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Frequency-domain analysis for nonlinear systems

with time-domain model parameter uncertainty
William R. Jacobs, Tony Dodd, and Sean R. Anderson

Abstract—Frequency-domain analysis of dynamic systems is
important across many areas of engineering. However, whilst
there are many analysis methods for linear systems, the problem
is much less widely studied for nonlinear systems. Frequency-
domain analysis of nonlinear systems using frequency response
functions (FRFs) is particularly important to reveal resonances,
super/sub-harmonics and energy transfer across frequencies. In
this paper the novel contribution is a time-domain model-based
approach to describing the uncertainty of nonlinear systems in
the frequency-domain. The method takes a nonlinear input-
output model that has normally distributed parameters, and
propagates that uncertainty into the frequency-domain using
analytic expressions based on FRFs. We demonstrate the ap-
proach on both synthetic examples of nonlinear systems and a
real-world nonlinear system identified from experimental data.
We benchmark the proposed approach against a brute-force
technique based on Monte Carlo sampling and show that there
is good agreement between the methods.

Index Terms—nonlinear systems, frequency domain, uncer-
tainty propagation

I. INTRODUCTION

The frequency response is an important method of analysing

system dynamics and designing control systems. There are

standard methods for analysing the frequency response of

both linear and nonlinear systems using time-domain mod-

els obtained from system identification techniques [1], [2].

For nonlinear systems, frequency-domain analysis methods

from time-domain models include the generalised frequency

response functions (GFRFs) [3] and the nonlinear output

frequency response functions (NOFRFs) [4], which both aid

in analysing phenomena such as sub- and super-harmonics as

well as resonances and energy transfer between frequencies

[5], [6].

A further key aspect for analysis and design in the

frequency-domain is the characterisation of uncertainty. For

linear systems, it is straight-forward to identify a time-domain

model with uncertainty estimates for the parameters, from this

obtain a transfer function description, and then use model-

based methods for analysing uncertainty in the frequency-

domain [7]–[9]. However, similar methods have not yet been

developed for analysing uncertainty in the frequency-domain

from identified time-domain models of nonlinear systems,

which is a key gap in the literature. This is except for

the brute-force approach of using numerical sampling to

map uncertainty from a time-domain nonlinear model to a

corresponding frequency response function (FRF), which is
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computationally expensive [10]. The aim of this paper is to

address the problem of analytically mapping uncertainty from

a time-domain nonlinear model to the GFRFs and NOFRFs

in a computationally efficient manner, significantly extending

the usefulness of models obtained from nonlinear system

identification.

The approach taken here for solving the problem of mapping

uncertainty from the time-domain nonlinear model to the

FRFs is based on uncertainty propagation. The propagation of

uncertainty for real-valued quantities is well understood, and

is routinely used for calculating experimental measurement

uncertainty across various scientific domains [11]. However,

FRFs are complex-valued, i.e. they consist of a real and

imaginary part, whilst parameter uncertainty in the time-

domain model is real-valued, and so uncertainty propagation

is more complicated in this scenario.

For complex-valued data, the propagation of uncertainty has

not been widely studied but there are two main approaches that

can be taken.

In one approach, the complex statistics method estimates

the uncertainty in a complex variable as a symmetrical normal

distribution in the real-imaginary space, such that its variance

can be quantified by a single number [12]. The limitation of

this method is that uncertainty is constrained to be the same

in both the real and imaginary dimensions due to the use of

a symmetrical normal distribution.

In the alternative approach, the multivariate uncertainty

method assigns a bi-variate normal distribution to the complex

variable such that a covariance matrix describes the correlation

of the real and imaginary parts [13], [14]. This method can

hence offer a more flexible and accurate description because it

can represent the uncertainty as an ellipse rather than a circle

(compared to the complex statistics method). Multivariate

uncertainty propagation has been applied to quantifying the

measurement uncertainty in experimentally gathered data [15],

[16] and to finite-element models [17].

In this paper, we develop a novel method for the model-

based frequency-domain uncertainty analysis of nonlinear sys-

tems based on the second approach described above: multivari-

ate uncertainty propagation, under the assumption that model

parameters are normally distributed, and that uncertainties

satisfy the local linear approximation. The method is appli-

cable to both identified nonlinear models and also physically

derived models and has the important novel feature that it can

analytically generate uncertainty bounds for both the GFRFs

and the NOFRFs.

The paper is structured as follows. In section II we review

FRFs for nonlinear systems and the treatment of complex
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numbers as random variables. In section III we develop

uncertainty propagation for nonlinear models. In section IV we

demonstrate the analysis method on a simulated example and

a nonlinear model identified from experimental data. Finally,

the paper is summarised in section V.

II. PROBLEM FORMULATION

In this section we motivate the problem of propagating

uncertainty into the FRF from the time-domain model pa-

rameters and background is given on how uncertainty can

be approximately propagated through some nonlinear function

into a complex output variable.

