
Design and Modelling of a Micro Swimming 

Robot 
Fei Yuan, School of Information of Science and Engineering, Chengdu University, Chengdu, China, yuanfei@cdu.edu.cn 

Mohammad Hasan, School of Computing and Digital Technology , Staffordshire University, Stoke-on-Trent, UK, 

M.S.Hasan@staffs.ac.uk 

Hongnian Yu , Dongguan Industry 4.0 Artificial Intelligence Laboratory, Dongguan University of Technology, Dongguan 

523808, China; Department of Computing, Bournemouth University, Bournemouth, UK yu61150@IEEE.ORG 

 
Abstract—The swimming micro-robot model starts from the discussion of the solution of Navier-Stokes equation. Fortunately, 

the micro-swimmers can be regarded as swimming in low Reynolds number flow which is dominated by Stoke equation. The 

research starts from a simple design which contains just one flagellum. After that, the whole swimmer is discussed, and then 

the swimmer with double flagella. These designs use a suitable model method and are discussed in dimensional details.  
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I.  INTRODUCTION  

Since the invention of industrial robots, the types of robots have increased, their performances have improved, and 

the fields of work have been expanding. The applications of the robot spread from the deep sea to the universe; especially 

in a variety of extreme environments where a human cannot access. 

In the recent several decades, robotics research has begun to enter new fields of developments: giant systems (such as 

fully autonomous control of high artificial intelligence unmanned aerospace station) and micro-systems. Micro-robot 

generally refers to small-size as well as the small workload of the robot. With the development of Micro-Electro-

Mechanical Systems (MEMS) technology, micro-robot research has a wide range of application prospects and social 

needs e.g. biomedical, aerospace, defence, industry, agriculture, medical care etc. One kind of micro-robot is swimming 

micro-robot or micro swimmer which can move in a liquid environment. This kind of mobile micro-robot can enter a 

variety of liquid and spaces which are too small to work and explore for human beings. 

Some applications of such robots include micro-satellite, micro-inertial navigation device, micro-instruments, 

distributed battlefield sensor network, the robot under narrow space and special operating conditions, car driving and 

security systems, agricultural genetic engineering, biochemical sensors etc. 

Among these, the swimming pipeline micro-robot has become a popular research topic [1], [2].  

Industrial piping micro-robots carry sensors and manipulators, go into the hazardous areas of non-removable piping 

systems e.g. space shuttles, missiles, nuclear power plants, or industrial micro-channels etc. to perform an inspection, 

repair cable routing and micro-cracks etc. 

With the micro-robot further miniaturisation, it can also be applied to human body organs and blood vessels [3], for 

detection of lesions [4], [5], clear blood vessels [6], surgery [7] etc.  

There are four kinds of micro-swimmer that employ different propelling methods: three-link flagellum, helix flagellum, 

flat wave flagellum and cilia as shown in Fig. 1.  

 
A. Three-link swimmer B. flat-wave flagella swimmer 

C. helix flagella swimmer D. Cilia swimmer 

 
Fig.1. Swimming model Categories 

 

The most efficient propel method is helix propeller in many cases [8]. This research reviews existing helix propeller 

models and proposes a new double-helix propeller design which can improve the performance for better 

stability of axially moving. The rest of the paper is organised as follows. Section II describes the preliminaries and 

relevant works, section III presents the model of the proposed double-flagellum single body swimming robot, section IV 

investigates optimum strategies for the robot parameters using Matlab simulations and finally, section V draws some 

conclusions. 



II. PRELIMINARIS AND RELEVANT WORKS 

The discussion about the hydrodynamic at low Reynolds number can be found in many pieces of research. 

The theoretical background is low Reynolds number flow also known as Stokes flow [9].  

The equation governing low Reynolds number flow is given below. 

