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Abstract 
Over 134,000 individuals went missing last year of which 1,340 were not found at 

all, the number of people who disappear due to a homicide is indeterminate as a 

victim’s body is required to prove a homicide unequivocally. A variety of search 

methodologies are applied to locate clandestine graves ranging from victim recovery 

dogs to geophysics. It has been highlighted that the current search methodologies 

to locate clandestine gravesites are not always successful and require a significant 

amount of time and public funding. This study sought therefore to detect the 

non-volatile and semi-volatile decomposition products from soil and water samples 

which could aid the detection of clandestine gravesites and lead to the development 

of field based chemical tests to speed up the search process. 

 

Three novel alternative analytical methodologies have been developed in order to 

allow for the detection of non-volatile and semi-volatile decomposition products in 

in soil and water samples from a simulated grave environment and actual casework 

samples. The first methodology utilised high performance liquid chromatography 

(HPLC), which indicated that over 100 decomposition specific chemicals were 

detected in the leachate samples. This highlighted the potential for using HPLC as 

an alternative method for the detection of non-volatile and semi-volatile 

decomposition products from soil-water samples. The second methodology 

developed utilised ion chromatography (IC) and has proven its capabilities for the 

analysis of forensic samples by differentiating between the soil samples provided 

and highlighting areas of interest. The third and final methodology developed utilised 

derivatisation gas chromatography (GC) for the targeted analysis of biogenic 

amines putrescine, cadaverine and methylamine. A highly specific methodology 

was developed for the analysis of primary amines in soil-water samples following 

simultaneous derivatisation of these amines using pentafluorobenazaldehyde. 

These amines were detected in the leachate samples from 28 to 669 days post 

burial, which far exceeded other longevity studies conducted within the discipline of 

forensic taphonomy. Putrescine was detected in the casework samples where the 

individual went missing more than 15 years ago and therefore highlights the 

suitability of the established methodology to aid in the search and recovery process 

of clandestine gravesites. Utilisation of these methodologies will lead to further 

identification of the key decomposition products produced during the human 

decomposition process and allows for the development of field-based chemical 
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tests. These field-based test would allow for easier and more rapid search 

procedures, to aid in the detection of clandestine graves and eliminate some of the 

disadvantages of the current search methods.  
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Chapter 1 Introduction 

1.1 Context 
In the United Kingdom over 134,000 individuals went missing last year. Research 

by Tarling and Burrows found that out of the 1008 missing persons cases examined, 

10 people were not found at all (Tarling & Burrows 2004). This indicates that in 

general 1% of the people that go missing are not found equating to about 1,340 

people each year. The number of people who disappear due to a homicide is 

indeterminate as a victim’s body is required to unequivocally determine a homicide. 

The detection of a decomposing human body buried in a clandestine (hidden) grave 

is an essential element to a missing person/murder investigation in order to secure 

a conviction. A variety of search methodologies are applied to locate clandestine 

graves ranging from victim recovery dogs to geophysics. The use of chemical 

analysis to locate human remains has found its way into the American juridical 

system, although the research and methodology were not ready at the time 

according to the defence lawyer. This indicates that chemistry has a potential to aid 

in the detection of human remains as current search techniques are not always 

successful and cost a significant amount of public funding as has been seen in the 

search for Madeline McCann, Keith Bennett and Ben Needham. 

 

Previous research has attempted to identify decomposition markers (chemical, 

physical and biological) to aid in locating clandestine gravesites 

(See Armstrong et al. 2016; Bergmann et al. 2014; Carter & Tibbett 2003; 

von der Lühe et al. 2013; Olakanye et al. 2014, 2015; Stadler et al. 2014; 

Stefanuto et al. 2015a; Vass et al. 1992), although due to the complexity of this 

research none have been conclusively identified (Forbes et al. 2016). The 

identification of chemical decomposition markers has been primarily focused on the 

volatile organic compounds (VOC’s) produced during the decomposition process, 

as seen in studies published by (Agapiou et al. 2015; Dubois et al. 2018; 

Knobel et al. 2018; Perrault et al. 2015a; Stefanuto et al. 2015b; 

Vass et al. 2004, 2008; Vass 2012). While the research herein utilised alternative 

analytical techniques such as HPLC and derivatisation GC to detect additional 

non-volatile/ semi-volatile chemicals in soil-water samples. When adopted, 

field-based tests would allow for easier and more rapid search procedures, to aid in 

the detection of clandestine gravesites. It could be used in combination with victim 
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recovery dogs to confirm or eliminate their alerts, or it can be used systematically to 

locate decomposition hotspots within a particular area and will eliminate some of 

the disadvantages of the current search methods. 

1.2 Detection of Clandestine Graves 
The digging of a grave permanently alters the subsurface soil stratification through 

aerating and mixing the soil which is lifted out from below the surface 

(Haglund & Sorg 1996; Pickering & Bachman 2009; Powell 2006). The soil is 

deposited on top of adjacent surroundings, damaging any neighbouring plant 

growth, and the vegetation is uprooted where the grave is dug (Powell 2006). After 

the body is placed within the grave, the mixed soil is returned to cover the body, the 

alteration of these soil layers continue to be detectable (Killam 2004). In addition to 

removing the vegetation and soil stratification when digging a grave, surface debris 

such as dry leaves, pots, dead flowers, twigs and branches will also be moved. This 

debris settles and compacts over time and thus can’t be replaced in the same 

manner if removed. The recovery time for natural replacement of this surface debris 

is unknown but upcast (soil dug out of the ground and backfilled) is clearly visible 

without any surface debris present (Powell 2006). Hunter et al. (1996) noted that 

the area of upcast is directly proportional to the grave size and even a small grave 

has a much larger disturbed surface in comparison to the grave size. See Table 1 

for a summary of the key principles, advantages and limitations of the different 

search methodologies discussed in this section.
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Table 1 Summary of different search methodologies, their key principles, advantages 

and limitations 

Method Key principles Advantages Limitations 
Ground search 
(visual) 

• Differences 
between gravesite 
and surrounding 
environment1 

• Abrupt change in 
vegetation2 

• Inexpensive if 
volunteers used3 

• Non-destructive3 

• Adaptable to any 
terrain3 

• Searchers 
require training3 

• Not specific3 

Probing • Detection of soil 
compaction 
differences 
between the 
gravesite and 
surrounding 
environment 
through insertion 
of a rod at regular 
intervals3 

• Thorough3 

• Inexpensive if 
volunteers used3 

• Adaptable to any 
terrain3 

• Can be 
performed in 
combination with 
ground searches3 

• Relatively 
destructive3 

• Slow3 

• Regular breaks 
required3 

• Not suitable in all 
weather conditions 
or seasons3 

• Searchers 
require training3 

• Not specific3 

Victim Recovery 
Dogs 

• Locates the 
scent of 
decomposition and 
alerts the handler 
towards the origin 

• Inexpensive3 

• Non-
destructive3,4 

• Quick to cover 
large areas3 

• Adaptable to any 
terrain3 

• Can be utilised in 
many weather 
conditions3 

• Effective over 
water3,4 

• Very specific3 

• Limited 
availability3 

• Cannot be 
utilised in severe 
weather 
conditions3 

• May not always 
indicate the scent 
source3 

• Dog might not be 
specifically trained 
for this purpose4 

Method Key principles Advantages Limitations 
• Regular breaks 
required3 

Resistivity 
surveying 
 

• Detecting 
structural and 
chemical 
anomalies through 
the soils’ ability to 
conduct electricity 

• Relatively 
inexpensive3 
• Provides lateral 
position and depth 
of anomalies3 

• Relatively 
destructive3 

• Good weather 
only3 

• Not suitable for 
all terrain types3 

• Grave may show 
insufficient 
contrast3  
• Affected by 
groundwater3 

• Requires trained 
operator3 

• Requires data 
processing and 
expert 
interpretation3 

• Interference from 
metal and 
electrical sources3 

• Not specific3 
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Method Key principles Advantages Limitations 
Electro-
magnetic 
surveying / 
metal detector 

• Detects 
anomalies in the 
soil via electrical 
conductivity. 
• Detects metal 
objects within 
clandestine 
gravesite if 
present. 

• Quick3,4 

• Can be used in 
densely 
vegetative areas3 

• Non-
destructive3,4 

• Detects metal 
objects3 

• Very 
expensive3 

• Difficult on 
rough terrain3,4 

• Interferences 
from metal or 
electrical 
sources3,4 

• Grave may 
show insufficient 
contrast3 

• Requires 
trained operator3 

• Data 
processing and 
expert 
interpretation 
required3,4 

• Interference 
from electrical 
storms3,4 

• Good weather 
only3 

• Not specific3 

Ground 
penetrating 
radar 
 
 
 
 
 
 
Ground 
penetrating 

• Detects non-
metallic buried 
objects. 
• Detects air 
voids beneath the 
soil surface 

• Results 
available in 
field3,4 

• Lateral position 
and depth of 
anomalies3 

• Sensitive to 
small anomalies3 

• Relatively non-
destructive3,4 

• Very 
expensive3 

• Slow3 

• Requires 
trained operator3 

• Expert 
interpretation 
required3 

• Flat terrain 
only3 

radar 
(continued) 

• Adjustable to 
different 
conditions3 

• Can be used 
over water3,4 

• Clear ground 
required3 

• Good weather 
only3 

• Not effective in 
clay and salt 
water3 

• Not specific3 

1 (Powell 2006), 2 (Rodriguez & Bass 1985), 3 (Killam 2004), 4 (France et al. 1996) 
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1.2.1 Visual Signs (Ground Search) 

Differences in vegetation is one of the visual signs to detect clandestine graves and 

can be detected via ground searches, aerial photography or drones. Vegetation 

differences are caused by digging and soil profile changes through excavation and 

refilling of the soil. In addition, the placement of a body fertilises vegetation through 

decomposition in their root systems but also affects plant growth. A deep grave 

benefits plant growth by providing looser soil for root penetration and trapping 

moisture, whilst shallow graves restrict root penetration and thus restricts plant 

growth (Killam 2004). “Opportunistic” plants will repopulate the disturbed gravesite 

first, which may not be observed in undisturbed areas but the vegetation changes 

as the gravesite progresses through the stages of succession. Hence it is beneficial 

to locating gravesites if local knowledge of the areas’ vegetation is available. 

Disturbed areas can look different from the surrounding area for over five years 

(France et al. 1996). 

 

Another visual sign is the difference between grave fill and surrounding soil. After 

refilling a hole, soil is always left over due to the inflation of soil with air. In addition, 

the placement of a body in the hole will leave a mound (Powell 2006). Over time, 

depressions can be created due to compaction of the soil, depending on soil type, 

moisture and time. Furthermore, secondary depressions may occur over the 

abdomen area of the body, which is an indicator of a shallow grave (Killam 2004). 

Differences in soil chemistry, colour, texture, compactness, moisture retention, 

volume, organic content and pH can also be observed between grave fill and 

surrounding soil through mixing of surface soil with subsoil layers (Killam 2004). 

1.2.2 Probing 

Ground searches are generally non-intrusive, although they can be very intrusive 

when combined with probing techniques and can potentially puncture buried 

remains and confuse post-mortem examination. Probing is the act of inserting a rod 

into the ground in a regular search pattern for which the operator tries to detect the 

softness of a gravesite in comparison to surrounding soil. It is most effective within 

short time periods after body deposition and gets less effective over time as soil 

starts to compact again (Killam 2004). Probing is a very thorough but slow 

procedure, it is very labour intensive and prone to false positives such as rotting tree 

stumps, rodent burrows and trash burial pits. It can be used in conjunction with 
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additional test in the probe holes like subsurface soil temperature measurements, 

soil pH, victim recovery dogs and combustible gas vapour detection (Killam 2004). 

1.2.3 Victim Recovery Dogs 

Victim recovery dogs (VRD) are specially trained to locate decomposition scent and 

locate its handler towards the origin (Rebmann et al. 2000). They can be utilised 

before, in conjunction with or after conventional foot searches but extensive training 

is required to become fully qualified (Killam 2004). A dogs’ scent capacity is 1000 

times more sensitive than that of humans, which makes them an important 

component in the forensic tool kit (Larson et al. 2011). Decomposition gasses are 

carried by the air current and tend to pool in sheltered areas, which could be alerted 

to by VRD as false positives (Killam 2004). VRD are able to work on difficult terrain, 

are quick to cover large search areas, however they require regular rest intervals 

otherwise they can suffer from nose fatigue. Success is dependent on a variety of 

factors such as time since death, burial depth, barometric pressure, temperature 

and wind conditions (France et al. 1996; Killam 2004; Larson et al. 2011). Optimal 

working conditions for a VRD is between 4°C and 16°C with a humidity above 20%, 

moist soil and a wind speed of at least 8km/h (France et al. 1996). 

1.2.4 Geophysics 

Resistivity surveying is one of the geophysical techniques available to assist in 

locating clandestine gravesites through the detection of structural and chemical 

anomalies. If the spread between the instrumental electrodes is known and the 

subsurface is homogenous, then the current is predictable. Changes in these 

resistivity currents provides tentative identification of changes in subsurface 

physical conditions like a burial site. The ability of soil to conduct electricity is 

dependent on soil porosity and ionic compounds present (salinity) in the pore-water. 

Soil porosity is dependent on soil compactness, and shape of the pores (Carr 1982; 

Killam 2004), whilst salinity of the pore-water is critical to measure resistivity 

(Dobrin 1976). Resistivity surveys’ are unpredictable due to changing soil moisture 

conditions which makes the data relative, but a grave containing a body contains an 

organic richer area of disturbed soil and thus should provide a difference in 

conductivity. Resistivity surveying equipment does not operate properly in dry 

conditions and might require the soil to be moistened around the electrodes but it is 

neither favourable in very dry or very wet conditions (Killam 2004). Accuracy is 

affected due to burial depth, rough terrain and the vast variability of soil physical and 
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chemical properties but is extremely powerful in combination with other geophysical 

search techniques (Killam 2004). In addition, resistivity surveying is cheap, easy to 

use but requires expert data interpretation, relatively non-destructive and based on 

well-established physical principles. 

 

Electromagnetic surveying is another geophysical technique utilised to assist in 

locating clandestine gravesites. It creates electromagnetic induced currents into 

magnetic conductors, which themselves create electromagnetic waves which can 

be instrumentally detected (Killam 2004). Thus, the electrical conductivity of the 

ground is measured or it can be used to find electrical conductors such as metal 

objects (Wait 2012). Electromagnetic surveying is dependent on the soils’ magnetic 

permeability, electrical conductivity and dielectric constant (property that governs 

the propagation of electromagnetic waves). In comparison to resistivity surveying, 

electromagnetic surveying is faster, can be performed wherever a person is able to 

walk and is in particular suitable in dry soil or dense vegetative areas. In addition, it 

can be operated by a single person instead of two or more people for resistivity 

surveying, is less destructive but still requires expert interpretation (Killam 2004). 

Electromagnetic surveying is less sensitive in hilly areas and has shown difficulties 

in both low and high conductive areas. Analysis is severely affected by cultural and 

natural features of conducting nature such as electrical storms, even at a distance 

away and cannot be used within 10 meters of metal objects (Killam 2004). 

 

Metal detectors are a type of electromagnetic surveying instruments specifically 

designed to detect conductive metals and minerals. It applies the same principles 

as electromagnetic surveying equipment and is very sensitive, reliable and 

lightweight. As it only detects small metal objects it does not require any expert 

interpretation but is also not able to simultaneously detect the soil’s 

conductivity/resistivity and metal objects (Killam 2004). Thus, metal detectors are 

less likely to locate clandestine gravesites unless conductive metal objects have 

been buried with the victim. 

 

Ground penetrating radar (GPR) was developed by the military to detect 

non-metallic buried objects and has since been applied to aid in locating clandestine 

gravesites (Killam 2004). GPR has the ability to detect small objects such as a one-

inch pipe under 2.5 feet of soil and is able to detect air voids and disturbed soils 
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beneath the soil surface (areas that have been excavated and refilled) (Killam 2004). 

Clay, slit and salt water severely affect GPR penetration whilst metals or metal mesh 

completely negate penetration. GPR surveying is very slow (1mile/H), works best 

on flat ground under arid conditions in sandy soil. Furthermore, it is quite expensive, 

relatively easy to use (except to manoeuvre), non-intrusive and non-destructive 

(Killam 2004). 

1.3 Decomposition Process 

Human decomposition commences approximately four minutes after death 

(Dent et al. 2004; Vass 2001; Vass et al. 2002), but is dependent on environmental 

parameters such as temperature, moisture content, oxygen availability and soil type 

(Galloway 1996; Gunn 2006; Vass et al. 1992). Decomposition occurs in a 

predictable order and can be characterised into two main stages, pre- and 

post-skeletonisation (Vass et al. 1992). Pre-skeletonisation can be broken down into 

four subsequent stages; fresh, bloated, active decay and dry, as was first described 

by Reed (Reed Jr. 1958). All decomposing bodies will go through these stages, but 

variables such as temperature, moisture content and oxygen availability will 

determine the length of each stage and the rate of decomposition (Vass et al. 2002). 

 

The initial stage of decomposition, the fresh stage, starts with a process called 

autolysis, during which rigor mortis (stiffening of muscles), livor mortis (pooling of 

blood in the body) and algor mortis (cooling of the body to ambient temperature) 

also may be observed (Gunn 2006; Vass et al. 2002). This decomposition stage is 

usually observed after a few days post mortem through the appearance of fluid filled 

blisters and skin slippage. During autolysis the cells of the body are deprived of 

oxygen which increases the carbon dioxide content, this decreases the pH and 

poisons the cells through an accumulation of waste. Concurrently, cellular enzymes 

(such as lipases, proteases, amylases, etc.) start to digest the cells from the inside 

out, causing the cells to rupture and release nutrient-rich fluids into the body. This 

process starts sooner and advances more rapidly in high enzyme content tissues, 

such as the liver but it affects all cells eventually (Vass et al. 2002). 

 

Putrefaction starts in the second decomposition stage, the bloated stage, after 

enough cells have ruptured and nutrient-rich fluids have become available in the 

body (Vass et al. 2002). Putrefaction is the catabolism of carbohydrates, proteins 
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and lipids, present in the soft tissue, into gasses liquids and small molecules 

(Gill-King 1997; Vass et al. 2002). Microorganisms such as bacteria, fungi and 

protozoa, are responsible for this soft tissue breakdown in a mostly anaerobic 

environment (Vass et al. 2002). The presence of sulfhemoglobin settled in blood is 

usually the first visible sign of putrefaction through a greenish discoloration on the 

skin (Gunn 2006; Vass et al. 2002). The formation of various gasses such as 

ammonia, carbon dioxide, hydrogen sulphide and VOC’s result in the distension of 

tissues, especially in the bowels (Vass et al. 2002). These gasses are responsible 

for the bloating of the carcass and a build-up of pressure results in purging from the 

body, often severe enough to tear the skin apart and cause post-mortem injuries 

(Gunn 2006). 

 

After the skin has been broken in one or more places due to putrefactive purging, 

active decay begins (Vass et al. 2002). Active decay can be observed through 

deflation of the body as various gasses escape, progressive loss of skin and soft 

tissues (Gunn 2006). During active decay, amino acids present in the body, and 

produced from protein catabolism, decompose to form volatile fatty acids or biogenic 

amines dependent on the decomposition pathway (see Section 1.4.3 

Decomposition of Proteins). Glycerols and phenolic compounds are produced from 

the decomposition of protein and lipids. Putrefaction still occurs during this stage, 

as chemical constituents are still degraded and released (Swann et al. 2010b; 

Vass et al. 2002). Aerobic and anaerobic bacteria, prominent insect activity and 

carnivore activity contribute significantly to the decline of tissue during this 

decomposition stage (Vass et al. 2002). 

 

The fourth and final pre-skeletonisation stage of the decomposition process is the 

dry stage. During this stage any remaining moist skin and tissue is converted to a 

leathery-like sheet that adheres to the bone. Skeletonisation of the cadaver occurs 

and is characterised by the appearance of over 50% exposed bone, however 

erosion of the skeletal remains has not yet begun (Swann et al. 2010b). 

Skeletonisation proceeds until only the resistant bone, teeth and cartilage remains 

(Dent et al. 2004; Swann 2011). Chemical weathering of the remains continues 

during this decomposition stage but takes substantially longer than the previous 

decomposition stages. Diagenesis, the exchange of ionic species from the bones to 
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the surrounding environment, occurs during this stage, but the rate is affected by 

different soil environments (Gill-King 1997; Swann 2011). 

 

Although the decomposition process is divided into the four stages described above, 

distinction between these stages can be difficult to identify (Swann 2011). These 

stages merge into each other and it is impossible to separate them into discrete 

entities. A body rarely decomposes in a uniform manner and often one part of the 

body is reduced to a skeleton while another part of the body still has fleshy tissue 

(Gunn 2006). In addition, differences in ecological parameters produces specific 

variations on the general decomposition pattern (Galloway 1996). 

1.3.1 Factors Affecting Decomposition 

The chemical and physical changes observed during decomposition are strongly 

influenced by environmental conditions such as temperature, humidity/rainfall and 

oxygen availability (Gunn 2006; Vass et al. 2002). Other factors that can contribute 

to decomposition rates are carnivore activity and soil pH (Mann et al. 1990). 

Variables affecting the decomposition rate which relate to the cadaver itself are 

referred to as intrinsic factors, whilst those relating to the decomposition 

environment are referred to as extrinsic factors (Breton 2013). Only the latter will be 

discussed in this section as they affect the decomposition rate more significantly 

(Casper 1861). 

 

Temperature has been regarded as the most significant factor affecting the rate of 

decomposition (Gill-King 1997; Mann et al. 1990). This has been adopted from an 

entomological perspective where temperature significantly affects the development 

of blowfly larvae (Archer 2004). A study conducted by Carter et al. (2008) highlighted 

a positive relationship between temperature and the decomposition process from a 

taphonomic point of view. Bio-chemical reactions within our bodies and 

microorganisms occur most optimal around 37°C, cooling or heating of the body to 

a different ambient temperature slows or speeds cell metabolism by affecting the 

enzyme systems that regulate most reactions. Enzymes are subject to denaturation, 

coagulation and crystallisation at extreme temperatures affecting the catabolism of 

proteins and carbohydrates (Gill-King 1997; Vass et al. 1992). The physical principle 

known as Van’t Hoff’s rule, also called the ‘rule of ten’, has been applied to the 



11 

 

decomposition process and states that the rate of chemical reactions increases two 

or more times with each 10°C temperature increase (Gill-King 1997). 

 

Water affects the decomposition process in multiple ways, it has a stabilising effect 

on temperature and acts as a buffer controlling the tissues and environmental pH. 

Water is also a source of hydrogen for biochemical reactions in all cells, in addition 

to its diluting effect on chemical concentrations inside and outside the cells. The rate 

of decomposition for a body submerged in water may be accelerated or retarded 

depended whether the water is salty or fresh, moving or still, or differences in pH 

(Gill-King 1997). A cadaver in a wet soil environment tends to result in reducing 

conditions and decreases the decomposition rate, whilst low moisture content 

promotes desiccation (Carter et al. 2010). However, water also affects the osmotic 

environment of cells leading to protrusion of the organs and rupture of the cells and 

can therefore increase the decomposition rate (Ayers 2010; Gill-King 1997). 

Moisture also affects the soil microbial activity as its availability controls microbial 

mobility, diffusion of nutrients and waste, and the acidity of extracellular enzymes 

and thus encourages the growth of mycota, bacteria and plants (Carter et al. 2010; 

Gill-King 1997). These effects are however altered by soil texture and structure as 

moisture availability is partially determined by adhesion between water and the soil 

particles (Carter et al. 2010). Hydrolase enzymes utilise water to break down 

carbohydrates, lipids and proteins into smaller molecules, however their activity is 

affected by concentration and pH, which is affected by the amount of water present. 

It is assumed that the ambient atmospheric humidity plays an important role in these 

reactions when the bodies are not immersed in water (Gill-King 1997). 

 

Cadavers restricted from an oxygen supply such as those deeply buried, 

submerged, at high altitude (above 3km), or left in any hermetic environment will 

decompose more slowly (Gill-King 1997; Gunn 2006). A retardation of oxidative 

processes is observed affecting the decomposition rate due to the lack of available 

oxygen, lowering the redox potential (Gill-King 1997; Rodriguez & Bass 1985). 

Casper (1861) noted that decomposition in soil takes approximately eight times 

longer than aboveground decomposition. Whilst, decomposition under water has 

been reported to be twice as long as when exposed to air and would be even longer 

at lower oxygen levels and temperatures (Gunn 2006). Soils and water that contain 

decaying organic matter without the availability of oxygen become reducing 
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environments (i.e. acidic), whilst the opposite is observed for oxygen rich 

environments. Mammalian cells are quickly affected by anoxia, however the 

opposite is true for many soil-borne bacteria which decompose the bodies in the soil 

(Gill-King 1997). Depletion of the available oxygen, decreased diffusion rates, 

initiates the decomposition process due to an increase in carbon dioxide, which 

stimulates the activity of the soil-borne bacteria (Gill-King 1997). Sub-surface 

decomposition at least when buried 30 cm deep will not experience scavenging and 

invertebrate colonisation which significantly affects the decomposition process 

(Gunn 2006; Rodriguez & Bass 1985). 

1.4 Thanatochemistry 

During decomposition, soft tissue will be broken down by endogenous enzymes and 

micro-organisms such as bacteria, fungi and protozoa resulting in the production of 

inorganic gasses, organic gasses (also called volatile organic compounds) and 

liquids (leachate) (Statheropoulos et al. 2005; Paczkowski & Schütz 2011; 

Vass et al. 2002). These substances are intermediate decomposition products of 

large biological macromolecules such as carbohydrates, proteins and nucleic acids 

(Statheropoulos et al. 2005; Vass et al. 2002). The body consists of approximately 

64% water, 20% protein, 10% fat, 1% carbohydrate and 5% minerals 

(Dent et al. 2004). 

 

Proteins are enzymatically broken down to proteoses, peptones, polypeptides and 

amino acids, which are further broken down through deamination, decarboxylation 

or desulfhydration (Dent et al. 2004; Gill-King 1997). This in combination with 

bacterial metabolic processes produces a variety of VOC’s such as aldehydes, 

alcohols, aromatics, carboxylic acids (volatile fatty acids) and sulphides 

(Boumba et al. 2008; Paczkowski & Schütz 2011). Carbohydrates are broken down 

into their monomers by various microorganisms and are further broken down to 

carbon dioxide, water, volatile fatty acids and alcohols depending on oxygen 

availability (Dent et al. 2004; Paczkowski & Schütz 2011). During the decomposition 

of lipids, triglycerides are hydrolysed to produce glycerol, saturated fatty acids and 

unsaturated fatty acids, which subsequently undergo hydrogenation or oxidation. 

Hydrogenation of unsaturated fatty acids produces saturated fatty acids, whilst 

oxidation converts these fatty acids into ketones and aldehydes and can decompose 

further to carbon dioxide and water (Dent et al. 2004). 
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1.4.1 Decomposition of Carbohydrates 

Carbohydrates in the soft tissue degrade as a result of decomposition, 

microorganisms breakdown polysaccharides such as glycogen to its glucose 

monomers (Corry 1978; Forbes 2008). The resulting sugars are either completely 

oxidised to carbon dioxide and water or incompletely decomposed to form volatile 

fatty acids and alcohols (Forbes 2008). Pyruvate is predominantly produced from 

the breakdown of hexoses through either the Embden-Meyerhof-Parnas glycolytic 

pathway and the Entner-Doudorff pathway (Paczkowski & Schütz 2011). The 

Pseudomonadaceae family, which is abundant in soil, water and on the skin, utilises 

the Entner-Doudoroff pathway for their energy production 

(Paczkowski & Schütz 2011). Pyruvate is in turn fermented by anaerobic bacteria to 

yield acetic acid, butanoic acid and lactic acid, whilst citric acid, glucuronic acid and 

oxalic acid are produced by aerobic fungi (Forbes 2008; Paczkowski & Schütz 

2011). Some additional breakdown products are pyruvic acid, propanoic acid, 

acetaldehyde, acetone, 1-propanol, 2-propanol, 1-butanol and 1,3-butanediol, see 

Table 2 (Boumba et al. 2008; Dent et al. 2004). 

Table 2 Metabolic products of carbohydrate decomposition, adopted from Paczkowski & Schütz (2011) 

Microbial Family Location Metabolic pathway Metabolic products 

Baccilaceae Upper soil layers Mixed acid 
fermentation 

Lactic acid, succinic 
acid, acetic acid, 
formic acid and 

ethanol 
Bifidobacteriaceae Intestine and sexual 

organs 
Bifidum pathway Acetic acid and lactic 

acid 
Clostridiaceae Intestine, anaerobic 

soil layers 
Pyruvate 

fermentation 
Acetone, ethanol, 1-
butanol, acetic acid, 
butanoic acid and 

1,3-butanediol 
Enterobacteriaceae Intestine, soil, water Mixed acid 

fermentation 
Lactic acid, succinic 

acid, acetic acid, 
formic acid and 

ethanol 
2,3-Butanediol 
fermentation 

2,3-Butanediol, lactic 
acid, acetic acid, 
formic acid and 

ethanol 
Enterococcaceae oral cavity, intestine, 

urethra and sexual 
organs 

Mixed acid 
fermentation 

Lactic acid, succinic 
acid, acetic acid, 
formic acid and 

ethanol 
Lactobaccilaceae Intestine Lactic acid 

fermentation 
Acetate, ethanol and 

lactic acid 
Propionibacteriaceae Skin and intestine Propanoic acid 

fermentation 
Acetic acid and 
proanoic acid 

Streptococcaceae Oral cavity Lactic acid 
fermentation 

Acetate, ethanol and 
lactic acid 
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Carbohydrates are metabolised by the Bifidobactiraceae species through the 

bifidum pathway to form acetic acid and lactic acid. These anaerobic bacteria are 

present in the intestine and sexual organs (Paczkowski & Schütz 2011). Many 

Clostridiaceae species ferment pyruvate through the pyruvate fermentation pathway 

to yield acetic acid, acetone, butanoic acid, 1-butanol, 1,3-butanediol and ethanol 

(Boumba et al. 2008; Paczkowski & Schütz 2011). Clostridiaceae are anaerobic 

bacteria that are present in the intestine and anaerobic soil layers, but can survive 

in aerobic conditions as they sporulate and such colonise a body from the inside 

and outside (Paczkowski & Schütz 2011). The Bacillaceae, Enterobacteriaceae and 

Enterococcaceae families are facultative anaerobic bacteria present in the intestine 

and ferment pyruvate to yield acetic acid, ethanol, formic acid, lactic acid and 

succinic acid via mixed acid fermentation (Boumba et al. 2008; 

Paczkowski & Schütz 2011). The Klebsiella genus of the Enterobacteriaceae is 

predominantly present in soil and water and produces acetic acid, 2,3-butanediol, 

ethanol, formic acid and lactic acid through 2,3-butanediol fermentation. Species of 

the Lactobacillaceae and Streptococceae family are facultative anaerobic bacteria 

that produce acetate, ethanol and lactic acid through the lactic acid fermentation 

pathway. Whilst the air tolerant Propionibacteriaceae family ferments carbohydrates 

or lactic acid to yield acetic acid and propanoic acid through propanoic acid 

fermentation pathway. Species of the Propionibacteriaceae family are anaerobic 

bacteria which grow relatively slowly on the skin and in the intestine 

(Paczkowski & Schütz 2011). 

