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Abstract: The lens is a complex optical component of the human eye because of its physiological
structure: the surface is aspherical and the structural entities create a gradient refractive index
(GRIN). Most existent models of the lens deal with its external shape independently of the
refractive index and, subsequently, through optimization processes, adjust the imaging properties.
In this paper, we propose a physiologically realistic GRIN model of the lens based on a
single function for the whole lens that accurately describes different accommodative states
simultaneously providing the corresponding refractive index distribution and the external shape
of the lens by changing a single parameter that we associate with the function of the ciliary
body. This simple, but highly accurate model, is incorporated into a schematic eye constructed
with reported experimental biometric data and accommodation is simulated over a range of 0
to 6 diopters to select the optimum levels of image quality. Changes with accommodation in
equatorial and total axial lens thicknesses, as well as aberrations, are found to lie within reported
biometric data ranges.
© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In spite of the apparent simplicity of the human eye, which incorporates two lenses, it is an optical
system with extraordinary complexity. In particular, the refractive index of the inner lens, known
as the crystalline lens is not homogeneous but distributed as a gradient index (GRIN) [1–5].
When an observed object is placed at different distances from the eye, the lens changes its shape
to maintain the focus of the image on the retina, a process known as accommodation [6]. As the
lens accommodates, its shape changes and its GRIN is modified [7]; the exact nature of the latter
is not known.

Over the last four centuries, different schematic eye models have been studied and their accuracy
and complexity have continued to evolve. Earlier schematic models incorporated spherical
refractive surfaces whose geometrical centres were placed along the optical axis, considered
elements with homogeneous refractive indices, small pupils and were designed for objects close
to the optical axis. These are known as paraxial schematic eye models [8, 9].

The simplest of these is the Emsley reduced model in which the eye is represented by a single
refractive surface; the anterior surface of the cornea [8–10]. The Gullstrand-Emsley model
increases the number of refracting surfaces to three; one for the cornea and two for the lens.
The refractive indices of the ocular media, the aqueous and vitreous, were up to 1.416 which is
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substantially higher than the real values of 1.336 [9, 10]. The Le Grand full theoretical model is
represented by four surfaces; two for the cornea and two for the lens [11].
Robust paraxial schematic eyes have included an inhomogeneous refractive index for the

crystalline lens, as this feature has been recognized for over a hundred years [12]. Gullstrand
was the first to propose a discrete model of this type using four iso-indicial surfaces for the lens.
This model is known as Gullstrand’s No. 1 “exact” eye [13,14]. In this model, the core of the
lens has a high refractive index, limited by its interior surfaces, while the outer section has a
lower refractive index limited by the external surfaces. This was the first attempt to represent the
inhomogeneity of the lens using discrete increments of refractive index and including separate
core and cortical sections. The next evolutionary step was to consider a lens with a continuous
gradient refractive index. An example of this is the Maxwell fish-eye spherical lens [15] or the
Luneburg lens [16]. However, these lenses have a spherical shape that does not correspond to the
shape of the human lens.

Schematic eye models can be put into two different categories, the “encyclopaedic” type, which
consists of a thoroughly compact description of knowledge about geometric and mechanical
ocular properties, and “the toy train” type, which represents a pragmatic tool that models the
functioning of real eyes without attempting to accurately reproduce the anatomical nor the
mechanical properties of the eye [14]. Nevertheless, the best choice will depend on the particular
problem that is being addressed. The simplest one covering the needs of a particular application
is a good alternative [6]. An example of this is the recent work by Liu and Thibos, in which no
GRIN structure is used to describe the lens [17].
Current imaging technologies allow precise in vivo and in vitro measurements of the physio-

logical parameters of the lens, such as the anterior and posterior radii of curvature of the lens
surfaces as well as its thickness [3–5, 18–21]. Optical coherence tomography (OCT) is a leading
modality in imaging ocular parameters [22–26] and this technique has been used to estimate the
refractive index of the lens [27, 28].
Due to the asymmetric shape of the lens, the GRIN has commonly been represented by two

different sections separated by a plane or curved surface that intersects the lens capsule at its
equator [6, 29–37]. To be physiologically correct, the corresponding GRIN functions of each
segment must change smoothly from one to the other side of the separating surface, i.e., they
must obey continuity conditions. The lens capsule is described in a similar way, early GRIN
models incorporate two surfaces, an anterior and a posterior, that usually do not match with the
inner iso-indicial surfaces of the GRIN structure. Nevertheless, there are few exceptions such as
those of Navarro and Goncharov that accurately match the GRIN distribution with both external
surfaces [31–35].
The first accommodative models were defined only for discrete accommodative values, so

they could not be used to simulate a dynamical process [11, 13, 38, 39]. Later improved
models were defined for continuous accommodative values taking into account changes in
the radius of curvature of optical surfaces, equatorial and axial lens thickness and index of
refraction [34–36,40–42].

As mentioned above, most of the continuous accommodative models have incorporated GRIN
distributions described by two functions. However, there are a limited number of models that
describe the geometry and/or the GRIN distribution of the lens with a single function [42–44].
The advantage of single function models over the others resides in the fact that the smoothness of
the refractive index profile of the lens is guaranteed within the whole volume without having to
impose any boundary conditions.

Kasprzak introduced an elegant accommodative lens model with a single function based on a
combination of hyperbolic trigonometric functions. His model introduced a set of parameters
taken from biometrical data at different accommodative states to represent the capsule and
refractive index of the lens [43]. The refractive index of the lens was obtained by feeding the



parameters of the hyperbolic function with the corresponding biometrical data, radii of curvature
and the lens thickness. Some of the parameters were obtained by optimization processes imposing
the restriction that the volume of the lens remained constant during accommodation. Later, this
model was applied by Popiolek-Masajada and Kasprzak to obtain an alternative GRIN model [45].
However, the single function introduced by Kasprzak in Ref. [43] is only used to describe the
capsule of the lens, and the refractive index distribution is described by a different function
whose iso-indicial surfaces do not match with the external shape of the lens. Popiolek-Masajada
and Kasprzak [46], used the same hyperbolic single function to describe the lens but considered
a homogeneous refractive index. The accommodative process was modelled by changing the
curvature and thickness taken from biometrical data. These geometrical changes were not enough
to obtain the expected increase in refractive power so that the homogeneous index of refraction
of the lens had to be increased to generate an effective refractive power [46].
Subsequently, Huang and Moore also used a single continuous function to describe the total

