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Sparse Bayesian Nonlinear System Identification

using Variational Inference
William R. Jacobs, Tara Baldacchino, Tony Dodd, and Sean R. Anderson

Abstract—Bayesian nonlinear system identification for one of
the major classes of dynamic model, the nonlinear autoregressive
with exogenous input (NARX) model, has not been widely studied
to date. Markov chain Monte Carlo (MCMC) methods have been
developed, which tend to be accurate but can also be slow to con-
verge. In this contribution, we present a novel, computationally
efficient solution to sparse Bayesian identification of the NARX
model using variational inference, which is orders of magnitude
faster than MCMC methods. A sparsity-inducing hyper-prior is
used to solve the structure detection problem. Key results include:
1. successful demonstration of the method on low signal-to-noise
ratio signals (down to 2dB); 2. successful benchmarking in terms
of speed and accuracy against a number of other algorithms:
Bayesian LASSO, reversible jump MCMC, forward regression
orthogonalisation, LASSO and simulation error minimisation
with pruning; 3. accurate identification of a real world system,
an electroactive polymer; and 4. demonstration for the first time
of numerically propagating the estimated nonlinear time-domain
model parameter uncertainty into the frequency-domain.

Keywords—Bayesian estimation, variational inference, system
identification, NARX model.

I. INTRODUCTION

In nonlinear system identification, a popular model class is
the nonlinear autoregressive with exogenous inputs (NARX)
model [1], [2]. Reasons for this popularity include the compact-
ness of the representation, compared to e.g. Volterra series [3],
relative simplicity of estimating parameters due to the linear-in-
the-parameters structure [4], and the fact that frequency-domain
analysis methods have been developed for the model class,
facilitating analysis of nonlinear dynamics [5], [6]. The NARX
model is a black-box model, meaning that terms are unknown
and must be selected - typically regarded as one of the most
challenging problems in nonlinear system identification [7],
which is the focus of this paper, in a Bayesian context.

Least-squares and maximum likelihood-type methods have
dominated NARX model identification, e.g. by forward re-
gression [4], [8], forward-backward pruning methods [9], [10],
the expectation-maximisation (EM) algorithm [11] and sparse
estimation [12], [13]. Bayesian model identification, on the
other hand, is advantageous for a number of reasons: (i)
parameter uncertainty is intrinsically described, useful for
analysis, simulation and control design [14]; (ii) overfitting
is avoided by natural penalisation of overly complex models
[15]; (iii) model uncertainty can be accurately quantified even
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for data records with relatively few samples [16]; and (iv) prior
information can be incorporated where available [17].

There are a range of methods addressing Bayesian nonlinear
system identification, which can be divided by model class, e.g.
state-space [18], white-box [19], [20], mixture of experts [21],
continuous-time [22], Wiener [23] and NARX models [24]–[26].
Bayesian methods for NARX modelling include nonparametric
approaches based on Gaussian process regression [24], [25]
and sampling methods based on reversible jump Markov chain
Monte Carlo (MCMC) [26]. Although MCMC methods tend to
be accurate, they are also computationally intensive and can be
prohibitively slow, because they tend to rely on large numbers
of samples, and may exhibit slow convergence to a stationary
distribution [27].

There is a need, therefore, for a computationally efficient
algorithm for Bayesian NARX model identification. To address
this challenge, we develop a novel method based on variational
Bayesian (VB) inference [28], [29]. The algorithm is both
simple to implement and computationally efficient, as it is
based on closed form updates of relatively low computational
complexity. Model term selection is performed using a sparsity
inducing hyper-prior, based on a method known as automatic
relevance determination (ARD), which is used to iteratively
prune redundant terms from the model [15].

Sparse Bayesian learning algorithms using ARD have been
developed for solving regression and classification problems
with kernel methods [30]–[32], and have inspired alternatives,
e.g. applied to signal denoising [33] and pattern recognition
problems with correlated errors [34]. However, ARD, as
proposed by [31], is not sufficient to perform the term selection
problem in a single step for non-trivial problems. A key novelty
here is a new algorithm for term selection of NARX models
using sparse variational Bayes (SVB) with ARD, where ARD is
iteratively applied to a reducing subset of model terms, retaining
the subset identified at each iteration, until there is a single
term left in the model.

There are a number of advantages to this SVB-NARX
modelling algorithm. Firstly, the SVB-NARX algorithm is fully
Bayesian, meaning that as in [31], nuisance parameters such as
the noise variance are automatically estimated. This contrasts
to e.g. [18], where the noise variance in a Bayesian LASSO-
type algorithm is assumed known (although could be estimated,
e.g. via an EM-algorithm approach [31]). A further advantage
of SVB-NARX is that a metric is intrinsically generated (the
variational lower bound) that can be used for automated model
selection, which trades-off accuracy and model complexity. The
final main advantage is that SVB-NARX is a fast algorithm
because it can prune terms in batches - as we show in the
results, it is much faster when selecting from large term sets
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than forward regression orthogonalisation (FRO) [4], Bayesian
LASSO [18], and a Bayesian algorithm based on reversible
jump MCMC [26].

Elements of this work have been published in brief confer-
ence format [35], and have been extended here in a number
of important ways: a more thorough and rigorous theoretical
development, expanded benchmarking, and application to real-
world data. The real world data is obtained from a dielectric
elastomer actuator (DEA), which is a type of actuator used in
soft robotics [36]–[38]. Furthermore, we demonstrate, for the
first time, frequency-domain uncertainty analysis for nonlinear
systems by propagation of parameter uncertainty from the
identified Bayesian model of the DEA into the frequency-
domain, using Monte Carlo sampling and nonlinear output
frequency response functions (NOFRFs) [6].

The paper is organized as follows. Section II defines the
Bayesian NARX model with associated priors. Section III gives
background on variational Bayesian inference. In Section IV-A
the parameter estimation algorithm for NARX models is derived
using variational inference. In Section V the structure detection
algorithm for NARX models is derived using variational
inference combined with ARD. In Section VI numerical
examples are given, along with benchmark analysis, and finally
an application to a real-world system (a set of DEAs) using
experimental data. The paper is summarised in Section VII.

II. SYSTEM IDENTIFICATION WITHIN A BAYESIAN

FRAMEWORK

A. The NARX model

In this section Bayesian inference of linear-in-the-parameters
regression models is introduced in the context of the NARX
model. Consider a single-input single-output dynamic system
as some non-linear function, f(.), of lagged system inputs, uk,
and outputs, yk, at sample time k,

yk = f(xk) + ek (1)

where xk =
(

yk−1, ..., yk−ny
, uk−1, ..., uk−nu

)

and ek is a
zero-mean Normally distributed white noise process with
variance τ−1. nu and ny are the maximum lags, or dynamic
orders, of the input and output respectively. The non-linear
function f(.) can be decomposed into a sum of M weighted
basis functions, e.g. by polynomials, radial basis functions,
wavelets etc., which is a linear-in-the-parameters model,

f(xk) =

M
∑

m=1

θmφm(xk) (2)

= Φkθ (3)

where

Φk = [φ1(xk), φ2(xk), . . . , φM (xk)], Φk ∈ R
1×M

θ = [θ1, θ2, . . . , θM ]T , θ ∈ R
M×1

and Φk is the k’th row of the matrix Φ such that

Φ = [ΦT
1 ,Φ

T
2 , . . . ,Φ

T
N ]T , Φ ∈ R

N×M

where N is the number of data points. The term selection
problem, addressed in this paper, is the selection of the best
choice of basis functions, φm, such that f(·) provides a
parsimonious description of the true system behaviour.

B. Bayesian parameter estimation

Bayes’ rule allows us to infer the posterior distribution of
the set of model parameters, denoted Θ, given the observed
data set y = [y1, . . . , yN ]T , then

p(Θ|y) =
p(y|Φ,Θ)p(Θ)

p(y)
. (4)

In the above equation the term p(y|Φ,Θ) is referred to as the
likelihood function and p(Θ) is the prior distribution of the
parameters before observing the data. The denominator, p(y)
is named the marginal likelihood and is given as

p(y) =

∫

p(y|Φ,Θ)p(Θ)dΘ. (5)

in order to normalise the posterior distribution.
The evaluation of (5) can be extremely challenging and

necessitates the need for approximation methods in all but the
most simple of cases [27]. In this paper (5) will be approximated
by the use of variational Bayesian techniques.

