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Abstract 

As cloud computing environments become complex, adversaries have become highly 

sophisticated and unpredictable. Moreover, they can easily increase attack power and 

persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or 

Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes 

prey-inspired survivability to address unpredictable security challenges borne out of 

UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, 

applying prey survivability to cloud computing directly is challenging due to contradicting 

end goals. How to manage evolving survivability goals and requirements under 

contradicting environmental conditions adds to the challenges. To address these 

challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate 

perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija 

Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving 

contradiction. First, it develops a 3-step process to facilitate interdomain transfer of 

concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific 

solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-

inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived 

solutions. The framework run-time is pushed to the user-space to support evolving 

survivability design goals. Furthermore, a target-based decision-making technique 

(TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired 

survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation 

results shows that escalating survivability actions improve the vitality of vulnerable and 

compromised virtual machines (VMs) by 5% and dramatically improve their overall 

survivability. Hypothesis testing conclusively supports the hypothesis that the escalation 

mechanisms can be applied to enhance the survivability of cloud computing systems. 

Numeric analysis of TBDM shows that by considering survivability preferences and 

attitudes (these directly impacts survivability actions), the TBDM method brings 

unpredictable survivability information closer to decision processes. This enables efficient 

execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision 

system (DS) to focus upon decisions that achieve survivability outcomes under 

unpredictability imposed by UUUR.  
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Chapter 1  Introduction  

This chapter introduces the thesis and outlines the motivations to overarching themes within the research 

area. It presents the research hypothesis, research objectives and highlights the research contributions. 

Finally, it details the research methodology before concluding with a detailed outline of the thesis chronology 

on a per-chapter basis.  

1.1  Introduction 

Cloud computing has become topical due to its global adoption and use in both critical 

and non-critical environments. The ability to provide compute resources (infrastructures, 

platforms and software) as services adds to its attractive attributes. Resources are then 

accessible on-demand on a pay-per-use basis, adding cloud computing to the list of utilities 

such as electricity, gas, water, and others. Since its inception as the de facto computing 

platform, businesses report increased flexibility, tremendous reduction in costs, and a wide 

range of opportunities (Sarkar et al., 2019). From the cloud consumer’s (CC) perspective, 

on-demand access to cloud services and resources facilitates dynamic scalability according 

to a cloud user’s computing resource requirements, arguably ensuring improved overall 

efficiency (Mansouri et al., 2018). Moreover, with the responsibility for routine 

maintenance of the infrastructure left to the Cloud Service Providers (CSP), management 

costs are usually low and system management is less cumbersome (Lombardi & Pietro, 

2011). From a CSP perspective, the ability deploy a global network of data centres enables 

greater flexibility and manageability of security (Shahriar et al., 2017).  

A global network of data centres ushers in one of cloud computing’s attractive attributes; 

accessibility over the internet, from anywhere using any device. Moreover, it enables CSPs 
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to co-locate cloud entities on shared infrastructure and have a broader picture of security 

attacks (Dorey & Leite, 2011). Cloud entities in this regard embody individuals or 

organisations whose interactions to perform tasks facilitate the functions of the cloud (Zott 

et al., 2012)(Liu & Jiang, 2011). Individuals or organisations, also referred to as tenants, 

may exist as disjoint legal entities, but with a common share to a view to services, 

applications, data, and configurations. Hence, multi-tenancy, which is a core attribute of 

cloud computing, describes the method of sharing an instance of an application among 

co-located entities, by providing every entity with an isolated share of that instance 

(Coppolino et al., 2017). However, low-cost and scalable computing resources accessible 

to anyone from anywhere, on a pay-per use service inadvertently benefit the hacker 

community. 

Despite the attractive features of cloud computing, 90% of organisations using the cloud 

have some security concerns (PwC, 2015). Interestingly, a common view suggests that 

most of these security challenges existed pre-cloud resurgence, with known solutions. 

Arguably, what has changed is the environment and the players in which these challenges 

exist. According to (Ziring, 2015), security has become harder to manage due to a widening 

attack surface. As shown by (Coppolino et al., 2017), a malicious entity can attack VMs 

through commonly shared resources with little detection. Besides, the growth of “cyber 

things” and the proliferation of a plethora of emerging technologies complicates security 

management as the environment becomes complex (Yannakogeorgos, Lowther & Hayden, 

2013)(Taleb et al., 2017).  

Unsurprisingly, malware strains such as key loggers and phishing or RAM scrapping 

became notorious (Levy, 2018), while Heartbleed, Shellshock, and Poodle became 

notorious vulnerabilities in 2014 (Coty, 2014). In 2011, the number of malware attacks 

increased from 3 billion to 5.5 billion with about 403 unique malware types (up from 286 

in 2010) and high zero-day vulnerabilities exploited per day (Razzaq et al., 2014) (Shahzad 

& Woodhead, 2014) (Ardagna et al., 2015a). In 2016 alone, there were 1 200 data breaches, 

over 1.1 billion identity exposures and more than 450 000 ransomware attacks (Wiles, 

2018). With increasing exposure, various new and sophisticated attacks have become 

commonplace, giving rise to the view that cloud computing has become a global threat 

domain (Zafar et al., 2017a).  
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As interconnected devices are projected to increase to 50 billion by 2020 (Eoin et al., 

2018)(Moreno et al., 2019) and over 75 billion by 2025 (Alam, 2019), generating over 

79.4ZB of Data in 2025, security breaches are anticipated to rise exponentially, rapidly 

evolve and increasingly become sophisticated with a wider global reach. The result is 

security risk that are characteristically unpredictable and difficult to detect. Uncertain, 

latent, unobserved, or unobservable risks (UUURs) are difficult to predict, particularly in 

complex and dynamic environments. Hence, managing security considering this 

unpredictability will increasingly become a bigger challenge for cloud computing 

(Albanese, Jajodia & Venkatesan, 2018).  

Unpredictability describes the character of something irregular; something that cannot be 

predicted, and is often cited as a significant component of UUURs (Ma, Krings & Sheldon, 

2009)(Ma & Krings, 2011)(Ma et al., 2014). Several authors suggest that current security 

information and event management (SIEM) solutions cannot adequately address unknown 

or unpredictable behaviour patterns (Marshak & Duer, 2016)(David & Kris, 2016). Rieke 

et al. (2012) concurs, suggesting that it is almost impossible to predict UUURs in cloud 

computing environments (Rieke et al., 2012). Thus, the main problem for the cloud 

computing model is how unpredictability can be managed to ensure that security and 

quality levels of service are met yet preserving its attractive attributes. Logically, this begs 

the question of how to efficiently manage unpredictable changes in cloud service or system 

states, given dynamic and unpredictable requirements. 

1.1.1  Existing security approaches 

With large-scale virtualisation central to the cloud computing, physical machines (PMs), 

networks and other cloud-based systems fall outside the traditional enterprise security 

perimeter (Ali, Khan & Vasilakos, 2015). PMs are therefore susceptible to UUURs owing 

to advanced and sophisticated threats which easily bypass detection. On the other hand, 

the virtual machine (VM) model which facilitates cloud computing’s resource utilisation 

through augmenting hardware, software, storage and networks also introduces 

vulnerabilities (Virvilis & Gritzalis, 2013) and (Hummaida, Paton & Sakellariou, 2016). As 

argued by Ali et al. (2015), VM spoofing easily introduces data leakage vulnerabilities.  
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Moreover, current security management and control processes are inclined towards 

business policy and regulation. In this sense, security decisions arise out of deterministic 

assessment of the impact of a security incident to business objectives, and not the 

unpredictable probability of the incident itself (Ni et al., 2002)(Cser, 2016). Security risk, 

for instance, is quantified according to current or forecasted network operating conditions. 

The challenge of applying this traditional approach in cloud environments is that high-

level failures are easily passed down to low-level components of the cloud computing 

ecosystem (Harknett & Stever, 2011). Consequently, mitigating security threats remains a 

major concern for cloud computing environments (Shahriar et al., 2017)(Zhang et al., 2013). 

Moreover, literature shows that unpredictability limits efficient threat detection (Wang et 

al., 2014). Hence, when applied directly to address UUURs, traditional security approaches 

result in high false positives and false negatives (Ma et al., 2014)(Albanese, Jajodia & 

Venkatesan, 2018). A high occurrence of false-positives or false-negatives limits the ability 

to implement appropriate countermeasures (Knemeyer, Zinn & Eroglu, 2009). Nguyen et 

al. (2016) further suggests that addressing UUURs using traditional methods is too 

simplistic and negates the sensitivities of complex environments (Nguyen, Kim & Park, 

2016). More so, it stands to reason that the domino effect of misapplied countermeasures 

complicates service costing, yet cost is an important metric for secure, reliable and resilient 

service provision.  

According to Prasad et al. (2011), resolving cloud computing security challenges requires 

security processes that can maintain systems stability and ensure continuous provision of 

services (Padhy, Patra & Satapathy, 2011). Considering cloud’s pay-per-use service model, 

the ability to guarantee continuous provision of services within acceptable levels of service, 

is a critical mission. Thus, the goal for security should be to maximise the availability, 

resilience, reliability, .etc. Nonetheless, the critical question is how and where to apply 

principles such as availability, resilience, reliability, and others in cloud environments? 

Moreover, how can cloud systems and underlying structures be designed to achieve this 

critical mission?  

This research proposes survivability as a critical property to achieve security in cloud 

computing environments. This emphasises that cloud environments are robust under the 

unpredictability imposed by UUURs. Hence, the role of security is to define controls that 
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reduce susceptibility to threats and enhance repair and recovery against UUURs, and other 

threats affecting high-risk environments (Romine, 2019). 

1.1.2  Survivability as a suitable mission for security 

Survivability is the property which describes the ability of a system to continue the mission 

of providing services despite underlying failures to security, resiliency, reliability and 

dependability. It is a proactive approach and a continuous mission; a capability to which a 

system can timely provide services after intrusion or compromise occurs (Wang et al., 

2012b). As (Mehresh & Upadhyaya, 2012) notes, the ‘mission’ element of survivability 

suggests ensuring the continuity of a set of essential services, considering that 

precautionary countermeasures will fail. Hence, Survivability-over-Security (SOS) (Yurcik 

& Doss, 2002) was proposed as a descriptive focus to explicitly demonstrate how security 

relates to survivability.  

Traditional survivability is considered around the technical and business perspectives of 

security, while redundancy is specified as a requirement for survivability. This notion of 

survivability and redundancy is suited for static environments (Prusty, Sethi & Nayak, 

2016)(Singh & Srivastava, 2018)” where virtual network embedding (VNE) techniques 

achieve survivability based upon the predictable availability of redundant resources at the 

physical layer (Lipson & Fisher, 2004)(Chowdhury, Rahman & Boutaba, 2012). By simply 

mapping a system to a static structure or network, fault trees and reliability block diagrams 

can therefore be easily manage survivability (O’Connor & Kleyner, 2011)(Khan et al., 

2015). However, VNE techniques imply that survivability is constrained to the hardware 

layer, which is a challenge where resources are abstracted or limited, and resource 

requirements are unpredictable. Clearly, while the survivability concept is well-defined and 

understood in this traditional context, some drawbacks exist with its application in cloud 

environments.  

Foremost, survivability in the cloud context is an emerging phenomenon whose character 

arises from interactions among multiple elements. While survivability behaviours are 

predictable and easy to manage where interactions are deterministic, this is not the case in 

cloud environments. Heterogeneity in cloud environments means that interactions are 

probabilistic and survivability behaviours are unpredictable, dynamic and complex. If 
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survivability requirements frequently change, meeting survivability objectives becomes a 

near impossibility. As a result, current designs of survivability solutions for cloud 

environments are poorly understood, leaving existing survivability architectures 

undeployable directly in cloud computing.  

As the state of a system changes due to UUURs, a survivable should restore that system’s 

capacities, and as well, adapt to dynamic changes in order to maintain it. Equally, 

survivability should also aim to improve a future system’s capacity to maximise 

survivability response measures (both passive and active tools and mechanisms). The main 

challenge, nonetheless, pertains to the unpredictable and unobservable evolution of the 

system. (Rieke et al., 2012) hypothesises predictive monitoring methods to provide insights 

into proactive mitigations against future negative actions. 

1.1.3  The need for bio-inspiration 

Whereas maintaining security remains critical, survivability in view of unpredictable 

compromise and catastrophic failure, is a problem of significant practical interest for cloud 

computing. In the military context, this survivability contemplates damage tolerance and 

damage avoidance, i.e. vulnerability, recoverability and susceptibility, as central to decision-

making (Rodríguez, Merseguer & Bernardi, 2014) (Vassalos, 2019). In nature, survivability 

is observable in several natural systems, as well as it is described in several biological 

theories and principles (Quach et al., 2013). Along with resilience, robustness and 

adaptability, survivability is a well-addressed phenomenon in natural systems (Dressler & 

Akan, 2010). Species survivability, in particular, is addressed in nature’s prey animals, where 

anti-predator and predation avoidance mechanisms and behaviours ensure survival against 

predation (Quach et al., 2013). Nature has contributed successful solutions to problems in 

a range of domains, including finance (Brabazon & O’Neill, 2006) and robotics (Oates et 

al., 2009) to name a few. The strength of natural systems reside in the ability of autonomous 

entities to make local decisions, continuously coordinate and share information to 

maintaining a global form of order (Sayed, 2014).  

Given the successful application of biological systems in other areas and the critical 

positioning of cloud computing society in general and critical infrastructures, it seems 

logical to investigate how natural systems survive. Specifically, with focus upon the survival 
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mechanisms and behaviours prey utilise against predators, and its possible application in 

cloud computing. However, the use of biological survival and prey’s survival against 

predation in particular, for survivability in cloud computing is an under-researched area 

(Stoykov & Yazidi, 2016). 

Several factors should be considered before biological systems are applied within/as 

security systems. According to (Somayaji, Locasto & Feyereisl, 2007), the first and most 

important is that biological and computer systems do not share an end-goal. For instance, 

whereas biological systems aim to attain global survival under dynamic environmental 

conditions, the goal of many computer systems is to simply accomplish individual 

computational tasks. Thus, assuming a biological model for survival is used in computing, 

the effectiveness of the model must be understood when a computing system’s 

environments change at the global context. More so, survivability in biological systems is 

said to be instinctive, wherein individual sacrifice can be performed to achieve the global 

goal to survival (Somayaji, Locasto & Feyereisl, 2007). On the contrary, an analogous 

sacrifice to a computing task, i.e. downtime, is undesirable in computing systems. Logically, 

implementing such biological model directly will be operationally challenging since the 

systems under consideration have contrasting goals. Conceivably, developing bio-inspired 

solutions for cloud computing should consider the diversity of entities and the dynamic 

changes (e.g. changes to system requirement, system goals, security, survivability, etc.) such 

diversity brings.  

1.2  Research hypotheses 

Achieving effective security in cloud computing using traditional countermeasures and 

approaches is challenging and nearly impossible due to the unpredictability imposed by 

UUURs. Hence, in an ideal cloud environment, the following properties should be 

satisfied: 

i. UUURs are proactively managed and controlled. 

ii. UUURs can be autonomously managed and controlled. 

iii. Ensure the survivability of cloud systems regardless of unpredictable threats. 
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iv. Enable survivability mechanisms to be controlled according to one’s requirements. 

v. Enable decision-making on survivability management and control mechanisms to 

be intelligent to cope with uncertain changes and unpredictable survivability 

requirements.  

These properties are difficult to achieve due to theoretical and physical contradictions. 

Hence, the thesis attempts to employ bio-computational design as realised through bio-

inspired approaches, to propose a method that improves cloud computing security by 

ensuring survivability. Research efforts should aim to understand survivability in the 

context of the holistic view to cloud computing and services design, and its mission as a 

viable complement to security.  

The hypothesis under test is specifically that: 

H1:   

Escalating survival behaviours and mechanisms employed by natural preys against 

known and unknown predators can be applied as unconventional solutions to 

enhance survivability in cloud computing environments. The above approximate 

to properties i-iii and satisfies properties iv-v above.  

H2:  

Escalating survival mechanisms by natural preys, against known and unknown 

predators as integrated into survivability management and control system, where 

survivability is proactively managed and controlled within the system and user-

space, to localise failure and enable user-level input at run-time, respectively. 

1.3  Research aim and objectives  

This thesis aims to address cloud computing’s security challenges using inspiration from 

natural prey’s survival solutions. Notwithstanding many other challenges, addressing the 

scientific challenges of attaining bio-inspired cloud computing survivability will be central 

to this thesis’s contributions. Specifically, how to apply prey-inspired survivability to 
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address problems in cloud environments and offer innovative solutions. Moreover, how 

to create computationally systematic, repeatable and scalable methods for the bio-inspired 

cloud computing survivability domain. Given the motivations and the research hypotheses 

introduced in section 1.1 and section 1.2, it is necessary to address the following research 

objectives. 

1.  To perform comprehensive literature review of the cloud paradigm, focusing on 

existing cloud security challenges, survivability, the application of bio-inspired 

approaches in computing and underpinning theoretical perspectives for addressing 

cloud computing security challenges. 

2.  To comprehensively investigate the classification of cloud computing security 

challenges and critically analyse gap areas. 

3.  To propose a systematic method for inter-domain transfer of concepts; from 

nature to cloud computing, then applying a TRIZ-based approach to derive 

innovative solutions. In addition, to evaluate the efficacy of derived prey-inspired 

solutions for cloud computing and perform a pilot simulation in NetLogo.  

4.  To propose and develop a prey-inspired survivability framework for cloud 

computing environments based upon mechanisms in prey and solutions derived 

using TRIZ.  

5.  To develop and implement a prey-inspired survivability framework simulator to 

evaluate the efficacy of the proposed survivability framework.  

6.  To perform an experimental analysis of the prey-inspired survivability solution and 

assess the implications of novelty against the hypothesis under test. 

1.4  Contribution to knowledge 

This thesis’s main contribution is the prey-inspired cloud computing survivability 

framework (Pi-CCSF) presented in Chapter 5 and evaluated in Chapter 7. The other 

contributing areas of this work are in Chapter 3, Chapter 4 and Chapter 6 . Some of these 
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works are published in book chapters, in peer-reviewed journals and conferences. The 

following broadly represent the main contributions of this thesis.  

1. A comprehensive critical review literature of cloud computing focused on security 

challenges and gap analysis, survivability, theoretical perspectives towards solving 

cloud computing security challenges and bio-inspired approaches. Contributing 

publications include RP 1, RP 2, RP3 and RP5. 

2. A holistic taxonomy for cloud computing security challenges. The contributing is 

Chapter 3  which is published in RP 2.  

3. A generalisable TRIZ-based method for prey-inspired design. Contributing 

chapter is published in RP 3, RP 4 and RP 6. 

4. A Prey-inspired cloud computing survivability framework (Pi-CCSF) and the 

custom-built Pi-CCSF simulator to evaluate the practical implication of escalating 

actions on survivability of cloud computing environments under attack. The 

contributing chapters are Chapter 5  and Chapter 7 . 

5. A prey-inspired target-based decision-making technique for cloud computing 

environments to manage survivability decision-making on escalating actions in 

view of fuzzy survivability and unpredictability. The contributing chapter is 

Chapter 6 . 

1.5  Research methodology 

This thesis investigates survivability as a suitable property to address cloud computing 

security problem. Hence, prey-inspired cloud computing survivability framework (Pi-

CCSF) is coined out to describe how survivability will be enabled and controlled at the 

control-plane using the existing cloud infrastructures. Key to Pi-CCSF is the high-level 

survivability management system, low-level prey-inspired survivability mechanisms and 

additional resources. To achieve the foregoing, this section presents the thesis’s research 

process, and lays bare this research’s underlying philosophical perspectives and the 

methods applied. The research onion postulated by (Saunders, 2009), which highlights 
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some common research types, approaches, strategies and choices places the current 

research into context.  

1.5.1  Research philosophy 

Research paradigms inform a researcher’s methodology and influence their data analysis 

strategy (Saunders, 2009) (Anderson & Ellenbogen, 2012). Hogan and Maglienti (2001)’s 

opinions are that epistemological perspectives prescribe both domain-specific and domain-

general rules for what a researcher believes. Also, what a researcher accepts, rejects or 

modifies before the planning, evaluating and monitoring processes of researching (Hogan 

& Maglienti, 2001). Given the previous, it is conceivable that epistemological 

underpinnings also hugely influence a researcher’s judgement on the validity and limits of 

literature. To this end, (Hogan & Maglienti, 2001) thus notes observations and conclusions 

to be independent of theories that follow a positivist philosophical perspective. Among 

many perspectives, post-positivism’s strengths lie in its use of hypothesis developed 

through statistical and quantitative measures and experimental designs. In addition, this 

approach allows for mixed methods and the generalisation of secondary data (Stage & 

Manning, 2003). A post-positivist approach suits the current research as it allows both 

qualitative and quantitative researches. Furthermore, an empirical analysis will focus upon 

the quantitative measurement of complex attributes of survivability in cloud computing 

environments.  

This thesis takes a pragmatic approach to address the hypotheses under consideration 

guided by the epistemic support for hypothesis testing. In this sense, the pragmatic criteria 

equate simulations outcomes to real cloud computing outcomes, regardless of different 

environments or attributes. As (Stage & Manning, 2003) suggests, pragmatism is apt for 

novel researches as it emphasises objective and logical inference, and measurable facts that 

are verifiable. Moreover, it allows for a subjective relationship between the researcher and 

the subject, whereupon conclusions depend upon context.  
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1.5.2  Research approach 

Several research methods within the conceptual and experimental domains apply to 

different levels of research. To address this thesis’s objectives, three levels of research 

apply.  

Foremost, an interpretive level identifies through the researcher’s logical interpretations of 

literature, theory in both cloud computing and predator-prey systems. This level also 

identifies concepts and relationships within the study’s boundaries to understand, describe 

and explain the research developments. In this research, and as postulated by (Iivari, 2007) 

hypotheses, concepts, classifications and taxonomies are epistemological knowledge 

classes that precipitate in systems concepts and causation scenarios which are later 

validated. Hence for instance, a proposed holistic approach aims to show cloud security 

challenges as an integrated tool, encompassing multiple security failure points and 

perspectives. The holistic interpretation exposes entity relationships among cloud 

components and security areas, which facilitates adequate security enforcement through 

the correct implementation of countermeasures. Thus, this approach is aimed to achieve 

the objective to consolidate existing knowledge (contexts) and make interpretations. By 

reconceptualising existing textual knowledge into graphical formats, better visualisation 

will help designers to distinguish varying contexts in a non-ambiguous manner. 

Disambiguation of contexts is itself an important aspect of design, particularly where 

knowledge from multiple domains is combined (Medathati et al., 2015).  

A comparative research level focuses upon the “how” questions to understand large scale 

historical data, both subjective and objective, within the areas under consideration. As 

postulated by (Ragin, 2014), this level enables exploration to understand subcomponents 

of a topic area, exploration of similarities and differences across comparable areas, and 

iteration to expose contradictions. Accordingly, it stands to reason that the comparative 

level benefits this research by enabling the review of cloud and natural systems, and 

systematically mapping similarities.  

Finally, the Inventive level focuses upon determining and classifying technical and 

technological processes by deriving information from the applied knowledge on nature 

(Savransky, 2000). This level employs TRIZ as a human-oriented knowledge-based 

systematic methodology for inventive problem solving (Savransky, 2000). For instance, the 
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current study uses descriptive and perspective statements obtained through inductive 

processes to combine knowledge (effects and phenomena) from predator-prey and inform 

artificial technical and technological solutions for cloud computing environments. The 

inventive level is thus important for the analysis of design principles and modelling cloud 

environments. The preceding is a problem-driven approach (Burke, 2007)(Helms, Vattam 

& Goel, 2009) to model cloud survivability based upon models of predation-avoidance 

and anti-predation behaviours and mechanisms of natural preys. A descriptive is employed 

for its strength in analysing quantitative data (Chapman, Lawless & Boor, 2001). 

1.5.3  Research design 

When considering the research design, the current study aims to evaluate hypotheses and 

theory which are generalisable (Amaratunga et al., 2002). Hence, it investigates survival in 

prey animals to establish the efficacy of applying prey’s survival behaviours and 

mechanisms in cloud computing environments. As such, it would be possible to perform 

repeatable and objective comparative evaluations to determine the reliability and validity 

of the investigations against a verifiable hypothesis. Methods for analysis including 

taxonomies and simulation enable effective integration of research evidence around a 

central proposition (Amaratunga et al., 2002).  

Evidence in literature suggests that two design approaches are prominent in computer 

science research; theoretical and experimental (Wainer et al., 2009)(Coiro, 2014). 

Conceptual and formal modelling and mathematical formalisms typify commonly applied 

theoretical approaches, while simulation, prototype development and results evaluation 

and analysis are commonly applied in experimental approaches. Conceptualisation, 

modelling, simulation and experimentation therefore tie in well with the positivist elements 

in the post-positivist paradigm underpinning the current research. Descriptions and the 

application of the above are briefly introduced below.  

Conceptualisation: Due to the level of abstraction in the current research idea, conceptual 

design is deemed suitable due to the “incompleteness of initial knowledge of 

requirements and constraints” (Hsu & Liu, 2000) for the prey-inspired design for 

cloud computing survivability. For instance, it is important to conceptualise the 

holistic taxonomy (publication PR2), due to non-existent holistic data on computing 
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security challenges (See Section 3.2, holistic approach; design and requirements). 

There is also merit for conceptual design in the application of TRIZ to derive 

conceptual survivability solutions for cloud computing, since TRIZ requires other 

pieces of conceptual implementation (See 4.2, the method and application of a TRIZ-

based approach). The theory of inventive problem solving (TIPS), an English 

translation of the Russian acronym TRIZ (Teorija Rezbenija Izobretatelskib Zadach), 

is a popular design technique among engineers. TRIZ is centred on the premises of 

ideality; that a benefit of a system outweighs the products of cost and harm, 

contradiction; pertaining to the elimination of solution with harmful effects and 

system approach. Since TRIZ it is systematic, repeatable and based upon successful 

patents (Fu et al., 2014), the TRIZ method is applied to build a toolkit for prey-

inspired survivability design. Thus, conceptualisation culminates into the proposed 

prey-inspired cloud computing survivability framework (Pi-CCSF) as a feasible 

integration of earlier conceptualisations (See 5.1; survivability design and the Pi-

CCSF).  

Modelling: While conceptual analysis is a theoretical approach to decompose a complete 

problem into smaller components that can be well understood, the relationships 

between the components define the complete problem. According to (Vessey, 

Ramesh & Glass, 2005), mathematical modelling can be used to show these 

relationships. Hence in this research, modelling is applied to describe the behaviour 

of VMs’ response to prey-inspired mechanisms and the practical significance to the 

Pi-CCSF. Moreover, the modelling method is used to develop the concept of a target-

based decision-making technique for cloud computing survivability proposed in 

Chapter 6. 

Simulation and experimentation: Whereas the modelling of complete real cloud and natural 

prey environments is challenging due to limited domain-knowledge, time and 

resources, simulations allow for the recreation and analysis of the behaviour of those 

systems by using a model. However, the accuracy of results is an issue since the 

simulated model does not offer real system variables (Hsu & Liu, 2000). In the current 

research, Lotka and Volterra’s (LV) model is used to study VM’s survivability 

behaviours. By simulating predator-prey survival analogies using NetLogo (Wilensky, 

1999), it is possible to evaluate the efficacy of the hypotheses under test and define 

the direction and further developments of the current research idea. NetLogo enables 
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simulation of ecological agents in near nature conditions (Lytinen & Railsback, 2012). 

Hypotheses testing on simulated data (See 7.4; results and analysis) gives an indication 

of how the research idea may perform in a real cloud environment.  

The table below shows the link between the research contributions and the design.  

Table 1. Research method per thesis contribution 

 Conceptual Modelling Simulation Experimentation 

Contribution 1     

Contribution 2     

Contribution 3     

Contribution 4     

Contribution 5     

1.6  Thesis outline 

The thesis organisation is as follows: 

Chapter 1  – Introduction to the research 

This chapter introduces the research area and details the motivation, the hypothesis, the 

research methodology, the aim and objectives of the research, and the contributions to 

knowledge.  

Chapter 2 – Literature review 

This chapter interrogates the existing literatures on cloud computing areas motivated in 

the introduction. Primarily, the literature review aims to establish the current state-of-the-

art in domains of cloud computing security, survivability, bio-inspired systems and relevant 

theoretical perspectives contributing to these domains. Through a critical analysis, the 

findings identify open challenges for cloud computing security, within which the current 

research contributes.  

Chapter 3 – A Holistic taxonomy of cloud computing security challenges 
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This chapter proposes a holistic taxonomy of cloud computing security challenges. In 

addition, it highlights relationships among cloud entities thereby exposing security areas 

for further analysis. This research’s holistic notion (postulates the source and origin) 

facilitates the bio-inspired design of conceptual countermeasures.  

Chapter 4 – A TRIZ-based method for prey-inspired cloud computing survivability 

design  

This chapter presents a systematic method for developing solutions. A 3-step process 

facilitates a generalisable process for transferring concepts across domains (biology to 

cloud computing). A TRIZ-based process is applied to derive specific solutions for cloud 

survivability. Each derived analogy serves to address a specific contradiction and generates 

creative solutions for cloud computing, with varying levels of abstractions.  

Chapter 5 – Prey-inspired cloud computing survivability framework (Pi-CCSF) 

This chapter proposes the prey-inspired cloud computing survivability framework (Pi-

CCSF). Pi-CCSF builds upon TRIZ-derived solutions for prey-inspired survivability. Pi-

CCSF’s design is placed in the engineering context to encompass security design as a 

component of the survivability service-oriented mission assurance (SOMS). The 

framework run-time is scoped in the IaaS model, to enable user-input and support other 

concepts such as security, reliability, fault-tolerance, etc.  

Chapter 6 – Prey-inspired target-based decision-making technique (Pi-TBDM) 

based fuzzy cloud computing survivability requirements 

Details the decision-making system (DS); a critical component of Pi-CCSF and formulates 

a target-based decision-making technique (TBDM) for cloud computing survivability. 

Considering the unpredictability imposed by UUURs, this chapter addresses the main issue 

of how to bring imprecise or fuzzy survivability information closer to survivability decision 

processes. Additionally, how to factor into the overall decision process, other contexts 

including the user’s decision attitudes and preferences for escalating survivability actions, 

as may be outlined in an SLA. 

Chapter 7 – Evaluating Pi-CCSF using Pi-CCSF simulator 

This chapter presents Pi-CCSF simulator, a custom-built python simulator for testing and 

evaluating the theoretical concepts of Pi-CCSF and their implications in the context of 
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practical application. The purpose of simulation is to investigate the behaviour of VMs in 

different states of compromise when prey-inspired survivability actions are applied.  

Chapter 8 – Conclusions and future work 

This chapter closes the research by reflecting upon the research process and drawing key 

conclusions on the contributions of the research. It also considers the research’s limitations 

and provides recommendations for future work direction.  

Figure 1 illustrates the overall view to this research.  
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Figure 1. Overview of Thesis structure 
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Chapter 2  Literature review 

This chapter reviews the literatures relevant to this thesis’s motivations and the contributions laid out in 

Chapter 1 . The literature review aims to establish the existing scholarship relevant to this study and 

identify gap areas and open questions that place the current research into context. Thus, it provides 

background information, the context and the motivations outlined in Chapter 1, and discusses in each case, 

the extent to which existing literature addresses these areas.  

2.1  Introduction 

The systematic literature review (SLR) method is distinguished from a narrative literature 

review based upon primary evidence retrieved using a clearly defined inclusion criteria 

(MacDonald, 2003). In addition, a SLR produces a rigorous summary of existing literature, 

as well as valid and comprehensive evaluation and interpretation of available relevant 

literature (Keele, 2007). The current study will implement a mixed approach with a clear 

aim to obtain objective findings derived from a tightly focused research. A narrative bias 

will be useful for reviewing historically broad topic areas while enhancing the transferability 

of research findings (Malterud, 2001). Correspondingly, the systematic bias will ensure a 

comprehensive research that yields transparent and valid conclusions (Keele, 2007). The 

remainder of this chapter is structured as follows:  

Section 2.2 provides a review of cloud computing security challenges and reports on key 

findings. Section 2.3 presents a review of the research’s survivability context and reports 

on key findings. Section 2.4 reviews theoretical perspectives that provide underpinning 

basis towards meeting the contributions of this research. Section 2.5 investigates bio-

inspired systems and their use in the computing domain. The predator-prey system is 
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investigated, and the key findings summarised. Finally, Section 2.6 provides a summary of 

the chapter.  

2.2  Cloud security challenges 

With the advent and wide use of cloud computing, security is arguably more complex, 

requiring a variety of processes to maintain data and systems stability (Prasad et al., 2011). 

According to (Zissis & Lekkas, 2012), the cloud computing security perimeter is wider and 

complex and thus, it is easy to bypass using sophisticated attacks. Along this line, (Cybenko 

et al., 2014) notes that zero-day attacks are therefore able to plan their attacks and persist 

within the compromised networks systematically. Logically, this suggests that cloud 

computing environments enable adversaries to increase their attack surface, which 

complicates vulnerability management and elevates the attack complexity. Cases in point 

include Stuxnet, Flame, and Duqu, which obfuscated network traffic to evade detection 

(Virvilis & Gritzalis, 2013). Beyond this, emerging technologies such as the Internet of 

Things (IoT) and Big Data complicate traditional firewall deployment due to the challenges 

of enforcing static security policies over highly mobile environment. Figure 2 illustrates 

the foregoing, outlining how broad network access enlarges the attack surface, which 

enables sophisticated threats to easily bypass the traditional security perimeter. Addressing 

these security problem demands resolving how cloud security management tools, systems, 

software and platforms are designed and operated in this new environment.  

 

Figure 2. Graphical representation of the cloud security view produced by the 

author of this thesis 
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Summarily, the following are the main challenges.  

• Traditional approaches i.e. reactive and preventative methods that rely on an 

identified intrusion signature cannot adapt to new sophisticated threats.  

• Cloud environments are complex and unpredictable, yet current security solutions 

such as intrusion detection and prevention systems, firewalls and antiviruses lack 

the complexity to cope.  

• Cloud computing environments exist outside the traditional security boundary, 

which limits the extent to which traditional controls can be effective. Security 

controls and approaches are the recommended set of actions that provide specific 

and actionable ways to stop attacks (SANS, 2016). These are detailed in Appendix 

A.  

Several works have questioned the effectiveness of traditional security techniques such as 

intrusion detection systems (IDS) in cloud environments (Cser, 2016)(Albanese, Jajodia & 

Venkatesan, 2018). For instance, security concerns in cloud environments are increased by 

circumventing security systems or exploiting vulnerabilities of APIs in cloud software 

vendors (Ahamed, Shahrestani & Ginige, 2013). Consequently, insecure APIs pose a 

greater risk by providing execution privileges to unauthorised users (Henning, 2007). 

According to (Hashizume, Yoshioka & Fernandez, 2013), vulnerabilities are elevated due 

to the physical and logical structure of the cloud.  

Virtualisation is a method to achieve logical abstraction of compute resources; 

computation, network, storage, operating system, and so on, from their physical 

constraints (Liu et al., 2015). Due to this logical abstraction, cloud computing resources 

can dynamically expand vertically up or down, and horizontally according to requirements. 

Abstraction encapsulates a software layer, e.g. a virtual machine monitor around an 

operating system, to offer similar interactions and behaviours as from a physical system 

(Sahoo, Mohapatra & Lath, 2010); (Pearce, Zeadally & Hunt, 2013). Since abstraction 

enables VM independence from the physical device and runs multiple virtual machines 

from the same physical hardware, VM introspection; a system-level technique to monitor 

the state of VM at run-time, introduces reverse engineering challenges (Chen, Paxson & 

Katz, 2010).  
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According to (Baars & Spruit, 2012), at least sixty potential security domains exist within 

the cloud architecture. The impact of security concerns in cloud computing is reported by 

Verizon data breaches (Verizon Business, 2011; Solutions, 2015; Verizon, 2016). VM 

vulnerabilities to side-channel attacks are among some of the highly ranked security issues 

(Cloud Security Alliance, 2013a);(Cloud Security Alliance, 2013b). In fact, (Aviram & Ford, 

n.d.); (Xu et al., 2011) argue that it is easy for malicious users to observe or send data 

through exposed side-channels passively. By monitoring cache usage, adversaries can easily 

identify a target VM (Ristenpart et al., 2009) while behaviour analysis aids cross-VM 

information leakage (Ahamed, Shahrestani & Ginige, 2013).  

For brevity’s sake, Table 2 summarises commonly discussed cloud security issues.  Security 

challenges are described according to a corresponding general issue(s) and a specific 

security issue(s) (bullet points). While some of these challenges are discussed, others are 

added to supplement existing literature for the interested reader.  

Table 2. A summary of commonly discussed security challenges 

Challenge Issue 

Control Outsourcing, PaaS, SaaS, and IaaS. Ease of use by end user’s degree 
of information security & control, i.e. control of data & control over 
the security 

• The data owner has no full physical control over their data 

• No control over OSs, network & servers, storage & 
applications in SaaS 

• No control over Oss, network & servers in PaaS of control 
over networking components in IaaS 

Trust Securely establishing trust between servers & clients & trusting cloud 
environments. 

• Trust between servers & the client's misuse of cloud services 

• Impose security policies 

Virtualisation  Updating security countermeasures is paramount to preventing data 
breaches & leaks  

• The risk to the integrity of saved VM images 

• Malicious insider  

• Risks to confidential data stored in virtual machines 

Malware Intrusive and hostile software  

• Sophisticated malware such as Stuxnet & Flame. 

• Zero-day exploits  

Attacks on Web 
Services 

Prominent attacks & immature coding exploit online vulnerabilities 

• SQL injection flaws & cross-site scripting  

• Signature wrapping attacks 

• Malware, CSS, and Denial of Service (DoS) 

Denial of Service Compromise the availability of services 

• Semantic & flooding DDoS attacks  
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• FRC attacks falsely use cloud resources: impacts application-
layer servers 

• Exploits are financially detrimental to a cloud consumer 

• Cause the Operating System (OS) kernel to crash 

Weak Identity, 
Credential & Access 
Management 

Insufficient scalability in identity access management systems 

• Spoofing attacks, DoS attacks, Elevations of privileges and 
Repudiation  

Data breaches Unauthorised access/use of confidential/sensitive data.  

• Vulnerabilities in applications, Malicious insider and 
Information disclosure 

Data loss Insecure & unnoticed configurations or vulnerabilities result in 
potential exploits & data loss.  

• Side-channel attacks expose IaaS, PaaS and SaaS to breaches 

Insecure interfaces and 
APIs 

Poorly designed APIs in cloud software vendors 

• Provide execution privileges to unauthorised users 

Account & service 
traffic hijacking 

The exploitation of software weaknesses and personal information 

• Phishing attack 

• Service or account hijacking 

Malicious insider Breach of confidentiality by manipulating multi-tenancy 

• Co-residency attacks 

• Malicious insider 

Abuse of cloud 
resources 

Where IaaS providers lose some control 

• Hackers & spammers take advantage of free limited trials 

Insufficient due 
diligence 

Choosing and moving functions to cloud environments entails 
careful consideration 

Shared technology 
vulnerabilities 

Vulnerabilities due to intrinsic & prevalent core cloud computing 
technologies 

Privileged user access Where 3rd parties process data outside the enterprise 

• Outsourcing bypasses means that an enterprise’s security 
controls (physical or logical).  

Data location A cloud vendor provides location of data & processes, and provides 
routine maintenance,  

• No information to the cloud consumer about the location of 
data, as well as the processes performed 

Regulatory compliance Challenges when dealing with LSAs & other process & regulatory 
issues 

• Assurance 

• Process and regulatory issues 

Data segregation Logical storage of data in multi-tenant environments 

• Cross channel attacks 

• Malicious insider 

Recovery Low-cost disaster recovery & data storage solutions 

Long term viability Concerns a cloud consumer’s data if a CSP loses their business 
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2.2.1  Survey of countermeasures 

There are overwhelming efforts, both in academic and industry, dedicated to addressing 

security challenges in cloud computing environments. Much of these are summarised in 

Table 2 above. Recent notable work is the collation of user-data security and 

countermeasures survey by (Basu et al., 2018). This section aims to interrogate some of 

these works.  

Much of the existing literature shows a growing trend towards hybrid countermeasures to 

enhance visibility in industry security solutions; integrating deceptive controls, intrusion 

detection systems (IDS) and security information and event management (SIEM). 

However, there are far less proactive solutions, seemingly due to the threat of legal 

liabilities associated with their use. According to McGee et al. (2013), possible legal 

liabilities as one of the factors limiting the adoption of purely proactive solutions. Proactive 

approaches ensure that security systems are continuously operational and aware of changes 

in their environment throughout their operation (Djenouri, Khelladi & Badache, 2005). 

On the other hand, reactive elements in hybrid solutions (semi-preventative control 

element within intrusion detection systems), means that existing hybrid solutions remain 

susceptible to obfuscation techniques (Virvilis & Gritzalis, 2013). This is particularly 

important considering that in both industry and academia, hybrid solutions are currently 

dominant. Software patching and static perimeter security which are argued to motivate 

hackers, remain prevalent but ineffective in cloud computing environments (Subashini & 

Kavitha, 2011). An addendum (See Appendix A) provides in-depth discussions and 

definitions of hybrid, proactive and reactive approaches and security controls.  

Unlike academia, a downside of industry solutions is a general lack of technical design 

detail in the public domain. Where is it available, details are mostly general rather than 

specific, presumably to protect the competitive advantage. Clearly, the impact of security 

upon business investment seems to be a driver to how countermeasures in industry are 

designed. As (Rong et al. (2013a) suggests, security is considered as a balance between 

business viability and competitive edge. Since reactive security approaches, including 

antivirus, monitoring and detection tools remain dominant in industry, they limited in 

cloud environments due to inherent deficiencies (Subashini & Kavitha, 2011). Besides 

these functional deficiencies, commercial solutions are often expensive and complex and 
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currently reported to as inefficient for the cloud. As argued by (Virvilis & Gritzalis, 2013), 

malicious intruders can by-pass end-point security protection. In evaluating academic and 

industry literature, it is evident that security in the cloud is largely handled through 

legislation, contracts and good practice (fulfilled through SLAs).  

Traditional security approaches remain prevalent in industry across most security vendors. 

However, there is a visible shift towards software solutions, as opposed to hardware, to 

adapt in the cloud environment, for instance, Amazon’s concept (Huang et al., 2015). As 

noted in a report by Tara (2018), a survey of cyber security professionals overwhelmingly 

identify outdated security software as an obstacle to cloud security(Tara, 2018). This 

research suggests the following to be widespread in existing solutions in academia. 

Foremost, most solutions in academia and industry fall within the hybrid category. As well 

as in industry, there is limited research and industry implementing of purely proactive 

approaches. Most solutions in academia focus on developing single solutions, with most 

countermeasures being effective upon the specific the specific security solution they are 

developed. A case is point is works against DoS attacks (Lombardi & Pietro, 2011).  

Unlike commercial security solutions, solutions in academia carry a lower financial burden. 

In addition, most solutions proposed in academia focus upon the technical design of the 

solution, rather than its security strategy. As such, the current researcher posits an 

argument that solutions in academia lack adequate on strategy and remain largely suitable 

to the perspective to which security challenge is viewed. Based on the above, it is logical 

to conclude that most solutions in academia are only applicable to the perspective in which 

a security incident is viewed, (e.g. the end-user perspective), as opposed to the global cloud 

security landscape.  

Clearly, open challenges in addressing cloud security concerns remain from both industry 

and academia due to the unique nature of the cloud environment. As noted earlier, with 

broad network access, the attack surface is enlarged allowing adversaries to intrude a 

network with no detection. As a possible solution, the “Kill Chain” approach (Hutchins, 

Cloppert & Amin, 2011) offers proactive and dynamic intelligence-gathering capabilities 

to enhance continuous security posture awareness. Furthermore, other proactive 

approaches involving synchronised and real-time discovery, analysis and mitigation are 

areas for further investigation. Moreover, proactive capabilities can be switched ON and 

OFF depending upon security requirements and hyper segregation to enhance resistance 
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to attack. Hence, a pertinent question which arises is how to improve intelligence 

gathering, an alerting mechanism, and a method to anticipate an attack and enable swift 

response, as opposed to relying on patching strategies? After the above, it is also pertinent 

to question how incident response time can be improved while also improving cloud 

computing platforms’ resistance to attacks. More, how to proactively detect, identify and 

stop an adversary before an exploit.  

Table 3 summarises security countermeasures in academia whereas Table 4 is a summary 

of countermeasure in some of the industry’s leading vendors according to the criteria set 

out by (Cser, 2016). For the benefit of the interested reader, a detailed survey and 

discussions of cloud security countermeasures are added as addendum of this thesis (See 

Appendix B). 

Table 3. Summary of countermeasures in academia 

Countermeasure Security 
Control 

A strategic and systematic approach(Park & Ruighaver, 2008) SP 

Trusted Third Party (TTP) (Zissis & Lekkas, 2012) AD, SP 

Cooperative Intrusion Detection System Framework(Lo, Huang & Ku, 
2010) 

SP, CO 

A dynamic and localised security model (Subashini & Kavitha, 2011) AD, SP 

Policies, hardware, and software security view (Mathisen, 2011) SP, CR 

Cloud Security Countermeasures (Jamil & Zaki, 2011) SP, DT, CR 

Self-monitoring Defensive Mechanism (Mazur et al., 2011) DT, PE, AD 

Security SLA Management for Cloud (Bernsmed et al., 2011) SP, CR, AD 

Advanced Cloud Protection System (ACPS) (Lombardi & Pietro, 2011) DT, SP 

Trust-based secure interoperation framework (Mell & Grance, 2011) SP, CR, PR, 
AD 

Safety Measures for cloud computing (Wang & Mu, 2011) SP CR, DT 

Isolation solution (Behl & Behl, 2012) PE 

Client Trace Back Model (CTB) (Joshi & Joshi, 2012) SP, DT 

Mitigation Strategies (Chow et al., 2009a) SP, PR 

Incident-Based Solution (Ryan, 2013) SP 

Security 3600 (Rao, J.R., Chari, S.N., Pendarakis, D., Sailer, R., Stoecklin, 
M.P., Teiken, W. and Wespi, 2016) 

PE, CR, DT, & 
SP, 

Key: DT – detective, PE – pre-emptive; PR – prescriptive; SP – semi-preventative; CR – corrective; AD – adaptive; DC 
– deceptive; DTR – deterrent 

Table 4. Summary of countermeasures in industry 

Countermeasures Security control 

CloudLock: Cisco (CloudLock, 2015a) DT, PE, PR 

Microsoft Cloud App Security Microsoft (Microsoft Mobility 
Management, 2016) 

DT, PR, SP 

Cloud Data Life-Cycle Protection (Bluecoat, 2015a) DT, SP 
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BitGlass (Bitglass, 2014a) DT, SP, DTR 

Cypher Cloud Trust Platform (CipherCloud, 2016) DC, SP, DT, CR 

IBM’s new security paradigm IBM (Gulla, 2011a) PE, DT, DC 

IBM Global Services and IBM research Labs’ Parity DT, CR 

Proventia Management SiteProtector & Desktop Endpoint Security SP, DT 

IBM and North Carolina State University’s Nuva SP 

Tivoli®NetNiew® Systems Director SP 

Data Centre Security Solutions (Over, 2014; Server, 2015) SP, DT 

Symantec ™ Protection Engine DT, AD 

Identity and Access Management as a Service. (CA Technologies, 2014) SP, AD 

Cloud Security Platform (Brief, 2015) DT, SP 

Multi-Vector Virtual Execution (MVX), FireEye AX series (Security et al., 
2018) 

SP, DT, CR, PR 

NetScaler Firewall (Citrix, 2015) AD, CR, PR, SP 

Fusion CR, DT, & SP, 

Active Defence Harbinger Distribution (Active, Systems & Networks, 
n.d.) 