A. Nonlinear time-domain model with uncertain parameters

A single-input single-output nonlinear dynamic system can

be described by a nonlinear function, f(.), of input-output

signals, [2], [18],

yk = f
(

yk−1, ..., yk−ny
, uk−1, ..., uk−nu

)

(1)

where uk ∈ R, for k = 1, . . . , nu are lagged system inputs,

and yk ∈ R, for k = 1, . . . , ny are lagged system outputs with

respect to sample time k. The non-linear function f(·) can then

be decomposed into a sum of weighted basis functions, where

the basis functions can be from a wide class, e.g. polynomial,

radial, B-spline, [19],

f(xk) =

M
∑

m=1

θmφm(xk) (2)

where θm ∈ R is the mth model parameter, φm(xk) is the

mth basis function, xk =
(

yk−1, ..., yk−ny
, uk−1, ..., uk−nu

)

and M is the total number of model terms. The model can be

written more compactly as

f(xk) = φkθ (3)

where θ = (θ1, . . . , θM )
T

, φk = (φ1(xk), . . . , φM (xk)).

We assume here that the parameters can be described by a

normal distribution,

θ ∼ N(θ̄,Σθ) (4)

where in practice an estimate of the parameter mean and

covariance can be obtained e.g. via least-squares [18] or

Bayesian estimation [20].1

The key problem addressed here is the propagation of

the time-domain model parameter uncertainty, characterised

by the parameter covariance, Σθ, into the frequency-domain.

This propagation gives uncertainty bounds on the magnitude

and phase of frequency response functions used to analyse

nonlinear dynamics .

1To reduce parameter bias resulting from measurement noise in yk , the
model could be extended, e.g. to include a noise model with estimation by
pseudo-linear regression [2], or to a state-space framework that explicitly
includes measurement noise, with estimation by expectation-maximisation,
the EM-algorithm [21].

B. Generalised frequency response functions: GFRFs

The dynamics of nonlinear systems can be analysed in the

frequency-domain from time-domain models of the form given

in (3) using generalised frequency response functions (GFRFs)

[3].

To define the GFRFs, note that the output spectrum, Y (jω),
of a wide class of nonlinear system can be described by [2],

Y (jω) =

N
∑

n=1

Yn(jω) (5)

where

Yn(jω) =
n−1/2

(2π)n−1

∫

ω

Hn(jω1, . . . , jωn)

n
∏

i=1

U(jωi)dσnω,

(6)

where
∫

ω
Fn(jω1, . . . , jωn)dσnω denotes the integral of

Fn(jω1, . . . , jωn) over the n-dimensional hyperplane ω =
ω1 + . . .+ ωn, and the GFRF is defined as

Hn(jω1, . . . , jωn) =
∫ ∞

−∞

. . .

∫ ∞

−∞

hn(τ1, . . . , τn)e
−j(ω1τ1+...+ωnτn)dτ1 . . . dτn

(7)

where hn(k1, . . . , kn) is the nth-order Volterra kernel, or

equivalently the nth impulse response function of the system.

The GFRFs can be calculated using the probing method,

where sinusoidal excitation is applied to a model of the non-

linear system [3], [22]. The probing method gives an explicit

link between the time-domain model in (3) and frequency-

domain analysis of the nonlinear system.

Whilst GFRF-based analysis of nonlinear systems is useful,

it is also limited in the sense that it is not possible to visualise

GFRFs above second order. Therefore, it is not possible to

realise the same intuitive interpretation of nonlinear dynamics

with GFRFs as it is with linear systems using Bode plots.

C. Nonlinear output frequency response functions: NOFRFs

The nonlinear output frequency response functions

(NOFRFs) characterise the nonlinear system dynamics using

input-specific one-dimensional frequency response functions

[4]. Both of these aspects provide key advantages over

GFRFs: 1. GFRFs are not input-specific, which is a limitation

because nonlinear system responses are input-dependent;

2. GFRFs are multi-dimensional, which inhibits analysis

for nonlinear orders greater than two. As shown below, the

NOFRFs allow the nth-order output spectra in (5) to be

described in a manner similar to linear systems, which highly

simplifies analysis and design for nonlinear systems in the

frequency-domain.

To define the NOFRFs, we first extend the definition of the

output spectrum of the nonlinear system in (5), so that

Y (jω) =

N
∑

n=1

Yn(jω) =
N
∑

n=1

Gn(jω)Un(jω) (8)
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where Un(jω) is an input signal designed by the user that can

include specific frequencies and amplitudes (see Appendix for

details) and the NOFRF is

Gn(jω) =
∫∞

−∞
. . .

∫∞

−∞
Hn(jω1, . . . , jωn)

∏n
i=1 U(jωi)dω1 . . . dωn

∫∞

−∞
. . .