 

Yeasts contribute much less to vertebrate decomposition in comparison to bacteria 

(Corry 1978; Paczkowski & Schütz 2011). The Candida Genus has been observed 

in the intestine, oral cavity, sexual organs and between the fingers and toes of 

decomposing vertebrates. It is the constant metabolism of these aforementioned 

micro-organisms that leads to the formation of organic and inorganic gaseous 

compounds that cause bloating which results in rupturing the outer skin. 

Consequently, the inner fluids come into contact with oxygen and aerobic 

micro-organisms from the air and soil, which will colonise the decomposing body 

(Paczkowski & Schütz 2011). 
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1.4.2 Decomposition of Lipids 

All cells contain lipids in their phospholipid membrane, whilst triglycerides are 

present in intramuscular fat (inside muscular tissue) and depot fat (under the skin). 

Triglycerides can be hydrolysed by microbial lipolytic enzymes to yield glycerol and 

fatty acids. Glycerol is degraded to produce ATP (Adenosine triphosphate), NADH 

(Nicotinamide Adenine Dinucleotide) and pyruvate, which is in turn decomposed to 

a range of products, see Section 1.4.1 Decomposition of Carbohydrates 

(Paczkowski & Schütz 2011). The fatty acids are further oxidised or hydrogenised 

to yield acetaldehyde, acetic acid, acetone, ethanol, 1-propanol, 2-propanol and 

propionic acid (Boumba et al. 2008; Paczkowski & Schütz 2011). 

 

Following death, lipids are hydrolysed by intrinsic lipases to yield a mixture of fatty 

acids that can undergo hydrolysis or oxidation, depending on the surrounding 

environment (Forbes 2008). Oxidation will be favoured in aerobic environments, 

which converts the unsaturated fatty acids to aldehydes and ketones by bacteria, 

fungi and air. However, oxidation is less likely to occur than hydrolysis in a grave 

environment as the body is constantly exposed to reducing conditions (Forbes 2008; 

Hopkins et al. 2000). The saturated and unsaturated fatty acids will undergo further 

hydrolysis or hydrogenation in an oxygen deficient environment, which is enhanced 

by the presence of bacterial enzymes and moisture (Forbes 2008; 

Schotsmans et al. 2017). 

 

Lipolytic enzymes which aid in the anaerobic hydrolysis and hydrogenation of lipids 

are produced by various Clostridiaceae species. Moisture is essential for the 

survival of bacteria and the hydrolysis of lipids, which is usually present in the 

tissues for these reactions to occur (Forbes 2008). If sufficient moisture and enzyme 

activity is present, hydrolysis of the fatty tissues will continue until all lipids are 

reduced to fatty acids, which in turn can form adipocere under the suitable 

conditions (Forbes 2008). Fungal lipoxygenase enzymes mainly produce C6 or C9 

aldehydes and C8 alcohols or C8 ketones, in addition to aldehydes and ketones 

other chemical compounds that can be formed are acids, esters, epoxides and 

hydrocarbons (Boumba et al. 2008; Dent et al. 2004; Paczkowski & Schütz 2011). 
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1.4.3 Decomposition of Proteins 

Amino acids are the major components of muscle tissue proteins, membrane 

proteins and free proteins. During decomposition, proteins are enzymatically 

degraded to peptones, polypeptides and amino acids through proteolysis 

(Forbes 2008). Microbial proteases and peptidases yield free amino acids from 

peptones and polypeptides, which can be further degraded to the formation of 

volatile products (Paczkowski & Schütz 2011). Neuronal and epithelial cells are 

usually the first cells to be affected, however the connective tissues and cartilage 

will eventually also decompose (Dent et al. 2004; Forbes 2008). The epidermis and 

muscle protein will resist decomposition for some period of time but would not 

survive as long as keratin and collagen. Keratin is a water insoluble protein found in 

the skin, hair and nails and is resistant to most proteolytic enzymes and is often 

found intact on skeletal remains (Forbes 2008). 

 

Ammonia is one of the products produced from the degradation of amino acids and 

is produced through deamination of various amino acids (Dent et al. 2004). 

Decarboxylation, another degradation pathway for the degradation of amino acids 

yields biogenic amines such as putrescine and cadaverine from arginine/ornithine 

and lysine respectively (see Table 3). Section 1.5 Analysis of Biogenic Amines 

discusses the formation of biogenic amines such as putrescine and cadaverine in 

more detail (Paczkowski & Schütz 2011). Ammonia is present in soil as the 

ammonium ion at low pH and can be utilised by surrounding plants. The ammonium 

ions not utilised by plants can undergo nitrification (conversion of ammonia to 

nitrate) and denitrification (reduction of nitrate to nitrite, nitrogen gas and nitrous 

oxide) (Forbes 2008) which are detectable via ion chromatography. Two groups of 

micro-organisms are active in the nitrification process; the first group oxidises 

ammonia to nitrite (e.g. Nitrosomonas spp.), and the second group converts nitrite 

to nitrate (e.g. Nitrobacter spp) (Chapelle 2001; Forbes 2008). Nitrifying organisms 

are sensitive to environmental pH with Nitrosomanas spp working optimally between 

pH 7 and 9, and Nitrobacter spp working optimally between pH 5 and 8 

(Forbes 2008). Nitrification occurs in an aerobic environment, conversely 

denitrification requires and anaerobic environment such as a gravesite by bacteria 

from the Achromobacter, Bacillus, Micrococcus, and Pseudomonas genus 

(Chapelle 2001; Forbes 2008). Accumulation of ammonia can occur in a grave 

environment as large quantities of ammonia can be produced from amino acids 
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under anaerobic conditions, and nitrification is inhibited under those conditions 

(Carter & Tibbett 2003; Forbes 2008). 
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Table 3 Metabolic products of amino acid decomposition, adopted from Paczkowski 

& Schütz (2011) 

Amino acid Metabolic pathway Metabolic products 
Arginine ® 
Ornithine 

Decarboxylation Putrescine (1,4-diaminobutane) 

Cysteine Anaerobic Sulphur, hydrogen sulphide, 
dimethyl sulphide, dimethyl 
disulphide, dimethyltrisulphide, 
dimethyltetrasulphide 

Desulfhydrase Ammonia, hydrogen sulphide, 
pyruvate 

Isoleucine Ehrlich pathway, 
Anabolic biosynthetic 

pathway 

1-Propanol, 2-methyl-1-
propanol, 2-methyl-1-butanol, 3-
methyl-1-butanol 

Yeasts 1-Propanol, 2-methyl-1-butanol, 
3-methyl-1-butanol, 1-pentanol 

Leucine Ehrlich pathway, 
Anabolic biosynthetic 

pathway 

1-Propanol, 2-methyl-1-
propanol, 2-methyl-1-butanol, 3-
methyl-1-butanol 

Moraxella 
phenylpyruvica, 

Staphylococcus 
xylosus, 

Staphylococcus 
starnosus transforme 

3-Methyl-1-butanol, 3-
methylbutanal, 3-
methylbutanoic acid 

Yeasts 1-Propanol, 2-methyl-1-butanol, 
3-methyl-1-butanol, 1-pentanol 

Lysine Decarboxylation Cadaverine 
(1,5-diaminopentatne) 

Methionine 
 
 
 
 
Methionine 
(continued) 

Anaerobic Hydrogen sulphide, dimethyl 
sulphide, dimethyl disulphide, 
dimethyltrisulphide, 
dimethyltetrasulphide, 
methanethiol 

Aerobic Dimethylsulphide 
H. alvei,  Dimethylsulphide, methanetiol 

E. agglomeran,  
S. liquefaciens,  
A. putrefaciens, 
A. hydrophila 
Desulfhydrase Ammonia, hydrogen sulphide, 

pyruvate 
Threonine Yeasts 1-Propanol, 2-methyl-1-butanol, 

3-methyl-1-butanol, 1-pentanol 
Tryptophan Bacteroides, 

Lactobacillus, 
Clostridium, 
Bifidobacterium, 
Peptostreptococcus 

Indole, Indonyl acetic acid, 
Indonyl prpanoic acid 

Tyrosine S. albus, 
B. fragilis, 
Fusobacterium sp., 
Bifidobacterium spp., 
C. paraputrificum, 
C. butricum, 
C. sporogenes, 
C. septicum 

4-Methylpehnol, propanoic acid 
phenyl ester 

E. coli, 
Proteus sp., 
E. faecalis, 
S. albus 

Phenol 

Valine Ehrlich pathway, 
anabolic biosynthetic 
pathway 

1-Propanol, 2-methyl-1-
propanol, 2-methyl-1-butanol, 3-
methyl-1-butanol 

Yeasts 1-Propanol, 2-methyl-1-butanol, 
3-methyl-1-butanol, 1-pentanol 



19 

The sulphur-containing amino acids cysteine and methionine are broken down 

under anaerobic conditions to dimethyl sulphide, dimethyl disulphide, dimethyl 

trisulphide, dimethyl tetrasulphide, hydrogen sulphide and thiols (Dent et al. 2004; 

Gill-King 1997; Paczkowski & Schütz 2011). Methanethiol and dimethyl sulphide are 

produced during aerobic metabolism of methionine by Hafnia alvei, Enterobacter 

agglomeran, Serratia liquefaciens, Alteromonas putrefaciens and Aeromonas 

hydrophila, see Table 3 (Paczkowski & Schütz 2011). The anaerobic conditions in 

a grave environment favours the production of sulphides, which can transform to 

sulphurous acid, sulphur and sulphate under aerobic conditions (Dent et al. 2004; 

Forbes 2008; Paczkowski & Schütz 2011). 

 

The amino acids isoleucine, leucine and valine are fermented through the Ehrlich 

pathway or through anabolic biosynthesis to produce 2-methylbutanol, 

3-methylbutanol, propanol and 2-methylpropanol (Boumba et al. 2008; 

Paczkowski & Schütz 2011). Leucine can also decompose to 3-methylbutanal, 

3-methylbutanoic acid and 3-methylbutanol by the Moraxella phenylpyruvica, 

Staphylococcus xylosus and Staphylococcus starnosus transforme bacteria. 

Decomposition of tryptophan by Bacteroides, Lactobacilus, Clostridium, 

Bifidobacterium and Peptostreptococcus yields indole, indoyl acetic acid and indoyl 

propionic acid (Paczkowski & Schütz 2011). Anaerobic tyrosine catabolism by a 

variety of bacteria (see Table 3) yields 4-methylphenol and propionic acid phenyl 

ester, whilst phenol is produced from tyrosine under facultative anaerobic conditions 

by E. coli, Proteus sp., Enterococcus faecalis and S. albus 

(Paczkowski & Schütz 2011). 

 

Indolic and phenolic compounds are oxidised by mono- and di-oxygenases under 

aerobic conditions, but are fermented to acetic acid, butyric acid, hexanoic acid, 

hexanedioic acid, cyclohexanol, cyclohexanone, phenol, propionic acid, methane, 

CO2 and H2 gas under anaerobic conditions by methanogenic bacteria in the 

intestine (Paczkowski & Schütz 2011). In addition to bacterial catabolism, yeasts 

can catabolise the amino acids isoleucine, leucine, threonine and valine to yield 

2-methylbutanol, 3-methylbutanol, pentanol and propanol (Boumba et al. 2008; 

Paczkowski & Schütz 2011). 
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1.5 Analysis of Biogenic Amines 
Biogenic amines are nitrogen-containing compounds present in vegetable, microbial 

and animal cells and are mainly formed through decarboxylation of amino acids but 

can also be formed through amination of ketones and aldehydes 

(Innocente et al. 2006; Karovicova & Kohajdova 2005; Önal 2007; 

Pineda et al. 2012; Płotka-Wasylka et al. 2015; Teti et al. 2002). These amines are 

found in the aquatic environment, soil and air where they can be released by 

organisms while alive or during decomposition of animals and plants 

(Płotka-Wasylka et al. 2015). Oxidative decarboxylation of amino acids by bacteria 

for example the Sherwanella spp yields the formation of biogenic amines such as 

dimethylamine and trimethylamine (Paczkowski & Schütz 2011). By-products from 

the breakdown of proteins include biogenic amines such as histamine, tryptamine 

and phenylethylamine (Forbes 2008; Gill-King 1997; Paczkowski & Schütz 2011). 

Other reportedly commonly detected decomposition products are the biogenic 

amines putrescine and cadaverine, which are produced from the decarboxylation of 

ornithine (arginine hydrolysis yields ornithine) and lysine respectively, see Table 3 

(Forbes 2008; Paczkowski & Schütz 2011). The decarboxylation products 

putrescine and cadaverine are reported in the literature as markers of 

decomposition and have been suggested to be key chemicals in locating human 

remains by VRD (Agapiou et al. 2015; DeGreeff & Furton 2011; 

Dekeirsschieter et al. 2009, 2012; Rebmann et al. 2000; Rosier et al. 2015; 

Statheropoulos et al. 2005, 2007, 2011; Vass et al. 2004). However, putrescine and 

cadaverine have not commonly been detected in decomposition related studies and 

is discussed in more detail below (Schotsmans et al. 2017). 

 

Putrescine and cadaverine were first identified in 1885 by Ludwig Brieger through 

isolation from decomposing animal tissue (Lawrence 2004; Olle 1986). Putrescine 

(1,4-diaminobutane) is formed from decarboxylation of the amino acid ornithine and 

hydrolysis of the amino acid agmatine, which are both derived from the amino acid 

arginine. Cadaverine (1,5-diaminopentane) is formed through decarboxylation of the 

amino acid lysine (Lawrence 2004; Olle 1986). These biogenic amines can also 

rearrange upon heating to produce pyrroline and piperidine from putrescine and 

cadaverine respectively that can further react to form a variety of compounds 

including nitrosamines, see Figure 1 and Figure 2 (Callery & Geelhaar 1984; 

Cohen 1998; Glick 2009; Lundgren & Hankins 1978). Additionally, putrescine is also 
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a precursor for the production of spermine and spermidine (Cohen 1998; Olle 1986; 

Tabor & Tabor 1976). 

 

Putrescine and cadaverine have regularly been cited as important biomarkers for 

decomposition and have been used in the training of victim recovery dogs (VRD) 

(Dent et al. 2004; Lorenzo et al. 2003; Stadler et al. 2012; 

Statheropoulos et al. 2007; Tipple et al. 2014; Vass et al. 2002). Several eminent 

researchers, however noted that these biogenic amines were not detected in their 

studies (Dekeirsschieter et al. 2009, 2012; Hoffman et al. 2009; 

Statheropoulos et al. 2005, 2007, 2011; Vass et al. 2004). These biogenic amines 

were also not reported or reported as absent in the majority of 

decomposition-related Volatile Organic Compound (VOC) characterisation studies 

(Brasseur et al. 2012; Cablk et al. 2012; Forbes & Perrault 2014; 

Forbes et al. 2014a, 2014b, 2016; DeGreeff & Furton 2011; DeGreeff et al. 2012; 

Kasper et al. 2012; Perrault et al. 2014, 2015b, Rosier et al. 2014, 2015; 

Stadler et al. 2013; Stefanuto et al. 2014, 2015a, 2015b; Paczkowski et al. 2015; 

Vass et al. 2008; Vass 2012). The only taphonomic studies which detected 

putrescine and/or cadaverine were by Bonte & Bleifuss (1977), Fiedler et al. (2004), 

Swann et al. (2012) and Vass et al. (2002). 
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Figure 1 Formation and breakdown of putrescine 

 

 
Figure 2 Formation and breakdown of cadaverine 
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Some explanations have been given in the literature as to why these biogenic 

amines were not detected during the decomposition of human remains. These 

explanations ranged from a lack of volatility to thermal lability, metabolism of 

putrescine and cadaverine and the formation of non-volatile salts 

(Lundgren & Hankins 1978; Lundgren & Fales 1980; Tipple et al. 2014; 

Vass et al. 2004). A study by Tipple et al. (2014) however demonstrated that 

putrescine and cadaverine were detected in commercially available VRD training 

aids, called pseudo scents, using liquid injection (direct injection) and in the 

headspace of a few millilitres (a significant quantity) neat putrescine and cadaverine 

in a sample container. They concluded incorrectly that there were no instrumental 

reasons why these amines would not be detected using gas chromatography (GC), 

although the concentration detected was unknown but was likely very high. 

Stadler et al. (2012) also reported the detection of putrescine and cadaverine 

including their breakdown products 2-pyrrolidone and 4-aminobutyric acid during the 

analysis of these pseudo scents by direct injection GC-MS. The levels of putrescine 

and cadaverine were not quantified, so the concentration of putrescine and 

cadaverine in the pseudo scents and their instrumental detection limits are still 

unknown. Tipple et al. (2014) stated that neither putrescine nor cadaverine were 

detected amongst the headspace volatiles in the pseudo scents, which highlights 

an issue regarding the current headspace detection mechanisms. 

 

Putrescine and/or cadaverine have only been successfully detected in four 

taphonomic studies using various forms of chromatography and none of these 

studies utilised headspace detection. The first study was by Bonte & Bleifuss (1977) 

where the authors detected putrescine, cadaverine and additional biogenic amines 

in decomposing cattle blood and human liver homogenates using two-dimensional 

thin layer chromatography. They were the first to quantify putrescine and 

cadaverine, detecting concentrations of 20 mg L-1 in liver homogenates through the 

use of ninhydrin and a densitometer. Interestingly 4-aminobutyric acid, a breakdown 

product of putrescine, was detected from the start of their study whilst putrescine 

was only detected after approximately 25 days in untreated blood and liver 

homogenates (Bonte & Bleifuss 1977). The second study was by Vass et al. (2002), 

both putrescine and cadaverine were detected in addition to a variety of amino acids 

in decomposing human tissue samples using GC-MS after derivatisation with 

dimethylformamide dimethyl acetal. They concluded that putrescine and cadaverine 

were not useful biomarkers for decomposition due to their inconsistency between 
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cadavers but identified 4-aminobutyric acid, the breakdown product of putrescine, 

to be a critical marker for post-mortem interval calculation. Putrescine and 

cadaverine were detected in concentrations above 3 μg mg-1 tissue and thus could 

be very beneficial to detecting clandestine gravesites as it increases the probability 

of detecting these chemicals in the surrounding soil environment. 

 

High performance liquid chromatography (HPLC) was utilised by 

Fiedler et al. (2004) in combination with an ultraviolet-visible (UV/VIS) 

spectrophotometer to detect putrescine and cadaverine, which is the third study to 

detect these amines. Cadaverine was detected along with 4-aminobutyric acid and 

tyramine in cemetery grave-soil following derivatisation with 9-fluorenylmethyl 

chloroformate. The methodology was adapted from Kirschbaum et al. (1994) and 

Fernandes & Ferreira (2000), both studies originated from the field of food 

chemistry for the determination of biogenic amines including putrescine and 

cadaverine. Fiedler et al. (2004) detected only cadaverine in soil samples near the 

lowest part of the coffin at concentrations between 11 and 40 μg kg-1 soil, cadaverine 

was also detected in the control soil up to a concentration of 35 μg kg-1. It was 

assumed that leaching of cadaverine through the flow of ground water contaminated 

the control soil. It is unknown if putrescine was also present at similar concentrations 

to cadaverine as its detection limit was 50 μg kg-1, whilst the detection limit for 

cadaverine was 10 μg kg-1. 

 

The final taphonomic study to detect putrescine and/or cadaverine was by 

Swann et al. (2012) where putrescine was detected as one of a total of nineteen 

biogenic amines from porcine decomposition fluid but cadaverine was not detected. 

HPLC-MS was utilised and thus did not require derivatisation to detect the 

chromophore lacking biogenic amines. A benefit of the mass spectrometer is that 

not all peaks need to be chromatographically resolved as they were filtered through 

multiple reaction monitoring and only thirteen of the nineteen peaks were actually 

observed in the total-ion-chromatogram indicating co-elution. The lack of 

derivatisation could however have disadvantages as it could lead to poor peak 

shape due to partial adsorption of the analyte with the stationary phase 

(see page 27). Swann et al. (2012) detected putrescine at !/#  89.2 (M+H)+ 

although putrescine has two amino groups that could easily be ionised using 

electrospray ionisation resulting in [M+2H]2+. These two positive charges on the 

putrescine molecule reduce its !/# value to approximately 45.1, which could result 
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in non-detection as	!/# values below 50 will most likely be filtered out the mass 

spectrometer before it reaches its detection mechanism. Multiple ionisation could 

also have occurred for ornithine and lysine (the precursors for putrescine and 

cadaverine) and could be a reason why cadaverine was not detected in their study. 

 

In order to determine why putrescine and cadaverine have been cited as important 

biomarkers for decomposition so regularly and been detected so scarcely, a review 

of the available literature was performed. It became apparent that putrescine and 

cadaverine became important markers due to incorrect citation, see Figure 3. 

Putrescine and cadaverine were in fact detected by Bonte & Bleifuss in 1977, 

however the interest in these compounds arose only after Gill-King suggested their 

importance as decomposition products due to their characteristic foul odour and 

detectability by VRD (Gill-King 1997). This was referenced from Killam (1990), 

however extensive review of this book showed no mention of putrescine and 

cadaverine. Rebmann et al. (2000) cited Gill-King and noted in “The Cadaver Dog 

Handbook” that putrescine and cadaverine, along with other inorganic gasses 

produced during putrefaction are detectable by VRD. Since then Gill-King (1997) 

and/or Rebmann et al. (2000) have been repeatedly cited in relation to the 

importance of putrescine and cadaverine as decomposition chemicals and key to 

detecting human remains by VRD. As previously discussed, eminent researchers 

such as Dekeirsschieter, Hoffman, Statheropoulos and Vass started looking for 

putrescine and cadaverine among other VOC’s and were unable to detect these 

biogenic amines. To date, the significance of putrescine and cadaverine within the 

field of taphonomy has been unclear due to a lack in detection 

(Schotsmans et al. 2017). This is due to a lack in understanding as putrescine 

and/or cadaverine have been detected in taphonomy related studies, indicating 

putrescine and cadaverine are produced during decomposition and could be key 

markers. 
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Figure 3 Overview of putrescine and cadaverine citations in taphonomic literature 

One group that successfully detected cadaverine, Fiedler et al. (2004), adapted their 

methodology from the food industry, where putrescine and cadaverine have been 

of particular interest as indicators of quality and food spoilage (Awan et al. 2008; 

Ali Awan et al. 2008; Karpas et al. 2002; Önal 2007; Pineda et al. 2012; 

Saccani et al. 2005). The food industry is particularly interested in the histamine 

levels in food products, as low quantities can cause hypo- or hypertension, 

headache or anaphylactic shock. Diamines such as putrescine and cadaverine can 

synergistically increase the toxicological effects of histamine due to competitive 

inhibition of metabolising enzymes (Kirschbaum et al. 2000; Lange et al. 2002). 

According to Kumudally (2001) chromatographic methods are suitable for detecting 

and quantitating biogenic amines to monitor the freshness of food products. This 

further confirms that the non-detection of putrescine and cadaverine in most 

taphonomic studies is due to the use of unsuitable methodologies for the detection 

of these compounds. The detection and quantification of putrescine and cadaverine 

at low part per billion concentration from various complex matrices using GC has 

been widely published in food, wine, environmental and pathophysiological related 

studies (See Awan et al. 2008a; Cueva et al. 2012; Cunha et al. 2011; 

Fernandes & Ferreira 2000; Krzyzoaniak et al. 2011; Ngim et al. 2000; 

Pineda et al. 2012; Yamamoto et al. 1982) and derivatisation GC is therefore 
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suitable to analyse putrescine and cadaverine in taphonomy related studies. 

However GC analysis without derivatisation is often unsuitable for amine analysis 

due to the polarity of the amines, which makes them adsorb onto the column and 

exhibit excessive peak tailing (Ferreira et al. 2013; Płotka-Wasylka et al. 2015). In 

addition, many amines do not possess the structural features, such as a 

chromophore, to enable UV/VIS detection by HPLC (Płotka-Wasylka et al. 2015; 

Ferreira et al. 2013). This emphasises the need for derivatisation to enhance 

chromatographic detection of the amines and has been utilised by the studies 

discussed above. 

 

Derivatisation increases the volatility, thermal stability and mass spectral detection 

of putrescine and cadaverine and enables accurate determination using GC-MS 

(Paczkowski & Schütz 2011; Płotka-Wasylka et al. 2015; Vass et al. 2002). 

Derivatisation removes issues associated with the instrumental analysis of amines, 

such as long elution times, chromatographic peak tailing and low reproducibility, as 

the alkalinity of the amine group introduces a large dipole onto the analyte 

(Avery & Junk 1985; Krzyzoaniak et al. 2011). This causes the amine group to 

interact with silanol groups and siloxane bridges present in the GC-column resulting 

in partial adsorption of the analyte making the analysis unreliable at low 

concentrations (Kataoka 1996; Krzyzoaniak et al. 2011; Nakovich 2003). Thus 

derivatisation of the analyte is often recommended as it increases the sensitivity, 

selectivity, analyte resolution and sample throughput (Ngim et al. 2000). 

 

Many different derivatisation reactions are able to derivatise amines for GC analysis. 

Kataoka (1996) reported in his review eight different derivatisation mechanisms for 

the determination of amines by gas chromatography and the seven most important 

are displayed in Table 4. Other reaction mechanisms have also been reviewed by 

Kataoka (2005) and Ferreira et al. (2013) but are not commonly used in comparison 

to the reaction mechanisms described in Table 4 and are therefore not included. In 

situ derivatisation is preferred as the derivatisation occurs directly in the aqueous 

matrix so no prior solvent extraction is required therefore minimising sample 

preparation and reducing analysis time, associated errors and contamination 

(Ferreira et al. 2013; Pan et al. 1997). A disadvantage of in situ derivatisation is that 

many derivatisation reagents react or decompose in water thus requiring a suitable 

reagent for aqueous derivatisation. Specificity is, in this case, also very important 

as reactive matrix compounds could reduce the reaction yield (Ferreira et al. 2013).
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Table 4 Amine derivatisation mechanisms for analysis by gas chromatography 

Derivatisation 
mechanism 

Aqueous 
derivatisation 

Amine 
specific 

Amine 
type 

Derivatisation specific 
information 

Acylation No No 1° & 2° - Requires removal of excess 
reagent 

Silylation No No 1° & 2° 

- Requires catalyst 
- Unstable to moisture 
- Could derivatise primary 

amines twice 

Dinitrophenylation Yes No 1° & 2° 

- Easy to derivatise 
- Could sustain chromatographic 

peak tailing 
- Strong acid by-products 

Alkylation 
(Permethylation) 

Yes No 1° & 2° 
- Produces tertiary amines 
- Could sustain chromatographic 

peak tailing 

Carbamate 
formation 

Yes No 
1°, 2° 

& 3° 

- Derivatives exhibit good 
GC-properties 

- Produces phosgene with water 

Schiff base 
formation 

Yes Yes 1° 

- Rapid derivatisation 
- Produces good yields 
- Very selective 
- Requires removal of excess 

reagent 

Sulphonamide 
formation 

Yes Yes 1° & 2° 
- Useful to separate and identify 

amine type through solubility 

The most suitable derivatisation mechanism for the derivatisation of putrescine and 

cadaverine in Table 4 is through Schiff base-type derivatisation as it provides a rapid 

derivatisation with good yields, can be used in aqueous samples and is very 

selective towards primary amines (Ferreira et al. 2013; Kataoka 1996, 2005; 

Płotka-Wasylka et al. 2015). Acylation reactions are most frequently used to 

derivatise amines as it easily derivatises amino groups under mild conditions, but 

acylation reagents usually do not derivatise in aqueous environments and are not 

amine specific (Ferreira et al. 2013; Kataoka 1996, 2005; 

Płotka-Wasylka et al. 2015). Silylation reagents also do not derivatise samples in an 

aqueous environment and their derivatives are unstable to moisture 

(Ferreira et al. 2013; Kataoka 1996, 2005). In contrast to acylation and silylation 

reagents dinitrophenylation, permethylation (alkylation) and carbamate formation 

(acylation type derivatisation) reagents are capable of derivatising amines in an 

aqueous environment but their reagents are often not amine specific (see Table 4) 

and also derivatise other functional groups (Ferreira et al. 2013; 
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Kataoka 1996, 2005; Nakovich 2003; Płotka-Wasylka et al. 2015). In addition, 

dinitrophenylation derivatives (nitrosamines) are carcinogenic and the 

permethylation-type derivatisation creates tertiary amines that could still exhibit 

chromatographic complications (Ferreira et al. 2013; Kataoka 1996, 2005). The final 

derivatisation mechanism in Table 4 is a sulphonamide formation-type 

derivatisation, which can be utilised in an aqueous environment and is specific to 

primary and secondary amines but requires an additional clean-up step to separate 

primary and secondary amines (Ferreira et al. 2013; Kataoka 2005). 