C. Likelihood function

The likelihood function for the NARX model given in (1)
for y under the assumption of a Normal i.i.d. noise sequence
is

p(y|Φ,θ, τ) =
N
∏

k=1

p(yk|Φk,θ, τ) (6)

=

N
∏

k=1

N (yk|Φkθ, τ
−1) (7)

=
( τ

2π

)
N
2

exp

(

−
τ

2

N
∑

k=1

(yk − Φkθ)
2

)

(8)

where N (x|µ, σ) denotes the Normal distribution of the variable
x with mean µ and variance σ.

D. Priors

The likelihood function given by (8) is a member of the
exponential family and so the choice of an exponential prior is
required for conjugacy [39].

The mean, Φkθ, and precision, τ , of the likelihood are
unknown parameters to be inferred and as such the choice of
Normal-Gamma prior distribution is made [40] such that

p(θ, τ |α) = p(θ|τ,α)p(τ) (9)

= N (θ|0, (τA)−1)Gam(τ |a0, b0) (10)

= 2π−M/2|A|1/2
ba0

0

Γ(a0)
τM/2+a0−1

exp
(

−
τ

2
(θTAθ + 2b0)

)

(11)
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Fig. 1. Probabilistic graphical model of the hierarchical model represented in
(14). The plate (box), denoted by the number of data samples N , indicates N

i.i.d observations. The arrows indicate the direction of conditional dependence.

where the Normal distribution has been further parametrised
by α = (α1, α2, . . . , αM )T = diag(A). The introduction of α
into the model naturally incorporates ARD, this is the basis of
the sparse estimation framework that will be discussed later.
The variable α is an unknown model parameter and will also
be inferred and so requires the introduction of a hyper-prior
(prior of a prior), p(α). The choice of a conjugate prior is again
chosen in order to simplify the later analysis. The hyper-prior
is therefore assigned as independent Gamma distributions,

p(α) =

M
∏

m=1

Gam(αm|c0, d0) (12)

=

M
∏

m=1

dc00
Γ(c0)

αc0−1
m exp(−d0αm) (13)

The model parameters {θ, τ,α} along with hyper-parameters
{a0, b0, c0, d0} can be initialised to have broad/uninformative
prior distributions so that the inference process is dominated
by the influence of the data [17].

The joint distribution over all of the random variables can
now be expressed hierarchically as

p(y,Φ,θ, τ,α) = p(y|Φ,θ, τ)p(θ|τ,α)p(τ)p(α), (14)

assuming τ and α independent and noting that Φ is a
function of the observed data and not a random variable. The
decomposition can by made more transparent be considering
the directed graphical model shown in Figure 1.

E. Prior for Automatic Relevance Determination

ARD has been incorporated into the Bayesian model via
the introduction of the hyper-parameter α in (9), where αm

corresponds to the precision (inverse of the variance) of θm.
αm therefore controls the magnitude of θm, if α−1

m = 0 then
the precision of θm is infinite and in order to maintain a high
likelihood θm = 0, indicating that the m’th model term is not
relevant to the generation of the data. αm is hence acting as
a sparse regularisation term that acts independently on each
model weight θm. The values of αm can then be used as a
basis for pruning irrelevant basis functions from the model
[41], [42].

In the remainder of this paper the value, α−1
m , is named as

the m’th ARD value, where small values indicate terms that
are not relevant to the generation of the output. This value
will be used to drive the structure detection in the SVB-NARX
system identification algorithm introduced in Section V.

F. Posterior distribution

The joint posterior distribution over the model parameters
can be found by considering (4), with Θ = {θ, τ,α}, where

p(θ, τ,α|y) =
p(y|Φ,θ, τ)p(θ|τ,α)p(τ)p(α)

p(y)
. (15)

The inclusion of the hyper-parameter, α, into the model causes
the marginal likelihood in the denominator of (15) to become
intractable, i.e. no direct analytical solution is possible. Many
methods exist for approximating the marginal likelihood [43],
commonly these techniques are based on random sampling [27].
Here, variational Bayesian inference will be used because the
posterior distribution can be approximated in a series of closed
form update equations, avoiding the use of computationally
expensive sampling methods.

III. VARIATIONAL BAYESIAN INFERENCE

In many non-trivial cases the evaluation of posterior distribu-
tions is infeasible as is the case with the linear regression with
ARD introduced in the previous section. The full Bayesian
treatment in closed form is only feasible for a limited class of
models [39]. Numerical integration techniques can always be
used, however, the computational expense is often prohibitive.
Variational Bayes provides a method for approximating the
posterior distribution. In this section some general results of
variational Bayesian inference are discussed followed by its
application to the linear regression model given by (2).

A. Variational optimisation of the Bayesian model

In the context of Bayesian inference problems variational
calculus can be used as a method for approximating posterior
distributions. Consider a fully Bayesian model such that all the
model parameters are assigned prior distributions as described
in Section II. The aim of the inference problem is to find an
approximation to the posterior distribution p(Θ|Φ,y) assuming
that the marginal distribution, p(y), is intractable. For notational
simplicity the conditional dependence on Φ will be assumed
implicit and dropped from the following discussion.

The marginal distribution is defined as

p(y) =

∫

Θ

p(y|Θ)p(Θ) dΘ. (16)

Introducing any variational distribution, Q(Θ), to approxi-
mate p(Θ|y) produces a lower bound on p(y). This is achieved
by first taking the natural logarithm of (16) and introducing
Q(Θ) such that
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ln p(y) = ln

∫

Θ

Q(Θ)
p(y|Θ)p(Θ)

Q(Θ)
dΘ. (17)

≥

∫

Θ

Q(Θ) ln
p(y|Θ)p(Θ)

Q(Θ)
dΘ. (18)

= L[Q(Θ)] (19)

where (18) follows from Jensen’s inequality [39]. The
variational lower bound (VLB) L[Q(Θ)] can be maximised to
provide an approximation of ln p(y). Variational optimisation is
employed to perform the variational maximization of L[Q(Θ)]
with respect to the free distribution Q(Θ).

By noting that Q(Θ) is a proper probability distribution and
therefore its integral with respect to Θ is equal to unity, and
rearranging (18) - (19),

L[Q(Θ)] =

∫

Θ

Q(Θ) ln
p(y|Θ)p(Θ)

Q(Θ)
dΘ. (20)

=

∫

Θ

Q(Θ) ln
p(Θ|y)

Q(Θ)
+Q(Θ) ln p(y) dΘ

=

∫

Q(Θ) ln p(y,Θ)dΘ−
∫

Q(Θ) lnQ(Θ)dΘ (21)

ln p(y) = L[Q(Θ)]−

∫

Θ

Q(Θ) ln
p(Θ|y)

Q(Θ)
dΘ (22)

= L[Q(Θ)] +KL(Q(Θ)||p(Θ|y)) (23)

where

KL(Q(Θ)||p(Θ|y)) = −

∫

Θ

Q(Θ) ln
p(Θ|y)

Q(Θ)
dΘ (24)

is the Kullback-Leibler (KL) divergence from Q to p. A few
things of interest can be noted from (22). First, the log marginal
distribution, p(y), can be de-constructed into a lower bound
on the distribution and a measure of the difference between
the true posterior distribution, p(Θ|y), and its approximating
distribution, Q(Θ), in the form of the KL divergence. It is
then evident that the optimal approximation to the marginal
distribution is found by maximising the lower bound, or
equivalently minimising the KL divergence. It is also clear
that the choice of Q(Θ) = p(Θ|y) would result in an exact
match between the bound and the marginal distribution.