DC, CR, DT, & 
SP, 

Key: DT – detective, PE – pre-emptive; PR – prescriptive; SP – semi-preventative; CR – corrective; AD – adaptive; DC 
– deceptive; DTR – deterrent 

2.3  Survivability context 

Survivability research advanced in the computing domain due to the development of, and 

need to protect critical infrastructures (Shi et al., 2008)(Chang et al., 2018). Such are 

telecommunications networks, power grids, etc. (Habib et al., 2013). When considering 

critical infrastructures, the notion of survivability aligns with the ability to ensure timely 

delivery of critical services when faced with planned or unplanned faults or failures, and 

deliberate or accidental attacks. Four survivability themes are identified in the literature; 

resistance (ability to repel an attack), detection (ability to recognise an intrusion), recovery 

(capacity to resume complete and essential services after fault, failure or attack), and 

adaptation (capacity to evolve to cope with new attacks, faults or failures). Since the 

inception of cloud computing, some work has been done on survivability with a subset 

focusing upon survivability evaluation, including quantitative and model evaluation 

techniques and disaster tolerant architectures. This section presents some of these efforts. 

Survivability is viewed variably among different communities. From a Software 

architecture perspective, survivability is viewed as a system quality that is related to other 

system qualities such as dependability, availability, reliability, fault-tolerance, and 

trustworthiness (Pokharel, Lee & Park, 2010). Traditionally, survivability is implied around 
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the business objectives and risk management strategies of organisations (Lipson & Fisher, 

1999). In this sense, the mission to survive ensures that the business-critical part of the 

system continues functioning and continues to provide essential services even in its 

degraded mode (Serageldin, Krings & Abdel-Rahim, 2013). Hence, the survivability 

mission requires intimate knowledge of the business mission it is protecting (Lipson & 

Fisher, 1999). Alternatively, a system can continue functioning despite adversity. The goal, 

therefore, is to maximise availability, maintainability, and reliability of that system 

(Tahvildari, 2009).  

Survivable virtual network embedding techniques are in use, primarily aimed at enabling 

survivability as the physical layer by increasing redundant resources (Khan et al., 2015). 

However, besides this notion of survivability as constrained to the hardware layer, this is 

challenging in circumstances where resources are limited, or resource requirements are 

unpredictable. The challenge from a holistic perspective of the cloud environment is the 

question of “is the system going to continue providing services considering the 

unpredictable loss of availability, durability, reliability, etc.?”. The foregoing brings to the 

fore how much predictable an environment can be, foremost to address the said losses, as 

well as to assure the continual provision of services. In terms of assurance, several pieces 

of research in this area have attempted to address survivability assurance methods in one 

of two ways, each with its strengths and drawbacks. Figure 5 shows the survivability 

concept under this consideration. An epoch describes a period within a fixed context 

(Henderson, 2006).  

Thus, survivability requirements in epoch 1 are different from the requirements in epoch 

2, epoch 3, up to epoch n. Since each epoch has characteristically unique constrains, the 

state informs design concepts and attributes. In addition, technologies available to it 

(Richards & Ross, 2009), the timing of survivability decisions in cloud environments of 

the system. Two threshold types shown in Figure 5 are important; escalation threshold and 

survivability threshold and characterise the survivability concept under this consideration. 

The escalation threshold considers the vitality (vulnerability) of a service or system to 

determine how significant a UUUR is deemed as a threat to survivability and the escalating 

actions that follow.  
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Figure 3. Representation of the survivability concept adapted from (Henderson, 

2006) 

On the other hand, the survivability threshold considers both the recovery time and 

duration of a UUUR to implement a decision that must be taken upon ensuing escalating 

actions. Both thresholds are important to determine the state of the system or service, i.e. 

is the vulnerability improving or degrading and the actions, tools or procedures relevant to 

the UUUR event. Now, consider cloud computing’s pay-per-use model where CSPs bill 

CCs according to the length of time they occupy a VM, or how long its provisioned. 

Suppose a consumer is billed kNt based on an amount K for each provisioned VM in as 

many, N VMs, over a period, t. If an unpredictable threat that can avoid detection and 

persist in a tenant’s environment, this will prolong tenant jobs and increase the cost 

(Virvilis & Gritzalis, 2013). Thus, the challenge in this sense pertains not least, to how a 

CSP manages such risks to avoid unnecessary financial burden on a consumer, as well, 

how the CSP and CC can plan and proactively anticipate such unpredictability. 

Yurcik and Doss (2002) coined the term survivability-over-security (SOS) to describe the 

survivability goals of simultaneously reducing sum vulnerabilities while increasing recovery 

and flexibility in networked systems. The author of this thesis concurs with (Yurcik & 

Doss, 2002) and opinions that the survivability of individual system components is vital to 

the overall survivability of an entire networked system. A case in point in cloud 

environments pertains to cloud computing storage, in which storage components such as 



  

30 

storage isolation, data recovery and storage place, are determinants of long-term data 

survivability (Liu, 2012). 

In their work, Yu et al. (2010) focus on evaluating survivability from the cost-architecture 

perspective considering Byzantine Fault Tolerance (BFT). Briefly, BFT generally describes 

a system’s ability to continue operating despite some of its failure to act, or malicious 

actions from among its components. Thus, in their work, Yu et al. (2010) use three 

different virtual machine-based architectures to investigate how different architectures 

impact on the survivability of a system (Yu et al., 2010). Three key components are 

evaluated (static analysis) across each architecture; survivability based on availability, 

survivability under sustained attack, and the cost of each architecture. Regardless of the 

BFT’s higher costs, a replicated architecture with BFT protocol and diversification is better 

than replication with isolation (Yu et al., 2010). There are two clear challenges to this work. 

Foremost, the concept of diversification is loosely defined; does this imply diverse 

protocols or diverse environments? Assuming both or either, diversification in itself has 

been shown to increase the vulnerability factor particularly where heterogeneous systems 

have diverse asset value (G & S, 2013). In addition, static analysis is a major concern 

due to its susceptibility to false positives, which is exacerbated by the dynamic 

nature of dynamic attacks (Petukhov & Kozlov, 2008).  

In their work Li et al. (2012) quantitatively analyse cloud security risks based on virtual 

machine vulnerabilities and VM placement schemes. According to these authors, an 

attacker exploits Type I and Type II vulnerability; exploiting hypervisor vulnerabilities in 

order to compromise the physical server and direct attack on VMs on the same physical 

server, respectively. Thus, run Markov Chain analysis over an attack dependency graph to 

obtain the possibility for each VM to being attacked. Based on a discreet-time Markov 

Chain (DTMC) analysis, a VM placement algorithm thus defines and distinguishes high-

risk VM, i.e. compromised (Li et al., 2012). According to the authors, the proposed VM 

placement algorithm will consider both preceding placement plan and new placement plan 

to find an uncompromised node for placement, otherwise, if a high-risk node is the only 

one available, placement will not occur. Their experimental results yield better survivability 

and reduced number of compromised VMs. The main drawback in this work is the lack of 

clarity around the time element of the survivability mission, i.e. what are the implications 

to survivability if placement does not occur because there is no low-risk node? As many 
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researchers including (Mead et al., 2000)(Lipson & Fisher, 2004)(Bigham, 2010)(Rodríguez, 

Merseguer & Bernardi, 2014)(Chang et al., 2018) allude, survivability is about mission 

fulfilment. In addition, (Li et al., 2012) does not address unknown attack paths or graphs, 

a key component of the notion of unpredictability which central to the current research.  

Over the years, several authors including have attempted to address survivability through 

virtual network embedding (VNE) techniques. VNE is a technique that are aimed to 

efficiently map virtual resources onto physical network resources to provide among other 

things, redundancy and survivability. For instance, Xu et al. (2012) propose a Survivable 

Virtual Infrastructure (SVI) for a service or a tenant using multiple correlated VMs (Xu et 

al., 2012). Similarly, Rahman and Boutaba (2013)(Xu et al., 2012) propose a survivable 

virtual network embedding (SVNE) solution by developing a proactive and a hybrid policy 

heuristic based on a fast re-routing strategy and a pre-reserved quota for backup on each 

physical link (Rahman & Boutaba, 2013). Also, Liao et al. (2014) propose an efficient 

algorithm as a solution for survivable multicast service oriented virtual network mapping 

(SMVNM) (Liao et al., 2014). Furthermore, Buyya et al. (2014) propose an architecture for 

QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement 

for software-defined clouds (SDCs) on data centres (Buyya et al., 2014). Gu et al. (2015) 

proposed a failure region-disjoint VN mapping scheme to improve VN mapping 

survivability taking into account mapping costs and load balancing concerns to help 

improve resource efficiency (Gu et al., 2015). Couto et al. (2016) analysed the benefits of 

different data centre topologies; Fat-tree, BCube, and DCell, taking into account reliability 

and survivability requirements (Couto et al., 2016). Along similar lines, Lo and Liao (2016) 

study the survivable virtual data centre allocation problem (SVAP), which aims at allocating 

survivable virtual data centre (SVDC) to each tenant to guarantee resource demands even 

after failures (Lo & Liao, 2017).  

In other works, researchers have developed decentralised algorithms for mapping virtual 

links to virtual nodes across vast geographical locations (Houidi et al., 2011). While these 

solutions have proved to be successful, two main challenges limit their use in the current 

context. Foremost, the heuristics suggested above rely on the assumption that the substrate 

network is always operational, which is an operational impossibility. In addition, the 

mapping techniques assume prior knowledge of node requirements and link capacity. This 

is a near impossibility when considering UUURs. Figure 4 is an illustration of the 

foregoing, in which different cloud networks are mapped to different data centres. Due to 
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limitations of VNE and the limited capacity challenges of nodes within VNE’s substrate 

network, other works have proposed VNE heuristics to leverage the embedding phases 

(Lischka & Karl, 2009)(Mosharaf et al., 2009)(Chowdhury, Rahman & Boutaba, 2012).  

  

Figure 4. A VNE concept produced by the author of this thesis.  

Liu and Wang (2012) proposed a system work model for maintaining and improving 

system survivability in cloud computing (Liu & Wang, 2012). Based on analysing security 

strategies for cloud computing, these authors propose the following as key components of 

the survivability model: Self-monitoring of the cloud state and security threats, service 

judge evaluation of cloud services by the cloud customer, notify attack which assesses 

compromised services and the recovery component of proxy service redirection and 

substitution (Liu & Wang, 2012). However, this work provides basic detail, giving no useful 

and specific detail of the model components or empirical analysis of survivability in 

question.  

Xu et al. (2013) proposed a VM placement (VMP) and virtual link placement (VLP) 

techniques to address the problem of how to map survivable virtual infrastructure (SVI) 

to a data centre network with minimum operational costs while satisfying each VM’s 

resource requirements and bandwidth demands between VMs before and after failures (Xu 

et al., 2013). According to these authors, simulation results based on the real VM workload 

show that their algorithms perform significantly and increase survivability. The challenge 

with this approach is that SVI is modelled as a virtual graph, which the context of this 
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research, subsumes knowledge of bandwidth and other requirements under any 

circumstance. This has been proven to be an operational impossibility when considering 

UUURs. Assuming their algorithm is efficient, cascading failures increase network resource 

cost (Yu et al., 2011), a known survivability metric. 

As argued by Afrin and Yodo (2019) efficient and robust recovery must aim to minimise 

constraints including time and cost (Afrin & Yodo, 2019). Most recently, Aibin et al. (2017) 

focus on addressing the resource routing problem in cloud computing. These authors 

proposed a software-defined adaptive survivability approach achieves the best trade-off 

between the efficiency of path protection and cost of routing (Aibin, Walkowiak & Sen, 

2017). According to these authors, results from performance evaluation and assessment of 

their proposed approach show in significant improvement of network performance (Aibin, 

Walkowiak & Sen, 2017).  

Existing works have studied virtual cluster backup provisioning with fixed primary 

embeddings but have not considered the impact of primary embeddings on backup 

resource consumption. To address this issue, (Yu et al., 2017) study how to embed virtual 

clusters survive in the cloud data centre, by jointly optimising primary and backup 

embeddings of the virtual clusters. They formally define the survivable virtual cluster 

embedding problem and propose a novel algorithm to compute the most resource-efficient 

embedding considering a tenant request. The authors further propose a faster heuristic 

algorithm able to achieve high performance (Yu et al., 2017). 

Several researches attempt to address survivability assurance methods in one of two ways, 

each with its strengths and drawbacks. First is the qualitative method which evaluates 

survivability around a recovery time objective (RTO) or recovery point objective (RPO). 

RTO and RPO as shown in Figure 5, in this sense define the maximum permissible time 

for an outage and the maximum time within an outage where data may be lost (Sterbenz 

et al., 2010a). While these methods are commonly used in the traditional context, their main 

drawback for cloud computing is the assumption that infrastructures (or services) are 

periodically provisioned according to a ‘start’ and ‘finish’, the duration of which an 

infrastructure (or service) is assumed as functionally healthy. Where cloud environments 

handle business-critical or time-sensitive data, it is anticipated that the RPO and RTO 

should always be kept close to zero to enhance survivability. 
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Figure 5. An illustration of the RPO and RTO concept produced by the author of 

this thesis 

Considering the notion of UUURs motivated earlier, RTO and RPO are challenging to 

implement in practice as recovery time is implicitly a random quantity and unpredictable 

due to the uncertainty of UUURs. Moreover, the focus on maximum and minimum 

recovery time mean that these approaches other survivability states of a system whose 

values may be crisp may take an interval form or completely fuzzy. Hence, due to the 

above, RTO and RPO fail to adequately inform low-level implementations that match the 

dynamics of survivability under unpredictable and uncertain changes. Along similar lines, 

Richards et al. identify survivability simply as passive or active abilities to maintain value 

delivery despite disturbance or the ability to changes the environment through adaptable 

changes, respectively (Richards et al., 2007). The table below summarises the authors’ 

passive-active survivability notion.  

Table 5. Passive vs Active Survivability, according to (Richards et al., 2007). 

 Passive  Active 

Philosophy Something a system has Something a system does 

Characteristic Proactive, resistance, robust Adaptive, flexible, reactive 

Design 
principles 

Hardness, stealth, redundancy, 
diversity 

Regenerate, evolve, relocate, retaliate 

Forecast Presupposes state of 
environment 

Presupposes uncertainty in future 
prediction 

Architecture  Closed (static) Open (dynamic) 

Design focus Resist disturbance, system-level 
defense 

Avoidance and deterrence, architectural 
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Failures Linear Non-linear  

Discipline Reliability, risk analysis, 
domain-specific technologies 

Process design, domain-specific 
technology, real options, organisational 
theory 

2.3.1  Analysis 

Quantitative approaches studied in recent years (Sterbenz et al., 2010a)(Munaretto et al., 

2011)(Eiger, Luss & Shallcross, 2011)(Eiger, Luss & Shallcross, 2012)(Panigrahi, 2013) 

focus on survivability in the context of “timely recovery” for specific contexts. In their 

work, Trivedi and Xia (2010) specifically focus on the general method of quantifying 

survivability and present a framework for such evaluation. While these methods capture 

more details compared to the traditional RTO and RPO, they do not incorporate the 

cascading effect of threats such as side-channel attacks (Caron et al., 2013). It is conceivable 

that managing unpredictable changes to cloud systems and survivability requirements, 

requires effective feedback control and escalation of survivability actions as the system 

evolves.  

A critical challenge for cloud computing is how to meet survivability outcomes while 

keeping the operational cost of attaining such survivability low. In multi-tenant 

environments, the degree of tenant concurrency, resources heterogeneity and UUURs 

render survivability guarantees a major challenge (Floratou, Potti & Patel, 2014). Whereas 

traditional computing systems with predictable system evolution and typically predictable 

survivability requirements (Chowdhury, Rahman & Boutaba, 2012), cloud computing 

attributes (the ability to scale resources for instance) enable computing systems’ evolution 

to deviate from what is typically predictable. When viewed in relation to new and 

sophisticated threats, the unpredictability of cloud system states becomes the central facets 

of cloud computing security.  

Figure 6 is an illustration of a system’s evolution from its input (icon at the apex of the 

graphic with unshaded black arrow) and output state (black icon at the base of the graphic 

with shaded black arrow). State transitions shows how predictable (blue) and unpredictable 

(red) intermediary system states and requirements affect the final state (system output) of 

the system. In a traditional sense (represented on the right side of Figure 6), from input to 

output, the state of the system and the system requirements are always predictable and 
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therefore can typically be estimated. However, an unpredictable change or phenomena 

such as a UUUR event induces an unpredictable state which further induces unpredictable 

requirements to the system. 

 

Figure 6. An illustration of predictable and unpredictable system states and 

requirements produced by the author of this thesis 

If Figure 6 represents an entire system, unpredictable requirements (red) will introduce 

unpredictability in the final state of the system and consequently alter its output. Since 

unpredictable requirements impact the system’s output (and final state), this 

unpredictability complicates decision-making, particularly at the output. Logically, 

decision-making under unpredictable changes is an important consideration particularly 

for managing the system’s output state and requirement.  

Ensuring an effective survival mission in cloud environments requires optimal decision-

making on unpredictable and dynamic survivability objectives. However, decision-making 

requires monitoring and is critical but challenging where information is unknown with 
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certainty and future systems behaviours are unpredictable. Moreover, such decision-

making may rely upon monitoring a system whose observations may produce ambiguous 

or imprecise information. The challenge here is, therefore, how to make optimal decisions 

based upon estimate survival actions, estimate system states and estimate survivability 

requirement and parameters. It can be said that lack of knowledge on the states of VMs 

means that the general state of the cloud systems at this point is not known. In addition, 

heterogeneity and uncertain and emergent phenomenon in clouds mean that complete 

knowledge of the survivability states of cloud systems is unrealistic. As a result, monitoring 

only relies upon the probabilistic inference of future states. 

The control notion is observed in intrusion detection system’s wherein during operation, 

an alert is thrown to indicate the existence or absence of a threat, based upon what a 

detection model evaluates as true. In this sense, alerts are calibrated to correspond with a 

range of deviation from the detection model threshold. There are two challenges 

introduced by this approach. Design-wise, selecting a threshold value for the “true state” 

requires absolute accuracy, otherwise, a large or small threshold value results in false 

negatives or false positives, respectively. In cloud environments, UUURs makes this 

accuracy a near impossibility. Moreover, training a detection model to improve accuracy 

requires consistent monitoring of the target system; this is a known operational challenge. 

Even with an optimised detection model, the unpredictable element of UUURs means that 

countermeasures will likely be misplaced (or inadequately implemented), e.g. selecting a 

costly defensive response to address a non-extreme intrusion and vice-versa. This impacts 

upon resource requirements and cost, both inherent survivability tread-offs.  

Large-scale networks including cloud computing are inherently complex (Wen et al., 2017). 

While a complete and unanimous definition of complexity is somewhat contentious across 

many domains, the discussions in this chapter revolve around the scientific definition 

posited by (Foote, 2007), “phenomena, structure, aggregates, organisms, or problems that 

share common themes” (Foote, 2007)”. Moreover, they are inherently complicated or 

intricate, are rarely completely deterministic, mathematical models of the system are usually 

complex and involve non-linear, ill-posed, or chaotic behaviour, and the systems are 

predisposed to unexpected outcomes or emergent behaviour (Foote, 2007). Figure 7 

illustrates the formation of a complex system from components to a network of connected 

and interdependent components. On the left, it shows the building components of a 

system as a set of autonomous components whose transformation (graphic on the right), 
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represents a complex system in which numerous autonomous components grow 

exponentially through connections (dotted lines) and interdependence (black note at edge 

of dotted line).  

 

Figure 7. An illustration of a complex system formation produced by the author of 

this thesis 

The nature of their connectivity defines the complexity of the system (in the global sense) 

rather than its characteristics. Moreover, autonomy enables components to adapt through 

local instructions and collectively synchronise (through cooperation and coordination) 

individual statuses resulting in a bottom-up form of order.  

With current innovations and the proliferation of new devices and platforms, and 

multiparty collaborations involving third parties, coordinating and controlling interactions 

among cloud computing parties is often a complex task. The complex, unpredictable and 

dynamic nature of cloud computing requires intelligent systems control. Cloud security 

research should perhaps seek inspiration from well-established complex adaptive systems 

such as those in nature. While complexity in natural systems develops on a microscale 

through evolution, elements within complex systems are generally subject to selection and 

those best suited for the environment are chosen. In a free market economy, products are 

selected through market forces, whereas politicians in democracy are selected through 

elections/voting. Similarly, animals are selected through natural pressures such as 

predation and competition. Literature demonstrates that nature’s superiority is 

multifaceted, enabling biological systems to adapt and survive and conjure solutions in a 

large search space with limited initial information. According to Mateos el al. (2013), the 

above makes biological systems prime alternatives in environments where efficient 

prediction is a challenge (Mateos, Pacini & Garino, 2013). Nonetheless, the use of bio-
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inspired approaches in cloud computing security is an under-researched area in contrast to 

the general cloud computing research domain (Stoykov, 2015). As suggested by Balusamy 

et al. (2015), bio-inspired algorithms have limited application in cloud computing. The 

following section investigates biological systems and application areas in computing 

security.  

2.4  Bio-inspired systems 

Nature has contributed to a range of domains, including finance (Brabazon & O’Neill, 

2006) and robotics (Oates et al., 2009), to name a few. The past ten years has seen growth 

in research interests around bio-inspired systems due to the growth in demand on 

networked systems and reliance on internet connectivity provided through an assortment 

of devices and infrastructures (Zheng & Sicker, 2013). For instance, biological self-

organisation applied in wireless ad hoc networks enables clustering routing nodes to 

enhance the scalability of data forwarding protocols (Zheng & Sicker, 2013). Or Intrusion 

detection systems (IDSs) design inspired by the negative selection of T-cells that bind and 

kill infected or harmful cells (Zheng & Sicker, 2013). The immune system can adapt and 

self-protect by dynamically creating and destroying mutated or infected body cells, as it 

learns new threats and protects itself and its protective components (Sobh & Mostafa, 

2011).  

Biological/natural systems are abounding with attributes in distributed systems emanating 

from interactions among autonomous agents (Sayed, 2014). Their strength resides in the 

ability of autonomous entities to make local decisions, and continuously coordinate and 

share information to maintain a global form of order (Sayed, 2014). Hence, natural systems 

demonstrate effective self-attributes as successful phenomenon (Dressler & Akan, 2010). 

Table 6 summarises some bio-systems and classifies them according to their application 

area, and the strengths and weaknesses of each system. This section will review some 

notable biological systems and their application in computing. In addition, seven of the 

most successful natural preys are investigated to understand the survival dynamic; 

predation avoidance and anti-predation behaviours and mechanisms.  
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Table 6. Some example bio-systems application: strengths & weaknesses 

Bio-
inspiration 

Application 
Area 

Strengths Weakness 

Immune System Anomaly & 
behaviour 
detection 

Rapid detection of new & 
known antibodies 

Slower detection 

Foraging 
species 

Adaptive 
capability 

Efficient resource usage, 
robust & scalable 

Communication 
overheard  

Predator-prey  Highly adaptive 
Networks  

Evolution/co-evolution & 
adaptation result in the 
survivability of species  

Stability of the system 
depends on the arms 
race. 

Immune 
(Idiotypic 
Network)  

Self-organisation 
 

In-depth self-learning 
capabilities 

Stunted scalability 

Biological systems have been a subject of research across the computing continuum 

stretching back to the 1980s (Priami, 2009). Surveys including (Zheng & Sicker, 2013) and 

(Ribeiro & Hansen, 2012), dedicated their efforts towards evaluating biologically inspired 

algorithms in computing-related applications. For instance, negative selection of T-cells’ 

strategy to bind and kill infected or harmful cells in an Artificial Immune System (AIS) is 

a basis for designing IDS (Zheng & Sicker, 2013). Similarly, the adaptation of the memory 

and self-learning mechanism employed by B-cells in identifying and destroying pathogens 

inspired the design of IDSs (Zheng & Sicker, 2013). Among many works, (Dressler & 

Akan, 2010) present a comprehensive survey of bio-inspired networking protocols citing 

a substantial number of sources. These authors allude to the fact that immune-inspired 

algorithms form the basis for network security, specifically anomaly detection. They 

associate epidemiology to content distribution in computer networks, including the 

analysis of worms and virus spreading on the internet. Meisel at al. (2010) concurs and 

associate intrusion detection and malware propagation to AIS and Epidemiology, 

respectively, as complimentary bio-inspired domains.  

Artificial immune system is are applied in a variety of areas and particularly lauded for 

success in IDS (Liang & Fengbin, 2013) based upon immune system detectors which 

determine the performance of the detection component of the immune system (Ji & 

Dasgupta, 2009). Several works including (Yang et al., 2009) (Kephart, 1994) (Kim et al., 

2007) (Gonzalez & Dasgupta, 2003) to name a few, employ immune inspired approaches 

for developing computer security mechanism based on the self-adaptive, self-learning, self-

organizing, parallel processing and distributed coordination attributes of AISs. In addition, 

the authors in (Fang et al., 2012) propose AIS phishing detection that is inspired by part of 
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the immune system’s response mechanism to pathogens; immature T-lymphocytes life 

cycle. Nonetheless, the authors contend to the fact that using a static instead of dynamic 

fire-threshold value on their detectors, their system suffers from deficiencies (Fang et al., 

2012). Similarly, (Saudi et al., 2008) explore the use of an immune system inspired concept 

of apoptosis for in computer network security based upon the immune system’s 

programmed action of destroying infected or mutated cells (Saudi et al., 2008). A 

comprehensive review of phishing email filtering techniques is presented by (Almomani et 

al., 2013), while works by (Gupta, Arachchilage & Psannis, 2017) reviews current literature 

and present a range of solutions proposed against identified attacks.  

Genetic algorithms (GA) are stochastic search methods inspired from principles in 

biologicals systems where problem-solving is indirect through an evolution of solutions, 

with subsequent generations of solutions, in turn, yielding the best solution to a problem 

(Hordijk, 2005). Along similar lines, (Sun & Cheng, 2009) proposed GTAP gene-inspired 

algorithm for user authentication where users from a “family” are identified by a unique 

gene certificate (synonymous with unique signatures), and users are authenticated upon a 

positive analysis of their gene code (Sun & Cheng, 2009). According to the authors, 

simulation results for GTAP demonstrated superiority in safety and security by countering 

the deficiencies in safety passwords and ambiguity of subject information in certificates 

presented in traditional mechanisms (Sun & Cheng, 2009).  

In other works (Isasi & Hernandez, 2004), genetic algorithms are implemented in 

cryptography to evaluate and enhance the complexities of encryption systems. An 

interested reader is referred to a complete guide for cryptographic solutions for computer 

security presented by (Gupta, B., Agrawal, D.P. and Yamaguchi, 2016). In cryptanalysis, 

where an attack mechanism is implemented to assess the strength of an encryption system, 

GA is argued to be highly successful in substitution cyphers (Verma, Dave & Joshi, 2007) 

and transposition cyphers (Toemeh & Arumugam, 2015). While genetic-inspired 

approaches are superior for efficiency and specificity for selecting the unique features, for 

instance, for trust assurance, authentication, authorization, or access control, or in 

intrusion detection systems (IDSs), they are often complex and can only be used in a 

specific, rather than general manner (Modi et al., 2013). Thus, where solutions have been 

proposed for cloud security (Olumide et al., 2015) (Jinyin & Dongyong, 2013), (Wang & 

Yan, 2010), they are applied as pure solutions for encryption, managing the security of data 

in storage, intrusion detection, trust management, etc.  
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Inspired by the reliability of gene identification and assignment inherent in biological 

systems, Wang et al. propose the Family-gene Based model for Cloud Trust (FBCT) to 

address existing limitations inherent in PKI-based systems, which include challenges in 

identifying nodes within cloud environments, access control, and third party authentication 

system (Wang et al., 2010). By adopting biological principles in family genes, their model 

provides solutions for trust in the cloud computing domain.  

Although neural networks are generally popular in pattern recognition and classification, 

and noise filtering, they are useful in other areas including the use of biometrics in security 

(Hordijk, 2005). Key to their success is their accuracy in feature extraction and efficiency 

in classification, i.e. low rejection rate and high positive classification (Hordijk, 2005). 

Along these lines, (Shorov & Kotenko, 2014) proposed the Network Nervous System as 

a mechanism for effective protection against distributed denial of service (DDoS) attacks, 

grounded on the biological metaphor of the human central nervous systems; distributed 

information gathering and processing, coordination, and identification activities. Their 

work rests on the basis that traditional security tools fail to cope with the escalating power 

of attacks on computing infrastructures (Shorov & Kotenko, 2014).  

Ant colonies have been applied for routing traffic optimisation, for instance in works by 

(Baran & Sosa, 2000) who evaluate an optimisation algorithm; AntNet, in which agents 

concurrently traverse a network and exchange information synonymous with stigmergy in 

insects. According to the authors, this algorithm exhibited superior performance in 

contrast to its competitors (Caro & Dorigo, 1998). (Rafsanjani & Fatemidokht, 2015) 

Proposed FBeeAd-Hoc as a security framework for routing problems in Mobile ad hoc 

networks (MANET) using fuzzy set theory and digital signature (Rafsanjani & 

Fatemidokht, 2015). Other models including the Trust Ant Colony System (TACS) 

(Marmol, Perez & Skarmeta, 2009), AntRep algorithm based on swarm intelligence (Wang, 

Zeng & Yuan, 2006), Time Based Dynamic Trust Model (TBDTM) (Zhuo, Zhengding & 

Kai, 2006) to name a few, have been proposed for distributed systems. Nevertheless, it is 

imperative to emphasise the need for comprehensive testing and evaluation before their 

use in cloud environments (Firdhous, Ghazali & Hassan, 2012).  

Works by (Gupta & DuVarney, 2004) extends on the predator model, to propose 

countermeasures against automated mobile malware in networks. The authors propose 

models for self-propagating, self-defending and mobility attributes found in predating 
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animals. Their works premises on the notion that traditional countermeasures do not scale 

to solve security challenges existing in distributed systems (Gupta & DuVarney, 2004). 

(Grimes, 2001) suggest the use of predator models as inspirational solutions against viruses 

and worms. 

Works by (Finstadsveen & Begnum, 2011) explore the use to biological metaphors as a 

basis for designing, modelling and implementing a cloud-based web service. According to 

these authors, a cloud-based web service can deal with counter stability issues that arise 

from long-running processes and security attacks. Also, they argue that a zebra herd-

inspired approach simplifies not only complex technical challenges, but also enhances new 

designs for automating self-management processes for system administrators.  

Table 7. A summary of bio-inspired algorithms proposed for cloud (C) and non-

cloud (NC) environments 

Algorithm Biological parentage Domain 

Multiple Sequence Alignment (MSA) 
algorithms 

Protein structure NC 

IDS detector optimisation algorithm Co-evolution in populations NC 

Data Security strategy Immune systems C 

Secure Data Storage Physiological & behavioural 
patterns 

NC 

AIS for phishing Detection T-lymphocytes life cycle C 

Integrated Circuit Metrics (ICMetrics)  Human properties & features NC 

Biologically inspired Resilient Cells & organisms (sea 
chameleon) 

NS 

Data Hiding for Resource Sharing DNA sequences C  

Organic Resilience Approach against attacks 
and failure 

Immune system C 

Security based on Face Recognition  Facial features NC 

Family-gene Based model for Cloud Trust 
(FBCT) 

Genetics C 

Agent of Network Danger Evaluation  Immune System C 

Supervised learning classifier with real-time 
extraction (UCSSE) 

Genetic-based machine 
learning 

NC 

Fraud detection & improper use Immune System NC 

Extension of Predator-Prey Model Predator-prey communities NC 

Computer Immune System Innate immune phase NC 

AntNet: Ant colony optimisation algorithm & 
OS theory 

Ant colony NC 
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2.4.1  Prey survival against predation 

Vigilance, alarm calls, mobbing and group living are anti-predator behaviours shared 

among vervet monkeys (Cercopithecus aethiops). Furthermore, flight, alarm calls and response 

to alarm calls in vervet are responses to alarm calls associated with specific predator species 

(Isbell, 1994). Alarm signals in vervet monkeys perform multiple-duties, ranging from 

predator deterrents, or distress signals to call in mobbers (Smith, 1992).  

Social behaviours in Thomson’s gazelles such as their alert posture, galloping, stotting, and 

soft alarm calls are argued to release alertness and flight information to avoid predation 

(Walther, 1969). Evidence in the literature supports the claim that Stotting in Thompson 

gazelles is a vital tool for avoiding predation. According to (Caro, 1986), stotting startles 

or confuses a predator and thus forms an anti-ambush evasion technique. Thomson 

gazelle’s mothers are known to adopt aggressive strategies to divert predators from hunting 

their fawns (Fitzgibbon, 1990a). As noted by (Fitzgibbon, 1990b), predation avoidance in 

Thompson gazelles is also associated with grouping behaviours, where larger groups have 

improved predator detection capabilities, and significantly reduced vulnerability factor 

against the cheetah, (Acinonyx jubatus).  

Five predation avoidance strategies are employed by caterpillars against predating birds; 

restrict feeding to undersides of leaves, forage at night, use leaves for movement while 

foraging, and distance themselves from an unfinished leaf, or snip it off altogether 

(Heinrich, 1979). group living is argued to positively enhance protection, as well as warning 

signals, defensive movement, and regurgitating noxious chemicals may increase 

survivability. Literature suggests that Zebras flee predating lions according to their 

proactive responsiveness to a prior assessed risk level, and reactive responses to imminent 

predation (Courbin, Loveridge & Macdonald, 2015).  

The choice of predation avoidance or anti-predation mechanism is hugely important in 

Meerkat (Suricata suricatta) communities as they live under high predation pressures while 

occupying challenging foraging niche (Thornton & Clutton-Brock, 2011). As such, social 

learning and effective cooperation initiate key survival behaviours, including fleeing non-

specific predators, mobbing against predating snakes, functional referential alarm calls, or 

running to bolts holes in response to aerial predators (Thornton & Clutton-Brock, 2011). 

In addition, Meerkat depends hugely on group living through communal vigilance (Roux 
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et al., 2009). Unlike the response to alarm calls, vigilance occurs in the absence or presence 

of a predator or danger (Voellmy et al., 2014). The presence of strong predation avoidance 

responses in nature’s prey species demonstrates that past species interactions affect present 

distributions and may play an important role in the ongoing assembly of contemporary 

communities. Such avoidance behaviours in a growing number of species fundamentally 

alter the view of the processes affecting species distributions and the process of community 

assembly (Resetarits, 2001).  

Table 8 summarises existing predation avoidance and anti-predation behaviours and 

techniques in natural prey, including but not limited to those discussed above.  

Table 8. A matrix linking prey survival mechanisms (anti-predation and predation 

avoidance) to prey species 

 Attributes: prey 
survival technique 
& behaviour 

Prey 
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Anti-
predation 

Alarm calling         

Chemical defence        

Fight-back         

Stotting         

Group living         

Mobbing         

Aposematic         

Mimicry         

Predator 
avoidance 

Camouflaging        

Masquerade        

The predator-prey dynamic highlights the importance and the consequences of 

interactions between two species, i.e. it demonstrates how the functions of a community 

depend on the characteristics of that community. Before biological systems may be applied, 

several problems should be considered. Regardless, cloud computing solution must be 

developed based on the foundations harvested from nature. As suggested by (Hariri, 

Eltoweissy & Al-Nashif, 2011), existing solutions are limited as they do not adapt and 

escalate their security strategies to counteract the intensity and sheer aggressiveness of an 

adversary. Cybenko et al. (2014) concurs and suggests security countermeasures are only 

successful in traditional networks and not in cloud computing environments where 

persistent adversaries and zero-day attacks can systematically plan their attacks and persist 
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within a compromised network. On the basis of the foregoing, the authors postulate the 

rise in popularity of Adaptive Cyber Defence (ACD) approaches such as bio-inspired 

systems, based on their ability to optimise unpredictability and maximise the adaptive 

configurations in attack surface, thereby raising the cost of an attack for the adversary 

(Cybenko et al., 2014).  

Unlike the single solution approach noted in Section 2.2, Table 8 shows that prey animals 

possess rapid reactions based upon the ability to make local but synchronised decisions. 

Escalation therefore enables a system to invoke appropriate proactive responses (ranging 

from passive to aggressive) based on the nature of the threat. To enhance the survivability 

in cloud infrastructures, proactive strategies including deceptive and pre-emptive should 

be implemented to maintain the state of the environment at best or ensures the system 

copes with any form of destructive encounter. Given the significant success of biological 

systems, it seems logical to investigate theoretical underpinnings that describe core 

elements and their application as plausible approaches in the security continuum 

2.5  Theoretic perspectives 

Theoretical perspectives form one of the most important aspects of the research process. 

As noted by (Grant & Osanloo, 2014), to construct knowledge for research and develop 

an adequate scientific rationale for that research, theoretical perspectives provide the 

blueprint with respect to the structure of the research, the research problem, the purpose 

and the implications of the research findings. Thus, the purpose of this section is to give 

an overview of this research’s theoretical perspective and clarify how this perspective 

integrates the selected theory under this investigation, as well as key concepts and 

definitions relevant to the cloud computing topic area under the current consideration. 

Different scientific domains apply variable methodologies and definitions of terms for 

essentially the same aspect of what can be termed “reality”. When considering natural and 

artificial systems, the system-ness of the foregoing is relevant to abstraction or de-

abstraction of theories. (Malecic, 2017)’s opinion is that, understanding this abstraction 

and de-abstraction will enable effective assessment of their casual and explanatory power.  
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Control theory’s classical methodologies and assumptions handle complexity through 

enhanced adaptation in the presence of unpredictable and dynamic changes (Smith, 1979) 

(Landau, 1999). Several works demonstrate the efficacy of stochastic control to optimise 

expected value of cost under extreme uncertainty and unpredictability. This control 

concept describes self-adaptation as identified among a huge state-of-the-art in a 

classification presented by Andersson et al. (2009).  

The General systems theory (GST) suggests that functions that convert inputs into 

required system outputs can be designed and controlled provided that all contexts are 

known (Checkland, 1981). This assumption suggests that regardless of internal 

composition, all systems; natural, man-made, abstract, conceptual or concrete, have 

common characteristics (Checkland, 1981). Thus, quite generally, GST aims to formulate 

generalised theories; system dynamics, goal-oriented behaviour, hierarchical structures, and 

control processes, develop methodological ways for describing the functions and 

behaviours of systems objects, as well as to expand generalised models of systems 

(Skyttner, 2010). However, as has been explained earlier, with UUURs, there is a limit to 

the amount of initial information affected systems have. 

Game theory is a widely applied in security research. While there exist several quantitative 

pieces of research on risk analysis and security modelling, quite precisely, fewer studies 

quantitatively focus on the survivability of cloud systems in view of UUURs. In the former, 

examples include (Cox Louis Anthony (Tony), 2009)(Wang et al., 2012c)(Furuncu & 

Sogukpinar, 2015), and in the latter, examples include (Fan et al., 2013)(Kamhoua et al., 

2014)(Xiao et al., 2018). However, (Jormakka & Mölsä, 2005) contend with the 

impossibility of probabilistic analysis of attacks in special cases where time dependency 

associated with lack of knowledge makes the endeavour a practical impossibility. Game 

theory has also been applied for survivability as a game mode in which a game strategy is 

a central requirement. As noted by (Mezzetti & Samuelson, 2006), the Game theory is 

guided by the principle that clear, stable preferences motivate choices over decision 

outcomes, and strategic action considers the relationship between one’s choice and the 

decisions of others. For instance, one where a bold strategy results in domination (terrorist 

game), or a mixed defense strategies where domination can be reduced (evildoer game), or 

where domination lasts for limited duration (vandal game), or where altering observations 

and orientation of an adversary (meta-strategies) gives the advantage to a defender 

(Shehabat & Mitew, 2017). The current author concurs with (Jormakka & Mölsä, 2005), in 
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particular considering the notion of unpredictable, latent, unobserved or unobservable 

risks proffered by (Ma, Krings & Sheldon, 2009; Ma & Krings, 2011; Ma, 2010). Thus, 

game theory as applied in cloud survivability becomes fundamentally deficient when 

survivability threats are unpredictable and where risks are latent or unobservable.  

2.5.1  Theoretical ecology 

In theoretical ecology, the core concepts around the predator-prey system are interactions 

and their movement across a habitat. Within this domain of theory, functional and numeric 

response are common concepts (Fryxell et al., 2007). Functional response is the prediction 

of the rate at which a predator consumes prey as a function of predators and the density 

of prey (Petchey, 2000). On the other hand, numeric response is associated with the rate 

of reproduction as a function of food density (Petchey, 2000). Classical predator-prey 

theory has its origins around Malthus-Verhulst logistic equations and Lotka-Volterra 

equations, which describe predator and prey’s functional and numeric responses to 

changes in their habitat (Vitanov, Dimitrova & Ausloos, 2010). Some common problems 

when applying the classical predator-prey theory arise due to contradictions caused by the 

principle of mass action to predator-prey interactions. The principle of mass action 

(Kloeden & Pötzsche, 2010) postulates that the rate at which a predator consumes prey 

should only be prey dependent. Boutin (1995) further suggests the effects of predation on 

prey as generally dependent upon prey communities, rather than individuals.  

The selection principle explains the adaptive tendencies of an immune system to antigens 

(Castro & Zuben, 2002), self-organisation in evolution (Kauffman, 1993), and is prominent 

in various “arms-race” analogies. In their work, Dawkins and Krebs (1979), exemplify 

selection using the life-dinner principle, wherein an entity with better selection out-evolves 

its competition. According to these authors, the life-dinner principle describes an inherent 

asymmetry between a predator and prey in relation to the success of predation, the success 

of evading predation, and vice-versa. Noting to a cost-benefit analysis modelled by Abrams 

around the life-diner principle, (Vermeij, 1994) drew the observation that an arms-race was 

highly likely where predator and prey interact, the outcomes of which were determined by 

birth and death rates.  
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Cope’s Rule as postulated in works by (Hone & Benton, 2005) (Kingsolver & Pfennig, 

2004) is an evolutionary concept which postulates that entities with evolving lineages adapt 

by growing in size over time. According to these authors, such adaption increases 

predation success, increases defence against predation, improves intelligence, and 

improves survival and adaptation to climate changes (Hone & Benton, 2005). Defence 

against predation has been a subject of study in a wide variety defence systems employed 

in insect egg (Eisner et al., 2000), and defence studies in plant science (Hay et al. 1987). As 

in most defence systems, the objective for defence is to improve the survival chances of 

prey, against a predator. For the predator, the objective for survival is to become a 

successful hunter while for the prey, it is about avoiding predation. In this case, the Cope’s 

Rule, the Life-Dinner Principle, and the concept of arms-race outlined above come to the 

fore.  

In studies to investigation ecological patterns and evolutionary implication of predation 

among primate communities, group size and adaptation are identified as notable 

demographical and behavioural factors of predation, respectively. On the other hand, the 

notion of inferred evidence is associated with the size of a group. According to Isbell 

(1994), vigilance is higher in larger groups and this improves the reaction to approaching 

predator. On the contrary, Isbell (1994) suggests small likelihood of avoiding predation in 

smaller groups, based upon the likelihood to be detected. Thus, it is perhaps logical to 

draw parallels between predation avoidance capabilities in prey communities to the security 

capabilities in cloud computing. The following logical assumptions have their theoretical 

foundations in the foregoing and a basis for analogical reasoning presented in Chapter 4: 

Parallel 1: As direct observation and inference provide primary information and alarms 

calls and flight are adapted to increase survivability against specific predator species 

in primate communities, it is local that Swarm intelligence can be used for 

collaborative proactive countermeasures including monitoring, response and 

security event management towards the survivability of a cloud computing 

infrastructures.  

Parallel 2: Just as mechanisms such as concealment, flight, vigilance, and alarm calls in prey 

are attributed to predation avoidance (Isbell, 1994), proactive cloud security 

approaches including deception, deterrence, obfuscation, pre-emptying and 

counter-attack can be adapted to increase the survivability of cloud infrastructure.  
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Analogy 3: Just as threats of capture triggers last resort anti-predation behaviours such as 

mobbing and fighting back in prey (Isbell, 1994), threats such as malicious users, 

advanced persistent threats (APTs) etc. in cloud environments necessitate the use 

of proactive countermeasures able to escalate from passive to aggressive methods, 

based upon the persistence of a threat. 

While bio-inspired approaches have found use as artificial alternatives to mitigate 

deficiencies a range of diverse areas, bio-inspired approaches have clear distinctions based 

upon their application domain. Three main classes shown in Figure 8 and briefly explained 

below provides the basis for the bio-inspired approach follows in Chapter 4. 

 

Figure 8. An classification of Bio-inspired approaches produced by the author of 

this thesis 

Bio-inspired systems: Are comprised of a domain of architectures for extensively 

distributed and collaborative systems. As observed by (Dressler & Akan, 2010), 

exploration and distributed sensing are some of the common applications.  

Bio-inspired networking: Is comprised of a domain for addressing phenomenon under 

uncertainty. For instance, applying autonomic organisation in large-scale 

distributed systems to facilitate efficiency and scalability.  
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Bio-inspired computing: This is comprised of a domain of algorithms for efficient 

computing, for instance, when applied for optimisation solutions.  

Bio-inspired design entails a systematic process for developing and mapping analogies for 

the survivability phenomenon, and the development of bio-inspired tools and platforms 

for cloud computing.  

2.6  Summary 

The review of cloud computing security challenges identifies the findings summarised 

below.  

• Multiple perspectives imply that specific solutions remain largely prevalent. Theses 

must be integrated into a holistic representation of security challenges, towards 

developing solutions that holistically addresses cloud security issues. 

• The cloud computing environment, while possessing some attractive attributes, 

enable adversaries. It is important while developing future solutions, to address 

this contradiction; address security risks yet preserving cloud computing’s 

attractive attributes.  

The review of the survivability context identifies the findings summarised below.  

• There is limited research focusing on survivability architecting specific to cloud 

computing environments. This indicates an opportunity for designing survivability 

solutions for cloud computing’s many security challenges.  

 The review of bio-inspired systems identifies the findings summarised below: 

• Despite being an under-researched area for cloud computing survivability, the 

predator-prey system shows clear survival concepts that are exploitable for cloud 

computing survivability.  

• To adopt or adapt biological concepts, there is need for a systematic method to 

transfer natural concepts to computing. In addition, an approach to create 

innovative solutions by resolving contradiction.  
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Chapter 3  A holistic taxonomy of  

cloud security challenges  

This chapter presents a holistic taxonomy of cloud computing security challenges (contributing publication 

PR2). It structured as a literature review in relation to reviewing and analysing existing cloud security 

challenges classifications. This chapter is significant to the research hypothesis as it helps conceptualise the 

complete cloud systems. Whereas there maybe reference to specific security issues, this chapter is not interested 

in the in-depth analysis of specific security attack paths or attack graphs.  

