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Highlights

An automatic skin lesion segmentation based on deep convolution network designed.
Image representations from transtorm domain used to improve the performance.
Despite of small dataset, pre-processing and excessive data augmentation not applied.
The analysis proved the efficiency of the proposed method on tested images.
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Abstract

Automated diagnosis systems provide a huge improvement in early detection of skin cancer, and consequently, contribute
to successful treatment. Recent research on convolutional neural network has achieved enormous success in segmentation
and object detection tasks. However, these networks require large amount of data that is a big challenge in medical
domain where often have insufficient data and even a pretrained model on medical images can be hardly found. Lesion
segmentation as the initial step of skin cancer analysis remains a challenging issue since datasets are small and include a
variety of images in terms of light, color, scale, and marks which have led researchers to use extensive augmentation and
preprocessing techniques or fine tuning the network with a pretrained model on irrelevant images. A segmentation model
based on convolutional neural networks is proposed in this study for the tasks of skin lesion segmentation and
dermoscopic feature segmentation. The network is trained from scratch and despite the small size of datasets neither
excessive data augmentation nor any preprocessing to remove artifacts or enhance the images are applied. Alternatively,
we investigated incorporating image representations of the transform domain to the convolutional neural network and
compared to a model with more convolutional layers that resulted in 6% higher Jaccard index and has shorter training
time. The model improved by applying CIELAB color space and the performance of the final proposed architecture is
evaluated on publicly available datasets from ISBI challenges in 2016 and 2017. The proposed model has resulted in an
improvement of as much as 7% for the segmentation metrics and 17% for the feature segmentation, which demonstrates
the robustness of this unique hybrid framework and its future applications as well as further improvement.

Keywords: Convolutional Neural Network; Dermoscopic features; Melanoma; Skin lesion segmentation; Transform domain

1. Introduction

Skin cancer is a prevalent kind of cancer worldwide with fast increment in incidence and number of deaths
over the past decade as cancer research statistics reported (Siegel, Miller, & Jemal, 2018). Nevertheless, there
is a high chance of cure if the cancer is diagnosed in a primary stage before other parts of the body get
invaded. Dermoscopic imaging has significantly assisted dermatologists to detect malignant melanoma that is
the deadliest type of skin cancer. However, expert clinicians are still needed to distinguish the disease.
Segmentation has an important role in cancer diagnosis as primary stage to detect the affected area. Research
towards automated computer-based detection systems for melanoma cancer have increased in the past few
years to assist clinicians, lessen the workload, keep monitoring high risk patients and more, to reduce the costs
of diagnosis and treatment (Alamdari, et al., 2017). Moreover, such algorithms can be used to improve
embedded systems, robots or even mobile software to make an easy user interface as part of an automated
diagnosis system.
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Lesion segmentation is the initial step in a melanoma diagnosis system. It aims to separate the relevant
pixels to melanoma tumors in medical images. The lesion segmentation is still a challenging task due to
several problems in skin images such as color and light variations, small affected area, dark corners, low
contrast, and artifacts like hair and ruler marks as presented in Figure 1. Moreover, the lack of extensive
public datasets impeded the development of computer aided systems for melanoma detection over the past
decades. Recently, ISIC (International Skin Imaging Collaboration) has provided public collections of
dermoscopic images of skin lesions, and ISBI challenges (IEEE International Symposium on Biomedical
Imaging) have been held to improve the skin cancer diagnosis (Gutman, et al., 2016), (Codella, et al., 2018).

Deep convolutional neural networks (CNN) have attained great success in computer vision and machine
learning surpassing conventional methods in several challenges (Ciresan, Giusti, Gambardella, &
Schmidhuber, 2013), (He, Zhang, Ren, & Sun. 2016). Compared to a shallow network, CNN learns more
complex features with more layers but requires a large amount of data for training that is a critical issue in
medical imaging. Dataset enlargement by adding other available datasets is generally considered by
researchers, whereas preparing labeled data is still time consuming and expensive. Common classical
augmentation techniques such as flipping, rotation, and scaling are often applied to produce adequate
information to feed the deep neural network (Harangi, 2018), (Hussain, Gimenez, Yi, & Rubin, 2017),
(Kwasigroch, Mikotajczyk, & Grochowski, 2017). However, augmentation techniques are specific to dataset
and require attention to not lose information or increase irrelevant data. Thus, augmentation techniques have
expanded into a field widely used in deep learning particularly medical analysis. It has become an active
academic area that various research has been conducted to develop methods to generate data (Zhang, Cisse,
Dauphin, & Lopez-Paz, 2017), (Liang, Yang, Zhang, & Yang, 2018). (Frid-Adar, et al., 2018).