 

The Schiff base-type derivatisation reaction have been used to quantify amines in a 

variety of complex matrixes such as biological samples (Avery & Junk 1987; 

Jindal et al. 1980; Johansson & Vessman 1982), environmental samples 

(Avery & Junk 1985; Chia & Huang 2006; Deng et al. 2006; Lin et al. 2008; 

Llop et al. 2010a, 2010b, 2011; Pan et al. 1997) and food products 

(Ngim et al. 2000; Pendem et al. 2010). Pentafluorobenzaldehyde is often the 

reagent of choice and has been used to analyse low-molecular-mass amines as the 

reaction proceeds rapidly and is stable in water under the alkaline conditions 

required for the derivatisation (Ferreira et al. 2013; Kataoka 1996, 2005; 

Lin et al. 2008; Llop et al. 2010b). The reaction mechanism of 

pentafluorobenzaldehyde with a primary amine to form a pentafluorobenzylimine is 

illustrated in Figure 4. The reaction mechanism is divided into two parts, the first 

part is a base-catalysed addition to the carbonyl group and the second part of the 

reaction is a base-catalysed dehydration of the hydrate to form an imine (also called 

Schiff base). Pentafluorobenzaldehyde derivatives are able to be analysed at 

picogram sensitivity using GC-MS through single ion monitoring (SIM) of the 

characteristic α-cleavage product ion (! #⁄ 	208)  [C6F5-CH=N-CH2]+ 

(Kataoka 2005; Ngim et al. 2000). The by-product water does not undergo 

secondary reactions under the conditions required, however excess derivatisation 

reagent often needs to be removed which otherwise interferes with the analysis 

(Kataoka 1996, 2005).
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Figure 4 Schematic reaction mechanism of a primary amine with pentafluorobenzaldehyde
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1.6 Analysis of Alternative Decomposition Products Using Liquid 
Chromatography 

High Performance Liquid Chromatography (HPLC) is excellent for the analysis of 

non-volatile and semi-volatile chemicals but has not been utilised frequently for the 

detection of decomposition related chemicals. It has been applied by 

Fiedler et al. (2004) and Swann et al. (2012) for the analysis of biogenic amines 

(including putrescine and cadaverine) using derivatisation HPLC and LC-MS 

respectively (See section 1.5 Analysis of Biogenic Amines). It has also been applied 

in laboratory scale decomposition studies for the determination of adipocere by 

Yan et al. (2001) and Durães et al. (2010). In the study by Yan et al. (2001) pig 

cadavers were submersed in distilled water, chlorinated water and saline water at 

controlled temperatures to allow adipocere formation. Water samples were collected 

and were analysed for the fatty acids; oleic, palmitic and stearic acid without 

derivatisation. This required the use of low detection wavelengths (210 nm) due to 

poor UV absorbance of the fatty acids, which could have limited the use of buffers 

and affected the sensitivity and detectability of the acids as can be observed from 

the baseline noise in Yan et al. (2001) chromatograms. 

 

The research published by Durães et al. (2010) buried pork loin in four different 

types of soil (organic, sandy, gravel and clay-gravel) in plastic hermetic boxes. This 

experiment tried to simulate a body in a coffin, however the soil was directly in 

contact with the tissue which would not have been the situation in a coffin. Randomly 

selected soil samples (between 30 and 75 g) were extracted and HPLC-UV analysis 

was conducted for myristic, oleic, palmitic and stearic acid after derivatisation with 

1-phenylethylamine at a similar low wavelength as reported by Yan et al. (2001), 

215 nm. It may have been more suitable to analyse the derivatised fatty acids at a 

wavelength of 254 nm (corresponding to the phenyl group) instead of the reported 

215 nm (Wade 2010). At a wavelength of 254 nm less interference would have been 

observed from the large quantities (90%) of methanol in the mobile phase. 

Algarra et al. (2010) applied this methodology to analyse soil samples collected 

from cemeteries using LC-MS and stated that the absorption maxima of the 

derivatised fatty acids is at 259 nm and made the interpretation of the 

chromatograms considerably easier. Analysis of adipocere has predominantly been 

performed using GC over HPLC as many publications, especially those from the 

Forbes group utilised GC-MS for the detection of adipocere 
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(Forbes et al. 2002, 2003, 2004, 2005a, 2005b, 2005c, 2005d; Cassar et al. 2011; 

Ueland et al. 2014). The utilised methodology can be tracked back to a publication 

from Takatori & Yamaoka (1977) where the authors analysed hydroxyl fatty acids in 

adipocere as TMS derivatives using GC-MS. This may explain the predominant 

usage of GC-MS over HPLC as the LC-MS only became commercially available 

during the late 1980’s (Pullen 2010). 

 

HPLC analysis has more regularly been utilised for the analysis of body fluid 

opposed to a grave environment within the field of thanatochemistry (chemistry of 

death) for the estimation of post-mortem interval. Researchers such as 

(James et al.1997; Madea et al. 1994; Muñoz Barús et al. 2002; 2006; 

Rognum et al. 1991) all utilised HPLC to determine hypoxanthine levels in vitreous 

humor for post-mortem interval estimation. Girela et al. (2008) also utilised HPLC in 

the research area of thanatochemistry to determine the cause of death as well as 

post-mortem interval through the quantification of free amino acids in both vitreous 

humor and cerebrospinal fluid. The use of HPLC along with other analytical 

techniques for the estimation of post-mortem interval using biochemical markers in 

blood has been extensively reviewed by Donaldson & Lamont (2014) and highlights 

the usefulness of HPLC for the detection of decomposition products within this 

matrix. 

 

In the field of forensic science, HPLC analysis has shown potential as an alternative 

method for profiling forensic soil samples. In 1981, Reuland utilised HPLC analysis 

as an alternative technique to presumptively differentiate between soil samples 

through analysing the extractable organic components such as polycyclic aromatic 

hydrocarbons (Reuland & Trinler 1981). The methodology discriminated between 

soil samples taken from different environments but was not able to do so with 

samples taken within three meters from another. The work of Reuland and Trinler 

was adapted by Siegel & Precord (1985) and Reuland et al. (1992) to differentiate 

between close proximity soil samples but without any success. More recently, 

Bommarito et al. (2007) continued the work of Reuland and Siegel by extensively 

evaluating the discriminatory power of the HPLC and its ability to differentiate 

between close proximity soil samples. Aproximately 120 soil samples were 

analysed, however their conclusions were very similar to those reported by earlier 

research (Reuland & Trinler 1981; Reuland et al. 1992; Siegel & Precord 1985). The 

researchers stated that their methods were able to differentiate between soil 
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samples within a relatively small geographic area but no information was provided 

regarding the proximity. Nevertheless, HPLC analysis has demonstrated its 

capability to differentiate between soil samples and could be applied to the analysis 

decomposition fluids in a burial environment. 

 

Liquid Chromatography-Mass Spectrometry (LC-MS) has proven to be invaluable in 

the field of forensic science and is extensively used for the analysis of highly polar, 

non-volatile and thermo-labile compounds (Wood et al. 2006). Since the introduction 

of electrospray ionisation and atmospheric pressure chemical ionisation, the 

popularity of LC-MS has increased. It evolved into a robust and reliable tool that 

offers versatility, specificity and sensitivity from a very infrequently used technique 

as an alternative to GC-MS for troublesome compounds (Wood et al. 2006). 

Furthermore, LC-MS has been recognised to be vital in a routine environmental 

laboratory carrying out monitoring of emerging contaminants. It is a complementary 

technique to GC-MS and became indispensable due to its advantage over GC-MS 

for environmental monitoring. The applications for which LC-MS has been utilised 

was reviewed by Wood et al. (2006) and highlighted its versatility and utility in 

forensic science. Even though, LC-MS is indispensable in many applications of 

analytical chemistry, it has only been used once in the field of forensic taphonomy 

and its capabilities are currently underused. Swann et al. (2012) reported the 

detection of nineteen amino acids and amines in porcine decomposition fluids and 

the use of LC has been reported to be under “current investigation” by 

Vass et al. (2004), but as far as the author is aware nothing has been published 

since regarding this. 

 

Solid-phase extraction (SPE) is one of the sample preparation techniques available 

to an analyst to bridge the gap between sample collection and instrumental analysis. 

According to Simpson, it has been used for thousands of years, even though initially 

the science behind the process was unknown (Simpson 2000). The goal of SPE is 

to collect the compounds of interest, preferably by concentrating them from a 

sample and removing unwanted compounds. Sample pre-concentration is required 

to extract trace compounds in forensic, archaeological or environmental samples 

and SPE is the most widely used method to selectively concentrate analytes in 

aqueous samples (Notter et al. 2008; Dean 2009; How et al. 2014; 

Lindholm et al. 2014). 
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Other pre-concentration methods include solid-phase microextraction, single-drop 

microextraction, dispersive liquid-liquid microextraction and vortex assisted 

liquid-liquid microextraction. These methods require lower quantities of potentially 

harmful solvents but SPE is still used most widely because it removes interfering 

compounds from the sample matrix in addition to extracting the analytes 

(How et al. 2014; Lindholm et al. 2014). In comparison to traditional liquid-liquid 

extraction, SPE directly extracts the analyte onto the sorbent and thus only requires 

small volumes of solvent, has no emulsions, exhibits better recoveries, provides 

cleaner extracts and has the ability to remove interferences selectively (Budal 2013; 

Lindholm et al. 2014). 

 

In the field of forensic taphonomy, SPE has been utilised as a means of sample 

clean-up and sample pre-concentration for the analysis of lipids. Notter et al. (2008) 

developed a methodology for the extraction of neutral lipids and free fatty acids from 

porcine samples using an aminopropyl extraction phase. The neutral lipids were 

extracted first using a 2:1 mixture of chloroform and 2-propanol and the free fatty 

acids were extracted through 2% acetic acid in diethyl ether. Good recovery and 

regression was observed for this method, which was likely due to the electrostatic 

interactions between the amine group on the SPE cartridge and the acids. 

Notter et al. (2008) used a multistage extraction methodology to provide more 

selective extracts through fractionation of different classes of chemicals. 

1.7 Analysis of Inorganic Anionic Compounds Using Ion 
Chromatography 

Taphonomic research conducted on human remains by Dr. Arpad Vass highlighted 

the use of ionic chemicals and Volatile Fatty Acids (VFA) to calculate post mortem 

interval (Vass et al. 1992). The ionic compounds believed to be prominent are 

sodium, chloride, ammonium, potassium, calcium, magnesium and sulphate, and 

VFA such as; formic acid, acetic acid, propionic acid and butyric acid were also 

detected due to their water solubility. These chemicals have been used to calculate 

post mortem interval confirming that these compounds are produced during the 

decomposition process and thus could be markers for decomposition. 

 

Ion chromatography (IC) has not frequently been utilised for the detection of 

decomposition related ions within the field of forensic taphonomy. It has been 

utilised first in 1992 by Dr. Arpad Vass and colleagues to determine the cations and 
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anions that could be detected in the soil solution underneath a decomposing body 

for the estimation of time since death. Sixteen ions were analysed but only seven 

ions (including the anions chloride and sulphate) were determined to be useful 

according to Vass et al. (1992) due to their stability in the environment and 

reproducibility between bodies. A study performed by 

Aitkenhead-Peterson et al. (2012) also utilised ion chromatography for the analysis 

of soil samples underneath a decomposing body to map the spatial extend of a 

cadaver decomposition island and to determine the potential for movement of water 

soluble chemical constituents (leaching). A total of seven ions were determined 

along with DOC (dissolved organic carbon), TDN (total dissolved nitrogen) and 

orthophosphate using ion chromatography, TOC (total organic carbon analyser and 

colorimetric methods respectively. Of the three inorganic anions analysed slightly 

elevated levels of phosphate were present in the grave soil over the control soil and 

generally lower levels of sulphate were detected in the grave soil, whilst the chloride 

results were inconsistent between bodies. The author also suggested that migration 

of the decomposition products downslope was observed. 

 

In 2007, research was published by Bommarito et al. analysing 120 soil samples 

using IC and HPLC to distinguish between soil samples in a forensic context. 

Quantitative determination was performed on a total of twelve anionic compounds 

of which the seven ions (nitrite, nitrate, phosphate, sulphate, perchlorate, bromide 

and thiosulphate were quantified and determined to be significant to distinguish 

between soil samples. Other ions detected were fluoride and chloride, and at least 

two additional signals were observed eluting between the fluoride and chloride peak 

that were not identified. Based on research performed at Staffordshire University 

the peak co-eluting with fluoride could have been acetate, whilst the other could 

have been formate as these have been observed to have a similar elution pattern 

and these acids have been reported to be abundant in nature (Vass et al. 1992). 

 

Copious research has been conducted over the last 50 years to determine the effect 

of cemeteries on the groundwater chemistry using IC. A comprehensive review has 

been published by Zychowski in 2012 and reported that the first study on the impact 

of cemeteries on the surrounding environment was published in 1951 by van Haaren 

which revealed elevated concentrations of chlorides, sulphates and bicarbonates in 

nearby shallow groundwater. In the studies published by Trick et al. (2001, 2005), 

as reported by Zychowski (2012), relatively increased concentrations of chloride, 
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sulphate, sodium and calcium were detected in the lower part of a cemetery 

(indicating leaching of water soluble chemicals downhill), whilst nitrate, sulphate, 

bicarbonate, carbonate, potassium and magnesium ions were abundant in the 

middle part of the cemetery. Furthermore, high concentrations of sulphates, sodium 

and chlorides, in addition to high concentrations of VFA were detected in samples 

taken from piezometers placed in shallow groundwater near cemeteries. This 

information indicates that ionic compounds could indicate the presence of a 

decomposing body and highlighted the migration of decomposition products as had 

been suggested by Aitkenhead-Peterson et al. (2012). 

1.8 Extraction of Decomposition Products from Soil Samples 
In order to allow for the analysis of decomposition products from soil samples the 

literature has been reviewed to aid the development of a suitable solid-liquid 

extraction methodology that will allow analysis of the case samples using the 

techniques discussed previously. 

 

Extraction is based on the transfer of mass from one substance to another, in this 

case from a solid to a liquid. Mass transfer of solutes is mainly caused by diffusion 

and if a fluid motion is present (agitation), convection also contributes to mass 

transfer. For the extraction from solid particles, depending on the extraction medium 

at least two different types of mass transfer happen; solvation of the analyte from 

the solid phase into the liquid phase and diffusion of the analyte through the liquid 

phase. If agitation is applied mass transfer could be speeded up through convection 

(movement of liquid). Efficient extraction between the sample matrix and extraction 

phase is mainly dependent on the distribution constant and kinetic factors such as 

diffusion coefficient and agitation conditions. Parameters such as temperature, 

pressure, pH, salt and organic concentration influence the distribution constant, 

whilst agitation, temperature and pressure affect extraction kinetics through 

speeding up movement and penetration of the extraction phase into the sample 

matrix (diffusion coefficient) (Pawliszyn et al. 2012). Grinding of the sample 

increases surface area and therefore increases extraction kinetics, reducing time 

required to reach equilibrium (Pawliszyn et al. 2012). 

 

Commonly used extraction methods include shake flask, ultra-sonication, soxhlet, 

pressurised fluid (accelerated liquid), supercritical fluid extraction and microwave 

assisted extraction. The extraction principles can be classified into three different 
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groups; agitation, heat and heat & pressure. Shake flask extraction and 

ultrasound-assisted extraction fall under the first category, where the extraction 

kinetics are improved through introduction of convection to aid diffusion. Although 

heat can be produced during the ultrasound-assisted extraction either benefitting or 

hindering extraction efficiencies. Soxhlet extraction utilises only heat during the 

extraction procedure, which influences the distribution constant and diffusion 

coefficient (see paragraph above). In addition, Soxhlet extraction displaces the 

transfer equilibrium by constantly providing fresh extractant (Wang & Weller 2006; 

Luque de Castro & Priego-Capote 2010). Pressurised liquid extraction, supercritical 

fluid extraction and microwave assisted extraction all utilise both heat and pressure 

to extract analytes and therefore affect the distribution constant and diffusion 

coefficient. Table 5 provides an overview of the different extraction methods and 

their advantages and disadvantages, due to the high costs of supercritical fluid 

extraction and microwave assisted extraction they were not included in the review. 
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Table 5 Principles, advantages and disadvantages for the different solid-liquid  extraction methodologies 

Extraction 
Method 

Shake flask (SF), 
Agitation by mixing 

Ultra-sonication (USE), 
Agitation by sonication 

Soxhlet (SE), 
Heat 

Pressurised liquid (PLE), 
Heat & pressure 

Extraction 
principles 

• Sample is agitated or shaken for a 

specified time period1,2 

• Creation of bubbles in the liquid which 
collapse and produce high-speed jets 
that impact the solid surface3 

• Sample is repeatedly brought into 
contact with fresh extractant and 
facilitates displacement of transfer 
equilibrium3,4 

• Extraction is carried out under pressure 
to keep solvent in liquid state and is 
forced into solid matrix3,5 
• Increased temperature improves 
extraction kinetics and diffusivity3 
• Increased temperature increases 
solubility and decreases viscosity 
allowing better penetration5 

Advantages • Less solvent required1 
• Less time required1 

• USEPA approved 

• Intimate contact 
• Less solvent required1 
• Less time required1 

• Better for thermolabile compounds3 

• Ultrasound frequency improves 
extraction yield and kinetics3 
• Quicker than SF and SE1,2  

• Can analyse extracts directly3,4,6 

• USEPA approved6 

• Intimate contact 
• Displacement of transfer equilibrium3,4 
• Better reproducibility and efficiency2,3 

• USEPA approved 

• Less solvent required3 
• Less time required3,5 

• Intimate contact 
• Could be more effective and selective5 

Disadvantages • Not USEPA approved1 
• Requires three subsequent extractions1 
• Filtration required afterwards2 
• May need sample conentration2 

• Not always leads to increased 
extraction efficiencies3,6 
• Requires three subsequent extractions2 
• Filtration required afterwards2 
• Not as rigorous as other USEPA 
methods 
• Excess sonication can damage quality 
of extracts3 
• May need sample conentration2 

• Long extraction times3,4,6 
• Sample requires conentration3,4,6 
• Possibility of thermal decomposition3,4 
• No agitation to speed up reaction2,3,4 
• Diffusion might be limited by matrix3 
• Requires large quantities of sample2 

• Possibility for thermal decomposition3 
• May need sample concentration 
• May need filtering 

When used • High concentration compounds or not 
associated with soil components6 

• Often using aqueous solutions6 
• For phenols/ amines/ PAH’s6 
• Non-volatile and semi-volatiles 

• Relatively low concentration 
compounds6 
• Non-volatile and semi-volatiles 

• Water insoluble and semi-soluble 
compounds 

1 (Dean & Xiong 2000), 2 (Dean 1998), 3 (Wang & Weller 2006), 4 (Luque de Castro & Priego-Capote 2010), 5 (Péres et al. 2006), 6 (Conklin 2013) 
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Based on the information provided in Table 5, the most suitable method to extract 

both the anions and amines was through the use of ultrasound-assisted extraction. 

It is a simple and inexpensive method to use, allows for a wide variety of solvents 

and requires less solvent and time over shake flask and soxhlet extraction 

(Dean & Xiong 2000; Wang & Weller 2006). Furthermore, ultrasound-assisted 

extraction is better for thermolabile compounds, more suitable for anions associated 

with soil components in comparison to shake flask extraction and is USEPA 

approved as a solid-liquid extraction procedure (Wang & Weller 2006; 

Conklin 2013). Unfortunately, ultrasound-assisted extraction is not as rigorous as 

other USEPA approved methods such as soxhlet and pressurised liquid extraction 

and requires three subsequent extractions (for low concentration samples) for 

quantitative analysis but is much better for the analysis of multiple samples 

simultaneously (Dean 1998). Shake flask extraction also requires three subsequent 

extractions and it is not USEPA approved, therefore making the extraction technique 

less reliable but see Stanisic in the paragraph below (Dean & Xiong 2000). Soxhlet 

extraction has been used for many years due to its high recovery and reproducibility, 

however it requires long extraction times, is prone to thermally decompose analytes 

and requires large quantities of soil (Dean 1998; 

Luque de Castro & Priego-Capote 2010; Wang & Weller 2006). Pressurised liquid 

extraction has been reported to be more effective than shake flask extraction and 

ultrasound assisted extraction and requires less solvent and time due to intimate 

contact with the sample (Péres et al. 2006). However, it may also thermally 

decompose extractable analytes and will only extract samples sequentially, 

therefore increasing the overall extraction time required (Wang & Weller 2006). 

 

Ultrasound-assisted extraction utilises sound waves with frequencies higher than 

20 kHz to create mechanical vibrations in a solid, liquid or gas (Dean 2009; 

Luque-García & Luque De Castro 2003; Suslick 1989; Wang & Weller 2006). These 

vibrations, sound waves, travel through matter and experience expansion and 

compression cycles whilst traveling through the medium. The expansion cycle 

creates negative pressure forming microscopic cavities which will grow and collapse 

(implode). The cavity collapse is asymmetrical close to solid boundaries, creating 

high-speed jets of liquid that strongly impacts solid surfaces and takes place within 

400 μs (Luque-García & Luque De Castro 2003; Suslick 1989; 

Wang & Weller 2006). This collapse creates rapid adiabatic compression of vapours 

in the cavities producing extremely high temperatures and pressures, which have 
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been estimated to be about 5000°C and roughly 1000 atm. The size of the cavities 

is very small relative to the total liquid volume and the heat produced is rapidly 

displaced with little to no changes to the environmental conditions 

(Luque-García & Luque De Castro 2003; Suslick 1989). 

 

The use of ultrasound-assisted extraction has been utilised by researchers several 

times and would therefore be suitable to be applied for the extraction of the case 

samples. In 2007, Bommarito et al. published research that utilised sonication to aid 

the extraction of inorganic anions using water for the comparison of forensic soil 

samples. Stanisic et al. (2011) compared the shake flask, ultrasound-assisted and 

microwave extraction to determine the efficiency of extracting inorganic anions from 

soil. To no surprise, it was concluded that that the microwave assisted extraction 

was very quick, efficient and reliable but would not have been able to be used in this 

study. It was also concluded that the ultrasound-assisted extraction was less 

reproducible and less efficient than the shake flask extraction, however it was much 

quicker and less quantities of solvent was required. This would allow for three 

subsequent extraction as has been suggested by Dean (1998), which was not 

conducted by Stanisic et al. (2011) and could explain the lack in reproducibility and 

efficiency. Fiedler et al. (2004) used a soxhlet extractor for the extraction of 

putrescine and cadaverine from soil but this would not have been viable using the 

quantity of samples provided. The use of ultrasound-assisted extraction is still used 

within the field of geoforensics as can be observed in the paper recently published 

by McCulloch et al. (2017). 

 

In summary, a wide range of search methodologies are utilised for the detection of 

clandestine gravesites that encompass many scientific disciplines ranging from 

victim recovery dogs to geophysics. Most of these search techniques, with the 

exception of VRD, locate anomalies in the environment and therefore are very prone 

to false positive and false negative indications. In addition, the ability of a VRD is 

highly dependent on many variables and thus their performance can vary day by 

day (Killam 2004). The use of chemistry adds more robustness to the search and 

recovery operation. As noted previously, a wide variety of chemicals are detected 

during mammalian decomposition (Schotsmans et al. 2017), which is likely to be 

only a fraction of the chemicals produced during the decomposition process. As 

previous research mainly focused on the detection of the VOC’s produced during 

the decomposition process because these compounds could be directly related to 
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VRD indications. Analysis of soil or soil-water samples for the detection of 

non-volatile and semi-volatile decomposition products has not been attempted with 

the exception for the analysis of inorganic anions by 

Aitkenhead-Peterson et al. (2012) and Vass et al. (1992), and amines by 

Fiedler et al. (2004). 

1.9 Research Aims 
It has been highlighted that the current search methodologies to locate clandestine 

gravesites are not always successful and require a significant amount of time and 

public funding. This study sought therefore to detect the non-volatile and 

semi-volatile decomposition products from soil and water samples which could aid 

the detection of clandestine gravesites and lead to the development of field based 

chemical tests to speed up the search process. The overall aim of this study was to 

determine if the detection of non-volatile and semi-volatile decomposition products, 

is a viable alternative to the current search methodologies available. The objectives 

to achieve this aim were: 

• To develop a highly specific and sensitive methodology for the detection of 

putrescine and cadaverine in aqueous samples and determine if biogenic 

amines such as putrescine and cadaverine could be detected in 

mammalian decomposition. 

• To explore why most of the researchers in the field of taphonomy were 

unable to detect the decomposition markers putrescine and cadaverine in 

their studies. 

• To determine the usefulness of ion chromatography as a tool to analyse 

mammalian decomposition products. 

• To determine the effectiveness of high performance liquid chromatography 

and liquid chromatography mass spectrometry as a tool to analyse products 

of mammalian decomposition. 

• To determine if the developed analytical methodologies (gas 

chromatography and ion chromatography) can aid in the intelligence 

gathering process for locating clandestine gravesites. 

• To develop an extraction methodology in order to allow for the analysis of 

soil samples as well as water samples. 
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Figure 5 Chronology of the research process and its relationship to sample chronologies 
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Chapter 2 Methodology 

2.1 Sample Collection 

2.1.1 Leachate Samples 
Gravesite and control leachate samples (labelled as Keele leachate samples) were 

collected from a simulated gravesite at Keele University (Figure 6) by Dr. Jamie 

Pringle following the procedure described in Pringle et al. (2010). In summary, a pig 

(Sus Scrofa) was buried with a porous end cap 1900 soilwater lysimeter, which was 

placed under vacuum so soilwater was drawn from the surrounding soil into the 

lysimeter. The control lysimeter was placed far enough away and upslope to avoid 

potential contamination from the gravesite Pringle et al. (2015). Another set of 

leachate samples (labelled as Cranfield leachate samples) were collected from a 

simulated gravesite at Cranfield University (Figure 7) by Dr. Anna Williams following 

the procedure described above. All the leachate samples were stored in the freezer 

at approximately -19°C until required for analysis and were defrosted for a minimum 

of three hours, or until completely defrosted, prior to sample preparation and 

analysis. Table 6 and Table 7 display the leachate samples analysed during the PhD 

including information such as when samples were obtained, received at 

Staffordshire University and when analysed.  
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Figure 6 Photograph of Keele University test site. Taken from Pringle et al. (2010) 

 

 

Figure 7 Photograph of Cranfield University test site. Taken from Pringle et al. (2015) 
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Table 6 Displaying the Keele leachate samples used and displaying information such as when obtained, 
when analysed and what type of analysis 

Sampling 

date 

Post 

burial 

interval 

(weeks) 

Date 

Samples 

received 

Date of Analysis Type of 

Analysis 

19/12/2007 2 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov 2012-Jan 2013 IC 

10/01/2008 5 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov-Dec 2013 IC 

17/01/2008 6 Nov 

2011 

Nov 2012-Jan 2013 IC 

14/02/2008 10 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov 2012-Jan 2013 IC 

28/02/2008 12 Nov 

2011 

Nov-Dec 2013 IC 

14/03/2008 14 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

27/03/2008 16 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

24/04/2008 20 Nov 

2011 

Nov-Dec 2013 IC 

08/05/2008 22 Nov 

2011 

Nov 2012-Jan 2013 IC 

22/05/2008 24 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

05/06/2008 26 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov-Dec 2013 IC 

19/06/2008 28 Nov 

2011 

Nov 2012-Jan 2013 IC 

17/07/2008 32 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov 2012-Jan 2013 IC 

14/08/2008 36 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov 2012-Jan 2013 IC 

11/09/2008 40 Nov 

2011 

Nov 2012-Jan 2013 IC 

09/10/2008 44 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

06/11/2008 48 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

18/06/2009 80 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

03/12/2009 104 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

28/01/2010 112 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

26/03/2010 120 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov 2012-Jan 2013 IC 

26/04/2010 125 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov 2012-Jan 2013 IC 

27/05/2010 129 Nov 

2011 

Nov-Dec 2013 IC 
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25/06/2010 133 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov-Dec 2013 IC 

01/10/2010 147 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov-Dec 2013 IC 

29/10/2010 151 Nov 

2011 

Nov-Dec 2013 IC 

11/02/2011 166 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov-Dec 2013 IC 

11/03/2011 170 Nov 

2011 

Nov-Dec 2013 IC 

18/04/2011 176 Nov 

2011 

May-Jun2013/ Nov-2013 HPLC/ LC-MS 

Nov-Dec 2013 IC 

23/05/2011 181 Nov 

2011 

Nov-Dec 2013 IC 
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Table 7 Displaying the Cranfield leachate samples used and displaying information such as when 
obtained, when analysed and what type of analysis 

Sampling date Post burial 

interval 

(weeks) 

Date Samples 

received 

Date of 

Analysis 

Type of 

Analysis 

15/09/2011 4 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

19/09/2011 5 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

26/09/2011 6 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

29/09/2011 6 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

05/10/2011 7 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

12/10/2011 8 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

28/10/2011 10 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

13/12/2011 17 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

22/02/2012 27 Apr 2012 Mar 2013 GC 

Mar 2014 Apr 2014 GC 

08/05/2012 38 Mar 2014 Apr 2014 GC 

30/05/2013 93 Mar 2014 Apr 2014 GC 

17/06/2013 96 Mar 2014 Apr 2014 GC 
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2.1.2 Casework Samples 
Three 1.0 L water samples were collected from a small lake in the Republic of 

Ireland suspected to conceal human remains (over 25 years post burial) and two 

50 mL water samples from a control lake nearby were provided by Dr. Alastair 

Ruffell to identify a potential gravesite. Prior to analysis the samples were stored in 

the cold room in a sealed container, were analysed using ion chromatography (IC) 

following the procedure described in Section 2.4 Analysis of Inorganic Anionic 

Compounds using Ion Chromatography and for the analysis of putrescine, 

cadaverine and methylamine using gas chromatography mass spectrometry (GC-

MS), Section 2.5 Analysis of Biogenic Amines Using Gas Chromatography, 

following derivatisation using pentafluorobenzaldehyde, Section 2.2 Sample 

Extraction and Derivatisation. 

