
Nature-inspired survivability: Prey-inspired

survivability countermeasures for cloud

computing security challenges

Siyakha Njabuliso Mthunzi

STAFFORDSHIRE UNIVERSITY

A Thesis submitted in fulfilment of the requirement of Staffordshire University for the

award of the degree of Doctor of Philosophy

2019

ii

To my parents and my family

In memory of my father, the late J.G. Mthunzi

and

to my mother M.G Mthunzi

, who gave me invaluable educational opportunities and boundless permanence

throughout my life.

iii

Declaration

This thesis contains no material which has been accepted for the award of any other degree

or diploma, except where due reference is made in the text of the thesis. To the best of my

knowledge, this thesis contains no material previously published or written by another

person except where due reference is made in the text of the thesis.

Siyakha Njabuliso Mthunzi

iv

Acknowledgements

Deepest gratitude to my principal supervisor Professor Elhadj Benkhelifa for the insightful

guidance and supporting my thesis actively throughout the PhD journey. The continuous

cooperation, relentless drive and exchange of ideas made this Thesis possible. Thanks to

my secondary supervisor Dr Tomasz Bosakowski for the support and guidance.

A special thanks to my colleagues in the Cloud Computing and Applications Research

Laboratory at Staffordshire University, for the interesting discussions and constructive

feedback. Many thanks especially to Lavorel Anaïs Léa Céline for the collaboration.

No words can express my gratitude and thanks to my entire family, for the love and

support, and the genuine caring you show whatever the weather. Your extraordinary self-

sacrifice saw me through overwhelming obstacles. You are my heroes! I am grateful to my

friends whose support and encouragement always motivates me to do better.

Finally, a special shout-out to me for never giving up!

Siyakha Njabuliso Mthunzi

Staffordshire University

v

Table of Contents

Declaration iii
Acknowledgements iv

Table of Contents v

List of Tables viii
List of Figures ix

Abbreviations xiii
List of publications xiv

Abstract xv

Chapter 1 Introduction .. 1

1.1 Introduction ... 1

1.1.1 Existing security approaches 3

1.1.2 Survivability as a suitable mission for security 5

1.1.3 The need for bio-inspiration 6

1.2 Research hypotheses ... 7

1.3 Research aim and objectives ... 8

1.4 Contribution to knowledge ... 9

1.5 Research methodology .. 10

1.5.1 Research philosophy 11

1.5.2 Research approach 12

1.5.3 Research design 13

1.6 Thesis outline ... 15

Chapter 2 Literature review ... 19

2.1 Introduction ... 19

2.2 Cloud security challenges .. 20

2.2.1 Survey of countermeasures 24

2.3 Survivability context ... 27

2.3.1 Analysis 35

2.4 Bio-inspired systems ... 39

2.4.1 Prey survival against predation 44

2.5 Theoretic perspectives .. 46

2.5.1 Theoretical ecology 48

2.6 Summary .. 51

Chapter 3 A holistic taxonomy of cloud security challenges 52

3.1 Introduction ... 52

3.2 Holistic approach ... 53

3.2.1 Requirements 55

3.3 Review of existing classifications .. 56

3.4 Proposed holistic taxonomy ... 77

vi

3.5 Analysis .. 81

3.6 Summary .. 84

Chapter 4 A TRIZ-based approach for prey-inspired cloud computing

survivability 85

4.1 Introduction ... 85

4.2 Problem-driven design context ... 87

4.3 3-step concept transfer process ... 88

4.3.1 Retrieving concepts 89

4.3.2 Mapping concepts 90

4.3.3 Transferring concepts 92

4.4 TRIZ-based approach ... 93

4.4.1 Applying the TRIZ 95

4.5 Pilot investigation of prey mechanisms using NetLogo

simulator ... 110

4.5.1 Experiment 111

4.6 Summary .. 116

Chapter 5 Prey-inspired cloud computing survivability framework (Pi-

CCSF) 117

5.1 Introduction ... 117

5.1.1 Scope 118

5.2 Survivability-oriented design ... 120

5.2.1 Survivability mission 122

5.2.2 Survivability mission requirements 124

5.2.3 Survivable system requirements 124

5.3 Security systems design ... 128

5.4 Prey-inspired cloud computing survivability framework

(Pi-CCSF) ... 129

5.4.1 Survivability strategy management (SSM) 131

5.4.2 Survivability monitoring (SM) 133

5.4.3 Survivability running state (SRS) 135

5.4.4 Survivability definition (SD) 136

5.5 Prey-inspired survivability mechanisms ... 138

5.5.1 Decision system 139

5.5.2 Escalation system 141

5.6 Pi-CCSF’s overall survivability process flow 142

5.7 Discussion .. 147

5.8 Summary .. 150

Chapter 6 Prey-inspired target-based decision-making technique (Pi-
TBDM) for unpredictable survivability targets in cloud computing

environments 151

6.1 Introduction ... 151

vii

6.2 Fuzzy logic and its application to cloud survivability

decision problem .. 153

6.3 Target-based decision-making (TBDM) .. 157

6.3.1 Construct a survivability decision matrix 160
6.3.2 Determine weights for main survivability

decision functions 161

6.3.3 Rank survivability decision alternatives 162

6.4 Numeric example ... 163

6.4.1 Semantic web platform 163

6.4.2 Netflix and Hulu 165

6.5 Summary .. 168

Chapter 7 Evaluating Pi-CCSF using Pi-CCSF simulator 170

7.1 Introduction ... 170

7.2 Pi-CCSF simulator .. 172

7.2.1 Environment 172

7.3 Simulation design ... 176

7.3.1 Simulating base model with escalation 180

7.3.2 Experiments 182

7.4 Results and analysis .. 185

7.4.1 The vitality of random and best actions 185

7.4.2 The vitality of actions and threshold values 188

7.4.3 Analysis 194

7.5 Summary .. 200

Chapter 8 Conclusion and recommendations .. 201

8.1 Research process .. 201

8.2 Thesis summary and contributions ... 202

8.3 Limitations ... 206

8.4 Future work .. 206

References 208

Appendices 250

Appendix A – Definitions and Concepts ... 250

Appendix B - Cloud computing ... 251

Appendix C – Pi-CCSF simulator code ... 260

Appendix D - Simulation results .. 268

viii

List of Tables

Table 1. Research method per thesis contribution 15

Table 2. A summary of commonly discussed security challenges 22

Table 3. Summary of countermeasures in academia 26

Table 4. Summary of countermeasures in industry 26

Table 5. Passive vs Active Survivability, according to (Richards et al.,
2007). 34

Table 6. Some example bio-systems application: strengths & weaknesses 40

Table 7. A summary of bio-inspired algorithms proposed for cloud (C)
and non-cloud (NC) environments 43

Table 8. A matrix linking prey survival mechanisms (anti-predation and
predation avoidance) to prey species 45

Table 9. A summary of cloud security topical areas. 78

Table 10. Features to improve and to preserve and summary of
corresponding TRIZ principles 98

Table 11. Random parameters of predator-prey interaction 112

Table 12. Summary of predator-prey interaction with poison 113

Table 13. Detection: Improve detection difficulty and preserve
complexity 148

Table 14. A general survivability decision matrix 160

Table 15. Decision matrix derived from the probability of meeting a
target 161

Table 16. Fuzzy Survivability target matrix 164

Table 17. Expected fuzzy survivability 164

Table 18. Derived optimistic decision matrix 166

Table 19. Derived neutral decision matrix 167

Table 20. Derived pessimistic decision matrix 167

Table 21. Ordering based on different targets 167

Table 22. Summary of default parameters 177

Table 23. Input parameters for five simulation runs 184

Table 24. Sample vitality evolution for vulnerable VMs over 10 ticks 185

Table 25. Sample vitality evolution for survival VMs over 10 ticks 186

Table 26. Sample vitality evolution for attack VMs over 10 ticks 187

Table 27. Sample vitality evolution for corrupted VMs over ten ticks 187

Table 28. Sample summary of overal vitality evolution data over 10 ticks 192

Table 29. Summary of traditional security systems 254

Table 30. Sample results for Group 7 -VM 491 and group 0 -VM 67 268

Table 31. Sample results for best Action synthesis 270

ix

List of Figures

Figure 1. Overview of Thesis structure 18

Figure 2. Graphical representation of the cloud security view produced
by the author of this thesis 20

Figure 3. Representation of the survivability concept adapted from
(Henderson, 2006) 29

Figure 4. A VNE concept produced by the author of this thesis. 32

Figure 5. An illustration of the RPO and RTO concept produced by the
author of this thesis 34

Figure 6. An illustration of predictable and unpredictable system states
and requirements produced by the author of this thesis 36

Figure 7. An illustration of a complex system formation produced by the
author of this thesis 38

Figure 8. An classification of Bio-inspired approaches produced by the
author of this thesis 50

Figure 9. A illustration of the holistic design approach produced by the
author of this thesis 54

Figure 10. An illustration of the holistic workflow processes produced by
the author of this thesis 54

Figure 11. A high-level holistic view of cloud security challenges
produced by the author of this thesis 56

Figure 12. Security challenges inherent to cloud computing produced by
the author of this thesis. 57

Figure 13. Security challenges triggered by cloud computing produced
by the author of this thesis. 57

Figure 14. Security challenges adopted by cloud computing produced by
the author of this thesis. 59

Figure 15. Security challenges that are unique to private cloud produced
by the author of this thesis. 60

Figure 16. Security challenges that are unique to public cloud produced
by the author of this thesis. 61

Figure 17. Security challenges that are unique to hybrid cloud produced
by the author of this thesis 62

Figure 18. Security challenges that are unique to service provision
produced by the author of this thesis 62

Figure 19. Security challenges from the perspective of uniqueness to the
cloud and their existence pre-cloud produced by the author
of this thesis 63

Figure 20. Security challenges from an outsourcing perspective produced
by the author of this thesis 64

Figure 21. Security challenges from an architectural, technological,
process and regulatory perspective produced by the author
of this thesis 65

x

Figure 22. Security challenges from a traditional and cloud-specific
perspective produced by the author of this thesis 66

Figure 23. Security challenges from a co-residency perspective produced
by the author of this thesis 68

Figure 24. Security challenges from the perspective of the layer of cloud
produced by the author of this thesis 69

Figure 25. Cloud security challenges from a development perspective
produced by the author of this thesis 70

Figure 26. Cloud security challenges from a development perspective
produced by the author of this thesis 71

Figure 27. Cloud security challenges from the perspective of
architectural complexities produced by the author of this
thesis 73

Figure 28. Security challenges from an organisation’s outsourcing
components perspective produced by the author of this
thesis 74

Figure 29. Cloud security challenges from the end-users perspective
produced by the author of this thesis 76

Figure 30. Multiple perspectives to cloud computing security challenges
produced by the author of this thesis 77

Figure 31. Holistic taxonomy of cloud computing security challenges. 80

Figure 32. Holistic problem-driven approach for bio-cloud computing
design produced by the author of this thesis 87

Figure 33. 3-step process produced by the author of this thesis 88

Figure 34. Mapping cloud to biological systems; structure, behaviour
and function features, around a central survivability
concept 91

Figure 35. A graph example of cloud-prey system mapping 91

Figure 36. An illustration of TRIZ’s systematic process adapted from
(Ilevbare, Probert & Phaal, 2013). By following the TRIZ
process from start (green) steps represent TRIZ’s generic
components whereas P1 and P2, S1 and S2 represent TRIZ
abstract problems and solutions, respectively. 94

Figure 37. Defining the survivability problem, adapted from (Kasravi &
Fellow, 2010) 96

Figure 38. Generic illustration of the survivability problem 97

Figure 39. Ecosystem analogy 102

Figure 40. Cloud entity analogy 104

Figure 41. The survivability analogy 107

Figure 42. The NetLogo GUI 111

Figure 43. Simulation results of random predator-prey interactions in
Table 11. Blue (rabbits) and red (coyotes) oscillation
indicate the behaviour prey and predator populations,
respectively, in a stable ecosystem 112

xi

Figure 44. Predator and prey dynamics with poison added at t – 500 –
1000 114

Figure 45. Predator and prey dynamics with poison added at t = 500 –
1550 114

Figure 46. Survivability design assumption 118

Figure 47. The research’s SLA cycle assumption 119

Figure 48. The research scope Error! Bookmark not defined.

Figure 49. Cloud computing survivability design context 121

Figure 50. Prey-inspired cloud computing survivability framework (Pi-
CCSF). 130

Figure 51. Survivability strategy management (SSM) process flowchart 133

Figure 52. Survivability monitor (SM) process flowchart. 134

Figure 53. Survivability running state (SRS) process flowchart. 136

Figure 54. Survivability definition (SD) process flowchart. 137

Figure 55. Decision system (DS) process flowchart. 140

Figure 56. Escalation system (EscS) process 142

Figure 57. Overall process flowchart for survivability management using
Pi-CCSFSTEP 146

Figure 58. The conceptual components for detection 149

Figure 59. Illustration of Pi-CCSF’s DS process 159

Figure 60. Membership function of expected survivability: A1 is shown
in green, A2 in red, A3 in blue and A4 is black. 165

Figure 61. A cloud service application of Pi-CCSF around running
survivability service area (Area 1) and a backup area (Area
2) 173

Figure 62. Part of the graphical user interface (GUI) to set virtual
machine variables. A user can launch a simulation based
upon specified variables, memory generated variables or
using the best variables in memory 174

Figure 63. Part of the graphical user interface (GUI) to set memory
variables. A user can launch a simulation by specifying the
amount of actions that can be stored in memory, the
numbe of VMs and a threshold VM survivability vitality. 174

Figure 64. Pi-CCSF simulator components 178

Figure 65. Graphical representation of the simulation dynamic 180

Figure 66. Illustration of variable systems states including the dead set 182

Figure 67. The vitality of vulnerable VMs. Error! Bookmark not defined.

Figure 68. The vitality of survivable VMs. Error! Bookmark not defined.

Figure 69. The vitality of Attack VMs Error! Bookmark not defined.

Figure 70. The vitality of Corrupted VMs Error! Bookmark not defined.

Figure 71. A plot showing the evolution of the vitality for action one (1). 188

Figure 72. A plot showing the evolution of the vitality for action two (2). 189

Figure 73. A plot showing the evolution of the vitality for action three
(3). 189

Figure 74. A plot showing the evolution of the vitality for action four (4). 190

xii

Figure 75. A plot showing the evolution of the vitality for action five (5). 190

Figure 76. An overall plot showing the evolution of vitality for five
actions and the overall survivability 191

Figure 77. The plot of overall evolution of VMs’ vitality over simulation Error!
Bookmark not defined.

Figure 78. The plot of vitality of VM 491 in simulation group 7 Error!
Bookmark not defined.

Figure 79. The plot of vitality of vulnerable VMs in groups 7, 8 and 9 Error!
Bookmark not defined.

Figure 80. Illustrating vitality changes for vulnerable VMs. 194

Figure 81. A within-group inference error bar plot: Maximum vitality of
A_VMs, C_VMs, S_VMs and V_VMs 197

Figure 82. Within-group inference error bar plot: Vitality of VM 491 in
the attack, compromised, survivable and vulnerable states 198

Figure 83. Within-group inference error bar plot: Vitality of VM 67 in the
attack, compromised, survivable and vulnerable states. 199

Figure 84. Illustration of vitality changes for VMs 491 and 67 199

Figure 85. Proactive, hybrid and reactive security approaches 250

Figure 86. A generic cloud computing model 252

Figure 87. The tenancy concept; single tenancy (left) and multi-tenancy
(right). 252

Figure 88. A traditional security view 253

xiii

Abbreviations

Several key terms are used throughout this document and are defined here:

▪ API – Application programming interface

▪ CC – Cloud consumer

▪ CSP – Cloud service provider

▪ DDoS – Distributed denial of service

▪ DoS – Denial of service

▪ DTMC - Discrete-time Markov chain

▪ EscS – Escalation system

▪ eDDoS - Economic distributed denial of service

▪ IaaS -Infrastructure as a Service

▪ IoT - the internet of things

▪ LV – Lotka and Volterra

▪ MDP - Markov decision processes

▪ Pi-CCSF – Prey-inspired cloud computing survivability framework

▪ PaaS – Platform as a Service

▪ QoS – Quality of service

▪ RT - Recovery time

▪ RTO - Recovery time objective

▪ RO – Recovery objective

▪ RPO - Recovery point objective

▪ SaaS – Software as a Service

▪ SIEM - Security information and event management

▪ SLA – Service level agreement

▪ SSM -Survivability strategy manager

▪ SM – Survivability monitor

▪ TIPS - the Theory of Inventive Problem Solving

▪ TRIZ - Teorija Rezbenija Izobretatelskib Zadach

▪ UUUR – Uncertain malicious actions, latent risks, Unobserved or Unobservable risk

▪ VM – Virtual machine

▪ VMM -Virtual machine monitor.

xiv

List of publications

Pub Title Type

RP 1:

Mthunzi, Siyakha N, BENKHELIFA, Elhadj, Bosakowski,

Tomasz and Hariri, Salim (2018) A Bio-inspired Approach to Cyber

Security. In: Computer Security: Principles, Algorithm,

Applications, and Perspectives. Unspecified. ISBN

9780815371335

Book

Chapter

RP 2:

Mthunzi, S.N., Benkhelifa, E., Bosakowski, T., Guegan, C.G. and

Barhamgi, M., 2020. Cloud computing security taxonomy: From an

atomistic to a holistic view. Future Generation Computer Systems,

107, pp.620-644.

FGCS

Journal

RP 3:

Mthunzi, S.N. and Benkhelifa, E., 2017, September. Trends
towards Bio-Inspired Security Countermeasures for Cloud
Environments. In 2017 IEEE 2nd International Workshops on
Foundations and Applications of Self* Systems (FAS* W) (pp. 341-347).
IEEE.

IEEE

Conference

RP 4:

Mthunzi, S.N. and Benkhelifa, E., 2017, October. Survivability
analogy for cloud computing. In 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA) (pp. 1056-
1062). IEEE.

IEEE

Conference

RP 5:

Mthunzi, S.N., Benkhelifa, E., Alsmirat, M.A. and Jararweh, Y.,
2018, April. Analysis of VM communication for VM-based cloud
security systems. In 2018 Fifth International Conference on Software
Defined Systems (SDS) (pp. 182-188). IEEE.

IEEE

Conference

RP 6:

Mthunzi, S. and Benkhelifa, E., 2018, April. Mimicking Prey's
escalation predation-avoidance techniques for cloud computing
survivability using fuzzy cognitive map. In 2018 Fifth International
Conference on Software Defined Systems (SDS) (pp. 189-196). IEEE.

IEEE

Conference

xv

Abstract

As cloud computing environments become complex, adversaries have become highly

sophisticated and unpredictable. Moreover, they can easily increase attack power and

persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or

Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes

prey-inspired survivability to address unpredictable security challenges borne out of

UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals,

applying prey survivability to cloud computing directly is challenging due to contradicting

end goals. How to manage evolving survivability goals and requirements under

contradicting environmental conditions adds to the challenges. To address these

challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate

perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija

Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving

contradiction. First, it develops a 3-step process to facilitate interdomain transfer of

concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific

solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-

inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived

solutions. The framework run-time is pushed to the user-space to support evolving

survivability design goals. Furthermore, a target-based decision-making technique

(TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired

survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation

results shows that escalating survivability actions improve the vitality of vulnerable and

compromised virtual machines (VMs) by 5% and dramatically improve their overall

survivability. Hypothesis testing conclusively supports the hypothesis that the escalation

mechanisms can be applied to enhance the survivability of cloud computing systems.

Numeric analysis of TBDM shows that by considering survivability preferences and

attitudes (these directly impacts survivability actions), the TBDM method brings

unpredictable survivability information closer to decision processes. This enables efficient

execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision

system (DS) to focus upon decisions that achieve survivability outcomes under

unpredictability imposed by UUUR.

This page has been intentionally left blank

1

Chapter 1 Introduction

This chapter introduces the thesis and outlines the motivations to overarching themes within the research

area. It presents the research hypothesis, research objectives and highlights the research contributions.

Finally, it details the research methodology before concluding with a detailed outline of the thesis chronology

on a per-chapter basis.

1.1 Introduction

Cloud computing has become topical due to its global adoption and use in both critical

and non-critical environments. The ability to provide compute resources (infrastructures,

platforms and software) as services adds to its attractive attributes. Resources are then

accessible on-demand on a pay-per-use basis, adding cloud computing to the list of utilities

such as electricity, gas, water, and others. Since its inception as the de facto computing

platform, businesses report increased flexibility, tremendous reduction in costs, and a wide

range of opportunities (Sarkar et al., 2019). From the cloud consumer’s (CC) perspective,

on-demand access to cloud services and resources facilitates dynamic scalability according

to a cloud user’s computing resource requirements, arguably ensuring improved overall

efficiency (Mansouri et al., 2018). Moreover, with the responsibility for routine

maintenance of the infrastructure left to the Cloud Service Providers (CSP), management

costs are usually low and system management is less cumbersome (Lombardi & Pietro,

2011). From a CSP perspective, the ability deploy a global network of data centres enables

greater flexibility and manageability of security (Shahriar et al., 2017).

A global network of data centres ushers in one of cloud computing’s attractive attributes;

accessibility over the internet, from anywhere using any device. Moreover, it enables CSPs

2

to co-locate cloud entities on shared infrastructure and have a broader picture of security

attacks (Dorey & Leite, 2011). Cloud entities in this regard embody individuals or

organisations whose interactions to perform tasks facilitate the functions of the cloud (Zott

et al., 2012)(Liu & Jiang, 2011). Individuals or organisations, also referred to as tenants,

may exist as disjoint legal entities, but with a common share to a view to services,

applications, data, and configurations. Hence, multi-tenancy, which is a core attribute of

cloud computing, describes the method of sharing an instance of an application among

co-located entities, by providing every entity with an isolated share of that instance

(Coppolino et al., 2017). However, low-cost and scalable computing resources accessible

to anyone from anywhere, on a pay-per use service inadvertently benefit the hacker

community.

Despite the attractive features of cloud computing, 90% of organisations using the cloud

have some security concerns (PwC, 2015). Interestingly, a common view suggests that

most of these security challenges existed pre-cloud resurgence, with known solutions.

Arguably, what has changed is the environment and the players in which these challenges

exist. According to (Ziring, 2015), security has become harder to manage due to a widening

attack surface. As shown by (Coppolino et al., 2017), a malicious entity can attack VMs

through commonly shared resources with little detection. Besides, the growth of “cyber

things” and the proliferation of a plethora of emerging technologies complicates security

management as the environment becomes complex (Yannakogeorgos, Lowther & Hayden,

2013)(Taleb et al., 2017).

Unsurprisingly, malware strains such as key loggers and phishing or RAM scrapping

became notorious (Levy, 2018), while Heartbleed, Shellshock, and Poodle became

notorious vulnerabilities in 2014 (Coty, 2014). In 2011, the number of malware attacks

increased from 3 billion to 5.5 billion with about 403 unique malware types (up from 286

in 2010) and high zero-day vulnerabilities exploited per day (Razzaq et al., 2014) (Shahzad

& Woodhead, 2014) (Ardagna et al., 2015a). In 2016 alone, there were 1 200 data breaches,

over 1.1 billion identity exposures and more than 450 000 ransomware attacks (Wiles,

2018). With increasing exposure, various new and sophisticated attacks have become

commonplace, giving rise to the view that cloud computing has become a global threat

domain (Zafar et al., 2017a).

3

As interconnected devices are projected to increase to 50 billion by 2020 (Eoin et al.,

2018)(Moreno et al., 2019) and over 75 billion by 2025 (Alam, 2019), generating over

79.4ZB of Data in 2025, security breaches are anticipated to rise exponentially, rapidly

evolve and increasingly become sophisticated with a wider global reach. The result is

security risk that are characteristically unpredictable and difficult to detect. Uncertain,

latent, unobserved, or unobservable risks (UUURs) are difficult to predict, particularly in

complex and dynamic environments. Hence, managing security considering this

unpredictability will increasingly become a bigger challenge for cloud computing

(Albanese, Jajodia & Venkatesan, 2018).

Unpredictability describes the character of something irregular; something that cannot be

predicted, and is often cited as a significant component of UUURs (Ma, Krings & Sheldon,

2009)(Ma & Krings, 2011)(Ma et al., 2014). Several authors suggest that current security

information and event management (SIEM) solutions cannot adequately address unknown

or unpredictable behaviour patterns (Marshak & Duer, 2016)(David & Kris, 2016). Rieke

et al. (2012) concurs, suggesting that it is almost impossible to predict UUURs in cloud

computing environments (Rieke et al., 2012). Thus, the main problem for the cloud

computing model is how unpredictability can be managed to ensure that security and

quality levels of service are met yet preserving its attractive attributes. Logically, this begs

the question of how to efficiently manage unpredictable changes in cloud service or system

states, given dynamic and unpredictable requirements.

1.1.1 Existing security approaches

With large-scale virtualisation central to the cloud computing, physical machines (PMs),

networks and other cloud-based systems fall outside the traditional enterprise security

perimeter (Ali, Khan & Vasilakos, 2015). PMs are therefore susceptible to UUURs owing

to advanced and sophisticated threats which easily bypass detection. On the other hand,

the virtual machine (VM) model which facilitates cloud computing’s resource utilisation

through augmenting hardware, software, storage and networks also introduces

vulnerabilities (Virvilis & Gritzalis, 2013) and (Hummaida, Paton & Sakellariou, 2016). As

argued by Ali et al. (2015), VM spoofing easily introduces data leakage vulnerabilities.

4

Moreover, current security management and control processes are inclined towards

business policy and regulation. In this sense, security decisions arise out of deterministic

assessment of the impact of a security incident to business objectives, and not the

unpredictable probability of the incident itself (Ni et al., 2002)(Cser, 2016). Security risk,

for instance, is quantified according to current or forecasted network operating conditions.

The challenge of applying this traditional approach in cloud environments is that high-

level failures are easily passed down to low-level components of the cloud computing

ecosystem (Harknett & Stever, 2011). Consequently, mitigating security threats remains a

major concern for cloud computing environments (Shahriar et al., 2017)(Zhang et al., 2013).

Moreover, literature shows that unpredictability limits efficient threat detection (Wang et

al., 2014). Hence, when applied directly to address UUURs, traditional security approaches

result in high false positives and false negatives (Ma et al., 2014)(Albanese, Jajodia &

Venkatesan, 2018). A high occurrence of false-positives or false-negatives limits the ability

to implement appropriate countermeasures (Knemeyer, Zinn & Eroglu, 2009). Nguyen et

al. (2016) further suggests that addressing UUURs using traditional methods is too

simplistic and negates the sensitivities of complex environments (Nguyen, Kim & Park,

2016). More so, it stands to reason that the domino effect of misapplied countermeasures

complicates service costing, yet cost is an important metric for secure, reliable and resilient

service provision.

According to Prasad et al. (2011), resolving cloud computing security challenges requires

security processes that can maintain systems stability and ensure continuous provision of

services (Padhy, Patra & Satapathy, 2011). Considering cloud’s pay-per-use service model,

the ability to guarantee continuous provision of services within acceptable levels of service,

is a critical mission. Thus, the goal for security should be to maximise the availability,

resilience, reliability, .etc. Nonetheless, the critical question is how and where to apply

principles such as availability, resilience, reliability, and others in cloud environments?

Moreover, how can cloud systems and underlying structures be designed to achieve this

critical mission?

This research proposes survivability as a critical property to achieve security in cloud

computing environments. This emphasises that cloud environments are robust under the

unpredictability imposed by UUURs. Hence, the role of security is to define controls that

5

reduce susceptibility to threats and enhance repair and recovery against UUURs, and other

threats affecting high-risk environments (Romine, 2019).

1.1.2 Survivability as a suitable mission for security

Survivability is the property which describes the ability of a system to continue the mission

of providing services despite underlying failures to security, resiliency, reliability and

dependability. It is a proactive approach and a continuous mission; a capability to which a

system can timely provide services after intrusion or compromise occurs (Wang et al.,

2012b). As (Mehresh & Upadhyaya, 2012) notes, the ‘mission’ element of survivability

suggests ensuring the continuity of a set of essential services, considering that

precautionary countermeasures will fail. Hence, Survivability-over-Security (SOS) (Yurcik

& Doss, 2002) was proposed as a descriptive focus to explicitly demonstrate how security

relates to survivability.

Traditional survivability is considered around the technical and business perspectives of

security, while redundancy is specified as a requirement for survivability. This notion of

survivability and redundancy is suited for static environments (Prusty, Sethi & Nayak,

2016)(Singh & Srivastava, 2018)” where virtual network embedding (VNE) techniques

achieve survivability based upon the predictable availability of redundant resources at the

physical layer (Lipson & Fisher, 2004)(Chowdhury, Rahman & Boutaba, 2012). By simply

mapping a system to a static structure or network, fault trees and reliability block diagrams

can therefore be easily manage survivability (O’Connor & Kleyner, 2011)(Khan et al.,

2015). However, VNE techniques imply that survivability is constrained to the hardware

layer, which is a challenge where resources are abstracted or limited, and resource

requirements are unpredictable. Clearly, while the survivability concept is well-defined and

understood in this traditional context, some drawbacks exist with its application in cloud

environments.

Foremost, survivability in the cloud context is an emerging phenomenon whose character

arises from interactions among multiple elements. While survivability behaviours are

predictable and easy to manage where interactions are deterministic, this is not the case in

cloud environments. Heterogeneity in cloud environments means that interactions are

probabilistic and survivability behaviours are unpredictable, dynamic and complex. If

6

survivability requirements frequently change, meeting survivability objectives becomes a

near impossibility. As a result, current designs of survivability solutions for cloud

environments are poorly understood, leaving existing survivability architectures

undeployable directly in cloud computing.

As the state of a system changes due to UUURs, a survivable should restore that system’s

capacities, and as well, adapt to dynamic changes in order to maintain it. Equally,

survivability should also aim to improve a future system’s capacity to maximise

survivability response measures (both passive and active tools and mechanisms). The main

challenge, nonetheless, pertains to the unpredictable and unobservable evolution of the

system. (Rieke et al., 2012) hypothesises predictive monitoring methods to provide insights

into proactive mitigations against future negative actions.

1.1.3 The need for bio-inspiration

Whereas maintaining security remains critical, survivability in view of unpredictable

compromise and catastrophic failure, is a problem of significant practical interest for cloud

computing. In the military context, this survivability contemplates damage tolerance and

damage avoidance, i.e. vulnerability, recoverability and susceptibility, as central to decision-

making (Rodríguez, Merseguer & Bernardi, 2014) (Vassalos, 2019). In nature, survivability

is observable in several natural systems, as well as it is described in several biological

theories and principles (Quach et al., 2013). Along with resilience, robustness and

adaptability, survivability is a well-addressed phenomenon in natural systems (Dressler &

Akan, 2010). Species survivability, in particular, is addressed in nature’s prey animals, where

anti-predator and predation avoidance mechanisms and behaviours ensure survival against

predation (Quach et al., 2013). Nature has contributed successful solutions to problems in

a range of domains, including finance (Brabazon & O’Neill, 2006) and robotics (Oates et

al., 2009) to name a few. The strength of natural systems reside in the ability of autonomous

entities to make local decisions, continuously coordinate and share information to

maintaining a global form of order (Sayed, 2014).

Given the successful application of biological systems in other areas and the critical

positioning of cloud computing society in general and critical infrastructures, it seems

logical to investigate how natural systems survive. Specifically, with focus upon the survival

7

mechanisms and behaviours prey utilise against predators, and its possible application in

cloud computing. However, the use of biological survival and prey’s survival against

predation in particular, for survivability in cloud computing is an under-researched area

(Stoykov & Yazidi, 2016).

Several factors should be considered before biological systems are applied within/as

security systems. According to (Somayaji, Locasto & Feyereisl, 2007), the first and most

important is that biological and computer systems do not share an end-goal. For instance,

whereas biological systems aim to attain global survival under dynamic environmental

conditions, the goal of many computer systems is to simply accomplish individual

computational tasks. Thus, assuming a biological model for survival is used in computing,

the effectiveness of the model must be understood when a computing system’s

environments change at the global context. More so, survivability in biological systems is

said to be instinctive, wherein individual sacrifice can be performed to achieve the global

goal to survival (Somayaji, Locasto & Feyereisl, 2007). On the contrary, an analogous

sacrifice to a computing task, i.e. downtime, is undesirable in computing systems. Logically,

implementing such biological model directly will be operationally challenging since the

systems under consideration have contrasting goals. Conceivably, developing bio-inspired

solutions for cloud computing should consider the diversity of entities and the dynamic

changes (e.g. changes to system requirement, system goals, security, survivability, etc.) such

diversity brings.

1.2 Research hypotheses

Achieving effective security in cloud computing using traditional countermeasures and

approaches is challenging and nearly impossible due to the unpredictability imposed by

UUURs. Hence, in an ideal cloud environment, the following properties should be

satisfied:

i. UUURs are proactively managed and controlled.

ii. UUURs can be autonomously managed and controlled.

iii. Ensure the survivability of cloud systems regardless of unpredictable threats.

8

iv. Enable survivability mechanisms to be controlled according to one’s requirements.

v. Enable decision-making on survivability management and control mechanisms to

be intelligent to cope with uncertain changes and unpredictable survivability

requirements.

These properties are difficult to achieve due to theoretical and physical contradictions.

Hence, the thesis attempts to employ bio-computational design as realised through bio-

inspired approaches, to propose a method that improves cloud computing security by

ensuring survivability. Research efforts should aim to understand survivability in the

context of the holistic view to cloud computing and services design, and its mission as a

viable complement to security.

The hypothesis under test is specifically that:

H1:

Escalating survival behaviours and mechanisms employed by natural preys against

known and unknown predators can be applied as unconventional solutions to

enhance survivability in cloud computing environments. The above approximate

to properties i-iii and satisfies properties iv-v above.

