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ABSTRACT The integration of cognitive radio (CR) technology with future Internet-of-Things (IoT) ar-
chitectures is expected to allow effective massive IoT deployment by providing huge spectrum opportunities
to IoT devices. Several communication protocols have been proposed for CR networks while ignoring the
adjacent channel interference (ACI) problem by assuming sharp filters at the transmit and receive chains of
each CR device. However, in practice, such an assumption is not feasible for low-cost hardware-constrained
CR-capable IoT (CR-IoT) devices. Specifically, when large number of CR-IoT devices are operating in the
same vicinity, guardband channels (GBs) are needed to mitigate the ACI problem. Introducing GB constraint
spectrum efficiency and protocol design. In this paper, we develop a channel assignment mechanism for
hardware-constrained CR-IoT networks under time-varying channel conditions with GB-awareness. The
objective of our assignment is to serve the largest possible number of CR-IoT devices by assigning the least
number of idle channels to each device subject to rate demand and interference constraints. The proposed
channel assignment in this paper is conducted on a per-block basis for the contending CR-IoT devices
while considering the time-varying channel conditions for each CRIoT transmission over each idle channel
such that spectrum efficiency is improved. Specifically, our channel assignment problem is formulated as a
binary linear programming (BLP) problem, which is NP hard. Thus, we propose a polynomial-time solution
using a sequential fixing algorithm that achieves a suboptimal solution. Simulation results demonstrate that
our proposed assignment provides significant increase in the number of served IoT devices over existing
assignment mechanisms.

INDEX TERMS Cognitive Radio, Guard-band, Variable Rate, Adjacent-channel Interference, Binary
Linear Programing.

I. INTRODUCTION

Internet-of-things (IoT) is the key future networking
paradigm that defines the interconnection and interaction of
any device (thing) that can connect to the Internet and be able
to communicate with other devices and networks. Many of
the IoT devices are mobile, small and located in scattered
locations. Hence, wireless networking is represented as the
most appropriate communication paradigm that effectively
connects these devices with each other and other networks
[1]–[9]. However, enabling massive wireless-based IoT de-
ployment is expected to place a massive pressure on wireless
spectrum resources. To meet the high spectrum demand of the

huge number of IoT wireless devices, cognitive radio (CR)
technology has been proposed [10]–[19]. CR technology
allows the unlicensed CR-capable IoT (CR-IoT) devices to
dynamically and opportunistically utilize the licensed por-
tion of spectrum while providing performance guarantees to
legacy primary radio users (PUs) [20]–[23].

The main intelligence feature of CR-IoT networks is the
ability to alleviate spectrum scarcity by conducting efficient
channel assignment decisions. This intelligence in spectrum
management and assignment were well studied in the con-
text of CR networks (CRNs) assuming very sharp filters
on the transmit and receive chains of each CR device [24],
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[25]. However, low-cost IoT CR-enabled devices may not be
equipped with such sharp (near ideal) transmit/receive filters,
so existing spectrum assignment for CRNs are not directly
applicable to CR-IoT networks. Specifically, most of existing
channel assignment designs for CRNs [24], [25] did not con-
sider the harmful interference introduced to PUs and ongoing
CRs due to the adjacent channel interference (ACI) issue.
ACI is known as the power leakage to adjacent channels due
to imperfect transmit/receive filters in communicating de-
vices [26], [27]. Limited number of CRN protocols have dealt
with the ACI problem in their design by adding GB channels
between adjacent channels that are assigned to different CR
links (e.g., [28]–[32], [34]–[36]). These protocols have been
designed without considering the multi-channel diversity and
interference heterogeneity in CRNs by assuming that each
channel can support a fixed average-data rate. Such assump-
tion is limited to wireless networks that implement sophis-
ticated power-control strategies to achieve such fixed data
rate per idle frequency channel. This can significantly limit
the achieved rate per channel as distinct idle channels can
support different data rates depending on the time-varying
link-quality and interference conditions over each idle chan-
nel. Assuming that each idle channel can support a fixed
average data rate greatly simplifies the channel assignment
design, but can significantly degrade network performance
by wasting available spectrum opportunities through unnec-
essary assigning more channels for CR-IoT devices [21].
Hence, new GB-aware spectrum sharing algorithms for CR-
IoT networks that effectively utilize the available spectrum
while accounting for the hardware-limitation of the IoT de-
vices and the frequencies/time-varying nature of the channel
quantities of CR-IoT links are needed.