∫∞

−∞

∏n
i=1 U(jωi)dω1 . . . dωn

(9)

under the condition that Un(jω) 6= 0, where

Un(jω) =
n−1/2

2πn−1

∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

U(jωi)dω1 . . . dωn (10)

The decomposition of the nth-order output spectra, Yn(jω),
into the product of the NOFRFs, Gn(jω), and nth-order input

spectra provides an important advantage over GFRFs in that

the nonlinear effects of specific input signals can be analysed

(in a one-dimensional form). For instance, analysis of the

individual NOFRFs, Gn(jω), can reveal resonant modes at

different orders of nonlinearity. In addition, reconstruction of

the nth output spectra, Yn(jω), using the NOFRFs, permits

analysis of inter-kernel mixing effects, showing how energy is

transmitted across frequencies.

The NOFRF, Gn(jω), is a function of the GFRF,

Hn(jω1, . . . , jωn). So, naively, it would seem that it is nec-

essary to obtain the GFRF before calculating the NOFRF,

which is relatively long-winded and computationally expen-

sive. However, a simpler and more efficient algorithm has been

developed to calculate NOFRFs numerically, which by-passes

the need to explicitly calculate the GFRFs [4]. This algorithm

is model-based, in that it uses simulations of the model for

various excitation signals to determine the NOFRFs from fast

Fourier transforms of the input-output data. The algorithm is

described in the Appendix A.

The description above shows how a nonlinear system can

be analysed in the frequency-domain using either GFRFs

and/or NOFRFs. The key novel problem addressed here is the

propagation of uncertainty into the frequency-domain using a

time-domain model with uncertain parameters, characterised

by a covariance matrix Σθ. Simplistically, uncertainty in the

GFRF or NOFRF can be propagated by Monte Carlo simula-

tions. However, this is a crude approach, which is relatively

computationally expensive, and a more elegant analytic theory

can be derived based on uncertainty propagation.

D. Uncertainty in complex valued quantities

When considering the uncertainty associated with a real val-

ued measurement of a system it is very common to assume that

the variable is drawn from a normal probability distribution

[23]. The assumption of normality allows the distribution to be

defined by the statistics of the normal distribution, the mean µ

and the variance σ2. The uncertainty can then be displayed by

a percentage confidence interval which defines the interval in

which the measurement falls within a percentage probability,

see Figure 1A.

When the measurement is drawn from a bivariate normal

distribution the statistics are defined by the vector mean µ

and covariance given by

Σ =

[

σ1,1 σ1,2

σ2,1 σ2,2

]

(11)

where σ1,1, σ2,2 are the variance in the 1st and 2nd variate

respectively and σ1,2 = σ2,1 is the covariance between the

two. The mean and covariance matrix define a probability

distribution in the space of two variates that characterise the

uncertainty. Analogous to the univariate measurement where

the uncertainty can be displayed as a confidence interval, for

the bivariate measurement a percentage confidence area is

defined by the uncertainty in each variate and the correlation

between them [24]. In the space of the two variates the

confidence area is elliptical.

A complex valued variable is often represented in two parts,

real and imaginary (commonly plotted on an Argand diagram),

where

x = a+ jb = Re(x) + j Im(x). (12)

Complex variables can hence be though of as bivariate:

X = [Re(x), Im(x)]. (13)

In general the variance in the real and imaginary parts of

the measurement will not be independent and can therefore be

assumed to be drawn from the bivariate normal distribution

X ∼ N

(

X|

[

µRe(x)

µIm(x)

]

,ΣRe(x),Im(x)

)

. (14)

The uncertainty in a complex variable is then displayed

as an elliptical confidence area in the real-imaginary space,

see Figure 1B. Another alternative representation for complex

variables is in gain-phase form, this is common practice

when considering systems in the frequency domain [1]. The

gain-phase representation of a complex variable can also be

considered as bivariate and so can be treated similarly. Care

should be taken when using the gain-phase representation

however because the uncertainty predictions at near zero gain

can be inaccurate in some cases, see [13].

E. Classical uncertainty propagation

Propagation of uncertainty is the calculation of the un-

certainty associated with the output of some function by

considering the uncertainty in its input variables and how these

propagate through the equation. A discussion of the classical

treatment of uncertainty propagation follows.

Firstly consider a function f which is a linear combination

of p variables x1, x2, . . . , xp with coefficients c1, c2, . . . , cp,

such that

y = f(x1, x2, . . . , xp) =

p
∑

i=1

cixi = cx (15)

where the uncertainty associated with the input variables is

described by the covariance matrix

Σx =











σ2
x1

σx1,2
· · · σx1,p

σx2,1
σ2
x2

· · · σx2,p

...
...

. . .
...

σxp,1
σxp,2

· · · σ2
xp











. (16)
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Fig. 1. The uncertainty in a complex variable can be represented by a bivariate normal distribution creating an elliptical uncertainty area in the real imaginary
space. A) The probability distribution of a real valued univariate variable with its 95% confidence intervals. B) The elliptical confidence area of a complex
variable represented by a bivariate normal distribution.