B. Factorised distributions

In order to make the variational optimisation of L[Q(Θ)]
feasible, the family of possible distributions, Q(Θ), over
which the optimisation is performed, must be restricted. The
assumption is made that the variational distribution can be
factorised such that

Q(Θ) =
∏

j

qj(Θj) (25)

where each qj(Θj) are independent, an approximation known as
the mean field theory in physics. The function is maximised with

respect to each distribution qj(Θj) separately while holding
all others fixed.

Substituting the factorised distribution (25) into (21) and
then separating the i’th distribution over which to perform the
optimisation gives

L[Q(Θ))] =

∫

∏

j

qj(Θj)



ln p(y,Θ)−
∑

j

ln qj(Θj)



 dΘ

=

∫

qi(Θi)





∫

ln p(y,Θ)
∏

j 6=i

qj(Θj)dΘj



 dΘi

−

∫

qi(Θi) ln qi(Θi)dΘi + const (26)

where the terms
∏

j 6=i qj(Θj) ln qj(Θj) have been absorbed
into a constant term.

In order to find the distribution qi(Θi) that maximises
L[Q(Θ)] a variational optimisation is performed with respect
to qi(Θi) such that (full details of the following derivations
can be found in [44])

δL[qi(Θi)]

δqi(Θi)
=

∂

∂qi(Θi)


qi(Θi)





∫

ln p(y,Θ)
∏

j 6=i

qj(Θj)dΘj





−qi(Θi) ln qi(Θi)

)

(27)

=

∫

ln p(y,Θ)
∏

j 6=i

qj(Θj)dΘj

− ln qi(Θi) + const. (28)

where
δF [f(x)]
δf(x) denotes the functional derivative of the func-

tional F [f(x)] with respect to the function f(x) and
∂f(x)
∂x

denotes the partial derivative of the function f(x) with respect
to the variable x.

The integral that forms the first term on the right hand side
of (28) is the expectation of the log joint distribution where
the expectation is taken with respect to all of the distributions
qj(Θj) for which j 6= i, such that

Ej 6=i[ln(y,Θ)] =

∫

ln p(y,Θ)
∏

j 6=i

qj(Θj)dΘj (29)

where Ej 6=i denotes the expectation with respect to the
distributions q over all the variables in the set Θ for which
j 6= i.

Substituting (29) into (28), equating to zero and rearranging
for the variational distribution, a general expression for the
optimal solution and therefore the update of the ith factor of

the variational distribution q
(t+1)
i (Θi) is then given by

ln q
(t+1)
i (Θi) = Ej 6=i[ln p(y,Θ)] + const. (30)
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Performing the update (30) for each factor qj(Θj) of the
variational distribution completes one optimisation step of
L[Q(Θ)]. The optimisation is performed iteratively where t

indicates the current iteration such that q
(t+1)
j is the update

using the statistics of the distributions q
(t)
j at the previous

iteration, see Figure 2.

Equation (30) can also be arrived at using the Kullback-
Leibler divergence, as detailed in [39] in Section 10.1.1.

C. Convergence

The lower bound is guaranteed to converge because it is

convex with respect to each of the factors of q
(t+1)
i (Θi). In

order to facilitate the computation of the VLB, (21) can be
written more explicitly as

L[Q(Θ)] = EΘ[ln p(y,Θ)]− EΘ[lnQ(Θ)] (31)

which is the form used to monitor convergence of the algorithm.

Although the calculation of the VLB is not required for the
inference problem it provides a check that the algorithm, as well
as the theory behind it, is functioning correctly as the bound
is guaranteed to increase with each update of the variational
distribution [44]. In addition, it is important to note that the
VLB will be used later as a method for model comparison and
therefore must be calculated for that purpose.

IV. VARIATIONAL INFERENCE FOR NARX MODELS

A. Variational inference of model parameters

The variational Bayesian inference procedure can now be
applied to the NARX model defined by (2) following [45].
Applying the approximation defined by (25), the assumption
is made that the posterior distribution p(θ, τ,α|y) can be
approximated by

Q(θ, τ,α) = q(θ, τ)q(α) (32)

whereby the VLB can be maximised with respect to each factor.
From (18), the VLB is given by

L[Q(θ, τ,α)] =

∫∫∫

Q(θ, τ,α) (33)

ln
p(y|Φ,θ, τ, α)p(θ, τ |α)p(α)

Q(θ, τ,α)
dθdτdα.

Using the results of the variational Bayesian inference derived
above, the optimisation of the bound is performed via (30) for
the distributions q(θ, τ) and q(α) resulting in a set of closed
form update equations.

1) Update for q(θ, τ): The variational posterior qK(θ, τ) is
found by maximising the VLB, L(Q), with fixed q(α), where
the subscript K denotes the updated parameters. Noting that
p(y,Θ) is given by (14) when Θ = {θ, τ,α}, then from (30)

the update equation for q(θ, τ) is given as

ln qK(θ, τ) = ln p(y|Φ,θ, τ) + Eα[ln p(θ, τ |α)]

+const (34)

=

(

M

2
+ a0 − 1 +

N

2

)

ln(τ)

−
τ

2

(

θ
T

(

Eα[A] +

N
∑

k=1

ΦT
kΦk

)

θ

+

N
∑

k=1

y2k − 2

N
∑

k=1

ykΦkθ + 2b0

)

+const (35)

where p(y|Φ,θ, τ) and p(θ, τ |α) are given by (8) and (11)
respectively and all the terms not dependent on θ and τ have
been absorbed into the constant term.

Given that the likelihood function, (8), is in the form of a
Normal distribution, the conjugate Normal-Gamma prior, (11),
is chosen. Hence, the posterior distribution can be expressed as

qK(θ, τ) = N (θ|θK , τ
−1VK)Gam(τ |aK , bK), (36)

The method of completing the square is used to find the
exponent of the Normal distribution in the posterior by equating
coefficients of (35) and (36). First, separating out all the

coefficients of − τ
2θ

T
θ, to find V−1

K

−
τ

2
θ
TV−1

K θ = −
τ

2
θ
T

(

N
∑

k=1

ΦT
kΦk + Eα[A]

)

θ (37)

V−1
K =

N
∑

k=1

ΦT
kΦk + Eα[A]. (38)

Separating out the coefficients of θ to find θK

τθTV−1
K θK = τθT

N
∑

k=1

ΦT
k yk (39)

θK = VK

N
∑

k=1

ΦT
k yk. (40)

Now, (36) can be expressed as

ln qK(θ, τ) = lnN (θ|θK , τ
−1VK)

−
τ

2

(

N
∑

k=1

y2k + 2b0 − θ
T
KV−1

K θK

)

+

(

a0 − 1 +
N

2

)

ln(τ) + const. (41)

where the second and third terms in (41) are to be equated
with the terms in the Gamma distribution. Equating coefficients
of τ

−τbK = −
τ

2

(

N
∑

k=1

y2k + 2b0 − θ
T
KV−1

K θK

)

(42)

bK = b0 +
1

2

(

N
∑

k=1

y2k − θ
T
KV−1

K θK

)

. (43)
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Fig. 2. Variational inference is performed by iteratively updating the VLB via an optimisation step: the diagram illustrates the variational Bayesian update
according to (30).

And finally equating coefficients of ln τ

(aK − 1) ln τ =

(

a0 − 1 +
N

2

)

ln τ (44)

aK = a0 +
N

2
. (45)

The update of ln q(θ, τ) is by the computation of (38), (40),
(43) and (45).

2) Update for qK(α): The variational posterior q(α) is
found by maximising the VLB, L(Q), with fixed q(θ, τ). Using
(30), and equating coefficients of αm,

ln qK(α) = Eθ,τ (ln p(θ, τ |α)) + ln p(α) + const

=
M
∑

m=1

lnGam(αm|cK , dKm
) (46)

where

cK = c0 +
1

2
(47)

dKm
= d0 +

1

2
Eθ,τ [τθ

2
m]. (48)

The update of q(α) is hence performed by the computation of
(47) - (48).