 

Twenty-four soil samples were provided by Dr. Laurance Donnelly taken at the 

location of an active murder enquiry (over fifteen years post burial). Samples were 

taken from twelve different locations (including control site) and taken from the top 

(AU) and bottom part (AL) of the auger, see Figure 8 and  

Table 8 (Donnelly et al. 2018). Prior to analysis the samples were stored in the cold 

room in a sealed container and then were extracted, derivatised and prepared for 

IC and GC analysis following the procedures described in Sections 2.2 Sample 

Extraction and Derivatisation, 2.4 Analysis of Inorganic Anionic Compounds using 

Ion Chromatography and 2.5 Analysis of Biogenic Amines Using Gas 

Chromatography. 
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Figure 8 Schematic drawing of sampling location, blue arrows show general flow of surface and 
groundwater. Taken from Donnelly et al. (2018) 

 

Table 8 Displaying the sample depth and locations. Taken from Donnelly et al. (2018) 

Sample 
Number 

Depth 
(mmbgl) 

Location Soil Type 

1A 
upper 
1A 
lower 

0-80 

10-110 
Centre of grave Organic and granular grave backfill 

2A 
upper 
2A 
lower 

10-110 

240-310 
West of grave 

Brown fibrous peat 

Black fibrous peat, sand 

3A 
upper 
3A 
lower 

30-170 

400-510 
East of grave 

Brown fibrous peat 

Black fibrous peat, sand 

4A 
upper 
4A 
lower 

10-120 

240-320 
North of grave 

Brown fibrous peat 

Black peat, sand 

5A 
upper 

10-80 

260-350 
North of grave 

Brown fibrous peat 

Orange sand, organic clay 
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5A 
lower 
6A 
upper 
6A 
lower 

10-160 

290-350 
100m north of grave 

Black peat 

White-grey clay 

7A 
upper 
7A 
lower 

10-120 

460-540 
South of grave 

Black peat 

Orange sand and peat 

8A 
upper 
8A 
lower 

10-90 

280-320 
South of grave 

Black fibrous peat 

Orange sand and peat 

9A 
upper 
9A 
lower 

10-90 

690-760 
South of grave 

Black fibrous peat 

Orange sand and peat 

10A 
upper 
10A 
lower 

10-90 

290-360 
South of grave 

Peaty sand 

White-grey clay and sand 

11A 
upper 
11A 
lower 

10-90 

480-520 
South of grave 

Black fibrous peat 

Brown sand 

12A 
upper 
12A 
lower 

10-70 

280-350 

200m south of grave 

(control) 

Black peat, sand, clay 

Sandy clay 

2.2 Sample Extraction and Derivatisation 
For the analysis of the soil samples an extraction methodology had to be developed. 

Due to limited time and equipment availability it had been decided to develop an 

extraction methodology using an ultrasonic bath for the extraction of anions and 

amines. For the analysis by ion chromatography, a portion of soil was accurately 

weighed into 20 mL labelled glass vials (unlidded) and dried in the oven at 60°C for 

15 hours. After drying the soil was re-weighed (to determine the moisture content) 

then ground and sieved and a 3.0 g portion of each sample was transferred into a 

centrifuge tube and 15 mL of deionised water was added. The samples were then 

sonicated for 15 minutes and centrifuged at 2500 rpm for 20 minutes after which the 
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aqueous layer was collected and filtered, similar to the procedure used by 

(Bommarito et al. 2007). The extraction procedure was repeated twice so every 

sample was extracted three times and the filtrates were combined. The amines were 

extracted following the same procedure described above, however a 1.0 g portion 

of soil was dried using 1.0 g anhydrous sodium sulphate to prevent the amines from 

volatilising. The filtrates were derivatised and analysed following the procedure 

described below. 

 

The recovery of the extraction procedure was determined through spiking 7.0 g of 

control soil taken from a previous study with 14 mL 25 ppm fluoride, chloride, nitrite, 

phosphate, and sulphate and 50 ppm nitrate mixed anion solution before extraction. 

Another 7.0 g portion of the same soil was spiked with 14 mL deionised water to act 

as a negative control. The recovery of the amine extraction was determined through 

spiking control soil with 1.0 mL 1.0 mmol L-1 mixed amine solution prior extraction, 

the same soil was utilised as a negative control sample. 

 

The method used to derivatise the leachate and control samples was based on 

Ngim et al. (2000) and Blom (2012). The samples were derivatised by pipetting 1.0 

mL of each solution into 4.0 mL vials and the pH of the solutions was adjusted to 11 

using 1.0 mol L-1 sodium hydroxide, 0.1 mol L-1 sodium hydroxide and 0.1 mol L-1 

hydrochloric acid as appropriate. Next 0.5 mL of 10 mg mL-1 

pentafluorobenzaldehyde in acetonitrile was added to the vials, aluminium foil and 

plastic caps were used to seal the tops, the vials were shaken and placed into an 

oven to incubate for one hour at 60°C. After incubation the vials were placed in an 

ice bath for 1-2 minutes then 1.0 mL of a 0.5% undecane in hexane solution, 100 mg 

sodium sulphate and 1.0 mL 0.1 mol L-1 sodium hydroxide solution were added. The 

vials were resealed, vortexed for 10-15 seconds and the top layer was pipetted into 

2.0 mL auto sampler vials. 

2.3 Analysis of Alternative Decomposition Products Using Liquid 
Chromatography 

Table 9 Chemicals and reagents 

Chemical Purity CAS Supplier 
Acetic acid >99% 64-19-7 Fisher Scientific 

Acetonitrile HPLC grade 75-05-8 Fisher Scientific 

Ammonium acetate >98% 631-61-8 Acros Organics 
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Formic acid >95% 64-18-6 Sigma Aldrich 

Isopropanol HPLC grade 67-63-0 Fisher Scientific 

Methanol HPLC grade 67-56-1 Fisher Scientific 

Phosphoric acid >85% 7664-38-2 Acros Organics 

Sodium formate >98% 141-53-7 Acros Organics 

Sodium phosphate >99% 7558-79-4 Acros Organics 

Trifluoroacetic acid >99% 76-05-1 Alfa Aesar 

Tetrahydrofuran >99.5% 109-99-9 Acros Organics 

2.3.1 High Performance Liquid Chromatography with Diode Array Detector 
Three Keele grave leachate samples 10-01-08, 26-04-10 and 11-03-11, and their 

controls were used for UV-Vis analysis using a Thermo Scientific Evolution 201 

UV-Vis spectrophotometer. The samples were filtered using a Whatman 0.45 µm 

PVDF syringe filter before analysis and were analysed in quartz cuvettes. 

 

For HPLC analysis all leachate samples were filtered using a Whatman 0.45 µm 

PVDF syringe filter prior to analysis on a Perkin Elmer 200 series HPLC-DAD. A 

range of different stationary and mobile phases were used to optimise the 

separation of the compounds within the leachate samples. The stationary phases 

used on the HPLC-DAD were a Phenomenex HyperClone 5 µm 250 x 4.60 mm 

ODS (C18) column and a modified silica column used for hydrophilic interaction 

liquid chromatography (hilic). The column used for the modification was a 

Phenomenex SphereClone 5 µm 250 x 4.60 mm silica column. 

 

During the method optimisation for the C18 column various combinations of mobile 

phases were used, see Appendix III. The first run was carried out using an isocratic 

eluent of 40:60 acetonitrile:water with a flow rate of 1 mL min-1. Due to unsatisfactory 

separation the mobile phase combination was changed to isocratic elution using 

30:70 methanol:water, the retention and separation of the compounds was still not 

sufficient so the mobile phase was changed to a gradient elution starting with 10:90 

methanol:water increasing to 50:50 methanol:water after 10 minutes. 

 

For hilic, the silica column was modified by running 100% isopropanol through the 

column at a flow rate of 0.5 mL min-1 for one hour, followed by 100% acetonitrile for 

another hour. Finally a small fraction of distilled water was introduced to the mobile 

phase to create a ratio of 90:10 acetonitrile:water (Based on guidance from 
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Phenomenex). The mobile phase was initially an isocratic elution of 90:10 

acetonitrile:water at a flow rate of 1 mL min-1, however this was changed to 95:5 

acetonitrile:water to improve the retention of early eluting compounds. In order to 

gain even more retention the mobile phase ratio was changed to 98:2 

acetonitrile:water and a clean-up step was included after each run to elute 

well-retained compounds. 

 

The addition of buffers to the aqueous portion of the mobile phase was studied, as 

ionisation was key to the separation and retention of chemicals (Dong 2006; 

Bayne & Carlin 2010). The buffers used on the C18 column were a 50 mmol L-1 

formate buffer (pH 3.2), 50 mmol L-1 phosphate buffer (pH 7.0) and a 50 mmol L-1 

phosphate buffer (pH 3.0). For the silica column a 50 mmol L-1 acetate buffer 

(pH 5.8) and a 50 mmol L-1 formate buffer (pH 3.2) were tested. The effect of 

changing the flow rate to 0.5 mL min-1 and 2 mL min-1 was tested for their effect on 

peak separation as McCally (2007) stated that the flow rate affects the plate height 

and thus indirectly influenced separation. The wavelengths of the DAD (diode array 

detector) were initially set at 260 and 280 nm, lower wavelengths of 200 and 220 nm 

were also studied and the use of an UV-Vis detector in combination with a 

fluorescence detector was also tested. Small amounts of trifluoroacetic acid (TFA), 

0.005%, was added to the mobile phase to determine its effect on the shape of the 

peaks in the chromatogram as small quantities of TFA could greatly improve the 

shape of eluting peaks. 

2.3.2 Solid Phase Extraction 
Solid-phase extraction was carried out using three different types of SPE cartridges 

supplied by Machery-Nagel; Chromabond 200 mg C18, Chromabond 200 mg Drug I 

(C8 combined strong cation exchange) and Chromabond 200 mg Drug II 

(C8 combined strong anion exchange), see Table 10 for extraction procedure. The 

samples were subsequently analysed on the HPLC-DAD. 

Table 10 Solid-phase extraction procedures 

SPE Steps C18 C8 SCX1 C8 SAX2 

Sample 
pre-treatment 

None 
Add 1.4 mL 0.1 mmol L-1  

KH2PO4 (pH 6) to 0.1 mL sample 

Add 1.4 mL 0.1 mmol L-1  

KH2PO4 (pH 7) to 0.1 mL 

sample 

Column 
conditioning 

3 mL MeOH 3 mL MeOH 3 mL MeOH 
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Column 
equilibration 

3 mL H2O 

3 mL H2O 

3 mL 0.1 mmol L-1  KH2PO4 

(pH 6) 

3 mL H2O 

3 mL 0.1 mmol L-1 KH2PO4 

(pH 7) 

Elution 

1 mL H2O 

1 mL H2O 

1 mL ACN 

1 mL ACN 

1 mL THF 

1 mL THF 

1 mL 0.1 mmol L-1 CH3COOH 

1 mL MeOH 

1 mL H2O + 5% NH3 

1 mL H2O + 10% NH3 

1 mL MeOH + 5% NH3 

1 mL MeOH + 10% NH3 

1 mL 0.1 mmol L-1 NH4OH 

1 mL MeOH 

1 mL H2O + 10% COOH 

1 mL MeOH + 10% COOH 

1 (Weinmann 1998), 2 (Machery-Nagel 2006) 

2.3.3 High Performance Liquid Chromatography Mass Spectrometry 
Twenty Keele leachate samples were analysed at Avans University in the 

Netherlands on a HPLC coupled to an Agilent 6320 Ion trap Mass Spectrometer and 

were prepared the same way as the leachate samples analysed on the HPLC-DAD 

as sample preparation using SPE was discontinued. The initial analysis and method 

optimisation was conducted on a Scherzo SM-C18 3 µm 100 x 2.0 mm cation and 

anion exchange column. The mobile phase gradient started with 5:90:5 

methanol:water:0.1 mmol L-1 formate buffer (pH 3.2) for five minutes and gradually 

changed to 90:5:5 methanol:water:0.1 mmol L-1 formate buffer (pH 3.2) over a 20 

minute period. Additional experiments were performed using 10% formate buffer 

instead of 5%, a Pursuit pentafluoropropyl (PFP) stationary phase 5 µm 100 x 2.00 

mm and a Zorbax Eclipse C18 stationary phase 3.5 µm 100 x 3.00 mm. The samples 

(N=40), with dates ranging over three and a half years post burial were selected for 

analysis using LC-MS. The samples selected were collected at approximately 

one-month intervals in the first year and a three to six-month intervals from the 

second year onwards, See Table 6 for the leachate samples analysed. The MSn 

function of the Ion trap was used to collect fragmentation data of certain compounds 

and produce neutral loss spectra to aid compound identification. 

2.4 Analysis of Inorganic Anionic Compounds using Ion 
Chromatography 

Table 11 Chemicals and reagents 

Chemical Purity CAS Supplier 

Sodium acetate trihydrate 99% 6131-90-4 Fisher Scientific 

Sodium bromate >99% 7789-38-0 Acros Organics 

Sodium bromide 99% 7647-15-6 BDH Chemicals 

Sodium carbonate 99.9% 497-19-8 BDH Chemicals 
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Sodium chlorate 98% 7775-09-9 BDH Chemicals 
Sodium chloride >99% 7647-14-5 Sigma Aldrich 

Sodium fluoride 99% 7681-49-4 Fisher Scientific 

Sodium formate 98% 141-53-7 BDH Chemicals 

Sodium hydroxide 97% 1310-73-2 Fisher Scientific 

Sodium nitrate >99% 631-99-4 Sigma Aldrich 

Sodium nitrite 98% 7631-99-4 BDH Chemicals 

Sodium oxalate 99.5% 62-76-0 BDH Chemicals 

Sodium perchlorate 98% 7601-89-0 BDH Chemicals 

Sodium phosphate 
dibasic 

99.5% 7558-79-4 Sigma Aldrich 

Sodium sulphate 99% 7757-82-6 Acros Organics 

Sodium thiosulphate 99.0% 7772-98-7 Sigma Aldrich 

Analysis of Standards, System Suitability Samples and (Unknown) Samples 
A standard solution containing five anions (fluoride, chlorate, nitrate, phosphate and 

sulphate) was prepared to a concentration of 10 mg L-1 in a 100 mL volumetric flask 

and was injected twice a day to determine the instrument performance and system 

suitability. For compound identification, salts listed in Table 11 were prepared in 

deionised water (resistance 18.2MΩ per cm). Detection and quantification limits of 

the ions detected in the leachate samples were determined by preparation of 

calibration standards through dilutions of the 100 mg L-1 stock solution. 

 

Grave and control leachate samples collected at Keele University were provided by 

Dr. Jamie Pringle, see Section 2.1.1 Leachate Samples. Whilst the leachate 

samples were defrosting prior to sample preparation and analysis, in the meantime, 

mixed calibration standards were analysed. After the leachate samples were 

completely defrosted and reached room temperature 1.0 mL sample was 

transferred into a 10 mL volumetric flask and diluted using deionised water. 

Although, the casework samples, described in Section 2.1.2 Casework Samples 

were not diluted. All samples were injected in triplicate using a 1.0 mL BD Plastipack 

syringe and Whatmann 0,45 µm PVDF syringe filters and analysis was performed 

on a Dionex ICS-900 ion chromatograph, see Table 12 for the analysis parameters. 

Table 12 Dionex ICS-900 instrumental parameters. 

Parameter Conditions 

Injection volume 0.5 mL 
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Eluent 4.5 mmol L
-1

 Na2CO3 + 1.4 mmol L
-1

 NaHCO3 

Flow 0.3 mL min
-1 

Regenerant 3.6 mmol L
-1

 H2SO4 

Guard column Dionex RFIC IonPac® AG22 Guard (2 x 50 mm) 

Separation column Dionex RFIC IonPac® AS22 Column (2 x 250 mm) 

Suppressor 2 mm AMMS-300  

Detector DS5 Conductivity Detector 

Run time 20 min 

2.5 Analysis of Biogenic Amines Using Gas Chromatography 

Table 13 Chemicals and reagents 

Chemical Purity CAS Supplier 
Cadaverine >95% 462-94-2 Acros Organics 

Hydrochloric acid >37% 7647-01-0 Fisher Scientific  

Methylamine hydrochloride >99% 593-51-1 Acros Organics 

Pentaflurorbenzaldehyde >98% 653-37-2 Acros Organics 

Putrescine >99% 110-60-1 Sigma Aldrich 

Sodium hydroxide >95% 1310-73-2 Fisher Scientific  

Sodium sulphate anhydrous >99% 7757-82-6 BDH Chemicals  

Undecane >97% 1120-21-4 Fluka Analytical 
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Table 14 Instrumental parameters for GC-FID and GC-MS analysis 

Parameter Conditions 
Injector 

temperature: 
250°C 

Injection type: Splitless 

Injection 
volume: 

3 µL 

 FID MS 
Carrier gas 

(helium) 
8,0 psi 1,5 mL min-1 

Air flow 400 mL min-1  

Hydrogen flow 40 mL min-1  

Detector 
temperature 

250°C 200°C 

Transfer line 
temperature 

 300°C 

Ionisation 
mode 

 EI positive mode 

Electron 
energy 

 70ev 

Range (" #)⁄   TIC: 30-500 & '⁄  

Quantification 
(" #⁄ ) 

 

Putrescine: 181, 208, 249 

Cadaverine: 181, 222, 263 

Methylamine: 117, 208, 209 

Scan time  0,2 msec 

Scan delay  0,05 msec 

Temperature 
program 

A: 

45℃+,-.
/0℃	,-.234⎯⎯⎯⎯⎯⎯6280℃/0,-. 

A: 

45℃+,-.
/0℃	,-.234⎯⎯⎯⎯⎯⎯6 280℃/0,-. 

B: 

45℃/0,-.
/0℃	,-.234⎯⎯⎯⎯⎯⎯6280℃/0,-. 

Run time A: 34.67 min 
A: 34.67 min 

B: 45.67 min 
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2.5.1 Analysis of Putrescine, Cadaverine and Methylamine 
0.1 mol L-1 standard solutions of putrescine, cadaverine and methylamine (this was 

included due to its significant presence in the initial Cranfield leachate samples) 

were prepared in deionised water and diluted to a 1.0 mmol L-1 mixed amine 

solution. This solution was used as a positive control and deionised water was used 

as a negative control for the derivatisation of the leachate samples. Unless stated 

otherwise, the derivatised samples were analysed on a Clarus 500 GC-MS using a 

Supelco SLB-5MS 30 m x 0.32 mm 0.25 µm column. The instrumental settings are 

provided in Table 14. 

2.5.2 Optimisation of Incubation Time 
The incubation time was optimised using a 1 mmol L-1 solution of methylamine, 

isopropylamine, butylamine and phenylethylamine. Three 4.0 mL vials containing 

1.0 mL 1.0 mmol L-1 mixed amine solution and one vial containing 1.0 mL distilled 

water (negative control) were derivatised using a one, two and three hours 

incubation time and were analysed on a Clarus 500 Gas Chromatograph Flame 

Ionisation Detector (GC-FID) using a Supelco SLB-5MS 30 m x 0.32 mm 0.25 µm 

column, see Table 14 for instrumental settings. 

2.5.3 Analysis of Cranfield Leachate and Casework Samples 
Cranfield grave and control samples listed in Table 7 were derivatised, following the 

procedure described in Section 2.2 Sample Extraction and Derivatisation, and 

analysed twice (n=36). As highlighted in Table 7, the first set was of samples were 

sent to Staffordshire University in April 2012 and analysed in March 2013, whilst the 

second set was stored at Cranfield University and was received at Staffordshire 

University in March 2014 and analysed in April 2014. The casework samples, 

described in Section 2.1.2 Casework Samples were extracted and derivatised 

following the procedure described in Section 2.2 Sample Extraction and 

Derivatisation. 

2.6 Storage Conditions and GC Method Validation 
Method validation was performed on the GC method described in Section 2.5 

Analysis of Biogenic Amines Using Gas Chromatography following derivatisation of 

putrescine, cadaverine and methylamine described in Section 2.2 Sample 

Extraction and Derivatisation and the procedure is described below. 
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2.6.1 Method Validation 
The selectivity of the GC method was determined by calculating the resolution 

between putrescine, cadaverine and methylamine and their closest eluting peaks in 

the positive control sample and leachate samples. The mass spectra of putrescine, 

cadaverine and methylamine in the leachate samples were visually compared to the 

mass spectra of their reference compounds to determine if any other chemicals 

were co-eluting. 

 

The linearity, limit of detection (LOD) and limit of quantification (LOQ) of the 

derivatisation was calculated through the preparation and derivatisation of nine 

mixed amine standards containing putrescine, cadaverine and methylamine at 

concentrations ranging from 0.1 μmol L-1 to 1000 μmol L-1. The correlation 

coefficient, linearity and best-fit regression line (least squares method) were 

calculated (see Appendix I). The limit of detection and limit of quantification were 

determined using the standard deviation of the intercept and residual plots were 

created to check for outliers. 

 

The accuracy of the analytical procedure was determined through interpretation of 

the coefficient of determination (indicating how well the data fits the linear model) 

and through calculating the average error in recovery over the calibration range. 

Whilst the reproducibility was determined through calculating the RSD from the 

positive control samples (n=4) containing 1000 μmol L-1 concentrations of 

putrescine, cadaverine and methylamine. 

2.6.2 Storage Experiment 
Analysis of the Cranfield leachate samples indicated variability in the relative 

detection of putrescine, cadaverine and methylamine between duplicate samples. 

A storage experiment was carried out to investigate the stability of these compounds 

under various storage conditions. Standard solutions of putrescine, cadaverine and 

methylamine at a concentration of 0.1 mol L-1 were prepared in deionised water and 

were diluted to create a 1.0 mmol L-1 mixed amine solution. Next 1.0 mL mixed 

amine solution was pipetted into fifteen 4.0 mL vials (five sets of three samples), 

one set containing three vials was derivatised immediately to act as the initial 

starting point of this storage experiment. The other four sets were stored for three 

months before derivatisation; one set was stored at room temperature at 

approximately 21°C, another set was stored in the fridge at approximately 6°C, the 
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next set was stored in the freezer at approximately -19°C. The last set was also 

stored in the freezer, however these samples were taken out of the freezer 

repeatedly to defrost simulating usage of the samples. All samples were derivatised 

and analysed following the procedure described in Sections 2.2 Sample Extraction 

and Derivatisation and 2.5 Analysis of Biogenic Amines Using Gas 

Chromatography. 

 

To determine the effects of storing the water casework samples prior to analysis 

and their sample matrix, 0.1 mol L-1 standard solutions of putrescine, cadaverine 

and methylamine were prepared in distilled water and diluted to create a 20 mmol L-1 

and 1.0 mmol L-1 mixed amine solutions. 100 mL 1.0 mmol L-1 spiked case samples 

were created for solutions A, B, and C and 25 mL 1.0 mmol L-1 spiked control was 

also created (the difference in volumes was due to sample availability). Each sample 

was transferred into a container and stored in the cold room, the remaining solutions 

were used as the initial starting point of the storage experiment and to determine 

the matrix effects through derivatisation and analysis following the procedures 

described in Sections 2.2 Sample Extraction and Derivatisation and 2.5 Analysis of 

Biogenic Amines Using Gas Chromatography.
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Chapter 3 Analysis of Alternative Decomposition Products Using 
Liquid Chromatography 

3.1 High Performance Liquid Chromatography Diode Array Detector 
The most suitable wavelengths for the analysis of leachate samples using HPLC 

were determined to be 260nm and 280nm, this would allow for the detection of 

aromatic compounds such as conjugated and substituted phenyl compounds. The 

wavelength was chosen based on analysis of the leachate samples using UV/Vis 

spectroscopy, Figure 9, which demonstrated high absorption in the low UV region. 

 

Figure 9 UV-Vis spectrum of Keele grave leachate sample 26-04-10 using its corresponding control as 
blank 

Following analysis of grave leachate sample 03-12-09 and the corresponding 

control sample using a C18 column clear differences were visible between both 

samples, see Figure 10. This implied that these samples had a dissimilar chemical 

composition and that the grave samples contained decomposition products. Using 

the C18 column (Figure 10B) the compounds eluted near the void time, which 

indicated that the chemicals in the leachate were very polar with a greater affinity 

towards the polar mobile phase (10:90 MeOH:H2O) than the non-polar stationary 

phase. During the hilic analysis, Figure 11, the peaks were poorly separated, 

exhibited poor shapes and most compounds eluted near the void time, whilst others 

retained strongly, therefore another run was required to elute these well-retained 

chemicals. Further optimisation failed to improve the hilic results and was therefore 

discontinued. When comparing the C18 and hilic data it was observed that the 

different stationary phase interactions produced very different chromatograms and 
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reversed phase chromatography is more suitable to analyse decomposition 

products, see Figure 10B and Figure 11. 

 

 

Figure 10 Analysis of Keele 03-12-09 on HPLC-DAD using a C18 column: Control leachate sample (A); 
Grave leachate sample (B) 

 

Figure 11 Analysis of Keele grave leachate sample 03-12-09 on HPLC-DAD using a hilic column 

Different mobile phase combinations were tested to further retain the early eluting 

compounds and improve resolution, see Figure 12, and needed to be performed 

without the chemicals within the leachate being identified. Resolution between two 

chromatographic peaks, retention and the number of peaks present in a 

chromatogram were the main qualifiers to identify a suitable mobile phase to 

analyse the leachate samples. Clear differences were visible regarding the 

resolution, retention and the number of peaks present between the chromatograms 
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in Figure 12, which displayed the chromatograms of leachate sample 26-04-10 

under different mobile phase conditions. Chromatogram D) using method 4 

[10:90 ramp to 50:50 methanol:water + optimised injection delay and stabilisation 

time], was determined most suitable out of these four chromatograms due to the 

number of peaks present, indicating better separation. Additionally, 

chromatogram D) used an optimised injection delay and stabilisation time, which 

increased the retention of most compounds and thus fewer compounds eluted at 

the void time. 
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Figure 12 Chromatogram of leachate sample 26-04-10 analysed on HPLC-DAD using mobile phase: Method 1 (40:60 MeCN:H2O) (A); Method 2 (30:70 MeOH:H2O) (B); Method 3 

(10:90 slow ramp to 50:50 MeOH:H2O) (C); Method 4 (10:90 medium ramp to 50:50 MeOH:H2O + optimised injection delay and stabilisation time) (D) 
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Initial HPLC analysis of the leachate samples followed an isocratic elution of 40:60 

acetonitrile:water, this resulted in poor separation (Figure 12A) so the mobile phase 

was made more polar by substituting acetonitrile with methanol (Figure 12B). As 

visible in Table 15, methanol is more polar in comparison to acetonitrile although it 

also has a better capability of accepting and donating hydrogen bonds as seen in 

Figure 13 (Dolan 2010). This altered the selectivity of the eluent in multiple ways 

through changing the mobile phase polarity and its capabilities of accepting and 

donating hydrogen bonds. Using this eluent, some compounds assumed to be 

non-polar and slightly non-polar were retained slightly longer (see peaks X and Y) 

but many compounds remained poorly retained as was observed in Figure 12B. 

A more polar mobile phase was created by using a gradient eluent with an initial 

mixture of 10:90 methanol:water which changed to 50:50 methanol:water after ten 

minutes. Peaks X and Y eluted at the end of the chromatogram while the other 

(polar) chemicals were not affected significantly. The slope of the gradient was 

increased for chromatogram D and a five-minute injection delay plus a five-minute 

mobile phase equilibration time was included to equilibrate the mobile phase before 

analysis which resulted in better separation of the polar (slightly retained) 

compounds. It appeared that peak Y eluted after the twenty-minute detection 

window so a larger percentage of organic solvent was required to elute this 

compound within the twenty minute detection window. 

Table 15 Solvent characteristics 

Polarity Solvent Water miscibility 

Non-polar Hexane No 

 

Chloroform No 

Tetrahydrofuran Yes 

Acetone Yes 

Acetonitrile Yes 

Isopropanol Yes 

Methanol Yes 

Water Yes 

Polar Acetic acid Yes 
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Figure 13 Solvent selectivity triangle. Taken from (LCGC’s Chromacadamy n.d.) 

The mobile phase can be altered in two different ways; changing the organic portion 

of the mobile phase, i.e. changing acetonitrile to methanol (as seen above), the 

aqueous fraction of the mobile phase can also be altered by the addition of buffers 

such as formate and phosphate. Buffers alter and control the mobile phase pH and 

therefore affect the retention of ionisable compounds. Due to limited sample 

availability during the method optimisation, further experiments comparing different 

mobile phase conditions utilised leachate sample 03-12-09, Figure 14. This sample 

was analysed using the method utilised in Figure 12D and is displayed in Figure 

14A. For the other chromatograms, the aqueous portion of the mobile phase was 

replaced by a phosphate buffer pH 7.0 (Figure 14B), formate buffer pH 3.2 (Figure 

14C) and phosphate buffer pH 3.0 (Figure 14D). The formate buffer (Figure 14C) 

was determined to be most suitable out of these four chromatograms due to 

compounds eluting over the entire retention window and the lowest quantity of peaks 

eluting at the void time. As further optimisation, 30% acetonitrile was added to the 

gradient after ten minutes to ensure that well-retained compounds eluted within the 

twenty minute detection window, see Figure 15. The addition of 0.005% TFA was 
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tested and determined to have limited effect on the resolution and retention and was 

therefore excluded from the method.