This paper proposes an adaptive GB-aware spectrum as-
signment scheme for hardware-constrained CR-IoT networks
under time-varying channel-quality conditions. The proposed
scheme conducts the channel assignment on a per-block basis
for a given CR-IoT transmission while considering the time-
varying channel conditions over each idle channel between
the communicating devices such that spectrum efficiency is
improved. Specifically, the channel assignment problem is
formulated as an optimization problem that attempts at min-
imizing the total number of reserved data-plus-GB channels
(maximizing spectrum efficiency) subject to aggregate rate
demand, channel-quality and maximum allowable transmit
power constrains. The formulation constitutes a binary-linear
programming (BLP) problem, which is known as NP-hard.
Thus, we propose a polynomial-time algorithm that achieves
a sub-optimal solution using a sequential-fixing algorithm. It
is worth mentioning that performing channel assignment for
multiple CR-IoT links at the same time (batch approach) can
provide better performance than performing the assignment
sequentially (i.e., one CR-IoT link at a time). For a single
collision domain (all devices can hear each other), the batch
method is practical. However, the batch approach is not prac-
tical in a multi-hop CR-IoT environment, as it incurs high
control overhead and delay. Therefore, in this paper, our de-

sign follows an asynchronous Carrier Sense Multiple Acces
with Collision Avoidance (CSMA/CA)-like random access
strategy, that ensure only one link (a transmitter-receiver
CR-IoT pair) can access the control channel at any given
time. Simulation results are demonstrated to demonstrate the
effectiveness of the proposed channel assignment scheme
compared to previously proposed assignment schemes (i.e.,
[29], [32]).

The rest of this paper is organized as follows. Section
II reviews the related work. In Section III, we present the
network model. Then, the problem statement, formulation
and proposed solution of the channel assignment problem
are described in Section IV. In Section V, we provide the
simulation results and discussions. Finally, the conclusion
remarks are given in Section VI.

II. RELATED WORK
Several studies have been conducted to design spectrum ac-
cess protocols that address the unique features of CR environ-
ment assuming very sharp filters on the transmit and receive
chains of each CR device (ignoring the ACI issue) [24], [25].
Very few CRN protocols have been proposed to deal with the
ACI issue (e.g., [29], [31], [32], [35]). In [29], the authors
investigated the ACI with the objective of finding the best
channel assignment that results in minimum number of newly
introduced GBs. They considered both channel bonding and
aggregation with per-link channel assignment. However, they
did not consider the multi-channel diversity by assuming a
fixed data-rate per idle channel. In [31], [35], the authors
proposed a batch-based GB-aware spectrum assignment for
CRNs. It considers batching, in which multiple assignment
decisions can be made simultaneously. In [32], the authors
proposed a GB-aware per-block channel assignment algo-
rithm for a multi-channel single-link CRNs with average
fixed transmission rate per channel. Unlike the works in [29],
[31], [35] that perform the channel assignment on a per-
channel basis, the proposed scheme in [32] selects channels
on a per-block basis, where at most one GB channel will
be added on each side of a block for each CR transmission.
The authors showed that the channel selection based on per-
block basis provides better network performance compared
to the per-channel assignment. In summary, most spectrum
access protocols for CRNs were designed assuming ideal (or
very sharp) transmit/receive filters and fixed data-rate per
channel. Such designs are not suitable for low-cost hardware-
constrained CR-IoT networks operating over heterogeneous
time-varying wireless channels. Therefore, new communica-
tion protocols for CR-IoT networks are needed that account
for the ACI issue and the time-varying nature of channel
conditions. To the best of our knowledge, this is the first
work that considers assigning channels to CR-IoT devices
in a per-block basis while accounting for the ACI issue
and the time-varying nature of channel conditions between
communicating devices.
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FIGURE 1. An illustration of PU and CR-IoT networks coexistence.