GRIN structure of the lens [42]. They generalized the model of Liou-Brennan by incorporating
terms into the GRIN single function that take into account the asymmetry of the lens. The
anterior and posterior aspheric surfaces for the different degrees of accommodation were obtained
using a numerical optimization method that minimizes transverse aberrations. Díaz et al. (2008)
presented an age-dependent human lens model using a single function for the GRIN profile,
modelling the posterior and anterior aspheric faces using conicoid surfaces but did not consider
accommodation [44].
In this paper, we present an accurate accommodative crystalline lens model with a single

GRIN function that delivers the GRIN distribution and external shape of the capsule, both of
which are in good agreement with recently published biometrical data [47]. With this lens model
we constructed a schematic eye for which, with the exception of one, the parameters of the
GRIN function were obtained through an optimization process to model a 26-year-old eye. Our
investigations show that with the free parameter we can mimic the behavior of the ciliary body
that provides the force on the crystalline required for accommodation. By simply changing the
value of that parameter, the accommodative process can be modelled. It simultaneously provides
the continuous changes in the geometry of the anterior and posterior aspheric faces of the lens
capsule and of the internal GRIN distribution in order to enable focusing over a wide range of
object distances while maintaining constancy of the image distance, as occurs in the human eye.
The new schematic eye model can simulate accommodation from 0 to 6 diopters, providing high
image quality with aberrations that are within the range of biometric data.

2. Construction of the Poisson-Gauss function as a dynamic 3D model for the
human crystalline lens

2.1. Poisson-Gauss function and its characteristics

In statistics and probability, the Poisson probability distribution for the occurrence of discrete
events, usually of low likelihood, occurring in a given spatial interval is defined as

P(z; m) =
zm

m!
e−z, (1)

for z > 0 where m is the number of events and z is the interval [48,49]. Fig. 1a shows the skewed
bell shape of the Poisson distribution as a function of z in dimensionless units for several values
of m ∈ N, where N is the set of natural numbers.
The GRIN in the human lens is asymmetrical along the optical axis and in the process of

accommodation it changes its width. The Poisson function, as can be observed in Fig. 1a, also
presents a similar asymmetric behavior that can be associated with the axial GRIN of the human
lens. For this purpose we propose a function where all of the variables and parameters are real



(a) Poisson distribution (b) 2-D Poisson distribution (c) Gaussian (d) Poisson-Gauss

Fig. 1: The Poisson distribution P(z; m) Eq. (1) (a) for m = 1, 2, 3, 4, along the real axis and (b)
its extension onto the z − y plane for m = 2. (c) The Gaussian function exp(−z2/a2

z − r2/a2
r ) and

(d) the Poisson-Gauss function Eq. (2) for m = 2, b = 1, and az = ar = 0.9.

numbers and it will be constructed by merging the Poisson function with a two dimensional
Gaussian function, namely:

PG(r, z; m, b, az, ar ) = (bz)mexp
(
−bz −

z2

a2
z

−
r2

a2
r

)
, (2)

where r2 = x2 + y2 is the cylindrical radial coordinate, z > 0 is the longitudinal axial coordinate
and m, b, az , ar are numerical parameters to be determined from biometrical data of a real
crystalline lens. Contrary to its former definition in Eq. (1), m is not an integer anymore but will
take real values. This function will be referred to as Poisson-Gauss (PG) function. To simplify
the visualization and notation of Eq. (2) the 3D PG function will be projected to the plane y − z,
showing only the corresponding 2D spatial coordinates, namely PG(y, z), and considering as
implicit the rest of the parameters of the PG function. Fig. 1 shows the steps in the construction
of the PG function: Fig. 1a corresponds to the 1D Poisson distribution along the z-axis, Fig.
1b depicts a 2D Poisson distribution in the y − z plane as a function only on z, Fig. 1c shows a
Gaussian distribution and finally the PG function density distribution resulting from the product
of the two previous distribution patterns is shown as a 2D density plot in Fig. 1d.

The PG function is unbound extending over the entire half plane z > 0 whereas the lens must
have a finite size, then it is required a finite domain. For that purpose we delimit the domain of
the PG function by cutting its surface with an intersecting flat surface parallel to the y − z plane
at a given height (to be defined later) as shown in Fig. 2a. The intersection creates a contour
curve that projects onto the y − z plane and delimits the domain where the lens will be defined.
In Fig. 2b shows the resulting 2D density plot of the PG function in the new domain. It should
be noted that the latter resembles a human crystalline lens.

Next, will we show that it is possible to model the human lens with the PG function by relating
its geometry with that of the GRIN properties of the lens. We can associate the refractive index
at the centre of the human lens with the location of the maximum of the PG function, and show
that in the plane y − z this is given by the coordinates

ye = 0, ze =
1
4

(
−a2

zb +
√

a4
zb2 + 8a2

zm
)
. (3)

The use of the subindex e will be clear in the subsection below. From its definition in Eq. (2)
and Eq. (3) we observe that the parameters az , ar , b and m allow manipulation of the geometric
properties of the PG function. The maximum value of PG(y, z) is denoted by

l = PG(ye, ze). (4)



(a) Intersecting plane with PG function (b) PG function in cut domain

Fig. 2: (a) Intersection of a plane with the Poisson-Gauss function Eq. (2) in the whole half plane
z > 0 for m = 2, az = 0.9, ar = 0.9 and b = 1. (b) The domain resulting from the projection of
the level curve by the intersection shown in (a).

This value is illustrated in Fig. 3 which also shows the PG function 3D contour plot starting
from the aforementioned intersecting flat surface at height h. The inset, shows the projected 2D
contour plot. The GRIN of the lens can also be associated with the statistical properties of the
PG function noting that the square root of twice the variance σ is a good measure of the extent of
a bell shaped function [50]. Along the z−direction, the PG function extends over a value of σz

from an average value located at z = µz , y = µy = 0 as shown in Appendix A. Both µz and σz

are functions of the parameters of the PG function, that is, µz(m, b, az) and σz = σz(m, b, az).
It should be noted that neither µz nor σz depend on the transverse behavior (x, y) of the PG
function. From Fig. 3, the height of the intersecting plane is given by evaluating the PG function
at y = µy = 0, z = µz + σz , namely

h = PG(0, µz + σz). (5)

The corresponding intersection results in a level curve given by PG(y, z) = h, that can be
rewritten as z2

a2
z
+

y2

a2
r
+ bz − m ln(bz) = ln (1/h). The family of the level curves, shown in Fig. 3,

is therefore given by
z2

a2
z

+
y2

a2
r

+ bz − m ln(bz) = ln (1/c), (6)

where c parametrizes the family and lies in the interval

h ≤ c ≤ l, (7)

where h and l are the minimum and maximum values of the intersected PG function given by
Eqs. (4) and (5), respectively, as shown in Fig. 3. Therefore, the finite domain D0 of the lens in
the z − y plane is limited by Eq. (6) and is defined by

D0 =

{
(y, z) ∈ R2

���� y2

a2
r

+
z2

a2
z

+ bz − m ln(bz) ≤ ln (1/h)
}
, (8)

and shown in Fig. 2b. Considering the lens as a solid of revolution of the above region along the
z-axis, the expression of the finite 3D domain D of the refractive index of the lens is

D =

{
(x, y, z) ∈ R3

���� r2

a2
r

+
z2

a2
z

+ bz − m ln(bz) ≤ ln (1/h)
}
, (9)

where r =
√

x2 + y2.



