via a new three-stage 

similarity fusion framework whereby the overall kernel construction is broken down into 

the following three stages. Stage 1 kernels involves the kernels formulated using only the 

polynomial order under consideration, in the form of )(),(),(1 zxzx nn
S
n PPk = . Stage 2 

kernels, on the other hand, undertake a fusion by summation operation for all the preceding 

kernels from order 0 up to n in the form of  =
=

n

i ii
S
n PPk

0
)(),(),(2 zxzx . Lastly, Stage 3 

kernels undertake another fusion operation by multiplying Stage 2 kernels either with 

another kernel derived from their corresponding weighting function, or any other valid 

kernel, as ),()(),(),(
0

3 zxzxzx wPPk
n

i
ii

S
n 








= 

=

. It is apparent that the kernels constructed 

this way from orthogonal polynomials are actually formulated using a summative and 

multiplicative mixture of base kernel building blocks that synergistically contribute 

towards achieving an accurate calculation of similarity measures, and, hence, enhancing 

classification performance. 

To the extent that each of these individual kernel blocks can provide complementary 

information about the input data (i.e., similarity measures), the resulting performance of 

the classifier constructed from their combination is expected to outperform that of the best 

individual kernel building block. Following the vectorial processing approach proposed by 

Ozer et al. [17], whereby the orthogonal polynomials are utilized to process the input data 

vectors as a whole rather than their individual feature components, a number of 

experiments have been conducted on six benchmark datasets to validate such a hypothesis, 

using the kernels constructed from the Chebyshev, Legendre, and Hermite polynomials. 



 257 

The comparative experimental results show that the summative fusion operation is indeed 

synergistic and that the average improvement in the classification accuracy due to the 

utilization of Stage 2 kernels over their Stage 1 counterparts was calculated to be 17.35%, 

depending on the dataset utilized and the polynomial function employed. Similarly, the 

results also show that Stage 3 kernels outperform their Stage 2 counterparts by an average 

accuracy improvement factor of 19.16%. 

On the other hand, while the analysis of the shape characteristics of Stage 2 kernels has 

shown that they exhibit better measures of similarity than their Stage 1 counterparts, they 

were still found to fail to display a strictly monotonic decay behaviour over the whole of 

the normalized input space. For example, the Stage 2 kernels constructed from the 

Chebyshev polynomials and Legendre polynomials were found to be maximized, when 

their two input arguments are identical and then decrease in value, when they start to 

depart from each other, but only up to a certain threshold, after which they start to increase 

again and then fluctuate in a wavy pattern. As such, their shape behaviour after this 

threshold is not completely monotonic in nature, a fact which renders the similarity 

measures calculated between any two data points that happen to be outside the monotonic 

threshold window to be inaccurate, and could therefore affect destructively the resulting 

classification performance. 

This problem is addressed in Chapter 5 by proposing a simple adaptive data normalization 

approach that confines the data to the regions, where the employed kernel demonstrates the 

sought after ideal monotonic decrease characteristic. By this way, the possibility of any 

data point to be located outside the monotonic threshold window of the employed kernel is 

eliminated. Experimental results using the three polynomials under investigation 

(Chebyshev, Legendre, and Hermite) demonstrated the effectiveness of this approach on 

the resulting SVM classification accuracy, compared to the results achieved when the data 

are normalized to the standard region of [-1,+1]. The analysis of the results for the first 10 

polynomial orders showed that this approach can further enhance the classification 

accuracy by an average improvement factor of 11.772% (and a standard deviation of 

30.019%) depending on the dataset and the polynomial function utilized. 

Last but not least, on studying closely the ‘vectorial’ polynomial-processing approach 

proposed by Ozer et al. [17], together with its ‘pairwise’ predecessor proposed by Ye et al. 

[31], it has been realized that the construction of the kernel from these polynomials can be 

viewed as a two step process. First, the employed polynomial (Chebyshev, Legendre, etc.) 

is utilized to ‘process’ the input vectors to produce another set of vectors in some 
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polynomial vector space of the same dimensionality as the input space. Second, as 

proposed by Ozer et al. apply the linear kernel to calculate the similarity between the 

quantities produced by the polynomials, as demonstrated by the formulation of Stage 1 and 

Stage 2 kernels, as )(),(),(1 zxzx nn
S
n PPk =  and  =

=
n

i ii
S
n PPk

0
)(),(),(2 zxzx , 

respectively. 

This approach is perceived in this thesis as a way of ‘transforming’ the input space to 

another vector space (ideally without undue loss of input-space dimensionality), prior to 

the kernel calculation step. It was observed, however, that the even polynomial orders of 

the vectorial approach produce a scalar quantity rather than a vector. This transformation 

discards potentially important attributes (such as the angle), associated with the structure of 

the original input vectors, that are essential for the similarity measure calculation process 

and eventually the estimation of the class label corresponding to the input vector. 

Moreover, the vectorial processing approach was also found to be applicable only to those 

polynomial functions consisting of only odd- or only even-order parity, such as the 

Chebyshev polynomials and Legendre polynomials, and therefore it cannot be generalized 

to any other polynomials not sharing this characteristic, such as the Laguerre polynomials, 

for example. Also, the application of the linear kernel is not a good choice, especially when 

used to solve non-linearly separable classification problems. This is because it is neither a 

good measure of similarity to be used (as compared to the shape characteristics of the ideal 

similarity function), nor does it trigger a transformation to higher number of dimensions so 

that linear separability between overlapped classes can be enhanced in the feature space. 

To rectify these issues, Chapter 6 proposed a new processing methodology, referred to as 

the ‘concatenated’ processing approach, whereby the employed polynomial function is 

utilized to process the individual features of the input vectors and then the new ‘processed’ 

features are concatenated to form a new set of vectors (of the same dimensionality as the 

original input space) on which the kernel is to be afterwards evaluated. This way, the 

processed quantities will always be formulated in a vector form, and hence the attributes 

embedded in the structure of the original vectors are retained as much as possible. 

Moreover, using the proposed concatenated approach, any polynomial function can also be 

used to process the input vectors with no restriction on the parity of the polynomial, as was 

the case, for example, with the vectorial approach. Furthermore, due to its better pictorial 

characteristics (in relation to the shape of the curve representing the similarity measure), as 

well as due to its ability to implicitly map the input space to an infinite-dimensional feature 

space, the chapter also proposes the use of the Gaussian kernel, instead of the linear kernel, 
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to measure the similarity between the vectors produced by concatenating the outputs of the 

polynomials. When both the Gaussian kernel and the concatenated processing approach are 

used together, the resulting Stage 1 and Stage 2 kernels were then formulated as: 

 




 −−=

2
11 )](,),([)](,),([exp),(1

mnnmnn
S
n zPzPxPxPk zx  and  


=






 −−=

n

i
miimii

S
n zPzPxPxPk

0

2
11 )](,),([)](,),([exp),(2 zx , respectively. 

Experimental results presented in the thesis show the consistent superiority of the proposed 

concatenated approach over its vectorial counterpart, for all the stages of the similarity 

fusion framework, and using the same three polynomial functions under investigation 

(namely, Chebyshev, Legendre, and Hermite). When using the linear kernel with the 

concatenated processing approach compared to the vectorial processing approach, the 

overall average accuracy improvement factor was calculated to be 17.436%. When the 

Gaussian kernel was used with the concatenated approach, the average accuracy 

improvement factor (over the linear kernel with the vectorial approach) was calculated to 

be 22.269%, which clearly shows the effectiveness of both the concatenated processing 

approach over its vectorial counterpart, as well as the utilization of a more accurate 

similarity measure kernel. 

In the general sense, it can be concluded that the effectiveness of an SVM kernel is 

actually a combination of two important elements. (1) its ability to map the input space to 

implicit high-dimensional feature spaces (as dictated by its prescribed positive semi-

definiteness property), where linear separability between overlapped classes can be 

improved, and hence easier to classify; and (2) its ability to accurately calculate the 

similarity between its two input arguments, to aid the classifier decide as to whether they 

belong to the same or different classes. The novel approaches presented in this thesis have 

shown how effective the latter definition of kernels as similarity functions can be 

compared to their former role as implicit mapping tools to high-dimensional feature 

spaces. 

The research work presented in this thesis was therefore able to fully achieve the aim and 

objectives, as set earlier in Chapter 1 – Section 1.3. Not only was a systematic 

investigation conducted to address how the SVM kernels can be used as similarity 

measures, but also novel analytical solutions have been proposed and empirically evaluated 

using the polynomial kernels under study and a diverse set of benchmark datasets. The 
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statistical significance tests of the comprehensive experimental results achieved in this 

thesis are also summarised in Appendix B, the majority of which were found to be 

statistically significant within a statistical confidence level of 95%. 

To the knowledge of the author, no previous work in the literature identified or addressed 

the research problems highlighted in this thesis. Therefore, neither the solutions or 

approaches presented in this thesis have been reported in the past literature, nor the 

experimental investigations conducted in this thesis have been done before. As such, the 

comparative analyses, research investigations and findings, and the empirical assessments 

conducted in this thesis are all considered herein as novel and original contributions to 

knowledge. 

 

7.2 Future Work 

One possible direction of future work is to investigate how the proposed concatenated 

processing approach would perform in terms of other classifier performance assessment 

measures, such as the number of support vectors and the processing time. It would also be 

interesting to investigate the impact of the utilization of the polynomial kernels studied in 

this thesis, but implemented with the proposed concatenated approach, on other kernel-

based learning algorithms, such as regression and kernel principal component analysis. 

Given the promising results achieved from the transformation of the input space to another 

vector space, prior to the kernel calculation step, using the studied polynomial functions, it 

would also be interesting to explore the effectiveness of using other transformation or 

processing functions that could enhance the classification performance even further. 