The required expectations are found by considering the
standard moments of the relevant distributions [39] such that

Eθ,τ [τθ
2
m] = θ2Km

aK
bK

+VKmm
(49)

and the required expectation for the update of q(θ, τ) is given
by

Eα[A] = AK (50)

where AK is a diagonal matrix with elements

Eα[αm] =
cK
dKm

. (51)

The variational approximation, Q(θ, τ,α) = q(θ, τ)q(α),
to the true posterior p(θ, τ,α|y) is found by updating q(θ, τ)
and q(α) by iterating between the update equations defined
by (38), (40), (43) and (45), and (47)-(48) respectively. These
updates then form an iterative algorithm that is summarised in
Algorithm 1. The variables bK , dKm

,θK and VK must first
be initialised: bK and dKm

are initialised to their respective
prior values, bK |t=0 = b0 and dK |t=0 = d0. θK and VK are
initialised using the least squares estimate, such that

θK |t=0 = (ΦTΦ)−1ΦTy, (52)

VK |t=0 = ΦTΦ. (53)

B. Variational lower bound L(Q)

The VLB is found by considering (31). The dependencies
between the parameters in the first term in (31) are easily
determined by considering the joint distribution given by (14)
and the probabilistic graphical model in Figure 1. Expanding
the second term follows from (32) along with (36) and (46).
The lower bound is then given by

L[Q(Θ)] = EΘ[ln p(y,Θ)]− EΘ[lnQ(Θ)] (54)

= Eθ,τ [ln(p(y|Φ,θ, τ))] + Eθ,τ,α[ln p(θ, τ |α)]

+Eα[ln p(α)]− Eθ,τ [ln q(θ, τ)]− Eα[ln q(α)]. (55)

Taking the expectations of Equations (8), (11), (13), (36)
and (46), the components of (55) are evaluated as:

Eθ,τ ln p(y|Φ,θ, τ) =
N

2
(ψ(aK)− ln bK − ln 2π)

−
1

2

N
∑

k=1

(

aK
bK

(yk − Φkθ)
2 + ΦkVKΦT

k

)

(56)
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where ψ(·) is the digamma function.

Eθ,τ,α ln p(θ, τ |α) =
M

2
(ψ(aK)− ln bK + ψ(cK)− ln 2π)

−b0
aK
bK

−
1

2

M
∑

m=1

(

ln dKm
+

cK
dKm

(

aK
bK

θ2Km
+VKmm

))

− ln Γ(a0) + a0 ln(b0) + (a0 − 1)(ψ(aK)− ln bK) (57)

Eα ln p(α) = −M(ln Γ(c0) + c0 ln d0)

+

M
∑

m=1

(

(c0 − 1)(ψ(cK)− ln dKm
)− d0

cK
dKm

)

(58)

Eθ,τ ln qK(θ, τ) =
M

2
(ψ(aK)− ln bK − ln 2π − 1)

−
1

2
ln |VK | − ln Γ(aK) + aK ln bK

+ (aK − 1)(ψ(aK)− ln bK)− aK (59)

Eα ln qK(α) =

M
∑

m=1

((cK − 1)ψ(cK) + ln dKm
)

−M(ln Γ(cK) + cK). (60)

Substituting (56) - (60) into (55) provides an expression for
the variational bound as

L(Q) = −
N

2
ln 2π +

1

2
ln |VK | − b0

aK
bK

−
1

2

N
∑

k=1

(

aK
bK

(yk − ΦkθK)2 +ΦkVKΦT
k

)

+ lnΓ(aK)− aK ln bK + aK

− ln Γ(a0) + a0 ln b0 −
M
∑

m=1

(cK ln dKm
)

+M

(

1

2
− ln Γ(c0) + c0 ln d0 + lnΓ(cK)

)

(61)

The variational posterior distribution Q(θ, τ,α) can now
be calculated iteratively by computing q(θ, τ) and q(α). At
each iteration the VLB, L(Q) can be computed via (61). The
best approximation is found when L(Q) plateaus such that the
condition L(Q)t − L(Q)t−1 <= TL(Q) is met, where TL(Q)

is a predefined threshold.

C. Predictive distribution

Predictions of a new, unseen, data point can be made by
calculating a predictive distribution for the model at sample
k + 1. Given the input-output training data D, the task is
the evaluation of the distribution p(yk+1|D). The predictive
distribution is found by marginalising over the parameters such

Algorithm 1: VBNARX

1: procedure VBNARX(Φ,y, TL(Q), a0, b0, c0, d0)
2: t = 0
3: bK = b0
4: dK = d0
5: aK = a0 +

N
2

6: cK = c0 +
1
2

7: θK = (ΦTΦ)−1ΦTy

8: VK = ΦTΦ
9: while L(Q)t − L(Q)t−1 > TL(Q) do

10: t = t+ 1
11: Variational E Step:
12: Eα[A] = AK , where AK,ii = cK/dKi

13: Eθ,τ [τθ
2
m] = θ2Km

aK

bK
+VKmm

14: Variational M Step:

15: V−1
K =

∑N
k=1 Φ

T
kΦk + Eα[A]

16: θK = VK

∑N
k=1 Φ

T
k yk

17: bK = b0 +
1
2

(

∑N
k=1 y

2
k − θ

T
KV−1

K θK

)

18: dKm
= d0 +

1
2Eθ,τ [τθ

2
m]

19: Update L(Q)t via (61)
20: end while
21: return L(Q)t, cK , dK ,ΘK

22: end procedure

Fig. 3. Algorithmic description of the parameter estimation procedure for
the NARX model using variational Bayesian inference, termed VBNARX

that

p(yk+1|Φk+1,D)

=

∫∫∫

p(Φk+1|Φk+1,θ, τ)p(θ, τ,α|D)dθdτdα

≈

∫∫∫

p(yk+1|Φk+1,θ, τ)q(θ, τ)q(α)dθdτdα

=

∫∫

N (yk+1|Φk+1θK , τ
−1)N (θ|θK , τ

−1VK)

Gam(τ |aK , bK)dθdτ

=

∫

N (yk+1|Φk+1θK , τ
−1(1 + Φk+1VKΦT

k+1))

Gam(τ |aK , bK)dτ

= St(yk+1|µ, λ, ν) (62)

where µ = Φk+1θK , λ = aK

bK
(1 + Φk+1VKΦT

k+1)
−1 and

ν = 2aK . The resulting distribution, denoted St, is a Student’s
t-distribution. The distribution over α does not appear in the
third line of the above derivation because it is independent of the
other distributions and hence it integrates to unity. In the final
step, standard results from convolving conjugate distributions
have been used [39]. The mean and variance of the distribution
are given by

E[yk+1] = ΦkθK , (63)

Var[yk+1] = (1 + ΦkVKΦT
k )

bK
(aK − 1)

. (64)
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V. STRUCTURE DETECTION FOR NARX MODELS WITH

VARIATIONAL INFERENCE AND ARD

The variational Bayesian inference procedure provides a
method for estimating the posterior distributions of linear in the
parameters models, such as those of the NARX form. Through
the incorporation of ARD into the procedure, a measure of how
relevant each basis function is to the prediction of the data is
achieved. Importantly the VLB provides a measure of how good
the approximate posterior distribution of the parameters is to
the true posterior distribution. For a given data set, the VLB is
directly comparable across different models, and hence provides
a method for model selection. In this section we take advantage
of these features of the variational Bayesian inference in order
to develop an algorithm, named the SVB-NARX algorithm, for
parsimonious model structure detection.

A. The SVB-NARX algorithm

In overview, the algorithm proceeds by iteratively pruning
basis functions from an initial superset of basis function,
denoted M0, until there is a single basis function remaining. At
each iteration of the algorithm, a subset of the basis functions
that are selected at the previous iteration is chosen. The subset
selection is performed by making use of the sparse variational
inference procedure, defined in Algorithm 1. The variational
inference provides a measure of how relevant each basis
function is to the generation of the data. The least relevant terms
are not included in the new set. The SVB-NARX algorithm is
summarised in Algorithm 2,

The initial superset of basis function, M0 is defined as

M0 = {φm}Mm=1, (65)

where φm is the m’th basis function, corresponding to the m’th
column of Φ, and M = |M0| is the total number of basis
functions in the current model structure.