In this study, the dataset provided by ISBI challenge is used and a novel CNN based system is proposed for
the tasks of lesion segmentation and dermoscopic feature segmentation. The final model is efficient with less
computational load compared to models proposed in literature since it is not very deep (15 conv layer in
encoder part). Also, preprocessing or excessive data augmentation is not used. Although using a CNN model
with more convolutional layer often lead to extract more complex features and higher accuracy but this may
not be applicable when dataset is scarce. Instead, we proposed to improve the model by incorporating multi
scale and multi direction representations of image from transform domain and the results of this model
showed higher performance and lower training fime compared to a deeper model. An efficient comprehension
of input images is combined to the network and increased the depth of convolution layers that leads to
accurate detection on such a small dataset. The only augmentation technique that we used is flipping to
increase the dataset size for the task of lesion segmentation and particularly to balance the data for the task of
dermoscopic feature segmentation. Another common issue with applying deep architectures on medical data is
that training the network from scratch is not feasible while the dataset is scarce. Thus, a pretrained model
could be used on which the network 1s fine-tuned. While there are models pretrained on millions of natural
images such as ImageNet (Deng. et al., 2009), a pretrained model on relevant medical images can be hardly
found. Although, some research works have shown sufficient results on using a model that is pretrained on a
large irrelevant dataset (Bar, Diamant, Wolf, & Greenspan, 2015), (Pour, Seker, & Shao, 2017), issues such as
local representation on some layers (Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015) and the limitation to
modify the deep network disparate from pretrained model motivate researchers to not limit the deep
architecture to a pretrained model on irrelevant data. Moreover, when dataset of pretrained model is very
different to our dataset, only the general features of first layers maybe helpful and rest of the network needs to
be retrained. The proposed model in this study is trained from scratch and achieves better results compared to
the study that used similar architecture to FCN, used pretrained model and augmented dataset 8times (Pour,
Seker, & Shao, 2017). The model outperforms the researches in the literature which also have more complex
architecture or composed of very deep network structure. In addition, the proposed model indicates notable
performance in images that contain noisy artifacts such as hair, ruler, or bubble. Hence, we did not apply
common preprocessing techniques to remove these marks.
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The paper is organized into five parts. In section 2, a brief review on recent segmentation techniques is
provided. Section 3 details the proposed method followed by experiments and results in part 4. Results are
discussed in section 5 and the paper is concluded in section 6.

2. Related Work

Various algorithms of image analysis have been proposed to assist clinicians in early diagnosis of skin
cancer. Dermoscopic feature based algorithms such as ABCD rule that includes Asymmetry, Border, Color,
and Dermoscopic structure (Nachbar, et al., 1994), and CASH (Color, Architecture, Symmetry, and
Homogeneity) (Henning, et al., 2007) are primary methods that have been used for many years. Moreover,
common segmentation techniques including edge or region-based methods (Wong, Scharcanski, & Fieguth,
2011), (Tajeddin & Asl, 2018), (Jaisakthi, Mirunalini, & Aravindan, 2018), (Lau, et al., 2018), thresholding
techniques (Zortea, Flores, & Scharcanski, 2017), and techniques based on features from transform domain
such as wavelet and Fourier (Garnavi, Aldeen, & Bailey, 2012) have been developed for the task of skin
lesion segmentation. Recently deep convolutional neural network has surpassed traditional methods in many
computer vision tasks. Since CNN originally was designed for classification task, various recent researches
focused on proposing models to adopt CNN for segmentation task too (Long, Shelhamer, & Darrell, 2015),
(Lin, Milan, Shen. & Reid, 2017), (Jégou, Drozdzal, Vazquez, Romero, & Bengio, 2017). In the following,
background on skin lesion segmentation categorized in traditional methods and deep learning-based
algorithms is explained.

2.1. Traditional segmentation methods

A method including edge and region-based algorithm suggested in (Jaisakthi, Mirunalini, & Aravindan,
2018). Illumination enhancement and artifact removal such as hair and air bubbles constitute the initial stage
as pre-processing phase. Grabeut algorithm that uses both edge and boundaries information has been applied
for segmentation followed by further stages including k-means clustering and flood-fill technique to segment
the lesion area with enhanced boundaries. Compared to the winners of ISIC 2017 challenge, this method
showed lower Jaccard index. Another popular region-based method termed watershed has been developed in
various algorithms for medical segmentation tasks. (Masoumi, Behrad , Pourmina, & Roosta, 2012) proposed
using watershed algorithm and MIP neural network for feature extraction in an iterative process for liver
segmentation. The extracted features from both techniques were compared and the error computed in each
iteration used to adjust the required parameters of the algorithm sequentially. In addition, morphological
smoothing, Gaussian filtering and morphological gradients used as preprocessing stage but no postprocessing
conducted.

Another popular method that has been widely developed for image segmentation is active contour
composed of deformable contours that adjust to variety of shapes. The method includes an energy
maximization procedure build on region or edge based models and have been employed for segmenting
several medical images such as CT, USG and MRI of different organs in the body (Ciecholewski, 2016),
(Riaz, Naeem, Nawaz, & Coimbra, 2018). In research (Riaz, Naeem, Nawaz, & Coimbra, 2018), to generate
the initial curve, adaptive thresholding was applied and an optimization problem was proposed to maximize
the Kullback—Leibler divergence of gray level distribution between the background and the lesion.

A recent research proposed saliency map generated by improved discriminative regional feature integration
(mDRFI) (Jahanifar, Tajeddin, & Gooya, 2018). This method also composed of multiple stages including pre-
processing such as colour constancy and hair removal, generating an initial mask by thresholding saliency
map based on DRFI method and final mask formation using distance regularized level set evolution (DRLSE)
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framework. They have extended regional property descriptors and proposed a pseudo-background region to
improve DRFI method, but the result was still lower than high ranked papers of both ISBI 2016 and 2017
challenge.

(Tajeddin & Asl, 2018) have proposed adding new texture features of peripheral regions for classification
and a segmentation technique composed of estimating initial contour and propagating it with an iterative
process based on dual-component speed function. Otsu's method following by morphological process
conducted to generate the threshold initial mask. They used a level set framework and proposed two
component speed function for the image gradient and the color probability distribution of pixels to generate
the final mask. General shape features based on common ABCD features, colour-based features and texture
related features from luminance channel of La*b* colour space implied for feature extraction phase. They also
proposed a textural feature set from peripheral region that is based on masks from segmentation phase. A
variety of pre-processing methods have been applied to remove hair, marks and eliminate dark corners,
correct image illumination and crop images regarding to the masks. This segmentation method ranked 5th in
ISBI challenge 2016.