3.1  Introduction 

Much of existing research focuses on evaluating and classifying cloud security challenges, 

resulting in numerous and disparate perspectives and excesses of perspective-based 

taxonomies. For instance, the perspective of security vulnerabilities in web applications 

(Johns, 2011), a virtualisation perspective (Lombardi & Pietro, 2011), the perspective of 

service delivery models (Subashini & Kavitha, 2011), the perspective of a service-oriented 

organisation (Roy et al., 2015), and so on. Disparate perspectives limit the extent to which 

the complete cloud security landscape is viewed and understood. Critically, commonly 

shared but unexplored cloud security challenges remain unresolved and entrenched when 

perspectives do not overlap. This chapter is motivated by a lack of research focusing on 

consolidating these disparate perspectives to benefit cloud security countermeasure 

research and development. Hence, it interrogates how cloud security challenges are viewed 

and classified in the existing literature, which helps to identify gap areas and their possible 

implications. Clear gap areas will form a useful gateway to a new classification 

encompassing all perspectives of the cloud and cloud’s functionalities.  
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Through a meta-synthesis, textual classifications are re-conceptualised into hierarchical 

tree-like structures, which simplify visualisation for the reader and clearly illustrates entity 

relationships amongst cloud categories (Polash, Abuhussein & Shiva, 2014). The taxonomy 

design concept is premised around (Howard & Longstaff, 1998)’s notion of a satisfactory 

taxonomy; mutually exclusive, unambiguous, repeatable, acceptable and useful. From a 

high-level, it distinguishes cloud security challenges based on their source and/or origin, 

as follows: security challenges adopted by the cloud, security challenges inherent to the 

cloud architecture, and security challenges triggered by cloud implementations. For the 

purposes of the current chapter, inherent delay is identifying a specific threat is assumed 

as a worst-case scenario with significant adverse impacts to cloud security. Hence, the 

holistic approach proposed is innovative and insightful as it introduces the possibility of 

delay analysis as an element of a holistic cloud security countermeasures design.  

The remainder of this chapter is as follows: Section 3.2 presents the holistic approach; 

outlines the requirements and design approach towards the holistic notion. Section 3.3 

reviews existing taxonomies and reconceptualising each into a hierarchical structure. 

Section 3.4 presents the holistic taxonomy for cloud security challenges and discusses its 

implications. Section 3.5 concludes the chapter.  

3.2  Holistic approach 

This section presents a holistic taxonomy design approach (Error! Reference source not 

found. illustrates the general holistic approach.) to gather, interpret and re-conceptualise 

cloud computing security knowledge. The interpretation of existing taxonomies yields 

newly transformed taxonomies, which are easier to visualise. Furthermore, the analysis 

identifies deficiencies that exist among perspectives in a non-ambiguous manner. 

Ultimately, this approach will ensure that all cloud computing security categories are 

comprehensively presented, which is significant for security countermeasure design, 

development and maintenance.  
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Figure 9. A illustration of the holistic design approach produced by the author of 

this thesis 

Figure 10 shows the workflow processes for the generic holistic approach. The input 

model (top left) defines cloud computing security’s multiple perspectives, while the output 

model (top right) is the holistic tool for the cloud computing security challenges. 

 

Figure 10. An illustration of the holistic workflow processes produced by the 

author of this thesis 

 

Requirements 
loop 

Design 
loop 
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The output model has significance for holistic baselining, security specifications and 

configuration or security planning. A taxonomy requirements loop handles thematic 

modelling and functional analysis of the cloud security paradigm; deconstructing, defining 

and assigning categories to central concepts. A design loop models the continuous 

processes of the functional analysis mentioned above, and the transformation of functional 

concepts to physical cloud countermeasures or solutions. Moreover, it facilitates the 

definition and extension of additional security concepts and elements (these will be 

represented as categories, subcategories, sub-subcategories, etc.) of the holistic taxonomy. 

Analysis and control enable the evaluation of the analysed cloud security concepts, and 

exploration of gap areas and trade-offs, both useful inputs for the synthesis model. For the 

interested reader, other commonly applied taxonomy development methods exist in 

literature; (Nickerson, Varshney & Muntermann, 2013) presents an interesting cross-

domain review. 

3.2.1  Requirements 

In this research, an abstraction of the holistic view to cloud security challenges is 

hypothesised as one which considers that security challenges have a source or origin. This 

notion is aimed to facilitate the comprehensive organisation of key security issues into 

high-level concepts that are extensible for the further investigation and corresponding 

countermeasure development.  

The following are suggested as necessary requirements: (1) Acceptability and completeness 

(Amoroso, 1994, Howard, 1997). (2) Mutual exclusivity, repeatability, unambiguity and 

usefulness (Howard, 1998), Determinism (Krsul, 2014), and (3) Compliant security 

terminology (Lindqvist & Jonsson, 1997) and well-defined terms (Nasr, Abou El Kalam & 

Fraboul, 2011). Thus, this research formally expands upon the definition a holistic 

taxonomy for cloud computing security challenges summarised by (Hansman & Hunt, 

2005).  

Definition 1. A taxonomy satisfies the holistic property if and only if, all aspects of the source or origin 

of a security challenge are considered. Also, requirements and dimensions inform the design of 

main behaviours in a security challenge domain, i.e. the dimensions of a security target, a specific 

vulnerability and payload are considered.  
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Figure 11 illustrates this conception, with each of its components discussed in turn below.  

  

Figure 11. A high-level holistic view of cloud security challenges produced by the 

author of this thesis 

This definition abstractly suggests that some cloud security challenges are directly adopted 

by the cloud from other technologies. In addition, that others are inherent to the cloud, 

embedded among key features such as scalability, broad network access, pay-per-use, etc. 

Moreover, it also implies that other security concerns are triggered by various forms of 

cloud computing implementations. 

3.3  Review of existing classifications  

Figure 12 is an illustration of unique cloud security challenges that are inherent to cloud 

computing. For instance, control mechanisms are well-established in a traditional “on-site” 

computing model; where data and services are housed within a perimeter to ensure 

availability. Even where data must leave the premise, for instance, with remote workers, 

security policies and mechanisms exist to ensure that data remain secure (confidential, 

integral & available), and accountability for whom, where and how data is being held and 

processed are mature. However, due to the de-perimeterised nature of the cloud, and the 

ambiguity in data location information, traditional these policies cease to be effective, 

causing a great deal of discomfort primarily due to the loss of control (Subashini & 

Kavitha, 2011).  
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Figure 12. Security challenges inherent to cloud computing produced by the author 

of this thesis. 

Figure 13 is an illustration of cloud computing security challenges that arise due to 

implementations in the cloud.  

 

Figure 13. Security challenges triggered by cloud computing produced by the 

author of this thesis. 

Bigdata’s compute-intensive business analytics; high velocity, high capacity and high 

variety data, is an upwards trend (Chardonnens et al., 2013)(García et al., 2016). With cloud’s 
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rapid elasticity, resource pooling, on-demand access, transference of risk, etc. there is an 

inevitable convergence of technologies (Assunção et al., 2015). From a security point of 

view, big data analytics is critical as it can improve the visualisation of the security domain 

by correlating security-relevant data (O’Connell et al., 2014). However, despite its benefits, 

big data poses a threat to the cloud primarily due to the high volumes of data. As an 

example, privacy concerns arise where large databases collected through data mining are 

compromised. An example would be Google’s infrastructures that collect and analyse data 

for advertising (Chow et al., 2009b). While virtualisation enables essential cloud features 

such as location independence, resource pooling, multi-tenancy and rapid elasticity, it 

inadvertently elevates traditional security challenges. For instance, cloud customers depend 

on an internet connection to access cloud resources. In a traditional sense, DoS attacks 

could therefore focus on network entry points with high IP packets (Sabahi, 2011). 

However, this same attack poses a devastating impact in cloud environments. Moreover, 

malicious agents consider what resources they can gain in an attack, how much effort is 

required to compromise a target and how much access they have to the target (Grobauer, 

Walloschek & Stocker, 2011). The fact that cloud services are offered as a service, where 

a user pays for what they use, it means that malicious agents have easy access into the cloud 

infrastructure and act a constant threat in a multi-tenant environment.  

Figure 14 illustrates this research’s conceptualisation of unique issues adopted by the cloud. 

The argument that some cloud security challenges are not new to information security is 

shared by several authors including (Zissis & Lekkas, 2012)(Subashini & Kavitha, 

2011)(Chen, Paxson & Katz, 2010)(Pearson & Benameur, 2010). Traditional challenges 

commonly refer to augmented and well-known security issues that pose security challenges 

for the cloud, mainly due to the physical or logical aspects of the cloud (Yu et al., 2015). 

Such security challenges are non-specific/unique, however, they render existing security 

mechanisms ineffective in cloud environments (Hashizume, Yoshioka & Fernandez, 

2013). For instance, by extension, the Bring Your Own Device (BYOD) phenomenon, 

which enables access to information on devices that may be outside the ownership and 

control of an organisation, introduce security concerns around regulatory compliance, data 

leakage, data breaches, data theft, etc. (Morrow, 2012)privacy and ultimately the right to 

privacy is broadly speaking a human right from a legal perspective in the United Kingdom 

and Europe. Privacy laws, e.g. Privacy and Human Rights Act 1998 in a way guarantees 
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that everyone’s right to such privacy (Commission, 2016). Hence, privacy in the context 

of personal data is arguably enshrined and enforceable under such Acts. 

  

Figure 14. Security challenges adopted by cloud computing produced by the 

author of this thesis. 

However, when considering privacy in the cloud perspective, it is important to 

acknowledge the following contexts; Clouds are geo-dislocated, meaning that private data 

can be held and processed in any location, known or unknown, arguably implying that the 

enforcement of privacy laws becomes a challenge due to jurisdictional discrepancies. In 

this context, privacy challenges that existed in the traditional context, whose legal 

mechanisms for enforcement exist/existed, are leveraged in this new environment. As 

mentioned earlier, the holistic notion in this paper is informed by the view that cloud 

security issues and challenges can primarily be distinguished according to their source or 

origin. The source/origin notion is suggested by (Wallom et al., 2011) to emphasize the 

concept of VM trustworthiness when performing critical computation. While many 

similarities in existing cloud security taxonomies revolve around similar security issues or 

challenges, these highlight critical areas for research and solutions design for a cloud-wide 

perspective of security.  

Figure 15 shows unique security issues unique to private clouds. Since private cloud 

infrastructures are generally managed on-site by the organisation and in some cases by a 

3rd party/ external organisation, a CSP is generally able to specify security configurations 
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while retaining some level of control. In some cases, issues arise as the private provider 

relinquishes control over how and if configurations are fully implemented since this 

control remains under the infrastructure owner’s domain. Consequently, limited control 

leads to trust and compliance challenges. To mitigate these challenges, consumers access 

services through a trusted base. The offerings of public cloud versions over a private cloud, 

while presenting some flexibility and cost benefits, introduces security challenges 

associated with the public cloud. 

 

Figure 15. Security challenges that are unique to private cloud produced by the 

author of this thesis. 

Figure 16 shows the security issues unique to public clouds. In the public cloud scenario, 

the infrastructure is managed and owned by a 3rd party and located off-site, in which 

consumers access services through an untrusted base. Public clouds are deemed as 

financially viable; cheaper model option compared to its alternatives. In addition, as a cloud 

subset, public clouds benefits from a shared pool of resources. Physical security risks in 

SaaS are greater in the public cloud (Subashini & Kavitha, 2011). Dependence on an 

internet connection to access off-premise infrastructure introduces risks to networks: for 

instance, attacks associated with the traditional security model such as man-in-the-middle 

and DoS attacks, threaten the security of data in transit. While traditional security systems 

such as firewalls, IDS and IPS are well-established and mature (Gonzalez et al., 2012), 

efforts for developing similarly effective firewalling and filtering systems for public cloud 

is an ongoing process. Consequently, control, trust and insurance issues exist as consumers 
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expect their data to remain secure, and providers give assurances of the security of their 

services. 

 

Figure 16. Security challenges that are unique to public cloud produced by the 

author of this thesis. 

Figure 17 illustrates unique security challenges specific to hybrid clouds, where model 

infrastructures are managed and owned by both the organisation and a 3rd party. In this 

model, services are located both on-premises and off-premises. The hybrid option is highly 

dynamic as it benefits from the flexibility and scalability of the public cloud, and the 

efficiency and security of an on-premise model. Multiple external integrated components 

yield the hybrid nature of this cloud. However, performance, security and reliability 

procedures rely on the strength of the integrated services.  

Integration of services from the private and public options means that multiple platforms 

are in operation, which results in compliance and insurance issues, particularly when 

dealing with SLA and other process and regulatory issues. While heterogeneity aids in 

evading challenges associated with platform lock-in, the same concept introduces 

integration challenges, i.e. security integration on a multi-vendor platform (Takabi, Joshi 

& Ahn, 2010).  
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Figure 17. Security challenges that are unique to hybrid cloud produced by the 

author of this thesis 

Figure 18 shows security challenges unique to service provision. Since virtualisation 

facilitates the provision of resources as services, security at the service level critical.  

 

Figure 18. Security challenges that are unique to service provision produced by the 

author of this thesis 
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This includes the security of the hypervisor and the virtual machine since services (SaaS, 

PaaS, IaaS, etc.) reside in middleware. PaaS impacts both the cloud user and clouds 

provider at the runtime of applications and deployment of applications. One of the 

contentious issues on cloud security pertains to cloud-stored data where an end-user who 

owns data has limited control or knowledge of where their data is stored. Hence, cloud 

service providers implement homomorphic encryption algorithms with distributed 

verification to mitigate storage security concerns including sanitization, availability, 

leakage, snooping, etc. One of the common challenges facing service provision is 

establishing trust where tenants share the same physical space, they have a secure and 

dedicated space. A trusted third-party solution is generally introduced but trust nonetheless 

remains an outstanding and unique issue in the infrastructure level of service provision. 

Consequently, the security of transient data becomes critical considering the prevalence of 

data hijacking (Baars & Spruit, 2012); (Demchenko et al., 2011). 

Figure 19 below illustrates unique cloud security challenges according to (Ryan, 2013). This 

figure is a conceptualisation of the classification as understood by the author of this thesis. 

These author view security issues from a perspective of their uniqueness to the cloud in 

contrast to their existence in the pre-cloud era. 

 

Figure 19. Security challenges from the perspective of uniqueness to the cloud and 

their existence pre-cloud produced by the author of this thesis 

Their classification identifies multi-tenancy issues as a traditional challenge, suggesting the 

notion that the multi-tenancy concept predates cloud computing and has existing solutions 

and hence no longer be a scientific challenge (Ryan, 2013). To substantiate this claim, the 

author identifies the operating system (OS) process isolation and the VMM as mature 

multi-tenant environment management solutions. Moreover, the author identifies threats 

to cloud resident data as the only cloud-specific challenge due to the involvement of third 
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parties such as the cloud provider, its employees and sub-contractors. In its current form, 

this is a simple classification which is easy to understand. This perspective demonstrates 

the relationship between cloud entities and the commonalities that exist with respect to 

data stored in the cloud. While this classification highlights important areas for cloud 

resident data, this perspective limited as it narrowly focuses on one perspective. Thus, this 

perspective is non-exhaustiveness as it misses key cloud components and issues around 

the VMM, trust, control, legal, process and regulatory issues. 

Figure 20 illustrates cloud security challenges from an outsourcing perspective identified 

by (Shahzad, 2014). This figure is a conceptualisation of the classification as understood 

by the author of this thesis. In their state-of-the-art survey, the authors identify the 

outsourcing element in cloud computing environments as a unique to cloud computing 

and thus a unique source of security concern. According to these authors, an outsourcing 

perspective is critical since cloud service providers retain control of data. Along similar 

lines, the authors in (Dorey & Leite, 2011) concur and specifically identify unique risks 

introduced by 3rd parties through end-to-end interactions.  

 

Figure 20. Security challenges from an outsourcing perspective produced by the 

author of this thesis 

Unlike the works by (Ryan, 2013), the authors in (Shahzad, 2014) also consider multi-

tenancy, virtualisation and service level agreements (SLA), as unique to the outsourcing 

perspective with eDDoS attacks and cloud storage data security as some of the main issues 
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of concern. These authors share a common view that security challenges affecting the 

cloud are either unique to the cloud or traditionally existed. However, this is broadly too 

general a view of security issues in an otherwise complex environment. As noted by (Ali, 

Khan & Vasilakos, 2015), this complexity builds over time as cloud system entities interact 

and internal organisation changes. Hence, the taxonomy from an outsourcing perspective 

in its current form lacks the necessary complexity for general use. It is difficult to identify 

the boundaries upon which (Shahzad, 2014)’s observed security issues impact the cloud, 

which layer of the cloud, at what level, etc. Nonetheless, due to its simplicity it is easy to 

understand and perhaps useful when applied to address or understand specific outsourcing 

scenarios.  

Figure 21 illustrates security challenges according to the state-of-the-art analysis by 

(Srinivasan et al., 2012). This figure is a conceptualisation of the classification as understood 

by the author of this thesis. Srinivasan et al. (2012) distinguish cloud security challenges 

according to the architecture, technology, process and regulation perspectives of cloud 

environments. 

 

Figure 21. Security challenges from an architectural, technological, process and 

regulatory perspective produced by the author of this thesis 

In this regard, they identify two main categories; challenges that have architectural and 

technological aspects and those that are process and regulation oriented. Architectural 
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challenges in this regard encompass multi-tenancy, identity management, virtualisation, 

cryptography and key management issues. On the other hand, process and regulatory 

issues include governance and compliance, API security, migration issues, SLA and trust 

management challenges. The current author finds the simplicity of (Srinivasan et al., 2012)’s 

classification as beneficial as it enhances the taxonomy’s usability. While this taxonomy 

broadly incorporates most of the security issues discussed in the literature and identified 

in this research, the omission of traditional issues limits the scope of this taxonomy. As 

demonstrated earlier in this research and indeed throughout available literature, traditional 

challenges such as the DoS, malware, malicious insider, etc. remain a threat to 

confidentiality, integrity and privacy in the cloud. (Cser, 2016) suggests that as traditional 

security strategies become outdated and ineffective in the cloud, enhanced behavioural and 

malware detection, preventative strategies and effective security ecosystems among 

security providers will ultimately deliver adequate security.  

Figure 22 illustrates the classification of security challenges according to a survey by (Rong, 

Nguyen & Jaatun, 2013a). This figure is a conceptualisation of the classification as 

understood by the author of this thesis. Rong et al.(2013a) classifies cloud security 

challenges into traditional and cloud categories.  

 

Figure 22. Security challenges from a traditional and cloud-specific perspective 

produced by the author of this thesis 
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According to the authors, traditional challenges describes those issues common to 

traditional communication systems such as availability, while cloud challenges described 

those that are uniquely introduced by the cloud. These include resource location, multi-

tenancy, trust, monitoring and logging and cloud standardization (Rong, Nguyen & Jaatun, 

2013a). The simplicity of (Almorsy, Grundy & Müller, 2016)’s classification makes it easy 

to understand, but nonetheless with limited usability across the entire cloud system. 

Remarkably, the authors view VM security as a traditional challenge whose solutions is 

available, despite clear evidence in current literature that VM security is indeed a cloud 

security factor that is absent in traditional systems (Almorsy, Grundy & Müller, 2016). This 

research posits challenges in VM security are unique to the cloud due to the operational 

dependencies between cloud models. This notion is articulated by (Ali, Khan & Vasilakos, 

2015) who distinguish operational dependencies in the virtual layer; Software developers 

(SaaS) need a platform (PaaS) (Ali, Khan & Vasilakos, 2015). One may conclude that since 

the outsourcing element is a core concept of the cloud, 3rd parties will introduce trust and 

insurance challenges, which are unique to the cloud.  

Figure 23 illustrates the classification of security challenges according to a co-residency 

perspective postulated by (Roy et al., 2015). This figure is a conceptualisation of the 

classification as understood by the author of this thesis. (Roy et al., 2015) classify cloud 

security issues in the infrastructure, data, communication and external services integration 

perspective. Co-residency attacks breach confidentiality when a malicious insider 

manipulates multi-tenancy to compromise other tenants on the same physical 

infrastructure. Each of the four categories is further divided into a security area sub-

category, up to security issues (e.g. hypervisor & trusted computing base as sub-divisions 

of infrastructure security, resulting in integrity, confidentiality and availability issues). This 

research finds this classification useful as it highlights specific attacks in cloud computing. 

This classification is also simple and easy to understand, but nonetheless not exhaustive in 

its presentation of security challenges. For example, while an insecure trusted computing 

base is a risk to confidentiality, integrity and availability, it consequentially introduces issues 

of trust, privacy etc. 
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Figure 23. Security challenges from a co-residency perspective produced by the 

author of this thesis 

Figure 24 illustrates a three-tier cloud layer classification by (Chraibi, Harroud & Maach, 

2013). This figure is a conceptualisation of the classification as understood by the author 

of this thesis. In their work, (Chraibi, Harroud & Maach, 2013) view security issues in 

cloud environments pursuant to the level they belong. Thus, the authors view challenges 

from six levels; hardware, VM manager, guest OS, applications, network and governance. 

At the hardware level, the authors suggest availability, integrity, privacy and accountability 

as pertinent security issues. Similar security concerns exist at the application level, and all 

but accountability remain pertinent with network and governance. A guest operating 

system (OS) can access resources in the VMM by compromising insecure design, thereby 

compromising the integrity and privacy of that VMM and its tenants (Srinivasan et al., 

2012).  

This is a useful taxonomy as it includes some of the core concerns found during the current 

research. However, this taxonomy is limited only to general use due to the authors’ high-

level outlook on security challenges. Moreover, this research finds this taxonomy lacking 

details, for instance, whether the security challenge exists internal or external of the cloud. 

For instance, machines are hardware, and faults exist on the server-side or user-side. From 
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a cloud perspective, faults on the user-side do not necessarily cause the same security 

concerns as faults on the server-side, this taxonomy would benefit from further detailing.  

 

Figure 24. Security challenges from the perspective of the layer of cloud produced 

by the author of this thesis 

Figure 25 below illustrates a cloud development perspective to cloud security challenges 

according to (Singh, Jeong & Park, 2016). This figure is a conceptualisation of the 

classification as understood by the author of this thesis. (Singh, Jeong & Park, 2016) view 

the reliance on web services and technologies, along with software applications and 

development languages as central areas which introduce security vulnerabilities. Hence, 

this research infers this classification as suggesting a development perspective. Along with 
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other security issues illustrated in the figure below, this taxonomy highlights security 

challenges around metadata and web services. 

 

Figure 25. Cloud security challenges from a development perspective produced by 

the author of this thesis 

Web services (Web 2.0) is suggested to introduce inherited security issues (Singh, Jeong & 

Park, 2016), a line of argument similar to traditional issues posited by (Rong, Nguyen & 

Jaatun, 2013a). Metadata, on the other hand, is highlighted as it contains data about cloud-

stored data. In their view, sanitization, maintenance, separation and location protection, 

therefore, become the most critical challenge. While this taxonomy highlights critical 

security issues, particularly those relevant to a development perspective, there is no clear 

demonstration of complete consideration for other related entities. For instance, the role 

of the cloud broker as shown by (Bohn et al., 2011) aims to ease the task of managing 

complex service integration through intermediation, aggregation and arbitration. The 
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broker’s role which entails monitoring and managing security policies between cloud 

consumer and cloud provider is of immense significance to cloud computing in general, 

and specifically to a development perspective. Moreover, where many different 

development languages may introduce potential vulnerabilities (Singh, Jeong & Park, 

2016), the cloud broker’s intermediation role is significant. 

Figure 26 illustrates a classification of cloud security challenges presented in survey 

research by (Ali, Khan & Vasilakos, 2015). This figure is a conceptualisation of the 

classification as understood by the author of this thesis.  

 

Figure 26. Cloud security challenges from a development perspective produced by 

the author of this thesis 
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(Ali, Khan & Vasilakos, 2015) classify security challenges according to the following: 

resources pooling, underlying technologies such as virtualisation, and the operational 

dependencies of cloud services on the cloud infrastructure. They identify external 

communicational challenges due to the significance of the internet for communication 

between the cloud provider and the customer. Internal challenges however, are viewed as 

those interactional issues that arise because of cloud characteristics and technologies, for 

instance, between virtual machines at a network level and another shared communication 

infrastructure Architectural challenges, on the other hand include virtualisation issues 

associated with a shared virtual environment in multi-tenant setup, for instant, VM 

isolation. Furthermore, they view data storage issues, insecure APIs and web applications 

and identity management, as architectural challenges. Contractual and legal challenges 

include agreements, i.e. enforcement and insurance, between the CSP and consumer, 

including performance insurance and consequences in times of breach. Moreover, legal 

challenges also encompass issues around discrepancies in the application of the law due to 

physical locations and/or jurisdiction.  

Whereas this taxonomy comprehensively covers a wide range of cloud security concerns, 

it fails to incorporate the outsourcing components of cloud computing. This is a critical 

aspect of the cloud since 3rd parties form a core component of the cloud ecosystem. As 

noted by (Dorey & Leite, 2011), associated risks, control, supplier sustainability and 

integrity are some of the critical concerns to the cloud computing architecture. These 

among others, demonstrate the deficiency of (Ali, Khan & Vasilakos, 2015)’s perspectives 

to cloud computing security.  

Figure 27 illustrates this research’s conceptualisation of security challenges from 

architectural complexities perspectives according to (Dorey & Leite, 2011). According to 

these authors, identity management, data security and trust & assurance are priority areas 

for security improvements (Dorey & Leite, 2011). The authors argue that cloud security 

challenges exist due to the architectural complexities and thus, trust & assurance, identity 

management and data security as priority areas for security improvements in cloud 

environments. Moreover, they propose that cloud security challenges exist due to the 

architectural complexities within the cloud environment.  

It is the opinion of the author of this thesis that multi-tenancy, control issues related to 

third parties and security issues inherent to the cloud architecture such as monitoring, and 
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auditing are equally critical to security in cloud computing. Data storage concerns identified 

here resemble a data life-cycle perspective motivated by the authors in (Gonzalez et al., 

2012). According to these authors, privacy focuses on the complete data life cycle, from 

the point when data is generated through to its destruction, while legal issues pertain 

privacy relate to guidelines in the cloud. The authors define a compliance category relating 

to governance and control issues. Furthermore, they define the architecture category to 

include elements such as the network, interfaces and the virtualisation issues (Isolation, 

hypervisor, data leaks, and VM identification and cross VM attacks) arising due to cloud 

the architecture and infrastructural implementations. According to the authors, other 

challenges include decision-making, user access and authentication. This taxonomy is 

deemed as limited as it does not include some critical security challenges 

 

Figure 27. Cloud security challenges from the perspective of architectural 

complexities produced by the author of this thesis 

Figure 28 illustrates cloud security challenges from an organisation’s outsourcing 

components perspective according to (Jansen, 2011). This figure is a conceptualisation of 
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the classification as understood by the author of this thesis. Jansen (2011) classifies cloud 

security issues concerning the outsourcing portions of organisations as trust, architecture, 

software isolation, identity management, data protection and availability. The author 

postulates that loss of direct control of the security aspects in outsourced environments 

introduces risks as it gives the cloud service provider “unprecedented levels of trust” to 

(Jansen, 2011). Likewise, risk management is a challenge in an outsourced environment, as 

organisations possess limited control to prepare for incidents, setting priorities and 

contingency plans.  

 

Figure 28. Security challenges from an organisation’s outsourcing components 

perspective produced by the author of this thesis 
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This classification is deemed to be useful and insightful. For instance, outages as a critical 

cloud security challenge to availability. In addition, this thesis considers architectural 

challenges including client-side security to be a valuable consideration; cloud interactions 

begin at the client workstation, through the internet to the cloud. However, this 

classification could benefit from illustrating wider coverage, for instance, considering trust 

issues pertinent to the consumer vs trust issues pertinent to a 3rd party such as a sub-

contractor. Moreover, it may also consider issues that are a result of implementations in 

cloud infrastructure; the physical and organisational structures and facilities that constitute 

the cloud (Liu et al., 2011). For instance, where cloud consumers utilise SaaS applications 

to process data, often without the knowledge of how data is processed or where it resides, 

compliance and privacy are some of the main security issues that arise (Subashini & 

Kavitha, 2011). From jurisdiction perspective, a range of legal challenges including e-

discovery become prominent across jurisdictional boundaries. From a technical 

perspective, virtualisation introduces vulnerabilities associated with isolating VMs on 

shared physical infrastructure, hypervisor vulnerabilities that may result in data leakages, 

malicious attempts to sniff traffic, compromised cryptographic keys and other confidential 

data (Subashini & Kavitha, 2011).  

Typically, one of cloud computing’s main advantages for an organisation is the reduction 

in management and maintenance costs associated with computing infrastructure, including 

the security. This implies that trust is assumed as shared between the cloud provider and 

the consumer (Sun et al., 2011). However, considering vulnerabilities due to multi-tenancy, 

virtualisation, 3rd parties and/or shared infrastructures, trust concerns arise due to the 

subjective, context-based, imprecise and often transitive nature of trust (Sun et al., 2011). 

As noted by the authors in (Zissis & Lekkas, 2012), depending on the cloud model, trust 

tends to be an obscure property due to loss in the governance of data and applications 

associated with outsourcing services. 

Figure 29 illustrates this research’s interpretation of cloud security challenges from the end-

users perspective identified by (Zissis & Lekkas, 2012). These authors classify security 

challenges according to an end user's concerns of security issues at the application, virtual 

and physical layers of the cloud. They suggest a logical notion of the end-user as broadly 

encompassed in a cloud subscriber, software developer and the person or organisations 

who owns a cloud infrastructure. According to these authors, an end-user-centric 
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proposition presents a compelling argument for a Trusted Third Party (TTP), as a solution 

to trust issues at a horizontal level of service (Zissis & Lekkas, 2012).  

 

Figure 29. Cloud security challenges from the end-users perspective produced by 

the author of this thesis 

This classification offers a useful technical proposition towards addressing one of the most 

prevalent security challenges in the cloud. More so when considering the importance of 

the trust element when integrating cloud computing with other technologies such as the 

IoT (Botta et al., 2016)(Díaz, Martín & Rubio, 2016). 

Nonetheless, this perspective suffers from the common deficiency of single-perspective 

approaches, i.e. it is only limited to local concerns for the end-user and perhaps fails to 

address the wider security challenges of other dissimilar perspectives. One major 

drawback, as a result, pertains to developing countermeasures. Applying (Zissis & Lekkas, 

2012)’s end-user perspective implies that only clearly identified local security concerns are 
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focused upon, and thus countermeasures predominantly offer narrow end-user-centric 

solutions. In fact, this taxonomy does not consider the top-down, bottom-up or left-to-

right view, and hence excludes other dimensions of the complete sense of the cloud that 

clearly constitute areas of concern, e.g. other cloud entities such as 3rd parties as noted in 

(Shahzad, 2014). 

3.4  Proposed holistic taxonomy 

The literature survey shows that existing taxonomies are not generalisable across the entire 

cloud security domain. Figure 30 below clearly demonstrates this multiplicity of 

perspectives to what constitutes cloud security challenges. While other perspectives are 

considerably detailed, their complexity introduces some level of ambiguity. The foregoing 

gives the notion that while existing perspective-driven taxonomies may be simple and 

useful, representing specific perspectives of the cloud security domain, they remain solely 

limited to that perspective and therefore fail to identify and communicate security 

challenges from a holistic view. Arguably, this limitation also perpetuates cloud 

computing’s current security dilemma where solutions are designed for specific threats. 

 

Figure 30. Multiple perspectives to cloud computing security challenges produced 

by the author of this thesis 

In addition, the perspective aspect also implies that current taxonomies possess inherent 

weaknesses such as ambiguity, non-exclusivity, etc. Thus, the current section proposes a 
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holistic assertion that incorporates the entire cloud paradigm, regardless of perspective. 

Moreover, the holistic notion proposed further shows and supports that cloud security 

challenges can be classified based primarily on the source/origin of the security incident 

rather than a perspective.  

Table 9. A summary of cloud security topical areas. 
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Tenancy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Cloud specific ✓    ✓ ✓   ✓   
Traditional     ✓ ✓   ✓   
Compliance    ✓        
Physical   ✓ ✓    ✓   ✓ 
App/software   ✓     ✓  ✓ ✓ 
Network   ✓ ✓    ✓    
Availability  ✓   ✓    ✓  ✓ 
Architecture ✓ ✓  ✓      ✓ ✓ 
Governance        ✓    
Process        ✓    
Infrastructure       ✓    ✓ 
VM manager      ✓   ✓   ✓ 
Data security ✓ ✓     ✓ ✓ ✓ ✓ ✓ 
Communication      ✓ ✓   ✓ ✓ 
External services ✓    ✓  ✓   ✓  
3rd parties ✓  ✓    ✓     
Technical ✓          ✓ 
Privacy    ✓       ✓ 
Trust  ✓ ✓  ✓     ✓ ✓ 
Legal & SLA          ✓ ✓ 
IDM  ✓ ✓  ✓    ✓ ✓ ✓ ✓ 
Data Isolation  ✓  ✓ ✓ ✓  ✓  ✓  
Risk  ✓          
Malicious insider  ✓  ✓ ✓    ✓   ✓ 

By simple inspection, Table 9 suggest that, while some areas, e.g. external services and 3rd 

parties overlap, they are nonetheless diversely viewed among various perspectives. 

Intuitively, this points to the importance of specificity when tackling security issues. Hence, 

this thesis places emphasis on simplicity to be a positive attribute towards the usefulness 
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of a taxonomy. Gap areas in current taxonomies (suggested by adjacent x) point to several 

unexplored security areas of interest which exist across different perspectives. In this sense, 

simplicity limits deeper detail and hinders the adequacy of taxonomies. Whereas the 

concept of the ‘source’ forms the basis upon which a taxonomy evolves, a comprehensive 

approach would inform the development of the holistic taxonomy for cloud computing 

security. The matrix populates earlier taxonomies against relevant areas of the cloud 

reviewed by authors. This is clearly not an exhaustive list.  

Having analysed the limitations of existing taxonomies with respect to cloud computing’s 

important features and related security issues, this section presents a holistic taxonomy 

with clearly defined categories and provides descriptions explanations of each. Unlike 

taxonomies in current literature, the proposed holistic taxonomy will facilitate a 

comprehensive analysis of security issues and the development of robust security 

countermeasures. As the origin/source hypothesis alludes, the root of the holistic 

taxonomy comprises three main categories; adopted, inherent and triggered cloud security 

challenges. Figure 31 is the graphical illustration of the detailed holistic taxonomy.  

To capture the multiple perspectives obtained through research, vertical categories, herein 

named Cat 0, Cat 1, Cat 2, Cat 3, Cat 4 and Cat 5, are integrated. Cat 0 encompasses the 

three main categories mentioned above. While holistic notion is placed in retrospect to 

perspective-driven classifications discussed earlier, some contributions including, (Liu et 

al., 2015)(Almorsy, Grundy & Müller, 2016) and (Huang & Wu, 2018) are substantial to 

the current proposition. Below are descriptions of the proposed categories, which 

according to the current author, highlight the basis for new and unique opportunities each 

affords to the general cloud-wide security domain. 

Cat 0: Distinguishes security challenges according to source or their origin, in line with 

(Armbrust et al., 2010) who suggests security issues as being both internal and 

external of the cloud. Knowledge of the source or origin presents a clear 

opportunity for applying specific security countermeasures and where necessary, 

tracing the source. Practically, this implies for instance, that the Same Origin Policy 

(SOP) can be applied at Cat 0, where monitoring of the original location of a web 

request, enabling validation of that requests (II & Al-Hamdani, 2011). 
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Figure 31. Holistic taxonomy of cloud computing security challenges.  

The holistic taxonomy captures security challenges adopted security challenges (red) such as traditional security challenges and trends. It captures security challenges inherent to the cloud architecture (blue) such as 

business and architectural issues. Moreover, it captures cloud security challenges which arise from implementations in cloud environments (black). 
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Cat 1: Consists of two sub-classes that provides more detail into the nature of the 

challenges described in Cat 0. When considering cyberspace in general, elements 

of this category can be extended to capture emergent behaviours 

Cat 2: Distinguishes security issues simply as technical or non-technical. Based on this 

categorisation, it is easier to effect efficient prioritising and decision-making, for 

instance, non-technical business priorities would attend to concerns such as 

governance and policy matters. 

Cat 3: Provides detailed descriptions of the technical and non-technical aspects of Cat 2. 

Put into perspective, Cat 3 describes traditional security challenges (Cat 1) 

emanating from cloud’s peripherals (Cat 0) which are technical and/or non-

technical in nature (Cat 2), but only exist upon elevation in the cloud (Cat 3). As 

an example, when considering the architectural perspective, Cat 3 describes 

technical challenges pertaining to the consumer and provider and non-technical 

challenges pertaining to the broker, carrier and auditor.  

Cat 4: Describes attributes that have a direct impact upon security, including networking 

attributes in the traditional sense result in network attacks such as the man-in-

middle or DoS. Similarly, attributes that describe data result in data breaches, etc. 

Virtual layer attributes result in multi-tenancy, virtual machine management and 

hypervisor security issues. 

Cat 5: As has been illustrated throughout this paper, there are many security challenges 

that affect the CSP, consumer, carrier, auditor and the broker. This category 

identifies a spectrum of security challenges covering the entire cloud domain. This 

category is not exhaustive, thus, security challenges listed in this category exist for 

illustrative purposes. 

3.5  Analysis 

As noted earlier in this chapter, existing literature on classifying cloud security challenges 

fails to represent a comprehensive view of the cloud security continuum. Moreover, it is 

quite clear that no research efforts go towards consolidating existing multiple textual 
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perspectives, for the benefit of obtaining useful value for security practitioners. By 

combining viewpoints of what constitutes current security concerns from academia and 

industry, this research substantially adds to the growing body of literature on cloud 

security. The holistic approach employed is unambiguous as it integrates cloud 

computing’s many dimensions; services, entities, attributes, layers, characteristics, etc. and 

links all its perspectives into non-specific categories (Cat 0 — Cat 5). In this manner, each 

category represents a branch of potential security incidents.  

The proposed holistic taxonomy comprehensively eliminates gaps introduced by 

perspective-driven views of the cloud, provides a basis for further research and facilitates 

the development of security strategies. Another clear opportunity is the possibility to 

enforce accountability in any cloud entity, including the enforcement of punitive or 

corrective measures through easier identification of the source or origin of a security 

incident. From an incident response point of view, the ability to identify the source and/or 

origin of a security incident means response teams spend more time implementing 

mitigation measures, rather than trying to identify the incident. Furthermore, the proposed 

holistic taxonomy highlights security boundaries, including where security systems can be 

placed. Thus, considering UUURs, Cat 1 of the proposed holistic taxonomy can be 

extended to capture emergent phenomenon and solutions. Figure 31 addresses the 

obtaining view that cloud security challenges are addressed in isolation. It raises an 

important concern for decision-making around security solutions; which is itself a critical 

factor in the security and requires better strategy and planning (Paquette, Jaeger & Wilson, 

2010).  

To enhance the security posture of cloud computing, the focus should be firmly placed on 

identifying and placing into context security challenges based on their source/origin 

foremost, before extending to the actual security incident. By considering source/origin as 

the basis for a holistic classification, this research highlights planning as a critical phase 

that is significant when designing and implementing security countermeasures. Hence, the 

proposed holistic taxonomy enables better planning for security design and provides a 

contextual illustration of the relationship between cloud computing and its peripherals for 

research analysis. For instance, Cat 1 enables cloud solution planning by mapping any 

organisation’s objectives including their security requirements.  
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Trends such as Big Data are at the same level as business processes and procedures and 

the security issues in the architecture and infrastructure. This implies that in a real 

environment, Cat 0 and Cat 1 which highlight issues at the perimeter-level of security, 

enable organisations to make use of their existing security technologies. This is an 

important addition considering deficiencies in existing taxonomies. Furthermore, the 

proposed holistic taxonomy integrates Cat 3 following NIST’s view of cloud’s computing: 

cloud entities, attributes and models. Addressing security is also contingent upon how 

organisations are prepared to avoid or minimise the impact of insecurity. This readiness is 

what determines the appropriate security solutions and the degree of proactiveness that 

ensure that unforeseen events or black swan events are well-prepared for. Moreover, 

employing the most appropriate countermeasures in the cloud includes applying the 

correct mechanisms (tools, techniques, procedures and approaches), correctly presented 

requirements and adequate policy that defines the lower and up boundaries of what is 

allowed and what is not allowed. These approaches can be matured by applying the holistic 

taxonomy proposed in this research. Several techniques and approaches to secure cloud 

environment exist, some focusing on the technicality of achieving a security design, while 

others focus on the approach. For instance, CloudProtect is designed to provide privacy 

and confidentiality in the cloud (Ardagna et al., 2015b). (Rahman & Choo, 2015) 

Conceptual Cloud Incident Handling model addresses security from the cost perspective 

of an incident handling investment, cost of incident detection and analysis, the cost of 

responding to an incident and post response cost. 

Yet, some challenges remain open. The ability to visualise deficiencies in security solutions 

designs requires that visualisation techniques are revised. Evidence in the literature 

suggests that design outcomes are reliant upon the visualisation technique; from earlier 

systems with lower dimensions and numbers to complex systems with complex 

information (Chalmers, 2013). In the latter, is it suggested that visualisation is 

incomprehensible due to a large amount of information to be represented (Knight & 

Munro, 1999). Another challenge pertains to the process itself. Manually interpreting 

corpus textual data is a tedious process and prone to errors and omissions.  
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3.6  Summary 

The work presented in this chapter aims to address the foundational aspects of the scope 

of this thesis, by effectively placing cloud computing security challenges into context. It is 

necessary after all, to explore what security issues exist, how they are communicated and 

understood in academia and in practice, and how this knowledge can be applied to enable 

the bio-inspired approach proposed. A proposed definition for a holistic taxonomy (See 

section 3.2.1) identifies the requirements for a holistic notion specific to cloud computing 

security challenges. The holistic design approach and the holistic workflow process are 

useful guides to the holistic taxonomy. The holistic taxonomy presented in section exposes 

security areas of the cloud and proposed as useful to facilitate the design of enforcement 

or corrective countermeasures based upon the source or origin of a security incident. The 

proposed taxonomy thus satisfies H1 of the research hypothesis. 
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Chapter 4  A TRIZ-based approach 

for prey-inspired cloud computing 

survivability  

This chapter presents a TRIZ-based prey-inspired survivability design method to facilitate bio-inspired 

design as applied from prey survival to survivability in cloud computing. This integrates both normative 

and descriptive perspectives. Based upon a problem-driven approach, a 3-step process facilitates the 

interdomain transfer of concepts (retrieval, mapping and transfer), whereas TRIZ’s generic approach 

suggests specific solutions for cloud computing challenges based upon systematically deduced resolutions. 

Hence, this chapter addresses the hypothesis with respect to the applicability of ‘escalating survival 

behaviours and mechanisms’ to enhance survivability. Since this method presented are systematic, the 

approach proposed here is generalisable for use in other domains. This chapter is based on contributing 

publications RP3, PR4 and RP6. 

4.1  Introduction 

Cloud computing presents a new dimension to the longstanding bio-inspired design 

challenge which impacts upon innovation itself, i.e. how to create innovative solutions and 

resolve design requirement contradiction. While several bio-inspired design approaches 

(Nagel & Stone, 2011a) (Vincent et al., 2006) exist, there is limited empirical studies to 

compare them. The design problem for cloud computing concerns contradictions between 

survivability and security requirements and cloud environments’ attributes. For instance, 

how to address security challenges due to the cloud’s enlarged attack surface while 

preserving broad-network access which enables cloud computing to be accessible 
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anywhere on any device. In this case, how to improve the design requirements in question 

while preserving the cloud’s attractive attribute becomes the issues of concern.  

Analogical design, functional modelling and other reasoning methods (Glier & McAdams, 

2011) attempt to resolve this problem. However, these approaches are built on functional 

design tools and methods which require in-depth interdisciplinary knowledge to develop 

solutions (Nagel & Stone, 2011b). Bio-inspired design, for instance, relies upon a designer’s 

understanding of the underlying biological system for efficient inter-domain transfer of 

information. An engineering-to-biology thesaurus (Nagel, Stone & Mcadams, 2010) thus 

becomes useful through direct translation or abstraction of biological terminology to 

engineering. Notwithstanding, bio-inspired systems such as self-managed cloud platforms 

(Hariri, Eltoweissy & Al-Nashif, 2011)(Ali, Robson & Boukerche, 2016) possessing the 

complexity attributes of inter-networked environments resting on established evolution 

principles of ‘self’ (Meisel, Pappas & Zhang, 2010) have been proposed.  

Earlier work by the author of this thesis identifies a number of bio-inspired algorithms 

where the predator-prey system are specifically identified as vastly useful for high 

adaptation (Mthunzi & Benkhelifa, 2017). As noted by (Andersson et al., 2009), enhancing 

error-free and automated survivability in dynamic, complex and unpredictable 

environments entails identifying what is central to adaption. Nonetheless, it is established 

that the use of biological systems in cloud computing security and survivability is an under-

researched area (Stoykov & Yazidi, 2016). This deficiency in research forms the basis for 

this chapter’s work to develop generalisable approaches for prioritising and combining 

interdisciplinary objectives in a formal manner and offer systematic solutions to the cloud 

computing security domain.  

The remainder of this chapter is as follows: Section 4.2 - 4.3 presents the method; the 

problem-driven approach applied to identify a biological solution for cloud computing. 

The 3-step process is a systematic approach for transferring natural concepts to cloud 

computing, and the TRIZ method for innovative solutions. Section 4.4.1 shows the 

application of TRIZ. Section 4.5 presents a NetLogo pilot experiment and Section 4.6  

concludes the chapter and summarises the main findings. 
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4.2  Problem-driven design context 

The current chapter’s contributions postulate that given an old problem (Pold) with an old 

solution (Sold), a new problem (Pnew) can be conceptualised with new partial and null 

solutions (Snew) in the solutions space Sold to Snew. Hence, prey animals’ solution against 

predation is proposed as core requirements for cloud computing’s survivability problem. 

Thus, solutions are proposed as effective for cloud computing because, (1) each serves to 

address specific contradictions, (2) solutions exist at varying levels of abstraction. (3) The 

process suggests core areas for future work in this research. Hence, one of the main 

contributions of this chapter is the systematic method for biology-to-cloud design, to 

facilitate the efficient and unambiguous transfer of concept and information. Figure 32 

shows the generic processes. Dotted line indicates the boundary of the taxonomy 

development processes, while the solid line indicates the outer boundary. Arrows indicate 

the direction of flow between the processes. Briefly, an input model which in the current 

chapter, represents the multiple contexts of security within cloud computing’s security 

fora.  

 

Figure 32. Holistic problem-driven approach for bio-cloud computing design 

produced by the author of this thesis 
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On the other end, the output model provides the holistic tool that specifies the security or 

survivability baselines and contexts. In the current chapter, this is specifically useful for 

information retrieval (described below). However, the output model can be used for 

security systems baselining, security specifications and configurations or security planning. 

Lower level processes comprise the taxonomy requirements loop (1) - thematic modelling 

of the cloud security paradigm and functional analysis which deconstructs, define and 

assigns categories to concepts. A design loop (2) models the continuous processes of the 

functional analysis and the synthesis; to functional concepts to those that resemble the real 

physical cloud environment. This useful as it facilitates the definition and extension of 

additional security concepts and elements (these are represented as categories, sub-

categories, sub-sub-categories, etc. in – holistic taxonomy) of the holistic taxonomy. 

Analysis and control facilitate the evaluation of the analysed cloud security concepts, which 

enables the exploration of gap areas and trade-offs, both useful inputs for the synthesis 

model. For the interested reader, a range of commonly applied taxonomy development 

methods exist in the literature (Nickerson, Varshney & Muntermann, 2013) presents an 

interesting cross-domain review. 

4.3  3-step concept transfer process 

Although several studies focus on interdisciplinary (cloud and biology) bio-inspired design 

methodologies, there is a deficient focus on how interdomain concepts are retrieved, 

mapped and integrated before transfer into a target domain. This section outlines a 3-step 

process shown in Figure 33, to facilitate efficient concept transfer from biology to cloud 

computing. 

 

Figure 33. 3-step process produced by the author of this thesis 
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This is the first part of the broader methodology whose conclusion is the application of 

TRIZ parameters on contradicting but transferred concepts. Besides the methodological 

transfer, this process highlights the necessary steps to alleviates common ambiguity 

challenges in the interdomain transfer. The theoretical significance of this process is in 

modelling of generic concept extraction and transfer processes necessary for 

interdisciplinary design in anticipation of limited expert information in at least one domain. 