III. NETWORK MODEL
We consider a CSMA/CA-based wireless CR-capable IoT
network that coexists geographically with several PU net-
works as shown in Figure 1 (e.g., the CR-IoT network can
be a wireless sensor network that is deployed for monitor-
ing hazard environment as illustrated in [?]). The PUs are
licensed to transmit over a set of orthogonal non-overlapping
channels. LetM = {1, 2 . . .M} represent the set of all PU
channels, where each channel has a Fourier bandwidth of W
(in Hz). CR-IoT devices can persistently scan the available
spectrum to identify potential spectrum opportunities (idle
PU channels) in order to access them. Considering the spec-
trum availability status in Figure 2(a). Figure 2(b) illustrates
that each set of contiguous idle channels is grouped into
a“frequency block". The spectrum is divided into: (1) idle
blocks, (2) busy blocks and (3) data blocks. An idle channel
can be used as a GB between frequency data blocks of
different CR-IoT transmissions or reserved as data channel.
Note that for each identified idle block, the first and last
channels in that block are reserved as GBs if their adjacent
channels, which do not belong to the block, are reserved
for PR users. Note that, already existing GBs can be reused
by potential CR transmissions such that no additional GBs
are needed. To exchange control information among CR-
IoT devices, we assume the existence of a common control
channel that is available to all CR-IoT devices. Such channel
is pre-specified but not necessarily dedicated to the CR-
IoT network. The existence of a dedicated common control
channel is a characteristic of many communication protocols
designed for CRNs (e.g., [5], [21], [29], [32]. We note here
that other coordination mechanisms can also be used for our
purposes including: (1) spread spectrum-based techniques,
(2) dynamic local cluster-based techniques, or (3) frequency
hopping-base techniques [37], [38].

Each idle channel k of a given CR transmission can sup-
port time-variant transmission rate of r(k)

t Mbps. Specifically,
the transmission rate over channel k for a CR link is deter-
mined according to the maximum possible transmit power

(determined by the FCC) over channel k, and the current
channel state information (CSI) of that channel. Note that
the transmission rate over channel k can be calculated based
on the received signal-to-noise ratio (SNR) over channel k
(SNR(k)) as r

(k)
t = W log2(1+SNR(k)), where W is the

channel bandwidth P(k)

WNo
, No is the thermal noise power

and P(k) denotes the received power over the kth chan-
nel depending on the transmitting power P(k)

t . The power
P(k)
t over each channel k is set to the maximum allowable

transmission power. This results in achieving the maximum
possible data rate over channel k. We define an idle frequency
block as the set of contiguous idle channels that are grouped
into one block. For each idle block i, denoted by IB(i), we
define S(i) as the size of that block. We assume that at any
given time t, |Nt| = N different idle frequency blocks are
identified depending on the PU activities, where Nt is the
set of all idle blocks at time t. Let R

(i)
t =

∑
k∈B(i) r

(k)
t

denote the supported rate of the ith block (IB(i)), where
B(i) represents the idle channels set belonging to block i, for
i = {1, . . . , N}. We note here that one GB channel on each
side of a frequency block assigned to a CR-IoT transmission
is sufficient to mitigate the ACI [34], [36], [39].

(a) Channel availability status.

(b) Idle block formation
FIGURE 2. Illustrative example of channel vs. block formation with 19
channels.

IV. PROBLEM STATEMENT, FORMULATION AND
SOLUTION
A. PROBLEM STATEMENT
At a given time t, our problem statement is as follows: given
a CR-IoT transmitting pair, all idle channels (idle blocks),
and the supported transmission rate of each channels and
each block, our main objective is to compute the optimal
frequency-block assignment Ω

(∗)
B that reserved the minimum

number of idle channels subject to:
• Rate demand constraint: each CR-IoT device requires a

demand rate d.
• Total transmit power constrain: for each CR-IoT trans-

mission, the total transmission power
∑N

i=1 P
(i)
t over

the selected blocks is limited to Pmax, where Pmax and
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P(i)
t are the maximum power that can be supported

by the CR battery and the needed transmit power over
block i).

• Per-Channel individual transmit power constrain: the
transmit power over each channel k is limited to the
maximum permissible transmission power (P (k)

max) de-
termined by the FCC. This constraint is ensured by
setting the transmit power over each channel k to P

(k)
max.

We note here the following two observations: (1) assigning
channels to CR-IoT devices based on per-block basis adds
at most two extra GB channels, and (2) when smaller size
blocks are selected, less number of channels is reserved,
which saves more channels for future potential CR-IoT de-
vices. Based on the above observation, we conclude that
using per-block assignment with the objective of selecting
the minimum size blocks that serve the CR-IoT demand can
result in improved network performance. We note here that
our design considers both channel bonding and aggregation.
Specifically, our design first bonds the adjacent idle channels
into frequency blocks then it attempts to aggregate the mini-
mum number of frequency blocks (each block contains a set
of bonded channels) to serve the required demands of each
CR-IoT transmission.