H2:

Escalating survival mechanisms by natural preys, against known and unknown

predators as integrated into survivability management and control system, where

survivability is proactively managed and controlled within the system and user-

space, to localise failure and enable user-level input at run-time, respectively.

1.3 Research aim and objectives

This thesis aims to address cloud computing’s security challenges using inspiration from

natural prey’s survival solutions. Notwithstanding many other challenges, addressing the

scientific challenges of attaining bio-inspired cloud computing survivability will be central

to this thesis’s contributions. Specifically, how to apply prey-inspired survivability to

9

address problems in cloud environments and offer innovative solutions. Moreover, how

to create computationally systematic, repeatable and scalable methods for the bio-inspired

cloud computing survivability domain. Given the motivations and the research hypotheses

introduced in section 1.1 and section 1.2, it is necessary to address the following research

objectives.

1. To perform comprehensive literature review of the cloud paradigm, focusing on

existing cloud security challenges, survivability, the application of bio-inspired

approaches in computing and underpinning theoretical perspectives for addressing

cloud computing security challenges.

2. To comprehensively investigate the classification of cloud computing security

challenges and critically analyse gap areas.

3. To propose a systematic method for inter-domain transfer of concepts; from

nature to cloud computing, then applying a TRIZ-based approach to derive

innovative solutions. In addition, to evaluate the efficacy of derived prey-inspired

solutions for cloud computing and perform a pilot simulation in NetLogo.

4. To propose and develop a prey-inspired survivability framework for cloud

computing environments based upon mechanisms in prey and solutions derived

using TRIZ.

5. To develop and implement a prey-inspired survivability framework simulator to

evaluate the efficacy of the proposed survivability framework.

6. To perform an experimental analysis of the prey-inspired survivability solution and

assess the implications of novelty against the hypothesis under test.

1.4 Contribution to knowledge

This thesis’s main contribution is the prey-inspired cloud computing survivability

framework (Pi-CCSF) presented in Chapter 5 and evaluated in Chapter 7. The other

contributing areas of this work are in Chapter 3, Chapter 4 and Chapter 6 . Some of these

10

works are published in book chapters, in peer-reviewed journals and conferences. The

following broadly represent the main contributions of this thesis.

1. A comprehensive critical review literature of cloud computing focused on security

challenges and gap analysis, survivability, theoretical perspectives towards solving

cloud computing security challenges and bio-inspired approaches. Contributing

publications include RP 1, RP 2, RP3 and RP5.

2. A holistic taxonomy for cloud computing security challenges. The contributing is

Chapter 3 which is published in RP 2.

3. A generalisable TRIZ-based method for prey-inspired design. Contributing

chapter is published in RP 3, RP 4 and RP 6.

4. A Prey-inspired cloud computing survivability framework (Pi-CCSF) and the

custom-built Pi-CCSF simulator to evaluate the practical implication of escalating

actions on survivability of cloud computing environments under attack. The

contributing chapters are Chapter 5 and Chapter 7 .

5. A prey-inspired target-based decision-making technique for cloud computing

environments to manage survivability decision-making on escalating actions in

view of fuzzy survivability and unpredictability. The contributing chapter is

Chapter 6 .

1.5 Research methodology

This thesis investigates survivability as a suitable property to address cloud computing

security problem. Hence, prey-inspired cloud computing survivability framework (Pi-

CCSF) is coined out to describe how survivability will be enabled and controlled at the

control-plane using the existing cloud infrastructures. Key to Pi-CCSF is the high-level

survivability management system, low-level prey-inspired survivability mechanisms and

additional resources. To achieve the foregoing, this section presents the thesis’s research

process, and lays bare this research’s underlying philosophical perspectives and the

methods applied. The research onion postulated by (Saunders, 2009), which highlights

11

some common research types, approaches, strategies and choices places the current

research into context.

1.5.1 Research philosophy

Research paradigms inform a researcher’s methodology and influence their data analysis

strategy (Saunders, 2009) (Anderson & Ellenbogen, 2012). Hogan and Maglienti (2001)’s

opinions are that epistemological perspectives prescribe both domain-specific and domain-

general rules for what a researcher believes. Also, what a researcher accepts, rejects or

modifies before the planning, evaluating and monitoring processes of researching (Hogan

& Maglienti, 2001). Given the previous, it is conceivable that epistemological

underpinnings also hugely influence a researcher’s judgement on the validity and limits of

literature. To this end, (Hogan & Maglienti, 2001) thus notes observations and conclusions

to be independent of theories that follow a positivist philosophical perspective. Among

many perspectives, post-positivism’s strengths lie in its use of hypothesis developed

through statistical and quantitative measures and experimental designs. In addition, this

approach allows for mixed methods and the generalisation of secondary data (Stage &

Manning, 2003). A post-positivist approach suits the current research as it allows both

qualitative and quantitative researches. Furthermore, an empirical analysis will focus upon

the quantitative measurement of complex attributes of survivability in cloud computing

environments.

This thesis takes a pragmatic approach to address the hypotheses under consideration

guided by the epistemic support for hypothesis testing. In this sense, the pragmatic criteria

equate simulations outcomes to real cloud computing outcomes, regardless of different

environments or attributes. As (Stage & Manning, 2003) suggests, pragmatism is apt for

novel researches as it emphasises objective and logical inference, and measurable facts that

are verifiable. Moreover, it allows for a subjective relationship between the researcher and

the subject, whereupon conclusions depend upon context.

12

1.5.2 Research approach

Several research methods within the conceptual and experimental domains apply to

different levels of research. To address this thesis’s objectives, three levels of research

apply.

Foremost, an interpretive level identifies through the researcher’s logical interpretations of

literature, theory in both cloud computing and predator-prey systems. This level also

identifies concepts and relationships within the study’s boundaries to understand, describe

and explain the research developments. In this research, and as postulated by (Iivari, 2007)

hypotheses, concepts, classifications and taxonomies are epistemological knowledge

classes that precipitate in systems concepts and causation scenarios which are later

validated. Hence for instance, a proposed holistic approach aims to show cloud security

challenges as an integrated tool, encompassing multiple security failure points and

perspectives. The holistic interpretation exposes entity relationships among cloud

components and security areas, which facilitates adequate security enforcement through

the correct implementation of countermeasures. Thus, this approach is aimed to achieve

the objective to consolidate existing knowledge (contexts) and make interpretations. By

reconceptualising existing textual knowledge into graphical formats, better visualisation

will help designers to distinguish varying contexts in a non-ambiguous manner.

Disambiguation of contexts is itself an important aspect of design, particularly where

knowledge from multiple domains is combined (Medathati et al., 2015).

A comparative research level focuses upon the “how” questions to understand large scale

historical data, both subjective and objective, within the areas under consideration. As

postulated by (Ragin, 2014), this level enables exploration to understand subcomponents

of a topic area, exploration of similarities and differences across comparable areas, and

iteration to expose contradictions. Accordingly, it stands to reason that the comparative

level benefits this research by enabling the review of cloud and natural systems, and

systematically mapping similarities.

Finally, the Inventive level focuses upon determining and classifying technical and

technological processes by deriving information from the applied knowledge on nature

(Savransky, 2000). This level employs TRIZ as a human-oriented knowledge-based

systematic methodology for inventive problem solving (Savransky, 2000). For instance, the

13

current study uses descriptive and perspective statements obtained through inductive

processes to combine knowledge (effects and phenomena) from predator-prey and inform

artificial technical and technological solutions for cloud computing environments. The

inventive level is thus important for the analysis of design principles and modelling cloud

environments. The preceding is a problem-driven approach (Burke, 2007)(Helms, Vattam

& Goel, 2009) to model cloud survivability based upon models of predation-avoidance

and anti-predation behaviours and mechanisms of natural preys. A descriptive is employed

for its strength in analysing quantitative data (Chapman, Lawless & Boor, 2001).

1.5.3 Research design

When considering the research design, the current study aims to evaluate hypotheses and

theory which are generalisable (Amaratunga et al., 2002). Hence, it investigates survival in

prey animals to establish the efficacy of applying prey’s survival behaviours and

mechanisms in cloud computing environments. As such, it would be possible to perform

repeatable and objective comparative evaluations to determine the reliability and validity

of the investigations against a verifiable hypothesis. Methods for analysis including

taxonomies and simulation enable effective integration of research evidence around a

central proposition (Amaratunga et al., 2002).

Evidence in literature suggests that two design approaches are prominent in computer

science research; theoretical and experimental (Wainer et al., 2009)(Coiro, 2014).

Conceptual and formal modelling and mathematical formalisms typify commonly applied

theoretical approaches, while simulation, prototype development and results evaluation

and analysis are commonly applied in experimental approaches. Conceptualisation,

modelling, simulation and experimentation therefore tie in well with the positivist elements

in the post-positivist paradigm underpinning the current research. Descriptions and the

application of the above are briefly introduced below.

Conceptualisation: Due to the level of abstraction in the current research idea, conceptual

design is deemed suitable due to the “incompleteness of initial knowledge of

requirements and constraints” (Hsu & Liu, 2000) for the prey-inspired design for

cloud computing survivability. For instance, it is important to conceptualise the

holistic taxonomy (publication PR2), due to non-existent holistic data on computing

14

security challenges (See Section 3.2, holistic approach; design and requirements).

There is also merit for conceptual design in the application of TRIZ to derive

conceptual survivability solutions for cloud computing, since TRIZ requires other

pieces of conceptual implementation (See 4.2, the method and application of a TRIZ-

based approach). The theory of inventive problem solving (TIPS), an English

translation of the Russian acronym TRIZ (Teorija Rezbenija Izobretatelskib Zadach),

is a popular design technique among engineers. TRIZ is centred on the premises of

ideality; that a benefit of a system outweighs the products of cost and harm,

contradiction; pertaining to the elimination of solution with harmful effects and

system approach. Since TRIZ it is systematic, repeatable and based upon successful

patents (Fu et al., 2014), the TRIZ method is applied to build a toolkit for prey-

inspired survivability design. Thus, conceptualisation culminates into the proposed

prey-inspired cloud computing survivability framework (Pi-CCSF) as a feasible

integration of earlier conceptualisations (See 5.1; survivability design and the Pi-

CCSF).

Modelling: While conceptual analysis is a theoretical approach to decompose a complete

problem into smaller components that can be well understood, the relationships

between the components define the complete problem. According to (Vessey,

Ramesh & Glass, 2005), mathematical modelling can be used to show these

relationships. Hence in this research, modelling is applied to describe the behaviour

of VMs’ response to prey-inspired mechanisms and the practical significance to the

Pi-CCSF. Moreover, the modelling method is used to develop the concept of a target-

based decision-making technique for cloud computing survivability proposed in

Chapter 6.

Simulation and experimentation: Whereas the modelling of complete real cloud and natural

prey environments is challenging due to limited domain-knowledge, time and

resources, simulations allow for the recreation and analysis of the behaviour of those

systems by using a model. However, the accuracy of results is an issue since the

simulated model does not offer real system variables (Hsu & Liu, 2000). In the current

research, Lotka and Volterra’s (LV) model is used to study VM’s survivability

behaviours. By simulating predator-prey survival analogies using NetLogo (Wilensky,

1999), it is possible to evaluate the efficacy of the hypotheses under test and define

the direction and further developments of the current research idea. NetLogo enables

15

simulation of ecological agents in near nature conditions (Lytinen & Railsback, 2012).

Hypotheses testing on simulated data (See 7.4; results and analysis) gives an indication

of how the research idea may perform in a real cloud environment.

The table below shows the link between the research contributions and the design.

Table 1. Research method per thesis contribution

 Conceptual Modelling Simulation Experimentation

Contribution 1

Contribution 2

Contribution 3

Contribution 4

Contribution 5

1.6 Thesis outline

The thesis organisation is as follows:

Chapter 1 – Introduction to the research

This chapter introduces the research area and details the motivation, the hypothesis, the

research methodology, the aim and objectives of the research, and the contributions to

knowledge.

Chapter 2 – Literature review

This chapter interrogates the existing literatures on cloud computing areas motivated in

the introduction. Primarily, the literature review aims to establish the current state-of-the-

art in domains of cloud computing security, survivability, bio-inspired systems and relevant

theoretical perspectives contributing to these domains. Through a critical analysis, the

findings identify open challenges for cloud computing security, within which the current

research contributes.

Chapter 3 – A Holistic taxonomy of cloud computing security challenges

16

This chapter proposes a holistic taxonomy of cloud computing security challenges. In

addition, it highlights relationships among cloud entities thereby exposing security areas

for further analysis. This research’s holistic notion (postulates the source and origin)

facilitates the bio-inspired design of conceptual countermeasures.

Chapter 4 – A TRIZ-based method for prey-inspired cloud computing survivability

design

This chapter presents a systematic method for developing solutions. A 3-step process

facilitates a generalisable process for transferring concepts across domains (biology to

cloud computing). A TRIZ-based process is applied to derive specific solutions for cloud

survivability. Each derived analogy serves to address a specific contradiction and generates

creative solutions for cloud computing, with varying levels of abstractions.

Chapter 5 – Prey-inspired cloud computing survivability framework (Pi-CCSF)

This chapter proposes the prey-inspired cloud computing survivability framework (Pi-

CCSF). Pi-CCSF builds upon TRIZ-derived solutions for prey-inspired survivability. Pi-

CCSF’s design is placed in the engineering context to encompass security design as a

component of the survivability service-oriented mission assurance (SOMS). The

framework run-time is scoped in the IaaS model, to enable user-input and support other

concepts such as security, reliability, fault-tolerance, etc.

Chapter 6 – Prey-inspired target-based decision-making technique (Pi-TBDM)

based fuzzy cloud computing survivability requirements

Details the decision-making system (DS); a critical component of Pi-CCSF and formulates

a target-based decision-making technique (TBDM) for cloud computing survivability.

Considering the unpredictability imposed by UUURs, this chapter addresses the main issue

of how to bring imprecise or fuzzy survivability information closer to survivability decision

processes. Additionally, how to factor into the overall decision process, other contexts

including the user’s decision attitudes and preferences for escalating survivability actions,

as may be outlined in an SLA.

Chapter 7 – Evaluating Pi-CCSF using Pi-CCSF simulator

This chapter presents Pi-CCSF simulator, a custom-built python simulator for testing and

evaluating the theoretical concepts of Pi-CCSF and their implications in the context of

17

practical application. The purpose of simulation is to investigate the behaviour of VMs in

different states of compromise when prey-inspired survivability actions are applied.

Chapter 8 – Conclusions and future work

This chapter closes the research by reflecting upon the research process and drawing key

conclusions on the contributions of the research. It also considers the research’s limitations

and provides recommendations for future work direction.

Figure 1 illustrates the overall view to this research.

18

Chapter 1

Introduction

Chapter 2

Literature review

Chapter 3

Holistic taxonomy for cloud security
challenges

Chapter 4

TRIZ-based method for prey-inspired design

Chapter 5

Prey-inspired cloud computing survivability
framework

Chapter 6

Prey-inspired target-based decision making
technique (TBDM) for fuzzy survivability

targets in cloud environments

Chapter 7

Evaluating Pi-CCSF s escalation using Pi-
CCSF simulator

Chapter 8

Conclusions and future work

• Research motivation

• Research hypotheses

• Research aim and objectives

• Research contributions

• Research methodology

• Research outline

Cloud
computing

security
challenges

Survivability
Bio-inspired

systems
Theoretical

perspectives

• Holistic perspective to cloud computing security is
important for addressing security issues

• Survivability is an underrepresented compliment for
cloud security, considering UUURs

• Biological systems possess mature solutions to
survivability

• Theoretical ecology, bio-inspired design theory and
predator-prey theory provide theoretical perspectives for
both inspiration and design of cloud computing solutions

• Holistic approach

• Review of current taxonomies

• Proposed holistic taxonomy for cloud computing security
challenges

• Prey-inspired design approach

• 3-step approach for inter-domain concept transfer

• Applying TRIZ-derived solutions using NetLogo
simulator

• Survivability-oriented design approach

• Security systems design

• Pi-CCSF components and functionality

• Discussion

• Fuzzy application to cloud computing survivability

• Target-based approach for fuzzy decision-making

• Numerical evaluation and analysis

• Pi-CCSF simulator

• Simulation design and experiments

• Results and analysis

• Hypothesis testing

• Research process

• Summary of research and contributions

• Research limitations

• Future work

Figure 1. Overview of Thesis structure

19

Chapter 2 Literature review

This chapter reviews the literatures relevant to this thesis’s motivations and the contributions laid out in

Chapter 1 . The literature review aims to establish the existing scholarship relevant to this study and

identify gap areas and open questions that place the current research into context. Thus, it provides

background information, the context and the motivations outlined in Chapter 1, and discusses in each case,

the extent to which existing literature addresses these areas.

2.1 Introduction

The systematic literature review (SLR) method is distinguished from a narrative literature

review based upon primary evidence retrieved using a clearly defined inclusion criteria

(MacDonald, 2003). In addition, a SLR produces a rigorous summary of existing literature,

as well as valid and comprehensive evaluation and interpretation of available relevant

literature (Keele, 2007). The current study will implement a mixed approach with a clear

aim to obtain objective findings derived from a tightly focused research. A narrative bias

will be useful for reviewing historically broad topic areas while enhancing the transferability

of research findings (Malterud, 2001). Correspondingly, the systematic bias will ensure a

comprehensive research that yields transparent and valid conclusions (Keele, 2007). The

remainder of this chapter is structured as follows:

Section 2.2 provides a review of cloud computing security challenges and reports on key

findings. Section 2.3 presents a review of the research’s survivability context and reports

on key findings. Section 2.4 reviews theoretical perspectives that provide underpinning

basis towards meeting the contributions of this research. Section 2.5 investigates bio-

inspired systems and their use in the computing domain. The predator-prey system is

20

investigated, and the key findings summarised. Finally, Section 2.6 provides a summary of

the chapter.

2.2 Cloud security challenges

With the advent and wide use of cloud computing, security is arguably more complex,

requiring a variety of processes to maintain data and systems stability (Prasad et al., 2011).

According to (Zissis & Lekkas, 2012), the cloud computing security perimeter is wider and

complex and thus, it is easy to bypass using sophisticated attacks. Along this line, (Cybenko

et al., 2014) notes that zero-day attacks are therefore able to plan their attacks and persist

within the compromised networks systematically. Logically, this suggests that cloud

computing environments enable adversaries to increase their attack surface, which

complicates vulnerability management and elevates the attack complexity. Cases in point

include Stuxnet, Flame, and Duqu, which obfuscated network traffic to evade detection

(Virvilis & Gritzalis, 2013). Beyond this, emerging technologies such as the Internet of

Things (IoT) and Big Data complicate traditional firewall deployment due to the challenges

of enforcing static security policies over highly mobile environment. Figure 2 illustrates

the foregoing, outlining how broad network access enlarges the attack surface, which

enables sophisticated threats to easily bypass the traditional security perimeter. Addressing

these security problem demands resolving how cloud security management tools, systems,

software and platforms are designed and operated in this new environment.

Figure 2. Graphical representation of the cloud security view produced by the

author of this thesis

21

Summarily, the following are the main challenges.

• Traditional approaches i.e. reactive and preventative methods that rely on an

identified intrusion signature cannot adapt to new sophisticated threats.

• Cloud environments are complex and unpredictable, yet current security solutions

such as intrusion detection and prevention systems, firewalls and antiviruses lack

the complexity to cope.

• Cloud computing environments exist outside the traditional security boundary,

which limits the extent to which traditional controls can be effective. Security

controls and approaches are the recommended set of actions that provide specific

and actionable ways to stop attacks (SANS, 2016). These are detailed in Appendix

A.

Several works have questioned the effectiveness of traditional security techniques such as

intrusion detection systems (IDS) in cloud environments (Cser, 2016)(Albanese, Jajodia &

Venkatesan, 2018). For instance, security concerns in cloud environments are increased by

circumventing security systems or exploiting vulnerabilities of APIs in cloud software

vendors (Ahamed, Shahrestani & Ginige, 2013). Consequently, insecure APIs pose a

greater risk by providing execution privileges to unauthorised users (Henning, 2007).

According to (Hashizume, Yoshioka & Fernandez, 2013), vulnerabilities are elevated due

to the physical and logical structure of the cloud.

Virtualisation is a method to achieve logical abstraction of compute resources;

computation, network, storage, operating system, and so on, from their physical

constraints (Liu et al., 2015). Due to this logical abstraction, cloud computing resources

can dynamically expand vertically up or down, and horizontally according to requirements.

Abstraction encapsulates a software layer, e.g. a virtual machine monitor around an

operating system, to offer similar interactions and behaviours as from a physical system

(Sahoo, Mohapatra & Lath, 2010); (Pearce, Zeadally & Hunt, 2013). Since abstraction

enables VM independence from the physical device and runs multiple virtual machines

from the same physical hardware, VM introspection; a system-level technique to monitor

the state of VM at run-time, introduces reverse engineering challenges (Chen, Paxson &

Katz, 2010).

22

According to (Baars & Spruit, 2012), at least sixty potential security domains exist within

the cloud architecture. The impact of security concerns in cloud computing is reported by

Verizon data breaches (Verizon Business, 2011; Solutions, 2015; Verizon, 2016). VM

vulnerabilities to side-channel attacks are among some of the highly ranked security issues

(Cloud Security Alliance, 2013a);(Cloud Security Alliance, 2013b). In fact, (Aviram & Ford,

n.d.); (Xu et al., 2011) argue that it is easy for malicious users to observe or send data

through exposed side-channels passively. By monitoring cache usage, adversaries can easily

identify a target VM (Ristenpart et al., 2009) while behaviour analysis aids cross-VM

information leakage (Ahamed, Shahrestani & Ginige, 2013).

For brevity’s sake, Table 2 summarises commonly discussed cloud security issues. Security

challenges are described according to a corresponding general issue(s) and a specific

security issue(s) (bullet points). While some of these challenges are discussed, others are

added to supplement existing literature for the interested reader.

Table 2. A summary of commonly discussed security challenges

Challenge Issue

Control Outsourcing, PaaS, SaaS, and IaaS. Ease of use by end user’s degree
of information security & control, i.e. control of data & control over
the security

• The data owner has no full physical control over their data

• No control over OSs, network & servers, storage &
applications in SaaS

• No control over Oss, network & servers in PaaS of control
over networking components in IaaS

Trust Securely establishing trust between servers & clients & trusting cloud
environments.

• Trust between servers & the client's misuse of cloud services

• Impose security policies

Virtualisation Updating security countermeasures is paramount to preventing data
breaches & leaks

• The risk to the integrity of saved VM images

• Malicious insider

• Risks to confidential data stored in virtual machines

Malware Intrusive and hostile software

• Sophisticated malware such as Stuxnet & Flame.

• Zero-day exploits

Attacks on Web
Services

Prominent attacks & immature coding exploit online vulnerabilities

• SQL injection flaws & cross-site scripting

• Signature wrapping attacks

• Malware, CSS, and Denial of Service (DoS)

Denial of Service Compromise the availability of services

• Semantic & flooding DDoS attacks

23

• FRC attacks falsely use cloud resources: impacts application-
layer servers

• Exploits are financially detrimental to a cloud consumer

• Cause the Operating System (OS) kernel to crash

Weak Identity,
Credential & Access
Management

Insufficient scalability in identity access management systems

• Spoofing attacks, DoS attacks, Elevations of privileges and
Repudiation

Data breaches Unauthorised access/use of confidential/sensitive data.

• Vulnerabilities in applications, Malicious insider and
Information disclosure

Data loss Insecure & unnoticed configurations or vulnerabilities result in
potential exploits & data loss.

• Side-channel attacks expose IaaS, PaaS and SaaS to breaches

Insecure interfaces and
APIs

Poorly designed APIs in cloud software vendors

• Provide execution privileges to unauthorised users

Account & service
traffic hijacking

The exploitation of software weaknesses and personal information

• Phishing attack

• Service or account hijacking

Malicious insider Breach of confidentiality by manipulating multi-tenancy

• Co-residency attacks

• Malicious insider

Abuse of cloud
resources

Where IaaS providers lose some control

• Hackers & spammers take advantage of free limited trials

Insufficient due
diligence

Choosing and moving functions to cloud environments entails
careful consideration

Shared technology
vulnerabilities

Vulnerabilities due to intrinsic & prevalent core cloud computing
technologies

Privileged user access Where 3rd parties process data outside the enterprise

• Outsourcing bypasses means that an enterprise’s security
controls (physical or logical).

Data location A cloud vendor provides location of data & processes, and provides
routine maintenance,

• No information to the cloud consumer about the location of
data, as well as the processes performed

Regulatory compliance Challenges when dealing with LSAs & other process & regulatory
issues

• Assurance

• Process and regulatory issues

Data segregation Logical storage of data in multi-tenant environments

• Cross channel attacks

• Malicious insider

Recovery Low-cost disaster recovery & data storage solutions

Long term viability Concerns a cloud consumer’s data if a CSP loses their business

24

2.2.1 Survey of countermeasures

There are overwhelming efforts, both in academic and industry, dedicated to addressing

security challenges in cloud computing environments. Much of these are summarised in

Table 2 above. Recent notable work is the collation of user-data security and

countermeasures survey by (Basu et al., 2018). This section aims to interrogate some of

these works.

Much of the existing literature shows a growing trend towards hybrid countermeasures to

enhance visibility in industry security solutions; integrating deceptive controls, intrusion

detection systems (IDS) and security information and event management (SIEM).

However, there are far less proactive solutions, seemingly due to the threat of legal

liabilities associated with their use. According to McGee et al. (2013), possible legal

liabilities as one of the factors limiting the adoption of purely proactive solutions. Proactive

approaches ensure that security systems are continuously operational and aware of changes

in their environment throughout their operation (Djenouri, Khelladi & Badache, 2005).

On the other hand, reactive elements in hybrid solutions (semi-preventative control

element within intrusion detection systems), means that existing hybrid solutions remain

susceptible to obfuscation techniques (Virvilis & Gritzalis, 2013). This is particularly

important considering that in both industry and academia, hybrid solutions are currently

dominant. Software patching and static perimeter security which are argued to motivate

hackers, remain prevalent but ineffective in cloud computing environments (Subashini &

Kavitha, 2011). An addendum (See Appendix A) provides in-depth discussions and

definitions of hybrid, proactive and reactive approaches and security controls.

Unlike academia, a downside of industry solutions is a general lack of technical design

detail in the public domain. Where is it available, details are mostly general rather than

specific, presumably to protect the competitive advantage. Clearly, the impact of security

upon business investment seems to be a driver to how countermeasures in industry are

designed. As (Rong et al. (2013a) suggests, security is considered as a balance between

business viability and competitive edge. Since reactive security approaches, including

antivirus, monitoring and detection tools remain dominant in industry, they limited in

cloud environments due to inherent deficiencies (Subashini & Kavitha, 2011). Besides

these functional deficiencies, commercial solutions are often expensive and complex and

25

currently reported to as inefficient for the cloud. As argued by (Virvilis & Gritzalis, 2013),

malicious intruders can by-pass end-point security protection. In evaluating academic and

industry literature, it is evident that security in the cloud is largely handled through

legislation, contracts and good practice (fulfilled through SLAs).

Traditional security approaches remain prevalent in industry across most security vendors.

However, there is a visible shift towards software solutions, as opposed to hardware, to

adapt in the cloud environment, for instance, Amazon’s concept (Huang et al., 2015). As

noted in a report by Tara (2018), a survey of cyber security professionals overwhelmingly

identify outdated security software as an obstacle to cloud security(Tara, 2018). This

research suggests the following to be widespread in existing solutions in academia.

Foremost, most solutions in academia and industry fall within the hybrid category. As well

as in industry, there is limited research and industry implementing of purely proactive

approaches. Most solutions in academia focus on developing single solutions, with most

countermeasures being effective upon the specific the specific security solution they are

developed. A case is point is works against DoS attacks (Lombardi & Pietro, 2011).

Unlike commercial security solutions, solutions in academia carry a lower financial burden.

In addition, most solutions proposed in academia focus upon the technical design of the

solution, rather than its security strategy. As such, the current researcher posits an

argument that solutions in academia lack adequate on strategy and remain largely suitable

to the perspective to which security challenge is viewed. Based on the above, it is logical

to conclude that most solutions in academia are only applicable to the perspective in which

a security incident is viewed, (e.g. the end-user perspective), as opposed to the global cloud

security landscape.

Clearly, open challenges in addressing cloud security concerns remain from both industry

and academia due to the unique nature of the cloud environment. As noted earlier, with

broad network access, the attack surface is enlarged allowing adversaries to intrude a

network with no detection. As a possible solution, the “Kill Chain” approach (Hutchins,

Cloppert & Amin, 2011) offers proactive and dynamic intelligence-gathering capabilities

to enhance continuous security posture awareness. Furthermore, other proactive

approaches involving synchronised and real-time discovery, analysis and mitigation are

areas for further investigation. Moreover, proactive capabilities can be switched ON and

OFF depending upon security requirements and hyper segregation to enhance resistance

26

to attack. Hence, a pertinent question which arises is how to improve intelligence

gathering, an alerting mechanism, and a method to anticipate an attack and enable swift

response, as opposed to relying on patching strategies? After the above, it is also pertinent

to question how incident response time can be improved while also improving cloud

computing platforms’ resistance to attacks. More, how to proactively detect, identify and

stop an adversary before an exploit.

Table 3 summarises security countermeasures in academia whereas Table 4 is a summary

of countermeasure in some of the industry’s leading vendors according to the criteria set

out by (Cser, 2016). For the benefit of the interested reader, a detailed survey and

discussions of cloud security countermeasures are added as addendum of this thesis (See

Appendix B).

Table 3. Summary of countermeasures in academia

Countermeasure Security
Control

A strategic and systematic approach(Park & Ruighaver, 2008) SP

Trusted Third Party (TTP) (Zissis & Lekkas, 2012) AD, SP

Cooperative Intrusion Detection System Framework(Lo, Huang & Ku,
2010)

SP, CO

A dynamic and localised security model (Subashini & Kavitha, 2011) AD, SP

Policies, hardware, and software security view (Mathisen, 2011) SP, CR

Cloud Security Countermeasures (Jamil & Zaki, 2011) SP, DT, CR

Self-monitoring Defensive Mechanism (Mazur et al., 2011) DT, PE, AD

Security SLA Management for Cloud (Bernsmed et al., 2011) SP, CR, AD

Advanced Cloud Protection System (ACPS) (Lombardi & Pietro, 2011) DT, SP

Trust-based secure interoperation framework (Mell & Grance, 2011) SP, CR, PR,
AD

Safety Measures for cloud computing (Wang & Mu, 2011) SP CR, DT

Isolation solution (Behl & Behl, 2012) PE

Client Trace Back Model (CTB) (Joshi & Joshi, 2012) SP, DT

Mitigation Strategies (Chow et al., 2009a) SP, PR

Incident-Based Solution (Ryan, 2013) SP

Security 3600 (Rao, J.R., Chari, S.N., Pendarakis, D., Sailer, R., Stoecklin,
M.P., Teiken, W. and Wespi, 2016)

PE, CR, DT, &
SP,

Key: DT – detective, PE – pre-emptive; PR – prescriptive; SP – semi-preventative; CR – corrective; AD – adaptive; DC
– deceptive; DTR – deterrent

Table 4. Summary of countermeasures in industry

Countermeasures Security control

CloudLock: Cisco (CloudLock, 2015a) DT, PE, PR

Microsoft Cloud App Security Microsoft (Microsoft Mobility
Management, 2016)

DT, PR, SP

Cloud Data Life-Cycle Protection (Bluecoat, 2015a) DT, SP

27

BitGlass (Bitglass, 2014a) DT, SP, DTR

Cypher Cloud Trust Platform (CipherCloud, 2016) DC, SP, DT, CR

IBM’s new security paradigm IBM (Gulla, 2011a) PE, DT, DC

IBM Global Services and IBM research Labs’ Parity DT, CR

Proventia Management SiteProtector & Desktop Endpoint Security SP, DT

IBM and North Carolina State University’s Nuva SP

Tivoli®NetNiew® Systems Director SP

Data Centre Security Solutions (Over, 2014; Server, 2015) SP, DT

Symantec ™ Protection Engine DT, AD

Identity and Access Management as a Service. (CA Technologies, 2014) SP, AD

Cloud Security Platform (Brief, 2015) DT, SP

Multi-Vector Virtual Execution (MVX), FireEye AX series (Security et al.,
2018)

SP, DT, CR, PR

NetScaler Firewall (Citrix, 2015) AD, CR, PR, SP

Fusion CR, DT, & SP,

Active Defence Harbinger Distribution (Active, Systems & Networks,
n.d.)

DC, CR, DT, &
SP,

Key: DT – detective, PE – pre-emptive; PR – prescriptive; SP – semi-preventative; CR – corrective; AD – adaptive; DC
– deceptive; DTR – deterrent

2.3 Survivability context

Survivability research advanced in the computing domain due to the development of, and

need to protect critical infrastructures (Shi et al., 2008)(Chang et al., 2018). Such are

telecommunications networks, power grids, etc. (Habib et al., 2013). When considering

critical infrastructures, the notion of survivability aligns with the ability to ensure timely

delivery of critical services when faced with planned or unplanned faults or failures, and

deliberate or accidental attacks. Four survivability themes are identified in the literature;

resistance (ability to repel an attack), detection (ability to recognise an intrusion), recovery

(capacity to resume complete and essential services after fault, failure or attack), and

adaptation (capacity to evolve to cope with new attacks, faults or failures). Since the

inception of cloud computing, some work has been done on survivability with a subset

focusing upon survivability evaluation, including quantitative and model evaluation

techniques and disaster tolerant architectures. This section presents some of these efforts.