In the general sense, however, it should never be forgotten that the statistical pattern 

classification process is heavily anchored on the concept of ‘similarity’ (as highlighted in 

this thesis), whereby patterns from the same class are usually assumed to share more 

similar characteristics with each other than those belonging to different classes. This 

similarity-based concept, however, is also applicable not only to supervised learning 

algorithms, as is the case for example with the SVM algorithm studied in this thesis, but 

also to various other areas within the field of machine learning, such as clustering, which 

target the solution of many different complex problems in such areas as information 

retrieval, bioinformatics, and data compression. It would therefore be interesting to explore 

the effectiveness of the approaches presented in this thesis (e.g., the utilization of 

orthogonal polynomials, the concatenated processing approach, etc.) in unsupervised 

learning algorithms as well, and whether they can also facilitate the solutions to the real-

life problems that they address. 
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Appendix A1  Evaluating the feature space using the kernel trick 

Example A.1 Consider the two-dimensional binary input space X 2 , shown in Figure 

A.1, transformed into a three-dimensional feature space H 3  using the feature map [9] 

Φ :   2            3  

(x1, x2)       (z1, z2, z3) = ( )21

2

2

2

1 2,, xxxx  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 An illustrative toy example of the feature mapping from 2D to 3D to elaborate 

the idea of the kernel trick. 

 

Transforming a vector under this mapping will involve the reformulation of its 2D x-

coordinates to the 3D z-coordinates. To clarify this transformation, consider the two 

annotated vectors x and x́, one from each class, shown in Figure A.1. Their transformation 

under the above mapping will be as follows: 

x = (x1, x2)   Φ(x) = (z1, z2, z3) = )2,,( 21

2

2

2

1 xxxx  

x́ = (x́1, x́2)   Φ(x́ ) = (ź1, ź2, ź3) = )2,,( '

2

'

1

2'

2

2'

1 xxxx    (A.7.1) 

The feature map transforms the data from a two-dimensional to a three-dimensional space 

in a way that linear relations in the feature space correspond to quadratic relations in the 

Φ(x́ )=(ź1,ź2,ź3) 

32  

 

x1 

x2 
z3 

Feature mapping Φ :  

Input space X Feature space H 

x = (x1, x2) 

x ́= (x́1, x́2) 

Φ(x)=(z1,z2,z3) 

z1 

z2 
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input space. The above composition of the feature map can establish an inner product in 

the feature space as follows 

)'(),( xx   = ),(),,( '

2

'

121 xxxx   

  = ),,(),,,( '

3

'

2

'

1321 zzzzzz  

  = )2,,(),2,,( '
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1
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1 2 xxxxxxxx ++  

  = ( )2'

22
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11 xxxx +  

 = ( ) )',(',
2

xxxx k .      (A.7.2) 

Hence the function  

( )2
',)',( = xxxxk  

is a kernel function with H as its corresponding feature space; i.e., the desired kernel k is 

simply the square of the dot product in the input space. As shown in the derivation above, a 

suitably chosen kernel function can compute the inner product between the projections of 

two points into the feature space, directly from the input space, without explicitly 

evaluating their coordinates; i.e., the construction and computation of the feature space is 

achieved implicitly without even knowing what it might look like. 

Note that the same kernel can also compute the inner product corresponding to the four-

dimensional feature map 

Φ :   2         4  

x = (x1, x2)      Φ(x) = (z1, z2, z3, z4) = ( )1221

2

2

2

1 ,,, xxxxxx   H , 

which shows that the feature space is not always uniquely determined by the kernel 

function. Using this mapping, it can be shown that the above example can be readily 

generalised to higher dimensional input spaces. Consider, for example, an n-dimensional 

input space X n ; the function  

( )2
',)',( = xxxxk  

is a kernel function corresponding to the feature map  

( ) 2

)(: nn

ji Hxx == xx , 
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where (i, j)    nn ,,3,2,1,,3,2,1    

since  
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  = ( )2',  xx          (A.7.3) 

 

This example shows how the construction of a simple mapping can convert a linear 

polynomial kernel into an inner product in a higher dimensional feature space, and enables 

the kernel to implicitly define a vastly expanded feature space. Section 2.4.3 has shown 

that it is also possible to construct more complex kernels from simpler ones using a variety 

of operations, making the range of constructed valid kernels very large, some of which 

correspond to even an infinite-dimensional feature spaces at the cost of only a few extra 

operations in the kernel evaluation [1]. 

 

Appendix A2  Numerical example to evaluate the entries of the kernel 

matrix 

Example A.2 To elaborate the process of constructing the kernel matrix by evaluating the 

kernel function on the pairs of the input data, consider a simple 2-dimensional dataset 

2X , where  

x =   2

21 xx  , and  

z =   2

21 zz . 

And let  

k(x, z) = ( ) ( )22211

2
, zxzx +=zx       (A.7.4) 

be the kernel function. For simplicity, assume that the dataset consists of only the 

following two examples x1 and x2.  
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x1 =  00  , and  

x2 =  11 . 

The kernel matrix can therefore be constructed by evaluating the kernel function on each of 

the examples of the above dataset as follows:  

K = 








),(),(
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2212

2111
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xxxx

kk

kk
 

 = 
( ) ( )
( ) ( )










++
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22
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11110101
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40

00
.         (A.7.5) 

 

Appendix A3  Evaluation of the positive semi-definite kernel matrix 

 

Example A.3 Show that the following matrices are positive semi-definite 

(a) K = 








00

02
 

(b) K = 








−

−

11

11
 

Consider first the inequality method aTKa   0, to analyse the above matrices, where the 

vector a can be taken as 

a =  21 aa . 

Evaluating the approach on the above examples therefore yields 

(a) aTKa =  21

2

1

00

02
aa

a

a
















 

=  21

1

0

2
aa

a








 

= 02 2

1 a   ,   21,aa  

 The matrix therefore is positive semi-definite. 
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(b) aTKa =  21

2

1

11

11
aa

a

a









−

−








 

=  21

21

21
aa

aa

aa









+−

−
 

= 2

22121

2

1 aaaaaa +−−   ,  

= ( ) 0
2

21 − aa ,   21,aa  

 The matrix therefore is positive semi-definite. 

Considering now the non-negative eigenvalues approach, the example matrices can also be 

analysed as follows. 

(a) The matrix 








00

02
 is a diagonal matrix (in which Kij = 0 whenever i ≠ j). As such, the 

eigenvalues of a diagonal matrix are the elements of its diagonals; i.e.,   = Kii. As 

these elements in this example are non-negative, this matrix is positive semi-definite. 

(b) To calculate the eigenvalues of the matrix 








−

−

11

11
 we need to solve the determinant 

equation det(K- I) = 0 as follows 

( ) ( ) 0211211
11

11
22

=−=−+−=−−=
−−

−−





 

Therefore 00 =  or 02 =  

As both eigenvalues are non-negative, therefore the matrix is positive semi-definite. 

 

Appendix A4  Evaluation of the positive semi-definite kernel function 

 

Example A.4  Show that  

k(x, z) = zx,  

is a finitely positive semi-definite function. 

Referring back to Proposition 2.2, it is important to show that the candidate function 

satisfies the PSD property by evaluating it on ANY subset of data. Therefore, given the 

generic sub-set S =  lxxx ,,, 21  , it can be shown that the k(x, z) = zx,  is a PSD 

function by showing that its corresponding kernel matrix is also PSD as follows: 
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The kernel matrix K can now be checked for the PSD property using any vector y as 

follows: 

yKy
T   yxx

x

x

y l

T

l

T

T  1

1

















=  

    ( )  ( )yxxyxx l
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It can therefore be concluded that, if a function k : → dd  and its corresponding 

matrix  

K = 
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is positive semi-definite matrix evaluated on any set   d

l xx ,,1  , then k is called a 

positive semi-definite kernel function. 

 

 

 

 

 



 276 

Appendix A5  Orthogonal polynomials 

Orthogonal polynomials are various families of polynomials which are useful in solving 

differential equations arising in physics and engineering. In general, they have many 

important applications in such areas as mathematical physics, interpolation theory, the 

theory of random matrices, computer approximations, and many others [102]. The term 

orthogonality is the higher-dimensional analogue of perpendicularity. These polynomials 

are defined such that any two different polynomials in the same sequence are orthogonal to 

each other under some inner product and with respect to a certain weight function. 

 

The most common orthogonal polynomials are the “classical orthogonal polynomials” 

consisting of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials 

which include the Gegenbauer polynomials, the Chebyshev polynomials, and the Legendre 

polynomials [127]. Figure A.2 shows a schematic diagram of the most common orthogonal 

polynomials in mathematics. 

Orthogonal Polynomials

Hermite 

Polynomials

Laguerre 

Polynomials

Jacobi 

Polynomials

Gegenbauer 

Polynomials 

Classical Orthogonal 

Polynomials

Chebyshev 

Polynomials

Legendre 

Polynomials

First kind Second kind

Wilson 

Polynomials

Askey-Wilson 

polynomials

 

Figure A.2 A taxonomy of the most commonly used orthogonal polynomial functions. 

 

The general setting of orthogonal polynomials has emerged from the definition of a finite 

integral for all polynomials f.  In this case, an inner product on any two pairs of 

polynomials f and g can be defined as [128]: 
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=
2

1

)()()(,
x

x
dxxWxgxfgf  (A.7.8) 

where  

  →21,: xxW  

The operation defined by (A.7.8) is a non-negative function defined on some interval [x1, 

x2] in the real line (where this interval could be x1= - ∞ and x2= +∞). This function W is 

commonly known as the weight function within the context of orthogonal polynomials 

[128]. This operation is also positive semi-definite inner product on the vector space of all 

polynomials, and it introduces the notion of orthogonality on the two polynomials if their 

inner product is zero.  