4.3.1  Retrieving concepts 

Several methods exist in information retrieval areas such as data mining and text mining, 

etc. This is an important step for effectively mapping of features and establishing 

relationships among interdisciplinary knowledge. For the purposes of this research, let us 

assume an arbitrary finite set of systems or a system of systems, where systems or a system 

of systems might correspond to natural systems, e.g. plants, mammals, reptiles, etc. They 

might also correspond to some form of relationship among system components or sub-

systems across concepts such as parenting, hierarchy, habitat, etc. It may also be the case 

that a natural system can be specified using its features or a combination of features.  

Starting from a quasi-formal characterisation standpoint, let us suppose that a system X 

possesses some similarities to system Y in some aspect. Moreover, let us also suppose that 

system X possesses some unique feature Z, such that system Y possesses feature Z or 

some other feature, Z*, which are like Z. Given two domains of interest; source domain, 

N, and target domain, C, to represent a natural system and cloud system, respectively. Each 

is comprised of a set of objects; a derived set of first order and/or high-order statements 

𝑁 = {𝑁𝑜 , 𝑁𝑝, 𝑁𝑟 , 𝑁𝑓} are components of the source domain, while their counterparts 

{𝐶𝑜, 𝐶𝑝, 𝐶𝑟 𝑎𝑛𝑑 𝐶𝑓} are components of the target domain. Terms o, p, r and f define 

unique relationships between corresponding objects in both the target and source domain. 

Hence, s-feature is a set  of cardinality n, whereupon nature and cloud 

system are defined according to the following:  

• A nature system (nature-System), N, is a set of m-features, where {𝑁 =

𝑁1, 𝑁2, . . 𝑁𝑚|𝑚 ≥ 1}{𝑁 = 𝐹1, 𝐹2, … 𝐹𝑚|𝑚 ≥ 1}, implying that nature system is 

are a set of m-tuples, which is true in N for both the set of nature systems and the 
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features that define N. It may not be the case that n-features are strictly the same 

in natural systems. For brevity sake, n-features shall from this point on be referred 

to as features, in respect to concepts and attributes of natural environments. 

• A cloud system (cloud-System), C, is a set of c-features, where {𝐶 =

𝑐1, 𝑐2, … 𝑐𝑛|𝑛 ≥ 1}{𝐶 = 𝐹1, 𝐹2, … 𝐹𝐼|𝐼 ≥ 1} . It may as in 

nature, be the case that not all c-features are the same in all cloud systems. For 

brevity sake, c-features from this point on will be referred to in respect of objects 

as attributes. 

4.3.2  Mapping concepts 

Survivable preys possess unique attributes and are well adapted to their environments. In 

addition, they exhibit strong and successful predation avoidance mechanisms, which 

demonstrates that historical interactions have far-reaching implications for future species 

(Resetarits, 2001). By understanding such behaviours, it is possible to adopt/adapt such 

processes for use in cloud computing. Mapping aims to plausibly demonstrate that a 

proposition is true due to known or accepted similarities between a nature-systems and 

cloud-system, despite known or acceptable differences between both systems.  

Figure 34 below illustrates a generic mapping scheme. The output of mapping is a system 

consisting of unique objectives; Obj1, Obj2..., Objn, unique attributes; Attrib1, Attrib2...Attribn, 

which serves unique benefits: Benf1, Benf2...Benfn. First, domains are distinguished according 

to structure, behaviour and function of their systems. In addition, mapping entails that 

known differences and similarities are clearly identified, particularly in relation to the 

central mapping concept. In this research, the central concept is survivability.  

Hence, with a set of keywords, the task for mapping is to find a graph function, a set of 

connected sub-graphs and extract an accurate ranking function to produce the preferred 

features. 
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Figure 34. Mapping cloud to biological systems; structure, behaviour and function 

features, around a central survivability concept 

Figure 35 is an illustrative example of a graph function for mapping cloud computing and 

prey systems. Hence, the definition below is presented add clarity to the remainder of this 

work. 

Definition 4 (mapping). Links existing knowledge in N and C, despite known or acceptable 

differences between both systems, i.e.  , , ,  and , where starred symbols represent the 

inferred similarity. 

  

Figure 35. A graph example of cloud-prey system mapping  
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4.3.3  Transferring concepts 

For the purposes of discussion, simple natural language (NL) keywords for the survivability 

concept are used despite their known challenges. Since the source of biological information 

is critical, its simplicity (in understanding) is particularly critical for non-biological persons. 

Thus, using suitable search tools or sources such as in (Sadava et al., 2011) will provide 

simple understandable background information. Moreover, while searching biological 

terms tends to be straightforward, a natural language keyword search for analogies tends 

to be ambiguous, considering that synonyms tend to increase the number of matches per 

functional keyword (Vakili & Shu, 2001). Along with works by (Sullivan & Regan, 2011), 

transfer in this section focuses upon verb terms as they objectively enhance a focused 

search wider biological mechanisms to perform the intended actions for cloud computing 

problems. Consider the following: Suicide as a biological function of natural prey animals 

defines: 

• Objective – To bring about death 

• Benefits – sustain living organisms 

• Attributes – predation risk, ageing 

In fact, keyword disambiguation methods such as those in (Sommarive & Report, 2013) 

are suitable to address this challenge. Investigating keyword disambiguation methods is 

however outside the scope of this thesis. For in-depth details and example techniques and 

tools, the interested reader is recommended (Ilevbare, Probert & Phaal, 2013). Based upon 

the cloud computing problem outlined above, transferring concepts from nature to the 

cloud requires that a designer deduces the general solution using TRIZ. This entails one 

to decide on the cloud features to improve (i.e. those identified as degrading the 

survivability concept) and the features to preserve (i.e. those which enhance the 

survivability concept). For purposes of this work, an interactive online tool (TRIZ40) 

(Creativity, 2019a; Domb et al., 2011a) facilitates this process. For purposes of this research, 

three (non-exhaustive) survivability natural language keywords which describe the 

survivability problem features (implied in UUUR features) are identified as central to 

improving the cloud computing problem, the difficulty of detection, adaptability and ease 

of repair. 
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4.4  TRIZ-based approach 

Although TRIZ’s inventive principles have found use in cloud computing, these have been 

largely limited to the business management aspect of the cloud, for instance in (Hsu, Tsai 

& Chen, 2013). Perhaps this is because the original TRIZ is limited where a domain has 

no explicit match with TRIZ’s forty principles. In recent years, however, TRIZ has been 

adapted to suit other environments such as information technology (Beckmanna, 2015). 

Based upon inspiration from prey animals in nature, useful analogies are derived from 

specifically resolved contradictions. The TRIZ method contributes to identifying specific 

design requirements for future cloud survivability solutions. In this research, it is aimed to 

address cloud computing security challenges imposed by UUURs.  

While prey animals must be exhaustively investigated to garner broader representation of 

their natural domain, integrating a problem-driven approach (where survivability problem 

motivates the search for biological analogies towards a solution) (Sullivan & Regan, 2011), 

means the current contribution supports the intended interdisciplinary design. To 

understand TRIZ and its application, below are brief descriptions of TRIZ’s concepts 

which are central to this work. These include, but are not limited to, the general TRIZ 

process, 40 inventive principles, contradiction matrix and contradiction (concept).  

40 inventive principles: Based upon an analysis of 40000 patents, the TRIZ inventor 

suggested the existence of a pattern to most inventions, implying the existence of 

a solution to all problems embedded within the inventive principles (Labuda, 

2015).  

Contradiction: TRIZ’s inventor suggested contradictions as the administrative, technical 

and physical constraints which arise as a result of incompatibility that exists 

between a design’s desired features for improvement, and the system (Hsieh, 

Chen & Do, 2015). In fact, it is argued that the invention itself entails the solving 

of contradictions.  

Contradiction Matrix: The inventor introduced a matrix of 39 technical parameters which 

aim to resolve technical contradictions. Parameters in the column represent 

features which are obstacles to desired solutions while column feature is intended 

for improvement. An intersection points to the contradiction solution. An 
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example is BioTRIZ’s contradiction matrix (Craig et al., 2008) with a specific 

focus on extended solutions from living nature.  

The TRIZ’s systematic process is illustrated in Figure 36 is adapted from (Ilevbare, Probert 

& Phaal, 2013). The underlying TRIZ process enables effective bio-inspired design for 

cloud computing.  

 

Figure 36. An illustration of TRIZ’s systematic process adapted from (Ilevbare, 

Probert & Phaal, 2013). By following the TRIZ process from start (green) steps 

represent TRIZ’s generic components whereas P1 and P2, S1 and S2 represent 

TRIZ abstract problems and solutions, respectively.  

As (Russo & Spreafico, 2015) postulates, abstraction enables TRIZ principles to be 

applicable across a wide range of fields. Unlike other problem-solving methods such as 

brainstorming, lateral thinking, mind mapping, etc. TRIZ provides the additional capacity 

to suggest conceptual solutions (defined by TRIZ’s inventive principles) based upon a 

specific problem is identified. Moreover, is it possible to further develop specific factual 

solutions? Defining “our problem” seeks for a specific problem concerning an area to 

which a solution is required. In addition, defining the “general problem” thus reduces the 

problem into its elements which are then applied to the contradiction matrix. Based on 

this latter, a general solution is a combination of TRIZ’s inventive principles to eliminate 
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the contradiction. Finally, the specific solution may draw analogies for the specific problem 

and formulates specific solutions.  

4.4.1  Applying the TRIZ  

This section shows the application of TRIZ. Although originally designed for solving 

problems in physics and chemistry, TRIZ has been applied to provide logical, innovative 

and inventive creations across many domains (Ilevbare, Probert & Phaal, 2013). The 

application of TRIZ to cloud computing’s survivability problem revolves around findings 

by Altshuller (1999) that interdisciplinary problems and their solutions, i.e. science and 

other domains, are similar and have repeated patterns of evolution across domains. In 

addition, the implications of innovation exist beyond the disciplines for which they are 

developed.  

4.4.1.1  Defining the survivability problem  

Defining or conceptualising the problem is the first element of the overall TRIZ problem-

solving process. Hence, for the purpose of this research, defining the survivability problem 

is illustrated in Figure 37. As an overview of this process, the following three central 

questions should be addressed: (1) What is the problem in cloud computing, (2) What 

needs to the achieved? and (3) What are the obstacles to addressing the problem and 

achieving the objective?  

The survivability problem illustrated below summarily contemplates the following: How 

to achieve survivability and security in view of UUUR while ensuring resiliency (cost) and 

reliability on the fly? How to improve the operational challenge of monitoring and 

detecting UUURs considering unpredictability due to cloud computing’s large surface area, 

broad network access and the complex multi-party interactions? How to improve 

survivability considering important survivability tread-offs including secure, reliable and 

cost-beneficial service provision? 
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Figure 37. Defining the survivability problem, adapted from (Kasravi & Fellow, 

2010) 

4.4.1.2  Defining a generic problem  

Three (non-exhaustive) survivability features identified as central to improving the cloud 

computing problem, detection, adaptability, recovery and ease of repair. Figure 38 

illustrates the generic problem under this consideration. Briefly, this figure conceptualises 

the problem for cloud computing in the context of the processes, tools and objects within 

an environment. For instance, the problem of adapting is shown in relation to the recovery 

processes as effected by parameter changes. Recovery meanwhile influences some object 

state, for instance, a virtual machine.  
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Figure 38. Generic illustration of the survivability problem 

Table 10 gives a summary and description of each. An interactive online tool; TRIZ40 

(Creativity, 2019b; Domb et al., 2011b) facilitates the TRIZ process of finding solutions by 

resolving contradictions.  
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Table 10. Features to improve and to preserve and summary of corresponding TRIZ principles 

Feature to Improve Feature to preserve TRIZ principles to solve the contradiction 

 
 
 
 
 
 
 
 
Difficulty of detection 

 
 
Area of a stationary object 

2 Taking out: Separate an interfering part or property from an object, or single out the 
only necessary part (or property) of an object 
16 Partial or excessive actions: If 100 percent of an object is hard to achieve using a given 
solution method then, by using 'slightly less' or 'slightly more' of the same method, the 
problem may be considerably easier to solve  
30 Flexible shells and thin films: Use flexible shells and thin films instead of three-
dimensional structures. Isolate the object from the external environment using flexible 
shells and thin films 
39 Inert atmospheres: Replace a normal environment with an inert one. Add neutral parts 
or inert additives to an object  

Area of moving an object 2 As above; 16 As above; 30 As above; 39 As above 

 
 
Device complexity 

10 Preliminary actions: Perform, before it is needed, the required change of an object 
(either fully or partially). Pre-arrange objects such that they can come into action from the 
most convenient place and without losing time for their delivery 
15 Dynamics: Allow (or design) the characteristics of an object, external environment, or 
process to change to be optimal or to find an optimal operating condition. Divide an object 
into parts capable of movement relative to each other. If an object (or process) is rigid or 
inflexible, make it movable or adaptive.  
28 Mechanical substitutions: Change from static to movable fields, from unstructured 
fields to those having structure. 

 
 
 
 
 
 
Adaptability 

 
 
Reliability 

13 The other way around: Invert the action(s) used to solve the problem, make movable 
parts (or the external environment) fixed, and fixed parts movable, Turn the object (or 
process) 'upside down'. 
24 Intermediary: Use an intermediary carrier article or intermediary process, Merge one 
object temporarily with another (which can be easily removed).  
35 Parameter change: Change an object's physical state, Change the concentration or 
consistency, Change the degree of flexibility. 

 
 
Ease of repair 

 1 Segmentation: Divide an object into independent parts, make an object easy to 
disassemble, Increase the degree of fragmentation or segmentation. 
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4 Asymmetry: Change the shape of an object from symmetrical to asymmetrical, and If an 
object is asymmetrical, increase its degree of asymmetry. 
7 Nested dolls: Place one object inside another; place each object, in turn, inside the other, 
Make a part pass through a cavity in the other. 16 As above 

 
 
Extent of automation 

27 Cheap short-living objects: Replace an inexpensive object with a multiple of 
inexpensive objects, comprising certain qualities (such as service life, for instance). 
34 Discarding and recovering: Make portions of an object that have fulfilled their 
functions go away (discard by dissolving, evaporating, etc.) or modify these directly during 
operation; Conversely, restore consumable parts of an object directly in operation.  
35 As above 

 
 
 
Ease of repair  

 
Cost 

1 As above; 10 As above 
32 Colour changes: Change the colour of an object or its external environment. Change 
the transparency of an object or its external environment. 

External harm affecting the 
object 

2 As above; 10 As above; 16 As above; 35 As above 
 

Loss of substance 2 As above; 27 As above; 34 As above; 35 As above 
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4.4.1.3  Defining a generic solution 

Based upon the generic problems and the identified TRIZ parameters in Table 12, the 

generic solutions, i.e. analogies, are developed briefly explained in this section. For each 

generic solution, a cloud computing example is provided for to give closer semblance to a 

specific cloud computing environment and potentially address the “factual problem 

directly” (Ilevbare, Probert & Phaal, 2013). For each of the three survivability problems, 

detection, adaptability and ease of repair, recommended TRIZ parameter solutions are 

conceptualised as analogous examples to the inspirational prey system. Furthermore, 

analogies for cloud computing survivability are derived based upon prey’s anti-predation 

and predation avoidance mechanisms.  

Detection: Autonomous members of the community cooperate to manage (including 

eliminating) entity-level activities that negatively impact the global state of the 

community (parameter 2: Taking out). Also, rather than waiting to respond after an 

attack, proactive observation, planning and alarms calls improve the timeliness of pre-

planned predation avoidance and anti-predation processes and/activities (parameter 

10 Preliminary actions). Self-organising communities enable survivability objectives to 

be identified, changed and updated dynamically according to changing requirements 

(parameter 15 Dynamics). Besides, partial or excessive actions allow the execution of 

a range of actions (at times in combination) that escalate (preliminary-to-post incident) 

from passive to aggressive and/or vice-versa, according to an on-going 

process/activity (parameter 16 Partial or excessive actions). In addition, as in prey 

animals which develop anti-predator mechanisms to ward off attacks, for instance, 

mechanical, chemical, physical or behavioural, substituting mechanisms in response 

to stimuli can give advantage to an adversary (parameter 28 Mechanical substitution).  

Adaptability: Segmentation means that autonomous entities are designed with properties 

that enable local-level activity and yet with a collective global goal (parameter 1 

Segmentation). In addition, adaptation entails that unusual processes are enabled 

achieve a global goal (parameter 13 The other way around). For instance, sacrificing 

an entity in the first instance, rather than implementing costly countermeasures. 

Moreover, enabling partial or excessive actions means that a combination of actions 

(preliminary-to-post incident) that escalate from passive to aggressive and vice-versa, 

according to on-going survivability process/activity objectives (parameter 16 Partial 
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or excessive actions). For instance, instead of creating new entity instances using 

unnecessary resources to meet the same survivability objectives, rapidly deploy 

prototypes with only limited requirements (parameter 27 Cheap short-living objects). 

Moreover, ddiscarding and recovering (parameter 34 Discarding and recovering) 

allows survivability functions to be modified after an entity instance is deployed, to 

enable rapid discarding of “costly” entities to fulfil survivability objectives. In addition, 

reconfigurable survivability parameters can be changed on the fly (parameter 35 

Parameter change) 

Ease of repair: the ability to change the appearance of an object or the external 

environment (parameter 32 Colour changes) is uniquely critical for enable recovery. 

In addition, segmentation, replacement or elimination, preliminary actions; partial or 

excessive actions, parameter changes including after an entity is created are applied as 

describe for adaptability and detection. 

The following analogies provide some practical examples.  

While some analogies postulate that computing infrastructures are homogenously 

susceptible to attacks, other studies (Gorman et al., 2004) postulate susceptibility to attack 

as being heterogeneous. In this research, predator-prey analogies aim to capture unique 

diversification mechanisms that ensure survivability in both homogeneous and 

heterogeneous prey species. Predation avoidance and anti-predation mechanisms describe 

the main objectives of diversification, which define how prey species behave to improve 

its selection and survivability (Jr, Jr & III, 1991). Anti-predation mechanisms describe prey 

techniques, which reduce the probability of predation, while predation avoidance describes 

mechanism prey uses to remove itself from the same habitat as the predator. Several works 

show Lotka and Vito Volterra’s model (Luo, He & Li, 2004)(Rozenfeld et al., 

2006)(Campillo & Lobry, 2012)(da Silva Peixoto, de Barros & Bassanezi, 2008) as the 

simplest description of the predator-prey system in which populations changes are a 

product of the rate of reproduction, the rate of predation and the interaction between 

species.  

Predator-prey systems (PPS) demonstrate complex relationships among interdependent 

entities; where one depends on the other for food and survival (Colomer et al., 2011). 

Behavioural, interactional and functions of individual ‘networks’ impacts on how biological 

systems change and adapt in time, self-organise and diversify (Zhou, 2009). Thus, a 
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predator is able to assess and learn the quality of prey resources while hunting (Williams & 

Flaxman, 2012). In contrast, the latter line pertains to exploring the dynamic in entities 

within a biological system, including how they associate.  

4.4.1.3.1 Ecosystem 

Figure 39 is a high-level illustration of the ecosystem analogy which characterises the 

functional and behavioural aspects of cloud systems and the inherent survivability 

processes summarised as recommended TRIZ. An ecosystem in technology is given the 

familiar analogy of information environments or digital/media ecologies to include 

technologies and people in complex dynamical systems (Betz & Stevens, 2013).  

 

Figure 39. Ecosystem analogy 

This analogy will enable the analysis of varying survivability concepts to support 

innovation at all levels; strategic, methodological, operation and organisation. Entities act 

in response to triggers (internal and external) within their environments, whereupon an 

action-type leads to outcomes (desired or undesired), e.g. extinction in prey or survivability 

in the cloud. In nature, prey animals obtain food and information (resource and triggers, 

respectively) from their environment and respond with action. Actions, in turn, affect the 

environment, which retrospectively affects the opposing species. Outcomes of 
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encounters/interactions among competing and non-competing animals determine the 

extinction of species. This research considers the survival of cloud systems where 

adversaries (attackers) and defenders coexist in cloud environments; whereupon both 

entities are enhanced by cloud computing’s abundant resources (input). Outcomes of 

adversarial actions affect the cloud, as much as the outcome of interactions between 

defenders and adversaries determine the survivability of the environmental. Hence in this 

context, the number of cloud resources, and stimulus (input) from the cloud environment, 

and the nature of responses (behavioural and/or mechanistic action) are important to 

survivability. This analogy considers the environment as a physical system with entities 

who belong to communities and possessing processes (attack-respond analogy, 

survivability analogy).  

Thus, an analogy for the cloud ecosystem that is dynamic and consisting of several entities 

(Kushida, Murray & Zysman, 2012) is presented. Our premise of the ecosystem analogy is 

in line with the authors in (Huston, DeAngelis & Post, 1988), who assert that variables 

including population size are useful to describe organisms in nature, from and individual 

to the community. It is key to note however, that individuals’ organisms in nature have an 

equal effect on each other since interactions are inherently local (Huston, DeAngelis & 

Post, 1988). Hence for the current ecosystem analogy, ecological parameters and 

constraints are assumed in their general rather than explicit sense. As such, a community 

is conceptualized as being both individualistic and integrated, whereupon an individual is 

described per its structure.  

4.4.1.3.2 Entities analogy 

The analogy in Figure 40 is inspired by prey parents who live in groups to improve the 

collective ability to defend and protect themselves and their offspring against hunting 

predators. Entity attributes are associated with survivability actions which are in turn 

associated with the strategic decisions towards survivability. Understanding just how prey 

parents estimate optimal foraging distance from their offspring is perhaps one behavioural 

attribute to give insight for future work. Nonetheless, what is indeed known is that prey 

parents can sacrifice an injured or severely compromised offspring to increase the chances 

of survival for other offspring. The analogy proposed views virtual machine vulnerabilities 

synonymous to prey offspring. In this regard, VMs in a cluster represents the offspring of 
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prey animals, while the hypervisor represents the parent, as it manages the greater functions 

of VMs. 

 

Figure 40. Cloud entity analogy 

4.4.1.3.3 Community analogy  

Research efforts in the predator-prey domain revolve along exploring the importance of 

behavioural and interactional attributes between two entities, and their implications. In 

addition, it focuses on how the functions of individual “networks” depend on unique 

attributes inherent to their communities. The former pertains to evolution; how biological 

systems change and adapt in time, for instance, the ability to learn and remember 

information typified by organic self-organisation and individual diversity” (Heiser et al., 

2015). Or the ability of a predator to assess and learn the quality of prey (Williams & 

Flaxman, 2012).  

Other research efforts pertain to the dynamic in entities within a biological system, 

including how they associate. In this regard, attention is upon exploring how animal 

communities remain the same while the state of individuals changes dynamically due to 

instance, foraging, death or reproducing, etc. Examples include group size and group 

formation in foraging primates (Janson & Goldsmith, 1995), feeding habitat selection 
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according to where prey is easier to catch as opposed to where it is abundant, etc. (Balme, 

Hunter & Slotow, 2007). The examples clearly demonstrate how the autonomous nature 

of the attribute of natural systems has implications on the behaviours of individuals and 

vice-versa. The foregoing is typical in nature as epitomized by (Pinol & Banzon, 2011)’s 

adaptation of Lotka and Vito Volterra’s model, to encompass a survival probability or 

Verhulst Factor.  

The community analogy is conceptualised to capture system dynamics (data) in 

heterogeneous cloud environments, whereupon interactions determine the construction 

of community. In the previous hypothesis, entities’ actions describe concerted mechanisms 

against attacks. The community analogy which identifies high to low-level dynamics as 

captured in a cloud infrastructure. Just like prey animals, entities in the cloud although 

autonomous, belong to a general community. Cloud defenders, for instance, share a 

common survivability goal. At the local level, interaction dynamics determine decision 

strategies, including those actions taken to ensure survival. of the local and global levels. 

This analogy is in the future implementation of virtual machine communication; inter, intra 

or remote, in cloud computing (Jiang, Xu & Wang, 2006) considering local and global 

dynamics of an environment. The community analogy juxtapositions multi-tenancy in 

cloud environments, against virtual machine vulnerabilities and identifies communication 

or interaction as a powerful component for the survival of entities. This begs the question 

of how to design VM “communicate” from one topology to the next, from one technology 

to the next, within and across tenants, within and across different cloud computing 

environments. 

4.4.1.3.4 Attack-response analogy 

Ecological literature shows that foraging increases the risk of predation for prey animals 

(Grand & Dill, 1999)(Sundell et al., 2004)(Grand & Dill, 1999)(Luttbeg & Schmitz, 2000). 

However, efficient response to alarm calls and chemical responses during an encounter 

with predator reduces predation losses (Mirza & Chivers, 2001). As been implied in the 

entity analogy, the ability for parents to defend their offspring is paramount for the survival 

of their species. In this analogy, prey parents actively engage an attacking predator to 

distract it away from their offspring, which increases chances for offspring to conceal their 

presence and/or flee. In extreme cases, fighting a persistent predator is a known behaviour 

especially among cooperating prey parents. In their work, (Jr, Jr & III, 1991) show in their 
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detailed description of such extreme cases, that is it possible in prey communities to 

employ poisoning actions as a countermeasure against predators. Similarly (Somayaji, 

Locasto & Feyereisl, 2007) shows that prey animals are known to perform a sacrifice to 

improve their survival chances. Logically, this implies global survival is more critical.  

The foregoing is hypothesised as the action analogy (proactive prior and partial or 

excessive) which are implemented against threats and attacks on virtual infrastructures and 

services. The attack-response analogy describes unusual corrective actions including 

escalating actions (preliminary-to-post incident and from passive to aggressive), according 

to an on-going process/activity to improve outcomes performed by cloud security systems 

or to avoid and recover from compromise (TRIZ principles to address the difficulty of 

detection and ease of repair). Actions may include protecting assets by hiding their visibility 

and increasing the complexity of being observed. Increasing the complexity of an asset 

increases the cost of an attack, which in turn increases the complexity of executing an 

exploit and gives an advantage to the defender (McQueen & Boyer, 2009). In (Yuill, 

Denning & Feer, 2006)’s model, for instance, deception is employed to add intelligence to 

the defender, while thwarting an adversary’s capabilities to observe, investigate and learn 

about a target. In nature, the perception of predation risk, e.g. the persistence of a 

perceived predator, results in prey developing optimal predation avoidance response, for 

instance, a hiding prey choosing to flee as the predator gets closer or approaches in a direct 

movement (Koga et al., 2001). This change in response suggests the analogous escalation 

of defensive actions in cloud computing environments, i.e. the transition from prior-

excessive actions. Escalation mechanisms may exist as specific or non-specific to an on-

going event (Matsuda, Hori & Abrams, 1996).  

4.4.1.3.5 Survivability analogy 

This section presents our interpretation of the survivability analogy based on prey survival 

against predation discussed in the section above. It is important to emphasise our view 

that, unlike traditional computing infrastructures where hardening of security systems 

improved survivability, the ability to remain robust and recover from attack are essential 

characteristics to pay closer attention to, as the main distinguishing pillars from both the 

survivability and security context of the cloud. The following scenario outlines the pillars 

of the survivability analogy. 
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Threat detection: In nature, prey animals that live in groups have higher survival chances 

due to increased predator detection. Analogously, the ability to detect threats 

enhances a timeous response, with the best strategy or countermeasures in cloud 

environments.  

Collective action: Prey’s collective foraging strategies, predation avoidance methods and 

reproduction trends are a result of evolution and adaptation. Analogously, the 

ability to self-manage, cooperate, adapt and escalate countermeasures increases 

survivability. 

Management: Prey co-habitat to share resources and tasks and reproduce to improve their 

fitness to avoid extinction. Analogously, diversity, autonomy, integration and self-

management of cloud systems and services enhances survivability. 

   

Figure 41. The survivability analogy 

Figure 41 is an illustration of the survivability analogy for cloud computing environments 

based upon prey survival attributes presented. Since the business vision of cloud service 

providers includes assurances for quality, reliability, the availability of services (Ziring, 

2015), leaf attributes such as recovery time (RT) and recovery objective (RO) as well as 

sustainable pricing to maximise profits are pertinent to cloud service providers. In this 

scenario, responsibility for security and availability of services including security affecting 

the customer’s infrastructure lies with the CSP (Rong, Nguyen & Jaatun, 2013b). In a 
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traditional sense, security concerns primarily revolved around the confidentiality, integrity, 

and availability of information. 

4.4.1.4  Defining a specific solution  

Detection: Since the business vision of CSP include assurances for quality, reliability, the 

availability of services (Ziring, 2015), RT, RO and sustainable pricing to maximise profits 

are pertinent responsibilities of CSP. Optimising security and availability of services 

including security affecting the customer’s infrastructure are critical for responsibilities of 

the CSP (Rong, Nguyen & Jaatun, 2013b). Improving proactive monitoring of the cloud 

environments, survivability actions and the general system dynamics will address the 

problem of unpredictability introduced by UUURs. For instance, survivability of a VM-

based intrusion tolerant systems based upon inter-communication among multiple VMs is 

enabled and centrally monitored by a hypervisor (Zheng, Okamura & Dohi, 2015).  

Preliminary actions to increase the complexity of an asset increases the cost of an attack, 

which in turn increases the complexity of executing an exploit and gives an advantage to 

the defender (McQueen & Boyer, 2009). In (Yuill, Denning & Feer, 2006)’s model, for 

instance, deceptive measures are employed to add intelligence to the defender, while 

thwarting an adversary’s capabilities to observe, investigate and learn about a target. 

Moreover, efficient isolation enables compromised VMs to be killed. Thus, proactive 

capabilities to detect identify & stop an adversary before exploitation, e.g. the “kill chain” 

approach, is a proactive & dynamic intelligence-gathering method for continuous security 

posture awareness. As suggested by (Hariri, Eltoweissy & Al-Nashif, 2011), existing 

solutions do not adapt and escalate their security strategies to counteract the intensity and 

sheer aggressiveness of an adversary. (Cybenko et al., 2014) suggests that security 

countermeasures are only successful in traditional networks, while persistent adversaries 

and zero-day attacks are able to systematically plan their attacks, and persist within the 

compromised cloud computing environments (Cybenko et al., 2014). On the other hand, 

the ability to adapt survivability parameters according to changes in the environment, e.g. 

adapting the current survivability configuration to suit new requirements, adapting 

survivability objectives to suit new configuration or adapting survivability actions to suit 

evolving requirements or objectives, etc.  
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Adaptability: Countermeasures have been suggested including aggressive strategies such as 

“white worms” (Lu, Xu & Yi, 2013) which actively pursues malicious software with an 

intent to destroy it, or deceptive techniques such as address hopping (Shi et al., 2007) which 

masks data in transit from a possible attacker (Gregory, 2011) are suggested to provide 

dynamic intelligence gathering, security optimisation, and continuous security posture 

awareness. In addition, deception through systems such as the KIPPO SSH Honeypot, 

anticipate attacks and swift response (Sochor & Zuzcak, 2014). Discarding and recovering 

imply adequate policy, guideline & legal framework for integrating, adopting & situational 

use aggressive countermeasures, e.g. (Rabai et al., 2013) for the “last resort” deployment of 

aggressive countermeasures.  

There is consensus on the core areas closely related to survivability, such areas including 

resilience, dependability, fault-tolerance, assurance, fault-tolerance, availability, etc. 

Nonetheless, while survivability is an element of resilience, for instance, one need to pay 

attention that improving survivability does not adversely affect resilience. For instance, if 

hardening makes a node highly survivable at a larger financial cost, and increases the overall 

processing time for infrastructure, but can nonetheless be compromised by a persistent 

threat, increasing survivability, therefore, counteracts resilience. In fact, survivability 

should aim to assure the continuity of service or mission with resilience, i.e. at low cost, 

within the schedule, affordably, etc. In the systems engineering perspective, survivability 

generally defines a level to which a system is able to continue to provide timely services 

even during an attack (Ellison et al., 1997a)(Redman, Warren & Hutchinson, 

2005)(Mekdeci et al., 2011)(Adams, 2015).  

Ease of repair: Segmentation, i.e. multi-agent approach enables optimal processing, 

improves the ease of recovery by leveraging cloud service discovery, negotiation and 

composition in dynamic environments. As an example, the authors in (Sim, 2012) suggest 

an agent-based search engine for cooperative problem solving based on similarity, 

compatibility and numerical reasoning. Nonetheless, automatic coordination of services 

composition in multi-party, distributed, dynamic and complex settings requires systematic 

methods that optimise automation, yet reducing errors. In this research, this means cloud 

providers can compose survivable services in a manner that accommodates consumers’ 

changing functional and non-functional requirements, at runtime.  
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Choreographic approaches, on one hand, can facilitate adaption in view of changes 

(Calinescu et al., 2017). These emerging service engineering approaches enable distributed 

service composition by specifying tasks, participants and message protocols. Given its 

centrality, cooperative approaches require feedback control to monitor and manage 

adaptation among composed services (Arcaini, Riccobene & Scandurra, 2017). As authors 

in (Weyns et al., 2013) suggest, control loops typically enable the realization of self-

adaptation. (Talia, 2012), integrating multi-agent and cloud technologies can unlock even 

higher performing, complex, autonomous and intelligent applications and scalable yet 

reliable infrastructures. Survivability should aim to assure the continuity of service or 

mission with resilience, i.e. at low cost (to both the CSP and consumer), within the 

schedule, affordable, etc. In the systems engineering perspective, this generally imply a 

level to which a system is able to continue to provide timely services even during an attack 

(Ellison et al., 1997a)(Redman, Warren & Hutchinson, 2005)(Mekdeci et al., 2011)(Adams, 

2015). Several surveys including (Zheng & Sicker, 2013) (Ribeiro & Hansen, 2012) 

(Nakano, 2011) (Meisel, Pappas & Zhang, 2010) (Dressler & Akan, 2010), etc. share the 

consensus view that monitoring and adjusting resources, detection and reacting to changes, 

including the ability to implement measures against threats, support ubiquitous and yet 

complex and complete self- organised systems. 

4.5  Pilot investigation of prey mechanisms 

using NetLogo simulator  

To investigate the efficacy of the analogies above, proof of concept experiments focusing 

upon prey mechanisms in the predate-or-survive dynamic are implemented NetLogo 

(Wilensky, 1999). This approach has also been successfully followed to carry out a 

sufficient investigation using EcoSim (Lytinen & Railsback, 2010). NetLogo is chosen due 

to its simple design and in-depth documentation and ease use (Railsback, Lytinen & 

Jackson, 2006) (Chiacchio et al., 2014).  

The simulation environment is setup on a local machine running a standard Windows 10 

operating system. These are implemented using NetLogo version 5.3. with ‘in silico’ 

experiments, meaning that models are adaptable using different parameters to mimic 



 

111 

different environments. Using the buttons on the left-hand side of this graphic, it is 

possible to configure and adjust the experiment parameters whereas the righthand side 

simulates the output. Figure 42 is an example NetLogo GUI.  

 

Figure 42. The NetLogo GUI 

4.5.1  Experiment 

In the following experiments, agents inhabit an environment; predator agents kill and eat 

prey to survive, otherwise, they die. If prey agents avoid predation, they are assumed to 

survive. This is an arbitrary assumption that is purely designed for the system under 

investigation in this study. The experiments provide a proof of concept that predator-prey 

analogies are valuable indicators to survivability, itself useful and central to solving security 

challenges in the cloud. For each experiment, a run is implemented with varied parameters 

aimed to evaluate their effect upon prey populations. Due to the wide scope of the 

predator-prey dynamic in ecology, the experimental data obtained and explained are 

limited only to a few survival mechanisms. These deliberate restrictions are however 

adequate for the problem under consideration, and evidence borne out of these 

experiments suggests some important contributions. 
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4.5.1.1  Effect of the environment  

This experiment simulates prey who feed on grass and reproduce and predators that feed 

on prey and reproduce. An invading species is introduced, which at the evolutionary scale, 

affects the behaviours of existing predator (red -birds) and prey (purple - bugs) species. 

The percentage of grass (green) available for prey is varied on a scale of (0 - 100), while the 

initial population of prey to predators is also varied in different ratios, i.e. more prey to 

predators, more predators to prey, etc. In this experiment, prey has unlimited resources 

(100% of grass) and an equal reproductive capability to predators. 

Table 11. Random parameters of predator-prey interaction  

 Grass % # prey # predator Prey repro Predator repro 

Run 1 100 159 60 None None 

Run 2 100 159 60 Max Max 

Run 3 50 159 60 Max Max 

Run 4 50 172 109 - - 

Random initial population ratio of prey-to-predators is chosen since survival and grown 

parameters are not affected by the intensity of predators (Mandiki et al., 2007). Each data 

point in the plot represents the final population at the end of a simulation of 1000 ticks 

(timestamps).  

 

Figure 43. Simulation results of random predator-prey interactions in Table 11. 

Blue (rabbits) and red (coyotes) oscillation indicate the behaviour prey and 

predator populations, respectively, in a stable ecosystem 

True to in LV’s equation, predator and prey interactions indicate the survival or extinction 

of species. As demonstrated in Figure 43, predator and prey dynamics are oscillatory. 

However, less food (grass) availability for prey severely depletes the predator population 

in comparison to prey. As suggested by (Schoener, Spiller & Losos, 2001), predation or 



 

113 

the lack of it, impacts upon the probability of extinction and threatens the overall 

survivability of that species. 

4.5.1.2  Effect of poison  

This experiment introduces poison, an anti-predator mechanism employed by frogs 

(Dendrobatidae) (Darst et al., 2005) against predators. Survivability is evaluated (rabbits 

against predating cayotes) when a toxic poison is introduced in the environment. It is 

assumed that population changes are indicative of survivability: rising populations imply 

survival while declining populations imply the opposite Table 12 is a summary of random 

simulation parameters, including when poison is introduced as a survival strategy.  

As suggested by Mandiki et al. (2007), initial values are randomly chosen since they have 

no effect on final survivability. This simulation tracks the interactions between prey (rabbit) 

and predator (coyote) and the population changes as they co-exist. As in experiment 1, 

both species are assumed to have adequate access to food and reproduce at ecologically 

reasonable rates. However, during the simulation, it is possible to introduce a poisonous 

toxin. 

Table 12. Summary of predator-prey interaction with poison 

 # of prey # of predator Poison % Start  
Poison (t) 

End  
Poison (t) 

Run 1 300 100    

Run 2 200 130 5 500 1000 

Run 3 150 250 10 500 1000 

Run 4 400 
Same as in 4 

100 
Same as in 4 

2% 500 1550 

Run 5 400 100  500 1550 

Gain 
50 

Repro 
7% 

Gain 
10% 

Repro 
7% 

The introduction of poison motivates the question of how a generalised or targeted 

countermeasure impacts upon the survival or extinction of entities within this system. 

Three things are to be noted in this experiment: the effect of the poison on predators, the 

effect of the poison on prey and the dynamics before and after the introduction of poison. 

Figure 44 shows LV’s oscillatory predator-prey dynamic. However, introducing poison 

(black line) at varying times during the simulation affects both species. Predator 

populations deplete, while on the contrary, prey populations seem to gradually increase 

and rapidly grow when the poison is removed. Varying the initial population sizes (more 
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prey than predators or more predators than prey) has no significant impact on both 

populations. 

 

Figure 44. Predator and prey dynamics with poison added at t – 500 – 1000 

 

Figure 45. Predator and prey dynamics with poison added at t = 500 – 1550 

Interestingly, when comparing Figure 44 and Figure 45, in the latter, predators seem to 

improve fitness against poison over a longer period of poising, in spite of lower initial 

populations. This seems to suggest that aggressive anti-predator mechanisms such as 

poison, while they work to improve prey fitness also force predator adaptation to tolerate 

the poison. The analogies developed earlier help deconstruct complex concepts in both 

nature and cloud, in a manner that is understandable to a non-computing reader. This 

makes it possible to develop explicit definitions of meaningful terms for the system they 

are used, for instance, terms such as “deceptive alarm”, “deceptive camouflage”, or “deceptive 

masquerade” have greater relevance as explicit descriptions of three different levels of 

deception in computing security terms, in contrast to the widely used general term. The 

introduction of secondary defensive action (poison in experiment 2) provides insight into 

cloud computing countermeasures. Nonetheless, aggressive countermeasures are 
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contentious in computing environments due to possible associated legal liabilities (McGee, 

Sabett & Shah, 2013).  

While the generalised approach for extracting a specific process from nature does not 

perfectly mirror the models and data in nature to cloud environments, applying TRIZ 

enables the transformation of natural survival mechanisms for deployment in cloud 

computing. The TRIZ approach proposed is systematic, making it extensible and amenable 

to future developments. In fact, this research takes inspiration from quantifiable prey 

processes and fitness parameters to manipulate dependencies and test their consequences 

in cloud environments. Thus, parameters in this context are not defined by explicit imperial 

data as those in natural systems, where data enables quantitative predictions. Instead, 

parameters are only intended for general-level use to highlight structural and mechanical 

concepts within prey communities.  

Unlike nature, verifying security and survivability in real-time cloud environments aims to 

generate guarantees that these systems remain secure and retain their survivability 

capacities over time. Thus, the use of quantitative verification methods can be extended 

for application in prey-inspired systems. In this sense, verification would aim to ensure 

correctness, reliability, survivability, performance, etc. of dynamic cloud systems through 

stochastic methods and finite-state transition models. To enhance security, it is important 

that formal verification methods are integrated into reconfigurable self-adapting methods 

such as those in nature’s prey animals. Highly secure and survivable cloud systems, in this 

case, can, therefore, guarantee continuous and timely delivery of cloud services, even under 

threat. QV methods generally analyses state transition models and DTMC and MDP 

models are generally described with transition probabilities. Thus, probabilistic model 

checking tools can be used to automatically verify systems. Based on the foregoing, the 

following concepts are suggested as significant to cloud solutions.  

• Non-extinct prey animals are successful because they can manage contradicting 

demands of obtaining the resources necessary for survival and avoiding predation. 

Thus, roles and functions of entities within complex cloud environments can be 

designed with high autonomy and networked with extreme modularity. While 

cloud providers are capable of securing servers across public, private and hybrid 

clouds and give real-time detection for a wide range of security events and system 

states (Ahamed, Shahrestani & Ginige, 2013), monitoring arguably requires 
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autonomic intelligent system and self-defence capabilities analogous to prey 

animals. 

• Organisation and cooperativeness require feedback mechanisms to monitor and 

manage adaptation (Arcaini, Riccobene & Scandurra, 2017). (Weyns et al., 2013) 

suggest control loops to typically enable the realisation of self-adaptation.  

• Foraging roles follow a hierarchy of approaches to enable survival. For instance, 

avoiding predators implies adopting behaviours and mechanisms to detect 

predators first, staying in groups to reduce the likelihood of being killed or 

mobbing and other coordinated group methods.  

Toxins or specialised morphologies can also be used against an attacking predator. Prey’s 

predation avoidance behaviours and anti-predation mechanisms are central to its survival. 

Hierarchy is central to structure in relation to roles, functions and organisation, towards 

accomplishing a global goal. 

4.6  Summary 

This chapter presented a biology-to-cloud computing design method that satisfied H1 of 

the research hypothesis outlined in Chapter 1. Section 4.2 presents a high-level 

methodology for a prey-inspired design outlines two generalisable requirements for bio-

inspired survivability solution: (1) a problem-driven approach, and (2) the 3-step process 

to transfer interdomain concepts. Section 4.4 introduces the TRIZ, a known methodology 

that facilitates innovative design by resolving contradictions and applies it for cloud 

computing. Section 4.6 presents a pilot NetLogo simulation that serves to evaluate the 

plausibility of proposed analogical solutions. The proposed solution form core 

components of the prey-inspired survivability concept designed in Chapter 5, i.e. prey-

inspired survivability framework for cloud computing environments (Pi-CCSF).  
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Chapter 5  Prey-inspired cloud 

computing survivability framework (Pi-

CCSF) 

This chapter presents the prey-inspired cloud computing survivability framework (Pi-CCSF) built upon 

TRIZ-derived survivability specifications defined in Chapter 4 (Section 4.5.4). The Pi-CCSF is significant 

as it is proposed to support the extension of existing frameworks and model-based analysis of prey-inspired 

survivability requirements. This prey-inspired conception satisfies the hypothesis under test with respect to 

escalating survivability design principles and decision techniques presented. 

This chapter is based on the work published in RP1, RP3, RP4 and RP6. 

5.1  Introduction  

As in prey animals, cloud computing requires survivable components to detect changes 

and evolving environment constraints, learn new behaviour patterns and update their 

action matrix. Hence, rigorous evaluation of environment constraints and behaviour 

patterns, selection of actions based upon learned adaptation, experience exchange and 

executing actions that achieve efficient adaptation is critical (Jiao & Sun, 2016). Traditional 

survivability methods relied upon a notion that compute-level interactions are predictable 

and therefore controllable. For instance, virtual embedding techniques are most efficient 

when desirable system input functions necessary for a desired system output are 

predictable. However, with UUURs, cloud system behaviours are difficult to observe, and 

the threats are difficult to detect and predict. It is clear in this regard, that virtual embedding 

as a technique therefore becomes limited.  
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5.1.1  Assumptions and Scope 

While this thesis refers to a range of attacks, the detailed discussion of attack paths and 

models is outside the scope of this research. Instead, this thesis focuses upon a class of 

risks that are uncertain, latent, unobserved or unobservable (UUURs) as observed by (Ma 

& Krings, 2011)(Ma et al., 2014)(Albanese, Jajodia & Venkatesan, 2018). Traditionally 

deterministic security methods are assumed to be inadequate mitigation, and often 

misapplied due to the unpredictability imposed by UUURs. Thus, Figure 46 is an 

illustration of the design assumptions under this consideration.  

Briefly, some survivability objective is assumed to be affected by some UUUR and 

knowledge of UUURs helps define and identify survivability requirements. Meanwhile, 

some survivability requirement is assumed to address some UUUR, while also aiding to 

identify mechanisms towards a solution. A mechanism is assumed to assist in 

implementing some survivability requirement.  

 

Figure 46. Survivability design assumption 

In addition, this research assumes the case that each initial deployment of survivable 

services, a CSP and CC have a negotiated SLA. SLAs stipulate security and survivability 

rules and contractual implications (Wagle et al., 2016). This will identify among other 

things, the deployment of the prey-inspired cloud survivability solution. As shown in 

Figure 47 this SLA is also renegotiable. Due to the use of cloud computing in critical 

systems, the significance of SLAs in handling assurances for security and survivability of 
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services in therefore assumed as increasingly critical to both the CSP and CC. Thus, the 

prey-inspired survivability design assumptions impact upon survivability SLA cycle.  

 

Figure 47. The research’s SLA cycle assumption 

Furthermore, this thesis assumes that IaaS, PaaS, and SaaS are the most common cloud 

service models, and therefore adequate to represent a cloud computing view. Figure 

48Error! Reference source not found. shows the control responsibilities related to CC 

and CSP. As the user transitions across models (including from the traditional) the user’s 

control and responsibilities decrease. Among these service models, the CC and CSP share 

to some degree, different levels of control and responsibility on applications, data, runtime, 

middleware, operating systems and the virtualisation layer components such as storage 

networks and servers.  

Moving from the IaaS model to SaaS, the user’s control over core cloud components 

decreases along with their responsibilities. Thus, from a service provision point of view, it 

is logical to implement both PaaS and SaaS atop the IaaS model. Due to the control and 

responsibilities considerations mentioned above, the prey-inspired cloud survivability 

notion is scoped around the IaaS service model as it removes the limitations of service 

deployment.  
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Figure 48. The cloud computing service model control research scope 

The remainder of this chapter is as follows: Section 5.2  presents the design context for Pi-

CCSF, briefly introducing the survivability mission, survivable system requirements and 

mission requirements. Section 5.2 details the security context around which Pi-CCSF is 

developed. Section 5.3 presents Pi-CCSF and details its main components and processes. 