B. PROBLEM FORMULATIONS

To proceed in our formulation, a new 0/1-decision variable
X(i) is introduced as follows:

X(i) =

{
1, if block i is reserved by the CR− IoT device

0, otherwise.
(1)

Mathematically, our proposed assignment is written as:

min
X(i),∈{0,1}

{
N∑
i=1

S(i) X(i)

}
− R(i)∑N

i=1 R
(i)

s.t.
N∑
i=1

R(i)X(i) ≥ d or
N∑
i=1

R(i)X(i) = 0

N∑
i=1

P(i)
t X(i) ≤ Pmax. (2)

Recall that d is the required rate demand, S(i) is the size
of each idle frequency block, and N is the number of idle
frequency blocks. Note that the first part of the objective
function attempts at minimizing the total size of the assigned
blocks (reducing the number of assigned data-plus-GB chan-
nels) while the second part R(i)∑N

i=1 R(i) ensures that for any two

feasible channel assignments Ω
(∗)
B (1) and Ω

(∗)
B (2) with the

same size SΩ∗
B(1) = SΩ∗

B(2), our problem formulation selects
the one that supports the higher rate. Note that, if S (Ω(∗)

B (1))
< S (Ω(∗)

B (2)), our formulation always selects Ω
(∗)
B (1) over

Ω
(∗)
B (2), irrespective of the supported rate of each assignment

R(i). To Proceed in our analysis, the either/or constraint in (2)

can be expressed in more tractable form by using an auxiliary
binary variable y as follows:

N∑
i=1

−R(i)X(i) ≤ −d− Γy

N∑
i=1

R(i)X(i) ≤ −Γ y + Γ (3)

where Γ is a very large constant� 1 and y is given by:

y =

{
0 , if

∑N
i=1 R

(i)X(i) ≥ d

1 , if
∑N

i=1 R
(i)X(i) = 0.

(4)

Therefore, the optimization in (2) becomes:

min
X(i),y,∈{0,1}

{
N∑
i=1

S(i) X(i)

}
− R(i)∑N

i=1 R
(i)

s.t.
N∑
i=1

−R(i)X(i) ≤ −d− Γy

N∑
i=1

R(i)X(i) ≤ −Γ y + Γ

N∑
i=1

P(i)
t X(i) ≤ Pmax. (5)

The above formulation is a BLP problem that can be written
in matrix form as: minX {cTX : AX ≥b, X ∈ {0, 1}} ,
where c= [ S(1) S(2). . . S(N) 0]1×(N+1) is the objective
vector, b= [−d Γ Pmax]T3×1 represents the right-hand-side
of the design constraints, and [X y] is the vector containing
all decision variables,

A =

 −R(1) −R(2) . . . . . .−R(N) Γ
R(1) R(2) . . . . . .R(N) Γ

P(1)
t P(2)

t . . . . . .P(N)
t 0


3×(N+1)

(6)
is the linear constraints matrix. It is worth mentioning that the
BLP problems are, in general, NP-hard problems. Thus, we
develop a polynomial-time suboptimal algorithm to solve our
optimization in (5). This optimization can be solved using an
efficient polynomial-time sequential-fixing linear program-
ming (SFLP) procedure that was previously introduced in
[27], [29] to solve BLP problems, where effective suboptimal
solutions were reported. The optimization problem provides
the least number of frequency blocks that satisfy the rate
demand, such that if any of the assigned block is removed
the demand rate constrain will be violated, which results
in infeasible solution. Therefore, a post-processing phase is
needed after solving the optimization in (5) to remove the
extra channels from one of the assigned block such that the
rate demand is still achieved. Let Rs be the achieved rate
of the optimal assignment Ω

(∗)
B resulting from solving (5).

GivenRs > d, channels with (Rs − d) rates can be released
without violating the rate demand constraint.
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C. THE PROPOSED CHANNEL ASSIGNMENT SCHEME
Our proposed channel assignment algorithm consists of two
phases: (1) Block Assignment Phase, where the problem in
(5) is solved using the SFLP mechanism and (2) Releasing
the extra channels post-processing phase. The main objective
of BAP is assigning the minimum number of blocks that pro-
vides aggregate rate that is greater than the demand d while
the second phase is intended to spare the extra channels.