Therefore, any orthogonal polynomial sequence  
=0nnP of degree n can be defined as: 

0, =nm PP     for nm   (A.7.9) 

 

Hermite polynomials 
 

Hermite polynomials are amongst the families of polynomials of the Classical orthogonal 

polynomials, named after Charles Hermite, a French mathematician [129]. They have got a 

number of applications in such areas as [113]: probability, combinatorics, numerical 

analysis as Gaussian quadrature, physics, and in systems theory within non-linear 

operations on Gaussian noise. They are usually denoted by )(xHn  for n = 0, 1, 2, 3, . . . 

and some of their main characteristics are [129]: 

Some characteristics of the Hermite orthogonal polynomials are: 

 

1- They are the only orthogonal polynomials within the set that are defined within the 

whole range of the real line (- ∞, + ∞). This property is very important when we come 

to implementation within a machine learning algorithm such as SVM, for example, 

because it might avoid (or at least reduce) the need for the data normalization, which is 

essential for the classification step, and hence facilitating the calculation of the 

quadratic programming problem and reducing the complexity of the overall algorithm.  

2- They are orthogonal to each other with respect to the basic Gaussian weighting 

function 
2xe−

 as:  
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nm

mnx

mn ndxexHxH         !2)()(
2 +−



−

=  (A.7.10) 

where nm  is the Kronecker delta, or delta tensor, which is a function of the two 

variables n and m. The function is 1 if the two variables are equal, and 0 otherwise:  

3- The Hermite polynomials also satisfy the symmetry condition [130]: 

Hn(-x) = (-1)n Hn(x) (A.7.11) 

4- They can be defined by the contour integral [102, 130]: 


−−+−= dtte

i

n
zH ntzt

n

122

2

!
)(


 (A.7.12) 

 However, the domain of definition that is used in this thesis is the recurrence 

relation given by: 

1)(0 =xH , 

xxH 2)(1 = , 

)()1(2)(2)( 21 xHnxHxxH nnn −− −−=   . (A.7.13) 

 

Chebyshev polynomials 
 

The Chebyshev polynomials are another family of orthogonal polynomial functions. They 

are commonly being used in many applications, such as filtering, numerical analysis, and 

more generally in mathematical applications, such as approximation theory and differential 

equations [131]. As Figure A.2 indicates, there are two types of Chebyshev polynomials: 

“Chebyshev polynomials of the first kind”, usually denoted by Tn and “Chebyshev 

polynomials of the second kind”, usually denoted by Un. Both kinds are composed of a 

polynomial sequence of degree n. Mathematically, they are quite closely related to each 

other and differ only in the coefficients assigned to the monomial terms. 

For the limited space and to avoid unnecessary redundancy, this thesis considers only the 

Chebyshev polynomials of the first kind for verification and validation purposes, but it also 

shows how easily the presented approaches could be extended to be also applied on the 

Chebyshev polynomials of the second kind.   

The Chebyshev polynomials of the first kind Tn(z) can be defined by the contour integral 

[102, 132]: 
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where the contour encloses the origin and is traversed in a counterclockwise direction.  

However, for consistency with previous literature, such as [31] and [17], and ease of 

implementation, the following recursive approach is used as the main domain of definition 

in this thesis. The orthogonal set of the Chebyshev polynomials of the first kind is denoted 

by Tn(x) where n is the order of the polynomial given by n = 0, 1, 2, 3, …, and for the x 

values bounded between [-1, 1].  The first two polynomial sequences of the Chebyshev 

polynomials of the first kind Tn(x) of order n is defined as: 

T0(x) = 1 , and  

T1(x) = x. (A.7.15) 

Any other higher order polynomial can be formulated using the following recursive 

formula: 

)()(2)( 21 xTxxTxT nnn −− −= . (A.7.16) 

The first few Chebyshev polynomials of the first kind can therefore be written as: 

1)(0 =xT  (A.7.17) 

xxT =)(1  (A.7.18) 

12)( 2

2 −= xxT  (A.7.19) 

xxxT 34)( 3

3 −=  (A.7.20) 

188)( 24

4 +−= xxxT  (A.7.21) 

xxxxT 52016)( 35

5 +−=  (A.7.22) 

1184832)( 246

6 −+−= xxxxT  (A.7.23) 

xxxxxT 75611264)( 357

7 −+−=  (A.7.24) 

The Chebyshev polynomials of the first kind are orthogonal with respect to the weighting 

function 

21

1
)(

x
xw

−
= , (A.7.25) 

such that any two different given Chebyshev polynomials, if integrated between the 

interval [-1, 1], we have: 

− =
1

1
0)()()( dxxwxTxT ji  (A.7.26) 

where i ≠ j. 
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Legendre polynomials 

 

The Legendre polynomials are another family of orthogonal polynomial functions 

investigated in this thesis for validation and comparison purposes. They are named after 

Adrien Marie Legendre (1752-1833), and in mathematics, Legendre functions are most 

commonly used as solutions to Legendre differential equations [112]. They are also 

frequently encountered in physics and other technical fields, in particular when solving 

Laplace’s equation in spherical coordinates [112]. 

Similar to the Chebyshev polynomials, the Legendre polynomials, denoted by Ln(x), can be 

defined by the contour integral [102]: 

( )
−−−

+−= dtttxt
i

xL n
n

12/1221
2

1
)(


, (A.7.27) 

where the contour encloses the origin and is traversed in a counterclockwise direction.  

However, similar to the other polynomials implemented in this thesis, the following 

recursive approach is used as the main domain of definition in this thesis, for consistency:  

L0(x) = 1 , and  

L1(x) = x. (A.7.28) 

Any other higher order polynomial can therefore be formulated using the following 

recursive formula: 

 )()1()()12(
1

)( 21 xLnxxLn
n

xL nnn −− −−−= . (A.7.29) 

The first few Legendre polynomials can therefore be written as: 

1)(0 =xL  (A.7.30) 

xxL =)(1  (A.7.31) 

)13(
2

1
)( 2

2 −= xxL  (A.7.32) 

)35(
2

1
)( 3

3 xxxL −=  (A.7.33) 

)33035(
8

1
)( 24

4 +−= xxxL  (A.7.34) 

)157063(
8

1
)( 35

5 xxxxL +−=  (A.7.35) 
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One of the salient characteristics of the Legendre polynomials is that they are orthogonal 

with respect to a unity weighting function; i.e., the weighting function is simply: 

1)( =xw . (A.7.36) 

This makes the implementation of such a polynomial as a kernel a lot simpler, and greatly 

reduces the complexity of the algorithms. Luckily, their domain of orthogonality definition 

is the same as that for Chebyshev polynomials; i.e., if integrated between the interval [-1, 

1], we have: 

− =
1

1
0)()()( dxxwxLxL ji  (A.7.37) 

where i ≠ j. 
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In this appendix, the statistical significance tests of the experimental results presented in 

this thesis are conducted using the SPSS statistical analysis software (version 24.0) 

provided by Staffordshire University16. Due to the pairwise nature of the comparative 

experimental results, the ‘independent samples t-test’17 is the test chosen to determine the 

statistical significance of the difference between each two groups of the pattern 

classification accuracy scores obtained from each of the experiments under test. All the 

statistical significance t-tests are performed with a confidence level of 95%. 

The results of each of the conducted t-tests in the following sections are presented in two 

interlinked tables titled: (a) Group Statistics and (b) Independent Samples Test. The Group 

Statistics table provide information about the two groups of the experimental results being 

tested, their number of samples (N), their mean (M), their standard deviation (Std. 

Deviation), and their standard error mean (Std. Error Mean). The Independent Samples 

Test table, on the other hand, provides the results of two t-tests conducted with two 

different methods based on whether or not the compared two groups of data have equal 

variances. This is determined by the F-value (and its corresponding significance level 

(Sig.)) of the Levene’s Test column. If the ‘Sig.’ value of the Levene’s Test is greater than 

0.05 (as our confidence level is chosen to be 95%), then the two groups of data under 

comparison are assumed to be of equal variances. Otherwise, this assumption is not 

applicable, and the bottom row of the table applies. 

In both cases, if the probability of error (shown in the Sig. (2-tailed) column) is less than or 

equal 0.05 (for a confidence level of 95%), then the two groups of experimental results 

under comparison are considered to be statistically significant from each other. Otherwise, 

there is no statistically significant difference between them. As shown in the statistical 

significance t-tests presented in the following sections, the majority of the experimental 

results obtained in this thesis were found to be statistically significant. 

 

 

 

 

                                                 
16 https://www.staffs.ac.uk/software/ 
17 E. Huizingh, Applied Statistics with SPSS: SAGE Publications Ltd, 2007. 

https://www.staffs.ac.uk/software/
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B.1 Statistical significance tests on the experimental results of Stage 1-

Stage 2 kernels – Chapter 4 – Section 4.4.4 
 

B.1.1 Two Spirals dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Cheb kernel - 

vectorial 

15 52.12204 13.114225 3.386078 

Stage 2 Cheb kernel - 

vectorial 

15 70.74142 20.359412 5.256778 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

6.148 0.019 -2.97 28 0.006 -18.619 6.25293 -31.427 -5.8108 

Equal 

variances not 

assumed 

  

-2.97 23.9 0.007 -18.619 6.25293 -31.527 -5.7114 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Herm kernel - 

vectorial 

15 39.62014 19.123972 4.937788 

Stage 2 Herm kernel - 

vectorial 

15 53.37452 5.440630 1.404765 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

9.669 0.004 -2.67 28 0.012 -13.754 5.13372 -24.270 -3.2384 

Equal 

variances not 

assumed 

  

-2.67 16.2 0.016 -13.754 5.13372 -24.623 -2.8850 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Leg kernel - 

vectorial 

15 50.97178 12.378766 3.196184 

Stage 2 Leg kernel - 

vectorial 

15 70.77651 20.713399 5.348177 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

95% Confidence 

Interval of the 

Difference 
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nce Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

7.629 0.010 -3.17 28 0.004 -19.804 6.23045 -32.567 -7.0422 

Equal 

variances not 

assumed 

  

-3.17 22.8 0.004 -19.804 6.23045 -32.697 -6.9119 

 