Survivability is viewed variably among different communities. From a Software

architecture perspective, survivability is viewed as a system quality that is related to other

system qualities such as dependability, availability, reliability, fault-tolerance, and

trustworthiness (Pokharel, Lee & Park, 2010). Traditionally, survivability is implied around

28

the business objectives and risk management strategies of organisations (Lipson & Fisher,

1999). In this sense, the mission to survive ensures that the business-critical part of the

system continues functioning and continues to provide essential services even in its

degraded mode (Serageldin, Krings & Abdel-Rahim, 2013). Hence, the survivability

mission requires intimate knowledge of the business mission it is protecting (Lipson &

Fisher, 1999). Alternatively, a system can continue functioning despite adversity. The goal,

therefore, is to maximise availability, maintainability, and reliability of that system

(Tahvildari, 2009).

Survivable virtual network embedding techniques are in use, primarily aimed at enabling

survivability as the physical layer by increasing redundant resources (Khan et al., 2015).

However, besides this notion of survivability as constrained to the hardware layer, this is

challenging in circumstances where resources are limited, or resource requirements are

unpredictable. The challenge from a holistic perspective of the cloud environment is the

question of “is the system going to continue providing services considering the

unpredictable loss of availability, durability, reliability, etc.?”. The foregoing brings to the

fore how much predictable an environment can be, foremost to address the said losses, as

well as to assure the continual provision of services. In terms of assurance, several pieces

of research in this area have attempted to address survivability assurance methods in one

of two ways, each with its strengths and drawbacks. Figure 5 shows the survivability

concept under this consideration. An epoch describes a period within a fixed context

(Henderson, 2006).

Thus, survivability requirements in epoch 1 are different from the requirements in epoch

2, epoch 3, up to epoch n. Since each epoch has characteristically unique constrains, the

state informs design concepts and attributes. In addition, technologies available to it

(Richards & Ross, 2009), the timing of survivability decisions in cloud environments of

the system. Two threshold types shown in Figure 5 are important; escalation threshold and

survivability threshold and characterise the survivability concept under this consideration.

The escalation threshold considers the vitality (vulnerability) of a service or system to

determine how significant a UUUR is deemed as a threat to survivability and the escalating

actions that follow.

29

Figure 3. Representation of the survivability concept adapted from (Henderson,

2006)

On the other hand, the survivability threshold considers both the recovery time and

duration of a UUUR to implement a decision that must be taken upon ensuing escalating

actions. Both thresholds are important to determine the state of the system or service, i.e.

is the vulnerability improving or degrading and the actions, tools or procedures relevant to

the UUUR event. Now, consider cloud computing’s pay-per-use model where CSPs bill

CCs according to the length of time they occupy a VM, or how long its provisioned.

Suppose a consumer is billed kNt based on an amount K for each provisioned VM in as

many, N VMs, over a period, t. If an unpredictable threat that can avoid detection and

persist in a tenant’s environment, this will prolong tenant jobs and increase the cost

(Virvilis & Gritzalis, 2013). Thus, the challenge in this sense pertains not least, to how a

CSP manages such risks to avoid unnecessary financial burden on a consumer, as well,

how the CSP and CC can plan and proactively anticipate such unpredictability.

Yurcik and Doss (2002) coined the term survivability-over-security (SOS) to describe the

survivability goals of simultaneously reducing sum vulnerabilities while increasing recovery

and flexibility in networked systems. The author of this thesis concurs with (Yurcik &

Doss, 2002) and opinions that the survivability of individual system components is vital to

the overall survivability of an entire networked system. A case in point in cloud

environments pertains to cloud computing storage, in which storage components such as

30

storage isolation, data recovery and storage place, are determinants of long-term data

survivability (Liu, 2012).

In their work, Yu et al. (2010) focus on evaluating survivability from the cost-architecture

perspective considering Byzantine Fault Tolerance (BFT). Briefly, BFT generally describes

a system’s ability to continue operating despite some of its failure to act, or malicious

actions from among its components. Thus, in their work, Yu et al. (2010) use three

different virtual machine-based architectures to investigate how different architectures

impact on the survivability of a system (Yu et al., 2010). Three key components are

evaluated (static analysis) across each architecture; survivability based on availability,

survivability under sustained attack, and the cost of each architecture. Regardless of the

BFT’s higher costs, a replicated architecture with BFT protocol and diversification is better

than replication with isolation (Yu et al., 2010). There are two clear challenges to this work.

Foremost, the concept of diversification is loosely defined; does this imply diverse

protocols or diverse environments? Assuming both or either, diversification in itself has

been shown to increase the vulnerability factor particularly where heterogeneous systems

have diverse asset value (G & S, 2013). In addition, static analysis is a major concern

due to its susceptibility to false positives, which is exacerbated by the dynamic

nature of dynamic attacks (Petukhov & Kozlov, 2008).

In their work Li et al. (2012) quantitatively analyse cloud security risks based on virtual

machine vulnerabilities and VM placement schemes. According to these authors, an

attacker exploits Type I and Type II vulnerability; exploiting hypervisor vulnerabilities in

order to compromise the physical server and direct attack on VMs on the same physical

server, respectively. Thus, run Markov Chain analysis over an attack dependency graph to

obtain the possibility for each VM to being attacked. Based on a discreet-time Markov

Chain (DTMC) analysis, a VM placement algorithm thus defines and distinguishes high-

risk VM, i.e. compromised (Li et al., 2012). According to the authors, the proposed VM

placement algorithm will consider both preceding placement plan and new placement plan

to find an uncompromised node for placement, otherwise, if a high-risk node is the only

one available, placement will not occur. Their experimental results yield better survivability

and reduced number of compromised VMs. The main drawback in this work is the lack of

clarity around the time element of the survivability mission, i.e. what are the implications

to survivability if placement does not occur because there is no low-risk node? As many

31

researchers including (Mead et al., 2000)(Lipson & Fisher, 2004)(Bigham, 2010)(Rodríguez,

Merseguer & Bernardi, 2014)(Chang et al., 2018) allude, survivability is about mission

fulfilment. In addition, (Li et al., 2012) does not address unknown attack paths or graphs,

a key component of the notion of unpredictability which central to the current research.

Over the years, several authors including have attempted to address survivability through

virtual network embedding (VNE) techniques. VNE is a technique that are aimed to

efficiently map virtual resources onto physical network resources to provide among other

things, redundancy and survivability. For instance, Xu et al. (2012) propose a Survivable

Virtual Infrastructure (SVI) for a service or a tenant using multiple correlated VMs (Xu et

al., 2012). Similarly, Rahman and Boutaba (2013)(Xu et al., 2012) propose a survivable

virtual network embedding (SVNE) solution by developing a proactive and a hybrid policy

heuristic based on a fast re-routing strategy and a pre-reserved quota for backup on each

physical link (Rahman & Boutaba, 2013). Also, Liao et al. (2014) propose an efficient

algorithm as a solution for survivable multicast service oriented virtual network mapping

(SMVNM) (Liao et al., 2014). Furthermore, Buyya et al. (2014) propose an architecture for

QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement

for software-defined clouds (SDCs) on data centres (Buyya et al., 2014). Gu et al. (2015)

proposed a failure region-disjoint VN mapping scheme to improve VN mapping

survivability taking into account mapping costs and load balancing concerns to help

improve resource efficiency (Gu et al., 2015). Couto et al. (2016) analysed the benefits of

different data centre topologies; Fat-tree, BCube, and DCell, taking into account reliability

and survivability requirements (Couto et al., 2016). Along similar lines, Lo and Liao (2016)

study the survivable virtual data centre allocation problem (SVAP), which aims at allocating

survivable virtual data centre (SVDC) to each tenant to guarantee resource demands even

after failures (Lo & Liao, 2017).

In other works, researchers have developed decentralised algorithms for mapping virtual

links to virtual nodes across vast geographical locations (Houidi et al., 2011). While these

solutions have proved to be successful, two main challenges limit their use in the current

context. Foremost, the heuristics suggested above rely on the assumption that the substrate

network is always operational, which is an operational impossibility. In addition, the

mapping techniques assume prior knowledge of node requirements and link capacity. This

is a near impossibility when considering UUURs. Figure 4 is an illustration of the

foregoing, in which different cloud networks are mapped to different data centres. Due to

32

limitations of VNE and the limited capacity challenges of nodes within VNE’s substrate

network, other works have proposed VNE heuristics to leverage the embedding phases

(Lischka & Karl, 2009)(Mosharaf et al., 2009)(Chowdhury, Rahman & Boutaba, 2012).

Figure 4. A VNE concept produced by the author of this thesis.

Liu and Wang (2012) proposed a system work model for maintaining and improving

system survivability in cloud computing (Liu & Wang, 2012). Based on analysing security

strategies for cloud computing, these authors propose the following as key components of

the survivability model: Self-monitoring of the cloud state and security threats, service

judge evaluation of cloud services by the cloud customer, notify attack which assesses

compromised services and the recovery component of proxy service redirection and

substitution (Liu & Wang, 2012). However, this work provides basic detail, giving no useful

and specific detail of the model components or empirical analysis of survivability in

question.

Xu et al. (2013) proposed a VM placement (VMP) and virtual link placement (VLP)

techniques to address the problem of how to map survivable virtual infrastructure (SVI)

to a data centre network with minimum operational costs while satisfying each VM’s

resource requirements and bandwidth demands between VMs before and after failures (Xu

et al., 2013). According to these authors, simulation results based on the real VM workload

show that their algorithms perform significantly and increase survivability. The challenge

with this approach is that SVI is modelled as a virtual graph, which the context of this

33

research, subsumes knowledge of bandwidth and other requirements under any

circumstance. This has been proven to be an operational impossibility when considering

UUURs. Assuming their algorithm is efficient, cascading failures increase network resource

cost (Yu et al., 2011), a known survivability metric.

As argued by Afrin and Yodo (2019) efficient and robust recovery must aim to minimise

constraints including time and cost (Afrin & Yodo, 2019). Most recently, Aibin et al. (2017)

focus on addressing the resource routing problem in cloud computing. These authors

proposed a software-defined adaptive survivability approach achieves the best trade-off

between the efficiency of path protection and cost of routing (Aibin, Walkowiak & Sen,

2017). According to these authors, results from performance evaluation and assessment of

their proposed approach show in significant improvement of network performance (Aibin,

Walkowiak & Sen, 2017).

Existing works have studied virtual cluster backup provisioning with fixed primary

embeddings but have not considered the impact of primary embeddings on backup

resource consumption. To address this issue, (Yu et al., 2017) study how to embed virtual

clusters survive in the cloud data centre, by jointly optimising primary and backup

embeddings of the virtual clusters. They formally define the survivable virtual cluster

embedding problem and propose a novel algorithm to compute the most resource-efficient

embedding considering a tenant request. The authors further propose a faster heuristic

algorithm able to achieve high performance (Yu et al., 2017).

Several researches attempt to address survivability assurance methods in one of two ways,

each with its strengths and drawbacks. First is the qualitative method which evaluates

survivability around a recovery time objective (RTO) or recovery point objective (RPO).

RTO and RPO as shown in Figure 5, in this sense define the maximum permissible time

for an outage and the maximum time within an outage where data may be lost (Sterbenz

et al., 2010a). While these methods are commonly used in the traditional context, their main

drawback for cloud computing is the assumption that infrastructures (or services) are

periodically provisioned according to a ‘start’ and ‘finish’, the duration of which an

infrastructure (or service) is assumed as functionally healthy. Where cloud environments

handle business-critical or time-sensitive data, it is anticipated that the RPO and RTO

should always be kept close to zero to enhance survivability.

34

Figure 5. An illustration of the RPO and RTO concept produced by the author of

this thesis

Considering the notion of UUURs motivated earlier, RTO and RPO are challenging to

implement in practice as recovery time is implicitly a random quantity and unpredictable

due to the uncertainty of UUURs. Moreover, the focus on maximum and minimum

recovery time mean that these approaches other survivability states of a system whose

values may be crisp may take an interval form or completely fuzzy. Hence, due to the

above, RTO and RPO fail to adequately inform low-level implementations that match the

dynamics of survivability under unpredictable and uncertain changes. Along similar lines,

Richards et al. identify survivability simply as passive or active abilities to maintain value

delivery despite disturbance or the ability to changes the environment through adaptable

changes, respectively (Richards et al., 2007). The table below summarises the authors’

passive-active survivability notion.

Table 5. Passive vs Active Survivability, according to (Richards et al., 2007).

 Passive Active

Philosophy Something a system has Something a system does

Characteristic Proactive, resistance, robust Adaptive, flexible, reactive

Design
principles

Hardness, stealth, redundancy,
diversity

Regenerate, evolve, relocate, retaliate

Forecast Presupposes state of
environment

Presupposes uncertainty in future
prediction

Architecture Closed (static) Open (dynamic)

Design focus Resist disturbance, system-level
defense

Avoidance and deterrence, architectural

35

Failures Linear Non-linear

Discipline Reliability, risk analysis,
domain-specific technologies

Process design, domain-specific
technology, real options, organisational
theory

2.3.1 Analysis

Quantitative approaches studied in recent years (Sterbenz et al., 2010a)(Munaretto et al.,

2011)(Eiger, Luss & Shallcross, 2011)(Eiger, Luss & Shallcross, 2012)(Panigrahi, 2013)

focus on survivability in the context of “timely recovery” for specific contexts. In their

work, Trivedi and Xia (2010) specifically focus on the general method of quantifying

survivability and present a framework for such evaluation. While these methods capture

more details compared to the traditional RTO and RPO, they do not incorporate the

cascading effect of threats such as side-channel attacks (Caron et al., 2013). It is conceivable

that managing unpredictable changes to cloud systems and survivability requirements,

requires effective feedback control and escalation of survivability actions as the system

evolves.

A critical challenge for cloud computing is how to meet survivability outcomes while

keeping the operational cost of attaining such survivability low. In multi-tenant

environments, the degree of tenant concurrency, resources heterogeneity and UUURs

render survivability guarantees a major challenge (Floratou, Potti & Patel, 2014). Whereas

traditional computing systems with predictable system evolution and typically predictable

survivability requirements (Chowdhury, Rahman & Boutaba, 2012), cloud computing

attributes (the ability to scale resources for instance) enable computing systems’ evolution

to deviate from what is typically predictable. When viewed in relation to new and

sophisticated threats, the unpredictability of cloud system states becomes the central facets

of cloud computing security.

Figure 6 is an illustration of a system’s evolution from its input (icon at the apex of the

graphic with unshaded black arrow) and output state (black icon at the base of the graphic

with shaded black arrow). State transitions shows how predictable (blue) and unpredictable

(red) intermediary system states and requirements affect the final state (system output) of

the system. In a traditional sense (represented on the right side of Figure 6), from input to

output, the state of the system and the system requirements are always predictable and

36

therefore can typically be estimated. However, an unpredictable change or phenomena

such as a UUUR event induces an unpredictable state which further induces unpredictable

requirements to the system.

Figure 6. An illustration of predictable and unpredictable system states and

requirements produced by the author of this thesis

If Figure 6 represents an entire system, unpredictable requirements (red) will introduce

unpredictability in the final state of the system and consequently alter its output. Since

unpredictable requirements impact the system’s output (and final state), this

unpredictability complicates decision-making, particularly at the output. Logically,

decision-making under unpredictable changes is an important consideration particularly

for managing the system’s output state and requirement.

Ensuring an effective survival mission in cloud environments requires optimal decision-

making on unpredictable and dynamic survivability objectives. However, decision-making

requires monitoring and is critical but challenging where information is unknown with

37

certainty and future systems behaviours are unpredictable. Moreover, such decision-

making may rely upon monitoring a system whose observations may produce ambiguous

or imprecise information. The challenge here is, therefore, how to make optimal decisions

based upon estimate survival actions, estimate system states and estimate survivability

requirement and parameters. It can be said that lack of knowledge on the states of VMs

means that the general state of the cloud systems at this point is not known. In addition,

heterogeneity and uncertain and emergent phenomenon in clouds mean that complete

knowledge of the survivability states of cloud systems is unrealistic. As a result, monitoring

only relies upon the probabilistic inference of future states.

The control notion is observed in intrusion detection system’s wherein during operation,

an alert is thrown to indicate the existence or absence of a threat, based upon what a

detection model evaluates as true. In this sense, alerts are calibrated to correspond with a

range of deviation from the detection model threshold. There are two challenges

introduced by this approach. Design-wise, selecting a threshold value for the “true state”

requires absolute accuracy, otherwise, a large or small threshold value results in false

negatives or false positives, respectively. In cloud environments, UUURs makes this

accuracy a near impossibility. Moreover, training a detection model to improve accuracy

requires consistent monitoring of the target system; this is a known operational challenge.

Even with an optimised detection model, the unpredictable element of UUURs means that

countermeasures will likely be misplaced (or inadequately implemented), e.g. selecting a

costly defensive response to address a non-extreme intrusion and vice-versa. This impacts

upon resource requirements and cost, both inherent survivability tread-offs.

Large-scale networks including cloud computing are inherently complex (Wen et al., 2017).

While a complete and unanimous definition of complexity is somewhat contentious across

many domains, the discussions in this chapter revolve around the scientific definition

posited by (Foote, 2007), “phenomena, structure, aggregates, organisms, or problems that

share common themes” (Foote, 2007)”. Moreover, they are inherently complicated or

intricate, are rarely completely deterministic, mathematical models of the system are usually

complex and involve non-linear, ill-posed, or chaotic behaviour, and the systems are

predisposed to unexpected outcomes or emergent behaviour (Foote, 2007). Figure 7

illustrates the formation of a complex system from components to a network of connected

and interdependent components. On the left, it shows the building components of a

system as a set of autonomous components whose transformation (graphic on the right),

38

represents a complex system in which numerous autonomous components grow

exponentially through connections (dotted lines) and interdependence (black note at edge

of dotted line).

Figure 7. An illustration of a complex system formation produced by the author of

this thesis

The nature of their connectivity defines the complexity of the system (in the global sense)

rather than its characteristics. Moreover, autonomy enables components to adapt through

local instructions and collectively synchronise (through cooperation and coordination)

individual statuses resulting in a bottom-up form of order.

With current innovations and the proliferation of new devices and platforms, and

multiparty collaborations involving third parties, coordinating and controlling interactions

among cloud computing parties is often a complex task. The complex, unpredictable and

dynamic nature of cloud computing requires intelligent systems control. Cloud security

research should perhaps seek inspiration from well-established complex adaptive systems

such as those in nature. While complexity in natural systems develops on a microscale

through evolution, elements within complex systems are generally subject to selection and

those best suited for the environment are chosen. In a free market economy, products are

selected through market forces, whereas politicians in democracy are selected through

elections/voting. Similarly, animals are selected through natural pressures such as

predation and competition. Literature demonstrates that nature’s superiority is

multifaceted, enabling biological systems to adapt and survive and conjure solutions in a

large search space with limited initial information. According to Mateos el al. (2013), the

above makes biological systems prime alternatives in environments where efficient

prediction is a challenge (Mateos, Pacini & Garino, 2013). Nonetheless, the use of bio-

39

inspired approaches in cloud computing security is an under-researched area in contrast to

the general cloud computing research domain (Stoykov, 2015). As suggested by Balusamy

et al. (2015), bio-inspired algorithms have limited application in cloud computing. The

following section investigates biological systems and application areas in computing

security.

2.4 Bio-inspired systems

Nature has contributed to a range of domains, including finance (Brabazon & O’Neill,

2006) and robotics (Oates et al., 2009), to name a few. The past ten years has seen growth

in research interests around bio-inspired systems due to the growth in demand on

networked systems and reliance on internet connectivity provided through an assortment

of devices and infrastructures (Zheng & Sicker, 2013). For instance, biological self-

organisation applied in wireless ad hoc networks enables clustering routing nodes to

enhance the scalability of data forwarding protocols (Zheng & Sicker, 2013). Or Intrusion

detection systems (IDSs) design inspired by the negative selection of T-cells that bind and

kill infected or harmful cells (Zheng & Sicker, 2013). The immune system can adapt and

self-protect by dynamically creating and destroying mutated or infected body cells, as it

learns new threats and protects itself and its protective components (Sobh & Mostafa,

2011).

Biological/natural systems are abounding with attributes in distributed systems emanating

from interactions among autonomous agents (Sayed, 2014). Their strength resides in the

ability of autonomous entities to make local decisions, and continuously coordinate and

share information to maintain a global form of order (Sayed, 2014). Hence, natural systems

demonstrate effective self-attributes as successful phenomenon (Dressler & Akan, 2010).

Table 6 summarises some bio-systems and classifies them according to their application

area, and the strengths and weaknesses of each system. This section will review some

notable biological systems and their application in computing. In addition, seven of the

most successful natural preys are investigated to understand the survival dynamic;

predation avoidance and anti-predation behaviours and mechanisms.

40

Table 6. Some example bio-systems application: strengths & weaknesses

Bio-
inspiration

Application
Area

Strengths Weakness

Immune System Anomaly &
behaviour
detection

Rapid detection of new &
known antibodies

Slower detection

Foraging
species

Adaptive
capability

Efficient resource usage,
robust & scalable

Communication
overheard

Predator-prey Highly adaptive
Networks

Evolution/co-evolution &
adaptation result in the
survivability of species

Stability of the system
depends on the arms
race.

Immune
(Idiotypic
Network)

Self-organisation

In-depth self-learning
capabilities

Stunted scalability

Biological systems have been a subject of research across the computing continuum

stretching back to the 1980s (Priami, 2009). Surveys including (Zheng & Sicker, 2013) and

(Ribeiro & Hansen, 2012), dedicated their efforts towards evaluating biologically inspired

algorithms in computing-related applications. For instance, negative selection of T-cells’

strategy to bind and kill infected or harmful cells in an Artificial Immune System (AIS) is

a basis for designing IDS (Zheng & Sicker, 2013). Similarly, the adaptation of the memory

and self-learning mechanism employed by B-cells in identifying and destroying pathogens

inspired the design of IDSs (Zheng & Sicker, 2013). Among many works, (Dressler &

Akan, 2010) present a comprehensive survey of bio-inspired networking protocols citing

a substantial number of sources. These authors allude to the fact that immune-inspired

algorithms form the basis for network security, specifically anomaly detection. They

associate epidemiology to content distribution in computer networks, including the

analysis of worms and virus spreading on the internet. Meisel at al. (2010) concurs and

associate intrusion detection and malware propagation to AIS and Epidemiology,

respectively, as complimentary bio-inspired domains.

Artificial immune system is are applied in a variety of areas and particularly lauded for

success in IDS (Liang & Fengbin, 2013) based upon immune system detectors which

determine the performance of the detection component of the immune system (Ji &

Dasgupta, 2009). Several works including (Yang et al., 2009) (Kephart, 1994) (Kim et al.,

2007) (Gonzalez & Dasgupta, 2003) to name a few, employ immune inspired approaches

for developing computer security mechanism based on the self-adaptive, self-learning, self-

organizing, parallel processing and distributed coordination attributes of AISs. In addition,

the authors in (Fang et al., 2012) propose AIS phishing detection that is inspired by part of

41

the immune system’s response mechanism to pathogens; immature T-lymphocytes life

cycle. Nonetheless, the authors contend to the fact that using a static instead of dynamic

fire-threshold value on their detectors, their system suffers from deficiencies (Fang et al.,

2012). Similarly, (Saudi et al., 2008) explore the use of an immune system inspired concept

of apoptosis for in computer network security based upon the immune system’s

programmed action of destroying infected or mutated cells (Saudi et al., 2008). A

comprehensive review of phishing email filtering techniques is presented by (Almomani et

al., 2013), while works by (Gupta, Arachchilage & Psannis, 2017) reviews current literature

and present a range of solutions proposed against identified attacks.

Genetic algorithms (GA) are stochastic search methods inspired from principles in

biologicals systems where problem-solving is indirect through an evolution of solutions,

with subsequent generations of solutions, in turn, yielding the best solution to a problem

(Hordijk, 2005). Along similar lines, (Sun & Cheng, 2009) proposed GTAP gene-inspired

algorithm for user authentication where users from a “family” are identified by a unique

gene certificate (synonymous with unique signatures), and users are authenticated upon a

positive analysis of their gene code (Sun & Cheng, 2009). According to the authors,

simulation results for GTAP demonstrated superiority in safety and security by countering

the deficiencies in safety passwords and ambiguity of subject information in certificates

presented in traditional mechanisms (Sun & Cheng, 2009).

In other works (Isasi & Hernandez, 2004), genetic algorithms are implemented in

cryptography to evaluate and enhance the complexities of encryption systems. An

interested reader is referred to a complete guide for cryptographic solutions for computer

security presented by (Gupta, B., Agrawal, D.P. and Yamaguchi, 2016). In cryptanalysis,

where an attack mechanism is implemented to assess the strength of an encryption system,

GA is argued to be highly successful in substitution cyphers (Verma, Dave & Joshi, 2007)

and transposition cyphers (Toemeh & Arumugam, 2015). While genetic-inspired

approaches are superior for efficiency and specificity for selecting the unique features, for

instance, for trust assurance, authentication, authorization, or access control, or in

intrusion detection systems (IDSs), they are often complex and can only be used in a

specific, rather than general manner (Modi et al., 2013). Thus, where solutions have been

proposed for cloud security (Olumide et al., 2015) (Jinyin & Dongyong, 2013), (Wang &

Yan, 2010), they are applied as pure solutions for encryption, managing the security of data

in storage, intrusion detection, trust management, etc.

42

Inspired by the reliability of gene identification and assignment inherent in biological

systems, Wang et al. propose the Family-gene Based model for Cloud Trust (FBCT) to

address existing limitations inherent in PKI-based systems, which include challenges in

identifying nodes within cloud environments, access control, and third party authentication

system (Wang et al., 2010). By adopting biological principles in family genes, their model

provides solutions for trust in the cloud computing domain.

Although neural networks are generally popular in pattern recognition and classification,

and noise filtering, they are useful in other areas including the use of biometrics in security

(Hordijk, 2005). Key to their success is their accuracy in feature extraction and efficiency

in classification, i.e. low rejection rate and high positive classification (Hordijk, 2005).

Along these lines, (Shorov & Kotenko, 2014) proposed the Network Nervous System as

a mechanism for effective protection against distributed denial of service (DDoS) attacks,

grounded on the biological metaphor of the human central nervous systems; distributed

information gathering and processing, coordination, and identification activities. Their

work rests on the basis that traditional security tools fail to cope with the escalating power

of attacks on computing infrastructures (Shorov & Kotenko, 2014).

Ant colonies have been applied for routing traffic optimisation, for instance in works by

(Baran & Sosa, 2000) who evaluate an optimisation algorithm; AntNet, in which agents

concurrently traverse a network and exchange information synonymous with stigmergy in

insects. According to the authors, this algorithm exhibited superior performance in

contrast to its competitors (Caro & Dorigo, 1998). (Rafsanjani & Fatemidokht, 2015)

Proposed FBeeAd-Hoc as a security framework for routing problems in Mobile ad hoc

networks (MANET) using fuzzy set theory and digital signature (Rafsanjani &

Fatemidokht, 2015). Other models including the Trust Ant Colony System (TACS)

(Marmol, Perez & Skarmeta, 2009), AntRep algorithm based on swarm intelligence (Wang,

Zeng & Yuan, 2006), Time Based Dynamic Trust Model (TBDTM) (Zhuo, Zhengding &

Kai, 2006) to name a few, have been proposed for distributed systems. Nevertheless, it is

imperative to emphasise the need for comprehensive testing and evaluation before their

use in cloud environments (Firdhous, Ghazali & Hassan, 2012).

Works by (Gupta & DuVarney, 2004) extends on the predator model, to propose

countermeasures against automated mobile malware in networks. The authors propose

models for self-propagating, self-defending and mobility attributes found in predating

43

animals. Their works premises on the notion that traditional countermeasures do not scale

to solve security challenges existing in distributed systems (Gupta & DuVarney, 2004).

(Grimes, 2001) suggest the use of predator models as inspirational solutions against viruses

and worms.

Works by (Finstadsveen & Begnum, 2011) explore the use to biological metaphors as a

basis for designing, modelling and implementing a cloud-based web service. According to

these authors, a cloud-based web service can deal with counter stability issues that arise

from long-running processes and security attacks. Also, they argue that a zebra herd-

inspired approach simplifies not only complex technical challenges, but also enhances new

designs for automating self-management processes for system administrators.

Table 7. A summary of bio-inspired algorithms proposed for cloud (C) and non-

cloud (NC) environments

Algorithm Biological parentage Domain

Multiple Sequence Alignment (MSA)
algorithms

Protein structure NC

IDS detector optimisation algorithm Co-evolution in populations NC

Data Security strategy Immune systems C

Secure Data Storage Physiological & behavioural
patterns

NC

AIS for phishing Detection T-lymphocytes life cycle C

Integrated Circuit Metrics (ICMetrics) Human properties & features NC

Biologically inspired Resilient Cells & organisms (sea
chameleon)

NS

Data Hiding for Resource Sharing DNA sequences C

Organic Resilience Approach against attacks
and failure

Immune system C

Security based on Face Recognition Facial features NC

Family-gene Based model for Cloud Trust
(FBCT)

Genetics C

Agent of Network Danger Evaluation Immune System C

Supervised learning classifier with real-time
extraction (UCSSE)

Genetic-based machine
learning

NC

Fraud detection & improper use Immune System NC

Extension of Predator-Prey Model Predator-prey communities NC

Computer Immune System Innate immune phase NC

AntNet: Ant colony optimisation algorithm &
OS theory

Ant colony NC

44

2.4.1 Prey survival against predation

Vigilance, alarm calls, mobbing and group living are anti-predator behaviours shared

among vervet monkeys (Cercopithecus aethiops). Furthermore, flight, alarm calls and response

to alarm calls in vervet are responses to alarm calls associated with specific predator species

(Isbell, 1994). Alarm signals in vervet monkeys perform multiple-duties, ranging from

predator deterrents, or distress signals to call in mobbers (Smith, 1992).

Social behaviours in Thomson’s gazelles such as their alert posture, galloping, stotting, and

soft alarm calls are argued to release alertness and flight information to avoid predation

(Walther, 1969). Evidence in the literature supports the claim that Stotting in Thompson

gazelles is a vital tool for avoiding predation. According to (Caro, 1986), stotting startles

or confuses a predator and thus forms an anti-ambush evasion technique. Thomson

gazelle’s mothers are known to adopt aggressive strategies to divert predators from hunting

their fawns (Fitzgibbon, 1990a). As noted by (Fitzgibbon, 1990b), predation avoidance in

Thompson gazelles is also associated with grouping behaviours, where larger groups have

improved predator detection capabilities, and significantly reduced vulnerability factor

against the cheetah, (Acinonyx jubatus).

Five predation avoidance strategies are employed by caterpillars against predating birds;

restrict feeding to undersides of leaves, forage at night, use leaves for movement while

foraging, and distance themselves from an unfinished leaf, or snip it off altogether

(Heinrich, 1979). group living is argued to positively enhance protection, as well as warning

signals, defensive movement, and regurgitating noxious chemicals may increase

survivability. Literature suggests that Zebras flee predating lions according to their

proactive responsiveness to a prior assessed risk level, and reactive responses to imminent

predation (Courbin, Loveridge & Macdonald, 2015).

The choice of predation avoidance or anti-predation mechanism is hugely important in

Meerkat (Suricata suricatta) communities as they live under high predation pressures while

occupying challenging foraging niche (Thornton & Clutton-Brock, 2011). As such, social

learning and effective cooperation initiate key survival behaviours, including fleeing non-

specific predators, mobbing against predating snakes, functional referential alarm calls, or

running to bolts holes in response to aerial predators (Thornton & Clutton-Brock, 2011).

In addition, Meerkat depends hugely on group living through communal vigilance (Roux

45

et al., 2009). Unlike the response to alarm calls, vigilance occurs in the absence or presence

of a predator or danger (Voellmy et al., 2014). The presence of strong predation avoidance

responses in nature’s prey species demonstrates that past species interactions affect present

distributions and may play an important role in the ongoing assembly of contemporary

communities. Such avoidance behaviours in a growing number of species fundamentally

alter the view of the processes affecting species distributions and the process of community

assembly (Resetarits, 2001).

Table 8 summarises existing predation avoidance and anti-predation behaviours and

techniques in natural prey, including but not limited to those discussed above.

Table 8. A matrix linking prey survival mechanisms (anti-predation and predation

avoidance) to prey species

 Attributes: prey
survival technique
& behaviour

Prey

P
la

n
ts

L
iz

ar
d

V
er

v
et

G
az

el
le

M
o

th

M
ee

rk
at

Z
eb

ra

Anti-
predation

Alarm calling

Chemical defence

Fight-back

Stotting

Group living

Mobbing

Aposematic

Mimicry

Predator
avoidance

Camouflaging

Masquerade

The predator-prey dynamic highlights the importance and the consequences of

interactions between two species, i.e. it demonstrates how the functions of a community

depend on the characteristics of that community. Before biological systems may be applied,

several problems should be considered. Regardless, cloud computing solution must be

developed based on the foundations harvested from nature. As suggested by (Hariri,

Eltoweissy & Al-Nashif, 2011), existing solutions are limited as they do not adapt and

escalate their security strategies to counteract the intensity and sheer aggressiveness of an

adversary. Cybenko et al. (2014) concurs and suggests security countermeasures are only

successful in traditional networks and not in cloud computing environments where

persistent adversaries and zero-day attacks can systematically plan their attacks and persist

46

within a compromised network. On the basis of the foregoing, the authors postulate the

rise in popularity of Adaptive Cyber Defence (ACD) approaches such as bio-inspired

systems, based on their ability to optimise unpredictability and maximise the adaptive

configurations in attack surface, thereby raising the cost of an attack for the adversary

(Cybenko et al., 2014).

Unlike the single solution approach noted in Section 2.2, Table 8 shows that prey animals

possess rapid reactions based upon the ability to make local but synchronised decisions.

