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Abstract— In this work, we apply active Bayesian perception
to angle and position discrimination and extend the method
to perform actions in a sensorimotor task using a biomimetic
fingertip. The first part of this study tests active perception
off-line with a large dataset of edge orientations and positions,
using a Monte Carlo validation to ascertain the classification
accuracy. We observe a significant improvement over passive
methods that lack a sensorimotor loop for actively repositioning
the sensor. The second part of this study then applies these
findings about active perception to an example sensorimotor
task in real-time. Using an appropriate online sensorimotor
control architecture, the robot made decisions aboutwhat to do
next and where to move next, which was applied to a contour-
following task around several objects. The successful outcome
of this simple but illustrative task demonstrates that active
perception can be of practical benefit for tactile robotics.

I. INTRODUCTION

To operate autonomously, robots must make decisions and
actions in the presence of sensory uncertainties. Inspiration
can be taken from humans and animals, who adopt an active
sensing strategy of directing their senses towards locations
that reduce uncertainty about perceptual decisions [1]. For
instance, humans actively move their hands and fingers to
improve perception using sensorimotor feedback about the
object in relation to the task being performed [2], [3]. Given
such behaviour is widespread in biological systems, one may
infer that robotics could also benefit from these principles.

In this study, we show how active Bayesian perception
can enable a robot to perform a real-time sensorimotor
task involving decisions about bothwhat to do next and
where to move next. These decisions are made by linking
active perception to action in a sensorimotor loop that has
two functions: first, to control the actions of the robot in
achieving the task, and second to improve sensing accuracy
through active perception. We apply these methods to a
biomimetic fingertip perceiving both the angle and position
of the edge of an object at different orientations and distances
perpendicular to that edge. We also demonstrate how active
perception can then enable a robot to achieve an example
sensorimotor task, specifically to accurately trace the edge
of various objects (Figure 1).

Our work is based on recent progress in applying active
Bayesian perception to robot touch for texture [4] and shaped
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Fig. 1: (A) Different shaped and sized objects used for the
sensorimotor task. (B) Tactile sensor in contact with the edge of
an object at one angle and position. (C) Tactile sensor mounted on
robotic platform to allow mobility in thex-, y- andz-axes.

stimuli [5], [6]. A series of papers [4], [5], [7], [8], [9],
has formalised aBayesian perception approach for robotics
based on recent progress in understanding animal perception.
That formalism extended naturally to active perception, by
moving the sensor with a control strategy based on evidence
received during decision making. Benefits of active Bayesian
perception include: (i) robust perception in unstructured
environments [4]; (ii) an order-of-magnitude improvementin
acuity over passive methods [6]; and (iii) a general frame-
work for simultaneous object localisation and identification,
or ‘where’ and ‘what’ [6]. However, the utility of active
Bayesian perception has not yet been assessed on a practical
sensorimotor task, which is the purpose of this study.

Here we develop and apply a sensorimotor architecture
that controls actions by the outcome of decisions made using
active Bayesian perception, extending a previous architecture
to represent active perception [10]. For the first part of this
study, we test angle and position discrimination using an off-
line Monte Carlo validation of our active perception method.
The results demonstrate a successful angular and position
discrimination accuracy of 3.3 degs and 0.2 mm respectively,
over 72 angular classes with resolution 5 degs each. As part
of the analysis, we evaluate the reaction times to make a



Fig. 2: Data collection for an edge stimulus over a range of
orientations and positions. The object was turned at every 5degs
steps. For visualisation, we show only five examples from a total
of 72 angle and 18 position classes.

decision with small classification errors. In the second part
of this study, we apply this architecture to an online task in
real-time, with a simple but illustrative problem of contour
following the edges of various shapes. For each contact
location, the fingertip sensor actively perceives the angle
and position class by repositioning itself relative to the edge
while integrating evidence up to decision threshold. After
reaching the threshold, the robot then makes a movement
parallel to the perceived edge direction to trace the outside
edge of the object. For demonstration, we present traced
contours from three differently shaped and sized objects,
validating the method.