Fig. 3: The intersection shown in Fig. 2a for m = 2, b = 1, az = 0.9, ar = 0.9. The level curves
between l and h are presented. The iso-indicial contours are shown as the projections of the level
curves of the PG function onto the y − z plane, see inset.

The external contour of the lens is determined by Eq. (6) with c = h, which when solved for y
can be written as

y±(z; h) = ±ar

√
ln

[
(bz)m

h

]
− bz −

z2

a2
z

. (10)

This equation can be related to the physiological parameters of the lens: equatorial radius Re,
and the anterior and posterior thicknesses relative to the equatorial axis, za and zp respectively.
Fig. 4a shows the surface of revolution generated by the above equation that encloses the domain
D and Fig. 4b shows how the external contour curve changes with increasing the value of m in
Eq. (10). The increase in curvature of the anterior part of the curve, results in an increase of its
refractive power and this variation in shape of the external contour is incorporated in the model
as part of the accommodative process. The values used correspond to experimental data from
0 to 6 diopters. Fig. 4c illustrates the main physiological parameters of a radially symmetric
crystalline lens that will be used in the next section.

2.2. Poisson-Gauss GRIN crystalline lens

Applying all of the above, the geometric and physical properties (GRIN) of the lens can be
completed. The equatorial radius is given by the maximum of the equation that defines the
capsule, Eq. (10), and is located at z = ze, namely

Re = y+(ze, h) = ar

√
ln

[
(bze)m

h

]
− bze −

z2
e

a2
z

. (11)

The width parameters of the lens za and zp can be obtained setting y+(z; h) = 0. In accordance
with Eq. (5), it can be seen that z = µz + σz is one of the solutions of this equation:

zp = µz + σz − ze . (12)

The second solution to y(z, h) = 0 gives za; this is done numerically since it is a transcendental
equation. As mentioned above, the values of µz and σz are calculated as described in Apendix A.
Taking the above equations into account, the 3D GRIN profile of the crystalline lens can be

described as:

n(r, z) = (nc − ns)
(bz)me−bz−z

2/a2
z−r

2/a2
r − h

l − h
+ ns, (13)



(a) (b) (c)

Fig. 4: (a) 3D view of the external surface of the Poisson-Gauss lens. (b) The process of
lens accommodation is modelled by increasing the value of the Poisson parameter m through
m = 2.8 (light blue, color online only), m = 3.5 (purple), m = 4.4 (green), m = 5.7 (blue),
m = 7.4 (orange), m = 10 (brown), m = 14.2 (red) and the fixed values b = 0.67 and az = 3.15,
corresponding to an accommodated dioptrical power of 0 D, 1.01 D, 2.02 D, 3.07 D, 4.03 D,
5.01 D, 6.02 D, respectively (see Table 3).. The dimensions of the lens are in mm. During the
accommodation process the position of the equator is constant. The volume of the lens (106.5
mm3) is unchanged by means of Eq. (15). (c) The physiological parameters of the lens

.

for z > 0, r ≥ 0, where l and h are given by Eqs. (4) and (5) respectively and nc and ns are the
values of the central and peripheral refractive indices of the lens, respectively. When the PG
function reaches its maximum l, the numerator in Eq. (13) equals l − h, so that the maximum
value of n(r, z) is nc . Analogously, when the PG function reaches it minimum h, the numerator
equals zero and the minimum of n(r, z) is ns, that corresponds to the surface of the capsule.
Between these two values, h, l, the proposed PG function will determine the GRIN distribution
of the lens within the domain D defined in Eq. (9). Eq. (13) will be referred to as PG GRIN
lens. This last function in Eq. (13) is one of the main contributions of this work, it provides the
refractive index and the shape of the capsule of the human lens. In the next section the results
presented above will be related to the physiological parameters used in the specialized literature.

3. Accommodative properties of the PG GRIN lens

Accommodation requires that the lens be subjected to stresses that modify its shape and change
the GRIN distribution and consequently the refractive power of the eye. It is known that during
this process the lens volume V remains constant [34,51,52]. This process can be modelled by
manipulating the geometrical parameters of the PG refractive index while maintaining constancy
of lens volume with accommodation (the volume of D defined by Eq. (9)).

3.1. Volume of the lens

The volume V of the 3D domain D is the volume of the solid of revolution obtained by rotating
the function y(z; h) given in Eq. (10):

V = π
∫ ze+zp

ze−za

y2(z)dz

= a2
rπ

(
z ln (1/h) − mz −

bz2

2
−

z3

3a2
z

+ mz ln (bz)
)����µz+σz

µz+σz−d

≡ const.,
(14)



where Eq. (12) defines the superior limit; setting zp + za = d as the thickness of the lens
determines the inferior limit. The sum of the terms within the parenthesis defines a length that
will be called L0.

Therefore the last equation can be written as V = a2
rπL0, that is the volume of a cylinder of

radius ar and length L0. The last equation can be rewritten as

a2
r =

V
πL0

. (15)

Since L0 does not depend on ar , the latter modifies according to Eq. (15) to maintain constant
volume during accommodation. This provides an analogy for accommodation with a cylinder
of length L0 and radius ar ; if the length L0 of the cylinder increases the radius must decrease
following Eq. (15) to keep the volume constant.