The variance of the output variable, y, is then given by [11]

σ2
y =

p
∑

i

p
∑

j

ciΣ
x

ijcj (17)

In the general case f is allowed to take the form of some

non-linear combination of x1, x2, . . . , xp and a linearisation

of f has to be performed (except in some special cases where

the variance can be calculated exactly, see for example [25]).

The classical propagation law is found by approximating f by

a first order Taylor expansion

y ≈ f0 +

p
∑

i=1

∂f

∂xi
xi (18)

which is valid only when the uncertainties associated with the

input variables are small enough so that they satisfy the local

linear approximation.

The variance of the non-linear function f(x1, x2, . . . , xp)
can be found from Equation (17) with

ci =
∂f

∂xi
(19)

producing the classical law of uncertainty propagation

σ2
y =

n
∑

i=1

n
∑

i=1

∂f

∂xi
Σx

i,j

∂f

∂xj
. (20)

This method is used extensively for calculating errors in

scientific measurements as recommended in the Guide to the

Expression of Uncertainty in Measurement [11].

F. Multivariate uncertainty propagation

As shall be seen in Section II-G, when the output variable

is complex valued it is necessary to consider a multivariate

form of the propagation law. The multivariate method allows

for the estimation of uncertainty for multiple output variables

simultaneously as well as the correlations between them.

The function f considered in the previous section is modi-

fied so that it is now a vector function denoted f of length q

with a real valued vector output, y, such that

y = f(x) = 〈f1(x), f2(x), . . . , fq(x)〉 (21)

The multivariate uncertainty propagation equation is then

given by [13], [15], [26]

Σy = JΣxJT (22)

where Σy is the covariance matrix for the output vector y and

J is the Jacobian matrix given by

J =













∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xp

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xp

...
...

. . .
...

∂fq
∂x1

∂fq
∂x2

· · · ∂fq
∂xp













(23)

Note that for a scalar output, Equation (22) reduces to the

classical case given by (20). It is worth noting the similarity

to the propagation step in the extended Kalman filter (EKF),

which makes the same assumption that higher order terms in

the Taylor series are negligible, based on the approximation

of local linearity.

G. Propagation of uncertainty in complex valued variables

In order to incorporate the uncertainty analysis of complex

valued variables a bivariate form of the propagation law is

considered. The propagation of uncertainty in complex valued

variables is developed in [13], [15], [26]. In these works both
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the input and output variables of the function are complex

valued. Here the input variables will be the real valued

parameters of a time-domain, input-output model and only

the output variable will be complex valued. The discussion

presented here is based on the referenced work but considering

a complex valued output only.

The complex valued output to some vector function f can

be represented as the vector y = [y1, y2], where y1 and y2
represent the real and imaginary components of the output,

such that

y = 〈f1(x), f2(x)〉 (24)

where the functions f1(x) and f2(x) map the input vector x

into the real and imaginary part of the output respectively.

The variance propagation equation is hence given by (22)

where J is a [2× p] Jacobian matrix given by

J =

[

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xp

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xp

]

(25)

The covariance matrix representing the uncertainty associ-

ated with the input variables remains unchanged (i.e. is given

by equation (16)).

This method therefore allows uncertainty to be approxi-

mately propagated through a function of multiple input vari-

ables into a complex output. It is now in the correct form

to approximate the uncertainty in the complex valued FRF as

a function of uncertain model parameters. The approach is

adopted in the following section.

III. FREQUENCY RESPONSE UNCERTAINTY PROPAGATION

FOR GENERAL INPUT-OUTPUT MODELS

In this section, variance propagation from a time-domain

nonlinear system into the (complex-valued) frequency-domain

is derived for the GFRF, the NOFRF and nth-order output

spectra. In addition, an algorithm for the complete model-

based analysis of nonlinear systems is presented, from sys-

tem identification in the time-domain, to generation of the

frequency response functions and the associated uncertainty

propagation novel to this paper.

A. Uncertainty propagation into the GFRF, NOFRF and nth-

order output spectra

The GFRF is a complex valued function, typically visualised

in the space of the magnitude and phase. It is therefore

desirable to propagate the parameter uncertainty, characterised

by Σθ , directly into the bi-variate magnitude-phase space

rather than the real-imaginary space given by (13). Employing

the multivariate propagation law, given by (22), the covariance

in the magnitude and phase of the GFRF, Hn(jω1, . . . , jωn),
is given by

Σ|Hn|,∠Hn
= JH(ω,θ)ΣθJH(ω,θ)T , (26)

where

JH(ω,θ) =

[

∂|Hn|
∂θ1

∂|Hn|
∂θ2

. . .
∂|Hn|
∂θM

∂∠Hn

∂θ1
∂∠Hn

∂θ2
. . . ∂∠Hn

∂θM

]

(27)

where the GFRF covariance matrix is a function of the model

parameters θ and the frequencies ω1, . . . , ωn. In order to

evaluate (27), expressions for the partial differentials of the

magnitude and phase with respect to the model parameters

must be derived, which is performed in the next section.