B.1.2 Breast cancer dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Cheb kernel - 

vectorial 

15 49.33902 34.039267 8.788901 

Stage 2 Cheb kernel – 

vectorial 

15 75.45132 17.787069 4.592602 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

5.653 0.024 -2.63 28 0.014 -26.112 9.91649 -46.425 -5.7992 

Equal 

variances not 

assumed 

  
-2.63 21.1 0.015 -26.112 9.91649 -46.727 -5.4966 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Herm kernel - 

vectorial 

15 45.97015 36.555444 9.438575 

Stage 2 Herm kernel - 

vectorial 

15 79.94314 16.947647 4.375864 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

16.942 0.000 -3.26 28 0.003 -33.972 10.4035 -55.283 -12.662 

Equal 

variances not 

assumed 

  
-3.26 19.7 0.004 -33.972 10.4035 -55.691 -12.254 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Leg kernel - 

vectorial 

15 56.88699 31.186884 8.052419 

Stage 2 Leg kernel - 

vectorial 

15 79.50249 18.057405 4.662402 

(b) Independent Samples Test 
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Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.792 0.192 -2.43 28 0.022 -22.615 9.30480 -41.675 -3.5554 

Equal 

variances not 

assumed 

  
-2.43 22.4 0.024 -22.615 9.30480 -41.890 -3.3403 

 

B.1.3 Iris 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Cheb kernel - 

vectorial 

10 68.85714 4.579579 1.448190 

Stage 2 Cheb kernel - 

vectorial 

10 93.04762 1.798630 0.568777 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

14.382 0.001 -15.5 18 7.0626

E-12 

-24.190 1.55588 -27.459 -20.921 

Equal 

variances not 

assumed 

  

-15.5 11.7 3.5307

E-09 

-24.190 1.55588 -27.589 -20.791 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Herm kernel - 

vectorial 

10 58.66667 19.775509 6.253565 

Stage 2 Herm kernel - 

vectorial 

10 80.85714 22.156137 7.006386 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.030 .864 -2.36 18 0.030 -22.190 9.39130 -41.920 -2.4600 

Equal 

variances not 

assumed 

  

-2.36 17.7 0.030 -22.190 9.39130 -41.938 -2.4419 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 
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Accuracy % Stage 1 Leg kernel - 

vectorial 

10 68.95238 5.122831 1.619981 

Stage 2 Leg kernel - 

vectorial 

10 92.76190 2.298026 0.726700 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

12.219 0.003 -13.4 18 8.2740

E-11 

-23.809 1.77550 -27.539 -20.079 

Equal 

variances not 

assumed 

  

-13.4 12.4 8.8191

E-09 

-23.809 1.77550 -27.661 -19.957 

 

B.1.4 Image Segmentation 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Cheb kernel - 

vectorial 

10 33.68095 31.196095 9.865071 

Stage 2 Cheb kernel - 

vectorial 

10 46.30953 39.165608 12.385253 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.972 0.062 0.79 18 0.436 -12.628 15.8339 -45.894 20.6373 

Equal 

variances not 

assumed 

  

-0.79 17.1 0.436 -12.628 15.8339 -46.014 20.7570 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Herm kernel - 

vectorial 

10 33.36190 31.446662 9.944308 

Stage 2 Herm kernel - 

vectorial 

10 46.89048 38.968045 12.322778 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.671 0.071 -0.85 18 0.404 -13.528 15.8347 -46.796 19.7390 
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Equal 

variances not 

assumed 

  

-0.85 17.2 0.405 -13.528 15.8347 -46.902 19.8457 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Leg kernel - 

vectorial 

10 41.17619 35.142622 11.113073 

Stage 2 Leg kernel - 

vectorial 

10 53.97619 39.814133 12.590334 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

2.562 0.127 -0.76 18 0.456 -12.800 16.7933 -48.081 22.4815 

Equal 

variances not 

assumed 

  

-0.76 17.7 0.456 -12.800 16.7933 -48.120 22.5205 

 

B.1.5 Ionosphere 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Cheb kernel - 

vectorial 

10 55.29801 40.485014 12.802486 

Stage 2 Cheb kernel - 

vectorial 

10 82.18543 23.086014 7.300438 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

12.757 0.002 -1.82 18 0.085 -26.887 14.7377 -57.850 4.07535 

Equal 

variances not 

assumed 

  

-1.82 14.2 0.089 -26.887 14.7377 -58.435 4.66106 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Herm kernel - 

vectorial 

10 48.07947 35.164116 11.119870 

Stage 2 Herm kernel - 

vectorial 

10 74.83444 30.402731 9.614188 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 
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F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.157 0.296 -1.82 18 0.085 -26.754 14.6998 -57.638 4.12816 

Equal 

variances not 

assumed 

  

-1.82 17.6 0.086 -26.754 14.6998 -57.684 4.17444 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Leg kernel - 

vectorial 

10 52.78146 37.201611 11.764182 

Stage 2 Leg kernel - 

vectorial 

10 82.31788 23.165245 7.325494 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

9.802 0.006 -2.13 18 0.047 -29.536 13.8585 -58.652 -0.4207 

Equal 

variances not 

assumed 

  

-2.13 15.0 0.050 -29.536 13.8585 -59.063 -0.0091 

 

B.1.6 Thyroid   

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Cheb kernel - 

vectorial 

10 65.93932 43.940548 13.895221 

Stage 2 Cheb kernel - 

vectorial 

10 67.43874 44.947365 14.213605 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.012 0.913 -0.07 18 0.941 -1.4994 19.8772 -43.259 40.2610 

Equal 

variances not 

assumed 

  

-0.07 17.9 0.941 -1.4994 19.8772 -43.261 40.2626 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Herm kernel - 

vectorial 

10 84.03442 28.740256 9.088467 

Stage 2 Herm kernel - 

vectorial 

10 94.49533 1.250036 .395296 
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(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

4.411 0.050 -1.15 18 0.265 -10.460 9.09705 -29.573 8.65130 

Equal 

variances not 

assumed 

  

-1.15 9.03 0.280 -10.460 9.09705 -31.028 10.1062 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Leg kernel - 

vectorial 

10 66.02100 43.996156 13.912806 

Stage 2 Leg kernel - 

vectorial 

10 67.37165 44.901133 14.198985 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.010 0.922 -0.06 18 0.947 -1.3506 19.8790 -43.115 40.4137 

Equal 

variances not 

assumed 

  

-0.06 17.9 0.947 -1.3506 19.8790 -43.116 40.4149 

 

B.2 Statistical significance tests on the experimental results of Stage 2-

Stage 3 kernels – Chapter 4 – Section 4.4.5 
 

B.2.1 Two Spirals dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 70.74142 20.359412 5.256778 

Stage 3 Modified 

Chebyshev kernel - 

vectorial 

15 87.73456 16.010239 4.133826 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

2.552 0.121 -2.54 28 0.017 -16.993 6.6874 -30.6917 -3.2944 

Equal variances 

not assumed 
  

-2.54 26.52 0.017 -16.993 6.6874 -30.7261 -3.2600 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 70.74142 20.359412 5.256778 

Stage 3 Generalized 

Chebyshev kernel - vectorial 

15 72.43326 17.625977 4.551008 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
0.543 0.467 -0.24 28 0.810 -1.6918 6.9530 -15.9345 12.5509 

Equal variances 

not assumed 
  -0.24 27.43 0.810 -1.6918 6.9530 -15.9477 12.5640 

 

(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite kernel - 

vectorial 

15 53.37452 5.440630 1.404765 

Stage 3 Composite Hermite 

kernel - vectorial 

15 87.20214 4.456921 1.150772 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
0.056 0.815 -18.62 28 

2.59310

E-17 
-33.82761 1.81594 -37.54739 -30.10788 

Equal variances 

not assumed 
  -18.62 26.956 

6.36182

E-17 
-33.8276 1.8159 -37.55390 -30.1013 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre kernel - 

vectorial 

15 70.77651 20.713399 5.348177 

Stage 3 Modified Legendre 

kernel - vectorial 

15 96.70328 3.944609 1.018494 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
35.7 0.000 -4.76 28 0.0000 -25.926 5.4442 -37.078 -14.774 

Equal variances 

not assumed 
  -4.76 15.014 0.0002 -25.926 5.4442 -37.530 -14.323 
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B.2.2 Breast cancer dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 75.45132 17.787069 4.592602 

Stage 3 Generalized 

Chebyshev kernel -vectorial 

15 95.94883 1.206151 0.311427 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
153. 0.000 -4.45 28 0.000 -20.497 4.6031 -29.926 -11.068 

Equal variances 

not assumed 
  -4.45 14.129 0.001 -20.497 4.6031 -30.361 -10.633 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 75.45132 17.787069 4.592602 

Stage 3 Modified 

Chebyshev kernel -vectorial 

15 96.41791 1.045178 0.269864 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
157. 0.000 -4.55 28 0.000 -20.966 4.6005 -30.390 -11.542 

Equal variances 

not assumed 
  -4.55 14.097 0.000 -20.966 4.6005 -30.827 -11.105 

 
(a) Group Statistics 

 

OPK N Mean Std. Deviation 

Std. Error 

Mean 

Accuracy % Stage 2 Hermite kernel - 

vectorial 

15 79.94314 16.947647 4.375864 

Stage 3 Composite Hermite 

kernel - vectorial 

15 89.60910 8.318090 2.147721 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
3.09 0.090 -1.98 28 0.057 -9.6659 4.8745 -19.650 0.31903 

Equal variances 

not assumed 
  -1.98 20.375 0.061 -9.6659 4.8745 -19.822 0.49011 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre kernel - 

vectorial 

15 79.50249 18.057405 4.662402 

Stage 3 Modified Legendre 

kernel - vectorial 

15 96.26155 1.113377 0.287473 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed

) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
314. 0.000 -3.58 28 0.001 -16.759 4.6712 -26.327 -7.1904 

Equal variances 

not assumed 
  -3.58 14.106 0.003 -16.759 4.6712 -26.770 -6.74730 

 