Section 5.4 presents the survivability mechanisms and Section 5.5 presents Pi-CCSF’s 

overall process-flow. Section 5.6 discusses Pi-CCSF in a conceptual application. Section 

5.7 concludes the chapter and summarises the main findings.  

5.2  Survivability-oriented design 

This research researcher contends to the design challenges imposed by UUURs. However, 

the bio-inspired design theoretic perspectives present this thesis’s researcher with relatively 

simple units to manage yet still provide emergent phenomenon. As noted by Shu et al. 

(2011), biologically “perceived” complexity to real complexity is a necessary paradigm shift 
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that can be adopted from biology to manage complexity in cloud environments. Hence, 

this thesis’s survivability design approach is placed in the engineering context to 

encompass systems security design as a component of service-oriented mission assurance 

(SOMS). To demonstrate this context, the relationship between cloud computing 

survivability design with other security systems-related domains is outlined below and 

illustrated in Figure 49. As shown below, survivability design draws from other related 

concepts such as resilience, durability, fault-tolerance, etc. More so, it also draws from 

other contextual requirements. In this research, this includes survivability requirements of 

cloud computing systems (e.g. a holistic view to cloud computing security presented in 

Chapter 3, or the contradiction analysis suggested by the TRIZ method and addressed by 

TRIZ’s contradiction matrix (Creativity, 2019b).  

 

Figure 49. Cloud computing survivability design context 

For IaaS cloud providers such as Amazon EC2 (Amazon Web Services, 2011) and IBM 

Business Cloud (Leone, 2015), VMs are central to the service commodity they provide. 

VM provisioning, with respect to specific resources and capacity, should, therefore, be 

survivable to ensure continued service. Hence, SLAs between CSP and CC should stipulate 

among others, the expected levels of services which implores CSPs to the evaluation of 

their infrastructure (Longo et al., 2011). Whereas evaluation approaches among CSP 
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specifically assess availability and reliability of cloud systems (Wagle et al., 2016), (Nguyen, 

Kim & Park, 2016), and evaluation techniques focus upon the VM model, frameworks 

(Sterbenz et al., 2010b), fault tree (FT), reliability block diagram (RBD), continuous Markov 

chain (CTMC) or stochastic models (Longo et al., 2011), (Nguyen, Kim & Park, 2016), etc. 

it is important that survivability is emphasised. From a cost perspective, a service-oriented 

design mission ensures that cloud systems are designed with the capacity adapts to ongoing 

changes. As noted by NIST, it is critical that assessing and managing risk is iterative 

regardless of the level of exposure or the sophistication of the security incident (National 

Institute of Standards and Technology, 2018). 

5.2.1  Survivability mission 

Survivability is generally described as a mission-oriented process; to which a system can 

timely provide services after intrusion or compromise occurs (Wang et al., 2012b). The 

authors in (Mehresh & Upadhyaya, 2012) note the ‘mission’ element of survivability as 

upon ensuring the continuity of a set of essential services, bearing in mind that 

precautionary countermeasures will fail. Adaptability, detection and ease of repair are 

unique concepts derived through TRIZ to facilitate the cloud survivability mission. 

Adaptability is evaluated as the capability to respond to situational changes, including 

changes in resources, requirements, as well as changes to timed events. This also includes 

response to real-time and dynamic events (self-adapting) in a timely manner. Timeliness is 

itself dependant on other attributes such as serviceability and cooperativeness. Adaptability 

is therefore fundamental for avoiding negative measurements of "timed" events and can 

demonstrate tolerance to attacks. Adaptability can be quantified based on the following: 

(a) on prior experience of the infrastructure’s ability to mitigate attacks caused by, for 

instance, insiders or outsiders; and (b) proactiveness, which can be estimated based on the 

security risk management process. The adaptive property of survivability is therefore 

optimal when it satisfies ‘a’ and ‘b’ and represented as a linear function whereupon an 

increase in adaptability means the system can support survivability attributes, in turn 

enhancing the overall survivability of a system.  

Detection and ease of repair are encapsulated in cooperability, which describes the ability 

of autonomous entities to collaborate based on a set of predefined survivability 
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mechanisms in response to a security incident or a situational change. Theoretically, this 

concept means that: (a) VMs execute actions as countermeasures according to a learned 

criterion, analogous to cooperating autonomous preys (b) VMs execute collective 

countermeasure mechanisms, synonymous to mobbing behaviour in preys. Since 

knowledge about the state of the environment, a decision-making parameter which factors 

the attitude of a CC and/or CSP as stipulated in the survivability mission. This introduces 

the notion of a strategic model of choice under uncertainty. For the purposes of the current 

work, the following attitudes will be important to the survivability mission and the 

requirements that follow. They are also widely published in decision researches including 

(Yager, 1995)(Fenton & Wang, 2006)(Bracha & Brown, 2012) (Jefferson, Bortolotti & 

Kuzmanovic, 2017): 

Optimistic: a survivability decision-making parameter key selects for each action, the best 

possible outcome, then selects the action that has the maximum best outcome. As 

postulated in Bracha and Brown (2012), this strategy relates to decisions when 

desired future outcomes are at stake, e.g. health, success, employment, etc. 

Intuitively, in the context of the current research, optimistic strategy implies 

aggressive approaches to attain survivability, which then is associated with the 

business or technical requirements of both the CC and CSP as stipulated in an 

SLA.  

Pessimistic: a survivability decision-making parameter key selects for each action, the worst 

possible outcome, and then select the action that has the best worst outcome. As 

Yader (2003) suggests, a pessimistic strategy tends to conservative behaviours as 

the decision-maker is inclined to view outcomes of actions as unfavourable to them 

(Yager, 2003). Intuitively, in the context of the current research, this strategy 

implies passive survivability actions towards survivability.  

Neutral: also referred to as the normative strategy, this is when a survivability decision-

making parameter selects an average of all outcomes of action and then selects the 

actions with the best average. 

Performability is the property of agents such that it meets its level of use, for instance, as 

described by measures such as selfish or cooperative, or by the quality of service (QoS) 

measures such as packet delivery delay (Sterbenz et al., 2010a). 
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5.2.2  Survivability mission requirements 

Survivability requirements significantly vary based upon the survivability target, the scope, 

objective, the risk or cost-benefit analysis of the cloud system. Survivability targets 

encompass contextual problem domains, scenarios, domain boundaries and some 

preconditions necessary for abstraction and modelling (Wang et al., 2012a). For instance, 

critical infrastructures such as healthcare services in contrast to services such as Netflix. 

Clearly in the former, survivability requirement definition could include the cost and 

criticality of survivability failure whereas Netflix could include objectives and operation 

consideration.  

In this thesis, requirements are defined according to how they are presented in the 

survivability mission, i.e. SLA. For instance, a new component, e.g. “survivability model”, 

may be defined with attributes that model survivability sub-components, whereupon each 

model implements a function. As an example, the getCharacteristic (int/boolean key), 

defines the attitudes of a decision system when in choosing survival actions, e.g. 

getCharacteristic (neutral) defines a neutral survivability attribute, getCharacteristic (optimistic) 

defines an optimistic survivability attribute, getCharacteristic (pessimistic) defines a pessimistic 

survivability attribute, etc. Survivability mission parameter keys, i.e. neutral, optimistic, 

pessimistic, etc. act as unique identifiers corresponding to a specific survivability 

characteristic. In-depth details and application of the decision attitudes mentioned are 

presented in Section 6.4. Considering all survivability constraints, primarily the 

unpredictability introduced by UUURs, survivability decision-making is a critical 

requirement to guide survivability choices under uncertainty.  

5.2.3  Survivable system requirements 

This section introduces key requirements employed for the adaption concept of survivable 

cloud, environment, behaviours, actions and adaptation solutions. IaaS environment: The 

shared cloud environment for survivable agents, cloud services and resources which 

mediates how agents access services. Within the environment, there are general rules for 

accessing resources; these act as constraints at various levels of the environment. A cloud 

environment is defined according to the following tuple:  
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, where R, are resources accessible to agents (agents can perceive the state of resources in 

pursuit of their survivability goals) and N is being the rules or behaviours that impact of 

the resources.  

VM resource: Resources, i.e. virtual machines (VMs) are the elements of a cloud 

environment which inform the building blocks of IaaS cloud. Hence, VMs are 

considered as passive objects with states and operations. In addition, attributes 

(attr) represent a set of attributes that define the state of a VM. Moreover, 

operations (op) are a set of operations defined over the attributes. VM resources 

are thus defined as:  

 

where a set of attributes, attr, define the state of resources, and op is the set of operations 

over the attributes.  

Environmental state: The state of IaaS cloud environment is determined by the state of 

VMs. Supposing that S is the set of possible states an IaaS environment may exist 

in and Sr represents the state of resource r  R. The state of an IaaS environment 

s  S, is, therefore, a conjunction of the states of all VMs, such that: 

 

, where  

In this case, survivability agents are capable of manipulating VMs through executing VM 

operations which impact upon the IaaS environment. Consequently, an IaaS environment 

can exert constraints on survivability agents thereby managing access agents have on VMs.  

Norm of accessing a VM: A constraint (environment norm) stipulates instances where the 

environment permits or prohibits agents’ manipulation of VMs (resources), such 

that: 
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, where . Ags is a set of agents constrained by the “norm”, and pd 

is the permission degree for which . In this case, if there are no constrained 

agents, i.e. Ags = 0, the norm applies to all agents in the environment. For instance, while 

VM is provisioning services, agents are prohibited from executing aggressive actions, 

unless all passive actions have been exhausted. Moreover, some environments, e.g. SLA 

stipulated, aggressive actions may be totally prohibited altogether. Thus, a permission 

degree, pd, in this case, would serve to stipulate the extent to which actions around the 

“norm” can be executed in agents. Where pd = 0, are prohibited from accessing VMs, i.e. 

through executing the . Similarly, where pd = 1, agents are permitted to access VMs by 

invoking . 

For adaptation to exist, prey agents must adjust their behaviours to changes in the 

environment to maintain or improve survivability. Thus, an agent should decide or reason 

what current actions can be performed and decide on how to select and implement the 

best actions. Nonetheless, the following are considered as constraints to such actions: 

1. Survivability agents cannot access forbidden VMs (resources) 

2. Actions may or may not be independent of each other, resulting in three different 

types of dependencies.  

a.  as a definite result of  

b.  as a conditional dependent of , i.e. that  should happen before  

happens 

c.  is exclusively dependant on , i.e.  should not occur for  to 

happen, else  destroys the conditions for ’s execution. 

Behaviour patterns: These are specified by a set of the fixed execution sequence of actions. 

This research is primarily concerned with 3 sequential actions. Supposing a prey 

agent to possess survivability capacity, Cap, its behaviour pattern, Bp, is defined 

as follows:  

6: Action matrix 
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Rows define actions in A and the first column are the strength of environmental 

constraints. The remainder is identified by the dependency degree (dp) between preceding 

action and optional actions. Thus, EC(ai), which is the action matrix of an arbitrary action 

relative to the environment constraints, i.e. AM[ai][E] where aiA, to identify the 

constraints strength of the environment on an arbitrary action, ai, and EC(ai) is the 

minimum of the currently effective permission degrees for ai.  

To identify dependency degrees between a preceding action, pre_ai, and an optional action, 

ai, , is defined as the action matrix of an arbitrary optional action in relation 

to an arbitrary preceding action such that . Thus: 

 

Adaptation solution: If agents build a set of action matrix, , to 

achieve survivability goal, in which a series of actions have been selected and 

executed, i.e.  in which . T is the adaption 

solution for achieving the goal at hand, whereupon T is said to be a good or bad 

solution dependent upon what solution T reaches, i.e. positive adaptation or 

negative adaptation, respectively.  

AM = A  {E} ∪ 𝐂𝐚𝐩  

𝐄 prea1
prea 2

… prea m  

a1

a2

⋮

an  
 
 
 
 
 
EC a1 DR a1, prea1

 DR a1, prea 2
 DR a1, prea m

 

EC a2 DR a2, prea1
 DR a2, prea 2

 DR a2, prea m
 

⋮ ⋮ ⋮ … ⋮

EC an DR an , prea1
 DR an , prea 2

 DR an , prea m
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5.3  Security systems design 

To contextualise the designs in these chapters, this thesis distinguishes the following three 

categories of threat event as important:  

• Critical threats, which directly impact survivability outcomes. For instance, the 

availability of resources which is critical to service provision. Similarly, the cost of 

executing a countermeasure over another is critical to the choice of action.  

• Objective threats, which can be numerically assessed. For instance, the rate of 

compromise in cloud computing as analogous to the death rate in nature.  

• Subjective threats, which are informed by expert perceptions and judgements and 

deemed to be qualitatively reliable.  

While the threat concept above is not a one-size-fits-all approach to threat classification, 

it is an important reminder that cloud environments and indeed security events will suffer 

from unique risks, threats, vulnerabilities, risk tolerances, etc. Moreover, further in-depth 

analysis and discussion of specific threats are outside the scope of this research. Thus, for 

purposes of this research, the following assumptions are made:  

• Cloud environments change synonymous to nature; agents die, are born, hibernate, 

extinct, etc.  

• Agents are cognitive or passive with predefined behaviours, or behaviours adapted 

through evolution. However, for real implementations, adaptive autonomous 

agent as most suitable.  

• Interactions among autonomous agents are generally diverse due to the diversity 

of agents. Most interesting are the new unknown capacities that exist out of such 

interactions, whether among social agents themselves, among competing agents or 

among agents and the environment.  

• Self-organisation is key for the collective objectives of cooperating agents. The 

organisation thus can extend to how roles and hierarchies are defined and 

structured, whether pre-defined or emerge from inter-agent interactions. For the 
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purposes of this research, consider the role of the human agent (cloud 

administrator or adversary) as one who can control cloud environments; intervene 

with, control or update the agent database (correctively or maliciously).  

Based on the foregoing, a perceived malicious and sophisticated agent capable of assessing 

risk and exploiting vulnerabilities of a system as observed by (Mehresh & Upadhyaya, 

2012). An attacker can covertly perform reconnaissance and gain reasonable access into a 

compromised system undetected. If detected, the attacker has an advanced contingency 

plan for further actions, including aggressive and catastrophic destruction of data. Two 

attributes of Pi-CSF ought to be emphasised from the design perspective. Foremost, the 

survivability mission, which in this thesis is closely coupled with both the CSP and CC’s 

missions, is defined to be adaptable to an evolving SLA. The mission thus directly impacts 

upon the survivability requirements. Another attribute pertains to specific dynamic 

constraints that impact upon a survivable cloud system. Hence, this attribute is defined to 

incorporate feedback, which informs the usability of an implemented architecture and its 

adaptability to evolving survivability requirements and tread-offs.  

5.4  Prey-inspired cloud computing 

survivability framework (Pi-CCSF) 

In the traditional context, survivability requirements are predictable or static goals which 

do not change over time. Pi-CCSF is therefore implemented in IaaS cloud environments 

to provide user-level access to influence adaptable service level agreement with the CSP. 

The modular design enables such components as the survivability service definition to be 

adjustable according to negotiated service levels or evolving survivability requirements. For 

instance, an arbitrary organisation requiring predictable and unpredictable capacity to cope 

with a seasonal and sporadic demands, a survivability SLA can be defined which stipulates 

how Pi-CCSF is able to manage and accommodate undefined or evolving survivability 

requirements during peak times. Besides this flexibility, it is possible to manage 

interoperability issues in the user-space, where any failures are simply isolated and confined 

within that user-space. Pi-CCSF is illustrated and Figure 50 and described below.  
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Figure 50. Prey-inspired cloud computing survivability framework (Pi-CCSF). 
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By implementing Pi-CCSF, an SLA is leveraged by gathering knowledge of the state of 

user services, i.e. virtual machine; running state, performance, expected survivability, 

running survivability configuration and the resources required. Moreover, a Survivability 

strategy manager (SSM) provides an interface with the prey-inspired survivability 

mechanisms which can be configured according to a cloud user’s survivability 

requirements. For instance, aggressive action-based escalation for critical systems. SSM 

remains operational throughout the lifecycle of service deployment to update SLA and 

adapt to changing survivability requirements at run-time. Two essential components of Pi-

CCSF are: 

• High-level survivability management layer in which the Survivability Monitoring 

(SM), Survivability Running State (SRS), Survivability Definition (SD) and the 

Service Scheduling (SS) form the key components of the survivability strategy 

management (SSM).  

• Low-level survivability processes layer in which the adaptation system (decision 

system (DS), escalation system (EscS) and survivability actions (Surv-A)) are key 

components of the low-level prey inspired survivability mechanisms. 

Low-level processes act towards ensuring survivability through implementing mitigations 

for prevention and resistance, fault-tolerance and recovery while enabling adaptation 

through intelligent decision-making and implementing escalating actions. The adaptation 

concept is an essential process to cope with cloud computing’s dynamic changes, while 

escalation introduces a novel approach to enhance survivability by dynamically selecting a 

range of counteractions according to a prevailing security event. The decision-making 

technique employed in Pi-CCSF is covered in-depth in Chapter 6.  

5.4.1  Survivability strategy management (SSM) 

To enable survivability management at the user-space, SSM facilitates a users’ direct 

involvement in defining, maintaining and updating survivability requirements. This is a 

major addition to traditionally CSP-oriented management in which the user’s involvement 

is limited to the functional aspect of a system’s survivability (Ellison et al., 1997b). Within 

an IaaS cloud, the SSM presents an SLA-based strategy management system to facilitate 
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service definition, monitoring, resource scheduling and tracking of a reusable running 

service state. Figure 51 illustrates the high-level processes involved in managing the 

survivability strategy in cloud computing environments.  

While resource scheduling is not a new concept, its specific implementation details and 

challenges are outside the scope of this research. Nonetheless, several works in the 

literature suggest evolutionary computing (EC) algorithms for real-time scheduling, 

adaptive dynamic scheduling, large-scale scheduling, multi-objective scheduling and 

distributed and parallel scheduling (Zhan et al., 2015). For the supposes of this Chapter, 

SSM’s high-level operation will be discussed as two-fold. On one hand, it is aimed to 

augment the user’s survivability objectives, i.e. quality of service (QoS) through 

augmenting processes such as resource scheduling, service definition, monitoring, user 

cost, etc. On the other hand, SSM enables the CSP to maximize survivable service 

provision by incorporating CC specific requirements. These activities and services that are 

common across cloud platforms to enable the managing (developing and updating) of 

essential survivability services. Through an SLA-linked profile, a CC can align and prioritise 

the survivability requirements and activities according to the following:  

Step 1: SSM receives a trigger; in this research this is imposed by a UUUR event. If the 

event is unknown, SSM captures the event signature to update existing 

survivability processes, otherwise continues to step 2. 

Step 2: If an event is known, SSM invokes SRS and maps the event to the current 

survivability running state. If an event meets an expected UUURs profile, SSM 

proceeds to step 5, otherwise goes to step 3.  

Step 3: If the event does not meet an expected UUUR profile, SM maps the event to the 

current SLA to assess compliance. If compliance with expected survivability is 

not met, it is necessary to update existing survivability processes, otherwise goes 

to step 4. 

Step 4: If expected survivability compliance is met, survivability definition enables 

predictive adjustments to survivability parameters and future states, i.e. with 

updated resource requirements and schedule, otherwise goes to step 5.  

Step 5: If SD fails to yield, SSM passes current survivability state information, including 

UUUR data to the low-level prey-inspired survivability mechanisms.  
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Figure 51. Survivability strategy management (SSM) process flowchart 

5.4.2  Survivability monitoring (SM)  

When SSM is captures deployed, monitoring the resource and UUUR-to-resources data. 

Monitoring encompasses learning and evaluating UUUR-to-resources inventory and the 

output survivability around the following survivability objectives: (i) enable efficient 

aggregation of survivability data, (ii) survivability risk and cost analysis and (ii) survivability 

target analysis. Monitoring is, therefore, a functional character of learning and thus, in 

practice implement functions such as machine learning algorithms to detect and predict 

uncertain changes in a cloud system.  

Three parallel processes; survivability data aggregation, risk/cost analysis and survivability 

target analysis, are computed for two main purposes. Foremost, to evaluate the current 
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survivability SLA requirements with respect to an ensuing incident, or to evaluate a 

survivability target and define survivability objectives for an existing or negotiated SLA. 

To address similar uncertainty imposed by UUURs, some works have shown that model-

based evolutionary algorithms (EAs) present efficient learning abilities with low 

computational expenses (Cheng et al., 2018). A CSP can manage and adapt a CC’s changing 

survivability requirements and activities.  

Figure 52 illustrates the foregoing survivability monitoring processes, which will be 

itemised below.  

 

Figure 52. Survivability monitor (SM) process flowchart. 

Step 1: After deployment, SM receives the currently running survivability SLA and 

evaluates compliance 

Step 2: Monitors if the cloud environment is compliant.  
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Step 3: If compliance requirements are met, survivability requirements are retained and 

updated in the SRS, otherwise continues to step 4.  

Step 4: If compliance requirements are not met, SSM passes current survivability state 

information, including UUUR data to the low-level prey-inspired survivability 

mechanisms.  

5.4.3  Survivability running state (SRS) 

Survivability running state (SRS) captures the current survivability QoS configuration and 

updates its state according to SM. SRS activities hence specify the survivability parameters 

such as the survivability threshold, survivability target and/cost, expected survivability, etc. 

By default, these are typically specified in an SLA according to the user’s specifications. 

Changing SRS can be done automatically to the running configuration based upon detected 

input from the SM. Alternatively, changes to the SRS can be done directly when SSM is 

deployed and an SLA is negotiated or renegotiated. An example is Amazon’s AWS 

ConFigurerules which tracks the survivability service state to enable dynamic and flexible 

launch, use and termination of processes (Jeff, 2015).  

Functionally, it should be noted that a survivability running state is only computed with 

known survivability requirements, which can be updated in run-time. Based upon the 

survivability running state and survivability objectives, low-level adaptation mechanisms; 

decision-making and escalation, are executed according to a specific use-case. For instance, 

where a survivability target is known. The details of applying survivability targets for 

decision-making under varied use-cases is discussed in section 6.4. Figure 53 illustrates the 

foregoing survivability running state processes, which will be itemised below. 

Step 1: SRS receives running state data or survivability requirements from SM.  

Step 2: Survivability requirements are evaluated against the current survivability SLA. If 

SRS yields known/expected requirement changes, it continues to step 3  

Step 3: SRS gathers survivability requirements that satisfy an expected running 

configuration, updates the survivability definition (SD) processes and proceeds to 

step 5, otherwise continues to step 4. 
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Figure 53. Survivability running state (SRS) process flowchart. 

Step 4: If SRS yields unknown/unexpected requirement changes, SSM passes current 

survivability state information, including UUUR data to the low-level prey-inspired 

survivability mechanisms.  

Step 5: Enables the scheduling of required resources to meet survivability requirements in 

step 4 and update SD processes.  

5.4.4  Survivability definition (SD) 

The ability to define survivability requirements (for both the cloud user and CSP) ensure 

that survivability is established according to deliberately defined survival QoS metrics and 
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to desired probabilities. This concept has been described by (Yallouz, Rottenstreich & 

Orda, 2014) and (Yallouz & Orda, 2017) as tuneable survivability, which specifies a 

quantifiable measure of survivability. Figure 54 is an illustration of the survivability 

definition process flow. It highlights the processes involved in combining survivability 

knowledge and survivability QoS guarantees in existing or new SLAs to produce tuneable 

survivability. Hence Figure 54 illustrates survivability definition processes for data 

aggregation, including risk or cost analysis, assessing fuzzy survivability data, etc., as 

minimum requirements for end-to-end survivability QoS and SLA guarantees. For 

argument’s sake, these represent structured activities and computations for information 

assisted survivability problem-solving. SD processes outputs include data for low-level 

mechanisms processing and resource scheduling support SD’s objectives. 

 

Figure 54. Survivability definition (SD) process flowchart. 

Step 1: SD receives SRS information including existing QoS and survivability requirements  

Step 2: Aggregates SRS and user requirements along with resources to define the tuneable 

survivability requirements. 
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Step 3: To improve these processes, QoS requirements in an SLA are evaluated against the 

user’s or system’s service requirements, if these are achieved, the SD proceeds to 

step 4, otherwise, it goes to step 5. 

Step 4: Define tuned survivability and invokes the resource scheduler Step 5: Otherwise if 

not achieved, SSM passes current survivability state information, including UUUR 

data to the low-level prey-inspired survivability mechanisms.  

5.5  Prey-inspired survivability mechanisms 

This low-level layer implements survivability mechanisms according to requirements 

obtained from SSM. Prey-inspired survivability mechanism’s core components; adaptation 

system which consists of a decision-making sub-system and the escalation system, 

implements survivability actions which can be adapted and prioritised to meet a defined 

cloud service or system’s survivability target. Since Pi-CCSF is implemented upon known 

cloud computing frameworks such as the CloudSim framework (Calheiros et al., 2009), 

these low-level mechanisms are therefore organised around common cloud computing 

structures and standards to embed the prey-inspired survivability concepts. UUUR and 

system state data from SSM and the survivability method form the input and output to the 

workflow system, respectively. Within the workflow system, survivability data aggregation, 

risk and/or cost analysis, decision (fuzzy information assessment), etc., represent 

structured activities and computations for information assisted survivability problem-

solving. Internal processes outputs such as the survivability requirements, survivability 

criteria and survivability objectives describe directed graphs connecting coupled 

survivability components.  

While the mechanisms presented below are deliberately limited for demonstration 

purposes, the prey-inspired survivability mechanisms module encompasses a registry of 

other survivability nuances (including sub or sub-sub-parameters) that can be queried for 

synthesis or processing. CSPs can publish and update the registry with new survivability 

parameters, including those acquired through SLA negotiations. An example is where a 

service configuration with specific survivability or resource requirements is defined and 

retained for reuse on the fly. By combining the survivability configuration and registry-
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stored survivability parameters, low-level synthesis generates specifications for 

survivability coordination entities (SCEs) through transforming existing models. 

Functionally, SCEs are software entities that match a predefined survivability criterion, for 

instance, a predefined SLA, CC specification, architecture, etc. and manage, i.e. coordinate 

and/or enforce interactions among the participating entities. Alternatively, SCEs may also 

simply represent as an algorithm that solves mathematical functions towards a survivability 

goal, for instance, counterattack in prey presented in (Waltman, Braselton & Braselton, 

2002) (Rozenfeld et al., 2006). Moreover, SCEs may be executable procedure rules or other 

multi-agent models such as genetic algorithm (Shon, Kovah & Moon, 2006) that describe 

the inner workings of survivability agents.  

5.5.1  Decision system 

Although decision-making is traditionally not considered as a “first-class” concern 

(Cámara et al., 2018) for managing computer networks’ security and survivability, it is 

critical to handling unpredictability imposed by UUURs in complex environments. 

General control theory can be applied for decision strategies to minimising the cost 

function (or maximizing reward function) in evolving dynamic systems (Kreidl & Frazier, 

2004a). In the presence of UUURs, unpredictability is such that it is operationally 

challenging to predict a system’s state at any instant, which renders general control theory 

unsuitable due to the impossibility of capturing information on how the state of cloud 

systems are observed or how they evolve in time. The control concept describes a 

qualitative capacity of a measure to affect a true state (Kreidl & Frazier, 2004a), which 

implies that an uncontrollable state is one whose evolution a control cannot predictably 

affect. On the contrary, complete control suggests the capacity of control to affect the true 

state and subsequently all states that evolve thereafter. The observation element of 

UUURs, on the other hand, refers to how much information system detectors possess, in 

ration to a true state estimate. Thus, an unobservable state implies that there is limited 

information to estimate a true state, as opposed to total observability which implies the 

possession of complete information to estimate a true state. Communication is the 

processes that to some degree, enables the complete control and observation, a finite series 

of actions and a finite series of observation. Figure 55 illustrates the decision system 

processes, which are described below. 
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Figure 55. Decision system (DS) process flowchart. 

Step 1: The decision system receives instructional data from the survivability strategy 

manager. Functionally, it assumed in this research that prey-inspired mechanisms 

are only invoked as required, to maintain other important survivability tread-offs 

such as cost.  

Step 2: DS maps SSM-based data, particularly the incident in question, to available survival 

processes. In this research, this implies mapping data from SMM to a target-based 

technique; the appropriate mechanism to achieve a survivability target. The details 

for the target-based technique are provided in Chapter 8. 

Step 3: Once an appropriate mechanism is mapped with the SSM data, the DS also factors 

into consideration, the “attitude” of the decision-making system. The notion of an 

“attitude” in this case emphasises the different priorities that capture the level of 
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survivability a decision process must consider, as stipulated in an SLA. Section 5.1 

briefly introduces pessimistic (Pessi), neutral (Neu) and optimistic (Opti) attitudes 

noted above.  

Step 4: Based upon the preferred target-solution (Step 2) and the preferred attitude (Step 

3), the DS evaluates the best decision method to meet the prescribed target. If an 

evaluated decision method meets an expected survivability target, this is 

implemented to address the current incident, otherwise, DS goes to step 5. 

Step 5: If an evaluated decision method does not meet an expected survivability target, the 

DS invokes the escalation process. 

5.5.2  Escalation system 

As introduced earlier, one of Pi-CCSF’s objectives is to present the user with additional 

control over defining low-levels mechanisms that can be implemented to meet their 

preferred survivability outcomes. Figure 56 illustrates the escalation process.  

Step 1: The escalation system receives instructional data from the survivability strategy 

manager and invokes escalation  

Step 2: An escalation criterion; defined according to the number and order of actions, is 

initialised with respect to step 1  

Step 3: ES invokes the decision system and corresponding survivability targets and 

evaluates if current actions can address the current incident and achieve the 

expected survivability target. If yes, ES continues to “listen” for new updates from 

SSM, else proceeds to step 4. 

Step 4: If the survivability target is not met, ES implements and executes variable 

escalations and evaluates if the target is met  

Step 5: Based on step 4, the DS considers the context of the current incident and evaluates 

the effects of evolving escalation. If the target is not met, ES goes to step 4, 

otherwise the DS retains the best escalation criteria for the current context.  
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Figure 56. Escalation system (EscS) process 

5.6  Pi-CCSF’s overall survivability process 

flow 

When Pi-CCSF is deployed, SLA related information is received into the SSM via an 

interface such as Web API, enabling both the CSP and CC or user to access the SSM 

module. A context module builds the relevant information from the CSP administrator or 

CC’s point of view. Hence, resources can be scheduled for specific actions as required by 
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the CC or the CSP or an ongoing incident. Such information as the current survivability 

policy, SLA, the CC’s profile and the level of sensitivity or value of data, the profile of 

service, the actions available and the repository for backup, if need be. Operationally, some 

Pi-CCSF processes are “private” to the CCs, providing them control to survivability 

processes. Figure 57 illustrates the overall process flow for Pi-CCSF. SSM data is passed 

into the prey-inspired survivability mechanisms, including the DS. Below is a detailed 

process flowchart for survivability management using Pi-CCSF. Each step is described 

below and where necessary, with examples provided where necessary.  

Step 1 getSLA: When an unexpected event alert (UUUR), this step obtains an existing SLA 

for evaluation. VM provisioning, with request specific resources and capacity, 

should, therefore, be efficient, considering their utility usage. SLAs negotiated 

between CSP and CC stipulate among other things, the expected survivability of 

services, which inadvertently implores CSPs to perform survivability evaluations 

of their infrastructure (Longo et al., 2011), at least prior to service deployment. 

Some examples of evaluation techniques include models, frameworks (Sterbenz 

et al., 2010b), fault tree (FT), a reliability block diagram (RBD), CTMC or 

stochastic models (Longo et al., 2011), (Nguyen, Kim & Park, 2016), etc. 

Currently, most evaluation approaches among CSP specifically assess availability, 

reliability of cloud systems (Wagle et al., 2016), (Nguyen, Kim & Park, 2016). 

Step 2 Receive incident: the incident is defined according to known or unknown signatures. 

For argument’s sake, UUURs are defined in relation to their survivability QoS 

outcomes. In the IaaS model, CSP can assess and translate into guarantees, the 

availability, reliability of services based upon the incident. This is significant 

considering that some types of attacks, e.g. fraudulent resource consumption 

(FRC) attack results in unsuspecting cloud consumer incurring financial burden. 

(Hussain et al., 2017).  

Step 3 getSRS: If the event has expected outcomes, SRS maps the incident to the 

survivability process state for future behaviour prediction. Otherwise, if SRS does 

not meet expected outcomes, for the step 5. CHOReOSynt tool (Autili et al., 

2014) for instance, facilitates automated synthesis by enforcing reusable 

choreography goal to manage undesired outcomes. Since IaaS systems are in fact 

a composition of autonomous software services, a choreographic approach 
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enables the modelling of autonomous software services by capturing pertinent 

interactions that maintain the global survivability form. 

Step 4 getSM: Monitoring, learning and evaluating UUUR-to-resources inventory with the 

following survivability objectives: (i) to enable efficient aggregation of 

survivability data, (ii) to analyse survivability risk and cost and, (ii) to analyse 

survivability target. Monitoring is, therefore, a functional character of learning 

and thus, in practice implement functions such as machine learning algorithms to 

detect and predict uncertain changes in a cloud system. Approaches that facilitate 

cooperative problem-solving have been suggested to bolster cloud service 

composition (Sim, 2012). Given its centrality, cooperativeness requires a feedback 

mechanism to monitor and manage adaptation among composed services 

(Arcaini, Riccobene & Scandurra, 2017). (Weyns et al., 2013) suggest control loops 

to typically enable the realisation of self-adaptation. 

Step 5 getSD: SD relies upon identified changes by SM at runtime. There is overwhelming 

evidence, for instance (Calinescu, Johnson & Rafiq, 2013), (Ahmad, Belloir & 

Bruel, 2015), (Calinescu et al., 2013) and (Horikoshi et al., 2012), that demonstrates 

the capacity for monitoring changing probabilities of a running systems and 

updating probabilistic models of these systems. In the current context, once SM 

processes are complete, obtaining results from SM processes are used by the DS 

to align or re-align compliance with SLA requirements, including QoS issues 

around availability or unavailability, costs, reliability, survivability, satisfaction, 

etc. In addition, obtaining SM processes results support the synthesis of a 

survivability reconfiguration plan. The significance of SD processes is to ensure 

that at runtime, survivability requirements persist despite changes. 

Step 6 Analyse UUUR: Survival analysis provides various tools to quantify the implications 

of UUURs. These include risk factors in affecting the overall survivability of a 

cloud system.  

Step 7 getDS: given a set of changes detected by the monitoring module, DS processes 

decide the best strategy for maintaining survivability. This includes selecting 

suitable actions to enable survivability evolution as prescribed by adaptation rules, 

available countermeasures and the results of the best result strategy. In a multi-

agent system, for instance, DS also manages agents’ communication to facilitate 
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efficient cooperation around established survivability specifications and goals. 

Once this is achieved, the DS invokes EscS by providing it with new survivability 

specifications, otherwise, the decision process waits until the agent reaches a 

stable cooperative state. 

Step 8 getDSAttitude: a decision-making process that introduces the notion of a strategic 

model of choice under uncertainty (attitude), an important to a survivability 

mission and its requirements. Optimistic attitudes imply that a DS selects from a 

range of best possible outcome, an action with the maximum best outcome. As 

postulated in Bracha and Brown (2012), this strategy relates to decisions when 

desired future outcomes are at stake. For instance, a decision for using 

counterattack as a last resort to protect critical infrastructure (Grant, 2017). 

Pessimistic decision-making selects for each action, the worst possible outcome, 

and then select the action that has the best worst outcome. As Yader (2003) 

suggests, a pessimistic strategy tends to conservative behaviours as the decision-

maker is inclined to view outcomes of actions as unfavourable to them (Yager, 

2003). Neutral or normative attitudes are where a DS selects the best average 

from an average of all action outcomes. 

STEP 9 getEscS: Managing interactions among low-level mechanisms or components is 

assumed around an automata-based approach; automaton’s temporal 

discreteness and predictable changes according to predefined rules. The automata 

approach is used across many applications, such as to evaluate and select node 

queries on XML trees (Koch, 2003) and for understanding social dynamics 

(Hegselmann & Flache, 1998).   More recently, the authors in (Calinescu et al., 

2017) propose an automata-approach to model the service interactions of self-

aware systems in which survivability policies including recovery and escalating 

actions are dynamically configured and enforced. The escalation system accepts 

precisely defined computational rules from one process or system and selects the 

appropriate action. Therefore, it may be necessary perhaps, to compute a 

complete graph of a cloud computing system based upon SSM and DS data along 

with escalation parameters. Once computed, the possible state of the cloud 

system is critical to evaluate if an escalation criterion, for instance, meets 

survivability goals or not.  
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Figure 57. Overall process flowchart for survivability management using Pi-CCSFSTEP 
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STEP 10 getActions: at runtime, the SEE maintains the current survivability specifications 

to realize the survivability plan from the decision process. For this purpose, an 

instance of the algorithm, e.g. collective action algorithm (MURAT, 2015) buffers 

incoming communication. In addition, the actions module interacts with the SEE 

to reconfigure the architecture, e.g. hide VMs, deploy deception VMs, deploy 

poisonous VMs, as well as (re)establishing new dependencies. Finally, once 

adaptation terminates and survivability is agreed and re(established), pending 

requests are handled. 

5.7  Discussion 

In simple terms, Pi-CCSF should facilitate efficient survivability management and control 

from the holistic perspective of the cloud. While the application of cloud computing 

technologies generally enhances concepts related to survivability that is traditionally easily 

defined (e.g. resilience), survivability in the cloud, particularly considering UUURs, is 

challenging. Thus, Pi-CCSF pertains to how control and management of survivability can 

be handled at every level of the cloud, across multiple cloud assets, applications, single data 

centres or world-wide area networks (WANs). From a high-level view, Pi-CCSF builds 

upon the traditional survivability architecture by encompassing a software layer over the 

virtual network embedding components which maps virtual network resources to a 

physical substrate network.  

To support survivability, conceptual design analysis is proposed to assess the Pi-CCSF’s 

survivability mechanisms. Hence, the workflow outlined above can be extended into a tool 

for deploying the proposed framework. Although it is specifically designed for vendor risk 

management approach, CERT’s V-RATE (Ellison et al., 2002) serves a similar purpose. In 

this research, the stated tool serves to highlight key cloud components that must be 

assessed and addressed to meet a survivability solution. Table 13 is an example taxonomy 

tool for addressing the challenge of detecting UUURs. As suggested by the TRIZ 

parameters, enhancing efficient detection entails preserving the complexity of cloud 

computing. In this example, resolving this contradiction, i.e. improving detection while 

preserving the complexity of cloud computing, is achieved through incorporating the 
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concepts of dynamics, preliminary actions and substitution. These concepts are defined 

under TRIZ’s parameters (Domb et al., 2011b) and summarised in section 4.4.1.2  

To provide context, the following is a practical example. Suppose an organisation or CC requires 

that their survivability SLA enables from time to time, survivability to be invoked by STEP 10. 

Improving the CC’s survivability objectives points to changing the design attributes of the actions 

or algorithms that enhance adaptiveness; processes or the environment and ensuring that 

preliminary actions are timeously implemented.  

For each survivability objective under assessment, a Pi-CCSF component or approach that 

meets a suggested countermeasure is assessed based upon a category it can be used in, and 

one of three broad security categories proposed by the holistic taxonomy in section 3.4. In 

Table 13, the “category of use” identifies an area relevant to Pi-CCSF components and the 

general cloud survivability problem. The “expected impact area” identifies a cloud security 

category (according to the proposed taxonomy, i.e. The output of each survivability 

solution is envisioned to grow as more security “assessment and example”, “category of 

use” and “expected impact areas” are introduced tied to real-world empirical data.  

Table 13. Detection: Improve detection difficulty and preserve complexity 

Assessment area Category of 
use 

Expected impact 
area  

Dynamics: design the attributes (environment or process) to change to be optimal, make 
process adaptive 

Survivability management STEP 1 CAT 0, CAT 1 

Preliminary actions: Perform, before it is needed (either fully or partially). Design to act 
without losing time 

Mature survivability manager pre-
designed for an update on the fly  

STEP 1  

STEP 2 

STEP 3 

CAT 0 

 

Substitution: Introduce sensory, not mechanical, change from static to dynamic, unstructured 
to structured 

Adaptable feedback control loop.  

Running survivability service.  

STEP 1 

STEP 5 

STEP 9 

CAT 0 and CAT 1: algorithms and 
policy 

Conceptually, the implementation of the detection concept summarised in Table 13 can 

be represented as Figure 58 below. The prey-inspired detection component controls the 

implementation of the detection system. This detection component is executed from 

instantiation, in part, directly or delegated in specific instances. Thus, the prey-inspired 

detection component is invoked by the prey-inspired survivability modeller, identifies the 
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components to processes subtasks and transfers tasks with relevant configurations to the 

relevant components. It is key to note that “configurations” are extended from TRIZ’s 

suggested solutions. For instance, for the “preliminary actions” subtask, the configuration 

entails “performing actions before they are needed (either fully or partially) and without 

losing time”.  

 

Figure 58. The conceptual components for detection 

In Pi-CCSF presented earlier, the survivability strategy manager (SSM) processes the “on” 

aspect of the conceptual system, whereas the survivability monitor (SM) and UUUR 

analysis (Step 7) is abstractly presented and ought to be defined for precise processing. 

Alternatively, the on such as decision and escalation can be processed directly or triggered. 

The if aspects of the conceptual system are processed by different components. In the 

current example, these indicate different domain interests, for instance, virtual machine 

state changes, SLA changes and UUUR state. In fact, the if components provide dynamic 

awareness of the survivability state of the cloud environment. The do aspect of the 

conceptual system is triggered according to how the: if aspects are evaluated. For instance, 

the do components can be triggered to implement mitigation action and define the 
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survivability criteria based upon an adaptation policy or dynamic parameter management. 

A prey-inspired survivability modeler is responsible for maintaining the survivability 

strategy while the detection component is useful in the why aspects of the conceptual 

system. In order to evaluate the conceptual approach above in practice, it will be necessary 

to implement all survivability solutions and gather several industry scenarios to provide 

requirements and guidelines. While this will help refine the conceptual methods proposed, 

this form of evaluation is outside the scope of this research.  

5.8  Summary 

In summary, the Pi-CCSF presented in this chapter aims at presenting prey-inspired 

survivability management and prey-inspired survivability mechanism at the conceptual and 

phase design phase. Specifically, the SSM conceptualised in section 5.3.1 is expressed 

around H1 of the research hypothesis whereas prey-inspired survivability mechanisms are 

expressed around H2 of the hypothesis outlined in the introductions to this research. In 

the work presented in section 5.2 , the design context for Pi-CCSF is presented to 

introduce the survivability mission and mission requirements, as well the system 

requirements towards this context of a survivable system. The work in section 5.2 briefly 

highlights the security design context upon which the survivability is conceptualised. The 

framework serves to address the issue of survivability design for cloud computing building 

upon a specific objective to support the development of prey-inspired solutions. Thus, the 

general objectives to enhance survivability; detection and monitoring, intelligent making 

decisions, escalation and escalating actions, integrated into the complete process flow.  

The discussions in section 5.6 and the practical example presented give an indication of 

further noteworthy application directions which Pi-CCSF can be useful.  
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Chapter 6  Prey-inspired target-

based decision-making technique (Pi-

TBDM) for unpredictable survivability 

targets in cloud computing 

environments 

This chapter is dedicated to the DS component of Pi-CCSF introduced in Section 5.4.1. It presents a prey-

inspired target-based decision-making technique (Pi-TBDM) to manage survivability decision processes 

under unpredictability imposed by UUURs. This includes managing and controlling decisions on when to 

execute escalating survivability actions, the order of actions and survivability preferences. Hence, the DS 

component and TBDM are important to escalation and thus addresses H2 of the research hypothesis 

outlined in Section 1.2.  

6.1  Introduction 

Nature self-manages to meet set system objectives through intelligent decision-making. 

The survey of natural preys demonstrates that successful animals possess specific forms of 

anti-predation systems which enable continuous control and survival despite predation. 

Moreover, is also identifies complex monitoring as useful attributes in natural 

environments (Meisel, Pappas & Zhang, 2010). In earlier work that contributes to this 

thesis, (Mthunzi & Benkhelifa, 2017), reviewed a number of bio-inspired algorithms, with 
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the predator-prey system identified as useful for high adaptation and intelligent 

survivability decision-making (Mthunzi & Benkhelifa, 2017).  

Control theoretic approaches, mathematical models and numerical algorithms have been 

developed and applied to address decision problem. The main problem with these 

solutions is that most of them are limited when considering the analysis of unpredictable 

and complex relationships among different levels of the survivability criteria within a 

hierarchical cloud system. However, the decision, for instance, to select the best escalation 

method, both the number and order of actions, for a UUUR event requires a decision-

making system that can perform that exact analysis. MDP is widely used for decision-

making in dynamic environments (Nagarajan, n.d.). Partially Observable MDP for 

instance, achieve decision points by extending the observability element of MDP, i.e. that 

partial information can be inferred to provide probabilistic information about future states 

(Kreidl & Frazier, 2004b). This requires estimating core states and observing transition 

probabilities, which is clearly error-prone (Saghafian, 2018).  

Realistically, optimal decision making requires monitoring, particularly where all 

information is not known with certainty. Logically, it is not a good strategy to base 

decision-making on a system whose observations may produce ambiguous or imprecise 

information. Fackler and Haight (2014) suggest characterisation approach within the 

monitoring system, which assigns a variable degree of truth that an observed state is indeed 

the true state (Fackler & Haight, 2014b), as a robust alternative. To give context, assume a 

cloud infrastructure runs a service with an expected survivability target/value, which can 

be achieved by several survivability policies. A survivability parameter ensures that a 

survivability solution is achieved through executing parameters that achieve an expected 

value for each service. A monitoring system addresses the traditional challenge of detection 

via a cyclic process of learning, observation and decision-making. In addition, as it is also 

necessary to determine how to approximate actions that are implied by survivability data.  

Monitoring as a survivability objective encompasses decisions at high-level, to determine 

how at a larger scale, survivability is approximated. A feedback mechanism obtains sensed 

or observed information, evaluates its implications against previous observations and 

actions, which informs decision-making and new response selection. Two mathematical 

models may perhaps constitute this element. A stochastic model which characterises the 

multi-state evolution of survivability, and a multi-state observation model which 
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rationalises the statistical correlation between observations. Multi-state observation 

(Lertpalangsunti et al., 1999) is assumed as suitable since it is nearly impossibility to observe 

“true states” in UUUR events. Since this thesis does not focus on a specific attack model, 

risks imposed by UUURs are assumed as multi-path (Singh, Joshi & Singhal, 2013), 

according to the multiple ways cloud services can be compromised. A calculated 

survivability evaluation such as risk serves as a trigger for counteraction (e.g. recovery) 

upon a service (VM) under threat. The risk imposed on a cloud service is evaluated in a 

network of services, a tenant cluster or simply VMs. The decision system (DS) proposed 

earlier and detailed in section 5.4.1 is a control approach that is robust for cloud systems 

under UUUR. Under UUURs, uncertainty is such that an action results in unpredictable 

outcomes, which result in unpredictable implication.  

This chapter considers the survivability decision-making problem of in view of UUUR 

events through a process of random variable interpretation of escalation actions 

(alternatives). In addition, it considers decision-making to entail defining decision 

functions as a probability of each decided action meeting an unpredictable outcome/target. 

Since survivability in this research is viewed as a fuzzy variable, i.e. within a range of 

uncertain variables, it is important to note this view induces a possibility distribution over 

the domain of survivability variables. When considering the presence of UUURs in various 

cloud computing scenarios and applications domains, survivability decision-making can 

thus be considered as a multiple-criteria decision making (MCDM) problem. The 

remainder of this chapter is as follows: Section 6.2 introduces the fuzzy concept and its 

application to cloud computing survivability decisions. Section 6.3 details the target-based 

decision-making technique for cloud computing survivability. Section 6.4 presents 

numerical examples to assess the applicability of the technique proposed above. Section 

6.5 concludes the chapter with a summary of findings. 