Multivariate uncertainty propagation for the NOFRFs,

Gn(jω), can be similarly described as

Σ|Gn|,∠Gn
= JG(ω,θ)ΣθJG(ω,θ)

T , (28)

where

JG(ω,θ) =

[

∂|Gn|
∂θ1

∂|Gn|
∂θ2

. . .
∂|Gn|
∂θM

∂∠Gn

∂θ1
∂∠Gn

∂θ2
. . . ∂∠Gn

∂θM

]

. (29)

and also noting that for arbitrary m

∂Gn

∂θm
=

∫∞

−∞
. . .

∫∞

−∞
∂Hn(jω1,...,jωn)

∂θm

∏n
i=1 U(jωi)dω1 . . . dωn

∫∞

−∞
. . .

∫∞

−∞

∏n
i=1 U(jωi)dω1 . . . dωn

(30)

Multivariate uncertainty propagation for the nth-order output

spectra, Yn(jω), can also be described as

Σ|Yn|,∠Yn
= JY (ω,θ)ΣθJY (ω,θ)

T , (31)

where

JY (ω,θ) =

[

∂|Yn|
∂θ1

∂|Yn|
∂θ2

. . .
∂|Yn|
∂θM

∂∠Yn

∂θ1
∂∠Yn

∂θ2
. . . ∂∠Yn

∂θM

]

(32)

and also noting that

∂Yn

∂θm
=

n−1/2

(2π)n−1

∫

ω

∂Hn(jω1, . . . , jωn)

∂θm

n
∏

i=1

U(jωi)dσnω.

(33)

B. Partial derivatives of magnitude and phase with respect to

model parameters

The multivariate uncertainty propagation expressions for

GFRFs, NOFRFs and the nth-order output spectra all require

the definition of the partial derivative of the magnitude and

phase with respect to the mth model parameter. Therefore, to

avoid repetition we consider solving this problem for a general

complex valued function, F , assuming we require
∂|Fn|
∂θm

and
∂∠Fn

∂θm
, for m = 1, . . . ,M .

1) Partial derivative of the magnitude: firstly, noting that

Re(F ) =
1

2
(F + F ), Im(F ) =

1

2j
(F − F ) (34)



6

where F represents the complex conjugate of F , and the partial

derivative can be found by

∂|F |

∂θm
=

∂

∂θm
(FF )

1

2

=
∂

∂F
(FF )

1

2

∂F

∂θm
+

∂

∂F
(FF )

1

2

∂F

∂θm

=
1

2
F (FF )−

1

2

∂F

∂θm
+

1

2
F (FF )−

1

2

∂F

∂θm

=
1

2|F |

(

F
∂F

∂θm
+ F

∂F

∂θm

)

=
1

|F |
Re

(

F
∂F

∂θm

)

. (35)

2) Partial derivative of the phase: Taking the derivative of

the angle of F

∂∠F

∂θm
=

∂

∂X
arctan(X)

∂X

∂θm
, (36)

where X = Im(F )
Re(F ) . The derivative of X is given by

∂X

∂θm
=

∂

∂ Im(F )

(

Im(F )

Re(F )

)

∂ Im(F )

∂θm

+
∂

∂ Re(F )

(

Im(F )

Re(F )

)

∂ Re(F )

∂θm

=
1

Re(F )

∂ Im(F )

∂θm
−

Im(F )

Re(F )2
∂ Re(F )

∂θm
.

(37)

Employing equation (34) in Equation (37) leads to,

∂X

∂θm
=

1

j

(

∂F

∂θm
−

∂F

∂θm

)

F + F

(F + F )2

−
1

j

(

∂F

∂θm
+

∂F

∂θm

)

F − F

(F + F )2

(38)

where the term on the left hand side has been multiplied by a

factor of F +F in the numerator and denominator. Collecting

terms

∂X

∂θm
=

2

j(F + F )2

(

F
∂F

∂θm
− F

∂F

∂θm

)

=
4

(F + F )2
Im

(

F
∂F

∂θm

)

=
1

Re(F )2
Im

(

F
∂F

∂θm

)

. (39)

The derivative of arctan(X) is given by the identity

∂

∂X
arctan(X) =

1

1 +X2
=

Re(F )2

|F |2
. (40)

The general solution is then found by substituting equations

(39) and (40) into Equation (36) such that,

∂∠F

∂θm
=

1

|F |2
Im

(

F
∂F

∂θm

)

. (41)

C. Algorithm for frequency-domain uncertainty analysis of

nonlinear systems

The frequency-domain uncertainty analysis for a nonlinear

system can be performed using the following algorithm, which

describes the full procedure, from standard steps of nonlinear

system identification through to the novel frequency-domain

uncertainty analysis derived in this paper.

The first step is to identify a time-domain nonlinear model

of the system, if one is not already available,

1) (Optional) Time-domain identification of a nonlinear

model of the system. The identified model must include

an estimate of both the parameter means θµ and the

parameter covariance Σθ.