B.2.3 Iris  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 76.95238 27.272516 7.041733 

Stage 3 Generalized 

Chebyshev kernel -vectorial 

15 84.38095 16.000486 4.131308 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

7.21 0.012 -0.91 28 0.371 -7.4285 8.1641 -24.1521 9.29497 

Equal variances 

not assumed 
  

-0.91 22.617 0.372 -7.4285 8.1641 -24.3332 9.47615 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 76.95238 27.272516 7.041733 

Stage 3 Modified 

Chebyshev kernel -vectorial 

15 92.44445 4.768250 1.231157 

(a) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
32.8 0.000 -2.16 28 0.039 -15.492 7.1485 -30.135 -0.84892 

Equal variances 

not assumed 
  -2.16 14.855 0.047 -15.492 7.1485 -30.741 -0.24234 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite kernel - 

vectorial 

15 65.26984 29.497171 7.616137 

Stage 3 Composite Hermite 

kernel - vectorial 

15 94.34921 2.822161 0.728679 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

65.6 0.000 -3.80 28 0.001 -29.079 7.6509 -44.751 -13.407 

Equal variances 

not assumed 
  

-3.80 14.256 0.002 -29.079 7.6509 -45.461 -12.697 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre kernel - 

vectorial 

15 81.68254 22.579713 5.830057 

Stage 3 Modified Legendre 

kernel - vectorial 

15 93.01587 3.682696 0.950868 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
14.5 0.001 -1.91 28 0.065 -11.333 5.9070 -23.433 0.76679 

Equal variances 

not assumed 
  -1.91 14.744 0.075 -11.333 5.9070 -23.943 1.27637 

 

B.2.4 Image Segmentation  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 35.83810 34.944860 9.022724 

Stage 3 Generalized 

Chebyshev kernel -vectorial 

15 88.68889 3.168615 0.818133 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
41.0 0.000 -5.83 28 

2.8663

E-06 
-52.850 9.0597 -71.408 -34.2927 

Equal variances 

not assumed 
  -5.83 14.230 0.0000 -52.850 9.0597 -72.252 -33.4490 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

15 35.83810 34.944860 9.022724 

Stage 3 Modified 

Chebyshev kernel -vectorial 

15 91.49206 1.245226 0.321516 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

46.6 0.000 -6.16 28 1.1775

E-06 

-55.653 9.0284 -74.147 -37.1600 

Equal variances 

not assumed 
  

-6.16 14.036 0.0000 -55.653 9.0284 -75.013 -36.2944 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite kernel - 

vectorial 

15 36.37778 34.839991 8.995647 

Stage 3 Composite Hermite 

kernel - vectorial 

15 89.55556 2.691132 0.694847 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

42.0

42 

0.000 -5.89 28 2.4353

E-06 

-53.177 9.0224 -71.659 -34.6961 

Equal variances 

not assumed 
  

-5.89 14.167 0.0000 -53.177 9.0224 -72.507 -33.8479 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre kernel - 

vectorial 

15 40.95238 37.183037 9.600619 

Stage 3 Modified Legendre 

kernel - vectorial 

15 91.48889 1.217578 0.314377 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

104. 0.000 -5.26 28 0.0000 -50.536 9.6057 -70.213 -30.8599 

Equal variances 

not assumed 
  

-5.26 14.030 0.0001 -50.536 9.6057 -71.134 -29.9383 
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B.2.5 Ionosphere  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

10 82.18543 23.086014 7.300438 

Stage 3 Generalized 

Chebyshev kernel -vectorial 

10 89.53642 4.127505 1.305232 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
2.49 0.131 -0.99 18 0.335 -7.3509 7.4162 -22.931 8.229865 

Equal variances 

not assumed 
  -0.99 9.575 0.346 -7.3509 7.4162 -23.975 9.273344 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

10 82.18543 23.086014 7.300438 

Stage 3 Modified 

Chebyshev kernel -vectorial 

10 91.85431 3.899858 1.233243 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 
2.51 0.130 -1.30 18 0.208 -9.6688 7.4038 -25.223 5.88607 

Equal variances 

not assumed 
  -1.30 9.513 0.222 -9.6688 7.4038 -26.280 6.94310 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite kernel - 

vectorial 

10 74.83444 30.402731 9.614188 

Stage 3 Composite Hermite 

kernel - vectorial 

10 85.69536 10.743094 3.397265 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

5.02 0.038 -1.065 18 0.301 -10.860 10.196 -32.283 10.5616 

Equal variances 

not assumed 
  

-1.065 11.2 0.309 -10.860 10.196 -33.251 11.5300 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre kernel - 

vectorial 

10 82.31788 23.165245 7.325494 

Stage 3 Modified Legendre 

kernel - vectorial 

10 92.05298 3.759248 1.188778 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

2.59 0.125 -1.312 18 0.206 -9.7351 7.4213 -25.326 5.85652 

Equal variances 

not assumed 
  

-1.312 9.47 0.220 -9.7351 7.4213 -26.396 6.92600 

 

B.2.6 Thyroid  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

10 67.43874 44.947365 14.213605 

Stage 3 Generalized 

Chebyshev kernel-vectorial 

10 86.87281 29.695142 9.390429 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

5.54 0.030 -1.141 18 0.269 -19.434 17.035 -55.224 16.3560 

Equal variances 

not assumed 
  

-1.141 15.5 0.271 -19.434 17.035 -55.623 16.7550 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev kernel - 

vectorial 

10 67.43874 44.947365 14.213605 

Stage 3 Modified 

Chebyshev kernel-vectorial 

10 96.41774 0.498256 0.157562 

(b) Independent Samples Test 

 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differ

ence 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

A
cc

u
ra

cy
 

%
 

Equal variances 

assumed 

46.4 0.000 -2.039 18 0.056 -28.978 14.214 -58.842 0.88451 

Equal variances 

not assumed 
  

-2.039 9.00 0.072 -28.978 14.214 -61.133 3.17518 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite kernel - 

vectorial 

10 94.49533 1.250036 0.395296 

Stage 3 Composite Hermite 

kernel - vectorial 

10 95.44049 1.930472 0.610469 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.148 0.093 -1.30 18 0.210 -0.9451 0.72727 -2.4731 0.58279 

Equal 

variances not 

assumed 

  

-1.30 15.4 0.213 -0.9451 0.72727 -2.4916 0.60133 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre kernel - 

vectorial 

10 67.37165 44.901133 14.198985 

Stage 3 Modified Legendre 

kernel - vectorial 

10 96.34481 0.545238 0.172419 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

46.201 0.000 -2.04 18 0.056 -28.973 14.2000 -58.806 0.85999 

Equal 

variances not 

assumed 

  

-2.04 9.00 0.072 -28.973 14.2000 -61.094 3.14809 

 

B.3 Statistical significance tests on the experimental results of the data 

adaptation approach proposed in Chapter 5 – Section 5.4.3 
 

B.3.1 Breast cancer dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Standard normalization 

10 78.46482 19.321978 6.110146 

Stage 2 Chebyshev - 

Monotonic normalization 

10 95.82090 1.494903 0.472730 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

95% Confidence 

Interval of the 

Difference 
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nce Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

177.883 0.000 -2.83 18 0.011 -17.356 6.12840 -30.231 -4.4807 

Equal 

variances not 

assumed 

  

-2.83 9.10 0.019 -17.356 6.12840 -31.194 -3.5176 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - Standard 

normalization 

10 81.51386 19.098217 6.039387 

Stage 2 Legendre - 

Monotonic normalization 

10 96.18337 1.397993 0.442084 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

92.529 .000 -2.42 18 0.026 -14.669 6.05554 -27.391 -1.9472 

Equal 

variances not 

assumed 

  

-2.42 9.09 0.038 -14.669 6.05554 -28.345 -0.9930 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Standard 

normalization 

10 80.31983 20.832342 6.587765 

Stage 2 Hermite - 

Monotonic normalization 

10 87.05756 17.343623 5.484535 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.037 0.322 -0.78 18 0.442 -6.7377 8.57197 -24.746 11.2713 

Equal 

variances not 

assumed 

  

-0.78 17.4 0.442 -6.7377 8.57197 -24.789 11.3138 

 

B.3.2 Iris dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Standard normalization 

10 93.04762 1.798630 0.568777 

Stage 2 Chebyshev - 

Monotonic normalization 

10 96.00000 1.253870 0.396509 

(b) Independent Samples Test 
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Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.180 0.292 -4.25 18 0.0004 -2.9523 0.69334 -4.4090 -1.4957 

Equal 

variances not 

assumed 

  

-4.25 16.0 0.0005 -2.9523 0.69334 -4.4216 -1.4831 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - Standard 

normalization 

10 92.76190 2.298026 0.726700 

Stage 2 Legendre - 

Monotonic normalization 

10 96.00000 1.170737 0.370220 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

2.555 0.127 -3.97 18 0.001 -3.2381 0.81557 -4.9515 -1.5246 

Equal 

variances not 

assumed 

  

-3.97 13.3 0.002 -3.2381 0.81557 -4.9949 -1.4812 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Standard 

normalization 

10 80.85714 22.156137 7.006386 

Stage 2 Hermite - 

Monotonic normalization 

10 88.57142 14.903760 4.712983 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.312 0.267 -0.91 18 0.373 -7.7142 8.44403 -25.454 10.0259 

Equal 

variances not 

assumed 

  

-0.91 15.7 0.375 -7.7142 8.44403 -25.636 10.2083 
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B.3.3 Image segmentation dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Standard normalization 

10 46.30953 39.165608 12.385253 

Stage 2 Chebyshev - 

Monotonic normalization 

10 90.34762 1.246825 0.394281 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

198.836 0.000 -3.55 18 0.002 -44.038 12.3915 -70.071 -18.004 

Equal 

variances not 

assumed 

  