6.2  Fuzzy logic and its application to cloud 

survivability decision problem 

The acceptance that survivability decisions are taken with non-complete detection 

information and imperfect execution indicates survivability as a fuzzy multi-indicator 



  

154 

concept with many contradictions. On one end, unpredictability renders efficient 

anticipation, decision and execution of enough countermeasures almost impossible. On 

the other, the cost of services and service assurance becomes complicated. Limited 

probabilistic information thus requires formal methods to reflect a range of continuous 

states that cloud systems may resemble. And yet, availability and performance are 

important parameters for survivability and demand for unhindered provisioning of 

services is central to the attractiveness of the cloud.  

Fuzzy theory (Zadeh, 1978)(Zadeh, 2013) is extensively applied in a range of areas to 

model complex behaviours due to its ability to represent casual relationships between 

concepts, and the analysis of a system after convergence. For a formal definition, the 

interested reader is referred to works by (Gras et al., 2009)(Yesil, Urbas & Demirsoy, 2014), 

who aptly demonstrate the suitability of fuzzy in analysing complex and dynamical systems 

where mathematical modelling is complicated. For instance, it is possible to model prey 

agents’ actions based on perceiving or sensing an attack and making an appropriate 

decision. Nonetheless, applying fuzzy evaluation methods in critical systems survivability 

is not constrained by the emphasis on character weighting and extreme value action. As 

suggested by (Cheng, Chen & Chen, 2008)(Sharif & Irani, 2006), because fuzzy weight 

values often carry useful information (individually) and yet little to do with relationships 

among objects being assessed, critical information is lost and thus the scientific rationale 

for weighting needs substantiating.  

In this chapter, Feldman’s notations style, i.e. capital letters indicate a random variable, 

while a lowercase to that character indicates a value of that variable (Feldman, 2002) is 

adopted. For instance, consider Y as a discrete random variable such that y ∈ Y in which 

Y is a finite set of M possible values of Y. Introducing the probability of Y at a point in 

time as p Y = y  or p(y).  

Let fuzzy events A and B be fuzzy sets on S and T whose membership function is described 

as 
𝐴
 𝑎𝑛𝑑 

𝐵

A
and

B
, a decision problem with fuzzy events is therefore defined as 

follows: 

4 − 𝑡𝑢𝑝𝑙𝑒  𝐹, 𝐶, 𝜀, 𝑢  

, where F =  f1, f2,…fr defines a set of fuzzy states and fuzzy events to a probabilistic space 

S =  s1, s2,…sn. C =  c1, c2,…cp defines a set of fuzzy actions which are fuzzy events on 
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an escalation space 𝐷 = 𝑑1, 𝑑2, … 𝑑𝑒. 𝑢 .   is a utility function such that 𝑢 .  : 𝐹 ×  𝐶 →

[0,1].  

Assuming fuzzy states F to be orthogonal, (the simplest sense of orthogon to imply 

complete independence from each other), an expected utility of fuzzy action 𝐶𝑖can be 

defined as follows:  

 𝐶𝑖 = ∑𝑈 𝐶𝑖 , 𝐹𝑗 𝑃 𝐹𝑗 

𝐼

 

It is quite clear above that fuzzy action 𝐶0 maximises 𝑈 𝐶𝑖 , and thus, defines the optimal 

fuzzy decision, i.e. 

𝑈 𝐶0 ≡ 𝑚𝑎𝑥
𝑖

𝑈 𝐶𝑖  

Suppose a message space X’s conditional probability on state S is known, i.e. 𝑝 𝑥𝑗|𝑠𝑖 , the 

probability that a hypothesised message is true for a state, i.e. 𝑝 𝑥𝑗|𝑠𝑖 , the expected utility 

of a countermeasure 𝐶𝑖 given a message 𝑥𝑗 and the conditional probability of 𝐹𝑘, i.e. 

𝑝 𝐹𝑘|𝑥𝑗  is U(Cxj|xj)=∑ (CI,Fk)p(Fk|xj)k . Intuitively, an optimal decision 𝐶𝑥𝑗 is defined 

as: 

𝑈 𝐶𝑥𝑗|𝑥𝑗 ≡ 𝑚𝑎𝑥
𝑖

 𝐶𝑥𝑗|𝑥𝑗  

e is defined as the probabilistic information w.r.t a random variable. Given probabilistic 

information, e, w.r.t random variable �̃�, an expected utility of possessing information is 

defined as 

𝑈 𝐶�̃�|𝑥𝑗 = ∑𝑈 𝐶𝑥𝑗| 𝑥𝑗 𝑓 𝑥𝑗 

𝐼

 

Information entropy, i.e. worth of possessing information e is according to the following 

𝑉 𝑒 = 𝑈 𝑐�̃�|�̃� − 𝑈 𝑐𝑜  

Furthermore, a perfect probabilistic information, 𝑒∞ is that information which gives the 

true state of 𝑠𝑖 . Thus, an expected utility for possession of perfect probabilistic 

information, 𝑒∞ is  
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𝑈 𝐶�̃�|�̃� =  ∑𝑈 𝐶𝑠𝑘|𝑠𝑘 𝑝 𝑠𝑘 

𝑘

 

, where 𝑈 𝐶𝑠𝑘|𝑠𝑘 = max
𝑖

𝑈 𝐶𝐼|𝑠𝑘   and U CI|sk  = ∑ u Ci| FJ uFJ sk j . the value of 

information 𝑒∞ can thus also be simplified as V e∞ =U Cs̃|S̃ -U(Co).  

Let us consider fuzzy information with fuzzy messages {M1..., Mp} which describe events 

on X and satisfy the orthogonal condition. Fuzzy information E is defined as observing 

messages from {M1... Mp}. Intuitively, the expected utility of countermeasure action 𝐶𝑖 

given 𝑀𝑘 is define by,  

𝑈 𝐶𝑖|𝑀𝑘 = ∑𝑢 𝐶𝑖 , 𝐹𝑗 𝑃 𝐹𝑗|𝑀𝑘 

𝑗

 

Clearly, as shown above, it is possible to attain an optimal decision point when both the 

probability of possessing fuzzy perfect information and the utility are maximal. However, 

this approach focuses upon optimising decision-making based upon probabilistic 

information over random variable. This is achieved by first defining the probabilistic value 

of information and converting this to a perfect probabilistic value based upon an expected 

utility for possessing that information. Moreover, there is an assumption that fuzzy states 

meet the orthogonal condition, i.e. states are independent. The current author suggests this 

decision-making approach be most applicable in traditional survivability decision-making 

methods where emphasis is upon the clearly defined value of information alone, e.g. 

business cost or risk, and less so on the state of a system. Nonetheless, as has been shown 

throughout this research, it is quite often common in practice that changes in the state of 

a cloud environment are highly dynamic and unpredictable, which impacts the survivability 

requirements and demands. Thus, a survivability decision-making problem under 

uncertainty would consider what value to place on unpredictable tenant services and cluster 

sizes. Suppose cloud services exist in at least four states; S1 = V and S2 = A, S1 = C and S1 

= S, representing services in the vulnerable state, attacked state, compromised state and 

survivable state, respectively. It is possible to assess a survivability target for the vulnerable, 

attacked, compromised and survivable states, TV, respectively to address this problem.  

Let us suppose there are two systems, and each can only assess the probability of the other 

according to given probabilities. An optimising principle suggests that an agent should 

decide on an action maximises the probability of a random action meeting the optimal 
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target. Although simple and appealing, with UUURs, uncertainty about the systems 

themselves, the information, targets, etc. means that the resultant model remains 

operationally limited. Bordley and LiCalzi, (2000) considering a random outcome 

whereupon the decision model prescribes the choice of an action that maximises the 

probability of meeting an uncertain target, as long as the target is stochastically independent 

of the random outcomes to be evaluated (Bordley & LiCalzi, 2000). Interestingly, Bordley 

and LiCalzi, (2000) decision procedure leads to a utility-based decision making which, as 

above, is operationally incomplete under UUUR, i.e. it defeats the survivability mission. 

6.3  Target-based decision-making (TBDM) 

Formal decision techniques have historically been applied in the computing domain to 

address the challenge of complex problems. For instance, decision tree techniques are 

applied in intrusion detection algorithms for probabilistic classification of split datasets. 

However, applying decision tree techniques in unpredictable environments is limited due 

to detection performance which is sensitive to mismatch training and test data (Jing, Bi & 

Deng, 2016). Decision tree techniques-based Markov models have been proposed to 

alleviate the detection performance shortcomings of standard decision tree techniques. 

However, the practical implementation of large decision models where significantly large 

decision points is embedded is a computational challenge. Moreover, decision tree 

techniques are most suited for traditional object-oriented, component-based computing 

environments where the survivability concept is fundamentally security-centric.  

In Pi-CCSF, the DS will consider various components and attributes simultaneously to 

make decisions about survivability and their outcomes. This includes resources, cost, the 

current and possible future survivability state, available actions, system state data from the 

SSM, SLA state, domain-specific aspects, etc. It may also be the case that these attributes 

contradict, with each imposing a unique performance on the overall survivability property. 

Thus, with unpredictability, survivability decision selection is unpredictable, multiple-

commensurable and contradicting properties requires an effective decision-making 

technique.  
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Several techniques have been developed to deconstruct the relationships between 

uncertain and undefined systems and the dependencies among the system components or 

attributes. Basic structural modelling for instance, which deals with modelling concepts 

and attributes’ logic and mathematical constructs (Warfield & Staley, 1996), is widely used 

across many domains. The DEMATEL technique specifically, is applied in engineering 

design by (Liu et al., 2014) to facilitate decision-making for engineering designers faced 

with the dilemma of materials selection. In their work, these authors use the ANP approach 

as a weighting system to evaluate the influence of dimension and criterion on material 

structure, and VIKOR method to rank each alternative based on performance difference. 

Hence, using the method by (Liu et al., 2014), a decision point can be reached by 

engineering designers, of the materials to improve a product.  

While the current chapter does not replicate the application of the technique by (Liu et al., 

2014), it will adapt the processes to suit the survivability decision-making problem under 

consideration. Making survivability decisions under uncertainty could be traditionally 

managed using probability distribution on the space of predictable states. However, as has 

been demonstrated throughout this thesis, traditional approaches are not adequate in cloud 

environments where survivability states are themselves unpredictable, and applying 

traditional approaches directly is challenging. To mitigate this challenge, the target-based 

approach is adopted for assessing the survivability target of a cloud system, transform the 

survivability outcome (payoff) into a probability of meeting the survivability target, and for 

each survivability action (alternative) Ai, and state Sj, define the probability of payoff value 

cij. The decision processes below are summarised here to place into context the decision 

technique under consideration. Figure 59 presents the overall graphical illustration of the 

foregoing.  

Step 1: The decision system should construct a relationship map based upon a survivability 

threat, the survivability mission and the known survivability state of the cloud 

environment. The map also maintains other important survivability tread-offs such 

as cost.  

Step 2: Based upon the relationship map in step 1, the DS computes a criterion to 

determine influential weights for a survivability criterion that achieves the 

survivability target.  
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Figure 59. Illustration of Pi-CCSF’s DS process 

Step 3: Weighting also computes the “attitudes”, i.e. the different priorities that capture 

the preferences for the level of survivability a decision process must consider, as 

stipulated in an SLA.  

Step 4: Based upon the influential weight and preferred target-solution, the DS ranks the 

alternative survivability decision based upon a prescribed target.  

Step 5: The DS determines the best survivability decision. This survivability decision 

system process in Figure 59.  
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6.3.1  Construct a survivability decision matrix 

To construct a survivability decision matrix, the DS foremost computes the general 

survivability matrix based upon survivability factors, for instance, as CC or CSP indicates 

in an SLA. Such factors may point to a scale in a fuzzy set of possible survivability states 

described in natural language terms. Suppose Ai is a set of survival actions (escalating) 

which are executed according to a survivability decision-making criterion. Hence, i are 

finite actions (random) such that i = 1, ..., n. Sj represents the state of a cloud system, 

including intermediary states in which cloud systems may exist. Hence, the state of the 

system translates into the posture of cloud computing environment under UUURs. 

Additionally, it represents such natural language descriptions as attacked, attacked but not 

compromised, vulnerable, vulnerable but low-medium-high risk, compromised but 

recoverable, compromised but not recoverable, and so on. Thus, j is a set of finite states 

such that j = 1..., m. From the preceding, it is possible to construct a general matrix with 

each action on a state producing an outcome, Cn, as shown in Table 12. As will be the case 

throughout this section, a fuzzy membership function and a possibility distribution should 

be viewed and will be used interchangeably.  

Table 14. A general survivability decision matrix 

Action  State of survivability 

 S1 S2 S3 S3 S3  Sn 

A1 C11 C12 C13 C14 C15 C1n 

A2 C21 C22 C23 C24 C25 C2n 

A3 C31 C32 C33 C34 C35 C3n 

  

A6 C61 C62 C63 C64 C65 C6n 

Formally, (Yager, 2004)’s conversion method is applied to convert a general possibility 

distribution Table 14 into a probability distribution for the decision problem under 

consideration. Yager's method is as briefly as follows: 

 
𝑃𝐹 𝑥 =

𝐹𝑋

∑ 𝐹 𝑥 𝑋
 

1 
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Suppose that for each survivability action Ai and state Sj, where T = Tj, if the probability 

of meeting survivability outcomes, 𝑐𝑖𝑗 depends upon an unpredictable state of the cloud 

environment, a general probability of an outcome or payoff meeting the survivability 

target, Ai and Sj is therefore defined as: 

 𝑝𝑖𝑗 = 𝑝 𝑐𝑖𝑗 ≥ 𝑇  2 

Table 13 below is therefore derived from the general survivability matrix presented in 

Table 14.  

Table 15. Decision matrix derived from the probability of meeting a target 

Action  State of survivability 

 S1 S2 S3 S3 S3   Sn 

A1 p11 p12 p13 p14 p15 p1n 

A2 p21 p22 p23 p24 p25 p2n 

A3 p31 p32 p33 p34 p35 p3n 

A6 p61 p62 p63 p64 p65 p6n 

6.3.2  Determine weights for main survivability 

decision functions 

Due to unpredictability, survivability decision-making outcomes are mostly heterogeneous, 

i.e. it cannot be known with certainty if executing an action yields a survivability outcome 

or payoff that is a crisp number, and interval value or fuzzy quantity. Thus, traditional 

decision-making methods cannot be applied directly. Nonetheless, where meeting 

survivability outcomes, 𝑐𝑖𝑗 is a crisp number,  

𝑝𝑖𝑗 =
∫ 𝑇 𝑥 𝑑𝑥
𝑐𝑖𝑗
−∞

∫ 𝑇 𝑥 𝑑𝑥
+∞

−∞

 

If cij is an interval value or cij is a random variable with a uniform distribution such that 

𝑐𝑖𝑗 = [𝑎, 𝑏].  

Otherwise, where cij is a fuzzy value F, the probability of meeting the target is defined as 

follows: 
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𝐹𝑖𝑗 𝑥 =

𝐹𝑖𝑗 𝑥 

∫ 𝐹𝑖𝑗 𝑥 𝑑𝑥
+∞

−∞

 
3 

Since cij, is a random distribution variable with the probability distribution Fij and T is the 

random variable associated with probability distribution PT, i.e. the associated probability 

of target T, as given by PT(x)=
T(x)

∫ T x dx
+∞

-∞

, the probability of meeting a survivability target is 

therefore defined as 

𝑝𝑖𝑗 = ∫ 𝑃𝑇 𝑥 𝑃 𝑐𝑖𝑗 ≥ 𝑥 𝑑𝑥
+∞

−∞

 

𝑝𝑖𝑗  =  ∫ 𝑃𝑇 𝑥 [∫ 𝑃𝐹𝑖𝑗 𝑦 𝑑𝑦]
∞

𝑥

𝑑𝑥
+∞

−∞

 

𝑝𝑖𝑗  =  ∫ ∫ 𝑃𝐹𝑖𝑗
 𝑦 𝑃𝑇 𝑥 𝑑𝑦𝑑𝑥

∞

𝑥

+∞

−∞

 4 

If cij and T are independent, the above method transforms the general survivability decision 

matrix into the derived matrix shown in Table 15. The advantage is that, unlike with the 

inhomogeneous decision matrix, the derived probability of survivability outcome pij 

uniformly comprises the probability of a survivability outcome cij meeting the survivability 

target T.  

6.3.3  Rank survivability decision alternatives 

Kao and Liu (2002) in their work proposed a fractional programming approach for 

decision-making prioritisation based upon a membership function derived from fuzzy sets 

(fuzzy weighted average) and the extension principle (Kao & Liu, 2002). Dong and Wong’s 

(1987) method gives discreet and exact solutions in which repeated derivation of a 

membership value extents the exactness of a membership function (Dong & Wong, 1987). 

Dong and Wong’s work is adapted by Liou and Wang whose method improves the 

efficiency of the foregoing by reducing the number of permutations (Liou & Wang, 1992). 

Along these lines, (Guh et al., 1996)’ method is, therefore, more efficient as it further 

reduced the number of permutations to give an efficient sequencing criterion. Using a 
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value function proposed in (Huynh, Ryoke & Ho, 2007), it is possible to rank decisions 

and execute them according to the prioritisation function:  

𝑣 𝐴𝐼 = ∑𝑃𝑖𝑗𝑃𝑗

𝑚

𝐽=1

 
5 

For brevity’s sake, this value function is adopted by the current author as an expected 

probability of meeting a survivability target. 

6.4  Numeric example 

This section considers the following application case scenarios to demonstrate the 

applicability of the foregoing TBDM technique for cloud computing’s survivability 

decision system (decision-making under UUUR). While the survivability application 

example presented in section 6.4.1 is arbitrary, the example in section 6.4.2 is adopted from 

official sources and attributed accordingly. 

6.4.1  Semantic web platform 

Suppose an arbitrary entity, CloudSea, is a web and semantic annotation platform whose 

varied client-base has wide-ranging service requirements. Along with providing existing 

clients with a reliable and secure platform, CloudSea is accessible to other sporadic clients. 

Hence, core to service provision is its ability to ensure that survivability targets of both 

traditional and sporadic client are met. Thus, survivability management and control 

decisions are much reliant upon an uncertain and evolving workload. CloudSea is therefore 

confronted with the issue of how to manage decisions and accommodate uncertain and 

undefined survivability and evolving scalability requirements.  

Traditionally, the CloudSea infrastructure managed scalability via automated instantiation 

of services based upon historically analysed statistical data. A range of actions towards this 

effect (referred to as alternatives) are available and defined as follows:  
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• A1: a survivability action which increases the CloudSea capacity by 25%, 

• A2: in addition to the A1 action, this action increases CloudSea’s capacity by 50%. 

• A3: a survivability action which when implemented increases CloudSea’s capacity 

by 100%. 

• A4: an action which when executed maintains the status quo.  

An unknown factor determines CloudSea's survivability capacity. Historical information 

enables CloudSea to estimate at least three (states) which correspond to service 

survivability” values”: high, medium and low. Associated prior probabilities for each state 

are known and computed as P1 = 0.3, P2 = 0.5 and P3 = 0.2, respectively. A survivability 

value defines a previously developed survivability matrix to aid in the decision-making �̃�𝑖𝑗. 

Survivability is parametrically shown by trapezoidal and triangular fuzzy numbers as shown 

below.  

  �̃�𝒊𝒋 =  �̃� 𝑨𝒊, 𝑺𝒋   

Table 16. Fuzzy Survivability target matrix 

Action State of survivability 

S1: 0.3 S2: 0.5 S3: 02 

A1 (80; 90; 99; 105) (75; 85; 90; 100) (50; 60; 70) 

A2 (135; 145; 150; 165) (120; 130; 140) (-40; -30; -20) 

A3 (170; 190; 210; 230) (100; 110; 125) (-90; -80; -70; -60) 

A4 70 70 70 

Expected fuzzy survivability of each action Ai (I = 1, 2 ..., 4) is computed according to 

(Zadeh, 1978) as below: 

 

�̃� 𝐴𝑖 =  ⋀ 𝑝𝑗   �̃�𝑖𝑗 

 3 

𝑗=1

 

6 

, Where Ʌ and  indicate extended addition and multiplication, respectively. Based upon 

the survivability target matrix in Table 16, applying equation 6 yields expected survivability 

values in Table 17 below. 

Table 17. Expected fuzzy survivability 

Action Expected fuzzy survivability Centroid 

A1 (71.5; 81.5; 87; 97) (84.25) 

A2 (92.5; 102.5; 104; 115.5) (103.7) 
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A3 (83; 96; 104; 119.5) (100.76) 

A4 70 70 

Visualising the membership function of expected survivability is presented using Fuzzy 

Inference System Professional (FisPro); a collaborative framework for fuzzy systems 

modelling (Guillaume, Charnomordic & Lablée, 2002). By simple inspection of the 

membership function shown in Figure 60, it is quite clear that A3 and A2 are better 

alternatives in contrast to A4 and A1.  

Thus, for CloudSea, the most appealing decision is one which increases CloudSea’s 

capacity by 100% (A3) followed by actions which increase its capacity by 50%. Likewise, 

decisions to do nothing and increase capacity by 25% are less favourable.  

 

Figure 60. Membership function of expected survivability: A1 is shown in green, 

A2 in red, A3 in blue and A4 is black. 

Nonetheless, it is not clear which among the above alternatives is better than the other, i.e. 

A3 or A2 and A4 and A1. (Chang, Yeh & Chang, 2013)’s opinion is that there is no generally 

accepted the best method to achieve consistent ranking outcomes. (Zanakis et al., 1998) 

concurs, and in fact suggests that different methods produce different results even when 

applied to the same problem. Here, if using the centroid of fuzzy numbers as the ranking 

criterion, the ranking order is A2; A3; A1; A4. 

6.4.2  Netflix and Hulu 

Netflix (Havens, 2019) and Hulu(Hulu, 2016) are two of the major video streaming service 

providers. While Netflix owns its extensive infrastructure, Hulu does not, yet it provides 
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competitively large-scale video streaming services (Adhikari et al., 2015). Hence, Hulu can 

support additional platforms, e.g., set-top boxes and mobile devices and offers HD video 

quality. Let us suppose that due to adaptive streaming, its user-base has varied prioritisation 

as to what content to access, at what speed, and consistency, hence different parameter 

choices and behaviour choices over the same or dissimilar service. Essentially, Hulu is 

faced with the task of managing decision choices considering uncertain priorities and user 

choices on services. For brevity’s sake, Hulu’s survivability mission is defined according to 

actions. A1, A2, A3 and A4 in the previous example. Similarly, Hulu’s survivability capacity 

is determined by an unknown factor, and historical information enables an estimation of 

at least three (states) which correspond to service survivability” values”. These are critical, 

neutral and general, whose associated prior probabilities for each state are known and 

computed as P1 = 0.3, P2 = 0.5 and P3 = 0.2, respectively. A previously developed 

survivability matrix summarised in Table 16, assists decision-making according to 

survivability value �̃�𝑖𝑗.  

From an infrastructure management point of view, Hulu’s survivability requirements and 

survivability decision strategy are important for varied use and user choices. As observed 

earlier, the survivability decision-making character parameter key specificities three main 

decision strategies, which will be considered in the case of Hulu: an optimistic strategy for 

critical services streaming time-sensitive content, pessimistic strategy for critical services 

streaming risk or cost-sensitive content and a neutral strategy for critical and non-critical 

services. Suppose a domain for survivability values is defined as D = [-90, 230], and 

optimist target is defined based according to the optimistic requirements of the running 

survivability strategy, where  

SurvStrat𝑜𝑝𝑡 𝑐 =
𝑐 + 90

230
 

, Then invoking this strategy yields a derived decision matrix summarised in Table 18. 

Similarly, invoking the neutral, SurvStratneut, and pessimistic strategy, SurvStratpess
 yields the 

derived neutral decision matrix and pessimistic decision matrix summarised in Table 19 

and Table 20, respectively.  

Table 18. Derived optimistic decision matrix 

Action State of survivability 
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S1 S2 S3 

A1 0.3346 0.3079 0.2199 

A2 0.5584 0.4728 0.0353 

A3 0.8229 0.3974 0.0026 

A4 0.25 0.25 0.25 

Table 19. Derived neutral decision matrix 

Action State of survivability 

S1 S2 S3 

A1 0.5781 0.5547 0.4688 

A2 0.747 0.6875 0.1875 

A3 0.9063 0.6302 0.0469 

A4 0.5 0.5 0.5 

Table 20. Derived pessimistic decision matrix 

Action State of survivability 

S1 S2 S3 

A1 0.8216 0.8014 0.7176 

A2 0.9356 0.9022 0.3397 

A3 0.9896 0.8630 0.0911 

A4 0.75 0.75 0.75 

As shown in the previous example, applying the value function in Equation 10, Table 21 

summarises the value function for each decision-making strategy as well as the ranking 

order.  

Table 21. Ordering based on different targets 

Action State of survivability  Ranking order 

A1 A2 A3 A4 

Opt 0.2983 0.411 0.4461 0.25 A3 _ A2 _ A1 _ A4 

Neu 0.7907 0.7997 0.7466 0.75 A2 _ A1 _ A4 _ A3 

Pessi 0.5445 0.6053 0.5964 0.50 A2 _ A3 _ A1 _ A4 

The following observations can be made from the results above. The ranking order of 

actions associated with the neutral target is the same as that obtained by using the fuzzy 

expected survivability with the centroid-based ranking criterion, where the risk neutrality 

is assumed. A neutral target induces a linear utility function which is also equivalent to risk 

neutrality behaviour, as opposed to optimistic which is equivalent to a risk-seeking 

behaviour. Thus, in the optimistic strategy, the decision system takes aggressive actions to 

achieve max survivability despite high risks, whereas in the former, the decision systems 

aim to achieve survivability and hence risk averse.  
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The survivability value attained with the different actions depends upon an unknown 

variable, i.e. unpredictable. Due to the amount of information the decision system 

estimates three states of nature corresponding to ‘high’, ‘average’ and ‘low’ survivability 

with associated prior probabilities of p1 = 0.3, p2 = 0.5, and p3 = 0.2, respectively. 

Moreover, assume that the prior matrix of fuzzy profits ˜Ui j is given in Table 8, where 

fuzzy targets are represented parametrically by triangular and trapezoidal fuzzy numbers. 

Then, the expected fuzzy target of each alternative Ai (i = 1, . . . , 4) can be calculated as 

˜E (Ai ) = 3 _ j=1 (p j ⊗ ˜Ui j ) (22) where ⊕ and ⊗ stand for the extended addition and 

multiplication, respectively, and risk neutrality is assumed. Using Zadeh’s extension 

principle for Equation 10 then results in the expected fuzzy profits of alternatives.  

The issue under consideration is how best to encode the natural concept of prey survival 

into precise measures about decision-making (adaptation and escalating actions) around 

multiple evolving states. Conceivably, such efforts may not be perfect and in some cases, 

may completely misrepresent information if a context changes. There are, however, proven 

mitigations add complexity to an already complex situation. While dynamic programming 

conceptualises numerical algorithms with the optimal solution, this approach is 

computationally prohibitive in practical problems (Kreidl & Frazier, 2004a). Fuzzy theory 

qualitatively deals with ambiguity, particularly concerning human reasoning (León et al., 

2010). The mathematical framework proposed in this chapter attempts to add practical 

value to cloud computing’s survivability challenge. It identifies and defines an appropriate 

balance between uncertainty and countermeasure actuation. 

6.5  Summary 

There is merit to the claim that TBDM is a significant basis for decision analysis under 

unpredictability. It seems an appealing that the TBDM technique is a generalisable 

approach for formulating decision functions that can be automated to adapt to contextual 

cues. Such cues include decision attitudes and preferences of varied and perhaps 

unpredictable decision problems. However, as this element is outside the scope of the 

current work, it will require further investigation. This chapter presented a fuzzy-based 

technique to leverage decision-making towards survivability targets. The target-based 
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decision technique addresses the research hypothesis by considering the fuzziness of 

information when faced with UUURs.  

The approach brings fuzzy survivability information, i.e. survivability state which 

directly impacts the survivability actions (escalation), closer to survivability 

decision processes. Figure 55 illustrates this by considering survivability 

preferences and survivability attitudes. 

• The investigation suggests that it is possible to institute variable survivability 

actions (escalation) based upon the known survivability preferences and attitudes.  

• Moreover, the target-based approach ensures that the decision model focuses upon 

achieving survivability outcomes under UUURs. This is a promising method to 

address the problem of survivability decisions under UUURs.  

• The numerical examples show that the decision technique introduces the 

possibility to generalisable survivability SLAs according to variable requirements 

and priorities. For instance, survivability decision requirements for a critical system 

as different for a neutral system. With further work, dynamic automation for 

instance and evolutionary computing, the decision system, including the actions to 

recover can be contrived to adapt dynamically and intelligent to suit changing 

survivability requirements.  
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Chapter 7  Evaluating Pi-CCSF 

using Pi-CCSF simulator  

This chapter presents the Pi-CCSF simulator, developed and implemented to evaluate Pi-CCSF’s 

theoretical conception of escalating actions proposed in 5.4.2. The aim is to understand the implications of 

escalation (prey-inspired survivability mechanisms) in the context of practical application in a real-world 

cloud environment. To achieve this, the experiments in this chapter assess the impact of prey-inspired 

escalating survivability actions on VMs in various states of compromise. Analysing the implication of 

escalating actions on the vitality of VMs and the overall survivability will help identify the best conditions 

for survivability. In addition, hypothesis testing will help to prove if indeed the escalation concept has no 

effect on survivability. 

7.1  Introduction 

It is common practice in research to evaluate systems using CTMC, simulation or system 

prototype. A common influence on the choice of an evaluation approach is the level of 

development of the system under evaluation. For instance, CTMC evaluation is suitable 

where a system architecture exists. However, a system prototype brings experimentation 

closer to real-world systems, albeit with limitations of scalability. Simulation is suitable 

where a system architecture is developed. Thus, Pi-CCSF simulator is presented in this 

section as suitable to study the behaviour of the prey-inspired survivability mechanisms 

and the contributions proposed. While CloudSim provides near real results (Sakellari & 

Loukas, 2013)(Haas, 2014), its use for the current context is not suitable for several 

reasons. Foremost is the time limitation, learning the CloudSim framework and adapting 

it to current considerations is a timeous task. In addition, CloudSim is more suited for 
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modelling Discrete-Time Event-driven models, which limits its suitability for the current 

experiment. On the contrary, the main application models supported by the Pi-CCSF a 

multiple-phase analysis of continuous Markov-chain models for the proposed prey-

inspired escalation. Thus, using CloudSim in this instance will add useful but unnecessary 

complexity and render it challenging to scale these models. Restricted validation that allows 

for a scientific computing researcher to employ separate validation methods (Oberkampf 

& Roy, 2011) is employed. (Oberkampf & Roy, 2011)’s opinion is that the alternative 

approach; all-encompassing approach, is confusing when communicating results.  

The approach in this research hence comprises one key component: A python 

implementation based on the Lotka-Volterra predator-prey model (Wangersky, 

2003)(Parker & Kamenev, 2009) validates Pi-CCSF’s theoretical escalation concept. LV’s 

model is the base model upon which the current hypothesis of prey-inspired survivability 

property is built. Many pieces of research have shown that LV’s properties and behaviour 

are valid indicators for survivability, and hence, the system model in this simulation are 

deemed valid for the Pi-CCSF simulation. 

To evaluate Pi-CCSF, it is assumed that cloud environments by default are vulnerable, and 

if the vulnerability is unresolved, an attack is launched (attacked state) leading to 

compromise (compromised state). Pi-CCSF’s objective is, therefore, the application of 

prey-like actions to alter the transition processes of cloud system states from various levels 

of compromise to the survivable state. These transient states have a steady-state 

probability, which implies that the probability of an action being aborted, the probability 

that action proceeds another and the probability of escalating actions, etc. do not change 

with time. Related approaches include (Nguyen, Kim & Park, 2016) steady-state analysis 

of cloud service availability, (Zheng, Okamura & Dohi, 2015)’s single-phase survivability 

analysis of VM-based architectures and (Changa et al., 2016)’s multiple-phase survivability 

analysis of continuous Markov-chain model to capture a datacentre recovery process.  

The remainder of this chapter is as follows: Section 7.2 presents the Pi-CCSF simulator; 

details the Pi-CCSF simulation environment and simulation code description. Section 7.3 

outlines the simulation design. Section 7.4 presents the simulation results in the analysis. 

Section 7.5 concludes the chapter with a summary of key findings. 
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7.2  Pi-CCSF simulator 

The simulator and experiments presented in the chapter are designed around Pi-CCSF. 

Specifically, the experimental approach aims to gather the details of VMs survivability 

dynamics under different scenarios. A python simulator hence is developed to investigate 

VMs’ behaviour when prey-inspired survivability mechanisms are employed. The 

expectation is that simulation results give an indication of the extent to which prey-inspired 

actions alter the state of the cloud system, and precisely demonstrates the consequences of 

escalating actions to cloud systems or services in vulnerable, attacked or compromised 

states.  

7.2.1  Environment  

For a visual illustration of the application of the conceptual framework, Figure 61 is 

presented as an example of the cloud service application view of Pi-CCSF. Survivability 

areas 1 and 2 emulate the traditional survivability configuration; one is operational whereas 

the other acts as backup or standby, with redundant resources. From left, a gateway enables 

CSP and CC to access Pi-CCSF via a web front-end, e.g. an API. Based upon an existing 

SLA and the cloud infrastructure, different scheduling policies will have different effects 

in terms of task execution. Pi-CCSF’s management layer (SSM) is publicly available, 

enabling both CPS and CC to interact directly and influence the survivability management 

strategy. However, low-level prey-inspired survivability mechanisms are private and only 

accessible to the CPS, to secure survivability mechanisms against malicious attack, 

manipulation or misapplication. Survivability data repository stores running configuration 

files and facilitates efficient configurations reuse at real-time. Suppose an incident occurs 

in Area 1, the system configuration reverts to the traditional setup, whereupon the CSP 

and CC operations are provided via the backup survivability Area 2 
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Figure 61. A cloud service application of Pi-CCSF around running survivability service area (Area 1) and a backup area (Area 2)
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CCSF simulator is tested on Microsoft Windows 10 workstation and implemented in 

Python providing an intuitive GUI (Figure 62 and Figure 63). Since Pi-CCSF simulator 

uses Python code libraries, it can be integrated into real or near cloud environments with 

relative ease (Hwang & Li, 2010).  

 

Figure 62. Part of the graphical user interface (GUI) to set virtual machine 

variables. A user can launch a simulation based upon specified variables, memory 

generated variables or using the best variables in memory 

 

Figure 63. Part of the graphical user interface (GUI) to set memory variables. A 

user can launch a simulation by specifying the amount of actions that can be 

stored in memory, the numbe of VMs and a threshold VM survivability vitality. 

As shown in the following section, the Python scripting system forms the underlying 

simulation platform, providing a conduit between the GUI and the underlying 

programmatic prey-inspired survivability components. 
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Two simple programmatic functions are performed, setting up virtual machine and 

memory variables. These enable a researcher to simulate with specified parameters, run the 

simulation with generated memory and run a simulation to compares the implications of 

generated memory. Also, the researcher can automate the launch and termination of a 

simulation run. Pi-CCSF simulator is designed to provide the features to simulate prey-

inspired survivability, specifically unique features that facilitate the development of 

escalation models. The quantitative analysis aims to evaluate VM vitality and survival rate 

(as indicated by population changes) in the presence of an unpredictable (random) attack 

(attacking VM). Pi-CCSF simulator also includes customisable models of memory 

generation, VM population dynamics, model parameter integration and an intuitive GUI.  

The use of python to create Pi-CCSF simulation models implies that various component 

groups are defined with specific dependencies defined among them. Whereas simulation 

parameters are determined in advance, incremental learning algorithms (Xiao et al., 2014; 

Yoon et al., 2018) would be most suitable with further development to the simulator due 

to its adaptiveness and dynamicity in large-scale systems. The complete code is provided 

in Appendix B. It should be noted that in its current form, Pi-CCSF simulator does not 

fully integrate all Pi-CCSF’s components, as integration can be quite complex. As such, the 

decision system (DS) is addressed separately in Chapter 6. While decision triggers and 

decision targets and attitudes, are assumed in the experiments, none of these requirements 

is met in simulation. Decisions associated with escalating actions are hardcoded in the 

python script to allow for analysis. 

To create the default parameters, the following code example defines the timestamp, 

number of VMs, the number of actions, including historic (or learned) actions, preferred 

number of VMs to achieve survivability and the preferred vitality for survivability, etc. 

based upon properties from the prey inspiration. In addition to creating and modifying the 

default models parameters, Pi-CCSF simulator defines a range of common tasks. For 

instance, to define a “stimuli” or input which invokes the simulation of VMs with respect 

to the input and the current state. Hence, controller.py allows the researcher to evaluate 

the survivability models by running multiple simulations, changing parameters and storing 

and outputting simulation data. The sample code (See Appendix C) generates memory 

parameters and searches and stores historic actions. In addition, the code allows the 

researcher to explore the behaviours of VMs through the simulations cycle; define 

vulnerability parameters, the vitality of vulnerable VMs, the average survivability of VMs 
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in general and record the simulation output to a local directory. In the code simulation 

(sample provided in Appendix C), the simulation performs a search task, to identify the 

number of vulnerable VMs and execute survivability actions if the number is below a 

threshold value. If current actions improve VM vitality, the search and execute task 

(escalation) is not necessary, i.e. raiseSpeed = False, and stores the actions for future use.  

Given the novelty of the escalation concept for cloud computing survivability as 

conceptualised for Pi-CCSF, it would be necessary to develop the escalation model further. 

In its current form, this model simplicity facilitates easy definition and execution of the 

escalation process throughout Pi-CCSF’s system components. In a real cloud environment, 

escalation is triggered by several of Pi-CCSF components including the SM, SSM and other 

related adaptation and dynamic support sub-tasks. However, in its current form, escalation 

model behaviours are deliberately designed to be triggered by simple rules, i.e. if several 

survivable VMs or VM vitality falls beneath a certain value, then execute escalation from a 

set of actions. Theoretically, the escalation process implies that an action vector maps 

actions to probabilities of an occurrence (compromise, exploiting a vulnerability and 

surviving). Thus, it defines the escalation sequences imposed by vulnerable, attacked and 

compromised VMs. Due to its current simplicity, the escalation model can be translated 

into mathematical models and further code and so on, as the simulator is developed. To 

mimic prey animals’ efficient learning and future threat prediction and response (Systems, 

2006), escalation outcomes are retained in memory. Actions are randomly computed to 

search for a survival solution and retain its value when the vitality of vulnerable VM 

decreases (it is assumed to indicate negative survivability), otherwise no solution is saved 

if the vulnerable VMs survive. 

7.3  Simulation design 

While knowledge of an adversary informs the type of countermeasure implemented, 

(Albanese, Jajodia & Venkatesan, 2018)’s opinion is that possessing such knowledge with 

certainty when dealing with UUURs. Pi-CCSF simulator does not consider any attack or 

adversary model but instead, the properties of adversaries are identified simply around the 

outcomes of UUURs (Ma & Krings, 2011)(Ma et al., 2014). Hence, a worst-case scenario 
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is assuming that VMs are by default “vulnerable”, implies that they are to some degree 

under the control of an adversary. Hence, discovering the behaviour of the simulation 

requires an analysis of the dynamics of VMs’ probable state transitions concerning prey-

inspired escalation upon the vulnerable state. Figure 64 illustrates the Pi-CCSF simulator 

component and the interactions between them. SurvivabilityModel.py simulates the vitality 

of vulnerable VMs; equation 7 and rate of survival for attacked VMs equation; 8. 

Furthermore, the simulation aims to discover the distribution of survivable VMs equation; 

9 over time, if executing survivability actions recovers VMs from the compromised state; 

equation 10. For the purposes of this simulation, this is assumed to be closed system, i.e. 

V_VM(t) + A_VM(t) + C_VM(t) + S_VM(t)  1. Known attacks (with established 

solutions) pose a threat with known and established solutions. The computing of VM 

dynamics is according to the probabilities summarised in Table 22.  

Table 22. Summary of default parameters 

Description Annotation 

Probability of exploiting VVM  

Probability of AVM resisting attack 𝛾 

Probability of compromising SVM   

Survivability action  a 

Rate of compromising SVM 1/a  

Escalating action, a = {a1, a2, ... an} Esc 

Probability of CVM recovering to SVM Ƞ, increase with escalation 

Rate of juvenile VM  α= V
VM
 t + AVM(t) 

Rate of parent VM 1-α=SVM t + CVM(t) 

Specifically, survivable and vulnerable VMs are presented analogous to parent and juvenile 

preys, respectively. “Juveniles” represents a system of two VM systems; Vulnerable 

(V_VM) and Attacked (A_VM), distinguished by their inability to resist attack., “Parents” 

represents a system of two VM systems; (Compromised (C_VM) and Survivable (S_VM), 

distinguished by their capacity to recover from compromise.  
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Figure 64. Pi-CCSF simulator components 
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To observe the distribution of vulnerable VMs over time concerning the relationship 

between the probability of a vulnerability being exploited (successfully or otherwise) and 

the probability of resting an attacker at a point in time during the simulation, the evaluation 

is according to the following: 

 ΔV t 

Δt
= − βVVMS t ∗  AVMs t +  γAVMs t  

7 

, where VVMS (t) and AVMS (t) are the total number of vulnerable and attacked VMs at 

time t, ΔV(t) specifies the rate of a range of change of vulnerable VMs considering the 

given probabilities specific to each VM state.  

To observe the distribution of attacked VMs over time, based upon the relationship 

between the probabilities of a vulnerability being exploited, the probability of failing to 

resist an attack and the total number of attacked VMs at a time, the evaluation is according 

to the following:  

 ΔA t 

Δt
= βVVMs ∗ AVMs t −  γAVMs t  

8 

, Where ΔA(t) represents the rate of attacked VMs at a given time t, AVMs(t) and VVMs(t) 

specify the total number of attacked and vulnerable VMs, respectively, at any given time t. 

Intuitively, - γAVMs (t) is a negative constraint on the number of attacked VMs.  

To observe the distribution of survivable VMs over time-based upon the relationship 

between the total number of survivable VMs and attacked VMs, with respect to the 

strength of an action performed, where the probability of compromise is a constraint on 

the total number of compromised VM and the rate of survival, the evaluation is according 

to the following: 

 ΔS t 

Δt
= −

αSVMS t ∗ AVMs t 

a
+ CVMs t  

9 

, Where ΔS(t) is the rate of survival, i.e. survivability at a time t, the action(s) taken, impacts 

upon the survival rate, intuitively, inadequate action(s) harm survivability.  
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The evaluation to observe the distribution of compromised VMs over time-based upon 

the relationship between the total number of survivable VMs and attacked VMs at a time 

with respect to action(s) taken is according to the following:  

 ΔC t 

Δt
=

αSVMS t ∗ AVMs t 

a
− CVMs t  

10 

, Whereas ΔC(t) is the rate of compromised VMs at time t of the simulation, SVMs (t) and 

AVMs (t) specify the number of survivable and attacked VMs at that time t, of the 

simulation. Intuitively, −𝐶𝑉𝑀𝑠 𝑡  in the equation points to a negative constraint on the 

number of compromised VMs. Simulation parameters were chosen to reflect best the prey-

parentage upon which Pi-CCSF is developed. A pilot experiment presented in section 4.5 

which simulated prey survival dynamics against predators suggests the current experiments 

as plausible. For the experiment below, the following benchmarks are used: a known 

vulnerability probability, , the probability of resisting an attack, probability of 

compromise and the probability of recovering, i.e. surviving; denoted by λ,  and Ƞ, 

respectively.  

7.3.1  Simulating base model with escalation 

Figure 65 shows the Pi-CCSF’s simulation dynamic. The simulation is initialised with 

default parameters after which the escalation model is deployed.  

 

Figure 65. Graphical representation of the simulation dynamic 
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An escalation model provides escalation parameters such that at run-time, “set simulation 

data” and “get simulation data” methods are called until the end of the simulation. 

Suppose CS is a set of requirements that a cloud application must achieve to deliver a cloud 

service. At instantiation, every aspect of CS, i.e. CSi
th is met (provided all other service 

levels are met). Suppose 𝐹𝑐𝑠𝑖 is an evaluation function of CS, such that Fcsi t : R → [0,1], 

where R is a set of all positive values. Fcsi hence stipulates the degree to which the ith 

requirement from Fcs is satisfied at any given time, (t).  

Suppose in functional analysis of a complete system, a subsuming function gCS t : R → 

[1,0], defines the degree to which the whole system requirements are met at any given 

time. Without UUUR events, assume gSC = 1 to imply service delivery at expected levels, 

whereas gSC = gCS ≠ 1 or gSC ≤ 1 implies the negative effects of UUUR. The deviation 

from gCS = 1, upward or downward is indicative of the UUUR and gCS = 0, being 

catastrophic. A restorative movement towards gCS = 1 is indicative of actions that are 

applied to reach acceptable service requirements, i.e. escalating actions.  

Let us consider a set of systems states, i.e. survivable, vulnerable, attacked, compromised 

(and catastrophic) such that 0 ≤ gCS ≤ 1. Let the maximum and minimum state of gCS, 

i.e. vulnerable but not attacked, attacked but not compromised, compromised but not 

catastrophic, define a cloud service states before complete catastrophe such as when 

services are completely unavailable. Suppose a dead threshold (DT) is an unacceptable 

service state, i.e. where gCS < DT. Nonetheless, in rare circumstances, DT can be induced 

from a service security administration perspective, e.g. where a VM is killed. Intuitively, a 

dead set is a set of undesirable dead states, i.e. 0 ≤ gCS ≤ DT, and the probability of exiting 

a dead set is insignificantly. Figure 66 illustrates this context of the dead set explained 

above. Hence, a system’s survivability (SS) is generally defined as a function of two 

variables such that 𝑆𝑆 gCS̅̅ ̅̅ ̅, 𝑡̅ : [0,1] ×→ [0,1, where gCS̅̅ ̅̅ ̅ is the mean of gCS and t ̅is the 

meantime to reach the dead state from the vulnerable state. Hence, escalation is both 

conditional and jointly dependent upon other probabilities. In this example, escalation is 

considered in space modelling a series of prey-inspired survivability actions. An escalation 

space is defined as follows. 

3-tuple (C, μ, δ), where C represents all available survivability actions such that 𝐶 =

{𝑐1,𝑐2 … , 𝑐𝑛}.  
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𝜇 .  : 𝐶 ×  𝑐𝑠 → [0,1] is a function to evaluate the effectiveness of each survivability 

action concerning a cloud service.  

𝛿 .  : 𝐶 → 𝑍∗ is a function to evaluate the cost of a survivability action, and 𝑍∗ =

{1,2, … 𝑛}, i.e. a set of positive integers.  

 

Figure 66. Illustration of variable systems states including the dead set 

For simplicity, it is assumed that action selection varies depending upon the state of a cloud 

environment and across variable cloud services. Thus, an effectiveness evaluation is a 

function for both the survivability action and the cloud service. Hypothetically, it implies 

that survivability action X may be effective against a certain vulnerability in one cloud 

service, and yet insufficient to recover a compromised service. It is quite clear in this case 

that the dependency between escalation and service state decisions must be optimised to 

achieve survivability. Although optimisation and decision making are both outside the 

scope of this chapter, an optimal solution is reached when both escalation and service 

states are selected to maximise effectiveness against compromise and minimise risk.  