Techniques based on superpixels also have been extensively used in medical image segmentation.
Superpixel is an efficient method to segment images by partitioning the image into groups of connected pixels
that have similarities (Nguyen. Benameur, Mignotte, & Lavoie, 2018), (Navarro, Escudero Vinolo, & Bescos,
2018). In the research (Navarro, Escudero Vinolo, & Bescos, 2018), the common SLIC (simple linear
iterative clustering) method is improved with focusing on segmenting the ROI precisely instead of segmenting
whole image accurately. Firstly, feature points are detected in the image by SIET operation and then
Gaussian distribution applied to place initial centres followed by applying SLIC to these centres. The result
showed marginally higher Jaccard index compared to the top results of ISIC 2017 challenge.

2.2. Deep learning-based models for task of segmentation

all traditional methods that mentioned in previous section, are composed of multiple stages such as pre-
processing, initialization, edge/region extraction or various techniques for feature extraction while deep
learning methods benefit of receiving the input as raw image and generate the output via an end to end
learning process. Another drawback of traditional models is that discriminative features play important role in
success of these models. Extracting effective features not only is a difficult and time-consuming work but also
demands specialist’s attempt and experience. Variety of algorithms have been suggested to extract features
regarding to the image structure of medical images, but these algorithms mostly deal with particular features
of image that may not work for all kinds of images. For instance, low contrast between lesion and the
background would not contribute to an accurate thresholding method, weak or noisy edges deter the
performance of edge-based segmentation models and active contours build upon an initial contour that may
limit the efficiency of model. However, the deep convolution network has advantage of learning the features
automatically from general features such as edges and lines extracted in first convolutional layers to high level
features like shapes extracted in higher layers. In this paper, we used a deep convolutional neural network and
recent CNN based algorithms for task of segmentation are briefly reviewed in the following.

Deep learning algorithms have shown remarkable progress in various computer vision tasks. Notably,
Convolutional Neural Network (CNN) has outperformed conventional methods in several pattern recognition
and machine learning domains. CNN is introduced as a deep neural network architecture composed of more
layers in comparison to shallow conventional neural networks. More convolution layers enable the network to
learn more complex features. CNN was originally proposed for the task of classification and extensive
research was conducted to design efficient deep architectures. Recently, several studies modified the deep
networks that are designed for classification problems to be applied to object detection and segmentation
tasks. Early proposed CNN models for segmentation were based on classifying superpixels or region
surrounding a pixel (Farabet, Couprie, Najman, & LeCun, 2013), (Ciresan, Giusti, Gambardella, &
Schmidhuber, 2012) .
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In 2015, fully convolutional neural networks (FCN) have been designed to adapt the classification model to
perform segmentation. An end-to-end pixelwise learning architecture was proposed in which fully connected
layers are transformed to convolution layers so the network have spatial output maps (Long, Shelhamer, &
Darrell, 2015). In FCN, the fractionally strided convolution is infroduced as upsampling, also called
deconvolution. Moreover, the idea of skip connections was introduced in (Long, Shelhamer, & Darrell, 2015)
that fuses coarse, high layer information from downsampling path with fine, low layer information in the
corresponding upsampling path. Various subsequent researches were conducted to improve FCN for different
segmentation problems. Unet is a popular model with a symmeftric encoder-decoder architecture that includes
deconvolution layers with larger number of feature channels (compared to FCN) each followed by
concatenation of feature maps from the corresponding layer in contraction path (Ronneberger, Fischer, &
Brox, 2015).

Most recent proposed CNN based models to deal with segmentation are encoder-decoder architectures in
which the encoder part is based on a further improved classification model and decoder part that generates a
classified pixel wise high-resolution image from the low-resolution output of the encoder. A Residual
Network (ResNet) is proposed to efficiently increase the depth of a convolution network by introducing
shortcut connections of identity mapping that connects the output of each layer to a higher layer (He, Zhang,
Ren, & Sun, 2016). The encoder part of RefineNet (Lin, Milan, Shen, & Reid, 2017) as a segmentation model,
is based on this model and the decoder contains multi-level RefineNet blocks that fuse the features received
from the encoder as well as the features from the previous RefineNet block. In (Jégou, Drozdzal, Vazquez,
Romero, & Bengio, 2017), a segmentation model termed Fully Convolutional DenseNets was designed, it was
built on Dense Convolutional Network which is a CNN based model composed of blocks with densely
connected layers. Deconvolution layer, skip connections, and dense blocks constituted the upsampling path.

Recently, deep architectures have been applied to skin lesion analysis (Yu, Chen, Dou, Qin, & Heng,
2017), (Nasr-Esfahani, et al., 2017), (Bi, et al., 2017), (Al-Masni, Al-antari, Choi, Han, & Kim, 2018). A
very deep convolutional network composed of fifty layers used in (Yu, Chen, Dou, Qin, & Heng, 2017) and
residual learning applied to deal with overfitting. They proposed a fully convolutional residual network
(FCRN) for task of segmentation and their experiments ranked second in segmentation task of ISBI 2016
challenge. (Bi1, et al., 2017) designed a model based on fully convolution network that contains FCNs in multi
stage structure (mFCN). In each stage, the FCN receives inputs including the original input image and the
estimated output of previous stage. They also integrate the segmentation results of all stages in a parallel way
and their result slightly outperformed the best results of the challenge. The final method proposed in our
paper composed of 15 convolution layers that is significantly less complicated compared to FCRN with 50
layers or mFCN that contains FCN architecture in each stage. We investigated to improve the FCN model for
task of lesion segmentation but not designing a very deep network due to overfitting problem. In many
previous researches on skin-lesion segmentation, considering data scarcity, massive data augmentation
techniques were applied, or the models were fine-tuned on a model which was pretrained with irrelevant data
i.e. natural images not miedical images. Alternatively, we proposed a CNN based model for tasks of lesion
segmentation and dermoscopic attribute detection that does not employ any preprocessing technique or
excessive data augmentation. We also investigated training the deep network from scratch albeit the size of
dataset is small.