-3.55 9.01 0.006 -44.038 12.3915 -72.061 -16.015 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - Standard 

normalization 

10 53.97619 39.814133 12.590334 

Stage 2 Legendre - 

Monotonic normalization 

10 90.57619 1.198690 0.379059 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

9414.67 0.000 -2.90 18 0.009 -36.600 12.5960 -63.063 -10.136 

Equal 

variances not 

assumed 

  

-2.90 9.01 0.017 -36.600 12.5960 -65.086 -8.1136 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Standard 

normalization 

10 46.84762 38.913001 12.305371 

Stage 2 Hermite - 

Monotonic normalization 

10 72.61429 31.553818 9.978193 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.572 0.075 -1.62 18 0.121 -25.766 15.8425 -59.050 7.51730 
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Equal 

variances not 

assumed 

  

-1.62 17.2 0.122 -25.766 15.8425 -59.152 7.61944 

 

B.3.4 Ionosphere dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Standard normalization 

10 82.18543 23.086014 7.300438 

Stage 2 Chebyshev - 

Monotonic normalization 

10 91.72185 3.889849 1.230078 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

2.890 0.106 -1.28 18 0.214 -9.5364 7.40334 -25.090 6.01742 

Equal 

variances not 

assumed 

  

-1.28 9.51 0.228 -9.5364 7.40334 -26.147 7.07503 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - Standard 

normalization 

10 82.31788 23.165245 7.325494 

Stage 2 Legendre - 

Monotonic normalization 

10 92.38411 3.697161 1.169145 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

2.758 0.114 -1.35 18 0.192 -10.066 7.41820 -25.651 5.51884 

Equal 

variances not 

assumed 

  

-1.35 9.45 0.206 -10.066 7.41820 -26.724 6.59180 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Standard 

normalization 

10 74.83444 30.402731 9.614188 

Stage 2 Hermite - 

Monotonic normalization 

10 67.81457 33.576154 10.617712 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 
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F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.743 0.400 0.49 18 0.630 7.01986 14.3237 -23.073 37.1128 

Equal 

variances not 

assumed 

  

0.49 17.8 0.630 7.01986 14.3237 -23.094 37.1339 

 

 

B.3.5 Thyroid dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Standard normalization 

10 67.43874 44.947365 14.213605 

Stage 2 Chebyshev - 

Monotonic normalization 

10 95.42299 0.114603 0.036241 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

47.009 0.000 -1.96 18 0.065 -27.984 14.2136 -57.846 1.87752 

Equal 

variances not 

assumed 

  

-1.96 9.00 0.080 -27.984 14.2136 -60.137 4.16920 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - Standard 

normalization 

10 67.37165 44.901133 14.198985 

Stage 2 Legendre - 

Monotonic normalization 

10 95.41424 0.104549 0.033061 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

47.056 0.000 -1.97 18 0.064 -28.042 14.1990 -57.873 1.78845 

Equal 

variances not 

assumed 

  

-1.97 9.00 0.080 -28.042 14.1990 -60.162 4.07777 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Standard 

normalization 

10 94.49533 1.250036 .395296 

Stage 2 Hermite - 

Monotonic normalization 

10 85.62719 29.341038 9.278451 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

4.419 0.050 0.95 18 0.352 8.86814 9.28686 -10.642 28.3791 

Equal 

variances not 

assumed 

  

0.95 9.03 0.364 8.86814 9.28686 -12.128 29.8649 

 

B.3.6 Two Spirals dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - Standard 

normalization 

10 58.15561 10.697385 3.382810 

Stage 2 Chebyshev - 

Monotonic normalization 

10 55.17049 6.303469 1.993332 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

7.120 0.016 0.760 18 0.457 2.985121 3.926420 -5.264 11.234 

Equal 

variances not 

assumed 

    0.760 14.58 0.459 2.985121 3.926420 -5.405 11.3753 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - Standard 

normalization 

10 57.94508 10.759156 3.402344 

Stage 2 Legendre - 

Monotonic normalization 

10 55.57025 6.846862 2.165168 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 
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Accur

acy % 

Equal 

variances 

assumed 

5.416 0.032 0.589 18 0.563 2.374826 4.032852 -6.0979 10.8475 

Equal 

variances not 

assumed 

    0.589 15.26 0.565 2.374826 4.032852 -6.2081 10.9578 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Standard 

normalization 

10 53.28833 6.426636 2.032281 

Stage 2 Hermite - Monotonic 

normalization 

10 51.72586 4.998301 1.580602 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.430 0.520 0.607 18 0.552 1.562472 2.574581 -

3.846522 

6.971466 

Equal 

variances not 

assumed 

    0.607 16.97 0.552 1.562472 2.574581 -3.8701 6.995061 

 

B.4 Statistical significance tests on the experimental results of the 

proposed concatenated approach using Stage 1-linear kernels – 

Chapter 6 – Section 6.5.2.1 
 

B.4.1 Breast cancer dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Chebyshev - 

Vectorial - Linear 

20 43.33689 34.939943 7.812809 

Stage 1 Chebyshev – 

Concatenated - Linear 

20 70.85288 14.755936 3.299528 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

25.800 0.000 -3.24 38 0.002 -27.515 8.48097 -44.684 -10.347 

Equal 

variances not 

assumed 

  

-3.24 25.5 0.003 -27.515 8.48097 -44.963 -10.068 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Legendre - 

Vectorial - Linear 

20 48.99787 34.153875 7.637039 



 306 

Stage 1 Legendre - 

Concatenated - Linear 

20 68.44350 15.987656 3.574949 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

13.444 0.001 -2.30 38 0.027 -19.445 8.43235 -36.516 -2.3752 

Equal 

variances not 

assumed 

  

-2.30 26.9 0.029 -19.445 8.43235 -36.749 -2.1422 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Hermite - Vectorial 

- Linear 

20 43.08102 35.027803 7.832455 

Stage 1 Hermite - 

Concatenated - Linear 

20 70.33049 17.740141 3.966816 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

18.325 0.000 -3.10 38 0.004 -27.249 8.77969 -45.023 -9.4759 

Equal 

variances not 

assumed 

  

-3.10 28.1 0.004 -27.249 8.77969 -45.229 -9.2692 

 

B.4.2 Image segmentation dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Chebyshev - 

Vectorial - Linear 

20 24.09286 23.617484 5.281030 

Stage 1 Chebyshev - 

Concatenated - Linear 

20 64.20476 15.576239 3.482953 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.083 0.774 -6.34 38 1.9430

E-07 

-40.111 6.32615 -52.918 -27.305 

Equal 

variances not 

assumed 

  

-6.34 32.8 3.6001

E-07 

-40.111 6.32615 -52.984 -27.239 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Legendre - 

Vectorial - Linear 

20 27.81905 27.799590 6.216177 

Stage 1 Legendre - 

Concatenated - Linear 

20 65.81667 13.429480 3.002923 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.235 0.080 -5.50 38 0.0000 -37.997 6.90350 -51.973 -24.022 

Equal 

variances not 

assumed 

  

-5.5 27.4 7.5080

E-06 

-37.997 6.90350 -52.152 -23.842 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Hermite - Vectorial 

- Linear 

20 23.64048 23.876859 5.339028 

Stage 1 Hermite - 

Concatenated - Linear 

20 39.98095 35.853990 8.017196 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

15.087 0.000 -1.69 38 0.098 -16.340 9.63227 -35.839 3.15903 

Equal 

variances not 

assumed 

  

-1.69 33.0 0.099 -16.340 9.63227 -35.935 3.25466 

 
B.4.3 Ionosphere dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Chebyshev - 

Vectorial - Linear 

20 43.07947 40.289771 9.009067 

Stage 1 Chebyshev - 

Concatenated - Linear 

20 84.83444 4.098756 0.916510 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

343.546 0.000 -4.61 38 0.0000 -41.754 9.05556 -60.087 -23.422 
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Equal 

variances not 

assumed 

  

-4.61 19.3 0.0001 -41.754 9.05556 -60.682 -22.827 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Legendre - 

Vectorial - Linear 

20 41.82119 38.363257 8.578285 

Stage 1 Legendre - 

Concatenated - Linear 

20 91.12583 3.767151 0.842361 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

135.477 0.000 -5.72 38 1.3783

E-06 

-49.304 8.61954 -66.753 -31.855 

Equal 

variances not 

assumed 

  

-5.72 19.3 0.0000 -49.304 8.61954 -67.322 -31.286 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Hermite - Vectorial 

- Linear 

20 34.56953 32.347096 7.233031 

Stage 1 Hermite - 

Concatenated - Linear 

20 54.40397 35.107742 7.850330 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

2.697 0.109 -1.85 38 0.071 -19.834 10.6744 -41.443 1.77490 

Equal 

variances not 

assumed 

  

-1.85 37.7 0.071 -19.834 10.6744 -41.448 1.77964 

 

B.4.4 Iris dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Chebyshev - 

Vectorial - Linear 

20 50.85714 19.146112 4.281201 

Stage 1 Chebyshev - 

Concatenated - Linear 

20 52.85714 15.460470 3.457066 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 
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F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

6.275 0.017 -0.36 38 0.718 -2.0000 5.50272 -13.139 9.13968 

Equal 

variances not 

assumed 

  

-0.36 36.3 0.718 -2.0000 5.50272 -13.155 9.15593 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Legendre - 

Vectorial - Linear 

20 52.23809 20.902824 4.674013 

Stage 1 Legendre - 

Concatenated - Linear 

20 52.72738 14.472676 3.236189 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

10.298 0.003 -0.08 38 0.932 -0.4892 5.68500 -11.997 11.0194 

Equal 

variances not 

assumed 

  

-0.08 33.8 0.932 -0.4892 5.68500 -12.044 11.0663 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Hermite - Vectorial 

- Linear 

20 46.28571 19.205859 4.294561 

Stage 1 Hermite - 

Concatenated - Linear 

20 55.52381 24.389136 5.453577 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

4.067 0.051 -1.33 38 0.191 -9.2380 6.94152 -23.290 4.81428 

Equal 

variances not 

assumed 

  