Escalation therefore enables a system to invoke appropriate proactive responses (ranging

from passive to aggressive) based on the nature of the threat. To enhance the survivability

in cloud infrastructures, proactive strategies including deceptive and pre-emptive should

be implemented to maintain the state of the environment at best or ensures the system

copes with any form of destructive encounter. Given the significant success of biological

systems, it seems logical to investigate theoretical underpinnings that describe core

elements and their application as plausible approaches in the security continuum

2.5 Theoretic perspectives

Theoretical perspectives form one of the most important aspects of the research process.

As noted by (Grant & Osanloo, 2014), to construct knowledge for research and develop

an adequate scientific rationale for that research, theoretical perspectives provide the

blueprint with respect to the structure of the research, the research problem, the purpose

and the implications of the research findings. Thus, the purpose of this section is to give

an overview of this research’s theoretical perspective and clarify how this perspective

integrates the selected theory under this investigation, as well as key concepts and

definitions relevant to the cloud computing topic area under the current consideration.

Different scientific domains apply variable methodologies and definitions of terms for

essentially the same aspect of what can be termed “reality”. When considering natural and

artificial systems, the system-ness of the foregoing is relevant to abstraction or de-

abstraction of theories. (Malecic, 2017)’s opinion is that, understanding this abstraction

and de-abstraction will enable effective assessment of their casual and explanatory power.

47

Control theory’s classical methodologies and assumptions handle complexity through

enhanced adaptation in the presence of unpredictable and dynamic changes (Smith, 1979)

(Landau, 1999). Several works demonstrate the efficacy of stochastic control to optimise

expected value of cost under extreme uncertainty and unpredictability. This control

concept describes self-adaptation as identified among a huge state-of-the-art in a

classification presented by Andersson et al. (2009).

The General systems theory (GST) suggests that functions that convert inputs into

required system outputs can be designed and controlled provided that all contexts are

known (Checkland, 1981). This assumption suggests that regardless of internal

composition, all systems; natural, man-made, abstract, conceptual or concrete, have

common characteristics (Checkland, 1981). Thus, quite generally, GST aims to formulate

generalised theories; system dynamics, goal-oriented behaviour, hierarchical structures, and

control processes, develop methodological ways for describing the functions and

behaviours of systems objects, as well as to expand generalised models of systems

(Skyttner, 2010). However, as has been explained earlier, with UUURs, there is a limit to

the amount of initial information affected systems have.

Game theory is a widely applied in security research. While there exist several quantitative

pieces of research on risk analysis and security modelling, quite precisely, fewer studies

quantitatively focus on the survivability of cloud systems in view of UUURs. In the former,

examples include (Cox Louis Anthony (Tony), 2009)(Wang et al., 2012c)(Furuncu &

Sogukpinar, 2015), and in the latter, examples include (Fan et al., 2013)(Kamhoua et al.,

2014)(Xiao et al., 2018). However, (Jormakka & Mölsä, 2005) contend with the

impossibility of probabilistic analysis of attacks in special cases where time dependency

associated with lack of knowledge makes the endeavour a practical impossibility. Game

theory has also been applied for survivability as a game mode in which a game strategy is

a central requirement. As noted by (Mezzetti & Samuelson, 2006), the Game theory is

guided by the principle that clear, stable preferences motivate choices over decision

outcomes, and strategic action considers the relationship between one’s choice and the

decisions of others. For instance, one where a bold strategy results in domination (terrorist

game), or a mixed defense strategies where domination can be reduced (evildoer game), or

where domination lasts for limited duration (vandal game), or where altering observations

and orientation of an adversary (meta-strategies) gives the advantage to a defender

(Shehabat & Mitew, 2017). The current author concurs with (Jormakka & Mölsä, 2005), in

48

particular considering the notion of unpredictable, latent, unobserved or unobservable

risks proffered by (Ma, Krings & Sheldon, 2009; Ma & Krings, 2011; Ma, 2010). Thus,

game theory as applied in cloud survivability becomes fundamentally deficient when

survivability threats are unpredictable and where risks are latent or unobservable.

2.5.1 Theoretical ecology

In theoretical ecology, the core concepts around the predator-prey system are interactions

and their movement across a habitat. Within this domain of theory, functional and numeric

response are common concepts (Fryxell et al., 2007). Functional response is the prediction

of the rate at which a predator consumes prey as a function of predators and the density

of prey (Petchey, 2000). On the other hand, numeric response is associated with the rate

of reproduction as a function of food density (Petchey, 2000). Classical predator-prey

theory has its origins around Malthus-Verhulst logistic equations and Lotka-Volterra

equations, which describe predator and prey’s functional and numeric responses to

changes in their habitat (Vitanov, Dimitrova & Ausloos, 2010). Some common problems

when applying the classical predator-prey theory arise due to contradictions caused by the

principle of mass action to predator-prey interactions. The principle of mass action

(Kloeden & Pötzsche, 2010) postulates that the rate at which a predator consumes prey

should only be prey dependent. Boutin (1995) further suggests the effects of predation on

prey as generally dependent upon prey communities, rather than individuals.

The selection principle explains the adaptive tendencies of an immune system to antigens

(Castro & Zuben, 2002), self-organisation in evolution (Kauffman, 1993), and is prominent

in various “arms-race” analogies. In their work, Dawkins and Krebs (1979), exemplify

selection using the life-dinner principle, wherein an entity with better selection out-evolves

its competition. According to these authors, the life-dinner principle describes an inherent

asymmetry between a predator and prey in relation to the success of predation, the success

of evading predation, and vice-versa. Noting to a cost-benefit analysis modelled by Abrams

around the life-diner principle, (Vermeij, 1994) drew the observation that an arms-race was

highly likely where predator and prey interact, the outcomes of which were determined by

birth and death rates.

49

Cope’s Rule as postulated in works by (Hone & Benton, 2005) (Kingsolver & Pfennig,

2004) is an evolutionary concept which postulates that entities with evolving lineages adapt

by growing in size over time. According to these authors, such adaption increases

predation success, increases defence against predation, improves intelligence, and

improves survival and adaptation to climate changes (Hone & Benton, 2005). Defence

against predation has been a subject of study in a wide variety defence systems employed

in insect egg (Eisner et al., 2000), and defence studies in plant science (Hay et al. 1987). As

in most defence systems, the objective for defence is to improve the survival chances of

prey, against a predator. For the predator, the objective for survival is to become a

successful hunter while for the prey, it is about avoiding predation. In this case, the Cope’s

Rule, the Life-Dinner Principle, and the concept of arms-race outlined above come to the

fore.

In studies to investigation ecological patterns and evolutionary implication of predation

among primate communities, group size and adaptation are identified as notable

demographical and behavioural factors of predation, respectively. On the other hand, the

notion of inferred evidence is associated with the size of a group. According to Isbell

(1994), vigilance is higher in larger groups and this improves the reaction to approaching

predator. On the contrary, Isbell (1994) suggests small likelihood of avoiding predation in

smaller groups, based upon the likelihood to be detected. Thus, it is perhaps logical to

draw parallels between predation avoidance capabilities in prey communities to the security

capabilities in cloud computing. The following logical assumptions have their theoretical

foundations in the foregoing and a basis for analogical reasoning presented in Chapter 4:

Parallel 1: As direct observation and inference provide primary information and alarms

calls and flight are adapted to increase survivability against specific predator species

in primate communities, it is local that Swarm intelligence can be used for

collaborative proactive countermeasures including monitoring, response and

security event management towards the survivability of a cloud computing

infrastructures.

Parallel 2: Just as mechanisms such as concealment, flight, vigilance, and alarm calls in prey

are attributed to predation avoidance (Isbell, 1994), proactive cloud security

approaches including deception, deterrence, obfuscation, pre-emptying and

counter-attack can be adapted to increase the survivability of cloud infrastructure.

50

Analogy 3: Just as threats of capture triggers last resort anti-predation behaviours such as

mobbing and fighting back in prey (Isbell, 1994), threats such as malicious users,

advanced persistent threats (APTs) etc. in cloud environments necessitate the use

of proactive countermeasures able to escalate from passive to aggressive methods,

based upon the persistence of a threat.

While bio-inspired approaches have found use as artificial alternatives to mitigate

deficiencies a range of diverse areas, bio-inspired approaches have clear distinctions based

upon their application domain. Three main classes shown in Figure 8 and briefly explained

below provides the basis for the bio-inspired approach follows in Chapter 4.

Figure 8. An classification of Bio-inspired approaches produced by the author of

this thesis

Bio-inspired systems: Are comprised of a domain of architectures for extensively

distributed and collaborative systems. As observed by (Dressler & Akan, 2010),

exploration and distributed sensing are some of the common applications.

Bio-inspired networking: Is comprised of a domain for addressing phenomenon under

uncertainty. For instance, applying autonomic organisation in large-scale

distributed systems to facilitate efficiency and scalability.

51

Bio-inspired computing: This is comprised of a domain of algorithms for efficient

computing, for instance, when applied for optimisation solutions.

Bio-inspired design entails a systematic process for developing and mapping analogies for

the survivability phenomenon, and the development of bio-inspired tools and platforms

for cloud computing.

2.6 Summary

The review of cloud computing security challenges identifies the findings summarised

below.

• Multiple perspectives imply that specific solutions remain largely prevalent. Theses

must be integrated into a holistic representation of security challenges, towards

developing solutions that holistically addresses cloud security issues.

• The cloud computing environment, while possessing some attractive attributes,

enable adversaries. It is important while developing future solutions, to address

this contradiction; address security risks yet preserving cloud computing’s

attractive attributes.

The review of the survivability context identifies the findings summarised below.

• There is limited research focusing on survivability architecting specific to cloud

computing environments. This indicates an opportunity for designing survivability

solutions for cloud computing’s many security challenges.

 The review of bio-inspired systems identifies the findings summarised below:

• Despite being an under-researched area for cloud computing survivability, the

predator-prey system shows clear survival concepts that are exploitable for cloud

computing survivability.

• To adopt or adapt biological concepts, there is need for a systematic method to

transfer natural concepts to computing. In addition, an approach to create

innovative solutions by resolving contradiction.

52

Chapter 3 A holistic taxonomy of

cloud security challenges

This chapter presents a holistic taxonomy of cloud computing security challenges (contributing publication

PR2). It structured as a literature review in relation to reviewing and analysing existing cloud security

challenges classifications. This chapter is significant to the research hypothesis as it helps conceptualise the

complete cloud systems. Whereas there maybe reference to specific security issues, this chapter is not interested

in the in-depth analysis of specific security attack paths or attack graphs.

3.1 Introduction

Much of existing research focuses on evaluating and classifying cloud security challenges,

resulting in numerous and disparate perspectives and excesses of perspective-based

taxonomies. For instance, the perspective of security vulnerabilities in web applications

(Johns, 2011), a virtualisation perspective (Lombardi & Pietro, 2011), the perspective of

service delivery models (Subashini & Kavitha, 2011), the perspective of a service-oriented

organisation (Roy et al., 2015), and so on. Disparate perspectives limit the extent to which

the complete cloud security landscape is viewed and understood. Critically, commonly

shared but unexplored cloud security challenges remain unresolved and entrenched when

perspectives do not overlap. This chapter is motivated by a lack of research focusing on

consolidating these disparate perspectives to benefit cloud security countermeasure

research and development. Hence, it interrogates how cloud security challenges are viewed

and classified in the existing literature, which helps to identify gap areas and their possible

implications. Clear gap areas will form a useful gateway to a new classification

encompassing all perspectives of the cloud and cloud’s functionalities.

53

Through a meta-synthesis, textual classifications are re-conceptualised into hierarchical

tree-like structures, which simplify visualisation for the reader and clearly illustrates entity

relationships amongst cloud categories (Polash, Abuhussein & Shiva, 2014). The taxonomy

design concept is premised around (Howard & Longstaff, 1998)’s notion of a satisfactory

taxonomy; mutually exclusive, unambiguous, repeatable, acceptable and useful. From a

high-level, it distinguishes cloud security challenges based on their source and/or origin,

as follows: security challenges adopted by the cloud, security challenges inherent to the

cloud architecture, and security challenges triggered by cloud implementations. For the

purposes of the current chapter, inherent delay is identifying a specific threat is assumed

as a worst-case scenario with significant adverse impacts to cloud security. Hence, the

holistic approach proposed is innovative and insightful as it introduces the possibility of

delay analysis as an element of a holistic cloud security countermeasures design.

The remainder of this chapter is as follows: Section 3.2 presents the holistic approach;

outlines the requirements and design approach towards the holistic notion. Section 3.3

reviews existing taxonomies and reconceptualising each into a hierarchical structure.

Section 3.4 presents the holistic taxonomy for cloud security challenges and discusses its

implications. Section 3.5 concludes the chapter.

3.2 Holistic approach

This section presents a holistic taxonomy design approach (Error! Reference source not

found. illustrates the general holistic approach.) to gather, interpret and re-conceptualise

cloud computing security knowledge. The interpretation of existing taxonomies yields

newly transformed taxonomies, which are easier to visualise. Furthermore, the analysis

identifies deficiencies that exist among perspectives in a non-ambiguous manner.

Ultimately, this approach will ensure that all cloud computing security categories are

comprehensively presented, which is significant for security countermeasure design,

development and maintenance.

54

Figure 9. A illustration of the holistic design approach produced by the author of

this thesis

Figure 10 shows the workflow processes for the generic holistic approach. The input

model (top left) defines cloud computing security’s multiple perspectives, while the output

model (top right) is the holistic tool for the cloud computing security challenges.

Figure 10. An illustration of the holistic workflow processes produced by the

author of this thesis

Requirements
loop

Design
loop

55

The output model has significance for holistic baselining, security specifications and

configuration or security planning. A taxonomy requirements loop handles thematic

modelling and functional analysis of the cloud security paradigm; deconstructing, defining

and assigning categories to central concepts. A design loop models the continuous

processes of the functional analysis mentioned above, and the transformation of functional

concepts to physical cloud countermeasures or solutions. Moreover, it facilitates the

definition and extension of additional security concepts and elements (these will be

represented as categories, subcategories, sub-subcategories, etc.) of the holistic taxonomy.

Analysis and control enable the evaluation of the analysed cloud security concepts, and

exploration of gap areas and trade-offs, both useful inputs for the synthesis model. For the

interested reader, other commonly applied taxonomy development methods exist in

literature; (Nickerson, Varshney & Muntermann, 2013) presents an interesting cross-

domain review.

3.2.1 Requirements

In this research, an abstraction of the holistic view to cloud security challenges is

hypothesised as one which considers that security challenges have a source or origin. This

notion is aimed to facilitate the comprehensive organisation of key security issues into

high-level concepts that are extensible for the further investigation and corresponding

countermeasure development.

The following are suggested as necessary requirements: (1) Acceptability and completeness

(Amoroso, 1994, Howard, 1997). (2) Mutual exclusivity, repeatability, unambiguity and

usefulness (Howard, 1998), Determinism (Krsul, 2014), and (3) Compliant security

terminology (Lindqvist & Jonsson, 1997) and well-defined terms (Nasr, Abou El Kalam &

Fraboul, 2011). Thus, this research formally expands upon the definition a holistic

taxonomy for cloud computing security challenges summarised by (Hansman & Hunt,

2005).

Definition 1. A taxonomy satisfies the holistic property if and only if, all aspects of the source or origin

of a security challenge are considered. Also, requirements and dimensions inform the design of

main behaviours in a security challenge domain, i.e. the dimensions of a security target, a specific

vulnerability and payload are considered.

56

Figure 11 illustrates this conception, with each of its components discussed in turn below.

Figure 11. A high-level holistic view of cloud security challenges produced by the

author of this thesis

This definition abstractly suggests that some cloud security challenges are directly adopted

by the cloud from other technologies. In addition, that others are inherent to the cloud,

embedded among key features such as scalability, broad network access, pay-per-use, etc.

Moreover, it also implies that other security concerns are triggered by various forms of

cloud computing implementations.

3.3 Review of existing classifications

Figure 12 is an illustration of unique cloud security challenges that are inherent to cloud

computing. For instance, control mechanisms are well-established in a traditional “on-site”

computing model; where data and services are housed within a perimeter to ensure

availability. Even where data must leave the premise, for instance, with remote workers,

security policies and mechanisms exist to ensure that data remain secure (confidential,

integral & available), and accountability for whom, where and how data is being held and

processed are mature. However, due to the de-perimeterised nature of the cloud, and the

ambiguity in data location information, traditional these policies cease to be effective,

causing a great deal of discomfort primarily due to the loss of control (Subashini &

Kavitha, 2011).

57

Figure 12. Security challenges inherent to cloud computing produced by the author

of this thesis.

Figure 13 is an illustration of cloud computing security challenges that arise due to

implementations in the cloud.

Figure 13. Security challenges triggered by cloud computing produced by the

author of this thesis.

Bigdata’s compute-intensive business analytics; high velocity, high capacity and high

variety data, is an upwards trend (Chardonnens et al., 2013)(García et al., 2016). With cloud’s

58

rapid elasticity, resource pooling, on-demand access, transference of risk, etc. there is an

inevitable convergence of technologies (Assunção et al., 2015). From a security point of

view, big data analytics is critical as it can improve the visualisation of the security domain

by correlating security-relevant data (O’Connell et al., 2014). However, despite its benefits,

big data poses a threat to the cloud primarily due to the high volumes of data. As an

example, privacy concerns arise where large databases collected through data mining are

compromised. An example would be Google’s infrastructures that collect and analyse data

for advertising (Chow et al., 2009b). While virtualisation enables essential cloud features

such as location independence, resource pooling, multi-tenancy and rapid elasticity, it

inadvertently elevates traditional security challenges. For instance, cloud customers depend

on an internet connection to access cloud resources. In a traditional sense, DoS attacks

could therefore focus on network entry points with high IP packets (Sabahi, 2011).

However, this same attack poses a devastating impact in cloud environments. Moreover,

malicious agents consider what resources they can gain in an attack, how much effort is

required to compromise a target and how much access they have to the target (Grobauer,

Walloschek & Stocker, 2011). The fact that cloud services are offered as a service, where

a user pays for what they use, it means that malicious agents have easy access into the cloud

infrastructure and act a constant threat in a multi-tenant environment.

Figure 14 illustrates this research’s conceptualisation of unique issues adopted by the cloud.

The argument that some cloud security challenges are not new to information security is

shared by several authors including (Zissis & Lekkas, 2012)(Subashini & Kavitha,

2011)(Chen, Paxson & Katz, 2010)(Pearson & Benameur, 2010). Traditional challenges

commonly refer to augmented and well-known security issues that pose security challenges

for the cloud, mainly due to the physical or logical aspects of the cloud (Yu et al., 2015).

Such security challenges are non-specific/unique, however, they render existing security

mechanisms ineffective in cloud environments (Hashizume, Yoshioka & Fernandez,

2013). For instance, by extension, the Bring Your Own Device (BYOD) phenomenon,

which enables access to information on devices that may be outside the ownership and

control of an organisation, introduce security concerns around regulatory compliance, data

leakage, data breaches, data theft, etc. (Morrow, 2012)privacy and ultimately the right to

privacy is broadly speaking a human right from a legal perspective in the United Kingdom

and Europe. Privacy laws, e.g. Privacy and Human Rights Act 1998 in a way guarantees

59

that everyone’s right to such privacy (Commission, 2016). Hence, privacy in the context

of personal data is arguably enshrined and enforceable under such Acts.

Figure 14. Security challenges adopted by cloud computing produced by the

author of this thesis.

However, when considering privacy in the cloud perspective, it is important to

acknowledge the following contexts; Clouds are geo-dislocated, meaning that private data

can be held and processed in any location, known or unknown, arguably implying that the

enforcement of privacy laws becomes a challenge due to jurisdictional discrepancies. In

this context, privacy challenges that existed in the traditional context, whose legal

mechanisms for enforcement exist/existed, are leveraged in this new environment. As

mentioned earlier, the holistic notion in this paper is informed by the view that cloud

security issues and challenges can primarily be distinguished according to their source or

origin. The source/origin notion is suggested by (Wallom et al., 2011) to emphasize the

concept of VM trustworthiness when performing critical computation. While many

similarities in existing cloud security taxonomies revolve around similar security issues or

challenges, these highlight critical areas for research and solutions design for a cloud-wide

perspective of security.

Figure 15 shows unique security issues unique to private clouds. Since private cloud

infrastructures are generally managed on-site by the organisation and in some cases by a

3rd party/ external organisation, a CSP is generally able to specify security configurations

60

while retaining some level of control. In some cases, issues arise as the private provider

relinquishes control over how and if configurations are fully implemented since this

control remains under the infrastructure owner’s domain. Consequently, limited control

leads to trust and compliance challenges. To mitigate these challenges, consumers access

services through a trusted base. The offerings of public cloud versions over a private cloud,

while presenting some flexibility and cost benefits, introduces security challenges

associated with the public cloud.

Figure 15. Security challenges that are unique to private cloud produced by the

author of this thesis.

Figure 16 shows the security issues unique to public clouds. In the public cloud scenario,

the infrastructure is managed and owned by a 3rd party and located off-site, in which

consumers access services through an untrusted base. Public clouds are deemed as

financially viable; cheaper model option compared to its alternatives. In addition, as a cloud

subset, public clouds benefits from a shared pool of resources. Physical security risks in

SaaS are greater in the public cloud (Subashini & Kavitha, 2011). Dependence on an

internet connection to access off-premise infrastructure introduces risks to networks: for

instance, attacks associated with the traditional security model such as man-in-the-middle

and DoS attacks, threaten the security of data in transit. While traditional security systems

such as firewalls, IDS and IPS are well-established and mature (Gonzalez et al., 2012),

efforts for developing similarly effective firewalling and filtering systems for public cloud

is an ongoing process. Consequently, control, trust and insurance issues exist as consumers

61

expect their data to remain secure, and providers give assurances of the security of their

services.

Figure 16. Security challenges that are unique to public cloud produced by the

author of this thesis.

Figure 17 illustrates unique security challenges specific to hybrid clouds, where model

infrastructures are managed and owned by both the organisation and a 3rd party. In this

model, services are located both on-premises and off-premises. The hybrid option is highly

dynamic as it benefits from the flexibility and scalability of the public cloud, and the

efficiency and security of an on-premise model. Multiple external integrated components

yield the hybrid nature of this cloud. However, performance, security and reliability

procedures rely on the strength of the integrated services.

Integration of services from the private and public options means that multiple platforms

are in operation, which results in compliance and insurance issues, particularly when

dealing with SLA and other process and regulatory issues. While heterogeneity aids in

evading challenges associated with platform lock-in, the same concept introduces

integration challenges, i.e. security integration on a multi-vendor platform (Takabi, Joshi

& Ahn, 2010).

62

Figure 17. Security challenges that are unique to hybrid cloud produced by the

author of this thesis

Figure 18 shows security challenges unique to service provision. Since virtualisation

facilitates the provision of resources as services, security at the service level critical.

Figure 18. Security challenges that are unique to service provision produced by the

author of this thesis

63

This includes the security of the hypervisor and the virtual machine since services (SaaS,

PaaS, IaaS, etc.) reside in middleware. PaaS impacts both the cloud user and clouds

provider at the runtime of applications and deployment of applications. One of the

contentious issues on cloud security pertains to cloud-stored data where an end-user who

owns data has limited control or knowledge of where their data is stored. Hence, cloud

service providers implement homomorphic encryption algorithms with distributed

verification to mitigate storage security concerns including sanitization, availability,

leakage, snooping, etc. One of the common challenges facing service provision is

establishing trust where tenants share the same physical space, they have a secure and

dedicated space. A trusted third-party solution is generally introduced but trust nonetheless

remains an outstanding and unique issue in the infrastructure level of service provision.

Consequently, the security of transient data becomes critical considering the prevalence of

data hijacking (Baars & Spruit, 2012); (Demchenko et al., 2011).

Figure 19 below illustrates unique cloud security challenges according to (Ryan, 2013). This

figure is a conceptualisation of the classification as understood by the author of this thesis.

These author view security issues from a perspective of their uniqueness to the cloud in

contrast to their existence in the pre-cloud era.

Figure 19. Security challenges from the perspective of uniqueness to the cloud and

their existence pre-cloud produced by the author of this thesis

Their classification identifies multi-tenancy issues as a traditional challenge, suggesting the

notion that the multi-tenancy concept predates cloud computing and has existing solutions

and hence no longer be a scientific challenge (Ryan, 2013). To substantiate this claim, the

author identifies the operating system (OS) process isolation and the VMM as mature

multi-tenant environment management solutions. Moreover, the author identifies threats

to cloud resident data as the only cloud-specific challenge due to the involvement of third

64

parties such as the cloud provider, its employees and sub-contractors. In its current form,

this is a simple classification which is easy to understand. This perspective demonstrates

the relationship between cloud entities and the commonalities that exist with respect to

data stored in the cloud. While this classification highlights important areas for cloud

resident data, this perspective limited as it narrowly focuses on one perspective. Thus, this

perspective is non-exhaustiveness as it misses key cloud components and issues around

the VMM, trust, control, legal, process and regulatory issues.

Figure 20 illustrates cloud security challenges from an outsourcing perspective identified

by (Shahzad, 2014). This figure is a conceptualisation of the classification as understood

by the author of this thesis. In their state-of-the-art survey, the authors identify the

outsourcing element in cloud computing environments as a unique to cloud computing

and thus a unique source of security concern. According to these authors, an outsourcing

perspective is critical since cloud service providers retain control of data. Along similar

lines, the authors in (Dorey & Leite, 2011) concur and specifically identify unique risks

introduced by 3rd parties through end-to-end interactions.

Figure 20. Security challenges from an outsourcing perspective produced by the

author of this thesis

Unlike the works by (Ryan, 2013), the authors in (Shahzad, 2014) also consider multi-

tenancy, virtualisation and service level agreements (SLA), as unique to the outsourcing

perspective with eDDoS attacks and cloud storage data security as some of the main issues

65

of concern. These authors share a common view that security challenges affecting the

cloud are either unique to the cloud or traditionally existed. However, this is broadly too

general a view of security issues in an otherwise complex environment. As noted by (Ali,

Khan & Vasilakos, 2015), this complexity builds over time as cloud system entities interact

and internal organisation changes. Hence, the taxonomy from an outsourcing perspective

in its current form lacks the necessary complexity for general use. It is difficult to identify

the boundaries upon which (Shahzad, 2014)’s observed security issues impact the cloud,

which layer of the cloud, at what level, etc. Nonetheless, due to its simplicity it is easy to

understand and perhaps useful when applied to address or understand specific outsourcing

scenarios.

Figure 21 illustrates security challenges according to the state-of-the-art analysis by

(Srinivasan et al., 2012). This figure is a conceptualisation of the classification as understood

by the author of this thesis. Srinivasan et al. (2012) distinguish cloud security challenges

according to the architecture, technology, process and regulation perspectives of cloud

environments.

Figure 21. Security challenges from an architectural, technological, process and

regulatory perspective produced by the author of this thesis

In this regard, they identify two main categories; challenges that have architectural and

technological aspects and those that are process and regulation oriented. Architectural

66

challenges in this regard encompass multi-tenancy, identity management, virtualisation,

cryptography and key management issues. On the other hand, process and regulatory

issues include governance and compliance, API security, migration issues, SLA and trust

management challenges. The current author finds the simplicity of (Srinivasan et al., 2012)’s

classification as beneficial as it enhances the taxonomy’s usability. While this taxonomy

broadly incorporates most of the security issues discussed in the literature and identified

in this research, the omission of traditional issues limits the scope of this taxonomy. As

demonstrated earlier in this research and indeed throughout available literature, traditional

challenges such as the DoS, malware, malicious insider, etc. remain a threat to

confidentiality, integrity and privacy in the cloud. (Cser, 2016) suggests that as traditional

security strategies become outdated and ineffective in the cloud, enhanced behavioural and

malware detection, preventative strategies and effective security ecosystems among

security providers will ultimately deliver adequate security.

Figure 22 illustrates the classification of security challenges according to a survey by (Rong,

Nguyen & Jaatun, 2013a). This figure is a conceptualisation of the classification as

understood by the author of this thesis. Rong et al.(2013a) classifies cloud security

challenges into traditional and cloud categories.

Figure 22. Security challenges from a traditional and cloud-specific perspective

produced by the author of this thesis

67

According to the authors, traditional challenges describes those issues common to

traditional communication systems such as availability, while cloud challenges described

those that are uniquely introduced by the cloud. These include resource location, multi-

tenancy, trust, monitoring and logging and cloud standardization (Rong, Nguyen & Jaatun,

2013a). The simplicity of (Almorsy, Grundy & Müller, 2016)’s classification makes it easy

to understand, but nonetheless with limited usability across the entire cloud system.

Remarkably, the authors view VM security as a traditional challenge whose solutions is

available, despite clear evidence in current literature that VM security is indeed a cloud

security factor that is absent in traditional systems (Almorsy, Grundy & Müller, 2016). This

research posits challenges in VM security are unique to the cloud due to the operational

dependencies between cloud models. This notion is articulated by (Ali, Khan & Vasilakos,

2015) who distinguish operational dependencies in the virtual layer; Software developers

(SaaS) need a platform (PaaS) (Ali, Khan & Vasilakos, 2015). One may conclude that since

the outsourcing element is a core concept of the cloud, 3rd parties will introduce trust and

insurance challenges, which are unique to the cloud.

Figure 23 illustrates the classification of security challenges according to a co-residency

perspective postulated by (Roy et al., 2015). This figure is a conceptualisation of the

classification as understood by the author of this thesis. (Roy et al., 2015) classify cloud

security issues in the infrastructure, data, communication and external services integration

perspective. Co-residency attacks breach confidentiality when a malicious insider

manipulates multi-tenancy to compromise other tenants on the same physical

infrastructure. Each of the four categories is further divided into a security area sub-

category, up to security issues (e.g. hypervisor & trusted computing base as sub-divisions

of infrastructure security, resulting in integrity, confidentiality and availability issues). This

research finds this classification useful as it highlights specific attacks in cloud computing.

This classification is also simple and easy to understand, but nonetheless not exhaustive in

its presentation of security challenges. For example, while an insecure trusted computing

base is a risk to confidentiality, integrity and availability, it consequentially introduces issues

of trust, privacy etc.

68

Figure 23. Security challenges from a co-residency perspective produced by the

author of this thesis

Figure 24 illustrates a three-tier cloud layer classification by (Chraibi, Harroud & Maach,

2013). This figure is a conceptualisation of the classification as understood by the author

of this thesis. In their work, (Chraibi, Harroud & Maach, 2013) view security issues in

cloud environments pursuant to the level they belong. Thus, the authors view challenges

from six levels; hardware, VM manager, guest OS, applications, network and governance.

At the hardware level, the authors suggest availability, integrity, privacy and accountability

as pertinent security issues. Similar security concerns exist at the application level, and all

but accountability remain pertinent with network and governance. A guest operating

system (OS) can access resources in the VMM by compromising insecure design, thereby

compromising the integrity and privacy of that VMM and its tenants (Srinivasan et al.,

2012).

This is a useful taxonomy as it includes some of the core concerns found during the current

research. However, this taxonomy is limited only to general use due to the authors’ high-

level outlook on security challenges. Moreover, this research finds this taxonomy lacking

details, for instance, whether the security challenge exists internal or external of the cloud.

For instance, machines are hardware, and faults exist on the server-side or user-side. From

69

a cloud perspective, faults on the user-side do not necessarily cause the same security

concerns as faults on the server-side, this taxonomy would benefit from further detailing.

Figure 24. Security challenges from the perspective of the layer of cloud produced

by the author of this thesis

Figure 25 below illustrates a cloud development perspective to cloud security challenges

according to (Singh, Jeong & Park, 2016). This figure is a conceptualisation of the

classification as understood by the author of this thesis. (Singh, Jeong & Park, 2016) view

the reliance on web services and technologies, along with software applications and

development languages as central areas which introduce security vulnerabilities. Hence,

this research infers this classification as suggesting a development perspective. Along with

70

other security issues illustrated in the figure below, this taxonomy highlights security

challenges around metadata and web services.

Figure 25. Cloud security challenges from a development perspective produced by

the author of this thesis

Web services (Web 2.0) is suggested to introduce inherited security issues (Singh, Jeong &

Park, 2016), a line of argument similar to traditional issues posited by (Rong, Nguyen &

Jaatun, 2013a). Metadata, on the other hand, is highlighted as it contains data about cloud-

stored data. In their view, sanitization, maintenance, separation and location protection,

therefore, become the most critical challenge. While this taxonomy highlights critical

security issues, particularly those relevant to a development perspective, there is no clear

demonstration of complete consideration for other related entities. For instance, the role

of the cloud broker as shown by (Bohn et al., 2011) aims to ease the task of managing

complex service integration through intermediation, aggregation and arbitration. The

71

broker’s role which entails monitoring and managing security policies between cloud

consumer and cloud provider is of immense significance to cloud computing in general,

and specifically to a development perspective. Moreover, where many different

development languages may introduce potential vulnerabilities (Singh, Jeong & Park,

2016), the cloud broker’s intermediation role is significant.

Figure 26 illustrates a classification of cloud security challenges presented in survey

research by (Ali, Khan & Vasilakos, 2015). This figure is a conceptualisation of the

classification as understood by the author of this thesis.

Figure 26. Cloud security challenges from a development perspective produced by

the author of this thesis

72

(Ali, Khan & Vasilakos, 2015) classify security challenges according to the following:

resources pooling, underlying technologies such as virtualisation, and the operational

dependencies of cloud services on the cloud infrastructure. They identify external

communicational challenges due to the significance of the internet for communication

between the cloud provider and the customer. Internal challenges however, are viewed as

those interactional issues that arise because of cloud characteristics and technologies, for

instance, between virtual machines at a network level and another shared communication

infrastructure Architectural challenges, on the other hand include virtualisation issues

associated with a shared virtual environment in multi-tenant setup, for instant, VM

isolation. Furthermore, they view data storage issues, insecure APIs and web applications

and identity management, as architectural challenges. Contractual and legal challenges

include agreements, i.e. enforcement and insurance, between the CSP and consumer,

including performance insurance and consequences in times of breach. Moreover, legal

challenges also encompass issues around discrepancies in the application of the law due to

physical locations and/or jurisdiction.

