
A Distributed Genetic Algorithm Solution to the Boolean Satisfiability

Problem

M S Hasan1,2, B P Amavasai1 and J R Travis1
1Microsystems & Machine Vision Laboratory, Sheffield Hallam University, UK

2Faculty of Computing, Engineering and Technology, Staffordshire University, UK

m.s.hasan@staffs.ac.uk, b.p.amavasai@shu.ac.uk, j.r.travis@shu.ac.uk

Abstract

This paper attempts to improve the solution of

the NP complete Boolean Satisfiability (BSAT)

problem by partitioning the task into three sub-

tasks and distributing them over an experimental

3-node Distributed Computing System (DCS). A

genetic algorithm (GA) has been used to consider

multiple feasible solutions. The GA based

algorithm is applied to the standard BSAT

benchmarks on a single computer and on DCS

configuration using non-optimised and optimised

executables. The task is coarsely partitioned and

distributed over the DCS using the Simple Object

Access Protocol (SOAP) technology. The results

reveal that the DCS enabled solution exhibits

better performance than a single computer

configuration for non-optimised GA code.

However, no clear correlation could be identified

between the single computer and the DCS for the

optimised version of the GA search. The main

contribution of this investigation is the design of a

GA based solution to the BSAT problem for DCS.

1. Introduction

Given a Boolean function F in product-of-sum

representation, then Boolean satisfiability (BSAT)

problem is defined as finding an assignment to the

variables such that F evaluates to TRUE. An

"instance" is satisfied when the Boolean

expression is TRUE for some assignment to the

variables [1]. Otherwise it is said to be

"unsatisfiable". The BSAT problem [2] is of

crucial importance in many fields, for instance,

artificial intelligence [3], hardware design [4], [5]

etc. Due to the complexity of the problem, it can

take several years to obtain a solution using the

current fastest computer, even for N = 50 [6]. The

basic idea of the paper is to provide a solution to

the BSAT problem using DCS of general purpose

computers [7] and genetic algorithm (GA) [8].

DCS refers to a computing environment where

the resources and tasks are dynamically shared by

the computing nodes to meet the load/demand

requirement of the system [9]. On the other hand,

Genetic algorithms (GA) attempt to solve complex

problems by modelling Darwin's theory of

evolution where solutions of a particular problem

are allowed to evolve over time. GAs are widely

used for optimised searching [10]. Suitablity of

GA fitness functions can be found in [11].

This paper is organised as follows. Section 2

reviews previous works, section 3 explains the GA

BSAT search algorithm, section 4 presents and

discusses all results and finally section 5 draws

some conclusions.

2. Previous works

A parallel algorithm MP_SAT has been

proposed in [12] that makes use of fine grain

parallelisms in the clause and variable operations.

It speeds up the SAT solver performance by

exploiting efficient single processor SAT

algorithms like Chaff’s [13] solver on an

integrated processor Multiple-Instruction-

Multiple-Data (MIMD) stream architecture

connected to DRAM storage as shown in figure 1

[12]. A fuzzy-genetic approach to the BSAT

problem is presented in [6] that makes use of

fuzzy logic [14], [15] to assign a fitness measure

to chromosomes (feasible solutions) in the search

space. The original binary domain {0, 1} is

mapped into a continuous fitness domain [0, 1] by

fuzzy logic. The GA is used to optimise the

solution in the continuous domain and finally the

derived solution is converted back (decoded) to

the Boolean format.

Figure 1. Task partitioning among several

processors.

3. The proposed GA BSAT algorithm

Crossover and mutation operations are applied

to the probable multiple solutions to improve them

and to generate a final solution. For simplicity and

speed, the fitness function returns an integer that is

the number of the clauses satisfied by a solution.

The algorithm stops when a solution is found that

satisfies all the clauses or a predefined number of

generations (iterations) have been executed.

Figure 2 shows the flowchart of the proposed GA

BSAT algorithm. The initial chromosomes are

generated with random values. Mutation is applied

after every 100 (hundred) generations.

Figure 2. Flowchart representation of the

proposed GA BSAT algorithm

3.1. Data structure

For the next few sections, we defined the

following terms

▪ V: number of variables in the Boolean

expression/function

▪ C: Number of clauses in the Boolean

expression/function

▪ P: Size of /number of solutions in current

generation

▪ Q: Size of /number of solutions in next

generation

▪ CURRENT_GENERATION: a PxV matrix

that stores the current P probable solutions

where P is the size of population.

CURRENT_GENERATION[11] is the k-th

solution.