3.2. Setting the PG GRIN parameters from the physiology of the lens

To represent accommodation realistically with the PG refractive index (13) the radius of curvature
of both the anterior and posterior surfaces of the lens must decrease while the lens thickness
increases [9]. Hence, it is necessary to obtain the radii of curvature of both the anterior and
posterior surfaces of the lens. The radius of curvature R of the iso-indicial contours along the
z-axis can be obtained, as shown in Appendix B, by setting y = 0 in Eq. (6); that is

R(z) =
a2
r

2

����−b +
m
z
−

2z
a2
z

���� . (16)

Since z > 0, R(z) is always finite. The radii of curvature of the anterior and posterior surfaces of
the lens can be written as Ra = R(ze− za) and Rp = R(ze+ zp), respectively. Hence, the gradient
of the curvature radius dR(z)/dz, of the anterior part of the lens is −(ar/az)2 − ma2

r/(2z2), and
for the posterior part is (ar/az)2 +ma2

r/(2z2). Since this gradient differs from −1, the isoindicial
contours are not concentric (see Fig. 3), as is required for a realistic lens model [53].

By increasing Poisson parameter m (see Fig. 1a) the accommodative process can be modelled
since the PG GRIN function becomes wider and the corresponding curvatures change, Eq. (16).
Below we show that this is indeed the case.
Now, it is necessary to find the PG GRIN lens parameters from experimental data. Shao et

al. report in vivo measurements of the radii of curvature of the anterior Ra and posterior Rp

surfaces as well as of the central thickness d of the lens under relaxed (0 D) and accommodated
(4.00 D) states [21], see Table 1. Through an optimization process, we obtain the parameters of
the PG GRIN lens, m, b, az , ar , to reproduce the relaxed state measurements of Ra, Rp and d,
very close to the experimental error tolerance; Ra and Rp, deviate from the maximum of their
corresponding experimental values by 2.5% and by 0.5%, respectively, while d deviate from
the minimum experimental value by 0.83%, as presented in Table 1. Once the PG GRIN lens
parameters are determined, za, zp and R can be obtained.

The accommodated state will be simulated by increasing the Poisson parameter m to reproduce
the experimental data within a very good approximation; the PG GRIN physiological parameters
Ra, Rp and d, deviate from the maximum of their corresponding experimental values by 1.4%,
13.8% and 4.0%, respectively. The volume V of the lens with the parameters shown in Table
1 is V = 106.5 mm3. From Fig. 3 we can see that the PG function is always cut at height h,
determined by the variance, Eq. (5). This, and the fact that the volume D of the lens remains
constant by means of Eq. (15), ensures the optical integrity of the GRIN structure during the
accommodative process.
On the other hand, a conic representation can be described by the expression

y2 = 2Rcz − (1 +Q)z2, (17)



were Rc is the axial radius of curvature and Q is the conic constant that describes the level of
asphericity. As can be observed in Eq. (6), the logarithmic term does not allow the description
of our lens model in terms of a conic section. However, we can expand the logarithmic term in
Eq. (6) in the neighborhood of a given z0. After some algebra the following equation is obtained

y(z)2 = y(z0)
2 + a2

r

(
−b +

m
z0
−

2z0

a2
z

)
(z − z0)

−a2
r

(
1
a2
z

+
m

2z2
0

)
(z − z0)

2 + · · ·

(18)

z0 is the position where the curve under study crosses the z−axis, namely, y(z0) = 0 (if z0 = ze−za
(z0 = ze + zp), the curve under study corresponds to the external anterior (posterior) surface of
the lens). Therefore, the expansion in Eq. (18) is written in the form of Eq. (17). Note that
comparing Eqs. (17) and (18), the expression of the radius of curvature rigorously obtained in
Eq. (16) is exactly reproduced in the expansion. Therefore, the conic constant Ql associated to
the PG lens reads

Ql = a2
r

(
1
a2
z

+
m

2z2
0

)
− 1. (19)

It is important to see that even though we have been able to relate the conic representation Eq.
(17) with Eq. (6) using the expansion of the logarithm function up to the second order, we remark
that the actual lens surfaces are not necessarily described by conic curves. The contribution of
the logarithm function is relevant; when using its expansion it should consider a larger number of
power terms since the series of the logarithm has a very slow convergence. In the next section we
will show that having the whole expression allows for the building up of an efficient schematic
eye.

Table 1: Poisson-Gauss and physiological parameters with b = 0.67 and az = 3.15. The
parameters are written in mm, with exception of m which is dimensionless.

Parameters m ar Ra Rp d za zp R

Exp. (0 D) - - 12.05 ± 0.584 5.82 ± 0.139 3.62 ± 0.010 - - -

PG GRIN 2.8 3.523 12.94 5.988 3.58 1.47 2.11 3.76

Exp. (4 D) - - 7.65 ± 0.464 4.67 ± 0.313 3.76 ± 0.010 - - -

PG GRIN 7.4 3.477 8.23 5.67 3.92 1.78 2.14 3.60

Table 2: Biometric data: the radius of curvature of the external Rc
a and internal Rc

p surfaces of the cornea and their
respective conic constants Qa and Qp , the thickness of the cornea dc , the distance between cornea and lens dc−c , in
mm. The refractive indices of the cornea ncor and of the aqueous humor na . The central and peripheral refractive
indices of the lens, nc and ns , resp., are taken from Ref. [54].

Rc
a Rc

p Qa Qp dc ncor na dc−c nc ns

7.77 6.4 −0.19 −0.8 0.55 1.376 1.337 3.56 1.406 1.383



(a) Relaxed lens and light point source at 6 metres from the cornea. (b) Detail of Fig. 5a

(c) Accommodated lens and light point source at 270 mm from the cornea (d) Detail of Fig. 5c

Fig. 5: Ray tracing through the schematic eye. The outermost ray height in both cases is 2 mm
for z = −1 (at the beginning of the Figs. (a) and (c)). The dimensions of the plots are in mm.
The values of the parameters of the PG GRIN lens are the given in the second and the fourth
rows of Table 1 for figures (a) and (c), respectively. Figures (b) and (d) show the detail of the
rays through the lens. [It should be noted that given that the distance between the object and the
eye is 270 mm and the axial length of the eye is under 25 mm, rays diverging from the object
appear to be parallel at incidence on the cornea].

4. Schematic eye and imaging properties

We constructed a schematic eye model to test the imaging capabilities of the proposed PG GRIN
lens. We take the conic representation of the cornea described by Eq. (17). As in Ref. [46], the
biometrical parameters of the cornea were obtained from Ref. [55], and those of the rest of the
eye from Ref. [21] and are shown in Table 2.