-1.33 36.0 0.192 -9.2380 6.94152 -23.315 4.83970 

 

B.4.5 Thyroid dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Chebyshev-Vectorial-

Linear 

20 44.15694 45.493696 10.172700 
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Stage 1 Chebyshev-

Concatenated-Linear 

20 84.21180 8.025580 1.794574 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

700.123 4.38E-26 -3.878 38 0.0004 -40.05 10.32977

8 

-60.966 -19.143 

Equal 

variances not 

assumed 

    -3.878 20.18 0.001 -40.05 10.32977 -61.59 -18.5197 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Legendre-Vectorial-

Linear 

20 39.61056 44.965341 10.054556 

Stage 1 Legendre-

Concatenated-Linear 

20 84.55654 8.124930 1.816790 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

275.955 5.14E-19 -4.399 38 0.00008 -44.95 10.21738 -65.63 -24.262 

Equal 

variances not 

assumed 

    -4.399 20.24 0.00027 -44.946 10.2174 -66.243 -23.649 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Hermite-Vectorial-

Linear 

20 74.79580 37.155782 8.308286 

Stage 1 Hermite-

Concatenated-Linear 

20 91.02454 3.349321 0.748931 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

27.573 6.05E-06 -1.945 38 0.059 -16.229 8.341973 -33.116 0.658705 

Equal 

variances not 

assumed 

    -1.945 19.31 0.066 -16.229 8.341973 -33.6698 1.212336 
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B.4.5 Two Spirals dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Chebyshev-Vectorial-

Linear 

20 52.52746 13.565164 3.033263 

Stage 1 Chebyshev-

Concatenated-Linear 

20 62.23120 8.589816 1.920741 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

2.834 0.100 -2.703 38 0.010 -9.704 3.590255 -16.972 -2.4356 

Equal 

variances not 

assumed 

    -2.703 32.13 0.011 -9.7037 3.590255 -17.016 -2.392 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Legendre-Vectorial-

Linear 

20 51.30091 13.506317 3.020104 

Stage 1 Legendre-

Concatenated-Linear 

20 60.31873 7.423986 1.660054 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.029 0.090 -2.617 38 0.013 -9.0178 3.446275 -15.994 -2.0412 

Equal 

variances not 

assumed 

    -2.617 29.52 0.014 -9.0178 3.446275 -16.061 -1.9748 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 1 Hermite-Vectorial-

Linear 

20 36.68650 20.828011 4.657285 

Stage 1 Hermite-

Concatenated-Linear 

20 52.14110 3.330980 0.744830 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 
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Accur

acy % 

Equal 

variances 

assumed 

30.634 2.47E-06 -3.277 38 0.002 -15.455 4.716468 -25.003 -5.907 

Equal 

variances not 

assumed 

    -3.277 19.97 0.004 -15.455 4.716468 -25.294 -5.615 

 

B.5 Statistical significance tests on the experimental results of the 

proposed concatenated approach using Stage 2-linear kernels – 

Chapter 6 – Section 6.5.2.2 
 

B.5.1 Breast cancer dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Vectorial - Linear 

20 76.92964 17.317013 3.872202 

Stage 2 Chebyshev - 

Concatenated - Linear 

20 91.60981 9.916136 2.217315 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

33.329 0.000 -3.29 38 0.002 -14.680 4.46211 -23.713 -5.6470 

Equal 

variances not 

assumed 

  

-3.29 30.2 0.003 -14.680 4.46211 -23.789 -5.5704 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - 

Vectorial - Linear 

20 76.92964 17.369440 3.883925 

Stage 2 Legendre - 

Concatenated - Linear 

20 92.89979 10.076231 2.253114 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

32.478 0.000 -3.55 38 0.001 -15.970 4.49014 -25.059 -6.8803 

Equal 

variances not 

assumed 

  

-3.55 30.4 0.001 -15.970 4.49014 -25.134 -6.8061 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Vectorial 

- Linear 

20 76.86567 15.629616 3.494888 
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Stage 2 Hermite - 

Concatenated - Linear 

20 89.58422 13.215502 2.955076 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.649 0.064 -2.77 38 0.008 -12.718 4.57675 -21.983 -3.4533 

Equal 

variances not 

assumed 

  

-2.77 36.9 0.009 -12.718 4.57675 -21.992 -3.4449 

 

B.5.2 Image segmentation dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Vectorial - Linear 

20 30.60476 31.405298 7.022438 

Stage 2 Chebyshev - 

Concatenated - Linear 

20 92.80476 0.647393 0.144762 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

32.290 0.000 -8.85 38 8.9396

E-11 

-62.199 7.02393 -76.419 -47.980 

Equal 

variances not 

assumed 

  

-8.85 19.0 3.5651

E-08 

-62.199 7.02393 -76.900 -47.499 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - 

Vectorial - Linear 

20 34.44048 33.950955 7.591664 

Stage 2 Legendre - 

Concatenated - Linear 

20 93.21429 0.776873 0.173714 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

54.196 0.000 -7.74 38 2.5105

E-09 

-58.773 7.59365 -74.146 -43.401 

Equal 

variances not 

assumed 

  

-7.74 19.0 2.7097

E-07 

-58.773 7.59365 -74.666 -42.881 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Vectorial 

- Linear 

20 31.15000 31.326364 7.004788 

Stage 2 Hermite - 

Concatenated - Linear 

20 41.60476 37.811108 8.454821 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

4.787 0.035 -0.95 38 0.347 -10.454 10.9795 -32.681 11.7722 

Equal 

variances not 

assumed 

  

-0.95 36.7 0.347 -10.454 10.9795 -32.707 11.7974 

 

B.5.3 Ionosphere dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Vectorial - Linear 

20 73.60927 28.834298 6.447545 

Stage 2 Chebyshev - 

Concatenated - Linear 

20 96.52318 1.591653 0.355904 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

28.247 0.000 -3.54 38 0.001 -22.913 6.45736 -35.986 -9.8416 

Equal 

variances not 

assumed 

  

-3.54 19.1 0.002 -22.913 6.45736 -36.423 -9.4040 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - 

Vectorial - Linear 

20 73.67549 28.885168 6.458920 

Stage 2 Legendre - 

Concatenated - Linear 

20 96.05960 1.366956 0.305661 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

29.003 0.000 -3.46 38 0.001 -22.384 6.46614 -35.474 -9.2940 
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Equal 

variances not 

assumed 

  

-3.46 19.0 0.003 -22.384 6.46614 -35.913 -8.8543 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Vectorial 

- Linear 

20 53.11258 36.314740 8.120223 

Stage 2 Hermite - 

Concatenated - Linear 

20 79.07285 16.490494 3.687387 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

69.355 0.000 -2.91 38 0.006 -25.960 8.91823 -44.014 -7.9062 

Equal 

variances not 

assumed 

  

-2.91 26.5 0.007 -25.960 8.91823 -44.274 -7.6459 

 

B.5.4 Iris dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev - 

Vectorial - Linear 

20 
74.47619 27.719290 6.198222 

Stage 2 Chebyshev - 

Concatenated - Linear 

20 95.14286 1.412612 0.315870 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

86.765 0.000 -3.33 38 0.002 -20.666 6.20626 -33.230 -8.1027 

Equal 

variances not 

assumed 

  
-3.33 19.0 0.004 -20.666 6.20626 -33.651 -7.6813 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre - 

Vectorial - Linear 

20 
80.09524 24.180371 5.406895 

Stage 2 Legendre - 

Concatenated - Linear 

20 
95.61905 0.947355 0.211835 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

95% Confidence 

Interval of the 

Difference 
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nce Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

29.951 0.000 -2.86 38 0.007 -15.523 5.41104 -26.477 -4.5697 

Equal 

variances not 

assumed 

  
-2.86 19.0 0.010 -15.523 5.41104 -26.846 -4.2007 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite - Vectorial 

- Linear 

20 56.38095 30.198610 6.752615 

Stage 2 Hermite - 

Concatenated - Linear 

20 61.76191 28.923933 6.467588 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.080 0.779 -0.57 38 0.568 -5.3809 9.35026 -24.309 13.5476 

Equal 

variances not 

assumed 

  
-0.57 37.9 0.568 -5.3809 9.35026 -24.310 13.5488 

 

B.5.5 Thyroid dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev-Vectorial-

Linear 

20 34.84685 45.553387 10.186047 

Stage 2 Chebyshev-

Concatenated-Linear 

20 87.06740 7.436096 1.662762 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

130.355 7.57E-14 -5.060 38 0.00001 -52.22 10.321 -73.114 -31.327 

Equal 

variances not 

assumed 

    -5.060 20.01 0.00005 -52.221 10.321 -73.749 -30.69 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre-Vectorial-

Linear 

20 34.81330 45.506514 10.175566 

Stage 2 Legendre-

Concatenated-Linear 

20 89.44130 5.396388 1.206669 

(b) Independent Samples Test 
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Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

147.129 1.23E-14 -5.331 38 0.00000

4699 

-54.628 10.247 -75.372 -33.884 

Equal 

variances not 

assumed 

    -5.331 19.53 0.00003 -54.628 10.2469 -76.035 -33.22 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite-Vectorial-

Linear 

20 89.21820 19.823570 4.432685 

Stage 2 Hermite-

Concatenated-Linear 

20 94.22998 1.627967 .364024 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

3.139 .084 -1.13 38 0.267 -5.012 4.4476 -14.02 3.9919 

Equal 

variances not 

assumed 

  
-1.13 19.3 0.274 -5.012 4.4476 -14.31 4.2888 

 

B.5.6 Two Spirals dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Chebyshev-Vectorial-

Linear 

20 77.95538 21.678022 4.847353 

Stage 2 Chebyshev-

Concatenated-Linear 

20 79.92778 19.572776 4.376606 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.754 0.391 -0.302 38 0.764 -1.972 6.530812 -15.19 11.2485 

