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Abstract 
 

This paper attempts to improve the solution of 

the NP complete Boolean Satisfiability (BSAT) 

problem by partitioning the task into three sub-

tasks and distributing them over an experimental 

3-node Distributed Computing System (DCS). A 

genetic algorithm (GA) has been used to consider 

multiple feasible solutions. The GA based 

algorithm is applied to the standard BSAT 

benchmarks on a single computer and on DCS 

configuration using non-optimised and optimised 

executables. The task is coarsely partitioned and 

distributed over the DCS using the Simple Object 

Access Protocol (SOAP) technology. The results 

reveal that the DCS enabled solution exhibits 

better performance than a single computer 

configuration for non-optimised GA code. 

However, no clear correlation could be identified 

between the single computer and the DCS for the 

optimised version of the GA search. The main 

contribution of this investigation is the design of a 

GA based solution to the BSAT problem for DCS. 

 

1. Introduction 
 

Given a Boolean function F in product-of-sum 

representation, then Boolean satisfiability (BSAT) 

problem is defined as finding an assignment to the 

variables such that F evaluates to TRUE. An 

"instance" is satisfied when the Boolean 

expression is TRUE for some assignment to the 

variables [1]. Otherwise it is said to be 

"unsatisfiable". The BSAT problem [2] is of 

crucial importance in many fields, for instance, 

artificial intelligence [3], hardware design [4], [5] 

etc. Due to the complexity of the problem, it can 

take several years to obtain a solution using the 

current fastest computer, even for N = 50 [6]. The 

basic idea of the paper is to provide a solution to 

the BSAT problem using DCS of general purpose 

computers [7] and genetic algorithm (GA) [8].  

DCS refers to a computing environment where 

the resources and tasks are dynamically shared by 

the computing nodes to meet the load/demand 

requirement of the system [9].  On the other hand, 

Genetic algorithms (GA) attempt to solve complex 

problems by modelling Darwin's theory of 

evolution where solutions of a particular problem 

are allowed to evolve over time. GAs are widely 

used for optimised searching [10]. Suitablity of 

GA fitness functions can be found in [11]. 

This paper is organised as follows. Section 2 

reviews previous works, section 3 explains the GA 

BSAT search algorithm, section 4 presents and 

discusses all results and finally section 5 draws 

some conclusions. 

 

2. Previous works 
 

A parallel algorithm MP_SAT has been 

proposed in [12] that makes use of fine grain 

parallelisms in the clause and variable operations. 

It speeds up the SAT solver performance by 

exploiting efficient single processor SAT 

algorithms like Chaff’s [13] solver on an 

integrated processor Multiple-Instruction-

Multiple-Data (MIMD) stream architecture 

connected to DRAM storage as shown in figure 1 

[12]. A fuzzy-genetic approach to the BSAT 

problem is presented in [6] that makes use of 

fuzzy logic [14], [15] to assign a fitness measure 

to chromosomes (feasible solutions) in the search 

space. The original binary domain {0, 1} is 

mapped into a continuous fitness domain [0, 1] by 

fuzzy logic. The GA is used to optimise the 

solution in the continuous domain and finally the 

derived solution is converted back (decoded) to 

the Boolean format. 

 

 
Figure 1. Task partitioning among several 

processors. 

 



3. The proposed GA BSAT algorithm 
 

Crossover and mutation operations are applied 

to the probable multiple solutions to improve them 

and to generate a final solution. For simplicity and 

speed, the fitness function returns an integer that is 

the number of the clauses satisfied by a solution. 

The algorithm stops when a solution is found that 

satisfies all the clauses or a predefined number of 

generations (iterations) have been executed. 

Figure 2 shows the flowchart of the proposed GA 

BSAT algorithm. The initial chromosomes are 

generated with random values. Mutation is applied 

after every 100 (hundred) generations. 

 

 
Figure 2. Flowchart representation of the 

proposed GA BSAT algorithm 

 

3.1. Data structure 
 

For the next few sections, we defined the 

following terms 

▪ V: number of variables in the Boolean 

expression/function 

▪ C: Number of clauses in the Boolean 

expression/function 

▪ P: Size of /number of solutions in current 

generation 

▪ Q: Size of /number of solutions in next 

generation 

▪ CURRENT_GENERATION: a PxV matrix 

that stores the current P probable solutions 

where P is the size of population. 

CURRENT_GENERATION[11] is the k-th 

solution.  

▪ NEW_GENERATION: a QxV matrix that 

stores the new probable solutions after cross-

over and Q <= P.  

▪ GENERATION: Number of generations the 

algorithm is applied to the benchmark. 

▪ CURRENT_FITNESS: a Px1 matrix to store 

fitness of CURRENT_GENERATION 

solutions. 