We studied several situations, two of them are presented in Table 1. The first case corresponds
to the relaxed state of the lens. We consider light coming from a point source at 6 metres from
the external surface of the cornea and traversing the unaccommodated lens, Fig. 5a. By a finite
ray-tracing procedure [9] we found that the paraxial image position is at 23.44 mm (on the retina).
In the second case, the accommodative state of 4 D is simulated using the same position of the
light source. To do this we have set m = 7.4 and observed that the paraxial image position is at
22.31 mm (prior to the position of the retina shown in Fig. 5a). This is equivalent to a myopic
eye of 4.03 D. In order to focus the image on the retina, the light source needs to move closer to
the eye. We placed the point source at 270 mm from the cornea and observed that the paraxial
rays are focussed at 23.44 mm, that is, on the retina (see Fig. 5c).

As shown at the end of Section 3, the accommodation process can be simulated by increasing
the Poisson parameter m using fixed values of b, az , nc and ns . Although the experimental data
reported in Ref. [21] are given for two accommodative states, our model allows calculation of a
continuous of accommodative states by simply increasing the parameter m, with the corresponding



Fig. 6: Axial radius of curvature of anterior (red) and posterior (blue) external surfaces of the
lens as a function of m (the corresponding accommodative amplitude to each value of m is given
in Table 3).

ar given by Eq. (15) to maintain constancy in the lens volume. The particular cases ranging
from 0 to 6 diopters are shown in Table 3. Fig. 6 shows the axial radius of curvature of the
anterior and posterior apices of the lens as a function of m, i.e., as a function of accommodation.
As can be observed, the posterior radius of curvature changes more slowly than the anterior with
accommodation, in agreement with the expected physical behavior of the biological lens; the
anterior segment of the lens widens more than the posterior segment [9]. The PG GRIN model
agrees with this behavior, as shown in Figure 4b. For this reason we propose that the dynamics
of the ciliary body can be represented by the changes of the parameter m, which parametrizes the
function of the ciliary body.

Changes in the GRIN profile with accommodation are shown in Fig. 7. Analogous to an elastic
medium, with accommodation the GRIN profile could be expected to flatten in the axial direction
and steepen in the equatorial direction from the centre to the periphery of the lens. Fig. 7 shows
that this is indeed the case for our model. This phenomenon was confirmed experimentally by
using advanced 3T clinical magnetic resonance imaging techniques [47].

To test the imaging capabilities of our schematic eye, finite ray tracing was performed. Figure
8 shows, in blue, the resulting longitudinal spherical aberration (LSA) as a function of the
height of the ray for the unaccommodated and the accommodative states (4.03 D) while in
red is shown the polynomial fit of the LSA of order 8th, with only even order terms. In both
cases, the LSA remains below 1 D for a 6 mm pupil diameter. This level of aberration lies

Table 3: PG GRIN parameters. The parameters are written in mm, with exception of m which is dimensionless and A
that is the accommodation written in Diopters. As in Table 1, b = 0.67 and az = 3.15. The accommodation process is
shown in Fig. 4b

m ar Ra Rp d za zp za/zp R A

2.8 3.523 12.94 5.99 3.58 1.47 2.11 0.697 3.76 0 D

3.5 3.513 11.28 5.91 3.67 1.554 2.115 0.731 3.71 1.01 D

4.4 3.503 10.05 5.83 3.75 1.63 2.121 0.769 3.67 2.02 D

5.7 3.490 9.01 5.74 3.84 1.71 2.13 0.803 3.63 3.07 D

7.4 3.477 8.23 5.67 3.92 1.78 2.14 0.832 3.6 4.03 D

10 3.460 7.58 5.59 4.00 1.85 2.15 0.861 3.56 5.01 D

14.2 3.449 7.01 5.51 4.07 1.91 2.16 0.884 3.53 6.02 D



(a) (b) (c)

Fig. 7: Refractive index profile of the lens in the (dashed blue) unaccommodated and (red) the
5.01 D accommodative states, measured from the center at the equatorial axis (see point of
intersection in Figure 4c) to the periphery as function of (a) the anterior axial distance (measured
from 0 to the anterior apex), (b) the posterior axial distance (measured from 0 to the posterior
apex), and (c) the equatorial distance (measured from 0 to the equatorial apex).

within the experimental measurements, as reported previously [9], for the unaccommodated state
which ranges from 0 to 1 D for ray height between 0 and 3 mm. Also, in the same ray height
range, the LSA of the PG GRIN model is lower than predicted in the single function model of
Popiolek-Masajada and Kasprzak [45] which ranges from −1 to 0.5 D, the model of Navarro et
al. [41] which ranges approximately from −1.5 to 0 D and Gullstrand’s model [13] from −4 to
0 D. In normal lighting conditions, the pupil diameter is around 4 mm diameter. In this case,
for the unaccommodated state, the LSA lies between −0.1 and 0 D, and between −0.5 and 0 D
for the accommodative state. The change in sign of the LSA as a function of ray height is also
observed in the Popiolek-Masajada and Kasprzak model [45]. The fourth Zernike polynomial
coefficient Z0

4 can be calculated with the coefficient of second order of the polynomial fit of the
LSA shown in Figure 8, since that coefficient times 1/4 gives the wavefront aberration coefficient
W4,0 [9]. In this case, Z0

4 is related to W4,0 through Z0
4 = W4,0/(6

√
5). Therefore, for a pupil

diameter of 6 mm, we obtain Z0
4 = −0.0014 ± 0.0008 µm, for the unaccommodated state, whilst

Z0
4 = −0.0055 ± 0.0007 µm, for the 4.03 D accommodated state. These values lie within the

experimental data reported [56–58]. The fact that the coefficients are negative is likely to be
because the model is based on a relatively young eye [57]. The fact that the increase of a single
parameter permits a departure from the unaccommodated state to the 4 D accommodative state
obtaining values close to the ones measured in Ref. [21], with values of spherical aberration
within experimental ranges, makes it possible to predict further accommodative states, as shown
in Table 3.

5. Discussion

The model described in this paper can simulate accommodation with a single parameter inducing
concomitant changes in the the GRIN profile and surface curvatures that are biologically feasible.
We showed in Section 3 that the values ofRa, Rp and d of our model lie close to the error tolerance
of the measurements reported in Ref. [21]. These values are also close to the measurements of
radius of curvature performed by Ortiz et al. [5]: for one subject they find Ra = 12.48± 0.20 mm,
Rp = 7.25 ± 0.25 mm and d = 3.18 ± 0.02 mm, while for another subject Ra = 11.43 ± 0.04
mm, Rp = 6.12 ± 0.15 mm and d = 3.36 ± 0.02 mm; both were for the unaccommodated state,
in which a conic external shape of the lens was assumed. Conversely, Khan et al. [47] report a
decrease of equatorial diameter of −0.30 ± 0.23 mm and an increase of the axial thickness of
0.34 ± 0.16 mm with accommodation from 0 D to 5 D. The changes in the equatorial diameter
and axial thickness of our model with the same level of accommodation are, as can be seen in
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Fig. 8: Longitudinal spherical aberration (dashed blue) and its polynomial fit of order 8th, with
only even order terms (red), for the (a) unaccommodated and (b) 4.03 D accommodative states.