3. Method

An overview of the proposed segmentation architecture for task of lesion segmentation is depicted in
Figure 2. Details of the method including pre-processing, architecture of segmentation model, and post
processing are explained in the following.
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3.1. Pre/Post Processing

Images from surface of the skin mostly involve dark corners, hairs, ruler marks, variation in color, and
uneven illumination. The idea of removing noisy artifacts has extensively been investigated as an essential
preprocessing task to enhance the quality of images (Oliveira, et al., 2016). In this study, we do not apply any
preprocessing procedure for task of lesion segmentation, but we slightly increase dataset size by flipping
images. The effect of dark corners on generated masks is compensated in post processing and the model
performs very efficiently on images with hairs and other noisy artifacts. For task of lesion dermoscopic
feature segmentation, the images are firstly cropped by applying bounding box and using masks from previous
task, then flipping is conducted to balance the dataset. In post processing phase, the masks are firstly resized
to the original size, then thresholding and morphological dilation is used to extract the objects in a predicted
mask, choose the object closer to center of image, and finally remove unwanted components such as corner’s
effect, and cover the small holes (Gonzalez Rafael C.and Woods, 2007).

3.2. Segmentation Architecture

Considering the lack of enough data for task of lesion segmentation, most studies based on deep neural
network have used transfer learning or they have conducted various augmentation methods to increase the
dataset size. In this research, we trained the network from scratch and improved the performance by injecting
features from transform domain to the network. In this way, the network will learn not only from raw images
but also from image representations from transtorm domain.

3.2.1. Contourlet Transformation domain

Contourlet transform has proved excellent performance in computer vision problems (Do & Vetterli,
2005). In this research, contourlet transform is used to provide multiscale and multidirectional image
representations to be inserted to the convolutional neural network which is trained with limited data. In
contourlet transform, multiscale and directional decomposition is achieved by applying a combination of a
Laplacian Pyramid (LP) and a Directional Filter Bank (DFB) (Do & Vetterli, 2005). The architecture is
illustrated in Figure 3. Laplacian pyramid generates a down sampled low pass sketch of an image and the
difference between origin and the prediction that produces band pass image. Directional filter bank receives
the band pass image as input and produces final directional decomposition. Consecutively, Laplacian pyramid
applies to the low pass image and the process is repeated to reach the desired level of decomposition. As
demonstrated in Figure 2, the multidirectional representations generated by directional filter bank in each
scale is considered to concatenate with equivalent pooling layer.

3.2.2. Convolutional Neural Network

Various layers including convolution, pooling, and fully connected layers stack to build a typical
convolutional neural network. Compared to conventional neural network, convolutional neural network has
the advantage of receiving input layer in a shape of 2D information layer and a neuron within any layer is
connected to a small region of the previous layer called receptive field where the filter applies, and
convolution is computed. Convolution layer is composed of a set of learnable filters that slide over the image
and generate feature maps. The output of convolution operation for position (i,j) in a feature map is:
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k-1 yk-1
m=0 Zn:O xsi+m,sj+nKm,n + b' (l)

where x is the location in preceding layer, K represents the kernel and k the size of kernel. The stride is the
number of pixels that the filter skips while sliding over the image. Rectifier Linear Unit (ReLLU) is usually
used as activation function and Pooling layer reduces the spatial size of representation and thus parameters.
The model we used is based on fully convolutional network (FCN) that is composed of an encoder and a
decoder path (Long, Shelhamer, & Darrell, 2015). FCN has been designed to use the convolutional neural
network of the classification task as supervised pretraining, and to fine tune the fully convolution network to
perform the task of segmentation. in (Long, Shelhamer, & Darrell, 2015), they proposed converting fully
connected layers to convolution layers besides adding the feature map from lower layers in encoder path to
the corresponding layer in decoder path that termed skip connections. Unet (Ronneberger, Fischer, & Brox,
2015) modified the FCN by using the multitude of feature channels in expanding path compared to FCN that
the number of kernels in upsampling path is limited to number of classes. Moreover, learnable filters are
utilized and skip connections are concatenated to corresponding upsampling layer instead of fusion in FCN.

3.2.3. Lesion Segmentation

A basic model inspired by Unet and FCN is considered and gradually improved by injecting features from
the transform domain and adding CIElab color model of input images. The 1nitial model is composed of
encoder and decoder parts. The encoder part of this model includes a series of convolution layers followed by
max pooling layer. ReLUs are applied after convolution layers to accelerate the training (Krizhevsky,
Sutskever, & Hinton, 2012). The number of feature channels start from 16 11 the first convolution layer and
duplicate in each subsequent convolution layer. To deal with overfitting, drop out layer is applied for the last
two convolutional layers (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). In decoder
side, a series of deconvolution layers operate as learnable upsampling layers. The number of kernels in
decoder part is considered equal to the number of classes that is two. This model is trained from scratch and
the learnable weights in both convolutional layers and deconvolutional layers are initialized with Xavier
filters. As recommended in FCN, feature maps from pooling layers in encoder path are connected to later
deconvolution layers in decoder path but we used coneatenation like Unet. The number of deconvolution
layers are also different from Unet and FCN, we have 6 upsampling layers to finally get the output with same
resolution of input image. Moreover, we started from 16 as the number of filters for first convolution layers
compared to 64 in FCN and Unet, to decrease the depth and number of training parameters since our data set
is small. To improve the performance, representations from contourlet transform in four levels are
concatenated to pooling layers that makes model2. Discrete contourlet transform with 4 decomposition levels
and 4 directions in each level are applied to three color channels of input images, that totally provided 12
representations in each level. In‘another experiment, we investigated making model 1 a deeper model
(increasing number of convolution layers from 7 in encoder part to 15) instead of applying image
representations of transform domain and this model named model 3. We improved the architecture of model 2
by using a deeper model termed model 4 (has 15 convolution layers in encoder part instead of 7 convolution
layers) and due to high correlation between the red, green and blue colors in RGB, we additionally applied
CIELAB color channels as input of final model (model 4 with CIELAB). CIELAB contains lightness
component (L), and two-color components (A and B) and has the advantage of being device independent
compared to RGB. The 4 models are shortly defined as:

-Modell: the model with 7 convolution layers in encoder part

-Model2: the model with 7 convolution layers in encoder part and integrated with representations of

transform domain

-Model3: the model with 15 convolution layers in encoder part

-Model4: the model with 15 convolution layers in encoder part and integrated with representations of

transform domain
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3.2.4. Lesion Dermoscopic Feature Segmentation

Segmentation of dermoscopic features including globules and streaks helps clinicians to diagnose
melanoma from benign skin lesions. The goal of this task is to automatically generate two masks for each
lesion that reveal the location of streaks and globules. For this task, the segmentation model contains two
parts including encoder and decoder. The encoder part is the same as task of lesion border segmentation,
thus, we considered transfer learning from taskl. Encoder path consists of two parts for globules and streaks
localization that each concludes two convolution layers and four learnable upsampling layers, and so two loss
are added up to generate the final loss of the network. The main issue with training the model for this task is
the unbalanced data. Nearly half of images in the dataset do not contain any dermoscopic feature and
detection of empty masks can improve the performance (Chen, et al., 2018). So, we added classification to the
network and the corresponding loss added to the segmentation loss as presented in (Chen, et al., 2018).

Moreover, among those which hold dermoscopic feature, the number of pixels that belong to the classes of
globules or streaks are far fewer than background pixels and each skin image does not necessarily contain
both streaks and globules features. Almost 42 percent of images contain pixels of globules while the number
of images which involve streaks are limited to less than 8 percent of dataset. In (Pour, Seker, & Shao, 2017) a
bounding box was applied to separate the lesion region by using ground truth images. Thus, the network will
look to a larger region of interest as input and the number of background pixels reduces that lessen class
imbalance. Images are cropped by a factor of 1.1 because we found out that in a few cases the streak and
globule pixels are located slightly outside of the border of the lesion from the mask provided in section 3.2.3.
Accordingly, we used the output masks generated by our lesion segmentation from taskl to crop the test
images before entering the network. To deal with the imbalanced data, flipping over vertical axes horizontal
axes and both vertical/horizontal are conducted on images which contain streaks. So, the number of images
with streaks increased to 23 percent and images with globules increased to 48 percent as most images with
streaks contain globules too.

4. Experimental Results

To validate the model, we applied our method to two databases provided by Skin Lesion Analysis towards
Melanoma Detection challenges (ISIC 2016 and 2017) (Gutman, et al., 2016), (Codella, et al., 2018). The
performance of the proposed method is compared to the results achieved by the winners of both challenges.
Further information on datasets, implementation details and results are presented in the following.

4.1. Data Preparation

The challenges of "Skin Lesion Analysis towards Melanoma Detection" provided a dataset of annotated
skin lesion images from the ISIC Archive. Two publicly available datasets from ISIC 2016 and ISIC 2017
challenges are utilized in this research for task of lesion segmentation. ISIC 2016 provides dataset for task of
Lesion dermoscopic feature segmentation that is practiced in this study as well. Both datasets contain
dermoscopic lesion images in JPEG format and corresponding masks in PNG format. Each pixel in the mask
is either 0 or 255. 0 represents the background of the image, or areas outside the lesion, and 255 represents the
foreground of the image, or areas inside the lesion.

ISIC 2016 dataset is randomly partitioned info both a training and test set, with 900 colored images in the
training set and 379 images in the test set for task of lesion segmentation. The number of images provided as
training data and test data are 2000 and 600 in ISIC 2017 for this task. Moreover, 807 lesion images, each
paired with two binary masks that present locations of the globules and streaks dermoscopic features are
provided in ISIC 2016 for task of lesion dermoscopic feature segmentation. Also, 335 images along masks are
supplied as test data.

The proposed model takes advantage of not using common methods of preprocessing such as removing
hair or artifacts in the images. Instead, raw images are the input of networks in all experiments of this
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research. In terms of data augmentation, we only used flipping. Specifically, the images and corresponding
ground truths are flipped vertically to expand training data for task of lesion segmentation and flipping
vertically and horizontally to balance the dataset for task of dermoscopic feature segmentation.