▪ NEW_FITNESS: a Qx1 matrix to store fitness 

of NEW_GENERATION solutions. 

▪ EXPRESSION: A matrix that stores the 

Boolean instance. Row k stores the k-th 

clause. 

 

3.2. Partitioning the GA BSAT algorithm 
 

The number of generations to execute is 

coarsely partitioned into three sub-generations and 

each of the three computers of the DCS executes 

one sub-generation. Each computer is able to 

execute its own sub-generations without 

depending on the others. The GA BSAT algorithm 

aborts/discards the other two sub-generations 

whenever one computer obtains a solution. The 

partitioning is depicted in figure 3. 

 

 
Figure 3. Parallelisation of GA based BSAT 

algorithm onto 3-node DCS computers. 

 

4. Results and discussion 
 

50 random instances are selected from the 

benchmark suit uf20-91 [16] and for each of these, 

30 readings were taken to obtain statistically 

interpretable data.  

The GA BSAT search method is applied for 

population size of 20 and 10,000 generations. 

Since each expression has 20 variables, 20 

chromosomes/solutions are considered. It has been 

observed that for population sizes larger than 20, 

e.g. 40 or 60 and for generations higher than 

10,000 there is no significant improvement in 

results. The algorithms was compiled using the 

GNU C compiler version 3.3.2, first with 

optimisations switched off and then with 

optimisations set to level O3. 

 



4.1 Single computer configuration: Non-

optimised vs. O3 optimised machine code  
 

For each instance, the executions that found a 

solution are considered. The average of these 

successful search times are plotted in figure 4. For 

most of the instances, O3 optimised code exhibits 

a lower run time and is always less than 250 ms. 

 
Figure 4. Run time of GA BSAT search on single 

computer for non-optimised and O3 optimised 

code. 

 

4.2 The 3-node DCS configuration: Non-

optimised vs. O3 optimised machine code 
 

No straightforward relationship is found 

between non-optimised and O3 optimised code 

from figure 5 that plots average time of successful 

searches. O3 optimised code exhibits lower run 

time for more that 35 instances and maximum run 

time stays below 400 ms. 
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Figure 5. Run time of GA BSAT search on the 

DCS for non-optimised and O3 optimised code. 

 

4.3 GA BSAT search on a single computer 

vs. on the DCS 
 

Figure 6 and 7 show that the maximum run 

time for successful search is higher for non-

optimised code (≈1100ms) than that of O3 

optimised code (≈600ms). But, no clear 

correlation can be identified between the single 

computer and the DCS approach. 

 

4.3.1. Non-optimised machine code. In general, 

the GA BSAT algorithm showed superior 

performance on the DCS implementation. Figure 6 

shows the scenario that in 400 ms time, the DCS 

found solutions for 48 instances, whereas the 

single computer found solutions for 45 instances.  
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Figure 6. Run time of GA BSAT search on single 

computer and the DCS for non-optimised code. 

 

4.3.2. O3 optimised machine code. For the O3 

optimised code, the single computer approach 

exhibits better run time than the DCS 

implementation. Figure 7 shows that for most of 

the instances, successful search run times lie 

within 200 ms for GA BSAT on single computer. 
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Figure 7. Run time of GA BSAT search on single 

computer and the DCS for O3 optimised code. 

 

4.4 Maximum run time for unsuccessful 

search 
 

Figure 8 and 9 show the comparison of 

maximum run time (unsuccessful search) for non-

optimised and O3 optimised machine code, 

respectively. These two figures depict that the sub-

generations should take approximately 1/3rd time 

of the entire generation to execute in case of 

unsuccessful search.  

 

5. Conclusion 
 

In this paper, a GA approach to solving the 

Boolean Satisfiability Problem has been presented. 

The problem is coarsely partitioned so that it may 

be easily distributed on a 3-node DCS of 

computers. Well-known standardised protocols 

(SOAP) [17] are used to distribute the problem. 

The GA BSAT search algorithm has 

demonstrated diverse results for different cases. 

These are listed below. 
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Figure 8. Maximum run time of GA BSAT search 

on single computer and the DCS for non-

optimised code. 
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Figure 9. Maximum run time of GA BSAT search 

on single computer and the DCS for O3 optimised 

code. 

 

Single computer: non-optimised vs. optimised 

machine code: For most of the instances, O3 

optimised code takes less time to execute. 

DCS: non-optimised vs. optimised machine 

code: It was obvious that O3 optimised code 

exhibited lower run time for more that 35 

instances. 

Non-optimised machine code: single computer 

vs. DCS: In general, the GA BSAT algorithm 

showed superior performance on the DCS by 

finding solutions for more instances than single 

computer. 

O3 optimised machine code: single computer 

vs. DCS: The DCS demonstrated a worse run time 

than single computer. 
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