 
Here u is the velocity vector field, p is the pressure scalar field, µ is the dynamic viscosity, and f is the body forces 

acting on the fluid. This is known as the Stokes equation; a simplification of the Navier-Stokes equation and is correct 

only for Re = 0. The condition is hard to achieve but fortunately, the Stokes equation can be used as an approximate 

solution for Re ≪ 1. This kind of fluid is known as Stokes flow. Other names for this kind of flow include creeping flow 

and low Reynolds number flow. To swimming in this kind of flow, a system must utilise multiple degrees of freedom 

except for some specific conditions e.g. shear thickening and shear thinning (non-Newtonian) fluid [10]. 

There are two conditions that need to be satisfied to fabricate a realistic swimming micro-robot. 

Firstly, energy should be transferred into a mechanical body to propel the robot. 

Secondly, the propeller should not perform a time-reversible motion. Viscosity dominates the fluid dynamics at the 

micro-metre scale. This fact is discovered by the Scallop theory condition [11], it can only get a back and forward 

movement and always stay in original place whatever the oar is moving fast or slow because the flow is time-reversible. 

Although a swimmer can be found swimming by reciprocal motion [12], the scallop theorem still plays as an important 

role in low Reynolds number swimming [13]. 

The development of swimming micro-robot has two kinds of strategy: with a body and without a body. There are 

some designs that contain only tails and driven by the change of the outer magnetic field. To response to the future 

demands, this research adopts the design of tails with body. 

A. Design and Modelling of a Rigid Flagellum 

1) Design of a rigid flagellum 
The design of the rigid flagella is derived from the shape of the microbial flagellum and the tail material is set to rigidity. 

Most microbes that rotate the flagellum are a left-handed spiral. The parameters to be considered are shown in Table I. 

TABLE I. PARAMETERS IN RIGID FLAGELLUM DESIGN 
 

Parameters Expression typical range 

Helix radius  R  

Pitch  λ 2R < λ < 11R 

Length  L 3λ < L < 11λ 

Pitch angle  θ  

Contour Length  Λ = L/cosθ  

Filament radius  a  

 

2) Modelling of a rigid flagellum 
Firstly, the Reynolds number need to be considered. The typical Reynolds number for flagellum is  from 

 (Ω is the rotation rate; μ, the dynamic viscosity; and ρ, the fluid density). A rotating helical flagellum 

can produce forward thrust. The thrust F and torque τ have a relationship with flagellum’s axial velocity U and rotation 

rate Ω which is shown in (1) 

 

This 2×2 matrix is proposed by Purcell [14]. The equation shows that the propulsion thrust depends on the rotation 
torque and geometry parameters of the flagellum. 

The values of A, B and D are shown in (2)-(4). 

 

Here the values of  and  are given by (5) and (6). 



 

Here  is helix amplitude,  is viscosity and  is filament radius. 

The position of the flagella corresponding to these parameters is shown in Fig. 2. 

 

 

Fig. 2. Rigid Tail model 

 

Another drag coefficient from Lighthill [15] is shown in (7) and (8) where  is the wavelength. 

 

 

B. Design and Modelling of a single Rigid Flagellum with a body 

1) Design of a single rigid flagellum with a body 
The basic components of this design consist of a body, a spiral flagellum and a connecting part between the two. The 

connecting portion is seen as a hook that extends from the body and is attached to the spiral flagellum. The connecting part 
receives the torque from the body and conducts it to the spiral flagellum. The torque is the active component that drives the 
motion of the whole system. 

The flagellum is a spiral structure that is rotated by the effect of the torque applied there. Specifically, the main part of 
the model is designed as an ellipsoid; the flagella portion is designed as a tubular spiral with a centerline; the connecting 
portion is designed as a conical spiral with a centerline, and the conical spiral centerline represents a hook connecting the 

main body to the flagella. The design is shown in Fig. 3. 

 

Fig. 3. The tail model with body 

 

2) Modelling of a single rigid flagellum with a body 
In propulsive matrix (1), the off-diagonal elements should be negative, B < 0, for a right-handed spiral. The rotate 

direction of the torque needs to meet the condition of ω < 0 to drive the helix and push the system to the left, ie. v > 0. The 
external force F acting on the helix is negative, that is, toward the right side. The body part rotation reversed, that is, toward 
the right side. The body part rotation reversed, which means Ω < 0. Considering the above requirements, in order to meet 
the balance of force and torque on the central axis of the spiral, the following conditions must be met. 