4.2, Implementation

Initially, a basic architecture composed of 7 convolution layers followed by 6 deconvolution layers, named
Modell, is considered in this study, and a series of comparative experiments is conducted to improve the
results. The training is performed using stochastic gradient descent (SGD), such that weight decay and
momentum are set at 0.0005 and 0.99, respectively. An initial learning rate of 0.001 is considered which is
then reduced manually by a factor of 10 when the error reaches to plateau. In experiments where the
convolutional neural network is trained with Adam optimization method, parameters are determined to

o= 0.001, B1 =09 and P2 =0.999 as recommended in (Kingma & Ba, 2014) for being good default settings
for machine learning problems. To ensure a fair comparison, similar values for parameters such as filter size,
stride and learning rate are considered in all models. The hyperparameters of the proposed network are
provided in Table 1. For the number of epochs, we set the maximum to 10000 but we used early stopping
method to deal with overtitting. The Caffe framework with GPU GeForce GTX TITANX has been used to
implement the deep architectures. Caffe is a deep learning framework that is developed by the Berkeley
Vision and Learning Center (BVLC) and community contributors. It was released under the BSD
2Clauselicense (Jia, et al., 2014).

4.3. Evaluation Metrics

For the sake of consistency in the literature, the following five different metrics have been used to compare
the performance of the methods studied in the paper;

TP

SE = (TP+FN) (2)
AC = % (3)
SP = (T;fFP) @
DI = % (5)
JA= o (6)

where SE, AC, SP, DI and JA are sensitivity, accuracy, specificity, dice and Jaccard index respectively. Also,
TP, TN, FP, FN, stand for true positive, true negative, false positive, and false negatives respectively and
performance metrics are computed at the level of single pixels.
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4.4. Results for Task of Lesion segmentation

Since the database is scarce and many parameters in a deep neural network stand on heuristics, we embarked
on such a simple model to prevent early overfitting and find appropriate weight initialization and optimization
algorithm to train the network from scratch. The model is gradually improved, and the results reported show
the compromise made between computational complexity and accuracy. Model 1 includes a series of
convolution layers followed by pooling layer that takes input image with size of 3¥698%698 in first layer
ended to feature representation of size 512*16*16 in last convolution layer. We empirically found that the
network converges more slowly when filters are initialized with a Gaussian distribution rather than Xavier.
Therefore, all convolution layers are initialized with a Xavier distribution (Glorot & Bengio, 2010), and
learned from scratch in all subsequent experiments. Rectified Linear Unit is used after each convolution layer
along with normalization layer. Moreover, drop out layers are applied after both latest layers in decoder i.e.
conv6 and conv7 (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Inspired from (Long,
Shelhamer, & Darrell, 2015), skip connections are used to concatenate information of primary layers to later
deconvolution layers. In addition, we applied early stopping. The results derived from this model are provided
in Table 2.

We investigated further improvement by considering two options. The first option consists of combining
transform domain representations of input images into convolutional layers, we refer to this as model 2. The
rationale here is that integrating these proper features might lead convolutional layers to understand the input
better. An alternative common option is to make the network deeper to learn more complex representations. In
model 2, the contourlet transform in four levels and four directions is applied to different color channels of
images which provides 12 images for each level. These representations have the same size of the outputs of
pooling layers with which they are concatenated in various levels and increased the depth. The evaluation
metrics for this architecture in table 2 demonstrate improvement for all metrics with a significant raise of 12
percent for Jaccard index compared to model 1. Figure 1 shows a sample image with relevant groundtruth and
representations of the image derived from contourlet transform that is injected to the network. The
consequence of making the network deeper instead of applying contourlet coefficients explored in model 3. In
this model, we extend convolution layers in encoder part from 7 to 15 layers by adding one convolution layer
after convl and conv2, and adding 2 conv layer after conv3 to conv5. The performance metrics show 6
percent increase in Jaccard index compared to model 1, but still lower performance than model 2.

Moreover, to investigate the system performance in terms of training time, forward and backward execution time averaged over 50
iterations per image are reported in Table 3. The model to which transform domain features are added (model 2) shows higher
performance besides less inference time compared to model 3 that is made by more convolution layers. Figure 5 demonstrates the training
error curves. The network converges faster if either feature from contourlet transform are added. or the number of convolution layers
increased. As extending convolution layers also yields higher performance, we proposed the final model (Model 4) by increasing
convolution layers in the model 2. In this architecture 15 convolution and 6 deconvolution layers are applied. Furthermore, performing
optimization with Adam led to significant reduction in convergence time compared to SGD in the deeper architecture apart from slightly
improving the results. Training error curves in Figure 5 confirms that Model 4 with Adam optimization converges two times faster.

As the deeper model gets more complex, we also increased the training data by flipping to deal with
overfitting. At this point, transformed images from RGB to CIELAB color space also added to the network
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that concatenates with the input. The results are also compared to the model in (Pour, Seker, & Shao, 2017)
which has a similar architecture but trained using transfer learning and the dataset is also expanded eight
times by augmentation techniques like cropping images to two and flipping horizontally, vertically, and both.
The Six segmented lesion cases generated by deep convolutional network in model 3 and similar architecture
improved by transform domain features in model 4 are compared to corresponding masks in Figure 6. For
these instances, masks produced by a deep convolutional network which is trained using a pre-trained model
are presented as well. We compared against a pretrained model to emphasize the advantages of gradually
improving the performance by training from scratch that is not easily feasible when limiting the model fo be
tuned from a pretrained model. In the work presented in (Pour, Seker, & Shao, 2017), fine tuning the network
using a pretrained model that is trained on natural images are explored. The results of this study outperform
the former particularly for noisy images which contains artifact or hair. For further validation, our model is
also evaluated on ISIC 2017 dataset for the task of lesion segmentation. The performance metrics in Table 4
indicate that the proposed model outperforms the challenge results by 7% improvement in Sensitivity, 1.1%
improvement in Accuracy and 2.2 % improvement in Jaccard index. We also evaluated the Jaccard index
without post processing that was 0.778 and still higher than winner of the challenge and other models in table
4. A histogram of Jaccard Index values is shown in Figure 7. Although the number of images with Jaccard
index higher than 0.9 in our model is lower than top challenge result, we achieved more images with Jaccard
index between .75 to 0.9, besides fewer segmented images with Jaccard under 0.05.