1) The Block Assignment Phase Using SFLP
The SFLP was used in [29], [35] to tackle BLP problems in
polynomial time, where a suboptimal solution was demon-
strated. The SFLP is executed as follows: it first uses a linear
relaxation approach that allows each binary variable to take
any real value in [0, 1] interval. Then, the relaxed linear pro-
gramming problem can be solved in polynomial-time (thee
associated block is assigned to the CR-IoT device). From all
X(i)’s of the provided solution of the relaxed problem, the
one with the highest value is fixed to 1 and after that the
feasibility of the problem is checked. The above process is
repeated until a feasible channel assignment that achieves the
rate demand is found or no feasible assignment is declared,
in which all the idle blocks cannot support the rate demand.

2) Relaxing the Extra Channels Post-processing Phase
According to the post-processing phase, our algorithm de-
termines the block with maximum size from the selected
blocks for the CR transmission. Then, it starts releasing the
maximum number of channels starting from the left sided
GB of the block, such that the aggregate transmission rate
after removing the rate of the released channels still satisfies
the rate demand. In this case, one GB is added to the right
of the last reserved data channel of the selected block. This
spares the extra channels, in which they are grouped into a
new block for potential future CR-IoT transmissions. Hence,
network performance is improved.

V. PERFORMANCE EVALUATION
A. SIMULATION SETUP
We evaluate the performance of our proposed channel assign-
ment scheme using MATLAB simulations [40]. We consider
a CR-IoT network that opportunistically share the available
licensed spectrum with a number of PRNs, where the number
of PU channels is set to M . The status of each PU chan-
nel follows a 2-state Markov model with IDLE and BUSY
periods. The BUSY channel imposes that some PUs are
transmitting over that channel. Each channel is busy with
probability Pbusy . The carrier frequency of each PU channel
k ∈ M is computed as: fk = 900 + k MHz. We consider
a Rayleigh fading channel model with path-loss exponent n
between any two communicating CR-IoT devices over the
different channels. We set the transmission power of each
CR-IoT device to the FCC maximum permissible transmit
power level over each idle channel. The total transmission
power of a CR-IoT device over all selected channels is lim-
ited to 1 watt and the thermal noise power density over each

channel is fixed to 10−12 W/Hz. The network performance is
investigated as a function of the total number of channels M ,
the demand rate d, path-loss exponent n and the PR activity
Pbusy .

B. SIMULATION RESULTS
The performance of the proposed scheme, denoted by VR-
GB-MAC, is compared with two other schemes: the fixed-
block-GB-MAC (referred to as FB-GB-MAC) scheme [32]
and the sequential fixing-fixed rate-MAC (referred to as SF-
FR-MAC) scheme [29]. The FB-GB-MAC and SF-FR-MAC
schemes employ a power control to achieve a fixed aver-
age transmission rate per channel. FB-GB-MAC attempts at
maximizing spectrum efficiency by performing fixed block
assignment that introduces the minimum number of GBs
[32]. On the other hand, SF-FR-MAC scheme attempts at
reducing the number of newly added GBs while achieving the
demand rate by performing per channel assignment [29], but
with a main objective of reducing the number of newly added
GBs while minimizing the total needed power. Note that, in
general, the transmission rate over each channel of a CR link
depends on the CSI of that link over that channel. Figure 3
shows the number of severed CR-IoT devices versus Pbusy

for different n (3 and 4), different d (20 and 30 Mbps), M =
23 channels, BW = 5 MHz and 20 CR-IoT communicating
links. For n = 3 and n = 4, we set the achieved average
rates to 20 and 10 Mbps, respectively. This figure shows that,
for all scheme, as Pbusy increases the chances of finding idle
channels to serve larger number of CR-IoT devices decreases.
It also reveals that the proposed channel assignment provides
significant performance improvement compared to the other
two channel assignment schemes, irrespective of d and n. It
can also observed that the number of served users is higher at
lower values of n. This is due to the better channel conditions
and higher achieved data rates at lower values of n (for n = 4
and d = 30 Mbps, 3 channels are needed to serve one user,
however for n = 3 and d = 30, only one channel is needed)
[41]. Figure 4 plots the number of served IoT devices versus
d with BW = 5 MHz for both Pbusy = 0.5 and 0.3.
The number of served CR-IoT when Pbusy = 0.3 is larger
than that when Pbusy = 0.5. This is because that at smaller
Pbusy more available idle blocks exist and more CR-IoT
transmissions can be activated. Figure 4 reveals that at larger
rate demands, our proposed assignment serves more CR-IoT
devices and achieves higher network throughput compared to
the other two channel assignment schemes.