Any suitable method can be used, e.g. for input design see

[27], for identification algorithms see [20], [28]–[30] and for

correlation-based validation methods see [31], [32].

The initial frequency-domain analysis can be performed

using the identified model along with the following steps,

2) Calculate GFRFs, Hn, for n = 1, . . . , N using (7),

where the procedure makes use of the time-domain

model obtained in step 1, e.g as described in [3] or using

an efficient algorithm as described in [22].

3) Calculate the nth-order input spectra using (10) for n =
1, . . . , N .

4) Calculate the nth-order NOFRFs, for n = 1, . . . , N ,

analytically using (9) or the data-driven algorithm in [4].

5) Filter the nth-order input spectra with the nth-order

NOFRF to obtain the nth-order output spectra as de-

scribed in (8).

Finally, the frequency-domain uncertainty analysis novel to

this paper can be implemented by the following steps,

6) Calculate the partial derivatives of the GFRF with re-

spect to the model parameters ∂Hn

∂θm
using the definition

of Hn obtained in step 2.

7) Define F = [F1, . . . , FN ], where Fn is the nth-order

frequency domain description of interest, Hn, Gn, or

Yn.

8) Calculate the partial derivatives in gain,
∂|Fn|
∂θm

, and

phase, ∂∠Fn

∂θm
, using (35) and (41) respectively.

9) Define JF (ω,θ) using (27), (29) or (32) respectively.

10) Calculate the uncertainty in gain and phase Σ|Fn|,∠Fn
,

for n = 1, . . . , Nm using (26), (28) or (31) respectively.

IV. NUMERICAL EXAMPLES

A. Nonlinear model uncertainty propagation for a simulated

system

We demonstrate the procedure for propagating uncertainty

into the frequency response for nonlinear systems using the

following NARX model,

yk = θ1yk−1 + θ2yk−2 + θ3uk−1

+ θ4uk−2 + θ5u
2
k−1 + θ6y

2
k−1 + ek (42)

The first order GFRF is given by

H1(ω,θ) =
θ3e

−jω + θ4e
−2jω

1− θ1e−jω − θ2e−2jω
. (43)
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Fig. 2. Comparison of frequency-domain uncertainty estimates generated by Monte Carlo sampling and uncertainty propagation for a simulated nonlinear
system. True parameter values (Black), Monte Carlo samples (Grey), sampled variance (Blue dashed - note that the Red dashed line overlays the Blue dashed
line in most instances) and propagated variance (Red dashed). A) Magnitude of G1, B) Magnitude of Y1, C) Phase of G1, D) Phase of Y1, E) Magnitude of
G2, F) Magnitude of Y2, G) Phase of G2, H) Phase of Y2, I) Top: Magnitude of Y . Bottom: RMS error between estimated variance and propogated variance
, and J) Top: Phase of Y . Bottom: RMS error between estimated variance and propogated variance.

The second order GFRF is given by

H2(ω1, ω2) =
θ5e

−jπ(ω1+ω2) + θ6H1(ω1)H1(ω2)e
−jπ(ω1+ω2)

1− θ1e−j(ω1+ω2) − θ2e−2j(ω1+ω2)

(44)

Note that in general H1(ω) cannot be a function of the

parameters associated with higher order terms, in this case

θ5 and θ6. However, higher order GFRFs may depend on

lower order terms. Similarly, the partial derivatives of the

nth-order GFRF may require the evaluation of lower order
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partial derivatives. For example, differentiating H2(ω1, ω2)
with respect to θ1 gives

∂H2(ω1, ω2)

∂θ1
=

θ6e
−jπ(ω1+ω2)

(

∂H1(ω1)
∂θ1

H1(ω2) +
∂H1(ω2)

∂θ1
H1(ω1)

)

1− θ1e−j(ω1+ω2) − θ2e−2j(ω1+ω2)
+

e−jπ(ω1+ω2)
(

θ5e
−jπ(ω1+ω2) + θ6H1(ω1)H1(ω2)e

−jπ(ω1+ω2)
)

(

1− θ1e−j(ω1+ω2) − θ2e−2i(ω1+ω2)
)2

(45)

which is dependent on
∂H1(ω)

∂θ1
. Although the differentiation is

simple to perform it indicates that, in general, it is necessary

to evaluate the differentials of all lower order FRFs.

To demonstrate the frequency-domain analysis procedure,

the full algorithm given in section III.C was implemented here,

beginning with identification of the model from simulated

data. The system described by the nonlinear model in (42)

was simulated for N = 1000 samples in response to an

input excitation signal uk drawn from a uniform distribution

in the range [−0.5, 0.5]. The parameters were defined as

θ = (0.2, 0.1, 0.1, 0.05, 0.2, 0.5)T and ek was defined as an

i.i.d white noise sequence drawn from the normal distribution

ek ∼ N (0, σ2
e) where σ2

e = 0.0005.