4.5. Results for Task of Lesion Dermoscopic Feature segmentation

Two binary masks are used to identify the position of dermoscopic features (globules and streaks) in
lesions. Evaluation metrics are the same as taskl and the aim is to automatically generate two masks (globules
and streaks) for each test image. Transfer learning is applied using the model trained in previous part that
helps the network converge fast. Encoder includes the similar convolutional layers as pretrained model and
this architecture is followed by two parts, ¢ach contains two convolutional layers and four deconvolution
layers to predict masks for both streaks and globules features.

The earlier layers (encoder part) retained freeze for the first 40 epochs then the whole network retrained
with decreased learning rate by factor of ten. The segmentation metrics are calculated over entire test data set
and the results are demonstrated in Table 5. Compared to the best result of challenge, 17 % improvement in
Jaccard index is observed and samples of images from test dataset with predicted groundtruth are presented in
Figure 2.

5. Discussion

Deep convolutional neural networks have widely improved various kinds of tasks solved by classical
algorithms in machine learning over the past few years. When it comes to medical analysis, lack of
appropriate sized dataset is a major dilemma. Although going deeper led to higher performance, it is more
prone to overfitting. A solution for this issue is applying transfer learning. However, a model trained on
medical data can be barely found to be used as a pretrained model. Moreover, the model can be hardly
improved by modifying the architecture as we limited to use the similar architecture as pretrained model and
be cautious to fix a layer due to local distribution representations may found in some layers as in (Yosinski,
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Clune, Nguyen, Fuchs, & Lipson, 2015) discussed. In (Pour, Seker, & Shao, 2017) using a pretrained model
from semantic image dataset for the task of skin lesion segmentation is investigated. In this research, we
explored fraining the network from scratch and improving the model by inserting appropriate features to the
network for the task of skin lesion segmentation and dermoscopic attribute detection. A simple model based
on convolutional neural network considered and improved gradually by appending appropriate features and
optimization technique. we did not apply excessive data augmentation techniques to increase the dataset,
instead multiscale and multidirectional representation of input images from transform domain are added to
convolutional network that led to considerable increment of 12% in Jaccard index in model 2 compared to 6%
raise in Jaccard index in model 3 that is modified by making the network deeper by increasing convolution
layers from 7 to 15. We also compared the training time of these models in table 3 that shows the training
time increases 128.83ms by increasing the number of layers from 7 to 15, compared to just 34.71ms for model
with 7 convolution layer and integrated with the transform domain features. Figure 9 compares the output
of 4th, 8th, 9th, and 11th convolution layer in models 3 and 4. Model 4 that includes image representations of
contourlet transform is learning the pattern more effectively while model 3 that is a deep model without
features of transform domain shows noisier patterns. The proposed model with incorporated representations
(model4) shows 10 percent improvement in Jaccard index compared to similar model without adding features
(model 3) that confirms the idea of inserting extra features to network particularly when dataset is scarce and
going deeper can hardly improve the results due to overfitting problem. In comparison with the model in
(Pour, Seker, & Shao, 2017) that is fine-tuned on pretrained model on natural images and data augmentation
that is conducted to increase the data 8 times, the average Jaccard index has improved 3% and the proposed
model indicates significantly higher performance in noisy images such as images that contains hair or
artifacts.

The advantages of the proposed model, in short, contain not using preprocessing and excessive data
augmentation, improving the performance of a not very deep and complex CNN based model by integrating
transform domain representations, high performance of the model on small dataset and significant
improvements in segmenting noisy images. The drawback of proposed model could be training of convolution
neural network that is longer and more complicated than traditional methods.

6. Conclusion

In this work, a segmentation model based on convolutional neural network is proposed for tasks of lesion
segmentation and dermoscopic feature segmentation. While adding more layers and increasing the depth are
common ways to improve the accuracy of a convolutional neural network, may not be applicable to medical
data as the network requires more training data that is a major issue in medical domain. To deal with this
issue, many researches works use excessive augmentation algorithms that may add irrelevant data as well.
Also, providing labelled data in medical domain is expensive and requires expert beside privacy issues of
medical records that limits data access in this area. A further solution to use deep architectures for scarce data
is transfer learning, this is also limited as a pretrained model on medical dataset can be hardly found. We
investigated training the network from scratch and increasing depth of input to convolutional layers by
concatenating efficient feature maps from transform domain and using CIELAB colour space in addition to
RGB colour channels instead of excessive augmentation or using a pretrained model on natural images.

We supposed a basic convolutional neural network model that progressively improved, and the results are
compared to the common techniques such as adding more layers to the network or transfer learning with data
augmentation. In the first stage, incorporating multiscale image representations from transform domain
improves the Jaccard index 12% while adding layers to the network increases 6% compared to our basic
model. The model improved by combining these two models, boosting with CIELAB colour model and
flipping as a trivial augmentation that outperformed the winner of 2017 challenge by 2.2% improvement in
Jaccard index and 7% in sensitivity. A summary of the achievements of the proposed model includes:

e A convolutional neural network is designed to do automatic learning from training data with a deep
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architecture that applied to extract low level to high level features in various layers.

e The relevant feature maps concatenated to the network by inserting image representations from transform
domain that provides a superior understanding of the input to the model.

e CIELAB colour space is applied in addition to RGB colour channels that provides more information for
the network.

e  This architecture benefits of not applying pre-processing methods as well as not excessive data
augmentation techniques.

e Despite of small dataset, the proposed architecture is trained from scratch and improved the results
particularly for noisy images compared to the model that is fine tuned on pretrained image on natural
images.

e improves the accuracy 12% while adding layers to the network increases 6% compared to our basic
model.

e  The model with integrated transform domain features (model2) shows less inference time compared to
model 3 that is made by more convolution layers.

e The final proposed model outperforms the results of both 2017 and 2016 challenges with 2% and 7%
improvement in Jaccard index and Sensitivity for 2017 and an increase of 1%in Jaccard index with 6%in
sensitivity for 2016.