At each iteration of the algorithm, denoted by s, the
variational Bayesian inference procedure is applied to the
model defined by the current set of basis functions, Ms, using
Algorithm 1. Upon convergence of Algorithm 1 the VLB is
recorded as L(Q)s, which provides a measure of quality of the
model structure defined by Ms

ARD values, defined in Section II-E, associated with each
basis function are calculated as

ARDs =
{

Eα[αm]−1
}M

m=1
(66)

where Eα[αm] is given by equation (51).
Terms that correspond to ARD values falling below the

threshold T s
ARD are pruned from the model, i.e. they are not

included in the new model structure, Ms+1. The threshold is
updated at each algorithm iteration as

lnT s
ARD = min(lnARDs)

+
max(lnARDs)− min(lnARDs)

r
(67)

with the resolution, r, being a tuning parameter of the algorithm
set by the modeller. Consequences of the choice of r are
discussed in the following section.

Algorithm 2: SVBNARX

1: procedure SVBNARX(Φ,y, TL(Q), TARD,a0, b0, c0, d0)

2: M0 = {φm}Mm=1
3: s = 0
4: while M > 1 do
5: L(Q)s, cK , dK ,θ

s
K =

6: VBNARX(Ms,y, TL(Q), a0, b0, c0, d0)
7: Calculate {ARDs

m}Mm=1 via (66)
8: Calculate T s

ARD via (67)
9: M− = ∅

10: for m = 1 : |Ms| do
11: if ARDs

m ≤ T s
ARD then

12: M− = M− ∪ φm
13: end if
14: end for
15: Ms+1 = Ms \M

−

16: M = |Ms+1|
17: s = s+ 1
18: end while
19: M∗ = Ms∗ where s∗ = argmax

s
L(Q)s

20: θ
∗
K = θ

s∗

K
21: return M∗,θ∗

K
22: end procedure

Fig. 4. Sparse Bayesian identification of the NARX model using variational
inference and automatic relevance determination

The threshold is dependent on the range of the ln(ARD)
values and removes terms at the lower fraction of this range
depending on the value of r. This choice of threshold has
the advantage of removing increasingly less terms at each
algorithm iteration and hence discriminating more in the pruning
as the number of basis functions decreases. ln(ARD) values
are used to calculate the threshold, because the ARD values
associated with highly relevant model terms can be very high
in comparison to less relevant (but still correct) model terms.
ln(ARD) values will provide greater discrimination between
less relevant terms in this case. The iteration ends when M = 1
(all but one term have been pruned from the model).

The result of the iterative pruning is a selection of models,
Ms with a diminishing number of basis functions, each of
which can directly be compared by its associated VLB, L(Q)s.
The optimal model choice, M∗, is then selected as the model
with the greatest maximum lower bound such that

M∗ = Ms∗ , where s∗ = max
s

L(Q)s. (68)

The justification for the optimal model being selected as the
one that maximises the lower bound is given in Section V-C.

Note that the algorithm could be terminated at the maximum
of the VLB, however, it is informative (and computationally
inexpensive) to run the algorithm to completion. For a real
world problem the peak may not be well defined and the
modeller may wish to choose a model with less terms whilst
penalising accuracy.
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B. Algorithm Initialisation and Choice of Hyper-parameters

The SVB-NARX algorithm requires initialisation of the
hyper-parameters associated with the prior distributions, namely
a0, b0, c0 and d0. A standard choice of hyper-parameters are
a0 = c0 = 1×10−2 and b0 = d0 = 1×10−4, so as to produce
uninformative prior distributions [39], [45]. The mean of the
Gamma distribution on τ−1 at these values is undefined but
it has mode b0/(a0 + 1) ≈ 1 × 10−4. This implies that the
most likely variance on θ will be small a priori. The a priori
variance on τ−1 is also undefined at these values, however
the variance on τ can be computed as a0/b

2
0 = 1 × 106. It

can hence be concluded that although the prior distribution
indicates a preference for θ to take small values, this effect will
be minimal on the inference because of the broad distribution.
The same reasoning can be applied to the prior distribution on
α.

The single tuning parameter of the algorithm is the resolution,
r, whose value is set in advance by the modeller. It is named
resolution because it defines the region of ARD values that are
pruned from the model via (67). Increasing the value of r leads
to a higher resolution, resulting in less terms being pruned at
each iteration, s, and consequently longer computation time.
Conversely, reducing the value of r increases the number of
terms pruned at each iteration.

It is to be noted that if r is chosen too small then correct
model terms may be incorrectly pruned from the model.
However, the value of r can always be set high to avoid
incorrectly pruning terms, where the only penalty is longer
computation time. In addition, to mitigate effects introduced
by tuning r it should also be noted that for a given model and
data set the VLB is independent of the resolution that produced
it. This allows for multiple algorithm runs with varying values
of r to produce models that are directly comparable.

C. Algorithm properties

In this section we explain key properties of the algorithm.

1) Model selection by the variational lower bound: In the
previous section it is stated that the optimal model choice is
taken to be the model that maximises the VLB after it has
reached convergence.

In (4) the conditional dependencies on the model Ms are
neglected. Explicitly including the conditional dependencies,
(4) can be written

p(Θ|Φ,Ms) =
p(y|Φ,Θ,Ms)p(Θ|Ms)

p(y|Ms)
(69)

Considering the posterior distribution over the models, Ms,
conditional on the data and applying Bayes’ theorem the
posterior distribution over the s’th model is given by

p(Ms|y) =
p(y|Ms)p(Ms)

p(y)
. (70)

The first term in the numerator on the right hand side of (70)
is the same as the marginal likelihood in (69). Setting equal
prior distributions p(Ms) for each model and noting that the

denominator is constant for a given data set, the posterior is
proportional to the marginal likelihood in (69)

p(Ms|y) ∝ p(y|Ms). (71)

For a more in depth discussion of the role of the marginal
likelihood in Bayesian model selection see [15].

The VLB, L(Q)s, calculated for each model is an approx-
imation of the marginal likelihood, p(y|Ms). Equation (71)
therefore provides the justification for using the VLB as a
criterion for selecting the final model structure.

2) Computational complexity: The computational complexity
of the SVB-NARX algorithm is dominated by the matrix
inversion of the result of (38) in order to perform the variational
update of the model parameters. The computational complexity
of the algorithm is therefore cubic in the number of parameters
O(M3). The pruning step of the algorithm results in a smaller
set of model parameters, M , being evaluated at each iteration
of the algorithm and hence the time taken for the variational
updates to reach convergence decreases significantly as the
algorithm progresses.

In practice the computational complexity of SVB-NARX
translates to run times that can be an order of magnitude less
than methods based on MCMC (see Section VI). The long
computation times in MCMC methods are not attributed to the
complexity of individual mathematical operations, but rather
tends to depend on the random initialisation of samples, and
whether the initialisation is close to the stationary distribution
of model and parameters, and is then affected by how long the
Markov chain takes to converge to that stationary distribution:
these aspects are difficult to quantify precisely because they
depend on the inherent randomness of the MCMC process.
Similar computational comparisons have been made elsewhere
in the literature for VB and MCMC methods [46].

VI. RESULTS AND DISCUSSION

In this section the SVB-NARX algorithm is demonstrated
and benchmarked on a numerical example and then applied
to a real system. The benchmark algorithms include a sparse
Bayesian LASSO (BL) algorithm [18], a Bayesian algorithm
by some of the authors based on reversible jump MCMC
(RJMCMC) [26], the FRO algorithm based on orthogonal least
squares [4], a standard LASSO algorithm [47], and a simulation
based method, SEMP, [9]. The algorithm is then applied to the
identification of a real system, a dielectric elastomer actuator
used in soft robotics [36], [48], [49].