68 

 

   

   
Figure 14 Chromatogram of leachate sample 03-12-09 analysed on HPLC-DAD using mobile phase using optimised injection and stabilisation time: Method 4 (10:90 medium ramp 
to 50:50 MeOH:H2O) (A); Method 6 (10:90 medium ramp to 50:50 MeOH:H2PO4- pH 7) (B); Method 7 (10:90 medium ramp to 50:50 MeOH:HCOO- pH 3.2) (C); Method 8 (10:90 medium 
ramp to 50:50 MeOH:HPO42- pH 3) (D) 
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Figure 15 Chromatogram of leachate sample 03-12-09 optimised (method 9) 

The chromatograms in Figure 14A and Figure 14B, a buffered and non-buffered 

mobile phase at a similar pH (pH 7), exhibited a significant difference between both 

chromatograms. This could be due to a change in the mobile phase selectivity as 

addition of a buffer stabilises and supresses small changes in the mobile phase pH 

and increases mobile phase polarity (Bayne & Carlin 2010). A buffer maintains 

analyte ionisation, depending on pH, throughout the analysis and therefore could 

enhance peak shapes (see Figure 16), which was partially observed in Figure 14B. 

 
Figure 16 Effect of buffering compound on the separation of acidic compounds. Taken from 
Bayne & Carlin (2010) 

Different chromatograms were produced using the phosphate buffer (pH 7.0), 

formate buffer (pH 3.2) and phosphate buffer  (pH 3.0), see Figure 14. The formate 

buffer, pH 3.2, (Figure 14C) had a lower pH than the phosphate buffer, pH 7.0, 

(Figure 14B), which kept acidic compounds non-ionised (less polar) and resulted in 

longer retention times for acidic compounds. Differences between the formate 

buffer, pH 3.2, and phosphate buffer, pH 3.0, were most likely not due to changes 

in the mobile phase pH but due to the differences in mobile phase selectivity such 

as ionic strength (Bayne & Carlin 2010). Figure 13 highlights the slight differences 

in selectivity between different alcohols (Dolan 2010), this could also have been the 

case for these different buffers. 
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The final method for the analysis of the leachate samples utilised a formate buffer 

at pH 3.2 and had an addition of 30% acetonitrile after ten minutes, see Figure 15. 

The formate buffer enhanced the retention and resolution due to ionisation 

suppression of acidic compounds. Furthermore, the formate buffer is more suitable 

for LC-MS analysis as it is volatile. TFA was discontinued as it did not improve the 

retention, separation or peak shapes and also has negative effects on the ionisation 

of chemicals during LC-MS analysis (Dong 2006; McMaster 2007). 

3.2 Solid Phase Extraction 
Solid-phase extraction was trialled with the aim of separating the polar and 

non-polar chemicals, to further enhance the resolution and detection of the 

chemicals within the leachate as discussed by Buszewski & Noga (2012). 

 

The C18 (mainly dispersive interactions) SPE cartridge was able to separate the 

polar and non-polar compounds using water and acetonitrile. However, the 

resolution was not enhanced sufficiently as only one compound was retained on the 

SPE cartridge and  the others eluted during the water (polar) elution step, see Figure 

17. This further confirmed the hypothesis that most of the chemicals in the leachate 

were polar. The remaining compound was eluted in the acetonitrile (relatively 

non-polar) elution step and no chemicals were eluted during the THF (non-polar) 

elution, which was the least polar water miscible solvent (see Table 15). This 

compound had a Rt. of 17.9 minutes during the HPLC analysis and further confirmed 

that this compound was less polar. In addition, the detector response was low due 

to sample dilution (due to availability of small sample volumes) during the extraction 

as was observed when the chromatograms were compared to Figure 15, which 

displayed the chromatogram of the same sample before extraction; this could result 

in a failure to detect trace level compounds.
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Figure 17 Analysis of Keele grave leachate sample 03-12-09 on HPLC-DAD after C18 SPE: 
H2O elution (A); MeCN elution (B) 

The C8/cation exchange (weaker dispersive, polar and cationic interactions) 

cartridge was also able to separate the compounds in the leachate, however the 

addition of chemicals such as acetic acid for the extraction procedure could interfere 

with the analysis, see Figure 18. Despite the addition of acetic acid to the first elution 

step, most of the chemicals in the leachate were not retained on the cartridge and 

eluted during this step. The addition of acetic acid would have supressed ionisation 

of acidic compounds and maintained ionisation of alkaline compounds, which would 

retain on the SPE cartridge as it retained alkaline (cationic) and semi-polar acidic 

compounds. Most of the chemicals eluted during this extraction step and again 

supported the theory of polar chemicals being present in the leachate. The peak at 

Rt. 16.3 minutes was detected in both the acetic acid and methanol elution which 

indicated that this compound was not retained properly during the first elution step. 

The remaining compounds (non-polar neutral and non-polar acidic) except for one 

compound eluted in the methanol extraction step, whilst the last compound 

(cationic) eluted during the ion exchange extraction see Figure 18C. It was therefore 

concluded that the ion exchange mechanism did not contribute significantly to the 

extraction. 
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Figure 18 Analysis of Keele grave leachate sample 03-12-09 on HPLC-DAD after C8/cation exchange 
SPE: Acetic acid elution (A); MeOH elution (B); 5% NH3 in MeOH elution (C) 

The results from the C8/anion exchange (weaker dispersive, polar and anionic 

interactions) cartridge should be opposite in terms of ionisation and retention of the 

ionic compounds, thus acidic compounds should be ionised and ionisation of 

alkaline compounds should be supressed. The similarities between the cation and 
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differences. The C8/anion exchange cartridge was able to separate the polar and 
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the polar chemicals eluted during the first extraction step and the less polar 

compounds eluted during the second extraction step. More compounds were 

retained during the first elution step (ammonium hydroxide, Figure 19A) in 

comparison to the cation exchange cartridge (acetic acid, Figure 18A). Peaks at 

Rt. 6.7 minutes and Rt. 17.8 minutes were visible in Figure 18A whilst they did not 

appear in Figure 19A, but both peaks appeared in Figure 19B. Peak 

Rt. 16.0 minutes only eluted during the ammonium hydroxide elution (Figure 19A). 

 

 
Figure 19 Analysis of Keele grave leachate sample 03-12-09 on HPLC-DAD after C8/anion exchange SPE: 
NH4OH elution (A); MeOH elution (B); 10% HCOOH in MeOH elution (C) 

The ion exchange mechanism of both SPE cartridges did not contribute significantly 

to the extraction as only one compound was detected during this extraction step 

(Figure 18C) and nothing in Figure 19C. This indicated that the chemicals in the 
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leachate were not ionic or that they adsorbed strongly to the SPE cartridge and 

therefore did not elute from the SPE cartridge. The first possibility was most likely 

due to the minor differences between both SPE cartridges, which suggested that 

the use of ion exchange cartridges was potentially not the most suitable mechanism 

for preparation of the leachate samples. However, weak ion exchange cartridges 

could be tested to see if any strong ionic chemicals would elute from the cartridge 

(Telepchak et al. 2004). Additionally, SPE could be more effective if larger quantities 

of sample would have been used during the extraction process and SPE was able 

to concentrate samples instead of diluting them, as was the case due to limited 

sample availability. 

3.3 High Performance Liquid Chromatography-Mass Spectrometry 
Mass spectrometry was more capable than the DAD to detect the range of 

chemicals in the leachate, see Figure 20. The two chromatograms labelled A) show 

UV/Vis data from the grave sample (blue line) and its corresponding control sample 

(red line), chromatograms B) showed mass spectral data in the positive ionisation 

mode whilst chromatograms C) displayed mass spectral data in the negative 

ionisation mode. The compounds detected using UV/Vis spectrometry appeared to 

be satisfactorily ionised using either the positive or negative ionisation mode, though 

not all peaks detected using the MS were detected using the DAD. This confirms 

that the MS was able to detect more compounds in the leachate as a DAD only 

detects chemicals containing a chromophore, as seen in Figure 20. 

 

The compounds detected using the DAD were better separated and more sensitive 

for certain compounds than the MS. The increased number of peaks in the 

chromatogram and extensive tailing from peak Rt. 1.3 minutes (highlighted in Figure 

20B) resulted in poorer resolution of the MS results as the mass spectrum of peak 

Rt. 1.3 minutes showed the detection of multiple ! "⁄  peaks in its spectrum (Figure 

21). Most or even all of those peaks were different compounds instead of being 

multiple fragments from a single compound as electrospray ionisation (ESI) was a 

soft ionisation technique and hardly fragments chemicals (Bayne & Carlin 2010). 
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Figure 20 Analysis of Keele grave leachate sample 06-11-08 (blue line) and its correspondent control (red line) on LC-MS: UV/Vis spectrometry 190-700nm (A); Mass spectrometry 
total ion current positive ionisation mode (B); Mass spectrometry total ion current (C) 
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Figure 21 Mass spectrum of Keele grave leachate sample 06-11-08 at 1.3 minutes using LC-MS positive ionisation mode: Normal view  (A); Baseline focused view (B) 

 
Figure 22 Mass spectrum of Keele grave leachate sample 06-11-08 and its correspondent control using LC-MS: Positive ionisation mode mass spectra control sample (A); Positive 
ionisation mode mass spectra grave sample (B)
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In order to further illustrate the differences between the grave and control samples 

a mass spectrum of the positive ionisation was taken over the entire chromatogram, 

which resulted in a mass spectrum containing all ! "⁄  spectra of the chromatogram 

in a single spectrum, Figure 22. This clearly showed distinctive differences between 

the grave and control sample. The ! "⁄  peaks present in the grave sample but not 

in the control were given a red mark and the peaks present in both samples but 

much more abundant in the grave sample were given a blue mark. The peaks 

marked red were then plotted in Figure 23, and the ten largest peaks, in yellow, 

were classed as main compounds of interest whilst the others were left to explore 

at a later stage. The mass spectral data provided in Figure 22 indicated the 

presence of more than 100 decomposition specific chemicals in the leachate. The 

chemicals with a blue mark in Figure 22, chemicals with the same ! "⁄  values but 

different retention times and chemicals detected in the negative ionisation mode 

were not included in Figure 23. 

 
Figure 23 Bar chart of the key peaks within grave sample 06-11-08 positive ionisation 
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The lack of resolution and accuracy of the Ion-trap-MS made compound 

identification very difficult due to the possibility for multiple compounds having the 

same nominal mass (Kienzl-Wagner & Brandacher 2014). MS instruments having 

higher resolution than the Ion-trap such as a Time-of-Flight Mass Spectrometer 

could be able to differentiate between compounds with the same nominal mass. 

A library is usually required for qualification of unknown compounds, however a 

LC-MS does not have an internal library such as seen with GC-MS. Online LC-MS 

databases such as Massbank and HMDB (Human Metabolome Data Base) were 

available to compare the spectra but the lack in resolution of the MS resulted in over 

100 different possible matches for the ions investigated. 

 

Structure interpretation was possible through manual calculation of the isotope ratio 

within a mass spectrum, which provided possible molecular formulae 

(McLafferty 1973). This was done by calculating the ratio of “A+1”1 and “A+2”2 

peaks in regards to the most abundant isotope, which enabled the calculation of the 

number of carbon atoms and eventually the assignment of a molecular formula. This 

has been done for the first peak of interest plotted in Figure 23 having a ! "⁄  of 88.4 

(Rt 1.4 minutes). Its molecular formula would be either $%&'()  or $*&+), 

(see Appendix IV for calculations), however it was still uncertain that one of those 

two molecular formulae corresponds to this particular ! "⁄  peak due to the lack in 

mass spectral resolution. The masses corresponding to putrescine+H+ (89.2) and 

cadaverine+H+ (103.2) have been detected but it is likely that the detection of 

putrescine and cadaverine has been compromised due to the possibility multiple 

ionisation and therefore would not have been detected (also see table below). 

 

The data was also compared to decomposition related compounds detected in 

decomposition fluids by other researchers, see Table 16, Table 17 and Table 18. 

When the data was compared to amino acids and amines (Table 16) many 

compounds appeared to have also been detected in the Keele leachate sample 

06-11-08. Due to the instrumentation used and the lack of standards these 

                                            
1 Elements with multiple natural isotopes, the second one being one mass unit heavier than 

the most abundant isotope (A). 
2 Elements with multiple natural isotopes, the second one being two mass units heavier 

than the most abundant isotope (A). 
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compounds were not conclusively identified in the leachate, instead for the amino 

acids the presence of a (M+H+) and a (M-H-) ion at the same retention time indicated 

the presence of that amino acid. Furthermore, isotope pattern calculations either 

further confirmed the findings or disproved them. After calculating the number of 

carbon atoms present in each peak only lysine, tyramine, phenylalanine, indole and 

tryptamine appeared to be present in the leachate samples, highlighted in Table 16. 

Identification of the volatile fatty acids and other compounds was less accurate as 

these compounds did not have a (M+H+) and a (M-H-) ion eluting at the same 

retention time. After determining the number of carbon atoms in each peak only 

phenylpropanoic acid, palmitic acid, oleic acid, linoleic acid, β-sitosterol and 

piperidone appeared to be present in the leachate samples, see Table 17 and Table 

18.
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Table 16 Comparison of results with amino acids and amines detected by other researchers in decomposition fluids 

Compound Formula Monoisotopic mass (Da) Instrument Molecular ion detected in 
leachate samples 

Comments/ 
Isotope calculations 

Putrescine1 C4H12N2 88.100044 HPLC Yes 2 carbon atoms 

Cadaverine2 C5H14N2 102.115700 HPLC Yes 6-8 carbon atoms 

Serine1 C3H7NO3 105.042595 HPLC No  

Histamine1 C5H9N3 111.079643 HPLC Yes 4 carbon atoms 

Proline1 C5H9NO2 115.063332 HPLC No  

Indole1,3 C8H7N 117.057846 HPLC/ GC Yes 7-8 carbon atoms 

Valine1 C5H11NO2 117.078979 HPLC Yes 6-7 carbon atoms 

Threonine1 C4H9NO3 119.058243 HPLC No  

Iso-Leucine1 C6H13NO2 131.094635 HPLC Yes 8-10 carbon atoms 

Leusine1 C6H13NO2 131.094635 HPLC Yes 7-9 carbon atoms 

Asparagine1 C4H8N2O3 132.053497 HPLC Yes 7-8 carbon atoms 

Tyramine1,4 C8H11NO 137.084061 HPLC/ CE Yes 8-10 carbon atoms 

Lysine1 C6H14N2O2 146.105530 HPLC Yes 6-7 carbon atoms 

Glutamic acid1 C5H9NO4 147.053162 HPLC Yes 6-7 carbon atoms 

Methionine1 C5H11NO2S 149.051056 HPLC No  

Histidine1 C6H9N3O2 155.069473 HPLC No  

Tryptamine4 C10H12N2 160.100052 CE Yes 10-12 carbon atoms 

Phenylalanine1,4 C9H11NO2 165.078979 HPLC/ CE Yes 9-10 carbon atoms 

Arginine1 C6H14N4O2 174.111679 HPLC No  

Tyrosine1,4 C9H11NO3 181.073898 HPLC/ CE Yes 10-12 carbon atoms 

Tryptophan1,4 C11H12N2O2 204.089874 HPLC/ CE Yes 12-15 carbon atoms 
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Table 17 Comparison of results with volatile fatty acids detected by other researchers in decomposition fluids 

Compound Formula Monoisotopic mass (Da) Instrument 
Molecular ion detected in 

leachate samples 
Comments/ 

Isotope calculations 

Formic acid5 CH2O2 46.005478 GC No  

Acetic acid3,5,6 C2H4O2 60.021130 GC No  

n-Propionic acid3,5,6 C3H6O2 74.036781 GC Yes 4 carbon atoms 

Iso-Butyric acid3,5 C4H8O2 88.052429 GC Yes 5 carbon atoms 

n-Butyric acid3,5,6 C4H8O2 88.052429 GC Yes 5 carbon atoms 

Iso-Valeric acid3,5,6 C5H10O2 102.068077 GC Yes  

n-Valeric acid3,5 C5H10O2 102.068077 GC Yes  

Methyl-Valeric acid3 C6H12O2 116.083733 GC No  

Iso-Caproic acid6 C6H12O2 116.083733 GC No  

n-Caproic acid3,5 C6H12O2 116.083733 GC No  

n-Heptanoic acid5 C7H14O2 130.099380 GC   

Phenylacetic acid3,6 C8H8O 136.052429 GC Yes  

Phenylpropionic acid3,6 C9H10O2 150.068085 GC Yes 9 carbon atoms 

Myristic acid6 C14H28O2 228.208923 GC No  

Palmitoleic acid6 C16H30O2 254.224579 GC No  

Palmitic acid6 C16H32O2 256.240234 GC Yes 14-17 carbon atoms 

Linoleic acid6 C18H32O2 280.240234 GC Yes 18-22 carbon atoms 

Oleic acid3,6 C18H34O2 282.255890 GC Yes 15-19 carbon atoms 

Stearic acid6 C18H36O2 284.271515 GC No  
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Table 18 Comparison of results with additional decomposition compounds detected by other researchers in decomposition fluids 

Compound Formula Monoisotopic mass (Da) Instrument 
Molecular ion detected in 

leachate samples 
Comments/ 

Isotope calculations 
Phenol3 C6H6O 94.041862 GC No  

Piperidone3,6 C5H9NO 99.068413 GC Yes  

Cholesterol7 C27H46O 386.354858 GC No  

Coprostanol7 C27H48O 388.370514 GC No  

β-sitosterol7 C29H50O 414.386169 GC Yes 24-29 carbon atoms 
1 (Swann et al. 2012), 2 (Fiedler et al. 2004), 3 (Swann et al. 2010b), 4 (Swann et al. 2010c), 5 (Vass et al. 1992), 6 (Swann et al. 2010a), 7 (von der Lühe et al. 2013) 
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The response for the four most abundant (unidentified) mass signals from Figure 23 

were plotted in separate bar charts over time-since-burial and illustrated similar 

patterns of an increase in abundance up to 12 months post-burial, followed by a 

gradual decrease over a longer period of time, see Figure 24. This indicated the 

longevity of the detection of these chemicals, especially chart D) as this compound 

was detected up to at least 30 months post burial.
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Figure 24 Bar chart of the key peaks within grave sample 06-11-08 
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Chapter 4 Analysis of Inorganic Anionic Compounds Using Ion 
Chromatography 
The research described in this chapter has been performed by Avans University 

students Max Krens and Stepanie van Rens under the direct supervision of the 

author as partial fulfilment of their internship project at Staffordshire University. 

4.1 Analysis of Standards and System Suitability Samples 
Daily system performance was determined through evaluation of pump pressure, 

absolute conductivity, retention times and peak areas of the anion standard solution 

injections. The anion standard solution contains fluoride, chlorate, nitrite, phosphate 

and sulphate and a chromatogram is displayed in Figure 25. The relative standard 

deviations (RSD) of each of the aforementioned criteria were required to be below 

5% to pass the daily system suitability criteria. 

 
Figure 25 Chromatogram of the prepared mixed anion standard. The shown peaks from left to right are 
identified as fluoride, chlorate, nitrate, phosphate and sulphate. 

The anion standards displayed in Table 11 were analysed for the purpose of 

retention time confirmation and compound identification, which was performed 

through comparison of retention times and spiking of the sample with standard 

solutions. When an increase in peak area was observed and the peak shape did not 

indicate any obvious patterns of co-elution, positive identification was made. For the 



86 

determination of the detection and quantification limits of the identified ions peak 

heights of diluted standard solutions were compared to the baseline noise which 

was determined to be 0.02 µS following blank injections (n=10). Thus the detection 

and quantification limits were determined at three and ten times the baseline noise, 

see Table 19 for the detection and quantification limits determined for the anions 

present in the leachate. 

Table 19 Detection and quantification limits for the identified anions 

Ion Detection limit (ppm) Quantification limit (ppm) 

Acetate 5.9 19.8 

Bromate 1.6 5.2 

Chloride 1.8 6.1 

Nitrite 0.6 1.8 

Nitrate 0.5 1.8 

Phosphate 1.4 4.8 

Sulphate 0.1 0.2 

4.2 Analysis of Leachate Samples 
When analysing leachate sample 129 weeks post burial and its corresponding 

control sample, Figure 26, significant differences were observed between the two 

chromatograms. This highlights the capability of ion chromatography to differentiate 

between decomposition related samples and their corresponding control samples. 

These chromatograms also highlight the longevity for the detection of 

decomposition related anions as they are still able to be detected after 

approximately two and a half years post burial. The signals observed in the control 

sample (Figure 26B) correspond to chloride, nitrite, phosphate and sulphate 

respectively. These ions are also detected in the grave sample but in significantly 

larger quantities and additional ions are detected in the gravesite sample (Figure 

26A). 
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Figure 26 Chromatogram of leachate sample wk 129 grave sample (A) and its corresponding control 
sample (B) 

The ions detected in the leachate samples collected within the first two months post 

burial were compared with their control samples (3 injections per sample) to 

determine after which time point post burial differences between grave and control 

samples could be observed, see Table 20. Clear differences were observed for 

chloride, nitrate and sulphate after five weeks post burial, whilst acetate appeared 

after six weeks post burial. Relatively large concentrations of chloride 0.87 mg mL-1 

were detected, however the concentrations of acetate were detected up to 

20  mg  mL-1. As has been discussed in Section 1.4 Thanatochemistry, acetic acid 

the free acid of acetate, has been noted as a significant decomposition product 

through decomposition of carbohydrates, lipids and proteins. Vass et al. (1992) 

stated that the use of formic and acetic acid are abundant in nature and their levels 

are too variable to be used for time since death determination but these results 

highlight that it should not be excluded as a potential marker to locate clandestine 
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gravesites. The levels of chloride detected in this study exceeded the largest 

quantity of chloride detected by Vass et al. (1992) which was below 250 ppm g-1 dry 

soil. But this could be inherent to differences between the samples and soil type. 

Table 20 Earliest detection of anions and largest concentration detected in leachate samples 

Compound 
First detected 

(weeks post burial) 
Highest concentration detected 

(mg mL-1) 

Chloride 5 0.87 

Nitrate 5 0.15 

Sulphate 5 0.14 

Acetate 6 19.99 

The relative abundance of the ions detected in the leachate samples between 26 

and 40 weeks post burial were visually compared, see Figure 27. A clear pattern is 

visible between acetate, chloride and nitrate. The relative abundance of acetate and 

nitrate increase over time since burial, whilst the relative abundance of chloride 

decreases. Both acetate and nitrate have been reported to be products of 

mammalian decomposition, see Section 1.4 Thanatochemistry. When inspecting 

Figure 28 it can be observed that the absolute concentration of chloride is stable 

over time, which is not the situation for acetate and nitrate, hence the change in 

relative ion abundance. Aitkenhead-Peterson et al. (2012) observed a decrease in 

the levels of sulphate in comparison to the control samples, however the data in 

Figure 28 indicate a general increase of the sulphate concentration (produced from 

cysteine and methionine, see Section 1.4 Thanatochemistry) up to 120 weeks post 

burial. Phosphate has not been detected in many grave samples (only in 

samples 5, 120, 125 and 129 weeks post burial) which could have been due to the 

formation of water insoluble phosphate salts such as calcium or magnesium salts 

and could have prevented leaching of phosphate into the lysimeter. Carbonate, one 

of the main inorganic constituents of bone (Schultz et al. 1997), has been detected 

up to concentrations of 15 mg mL-1 and follows as similar pattern to the detection of 

acetate over time and thus could also become a decomposition marker but is difficult 

to analyse using the IC parameters used. 
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Figure 27 Pie chart displaying the difference in relative peak area of the anions detected in the leachate, 
see Figure 28 for the absolute concentartions 

 
Figure 28 Chart displaying the absolute concentrations of anions detected in the leachate samples over 
time since burial 
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Following repeated analysis of the standard solutions, significant degradation of the 

ions was observed after three weeks storage at room temperature, the peak height 

degraded by approximately 50% and additional peaks appeared in the 

chromatograms. It is however unknown if this was only the situation for the standard 

solutions or also for the leachate samples. Pringle et al. (2010) highlighted a 

decrease in conductivity of approximately 40% after analysing defrosted leachate 

samples and thus degradation could have occurred before initial IC analysis 

commenced. The addition of preservatives, such as ethylene diamine has been 

suggested by the USEPA analysis method for the determination of anionic 

compounds in drinking water and should inhibit degradation of the ions in the 

standard solutions (Hautman & Munch 1997). The physical properties of ethylene 

diamine are very similar to those of putrescine and cadaverine and thus these 

amines could have possibly preserved the ions in the sample solutions. 

4.3 Analysis of Water Casework Samples 
Analysis of the water samples was performed by Avans University student Vincent 

Voorwerk under the direct supervision of the author as partial fulfilment of his 

internship project at Staffordshire University. The stability and the matrix effects 

study on the water samples was performed by the author. 

 

The water samples were analysed using ion chromatography and the data is 

displayed in Figure 29. Chloride, phosphate, sulphate and thiosulphate were the 

only ions detected in the samples analysed and were identified through spiking of 

the sample solution with appropriate standard solutions. The data in Figure 29 

highlighted that chloride had been detected in all samples, including the control 

samples. The data obtained from the analysis of the leachate samples highlighted 

that chloride was detected in both grave and control samples, however significant 

differences were observed in the concentration of chloride in the associated 

gravesite samples. In addition, chloride has been reported as a significant 

decomposition product by Vass et al. (1992) but is not conclusive for the samples 

provided, see Table 21. Phosphate has been reported as a significant 

decomposition product by Aitkenhead-Peterson et al. (2012) and has also been 

detected in the suspected gravesite samples but also in one of the control samples. 

Again no observable differences were noted between either of the suspected grave 

or control samples. Sulphate was detected in suspected grave samples A and C but 

also in control sample 2. The leachate data highlighted a significant increase in 
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sulphate during decomposition but it did not distinguish between any of the samples 

analysed here. Thiosulphate was the only anion detected in the suspected grave 

samples only and was detected in samples A and C. The significance of the 

detection of thiosulphate is however unknown as the detection of thiosulphate has 

not been reported in the literature as a mammalian decomposition product, neither 

has it been detected in the leachate samples. Thiosulphate was not readily detected 

in any of the 120 soil samples analysed (only once) by Bommarito et al. (2007) and 

therefore could indicate some significance as it has not been commonly detected in 

the environment. 

Table 21 Concentration of chloride detected in the water samples (courtesy of Vincent Voorwerk) 

Sample Concentration chloride detected (ppm) 

Sample A 8.74 

Sample B 7.53 

Sample C 8.34 

Control sample 1 12.69 

Control sample 2 12.90 
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Figure 29 Pie charts displaying the relative quantities of anions present in the water samples (courtesy 
of Vincent Voorwerk) 

4.4 Analysis of Soil Casework Samples 
A chromatogram of a spiked soil sample is displayed in Figure 30, the spiked 

quantities are visible in the second column of Table 22 and the recovery values and 

their RSD’s are displayed in the final two columns. The recovery of the developed 

methodology was evaluated through spiking of soil samples with standard solutions. 

It had been observed that under the current extraction methodology the recovery 
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was very poor reaching a recovery of around 20% for the anions analysed. A similar 

extraction procedure, using ultrasonic bath and deionised water had been used by 

Bommarito et al. (2007) but no recovery data was provided and thus these poor 

recoveries might have been inherent to the extraction methodology. Nevertheless, 

this extraction procedure has been applied to the analysis of the case samples, see 

Figure 31, as it was intended to keep an aqueous matrix as that had been used for 

the analysis of the leachate samples. Furthermore, the author was unsure how long 

the samples could be stored without degradation. Despite the low recovery, the 

extraction methodology was reproducible having a relative standard deviation below 

10% and less than 5% for fluoride and chloride. 

 
Figure 30 Chromatogram of spiked soil sample (courtesy of Vincent Voorwerk) 

Table 22 Displays the recovery of the extraction methodology for the different anions (courtesy of 
Vincent Voorwerk) 

Anion 
Spiked 
(mg·L-1) 

Recovered 
(mg·L-1) 

Control 
(mg·L-1) 

Recovery 
(%) 

RSD 
(%) 

Fluoride 3.3245 0.9571 0.3005 19.75 3.0 

Chloride 3.3245 0.9270 0.2457 20.49 2.4 

Nitrite 3.3245 0.9419 0.4165 15.80 9.1 

Nitrate 6.6490 5.9045 4.0984 27.16 7.9 

Sulphate 3.3245 1.1875 0.4931 20.89 9.2 

The samples provided have been extracted for IC analysis and the data is displayed 

in Figure 31. The gravesite (sample 1) generally showed lower levels of soluble 

anions in comparison to the samples taken in the immediate surrounding area, 

possibly due to improved drainage of the soil following excavation. However, slightly 

elevated levels of nitrate were detected in the lower levels of the grave soil 

compared to samples in the immediate area and elevated levels of phosphate were 

found in the sample taken from the upper layer of soil immediately West of the grave 

(sample 2). In addition, elevated levels of phosphate were detected in sample 8 that 

was at or near a dog indication upslope from the grave. Elevated levels of phosphate 

have been reported to be associated to human decomposition 
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(Aitkenhead-Peterson et al. 2012). Samples 6 and 8 showed the largest variety and 

abundance of ions present in all the soil samples provided, as samples 11 and 12 

only showed large quantities of nitrate. 