Whereas this taxonomy comprehensively covers a wide range of cloud security concerns,

it fails to incorporate the outsourcing components of cloud computing. This is a critical

aspect of the cloud since 3rd parties form a core component of the cloud ecosystem. As

noted by (Dorey & Leite, 2011), associated risks, control, supplier sustainability and

integrity are some of the critical concerns to the cloud computing architecture. These

among others, demonstrate the deficiency of (Ali, Khan & Vasilakos, 2015)’s perspectives

to cloud computing security.

Figure 27 illustrates this research’s conceptualisation of security challenges from

architectural complexities perspectives according to (Dorey & Leite, 2011). According to

these authors, identity management, data security and trust & assurance are priority areas

for security improvements (Dorey & Leite, 2011). The authors argue that cloud security

challenges exist due to the architectural complexities and thus, trust & assurance, identity

management and data security as priority areas for security improvements in cloud

environments. Moreover, they propose that cloud security challenges exist due to the

architectural complexities within the cloud environment.

It is the opinion of the author of this thesis that multi-tenancy, control issues related to

third parties and security issues inherent to the cloud architecture such as monitoring, and

73

auditing are equally critical to security in cloud computing. Data storage concerns identified

here resemble a data life-cycle perspective motivated by the authors in (Gonzalez et al.,

2012). According to these authors, privacy focuses on the complete data life cycle, from

the point when data is generated through to its destruction, while legal issues pertain

privacy relate to guidelines in the cloud. The authors define a compliance category relating

to governance and control issues. Furthermore, they define the architecture category to

include elements such as the network, interfaces and the virtualisation issues (Isolation,

hypervisor, data leaks, and VM identification and cross VM attacks) arising due to cloud

the architecture and infrastructural implementations. According to the authors, other

challenges include decision-making, user access and authentication. This taxonomy is

deemed as limited as it does not include some critical security challenges

Figure 27. Cloud security challenges from the perspective of architectural

complexities produced by the author of this thesis

Figure 28 illustrates cloud security challenges from an organisation’s outsourcing

components perspective according to (Jansen, 2011). This figure is a conceptualisation of

74

the classification as understood by the author of this thesis. Jansen (2011) classifies cloud

security issues concerning the outsourcing portions of organisations as trust, architecture,

software isolation, identity management, data protection and availability. The author

postulates that loss of direct control of the security aspects in outsourced environments

introduces risks as it gives the cloud service provider “unprecedented levels of trust” to

(Jansen, 2011). Likewise, risk management is a challenge in an outsourced environment, as

organisations possess limited control to prepare for incidents, setting priorities and

contingency plans.

Figure 28. Security challenges from an organisation’s outsourcing components

perspective produced by the author of this thesis

75

This classification is deemed to be useful and insightful. For instance, outages as a critical

cloud security challenge to availability. In addition, this thesis considers architectural

challenges including client-side security to be a valuable consideration; cloud interactions

begin at the client workstation, through the internet to the cloud. However, this

classification could benefit from illustrating wider coverage, for instance, considering trust

issues pertinent to the consumer vs trust issues pertinent to a 3rd party such as a sub-

contractor. Moreover, it may also consider issues that are a result of implementations in

cloud infrastructure; the physical and organisational structures and facilities that constitute

the cloud (Liu et al., 2011). For instance, where cloud consumers utilise SaaS applications

to process data, often without the knowledge of how data is processed or where it resides,

compliance and privacy are some of the main security issues that arise (Subashini &

Kavitha, 2011). From jurisdiction perspective, a range of legal challenges including e-

discovery become prominent across jurisdictional boundaries. From a technical

perspective, virtualisation introduces vulnerabilities associated with isolating VMs on

shared physical infrastructure, hypervisor vulnerabilities that may result in data leakages,

malicious attempts to sniff traffic, compromised cryptographic keys and other confidential

data (Subashini & Kavitha, 2011).

Typically, one of cloud computing’s main advantages for an organisation is the reduction

in management and maintenance costs associated with computing infrastructure, including

the security. This implies that trust is assumed as shared between the cloud provider and

the consumer (Sun et al., 2011). However, considering vulnerabilities due to multi-tenancy,

virtualisation, 3rd parties and/or shared infrastructures, trust concerns arise due to the

subjective, context-based, imprecise and often transitive nature of trust (Sun et al., 2011).

As noted by the authors in (Zissis & Lekkas, 2012), depending on the cloud model, trust

tends to be an obscure property due to loss in the governance of data and applications

associated with outsourcing services.

Figure 29 illustrates this research’s interpretation of cloud security challenges from the end-

users perspective identified by (Zissis & Lekkas, 2012). These authors classify security

challenges according to an end user's concerns of security issues at the application, virtual

and physical layers of the cloud. They suggest a logical notion of the end-user as broadly

encompassed in a cloud subscriber, software developer and the person or organisations

who owns a cloud infrastructure. According to these authors, an end-user-centric

76

proposition presents a compelling argument for a Trusted Third Party (TTP), as a solution

to trust issues at a horizontal level of service (Zissis & Lekkas, 2012).

Figure 29. Cloud security challenges from the end-users perspective produced by

the author of this thesis

This classification offers a useful technical proposition towards addressing one of the most

prevalent security challenges in the cloud. More so when considering the importance of

the trust element when integrating cloud computing with other technologies such as the

IoT (Botta et al., 2016)(Díaz, Martín & Rubio, 2016).

Nonetheless, this perspective suffers from the common deficiency of single-perspective

approaches, i.e. it is only limited to local concerns for the end-user and perhaps fails to

address the wider security challenges of other dissimilar perspectives. One major

drawback, as a result, pertains to developing countermeasures. Applying (Zissis & Lekkas,

2012)’s end-user perspective implies that only clearly identified local security concerns are

77

focused upon, and thus countermeasures predominantly offer narrow end-user-centric

solutions. In fact, this taxonomy does not consider the top-down, bottom-up or left-to-

right view, and hence excludes other dimensions of the complete sense of the cloud that

clearly constitute areas of concern, e.g. other cloud entities such as 3rd parties as noted in

(Shahzad, 2014).

3.4 Proposed holistic taxonomy

The literature survey shows that existing taxonomies are not generalisable across the entire

cloud security domain. Figure 30 below clearly demonstrates this multiplicity of

perspectives to what constitutes cloud security challenges. While other perspectives are

considerably detailed, their complexity introduces some level of ambiguity. The foregoing

gives the notion that while existing perspective-driven taxonomies may be simple and

useful, representing specific perspectives of the cloud security domain, they remain solely

limited to that perspective and therefore fail to identify and communicate security

challenges from a holistic view. Arguably, this limitation also perpetuates cloud

computing’s current security dilemma where solutions are designed for specific threats.

Figure 30. Multiple perspectives to cloud computing security challenges produced

by the author of this thesis

In addition, the perspective aspect also implies that current taxonomies possess inherent

weaknesses such as ambiguity, non-exclusivity, etc. Thus, the current section proposes a

78

holistic assertion that incorporates the entire cloud paradigm, regardless of perspective.

Moreover, the holistic notion proposed further shows and supports that cloud security

challenges can be classified based primarily on the source/origin of the security incident

rather than a perspective.

Table 9. A summary of cloud security topical areas.

 Author

(D
o

re
y

&
 L

ei
te

,
2
0
1
1
)

(J
an

se
n

,
2
0
1
1
)

(Z
is

si
s

&
 L

ek
k
as

,
2
0
1
2
)

(G
o

n
za

le
z

et
 a

l.,
 2

0
1
2
)

(S
ri

n
iv

as
an

 e
t
al

.,
2
0
1
2
)

(R
o

n
g,

 N
gu

ye
n

 &
 J

aa
tu

n
,

2
0
1
3
a)

(R
ya

n
,
2
0
1
3
)

(C
h

ra
ib

i,
H

ar
ro

u
d

 &
 M

aa
ch

,

2
0
1
3
)

(S
h

ah
za

d
,
2
0
1
4
)

(A
li,

 K
h

an
 &

 V
as

ila
k
o

s,
 2

0
1
5
)

(K
h

al
il,

 K
h

re
is

h
ah

 &
 A

ze
em

,

2
0
1
4
)

Tenancy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cloud specific ✓ ✓ ✓ ✓
Traditional ✓ ✓ ✓
Compliance ✓
Physical ✓ ✓ ✓ ✓
App/software ✓ ✓ ✓ ✓
Network ✓ ✓ ✓
Availability ✓ ✓ ✓ ✓
Architecture ✓ ✓ ✓ ✓ ✓
Governance ✓
Process ✓
Infrastructure ✓ ✓
VM manager ✓ ✓ ✓
Data security ✓ ✓ ✓ ✓ ✓ ✓ ✓
Communication ✓ ✓ ✓ ✓
External services ✓ ✓ ✓ ✓
3rd parties ✓ ✓ ✓
Technical ✓ ✓
Privacy ✓ ✓
Trust ✓ ✓ ✓ ✓ ✓
Legal & SLA ✓ ✓
IDM ✓ ✓ ✓ ✓ ✓ ✓ ✓
Data Isolation ✓ ✓ ✓ ✓ ✓ ✓
Risk ✓
Malicious insider ✓ ✓ ✓ ✓ ✓

By simple inspection, Table 9 suggest that, while some areas, e.g. external services and 3rd

parties overlap, they are nonetheless diversely viewed among various perspectives.

Intuitively, this points to the importance of specificity when tackling security issues. Hence,

this thesis places emphasis on simplicity to be a positive attribute towards the usefulness

79

of a taxonomy. Gap areas in current taxonomies (suggested by adjacent x) point to several

unexplored security areas of interest which exist across different perspectives. In this sense,

simplicity limits deeper detail and hinders the adequacy of taxonomies. Whereas the

concept of the ‘source’ forms the basis upon which a taxonomy evolves, a comprehensive

approach would inform the development of the holistic taxonomy for cloud computing

security. The matrix populates earlier taxonomies against relevant areas of the cloud

reviewed by authors. This is clearly not an exhaustive list.

Having analysed the limitations of existing taxonomies with respect to cloud computing’s

important features and related security issues, this section presents a holistic taxonomy

with clearly defined categories and provides descriptions explanations of each. Unlike

taxonomies in current literature, the proposed holistic taxonomy will facilitate a

comprehensive analysis of security issues and the development of robust security

countermeasures. As the origin/source hypothesis alludes, the root of the holistic

taxonomy comprises three main categories; adopted, inherent and triggered cloud security

challenges. Figure 31 is the graphical illustration of the detailed holistic taxonomy.

To capture the multiple perspectives obtained through research, vertical categories, herein

named Cat 0, Cat 1, Cat 2, Cat 3, Cat 4 and Cat 5, are integrated. Cat 0 encompasses the

three main categories mentioned above. While holistic notion is placed in retrospect to

perspective-driven classifications discussed earlier, some contributions including, (Liu et

al., 2015)(Almorsy, Grundy & Müller, 2016) and (Huang & Wu, 2018) are substantial to

the current proposition. Below are descriptions of the proposed categories, which

according to the current author, highlight the basis for new and unique opportunities each

affords to the general cloud-wide security domain.

Cat 0: Distinguishes security challenges according to source or their origin, in line with

(Armbrust et al., 2010) who suggests security issues as being both internal and

external of the cloud. Knowledge of the source or origin presents a clear

opportunity for applying specific security countermeasures and where necessary,

tracing the source. Practically, this implies for instance, that the Same Origin Policy

(SOP) can be applied at Cat 0, where monitoring of the original location of a web

request, enabling validation of that requests (II & Al-Hamdani, 2011).

80

Figure 31. Holistic taxonomy of cloud computing security challenges.

The holistic taxonomy captures security challenges adopted security challenges (red) such as traditional security challenges and trends. It captures security challenges inherent to the cloud architecture (blue) such as

business and architectural issues. Moreover, it captures cloud security challenges which arise from implementations in cloud environments (black).

81

Cat 1: Consists of two sub-classes that provides more detail into the nature of the

challenges described in Cat 0. When considering cyberspace in general, elements

of this category can be extended to capture emergent behaviours

Cat 2: Distinguishes security issues simply as technical or non-technical. Based on this

categorisation, it is easier to effect efficient prioritising and decision-making, for

instance, non-technical business priorities would attend to concerns such as

governance and policy matters.

Cat 3: Provides detailed descriptions of the technical and non-technical aspects of Cat 2.

Put into perspective, Cat 3 describes traditional security challenges (Cat 1)

emanating from cloud’s peripherals (Cat 0) which are technical and/or non-

technical in nature (Cat 2), but only exist upon elevation in the cloud (Cat 3). As

an example, when considering the architectural perspective, Cat 3 describes

technical challenges pertaining to the consumer and provider and non-technical

challenges pertaining to the broker, carrier and auditor.

Cat 4: Describes attributes that have a direct impact upon security, including networking

attributes in the traditional sense result in network attacks such as the man-in-

middle or DoS. Similarly, attributes that describe data result in data breaches, etc.

Virtual layer attributes result in multi-tenancy, virtual machine management and

hypervisor security issues.

Cat 5: As has been illustrated throughout this paper, there are many security challenges

that affect the CSP, consumer, carrier, auditor and the broker. This category

identifies a spectrum of security challenges covering the entire cloud domain. This

category is not exhaustive, thus, security challenges listed in this category exist for

illustrative purposes.

3.5 Analysis

As noted earlier in this chapter, existing literature on classifying cloud security challenges

fails to represent a comprehensive view of the cloud security continuum. Moreover, it is

quite clear that no research efforts go towards consolidating existing multiple textual

82

perspectives, for the benefit of obtaining useful value for security practitioners. By

combining viewpoints of what constitutes current security concerns from academia and

industry, this research substantially adds to the growing body of literature on cloud

security. The holistic approach employed is unambiguous as it integrates cloud

computing’s many dimensions; services, entities, attributes, layers, characteristics, etc. and

links all its perspectives into non-specific categories (Cat 0 — Cat 5). In this manner, each

category represents a branch of potential security incidents.

The proposed holistic taxonomy comprehensively eliminates gaps introduced by

perspective-driven views of the cloud, provides a basis for further research and facilitates

the development of security strategies. Another clear opportunity is the possibility to

enforce accountability in any cloud entity, including the enforcement of punitive or

corrective measures through easier identification of the source or origin of a security

incident. From an incident response point of view, the ability to identify the source and/or

origin of a security incident means response teams spend more time implementing

mitigation measures, rather than trying to identify the incident. Furthermore, the proposed

holistic taxonomy highlights security boundaries, including where security systems can be

placed. Thus, considering UUURs, Cat 1 of the proposed holistic taxonomy can be

extended to capture emergent phenomenon and solutions. Figure 31 addresses the

obtaining view that cloud security challenges are addressed in isolation. It raises an

important concern for decision-making around security solutions; which is itself a critical

factor in the security and requires better strategy and planning (Paquette, Jaeger & Wilson,

2010).

To enhance the security posture of cloud computing, the focus should be firmly placed on

identifying and placing into context security challenges based on their source/origin

foremost, before extending to the actual security incident. By considering source/origin as

the basis for a holistic classification, this research highlights planning as a critical phase

that is significant when designing and implementing security countermeasures. Hence, the

proposed holistic taxonomy enables better planning for security design and provides a

contextual illustration of the relationship between cloud computing and its peripherals for

research analysis. For instance, Cat 1 enables cloud solution planning by mapping any

organisation’s objectives including their security requirements.

83

Trends such as Big Data are at the same level as business processes and procedures and

the security issues in the architecture and infrastructure. This implies that in a real

environment, Cat 0 and Cat 1 which highlight issues at the perimeter-level of security,

enable organisations to make use of their existing security technologies. This is an

important addition considering deficiencies in existing taxonomies. Furthermore, the

proposed holistic taxonomy integrates Cat 3 following NIST’s view of cloud’s computing:

cloud entities, attributes and models. Addressing security is also contingent upon how

organisations are prepared to avoid or minimise the impact of insecurity. This readiness is

what determines the appropriate security solutions and the degree of proactiveness that

ensure that unforeseen events or black swan events are well-prepared for. Moreover,

employing the most appropriate countermeasures in the cloud includes applying the

correct mechanisms (tools, techniques, procedures and approaches), correctly presented

requirements and adequate policy that defines the lower and up boundaries of what is

allowed and what is not allowed. These approaches can be matured by applying the holistic

taxonomy proposed in this research. Several techniques and approaches to secure cloud

environment exist, some focusing on the technicality of achieving a security design, while

others focus on the approach. For instance, CloudProtect is designed to provide privacy

and confidentiality in the cloud (Ardagna et al., 2015b). (Rahman & Choo, 2015)

Conceptual Cloud Incident Handling model addresses security from the cost perspective

of an incident handling investment, cost of incident detection and analysis, the cost of

responding to an incident and post response cost.

Yet, some challenges remain open. The ability to visualise deficiencies in security solutions

designs requires that visualisation techniques are revised. Evidence in the literature

suggests that design outcomes are reliant upon the visualisation technique; from earlier

systems with lower dimensions and numbers to complex systems with complex

information (Chalmers, 2013). In the latter, is it suggested that visualisation is

incomprehensible due to a large amount of information to be represented (Knight &

Munro, 1999). Another challenge pertains to the process itself. Manually interpreting

corpus textual data is a tedious process and prone to errors and omissions.

84

3.6 Summary

The work presented in this chapter aims to address the foundational aspects of the scope

of this thesis, by effectively placing cloud computing security challenges into context. It is

necessary after all, to explore what security issues exist, how they are communicated and

understood in academia and in practice, and how this knowledge can be applied to enable

the bio-inspired approach proposed. A proposed definition for a holistic taxonomy (See

section 3.2.1) identifies the requirements for a holistic notion specific to cloud computing

security challenges. The holistic design approach and the holistic workflow process are

useful guides to the holistic taxonomy. The holistic taxonomy presented in section exposes

security areas of the cloud and proposed as useful to facilitate the design of enforcement

or corrective countermeasures based upon the source or origin of a security incident. The

proposed taxonomy thus satisfies H1 of the research hypothesis.

85

Chapter 4 A TRIZ-based approach

for prey-inspired cloud computing

survivability

This chapter presents a TRIZ-based prey-inspired survivability design method to facilitate bio-inspired

design as applied from prey survival to survivability in cloud computing. This integrates both normative

and descriptive perspectives. Based upon a problem-driven approach, a 3-step process facilitates the

interdomain transfer of concepts (retrieval, mapping and transfer), whereas TRIZ’s generic approach

suggests specific solutions for cloud computing challenges based upon systematically deduced resolutions.

Hence, this chapter addresses the hypothesis with respect to the applicability of ‘escalating survival

behaviours and mechanisms’ to enhance survivability. Since this method presented are systematic, the

approach proposed here is generalisable for use in other domains. This chapter is based on contributing

publications RP3, PR4 and RP6.

4.1 Introduction

Cloud computing presents a new dimension to the longstanding bio-inspired design

challenge which impacts upon innovation itself, i.e. how to create innovative solutions and

resolve design requirement contradiction. While several bio-inspired design approaches

(Nagel & Stone, 2011a) (Vincent et al., 2006) exist, there is limited empirical studies to

compare them. The design problem for cloud computing concerns contradictions between

survivability and security requirements and cloud environments’ attributes. For instance,

how to address security challenges due to the cloud’s enlarged attack surface while

preserving broad-network access which enables cloud computing to be accessible

86

anywhere on any device. In this case, how to improve the design requirements in question

while preserving the cloud’s attractive attribute becomes the issues of concern.

Analogical design, functional modelling and other reasoning methods (Glier & McAdams,

2011) attempt to resolve this problem. However, these approaches are built on functional

design tools and methods which require in-depth interdisciplinary knowledge to develop

solutions (Nagel & Stone, 2011b). Bio-inspired design, for instance, relies upon a designer’s

understanding of the underlying biological system for efficient inter-domain transfer of

information. An engineering-to-biology thesaurus (Nagel, Stone & Mcadams, 2010) thus

becomes useful through direct translation or abstraction of biological terminology to

engineering. Notwithstanding, bio-inspired systems such as self-managed cloud platforms

(Hariri, Eltoweissy & Al-Nashif, 2011)(Ali, Robson & Boukerche, 2016) possessing the

complexity attributes of inter-networked environments resting on established evolution

principles of ‘self’ (Meisel, Pappas & Zhang, 2010) have been proposed.

Earlier work by the author of this thesis identifies a number of bio-inspired algorithms

where the predator-prey system are specifically identified as vastly useful for high

adaptation (Mthunzi & Benkhelifa, 2017). As noted by (Andersson et al., 2009), enhancing

error-free and automated survivability in dynamic, complex and unpredictable

environments entails identifying what is central to adaption. Nonetheless, it is established

that the use of biological systems in cloud computing security and survivability is an under-

researched area (Stoykov & Yazidi, 2016). This deficiency in research forms the basis for

this chapter’s work to develop generalisable approaches for prioritising and combining

interdisciplinary objectives in a formal manner and offer systematic solutions to the cloud

computing security domain.

The remainder of this chapter is as follows: Section 4.2 - 4.3 presents the method; the

problem-driven approach applied to identify a biological solution for cloud computing.

The 3-step process is a systematic approach for transferring natural concepts to cloud

computing, and the TRIZ method for innovative solutions. Section 4.4.1 shows the

application of TRIZ. Section 4.5 presents a NetLogo pilot experiment and Section 4.6

concludes the chapter and summarises the main findings.

87

4.2 Problem-driven design context

The current chapter’s contributions postulate that given an old problem (Pold) with an old

solution (Sold), a new problem (Pnew) can be conceptualised with new partial and null

solutions (Snew) in the solutions space Sold to Snew. Hence, prey animals’ solution against

predation is proposed as core requirements for cloud computing’s survivability problem.

Thus, solutions are proposed as effective for cloud computing because, (1) each serves to

address specific contradictions, (2) solutions exist at varying levels of abstraction. (3) The

process suggests core areas for future work in this research. Hence, one of the main

contributions of this chapter is the systematic method for biology-to-cloud design, to

facilitate the efficient and unambiguous transfer of concept and information. Figure 32

shows the generic processes. Dotted line indicates the boundary of the taxonomy

development processes, while the solid line indicates the outer boundary. Arrows indicate

the direction of flow between the processes. Briefly, an input model which in the current

chapter, represents the multiple contexts of security within cloud computing’s security

fora.

Figure 32. Holistic problem-driven approach for bio-cloud computing design

produced by the author of this thesis

88

On the other end, the output model provides the holistic tool that specifies the security or

survivability baselines and contexts. In the current chapter, this is specifically useful for

information retrieval (described below). However, the output model can be used for

security systems baselining, security specifications and configurations or security planning.

Lower level processes comprise the taxonomy requirements loop (1) - thematic modelling

of the cloud security paradigm and functional analysis which deconstructs, define and

assigns categories to concepts. A design loop (2) models the continuous processes of the

functional analysis and the synthesis; to functional concepts to those that resemble the real

physical cloud environment. This useful as it facilitates the definition and extension of

additional security concepts and elements (these are represented as categories, sub-

categories, sub-sub-categories, etc. in – holistic taxonomy) of the holistic taxonomy.

Analysis and control facilitate the evaluation of the analysed cloud security concepts, which

enables the exploration of gap areas and trade-offs, both useful inputs for the synthesis

model. For the interested reader, a range of commonly applied taxonomy development

methods exist in the literature (Nickerson, Varshney & Muntermann, 2013) presents an

interesting cross-domain review.

4.3 3-step concept transfer process

Although several studies focus on interdisciplinary (cloud and biology) bio-inspired design

methodologies, there is a deficient focus on how interdomain concepts are retrieved,

mapped and integrated before transfer into a target domain. This section outlines a 3-step

process shown in Figure 33, to facilitate efficient concept transfer from biology to cloud

computing.

Figure 33. 3-step process produced by the author of this thesis

89

This is the first part of the broader methodology whose conclusion is the application of

TRIZ parameters on contradicting but transferred concepts. Besides the methodological

transfer, this process highlights the necessary steps to alleviates common ambiguity

challenges in the interdomain transfer. The theoretical significance of this process is in

modelling of generic concept extraction and transfer processes necessary for

interdisciplinary design in anticipation of limited expert information in at least one domain.

4.3.1 Retrieving concepts

Several methods exist in information retrieval areas such as data mining and text mining,

etc. This is an important step for effectively mapping of features and establishing

relationships among interdisciplinary knowledge. For the purposes of this research, let us

assume an arbitrary finite set of systems or a system of systems, where systems or a system

of systems might correspond to natural systems, e.g. plants, mammals, reptiles, etc. They

might also correspond to some form of relationship among system components or sub-

systems across concepts such as parenting, hierarchy, habitat, etc. It may also be the case

that a natural system can be specified using its features or a combination of features.

Starting from a quasi-formal characterisation standpoint, let us suppose that a system X

possesses some similarities to system Y in some aspect. Moreover, let us also suppose that

system X possesses some unique feature Z, such that system Y possesses feature Z or

some other feature, Z*, which are like Z. Given two domains of interest; source domain,

N, and target domain, C, to represent a natural system and cloud system, respectively. Each

is comprised of a set of objects; a derived set of first order and/or high-order statements

𝑁 = {𝑁𝑜 , 𝑁𝑝, 𝑁𝑟 , 𝑁𝑓} are components of the source domain, while their counterparts

{𝐶𝑜, 𝐶𝑝, 𝐶𝑟 𝑎𝑛𝑑 𝐶𝑓} are components of the target domain. Terms o, p, r and f define

unique relationships between corresponding objects in both the target and source domain.

Hence, s-feature is a set of cardinality n, whereupon nature and cloud

system are defined according to the following:

• A nature system (nature-System), N, is a set of m-features, where {𝑁 =

𝑁1, 𝑁2, . . 𝑁𝑚|𝑚 ≥ 1}{𝑁 = 𝐹1, 𝐹2, … 𝐹𝑚|𝑚 ≥ 1}, implying that nature system is

are a set of m-tuples, which is true in N for both the set of nature systems and the

90

features that define N. It may not be the case that n-features are strictly the same

in natural systems. For brevity sake, n-features shall from this point on be referred

to as features, in respect to concepts and attributes of natural environments.

• A cloud system (cloud-System), C, is a set of c-features, where {𝐶 =

𝑐1, 𝑐2, … 𝑐𝑛|𝑛 ≥ 1}{𝐶 = 𝐹1, 𝐹2, … 𝐹𝐼|𝐼 ≥ 1} . It may as in

nature, be the case that not all c-features are the same in all cloud systems. For

brevity sake, c-features from this point on will be referred to in respect of objects

as attributes.

4.3.2 Mapping concepts

Survivable preys possess unique attributes and are well adapted to their environments. In

addition, they exhibit strong and successful predation avoidance mechanisms, which

demonstrates that historical interactions have far-reaching implications for future species

(Resetarits, 2001). By understanding such behaviours, it is possible to adopt/adapt such

processes for use in cloud computing. Mapping aims to plausibly demonstrate that a

proposition is true due to known or accepted similarities between a nature-systems and

cloud-system, despite known or acceptable differences between both systems.

Figure 34 below illustrates a generic mapping scheme. The output of mapping is a system

consisting of unique objectives; Obj1, Obj2..., Objn, unique attributes; Attrib1, Attrib2...Attribn,

which serves unique benefits: Benf1, Benf2...Benfn. First, domains are distinguished according

to structure, behaviour and function of their systems. In addition, mapping entails that

known differences and similarities are clearly identified, particularly in relation to the

central mapping concept. In this research, the central concept is survivability.

Hence, with a set of keywords, the task for mapping is to find a graph function, a set of

connected sub-graphs and extract an accurate ranking function to produce the preferred

features.

91

Figure 34. Mapping cloud to biological systems; structure, behaviour and function

features, around a central survivability concept

Figure 35 is an illustrative example of a graph function for mapping cloud computing and

prey systems. Hence, the definition below is presented add clarity to the remainder of this

work.

Definition 4 (mapping). Links existing knowledge in N and C, despite known or acceptable

differences between both systems, i.e. , , , and , where starred symbols represent the

inferred similarity.

Figure 35. A graph example of cloud-prey system mapping

92

4.3.3 Transferring concepts

For the purposes of discussion, simple natural language (NL) keywords for the survivability

concept are used despite their known challenges. Since the source of biological information

is critical, its simplicity (in understanding) is particularly critical for non-biological persons.

Thus, using suitable search tools or sources such as in (Sadava et al., 2011) will provide

simple understandable background information. Moreover, while searching biological

terms tends to be straightforward, a natural language keyword search for analogies tends

to be ambiguous, considering that synonyms tend to increase the number of matches per

functional keyword (Vakili & Shu, 2001). Along with works by (Sullivan & Regan, 2011),

transfer in this section focuses upon verb terms as they objectively enhance a focused

search wider biological mechanisms to perform the intended actions for cloud computing

problems. Consider the following: Suicide as a biological function of natural prey animals

defines:

• Objective – To bring about death

• Benefits – sustain living organisms

• Attributes – predation risk, ageing

In fact, keyword disambiguation methods such as those in (Sommarive & Report, 2013)

are suitable to address this challenge. Investigating keyword disambiguation methods is

however outside the scope of this thesis. For in-depth details and example techniques and

tools, the interested reader is recommended (Ilevbare, Probert & Phaal, 2013). Based upon

the cloud computing problem outlined above, transferring concepts from nature to the

cloud requires that a designer deduces the general solution using TRIZ. This entails one

to decide on the cloud features to improve (i.e. those identified as degrading the

survivability concept) and the features to preserve (i.e. those which enhance the

survivability concept). For purposes of this work, an interactive online tool (TRIZ40)

(Creativity, 2019a; Domb et al., 2011a) facilitates this process. For purposes of this research,

three (non-exhaustive) survivability natural language keywords which describe the

survivability problem features (implied in UUUR features) are identified as central to

improving the cloud computing problem, the difficulty of detection, adaptability and ease

of repair.

93

4.4 TRIZ-based approach

Although TRIZ’s inventive principles have found use in cloud computing, these have been

largely limited to the business management aspect of the cloud, for instance in (Hsu, Tsai

& Chen, 2013). Perhaps this is because the original TRIZ is limited where a domain has

no explicit match with TRIZ’s forty principles. In recent years, however, TRIZ has been

adapted to suit other environments such as information technology (Beckmanna, 2015).

Based upon inspiration from prey animals in nature, useful analogies are derived from

specifically resolved contradictions. The TRIZ method contributes to identifying specific

design requirements for future cloud survivability solutions. In this research, it is aimed to

address cloud computing security challenges imposed by UUURs.

While prey animals must be exhaustively investigated to garner broader representation of

their natural domain, integrating a problem-driven approach (where survivability problem

motivates the search for biological analogies towards a solution) (Sullivan & Regan, 2011),

means the current contribution supports the intended interdisciplinary design. To

understand TRIZ and its application, below are brief descriptions of TRIZ’s concepts

which are central to this work. These include, but are not limited to, the general TRIZ

process, 40 inventive principles, contradiction matrix and contradiction (concept).

40 inventive principles: Based upon an analysis of 40000 patents, the TRIZ inventor

suggested the existence of a pattern to most inventions, implying the existence of

a solution to all problems embedded within the inventive principles (Labuda,

2015).

Contradiction: TRIZ’s inventor suggested contradictions as the administrative, technical

and physical constraints which arise as a result of incompatibility that exists

between a design’s desired features for improvement, and the system (Hsieh,

Chen & Do, 2015). In fact, it is argued that the invention itself entails the solving

of contradictions.

Contradiction Matrix: The inventor introduced a matrix of 39 technical parameters which

aim to resolve technical contradictions. Parameters in the column represent

features which are obstacles to desired solutions while column feature is intended

for improvement. An intersection points to the contradiction solution. An

94

example is BioTRIZ’s contradiction matrix (Craig et al., 2008) with a specific

focus on extended solutions from living nature.

The TRIZ’s systematic process is illustrated in Figure 36 is adapted from (Ilevbare, Probert

& Phaal, 2013). The underlying TRIZ process enables effective bio-inspired design for

cloud computing.

Figure 36. An illustration of TRIZ’s systematic process adapted from (Ilevbare,

Probert & Phaal, 2013). By following the TRIZ process from start (green) steps

represent TRIZ’s generic components whereas P1 and P2, S1 and S2 represent

TRIZ abstract problems and solutions, respectively.

As (Russo & Spreafico, 2015) postulates, abstraction enables TRIZ principles to be

applicable across a wide range of fields. Unlike other problem-solving methods such as

brainstorming, lateral thinking, mind mapping, etc. TRIZ provides the additional capacity

to suggest conceptual solutions (defined by TRIZ’s inventive principles) based upon a

specific problem is identified. Moreover, is it possible to further develop specific factual

solutions? Defining “our problem” seeks for a specific problem concerning an area to

which a solution is required. In addition, defining the “general problem” thus reduces the

problem into its elements which are then applied to the contradiction matrix. Based on

this latter, a general solution is a combination of TRIZ’s inventive principles to eliminate

95

the contradiction. Finally, the specific solution may draw analogies for the specific problem

and formulates specific solutions.

4.4.1 Applying the TRIZ

This section shows the application of TRIZ. Although originally designed for solving

problems in physics and chemistry, TRIZ has been applied to provide logical, innovative

and inventive creations across many domains (Ilevbare, Probert & Phaal, 2013). The

application of TRIZ to cloud computing’s survivability problem revolves around findings

by Altshuller (1999) that interdisciplinary problems and their solutions, i.e. science and

other domains, are similar and have repeated patterns of evolution across domains. In

addition, the implications of innovation exist beyond the disciplines for which they are

developed.