▪ NEW_GENERATION: a QxV matrix that

stores the new probable solutions after cross-

over and Q <= P.

▪ GENERATION: Number of generations the

algorithm is applied to the benchmark.

▪ CURRENT_FITNESS: a Px1 matrix to store

fitness of CURRENT_GENERATION

solutions.

▪ NEW_FITNESS: a Qx1 matrix to store fitness

of NEW_GENERATION solutions.

▪ EXPRESSION: A matrix that stores the

Boolean instance. Row k stores the k-th

clause.

3.2. Partitioning the GA BSAT algorithm

The number of generations to execute is

coarsely partitioned into three sub-generations and

each of the three computers of the DCS executes

one sub-generation. Each computer is able to

execute its own sub-generations without

depending on the others. The GA BSAT algorithm

aborts/discards the other two sub-generations

whenever one computer obtains a solution. The

partitioning is depicted in figure 3.

Figure 3. Parallelisation of GA based BSAT

algorithm onto 3-node DCS computers.

4. Results and discussion

50 random instances are selected from the

benchmark suit uf20-91 [16] and for each of these,

30 readings were taken to obtain statistically

interpretable data.

The GA BSAT search method is applied for

population size of 20 and 10,000 generations.

Since each expression has 20 variables, 20

chromosomes/solutions are considered. It has been

observed that for population sizes larger than 20,

e.g. 40 or 60 and for generations higher than

10,000 there is no significant improvement in

results. The algorithms was compiled using the

GNU C compiler version 3.3.2, first with

optimisations switched off and then with

optimisations set to level O3.

4.1 Single computer configuration: Non-

optimised vs. O3 optimised machine code

For each instance, the executions that found a

solution are considered. The average of these

successful search times are plotted in figure 4. For

most of the instances, O3 optimised code exhibits

a lower run time and is always less than 250 ms.

Figure 4. Run time of GA BSAT search on single

computer for non-optimised and O3 optimised

code.

4.2 The 3-node DCS configuration: Non-

optimised vs. O3 optimised machine code

No straightforward relationship is found

between non-optimised and O3 optimised code

from figure 5 that plots average time of successful

searches. O3 optimised code exhibits lower run

time for more that 35 instances and maximum run

time stays below 400 ms.

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Instance/Boolean expression

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

GA BSAT search on DCS NO optimisation (average of successful searches)

GA BSAT search on DCS O3 optimisation (average of successful searches)

Figure 5. Run time of GA BSAT search on the

DCS for non-optimised and O3 optimised code.

4.3 GA BSAT search on a single computer

vs. on the DCS

Figure 6 and 7 show that the maximum run

time for successful search is higher for non-

optimised code (≈1100ms) than that of O3

optimised code (≈600ms). But, no clear

correlation can be identified between the single

computer and the DCS approach.

4.3.1. Non-optimised machine code. In general,

the GA BSAT algorithm showed superior

performance on the DCS implementation. Figure 6

shows the scenario that in 400 ms time, the DCS

found solutions for 48 instances, whereas the

single computer found solutions for 45 instances.

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Instance/Boolean expression

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

GA BSAT search on single computer NO optimisation (average of successful searches)

GA BSAT search on DCS NO optimisation (average of successful searches)

Figure 6. Run time of GA BSAT search on single

computer and the DCS for non-optimised code.

4.3.2. O3 optimised machine code. For the O3

optimised code, the single computer approach

exhibits better run time than the DCS

implementation. Figure 7 shows that for most of

the instances, successful search run times lie

within 200 ms for GA BSAT on single computer.

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Instance/Boolean expression

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

GA BSAT search on single computer O3 optimisation (avearge of successful searches)

GA BSAT search on DCS O3 optimisation (average of successful searches)

Figure 7. Run time of GA BSAT search on single

computer and the DCS for O3 optimised code.

4.4 Maximum run time for unsuccessful

search

Figure 8 and 9 show the comparison of

maximum run time (unsuccessful search) for non-

optimised and O3 optimised machine code,

respectively. These two figures depict that the sub-

generations should take approximately 1/3rd time

of the entire generation to execute in case of

unsuccessful search.

5. Conclusion

In this paper, a GA approach to solving the

Boolean Satisfiability Problem has been presented.

The problem is coarsely partitioned so that it may

be easily distributed on a 3-node DCS of

computers. Well-known standardised protocols

(SOAP) [17] are used to distribute the problem.

The GA BSAT search algorithm has

demonstrated diverse results for different cases.

These are listed below.