The results demonstrate the efficiency of the proposed model, however there is potential of improvement
by dealing with selected efficient relevant features and various deep architectures that would be considered as
future work. Moreover, due to the robustness and practicality, this proposed framework will become a gold
standard approach to the analysis of similar image data sets, in particular, medical and biological domains
where there is always small number of samples available. Another task that we intend to explore in the future
is extending this work for medical video segmentation. Incorporating the multi transform and multi
directional features to the CNN network can help to detect and track the region of interest in video slides as an
initial phase and speed up the segmentation process too.
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Figure 1: Sample images from ISIC dataset that show various issues such as variety in scales and color,
existence of hair and other artifacts, and dark corners on images.

Convolution Layer mssm
Pooling Layer s
Contourlet Coefficients m=m
Deconvolution Layer g

Level 4

Figure 2: Architecture of proposed model, deep convolutional neural network proposed for lesion
segmentation and image representations from various levels of contourlet transform.
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Figure 2: (a), (b), (c), are the origin images with globule and streak groundtruth respectively. (d) is the
predicted globule groundtruthand (e) is the predicted streak.
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A (a (e)

Figure 9: (la), (b), (c), (d) are the outputs of 4th,8th,9th and 11th convolution layer
respectively. Images in the first raw are from model 3 and second raw from model 4. (e)
Origin image and the groundtruth.
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Table 1: Hyperparameters of Convolutional Neural Network- Model 1.

Layer F.ilter Stride Number of Size of Output
s1ze Filters
Convl 3x3 1 16 1x16x698x698
Pooll 2x2 2 - 1x16x349x349
Conv2 3x3 1 32 1x32x349%349
Pool2 2x2 2 - 1x32x175x175
Conv3 3x3 1 64 1%x64x175%175
Pool3 2x2 2 - 1x64x88x88
Conv4 3x3 1 128 1x128%88%88
Pool4 2x2 2 - 1x128%44 =44
Conv5 3x3 1 256 1x256%x44 <44
Pool5 2x2 2 - 1x256%22x22
Conv6 Tx7 1 512 1x512x16x16
Conv7 1x1 1 512 1x512%16%16
Deconvl  7x7 1 2 1x2x22x22
Deconv2  4x4 2 2 1x2x44x44
Deconv3  4x4 2 2 1x2x88%88
Deconv4  3x3 2 2 1x2x175%175
Deconvd  3x3 2 2 1x2x349x349
Deconv6  4x4 2 2 1x2x698%698
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Table 2: Evaluation metrics for our different architectures compared to recent researches on skin lesion segmentation. Model 1 refers to
the basic architecture composed of 7 convolution layers and 6 deconvolution layers, Model 2 is the model 1 incorporated with
representations of transform domain, Model 3 is the model 1 but deeper (15 conv layers), and Model 4 is model 3 with integrated features
of transform domain.

Method SE SP ACC DI TA
(Bi,etal., 2017) 0922 0965 0955  0.912 0.846
(Jahanifar, Tajeddin, & Gooya, 2018) 0901 0982 0943 0907  0.838
Best Result of Chal-

lenge (Gutman, et al., 2016) 0910 0965  0.953 0.910 0.843

Second Ranked in challenge, (Yu, Chen,
Dou, Qin, & Heng, 2017)

0911 0957  0.949 0.897 0.829

Model in (Pour, Seker, & Shao, 2017) 0911 0950 0943 0893 0826
Model 1 0.892  0.879 0.885 0761  0.634
Model 2 0.927 0913 0918 0849 0.752
Model 3 0.934 0891 0915 0817  0.699
Model 4 0.948 0922 0939 0881  0.803

Model4 with added images from CIElab 0952 0931  0.947 0.895 0.816
color space model

Model 4(Augmented with flipped 0974 0949 0.961 0.921 0.852
vertically)

Table 3: Training time comparison in different models.

Average Average
Method Forward Backward
pass pass
Model 1 Wltll‘ 7 convolution and 56.05ms 36.19ms
6 deconvolution layers
Model 2 that is Model 1 with
contourlet coefficients combined to the  70.45ms 106.50ms

network

Model 3 that is Model 1 with more
layers (15 convolution and 6 95.61ms 175.46ms
deconvolution layers)
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Table 4: Evaluation metrics for ISIC2017 dataset.

Method SE SP ACC DI JA

1- (Jahanifar, Tajeddin, & Gooya,
2018)

2- (Navarro, Escudero Vinolo, &
Bescos, 2018)

3- Best Result of Challenge
(Codella, et al., 2018)

4- Proposed method 0.883 0981 0945 0871  0.782

%improvement (Proposed method
compared to 3)

0.810  0.981 0.930 0.839 0.749

- - 0.955 0.854 0.769

0.825 0975 0934 0.849 0.765

0.6 1.1 25 22

Table 5: Evaluated metrics for the task of dermoscopic feature segmentation.

Method SE SP ACC DI JA

Best Result of Challenge
(Gutman, et al., 2016)

Proposed method 0368 0979 0971  0.150  0.082

0.396 0.968  0.962 0.128 0.070

%improvement - 1.1 1 17.2 17.1