4.4.1.1 Defining the survivability problem

Defining or conceptualising the problem is the first element of the overall TRIZ problem-

solving process. Hence, for the purpose of this research, defining the survivability problem

is illustrated in Figure 37. As an overview of this process, the following three central

questions should be addressed: (1) What is the problem in cloud computing, (2) What

needs to the achieved? and (3) What are the obstacles to addressing the problem and

achieving the objective?

The survivability problem illustrated below summarily contemplates the following: How

to achieve survivability and security in view of UUUR while ensuring resiliency (cost) and

reliability on the fly? How to improve the operational challenge of monitoring and

detecting UUURs considering unpredictability due to cloud computing’s large surface area,

broad network access and the complex multi-party interactions? How to improve

survivability considering important survivability tread-offs including secure, reliable and

cost-beneficial service provision?

96

Figure 37. Defining the survivability problem, adapted from (Kasravi & Fellow,

2010)

4.4.1.2 Defining a generic problem

Three (non-exhaustive) survivability features identified as central to improving the cloud

computing problem, detection, adaptability, recovery and ease of repair. Figure 38

illustrates the generic problem under this consideration. Briefly, this figure conceptualises

the problem for cloud computing in the context of the processes, tools and objects within

an environment. For instance, the problem of adapting is shown in relation to the recovery

processes as effected by parameter changes. Recovery meanwhile influences some object

state, for instance, a virtual machine.

97

Figure 38. Generic illustration of the survivability problem

Table 10 gives a summary and description of each. An interactive online tool; TRIZ40

(Creativity, 2019b; Domb et al., 2011b) facilitates the TRIZ process of finding solutions by

resolving contradictions.

98

Table 10. Features to improve and to preserve and summary of corresponding TRIZ principles

Feature to Improve Feature to preserve TRIZ principles to solve the contradiction

Difficulty of detection

Area of a stationary object

2 Taking out: Separate an interfering part or property from an object, or single out the
only necessary part (or property) of an object
16 Partial or excessive actions: If 100 percent of an object is hard to achieve using a given
solution method then, by using 'slightly less' or 'slightly more' of the same method, the
problem may be considerably easier to solve
30 Flexible shells and thin films: Use flexible shells and thin films instead of three-
dimensional structures. Isolate the object from the external environment using flexible
shells and thin films
39 Inert atmospheres: Replace a normal environment with an inert one. Add neutral parts
or inert additives to an object

Area of moving an object 2 As above; 16 As above; 30 As above; 39 As above

Device complexity

10 Preliminary actions: Perform, before it is needed, the required change of an object
(either fully or partially). Pre-arrange objects such that they can come into action from the
most convenient place and without losing time for their delivery
15 Dynamics: Allow (or design) the characteristics of an object, external environment, or
process to change to be optimal or to find an optimal operating condition. Divide an object
into parts capable of movement relative to each other. If an object (or process) is rigid or
inflexible, make it movable or adaptive.
28 Mechanical substitutions: Change from static to movable fields, from unstructured
fields to those having structure.

Adaptability

Reliability

13 The other way around: Invert the action(s) used to solve the problem, make movable
parts (or the external environment) fixed, and fixed parts movable, Turn the object (or
process) 'upside down'.
24 Intermediary: Use an intermediary carrier article or intermediary process, Merge one
object temporarily with another (which can be easily removed).
35 Parameter change: Change an object's physical state, Change the concentration or
consistency, Change the degree of flexibility.

Ease of repair

 1 Segmentation: Divide an object into independent parts, make an object easy to
disassemble, Increase the degree of fragmentation or segmentation.

99

4 Asymmetry: Change the shape of an object from symmetrical to asymmetrical, and If an
object is asymmetrical, increase its degree of asymmetry.
7 Nested dolls: Place one object inside another; place each object, in turn, inside the other,
Make a part pass through a cavity in the other. 16 As above

Extent of automation

27 Cheap short-living objects: Replace an inexpensive object with a multiple of
inexpensive objects, comprising certain qualities (such as service life, for instance).
34 Discarding and recovering: Make portions of an object that have fulfilled their
functions go away (discard by dissolving, evaporating, etc.) or modify these directly during
operation; Conversely, restore consumable parts of an object directly in operation.
35 As above

Ease of repair

Cost

1 As above; 10 As above
32 Colour changes: Change the colour of an object or its external environment. Change
the transparency of an object or its external environment.

External harm affecting the
object

2 As above; 10 As above; 16 As above; 35 As above

Loss of substance 2 As above; 27 As above; 34 As above; 35 As above

100

4.4.1.3 Defining a generic solution

Based upon the generic problems and the identified TRIZ parameters in Table 12, the

generic solutions, i.e. analogies, are developed briefly explained in this section. For each

generic solution, a cloud computing example is provided for to give closer semblance to a

specific cloud computing environment and potentially address the “factual problem

directly” (Ilevbare, Probert & Phaal, 2013). For each of the three survivability problems,

detection, adaptability and ease of repair, recommended TRIZ parameter solutions are

conceptualised as analogous examples to the inspirational prey system. Furthermore,

analogies for cloud computing survivability are derived based upon prey’s anti-predation

and predation avoidance mechanisms.

Detection: Autonomous members of the community cooperate to manage (including

eliminating) entity-level activities that negatively impact the global state of the

community (parameter 2: Taking out). Also, rather than waiting to respond after an

attack, proactive observation, planning and alarms calls improve the timeliness of pre-

planned predation avoidance and anti-predation processes and/activities (parameter

10 Preliminary actions). Self-organising communities enable survivability objectives to

be identified, changed and updated dynamically according to changing requirements

(parameter 15 Dynamics). Besides, partial or excessive actions allow the execution of

a range of actions (at times in combination) that escalate (preliminary-to-post incident)

from passive to aggressive and/or vice-versa, according to an on-going

process/activity (parameter 16 Partial or excessive actions). In addition, as in prey

animals which develop anti-predator mechanisms to ward off attacks, for instance,

mechanical, chemical, physical or behavioural, substituting mechanisms in response

to stimuli can give advantage to an adversary (parameter 28 Mechanical substitution).

Adaptability: Segmentation means that autonomous entities are designed with properties

that enable local-level activity and yet with a collective global goal (parameter 1

Segmentation). In addition, adaptation entails that unusual processes are enabled

achieve a global goal (parameter 13 The other way around). For instance, sacrificing

an entity in the first instance, rather than implementing costly countermeasures.

Moreover, enabling partial or excessive actions means that a combination of actions

(preliminary-to-post incident) that escalate from passive to aggressive and vice-versa,

according to on-going survivability process/activity objectives (parameter 16 Partial

101

or excessive actions). For instance, instead of creating new entity instances using

unnecessary resources to meet the same survivability objectives, rapidly deploy

prototypes with only limited requirements (parameter 27 Cheap short-living objects).

Moreover, ddiscarding and recovering (parameter 34 Discarding and recovering)

allows survivability functions to be modified after an entity instance is deployed, to

enable rapid discarding of “costly” entities to fulfil survivability objectives. In addition,

reconfigurable survivability parameters can be changed on the fly (parameter 35

Parameter change)

Ease of repair: the ability to change the appearance of an object or the external

environment (parameter 32 Colour changes) is uniquely critical for enable recovery.

In addition, segmentation, replacement or elimination, preliminary actions; partial or

excessive actions, parameter changes including after an entity is created are applied as

describe for adaptability and detection.

The following analogies provide some practical examples.

While some analogies postulate that computing infrastructures are homogenously

susceptible to attacks, other studies (Gorman et al., 2004) postulate susceptibility to attack

as being heterogeneous. In this research, predator-prey analogies aim to capture unique

diversification mechanisms that ensure survivability in both homogeneous and

heterogeneous prey species. Predation avoidance and anti-predation mechanisms describe

the main objectives of diversification, which define how prey species behave to improve

its selection and survivability (Jr, Jr & III, 1991). Anti-predation mechanisms describe prey

techniques, which reduce the probability of predation, while predation avoidance describes

mechanism prey uses to remove itself from the same habitat as the predator. Several works

show Lotka and Vito Volterra’s model (Luo, He & Li, 2004)(Rozenfeld et al.,

2006)(Campillo & Lobry, 2012)(da Silva Peixoto, de Barros & Bassanezi, 2008) as the

simplest description of the predator-prey system in which populations changes are a

product of the rate of reproduction, the rate of predation and the interaction between

species.

Predator-prey systems (PPS) demonstrate complex relationships among interdependent

entities; where one depends on the other for food and survival (Colomer et al., 2011).

Behavioural, interactional and functions of individual ‘networks’ impacts on how biological

systems change and adapt in time, self-organise and diversify (Zhou, 2009). Thus, a

102

predator is able to assess and learn the quality of prey resources while hunting (Williams &

Flaxman, 2012). In contrast, the latter line pertains to exploring the dynamic in entities

within a biological system, including how they associate.

4.4.1.3.1 Ecosystem

Figure 39 is a high-level illustration of the ecosystem analogy which characterises the

functional and behavioural aspects of cloud systems and the inherent survivability

processes summarised as recommended TRIZ. An ecosystem in technology is given the

familiar analogy of information environments or digital/media ecologies to include

technologies and people in complex dynamical systems (Betz & Stevens, 2013).

Figure 39. Ecosystem analogy

This analogy will enable the analysis of varying survivability concepts to support

innovation at all levels; strategic, methodological, operation and organisation. Entities act

in response to triggers (internal and external) within their environments, whereupon an

action-type leads to outcomes (desired or undesired), e.g. extinction in prey or survivability

in the cloud. In nature, prey animals obtain food and information (resource and triggers,

respectively) from their environment and respond with action. Actions, in turn, affect the

environment, which retrospectively affects the opposing species. Outcomes of

103

encounters/interactions among competing and non-competing animals determine the

extinction of species. This research considers the survival of cloud systems where

adversaries (attackers) and defenders coexist in cloud environments; whereupon both

entities are enhanced by cloud computing’s abundant resources (input). Outcomes of

adversarial actions affect the cloud, as much as the outcome of interactions between

defenders and adversaries determine the survivability of the environmental. Hence in this

context, the number of cloud resources, and stimulus (input) from the cloud environment,

and the nature of responses (behavioural and/or mechanistic action) are important to

survivability. This analogy considers the environment as a physical system with entities

who belong to communities and possessing processes (attack-respond analogy,

survivability analogy).

Thus, an analogy for the cloud ecosystem that is dynamic and consisting of several entities

(Kushida, Murray & Zysman, 2012) is presented. Our premise of the ecosystem analogy is

in line with the authors in (Huston, DeAngelis & Post, 1988), who assert that variables

including population size are useful to describe organisms in nature, from and individual

to the community. It is key to note however, that individuals’ organisms in nature have an

equal effect on each other since interactions are inherently local (Huston, DeAngelis &

Post, 1988). Hence for the current ecosystem analogy, ecological parameters and

constraints are assumed in their general rather than explicit sense. As such, a community

is conceptualized as being both individualistic and integrated, whereupon an individual is

described per its structure.

4.4.1.3.2 Entities analogy

The analogy in Figure 40 is inspired by prey parents who live in groups to improve the

collective ability to defend and protect themselves and their offspring against hunting

predators. Entity attributes are associated with survivability actions which are in turn

associated with the strategic decisions towards survivability. Understanding just how prey

parents estimate optimal foraging distance from their offspring is perhaps one behavioural

attribute to give insight for future work. Nonetheless, what is indeed known is that prey

parents can sacrifice an injured or severely compromised offspring to increase the chances

of survival for other offspring. The analogy proposed views virtual machine vulnerabilities

synonymous to prey offspring. In this regard, VMs in a cluster represents the offspring of

104

prey animals, while the hypervisor represents the parent, as it manages the greater functions

of VMs.

Figure 40. Cloud entity analogy

4.4.1.3.3 Community analogy

Research efforts in the predator-prey domain revolve along exploring the importance of

behavioural and interactional attributes between two entities, and their implications. In

addition, it focuses on how the functions of individual “networks” depend on unique

attributes inherent to their communities. The former pertains to evolution; how biological

systems change and adapt in time, for instance, the ability to learn and remember

information typified by organic self-organisation and individual diversity” (Heiser et al.,

2015). Or the ability of a predator to assess and learn the quality of prey (Williams &

Flaxman, 2012).

Other research efforts pertain to the dynamic in entities within a biological system,

including how they associate. In this regard, attention is upon exploring how animal

communities remain the same while the state of individuals changes dynamically due to

instance, foraging, death or reproducing, etc. Examples include group size and group

formation in foraging primates (Janson & Goldsmith, 1995), feeding habitat selection

105

according to where prey is easier to catch as opposed to where it is abundant, etc. (Balme,

Hunter & Slotow, 2007). The examples clearly demonstrate how the autonomous nature

of the attribute of natural systems has implications on the behaviours of individuals and

vice-versa. The foregoing is typical in nature as epitomized by (Pinol & Banzon, 2011)’s

adaptation of Lotka and Vito Volterra’s model, to encompass a survival probability or

Verhulst Factor.

The community analogy is conceptualised to capture system dynamics (data) in

heterogeneous cloud environments, whereupon interactions determine the construction

of community. In the previous hypothesis, entities’ actions describe concerted mechanisms

against attacks. The community analogy which identifies high to low-level dynamics as

captured in a cloud infrastructure. Just like prey animals, entities in the cloud although

autonomous, belong to a general community. Cloud defenders, for instance, share a

common survivability goal. At the local level, interaction dynamics determine decision

strategies, including those actions taken to ensure survival. of the local and global levels.

This analogy is in the future implementation of virtual machine communication; inter, intra

or remote, in cloud computing (Jiang, Xu & Wang, 2006) considering local and global

dynamics of an environment. The community analogy juxtapositions multi-tenancy in

cloud environments, against virtual machine vulnerabilities and identifies communication

or interaction as a powerful component for the survival of entities. This begs the question

of how to design VM “communicate” from one topology to the next, from one technology

to the next, within and across tenants, within and across different cloud computing

environments.

4.4.1.3.4 Attack-response analogy

Ecological literature shows that foraging increases the risk of predation for prey animals

(Grand & Dill, 1999)(Sundell et al., 2004)(Grand & Dill, 1999)(Luttbeg & Schmitz, 2000).

However, efficient response to alarm calls and chemical responses during an encounter

with predator reduces predation losses (Mirza & Chivers, 2001). As been implied in the

entity analogy, the ability for parents to defend their offspring is paramount for the survival

of their species. In this analogy, prey parents actively engage an attacking predator to

distract it away from their offspring, which increases chances for offspring to conceal their

presence and/or flee. In extreme cases, fighting a persistent predator is a known behaviour

especially among cooperating prey parents. In their work, (Jr, Jr & III, 1991) show in their

106

detailed description of such extreme cases, that is it possible in prey communities to

employ poisoning actions as a countermeasure against predators. Similarly (Somayaji,

Locasto & Feyereisl, 2007) shows that prey animals are known to perform a sacrifice to

improve their survival chances. Logically, this implies global survival is more critical.

The foregoing is hypothesised as the action analogy (proactive prior and partial or

excessive) which are implemented against threats and attacks on virtual infrastructures and

services. The attack-response analogy describes unusual corrective actions including

escalating actions (preliminary-to-post incident and from passive to aggressive), according

to an on-going process/activity to improve outcomes performed by cloud security systems

or to avoid and recover from compromise (TRIZ principles to address the difficulty of

detection and ease of repair). Actions may include protecting assets by hiding their visibility

and increasing the complexity of being observed. Increasing the complexity of an asset

increases the cost of an attack, which in turn increases the complexity of executing an

exploit and gives an advantage to the defender (McQueen & Boyer, 2009). In (Yuill,

Denning & Feer, 2006)’s model, for instance, deception is employed to add intelligence to

the defender, while thwarting an adversary’s capabilities to observe, investigate and learn

about a target. In nature, the perception of predation risk, e.g. the persistence of a

perceived predator, results in prey developing optimal predation avoidance response, for

instance, a hiding prey choosing to flee as the predator gets closer or approaches in a direct

movement (Koga et al., 2001). This change in response suggests the analogous escalation

of defensive actions in cloud computing environments, i.e. the transition from prior-

excessive actions. Escalation mechanisms may exist as specific or non-specific to an on-

going event (Matsuda, Hori & Abrams, 1996).

4.4.1.3.5 Survivability analogy

This section presents our interpretation of the survivability analogy based on prey survival

against predation discussed in the section above. It is important to emphasise our view

that, unlike traditional computing infrastructures where hardening of security systems

improved survivability, the ability to remain robust and recover from attack are essential

characteristics to pay closer attention to, as the main distinguishing pillars from both the

survivability and security context of the cloud. The following scenario outlines the pillars

of the survivability analogy.

107

Threat detection: In nature, prey animals that live in groups have higher survival chances

due to increased predator detection. Analogously, the ability to detect threats

enhances a timeous response, with the best strategy or countermeasures in cloud

environments.

Collective action: Prey’s collective foraging strategies, predation avoidance methods and

reproduction trends are a result of evolution and adaptation. Analogously, the

ability to self-manage, cooperate, adapt and escalate countermeasures increases

survivability.

Management: Prey co-habitat to share resources and tasks and reproduce to improve their

fitness to avoid extinction. Analogously, diversity, autonomy, integration and self-

management of cloud systems and services enhances survivability.

Figure 41. The survivability analogy

Figure 41 is an illustration of the survivability analogy for cloud computing environments

based upon prey survival attributes presented. Since the business vision of cloud service

providers includes assurances for quality, reliability, the availability of services (Ziring,

2015), leaf attributes such as recovery time (RT) and recovery objective (RO) as well as

sustainable pricing to maximise profits are pertinent to cloud service providers. In this

scenario, responsibility for security and availability of services including security affecting

the customer’s infrastructure lies with the CSP (Rong, Nguyen & Jaatun, 2013b). In a

Foraging

cost/risk

Observation

& inference

Food

scarcity
RT & RO Cost/Risk

Confidentiality

Integrity and

Availability

Anti-

predation

Strategic

response

Recovery Failure rate

Stochastic Deterministic

Prey

survival

Service

survivability

High-level

attributes

Leaf

Security

108

traditional sense, security concerns primarily revolved around the confidentiality, integrity,

and availability of information.

4.4.1.4 Defining a specific solution

Detection: Since the business vision of CSP include assurances for quality, reliability, the

availability of services (Ziring, 2015), RT, RO and sustainable pricing to maximise profits

are pertinent responsibilities of CSP. Optimising security and availability of services

including security affecting the customer’s infrastructure are critical for responsibilities of

the CSP (Rong, Nguyen & Jaatun, 2013b). Improving proactive monitoring of the cloud

environments, survivability actions and the general system dynamics will address the

problem of unpredictability introduced by UUURs. For instance, survivability of a VM-

based intrusion tolerant systems based upon inter-communication among multiple VMs is

enabled and centrally monitored by a hypervisor (Zheng, Okamura & Dohi, 2015).

Preliminary actions to increase the complexity of an asset increases the cost of an attack,

which in turn increases the complexity of executing an exploit and gives an advantage to

the defender (McQueen & Boyer, 2009). In (Yuill, Denning & Feer, 2006)’s model, for

instance, deceptive measures are employed to add intelligence to the defender, while

thwarting an adversary’s capabilities to observe, investigate and learn about a target.

Moreover, efficient isolation enables compromised VMs to be killed. Thus, proactive

capabilities to detect identify & stop an adversary before exploitation, e.g. the “kill chain”

approach, is a proactive & dynamic intelligence-gathering method for continuous security

posture awareness. As suggested by (Hariri, Eltoweissy & Al-Nashif, 2011), existing

solutions do not adapt and escalate their security strategies to counteract the intensity and

sheer aggressiveness of an adversary. (Cybenko et al., 2014) suggests that security

countermeasures are only successful in traditional networks, while persistent adversaries

and zero-day attacks are able to systematically plan their attacks, and persist within the

compromised cloud computing environments (Cybenko et al., 2014). On the other hand,

the ability to adapt survivability parameters according to changes in the environment, e.g.

adapting the current survivability configuration to suit new requirements, adapting

survivability objectives to suit new configuration or adapting survivability actions to suit

evolving requirements or objectives, etc.

109

Adaptability: Countermeasures have been suggested including aggressive strategies such as

“white worms” (Lu, Xu & Yi, 2013) which actively pursues malicious software with an

intent to destroy it, or deceptive techniques such as address hopping (Shi et al., 2007) which

masks data in transit from a possible attacker (Gregory, 2011) are suggested to provide

dynamic intelligence gathering, security optimisation, and continuous security posture

awareness. In addition, deception through systems such as the KIPPO SSH Honeypot,

anticipate attacks and swift response (Sochor & Zuzcak, 2014). Discarding and recovering

imply adequate policy, guideline & legal framework for integrating, adopting & situational

use aggressive countermeasures, e.g. (Rabai et al., 2013) for the “last resort” deployment of

aggressive countermeasures.

There is consensus on the core areas closely related to survivability, such areas including

resilience, dependability, fault-tolerance, assurance, fault-tolerance, availability, etc.

Nonetheless, while survivability is an element of resilience, for instance, one need to pay

attention that improving survivability does not adversely affect resilience. For instance, if

hardening makes a node highly survivable at a larger financial cost, and increases the overall

processing time for infrastructure, but can nonetheless be compromised by a persistent

threat, increasing survivability, therefore, counteracts resilience. In fact, survivability

should aim to assure the continuity of service or mission with resilience, i.e. at low cost,

within the schedule, affordably, etc. In the systems engineering perspective, survivability

generally defines a level to which a system is able to continue to provide timely services

even during an attack (Ellison et al., 1997a)(Redman, Warren & Hutchinson,

2005)(Mekdeci et al., 2011)(Adams, 2015).

Ease of repair: Segmentation, i.e. multi-agent approach enables optimal processing,

improves the ease of recovery by leveraging cloud service discovery, negotiation and

composition in dynamic environments. As an example, the authors in (Sim, 2012) suggest

an agent-based search engine for cooperative problem solving based on similarity,

compatibility and numerical reasoning. Nonetheless, automatic coordination of services

composition in multi-party, distributed, dynamic and complex settings requires systematic

methods that optimise automation, yet reducing errors. In this research, this means cloud

providers can compose survivable services in a manner that accommodates consumers’

changing functional and non-functional requirements, at runtime.

110

Choreographic approaches, on one hand, can facilitate adaption in view of changes

(Calinescu et al., 2017). These emerging service engineering approaches enable distributed

service composition by specifying tasks, participants and message protocols. Given its

centrality, cooperative approaches require feedback control to monitor and manage

adaptation among composed services (Arcaini, Riccobene & Scandurra, 2017). As authors

in (Weyns et al., 2013) suggest, control loops typically enable the realization of self-

adaptation. (Talia, 2012), integrating multi-agent and cloud technologies can unlock even

higher performing, complex, autonomous and intelligent applications and scalable yet

reliable infrastructures. Survivability should aim to assure the continuity of service or

mission with resilience, i.e. at low cost (to both the CSP and consumer), within the

schedule, affordable, etc. In the systems engineering perspective, this generally imply a

level to which a system is able to continue to provide timely services even during an attack

(Ellison et al., 1997a)(Redman, Warren & Hutchinson, 2005)(Mekdeci et al., 2011)(Adams,

2015). Several surveys including (Zheng & Sicker, 2013) (Ribeiro & Hansen, 2012)

(Nakano, 2011) (Meisel, Pappas & Zhang, 2010) (Dressler & Akan, 2010), etc. share the

consensus view that monitoring and adjusting resources, detection and reacting to changes,

including the ability to implement measures against threats, support ubiquitous and yet

complex and complete self- organised systems.

4.5 Pilot investigation of prey mechanisms

using NetLogo simulator

To investigate the efficacy of the analogies above, proof of concept experiments focusing

upon prey mechanisms in the predate-or-survive dynamic are implemented NetLogo

(Wilensky, 1999). This approach has also been successfully followed to carry out a

sufficient investigation using EcoSim (Lytinen & Railsback, 2010). NetLogo is chosen due

to its simple design and in-depth documentation and ease use (Railsback, Lytinen &

Jackson, 2006) (Chiacchio et al., 2014).

The simulation environment is setup on a local machine running a standard Windows 10

operating system. These are implemented using NetLogo version 5.3. with ‘in silico’

experiments, meaning that models are adaptable using different parameters to mimic

111

different environments. Using the buttons on the left-hand side of this graphic, it is

possible to configure and adjust the experiment parameters whereas the righthand side

simulates the output. Figure 42 is an example NetLogo GUI.

Figure 42. The NetLogo GUI

4.5.1 Experiment

In the following experiments, agents inhabit an environment; predator agents kill and eat

prey to survive, otherwise, they die. If prey agents avoid predation, they are assumed to

survive. This is an arbitrary assumption that is purely designed for the system under

investigation in this study. The experiments provide a proof of concept that predator-prey

analogies are valuable indicators to survivability, itself useful and central to solving security

challenges in the cloud. For each experiment, a run is implemented with varied parameters

aimed to evaluate their effect upon prey populations. Due to the wide scope of the

predator-prey dynamic in ecology, the experimental data obtained and explained are

limited only to a few survival mechanisms. These deliberate restrictions are however

adequate for the problem under consideration, and evidence borne out of these

experiments suggests some important contributions.

112

4.5.1.1 Effect of the environment

This experiment simulates prey who feed on grass and reproduce and predators that feed

on prey and reproduce. An invading species is introduced, which at the evolutionary scale,

affects the behaviours of existing predator (red -birds) and prey (purple - bugs) species.

The percentage of grass (green) available for prey is varied on a scale of (0 - 100), while the

initial population of prey to predators is also varied in different ratios, i.e. more prey to

predators, more predators to prey, etc. In this experiment, prey has unlimited resources

(100% of grass) and an equal reproductive capability to predators.

Table 11. Random parameters of predator-prey interaction

 Grass % # prey # predator Prey repro Predator repro

Run 1 100 159 60 None None

Run 2 100 159 60 Max Max

Run 3 50 159 60 Max Max

Run 4 50 172 109 - -

Random initial population ratio of prey-to-predators is chosen since survival and grown

parameters are not affected by the intensity of predators (Mandiki et al., 2007). Each data

point in the plot represents the final population at the end of a simulation of 1000 ticks

(timestamps).

Figure 43. Simulation results of random predator-prey interactions in Table 11.

Blue (rabbits) and red (coyotes) oscillation indicate the behaviour prey and

predator populations, respectively, in a stable ecosystem

True to in LV’s equation, predator and prey interactions indicate the survival or extinction

of species. As demonstrated in Figure 43, predator and prey dynamics are oscillatory.

However, less food (grass) availability for prey severely depletes the predator population

in comparison to prey. As suggested by (Schoener, Spiller & Losos, 2001), predation or

113

the lack of it, impacts upon the probability of extinction and threatens the overall

survivability of that species.

4.5.1.2 Effect of poison

This experiment introduces poison, an anti-predator mechanism employed by frogs

(Dendrobatidae) (Darst et al., 2005) against predators. Survivability is evaluated (rabbits

against predating cayotes) when a toxic poison is introduced in the environment. It is

assumed that population changes are indicative of survivability: rising populations imply

survival while declining populations imply the opposite Table 12 is a summary of random

simulation parameters, including when poison is introduced as a survival strategy.

As suggested by Mandiki et al. (2007), initial values are randomly chosen since they have

no effect on final survivability. This simulation tracks the interactions between prey (rabbit)

and predator (coyote) and the population changes as they co-exist. As in experiment 1,

both species are assumed to have adequate access to food and reproduce at ecologically

reasonable rates. However, during the simulation, it is possible to introduce a poisonous

toxin.

Table 12. Summary of predator-prey interaction with poison

 # of prey # of predator Poison % Start
Poison (t)

End
Poison (t)

Run 1 300 100

Run 2 200 130 5 500 1000

Run 3 150 250 10 500 1000

Run 4 400
Same as in 4

100
Same as in 4

2% 500 1550

Run 5 400 100 500 1550

Gain
50

Repro
7%

Gain
10%

Repro
7%

The introduction of poison motivates the question of how a generalised or targeted

countermeasure impacts upon the survival or extinction of entities within this system.

Three things are to be noted in this experiment: the effect of the poison on predators, the

effect of the poison on prey and the dynamics before and after the introduction of poison.

Figure 44 shows LV’s oscillatory predator-prey dynamic. However, introducing poison

(black line) at varying times during the simulation affects both species. Predator

populations deplete, while on the contrary, prey populations seem to gradually increase

and rapidly grow when the poison is removed. Varying the initial population sizes (more

114

prey than predators or more predators than prey) has no significant impact on both

populations.

Figure 44. Predator and prey dynamics with poison added at t – 500 – 1000

Figure 45. Predator and prey dynamics with poison added at t = 500 – 1550

Interestingly, when comparing Figure 44 and Figure 45, in the latter, predators seem to

improve fitness against poison over a longer period of poising, in spite of lower initial

populations. This seems to suggest that aggressive anti-predator mechanisms such as

poison, while they work to improve prey fitness also force predator adaptation to tolerate

the poison. The analogies developed earlier help deconstruct complex concepts in both

nature and cloud, in a manner that is understandable to a non-computing reader. This

makes it possible to develop explicit definitions of meaningful terms for the system they

are used, for instance, terms such as “deceptive alarm”, “deceptive camouflage”, or “deceptive

masquerade” have greater relevance as explicit descriptions of three different levels of

deception in computing security terms, in contrast to the widely used general term. The

introduction of secondary defensive action (poison in experiment 2) provides insight into

cloud computing countermeasures. Nonetheless, aggressive countermeasures are

115

contentious in computing environments due to possible associated legal liabilities (McGee,

Sabett & Shah, 2013).

While the generalised approach for extracting a specific process from nature does not

perfectly mirror the models and data in nature to cloud environments, applying TRIZ

enables the transformation of natural survival mechanisms for deployment in cloud

computing. The TRIZ approach proposed is systematic, making it extensible and amenable

to future developments. In fact, this research takes inspiration from quantifiable prey

processes and fitness parameters to manipulate dependencies and test their consequences

in cloud environments. Thus, parameters in this context are not defined by explicit imperial

data as those in natural systems, where data enables quantitative predictions. Instead,

parameters are only intended for general-level use to highlight structural and mechanical

concepts within prey communities.

Unlike nature, verifying security and survivability in real-time cloud environments aims to

generate guarantees that these systems remain secure and retain their survivability

capacities over time. Thus, the use of quantitative verification methods can be extended

for application in prey-inspired systems. In this sense, verification would aim to ensure

correctness, reliability, survivability, performance, etc. of dynamic cloud systems through

stochastic methods and finite-state transition models. To enhance security, it is important

that formal verification methods are integrated into reconfigurable self-adapting methods

such as those in nature’s prey animals. Highly secure and survivable cloud systems, in this

case, can, therefore, guarantee continuous and timely delivery of cloud services, even under

threat. QV methods generally analyses state transition models and DTMC and MDP

models are generally described with transition probabilities. Thus, probabilistic model

checking tools can be used to automatically verify systems. Based on the foregoing, the

following concepts are suggested as significant to cloud solutions.

• Non-extinct prey animals are successful because they can manage contradicting

demands of obtaining the resources necessary for survival and avoiding predation.

Thus, roles and functions of entities within complex cloud environments can be

designed with high autonomy and networked with extreme modularity. While

cloud providers are capable of securing servers across public, private and hybrid

clouds and give real-time detection for a wide range of security events and system

states (Ahamed, Shahrestani & Ginige, 2013), monitoring arguably requires

116

autonomic intelligent system and self-defence capabilities analogous to prey

animals.

• Organisation and cooperativeness require feedback mechanisms to monitor and

manage adaptation (Arcaini, Riccobene & Scandurra, 2017). (Weyns et al., 2013)

suggest control loops to typically enable the realisation of self-adaptation.

• Foraging roles follow a hierarchy of approaches to enable survival. For instance,

avoiding predators implies adopting behaviours and mechanisms to detect

predators first, staying in groups to reduce the likelihood of being killed or

mobbing and other coordinated group methods.

Toxins or specialised morphologies can also be used against an attacking predator. Prey’s

predation avoidance behaviours and anti-predation mechanisms are central to its survival.

Hierarchy is central to structure in relation to roles, functions and organisation, towards

accomplishing a global goal.

4.6 Summary

This chapter presented a biology-to-cloud computing design method that satisfied H1 of

the research hypothesis outlined in Chapter 1. Section 4.2 presents a high-level

methodology for a prey-inspired design outlines two generalisable requirements for bio-

inspired survivability solution: (1) a problem-driven approach, and (2) the 3-step process

to transfer interdomain concepts. Section 4.4 introduces the TRIZ, a known methodology

that facilitates innovative design by resolving contradictions and applies it for cloud

computing. Section 4.6 presents a pilot NetLogo simulation that serves to evaluate the

plausibility of proposed analogical solutions. The proposed solution form core

components of the prey-inspired survivability concept designed in Chapter 5, i.e. prey-

inspired survivability framework for cloud computing environments (Pi-CCSF).

117

Chapter 5 Prey-inspired cloud

computing survivability framework (Pi-

CCSF)

This chapter presents the prey-inspired cloud computing survivability framework (Pi-CCSF) built upon

TRIZ-derived survivability specifications defined in Chapter 4 (Section 4.5.4). The Pi-CCSF is significant

as it is proposed to support the extension of existing frameworks and model-based analysis of prey-inspired

survivability requirements. This prey-inspired conception satisfies the hypothesis under test with respect to

escalating survivability design principles and decision techniques presented.

This chapter is based on the work published in RP1, RP3, RP4 and RP6.