II. METHODS

A. Tactile data acquisition

This study considers tactile sensing using a biomimetic
fingertip sensor designed for the iCub humanoid robot. The
dimensions and shape of the fingertip sensor are similar
to the human fingertip and are intended to allow the iCub
humanoid to manipulate and interact with objects with its
hands [11]. The sensor is built with a capacitive technology
composed of 12 taxels (tactile elements) that react to contact
pressure. The capacitive pressure values are digitised locally
with a capacitive to digital converter (CDC) and sampled
at 50 Hz. The conversion output is sent to a main computer
through a CAN (Controller Area Network) bus.

We are interested in demonstrating angle and position per-
ception with this fingertip. Therefore, we initially collected
tactile data from the edge of a plastic square oriented at
different angles and positions with respect to the fingertip.
For data collection, we chose brief tapping motions, for
two main reasons. First, to minimize damage to the sensor,
in contrast with sliding motions that would wear away the
rubber coating. Second, to give a reliably repeatable motion
for tactile perception, analogous to palpation and whisking
performed by humans and rodents respectively.

For collecting angular classes, we turned manually the
stimuli object with 5 deg steps over a total of 72 angular
classes. Then, for each of these angular classes, the fingertip
was moved perpendicularly to the edge along 18 mm at
0.2 mm steps, with a total of 90 taps. We built position
classes in groups of 5 taps for each angle obtaining 18 classes
of 1 mm each. In total, we thus obtained 1296 perceptual
classes. The data collection was repeated two times, to give
one set for testing another for training.

The configuration of the edge stimulus during angle and
position data collection is shown in Figure 2. To aid visual-
isation, we show the object rotated only every 45 degs and
tactile data only when the fingertip is positioned on the edge.

B. Robot platform

We constructed a robot to provide the movement ca-
pability for the biomimetic fingertip. The overall robot is
itself formed of two individual robots: a Cartesian robot
(Yamaha XY-x series) and a Mindstorms NXT Lego robot.
The Cartesian robot allows precise positioning movements
in thex- andy-axes with an accuracy of∼20µm. The NXT
Lego robot was built to allow controlled movements in the
z-axis to tap against the object.

The fingertip sensor was mounted on the robot platform
as shown in Figure 1. Movements are well-controlled in
the x- andy-axes owing to the capabilities of the Cartesian
robot. On the other hand, the NXT Lego robot is not able
of performing very precise movements, but can nevertheless
be controlled by the tactile feedback from the fingertip
sensor. This highlights two important aspects of our work:
(1) the system reacts in real-time to tactile detection and
(2) the system works under uncertainty in the height of the
tactile contact. The degrees of freedom provided by the robot
platform do not allow rotations of the fingertip sensor with
respect to the object, and therefore the fingertip kept the same
orientation during all experiments.

The procedure for data collection is as follows. First, the
robot is moved to a start position. Next, a tap is performed
by the NXT Lego robot, which stops and then quickly
returns when the fingertip sensor detects a contact (with
a fixed pressure threshold). Then, the tactile data is saved
and the fingertip sensor is prepared for the next tap. To
achieve independent measurements, we set a time between
taps that allows the pressure contact values to approximately
return to zero. Finally, the Cartesian robot moves to the next
position on the perpendicular trajectory to the current angle
of the edge. The complete system works in real-time, is
encoded in C/C++ with the YARP library and is used for
communication and control [12]. Additionally, we developed
some subroutines using the NXTPP library to control the
NXT Lego robot.

C. Active Bayesian perception

Our study is based on previous work on active Bayesian
perception that was applied to robot touch perception of
texture [4] and shape [7]. Here we explore tactile perception
for a large number of angle and position classes and use
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Fig. 3:Flowchart for active angle and position perception. In active
Bayesian perception, the posteriors are updated by accumulating
evidence represented as likelihoods of each tap while also using
these posteriors to determine how to move the sensor. Once one of
the angle classes crosses a preset threshold, a decision is made.

active perception to improve the classification results. The
method is based on an implementation of Bayes’ rule via
the method of sequential analysis, which recursively updates
the posteriors with the likelihoods found from a measurement
model of the tactile data.

Priors: We assume uniformly distributed priors for all
perceptual classesP (cn) = P (cn|z0) = 1/N . These define
the posteriors at timet = 0, and will be recursively updated
with the likelihoods obtained from each tap of the fingertip.