Model parameters were estimated using an algorithm based

on variational Bayesian inference, which intrinsically gener-

ates parameter uncertainty [20]. The resulting posterior distri-

bution for the parameters was normally distributed with mean

and covariance given by

µθ =
[

0.189 0.108 0.099 0.049 0.198 0.627
]T

Σθ = 10−1×
















0.025 −0.008 0.000 −0.002 −0.000 −0.122
−0.008 0.010 −0.000 0.001 −0.000 0.001
0.000 −0.000 0.002 −0.000 −0.000 0.000
−0.002 0.001 −0.000 0.000 0.000 0.000
−0.000 −0.000 −0.000 0.000 0.001 −0.010
−0.122 0.001 0.000 0.000 −0.010 1.586

















In this example, only the NOFRF and the output spectra

were analysed. This is because the first order GFRF contains

similar information to the first order NOFRF and so is re-

dundant, whilst the second order GFRF is 2-dimensional and

is therefore difficult to analyse, whilst higher order GFRFs

cannot be visualised at all. In the general case, it would appear

simpler to take this approach and focus on the NOFRF, which

also has the advantage of being input-specific. Also, note that

we only analyse the magnitude (or gain) of the nonlinear sys-

tem here, which is most interesting for checking phenomena

such as resonances, super/sub-harmomics and energy transfer

across frequencies.

The covariance in the NARX model parameters was prop-

agated into the nth-order NOFRF and the nth-order output

spectra using (28)-(29) and (31)-(32) respectively. The input

signal used to evaluate the NOFRF was uniform across fre-

quencies in the band [1, 2] rad s−1 and zero elsewhere, see

[4] for the generation of such a signal. Monte Carlo sampling

was used as a comparison to benchmark and validate the

approach for uncertainty propagation, using NMC = 100
samples (the number of samples was relatively small because

the computational cost of repeatedly performing the frequency-

domain mapping is prohibitively expensive). The evaluation of

the NOFRFs for the true parameter vector took 0.89 seconds

with a further 0.068 seconds to propagate the uncertainty with

timings averaged over 100 runs. The evaluation of NOFRFs for

NMC = 100 samples took 88.7 seconds. Computations were

performed on a laptop computer with an intel(r) core(tm) i7

CPU @ 2.GHz processor and 8GB RAM.

The propagated variance in the gain and phase of both

the NOFRF and the nth-order output spectra showed good

agreement to the sampled variance in all cases, see Figure 2A-

H. The output spectrum was approximated as Y ≈ Y1 + Y2,

assuming higher orders have a negligible contribution to the

output. The variance in the gain and phase of the output

spectrum was calculated as σ2
Y = σ2

Y1
+ σ2

Y2
and similarly

shows good agreement to the sampled variance, see Figure

2I-J. The error between the propogated variance and the MC

sampled variance on both the gain and phase is shown in

Figure (2) I and J respectively, where the error is expressed as

the root mean square error. Errors are only shown for Y , given

that the first and second order frequency spectra are located at

exclusive frequency bands, the errors of the individual orders

can be inferred. Normalised errors are identical for Gi and

Yi, this is explained by noting that the source of error in both

Equations (30) and (33) originate from Hi. RMS errors are

small in both gain and phase for low frequencies, large errors

are observed in the phase at high frequencies (> 2.5 rad s−1).

B. Nonlinear model uncertainty propagation for a real-world

experimental system

In this section the uncertainty propagation method is applied

to characterising the frequency domain uncertainty of a class

of soft-smart actuator known as a dielectric elastomer actuator

(DEA), a type of electroactive polymer used in robotics that

is known to display nonlinear behaviour [33]. Due to the wide

fabrication tolerances of DEA uncertainty characterisation

is particularly pertinent. The experimental set up and data

collection procedure has been described before [34], therefore

only a brief description is given here to put the case study into

context.

The experimental set-up consisted of a custom fabricated

DEA formed by stretching a transparent, biaxially pre-strained

circular acrylic elastomer (3M VHB 4905) over a perspex

frame, with inner and outer diameters of 80 mm and 120 mm

respectively, see Figure 3A. Electrodes made from conductive

carbon grease (MG chemicals) were attached to both sides of

the elastomer. A weighted ball (3g) was placed centrally on the

upper side of the elastomer. Applying a voltage (system input)

across the electrodes causes bi-axial (in-plane) expansion,

inducing vertical (out-of-plane) displacement (system output).

The displacement was measured with a laser displacement

sensor. The excitation voltage was band limited white noise,

designed for the purpose of system identification, see Figure

3B.
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Fig. 3. Comparison of frequency-domain uncertainty estimates generated by Monte Carlo sampling and uncertainty propagation for identified nonlinear models
of two dielectric elastomer actuators (DEAs). A) Picture of the DEA experimental set-up. B) Top: DEA system input (Voltage). Bottom: measured DEA
system output (Displacement) DEA system (Black) with the model predicted output of the model identified with the SVB-NARX algorithm (Red). C-G) True
parameter values (Black) with the Monte Carlo samples (Grey), sampled variance (Blue dashed - note that the Red dashed line overlays the Blue dashed line
in most instances) and propagated variance (Red dashed) for experiment 1. C) Magnitude of G1, D) Magnitude of Y1, E) Magnitude of G2,F) Magnitude of
Y2 and G) Magnitude of Y .