5.1 Introduction

As in prey animals, cloud computing requires survivable components to detect changes

and evolving environment constraints, learn new behaviour patterns and update their

action matrix. Hence, rigorous evaluation of environment constraints and behaviour

patterns, selection of actions based upon learned adaptation, experience exchange and

executing actions that achieve efficient adaptation is critical (Jiao & Sun, 2016). Traditional

survivability methods relied upon a notion that compute-level interactions are predictable

and therefore controllable. For instance, virtual embedding techniques are most efficient

when desirable system input functions necessary for a desired system output are

predictable. However, with UUURs, cloud system behaviours are difficult to observe, and

the threats are difficult to detect and predict. It is clear in this regard, that virtual embedding

as a technique therefore becomes limited.

118

5.1.1 Assumptions and Scope

While this thesis refers to a range of attacks, the detailed discussion of attack paths and

models is outside the scope of this research. Instead, this thesis focuses upon a class of

risks that are uncertain, latent, unobserved or unobservable (UUURs) as observed by (Ma

& Krings, 2011)(Ma et al., 2014)(Albanese, Jajodia & Venkatesan, 2018). Traditionally

deterministic security methods are assumed to be inadequate mitigation, and often

misapplied due to the unpredictability imposed by UUURs. Thus, Figure 46 is an

illustration of the design assumptions under this consideration.

Briefly, some survivability objective is assumed to be affected by some UUUR and

knowledge of UUURs helps define and identify survivability requirements. Meanwhile,

some survivability requirement is assumed to address some UUUR, while also aiding to

identify mechanisms towards a solution. A mechanism is assumed to assist in

implementing some survivability requirement.

Figure 46. Survivability design assumption

In addition, this research assumes the case that each initial deployment of survivable

services, a CSP and CC have a negotiated SLA. SLAs stipulate security and survivability

rules and contractual implications (Wagle et al., 2016). This will identify among other

things, the deployment of the prey-inspired cloud survivability solution. As shown in

Figure 47 this SLA is also renegotiable. Due to the use of cloud computing in critical

systems, the significance of SLAs in handling assurances for security and survivability of

119

services in therefore assumed as increasingly critical to both the CSP and CC. Thus, the

prey-inspired survivability design assumptions impact upon survivability SLA cycle.

Figure 47. The research’s SLA cycle assumption

Furthermore, this thesis assumes that IaaS, PaaS, and SaaS are the most common cloud

service models, and therefore adequate to represent a cloud computing view. Figure

48Error! Reference source not found. shows the control responsibilities related to CC

and CSP. As the user transitions across models (including from the traditional) the user’s

control and responsibilities decrease. Among these service models, the CC and CSP share

to some degree, different levels of control and responsibility on applications, data, runtime,

middleware, operating systems and the virtualisation layer components such as storage

networks and servers.

Moving from the IaaS model to SaaS, the user’s control over core cloud components

decreases along with their responsibilities. Thus, from a service provision point of view, it

is logical to implement both PaaS and SaaS atop the IaaS model. Due to the control and

responsibilities considerations mentioned above, the prey-inspired cloud survivability

notion is scoped around the IaaS service model as it removes the limitations of service

deployment.

120

Figure 48. The cloud computing service model control research scope

The remainder of this chapter is as follows: Section 5.2 presents the design context for Pi-

CCSF, briefly introducing the survivability mission, survivable system requirements and

mission requirements. Section 5.2 details the security context around which Pi-CCSF is

developed. Section 5.3 presents Pi-CCSF and details its main components and processes.

Section 5.4 presents the survivability mechanisms and Section 5.5 presents Pi-CCSF’s

overall process-flow. Section 5.6 discusses Pi-CCSF in a conceptual application. Section

5.7 concludes the chapter and summarises the main findings.

5.2 Survivability-oriented design

This research researcher contends to the design challenges imposed by UUURs. However,

the bio-inspired design theoretic perspectives present this thesis’s researcher with relatively

simple units to manage yet still provide emergent phenomenon. As noted by Shu et al.

(2011), biologically “perceived” complexity to real complexity is a necessary paradigm shift

121

that can be adopted from biology to manage complexity in cloud environments. Hence,

this thesis’s survivability design approach is placed in the engineering context to

encompass systems security design as a component of service-oriented mission assurance

(SOMS). To demonstrate this context, the relationship between cloud computing

survivability design with other security systems-related domains is outlined below and

illustrated in Figure 49. As shown below, survivability design draws from other related

concepts such as resilience, durability, fault-tolerance, etc. More so, it also draws from

other contextual requirements. In this research, this includes survivability requirements of

cloud computing systems (e.g. a holistic view to cloud computing security presented in

Chapter 3, or the contradiction analysis suggested by the TRIZ method and addressed by

TRIZ’s contradiction matrix (Creativity, 2019b).

Figure 49. Cloud computing survivability design context

For IaaS cloud providers such as Amazon EC2 (Amazon Web Services, 2011) and IBM

Business Cloud (Leone, 2015), VMs are central to the service commodity they provide.

VM provisioning, with respect to specific resources and capacity, should, therefore, be

survivable to ensure continued service. Hence, SLAs between CSP and CC should stipulate

among others, the expected levels of services which implores CSPs to the evaluation of

their infrastructure (Longo et al., 2011). Whereas evaluation approaches among CSP

122

specifically assess availability and reliability of cloud systems (Wagle et al., 2016), (Nguyen,

Kim & Park, 2016), and evaluation techniques focus upon the VM model, frameworks

(Sterbenz et al., 2010b), fault tree (FT), reliability block diagram (RBD), continuous Markov

chain (CTMC) or stochastic models (Longo et al., 2011), (Nguyen, Kim & Park, 2016), etc.

it is important that survivability is emphasised. From a cost perspective, a service-oriented

design mission ensures that cloud systems are designed with the capacity adapts to ongoing

changes. As noted by NIST, it is critical that assessing and managing risk is iterative

regardless of the level of exposure or the sophistication of the security incident (National

Institute of Standards and Technology, 2018).

5.2.1 Survivability mission

Survivability is generally described as a mission-oriented process; to which a system can

timely provide services after intrusion or compromise occurs (Wang et al., 2012b). The

authors in (Mehresh & Upadhyaya, 2012) note the ‘mission’ element of survivability as

upon ensuring the continuity of a set of essential services, bearing in mind that

precautionary countermeasures will fail. Adaptability, detection and ease of repair are

unique concepts derived through TRIZ to facilitate the cloud survivability mission.

Adaptability is evaluated as the capability to respond to situational changes, including

changes in resources, requirements, as well as changes to timed events. This also includes

response to real-time and dynamic events (self-adapting) in a timely manner. Timeliness is

itself dependant on other attributes such as serviceability and cooperativeness. Adaptability

is therefore fundamental for avoiding negative measurements of "timed" events and can

demonstrate tolerance to attacks. Adaptability can be quantified based on the following:

(a) on prior experience of the infrastructure’s ability to mitigate attacks caused by, for

instance, insiders or outsiders; and (b) proactiveness, which can be estimated based on the

security risk management process. The adaptive property of survivability is therefore

optimal when it satisfies ‘a’ and ‘b’ and represented as a linear function whereupon an

increase in adaptability means the system can support survivability attributes, in turn

enhancing the overall survivability of a system.

Detection and ease of repair are encapsulated in cooperability, which describes the ability

of autonomous entities to collaborate based on a set of predefined survivability

123

mechanisms in response to a security incident or a situational change. Theoretically, this

concept means that: (a) VMs execute actions as countermeasures according to a learned

criterion, analogous to cooperating autonomous preys (b) VMs execute collective

countermeasure mechanisms, synonymous to mobbing behaviour in preys. Since

knowledge about the state of the environment, a decision-making parameter which factors

the attitude of a CC and/or CSP as stipulated in the survivability mission. This introduces

the notion of a strategic model of choice under uncertainty. For the purposes of the current

work, the following attitudes will be important to the survivability mission and the

requirements that follow. They are also widely published in decision researches including

(Yager, 1995)(Fenton & Wang, 2006)(Bracha & Brown, 2012) (Jefferson, Bortolotti &

Kuzmanovic, 2017):

Optimistic: a survivability decision-making parameter key selects for each action, the best

possible outcome, then selects the action that has the maximum best outcome. As

postulated in Bracha and Brown (2012), this strategy relates to decisions when

desired future outcomes are at stake, e.g. health, success, employment, etc.

Intuitively, in the context of the current research, optimistic strategy implies

aggressive approaches to attain survivability, which then is associated with the

business or technical requirements of both the CC and CSP as stipulated in an

SLA.

Pessimistic: a survivability decision-making parameter key selects for each action, the worst

possible outcome, and then select the action that has the best worst outcome. As

Yader (2003) suggests, a pessimistic strategy tends to conservative behaviours as

the decision-maker is inclined to view outcomes of actions as unfavourable to them

(Yager, 2003). Intuitively, in the context of the current research, this strategy

implies passive survivability actions towards survivability.

Neutral: also referred to as the normative strategy, this is when a survivability decision-

making parameter selects an average of all outcomes of action and then selects the

actions with the best average.

Performability is the property of agents such that it meets its level of use, for instance, as

described by measures such as selfish or cooperative, or by the quality of service (QoS)

measures such as packet delivery delay (Sterbenz et al., 2010a).

124

5.2.2 Survivability mission requirements

Survivability requirements significantly vary based upon the survivability target, the scope,

objective, the risk or cost-benefit analysis of the cloud system. Survivability targets

encompass contextual problem domains, scenarios, domain boundaries and some

preconditions necessary for abstraction and modelling (Wang et al., 2012a). For instance,

critical infrastructures such as healthcare services in contrast to services such as Netflix.

Clearly in the former, survivability requirement definition could include the cost and

criticality of survivability failure whereas Netflix could include objectives and operation

consideration.

In this thesis, requirements are defined according to how they are presented in the

survivability mission, i.e. SLA. For instance, a new component, e.g. “survivability model”,

may be defined with attributes that model survivability sub-components, whereupon each

model implements a function. As an example, the getCharacteristic (int/boolean key),

defines the attitudes of a decision system when in choosing survival actions, e.g.

getCharacteristic (neutral) defines a neutral survivability attribute, getCharacteristic (optimistic)

defines an optimistic survivability attribute, getCharacteristic (pessimistic) defines a pessimistic

survivability attribute, etc. Survivability mission parameter keys, i.e. neutral, optimistic,

pessimistic, etc. act as unique identifiers corresponding to a specific survivability

characteristic. In-depth details and application of the decision attitudes mentioned are

presented in Section 6.4. Considering all survivability constraints, primarily the

unpredictability introduced by UUURs, survivability decision-making is a critical

requirement to guide survivability choices under uncertainty.

5.2.3 Survivable system requirements

This section introduces key requirements employed for the adaption concept of survivable

cloud, environment, behaviours, actions and adaptation solutions. IaaS environment: The

shared cloud environment for survivable agents, cloud services and resources which

mediates how agents access services. Within the environment, there are general rules for

accessing resources; these act as constraints at various levels of the environment. A cloud

environment is defined according to the following tuple:

125

, where R, are resources accessible to agents (agents can perceive the state of resources in

pursuit of their survivability goals) and N is being the rules or behaviours that impact of

the resources.

VM resource: Resources, i.e. virtual machines (VMs) are the elements of a cloud

environment which inform the building blocks of IaaS cloud. Hence, VMs are

considered as passive objects with states and operations. In addition, attributes

(attr) represent a set of attributes that define the state of a VM. Moreover,

operations (op) are a set of operations defined over the attributes. VM resources

are thus defined as:

where a set of attributes, attr, define the state of resources, and op is the set of operations

over the attributes.

Environmental state: The state of IaaS cloud environment is determined by the state of

VMs. Supposing that S is the set of possible states an IaaS environment may exist

in and Sr represents the state of resource r R. The state of an IaaS environment

s S, is, therefore, a conjunction of the states of all VMs, such that:

, where

In this case, survivability agents are capable of manipulating VMs through executing VM

operations which impact upon the IaaS environment. Consequently, an IaaS environment

can exert constraints on survivability agents thereby managing access agents have on VMs.

Norm of accessing a VM: A constraint (environment norm) stipulates instances where the

environment permits or prohibits agents’ manipulation of VMs (resources), such

that:

126

, where . Ags is a set of agents constrained by the “norm”, and pd

is the permission degree for which . In this case, if there are no constrained

agents, i.e. Ags = 0, the norm applies to all agents in the environment. For instance, while

VM is provisioning services, agents are prohibited from executing aggressive actions,

unless all passive actions have been exhausted. Moreover, some environments, e.g. SLA

stipulated, aggressive actions may be totally prohibited altogether. Thus, a permission

degree, pd, in this case, would serve to stipulate the extent to which actions around the

“norm” can be executed in agents. Where pd = 0, are prohibited from accessing VMs, i.e.

through executing the . Similarly, where pd = 1, agents are permitted to access VMs by

invoking .

For adaptation to exist, prey agents must adjust their behaviours to changes in the

environment to maintain or improve survivability. Thus, an agent should decide or reason

what current actions can be performed and decide on how to select and implement the

best actions. Nonetheless, the following are considered as constraints to such actions:

1. Survivability agents cannot access forbidden VMs (resources)

2. Actions may or may not be independent of each other, resulting in three different

types of dependencies.

a. as a definite result of

b. as a conditional dependent of , i.e. that should happen before

happens

c. is exclusively dependant on , i.e. should not occur for to

happen, else destroys the conditions for ’s execution.

Behaviour patterns: These are specified by a set of the fixed execution sequence of actions.

This research is primarily concerned with 3 sequential actions. Supposing a prey

agent to possess survivability capacity, Cap, its behaviour pattern, Bp, is defined

as follows:

6: Action matrix

127

Rows define actions in A and the first column are the strength of environmental

constraints. The remainder is identified by the dependency degree (dp) between preceding

action and optional actions. Thus, EC(ai), which is the action matrix of an arbitrary action

relative to the environment constraints, i.e. AM[ai][E] where aiA, to identify the

constraints strength of the environment on an arbitrary action, ai, and EC(ai) is the

minimum of the currently effective permission degrees for ai.

To identify dependency degrees between a preceding action, pre_ai, and an optional action,

ai, , is defined as the action matrix of an arbitrary optional action in relation

to an arbitrary preceding action such that . Thus:

Adaptation solution: If agents build a set of action matrix, , to

achieve survivability goal, in which a series of actions have been selected and

executed, i.e. in which . T is the adaption

solution for achieving the goal at hand, whereupon T is said to be a good or bad

solution dependent upon what solution T reaches, i.e. positive adaptation or

negative adaptation, respectively.

AM = A {E} ∪ 𝐂𝐚𝐩

𝐄 prea1
prea 2

… prea m

a1

a2

⋮

an

EC a1 DR a1, prea1

 DR a1, prea 2
 DR a1, prea m

EC a2 DR a2, prea1
 DR a2, prea 2

 DR a2, prea m

⋮ ⋮ ⋮ … ⋮

EC an DR an , prea1
 DR an , prea 2

 DR an , prea m

128

5.3 Security systems design

To contextualise the designs in these chapters, this thesis distinguishes the following three

categories of threat event as important:

• Critical threats, which directly impact survivability outcomes. For instance, the

availability of resources which is critical to service provision. Similarly, the cost of

executing a countermeasure over another is critical to the choice of action.

• Objective threats, which can be numerically assessed. For instance, the rate of

compromise in cloud computing as analogous to the death rate in nature.

• Subjective threats, which are informed by expert perceptions and judgements and

deemed to be qualitatively reliable.

While the threat concept above is not a one-size-fits-all approach to threat classification,

it is an important reminder that cloud environments and indeed security events will suffer

from unique risks, threats, vulnerabilities, risk tolerances, etc. Moreover, further in-depth

analysis and discussion of specific threats are outside the scope of this research. Thus, for

purposes of this research, the following assumptions are made:

• Cloud environments change synonymous to nature; agents die, are born, hibernate,

extinct, etc.

• Agents are cognitive or passive with predefined behaviours, or behaviours adapted

through evolution. However, for real implementations, adaptive autonomous

agent as most suitable.

• Interactions among autonomous agents are generally diverse due to the diversity

of agents. Most interesting are the new unknown capacities that exist out of such

interactions, whether among social agents themselves, among competing agents or

among agents and the environment.

• Self-organisation is key for the collective objectives of cooperating agents. The

organisation thus can extend to how roles and hierarchies are defined and

structured, whether pre-defined or emerge from inter-agent interactions. For the

129

purposes of this research, consider the role of the human agent (cloud

administrator or adversary) as one who can control cloud environments; intervene

with, control or update the agent database (correctively or maliciously).

Based on the foregoing, a perceived malicious and sophisticated agent capable of assessing

risk and exploiting vulnerabilities of a system as observed by (Mehresh & Upadhyaya,

2012). An attacker can covertly perform reconnaissance and gain reasonable access into a

compromised system undetected. If detected, the attacker has an advanced contingency

plan for further actions, including aggressive and catastrophic destruction of data. Two

attributes of Pi-CSF ought to be emphasised from the design perspective. Foremost, the

survivability mission, which in this thesis is closely coupled with both the CSP and CC’s

missions, is defined to be adaptable to an evolving SLA. The mission thus directly impacts

upon the survivability requirements. Another attribute pertains to specific dynamic

constraints that impact upon a survivable cloud system. Hence, this attribute is defined to

incorporate feedback, which informs the usability of an implemented architecture and its

adaptability to evolving survivability requirements and tread-offs.

5.4 Prey-inspired cloud computing

survivability framework (Pi-CCSF)

In the traditional context, survivability requirements are predictable or static goals which

do not change over time. Pi-CCSF is therefore implemented in IaaS cloud environments

to provide user-level access to influence adaptable service level agreement with the CSP.

The modular design enables such components as the survivability service definition to be

adjustable according to negotiated service levels or evolving survivability requirements. For

instance, an arbitrary organisation requiring predictable and unpredictable capacity to cope

with a seasonal and sporadic demands, a survivability SLA can be defined which stipulates

how Pi-CCSF is able to manage and accommodate undefined or evolving survivability

requirements during peak times. Besides this flexibility, it is possible to manage

interoperability issues in the user-space, where any failures are simply isolated and confined

within that user-space. Pi-CCSF is illustrated and Figure 50 and described below.

130

Figure 50. Prey-inspired cloud computing survivability framework (Pi-CCSF).

131

By implementing Pi-CCSF, an SLA is leveraged by gathering knowledge of the state of

user services, i.e. virtual machine; running state, performance, expected survivability,

running survivability configuration and the resources required. Moreover, a Survivability

strategy manager (SSM) provides an interface with the prey-inspired survivability

mechanisms which can be configured according to a cloud user’s survivability

requirements. For instance, aggressive action-based escalation for critical systems. SSM

remains operational throughout the lifecycle of service deployment to update SLA and

adapt to changing survivability requirements at run-time. Two essential components of Pi-

CCSF are:

• High-level survivability management layer in which the Survivability Monitoring

(SM), Survivability Running State (SRS), Survivability Definition (SD) and the

Service Scheduling (SS) form the key components of the survivability strategy

management (SSM).

• Low-level survivability processes layer in which the adaptation system (decision

system (DS), escalation system (EscS) and survivability actions (Surv-A)) are key

components of the low-level prey inspired survivability mechanisms.

Low-level processes act towards ensuring survivability through implementing mitigations

for prevention and resistance, fault-tolerance and recovery while enabling adaptation

through intelligent decision-making and implementing escalating actions. The adaptation

concept is an essential process to cope with cloud computing’s dynamic changes, while

escalation introduces a novel approach to enhance survivability by dynamically selecting a

range of counteractions according to a prevailing security event. The decision-making

technique employed in Pi-CCSF is covered in-depth in Chapter 6.

5.4.1 Survivability strategy management (SSM)

To enable survivability management at the user-space, SSM facilitates a users’ direct

involvement in defining, maintaining and updating survivability requirements. This is a

major addition to traditionally CSP-oriented management in which the user’s involvement

is limited to the functional aspect of a system’s survivability (Ellison et al., 1997b). Within

an IaaS cloud, the SSM presents an SLA-based strategy management system to facilitate

132

service definition, monitoring, resource scheduling and tracking of a reusable running

service state. Figure 51 illustrates the high-level processes involved in managing the

survivability strategy in cloud computing environments.

While resource scheduling is not a new concept, its specific implementation details and

challenges are outside the scope of this research. Nonetheless, several works in the

literature suggest evolutionary computing (EC) algorithms for real-time scheduling,

adaptive dynamic scheduling, large-scale scheduling, multi-objective scheduling and

distributed and parallel scheduling (Zhan et al., 2015). For the supposes of this Chapter,

SSM’s high-level operation will be discussed as two-fold. On one hand, it is aimed to

augment the user’s survivability objectives, i.e. quality of service (QoS) through

augmenting processes such as resource scheduling, service definition, monitoring, user

cost, etc. On the other hand, SSM enables the CSP to maximize survivable service

provision by incorporating CC specific requirements. These activities and services that are

common across cloud platforms to enable the managing (developing and updating) of

essential survivability services. Through an SLA-linked profile, a CC can align and prioritise

the survivability requirements and activities according to the following:

Step 1: SSM receives a trigger; in this research this is imposed by a UUUR event. If the

event is unknown, SSM captures the event signature to update existing

survivability processes, otherwise continues to step 2.

Step 2: If an event is known, SSM invokes SRS and maps the event to the current

survivability running state. If an event meets an expected UUURs profile, SSM

proceeds to step 5, otherwise goes to step 3.

Step 3: If the event does not meet an expected UUUR profile, SM maps the event to the

current SLA to assess compliance. If compliance with expected survivability is

not met, it is necessary to update existing survivability processes, otherwise goes

to step 4.

Step 4: If expected survivability compliance is met, survivability definition enables

predictive adjustments to survivability parameters and future states, i.e. with

updated resource requirements and schedule, otherwise goes to step 5.

Step 5: If SD fails to yield, SSM passes current survivability state information, including

UUUR data to the low-level prey-inspired survivability mechanisms.

133

Figure 51. Survivability strategy management (SSM) process flowchart

5.4.2 Survivability monitoring (SM)

When SSM is captures deployed, monitoring the resource and UUUR-to-resources data.

Monitoring encompasses learning and evaluating UUUR-to-resources inventory and the

output survivability around the following survivability objectives: (i) enable efficient

aggregation of survivability data, (ii) survivability risk and cost analysis and (ii) survivability

target analysis. Monitoring is, therefore, a functional character of learning and thus, in

practice implement functions such as machine learning algorithms to detect and predict

uncertain changes in a cloud system.

Three parallel processes; survivability data aggregation, risk/cost analysis and survivability

target analysis, are computed for two main purposes. Foremost, to evaluate the current

134

survivability SLA requirements with respect to an ensuing incident, or to evaluate a

survivability target and define survivability objectives for an existing or negotiated SLA.

To address similar uncertainty imposed by UUURs, some works have shown that model-

based evolutionary algorithms (EAs) present efficient learning abilities with low

computational expenses (Cheng et al., 2018). A CSP can manage and adapt a CC’s changing

survivability requirements and activities.

Figure 52 illustrates the foregoing survivability monitoring processes, which will be

itemised below.

Figure 52. Survivability monitor (SM) process flowchart.

Step 1: After deployment, SM receives the currently running survivability SLA and

evaluates compliance

Step 2: Monitors if the cloud environment is compliant.

135

Step 3: If compliance requirements are met, survivability requirements are retained and

updated in the SRS, otherwise continues to step 4.

Step 4: If compliance requirements are not met, SSM passes current survivability state

information, including UUUR data to the low-level prey-inspired survivability

mechanisms.

5.4.3 Survivability running state (SRS)

Survivability running state (SRS) captures the current survivability QoS configuration and

updates its state according to SM. SRS activities hence specify the survivability parameters

such as the survivability threshold, survivability target and/cost, expected survivability, etc.

By default, these are typically specified in an SLA according to the user’s specifications.

Changing SRS can be done automatically to the running configuration based upon detected

input from the SM. Alternatively, changes to the SRS can be done directly when SSM is

deployed and an SLA is negotiated or renegotiated. An example is Amazon’s AWS

ConFigurerules which tracks the survivability service state to enable dynamic and flexible

launch, use and termination of processes (Jeff, 2015).

Functionally, it should be noted that a survivability running state is only computed with

known survivability requirements, which can be updated in run-time. Based upon the

survivability running state and survivability objectives, low-level adaptation mechanisms;

decision-making and escalation, are executed according to a specific use-case. For instance,

where a survivability target is known. The details of applying survivability targets for

decision-making under varied use-cases is discussed in section 6.4. Figure 53 illustrates the

foregoing survivability running state processes, which will be itemised below.

Step 1: SRS receives running state data or survivability requirements from SM.

Step 2: Survivability requirements are evaluated against the current survivability SLA. If

SRS yields known/expected requirement changes, it continues to step 3

Step 3: SRS gathers survivability requirements that satisfy an expected running

configuration, updates the survivability definition (SD) processes and proceeds to

step 5, otherwise continues to step 4.

136

Figure 53. Survivability running state (SRS) process flowchart.

Step 4: If SRS yields unknown/unexpected requirement changes, SSM passes current

survivability state information, including UUUR data to the low-level prey-inspired

survivability mechanisms.

Step 5: Enables the scheduling of required resources to meet survivability requirements in

step 4 and update SD processes.

5.4.4 Survivability definition (SD)

The ability to define survivability requirements (for both the cloud user and CSP) ensure

that survivability is established according to deliberately defined survival QoS metrics and

137

to desired probabilities. This concept has been described by (Yallouz, Rottenstreich &

Orda, 2014) and (Yallouz & Orda, 2017) as tuneable survivability, which specifies a

quantifiable measure of survivability. Figure 54 is an illustration of the survivability

definition process flow. It highlights the processes involved in combining survivability

knowledge and survivability QoS guarantees in existing or new SLAs to produce tuneable

survivability. Hence Figure 54 illustrates survivability definition processes for data

aggregation, including risk or cost analysis, assessing fuzzy survivability data, etc., as

minimum requirements for end-to-end survivability QoS and SLA guarantees. For

argument’s sake, these represent structured activities and computations for information

assisted survivability problem-solving. SD processes outputs include data for low-level

mechanisms processing and resource scheduling support SD’s objectives.

Figure 54. Survivability definition (SD) process flowchart.

Step 1: SD receives SRS information including existing QoS and survivability requirements

Step 2: Aggregates SRS and user requirements along with resources to define the tuneable

survivability requirements.

138

Step 3: To improve these processes, QoS requirements in an SLA are evaluated against the

user’s or system’s service requirements, if these are achieved, the SD proceeds to

step 4, otherwise, it goes to step 5.

Step 4: Define tuned survivability and invokes the resource scheduler Step 5: Otherwise if

not achieved, SSM passes current survivability state information, including UUUR

data to the low-level prey-inspired survivability mechanisms.

5.5 Prey-inspired survivability mechanisms

This low-level layer implements survivability mechanisms according to requirements

obtained from SSM. Prey-inspired survivability mechanism’s core components; adaptation

system which consists of a decision-making sub-system and the escalation system,

implements survivability actions which can be adapted and prioritised to meet a defined

cloud service or system’s survivability target. Since Pi-CCSF is implemented upon known

cloud computing frameworks such as the CloudSim framework (Calheiros et al., 2009),

these low-level mechanisms are therefore organised around common cloud computing

structures and standards to embed the prey-inspired survivability concepts. UUUR and

system state data from SSM and the survivability method form the input and output to the

workflow system, respectively. Within the workflow system, survivability data aggregation,

risk and/or cost analysis, decision (fuzzy information assessment), etc., represent

structured activities and computations for information assisted survivability problem-

solving. Internal processes outputs such as the survivability requirements, survivability

criteria and survivability objectives describe directed graphs connecting coupled

survivability components.

While the mechanisms presented below are deliberately limited for demonstration

purposes, the prey-inspired survivability mechanisms module encompasses a registry of

other survivability nuances (including sub or sub-sub-parameters) that can be queried for

synthesis or processing. CSPs can publish and update the registry with new survivability

parameters, including those acquired through SLA negotiations. An example is where a

service configuration with specific survivability or resource requirements is defined and

retained for reuse on the fly. By combining the survivability configuration and registry-

139

stored survivability parameters, low-level synthesis generates specifications for

survivability coordination entities (SCEs) through transforming existing models.

Functionally, SCEs are software entities that match a predefined survivability criterion, for

instance, a predefined SLA, CC specification, architecture, etc. and manage, i.e. coordinate

and/or enforce interactions among the participating entities. Alternatively, SCEs may also

simply represent as an algorithm that solves mathematical functions towards a survivability

goal, for instance, counterattack in prey presented in (Waltman, Braselton & Braselton,

2002) (Rozenfeld et al., 2006). Moreover, SCEs may be executable procedure rules or other

multi-agent models such as genetic algorithm (Shon, Kovah & Moon, 2006) that describe

the inner workings of survivability agents.

5.5.1 Decision system

Although decision-making is traditionally not considered as a “first-class” concern

(Cámara et al., 2018) for managing computer networks’ security and survivability, it is

critical to handling unpredictability imposed by UUURs in complex environments.

General control theory can be applied for decision strategies to minimising the cost

function (or maximizing reward function) in evolving dynamic systems (Kreidl & Frazier,

2004a). In the presence of UUURs, unpredictability is such that it is operationally

challenging to predict a system’s state at any instant, which renders general control theory

unsuitable due to the impossibility of capturing information on how the state of cloud

systems are observed or how they evolve in time. The control concept describes a

qualitative capacity of a measure to affect a true state (Kreidl & Frazier, 2004a), which

implies that an uncontrollable state is one whose evolution a control cannot predictably

affect. On the contrary, complete control suggests the capacity of control to affect the true

state and subsequently all states that evolve thereafter. The observation element of

UUURs, on the other hand, refers to how much information system detectors possess, in

ration to a true state estimate. Thus, an unobservable state implies that there is limited

information to estimate a true state, as opposed to total observability which implies the

possession of complete information to estimate a true state. Communication is the

processes that to some degree, enables the complete control and observation, a finite series

of actions and a finite series of observation. Figure 55 illustrates the decision system

processes, which are described below.

140

Figure 55. Decision system (DS) process flowchart.

Step 1: The decision system receives instructional data from the survivability strategy

manager. Functionally, it assumed in this research that prey-inspired mechanisms

are only invoked as required, to maintain other important survivability tread-offs

such as cost.

Step 2: DS maps SSM-based data, particularly the incident in question, to available survival

processes. In this research, this implies mapping data from SMM to a target-based

technique; the appropriate mechanism to achieve a survivability target. The details

for the target-based technique are provided in Chapter 8.

Step 3: Once an appropriate mechanism is mapped with the SSM data, the DS also factors

into consideration, the “attitude” of the decision-making system. The notion of an

“attitude” in this case emphasises the different priorities that capture the level of

141

survivability a decision process must consider, as stipulated in an SLA. Section 5.1

briefly introduces pessimistic (Pessi), neutral (Neu) and optimistic (Opti) attitudes

noted above.

Step 4: Based upon the preferred target-solution (Step 2) and the preferred attitude (Step

3), the DS evaluates the best decision method to meet the prescribed target. If an

evaluated decision method meets an expected survivability target, this is

implemented to address the current incident, otherwise, DS goes to step 5.

Step 5: If an evaluated decision method does not meet an expected survivability target, the

DS invokes the escalation process.

5.5.2 Escalation system

As introduced earlier, one of Pi-CCSF’s objectives is to present the user with additional

control over defining low-levels mechanisms that can be implemented to meet their

preferred survivability outcomes. Figure 56 illustrates the escalation process.

Step 1: The escalation system receives instructional data from the survivability strategy

manager and invokes escalation

Step 2: An escalation criterion; defined according to the number and order of actions, is

initialised with respect to step 1

Step 3: ES invokes the decision system and corresponding survivability targets and

evaluates if current actions can address the current incident and achieve the

expected survivability target. If yes, ES continues to “listen” for new updates from

SSM, else proceeds to step 4.

Step 4: If the survivability target is not met, ES implements and executes variable

escalations and evaluates if the target is met

Step 5: Based on step 4, the DS considers the context of the current incident and evaluates

the effects of evolving escalation. If the target is not met, ES goes to step 4,

otherwise the DS retains the best escalation criteria for the current context.

142

Figure 56. Escalation system (EscS) process

5.6 Pi-CCSF’s overall survivability process

flow

When Pi-CCSF is deployed, SLA related information is received into the SSM via an

interface such as Web API, enabling both the CSP and CC or user to access the SSM

module. A context module builds the relevant information from the CSP administrator or

CC’s point of view. Hence, resources can be scheduled for specific actions as required by

143

the CC or the CSP or an ongoing incident. Such information as the current survivability

policy, SLA, the CC’s profile and the level of sensitivity or value of data, the profile of

service, the actions available and the repository for backup, if need be. Operationally, some

Pi-CCSF processes are “private” to the CCs, providing them control to survivability

processes. Figure 57 illustrates the overall process flow for Pi-CCSF. SSM data is passed

into the prey-inspired survivability mechanisms, including the DS. Below is a detailed

process flowchart for survivability management using Pi-CCSF. Each step is described

below and where necessary, with examples provided where necessary.

Step 1 getSLA: When an unexpected event alert (UUUR), this step obtains an existing SLA

for evaluation. VM provisioning, with request specific resources and capacity,

should, therefore, be efficient, considering their utility usage. SLAs negotiated

between CSP and CC stipulate among other things, the expected survivability of

services, which inadvertently implores CSPs to perform survivability evaluations

of their infrastructure (Longo et al., 2011), at least prior to service deployment.

Some examples of evaluation techniques include models, frameworks (Sterbenz

et al., 2010b), fault tree (FT), a reliability block diagram (RBD), CTMC or

stochastic models (Longo et al., 2011), (Nguyen, Kim & Park, 2016), etc.

Currently, most evaluation approaches among CSP specifically assess availability,

reliability of cloud systems (Wagle et al., 2016), (Nguyen, Kim & Park, 2016).

Step 2 Receive incident: the incident is defined according to known or unknown signatures.