Likelihood estimation: From each tap performed by the
tactile sensor we obtain a time series of digitised pressure
values from theK taxels (12 taxels). The measurement
model is constructed off-line using a nonparametric esti-
mation based on the histograms of the sensor values from
training data sets. The likelihood of a perceptual classcn ∈ C
of a test tapzt is then evaluated with these histograms. The
measurement model is obtained from the probabilities

Pk(s|cn) =
hk(s)

∑

s hk(s)
, (1)

where hk(s) is the number of observed valuess in the
histogram for taxelk. The histograms were uniformly con-
structed over 100 bins. The value from equation (1) then
gives the likelihood of a tap evaluated over all samplessj :

P (zt|cn) =
JK

√

ΠJ
j=1Π

K
k=1Pk(sj |Cn), (2)

whereJ = 100 and K = 12 are the number of data and
taxels sampled for each tap respectively. The model treats all
samples as independent and identically distributed for each
tap and taxel.
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Fig. 4: Sensorimotor architecture developed for applying active
Bayesian perception to an online task. The tactile sensor provides
the feedback from the world, whilst the mobility inx-, y- andz axes
is provided by the robotic platform. Thewhat to do next andwhere
to move next decisions are implemented by the ‘active’ perception
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Bayesian update: For updating the posterior probabilities
P (cn|zt), we use a recursive implementation of Bayes’
rule over allN perceptual classescn with the likelihoods
P (zt|cn) of the measured tapzt. The prior takes the value
of the posterior at time stept− 1 resulting in an update,

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
. (3)

In order to give properly normalised values, the marginal
probabilities are conditioned on the previous tap and calcu-
lated from the sum

P (zt|zt−1) =

N
∑

n=1

P (zt|cn)P (cn|zt−1) (4)

Marginal angle and position posteriors: Each classcn
corresponds to a(wm, xl) pair wherewm and xl are the
angle and position for each perceptual class respectively.
The posteriors are the joint distributions over these joint
classes, then the beliefs over individual angular and position
perceptual classes are given by the marginal posteriors

P (wm|zt) =

L
∑

l=1

P (xl, wm|zt) (5)

P (xl|zt) =
M
∑

m=1

P (xl, wm|zt) (6)

with the angle beliefs summed over all position classes and
the position beliefs summed over all angle classes.

Stop decision for angle posteriors: A threshold crossing
rule is used to stop accumulating evidence and make a final
decision about the angle and position classes. Themaximum
a posteriori (MAP) estimate is used to decide the angle
and position perceptual class when the angle belief passes
a threshold

if any P (wm|zt) > θW thenwMAP = argmax
wm∈W

P (W |zt)

(7)
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Fig. 5: (A) Tactile data collection at 0 degs along 18 mm perpen-
dicular to the edge of the stimulus. (B) Sample tap on flat surface,
here the pressure is spread to most of the taxels. (C) Tap on edge
where the pressure is concentrated is a small number of taxels.
(D) Tap on air, the sensor is not in contact with the stimulus.

In previous work with this fingertip sensor, we have
found that the best perception is obtained for contacts at its
centre [5], [10]. This assumption is supported with results
here in section III-B. Thus, for active perception we assume
there is a preset target positionxtarget at the centre of the
sensor (position class at 9 mm). The movement represented
by ∆ is then determined from the position decisionxMAP

of the current sensor location,

x → x+∆(xMAP), (8)

∆(xMAP) = xtarget − xMAP. (9)

The algorithm tries to move the sensor to a good location
(its centre) relative to the object, thereby improving the
tactile perception. The sequence of the different steps of the
resulting algorithm are visualised as a flowchart in Figure 3.