Table 3, −0.4 mm and 0.42 mm, respectively. Hence, the prediction of our model lies within the
experimental range of accommodative changes.
As regards the asphericity of our model, we performed an approximation of our Poisson-

Gauss function by expanding the logarithmic term, with which we have obtained an analytical
approximation to the conic constant for any iso-indicial surface of the lens shown in Eq. (18). An
approximation of this type is not reported in the Kasprzak model [43] since this model does not
possess intrinsically a conic description. The conic constant associated to our model is presented
in Eq. (19). With this we have obtained positive values of the conic constant for our model.
It is important to note that we have constructed our lens model using parameters with in vivo
high experimental accuracy, such as axial lens thickness and axial radii of curvature [59]. It is
important to acknowledge existing relationships between the optical and biometric properties of
the lens [60], particularly, between the radius of curvature and the asphericity of the lens [61]. It
has been demonstrated that this a feature of surface measurements when fitting to conics [62].
Taking these correlations into account would lead to creation of lens models with greater precision.
It is worth noting that whilst the equatorial region of the lens is not directly relevant to vision,
recent literature describing imaging methods that can show the entire lens shape [63] offer the
prospect of further fine refinement of the model for future applications for which the equatorial
region is of interest.

The parameters za, zp and R of our model were obtained as a result of reproducing the in vivo
measurements of the radii of curvature and the thickness of a 26-year-old lens. Nonetheless, there
are in vitro age-dependent measurements of za, zp and R [20], that, by performing scaling of
approximately 18% for each of our parameters, can be reproduced with excellent approximation.
This result notwithstanding, the ultimate value of a model is its relevance and adaptability to

the individual eye, thereby allowing for more personalized predictions. The shape parameters of
the Poisson-Gauss lens are designed to be fitted to experimental data from individual eyes and to
identify the ideal GRIN variation for that particular eye, reproducing the varying aberrations
reported in the eye [64] and in the lens [65].

6. Conclusions

In this work we have proposed and demonstrated that the human crystalline lens can be modelled
with a single function that can, simultaneously, describe the behaviour of the GRIN distribution
and shape of its surfaces, and with it we built an schematic eye. By varying one single parameter,
that can be related to the ciliary body function in providing the force needed for acccommodation,
our model allows the reproduction of in vivo biometrical experimental data of relaxed and
accommodated states of a human lens and at the same time can find any intermediate state as



well as extrapolated accommodative states capable of focusing on the retina. The accommodative
imaging abilities of our model have been tested by studying ray propagation through a schematic
eye constructed with a conic cornea and the lens model presented in this work, showing image
formation with aberrations within experimental range.

The proposed schematic eye can be used in investigations that consider variations in refractive
error and age, incorporating different ocular biometries and extending to pathological conditions
such as keratoconus. This will enable significant progress to be made towards the understanding
of whole eye imaging and ultimately in the design of biologically relevant intraocular lenses.

Appendix A: The variance of the Poisson-Gauss function

In this work we have used the concept of variance to measure the spatial extent of the Poisson-
Gauss function. In statistics and probability theory the variance is the squared deviation of a
probability distribution from its expected value [48]. In other words, the variance measures the
spread of a probability distribution.

However, this statistical notion can be interpreted geometrically, since the spread of a function
is a measure of how much a function is spread or extended in a particular direction. For instance,
in optics the variance has been used to measure the spot size of laser optical beams [50]. This spot
size is defined as the transverse illuminated area of a laser optical beam, that is, the transverse
area in which most of its energy lies. The square root of twice the variance was used to measure
the radius of the spot size of a cylindrical laser optical beam [66]. Consider the Gaussian e−x

2/a2 .
Its variance is a2/2. The square root of twice the variance of the above Gaussian is therefore
a, and at the same time a is sometimes considered as the “width” of the Gaussian. Hence, we
can say that the square root of twice the variance measures the “width” of a function, so we use
the same notion to find the “width” of the Poisson-Gauss function in the radial and longitudinal
directions.
Twice the variance of a function of two variables f (y, z), whose domain is z > 0 and
−∞ < y < ∞, can be written for z as

σ2
z =

2
∫ ∞
−∞

∫ ∞
0 (z − µz)

2 f (y, z)dydz∫ ∞
−∞

∫ ∞
0 f (y, z)dydz

, (A.1)

where µz is the expected value of the function f :

µz =

∫ ∞
−∞

∫ ∞
0 z f (y, z)dzdy∫ ∞

−∞

∫ ∞
0 f (y, z)dzdy

. (A.2)

Analogously it is defined for y:

σ2
y =

2
∫ ∞
−∞

∫ ∞
0

(
y − µy

)2 f (y, z)dydz∫ ∞
−∞

∫ ∞
0 f (y, z)dydz

, µy =

∫ ∞
−∞

∫ ∞
0 y f (y, z)dydz∫ ∞

−∞

∫ ∞
0 f (y, z)dydz

. (A.3)

The Poisson-Gauss (PG) function, Eq. (2), can be written as

PG(y, z) = (bz)mexp
(
−bz − z2/a2

z − y2/a2
r

)
, (A.4)

It is easy to see that the expected value of the PG function for y vanishes

µy = 0, while σ2
y = a2

y . (A.5)

On the other hand, it can be verified that

µz =
p1/2

(
m
2 + 1

)
− azb p3/2

(
m+3

2

)
1
az

p1/2

(
m+1

2

)
− b p3/2

(
m
2 + 1

) , (A.6)



Fig. 9: h, Eq. (5), as function of m.

and

σ2
z =

a2
z

∆

[
azbm

2

(
a2
zb + 4µz

)
p3/2

(
m + 1

2

)
− b

(
a2
z (m + 1) + 2µ2

z

)
p3/2

(m
2
+ 1

)
+

az
2

(
2(m + 1) +

(
azb +

2µz
az

)2
)

p1/2

(
m + 1

2

)
−

(
a2
zb + 4µz

)
p1/2

(m
2
+ 1

) ]
,

(A.7)
where

∆ = azp1/2

(
m + 1

2

)
− a2

zb p3/2

(m
2
+ 1

)
, (A.8)

and
pq(a) = Γ(a) 1F1

(
a, q,

1
4

a2
zb2

)
. (A.9)

Γ denotes the Gamma function and 1F1 the confluent hypergeometric function [67]. In Fig. 9 it
is shown the behavior of h in equation (5) as function of m through the expressions for σz and µz
above. The values of h, corresponding to each accommodative state shown in Table 3, namely,
m = 2.8 (0 D), m = 3.5 (1.01 D), m = 4.4 (2.02 D), m = 5.7 (3.07 D), m = 7.4 (4.03 D), m = 10
(5.01 D), m = 14.2 (6.02 D), are 0.1362, 0.2061, 0.4002, 1.2795, 7.7308, 191.0820, 7.8632e+04,
respectively.