Figure 5(a) demonstrates the overall network throughput
as a function of Pbusy for d = 12 Mbps and n = 3. When
Pbusy increases, the achieved network throughput decreases
due to the fact that as Pbusy increases the number of idle
blocks decreases and the chance of finding idle blocks that
can achieve the required d decreases. Figure 5(b) plots the
spectrum efficiency, defined as the ratio between the total
number of reserved data channels and the number of re-
served data-plus-GB channels. This figure indicated that the
proposed VR-GB-MAC achieves higher spectrum efficiency
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(b) d = 20 Mbps, n = 4.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

10

11

12

PR Busy Probability( Pbusy)

S
e

rv
e

d
 C

R
Io

T
 D

e
v
ic

e
s

 

 

SF−FR−MAC
VR−GB−MAC
FB−GB−MAC

(d) d = 20 Mbps, n = 3.

FIGURE 3. Number of served CR-IoT devices vs. Pbusy for M = 23 and 24 links.

with respect to the other two schemes. Figure 5(b) also shows
that the spectrum efficiency decreases as Pbusy increases.

Figure 6 plots the overall network throughput versus Pbusy

for different number of channels M (i.e., M=10, 20, and 30
channels). It can be observed that as M increases, higher
throughput performance is achieved. This can be explained
as follows as the number of PU channels increases, the
chance of finding larger idle blocks that can serve the rate
demand for the CR-IoT devices increases. Thus, more CR-
IoT transmissions can be served. Figure 6 also reveals that
as the number of CR-IoT contending devices increases, the
overall network throughput is enhanced.

The number of reserved channels per CR-IoT transmission
is demonstrated in Figure 7(a). It is clear that our proposed
scheme needs smaller number of channels to serve each CR-
IoT device. Figure 7(b) shows the number of introduced GBs
served CR-IoT devices as a function of Pbusy . This figure
shows that our proposed scheme introduces less number of
GB per CR-IoT transmission. This is due to our employed
appropriate block assignment that is aware of rate demand of
each CR-IoT device.

Figure 8 plots the number of served CR-IoT devices versus
the number of contending CR-IoT transmissions for different
values of maximum transmission power Pt under different
PUs’ activities (i.e., Pbusy = 0.5, Pbusy = 0.3 and Pbusy =
0.9). Note that at high Pbusy , significant decrease in network

performance is observed for all schemes. Figure 8 reveals
that the overall number of served CR-IoT users is larger at
smaller Pbusy as the chances of finding more available idle
blocks/channels is higher. This figure also shows that as Pt

increases, the number of served CR-IoT devices increases.
This is because increasing the power increases the achieved
rate of each channel. Finally, Figure 8(c) shows that at lower
values of Pbusy irrespective of Pt, the three schemes have
comparable performance. This is expected as at low Pbusy

the chances of finding idle blocks with high rates that can
achieve the rate demand for the CR-IoT devices, irrespective
of Pt.

VI. CONCLUSIONS
This paper presented a GB-aware channel assignment
scheme for time-varying CR-IoT networks with adaptive
rate. The proposed assignment assigns channels to CR-IoT
devices in a per-block basis. Our scheme attempts to maxi-
mize the achieved network throughput by reducing the num-
ber of assigned data-plus-GB channels subject to required
rate demand, link quality and total transmit power constrains.
The problem is formulated as a BLP, which is, in general,
an NP-hard problem. Thus, we developed a polynomial-
time suboptimal algorithm procedure using the sequential
fixing linear programming (SFLP). The performance of our
proposed channel assignment scheme is compared with that
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FIGURE 4. Number of served CR-IoT devices vs. d for M = 23, n=3 and
BW = 5 MHz.

of sequential fixing per-channel assignment and the fixed rate
per-block assigned schemes. Simulation results showed that
the proposed scheme significantly outperforms the reference
schemes. The results also indicated that a significant increase
in networks throughput can be realized by considering multi-
channel diversity when assigning frequency blocks to CR-
IoT devices, in which the blocks with highest data rates
and smaller sizes are selected. As future work, the proposed
approach can be extended to support simultaneous channel
assignment decisions for several CRIoT nodes such that the
overall network throughput is improved.
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