A. Benchmarking on a known nonlinear system

The SVB-NARX algorithm was demonstrated and bench-
marked on the system below, a polynomial NARX model, which
has previously been used as a challenging example because a
popular algorithm, FRO, fails to select all terms correctly [9],
[50],

yk = θ1yk−2 + θ2yk−1uk−1 + θ3u
2
k−2

+ θ4y
3
k−1 + θ5yk−2u

2
k−2 + ek (72)
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where θ1 = −0.5, θ2 = 0.7, θ3 = 0.6, θ4 = 0.2, θ5 = −0.7,
and ek is a Normally distributed white noise sequence drawn
from the distribution N (ek|0, σ

2
e). The system was simulated

for N = 1000 data samples at a noise level of σ2
e = 0.0004

generating signals with a signal-to-noise ratio (SNR) ≈20
dB, where SNR=10 log10

(

σ2
y/σ

2
e

)

, where σ2
y is the noise-free

output variance. Additional SNRs in the range 2-20 dB were
also investigated). The input, uk, was drawn from a uniform
distribution in the range [−1, 1].

To perform the term selection, a superset of basis functions
is typically defined. For polynomial models, basis functions in
the superset can take the form of any polynomial combination
of the elements of xk up to a maximum order np [2]. In this
case np = 3. In addition the maximum dynamic orders for
input and output were set to nu = ny = 4. This led to an
initial superset of M = 164 model terms (for all algorithms).
Algorithm initialisation was performed as follows.

SVB-NARX: for SVB-NARX initialisation, prior distibutions
were set using hyper-parameter values as discussed in Section
V-B. The resolution of the algorithm was tested at values of
r = 10, 100 and 1000 to illustrate the effect of this tuning
parameter.

Bayesian-LASSO: the BL algorithm requires the manual
tuning of the parameter λBL, which is defined as the variance
of the noise, σ2

e . Setting λBL to the true noise variance was
found to result in an incorrect term selection. The parameter
was therefore set to λBL = 0.002, which gave the correct
terms.

RJMCMC: the RJMCMC algorithm hyper-parameters for
prior distributions were set as in [26]. In addition the noise
variance was manually set to σ2

e = 0.1. The RJMCMC
algorithm was executed 100 times for 100, 000 iterations per
execution.

FRO: for FRO, the algorithm is usually terminated when the
error reduction (ERR) ratio value drops below a threshold: in
this case the threshold was set to 0.01.

LASSO: the LASSO algorithm used here was based on
the method reported in [47], with regularisation weight set to
λLASSO = 0.0043, selected from a range of values to minimise
the mean squared prediction error (MSPE) from a 10-fold cross-
validation test, where MSPE = 1

N

∑

k(yk − ŷmpo,k)
2, where

ŷmpo,k is the k’th element of the model predicted output.
SEMP: the SEMP algorithm is usually terminated when the

change in MSPE drops below a threshold, where a decrease of
less than 1× 10−6 was taken as the threshold here.

All algorithms were implemented by the authors in Matlab
except BL, where a toolbox by the original authors of [18] at
https://github.com/panweihit/BSID was used.

The SVB-NARX algorithm, with r = 100, performed well
over a range of noise levels, selecting the correct model terms
at SNRs of 2-20 dB (see Figure 5, where the dashed black line
indicates the correct model structure and corresponds in all
instances to the maximum of the variational bound). The true
model parameters were within the 95% confidence intervals
at all noise levels (this is not shown in Figure 5 in order
not to overcrowd the plots on the bottom row). As should be
expected, the variance of the parameter distributions increases
with increasing noise, see Figure 5.

TABLE I. COMPARISON OF TERM SELECTION AND PARAMETER

ESTIMATION FOR THE SYSTEM GIVEN BY (72).

SVB-NARX

Correct Term? Basis function ARD (×103) Parameter estimate

Yes yk−2 0.6076 -0.4985± 0.0053

Yes yk−1uk−1 1.2103 0.7035± 0.0064

Yes u2

k−2
0.8788 0.5995± 0.0031

Yes y3

k−1
0.1004 0.2026± 0.0031

Yes yk−2u
2

k−2
1.2119 -0.7040± 0.0122

BL

Correct Term? Basis function Parameter estimate

Yes yk−2 -0.4985± 0.0118

Yes yk−1uk−1 0.7035± 0.0142

Yes u2

k−2
0.5995± 0.0069

Yes y3

k−1
0.2026± 0.0069

Yes yk−2u
2

k−2
-0.7041± 0.0272

RJMCMC

Correct Term? Basis function Parameter estimate

Yes yk−2 -0.5010± 0.0023

Yes yk−1uk−1 0.6998± 0.0035

Yes u2

k−2
0.5977± 0.0017

Yes y3

k−1
0.2018± 0.0008

Yes yk−2u
2

k−2
-0.6915± 0.0114

FRO

Correct Term? Basis function ERR Parameter estimate

No yk−4u
2

k−2
0.3582 0.0073

Yes yk−1uk−1 0.1654 0.7037

Yes u2

k−2
0.1216 0.5980

Yes yk−2 0.2657 -0.4983

Yes y3

k−1
0.0563 0.2028

Yes yk−2u
2

k−2
0.0296 -0.6992

LASSO

Correct Term? Basis function - Parameter estimate

Yes yk−2 -0.4960

Yes yk−1uk−1 0.6923

Yes u2

k−2
0.5881

Yes y3

k−1
0.1931

No y2

k−1
yk−3 -0.0043

No yk−1y
2

k−2
0.0000

No yk−1y
2

k−3
0.0005

No yk−2u
2

k−1
-0.0035

Yes yk−2u
2

k−2
-0.6789

No yk−4u
2

k−2
0.0100

SEMP

Correct Term? Basis function MSPE Parameter estimate

Yes u2

k−2
0.1485 0.5995

Yes yk−2 0.1096 -0.4985

Yes yk−1uk−1 0.0795 0.7035

Yes y3

k−1
0.0409 0.2027

Yes yk−2u
2

k−2
0.0264 -0.7040

In the benchmark study, all algorithms except FRO and
LASSO correctly selected the model terms (Table I). The SVB-
NARX algorithm correctly identified the model structure at each
tested resolution level, r = 10, 100 and 1000, demonstrating its
insensitivity to this tuning parameter, In Table I ARD (given by
(66)) and model parameters are shown for r = 100. In addition,
the algorithm inferred a distribution over the noise variance with
a high degree of accuracy (estimated to be 0.00041, where the
true value was 0.0004). For the BL algorithm the distributions
over the model parameters had a significantly larger variance
than for SVB-NARX or RJMCMC. The FRO algorithm selected
an incorrect term at the first iteration (see Table I), which
was likely due to the local nature of the search [51]. The
LASSO algorithm selected 7 incorrect terms: this problem of
LASSO overselecting model terms has been noted elsewhere



11

Fig. 5. Results of Numerical example 1. Top: SVB-NARX model structure detection at varying signal-to-noise ratios (SNRs), 2-20dB. The VLB is plotted against
algorithm iteration number for each noise level. The correct model structure is indicated by the black dotted line and corresponds to the maximum of the VLB for
all noise levels, indicating the correct model structure at all SNRs. The bound converges to a smaller value with increasing noise. Bottom: Parameter distributions
calculated at different noise levels. The true parameter is given by the stem plot. As expected the parameter estimates are less certain at higher noise levels.

Fig. 6. Comparison of benchmark algorithms at varying levels of SNR using
the average root normalised mean square error (RNMSE) of identified model
parameters. The RNMSE average was taken over 100 Monte Carlo simulations.
Error bars show 2 standard deviations from the mean.

[13] (the true model structure was not recovered at any value
of λLASSO). Finally, the SEMP algorithm correctly identified
the model structure.

The same model was used to investigate the effect of noise
on the identification performance for each of the benchmark
algorithms (RJMCMC was omitted because of the long compu-
tation time required). In total, 100 input-output data sets were
generated for six different SNR values in the range 2-20 dB.
The initial super-set of model terms was set as described above
(164 terms). The root of the normalised mean squared error

Fig. 7. Average timings of structure detection algorithms over 10 runs. Error
bars show 2 standard deviations from the mean.