Appendix B: Radius of curvature of the Poisson-Gauss lens

The radius of curvature R of a function y(z) is written as

R =

(
1 +

(
dz
dr

)2
) 3

2

��� d2z
dr2

��� . (B.1)

The equation of the external iso-indicial contour of the lens can be written as

y(z) = ar
√

ln (1/h) + m ln (bz) − bz − z2/a2
z, (B.2)

where h is given by Eq. (5).
Now consider the inverse function z(y). Given that we seek the axial radius of curvature, each

derivative in Eq. (B.1) must be evaluated at y = 0, point in which z has a local maximum as
function of y, that is, dz/dy |y=0 = 0. Therefore

R =
1��� d2z
dy2

��� . (B.3)



Since z(y) cannot be inverted analytically we employ the inverse function theorem to write

d2z
dy2 = −

(
d2y

dz2

)2 (
dy
dz

)−3
. (B.4)

After some algebra it is obtained

R =

�����a2
r (a

2
z (m − bz) − 2z2)3

Ω

����� , (B.5)

where
Ω = 2a4

z z
[
a2
z (m(2 ln (1/h) + m − 4bz) + b2z2)

+(4 ln (1/h) − 6m)z2 + 2m(a2
zm + 2z2) ln(z)

]
.

(B.6)

To substitute y = 0 into Eq. (B.5) notice that it implies (see Eq. (B.2))

ar
√

ln (1/h) + m ln (bz) − bz − z2/a2
z = 0, (B.7)

that is,
m ln(bz) = − ln (1/h) + bz + z2/a2

z . (B.8)

Substituting Eq. (B.8) into Eq. (B.5) it is finally obtained after some algebra

R(z) =
a2
r

2

����−b +
m
z
−

2z
a2
z

���� . (B.9)

This formula permits computation of the axial radius of curvature of not only the external but
of each internal iso-indicial surface. This provides to have a more accurate picture of how the
radius of curvature changes within the lens.

Funding

CHRISTUS-LATAM HUB CENTER OF EXCELLENCE AND INNOVATION, S.C.

Acknowledgments

We thank CHRISTUS-LATAM HUB CENTER OF EXCELLENCE AND INNOVATION,
S.C. for supporting the open access article publication charge. The first author would like to
acknowledge support from INAOE, Mexico, and Jorge Ugalde-Ontiveros for fruitful discussions.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. S. Nakao, T. Ono, R. Nagata, and K. Iwata, “Model of refractive indices in the human crystalline lens,” Jpn. J. Clin.

Ophthalmol. 23, 903-906 (1969).
2. B. K. Pierscionek and D. Y. C. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66, 822-829

(1989).
3. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the

isolated human lens measured using magnetic resonance imaging (MRI)”, Vision Res. 45(18), 2352-2366 (2005).
4. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens

using optical coherence tomography” Vision Res. 48(27), 2732-2738 (2008).



5. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,”
Biomed. Opt. Express 3(10), 2471-2488 (2012).

6. J. J. Esteve-Taboada, R. Montés-Micó and T. Ferrer-Blasco, “Schematic eye models to mimic the behavior of the
accommodating human eye,” J. Cataract. Refract. Surg. 44(5), 627-641 (2018).

7. B. K. Pierscionek, and J. W. Regini, “The gradient index lens of the eye: an opto-biological synchrony," Prog. Retin.
Eye Res. 31(4), 332-349 (2012).

8. G. Smith and D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge University Press, 1997).
9. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
10. H. H. Emsley, Visual Optics (Butterworth, 1952).
11. Y. Le Grand and S. G. El Hage. Physiological Optics (Springer-Verlag, 1980).
12. L. Matthiesen, “Ueber Begriff und Answerthung des sogenannten Totalindex der Krystalllinse,” Arch. Ges. Physiol.

36, 72-100 (1885).
13. H. Helmholtz, Helmholtz’s Treatise on Physiological Optics (Dover, 1962), Vol. 1. Appendix II.
14. D. A. Atchison, and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom., 99(2), 99-106, (2016).
15. Y. Wu, A. Liu, H. Lv, X. Yi, Q. Li, X. Wang, Y. Ding, and J. Tong, “Finite Schematic Eye Model with Maxwell

Fish-eye Spherical lens,” in 2010 Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1-4.
16. R. G. Zainullin, A. B. Kravtsov, and E. P. Shaitor, “The crystalline lens as a Luneburg lens,” Biofizica 19, 913-915

(1974).
17. T. Liu and L. N. Thibos, “Customized models of ocular aberrations across the visual field during accommodation.” J.

Vision 19(9), 13-13 (2019).
18. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the

human lens as measured by magnetic resonance micro-imaging in vitro," Vision Res. 42(13), 1683-1693 (2002).
19. R. A. Schachar, “Growth patterns of fresh human crystalline lenses measured by in vitro photographic biometry,” J.

Anat. 206, 575-580 (2005).
20. A. M. Rosen, D B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro

dimensions and curvatures of human lenses,” Vision Res. 46, 1002-1009 (2006).
21. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular

anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466-480 (2013).
22. M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for

evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
23. C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the

entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
24. L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle

thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719-726 (2012).
25. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion

correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,”
Opt. Express 18(3), 2782-2796 (2010).

26. D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel,
“Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5),
E709-E718 (2012).

27. A. de Castro, J. Birkenfeld, B. M. Heilman, M. Ruggeri, E. Arrieta, J. M. Parel, F. Manns and S. Marcos, “Off-axis
optical coherence tomography imaging of the crystalline lens to reconstruct the gradient refractive index using optical
methods”, Biomed. Opt. Express, 10(7), 3622-3634 (2019).