Online active control: Online active control was achieved
with a sensorimotor control architecture that applied the
decisions from active perception to move the robot according
to the task (Figure 4). Briefly, the tactile sensor module
provides the feedback from contacting an object. To protect
the sensor against dangerous pressures, the contact detection
module sends a signal to stop the movements whenever the
contact pressure crosses a preset threshold. At the same time,
the tactile data are prepared and sent to be processed by the
active perception module for classification about the current
angle and position perceptions. Here the system decides
what to do next: either accumulating more evidence or do
a movement. Once a decision is made, the classification
result is updated in the short-term memory module. The
control actions module defines where to move next, cor-
responding to the current active perception outcome and
prior position information stored in the short-term memory.
These movements are to trace the contour of the object. All
movements are managed by the motor commands module
which is directly connected to the robotic platform. The
controller is responsible for synchronizing and controlling
all the processes involved in the experimental task.
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Fig. 6: Angle acuity using passive Bayesian perception. The top
‘ring’ plot shows the perceptual accuracy over all 72 angular and
18 position classes, with large errors shown in red and smallerrors
in white. The bottom plot shows these results averaged over the
angles, so that only the positional dependence is visible. Results
were evaluated with a Monte Carlo method over 10000 iterations.

III. R ESULTS

A. Initial inspection of data

Figure 5 shows an example of the normalised tactile
data for the fingertip sensor tapping at 0 degs along an
18 mm trajectory in 0.2 mm steps. Tap movements follow
a perpendicular trajectory with respect to the edge of the
test object. Example taps at the flat surface, edge and air
are shown. For the flat surface, the fingertip is in contact
with most of the taxels and then obtains an even pressure
contact. The pressure contact gradually starts to concentrate
in a small number of taxels whilst the fingertip approaches
the edge of the object, thus having high pressure. Finally,
when the fingertip leaves the object, there is no contact and
just a small signal due to background noise is received by
the sensor, such as due to the motion of the fingertip. The
layout colour shows the taxel activations and pressure levels
at each tap during the data collection. The pattern of these
pressures and activations enables perception of both the angle
and position of the fingertip relative to the edge.
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Fig. 7: Angle and position acuity for active and passive Bayesian
perception. Results for passive perception are shown in red, and
those for active perception in green. Angle errors are plotted against
belief threshold (A) and reaction time (C), while position errors are
also plotted against belief threshold (B) and reaction time(D).

B. Passive angle and position perception

For our first robot experiment, we investigated off-line how
successive taps lead to successful perception via evidence
accumulation. The tapping process was repeated until the
belief for one of the angle classes crossed a threshold, which
then triggered a decision about the angle and position where
the fingertip is located. This approach is known as passive
Bayesian perception, meaning that the fingertip sensor po-
sition is fixed until a threshold is crossed. In other words,
the fingertip is not allowed to move to another location to
improve perception. The validation was based on a Monte
Carlo method of drawing random angle and position data
from the test dataset. We generally used 10000 iterations
for each data point in the following figures. To implement
passive perception, an algorithm based on the flowchart in
Figure 3 was used but with the movement rule disabled.

Figure 6 shows the results for passive angle perception
over 72 angle classes with the smallest classification errorof
3.7 degs. This result was obtained for a belief threshold of
0.45, corresponding to a mean reaction time of about 5 taps.
We observe that for the position class at 9 mm (its centre)
the fingertip has the best perception.

C. Active angle and position perception

For our next experiment, we examined active perception
with a sensorimotor control loop that moves the fingertip
to attain improved perception based on the tactile feedback
(Figure 3). For this validation study, we use the training and
testing datasets collected above (see section II-A).

Our active perception method requires a target position to

Fig. 8: Traced contours from applying active perception to an
online contour following task. (A) Circles with 2 cm, 4 cm diameter
and an asymmetric object (sellotape holder) used for real-time
contour following. (B) Contours traced obtained as result of active
perception applied to sensorimotor control.

orient to. By the results in Figure 7, we selected a target
position class 9 mm, since this location has the smallest
classification error and is thus optimal for perception. For
the validation we used the range of belief thresholds [0.05,
0.10, ..., 0.999]. Mean angle and position errors for passive
perception (red curve) and active perception (green curve)are
shown in Figures 7A,B. We observe the smallest mean error
of 12.2 deg and 0.8 mm for passive perception. On the other
hand, for active perception, the best angle and position errors
are 3.3 degs and 0.2 mm respectively, showing considerable
improvement over passive perception. Finally, plots 7C,D
show the mean absolute angular error and mean absolute
position error against reaction times. From these results,we
also observe that after decision threshold leading to decisions
at around 4-6 taps give the minimum classification error for
both angle and position perception.