7.3.2  Experiments 

The experiments performed are executed over several runs and the results are summarised 

into four experiments according to the parameters in Table 23. For each experiment 

(Simulation Id), a number of VMs are considered with a predefined survivability threshold 

value to stipulate a point to invoke escalation. Theoretically, this emphasises a value upon 
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which a survivability SLA is agreed as acceptable to service provision. For each 

experimental run, some survivability actions are retained to emulate memory. In a practical 

application, this process improves decision-making for real-time escalation (RTE). Since 

vulnerable VMs (V_VM) and attacking VMs (A_VM) both act as a set of 5 escalating 

actions, escalating actions lead to a desirable outcome, i.e. enhanced survivability, 

dependent upon the scenario in question. Survivability is evaluated in range 1 and 0; 

illustrated as the vitality of a VM.  

Theoretically, 1 implies a high degree of survivability, while 0 vitality implies the opposite. 

If the vitality reaches 0, the VM is considered as dead. In real terms, a dead VM 

characterises an undesirable outcome, i.e. compromised, such as an event whose effect 

means that cloud services are not available to the CC. It is necessary to suppress NAN and 

infinity values, i.e. computations whose values cannot be expressed as a number to observe 

VMs dynamics over time. Hence, survivability exists within the solution space (-1, 0, 1). 

For each vulnerable VM, an attacking VM will exist in the simple model (survivability 

model.py in Appendix B). Due to computational constraints, each VM perform a limited 

number of different actions and the results are liberalised using an average of 100 groups 

of simulations. Each group of simulation will simulate vulnerable virtual machines 

(V_VMs) and attack or attacked (A_VMs). The simulation starts from random survivability 

value whereas the simulation time number of VM components is variable. To the best of 

this researcher’s knowledge, exact resolution of survivability analysis with escalation as 

presented here does not exist in current literature. Thus, in principle, the analysis of results 

presented here is limited due to the absence of a comparative reference to evaluate the 

effectiveness of escalation model presented in this work.  

The Pi-CCSF simulator implements a “shared memory” folder to simulate simple 

communication between vulnerable VMs (V_VM). In real cloud environments, inter-VM 

communication mechanisms facilitate a range cloud computing process, e.g. VM live 

migration (Ren et al., 2012)(Author & Author, 2013)(Zhang et al., 2013). Hence, for this 

investigation, a shared directory is assumed synonymous to XenSocket which implements 

communication between VMs based on shared memory (Jamal et al., 2009) (Gebhardt & 

Tomlinson, 2010)(Mthunzi et al., 2018). Similarly, Xway and IVC use the shared memory 

concept based upon the Xen hypervisor architecture. VM behaviours are compared based 

upon a constant initial vitality and the best-known actions; a random action performed 

without memory and a random action with memory. Random actions with memory imply 
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that the best action is learnt and saved in memory if the best action exists and the “gain” 

is above 0, otherwise, a random action will be used. This best action behaviour is used as 

a baseline to provide a realistic comparison since both mechanisms are not optimised. 

Unless stated otherwise, it is assumed that all simulation intervals are exponentially 

distributed, and survivability actions are performed randomly according to a generic action 

matrix presented in section 5.2.3 .  

Table 23. Input parameters for five simulation runs 

Simulation id Nbr of VMs Threshold in % Number of actions saved 

Sim 1 1_1 1000 0 0 

Sim 1 1_2 1000 0 0 

Sim 2 1_2 50 50 1 

Sim 2 1_3 50 75 1 

Sim 2 1_4 50 90 1 

Sim 2 2_2 50 50 3 

Sim 2 2_3 50 75 3 

Sim 2 2_4 50 90 3 

Sim 2 3_2 50 50 5 

Sim 2 3_3 50 75 5 

Sim 2 3_4 50 90 5 

Sim 3 1_2 200 50 1 

Sim 3 1_3 200 75 1 

Sim 3 1_4 200 90 1 

Sim 3 2_2 200 50 3 

Sim 3 2_3 200 75 3 

Sim 3 2_4 200 90 3 

Sim 3 3_2 200 50 5 

Sim 3 3_3 200 75 5 

Sim 3 3_4 200 90 5 

Sim 4 1_2 500 50 1 

Sim 4 1_3 500 75 1 

Sim 4 1_4 500 90 1 

Sim 4 2_2 500 50 3 

Sim 4 2_3 500 75 3 

Sim 4 2_4 500 90 3 

Sim 4 3_2 500 50 5 

Sim 4 3_3 500 75 5 

Sim 4 3_4 500 90 5 

Sim 5 1_2 1000 50 1 

Sim 5 1_3 1000 75 1 

Sim 5 1_4 1000 90 1 

Sim 5 2_2 1000 50 3 

Sim 5 2_3 1000 75 3 

Sim 5 2_4 1000 90 3 

Sim 5 3_2 1000 50 5 

Sim 5 3_3 1000 75 5 

Sim 5 3_4 1000 90 5 
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7.4  Results and analysis 

Several experiments were performed, with varied escalating actions configurations tested 

around survivability. The goal is to study how survivability evolves with respect to the 

number of actions, sharing memory and the memory parameters such as the threshold 

value and the number of saved actions. As a control will be required, some simulation 

results will also be realised to allow a comparison. Each simulation performs ten runs to 

simulate a network composed of ten different groups. Each group has its shared memory, 

and each simulation supposes that five different actions are available. The simulations will 

run 50 clock times (ticks) including the initialisation as the results stabilise after each step. 

50 ticks are chosen due to the computational limitations. These summaries correspond to 

the rounded results at 10-3 obtained for each group. Appendix C presents the simulation 

results for the best actions.  

7.4.1  The vitality of random and best actions 

To enable synthesis and to view in graphs, minimum and maximum vitality values are 

observed to cater to the huge variance in results. For each graph, the x-axis shows the 

simulation time in ticks while the y-axis shows the vitality value. The results in this section 

plot VMs’ responses when random actions (RD) and the best action (BA).  

Table 24 presents a sample summary for vitality evolution (Min-Max) of vulnerable VMs, 

whereas Figure 67 tracks the response of vulnerable VMs and shows that random action 

marginally outperforms the best action, and vitality is relatively unchanged. 

Table 24. Sample data of vitality evolution for vulnerable VMs over 10 ticks 

Min-Vitality  
V_VMs 

0.329 0.357 0.348 0.340 0.333 0.328 0.325 0.323 0.322 0.321 

Max Vitality  
V_VMs 

0.346 0.377 0.369 0.360 0.357 0.355 0.353 0.351 0.350 0.349 
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Figure 67. The vitality of vulnerable VMs. 

Table 25 presents a sample summary for vitality evolution (Min-Max) of survival VMs and 

Figure 68 plots the behaviour of survivable VMs and shows a relative decline of vitality 

over the simulation period.  

Table 25. Sample data of vitality evolution for survival VMs over 10 ticks 

Max- Vitality  
S_VMs 

0.345 0.336 0.326 0.321 0.310 0.298 0.287 0.278 0.270 0.264 

Min-Vitality  
S_VMs 

0.316 0.276 0.264 0.255 0.244 0.233 0.226 0.220 0.216 0.212 

 

Figure 68. The vitality of survivable VMs. 

RD and BA both generally have a marginally different impact, despite a deficit when 

considering the Min RD.  
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Table 26 presents a sample summary for vitality evolution (Min-Max) of attack VMs 

whereas Figure 63 plots the behaviours of attack VMs’ response to both random and best 

actions. Foremost, both RD and BA have marginal differences although RD seems in parts 

to outperform BA. Moreover, A_VMs achieve the highest vitality (about 0.5) than any 

VMs over the simulation period.  

Table 26. Sample data for vitality evolution for attack VMs over 10 ticks 

Min-Vitality 
 A_VMs 

0.316 0.310 0.346 0.377 0.400 0.417 0.427 0.433 0.437 0.441 

Max-Vitality  
A_VMs 

0.345 0.343 0.389 0.423 0.442 0.455 0.465 0.472 0.476 0.479 

 

Figure 69. The plot of vitality of Attack VMs 

Table 27 presents a sample summary for vitality evolution (Min-Max) of corrupt VMs and 

Figure 70 plots the response of corrupted (interchangeably referred to as compromised) 

VMs to RD and BA. This graphic shows a steady increase in vitality considering both 

actions. Moreover, the random action outperforms the best action.  

Table 27. Sample vitality evolution for corrupted VMs over ten ticks 

Min-Vitality  
C_VMs 

0.000 0.010 0.017 0.024 0.033 0.045 0.067 0.091 0.116 0.135 

Max Vitality  
C_VMs 

0.000 0.049 0.061 0.075 0.098 0.129 0.159 0.183 0.201 0.214 
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Figure 70. Sample data for vitality of Corrupted VMs 

7.4.2  The vitality of actions and threshold values 

This section presents the result of running 5 actions based upon similar simulation 

parameters in terms of probabilities of compromise, attack, survival, etc. The first 

escalation model is are random actions which are not preserved for future use. This 

contrasts with best actions which arise from actions evaluated and stored in memory based 

upon their outcomes. The tested actions have four distinct regions to plot survivability 

trajectory in a graph. All actions have the same initial random action (RD) vitality value. 

Each has a minimum and a maximum vitality value and a transition between one action 

and its threshold value and a consecutive action with its threshold value.  

 

Figure 71. A plot showing the evolution of the vitality for action one (1). 

Figure 71, Figure 72, Figure 73, Figure 74 and Figure 75 depict the vitality trajectories when 

actions A = {1, 3 and 5} are evaluated against a survivability threshold, T = 90. The x-axis 
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in each depicts the action type; random (RD), the action (A*) and survivability threshold 

value (T*). The y-axis represents vitality, which is a value synonymous to the survivability 

in this section. In Figure 71, A1 and T75 both produce the highest vitality. 

 

Figure 72. A plot showing the evolution of the vitality for action two (2). 

In Figure 72 a prior A1 and T1 achieve a vitality above 60%. In Figure 73, A1 and T1, A1 

and T75, and A5 and T1 achieve over 60% vitality. In Figure 74, over 60% vitality is 

achieved at A1 and T1 at two intervals during simulation whereas the same vitality is 

achieved across five different intervals in Figure 75; A1 and T75, A1 and T1 and A3 and 

T1. This depicts the overall escalation process averaging over 60% vitality. 

 

Figure 73. A plot showing the evolution of the vitality for action three (3). 
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Figure 74. A plot showing the evolution of the vitality for action four (4). 

 

Figure 75. A plot showing the evolution of the vitality for action five (5). 

Figure 76 illustrates an ideal escalation process encompassing five actions with their vitality 

outcomes according to corresponding threshold values. The highlighted areas (pink) in 

Figure 76 are significant as probable escalation decision points. Since survivability is 

stochastic phenomena (Ren et al., 2007)(Oreifej et al., 2018), path-dependent and 

unpredictable, vitality in any simulation run is not representative of decision-making point. 

Instead, these are points of reference or data sample points from a continuous distributions 

of probable survivability lifecycles.  
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Figure 76. An overall plot showing the evolution of vitality for five actions and the overall survivability
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This section presents simulation results for the general evolution of VM vitality over a 

simulation run. Moreover, it identifies unique patterns that leverage vitality among 

preferred VMs. Table 28 presents a summary sample for the overall vitality evolution 

presented in Figure 77 below.  

Table 28. Sample summary of overal vitality evolution data over 10 ticks 

Max- A_VMs 0.345 0.343 0.389 0.423 0.442 0.455 0.465 0.472 0.476 0.479 

Max- C_VMs  0.000 0.049 0.061 0.075 0.098 0.129 0.159 0.183 0.201 0.214 

Max- S_VMs 0.345 0.336 0.326 0.321 0.310 0.298 0.287 0.278 0.270 0.264 

Max- V_VMs  0.346 0.377 0.369 0.360 0.357 0.355 0.353 0.351 0.350 0.349 

Min- A_VMs  0.316 0.310 0.346 0.377 0.400 0.417 0.427 0.433 0.437 0.441 

Min C_VMs  0.000 0.010 0.017 0.024 0.033 0.045 0.067 0.091 0.116 0.135 

Min S_VMs  0.316 0.276 0.264 0.255 0.244 0.233 0.226 0.220 0.216 0.212 

Min V_VMs  0.329 0.357 0.348 0.340 0.333 0.328 0.325 0.323 0.322 0.321 

 

Figure 77. The plot of overall evolution of VMs’ vitality over simulation 

Figure 77 is a plot highlights the evolution of VMs’ vitality over a simulation run. As is 

expected, attacking VMs have overall higher vitality due to the model design. Interestingly, 

however, compromised VMs show a relative vitality improvement. Vulnerable VMs have 

relatively unstressed evolution as vitality is largely stable, while survivable VMs indicate 

stressed evolution.  

Figure 78 shows the vitality of VM 491 in different states of compromise; vulnerable, 

attack, corrupt and survive. The appendices section (Appendix C) provides the complete 

simulation data. Figure 79 shows the plot of the vitality of vulnerable VMs in simulation 

groups 7, 8 and 9. In both graphs, vulnerable VMs gain significant vitality over the 

simulation run. In Figure 78, VM 491 sharply increases and achieves maximal vitality from 
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its vulnerable state as compared to the compromised state. In Figure 78, vulnerable VMs 

488 and 489 with similar gains in vitality but achieving different levels, i.e. VM 489 achieve 

almost 50% of VM 488 vitality.  

 

Figure 78. The plot of vitality of VM 491 in simulation group 7. This data shows 

positive vitality on corrupted VMs over a simulation run 

 

Figure 79. The plot of vitality of vulnerable VMs in groups 7, 8 and 9. This data 

shows positive vitality on vulnerable VMs over a simulation run 
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7.4.3  Analysis 

Simulations in the thesis gives direction for future research. A similar implementation is 

scalable and useful for developing larger adaptive software systems than was previously 

possible (Kwiatkowska, Parker & Qu, 2011). Implementing LV’s predator-prey model as 

the base model for the survivability solution of VMs ensures the reliability of the numerical 

formulations in this experiment. The main concept within Lotka and Vito Volterra’s model 

(Luo, He & Li, 2004)(Rozenfeld et al., 2006)(Campillo & Lobry, 2012)(da Silva Peixoto, de 

Barros & Bassanezi, 2008) is that population changes are a result of a combination of 

forces, including the rate of predation and the interaction between species. This model is 

adapted by (Pinol & Banzon, 2011) who introduces a Verhulst factor, i.e. survival 

probability as a capacity to recover from compromise. These results show that the system 

has good stability, at least over the simulation period. The small oscillations in survivability 

rate and the average vitality of survivable VMs over both, evolution over a simulation run 

and the simulation time, suggest that the system is stable. Python in many research works 

(Klugl & Bazzan, 2012)(Manapragada, Webb & Salehi, 2018), especially for analysing 

quantitative data, particularly to handling complex data. Its use in this experiment ensures 

that the simulation code is easily debugged to eliminate procedural errors in the simulation 

input and, or output.  

Figure 80 suggests that the vitality of vulnerable VMs is stable when considering random 

actions (note that green arrows indicate an increase, red indicate a decline and orange 

arrows indicate no change). As shown in this sample analysis, it can also be observed that 

at the end of the simulation, more than half of the vulnerable VMs are survivable albeit 

with low vitality. 

 

Figure 80. Illustrating vitality changes for vulnerable VMs. 

RD 0.34631 0.37732 0.36875 0.36035 0.35668 0.35466 0.35288 0.35128 0.35003

RD 0.32929 0.35702 0.34752 0.34016 0.33319 0.32802 0.32502 0.32327 0.32183

BA

BA 0.31886 0.35608 0.34662 0.33742 0.33025 0.32617 0.32332 0.32133 0.31939

A1 & T90 0.39308 0.44364 0.44658 0.45159 0.45725 0.45849 0.45453 0.44487 0.44308

A1 & T90 0.30174 0.33271 0.3117 0.29506 0.28534 0.2799 0.27068 0.26415 0.26292

A3 & T90 0.39308 0.44364 0.44658 0.45159 0.45725 0.45849 0.45453 0.44487 0.44308

A3 & T90 0.29268 0.30293 0.30935 0.30998 0.31014 0.31398 0.31285 0.30807 0.30061

A5 & T90 0.39308 0.44364 0.44658 0.45159 0.45725 0.45849 0.45453 0.44487 0.44308

A5 & T90 0.24977 0.25061 0.25098 0.26136 0.2672 0.26147 0.24969 0.24441 0.24368
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Since the initial simulation values are generated randomly, even if the best action is 

performed, the vulnerable VMs might not survive. This implies two possibilities. The 

results suggest that with only random actions performed over the time, the V_VMs are 

easily compromised and hence only a few of them avoid the attackers (less than 10%). This 

is an expected outcome as vulnerable VMs are not designed to attack in this experiment; 

Attack VMs are nonetheless in most of the simulation able to attack continuously. 

Alternatively, the results suggest that the majority of C_VMs may ultimately be 

compromised since exploited vulnerabilities result in compromise. Nonetheless, even with 

the 10% of vulnerable VMs with higher vitality, it can be observed that some behaviours 

correspond to an ideal system as hypothesised in section 1.2. In cloud environments, these 

behaviours illustrate two distinct cases; one where vulnerable VMs invoke a suicidal 

instruction (Hirai, 2017) (and shutdown of an attack) before being compromised (survival 

rate over corrupted rate). Alternatively, the case where vulnerable VMs are successfully 

recovered from compromise despite vitality going close to the dead set, i.e. close to 0. 

Random behaviour seems better for the final average vitality. This outcome results from 

the simulation goal to enhance the survival rate and not the vitality. In the comparisons 

between the best actions and shared memory of 5 actions, the simulation moves closer to 

the best actions than the random one. Moreover, a random action (RD) can outperform 

the best action (BA). Logically, this is due to the existence of a randomised parameter that 

is influencing the interactions between virtual machines. A random factor in this sense 

represents an external element affecting the simulation. For instance, a second prey or 

introducing poison during simulation. Thus, as assumed, the best actions are overall 

outperforming the random actions to the rate of survivability.  

The results obtained by performing the best actions are slightly close to the random one 

but are still slightly above. It is key to note that the current model favours attack VMs and 

therefore, where a vulnerable VMs is initialised with a random vitality, it might not be able 

to survive even if it corresponds to the best action possible. Another possibility for the 

inefficiency of the random action is the vitality that each VM is assumed to possess at the 

beginning of the experimentation, i.e. a random vitality [0;1]. For instance, where the 

vitality received approaches zero (0), e.g. 0.00001, the best action could be one that reduces 

the damage received as much as possible. It stands to reason that under of UUURs threats, 

and there is no best action to address the current threat, escalation implies that the best 

action available is an aggressive action such as “suicide”. In this sense, this suggests that 
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immediately executing an aggressive action such as suicide is the best action to avoid 

malware or a virus from spreading in a VM cluster or network and ensure survivability.  

7.4.3.1  Hypothesis testing 

The hypothesis under investigation is that prey-inspired survival actions against known 

and unknown predators, are applicable to enhance survivability in cloud environments. 

Such survivability is integrated into the management and control system and the user-

space, to enable user-level input at run-time. Put more accurately, this implies that if an 

action increases the vitality of VMs in a shorter time difference than another action, the 

action improves survivability. Thus, hypothesis testing aims to prove that the escalation 

concept does not arrive at a null hypothesis, i.e. what is perhaps the default state of “the 

world”. Notwithstanding existing debates, for and against the application of the null 

hypothesis for hypothesis testing, there is convergence to what elements inform its 

adequacy. Summarily, that a null hypothesis is possible, additionally, that experiment 

results are consistent with a null hypothesis, and finally, that experiment intended to find 

and effect. This section therefore evaluates how close the prey-inspired survivability 

hypothesis is to survivability in real cloud environment. Whereas a range of techniques and 

methods, for instance the KS test and specifically, the goodness of fit (Magalhães et al., 

2015) have a successful application, their strict use in this research is limited. Thus, for 

simplicity, evaluating the hypothesis error bars will be used.  

While this method assesses how close the mean statistic is the true mean, error-bar plots 

have more value and tend to be more persuasive than statistical testing, however, this is 

not a consensus view among researchers. According to (Motulsky, 2002), error bars do not 

explicitly identify the statistical significance of data, and randomness complicates 

hypothesis testing. It is nonetheless a useful method to produce evidence that the best 

conclusion to a hypothesis has been reached (Munger, 2008). In order to conclude data 

being analysed, it is vital to assess whether bars overlap or do not overlap among different 

data groups. If error bars do not overlap, this concludes that data to be different from 

other data. Inversely, if errors bars overlap, it can be concluded that data within 

overlapping data groups is not different.  

Figure 81 is an illustrative example of the preceding and shows the error bar plot of data 

on vitality of vulnerable, compromised, survivable and attack VMs. This data shows that 
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for individual plots in Figure 67. Figure 81 data shows that attacking VMs have the highest 

vitality whereas corrupted VMs have the least vitality. Since data on compromised VMs 

does not overlap with other data, it can be conclusively noted that compromised VMs have 

low vitality and therefore are logically less survivable. However, the same cannot be 

concluded about attacking or vulnerable VMs since error bars show an overlap among data 

groups.  

 

Figure 81. A within-group inference error bar plot: Maximum vitality of A_VMs, 

C_VMs, S_VMs and V_VMs 

Thus, this data is said to be inconclusive. Since hypothesis testing in this section seeks to 

test H1, the following deductions are presented for simplification.  

• Escalating actions that invoke a positive increase in vitality on vulnerable and 

compromised VMs enhance survivability 

• A vitality approaching or equal to 1 implies increasing survivability of VMs other 

than A_VM.  

• Actions that do not change vitality result in Null hypothesis.  

Figure 82 shows data of VM 491 whose vitality behaviour results are analysed below it.  As 

noted earlier, the data suggests that actions upon VM 491 improve survivability. Hence, to 

test the escalation hypothesis (H1), the error bar plot below is analysed, and conclusions 

are drawn below. It is conclusive that vulnerable VMs have reached the highest vitality 
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since V_VM data does not overlap with any other data groups. It shows that 1 and 2 

directly satisfy the alternative hypothesis (H1). Based upon the experimental assumptions 

presented earlier, i.e. vulnerable VMs do not attack but attack VMs do, the expected 

outcome is that A_VM has higher vitality than V_VMs. The foregoing conclusively 

satisfies items 1 and 2. Logically, it can also be inferred that this supports the hypothesis 

that prey-inspired actions can be applied as an unconventional method to enhance 

survivability in the cloud. 

 

Figure 82. Within-group inference error bar plot: Vitality of VM 491 in the attack, 

compromised, survivable and vulnerable states 

Figure 83 is an error bar plot for group 0 VM 67. By applying the overlapping and non-

overlapping concept above, survivable VM data does not overlap with any other VM state 

data. Hence, it can be observed that items 2 and 3 of the H1 above are satisfied. As noted 

earlier in this analysis, compromised, survivable and vulnerable VMs are not designed to 

attack in this experiment but attack VMs are.  

Based upon earlier assumptions that V_VMs, C_VMs and S_VMs can execute prey-

inspired actions against attack, the experiments seek to evaluate how compromised, 

survivable and vulnerable VMs’ respond to attack. S_VMs’ vitality does not overlap with 

any other state. In addition, the vitality of S_VM 67 is over 0.6, which implies a significant 

statistical difference to the attack state at 0 vitality. The foregoing conclusively satisfies 

items 1 and 2 of the H1 above.  
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Figure 83. Within-group inference error bar plot: Vitality of VM 67 in the attack, 

compromised, survivable and vulnerable states. 

Considering V_VM 67 with A_VM 67 and C_VM 67 (attack and compromised states), 

V_VM 67 does not overlap and vitality is significantly higher. Due to the initial experiment 

setup, the foregoing implies that vulnerable VMs have gained vitality due to the prey-

inspired actions and hence satisfies conclusively satisfies 1 and 2 of the H1 above. 

Nonetheless, C_VM 67 and A_VM 67 vitality data overlap and therefore does not 

conclusively indicate a clear effect prey-inspired actions impose. These findings 

conclusively support the hypothesis (H1) that escalation mechanisms for avoiding 

predation can be applied to enhance the survivability of cloud computing systems. By 

analysing results and identifying target or preferable behaviours (in terms of survivability) 

of group 0; VM 67 and group 7; VM 491 suggest that it was possible to proactively and 

intelligently manage and control survivability by deciding the best actions to achieve 

targeted survivability outcomes. As Figure 84 seems to suggest, the task to enable 

survivability focuses upon the capabilities of vulnerable VM 491, and both vulnerable VM 

and survivable VM 67. 

 

Figure 84. Illustration of vitality changes for VMs 491 and 67 

V_VM 491 0.001 0.853 0.968 0.991 0.996 0.997 0.997 0.997 0.997

A_VM 491 0.995 0.144 0.029 0.006 0.001 0.000 0.000 0.000 0.000

C_VM 491 0.000 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004

S_VM 491 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000

C_VM 67 0.000 0.093 0.009 0.000 0.000 0.000 0.000 0.000 0.000

A_VM 67 0.384 0.044 0.002 0.000 0.000 0.000 0.000 0.000 0.000

S_VM 67 0.590 0.497 0.582 0.590 0.590 0.590 0.590 0.590 0.590

V_VM 67 0.025 0.366 0.408 0.410 0.410 0.410 0.410 0.410 0.410
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The key question for achieving survivability through escalating VM actions revolves 

around the underlying decision support processes. As has been shown earlier, maintaining 

survivability requires timely decisions. Such decisions encompass survivability targets, 

survivability preferences and the best survivability actions that are necessary to support 

critical cloud services. 

7.5  Summary 

This chapter has investigated the behaviour of VMs in different states of compromise, i.e. 

vulnerable, attacked, compromised and demonstrated vitality dynamics when survivability 

actions are applied. These experiments should be considered what prey-inspired escalation 

is capable of, in relation to survivability as an additional complement of security, rather 

than as an alternative to security.  

The experiment result indicates that escalating actions can improve the overall survivability 

of VMs. The results of group 0 VM 67 and group 7 VM 491 provide conclusive evidence 

to support the hypothesis that prey-inspired escalation can improve survivability in cloud 

computing. The results in this chapter support the hypothesis under test.  

 



  

 

Chapter 8  Conclusion and 

recommendations 

This chapter summarises the research works, including an outline of the research process and the research’s 

contributions. It evaluates the research limitations and recommends the directions for future research work.  

8.1  Research process 

It was clear at the beginning of this research that within the cloud computing domain 

(academia in particular), there was no consensus concerning the maturity perceptions of 

cloud computing. On the one hand, extensive adoption by industry and international 

organisations suggested cloud computing had reached maturity with wide use and 

acceptability. On the other hand, its adoption was viewed with scepticisms among 

dissenters, foremost based upon cloud computing’s relative novelty. In addition, the vast 

reportage of security issues was viewed as an indication of the immaturity. From a research 

perspective, this implied that several alternatively competing approaches could have been 

followed. For instance, explorative research in the former or descriptive research in the 

case of the latter.  

Another observation was that the application of biological inspiration for cloud computing 

security was underwhelming. For this reason, bio-inspired research suggested itself as a 

possible approach based upon its potential for novel research. The predator-prey system 

was an under-researched area and a potential niche in bio-inspired cloud computing 

context. Hence, mechanisms in non-extinct prey seemed most suited to the research 

concept. Predation avoidance and anti-predation behaviours and mechanisms were 

therefore identified as central to the technical conceptualisations and developments of this 

thesis. This notably was a multi-faceted task, cutting across at least two domains, which 
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both required comprehensive investigation and analysis. Subsequently, this had an impact 

on the overall progress as this part of the research was prolonged concerning the overall 

timeline. Achieving prey-inspired survivability was challenging on several fronts. 

Foremost, prey survivability ideally required learning among autonomous agents to mimic 

nature’s animals. In a real nature-like scenario, agents learn, decide and act autonomously. 

Interactions are local, and decisions and actions are taken towards a global goal. Hence, in 

the process of researching the technical models and implementations, much time was spent 

on attempts to retain the characteristics of the natural prey system.  

8.2  Thesis summary and contributions 

This thesis aimed to develop a prey-inspired solution to address cloud computing’s security 

challenges. The predator-prey system was chosen in view of non-extinct prey communities’ 

survival against predators. A formal method for the interdomain bio-inspired design 

process was implemented, specifically by following a problem-driven holistic approach to 

gather, translate and transfer concepts from nature to cloud computing. Moreover, TRIZ 

was utilised to proffer specific solutions for cloud computing by addressing known 

contradictions in published literature. Pi-CCSF is then designed, verified and validated in 

a multi-step evaluation approach (Mehresh & Upadhyaya, 2015). Thus, the following high-

level challenges are particularly addressed in this research. First, how to manage and 

control security in a manner that complements existing approaches yet leveraging the 

mission to provide services regardless of threat type continuously. Also, how to leverage 

prey survival mechanisms to achieve enhanced survivability in cloud computing 

environments. 

Chapter 1  introduces the research and outlines the motivating themes around the 

challenges mentioned above. It presents the research hypothesis which defines the bio-

inspired themes that develop in the thesis chapters. Furthermore, this chapter introduced 

the research aim and objectives, the research contributions and the research methodology 

followed to achieve them. This chapter’s conclusions form the remarks which inform the 

directions of Chapter 2. Summarily, that inadequate security approaches contribute to the 

current cloud computing security landscape. Also, the unpredictability of UUURs 
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particularly complicates the ability to detect and predict threats. Finally, that instead of 

security alone, survivability has promise as a suitable property to address the risks imposed 

by UUURs. There is potential in bio-inspired systems which have established survivability 

solutions.  

Chapter 2 presents the literature review to establish the current state of cloud computing 

security. It conducts a comparative analysis of the traditional and cloud security view, 

against the backdrop of current security challenges. This analysis exposes gap areas with 

respect to how challenges are handled in existing countermeasures. In addition, this 

chapter presented a literature review of the survivability concept to establish a critical 

understanding of its traditional use compared to the cloud computing context. Finally, the 

literature review also presented the current state-of-the-art of the use of the bio-inspired 

approach in computing. This review also aimed to identify suitable mechanisms to address 

gap areas identified in the previous sections (Section 2.2. and Section 2.3). The significance 

of this section is as follows: It presented a comprehensive state-of-the-art around the 

thesis’s motivating themes. It complements the research methodology by allowing 

subjective interpretations of subject areas while also allowing for objective and logical 

inference and measurability of verifiable facts. This chapter’s work culminates into the 

contribution of Chapter 3. The contributions provided by these chapters are the following.  

Chapter 3 proposes a holistic taxonomy for cloud computing security challenges based 

upon the findings in section 2.2. The holistic taxonomy forms the foundational basis for 

cross-domain design. A formal definition of a holistic taxonomy is proposed to emphasise 

comprehensive understanding of cloud security challenges from a source or origin 

perspective. Most significantly, the holistic taxonomy satisfies H1 of the research 

hypothesis and is utilised in the discussions in section 5.6.  

Chapter 4 outlines a 3-step method to systematically transfer concepts from nature to 

cloud, and TRIZ-based approach for developing creative solutions to achieve survivability 

while addressing cloud computing challenges. This chapter addresses the research 

hypothesis and satisfies the applicability aspect of H1 (escalating survival behaviours and 

mechanisms). Bio-inspired design theory is seen from the biology to computing or 

engineering lenses to exploit design contexts including creative design, complex system 

design, sustainable design, etc.  
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Chapter 5 presents a conceptual prey-inspired cloud computing survivability framework 

(Pi-CCSF). Pi-CCSF is significant as it supports the extension of existing frameworks for 

prey-inspired survivability and model-based analysis of systematically deduced survivability 

requirements. Such satisfy the hypothesis for escalating survivability design principles and 

decision techniques presented (H2).  

Chapter 6 is dedicated to the decision system (DS) component of Pi-CCSF and formulates 

a target-based decision-making technique (TBDM) for managing survivability decision-

making. Instead of specifying decision-making in line with the traditional sense of 

survivability (as a constraint with an allowable level of service loss), TBDM specifies 

decision-making with respect to survivability targets. This is significant as decision-making 

can be adaptive to evolving survivability targets and controlled and prioritised on the fly 

via the SSM (Section 5.3.1) according to requirements. 

Notwithstanding this significance, a finding borne out of this chapter is the need to 

integrate the DS within the Pi-CCSF simulator and evaluate the efficacy of TBDM. 

Nonetheless, it is also notable that the TBDM technique addresses the research hypothesis 

by bringing evolving and uncertain survivability information closer to survivability decision 

processes, survivability preferences and attitudes. Moreover, this technique is observed to 

ensure that even under unpredictability, the decision model is focused on achieving 

survivability outcomes, i.e. targets. 

In Chapter 7, a python simulator (Pi-CCSF simulator) is developed and implemented to 

evaluate the applicability of the conceptual Pi-CCSF. This is a custom-built environment 

to understand Pi-CCSF’s implications in a practical application of escalating survivability 

actions upon vitality of VMs in various states of compromise and overall survivability. The 

experiment results suggest that certain actions improve the vitality of vulnerable VMs and 

average overall survivability. Analysis of experimental results identify outright instances 

where corrupted, vulnerable and survivable VMs gain significant vitality, thereby informing 

desirable escalation configurations. By analysing these VMs, e.g. group 7’s VM 491 and 

group 0’s VM 69, evaluations suggest that Pi-CCSF offers the potential for enhancing 

survivability. In addition, the hypothesis testing on VM data conclusively supports the view 

that escalating actions can enhance survivability. However, there is a need for further 

development of the simulator, with complete integration of all components and more 

exhaustive experiments to reach a firm conclusion.  
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This thesis’s main contribution is the prey-inspired survivability framework (Pi-CCSF) 

which is presented in Chapter 5 and Chapter 6 and evaluated in Chapter 7. Other 

contributing areas of this research include the holistic taxonomy presented in Chapter 3 

and the application of the TRIZ method for prey-inspired cloud computing survivability 

presented in Chapter 4. Some of these contributions are published in peer-reviewed 

journals and conferences. The following broadly represent the main contributions of this 

work. Based upon a comprehensive review of the literature on cloud computing security 

and bio-inspired systems, cloud security taxonomies, survivability and bio-inspired 

approached are discussed. Each is analysed and propositions are posited to address 

identified gap areas. Thus, contributions provided by these chapters are the following:  

1. A holistic taxonomy of cloud computing security challenges (Publication PR 2 is the 

contributing publication to this section),  

1. A theoretical model from mimicking predator-prey systems exhibited in nature 

(PR3, PR4 and PR6 are some contributing publications to this section). 

Section 4.2, Section 4.3 and Section 4.4. resented the TRIZ-based method for the prey-

inspired survivability design, the prey-inspired cloud computing survivability framework, 

the target-based decision-making technique to achieve survivability targets and a practical 

framework simulation environment to evaluate the Pi-CCSF, respectively.  

2. A conceptual framework: Pi-CCSF is developed, discussed and evaluated. Analysis 

of experimental data conclusively suggests that escalation actions improve overall 

survivability. Hence, Pi-CCSF offers conclusive support to the hypothesis under 

investigation. (PR1, PR3 and PR 6 are some contributing publications to this 

section).  

3. A target-based decision-making technique (TBDM); a component of Pi-CCSF, is 

presented to address decision-making processes for selecting survivability actions 

and targets, prioritising survivability actions during escalation and prioritising 

contextual survivability information relative to CC or CSP under unpredictable 

scenarios.  

4. A simulation environment is developed and customised to evaluate Pi-CCSF’s 

escalation concepts. The experimentations and hypothesis testing on experimental 

data proves some merit to the H1 and H2 of the hypothesis under investigation.  
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8.3  Limitations 

While the aim of the research and the objectives set out have been fulfilled, this author 

contends with some limitations borne out of the research. These may be addressed in 

future work.  

• The simulator is not a full implementation of the prey-inspired survivability 

concept in Pi-CCSF. Nonetheless, it provides the core functions of escalation 

proposed in Pi-CCSF and serves as a proof of concept to the prey-inspired 

approach for survivability that Pi-CCSF proposes. 

• Pi-CCSF depends on the DS component to institute optimal survivability 

decisions. Although the DS component is not integrated into the simulator. 

Nonetheless, the Pi-TBDM technique developed in Chapter 6 shows how Pi-

CCSF prioritises survivability decisions when a VM’s vitality drops below an 

expected threshold. Moreover, how a preceding decision impacts upon other 

subsequent decisions and countermeasure selection. The above is critical as Pi-

CCSF the notion of decentralised management and control to be key.  

• Pi-CCSF is not developed into a system prototype. Hence, the evaluations suffer 

from inherent limitations of simulation as compared to prototype. For instance, 

the simulations are performed in a constrained environment, which does not 

resemble real cloud computing environments. Nonetheless, the results indicate the 

behaviours of VMs in different states of compromise after employing prey-inspired 

escalation. These results provide a foundation for further development and 

research.  

8.4  Future work 

Despite the strengths of the simulated models, the simulation environment (local machine) 

and the model, is affected by state explosion where the size of the model exponentially 

increases with the size of the modelled system. Specifically, computational overheads limit 
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the realistic scaling of the cloud environment. For instance, the python implementation 

simulates models associated with a shared memory configuration. However, a large system 

configuration that characterises the learning attributes of survivable preys makes the 

simulated system complex. Two further research directions are worth exploring to bring 

Pi-CCSF closer to cloud environments and improve the effectiveness and/efficiency of its 

various components described above.  

Collective actions and strategic behaviour are two key components of survivability in 

natural preys. The former is central to the survival of prey animals who live in groups, 

while the latter is present in prey’s escalating predation-avoidance and anti-predation 

techniques. Thus, collective action is seen as outcomes of local interactions among prey 

agents, while strategy construed as coordination protocols (which can be either explicit or 

implicit or both). Synthesising and integrating prey’s survival behaviours requires effective 

translation of natural language ecological terms. This process is error-prone and thus can 

be improved upon. 

Moreover, self-adaptation entails meeting goal changes and calls for automated synthesis 

to achieve survivability in dynamic and complex cloud environments. Automated synthesis 

generates survivability specifications to characterise a range of adaptation abilities. This 

approach will improve upon current survivability characterisation methods which rely on 

experts or an engineer’s prior analytical models. Due to UUURs, prior analytical model 

analysis is currently prone to produce high occurrences of inaccurate information (false 

positives and false negatives). These inaccuracies are significant shortcomings in 

survivability engineering and design. The following research directions are worth 

exploring:  

• Further development to integrate the DS into the Pi-CCSF simulator and 

investigate the overall efficacy of the complete prey inspiration as opposed to 

independent individual modules.  

• Implementation of Pi-CCSF with extended algorithms and simulations models in 

a real or near environment. For instance, using machine learning approaches for 

the proposed prey mechanisms.  

• It would be an interesting to develop prey-inspired survivability for testing and 

experimentation in any environment. 
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Appendices 

Appendix A – Definitions and Concepts 
Figure 85 demonstrates the relationship between proactive, reactive and hybrid 
approaches. There are briefly described below, and examples presented where possible.  

 

Figure 85. Proactive, hybrid and reactive security approaches 

• Proactive approaches are implemented such that security systems are continuously 
operational and aware of changes in their environment throughout their operation 
(Djenouri, Khelladi & Badache, 2005). As suggested by (Yang et al., 2004), these 
mechanisms intuitively aim to stop the occurrence of a security incident well before 
it occurs. 

• Reactive approaches operate intermittently; active after an incident occurs and 
perhaps after the detection of an intrusion (Himma, 2007). These approaches aim 
to stop further damage to an infrastructure after intrusion. It is not uncommon for 
reactive approaches execute overlapping processes, i.e. the detection and response 
processes may run concurrent with the intrusion itself (Himma, 2007). 

• Hybrid approaches offer integration opportunities, i.e. proactive and reactive 
processes. Depending on their implementation, hybrid approaches possess both 
inherent deficiencies and strengths of both (proactive and reactive approaches).  

SANS defined security controls as the recommended set of actions that provide specific 
and actionable ways to stop attacks (SANS, 2016). Security controls are briefly described 
below, along with references to known examples.  

• Preventative controls include devices such as firewalls, which are present to stop 
the occurrence of a security incident (Ko et al., 2011), or limit further damage when 
an attack occurs.  

• Detective controls include security audit trails, security analysis tools, IDS, etc. that 
are present to identify the presence of a security risk (Ko et al., 2011).  

• Corrective controls are implemented to Minimise or fix the effect of a security 
incident that has occurred (Ko et al., 2011).  

• Pre-emptive controls are described as intelligent systems that are self-defending 
and capable of real-time monitoring, detection and prevention of known and zero-
day attacks (Behl, 2011).  

• Deterrent controls may be implemented as formal goals to prevent deliberate 
attacks, or against violation of Information Systems (IS) security policy (Cheng et 
al., 2013). For instance, those commonly used against software piracy, including 
legal aspects of copyright law, or collaboration between governments pertaining to 
law enforcement (Gopal & Sanders, 2000).  

• Prescriptive controls can be invoked prior or post risk detection, in real-time or 
otherwise, to prevent any damage from a security occurrence. Such controls are 
exemplified in process environments, whereupon a prescription describes how a 
task should be completed and the order it should be performed (Heimbigner, 
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1990). A key advantage of prescriptive controls is their specificity and the provision 
of precise and immediate feedback where there is a deviation from the process 
(Heimbigner, 1990). 

• Adaptive controls describe real-time dynamic threat intelligence, capable of 
identifying and blocking threats in real-time without the use of signatures. (Canetti 
et al., 1999) discussed adaptive controls based on an attacker-security model 
scenario, i.e. where the attacker is dynamic, they can carry out their exploit within 
a permissible threshold. According to the authors, adaptive controls enable 
capturing of real threats (Canetti et al., 1999). (Almorsy, Grundy & Müller, 2010) 
suggest adaptive measures to exist where security is based on current and expected 
threat levels in changing environmental conditions (Almorsy, Grundy & Müller, 
2010).  

• Deceptive controls by definition are deliberate acts to distort entity A’s perception 
of reality as perpetrated by entity B (McQueen & Boyer, 2009). In computing 
terms, deceptive controls include randomization and obfuscation techniques, as 
well as simulation measures such as mimicking and decoying (McQueen & Boyer, 
2009).  
 

The summary of security approaches and controls are presented to highlight the security 
processes and procedures necessary to protect information technology infrastructures and 
their alignment with business objectives. This research suggests the above considerations 
as key for cloud computing since processes for implementing and enforcing security 
involve not only the organisations, but also other third parties. Since cloud computing has 
its foundations in traditional computing systems, cloud computing security enterprise is 
contrasted against traditional computing security enterprise. Traditional perimeter security, 
i.e. where security technologies and end-users exist within the boundaries of an 
organisation to protect assets inside the organisation, is considered as relatively successful. 
In contrast, cloud computing security, i.e. considered in relation to where control-based 
technology and compliancy adherence to protect data, applications and infrastructures 
associated with the cloud, as facing some challenges. 

Appendix B - Cloud computing 
Cloud computing’s key cloud players (NIST, 2016) represent individuals or organisations 
that interact to perform tasks (Lui et al., 2011). Figure 85 illustrates a generic view of the 
cloud computing paradigm. In practice, CSP such as Amazon EC2 is responsible for the 
security and availability of services to their customers, including security incidents that 
affect the customers’ infrastructure (AlZain et al., 2012).  
 
Cloud computing is designed to facilitate optimal resource utilisation through augmenting 
virtualisation technologies (Hummaida, Paton & Sakellariou, 2016), both logically and 
physically (Zhu et al., 2012)(Almorsy, Grundy & Müller, 2016). The capabilities of the 
tenancy/multi-tenancy concepts mean that, by co-locating users/tenants, cloud 
computing’s compute costs are lower (Walraven, Truyen & Joosen, 2011). Multi-tenancy, 
as illustrated in Figure 3, enables the sharing of an application instance among multiple 
tenants, but with isolated regarding performance and data privacy (Coppolino et al., 2017). 
Despite its usefulness, the literature shows that a CC’s data in a multi-tenancy environment 
is at risk of compromise through lax access management or malicious attack. A side-
channel attacker can implant arbitrary code into a neighbour’s VM environment with little 
to no chance of detection (Ristenpart et al., 2009). Moreover, multi-tenancy complicates 
vulnerability management due to interactions among different service domains with 
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different service requirements (Behl & Behl, 2012). While multi-tenancy ensures that 
consumers are completely unaware of a neighbour’s identity, their security profile or 
intentions, this introduces risks for co-located consumers.  
 

 

Figure 86. A generic cloud computing model 

 

Figure 87. The tenancy concept; single tenancy (left) and multi-tenancy (right). 

Cloud deployment models, including private, public, community and hybrid, offer cloud 
consumers a level of flexibility at the amount of control they have on data. The entity 
performing the role of CSP will vary according to the type of deployment model. The role 
of CSP may be assigned to more than one entity in a community or hybrid cloud scenario, 
whereas private clouds’ superior security credentials are due to the amount of control an 
organisation has on the cloud infrastructure. To understand the assigning of 
responsibilities in a deployment model, the following are brief descriptions of each.  
Private cloud: is managed on-premise, the CSP role is within the client organisation.  
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Community cloud: the CSP could be one of the client organisations within the community 
or a separate third party  
Public cloud: the CSP is a third party that is an organisationally separate entity to its clients.  
Hybrid cloud: the CSP’s role is related to both internal and third-party entities for different 
elements of the overall cloud infrastructure. 
Cloud services are provided as virtualised or abstracted infrastructures of resources (Zissis 
& Lekkas, 2012) and encapsulated as virtualised data, virtual machines (VMs) and 
hypervisors (Liu et al., 2011). Responsibilities for implementing, operating and managing 
security controls are shared differently across the cloud’s service models and thus needs to 
be clearly understood by both the CC and CSP.  
SaaS: enables a one-to-many delivery of services and applications through a browser over 
the internet. SaaS allows organisations to outsource services to other parties, arguably 
offsetting licensing costs, servers’ e.tc. Scalability means organisations can improve their 
infrastructural requirements at minimal additional costs.  
PaaS: gives access and control to a CC, to devices and platforms that help them build 
applications on the internet.  
IaaS: provisions the infrastructural agreements about computing systems, storage, 
processing power, hardware, and networking infrastructure as a service. CCs have no prior 
requirement for the maintenance and performance of such hardware.  
 

The traditional and cloud security view 

With the recent growth of cloud computing (Yannakogeorgos, Lowther & Hayden, 2013) 
and a plethora of emerging technologies driven by (Taleb et al., 2017) (Zafar et al., 2017b), 
incidents in German and UK telecommunications giants Vodafone (BBC online UK, n.d.) 
and TalkTalk (BBC online UK, 2015), respectively, have become commonplace. Most 
recently, in the UK, Dixons Carphone suffered a huge data breach involving 5.9 million 
payment cards and 1.2 million personal data records (BBC online UK, 2018). According 
to (Solutions, 2015), exploited vulnerabilities rapidly rise every year. (Yao-Min Chen & 
Yanyan Yang, 2004)’s opinion is that traditional patching strategies are no longer effective. 
Consistent prevention against data breaches through centrally managed security processes, 
constrained user permissions, restricted software and controlling network traffic through 
firewall policies,. (Buecker, Andreas & Scott Paisley, 2008)’s opinion is that these 
approaches are only effective for networks and devices within a security perimeter.  

 

Figure 88. A traditional security view 

The existing literature offers varying rationales as to why traditional security mechanisms 
are no longer adequate in current computing environments. One is the suggestion that 
traditional security systems are simply failing due to their inherent architecture. Figure 87 
demonstrates this traditional notion in which traditional threats are managed and 
controlled within a static security boundary or perimeter.  
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Table 29 is a summary of some example, traditional security systems and brief descriptions 
of their method for protection.  