 
Figure 31 Bar chart displaying the quantities of ions detected in each sample 

Even though only a small sample size was available, principal component analysis 

(PCA) was used to filter the data and select a subset of samples for GC analysis, 

see Figure 32. As visible in Figure 32, most samples cluster together around the 

control sample (sample 12). Sample 6 (approximately 100m downhill) and sample 

8 (near VRD indication) showed the most variance and were thus selected for 

GC-MS analysis alongside samples 4 (directly downslope behind a boulder of 

sandstone), 1 (location where victim was buried) and 12 (control sample, over 200m 

upslope). The variation was also observed in Figure 31, where samples 6 and 8 

showed the most significant difference between the samples analysed (see previous 

paragraph). 
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Figure 32 PCA plot of the IC data for each sample

!
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Chapter 5 Detection of Putrescine, Cadaverine and Methylamine in 
Mammalian Decomposition Fluids 

5.1 Analysis of Putrescine, Cadaverine and Methylamine 
The GC-MS analysis of a derivatised standard solution of putrescine 

(Rt. 16.99 minutes), cadaverine (Rt. 17.53 minutes) and methylamine 

(Rt. 7.67 minutes) is displayed in Figure 33. This chromatogram demonstrates the 

detection of these amines using GC-MS following derivatisation and indicates that 

derivatisation of these amines occurred and is stable under the current operating 

conditions (Hoshika 1977). Blom (2012) used this method to detect putrescine and 

cadaverine in Keele leachate samples, where most of the compound identification 

and method optimisation was performed. The derivatisation reaction with 

pentafluorobenzaldehyde was very selective as only primary amines react with 

pentafluorobenzaldehyde (Hoshika 1977; Knapp 1979) but it produced geometrical 

(cis/trans) isomers, which lead to the detection of multiple peaks for putrescine and 

cadaverine, Figure 33. 

 

 
Figure 33 Analysis of derivatised putrescine (Put), cadaverine (Cad) and methylamine (MA) using GC-
MS 

Putrescine, cadaverine and methylamine were identified by individually analysing 

standards to confirm their retention time and mass spectra. The most abundant ! "⁄  

peaks in each mass spectra are displayed in Table 23 and were compared to the 

peaks published by Ngim et al. (2000). As illustrated in Table 23 the	! "⁄  peaks for 

each compound are similar to the ! "⁄  peaks described by Ngim et al. (2000), 

however the relative intensities of these peaks differed. As all mass spectra were 

produced by 70eV electron impact ionisation, this variation was likely due to 

differences in instrumentation, calibration of the instrument or its internal settings 

(McMaster 2011). Table 24 compares the most abundant ! "⁄  peaks of 
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methylamine from this study to those reported by Avery & Junk (1985) and 

Ngim et al. (2000), and illustrates clear differences in the relative abundance of the 

! "⁄  peaks between all three studies, further confirming the previous statement. 

Positive identification of putrescine, cadaverine and methylamine was observed. 

Table 23 Comparison of mass spectral data for derivatised putrescine, cadaverine and methylamine to 
reference article Ngim et al. (2000) 

Methylamine (m/z) Putrescine (m/z) Cadaverine (m/z) 
Ngim Sample Ngim Sample Ngim Sample 

208 (100) 209 (100) 249 (100) 222 (100) 181 (100) 222 (100) 

209 (88) 208 (97) 181 (77) 230 (86) 208 (83) 263 (78) 

117 (26) 181 (36) 208 (55) 180 (80) 263 (78) 190 (73) 

161 (19) 161 (14) 194 (54) 249 (61) 244 (61) 181 (72) 

 117 (11) 221 (50) 208 (60) 190 (54) 250 (71) 

  230 (31) 202 (51) 222 (39) 208 (64) 

Table 24 Comparison of mass spectral data for derivatised methylamine to Ngim et al. (2000) and 
Avery  & Junk (1985) 

Avery 1985 Ngim 2000 This study 
208 (100) 208 (100) 209 (100) 

209 (85) 209 (88) 208 (97) 

181 (29) 117 (26) 181 (36) 

117 (18) 161 (19) 161 (14) 

161 (15)  117 (11) 

The detection of multiple peaks corresponding to putrescine and cadaverine from 

the pentafluorobenzaldehyde derivatives (Figure 33), was expected to be due to the 

formation of geometrical (cis/trans) isomers during the derivatisation, see Figure 34 

and Figure 35. Geometrical isomers, a sub-group of diastereomers may be 

separated using chromatography due to differences in their physical properties 

(Wade 2010). Derivatisation of methylamine was assumed to also produce a 

geometrical isomer but has not been observed which was most likely due to 

negligible differences in its geometrical configuration leading to minor changes in 

physical properties, visible in Figure 35. The production of isomers has not been 

reported by Ngim et al. (2000), Avery & Junk (1985, 1987) or many other 

researchers using Schiff base (imine) producing derivatisation agents. However, 

Dai et al. (1999) stated that two geometrical isomers are produced during the 

formation of imines and that the trans-isomer is usually preferred by stereo-chemical 

configuration. Putrescine and cadaverine, comprised of two amine groups therefore 
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produced three different isomers while only two isomers would have been formed 

for methylamine, visible in Figure 34 and Figure 35. This indicated that judging on 

relative peak heights, Put and Cad in Figure 33 were the trans-trans-isomer, Put 2 

and Cad 2 are the cis-cis-isomer and Put 3 and Cad 3 were the cis-trans-isomer, 

although no further experiments have been conducted to confirm this. 

 
Figure 34 Geometrical isomers of pentafluorobenzaldehyde derivatised cadaverine 

 
Figure 35 Geometrical isomers of pentafluorobenzaldehyde derivatised methylamine 

5.2 Optimisation of Incubation Time 
The incubation time was optimised to obtain the most suitable reaction efficiency of 

the derivatisation for several primary amines analysed using GC-FID by relative 
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peak area (Figure 36). Additionally, its effect on the reproducibility of the 

derivatisation is shown in Table 25. Putrescine and cadaverine were not included in 

this optimisation as the purpose was to optimise the derivatisation reaction to detect 

and identify other primary amines, whilst the derivatisation reaction for putrescine 

and cadaverine was already optimised by Blom (2012). 

 
Figure 36 Bar chart for the effect of incubation time on the derivatisation efficiency of several primary 
amines 

Table 25 Comparison of derivatisation reproducibility on primary amines using different incubation 
times 

Compound 
1h incubation 

(% RSD) 
2h incubation 

(% RSD) 
3h incubation 

(% RSD) 
Methylamine 0.20 0.26 0.34 

Isopropylamine 1.36 0.95 0.62 

Butylamine 1.14 0.51 0.50 

Phenylethylamine 1.04 0.71 0.57 

Even though a larger quantity of amines were derivatised using longer incubation 

times, an incubation time of one hour was determined to be most suitable to 

derivatise the leachate samples. This was concluded as longer incubation times 

increased the overall sample preparation time required and was not necessary as 

the one hour incubation time proved to be reproducible RSD <2%. In addition, the 

increase in recovery between one hour and three hours was below 10% for 

methylamine and butylamine, below 15% for penylethylamine and 24% for 

isopropylamine, although the latter is most likely not expected in the decomposition 

process. Ngim et al. (2000) reported similar findings and also stated that shorter 
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incubation times e.g. 30 minutes would hinder the derivatisation efficiency of 

putrescine and cadaverine, Hoshika (1977) and Moffat & Horning (1970) also used 

a one hour incubation time. 

 

The incubation temperature for the derivatisation was concluded to remain at 60°C 

as Ngim et al. (2000) reported putrescine and cadaverine required at least this 

temperature to derivatise both amine groups, whilst lower temperatures were more 

suitable for methylamine. Hoshika (1977) and Moffat & Horning (1970) also 

derivatised their amines at 60°C for one hour to derivatise short chain aliphatic 

primary amines, although Hoshika (1977) used a different derivatisation agent but 

still using the same reaction mechanism as seen with pentafluorobenzaldehyde. 

Ngim et al. (2000) determined the optimum pH to be 12 but a previous study by 

Blom (2012) determined the optimum pH to be 11 for putrescine and cadaverine. 

5.3 Method Validation 
The first aspect of the method validation was to determine the specificity by 

determining if co-elution occurred between the analyte peaks of interest and any 

interfering chemicals. Co-elution should be minimised as it produces bias if it is not 

detected and complicates the quantification procedure. To determine this, peak 

asymmetry and resolution were calculated using only the first peak of putrescine, 

cadaverine and methylamine in the Cranfield leachate samples to determine if the 

amines were resolved (Res > 1.5) from interfering compounds in the sample matrix 

and thus could be quantitated. Peak asymmetry values were required to determine 

the resolution as Dolan (2002) stated that peak tailing could greatly affect the 

resolution. It also acted as a useful indicator to determine if co-elution occurred 

through affecting the peak shape. Peak asymmetry values between 0.9 and 1.5 are 

usually deemed acceptable although an asymmetry factor of 2.0 is considered to be 

acceptable in certain situations depending on the separation and the resolution of 

the peaks (Dolan 2002; Harris 2010). Peak asymmetry values outside the 0.9 - 2.0 

region (visible in bold in Table 26) and resolution values below 1.5 (visible in bold in 

Table 26) indicate potential concerns regarding co-elution that could affect 

quantification. In addition, mass spectra of the leachate samples were compared to 

reference samples to inspect if co-elution occurred, see Figure 37, Figure 38, Figure 

39 and Table 26. 
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Table 26 Peak assymetry and peak resolution values for putrescine, cadaverine and methylamine 

Leachate 
sample 

date 

Putrescine Cadaverine Methylamine 

Pas Res 
Co-

elution 
Pas Res 

Co-

elution 
Pas Res 

Co-

elution 

15-09-11 1.94 NC1 No 1.33 NC1 No 3.45 1.02 Yes 

19-09-11 2.00 NC1 No 0.56 NC1 No 1.43 1.24 Yes 

26-09-11 1.30 NC1 No 1.20 NC1 No 1.34 NC1 Yes 

29-09-11 NQ2 NQ2  4.20 1.70 Yes 1.38 1.30 Yes 

05-10-11 2.00 2.22 No 4.56 2.70 Yes 0.73 1.37 Yes 

12-10-11 ND3 ND3  NQ2 NQ2  0.65 0.86 Yes 

28-10-11 1.29 NC1 No 2.90 3.15 Yes 0.79 NC1 Yes 

13-12-11 0.86 NC1 Yes 1.44 1.23 Yes 0.36 NC1 Yes 

22-02-12 1.00 NC1 Yes 2.00 1.22 Yes 1.11 NC1 Yes 

08-05-12 0.95 NC1 Yes 1.00 1.14 Yes 1.33 NC1 Yes 

30-05-13 3.33 0.85 Yes 0.74 1.23 Yes 3.10 1.04 Yes 

17-06-13 0.55 0.50 Yes 0.91 1.18 Yes 2.42 1.79 Yes 
Pas	=	peak	asymmetry,	Res	=	resolution.	

1
	Not	calculated	as	the	chromatographic	peaks	were	visibly	resolved.	

2
	Not	quantitated	as	analyte	was	below	the	quantification	limit.	

3
	Not	detected	as	analyte	was	below	the	detection	limit.	

Peak asymmetry was observed for putrescine, cadaverine and methylamine in the 

leachate samples but most were within the acceptable limits (between 0.9 and 2.0). 

The asymmetry values that were not within the acceptable limits, in bold, were 

inspected for co-elution and all samples except cadaverine in sample 19-09-11 did 

experience co-elution through either inadequate resolution or the presence of 

additional fragments in their mass spectrum (see paragraph below). The resolution 

was only calculated in the samples where it was difficult to determine if the 

chromatographic peaks were adequately resolved. A resolution value below 1.5, in 

bold, indicated that the peaks were not adequately resolved, as shown in Table 26 

the resolution of most peaks was above the threshold. Although, the resolution for 

putrescine in leachate samples 30-05-13 and 17-06-13 was below 1.5 and the same 

was observed for cadaverine from leachate sample 13-12-11 onwards. This is most 

likely due to progression of the decomposition process, which created a wider 

variety of decomposition chemicals along with higher concentrations in comparison 

to earlier samples. The resolution for methylamine was below 1.5 for the majority of 

samples and Table 26 also indicates that methylamine co-eluted with another 

chemical in all leachate samples (see paragraph below). Co-elution was observed 
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for putrescine from sample 13-12-11 onwards, whilst cadaverine co-eluted in all 

samples except the first three. 

 

Due to potential co-elution the mass spectra for the putrescine, cadaverine and 

methylamine signals in the Cranfield leachate samples were compared to the 

positive control taken along with its derivatisation and a positive control using a 

different temperature program (program B), and it was observed that co-elution 

occurred in the leachate samples (see Figure 37, Figure 38 and Figure 39). When 

observing Figure 37 no obvious differences were observed between the mass 

spectra of methylamine in the leachate sample and its positive control (Figure 37A 

and Figure 37B), however when the mass spectra of the two positive control 

samples were compared (see Figure 37B and Figure 37C) differences were 

observed. Several ! "⁄  fragments such as 32, 43, 57, 71 and 85 were present in 

Figure 37B but not in Figure 37C, indicating that another compound was co-eluting 

with methylamine in the leachate and positive control samples. This happened to be 

the case for all the leachate samples, hence the co-elution observed in Table 26. 

After further inspection the co-eluting compound turned out to be decane which 

originated from the internal standard and thus was also present in the control 

samples. When comparing the three different mass spectra for putrescine (Figure 

38) and cadaverine (Figure 39) no differences were observed but differences were 

observed in the mass spectra of leachate samples 13-12-11 onwards for putrescine 

and 29-09-11 onwards for cadaverine. 

 

The previous sections highlighted an issue regarding quantification as in certain 

samples the chromatographic peaks were not resolved and co-eluted with other 

compounds. These issues could be solved via either a change in the GC 

temperature program (as seen in Figure 37, Figure 38 and Figure 39) or the creation 

of a more specific method so no additional chemicals were detected. However, the 

derivatisation procedure is very specific as only primary amines were derivatised. 

The change in temperature program worked well to separate the methylamine and 

decane peak but also increased the sample analysis time by another 15 minutes 

(total run time per sample 50 minutes, excluding cool down time). This was not ideal 

due to the quantity of samples needed to be analysed, so the desired solution was 

to make the analysis process more specific using the GC-MS. It was decided to 

quantify the amines using three specific fragments (see Figure 27) of each amine, 

instead of the total ion chromatogram as highlighted in Table 14. 
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Avery & Junk (1987) and Ngim et al. (2000) quantified their derivatised amines 

using a single fragment, ! "⁄  208, which had high sensitivity due to α-cleavage, 

however the use of three specific ! "⁄  values was preferred in this instance as it 

was determined to be most reproducible. As this method was less prone to 

interferences it has been applied to the analysis of all leachate samples, calibration 

data and other samples used for further analysis. 

Table 27 m/z fragments used to quantify putrescine, cadaverine and methylamine 

Analyte m/z value 
Methylamine 117, 208 and 209 

Internal standard Total Ion Current 

Putrescine 181, 208 and 249 

Cadaverine 181, 222 and 263 
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Figure 37 Mass spectra for methylamine from Cranfield leachate sample 26-09-11 (A), a positive control (B) and another positive control using GC temperature program b) (C) 

,  23-Apr-2014 + 01:09:53
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Figure 38 Mass spectra for putrescine from Cranfield leachate sample 26-09-11 (A), a positive control (B) and another positive control using GC temperature program b) (C) 

,  23-Apr-2014 + 01:09:53
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Figure 39 Mass spectra for cadaverine from Cranfield leachate sample 26-09-11 (A), a positive control (B) and another positive control using GC temperature program b) (C) 

,  23-Apr-2014 + 01:09:53
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Calibration graphs (amine concentration vs signal abundance) for putrescine, 

cadaverine and methylamine within a concentration range of 0.1 μmol L-1 to 1000 

μmol L-1 were plotted using Microsoft Excel, (see Figure 40, Figure 41 and Figure 

42). The 95% confidence interval (the red line) of the calibration graph and the 95% 

prediction interval (the green line) of the data points were calculated and also 

plotted. The calibration line fits the model well as only one data point 

(x = 500 μmol L-1) for each amine falls outside the 95% confidence range of the 

calibration line (also see section on outliers, page 122). However, the data point still 

fits inside the 95% prediction interval and therefore indicates that this data point 

could be observed during analysis. The coefficient of determination, R2, of each 

calibration graph expresses a good fit between the calibration points and the linear 

trend line (R2 > 0.995). 
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Figure 40 Calibration graph for putrescine using GC-MS analysis 
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Figure 41 Calibration graph for cadaverine using GC-MS analysis 
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Figure 42 Calibration graph for methylamine using GC-MS analysis 
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The linearity for the detection of putrescine was determined through calculating the 

product-moment correlation coefficient, r, and the coefficient of determination, R2, 

which should equal the squared r-value if a linear relationship is present, r2 = R2, 

(See Equation 1 and Table 41 in Appendix II). The correlation coefficient of 

derivatised putrescine within a concentration range of 0.1 μmol L-1 to 1000 μmol L-1 

was 0.99964, this was very close to +1 indicating a positive linear correlation was 

present. As correlation coefficients could be easily misinterpreted 

(Miller & Miller 2010), the t-value (n-2) was calculated using Equation 2 (t = 259.36), 

which was compared to tabulated critical t-values to test the null hypothesis. The 

critical t-value 3.50 at the 99% confidence interval, obtained from 

Miller & Miller (2010), rejected the null hypothesis and also confirmed the presence 

of a linear correlation. The linearity values of cadaverine and methylamine were also 

calculated and are displayed in Table 28 along with the putrescine data. Table 28 

highlights, along with the calibration graphs, that a positive linear correlation was 

present for putrescine, cadaverine and methylamine over 5 decades from 

0.1 μmol L-1 to 1000 μmol L-1 after GC-MS analysis. 

Table 28 Highlighting a linear correlation for putrescine, cadaverine and methylamine 

Compound Putrescine Cadaverine Methylamine 

r-value 0.99964 0.99910 0.99950 

r2 = R2 0.99927 0.99820 0.99899 

t-value 259.36 164.93 220.70 

t-critical 99% CI (p = 

0.01) 
3.50 3.50 3.50 

Linear correlation 

present 
Yes Yes Yes 

As a linear relationship was observed for the derivatised amines, the best-fit 

regression line and the 95% confidence interval of the slope and intercept were 

calculated, Equation 3. The slope, intercept and their confidence limits for the 

derivatised amines are visible in Table 29. The least squares method, used to 

calculate the best-fit regression line, assumes that all errors are associated to the 

Y-axis and thus minimises the deviation in the Y-direction between the experimental 

data points and the calculated trend line (Miller & Miller 2010). Excel utilises the 

least square method to calculate the trend line, as the data in Table 29 is identical 

to the calibration graphs above, confirming this methodology is commonly used to 

create a best-fit straight line calibration graph. 
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Table 29 Slope and intercept information including their 95% confidence intervals and uncertainty for 

putrescine, cadaverine and methylamine 

Analyte Putrescine Cadaverine Methylamine 

Slope least squares 132146 136635 82418 

Intercept least squares -184966 306572 30668 

95% CI (p = 0.05) slope ± 3183 ± 5178 ± 2333 

95% CI (p = 0.05) 

intercept 
± 1192050 ± 1939269 ± 873792 

Average uncertainty of 

unknown sample (%) 
313 2059 3972 

Despite the high R2 values Table 29 indicates that the average uncertainty of 

determining the concentration of unknown samples over the entire calibration range 

was 313% for putrescine and much higher for cadaverine and methylamine. As the 

uncertainty was especially large at the lower range of the calibration series (Table 

30), new calibration graphs were created for putrescine, cadaverine and 

methylamine between a concentration range of 0.1 μmol L-1 to 10 μmol L-1 using the 

same dataset. As visible in Table 30 the average uncertainty for putrescine 

decreased from 313% to 29% for the low-range calibration graph, the average 

uncertainty values of cadaverine and methylamine reduced to 28% and 22%. Even 

though the uncertainty was reduced using this approach a relatively high difference 

was observed between the lowest prepared concentration and its calculated 

concentration, 0.49 – 0.10 = 0.39 μmol L-1, as the calculated concentration was 

almost five times larger than the prepared concentration. The large relative 

difference between the measured and calculated concentration for the lowest three 

samples (0.1 μmol L-1, 0.5 μmol L-1 and 1.0 μmol L-1) could be explained by the limit 

of quantification (see section below).  
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Table 30 Highlighting the average uncertainty for putresicne between the two calibration graphs using 

the different concentration ranges form the same data 

0.1 – 1000 μmol L-1 calibration putrescine 0.1 – 10 μmol L-1 calibration putrescine 

Prepared 

concentration 

(μM) 

Calculated 

concentration 

(μM) 

Uncertainty 

(%) 

Prepared 

concentration 

(μM) 

Calculated 

concentration 

(μM) 

Uncertainty 

(%) 

0.1 1.4020 761.24 0.1 0.4918 51.25 

0.5 1.4206 751.29 0.5 0.5363 46.93 

1.0 1.4615 730.26 1.0 0.6343 39.56 

5.0 3.2052 332.89 5.0 4.8133 5.07 

10.0 5.4211 196.74 10.0 10.1242 2.96 

50.0 39.4572 26.89    

100.0 103.5176 10.18    

500.0 520.9713 2.12    

1000.0 989.7434 1.35    

Mean  312.55% Mean  29.15% 

The decrease in uncertainty between the two calibration series in Table 30 could be 

explained through the residuals (measured y-value – predicted y-value), which are 

used to estimate unobservable model error (Yan & Su 2009). A residual is an 

observable estimate of an unobservable statistical (model) error, so larger residuals 

indicate a larger error. Thus the decrease in the uncertainty of putrescine could be 

explained due to the decrease in the sum of squared residuals as the squared 

residuals are lower in the first five samples than the other four (Table 41, Column 8). 

A possible reason for the larger residuals in the remaining four calibration standards 
was due to an influential data point in the calibration series that had disproportionate 

effects on the position of the regression line as a result of bias or leverage 

(Barwick 2003). Bias occurs when an outlier is present in the middle of the 

calibration series, shifting the regression line. Leverage could happen when an 

outlier is present at the extremes of the calibration range, tilting the calibration line, 

but could also occur when a calibration point is a distance away from others along 

the x-axis, even if it is not an outlier (Barwick 2003). Through visual inspection no 

outliers (see section below) were observed indicating that the influence occurred 

through leverage due to unequal spacing of the calibration points along the x-axis 

(see section below). The leverage was calculated for each calibration standard of 

putrescine for the 9-point calibration series to the 5-point calibration series, see 

Table 31. The calibration standard with the highest leverage, in bold, continues to 
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be in the largest calibration standard indicating unequal spacing of the calibration 

points along the x-axis (due to the calibration graph ranging over five decades). 

Table 31 highlights that calibration standard 1000 μmol L-1 in the 9-point calibration 

series influences 70% (0.6959) of the trend line and the influence remains above 

60% using the other series. According to Barwick (2003) a relatively small error in 

the measured response has a significant effect on the position of the regression line 

as leverage affects both the gradient and intercept.  
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Table 31 Calculated leverage of each calibration standard for putrescine 

Measured 

concentration 
Leverage (influence) 

0.1 3.59% 3.35% 6.49% 6.41% 14.57% 

0.5 3.58% 3.31% 6.27% 5.95% 11.18% 

1.0 3.56% 3.27% 6.00% 5.41% 7.57% 

5.0 3.40% 2.96% 4.08% 1.97% 3.97% 

10.0 3.22% 2.60% 2.20% 0.06% 62.72% 

50.0 1.92% 0.54% 7.93% 80.19%  

100.0 0.76% 0.13% 67.04%   

500.0 10.39% 83.84%    

1000.0 69.59%     

Sum: 100% 100% 100% 100% 100% 

One of the best known methods to detect outliers is through the use of Cook’s 

squared distance, also called Cook’s distance (Miller & Miller 2010). Table 32 shows 

the Cook’s distance values of each calibration point from the 9-point calibration 

series to the 5-point calibration series. According to Miller & Miller (2010) values 

with a calculated Cook’s distance above 1.0 justifies the omission of a suspected 

data point, which are highlighted in bold in Table 32. These highlighted values were 

also highlighted in Table 31 as experiencing the most leverage because the 

leverage is taken into account when calculating Cook’s distance (Cohen et al. 2003; 

Mickey et al. 2004; Miles & Shevlin 2001). Thus the calibration points experiencing 

high leverage were considered outliers through the use of Cook’s distance and a 

different approach was adapted to determine the presence of outliers through the 

use of standardised residual plots (Miller & Miller 2010). Standardised residuals are 

commonly used to detect outliers through determining the goodness of fit of each 

calibration point and should show random scatter around the zero line (Taylor 2015; 

Yan & Su 2009). Residual z-scores were calculated through dividing the y-residuals 

by !"/$ , which were plotted in standardised residual plots (Figure 43), residuals 

larger than three times that of the standard deviation (!"/$) may be considered an 

outlier (Yan & Su 2009).  
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Table 32 Cook’s distcance value of each calibration standard for putrescine  

Measured 

concentration 
Cook’s distance (outlier test) 

0.1 .00172 .06446 .05205 .11916 .54896 

0.5 .00086 .05147 .03862 .06643 .00385 

1.0 .00022 .03778 .02529 .02470 .31098 

5.0 .00322 .00099 .00022 .03670 .06396 

10.0 .02060 .02680 .03987 .30353 1.89030 

50.0 .09633 .36599 .56596 61.27320  

100.0 .00952 .00722 10.10971   

500.0 .77224 8.54536    

1000.0 11.47699     
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Figure 43 Standardised residual plots for putrescine (A), cadaverine (B) and methylamine (C) 
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The standardised residual plot of putrescine, Figure 43A, was satisfactory as it 

showed random scatter around zero and no obvious pattern was observed. The 

residual at 500 μmol L-1 could be an outlier although it was still below three standard 

deviations. The residuals for cadaverine (Figure 43B) were also satisfactory, it again 

highlights random scatter around zero, no pattern was observed and the residual 

500 μmol L-1 could also be a potential outlier but was still below three standard 

deviations. Methylamine’s residuals (Figure 43C) on the other hand were not 

satisfactory as all of the residuals except the residual at 500 μmol L-1 were negative, 

indicating that the regression line was biased. Taylor (2015) stated that a residual 

plot containing more than three points in the positive or negative direction is worth 

investigating for the possibility of bias at those concentrations, especially when they 

occur at the extremes of the calibration range. 

 

The omission of calibration standard 1000 μmol L-1 was investigated, as a negative 

residual was presented, indicating that this calibration standard was below the fitted 

trend line. In addition, very high leverage was observed for this particular data point, 

which as discussed earlier could have a significant effect on the regression line 

(Barwick 2003). When calibration standard 1000 μmol L-1 was removed, the 

calibration graph changed as expected, the slope increased, the intercept 

decreased and the regression (coefficient of determination) improved (Figure 44). 

The new calibration graph contained a predicted trend line up to 1000 μmol L-1. As 

visible in Figure 44 the instrumental observed value of 1000 μmol L-1 fell far outside 

the predicted trend line suggesting that this value introduced bias when used in the 

calibration series and was thus excluded from further calculations (this also applied 

to putrescine and cadaverine). A possible explanation for the decreased response 

of calibration standard 1000 μmol L-1 is that at this particular concentration the mass 

spectrometer was getting overloaded and resulted in slight plateauing of the 

calibration curve. Due to the potential overloading and decrease of linearity the 

upper limit of quantification was set at 500 μmol L-1, the next largest calibration 

standard included. No further analysis was performed to confirm the possibility of 

detector overloading and decrease in linearity as most of the samples analysed 

exhibited amine concentrations below 500 μmol L-1. 
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Figure 44 Calibration graph of methylamine without datapoint 1000 μmol L-1 
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Table 33 displays the limit of detection and limit of quantification for putrescine 

calculated using two separate methods. The first method (left side of Table) is 

commonly used in analytical chemistry and is calculated by dividing the random 

error in the y-direction (!"/$) by the slope of the trend line (Miller & Miller 2010), 

whilst Method 2 (adopted from Rosier et al. (2014) utilised the standard deviation of 

the intercept instead of the !"/$, resulting in lower values. The limit of quantification 

of Method 2 is around 1.0 μmol L-1, this value is assumed to be less accurate due 

to the significant uncertainty associated with the 1.0 μmol L-1 sample. The limit of 

quantification of Method 1 is just above 2.0 μmol L-1 and is thus assumed to more 

accurately reflect the limit of quantification for putrescine. However when the 

signal-to-noise ratio for putrescine was determined at concentrations of 0.1, 0.5 and 

1.0 μmol L-1 using Turbomass chromatography software (see Table 34), the limit of 

quantification (ten times signal to noise ratio) for putrescine indicated to be between 

0.5 μmol L-1 and 1.0 μmol L-1. It was thus decided that the detection and 

quantification limits for putrescine cadaverine and methylamine should be 

calculated using Method 2. The detection limit of putrescine, cadaverine and 

methylamine were calculated to be 0.29 μmol L-1, 0.27 μmol L-1 and 0.18 μmol L-1, 

whilst the quantification limits were determined to be 0.98 μmol L-1, 0.90 μmol L-1 

and 0.61 μmol L-1, see Table 35.  
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Table 33 Detection and quantification limits calculated using standard extrapolation method and 
method adopted from Rosier et al. (2014) 

Determination method &'/(
)  (Method 1) &*

)  (Method 2) 

 Minimum Maximum Minimum Maximum 

Detection limit (μmol L-1) 0.643 0.677 0.285 0.301 

Quantification limit (μmol L-1) 2.143 2.257 0.951 1.002 

Table 34 Signal-to-noise ratio calculated from chromatogram using Turbomass software 

Concentration Putrescine Cadaverine Methylamine 
1.0 μmol L-1 22.79 17.16 18.64 

0.5 μmol L-1 7.60 3.97 12.24 

0.1 μmol L-1 ND1 ND1 10.34 
1 Not detected during analysis 

The detection and quantification limits discussed in the previous paragraph were 

determined using extrapolation, which are not as reliable as analysis made near the 

expected detection limit. It has been recommended by the “National Association of 

Testing Authorities, Australia” that samples with a concentration near the estimated 

limit of detection should be analysed to confirm they could be detected 

appropriately. As the calculated detection limits of the amines were between the two 

lowest calibration standards, they were compared to their peaks signal-to-noise 

ratios. The signal-to-noise ratios for putrescine and cadaverine (Table 34) indicated 

that their detection limit is indeed above 0.1 μmol L-1 and their quantification limit 

above 0.5 μmol L-1, however the detection and quantification limits of methylamine 

should be lower than calculated. It has been decided to set the lower limit of 

quantification for all amines at 1.0 μmol L-1 of which the signal-to-noise ratio for each 

amine is above 10:1, see Table 34. 