 



Since the motor itself is also rotating, its speed can be expressed as ω-Ω, which is the speed of the “rotor” connected to the 
flagella relative to the “stator” attached to the outer wall of the body, which is greater than ω. Let the motor speed be set to 
Ωm and derive the following equation 

 

From this, there are two steps approximation can be done.  

Step 1, in some practical cases, B2 is much smaller than AD. Because B2 << AD, (11) can be well approximated by 

 

Step 2, the factor D0/(D0 + D) is just the ratio ω/ Ωm. Because the reverse rotation speed of the main body portion is 
much slower than the rotation speed of the flagellum, so the value of D0/(D0 + D) will be close to 1. Therefore, the equation 
can further be approximated by 

 

Next, the efficiency is discussed. Firstly, the torque τ exerted by the motor on the flagellum is present in 

 

Let the output power of the motor be τΩm, and the minimum power required to push the entire structure move at the 
speed of v is A0v2. The ratio of A0v2 to τ Ωm is the definition of the propulsive efficiency E. With the relations above, the 
efficiency is present in 

 

Using the same approximation steps, the efficiency can be derived in 

 

III. THE PROPOSED DESIGN OF DOUBLE FLAGELLA WITH BODY  

A. Design of double rigid flagella with a body 

This design inspired from the structure of DNA. The moving velocity and efficiency may increase significantly by using 
this structure. The design contains a rigid body and 2 rigid tails connected to the body. The connection part, which consists 
of a hook coming out from the body and attaches to the two helical flagella, has at its base the rotor engine that drives the 

motion. The design is shown in Fig. 4. 

 

Fig. 4. Design 3 Double-tails with body 

 

B. Modelling of double rigid flagella with a body 

It can be noted that the flow around tails will move faster than a single tail. The axisymmetric flagella can make the 
system achieve more stable and reduce the tremble. It may achieve better performance. On the other hand, the flagella 
should be rigid one or elastic on with a slight degree of flexibility. For the soft flagella will bundling together when they 
start to rotate [16]. The velocity of the swimmer should have a bigger velocity that may approximately present by (17). 

 



 

IV. MODEL SHAPE PARAMETER OPTIMISATION 

This section investigates the effects of various parameters e.g. filament radius, helix amplitude etc. on the velocity 

and the effects of length of short axis on viscous resistance coefficients.   

A.  Flagellum Shape optimization 

It can be noted that the whole shape of the flagellum is similar to a cylinder and a cone. The shape changes slightly 

when in motion. There are several different structures for the artificial flagellum. The condition of this theory is the low 

Reynolds number. It can be set for helix radio A is 6mm, the rotational speed of motor w is 0.1Hz. The environment 

parameters set as follow: 

Dynamic viscosity µ = 104N s˙/m2,  

Density ρ = 9.55 × 102, 

It can be calculated for Re ≈ 10−5, the environment is similar to Stoke flow. Under this condition, the inner force is 

much smaller than the viscous force so that the resistance force theory can be applied to calculate the thrust force. It needs 

to define some parameters for analysing the thrust force and torque of artificial flagellum. The pitch of the artificial 

flagellum can be fixed when designing this conical-helix. 

The optimisation of the shape of a helical flagellum is important for improving swimming performance independent 

of the input field. 

The designed model consists of a body, a helical flagellum, and the junction connecting them. The engine is modelled 

by a torque. The parameters involved in the model are given below. 

Number of pitch n, 

Helix amplitude R, 

wavelength λ, 

length L, 

pitch angle θ, 

filament radius a. 

There are some relationships between these parameters, for example, L = λn, tanθ = R/λ, so the following four 

independent parameters are discussed. 

• Filament radius a. 