Table 29. Summary of traditional security systems 

System  Method 

Signature Scanner Search files for known malicious signatures. Low/High if 
unknown 

Static behaviour 
analysis 

Analysis executable functions for suspiciousness. High/Low 

Dynamic behaviour 
analysis 

Emulates malicious software and observes behaviour. High/Low 

Integrity checker Compare files against a cryptographically secure hash. Low/Low 
If kept updated 

Misuse detection Compare activity against known attacks. Low/High if unknown 

Anomaly detection Compare activity against a nominal model. High/Low If kept 
updated 

Firewall Enforces access rules according. Low/low – will strictly enforce 
rules as instructed but may be subverted 

 

Review of cloud security countermeasures 

Overwhelming efforts in the literature, both academic and industry, is dedicated to 
addressing security challenges in cloud computing environments. This section aims to 
interrogate some these works and later analyse them in subsequent subsections. The main 
challenges for cloud security are discussed and analysed in a contributing publication (PR 
2). The current author posits that multiple perspectives on security issues imply that 
countermeasures are developed only for specific perspectives of security issues. A recent 
example is the collation of user-data security and countermeasures survey by (Basu et al., 
2018).  
 

Countermeasures in academia 

A framework solution proposed by (Jabir et al., 2016) aims to achieve the following. First, 
a penetration testing component that highlights vulnerabilities within a private cloud 
infrastructure and an attack simulation component that attempts to discovers exploits for 
identified vulnerabilities. Finally, through applying countermeasures, this framework can 
proffer best practice protection mechanism. 
(Singh, Jeong & Park, 2016) Comprehensively survey security issues affecting public and 
private cloud computing entities and propose requirements for security management. A 3-
tier security architecture is encompassing the application, cloud-service middleware and 
infrastructure layer proposed towards security mitigation. According to the authors, 
focusing on the application level provides end-to-end security of data against client-end 
scripting attacks such as XSS, network data security, API security and malicious programs 
in general. Cloud-service middleware countermeasures against susceptibility to protocol 
standards attacks such as Simple Mail Transfer Protocol (SMTP), Transmission Control 
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Protocol (TCP), Hyper T HTTP, Dynamic Host Control Protocol (DHCP) to name a few, 
whose vulnerabilities are well-known. The authors suggest cryptographic solutions as well 
as enhanced authentication between users and middleware. Also, they suggest a Cloud 
Trust Protocol (CTP) between end-users and service providers (Singh, Jeong & Park, 
2016).  
Whereas the solutions proposed address the challenges identifies, they are limited to the 
public cloud context. For instance, process and regulatory challenges concerns in the 
perspective of outsourcing cloud services (Srinivasan et al., 2012) vary among different 
cloud deployment models. Along the middleware solutions proposed above, (Lombardi & 
Pietro, 2011) propose an Advanced Cloud Protection System (ACPS) for guest Virtual 
Machine (VM) and middleware. Middleware represents a layer of data storage technologies, 
including those in cloud computing which is generally prone to unauthorised access, DDoS 
attacks and threats of malicious insiders (Farooq et al., 2015),. Their experimental results 
offer some insights into future VM security in general and behavioural analysis in proactive 
VM protection systems. By allowing host-based asynchronous monitoring, ACPS is said 
to detect behaviour and performance on a guest VM while staying immune to timing 
attacks (Lombardi & Pietro, 2011). However, the assumption of trust is a major concern, 
since a compromised host will inadvertently or otherwise compromise the guest VM and 
possibly the infrastructure.  
The authors (Joshi, Vijayan & Joshi, 2012) propose Cloud Trace Back model (CTB) for 
traffic detection and filtering against DDoS attacks using routing mechanisms. By 
appending an extra tag, Cloud Trace Back Mark (CTM) on a packet header and propagate 
with routing information, it possible to prevent an attack before it occurs. In the event of 
an attack, with CTB handling service requests between the cloud infrastructure and its 
peripherals, the CTB functionality can anticipate an attack before it traverses into the cloud 
network. Additionally, the authors advance the possibility to reveal an attack source by 
analysing the CTM tag. Theoretically, the CTB model achieves its design aim; however, it 
a real cloud environment, CTM deployment in this form comes with some operational 
challenges. One of such challenges is that it is quite possible for routing traffic in large 
networks to grow exponentially and hence introduce undesired operational overheads. As 
(Ahmed, Sadiq & Zolkipli, 2016) note in their paper, it is on its own often time-consuming 
to locate the source of a distributed attack. 
A survey by (Subashini & Kavitha, 2011) focuses on security issues in service delivery 
models including PaaS, IaaS and SaaS. In their conclusion, the authors argue that security 
issues arising from all aspects of the cloud require an integrated approach to securing the 
cloud. The authors propose a dynamic and localised security model, which adapts to 
different security environments allowing users to tailor their security requirements 
(Subashini & Kavitha, 2011). Subashini & Kavitha’s notion of unpredictability is subsumed 
to reduce the vulnerability factor. The notion of unpredictability is also posited by (Levitin 
et al., 2012) who contrasts data security according to an attacker’s ability to steal or destroy 
data.  
While both notions perhaps encapsulate obfuscation and diversity as a solution, there are 
two apparent limitations. Foremost, diversity and heterogeneity in cloud environments 
mean that assert value and vulnerability factor vary from one application to another. 
Besides, as a common security methodology, obfuscation motivates hackers to attack the 
cloud (Subashini & Kavitha, 2011). As noted by (Auty, 2015), well-resourced attackers 
such as nation-state actors can launch a persistent attack, and hence require a different 
approach.  
The authors; (Bendovschi, 2015) proposes security countermeasures to support business 
and organisations in defence against attackers from an information security perspective. 
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According to the author,” external” countermeasures include risk awareness through 
organisations such as Secure Domain Foundation. “Internal” countermeasures according 
to these authors include continuous risk assessment, internal security posture including 
patching and updates, authentication methods including biometrics, access control and 
other security controls (preventative, detective and corrective). 
In the works by (Bernsmed et al., 2011), the Security SLA Management for cloud 
computing as a life cycle has the following key stages; publishing, negotiation, 
commitment, provisioning, monitoring and termination. From the commitment stage, the 
life-cycle approach ensures that iteration revisits a later stage. In typical cloud services with 
several levels of abstraction, Security SLA Management enables SLA negotiations in 
multiple levels (Rong, Nguyen & Jaatun, 2013a) including security, QoS, and others 
mitigation aspects of the lock-in effect. Since SLA is a critical component for service 
provision, this approach serves to address SLA-related challenges. However, the assurance 
of service levels is a challenge considering ongoing security threats within cloud 
computing. Most recently, (Carvalho et al., 2017) map several solutions to open SLA issues 
in cloud computing.  
Isolation measures on several levels mitigate risks and vulnerabilities associated with multi-
tenancy (Behl & Behl, 2012). First, they propose isolation of tenants’ data in IaaS (VMs, 
storage, processing, memory, and access paths networks). Also, the authors propose 
isolation of tenants’ data in PaaS API calls, Operating System (OS) level calls and running 
services. These authors further propose isolation in SaaS tenants’ transactions on the same 
instance and their respective data. In conclusion, the authors suggest relevant isolation 
policies and security measures to be implemented by the CSP.  
Along similar lines, (Rao & Selvamani, 2015) demonstrate that data segregation and 
protection and data leakage protection, are some of the major data security challenges in 
cloud computing environments. Heterogeneous data-centric security controls such as 
encryption is argued as adequate measures to control the access of data. The authors 
propose a data security model encompassing authentication, encryption, and integrity, 
recovery and user protection. They suggest the integration of identity-based cryptography 
and RSA Signature enhance data integrity. In addition, a network-based intrusion detection 
system is suggested as adequate for real-time presentation of against threats. In the former 
conception, there is limited detail on how to achieve isolation in each domain. Whereas 
the latter provides greater details, a recent study by (Shi, Chen & Li, 2018) shows that 
signature-based security is not suited to address complex multi-stage attacks whose 
signatures are often unknown. 
A trust framework is developed to enhance efficiency in capturing a generic set of 
parameters required for establishing trust and manage evolving trust and 
interaction/sharing requirements (Mell & Grance, 2011). The cloud’s policy integration 
tasks should be able to address challenges such as semantic heterogeneity, secure 
interoperability, and policy evolution management. Furthermore, customers’ behaviours 
can evolve rapidly, thereby affecting established trust values. This suggests a need for an 
integrated, trust-based, secure interoperation framework that helps establish, negotiate, 
and maintain trust to adaptively support policy integration (Mell & Grance, 2011).  
A Trusted Third Party (TTP) authored by (Demchenko et al., 2011) addresses trust in a 
distributed system by allowing other TTP domains to span different geographical 
locations. However, a point of contention in implementations of trust in the cloud using 
TTP rests in inherent contradictions and interpretations of trust, from one perspective to 
the next. For instance, some argue that trust relations between the server and the client 
should be established dynamically (Demchenko et al., 2011). From a CC and CSP 
perspective, trust relations are the acknowledgement of risk factor by the replying party 
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(Zissis & Lekkas, 2012). As the authors contend, trust is not a new research topic in 
computer science, spanning areas as diverse as security and access control in computer 
networks, reliability in distributed systems, game theory and agent systems, and policies 
for decision making under uncertainty (Zissis & Lekkas, 2012). However, a shift from 
traditionally managed infrastructures where security controls exist within contained 
environments makes trust solutions in cloud computing contentious (Zissis & Lekkas, 
2012).  
The author is Ryan (2013) propose an incident-based solution to mitigate access to 
customer data. The proposed solution relies on the assumption that good practice entails 
a customer trusting the CPS and their employees, whereas legislation and contracts act as 
deterrents for unlawful disclosure (Ryan, 2013). Ryan fosters a debate for fully 
homomorphic encryption where in theory, a cloud customer maintains the privacy, 
integrity and confidentiality of their data by encrypting it, while on the other hand, the 
cloud service provider can perform processing operations on the same data but without 
access to the data itself. However, this practice is not viable in the cloud, based upon the 
mechanisms’ efficiency and viability limitations. Moreover, the notion that the technical 
and service maturity of a CSP is an essential assurance that CSP will not disclose user 
information is both debatable and an inadequate countermeasure.  
(Mazur et al., 2011) Posit a three-pronged approach to managing security in the cloud. In 
this conception, the authors argue cloud security as a balance between the potential impact 
of cloud computing on the competitive business edge, and the evaluation of business-
critical security components. Whereas the authors view cloud security from a business 
perspective, this approach not a generalisable approach for cloud security 
countermeasures. 
Furthermore, their classification lacks detail on which security solutions or techniques are 
at each management level. According to the authors, a trusted monitor audits a cloud server 
to provide proof of compliance with the data owner. The Integrity of the trusted monitor 
is itself ensured by running in isolation, the monitor bootstrap along with the Operating 
system and Applications. Additionally, the authors argue for the implementation of 
cryptographic mechanisms such as homomorphic encryption, searchable encryption, that 
allow CSP to process ciphertext. Although in theory, techniques (Mazur et al., 2011) ensure 
integrity and compliance in computing, in practice, these techniques have so far proven to 
be usable in the cloud.  
Authors in (Mazur et al., 2011) posit a compelling argument for a self-monitoring defensive 
mechanism; a contract of intelligent agents that collect data within the cloud, including 
code execution. Also, they suggest computational intelligence that uses ontology-based 
fusion engines for situational analysis and brokering, synonymous with how human breath 
without consciously having to think through every breath (Mazur et al., 2011). The authors 
posit the need for ontologies, not only as a useful tool for identifying malware, but also 
individual components that perform specific functions. For instance, a generative ontology 
for future malware signatures which will be useful in future detections using comparative 
analysis. (Rao, J.R., Chari, S.N., Pendarakis, D., Sailer, R., Stoecklin, M.P., Teiken, W. and 
Wespi, 2016) It is Security 3600, is an operational model developed to protect services, 
enterprise and data in cloud computing environments. Through passive monitoring of 
network traffic and near-field monitoring of disk images, VMs and the hypervisor, Security 
3600 can provide comprehensive end-to-end contextual view of the security of an 
enterprise.  
(Sabahi, 2011) Proposes formal procedures to mitigate cloud security challenges. 
According to the authors, since traditional mechanisms need to be changed to work 
efficiently in the cloud, solutions should be viewed in terms of access control and incident 
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response. However, the proposals presented here require deeper details as some aspects 
remain arguable. For instance, access control in a SaaS model is restricted to their software 
as the customer is only responsible for managing how they authenticate to the cloud service 
and what level privilege. In the PaaS where the CSP retains control to the network, server 
and applications, Sabahi argues that the cloud customer retains and manages access rights 
to the applications they run. Likewise, in the IaaS scenario, the cloud customer is 
responsible for access control management of the virtual platforms they run, including 
virtual servers, virtual network and virtual storage (Sabahi, 2011).  
(Bays et al., 2015) Whose work investigated countermeasures in virtual networks observe 
an unbalanced correlation between security threats and security countermeasures in the 
available literature. For instance, the authors note disruption and disclosure (both security 
threats) and availability and confidentiality (both security countermeasures) as dominant 
across most of the literature. The author also notes that across the literature, most 
publications propose a single countermeasure for a single threat (Bays et al., 2015). Is also 
clear as demonstrated in these authors’ finding, that no publication addressed the issue of 
nonrepudiation. Nonrepudiation is an indispensable component for user behaviour 
credibility attribution in the forensic investigation process. As alluded to by (Tian et al., 
2019), nonrepudiation is particularly critical for cloud storage scenarios where verification 
of the integrity of logs files before the investigation is important. The table below 
summarises the distribution of countermeasures according to these authors. In the 
following section, the review of industry countermeasures follow criteria set out by (Cser, 
2016); restricted to leading vendors dominating cloud security world markets.  
 

Countermeasures in industry 

CloudLock (CloudLock, 2015b) is lauded as the only complete security platform capable 
of protecting assets within the cloud. Content monitoring service employs heuristic 
algorithms to monitor and determine the sensitivity of data across SaaS, PaaS and IaaS 
environments. Behaviour analytics detects anomalies in user activity and usage, based on 
thresholds prescribed in centralised policies. In addition, CloudLock uses a policy 
automation service for classifying data based on its unique attributes, automated 
notifications, and remediation management capabilities to end-users. Central auditing 
provides evidence for compliance with internal policies, by recording an audit trail of all 
actions. In addition, CloudLock uses a central incident management service to investigate, 
prioritise, and “track to closure” security incidents. To leverage AES-256 encryption and 
key management, CloudLock argues that automating encryption will enable users to secure 
their sensitive data effectively. 
On the other hand, they posit their security analytics service to leverage security 
compliance with both internal and external auditors. Two clear limitations with CloudLock 
are centred on its centralised nature. (Moradi, 2016) Shows that centralised management 
introduces a single point of failure and fails to scale in distributed systems. In additions, 
like traditional systems, CloudLock’s firewall systems only discover and controls security 
risk in deployed black and whitelists which require knowledge of the risk before 
deployment. Uncertainty due to the sophistication of attacks limits the amount of 
knowledge about an attacker, countermeasures possess.  
Blue Coat’s Cloud Data Protection Gateway (Bluecoat, 2015b) protects data in transit, data 
at rest and data in use. According to Blue Coat, their solution support searching, sorting, 
or reporting of strongly encrypted or tokenised data. Protecting data in transit is aimed at 
mitigating eavesdropping by third parties. Cryptographic methods such as Secure Socket 
Layer (SSL) and Transport Layer Security (TLS) are some common techniques 



   

259 

implemented to protect data in transit. Protecting data at rest on the other end is about 
preventing the access of persistent data, ensuring that data maintains the same form or 
format, as a file or in a database. Blue Coat argue the Heartbleed vulnerability in which 
usernames and passwords were leaked through exploiting vulnerabilities in OpenSSL 
necessitates the need to protect data being processed in memory. Elastica CloudSOC (Blue 
Coat and Symantec, 2015) produced by Blue Coat and Symantec to audit, detect, protect, 
and investigate security incidents in cloud environments. According to Blue Coat, their 
audit module facilitates the evaluation of cloud services adopted by an organisation, 
identifying the types of devices they are accessed with, as well as their business readiness. 
In addition, they posit their detection module to utilise machine learning and data science 
to detect threats, activities, and users within an organisation’s cloud network. The 
investigation module is useful after an incident occurs, ensuring that cloud-based data is 
available and accessible for an organisation’s requirements analysis, including legal, 
compliance, and human resources. 
Microsoft’s Cloud App Security (Microsoft Mobility Management, 2016) ensures that 
cloud users can maintain visibility, control, and protection of their cloud application data. 
According to Microsoft, this is primarily due to the failure by traditional security solutions 
such as firewalls and intrusion prevention systems (IPSs), “do not offer visibility into 
transactions that are unique to each application, and traffic off-premises”. Thus, Microsoft 
Cloud App Security is aimed for SaaS offerings to enhance auditing, visibility, and the 
amount of control CC have on-premises, to cloud applications. Microsoft Cloud Apps 
security is argued to provide risk scoring and assessment of all identified applications 
within a CC network, including all devices. In addition to network and device discovery, 
this solution provides granular controls and policies for data sharing. Finally, Cloud App 
Security’s threat protection component adds intelligence using machine-learning 
techniques to identify high-risk security incidents and abnormal behaviour detection.  
IBM’s security paradigm, developed in response to the changing security threat domain, 
including botnets, advanced persistent threats and polymorphic malware (Gulla, 2011b). 
In their work, IBM postulates the notion of a quick response as critical in dealing with data 
breaches in the cloud. IBM’s security paradigm consists of the following: Fine-grain 
contextual security, provenance: Honey pot. 
Alert Logic’s response plan is premised on a case study of Shellshock vulnerability in 2014, 
culminated into the development of their 6-step approach. According to Alert Logic, their 
outline is a template for a vulnerability response action plan (Alert Logic, 2015, 2016). 
Comprehension: Exposure: Communication: Security Content Creation: Patching: 
Lessons Learned: BitGlass (Bitglass, 2014b) argues their solution to provide end-to-end 
security for any device on the cloud network, through access controls, limit sharing, and 
to mitigate data leakage. The authors suggest that a single-pane view of applications in the 
network, enables organisations to gain instant visibility over their cloud data (data at rest), 
detect abnormal user and usage behaviours, and can anticipate emerging threats. Using a 
cloud DLP engine, BitGlass protects data in transit using watermarking, DRM, and 
blocking techniques, as well as create custom security policies. BitGlass suggest it is 
possible to identify managed and unmanaged devices, and limit device access based on 
contextual information, e.g. location, device type and network. 
According to Citrix’s white paper (Citrix, 2015), their product is highly scalable and 
designed to mitigate against traditional and modern DoS attacks, and application-layer 
attacks on web properties. Citrix postulates that solutions should prioritise establishing 
how well resourced (organisation, funding) an adversary is, as opposed to the exploit they 
are going to use. Citrix® NetScaler Application Delivering Control (ADC) exhibits 
important capabilities that ensure security in web applications on at least two fronts. On 
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one end, load balancing algorithms that dynamically route traffic during outages or failures 
ensure the availability of services. Additionally, health monitoring components proactively 
monitor services for efficient operation and performance. According to the authors, 
NetScaler is a useful disaster recovery tool; Global Server Load Balancing (GSLB) ensures 
availability of services by routing traffic to other datacentres during a disaster. On the other 
end, a combination of a reactive firewall (NetScaler App Firewall), protocol defences, and 
NetScaler’s compliance with other third-party products such as the Payment Card Industry 
Data Security Standard (PCI- DSS) prevents application-layer threats.  
CA Technologies’ automated identity management lifecycle ensures efficient management 
of identities throughout their lifecycle, including policy and identity auditing thereby 
supporting compliance concerns (’Amiri, 2009). By logically layering and separating 
components, CA’s lifecycle ensures effective disaster recovery and high availability. 
Furthermore, Advanced Encryption Standard (AES), Federal Information Processing 
Standard (FIPS) 140-2, and information standard protocols such as HTTPS and LDAPS, 
ensure that data is secured in accordance to industry-standard best practices. Additionally, 
correlation capabilities with real-world data improve security visibility.  
The Data Loss Prevention component utilises data mining tools to optimise policy creation 
through the effective classification of data at rest. Similarly, McAfee Email and Web 
Protection enable bidirectional protection against inbound threats, data loss prevention in 
emails, and secure communication for web application through proactive reputation and 
intent-based protection. 
 

Appendix C – Pi-CCSF simulator code 
1. import random  
2. import math  
3. from operator import add  
4. import matplotlib.pyplot as plt  
5. from creation_default_variables import *  
6. import copy  
7. import csv  
8.   
9. random.seed(101);  
10. #_actionsI = [ random.randint(1,NbrAction) for i in range(Timestamp)]  
11. class Static_simulation:  
12.  def __init__(self, Timestamp, Nbr_VM, actionsI= None, NbrAction=5):  
13.  # print("The timestamp is of: "+ str(Timestamp))  
14. # print("The Nbr_VM is of: "+ str(Nbr_VM))  
15.  self._V_VMs = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
16.  self._A_VMs = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
17.  self._S_VMs = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
18.  self._C_VMs = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
19.  self._A_eval = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
20.  self._C_eval = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
21.  self._phis = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
22.  ##### Creation of the vectors to store random values ######  
23.  self._alphas = [ [-100 for i in range(Timestamp)] for i in range(Nbr_VM) ]  
24.  self._Betas = [ random.uniform(-1, 1) for i in range(Nbr_VM) ]  
25.  self._Gammas = [ random.uniform(-1, 1) for i in range(Nbr_VM) ]  
26.  self._Ethas = [ random.uniform(-1, 1) for i in range(Nbr_VM) ]  
27.  if actionsI == None:  
28.  self._actionsI = [random.randint(1,NbrAction) for i in range(Timestamp)]  
29.  else:  
30.  self._actionsI = actionsI  
31.  self._actions = [[ random.randint(1,NbrAction) for i in range(Timestamp)] for i in range(Nbr_VM) ]  
32.  self._Memory = None  
33.  self._Timestamp = Timestamp  
34.  self._Nbr_VM = Nbr_VM  
35.  self._NbrActions = NbrAction  
36.  # initialise the first value for each VM  
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37.  for i in range(Nbr_VM):  
38.  invalid = True  
39.   while invalid:  
40.  # First value generated randomly  
41.  self._V_VMs[i][0] = random.uniform(0, 1);  
42.  self._A_VMs[i][0] = random.uniform(0, 1);  
43. # print(self._V_VMs[i][0])  
44. # print(self._A_VMs[i][0])  
45. # print(self._phis[i][0])  
46.   self._phis[i][0] = self._V_VMs[i][0]+ self._A_VMs[i][0];  
47.  self._alphas[i][0] = self._V_VMs[i][0]+self._A_VMs[i][0]  
48.  # print(1- alphas[i][0])  
49.  # To simplify the equation : C_VM[0] =0  
50.  self._S_VMs[i][0] = 1 - self._alphas[i][0];  
51.  self._C_VMs[i][0] = 0;  
52.  if self._S_VMs[i][0]>0:  
53.   invalid = False  
54.  def get_Access_VM_Value(self, VM_id):  
55.  

return(self._Betas[VM_id],self._Gammas[VM_id], self._Ethas[VM_id], self._V_VMs[VM_id], self._A_VMs[
VM_id], self._C_VMs[VM_id], self._S_VMs[VM_id], self._alphas[VM_id])  

56.  def replaceNAN(self, list, time_id):  
57.  max_id = len(list)  
58.  if (time_id>0 and time_id< max_id):  
59.  if list[time_id] < 0:  
60.  list[time_id] = 0  
61.  if time_id+1 < max_id:  
62.   list[time_id+1] = 0  
63.  else:  
64.  if list[time_id] > 1:  
65.   list[time_id] = 1  
66.   if time_id+1 < max_id:  
67.   list[time_id+1] = 1  
68.  def V_VM_AVM_iteration(self, time_indice, VM_id):  
69.  

current_Beta, current_Gamma, current_Etha, V_VM, A_VM, C_VM, S_VM, alpha = self.get_Access_VM_
Value(VM_id)  

70.  
V_VM[time_indice+1] = V_VM[time_indice] - current_Beta*V_VM[time_indice]*A_VM[time_indice] + cur
rent_Gamma*A_VM[time_indice]  

71.  
A_VM[time_indice+1] = A_VM[time_indice] + current_Beta*V_VM[time_indice]*A_VM[time_indice] - cur
rent_Gamma*A_VM[time_indice]  

72.  self.replaceNAN(V_VM,time_indice )  
73.  # print("A_VM:")  
74.  self.replaceNAN(A_VM,time_indice )  
75.  alpha[time_indice+1] = V_VM[time_indice+1] + A_VM[time_indice+1]  
76.  self._phis[VM_id][time_indice] = self._V_VMs[VM_id][time_indice]+self._A_VMs[VM_id][time_indice];  
77.  

self._A_eval[VM_id][time_indice] = current_Beta*(self._phis[VM_id][time_indice] - self._A_VMs[VM_id][ti
me_indice])*self._A_VMs[VM_id][time_indice] - current_Gamma*self._A_VMs[VM_id][time_indice]  

78.  
self._C_eval[VM_id][time_indice] = self._actions[VM_id][time_indice] *((1 - self._phis[VM_id][time_indice] 
- self._C_VMs[VM_id][time_indice] ) *self._A_VMs[VM_id][time_indice] )/self._actionsI[time_indice] - curr
ent_Etha*self._C_VMs[VM_id][time_indice]  

79.  def S_VM C_VM_iteration(self, time_indice, VM_id ):  
80.  

current_Beta, current_Gamma, current_Etha, V_VM, A_VM, C_VM, S_VM, alpha = self.get_Access_VM_
Value(VM_id)  

81.  #Si the VM attack is dead  
82.  if V_VM[time_indice] <= 0:  
83.  S_VM[time_indice+1] = 0  
84.  S_VM[time_indice] = 0  
85.   else:  
86.  if V_VM[time_indice] == 1:  
87.  S_VM[time_indice+1] =1  
88.  S_VM[time_indice] = 1  
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89.  else:  
90.  

S_VM[time_indice+1] = S_VM[time_indice] - (alpha[time_indice]*S_VM[time_indice]*A_VM[time_indice])
/self._actionsI[time_indice] + current_Etha*C_VM[time_indice]  

91.   #If the Attacking VM is shutting down  
92.  if A_VM[time_indice] <= 0:  
93.  C_VM[time_indice+1] =0  
94.  C_VM[time_indice] =0  
95.   else:  
96.  if A_VM[time_indice] == 1:  
97.  C_VM[time_indice+1] = 1  
98.  C_VM[time_indice] = 1  
99.  else:  
100.  

C_VM[time_indice+1] = C_VM[time_indice] + (alpha[time_indice]*S_VM[time_indice]*A_VM[time_indice
])/self._actionsI[time_indice] - current_Etha*C_VM[time_indice]  

101.  self.replaceNAN(S_VM, time_indice)  
102.  self.replaceNAN(C_VM, time_indice)  
103.   def one_iteration_WithMem(self, time_indice, VM_id):  
104.  self.V_VM A_VM_iteration(time_indice, VM_id)  
105.  if self._V_VMs[VM_id][time_indice-1] >0: #If the VM was alive  
106. # print(time_indice)  
107.  if time_indice >= int(self._Memory._nbrAtomicAction-

2):# If I have performed enough action to saved in memory  
108. # print("here")  
109.  #Get the last actions to compute the key in memory  
110.  lastActionKey = []  
111.  for a in range(self._Memory._nbrAtomicAction-1):  
112.   actionNb = self._Memory._nbrAtomicAction - a  
113.   lastActionKey.append(self._actions[VM_id][time_indice-actionNb])  
114.  # get the best action if exist, random value in another case  
115.  lastActionKey = tuple(lastActionKey)  
116.  newAction = self._Memory.getBestAction(lastActionKey)  
117.  lastActionKey= list(lastActionKey)  
118.  lastActionKey.append(newAction)  
119.  lastActionKey = tuple(lastActionKey)  
120.   

newGain = self._V_VMs[VM_id][time_indice+1] - self._V_VMs[VM_id][time_indice- (self._Memory._nbrA
tomicAction-2 )]  

121.  if lastActionKey in self._Memory._Memory.keys():  
122.  # if the action is known, add the score  
123.   

self._Memory._Memory[lastActionKey] = (self._Memory._Memory[lastActionKey][0]+newGain, self._Mem
ory._Memory[lastActionKey][1]+1 )  

124.  else: # otherwise, add the new key  
125.   self._Memory._Memory[lastActionKey] = (newGain, 1)  
126. # print("action added")  
127.  self.SVM_CVM_iteration(time_indice, VM_id)  
128.  def one_iteration_WithoutMem(self, time_indice, VM_id):  
129.  self.VVM_AVM_iteration(time_indice, VM_id)  
130.  self.SVM_CVM_iteration(time_indice, VM_id )  
131.  def run_simulation(self):  
132.  return (self.run_simulationFromInit())  
133.  def run_simulationFromInit(self):  
134.  #### compute VM evolution with memory access  
135.  for time_indice in range(self._Timestamp-1 ): #Delay_betweens_share,  
136.  #print(time_indice)  
137.  for VM_id in range(self._Nbr_VM):  
138.  #print(self._Memory)  
139.  if(self._Memory != None):  
140.   if(self._Memory._nbrAtomicAction > 0):  
141.   #print("use memory")  
142.   self.one_iteration_WithMem(time_indice, VM_id)  
143.   #self._Memory.savedIn("test.json")  
144.   else:  
145.   self.one_iteration_WithoutMem(time_indice, VM_id)  
146.  def run_BestResult(self):  
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147.  for VM_id in range(self._Nbr_VM):  
148.  self._actions[VM_id] = self._actionsI  
149.  for time_indice in range(self._Timestamp-1 ):  
150.  self.one_iteration_WithoutMem(time_indice, VM_id)  
151.  def setMemory(self, Memory):  
152.  self._Memory = Memory  

Model memory.py  

1. import json  
2. import random  
3. class Memory:  
4.  def __init__(self, path="", nbrSaved=3, nbrActions = 5):  
5.  self._Memory = {}  
6.  self._nbrAtomicAction = nbrSaved  
7.  self._nbrActions = nbrActions  
8.  if path != "":  
9.  with open(path) as currentFile:  
10.  data = json.load(currentFile)  
11.  currentFile.close()  
12.  for key in data.keys():  
13.  newkey = copy.deepcopy(key)  
14.  newkey = newkey.replace('(', '').replace(')', '')  
15.  if len(newkey)>= 3:  
16.   newkey = newkey.split(",")  
17.   newkey = list(map(int,newkey))  
18.  else:  
19.   newkey = newkey.replace(",", "")  
20.   newkey = [int(newkey)]  
21.  self._Memory[tuple(newkey)] = tuple( [ sum(data[key]) , len(data[key])])  
22.  def savedIn(self, filename):  
23.  with open(filename, 'w') as file:  
24.  file.write("{ \"nbrActionsSaved\": \" "+str(self._nbrAtomicAction)+"\",\n\"Data\": ")  
25.  file.write(json.dumps({str(k): str(v) for k, v in self._Memory.items()}))  
26.  file.write("}")  
27.  file.close()  
28.  def chargeMemory(self, filename):  
29.  #print("charge file TTOTO")  
30.  with open(filename) as currentFile:  
31.  data = json.loads(currentFile.read())  
32.  #print("after open the file")  
33.  #self._nbrSaved = int(data['nbrActionsSaved'])  
34.  for key in data['Data']:  
35.  value = data['Data'][key]  
36.  key = key[1:-1]  
37.  key= key.replace(' ', '')  
38.  key = key.split(',')  
39.  if(self._nbrAtomicAction == 1 ):  
40.  key = int(key[0])  
41.  else:  
42.  #key.split(',')  
43.  for elem in key:  
44.   if type(elem) == int:  
45.   #print(elem)  
46.   elem = int(elem)  
47.  key = tuple(key)  
48.   value = value.replace('(', '').replace(')', '')  
49.  value = value.split(",")  
50.   #print("key : "+str(key))  
51.  #print("value : "+str(value))  
52.   self._Memory[key] = tuple( [float(value[0]) , int(value[1])] )  
53.  currentFile.close()  
54.   def getMoyOf(self, key):  
55.  return( self._Memory[key][0]/self._Memory[key][1])  
56.  def getBestAction(self, pastActions):  
57.  listActions = list(self._Memory.keys())  
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58.  nextList = []  
59.  for i in range(len(pastActions)):  
60.  for j in range(len(listActions)):  
61.  if pastActions[i] == listActions[j][i]:  
62.   nextList.append(listActions[j])  
63.  listActions = nextList  
64.  nextList = []  
65.  if len(listActions)< self._nbrActions:  
66.  return random.randint(1,self._nbrActions)  
67.  bestScore = self.getMoyOf(listActions[0])  
68.  bestAction = listActions[0][-1]  
69.  for key in listActions:  
70.  newScore = self.getMoyOf(key)  
71.  if bestScore < newScore:  
72.  bestScore = newScore  
73.  bestAction = key[-1]  
74.  if bestScore > 0:   
75.  return bestAction  
76.  else:  
77.  return random.randint(1,self._nbrActions)  

Controller.py 

1. import copy  
2. from matplotlib import rcParams  
3. import os, os.path  
4. from model_Memory import Memory  
5. from model_StandardSimulation import Static_simulation  
6. import matplotlib.pyplot as plt  
7.   
8. rcParams['font.family'] = 'Palatino Linotype'  
9. choiceDone = False  
10. def generate_memory(numberWishVM, Timestamp, Nbr_VM, NbrAction, TimeRaisedSearch, rateVitalityW

ished, NbrAction_historic ):  
11.  counter = 0  
12.  memory = Memory(nbrSaved=NbrAction_historic)  
13.  Actions_saved = {}  
14.  while counter < numberWishVM:  
15.  simulation = Static_simulation(Timestamp, Nbr_VM)  
16.  simulation.run_simulation()  
17.  V_VMs = simulation._V_VMs  
18.  S_VMs = simulation._S_VMs  
19.  actions = simulation._actions  
20.  # Search in the Vulnerable VMs the one with the the hiest survivability  
21.  indice_VM =0  
22.  # 1. for each Vulnerable VM  
23.  while indice_VM < (len(V_VMs)) and counter< numberWishVM:  
24.  #print(NbrAction_historic)  
25.  #If the VM survived and nbr actions to save >0  
26.  if V_VMs[indice_VM][-1] >0 and NbrAction_historic>0 :  
27.   #If at a time, her vitaliy raise rapidly  
28.  raiseSpeed = False  
29.   t= NbrAction_historic  
30.  while (not raiseSpeed) and (t<Timestamp):  
31.   if (S_VMs[indice_VM][t] - S_VMs[indice_VM][t-NbrAction_historic]) > rateVitalityWished:  
32.   #saved the actions performed  
33.   key = []  
34.   for i in range(TimeRaisedSearch):  
35.   key.append(actions[indice_VM][t-(TimeRaisedSearch-i)])  
36.   key = tuple(key)  
37.   value = (S_VMs[indice_VM][t] - S_VMs[indice_VM][t-NbrAction_historic])  
38.  # print(str(S_VMs_saved[indice][t])+" - "+str( S_VMs_saved[indice][t-

TimeRaisedSearch])+" = "+str(value))  
39.    if key not in Actions_saved.keys():  
40.   memory._Memory[key] = (value, 1)  
41.   else:  
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42.   memory._Memory[key] = (memory._Memory[key][0]+ value, memory._Memory[key][1]+1)  
43.    #count in result  
44.   raiseSpeed= True  
45.   counter+=1  
46.   t+=1  
47.  indice_VM+=1  
48.  return memory  
49. def summariseResult(Simulation, evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, e

volution_moyVitalityA ):  
50.  nbrSurvivedV = sum([1 for i in range(Simulation._Nbr_VM) if Simulation._V_VMs[i][-

1]>0])/Simulation._Nbr_VM  
51.  nbrSurvived = sum([1 for i in range(Simulation._Nbr_VM) if Simulation._A_VMs[i][-

1]>0])/Simulation._Nbr_VM  
52.  moySurvivabilityV = sum([Simulation._V_VMs[i][-

1] for i in range(Simulation._Nbr_VM)])/Simulation._Nbr_VM  
53.  moySurvivabilityA = sum([Simulation._A_VMs[i][-

1] for i in range(Simulation._Nbr_VM)])/Simulation._Nbr_VM  
54.  evolution_nbrSurviveV.append(nbrSurvivedV)  
55.  evolution_nbrSurviveA.append(nbrSurvivedA)  
56.  evolution_moyVitalityV.append(moySurvivabilityV)  
57.  evolution_moyVitalityA.append(moySurvivabilityA)  
58. def saving(currentplot, prefix):  
59.  directory = "./img"  
60.  try:  
61.  os.makedirs(directory)  
62.  except FileExistsError:  
63.  pass  
64.  

nbr_file_in_directory = len([name for name in os.listdir(directory) if os.path.isfile(os.path.join(directory, nam
e))])  

65.  plt.savefig("./img/"+prefix+str(nbr_file_in_directory)+".png")  
66. def plotSummaryOne(evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evolution_

moyVitalityA, nameFile, champValue):  
67.  fig1, axes = plt.subplots(nrows = 2, ncols=2)  
68.  plt.figure(figsize=(800/96, 800/96), dpi=96)  
69.  ax1 = plt.subplot(2, 1, 1)  
70.  ax1.plot(evolution_nbrSurviveV, color='b', label=champValue[4])  
71.  ax1.plot(evolution_nbrSurviveA, color='r', label=champValue[5])  
72.  ax1.legend(loc="upper right")  
73.  ax1.set_title(champValue[0])  
74.  plt.xlabel(champValue[1])  
75.  plt.ylabel(champValue[2])  
76.  ax2 = plt.subplot(2, 1, 2)  
77.  ax2.plot(evolution_moyVitalityV, color='b', label=champValue[4])  
78.  ax2.plot(evolution_moyVitalityA, color='r', label=champValue[5])  
79.  ax2.legend(loc="upper right")  
80.  plt.ylabel(champValue[3])  
81.  saveimg(plt, nameFile )  
82.  #plt.show()  
83.  

def plotSummaryOneliner(evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evoluti
on_moyVitalityA, nameFile, champValue):  

84.  evolution_nbrSurviveV2 = []  
85.  evolution_nbrSurviveA2 = []  
86.  evolution_moyVitalityV2 = []  
87.  evolution_moyVitalityA2 = []  
88.  for i in range(len(evolution_nbrSurviveV)//100):  
89.   
90.  print(evolution_nbrSurviveV2)  
91.  

plotSumaryOne(evolution_nbrSurviveV2, evolution_nbrSurviveA2, evolution_moyVitalityV2, evolution_mo
yVitalityA2, nameFile, champValue)  

92. def plotSummaryTwo(evolution_nbrSurviveV,evolution_nbrSurviveV2, evolution_nbrSurviveA,evolution_n
brSurviveA2, evolution_moyVitalityV,evolution_moyVitalityV2, evolution_moyVitalityA, evolution_moyVita
lityA2, nameFile, champValue):  

93.  fig1, axes = plt.subplots(nrows = 2, ncols=2)  
94.  plt.figure(figsize=(800/96, 800/96), dpi=96)  
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95.  ax1 = plt.subplot(2, 1, 1)  
96.  ax1.plot(evolution_nbrSurviveV, color='b', label=champValue[1][5])  
97.  ax1.plot(evolution_nbrSurviveV2, color='k', label= champValue[2][5])  
98.  ax1.plot(evolution_nbrSurviveA, color='r', label=champValue[1][6])  
99.  ax1.plot(evolution_nbrSurviveA2, color='m', label=champValue[2][6])  
100.  ax1.legend(loc="upper right")  
101.  ax1.set_title(champValue[0])  
102.  plt.xlabel(champValue[1][1])  
103.  plt.ylabel(champValue[1][2])  
104.  ax2 = plt.subplot(2, 1, 2)  
105.  ax2.plot(evolution_moyVitalityV, color='b', label=champValue[1][5])  
106.  ax2.plot(evolution_moyVitalityV2, color='k', label=champValue[2][5])  
107.  ax2.plot(evolution_moyVitalityA, color='r', label=champValue[1][6])  
108.  ax2.plot(evolution_moyVitalityA2, color='m', label=champValue[2][6])  
109.  ax2.legend(loc="upper right")  
110.  plt.xlabel(champValue[2][1])  
111.  plt.ylabel(champValue[1][3])  
112.  saveimg(plt, nameFile)  
113.  #plt.show()  
114.   
115. def plotSumaryTwoliner(evolution_nbrSurviveV,evolution_nbrSurviveV2, evolution_nbrSurviveA,evolution

_nbrSurviveA2, evolution_moyVitalityV,evolution_moyVitalityV2, evolution_moyVitalityA, evolution_moy
VitalityA2, nameFile, champValue):  

116.  evolution_nbrSurviveV_2 = []  
117.  evolution_nbrSurviveA_2 = []  
118.  evolution_moyVitalityV_2 = []  
119.  evolution_moyVitalityA_2 = []  
120.  evolution_nbrSurviveV2_2 = []  
121.  evolution_nbrSurviveA2_2 = []  
122.  evolution_moyVitalityV2_2 = []  
123.  evolution_moyVitalityA2_2 = []  
124.  for i in range(len(evolution_nbrSurviveV)//100):  
125.   
126. def run(valueInt, Timestamp, NbrTimestamp, Nbr_VM, NbrAction, NbrAction_historic, Delay_betweens_s

hare,numberWishVM,rateVitalityWished, nameMemoryFile,nameMemoryFile2):  
127.  from model_Memory import Memory  
128.  #print("-----------------")  
129.  if valueInt == 1:  
130.  #print("Begin running simulation")  
131.  evolution_nbrSurviveV = []  
132.  evolution_nbrSurviveA = []  
133.  evolution_moyVitalityV = []  
134.  evolution_moyVitalityA = []  
135.  memory= Memory(nbrSaved = NbrAction_historic)  
136.  # print("The NbrTimestamp is of: "+ str(NbrTimestamp))  
137. # print("The timestamp is of: "+ str(Timestamp))  
138. # print("The Nbr_VM is of: "+ str(Nbr_VM))  
139.  try:  
140.  #print("try begin")  
141.  memory.chargeMemory(nameMemoryFile)  
142.  #print("after charge")  
143.  #print("truc: \n"+str(memory._Memory))  
144.  except:  
145.  pass  
146.  for i in range(NbrTimestamp):  
147.  Simulation = Static_simulation(Timestamp=Timestamp, Nbr_VM=Nbr_VM)  
148.  Simulation._Memory = memory  
149.  Simulation.run_simulation()  
150. summariseResult(Simulation, evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evol

ution_moyVitalityA )  
151. plotSumaryOne(evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evolution_moyVit

alityA)  
152.  #print("Ending running simulation")  
153.  else:  
154.  if valueInt == 2:  
155.  #print("Begin generate memory")  
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156.  
memory = generate_memory(numberWishVM, Timestamp, Nbr_VM, NbrAction, NbrAction_historic, rate
VitalityWished, NbrAction_historic )  

157.  memory.savedIn(nameMemoryFile)  
158.  #print("Memory saved")  
159.   else:  
160.  #print("begin comparing simulation")  
161.  evolution_nbrSurviveV = []  
162.  evolution_nbrSurviveA = []  
163.  evolution_moyVitalityV = []  
164.  evolution_moyVitalityA = []  
165.   evolution_nbrSurviveV2 = []  
166.  evolution_nbrSurviveA2 = []  
167.  evolution_moyVitalityV2 = []  
168.  evolution_moyVitalityA2 = []  
169.  memory = Memory(nbrSaved= NbrAction_historic)  
170.  try:  
171.  #print(nameMemoryFile)  
172.  Memory = chargeMemory(nameMemoryFile)  
173.  except:  
174.  pass  
175.  Memory2 = Memory(nbrSaved=NbrAction_historic)  
176.  try:  
177.  Memory2 = chargeMemory(nameMemoryFile2)  
178.  except:  
179.  pass  
180. # print(NbrAction_historic)  
181. # print(NbrAction_historic2)  
182.   for i in range(NbrTimestamp):  
183.  #print("'''''''''''''''''''''''''''")  
184.  memory = Memory(nbrSaved= NbrAction)  
185.  Simulation = Static_simulation(Timestamp, Nbr_VM)  
186.  Simulation.setMemory(memory)  
187.   Simulation2 = copy.deepcopy(Simulation)  
188. # run_simulationFromInit(Timestamp,Nbr_VM, NbrAction, NbrAction_historic, Memory, V_VMs,A_VMs

,S_VMs, C_VMs,alphas,Betas, Gammas, Ethas, actions)  
189.  Simulation.run_simulationFromInit()  
190.  Simulation2.run_simulationFromInit()  
191.   

summariseResult(Simulation, evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evol
ution_moyVitalityA )  

192.   
sumerizeResult(Simulation2, evolution_nbrSurviveV2, evolution_nbrSurviveA2, evolution_moyVitalityV2, ev
olution_moyVitalityA2 )  

193.   #print(Simulation._actions == Simulation._actions)  
194.   

plotSumaryTwo(evolution_nbrSurviveV,evolution_nbrSurviveV2, evolution_nbrSurviveA,evolution_nbrSur
viveA2, evolution_moyVitalityV,evolution_moyVitalityV2, evolution_moyVitalityA, evolution_moyVitalityA
2)  

195.   #print("ending comparing simulation")  

Default variables 

1. import json  
2. from pprint import pprint  
3.  # get the default variables from the files  
4. with open('default_variable.json') as file:  
5.  data = json.load(file)  
6. file.close()  
7. Timestamp = data['timestamp']  
8. Nbr_timestamp = data['Nbr_timestamp']  
9. Nbr_VM = data['Nbr_VM']  
10. NbrAction = data['NbrAction']  
11. NbrAction_historic= data['NbrAction_historic']  
12. NbrAction_historic2 = data['NbrAction_historic2']  
13. Delay_betweens_share = data['Delay_betweens_share']  
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14. numberWishVM = data['Nbr_VM_For_Memory']  
15. rateVitalityWished = data['Min_Vitality_raised']  
16. Memory_fileName = data['Memory_fileName']  
17. Memory_fileName2 = data['Memory_fileName2']  

Appendix D - Simulation results 

Table 30. Sample results for Group 7 -VM 491 and group 0 -VM 67 

group 7 gen491 group 0 generation 67 

V_VM A_VM C_VM S_VM V_VM A_VM C_VM S_VM 

0.001 0.995 0.000 0.003 0.025 0.384 0.000 0.590 

0.853 0.144 0.002 0.002 0.366 0.044 0.093 0.497 

0.968 0.029 0.002 0.001 0.408 0.002 0.009 0.582 

0.991 0.006 0.002 0.001 0.410 0.000 0.000 0.590 

0.996 0.001 0.002 0.001 0.410 0.000 0.000 0.590 

0.997 0.000 0.003 0.001 0.410 0.000 0.000 0.590 

0.997 0.000 0.003 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.003 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.004 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.004 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.005 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.005 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.006 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.006 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.007 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.008 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.009 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.010 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.011 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.013 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.014 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.016 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.018 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.020 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.022 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.025 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.028 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.031 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.034 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.039 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.043 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.048 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.054 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.060 0.000 0.410 0.000 0.000 0.590 
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0.997 0.000 0.068 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.076 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.085 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.095 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.106 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.119 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.133 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.148 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.166 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.186 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.208 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.291 0.000 0.410 0.000 0.000 0.590 

0.997 0.000 0.326 0.000 0.410 0.000 0.000 0.590 
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0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

100
0.0
00 

Surviva
l VMs 

100
0.0
00 

100
0.0
00 

996
.20
0 

981
.40
0 

950
.60
0 

915
.90
0 

886
.50
0 

860
.70
0 

838
.10
0 

823
.40
0 

810
.80
0 

801
.00
0 

794
.00
0 

775
.20
0 

772
.30
0 

769
.50
0 

765
.80
0 

763
.50
0 

762
.10
0 

Vulner
able 
VMs 

100
0.0
00 

848
.20
0 

745
.90
0 

684
.50
0 

651
.30
0 

625
.70
0 

608
.00
0 

597
.70
0 

589
.50
0 

582
.10
0 

576
.80
0 

571
.50
0 

568
.90
0 

560
.30
0 

559
.30
0 

558
.20
0 

556
.60
0 

555
.60
0 

555
.20
0 
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