Table 35 Detection and quantification limites for putrescine, cadaverine and methylamine 

Analyte Putrescine Cadaverine Methylamine 
Detection limit (μmol L-1) 0.29 0.27 0.18 

Detection limit (ppb) 25.56 27.59 5.59 

Quantification limit (μmol L-1) 0.98 0.90 0.61 

Quantification limit (ppb) 86.39 91.96 18.95 

After establishing the quantification limits for putrescine, cadaverine and 

methylamine new calibration calculations were performed on the remaining 

calibration standards and are displayed in Table 36. It is observed that the R2 values 

of the calibration series are all above or at 0.995 thus providing accurate results. 
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Table 36 Slope and intercept information including their 95% confidence intervals for putrescine, 
cadaverine and methylamine 

Analyte (concentration range) Slope 95% CI1 Intercept 95% CI1 R2 value 

Putrescine (1-10 μmol L-1) 55138 ± 3696 -26812 ± 12712 0.995 

Putrescine (10-500 μmol L-1) 138704 ± 2875 -735932 ± 491138 0.999 

Cadaverine (1-10 μmol L-1) 65627 ± 40623 -30614 ± 13974 0.996 

Cadaverine (10-500 μmol L-1) 147407 ± 3443 -378355 ± 588117 0.999 

Methylamine (1-10 μmol L-1) 64746 ± 2695 -4089 ± 9268 0.998 

Methylamine (10-500 μmol L-1) 87425 ± 1353 -336525 ± 231114 1.000 
1 Confidence Interval. 

Good accuracy was observed as the coefficient of determination of the amines were 

above 0.995 indicating that the accuracy of the current method was above 99.5%. 

Table 37 illustrates that the calculated concentration ± the uncertainty does 

correspond to the actual measured concentration. The average error of the 

calculated concentrations was around 10% for putrescine and cadaverine and lower 

for methylamine at 6.89% further suggesting good accuracy of the current 

methodology. The methodology was also determined to be reproducible as 

duplicate derivatised positive control samples containing 1000 μmol L-1 

concentrations of putrescine, cadaverine and methylamine had relative standard 

deviation values of 3.38%, 3.05% and 3.62% respectively. Although the method will 

be less reproducible towards the lower limit of quantification (LLOQ) a relative 

standard deviation < 20% is allowed at the LLOQ (Anderson et al. 2015). The 

relative standard deviation for methylamine using GC-FID (0.20%) and GC-MS 

(3.38%) could be due to differences in instrumentation as discussed by 

Cicchetti et al. (2008).  
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Table 37 Highlighting the average error in quantification for putrescine, cadaverine and methylamine 

Analyte Putrescine Cadaverine Methylamine 
Prepared 
concentratio
n (μmol L-1) 

Calculated 
concentratio

n (μmol L-1) 

Error (%) 
Calculated 
concentratio

n (μmol L-1) 

Error 

(%) 

Calculated 
concentratio

n (μmol L-1) 

Error 

(%) 

1.0 0.63 ± 0.65 36.57 0.63 ± 0.60 36.78 0.73 ± 0.40 27.25 

5.0 4.81 ± 0.63 3.73 4.91 ± 0.58 1.87 4.92 ± 0.39 1.67 

10 10.12 ± 0.77 1.24 10.08 ± 0.71 0.79 10.06 ± 0.48 0.62 

50 41.56 ± 9.97 16.87 
44.13 ± 
11.22 

11.74 46.78 ± 7.43 6.44 

100 
102.60 ± 
9.86 

2.60 
108.99 ± 
11.10 

8.99 94.89 ± 7.36 5.11 

500 
500.31 ± 

12.93 
0.06 

498.85 ± 

14.55 
0.23 

501.29 ± 

9.67 
0.26 

Mean  10.18%  10.07%  6.89% 

5.4 Analysis of Cranfield Leachate 
The data for the samples received in April 2012 and analysed in March 2013 

highlighted that methylamine was present in a significant abundance in comparison 

to putrescine and cadaverine as seen in Figure 45. Putrescine, cadaverine and 

methylamine were detected from one-month post burial to at least six months’ post 

burial. These amines could be detected over a longer period of time (at least 669 

days post burial) as visible in Figure 47. In addition, putrescine and cadaverine were 

detected up to at least 902 days’ post burial using GC-FID in the Keele leachate 

samples (Blom 2012). Based on the high relative abundance of methylamine in 

comparison to putrescine and cadaverine, in Figure 45, methylamine has the 

potential to be an important biomarker for the detection of clandestine graves using 

chemical based techniques and has not previously been reported as a 

decomposition product within the field of Taphonomy. 
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Figure 45 Bar chart for the relative ratios of amines in Cranfield leachate samples over time since burial 

Duplicate leachate samples (according to the labels) were received in March 2014 

and analysed in April 2014, which produced different results as methylamine was 

less abundant in the duplicate samples (Figure 46). A potential reason for these 

differences could have been the conditions under which the samples were stored. 

According to S˙liwka-Kaszyńska et al. (2003) storage conditions could affect the 

chemical composition of the leachate samples. In addition, Forbes et al. (2014) 

demonstrated that freezing blood samples negatively affected its chemical 

composition, which could explain the significant variation in the presence of 

putrescine, cadaverine and methylamine between the duplicate leachate samples 

as earlier data demonstrated good reproducibility for the derivatisation and GC-MS 

analysis (see Section 5.7 Storage Experiments).
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Figure 46 Bar chart for the difference in relative ratios of amines in Cranfield leachate samples between duplicate samples 
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Figure 47 Chart displaying the concentrations of putrescine, cadaverine and methylamine detected in the leachate samples over time since burial using Cranfield leachate samples 
obtained in March 2014. 
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Figure 49 displays the concentration of putrescine cadaverine and methylamine 

detected in the Cranfield leachate samples obtained in March 2014 over time since 

burial. The period for which the amines were most concentrated was shortly after 

burial up to 117 days post burial and was in the autumn and winter. No obvious 

patterns emerged to interpret the data except that methylamine was present in 

larger concentrations than putrescine and cadaverine in all samples except for 

samples 28 and 32 days post burial. The data did not show any temporal changes 

that were linear or allowed regression, and thus did not allow any determination 

towards post mortem interval calculation as Vass et al. (2002) had previously 

indicated. Samples were not provided for the period between 264 and 651 days post 

burial, although putrescine, cadaverine and methylamine were still detected up to 

669 days post burial. 

 

The longevity for the detection of putrescine and cadaverine in this study was far 

greater than the research performed by Bonte & Bleifuss (1977), Vass et al. (2002) 

and Swann et al. (2012). This study detected putrescine, and cadaverine in the 

samples collected for nearly two years post burial, whilst Bonte & Bleifuss (1977), 

Vass et al. (2002) and Swann et al. (2012) detected putrescine and or cadaverine 

in mammalian decomposition up to 55 days, approximately 21 days and 44 days 

post mortem respectively. However, their decomposition process was aboveground 

and this project studied belowground decomposition, which resulted in different 

decomposition rates (Gunn 2006; Statheropoulos et al. 2011; Vass 2011). 

Furthermore, Bonte & Bleifuss (1977) determined that anaerobic environments 

accelerate amine production and could also explain the differences in the detection 

of these amines between this study and others. Fiedler et al. (2004) detected 

cadaverine in soil samples fifteen years post burial, although no confirmation had 

been given regarding the exact post burial interval. In addition, the bodies were 

buried in a coffin and adipocere was detected, which both slow down the 

decomposition rate (Dent et al. 2004). Samples were taken at one particular time 

point since burial and thus only provided limited information regarding the longevity 

for the detection of cadaverine. 

 

The data from this study indicated that in addition to the detection of putrescine, 

cadaverine and methylamine, other primary amines were detected in the leachate 

samples, see Figure 48. A reconstructed ion chromatogram has been created using 

! "⁄  values 181 and 208, which are characteristic fragments for the derivatised 
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amines as ! "⁄  208 corresponds to the a-cleavage product ion [C6F5-CH=N-CH2]+ 

and ! "⁄  181 corresponds to a stable fragment of the fluorinated benzene ring 

[C6F5-CH2]+ (Deng et al. 2006; Llop et al. 2010a). This resulted in the detection of 

seven additional primary amines in the leachate samples of which one compound 

(peak four) was positively identified as n-butylamine through comparison of the 

fragmentation patterns to the literature and a positive control sample, see Table 38. 

Four compounds (peaks one, two, three and five) were identified with a relatively 

high certainty to be ethylamine, n-propylamine, isobutylamine and n-pentylamine 

respectively, through comparison of the fragmentation patterns to the literature. In 

addition, isobutylamine, having a similar fragmentation pattern to N-butylamine, was 

the only structural isomer that had its base peak ion at ! "⁄  208 and lacked the 

fragment ion at ! "⁄  222, and was thus confirmed to be isobutylamine through 

interpretation of the molecular structure and its fragmentation. The boiling point of 

isobutylamine was 67°C, which is lower than n-butylamine (76°C) furthermore 

confirming its elution before n-butylamine. The mass spectrum of peak six was very 

similar to that of n-pentylamine but lacked the ! "⁄  236 fragment ion, indicating the 

compound could be a structural isomer of n-pentylamine such as isopentylamine. 

Although, the intermolecular forces of a n-alkane are larger than that of is structural 

isomers, thus experiencing higher boiling points so making this unlikely 

(Brown et al. 2007). Peak seven was not identified, it did have a base peak ion at 

! "⁄  208 but the next fragment was at ! "⁄  255 indicating that this compound was 

not a straight chain alkane. It should also be noted that both signals presumptively 

identified as ethylamine and n-pentylamine were detected in both grave and control 

samples but significant differences we observed between their concentrations.
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Figure 48 Reconstructed ion chromatogram of Cranfield grave sample 30-05-13 displaying additional 
signals related to the derivatisation (derivatised primary amines) 

Table 38 Potential compound identification of other primary amines present in the leachate samples 

Peak of 
interest no. 

Possible 
compound Notes 

1 Ethylamine 
• Mass spectra compared to (Ngim et al. 2000; 

Avery & Junk 1985): 208 (100), 181 (36), 194 (31) 
and 233 (23) 

2 N-Propylamine 

• Mass spectra compared to (Ngim et al. 2000; 
Avery & Junk 1985): 208 (100), 181 (42), 209 (35) 
and 161 (10) 

• Molecular ion present at 236 (7) 

3 Isobutylamine 
• Mass spectra compared to (Ngim et al. 2000; 

Avery & Junk 1985): 208 (100), 209 (90), 181 (86), 
161 (20) and 250 (9) 

4 N-butylamine 

• Mass spectra compared to (Ngim et al. 2000; 
Avery & Junk 1985): 208 (100), 181 (65), 209 (52) 
and 190 (48) 

• Molecular ion present at 251 (15) 
• Confirmed using positive control 

5 N-Pentylamine 

• Mass spectra compared to (Ngim et al. 2000; 
Avery & Junk 1985): 208 (100), 190 (82), 181 (65) 
and 250 (61) 

• Peaks 209 (88) is also present in large quantity 
• Peak 264 (8) indicating to be the molecular ion peak 

6 Unknown 
• Similar to N-pentylamine although m/z 236 is low so 

could indicate iso-pentylamine 

7 Unknown 
• 208 basepeak 283 also significant 
• Most likely not straight chain alkane due to lack of 

fragments between 208 and 283 

Green	colour	indicates	positive	identification	
Yellow	colour	indicates	identification	with	slight	uncertainty	due	to	lack	of	standard	
Orange	colour	indicates	some	identification	but	still	a	lot	of	uncertainty	
Red	colour	indicates	no	identification	
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Putrescine, cadaverine and methylamine are in the literature considered to be 

volatile and thus thought to be detected using headspace analysis such as solid 

phase micro-extraction (SPME) and sorbent traps combined with GC analysis 

(Dekeirsschieter et al. 2009; Hoffman et al. 2009; 

Statheropoulos et al. 2005, 2007, 2011; Tipple et al. 2014; Vass et al. 2004). In 

addition, Vass et al. (2004) hypothesised several reasons for the non-detection of 

these amines such as: a) putrescine and cadaverine are not volatile in a burial 

environment; b) putrescine and cadaverine are rapidly metabolised; c) putrescine 

and cadaverine are thermally labile; and d) putrescine and cadaverine are not 

produced in a burial environment. This study in combination with previous study by 

Blom (2012) indicates that statement a) is partly correct as these amines were not 

easily extracted from water due to their high polarity and alkalinity (Blom 2012; 

Hoshika 1977; Pan et al. 1997) and thus do not volatilise from moist environments 

including soil (see section below). Statement b) has not been seen in these samples, 

c) has not been observed using GC analysis and d) was disproved for our burial 

environments. 

 

Researchers in the field of Taphonomy have reported that putrescine and 

cadaverine were not detected using headspace techniques due to a lack in volatility 

as discussed in the previous paragraph. Volatility is characterised by a chemicals’ 

vapour pressure, allowing evaporation from various surfaces. However the term 

‘volatile’ is not well defined and the vapour pressures of chemicals considered to be 

volatile can vary over several orders of magnitude (Herrmann 2010). Table 39 

displays the vapour pressure of seven decomposition related VOC’s published by 

Dr. Arpad Vass, including putrescine, cadaverine and methylamine 

(Vass et al. 2004). As visible in Table 39, methylamine is classed as the most 

volatile compound in this Table, putrescine and cadaverine are displayed in the 

middle of Table 39 indicating that these compounds are considered to be more 

volatile than nonanal and decanol. This highlights that the lack of detection of these 

amines using headspace techniques it is not due to volatility. A study performed by 

Blom (2012) indicated that when putrescine was dissolved in water the detection 

limit using SPME rose from approximately 7 μg L-1 to approximately 16 g L-1 for neat 

putrescine. This could be explained by a compounds partition coefficient (log Po/w), 

which indicates hydrophobicity (polarity), which is below 0 for the amines. Table 39 

lists whether evaporation from water-based media is possible through the use of 

Henry’s law constant, evaporation for all compounds except the amines is expected 
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as highlighted in green. The amines do not volatilise from water-based media due 

to both their polarity, reducing their Henry’s law constant, and their alkalinity as seen 

from their dissociation coefficient (Log D). Due to their alkalinity putrescine, 

cadaverine and methylamine will almost entirely exist in the cation form at 

environmental pH values (between 5 and 9) and thus will not volatilise form 

water-based media. 

Table 39 Physico-chemical properties of VOC’s reported by Vass (2004) including the bio-amines. Data 
taken from Hazardous Substances Data Bank 

Compound 
Vapour 
pressure 
(mm Hg 25°C) 

Partition 
coefficient 
(Log P) 

Dissociation 
coefficient 
(Log D) 

Henry’s law constant 
(atm-cu m/mol 25°C) 

Methylamine 2.65E3 -0.57 10.62 1.11E-5 

Carbon disulfide 359 1.94 No 1.44E-2 

Dimethyl disulphide 28.7 1.77 No 1.21E-3 

Toluene 28.4 2.73 No 6.64E-3 

Putrescine 2.33 -3.42 9.63 & 10.8 3.54E-10 

Cadaverine 1.01 -0.161 9.13 & 10.25 2.42E-9 

Nonanal 0.37 3.271 No 7.3E-4 

Naphtalene 8.50E-2 3.3 No 4.4E-4 

Decanol 8.51E-3 4.57 No 3.2E-5 

Hexadecanoic acid, 
methyl ester 

6.04E-5 7.38 No 9.0E-3 

Green	colour	indicates	that	evaporation	from	aqueous	environments	is	expected	
Red	colour	indicates	that	evaporation	from	aqueous	environments	is	not	expected	
1	Value	is	provided	as	an	estimated	value	

5.5 Analysis of Water Casework Samples 
Following GC analysis for the detection of the biogenic amines putrescine, 

cadaverine and methylamine it was observed that neither putrescine nor cadaverine 

were detected in any of the samples provided, see Figure 49. Methylamine was 

detected in the suspected grave samples but was also detected in the control 

samples. The data obtained from the Cranfield leachate samples highlighted a 

correlation between the detection of putrescine, cadaverine and methylamine during 

mammalian decomposition. However, this data indicates that methylamine is 

potentially not a suitable marker for mammalian decomposition as it has been 

detected in all the samples analysed and was not able to differentiate between the 

samples. This could potentially have been due to the significant time since burial 

(over 25 years) or that the body may have never been deposited at the specified 

location. 
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Figure 49 Chromatograms displaying the GC data for the detection of; methylamine (Rt 7.68), putrescine 
(Rt 17.01) and cadaverine (17.52) in the water samples (courtesy of Vincent Voorwerk) 

5.6 Analysis of Soil Casework Samples 
For the GC analysis, the recovery of the extraction was also calculated through the 

use of spiked soil samples and the data is visible in Table 40. As observed in Table 

39, the recovery of the amines using the current extraction methodology is very 

poor, around 10% for methylamine and even lower for putrescine and cadaverine 

as the methodology used was not optimised for the extraction of amines. Fiedler et 

al. (2004) extracted putrescine and cadaverine through the use of a soxhlet 

extractor, however their recoveries are unknown and therefore these extraction 

methodologies can’t be compared. Despite the low recovery, putrescine has been 

detected in sample 1 (grave location) at a concentration of nearly 150 ppb. 

Putrescine has also been detected in samples 6 (100m downhill) and 8 (near VRD 

indication) but were below the limit of quantification. Putrescine was not detected in 

the remaining samples (immediately downslope, or the control sample) and 

cadaverine was not detected in any of the samples, see Figure 50. On the other 

hand, methylamine has been detected in all samples including the negative control 

soil and is present at approximately the same quantities in all samples and is 

therefore unable to provide any additional information. In addition to the detection 

of putrescine, approximately eleven compounds were detected in sample 1 

(see Figure 51) that were not detected or detected at significantly lower quantities 

in the other samples, however further research is required to determine if these 

compounds are derivatised amines or co-extractants during the derivatisation. 
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Table 40 Recovery of putrescine, cadaverine and methylamine from soil  

Chemical Spiked (μg·L-1) Found (μg·L-1) Recovery (%) 

Methylamine 15.5 1.7 10.72 

Putrescine 44.1 4.0 9.17 

Cadaverine 51.1 3.7 7.32 

 
Figure 50 Chromatogram displaying the detection of putrescine (rt 16.91), cadaverine (rt 17.52) and 
methylamine (rt 7.65) in the different samples analysed 
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Figure 51 Chromatogram displaying the detection of several other components of interest in the grave 
samples in comparison to the other samples 

The detection of putrescine in sample 6 and 8 could indicate migration of the 

chemical constituents and could explain why the PCA-plot displayed the most 

variation in these samples in relation to the other samples following the IC results 

(see Section 4.4 Analysis of Soil Casework Samples). Figure 52 displays a 

hypothesised pattern of chemical leaching downhill published by Dr. Laurance 

Donnelly in 2010 and could explain the detection of low quantities of putrescine 

downhill. The detection of trace levels of putrescine in sample 8 (slightly uphill) might 

have been through capillary action, where putrescine, alongside other water soluble 

chemicals migrated slightly uphill. The VRD also detected at this location and thus 

corroborates the hypothesis of chemical migration through capillary action. 

Phosphate was also found to be higher at sample 8 but otherwise the IC data was 

less conclusive than the GC data, although the relative ratio of nitrate between the 

upper and lower sample was found to be larger in the gravesite sample. 
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Figure 52 Schematic drawing highlighting the underground migration of decomposition products. 
Taken from Donnelly (2010)  
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5.7 Storage Experiments 

5.7.1 Storage of Standard Solutions 
On visual interpretation of the data, no gross differences were observed between 

the levels of putrescine, cadaverine and methylamine between the fresh samples 

and those from the different storage conditions. Thus a one-way between groups 

multivariate analysis of variance (MANOVA) was performed to investigate the effect 

of different storage conditions. The dependent variables were the raw data for 

methylamine, putrescine and cadaverine, and the independent variable was the 

storage conditions containing five levels labelled; initial samples, room temperature, 

fridge, freezer and freezing/defrosting. No statistically significant difference 

(p > 0.05) was observed between the storage conditions on the combined 

dependent variables using Pillai’s trace, V = 0.73, F(12, 30) = 0.81, p = 0.642, and 

resulted in no further testing and interpretation of the MANOVA data. 

 

Analysis of Variance (ANOVA) was chosen to analyse the data from the storage 

experiment as it is the most powerful test of comparing samples. Using multivariate 

data, e.g. multiple dependent variables, there is an option of performing one ANOVA 

per dependent variable and combining the results or to perform a MANOVA 

(Boyd et al. 2006). A MANOVA is preferred as Type I errors (false positive) could 

be introduced by combining the results of multiple ANOVA’s, and if separate 

ANOVA’s are conducted, any relationship between the dependent variables is 

ignored losing important information (Boyd et al. 2006; Field 2013; Pallant 2010). 

The outcomes of the MANOVA were compared to separate ANOVA’s and gave 

identical results. 

 

A MANOVA has several multivariate tests to choose from; Pillai's Trace, Wilks' 

Lambda, Hotelling's Trace and Roy's Largest Root. Out of these tests Wilks’ 

Lambda is most commonly reported, however Pillai’s trace is more robust when 

sample sizes are equal and thus less prone to violation of assumptions. The 

decision was made to use Pillai’s trace instead of Wilks’ Lambda as a small sample 

size was used for the significance testing (Field 2013). The significance of a 

MANOVA is indicated by the multivariate test used, Pillai’s trace calculates the 

amount of variance in the dependent variables that is accounted for by the greatest 

separation of the independent variables thus V = 0.73 implies that 73% of the 

variance is explained by the different storage conditions (Norman & Streiner 2008). 
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The F value is the ratio between the mean square values and is expected to have a 

value close to 1.0 when the null hypothesis is true. A large F value indicates that the 

variation among group means is more than expected to see by chance resulting in 

the null hypothesis to be incorrect (Zar 2010). The F value of the MANOVA was 

0.806 thus confirmed the null hypothesis was true. 

 

Figure 53 displays a bar chart showing the effect of the storage conditions on the 

mean detection of putrescine, cadaverine and methylamine, 95% confidence 

interval error bars have been included to visualise the MANOVA results. As visible 

in Figure 53 no differences in the detection of putrescine, cadaverine and 

methylamine were observed between the different storage conditions within their 

95% confidence interval. 

 
Figure 53 Bar chart displaying the average intensity and 95% confidence interval for 1.0 mmol L-1 
putrescine, cadaverine and methylamine solutions stored for three months 
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5.7.2 Storage Casework Samples 
On visual interpretation of the matrix effects data, no gross differences were 

observed between the levels of putrescine cadaverine and methylamine between 

the different samples. Thus a one-way between groups multivariate analysis of 

variance (MANOVA) was performed to investigate the effects of the matrix on the 

derivatisation of the amines in the water samples. The dependent variables were 

the raw data for methylamine, putrescine and cadaverine, and the independent 

variable was the different spiked samples containing five levels labelled; positive 

control, sample A, sample B, sample C and sample control. A statistically significant 

difference (p < 0.05) was observed between the different samples and the combined 

dependent variables using Pillai’s trace, V = 2.25, F(12,15) = 3.75, p = 0.009. When 

the results for the dependent variables were separately considered no significant 

difference was observed using a Bonferroni adjusted alpha level of 0.017. Thus it 

has been concluded that no significant difference was observed between the 

derivatisation of each individual amine between the spiked samples and positive 

control. 

 

The effect of storage of the casework samples was investigated to establish if 

putrescine, cadaverine and methylamine could have been present in the samples 

but have been decomposed before analysis commenced. On visual interpretation 

of the data, no gross differences were observed between the levels of putrescine 

cadaverine and methylamine before and after storage. Thus a one-way analysis of 

variance (ANOVA) was performed on each amine to investigate the effect of storage 

on the amines. The dependent variables were the raw data for methylamine, 

putrescine and cadaverine, and the independent variable was the storage 

conditions; before and after storage. No statistically significant difference (p > 0.05) 

was observed between the storage and the detection of methylamine F(1,15) = 0.43, 

p = 0.524, and resulted in no further testing and interpretation of the ANOVA data. 

The same was concluded for putrescine F(1,15) = 0.002, p = 0.962, and cadaverine 

F(1,15) = 0.057, p = 0.814. 

 

It was hypothesised that implementation of the developed IC and derivatisation GC 

methodologies on the water samples would be straightforward from an analysis 

perspective as the methodologies were both developed for the analysis of liquid 
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samples. The results discussed in the previous paragraphs highlighted that the 

water matrix did not interfere with the derivatisation of putrescine, cadaverine and 

methylamine individually. In addition, it also indicated that if putrescine and or 

cadaverine were present in detectable levels it would not have been decomposed 

during storage. It therefore seems that either the applied methodologies are not 

sensitive enough and/or these methodologies are not suitable to differentiate 

between decomposition and control samples in an aquatic environment. This is 

however unlikely as both the IC and GC methodologies have been able to detect 

the required analytes at low ppm and low ppb detection limits in their respective 

methods (see Chapter 4 Analysis of Inorganic Anionic Compounds Using Ion 

Chromatography and Chapter 5 Detection of Putrescine, Cadaverine and 

Methylamine in Mammalian Decomposition Fluids). Other possibilities for the 

inability to differentiate could have been limitations from water sampling or as 

discussed previously, the non-detection is related to the time since burial of the 

victim or the victim was never deposited at the specified location. It has been noted 

that natural water appears to be homogeneous but is in fact spatially and temporally 

heterogeneous, and stratification is common in lakes with variations in flow, 

chemical composition and temperature (Dean 1998). This indicates that sediment 

samples or water samples taken close to the sediment are likely to provide different 

results in comparison to surface water and could therefore be a reason why the IC 

and derivatisation GC methodologies were not able to differentiate between the 

water samples. In addition, no data is available for the detection of putrescine, 

cadaverine and methylamine in an aquatic environment up to 25 years post burial. 
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Chapter 6 Conclusion 
This study sought to detect the non-volatile and semi-volatile decomposition 

products present in soil and water samples that could aid in the detection of 

clandestine gravesites and lead to the development of field based chemical tests to 

speed up the search process. The overall aim of this study was to determine if the 

detection of non-volatile and semi-volatile decomposition products, is a viable 

alternative to the current search methodologies available. The objectives to achieve 

this aim were: 

• To develop a highly specific and sensitive methodology for the detection of 

putrescine and cadaverine in aqueous samples and determine if biogenic 

amines such as putrescine and cadaverine could be detected in 

mammalian decomposition. 

• To explore why most of the researchers in the field of taphonomy were 

unable to detect the decomposition markers putrescine and cadaverine in 

their studies. 

• To determine the usefulness of ion chromatography as a tool to analyse 

mammalian decomposition products. 

• To determine the effectiveness of high performance liquid chromatography 

and liquid chromatography mass spectrometry as a tool to analyse products 

of mammalian decomposition. 

• To determine if the developed analytical methodologies (gas 

chromatography and ion chromatography) can aid in the intelligence 

gathering process for locating clandestine gravesites. 

• To develop an extraction methodology in order to allow for the analysis of 

soil samples as well as water samples. 

This study has highlighted that the development of chemical tests is a viable 

alternative approach towards the already established search methodologies for the 

detection of clandestine gravesites. Three analytical methodologies have been 

developed for the detection of non-volatile and semi-volatile decomposition products 

within a soil or aqueous environment. These methodologies are capable to detect 

mammalian decomposition products and are able to differentiate between gravesite 

and control samples (see sections below). Even though some preliminary chemical 

marker identification has been performed further research is required in order to 
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identify the key decomposition products produced during the human decomposition 

process. When these compounds are identified field-based test would allow for 

easier and more rapid search procedures, to aid in the detection of clandestine 

graves. Such tests could be used in combination with victim recovery dogs to 

confirm or eliminate their alerts, or it can be used in a systematic approach to locate 

decomposition hotspots within a particular area and eliminate some of the 

disadvantages of the current search methods. 

6.1 High Performance Liquid Chromatography 
Liquid chromatography was utilised to explore the variety of decomposition products 

produced during mammalian decomposition through the use of HPLC-DAD and 

LC-MS. This work has sought to establish if alternative analytical techniques to the 

commonly used GC-MS methodologies could identify decomposition products that 

were not detected in the decomposition fluids by other researchers and aimed to 

determine the effectiveness of HPLC and LC-MS as a tool to analyse products of 

mammalian decomposition. 

 

After exploring many different HPLC operating conditions, it was concluded that 

reversed phase chromatography using an octadecylsilyl (C18) column was more 

suitable to separate the decomposition products over normal phase 

chromatography (hilic). Due to the polarity of the decomposition compounds a 

buffered mobile phase was required, preferably at low pH to suppress ionisation of 

acidic compounds and stabilise the pH. The use of a formate buffer was preferred 

over the phosphate buffer due to its adaptability with LC-MS and similar HPLC 

conditions have been used by Swann et al. (2012) for the determination of amino 

acids and amines in decomposition fluids. HPLC-DAD is a useful tool for the 

detection of decomposition products and may have further use for quantification of 

key decomposition compounds but LC-MS is more suitable for the purpose of this 

study. 

 

Sample clean-up was required for the analysis of the leachate samples using HPLC 

through the use of Whatman 0.45 μm PVDF syringe filters and was identical to the 

sample preparation performed by Swann et al. (2012). The use of SPE as a sample 

preparation/clean-up technique was disregarded as SPE was unable to concentrate 

the leachate samples due to insufficient sample quantities being available. A major 
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objective in this study was to identify the chemicals present in the leachate, which 

meant that all the compounds in the leachate were potentially of interest. 

 

The data showed the potential for LC-MS to analyse and qualify the compounds 

present in the leachate samples, although further work is required before it will 

compete with the use of GC for the analysis of decomposition products. LC-MS is 

more suitable to detect the variety of compounds present in the leachate in 

comparison to HPLC-UV as it is a more versatile detector and allows analysis of a 

wide range of compounds without derivatisation. The data indicated that over 100 

decomposition specific chemicals were present in the leachate samples and that 

some of these chemicals were detected over a relatively long period of time (over 

30 months post burial). 