(RNMSE) of the model parameters was used as a performance

index, defined as ‖θ̂−θ‖2/‖θ‖2, where θ̂ was the estimate of
the true parameter θ. Note that the parameters of incorrectly
selected terms were included here, in order to incorporate
the full identification procedure in the comparison (hence,
large errors were typically due to incorrect terms included
in the selection procedure). Initialisation of all algorithms was
performed as before; the SVB-NARX algorithm was run at
a resolution of r = 100. SVB-NARX outperformed the other
algorithms at all SNR levels except 2dB, for which BL was
marginally better, see Figure 6.
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To investigate computational efficiency, the benchmark
example was repeated varying the size of the initial superset
of model terms. This was done by increasing the dynamic
orders ny = nu = 2, . . . , 8. RJMCMC was omitted because it
took orders of magnitude longer than the other algorithms
(for 164 terms, it took ∼20 seconds per trial of 100,000
iterations but requiring multiple trials, in this case 100, i.e.
∼2000 seconds). The SVB-NARX algorithm was run at two
resolution levels of r = 10 and r = 100 to demonstrate the
effect of this tuning parameter. Initialisation and term selection
for all other algorithms remained the same. Computational
times were averaged over 10 trials. For a small initial basis
function set (<100 terms) all of the tested algorithms were
comparable, taking under 10 seconds to complete (Figure 7).
Greater differences between algorithms were seen for more
model terms: in particular SVB-NARX was fastest for over
500 terms and had a relatively flat trend as the number of
terms increased toward 1000 (Figure 7). The greater efficiency
of SVB-NARX is due to the pruning procedure removing
multiple terms at each iteration, which rapidly decreases the
dimensionality of the inference task as the algorithm progresses,
leading to significantly decreased computation time at each
iteration.

In summary, the benchmark has demonstrated that SVB-
NARX has advantages in the automated tuning of the noise
variance, as well as increased computational efficiency for large
numbers of terms. The automated tuning of the noise variance
with SVB-NARX is particularly important because alternatives
such as BL and RJMCMC do not select the correct terms
for certain manually tuned values of noise variance, and the
successful value would be unknown for real world problems.

B. Experimental system identification of a dielectric elastomer
actuator

The SVB-NARX algorithm was applied in this section to
the identification of a set of six dielectric elastomer actuators
(DEAs), which are a type of soft-smart actuator used in robotics
[36], [48], [49]. DEAs are known to exhibit nonlinear dynamics,
posing challenges for control design [37], [38], [52].

The dataset used in this investigation has already been
published and so we only give brief details here, readers are
referred to [37] for more information. The input-output data
comprised voltage as input, and displacement as output (see
Figure 8). The voltage input signal was designed as band-
limited white noise (0-1Hz), with amplitude offset to lie in
the range 1.5-3.5V, sampled at 50Hz (and then down-sampled
for identification to 12.5Hz). We used 160 seconds of data for
identification, N=2000 samples, and partitioned the data for
identification and validation (comprising N=1000 data samples
for each segment). Detailed results are given for one DEA, and
then summarised for the remaining five. For comparison, the
SEMP, FRO and BL algorithms are also evaluated.

Regarding initialisation of the identification algorithms, the
superset of initial model terms was generated with nu = ny = 3
and np = 3. The SVB-NARX algorithm was initialised with
r = 1000, and hyper-parameters were initialised as in Section
V-B. The FRO algorithm was terminated when the ERR value

TABLE II. MODEL TERMS AND PARAMETERS OF A DEA IDENTIFIED

USING SVB-NARX, SEMP, FRO AND BL. PARAMETER VALUES FOR THE

SVB-NARX IDENTIFIED MODEL ARE GIVEN WITH THEIR 95% CONFIDENCE

INTERVALS.

Terms SVB-NARX SEMP FRO BL

DC - 0.0475 0.0518 -

yk−1 0.9056 ± 0.0226 0.8950 1.0024 0.9619

yk−2 - - -0.2471 -

yk−3 0.1977 ± 0.0293 0.0415 0.1379 0.1487

uk−1 - 0.4115 - -

uk−2 - -0.4216 - -0.0081

uk−3 - 0.0671 - -

yk−1yk−2 - -0.0770 - -

yk−1uk−1 - - 3.0050 0.2048

yk−1uk−2 -0.5504 ± 0.0411 - -5.1093 -0.6826

yk−1uk−3 - - 1.7671 -

y2

k−2
-0.2144 ± 0.0419 - - -0.2286

yk−2uk−1 0.5725 ± 0.0426 - -2.2368 0.5311

yk−2uk−2 - - 4.4082 -

yk−2uk−3 - - -1.7435 -

u2

k−1
0.8962 ± 0.1620 - - -

uk−1uk−2 -1.3596 ± 0.3081 - - -

uk−2uk−3 1.1632 ± 0.3193 - - -

u2

k−3
-0.6669 ± 0.1730 - - -

y2

k−1
yk−2 - - - -

y2

k−1
uk−1 0.3082 ± 0.0497 - - -

yk−1yk−2uk−3 -0.5610 ± 0.1472 - - -

yk−1u
2

k−1
- 0.6566 - 0.2914 1.3845

yk−1u
2

k−3
- - -0.2780 -0.1049

yk−1uk−1uk−2 - - - -1.3043

yk−1u
2

k−2
- -0.7383 - -

y2

k−2
uk−3 0.3906 ± 0.1061 - -

yk−2yk−3uk−2 - - - 0.1182

yk−2uk−2uk−3 - - - 0.6200

yk−2uk−1uk−3 - 0.2786 - -

yk−2u
2

k−3
- - - -0.2903

yk−3u
2

k−1
- -0.0366 - -0.2530

u3

k−1
0.2016 ± 0.0386 - - -

uk−1uk−2uk−3 -0.3676 ± 0.1317 - - -

u2

k−2
uk−3 0.1755 ± 0.1030 - - -

Prediction errors

on validation dataset
2.47% 2.09% 2.43% 2.39%

fell below 1× 10−5. The SEMP algorithm was terminated by
thresholding the MSPE. The BL algorithm required the selection
of the tuning parameter λ, which was set to λ = 5.5× 10−4,
selected by running the algorithm over a range of values of
λ and selecting the model with the minimum prediction error
over the training data.

Application of each identification algorithm to the training
data resulted in a model with accurate model simulations on the
validation data, around 2-3% error in each case (Figure 9 and
Table II). There was some variation in the size of each model,
where the number of terms selected was as follows: SVB-NARX
15 terms; FRO 12 terms; SEMP 11 terms; BL 14 terms (Table
II). Hence, SEMP and FRO identified models with fewer terms
than for BL and SVB-NARX. However, because the thresholds
for SEMP and FRO are selected by hand-tuning, no strong
conclusions can be drawn from these numbers. Additional terms
do not necessarily indicate that the models identified by SVB-
NARX and BL are any more complex: the parameters estimated
by SVB-NARX are regularised due to the prior distribution
over the parameters, whilst model complexity and over fitting
are penalised automatically as part of the inference procedure.
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Fig. 8. Experimental setup for the dielectric elastomer actuators (DEAs). A: Photo of the DEA experimental rig: An elastomer film is anchored over a rigid blue
plastic frame. Electrodes are painted on with conducting carbon grease (inner black circle), to form the DEA, and connected to an external power supply. A metal
ball weights the DEA in the centre. On application of a voltage across the DEA the actuator expands raising the ball in the vertical direction: the resulting
vertical displacement is the output measured by a laser displacement sensor underneath. B: Diagram of the DEA experimental rig. C: Typical input (voltage) and
output (displacement) data obtained from one DEA experiment (zoomed for clarity to the first 40 seconds). D: Input vs output (voltage-displacement) plot,
indicating nonlinear dynamics of the actuator.

A striking feature of the identified NARX models, shown in
Table II, is that they consist of different terms, implying that
they might describe different dynamics. However, comparison
of dynamics based on the model equation is not informative
because they are not necessarily unique descriptors [2]. NARX
models are preferably compared and analysed in the frequency
domain, where the dynamics should be uniquely described
[2]. We performed such an analysis here via nonlinear output
frequency response functions (NOFRFs) [2], [6].