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Instance/Boolean expression

M
a

x
im

u
m

 e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

GA BSAT on single computer NO optimisation (Maximum of 30 readings)

GA BSAT search on DCS NO optimisation (Maximum of 30 readings)

Figure 8. Maximum run time of GA BSAT search

on single computer and the DCS for non-

optimised code.

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Instance/Boolean expression

M
a

x
im

u
m

 e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

GA BSAT search on single computer O3 optimisation (Maximum of 30 readings)

GA BSAT search on DCS O3 optimisation (Maximum of 30 readings)

Figure 9. Maximum run time of GA BSAT search

on single computer and the DCS for O3 optimised

code.

Single computer: non-optimised vs. optimised

machine code: For most of the instances, O3

optimised code takes less time to execute.

DCS: non-optimised vs. optimised machine

code: It was obvious that O3 optimised code

exhibited lower run time for more that 35

instances.

Non-optimised machine code: single computer

vs. DCS: In general, the GA BSAT algorithm

showed superior performance on the DCS by

finding solutions for more instances than single

computer.

O3 optimised machine code: single computer

vs. DCS: The DCS demonstrated a worse run time

than single computer.

Acknowledgement

We wish to acknowledge the support of Dr Abu

Saleh Jabir, Senior Lecturer, Oxford Brookes

University, UK for providing SAT problem

material and suggestions for this research.

6. Reference
[1] Iouliia Skliarova, António B. Ferrari, “A SAT

Solver Using Software and Reconfigurable

Hardware”, Proceedings of the 2002 Design,

Automation and Test in Europe Conference and

Exhibition (DATE 2002).

[2] Michael R. Garey, David S. Johnson, Computers

and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman & Company, San

Francisco, CA: Freeman, 1979, ISBN:

0716710455.

[3] L. Zhang, C. Madigan, M. Moskewicz and S.

Malik, "Efficient Conflict Driven Learning in a

Boolean Satisfiability Solver", Proceedings of

International Conference on Computer Aided

Design (ICCAD2001), San Jose, CA, Nov. 2001.

[4] M. Velev, and R. Bryant, “Effective Use of

Boolean Satisfiability Procedures in the Formal

Verification of Superscalar and VLIW

Microprocessors” Proceedings of the Design

Automation Conference, July 2001.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.

“Symbolic Model Checking without BDDs” Tools

and Algorithms for the Analysis and Construction

of Systems (TACAS'99), number 1579 in LNCS.

Springer-Verlag, 1999.

[6] Witold Pedrycz, Giancarlo Succi, and Ofer Shai,

“Genetic–Fuzzy Approach to the Boolean

Satisfiability Problem”, IEEE transactions on

evolutionary computation, vol. 6, no. 5, October

2002.

[7] I. Foster, C. Kesselman, S. Tuecke, "The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations", International J. Supercomputer

Applications, 15(3), 2001.

[8] Bill P. Buckles and Frederick E. Petry, Genetic

algorithms, IEEE Computer Society Press, CA,

USA, 1992, ISBN 0818629355.

[9] I. Foster, C. Kesselman, J. Nick, S. Tuecke, "The

Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration",

Open Grid Service Infrastructure WG, Global

Grid Forum, June 22, 2002.

[10] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, Reading,

MA: Addison-Wesley, 1989.

[11] K. A. De Jong and W. M. Spears, “Using genetic

algorithms to solve NP-complete problems”

Proceedings of 3rd International Conference on

Genetic Algorithms, San Mateo, CA: Morgan

Kaufmann, 1989, pp. 124–132.

[12] Ying Zhao, Sharad Malik, Matthew W.

Moskewicz, Conor F. Madigan, “Accelerating

Boolean Satisfiability through Application

Specific Processing”, Proceedings of International

Symposium on Systems Synthesis (ISSS2001),

Montréal, Québec, Canada, Sep, 2001, pp. 244-

249.

[13] M.W. Moskewicz, C. F. Madigan, Y. Zhao, L.

Zhang, and S. Malik, “Chaff: Engineering an

efficient SAT solver” in Proceedings of the 38th

ACM/IEEE Design Automation Conference, Las

Vegas, Nevada, June 2001, pp. 530–535.

[14] Zadeh, L.A., "Fuzzy Sets", Information and

Control, Vol. 8, No. 3, June 1965, pp. 338-353.

[15] Bellman, R.E., and Zadeh L.A., “Decision making

in a fuzzy environment”, Management Science,

Vol. 17B, No. 4, 1970, pp. 141-64.

[16] http://www.cs.ubc.ca/~hoos/SATLIB/benchm.htm

l - Last accessed in Aug 2004.

[17] http://gsoap2.sourceforge.net/