Equal 

variances not 

assumed 

    -0.302 37.6 0.764 -1.9724 6.530812 -15.198 11.25 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Legendre-Vectorial-

Linear 

20 77.98169 21.914614 4.900257 

Stage 2 Legendre-

Concatenated-Linear 

20 80.90624 19.343291 4.325291 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.114 0.298 -0.447 38 0.657 -2.925 6.536 -16.156 10.307 

Equal 

variances not 

assumed 

    -0.447 37.4 0.657 -2.9245 6.5361 -16.163 10.314 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 2 Hermite-Vectorial-

Linear 

20 52.51945 4.933951 1.103265 

Stage 2 Hermite-

Concatenated-Linear 

20 60.31385 4.002174 0.894913 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.032 0.860 -5.487 38 0.00000

288 

-7.7944 1.420586 -10.67 -4.9186 

Equal 

variances not 

assumed 

    -5.487 36.45 3.25E-06 -7.7944 1.420586 -10.674 -4.915 

 

B.6 Statistical significance tests on the experimental results of the 

proposed concatenated approach using Stage 3-linear kernels – 

Chapter 6 – Section 6.5.2.3 
 

B.6.1 Breast cancer dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified 

Chebyshev-Vectorial - 

Linear 

15 96.41791 1.045178 0.269864 

Stage 3 Modified 

Chebyshev-Concatenated - 

Linear 

15 96.03412 1.323728 0.341785 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 
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F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.523 0.227 0.88 28 0.386 0.38379 0.43548 -0.5082 1.27583 

Equal 

variances not 

assumed 

  
0.88 26.5 0.386 0.38379 0.43548 -0.5104 1.27800 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified Legendre-

Vectorial - Linear 

15 96.26155 1.113377 0.287473 

Stage 3 Modified Legendre-

Concatenated - Linear 

15 96.88699 0.776337 0.200449 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.597 0.217 -1.78 28 0.085 -0.6254 0.35045 -1.3433 0.09243 

Equal 

variances not 

assumed 

  
-1.78 25.0 0.086 -0.6254 0.35045 -1.3472 0.09632 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Composite Hermite-

Vectorial - Linear 

15 89.60910 8.318090 2.147721 

Stage 3 Composite Hermite-

Concatenated - Linear 

15 94.58422 1.865432 0.481653 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

21.141 0.000 -2.26 28 0.032 -4.9751 2.20106 -9.4838 -0.4664 

Equal 

variances not 

assumed 

  
-2.26 15.4 0.039 -4.9751 2.20106 -9.6558 -0.2943 

 

B.6.2 Image segmentation dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified 

Chebyshev-Vectorial - 

Linear 

15 91.49206 1.245226 0.321516 
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Stage 3 Modified 

Chebyshev-Concatenated - 

Linear 

15 94.53968 0.721204 0.186214 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

4.925 0.035 -8.20 28 6.2855

E-09 

-3.0476 0.37154 -3.8087 -2.2865 

Equal 

variances not 

assumed 

  

-8.20 22.4 3.3496

E-08 

-3.0476 0.37154 -3.8172 -2.2779 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified Legendre-

Vectorial - Linear 

15 91.48889 1.217578 0.314377 

Stage 3 Modified Legendre-

Concatenated - Linear 

15 94.38095 0.717001 0.185129 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

4.016 0.055 -7.92 28 1.2381

E-08 

-2.8920 0.36483 -3.6393 -2.1447 

Equal 

variances not 

assumed 

  

-7.92 22.6 5.5628

E-08 

-2.8920 0.36483 -3.6474 -2.1367 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Composite Hermite-

Vectorial - Linear 

15 89.55556 2.691132 0.694847 

Stage 3 Composite Hermite-

Concatenated - Linear 

15 93.47302 0.290473 0.075000 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

38.987 0.000 -5.60 28 5.3203

E-06 

-3.9174 0.69888 -5.3490 -2.4858 

Equal 

variances not 

assumed 

  

-5.6 14.3 0.0000 -3.9174 0.69888 -5.4132 -2.4216 
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B.6.3 Ionosphere dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified 

Chebyshev-Vectorial - 

Linear 

15 89.88963 4.302574 1.110920 

Stage 3 Modified 

Chebyshev-Concatenated - 

Linear 

15 97.39514 0.466050 0.120334 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

23.059 0.000 -6.71 28 2.7213

E-07 

-7.5055 1.11741 -9.7944 -5.2165 

Equal 

variances not 

assumed 

  

-6.71 14.3 8.7333

E-06 

-7.5055 1.11741 -9.8969 -5.1140 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified Legendre-

Vectorial - Linear 

15 90.28698 4.033501 1.041446 

Stage 3 Modified Legendre-

Concatenated - Linear 

15 97.96910 0.170995 0.044151 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

27.847 0.000 -7.37 28 5.0255

E-08 

-7.6821 1.04238 -9.8173 -5.5469 

Equal 

variances not 

assumed 

  

-7.37 14.0 3.4378

E-06 

-7.6821 1.04238 -9.9170 -5.4471 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Composite Hermite-

Vectorial - Linear 

15 78.94040 13.377295 3.454003 

Stage 3 Composite Hermite-

Concatenated - Linear 

15 92.98013 3.634205 0.938348 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 
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Accur

acy % 

Equal 

variances 

assumed 

25.668 0.000 -3.92 28 0.001 -14.039 3.57919 -21.371 -6.7080 

Equal 

variances not 

assumed 

  

-3.92 16.0 0.001 -14.039 3.57919 -21.625 -6.4543 

 
B.6.4 Iris dataset  
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified 

Chebyshev-Vectorial - 

Linear 

15 92.44445 4.768250 1.231157 

Stage 3 Modified 

Chebyshev-Concatenated - 

Linear 

15 97.07937 0.670220 0.173050 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

32.423 0.000 -3.72 28 0.001 -4.6349 1.24325 -7.1816 -2.0882 

Equal 

variances not 

assumed 

  

-3.72 14.5 0.002 -4.6349 1.24325 -7.2919 -1.9778 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Modified Legendre-

Vectorial - Linear 

15 93.01587 3.682696 0.950868 

Stage 3 Modified Legendre-

Concatenated - Linear 

15 97.26984 0.335110 0.086525 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

61.821 0.000 -4.45 28 0.0001 -4.2539 0.95479 -6.2097 -2.2981 

Equal 

variances not 

assumed 

  

-4.45 14.2 0.0005 -4.2539 0.95479 -6.2986 -2.2092 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Composite Hermite-

Vectorial - Linear 

15 94.34921 2.822161 0.728679 

Stage 3 Composite Hermite-

Concatenated - Linear 

15 97.05397 1.078527 0.278475 

(b) Independent Samples Test 
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Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

23.209 0.000 -3.46 28 0.002 -2.7047 0.78007 -4.3026 -1.1068 

Equal 

variances not 

assumed 

  

-3.46 18.0 0.003 -2.7047 0.78007 -4.3436 -1.0659 

 

B.6.5 Thyroid dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Mod Chebyshev-

Vectorial-Linear 

20 94.20183 2.800487 0.626208 

Stage 3 Mod Chebyshev-

Concatenated-Linear 

20 95.62398 2.337266 0.522629 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.879 0.354 -1.744 38 0.089 -

1.422149 

0.815645 -

3.073336 

0.229038 

Equal 

variances not 

assumed 

    -1.744 36.82 0.090 -1.42215 0.815645 -3.0751 0.230775 

 

(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Mod Legendre-

Vectorial-Linear 

20 94.36197 2.522772 0.564109 

Stage 3 Mod Legendre-

Concatenated-Linear 

20 95.39557 2.537395 0.567379 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.036 0.850 -1.292 38 0.204 -1.0336 0.800086 -2.6533 0.586087 

Equal 

variances not 

assumed 

    -1.292 38.0 0.204 -1.0336 0.800086 -2.6533 0.586089 
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(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Composite Hermite-

Vectorial-Linear 

20 93.82415 2.618745 0.585569 

Stage 3 Composite Hermite-

Concatenated-Linear 

20 95.21841 1.663475 0.371964 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

1.240 0.272 -2.010 38 0.052 -1.3943 0.693721 -2.7986 0.010105 

Equal 

variances not 

assumed 

    -2.010 32.19 0.053 -1.3943 0.693721 -2.807 0.018483 

 

B.6.6 Two Spirals dataset  

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Mod Chebyshev-

Vectorial-Linear 

20 90.68565 14.717299 3.290888 

Stage 3 Mod Chebyshev-

Concatenated-Linear 

20 95.86020 3.274768 0.732260 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

9.753 0.003 -1.535 38 0.133 -5.1745 3.371372 -11.9995 1.650438 

Equal 

variances not 

assumed 

    -1.535 20.88 0.140 -5.1745 3.371372 -12.188 1.839124 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Mod Legendre-

Vectorial-Linear 

20 97.52746 3.689213 0.824933 

Stage 3 Mod Legendre-

Concatenated-Linear 

20 97.92693 3.160725 0.706760 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

0.885 0.353 -0.368 38 0.715 -0.3995 1.086289 -2.5985 1.799607 
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Equal 

variances not 

assumed 

    -0.368 37.12

6 

0.715 -0.3995 1.086289 -2.6002 1.801308 

 
(a) Group Statistics 

 OPK N Mean Std. Deviation Std. Error Mean 

Accuracy % Stage 3 Composite Hermite-

Vectorial-Linear 

20 85.68191 4.790208 1.071123 

Stage 3 Composite Hermite-

Concatenated-Linear 

20 89.77201 1.925383 0.430529 

(b) Independent Samples Test 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Accur

acy % 

Equal 

variances 

assumed 

12.769 0.001 -3.543 38 0.001 -4.0901 1.154409 -6.4271 -1.7531 

Equal 

variances not 

assumed 

    -3.543 24.98 0.002 -4.0901 1.154409 -6.4677 -1.7125 

 

 

 