 

The process of compound identification was difficult as no internal library was 

present and thus no compounds have been conclusively identified. A few amino 

acids and amines such as lysine, tyramine, phenylalanine and tryptamine were 

identified with reasonable certainty without the use of reference standards. Whilst 

identification of VFA was more difficult without the use of reference standards. 

 

In summary, a suitable methodology has been developed for the analysis of non-

volatile and semi-volatile decomposition products within the leachate samples using 

HPLC. Analysis was achieved through reversed phase chromatography using an 

octadecylsilyl (C18) stationary phase and a methanol:formate buffer pH 3.2 gradient 

mobile phase. To date no HPLC analysis nor any longitudinal studies have been 

performed on the leachate samples using HPLC, making this application novel. 

Minimal sample preparation was required as the samples only required filtering 

through the use of Whatman 0.45 μm PVDF syringe filters, other sample preparation 

techniques such as solid phase extraction could be beneficial, providing enough 

sample is available to perform the extraction and not dilute the analytes. LC-MS has 

for the first time been used for the analysis of soil leachate and has shown its 

potential to analyse and qualify decomposition products present in soil-water 

samples. The data highlighted that over 100 decomposition specific chemicals were 

present in the leachate samples in comparison to the detection of nineteen 

decomposition products detected by Swann et al. (2012) and some of these 

chemicals were detected over a relatively long period of time (over 30 months post 
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burial). However, further work is required to identify the wide range of chemicals 

present in the leachate samples as no compounds were conclusively identified in 

this study due to the lack of reference standards. 

6.2 Ion Chromatography 
This research set out to explore the use of ion chromatography for the analysis of 

decomposition products and explore its validity in a real world situation through 

analysis of samples collected from active murder enquiries. The aim of this study 

was to determine the usefulness of ion chromatography as a tool to analyse 

products of mammalian decomposition and determine if this methodology can aid 

in the intelligence gathering process to locate clandestine gravesites.  

 

After the analysis of a range of leachate samples, the anionic compounds present 

in these samples were able to be identified. With the exception of a few signals the 

anionic compounds present in the leachate samples were identified as acetate, 

chloride, nitrite, nitrate, carbonate, phosphate and sulphate. Detection and 

quantification limits were determined to be in the low ppm to sub ppm range for the 

ions quantified. 

 

As discussed in the previous paragraph, ion chromatography has the ability to 

detected anionic compounds produced during mammalian decomposition at low 

ppm to sub ppm concentrations. Therefore, it has the capability to distinguish 

between decomposition (gravesite) and control samples. This was expected as IC 

had been utilised for the quantification of decomposition products by 

Vass et al. (1992). Significant concentrations of acetate, up to 20 mg mL-1, and 

carbonate, up to 15 mg mL-1, have been detected during this decomposition study 

and could become markers for mammalian decomposition. Vass et al. (1992) 

highlighted that acetate is abundant in nature and too variable to be used for time 

since death estimation, but this study indicates it could be useful to locate 

clandestine gravesites, provided additional research will be conducted to determine 

the reproducibility of these results between cadavers, to determine their migration 

in soil and their natural abundance in different soil environments. 

 

Following analysis of the casework samples, it was concluded that the IC 

methodology is capable to be applied to the analysis of forensic samples. It has 
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been able to differentiate between different soil samples and highlighted focus 

points through the use of statistical analysis. The samples that showed most 

variation through principal component analysis were the samples (slightly uphill near 

VRD indication and downhill of the grave) in which putrescine also was detected. 

The gravesite sample did indicate an interesting ratio for nitrate between the upper 

and lower portion of the soil which was only observed in the gravesite sample. 

However in general a lower quantity of extractable inorganic anions was detected 

in the gravesite sample, which was potentially due to improved drainage of the soil 

following excavation (Donnelly et al. 2018). It was however not able to differentiate 

between the different water samples but this could have been due to limitations 

regarding the sampling procedure used or time since burial. It was unlikely that the 

analysis methodology was not suitable as the detection limits for the anions are in 

the low ppm range. In addition, it has been applied within the field of taphonomy for 

the detection of decomposition products (Aitkenhead-Peterson et al. 2012; 

Vass et al. 1992), forensics to differentiate between forensic soil samples 

(Bommarito et al. 2007) and in the environmental science to determine the impact 

of cemeteries on the surrounding environment (Zychowski 2012). 

 

In summary, ion chromatography has the ability to detect anionic compounds 

produced during mammalian decomposition up to low ppm detection limits and is 

the first study in its kind to identify and quantify the inorganic anions in the leachate 

over time since burial. It was therefore concluded that the methodology is capable 

distinguishing between decomposition (gravesite) and control samples, which was 

expected as Vass et al. (1992), Bommarito et al. (2007) and Aitkenhead-Peterson 

et al. (2012) all utilised IC to either detect decomposition related compounds or to 

distinguish between different soil samples. Following analysis of the case samples, 

it was concluded that the methodology developed is capable to be applied to the 

analysis of forensic samples. It has been able to differentiate between the different 

soil samples from this study to identify samples of interest through the use of 

statistical analysis. However, the developed methodology was unable to 

differentiate between the different water samples provided, which was most likely 

due to limitations in the sampling procedure or time since burial. 
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6.3 Gas Chromatography 
This work set out to explore the detection of decomposition markers putrescine and 

cadaverine in mammalian decomposition following derivatisation GC analysis and 

explore the validity of the methodology in a real world situation through analysis of 

samples collected from active murder enquiries. This study has also sought to 

identify if, in addition to putrescine and cadaverine, other decomposition products 

could be identified, the time period these compounds can be detected post burial 

and why many researchers within the field of Taphonomy did not detect these 

markers in their studies. The detection of decomposition markers such as putrescine 

and cadaverine in the soil matrix could aid the Police in locating missing persons 

and murder victims through providing an additional complementary search 

technique. 

 

A highly specific methodology has been developed for the detection and 

quantification of putrescine, cadaverine and methylamine in aqueous samples. This 

was achieved through derivatisation with pentafluorobenzaldehyde which is specific 

to primary amines and yields detection limits below 30 μg L-1 (30 ppb). Although this 

derivatisation mechanism produced geometrical isomers that could affect 

quantification, nevertheless good correlation (R2 > 0.995) has been observed 

suggesting that the isomer ratios were consistent between 1.0 μmol L-1 and 500 

μmol L-1. 

 

Derivatisation has been scarcely used for the analysis of decomposition products 

within the field of forensic taphonomy and the utilisation of pentafluorobenzaldehyde 

for the detection of these amines is therefore a novel application. Derivatisation has 

been mainly used for the determination of adipocere in soil and decomposing tissue 

samples (Forbes et al. 2003; Notter et al. 2008; Stuart et al. 2016) and had only 

been utilised for the determination of putrescine and cadaverine by 

Fiedler et al. (2004) for their detection in cemetery soil samples and by 

Vass et al. (2002) in decomposing tissue samples. The derivatisation reagent used 

by Fiedler et al. (2004) was using 9-fluoromethylchloroformate (carbamate 

formation) and utilised analysis by HPLC. Vass et al. (2002) utilised 

dimethylformamide dimethylacetal (schiff base formation) to derivatise putrescine 

and cadaverine followed by analysis using GC. Both of these derivatisation 

mechanisms would have been able to be utilised on the leachate samples as both 
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of these derivatisations work in aqueous environments. However both of these 

reagents are not amine specific and therefore would have created a less specific 

methodology which could have interfered with the analysis of putrescine and 

cadaverine. The use of pentafluorobenzaldehyde in particular was more suitable 

than for example benzaldehyde as pentafluorobenzaldehyde lowered the boiling 

point of the analytes thus decreasing retention times and improving sample 

throughput. 

 

The developed methodology enabled the detection of putrescine, cadaverine and 

methylamine in the Cranfield leachate samples from 28 days post-burial up to at 

least 669 days post-burial. The detectability of putrescine and cadaverine over time 

since burial in this study far exceeded those published by other researchers. The 

studies published by Bonte  & Bleifuss (1977), Vass et al. (2002) and 

Swann et al. (2012) only detected one or both of these amines over time and 

detected them up to 55 days, approximately 21 days and 44 days post mortem 

respectively. Making this the longest longitudinal study for the detection of 

putrescine and cadaverine, it should however be noted that the decomposition 

process of the other researchers was aboveground and this research studied 

belowground decomposition. Using the sample set provided for this study, no 

obvious patterns were able to be elucidated to predict and trend putrescine, 

cadaverine and methylamine levels. Following analysis of the casework samples, it 

was noted that putrescine was able to be detected in a soil environment 

approximately fifteen years after burial. It is interesting that putrescine was detected 

in this study and cadaverine was not as Fiedler et al. (2004) detected cadaverine in 

soil from a fifteen year old grave. This could possibly be inherent to the poor 

recovery of the soil extraction methodology used (see Section 5.6 Analysis of Soil 

Casework Samples). In addition, in the study published by Fiedler et al. (2004), the 

body was buried in a coffin and adipocere was detected. These parameters both 

affect the decomposition process (Dent et al. 2004) and could explain together with 

soil type the differences in detection of these amines. 

 

In addition to the detection of putrescine and cadaverine, methylamine has been 

detected in the Cranfield leachate, which had not previously been associated with 

the mammalian decomposition process. However, following analysis of the case 

samples, methylamine transpired to be not as significant as was initially 
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hypothesised as it has been detected in both the soil and water casework samples, 

including the control samples but it should not be completely excluded either. These 

results has initiated further research with the aim to establish the natural abundance 

of methylamine and other primary amines within the environment. Other primary 

amines such as ethylamine, n-propylamine, isobutylamine, n-butylamine, 

n-pentylamine and amylamine were potentially also produced during the 

mammalian decomposition process, although further work is required to identify 

these compounds unambiguously. 

 

Following analysis of the case samples using GC-MS, it was concluded that the 

derivatisation GC methodology developed is suitable for application to the analysis 

of forensic samples. Putrescine has been detected in the gravesite soil sample and 

was also detected in samples collected slightly uphill from the gravesite (near a VRD 

indication) and downhill from the gravesite. This indicated that migration of water 

soluble chemicals could migrate through the soil matrix both uphill and downhill. The 

uphill motion could be through capillary action and has been supported by the VRD 

indication and the IC data (due to differences in relative quantities of extractable 

inorganic anions). The downhill motion has been hypothesised by Donnelly (2010) 

through the flow of groundwater. Fiedler et al. (2004) also hypothesised this 

principle following the detection of cadaverine in control samples and the research 

published by Aitkenhead-Peterson et al. (2012) also suggested the migration of 

decomposition products downhill following their analysis. The GC methodology was 

however not able to detect putrescine or cadaverine in the water samples but this 

could have been due to limitations regarding the sampling procedure used, time 

since burial (over 25 years) or the absence of a body. 

 

Research for the analysis of putrescine and or cadaverine in the field of forensic 

taphonomy has not readily been conducted, more often have these amines been 

reported as not detected within VOC characterisation studies (see Vass et al. 2004; 

Statheropoulos et al. 2005; 2007; 2011; Dekeirsschieter et al. 2009; 2012; 

Hoffman et al. 2009). Evidence in this study suggests that most researchers within 

the field of Taphonomy did not detect putrescine and cadaverine because these 

chemicals were according to Gill-King (1997) foul smelling and detectable by VRD, 

and therefore were believed to be detected using headspace techniques (sorbent 

traps and SPME). Putrescine, cadaverine and even methylamine are more volatile 
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than the majority of VOC’s detected by other researchers, however due to their 

alkalinity become rapidly ionised in environmental pH conditions and therefore do 

not volatilise from moist environments such as soil or decomposing tissue, which 

explains why putrescine and cadaverine were not detected in other VOC 

characterisation studies. 

 

Storage of the samples was never associated as one of the objectives in this study 

as the leachate samples had been stored for a significant period of time before the 

samples were sent to Staffordshire University for analysis. However, following the 

differences observed after analysing the duplicate leachate samples and the paper 

published by Forbes et al. (2014) highlighting that sample freezing could negatively 

impact sample integrity, several small scale storage experiments were conducted in 

this study. The data indicated that the different storage conditions may affect the 

chemical composition of the leachate samples, which could affect longevity studies, 

changes over time and operational work. However, no significant differences were 

observed in the storage experiment using a 1.0 μmol L-1 mixed amine solution in 

distilled water. Another storage experiment conducted on the casework water 

samples highlighted that neither the water matrix nor sample storage affected the 

detection of putrescine, cadaverine or methylamine in a significant manner. For the 

analysis of the soil samples it is unclear if the soil matrix inhibited the derivatisation 

or if the amines were extracted poorly. The latter is more likely as the recovery of 

the anions for the IC analysis was also poor and the applied methodologies were 

developed using soil-water samples. It has therefore been concluded that the 

different matrixes water or soil did not interfere with the analysis of the casework 

samples. 

 

In summary, derivatisation GC analysis has proven itself to be a useful tool for the 

detection and identification of (semi-volatile) decomposition products. Sample 

preparation (i.e. derivatisation) was vital as it enabled the development of a highly 

specific methodology to quantify putrescine and cadaverine in aqueous samples at 

low ppb detection limits using pentafluorobenzaldehyde. Derivatisation has been 

scarcely used for the analysis of decomposition products within the field of forensic 

taphonomy and had only been utilised for the determination of putrescine and 

cadaverine by Fiedler et al. (2004) and Vass et al. (2002). These derivatisation 

mechanisms would have been able to derivatise the amines in the leachate samples 
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but are not amine specific and therefore would have created a less specific 

methodology and affected sample throughput. The longevity for the detection of 

putrescine and cadaverine over time since burial in this study far exceeded those 

published by other prominent researchers such as the studies published by 

Bonte  & Bleifuss (1977), Vass et al. (2002) and Swann et al. (2012). In addition to 

the detection of putrescine and cadaverine, methylamine has been detected in this 

study which had not previously been associated with the mammalian decomposition 

process and other primary amines were potentially also produced during the 

mammalian decomposition process, although further work is required to identify 

these compounds unambiguously. Following analysis of the case samples, 

methylamine transpired to be not as significant as was initially hypothesised and led 

to the initiation of further research with the aim to establish the natural abundance 

of methylamine and other primary amines within the environment. 

6.4 Soil Extraction 
During this study a methodology was developed for the extraction of inorganic 

anions and amines from the soil matrix that has been applied to the analysis of the 

case samples. Based on the data obtained, it was concluded that a suitable 

extraction methodology was developed to aid in the analysis of soil samples. 

Unfortunately, due to time constraints associated with the analysis of the case 

samples a non-optimised methodology has been used with poor recoveries of 

around 20% and further optimisation of the extraction methodology is recommended 

for future analysis. No further optimisation was explored in this study as the stability 

of the compounds requiring analysis was unknown and extensive development 

would have been required in order to determine the effect of the different solvent 

conditions, which was not feasible within the turnaround time and equipment 

available. Nevertheless, a similar methodology has been used by 

Bommarito et al. (2007) for the extraction of anions to profile forensic soil samples 

and therefore was deemed suitable for the work discussed in this study. 

 

In conclusion, this study highlighted the development and application of three novel 

alternative analytical methodologies to aid in locating clandestine gravesites through 

detection of the non-volatile and semi-volatile decomposition products within a soil 

or aqueous environment. The first methodology, has a novel approach to the 

detection of primary amines such as putrescine and cadaverine through 
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derivatisation with a highly specific derivatisation reagent in an aqueous 

environment. The application of the methodology, the data provided from the 

longitudinal study and the detection of methylamine (not associated with 

mammalian decomposition before) make this application and the data novel. The 

second methodology, has allowed for analysis of inorganic anions at low ppm 

concentrations and been able to differentiate between gravesite and control 

samples. This is the first study to identify and quantify inorganic anions over time 

since burial and therefore making it novel. The final methodology has shown 

capabilities to differentiate between grave and control samples and the potential to 

identify additional compounds produced during mammalian decomposition. Over 

100 decomposition specific compounds have been detected and longitudinal data 

has been obtained using HPLC and LC-MS, making the methodology once again 

novel. Utilisation of these methodologies will lead to further identification of the key 

decomposition products produced during the human decomposition process and 

will allow for the development of field-based chemical test to aid in the detection of 

clandestine gravesites.
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Appendix I. Equations Used for Method Validation 
• Product-moment correlation 

% =
∑ [(*+ − *̅)(/+ − /0)]+

{[∑ (*+ − *̅)3+ ][∑ (/+ − /0)3+ ]}5 3⁄ 	 

 
• test for significant correlation, adapted t-test 

7 =
|%|√: − 2
√1 − %3

 

n= degrees of freedom, if t-table value is lower than calculated t-value a 

significant correlation is present. 

 
• Coefficient of determination (linearity) 

=3 =
∑ (/+ − /0)3 − ∑ (/+ − />+)3++

∑ (/+ − /0)3+
 

 
• Line of best fit, regression of y on x (method of least squares 

? =
∑ [(*+ − *̅)(/+ − /0)]+

∑ [(*+ − *̅)]+
3 	 

@ = /0 − ?*̅	 
 
• Error in the slope and intercept of the regression line 

AB C⁄ = D∑ (/+ − />+)3+

: − 2
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• standard deviation of slope 

AE =
AB C⁄

F∑ [(*+ − *̅)]+
3
	 

 
• standard deviation of intercept 

AG = AB C⁄ D
∑ *+3+

: ∑ (*+ − *̅)3+
	 

 
• Confidence limits slope and intercept 

? ± 7(IJ3)AE	   @ ± 7(IJ3)AG 
t-value taken as n-2 degrees of freedom from table under confidence interval 

(usually 95%). 

 
• Calculation of a concentration and its random error (uncertainty) 

ACK =
AB C⁄

?
D
1
!
+
1
:
+

(/M − /0)3

?3 ∑ (*+ − *̅)3+
	 

*M ± 7(IJ3)ACK 
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Appendix II. Additional Method Validation Data 

Table 41 Data of calibration standards 

 NO NOP QO NO − NR (NO − NR)P QO − QS (QO − QS)P QO − QR (QO − QR)P 
(NO − NR) 
(QO − QR) 

1 0.1 1.00E-2 3.06E2 -1.85E2 3.43E4 1.72E5 2.96E10 -2.43E7 5.90E14 4.49E9 

2 0.5 2.50E-1 2.76E3 -1.85E2 3.41E4 1.22E5 1.48E10 -2.43E7 5.90E14 4.48E9 

3 1.0 1.00E0 8.16E3 -1.84E2 3.39E4 6.10E4 3.72E9 -2.43E7 5.89E14 4.47E9 

4 5.0 2.50E1 2.39E5 -1.80E2 3.25E4 -2.37E5 5.63E10 -2.40E7 5.78E14 4.33E9 

5 10.0 1.00E2 5.31E5 -1.75E2 3.07E4 -6.05E5 3.66E11 -2.38E7 5.64E14 4.16E9 

6 50.0 2.50E3 5.03E6 -1.35E2 1.83E4 -1.39E6 1.94E12 -1.93E7 3.71E14 2.60E9 

7 100.0 1.00E4 1.35E7 -8.52E1 7.26E3 4.65E5 2.16E11 -1.08E7 1.16E14 9.19E8 

8 500.0 2.50E5 6.87E7 3.15E2 9.91E4 2.77E6 7.68E12 4.44E7 1.97E15 1.40E10 

9 1000.0 1.00E6 1.31E8 8.15E2 6.64E5 -1.36E6 1.84E12 1.06E8 1.13E16 8.66E10 

Means: 185.2 1.40E5 2.43E7 0 1.06E5 0 2.44E15 0 1.85E15 1.40E10 

Sums: 1666.6 1.26E6 2.19E8 0 9.54E5 0 1.21E13 0 1.67E16 1.26E11 

Equation 1 Calculcation of correlation coeficient and coeficient of determination 

% = 5.3U×5M	WW

X(Y.Z[×5M\)(5.U]×5MW^)
	= 0.99964   à  %3 = 0.9963	= 0.99927 

 

=3 = 5.U]×5MW^J5.35×5MWb

5.U]×5MW^
 = 0.99927  à  %3 = =3 

Equation 2 Calulation of t-value for the determination of a significant correlation 

7 = ]
√5JM.YYY3]

 = 259.36 

Equation 3 Calibration and error calulations for putrescine 

? = 	 5.3U×5M
	WW

Y.Z[×5M\
= 132146  @ = 2.43 × 10] − 1.32 × 10Z ∙ 185.2 = -184966 

AB C⁄ = F5.35×5MWb

]
= 1.32 × 10U  

AE =
5.h3×5M^

XY.Z[×5M\
= 1.35 × 10h   AG = 1.32 × 10U	F 5.3U×5M^

Y×Y.Z[×5M\
= 5.05 × 10Z 

 

95%	jk	Almno = 2.36 ∙ 1.35 × 10h = 3183 

 

95%	jk	p:7o%qon7 = 2.36 ∙ 5.05 × 10Z = 1192050 
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ACK =
1.32 × 10U

132146
D1 +

1
9 +

(1.31 × 10r − 2.43 × 10])3

1321463 ∙ 9.54 × 10Z = 13.3 

 

95%	jk = 2.36 ∙ 13.3 = 30.1
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Appendix III. Mobile phase combinations 

Method Instrument/ 
Detector 

Stationary 
phase 

Flow 
(ml/min) 

Detection 
settings Eluent Curve Run time 

(min) 
1 HPLC-DAD C18 1.0 260/ 280 I 20min 40% MeCN 60% H2O 0 20 
2 HPLC-DAD C18 1.0 260/ 280 I 20min 30% MeOH 70% H2O 0 20 

3 HPLC-DAD C18 1.0 260/ 280 G 10min 10% MeOH 90% H2O 
10min 50% MeOH 50% H2O 

0 
1 

20 

4 HPLC-DAD C18 1.0 260/ 280 G 
10min 10% MeOH 90% H2O 
5min 50% MeOH 50% H2O 
3min 10% MeOH 90% H2O 

0 
1 
1 

18 

5 HPLC-DAD C18 1.0 260/ 280 G 

10min 10% MeOH 90% H2O 
3min 50% MeOH 50% H2O 
3min 10% MeOH 90% H2O 
4min 10% MeOH 90% H2O 

0 
1 
1 
0 

20 

6 HPLC-DAD C18 1.0 260/ 280 G 
10min 10% MeOH 90% PO4 Buffer (pH7.0) 
5min 50% MeOH 50% PO4 Buffer (pH7.0) 
3min 10% MeOH 90% PO4 Buffer (pH7.0) 

0 
1 
1 

18 

7 HPLC-DAD C18 1.0 260/ 280 G 
10min 10% MeOH 90% HCOO Buffer (pH3.2) 
5min 50% MeOH 50%  HCOO Buffer (pH3.2 
3min 10% MeOH 90%  HCOO Buffer (pH3.2 

0 
1 
1 

18 

8 HPLC-DAD C18 1.0 260/ 280 G 
10min 10% MeOH 90% PO4  Buffer (pH3.0) 
5min 50% MeOH 50% PO4 Buffer (pH3.0) 
3min 10% MeOH 90% PO4 Buffer (pH3.0) 

0 
1 
1 

18 

9 HPLC-DAD C18 1.0 260/ 280 G 

10min 0% MeCN 10% MeOH 90% HCOO Buffer 
3min 30% MeCN 10% MeOH 60% HCOO Buffer 
3min 30% MeCN 10% MeOH 60% HCOO Buffer 
1min 0% MeCN 10% MeOH 90% HCOO Buffer 
2min 0% MeCN 10% MeOH 90% HCOO Buffer 

0 
1 
0 
1 
0 

19 

10* HPLC-DAD C18 1.0 260/ 280 G 

5min 0% MeCN 10% MeOH 90% HCOO Buffer 
3min 30% MeCN 10% MeOH 60% HCOO Buffer 
3min 50% MeCN 10% MeOH 40% HCOO Buffer 
3min 50% MeCN 10% MeOH 40% HCOO Buffer 
2min 0% MeCN 10% MeOH 90% HCOO Buffer 
4min 0% MeCN 10% MeOH 90% HCOO Buffer 

0 
1 
1 
0 
1 
0 

20 
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Method Instrument/ 
Detector 

Stationary 
phase 

Flow 
(ml/min) 

Detection 
settings Eluent Curve Run time 

(min) 
11 HPLC-DAD Silica 1.0 260/ 280 I 20min 90% MeCN 10% H2O 0 20 

12* HPLC-DAD Silica 1.0 260/ 280 G 

5min 90% MeCN 10% H2O 
7min 70% MeCN 30% H2O 
3min 90% MeCN 10% H2O 
5min 90% MeCN 10% H2O 

0 
1 
1 
0 

20 

13 HPLC-DAD Silica 1.0 260/ 280 I 20min 95% MeCN 5% H2O 0 20 
14 HPLC-DAD Silica 1.0 260/ 280 I 20min 98% MeCN 2% H2O 0 20 

15* HPLC-DAD Silica 1.0 260/ 280 G 

5min 98% MeCN 2% H2O 
7min 70% MeCN 30% H2O 
3min 98% MeCN 2% H2O 
5min 98% MeCN 2% H2O 

0 
1 
1 
0 

20 

16 HPLC-DAD Silica 1.0 200/ 220 I 20min 98% MeCN 2% H2O 0 20 
17 HPLC-DAD Silica 1.0 260/ 280 I 20min 98% MeCN 2% Acetate Buffer (pH 5.8) 0 20 

18 HPLC-DAD Silica 1.0 260/ 280 G 

5min 98% MeCN 2% Acetate Buffer (pH 5.8) 
7min 60% MeCN 40% Acetate Buffer (pH 5.8) 
3min 98% MeCN 2% Acetate Buffer (pH 5.8) 
5min 98% MeCN 2% Acetate Buffer (pH 5.8) 

0 
1 
1 
0 

20 

19 HPLC-DAD Silica 2.0 260/ 280 I 20min 98% MeCN 2% Acetate Buffer (pH 5.8) 0 20 
20 HPLC-DAD Silica 1.0 260/ 280 I 20min 98% MeCN 2% Formate Buffer (pH 3.2) 0 20 

21 HPLC-DAD Silica 1.0 260/ 280 G 

5min 98% MeCN 2% Formate Buffer (pH 3.2) 
7min 60% MeCN 40% Formate Buffer (pH 3.2) 
3min 98% MeCN 2% Formate Buffer (pH 3.2) 
5min 98% MeCN 2% Formate Buffer (pH 3.2) 

0 
1 
1 
0 

20 

22 HPLC-DAD Silica 0.5 260/ 280 I 20min 98% MeCN 2% Formate Buffer (pH 3.2) 0 20 
23 HPLC-DAD Silica 1.0 260/ 280 I 20min 10% MeCN 90% Formate Buffer pH (3.2) 0 20 

24 HPLC-UV/FL C18 1.0 210 G 
10min 10% MeOH 90% H2O 
5min 50% MeOH 50% H2O 
3min 10% MeOH 90% H2O 

0 
1 
1 

18 
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Method Instrument/ 
Detector 

Stationary 
phase 

Flow 
(ml/min) 

Detection 
settings Eluent Curve Run time 

(min) 

25 HPLC-MS 
Cation + 

Anion 
exchange 

0.35 DAD/ +/ - G 
5min 5% MeOH 90% H2O 5% 10mM Ammonium Formate (pH 3.2) 
20min 85% MeOH 5% H2O 5% 10mM Ammonium Formate (pH 3.2) 

0 
1 25 

26 HPLC-MS 
Cation + 

Anion 
exchange 

0.35 DAD/ +/ - G 
5min 5% MeOH 85% H2O 10% 10mM Ammonium Formate (pH 3.2) 
20min 90% MeOH 10% 10mM Ammonium Formate (pH 3.2) 

0 
1 
 

25 

27 HPLC-MS PFP 0.35 DAD/ +/ - G 5min 5% MeOH 90% H2O 5% 10mM Ammonium Formate (pH 3.2) 
20min 85% MeOH 5% H2O 5% 10mM Ammonium Formate (pH 3.2) 

0 
1 
 

25 

*  = Cleanup method 
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Appendix IV. Molecular Formulae Calculations 
Peak detected is M+H = 88.4. M =87.4 
 
The abundance for A+1 and A+2 need to be normalised, see table below. 

A A+1 A+2 
4766155 187367 0 

100% 3.93% 0% 
 

3.93% is A+1, +/-10% = 4.32% and 3.54%. 
So most likely 4 or 5 carbon atoms present in molecule. 
 
87.4 has an odd mass number so according to the nitrogen rule it will have an odd 
number of nitrogen atoms. This will be 1 or 3 nitrogen atoms in the molecule. 
 
4 carbon atoms, 4 * 12.01 = 48.04.    87.4 - 48.04 = 38.56 left 
5 carbon atoms, 5 * 12.01 = 60.05.    87.4 - 60.05 = 27.35 left 
1 nitrogen, 1 * 14.01 = 14.01 
3 nitrogen, 3 * 14.01 = 42.03 
So only 1 Nitrogen atom possible 
 
When including oxygen to the formulae the following possibilities appear. 
 

4 carbon Atoms 5 carbon Atoms 
1. C4H25N 3. C5H13N 
2. C4H9NO  

 
After calculation the rings and unsaturation’s using the following formulae:  
X - 0.5Y + 0.5Z + 1 = number of rings and unsaturation’s.  
 
X = the total amount of carbon and silicon atoms. 
Y = the total amount of hydrogen, chlorine, fluorine and iodine atoms. 
Z = the total number of nitrogen and phosphorous atoms. 
 
4 – (25 / 2) + 0.5 + 1 = -7 
4 – (9 / 2) + 0.5 + 1 = 1 
5 – (13 / 2) +0.5 + 1 = 0 
 
Molecule 1 has a negative number of rings and unsaturation’s and is thus not 
possible, leaving molecules 2 C4H9NO and 3 C5H13N. 