• Helix amplitude R, 

• Helix wave number n 

• Wavelength λ, 

Fig. 5, Fig. 6, Fig. 7, Fig. 8 show the relationship between above four parameters and the robot velocity.  

 

 

Fig. 5. Relationship between velocity and filament radius 

Firstly, the relationship between filament radius and velocity is showed in Fig. 5. With the filament radius increase, 

the velocity is decrease rapidly.  



 

Fig. 6. Relationship between velocity and helix amplitude 

Secondly, the relationship between helix amplitude and velocity is illustrated in Fig. 6. From the results, it can be 

found that there is a maximum value of velocity during the helix amplitude increase. As the helix amplitude continues 

increases, the velocity shows a decreasing trend.  

 
Fig. 7. Relationship between velocity and wave number 

Thirdly, the relationship between wavenumber and velocity is showed in Fig. 7. From the graph it is clear that when 

wave number is respective small, the velocity is keep a stable high value. When the wavenumber increase, the velocity 

decreased very quickly.  

 

Fig. 8. Relationship between velocity and wavelength 

Lastly, the relationship between wavelength λ and velocity is illustrated. From the model, it can be predicted that the 

velocity will increase with the wavelength rising in a specific range, and then keep at a stable level. The dimensionless 

relationship identified there is a respectively stable value of velocity with wavelength increasing. 



From the analysis above, it is clear that the following strategies need to be consider when fabricate a helix flagella 

micro swimmer:  

The filament radius should be respective small.  

The Helix amplitude should set to an optimised value. 

The wave number should be set to a small number.  

The wave length should be set to a large value.   

 

B. Body Shape Optimisation 

The body shape of artificial micro-swimmer is a rotational ellipsoid as showed in Fig. 9.  

 

Fig. 9. The shape of body 

The length of the long axis equals a and length of short axis equals b. The advantage of this shape not only drag 
convergence caused by streamlined, but also enough space for components like motor, battery etc. The drag applied on the 
body including viscous force and viscosity moment. The relationships between them and transitory velocity U and rotation 
speed ω of the body are given by (18) and (19). 

 

Here the coefficient CF and CM are 3×3 diagonal matrix given by (20) and (21). 

 

Here CF1, CF3, CM0 and CMR values are given by (22)-(25) and e = √a2 + b2/𝑎. From the coefficient relationship above, 
the viscous force and viscosity moment are related to body shape. So, it is possible to get the drag convergence through 
optimisation of the body shape. 

 

If the volume of the inner ellipsoid body is set to a fixed value like V = 2.8 × 10 −5 (m 3). It is clear that there is only 

one independent variable about body shape (from the volume calculation formula of ellipsoidal V =4πab3/3). It can be set 

so that the short axis b is the independent variable, then a =3V/4πb3. The range of values of short axis b is limited by 

condition a> b. It is can be defined that aCF1 as the first coefficient of drag, aCF3 as the second coefficient of drag, ab2CM0 

as the third coefficient drag, ab3CMR as the fourth coefficient of drag. The relation of the coefficients and short axis b is 

shown in Fig. 10 and Fig. 11. 



 
Fig.10. Changing of viscous resistance force coefficients depend on short axis 

 

Fig. 11. Changing of viscous resistance torque coefficients depend on short axis 

From Fig. 10, it can be found that the viscous resistance force coefficient is going up with the increasing short axis 

length. But different coefficients have different change trends. 

From Fig. 11, it can be found a similar trend with Fig. 10, the resistance torque coefficients grow slowly with short 

axis size increase, and resistance torque coefficients rise sharply with a certain value of short axis for the third coefficients. 
The short axis should be as small as possible when design a realistic robot.  

V. CONCLUSION 

This paper discusses current models and proposes a double-flagellum with a body model for micro swimming robots. 
It presents Matlab simulation results to analyse the optimum strategies of various parameters e.g. filament radius, helix 
amplitude, length of short axis etc. Future work can include simulations and comparisons of the proposed double-flagellum 
with a body model with only-flagellum and single flagellum with a body for various environments.  
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