The DEA nonlinear model was identified using the sparse

variational Bayes-NARX (SVB-NARX) algorithm described

in [20], which produced a model with accurate predictive

capability, see Figure 3B. First and second order GFRFs,

NOFRFs and output spectra were calculated for the DEA

using the identified model, along with the variance using

uncertainty propagation proposed here. Monte Carlo sampling

was also used to generate numerical estimates of the variance

for a comparison to uncertainty propagation. The propagated

variance in the NOFRFs and output spectra closely matched

the variance in the gain of the sampled output spectra, see

Figure 3C-G.

The close agreement between the uncertainty propagation

method and Monte Carlo sampling demonstrates the effec-

tiveness of uncertainty propagation, which avoids the compu-

tational cost of sampling. Uncertainty propagation, therefore,

provides a valuable addition to methods used in the analysis

of nonlinear systems.

V. SUMMARY

In this paper a novel approach has been developed for the

frequency-domain uncertainty analysis of nonlinear systems.

The method uses multivariate uncertainty propagation to es-

timate the frequency-domain uncertainty characteristics from

the distribution of the time-domain model parameters. The

analysis procedure was demonstrated using both simulated

and real-world examples. In both cases it was shown that the

propagation procedure closely resembles the result acquired by
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Monte Carlo sampling from the model parameter distribution

in order to build up a posterior distribution in the frequency-

domain. A key advantage of the uncertainty propagation

method is that it avoids the repeated sampling involved in

Monte Carlo simulations and the associated computational

cost. Uncertainty propagation is therefore a useful and im-

portant addition to the suite of tools used in the analysis of

nonlinear systems.

APPENDIX

A. Direct evaluation of NOFRFs

This section describes the direct evaluation of NOFRFs from

time-domain model simulations (as opposed to their indirect

evaluation via GFRFs) using the method defined in [4].

Firstly, note that the output spectra of a nonlinear system as

defined in (8) can be re-written as a function of the NOFRFs

in the following form,

Y (jω) =

N
∑

n=1

Yn(jω) =

N
∑

n=1

Gn(jω)Un(jω)

=

N
∑

n=1

Gn(jω)α
nU∗

n(jω)

(46)

where Gn(jω) is the nth-order NOFRF, and the input fre-

quency spectra of a specific time-domain input u(t) = αu∗(t)
is defined as

Un(jω) =
n−1/2

2πn−1

∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

U(jωi)dω1 . . . dωn

= αn n−1/2

2πn−1

∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

U∗(jωi)dω1 . . . dωn

= αnU∗
n(jω)

(47)

where U∗(jω) is the Fourier transform of u∗(t) and

U∗
n(jω) =

n−1/2

2πn−1

∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

U∗(jωi)dω1 . . . dωn

(48)

The key idea for estimating the NOFRFs is to define a rep-

resentation of (46) based on numerical samples of frequency-

domain transformations of time-domain input-output data,

generated from K time-domain model simulations, where

K ≥ N . The K model simulations each use a distinct input

signal, αiu
∗(t), for i = 1, . . . ,K, where a single waveform,

u∗(t), is scaled by increasing amplitudes defined by αi, where

αK > αK−1 > . . . > α1 > 0, leading to

Y = UG (49)

where

Y = [Y ∗
1 (jω), . . . , Y

∗
K(jω)]

T
(50)

U =







α1U
∗
1 (jω) . . . αN

1 U∗
N (jω)

...
...

αKU∗
1 (jω) . . . αN

KU∗
N (jω)






(51)

G = [G1(jω), . . . , GN (jω)]
T

(52)

where Y ∗
i (jω) for i = 1, . . . ,K is the frequency-domain

transformation of the corresponding time-domain output signal

from the model simulation, y∗i (t) for i = 1, . . . ,K, which

can be obtained in practice by taking the fast Fourier trans-

form (FFT) of y∗i (t). Note also that the terms U∗
i (jω), for

i = 1, . . . ,K, can be obtained in practice by taking the FFT

of (u∗(t))
i
, for i = 1, . . . ,K.

Given Y and U it is straightforward to estimate the

NOFRFs in closed form via

Ĝ =
(

UHU
)−1

UHY (53)

where UH denotes the conjugate transpose of U.

Once the NOFRFs have been estimated, the nth-order output

spectra can also be reconstructed as

Yn(jω) = Ĝn(jω)Un(jω) for n = 1, . . . , N (54)

where Ĝn is an element of Ĝ and Un(jω) is the FFT of

(u(t))
n

, for n = 1, . . . , N .
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