D. Application of active perception to sensorimotor task

For our final demonstration, we apply our sensorimotor
architecture (Figure 4) based on active perception to the sim-
ple but illustrative problem of contour following of various
shapes in real time. We chose this task to illustrate how
our method solves a problem where the robot has to decide
both what to do next andwhere to move next. In particular,
for each contact location, the fingertip actively perceivesthe
angle and position class by repositioning itself relative to the
edge. After reaching decision threshold, the robot then makes
a movement parallel to the perceived edge direction to trace
the outside edge of the object. Thus, by implementing a real-
time interaction between the control of the fingertip sensor
and objects in its environment, we can demonstrate how
active perception enables the robot to successfully complete
the sensorimotor task.

In the online test, we used two circles of diameter 2 cm
and 4 cm, and an asymmetric object (Figure 1A - a sellotape
holder). These objects cover a wide range of angles and radii



of curvature for discrimination, which provides a good test
scenario for our methods. For this test, we used a belief
threshold of 0.8 for each decision. The fingertip was able to
move 2 mm along the angle perceived at each location. Also,
a mean of 6 taps per location were needed to cross the belief
threshold and make a decision.

The first traced contour (Figure 8B, green line) is from
tracking the edge of the 2 cm circular object. Evidently, the
robot successfully traced the contour without losing contact
with the edge. Some parts of the contour seem less accurate
(i.e. right and top sides), which are apparently at angles
where the base of the fingertip was in contact with the
edge. However, the final contour is good enough to describe
a circle. For the second traced contour (Figure 8B, blue
line), which is around the 4 cm circle, the tracking was more
accurate. In this case, the active perception was able to ensure
that the centre of the tactile sensor was almost always in
contact with the edge of object. Finally, for the traced contour
around the asymmetric object (Figure 8B, purple line), we
observe the trace corresponds well to the original object, even
though there were some regions (bottom-left and right) where
it was more difficult for the robot to perceive the angles due
to the very small radii of curvature.

Overall, the classification accuracy was good enough to
perceive a wide range of angles across a range of radii of
curvature, even though for training we only used angles of
5 degs resolution. We note that the perceptual process is able
to interpolate between the discrete angles from the training
to give accurate control for tasks involving a continuum
of angles. Thus, we observe with a real task how active
perception in robotics enables good perceptual decisions that
then lead to successful task performance.

IV. D ISCUSSION

In this work we applied active Bayesian perception to
angle and position discrimination with a biomimetic finger-
tip sensor, with application to autonomous robots making
decision and actions in the presence of uncertainty. We
showed that active perception allows improved performance
over passive methods, to achieve mean angle and positions
errors of just 3.3 degs and 0.2 mm respectively (Figure 7).
We then developed a sensorimotor control architecture that
applied active perception to robot control in a task requiring
decisions about actions based on the perception. We chose a
simple but illustrative sensorimotor task of contour following
around three differently shaped and sized objects, which were
chosen to cover a wide range of angles and radii of curvature
(Figure 8A). The robot managed to successfully trace around
all of the objects (Figure 8B).

We can observe how active perception linked to actions
allows the robot successfully behave and complete the task.
The traced contours were achieved under presence of uncer-
tainty from different sources: (1) tactile measurements and
(2) height of contact (z-axis). Thus, the robot accumulates
evidence reducing these uncertainties to make good deci-
sions. These results can be compared with a previous work
about passive perception doing only tap per decision and

where then in the absence of active perception, the robot
failed to follow the contour of the object [10].

It is interesting to compare these results with previous
studies of active perception for angle classification concern-
ing humans using their index finger [13], [14]. For these
experiments, people were asked to touch the edge of an
object with their index finger to perceive the angle. During
exploration, the subjects moved their hand and fingers in
order to improve the perception in a manner analogous to
the behaviour of the robot in the present experiments.

Overall, we observed that active perception can help
develop autonomous robots able to make accurate decisions
and consequently good actions under the presence of sensory
uncertainty. We believe that the methods presented here can
be extended and applied to tactile perception and sensori-
motor control with more than one fingertip. For future work,
we therefore expect to explore the methods developed here
with a robotic hand to have a complete, tactile robot able to
actively perceive, explore and manipulate its environment.
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