28. J. Yao, J. Huang, P. Meemon, M. Ponting and J. P. Rolland,“Simultaneous estimation of thickness and refractive index
of layered gradient refractive index optics using a hybrid confocal-scan swept-source optical coherence tomography
system,” Opt. Express 23, 30149-30164 (2015).

29. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14,
1684-1695 (1997).

30. A. V. Goncharov, and C. Dainty, “Wide-field schematic eye models with gradient index of the lens,” J. Opt. Soc. Am.
A 24, 2157-2174 (2007).

31. R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. I. Formulation and
model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175- 2185 (2007).

32. R. Navarro, F. Palos, and L. M. González, Adaptive model of the gradient index of the human lens. II. Optics of the
accommodating aging lens. J. Opt. Soc. Am. A, 24(9), 2911-2920 (2007).

33. M. Bahrami and A. V. Goncharov, “Geometry-invariant GRIN lens: analytical ray tracing," J. Biomed. Opt. 17,
055001 (2012).

34. C. J. Sheil, M. Bahrami and A. V. Goncharov, “An analytical method for predicting the geometrical and optical
properties of the human lens under accommodation,” Biomed. Opt. Express 5(5), 1649-1663 (2014).

35. C. J. Sheil and A. V. Goncharov, “Accommodating volume-constant age-dependent optical (AVOCADO) model of
the crystalline GRIN lens," Biomed. Opt. Express 7, 1985-1999 (2016).

36. J. E. Gómez-Correa, S. E. Balderas-Mata, B. K. Pierscionek, and S. Chávez-Cerda, “Composite modified Luneburg
model of human eye lens,” Opt. Lett. 40(17), 3990-3993 (2015).

37. J. E. Gómez-Correa, V. Coello, A. Garza-Rivera, N. P. Puente, and S. Chávez-Cerda, "Three-dimensional ray



tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens," Appl. Opt. 55,
2002-2010 (2016)

38. L. Moser, “Über das Auge,” Dove’s Repert Physik 5, 337-349 (1844).
39. H. Helmholtz, Helmholtz’s Treatise on Physiological Optics (Dover, 1962), Vol. 1.
40. J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am. 70 220-223 (1980).
41. R. Navarro, J. Santamaría, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J.

Opt. Soc. Am. A 2, 1273-1281 (1985).
42. Y. Huang, and D. T. Moore, “Human eye modeling using a single equation of gradient index crystalline lens for

relaxed and accommodated states," Proc. SPIE-OSA 6342, 63420D-1-63420D-9 (2006).
43. H. T. Kasprzak, “New approximation for the whole profile of the human crystalline lens," Ophthalmic Physiolog. Opt.

20(1), 31-43 (2000).
44. J. A. Díaz, C. Pizarro, and J. Arasa, “Single dispersive gradient-index profile for the aging human lens," J. Opt. Soc.

Am. A 25, 250-261 (2008).
45. A. Popiolek-Masajada, and H. Kasprzak, “Model of the optical system of the human eye during accommodation,"

Ophthalmic Physiolog. Opt., 22(3), 201-208 (2002).
46. A. Popiolek-Masajada, and H. T. Kasprzak, “A new schematic eye model incorporating accommodation," Optom.

Vis. Sci. 76(10), 720-727 (1999).
47. A. Khan, J. M. Pope, P. K. Verkicharla, M. Suheimat, and D. A. Atchison, “Change in human lens dimensions,

lens refractive index distribution and ciliary body ring diameter with accommodation," Biomed. Opt. Express 9,
1272-1282 (2018).

48. T. Yamane, Statistics An Introductory Analysis (Harper & Row, 1967).
49. F. A. Haight, Handbook of the Poisson distribution (John Wiley, 1967).
50. W. H. Carter, “Spot size and divergence for Hermite Gaussian beams of any order,” App. Opt. 19(7), 1027-1029

(1980).
51. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human

eye model”, Optom. Vis. Sci. 85(5), 330-340 (2008)
52. E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant

volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and
Scheimpflug study,” Invest. Ophthalmol. Vis. Sci., 50(1), 281-289 (2009).

53. R. Navarro, and N. López-Gil, “Impact of internal curvature gradient on the power and accommodation of the
crystalline lens,” Optica 4(3), 334-340 (2017).

54. D. Siedlecki, H. Kasprzak and B. K. Pierscionek, “Schematic eye with a gradient-index lens and aspheric surfaces,”
Opt. Lett. 29(11), 1197-1199 (2004).

55. M. Guillon, D. P. Lydon, and C. Wilson, “Corneal topography: a clinical model,” Ophthalmic Physiol. Opt. 6(1),
47-56 (1986).

56. M. T. Sheehan, A. V. Goncharov, V. M. O’Dwyer, V. Toal and C. Dainty, “Population study of the variation in
monochromatic aberrations of the normal human eye over the central visual field,” Opt. Express 15, 7367-7380
(2007)

57. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate and A. Roorda, “A
population study on changes in wave aberrations with accomodation,” J. Vis. 4, 272-280 (2004).

58. E. Tepichín-Rodríguez, A. S. Cruz Felix, E. López-Olazagasti, and S. Balderas-Mata, “Emmetropic eyes: objective
performance and clinical reference,” Proc. SPIE 8785, 8785G5-1-8785G5-7 (2013).

59. P. Artal, ed., Handbook of Visual Optics: Fundamentals and eye optics (CRC Press, 2017).
60. A. S. Vilupuru, and A. Glasser, “Optical and biometric relationships of the isolated pig crystalline lens,” Ophthalmic

Physiol. Opt. 21(4), 296-311 (2001).
61. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and

asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78, 39-51 (2004).
62. A. Perez-Escudero, C. Dorronsoro and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by

conics,” J. Opt. Soc. Am. A 27, 1541-1548 (2010).
63. E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical

Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,”
Invest. Ophthalmol. Vis. Sci., 57(9) OCT600-OCT610 (2016).

64. R. Navarro, L. González, and J. L. Hernández-Matamoros, "On the prediction of optical aberrations by personalized
eye models,” Optom. Vis. Sci. 83, 371-381 (2006).

65. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel and S. Marcos, “Influence of shape and
gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline
lenses,” Invest. Ophthalmol. Vis. Sci., 54(9), 6197-6207 (2013).

66. R. L. Phillips and L. C. Andrews, “Spot size and divergence for Laguerre Gaussian beams of any order,” App. Opt.
22(5), 643-644 (1983).

67. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables (National Bureau of Standars, 1972).