We briefly explain the NOFRF analysis procedure here.
The frequency response of a nonlinear system, Y (jω), can
be analysed using the sum of n-th order output spectra,
Y (jω) =

∑

n Yn(jω) [53], which is based on the standard
description originating in Volterra series analysis of nonlinear
systems, y(t) =

∑

n yn(t), where yn(t) is known as the n-th
order system output [54]. The NOFRFs allow the reconstruction
of the n-th order output spectra as Yn(jω) = Gn(jω)Un(jω),
where Gn(jω) is the NOFRF and Un(jω) is the spectrum
of a specific input signal [6]. The procedure is based on: 1.
simulating the identified NARX model with multiple level input
signals chosen for specific spectral characteristics, 2. taking
the fast Fourier transform (FFT) of the inputs and outputs, 3.

estimating the NOFRFs, Gn(jω), from input-output FFT data,
and 4. using the estimated NOFRFs to reconstruct the n-th
order output spectra, Yn(jω) [2], [6].

The n-th order output spectra, Yn(jω), can be used to analyse
and compare models obtained by nonlinear system identification.
This frequency-domain representation of the identified model
should be a unique descriptor and therefore much more useful
and informative than attempting to compare model equations
(parameters and terms) directly.

The frequency domain analysis was performed for all six
DEAs using SVB-NARX (and SEMP only, as the best perform-
ing alternative model in the sense of minimising prediction
error). We found that whilst model equations differed, there
was good agreement in the n-th order output spectra, Yn(jω),
giving confidence that SVB-NARX and SEMP identified models
described the same dynamics (see Figure 10). In addition, we
used Monte Carlo sampling (100 samples) of the SVB-NARX
model parameters to provide an uncertainty description in the
frequency-domain (shaded region in Figure 10). This is the first
time, to our knowledge, that this type of uncertainty analysis
has been performed and could have important benefits in areas
such as systems analysis, control design and fault diagnosis.
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Fig. 9. Identification of the DEA using SVB-NARX, FRO, SEMP and BL. A) The SVB-NARX algorithm selects the optimal model structure at iteration 22 as
marked by the dashed line: 15 model terms are selected. B) The ERR for FRO model selection: 12 model terms are selected. C) The MSPE for SEMP model
selection: 11 terms are selected. D) The MSPE for the BL algorithm as a function of λ: 14 model terms are selected (corresponding to the minimum MSPE).
E-H) The system output versus the model predicted output for the models identified by all four algorithms. I) The model predicted output over validation data for
the model identified by SVB-NARX (Red) with 95% confidence intervals (Light red shaded area), FRO (Yellow), BL (Purple) and SEMP (Green) with the
measured output (Black).

VII. SUMMARY

In this paper a novel approach to nonlinear system identifi-
cation of NARX models within a sparse variational Bayesian
framework was introduced: The SVB-NARX algorithm. Term
selection was driven by the inclusion of a sparsity inducing
hyper-prior. We found that the algorithm was relatively fast
compared to other nonlinear system identification methods
and that it performed successfully even at low SNR levels
(down to 2dB). The SVB-NARX algorithm was applied to
a real world problem: identification of dielectric elastomer
actuators. The algorithm produced an accurate model, and for
the first time in nonlinear systems analysis we exploited the
Bayesian nature of the SVB-NARX algorithm to numerically
propagate the model parameter uncertainty into the nonlinear
output frequency response functions.
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[12] S. L. Kukreja, J. Löfberg, and M. J. Brenner, “A least absolute shrinkage



15

Fig. 10. Analysis of DEA model dynamics in the frequency domain using nonlinear output frequency response functions. The amplitudes of the first three
nonlinear output spectra (Y1, Y2 and Y3) are obtained for each DEA and from each modelling algorithm: SVB-NARX and SEMP. Solid lines: SVB-NARX,
maximum a posteriori (MAP) estimate. Dashed lines: SEMP. Shaded regions: An uncertainty description over each amplitude of the nonlinear output spectra
obtained by Monte Carlo sampling from the posterior parameter distribution of the SVB-NARX model and propagated into the frequency domain by evaluating
the corresponding nonlinear output spectra (using 100 samples in each case).

and selection operator (lasso) for nonlinear system identification,” IFAC

Proceedings Volumes, vol. 39, no. 1, pp. 814–819, 2006.

[13] M. Bonin, V. Seghezza, and L. Piroddi, “NARX model selection based
on simulation error minimisation and lasso,” IET Control Theory &

Applications, vol. 4, no. 7, pp. 1157–1168, 2010.

[14] V. Peterka, “Bayesian system identification,” Automatica, vol. 17, no. 1,
pp. 41–53, 1981.

[15] D. Mackay, “Probable networks and plausible predictions — a review of
practical Bayesian methods for supervised neural networks,” Network:

Computation in Neural Systems, vol. 6, no. 3, pp. 469–505, Aug. 1995.

[16] B. Ninness and S. Henriksen, “Bayesian system identification via Markov
chain Monte Carlo techniques,” Automatica, vol. 46, no. 1, pp. 40–51,
Jan. 2010.

[17] A. Gelman, Bayesian Data Analysis. Boca Raton, Fl: Chapman &
Hall/CRC, 2004.

[18] W. Pan, Y. Yuan, J. Gonalves, and G. B. Stan, “A sparse Bayesian
approach to the identification of nonlinear state-space systems,” IEEE

Transactions on Automatic Control, vol. 61, no. 1, pp. 182–187, Jan
2016.

[19] P. L. Green and K. Worden, “Bayesian and Markov chain Monte Carlo
methods for identifying nonlinear systems in the presence of uncertainty,”
Phil. Trans. R. Soc. A, vol. 373, p. 20140405, 2015.

[20] J. L. Beck, “Bayesian system identification based on probability
logic,” Journal of International Association for Structural Control and

Monitoring, vol. 17, no. 7, pp. 825–847, 2010.

[21] T. Baldacchino, E. J. Cross, K. Worden, and J. Rowson, “Variational
Bayesian mixture of experts models and sensitivity analysis for nonlinear
dynamical systems,” Mechanical Systems and Signal Processing, vol.
66-67, pp. 178–200, Jan. 2016.

[22] K. Krishnanathan, S. R. Anderson, S. A. Billings, and V. Kadirka-
manathan, “Computational system identification of continuous-time non-

linear systems using approximate Bayesian computation,” International

Journal of Systems Science, vol. 47, pp. 3537–3544, 2016.

[23] F. Lindsten, T. B. Schön, and M. I. Jordan, “Bayesian semiparametric
Wiener system identification,” Automatica, vol. 49, no. 7, pp. 2053–2063,
2013.

[24] R. Frigola and C. E. Rasmussen, “Integrated pre-processing for Bayesian
nonlinear system identification with Gaussian processes,” in 52nd IEEE

Conference on Decision and Control, 2013, pp. 5371–5376.

[25] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, “Dynamic
systems identification with Gaussian processes,” Mathematical and

Computer Modelling of Dynamical Systems, vol. 11, no. 4, pp. 411–424,
2005.

[26] T. Baldacchino, S. R. Anderson, and V. Kadirkamanathan, “Com-
putational system identification for Bayesian NARMAX modelling,”
Automatica, vol. 49, no. 9, pp. 2641–2651, Sep. 2013.

[27] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Markov Chain

Monte Carlo in Practice. Boca Raton, Fla: Chapman & Hall, 1998.

[28] Z. Ghahramani and M. J. Beal, “Propagation algorithms for variational
Bayesian learning,” Advances in Neural Information Processing Systems,
pp. 507–513, 2001.

[29] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An
introduction to variational methods for graphical models,” Machine

Learning, vol. 37, no. 2, pp. 183–233, 1999.

[30] C. M. Bishop and M. E. Tipping, “Variational relevance vector machines,”
in Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, 2000, pp. 46–53.

[31] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” The Journal of Machine Learning Research, vol. 1, pp. 211–
244, Sep. 2001.

[32] C. Lu, A. Devos, J. A. Suykens, C. Arús, and S. Van Huffel,
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