For argument’s sake, UUURs are defined in relation to their survivability QoS

outcomes. In the IaaS model, CSP can assess and translate into guarantees, the

availability, reliability of services based upon the incident. This is significant

considering that some types of attacks, e.g. fraudulent resource consumption

(FRC) attack results in unsuspecting cloud consumer incurring financial burden.

(Hussain et al., 2017).

Step 3 getSRS: If the event has expected outcomes, SRS maps the incident to the

survivability process state for future behaviour prediction. Otherwise, if SRS does

not meet expected outcomes, for the step 5. CHOReOSynt tool (Autili et al.,

2014) for instance, facilitates automated synthesis by enforcing reusable

choreography goal to manage undesired outcomes. Since IaaS systems are in fact

a composition of autonomous software services, a choreographic approach

144

enables the modelling of autonomous software services by capturing pertinent

interactions that maintain the global survivability form.

Step 4 getSM: Monitoring, learning and evaluating UUUR-to-resources inventory with the

following survivability objectives: (i) to enable efficient aggregation of

survivability data, (ii) to analyse survivability risk and cost and, (ii) to analyse

survivability target. Monitoring is, therefore, a functional character of learning

and thus, in practice implement functions such as machine learning algorithms to

detect and predict uncertain changes in a cloud system. Approaches that facilitate

cooperative problem-solving have been suggested to bolster cloud service

composition (Sim, 2012). Given its centrality, cooperativeness requires a feedback

mechanism to monitor and manage adaptation among composed services

(Arcaini, Riccobene & Scandurra, 2017). (Weyns et al., 2013) suggest control loops

to typically enable the realisation of self-adaptation.

Step 5 getSD: SD relies upon identified changes by SM at runtime. There is overwhelming

evidence, for instance (Calinescu, Johnson & Rafiq, 2013), (Ahmad, Belloir &

Bruel, 2015), (Calinescu et al., 2013) and (Horikoshi et al., 2012), that demonstrates

the capacity for monitoring changing probabilities of a running systems and

updating probabilistic models of these systems. In the current context, once SM

processes are complete, obtaining results from SM processes are used by the DS

to align or re-align compliance with SLA requirements, including QoS issues

around availability or unavailability, costs, reliability, survivability, satisfaction,

etc. In addition, obtaining SM processes results support the synthesis of a

survivability reconfiguration plan. The significance of SD processes is to ensure

that at runtime, survivability requirements persist despite changes.

Step 6 Analyse UUUR: Survival analysis provides various tools to quantify the implications

of UUURs. These include risk factors in affecting the overall survivability of a

cloud system.

Step 7 getDS: given a set of changes detected by the monitoring module, DS processes

decide the best strategy for maintaining survivability. This includes selecting

suitable actions to enable survivability evolution as prescribed by adaptation rules,

available countermeasures and the results of the best result strategy. In a multi-

agent system, for instance, DS also manages agents’ communication to facilitate

145

efficient cooperation around established survivability specifications and goals.

Once this is achieved, the DS invokes EscS by providing it with new survivability

specifications, otherwise, the decision process waits until the agent reaches a

stable cooperative state.

Step 8 getDSAttitude: a decision-making process that introduces the notion of a strategic

model of choice under uncertainty (attitude), an important to a survivability

mission and its requirements. Optimistic attitudes imply that a DS selects from a

range of best possible outcome, an action with the maximum best outcome. As

postulated in Bracha and Brown (2012), this strategy relates to decisions when

desired future outcomes are at stake. For instance, a decision for using

counterattack as a last resort to protect critical infrastructure (Grant, 2017).

Pessimistic decision-making selects for each action, the worst possible outcome,

and then select the action that has the best worst outcome. As Yader (2003)

suggests, a pessimistic strategy tends to conservative behaviours as the decision-

maker is inclined to view outcomes of actions as unfavourable to them (Yager,

2003). Neutral or normative attitudes are where a DS selects the best average

from an average of all action outcomes.

STEP 9 getEscS: Managing interactions among low-level mechanisms or components is

assumed around an automata-based approach; automaton’s temporal

discreteness and predictable changes according to predefined rules. The automata

approach is used across many applications, such as to evaluate and select node

queries on XML trees (Koch, 2003) and for understanding social dynamics

(Hegselmann & Flache, 1998). More recently, the authors in (Calinescu et al.,

2017) propose an automata-approach to model the service interactions of self-

aware systems in which survivability policies including recovery and escalating

actions are dynamically configured and enforced. The escalation system accepts

precisely defined computational rules from one process or system and selects the

appropriate action. Therefore, it may be necessary perhaps, to compute a

complete graph of a cloud computing system based upon SSM and DS data along

with escalation parameters. Once computed, the possible state of the cloud

system is critical to evaluate if an escalation criterion, for instance, meets

survivability goals or not.

146

Figure 57. Overall process flowchart for survivability management using Pi-CCSFSTEP

147

STEP 10 getActions: at runtime, the SEE maintains the current survivability specifications

to realize the survivability plan from the decision process. For this purpose, an

instance of the algorithm, e.g. collective action algorithm (MURAT, 2015) buffers

incoming communication. In addition, the actions module interacts with the SEE

to reconfigure the architecture, e.g. hide VMs, deploy deception VMs, deploy

poisonous VMs, as well as (re)establishing new dependencies. Finally, once

adaptation terminates and survivability is agreed and re(established), pending

requests are handled.

5.7 Discussion

In simple terms, Pi-CCSF should facilitate efficient survivability management and control

from the holistic perspective of the cloud. While the application of cloud computing

technologies generally enhances concepts related to survivability that is traditionally easily

defined (e.g. resilience), survivability in the cloud, particularly considering UUURs, is

challenging. Thus, Pi-CCSF pertains to how control and management of survivability can

be handled at every level of the cloud, across multiple cloud assets, applications, single data

centres or world-wide area networks (WANs). From a high-level view, Pi-CCSF builds

upon the traditional survivability architecture by encompassing a software layer over the

virtual network embedding components which maps virtual network resources to a

physical substrate network.

To support survivability, conceptual design analysis is proposed to assess the Pi-CCSF’s

survivability mechanisms. Hence, the workflow outlined above can be extended into a tool

for deploying the proposed framework. Although it is specifically designed for vendor risk

management approach, CERT’s V-RATE (Ellison et al., 2002) serves a similar purpose. In

this research, the stated tool serves to highlight key cloud components that must be

assessed and addressed to meet a survivability solution. Table 13 is an example taxonomy

tool for addressing the challenge of detecting UUURs. As suggested by the TRIZ

parameters, enhancing efficient detection entails preserving the complexity of cloud

computing. In this example, resolving this contradiction, i.e. improving detection while

preserving the complexity of cloud computing, is achieved through incorporating the

148

concepts of dynamics, preliminary actions and substitution. These concepts are defined

under TRIZ’s parameters (Domb et al., 2011b) and summarised in section 4.4.1.2

To provide context, the following is a practical example. Suppose an organisation or CC requires

that their survivability SLA enables from time to time, survivability to be invoked by STEP 10.

Improving the CC’s survivability objectives points to changing the design attributes of the actions

or algorithms that enhance adaptiveness; processes or the environment and ensuring that

preliminary actions are timeously implemented.

For each survivability objective under assessment, a Pi-CCSF component or approach that

meets a suggested countermeasure is assessed based upon a category it can be used in, and

one of three broad security categories proposed by the holistic taxonomy in section 3.4. In

Table 13, the “category of use” identifies an area relevant to Pi-CCSF components and the

general cloud survivability problem. The “expected impact area” identifies a cloud security

category (according to the proposed taxonomy, i.e. The output of each survivability

solution is envisioned to grow as more security “assessment and example”, “category of

use” and “expected impact areas” are introduced tied to real-world empirical data.

Table 13. Detection: Improve detection difficulty and preserve complexity

Assessment area Category of
use

Expected impact
area

Dynamics: design the attributes (environment or process) to change to be optimal, make
process adaptive

Survivability management STEP 1 CAT 0, CAT 1

Preliminary actions: Perform, before it is needed (either fully or partially). Design to act
without losing time

Mature survivability manager pre-
designed for an update on the fly

STEP 1

STEP 2

STEP 3

CAT 0

Substitution: Introduce sensory, not mechanical, change from static to dynamic, unstructured
to structured

Adaptable feedback control loop.

Running survivability service.

STEP 1

STEP 5

STEP 9

CAT 0 and CAT 1: algorithms and
policy

Conceptually, the implementation of the detection concept summarised in Table 13 can

be represented as Figure 58 below. The prey-inspired detection component controls the

implementation of the detection system. This detection component is executed from

instantiation, in part, directly or delegated in specific instances. Thus, the prey-inspired

detection component is invoked by the prey-inspired survivability modeller, identifies the

149

components to processes subtasks and transfers tasks with relevant configurations to the

relevant components. It is key to note that “configurations” are extended from TRIZ’s

suggested solutions. For instance, for the “preliminary actions” subtask, the configuration

entails “performing actions before they are needed (either fully or partially) and without

losing time”.

Figure 58. The conceptual components for detection

In Pi-CCSF presented earlier, the survivability strategy manager (SSM) processes the “on”

aspect of the conceptual system, whereas the survivability monitor (SM) and UUUR

analysis (Step 7) is abstractly presented and ought to be defined for precise processing.

Alternatively, the on such as decision and escalation can be processed directly or triggered.

The if aspects of the conceptual system are processed by different components. In the

current example, these indicate different domain interests, for instance, virtual machine

state changes, SLA changes and UUUR state. In fact, the if components provide dynamic

awareness of the survivability state of the cloud environment. The do aspect of the

conceptual system is triggered according to how the: if aspects are evaluated. For instance,

the do components can be triggered to implement mitigation action and define the

150

survivability criteria based upon an adaptation policy or dynamic parameter management.

A prey-inspired survivability modeler is responsible for maintaining the survivability

strategy while the detection component is useful in the why aspects of the conceptual

system. In order to evaluate the conceptual approach above in practice, it will be necessary

to implement all survivability solutions and gather several industry scenarios to provide

requirements and guidelines. While this will help refine the conceptual methods proposed,

this form of evaluation is outside the scope of this research.

5.8 Summary

In summary, the Pi-CCSF presented in this chapter aims at presenting prey-inspired

survivability management and prey-inspired survivability mechanism at the conceptual and

phase design phase. Specifically, the SSM conceptualised in section 5.3.1 is expressed

around H1 of the research hypothesis whereas prey-inspired survivability mechanisms are

expressed around H2 of the hypothesis outlined in the introductions to this research. In

the work presented in section 5.2 , the design context for Pi-CCSF is presented to

introduce the survivability mission and mission requirements, as well the system

requirements towards this context of a survivable system. The work in section 5.2 briefly

highlights the security design context upon which the survivability is conceptualised. The

framework serves to address the issue of survivability design for cloud computing building

upon a specific objective to support the development of prey-inspired solutions. Thus, the

general objectives to enhance survivability; detection and monitoring, intelligent making

decisions, escalation and escalating actions, integrated into the complete process flow.

The discussions in section 5.6 and the practical example presented give an indication of

further noteworthy application directions which Pi-CCSF can be useful.

151

Chapter 6 Prey-inspired target-

based decision-making technique (Pi-

TBDM) for unpredictable survivability

targets in cloud computing

environments

This chapter is dedicated to the DS component of Pi-CCSF introduced in Section 5.4.1. It presents a prey-

inspired target-based decision-making technique (Pi-TBDM) to manage survivability decision processes

under unpredictability imposed by UUURs. This includes managing and controlling decisions on when to

execute escalating survivability actions, the order of actions and survivability preferences. Hence, the DS

component and TBDM are important to escalation and thus addresses H2 of the research hypothesis

outlined in Section 1.2.

6.1 Introduction

Nature self-manages to meet set system objectives through intelligent decision-making.

The survey of natural preys demonstrates that successful animals possess specific forms of

anti-predation systems which enable continuous control and survival despite predation.

Moreover, is also identifies complex monitoring as useful attributes in natural

environments (Meisel, Pappas & Zhang, 2010). In earlier work that contributes to this

thesis, (Mthunzi & Benkhelifa, 2017), reviewed a number of bio-inspired algorithms, with

152

the predator-prey system identified as useful for high adaptation and intelligent

survivability decision-making (Mthunzi & Benkhelifa, 2017).

Control theoretic approaches, mathematical models and numerical algorithms have been

developed and applied to address decision problem. The main problem with these

solutions is that most of them are limited when considering the analysis of unpredictable

and complex relationships among different levels of the survivability criteria within a

hierarchical cloud system. However, the decision, for instance, to select the best escalation

method, both the number and order of actions, for a UUUR event requires a decision-

making system that can perform that exact analysis. MDP is widely used for decision-

making in dynamic environments (Nagarajan, n.d.). Partially Observable MDP for

instance, achieve decision points by extending the observability element of MDP, i.e. that

partial information can be inferred to provide probabilistic information about future states

(Kreidl & Frazier, 2004b). This requires estimating core states and observing transition

probabilities, which is clearly error-prone (Saghafian, 2018).

Realistically, optimal decision making requires monitoring, particularly where all

information is not known with certainty. Logically, it is not a good strategy to base

decision-making on a system whose observations may produce ambiguous or imprecise

information. Fackler and Haight (2014) suggest characterisation approach within the

monitoring system, which assigns a variable degree of truth that an observed state is indeed

the true state (Fackler & Haight, 2014b), as a robust alternative. To give context, assume a

cloud infrastructure runs a service with an expected survivability target/value, which can

be achieved by several survivability policies. A survivability parameter ensures that a

survivability solution is achieved through executing parameters that achieve an expected

value for each service. A monitoring system addresses the traditional challenge of detection

via a cyclic process of learning, observation and decision-making. In addition, as it is also

necessary to determine how to approximate actions that are implied by survivability data.

Monitoring as a survivability objective encompasses decisions at high-level, to determine

how at a larger scale, survivability is approximated. A feedback mechanism obtains sensed

or observed information, evaluates its implications against previous observations and

actions, which informs decision-making and new response selection. Two mathematical

models may perhaps constitute this element. A stochastic model which characterises the

multi-state evolution of survivability, and a multi-state observation model which

153

rationalises the statistical correlation between observations. Multi-state observation

(Lertpalangsunti et al., 1999) is assumed as suitable since it is nearly impossibility to observe

“true states” in UUUR events. Since this thesis does not focus on a specific attack model,

risks imposed by UUURs are assumed as multi-path (Singh, Joshi & Singhal, 2013),

according to the multiple ways cloud services can be compromised. A calculated

survivability evaluation such as risk serves as a trigger for counteraction (e.g. recovery)

upon a service (VM) under threat. The risk imposed on a cloud service is evaluated in a

network of services, a tenant cluster or simply VMs. The decision system (DS) proposed

earlier and detailed in section 5.4.1 is a control approach that is robust for cloud systems

under UUUR. Under UUURs, uncertainty is such that an action results in unpredictable

outcomes, which result in unpredictable implication.

This chapter considers the survivability decision-making problem of in view of UUUR

events through a process of random variable interpretation of escalation actions

(alternatives). In addition, it considers decision-making to entail defining decision

functions as a probability of each decided action meeting an unpredictable outcome/target.

Since survivability in this research is viewed as a fuzzy variable, i.e. within a range of

uncertain variables, it is important to note this view induces a possibility distribution over

the domain of survivability variables. When considering the presence of UUURs in various

cloud computing scenarios and applications domains, survivability decision-making can

thus be considered as a multiple-criteria decision making (MCDM) problem. The

remainder of this chapter is as follows: Section 6.2 introduces the fuzzy concept and its

application to cloud computing survivability decisions. Section 6.3 details the target-based

decision-making technique for cloud computing survivability. Section 6.4 presents

numerical examples to assess the applicability of the technique proposed above. Section

6.5 concludes the chapter with a summary of findings.

6.2 Fuzzy logic and its application to cloud

survivability decision problem

The acceptance that survivability decisions are taken with non-complete detection

information and imperfect execution indicates survivability as a fuzzy multi-indicator

154

concept with many contradictions. On one end, unpredictability renders efficient

anticipation, decision and execution of enough countermeasures almost impossible. On

the other, the cost of services and service assurance becomes complicated. Limited

probabilistic information thus requires formal methods to reflect a range of continuous

states that cloud systems may resemble. And yet, availability and performance are

important parameters for survivability and demand for unhindered provisioning of

services is central to the attractiveness of the cloud.

Fuzzy theory (Zadeh, 1978)(Zadeh, 2013) is extensively applied in a range of areas to

model complex behaviours due to its ability to represent casual relationships between

concepts, and the analysis of a system after convergence. For a formal definition, the

interested reader is referred to works by (Gras et al., 2009)(Yesil, Urbas & Demirsoy, 2014),

who aptly demonstrate the suitability of fuzzy in analysing complex and dynamical systems

where mathematical modelling is complicated. For instance, it is possible to model prey

agents’ actions based on perceiving or sensing an attack and making an appropriate

decision. Nonetheless, applying fuzzy evaluation methods in critical systems survivability

is not constrained by the emphasis on character weighting and extreme value action. As

suggested by (Cheng, Chen & Chen, 2008)(Sharif & Irani, 2006), because fuzzy weight

values often carry useful information (individually) and yet little to do with relationships

among objects being assessed, critical information is lost and thus the scientific rationale

for weighting needs substantiating.

In this chapter, Feldman’s notations style, i.e. capital letters indicate a random variable,

while a lowercase to that character indicates a value of that variable (Feldman, 2002) is

adopted. For instance, consider Y as a discrete random variable such that y ∈ Y in which

Y is a finite set of M possible values of Y. Introducing the probability of Y at a point in

time as p Y = y or p(y).

Let fuzzy events A and B be fuzzy sets on S and T whose membership function is described

as
𝐴
 𝑎𝑛𝑑

𝐵

A
and

B
, a decision problem with fuzzy events is therefore defined as

follows:

4 − 𝑡𝑢𝑝𝑙𝑒 𝐹, 𝐶, 𝜀, 𝑢

, where F = f1, f2,…fr defines a set of fuzzy states and fuzzy events to a probabilistic space

S = s1, s2,…sn. C = c1, c2,…cp defines a set of fuzzy actions which are fuzzy events on

155

an escalation space 𝐷 = 𝑑1, 𝑑2, … 𝑑𝑒. 𝑢 . is a utility function such that 𝑢 . : 𝐹 × 𝐶 →

[0,1].

Assuming fuzzy states F to be orthogonal, (the simplest sense of orthogon to imply

complete independence from each other), an expected utility of fuzzy action 𝐶𝑖can be

defined as follows:

 𝐶𝑖 = ∑𝑈 𝐶𝑖 , 𝐹𝑗 𝑃 𝐹𝑗

𝐼

It is quite clear above that fuzzy action 𝐶0 maximises 𝑈 𝐶𝑖 , and thus, defines the optimal

fuzzy decision, i.e.

𝑈 𝐶0 ≡ 𝑚𝑎𝑥
𝑖

𝑈 𝐶𝑖

Suppose a message space X’s conditional probability on state S is known, i.e. 𝑝 𝑥𝑗|𝑠𝑖 , the

probability that a hypothesised message is true for a state, i.e. 𝑝 𝑥𝑗|𝑠𝑖 , the expected utility

of a countermeasure 𝐶𝑖 given a message 𝑥𝑗 and the conditional probability of 𝐹𝑘, i.e.

𝑝 𝐹𝑘|𝑥𝑗 is U(Cxj|xj)=∑ (CI,Fk)p(Fk|xj)k . Intuitively, an optimal decision 𝐶𝑥𝑗 is defined

as:

𝑈 𝐶𝑥𝑗|𝑥𝑗 ≡ 𝑚𝑎𝑥
𝑖

 𝐶𝑥𝑗|𝑥𝑗

e is defined as the probabilistic information w.r.t a random variable. Given probabilistic

information, e, w.r.t random variable �̃�, an expected utility of possessing information is

defined as

𝑈 𝐶�̃�|𝑥𝑗 = ∑𝑈 𝐶𝑥𝑗| 𝑥𝑗 𝑓 𝑥𝑗

𝐼

Information entropy, i.e. worth of possessing information e is according to the following

𝑉 𝑒 = 𝑈 𝑐�̃�|�̃� − 𝑈 𝑐𝑜

Furthermore, a perfect probabilistic information, 𝑒∞ is that information which gives the

true state of 𝑠𝑖 . Thus, an expected utility for possession of perfect probabilistic

information, 𝑒∞ is

156

𝑈 𝐶�̃�|�̃� = ∑𝑈 𝐶𝑠𝑘|𝑠𝑘 𝑝 𝑠𝑘

𝑘

, where 𝑈 𝐶𝑠𝑘|𝑠𝑘 = max
𝑖

𝑈 𝐶𝐼|𝑠𝑘 and U CI|sk = ∑ u Ci| FJ uFJ sk j . the value of

information 𝑒∞ can thus also be simplified as V e∞ =U Cs̃|S̃ -U(Co).

Let us consider fuzzy information with fuzzy messages {M1..., Mp} which describe events

on X and satisfy the orthogonal condition. Fuzzy information E is defined as observing

messages from {M1... Mp}. Intuitively, the expected utility of countermeasure action 𝐶𝑖

given 𝑀𝑘 is define by,

𝑈 𝐶𝑖|𝑀𝑘 = ∑𝑢 𝐶𝑖 , 𝐹𝑗 𝑃 𝐹𝑗|𝑀𝑘

𝑗

Clearly, as shown above, it is possible to attain an optimal decision point when both the

probability of possessing fuzzy perfect information and the utility are maximal. However,

this approach focuses upon optimising decision-making based upon probabilistic

information over random variable. This is achieved by first defining the probabilistic value

of information and converting this to a perfect probabilistic value based upon an expected

utility for possessing that information. Moreover, there is an assumption that fuzzy states

meet the orthogonal condition, i.e. states are independent. The current author suggests this

decision-making approach be most applicable in traditional survivability decision-making

methods where emphasis is upon the clearly defined value of information alone, e.g.

business cost or risk, and less so on the state of a system. Nonetheless, as has been shown

throughout this research, it is quite often common in practice that changes in the state of

a cloud environment are highly dynamic and unpredictable, which impacts the survivability

requirements and demands. Thus, a survivability decision-making problem under

uncertainty would consider what value to place on unpredictable tenant services and cluster

sizes. Suppose cloud services exist in at least four states; S1 = V and S2 = A, S1 = C and S1

= S, representing services in the vulnerable state, attacked state, compromised state and

survivable state, respectively. It is possible to assess a survivability target for the vulnerable,

attacked, compromised and survivable states, TV, respectively to address this problem.

Let us suppose there are two systems, and each can only assess the probability of the other

according to given probabilities. An optimising principle suggests that an agent should

decide on an action maximises the probability of a random action meeting the optimal

157

target. Although simple and appealing, with UUURs, uncertainty about the systems

themselves, the information, targets, etc. means that the resultant model remains

operationally limited. Bordley and LiCalzi, (2000) considering a random outcome

whereupon the decision model prescribes the choice of an action that maximises the

probability of meeting an uncertain target, as long as the target is stochastically independent

of the random outcomes to be evaluated (Bordley & LiCalzi, 2000). Interestingly, Bordley

and LiCalzi, (2000) decision procedure leads to a utility-based decision making which, as

above, is operationally incomplete under UUUR, i.e. it defeats the survivability mission.

6.3 Target-based decision-making (TBDM)

Formal decision techniques have historically been applied in the computing domain to

address the challenge of complex problems. For instance, decision tree techniques are

applied in intrusion detection algorithms for probabilistic classification of split datasets.

However, applying decision tree techniques in unpredictable environments is limited due

to detection performance which is sensitive to mismatch training and test data (Jing, Bi &

Deng, 2016). Decision tree techniques-based Markov models have been proposed to

alleviate the detection performance shortcomings of standard decision tree techniques.

However, the practical implementation of large decision models where significantly large

decision points is embedded is a computational challenge. Moreover, decision tree

techniques are most suited for traditional object-oriented, component-based computing

environments where the survivability concept is fundamentally security-centric.

In Pi-CCSF, the DS will consider various components and attributes simultaneously to

make decisions about survivability and their outcomes. This includes resources, cost, the

current and possible future survivability state, available actions, system state data from the

SSM, SLA state, domain-specific aspects, etc. It may also be the case that these attributes

contradict, with each imposing a unique performance on the overall survivability property.

Thus, with unpredictability, survivability decision selection is unpredictable, multiple-

commensurable and contradicting properties requires an effective decision-making

technique.

158

Several techniques have been developed to deconstruct the relationships between

uncertain and undefined systems and the dependencies among the system components or

attributes. Basic structural modelling for instance, which deals with modelling concepts

and attributes’ logic and mathematical constructs (Warfield & Staley, 1996), is widely used

across many domains. The DEMATEL technique specifically, is applied in engineering

design by (Liu et al., 2014) to facilitate decision-making for engineering designers faced

with the dilemma of materials selection. In their work, these authors use the ANP approach

as a weighting system to evaluate the influence of dimension and criterion on material

structure, and VIKOR method to rank each alternative based on performance difference.

Hence, using the method by (Liu et al., 2014), a decision point can be reached by

engineering designers, of the materials to improve a product.

While the current chapter does not replicate the application of the technique by (Liu et al.,

2014), it will adapt the processes to suit the survivability decision-making problem under

consideration. Making survivability decisions under uncertainty could be traditionally

managed using probability distribution on the space of predictable states. However, as has

been demonstrated throughout this thesis, traditional approaches are not adequate in cloud

environments where survivability states are themselves unpredictable, and applying

traditional approaches directly is challenging. To mitigate this challenge, the target-based

approach is adopted for assessing the survivability target of a cloud system, transform the

survivability outcome (payoff) into a probability of meeting the survivability target, and for

each survivability action (alternative) Ai, and state Sj, define the probability of payoff value

cij. The decision processes below are summarised here to place into context the decision

technique under consideration. Figure 59 presents the overall graphical illustration of the

foregoing.

Step 1: The decision system should construct a relationship map based upon a survivability

threat, the survivability mission and the known survivability state of the cloud

environment. The map also maintains other important survivability tread-offs such

as cost.

Step 2: Based upon the relationship map in step 1, the DS computes a criterion to

determine influential weights for a survivability criterion that achieves the

survivability target.

159

Figure 59. Illustration of Pi-CCSF’s DS process

Step 3: Weighting also computes the “attitudes”, i.e. the different priorities that capture

the preferences for the level of survivability a decision process must consider, as

stipulated in an SLA.

Step 4: Based upon the influential weight and preferred target-solution, the DS ranks the

alternative survivability decision based upon a prescribed target.

Step 5: The DS determines the best survivability decision. This survivability decision

system process in Figure 59.

160

6.3.1 Construct a survivability decision matrix

To construct a survivability decision matrix, the DS foremost computes the general

survivability matrix based upon survivability factors, for instance, as CC or CSP indicates

in an SLA. Such factors may point to a scale in a fuzzy set of possible survivability states

described in natural language terms. Suppose Ai is a set of survival actions (escalating)

which are executed according to a survivability decision-making criterion. Hence, i are

finite actions (random) such that i = 1, ..., n. Sj represents the state of a cloud system,

including intermediary states in which cloud systems may exist. Hence, the state of the

system translates into the posture of cloud computing environment under UUURs.

Additionally, it represents such natural language descriptions as attacked, attacked but not

compromised, vulnerable, vulnerable but low-medium-high risk, compromised but

recoverable, compromised but not recoverable, and so on. Thus, j is a set of finite states

such that j = 1..., m. From the preceding, it is possible to construct a general matrix with

each action on a state producing an outcome, Cn, as shown in Table 12. As will be the case

throughout this section, a fuzzy membership function and a possibility distribution should

be viewed and will be used interchangeably.

Table 14. A general survivability decision matrix

Action State of survivability

 S1 S2 S3 S3 S3 Sn

A1 C11 C12 C13 C14 C15 C1n

A2 C21 C22 C23 C24 C25 C2n

A3 C31 C32 C33 C34 C35 C3n

A6 C61 C62 C63 C64 C65 C6n

Formally, (Yager, 2004)’s conversion method is applied to convert a general possibility

distribution Table 14 into a probability distribution for the decision problem under

consideration. Yager's method is as briefly as follows:

𝑃𝐹 𝑥 =

𝐹𝑋

∑ 𝐹 𝑥 𝑋

1

161

Suppose that for each survivability action Ai and state Sj, where T = Tj, if the probability

of meeting survivability outcomes, 𝑐𝑖𝑗 depends upon an unpredictable state of the cloud

environment, a general probability of an outcome or payoff meeting the survivability

target, Ai and Sj is therefore defined as:

 𝑝𝑖𝑗 = 𝑝 𝑐𝑖𝑗 ≥ 𝑇 2

Table 13 below is therefore derived from the general survivability matrix presented in

Table 14.

Table 15. Decision matrix derived from the probability of meeting a target

Action State of survivability

 S1 S2 S3 S3 S3 Sn

A1 p11 p12 p13 p14 p15 p1n

A2 p21 p22 p23 p24 p25 p2n

A3 p31 p32 p33 p34 p35 p3n

A6 p61 p62 p63 p64 p65 p6n

6.3.2 Determine weights for main survivability

decision functions

Due to unpredictability, survivability decision-making outcomes are mostly heterogeneous,

i.e. it cannot be known with certainty if executing an action yields a survivability outcome

or payoff that is a crisp number, and interval value or fuzzy quantity. Thus, traditional

decision-making methods cannot be applied directly. Nonetheless, where meeting

survivability outcomes, 𝑐𝑖𝑗 is a crisp number,

𝑝𝑖𝑗 =
∫ 𝑇 𝑥 𝑑𝑥
𝑐𝑖𝑗
−∞

∫ 𝑇 𝑥 𝑑𝑥
+∞

−∞

If cij is an interval value or cij is a random variable with a uniform distribution such that

𝑐𝑖𝑗 = [𝑎, 𝑏].

Otherwise, where cij is a fuzzy value F, the probability of meeting the target is defined as

follows:

162

𝐹𝑖𝑗 𝑥 =

𝐹𝑖𝑗 𝑥

∫ 𝐹𝑖𝑗 𝑥 𝑑𝑥
+∞

−∞

3

Since cij, is a random distribution variable with the probability distribution Fij and T is the

random variable associated with probability distribution PT, i.e. the associated probability

of target T, as given by PT(x)=
T(x)

∫ T x dx
+∞

-∞

, the probability of meeting a survivability target is

therefore defined as

𝑝𝑖𝑗 = ∫ 𝑃𝑇 𝑥 𝑃 𝑐𝑖𝑗 ≥ 𝑥 𝑑𝑥
+∞

−∞

𝑝𝑖𝑗 = ∫ 𝑃𝑇 𝑥 [∫ 𝑃𝐹𝑖𝑗 𝑦 𝑑𝑦]
∞

𝑥

𝑑𝑥
+∞

−∞

𝑝𝑖𝑗 = ∫ ∫ 𝑃𝐹𝑖𝑗
 𝑦 𝑃𝑇 𝑥 𝑑𝑦𝑑𝑥

∞

𝑥

+∞

−∞

 4

If cij and T are independent, the above method transforms the general survivability decision

matrix into the derived matrix shown in Table 15. The advantage is that, unlike with the

inhomogeneous decision matrix, the derived probability of survivability outcome pij

uniformly comprises the probability of a survivability outcome cij meeting the survivability

target T.

6.3.3 Rank survivability decision alternatives

Kao and Liu (2002) in their work proposed a fractional programming approach for

decision-making prioritisation based upon a membership function derived from fuzzy sets

(fuzzy weighted average) and the extension principle (Kao & Liu, 2002). Dong and Wong’s

(1987) method gives discreet and exact solutions in which repeated derivation of a

membership value extents the exactness of a membership function (Dong & Wong, 1987).

Dong and Wong’s work is adapted by Liou and Wang whose method improves the

efficiency of the foregoing by reducing the number of permutations (Liou & Wang, 1992).

Along these lines, (Guh et al., 1996)’ method is, therefore, more efficient as it further

reduced the number of permutations to give an efficient sequencing criterion. Using a

163

value function proposed in (Huynh, Ryoke & Ho, 2007), it is possible to rank decisions

and execute them according to the prioritisation function:

𝑣 𝐴𝐼 = ∑𝑃𝑖𝑗𝑃𝑗

𝑚

𝐽=1

5

For brevity’s sake, this value function is adopted by the current author as an expected

probability of meeting a survivability target.

6.4 Numeric example

This section considers the following application case scenarios to demonstrate the

applicability of the foregoing TBDM technique for cloud computing’s survivability

decision system (decision-making under UUUR). While the survivability application

example presented in section 6.4.1 is arbitrary, the example in section 6.4.2 is adopted from

official sources and attributed accordingly.

6.4.1 Semantic web platform

Suppose an arbitrary entity, CloudSea, is a web and semantic annotation platform whose

varied client-base has wide-ranging service requirements. Along with providing existing

clients with a reliable and secure platform, CloudSea is accessible to other sporadic clients.

Hence, core to service provision is its ability to ensure that survivability targets of both

traditional and sporadic client are met. Thus, survivability management and control

decisions are much reliant upon an uncertain and evolving workload. CloudSea is therefore

confronted with the issue of how to manage decisions and accommodate uncertain and

undefined survivability and evolving scalability requirements.

Traditionally, the CloudSea infrastructure managed scalability via automated instantiation

of services based upon historically analysed statistical data. A range of actions towards this

effect (referred to as alternatives) are available and defined as follows:

164

• A1: a survivability action which increases the CloudSea capacity by 25%,

• A2: in addition to the A1 action, this action increases CloudSea’s capacity by 50%.

• A3: a survivability action which when implemented increases CloudSea’s capacity

by 100%.

• A4: an action which when executed maintains the status quo.

An unknown factor determines CloudSea's survivability capacity. Historical information

enables CloudSea to estimate at least three (states) which correspond to service

survivability” values”: high, medium and low. Associated prior probabilities for each state

are known and computed as P1 = 0.3, P2 = 0.5 and P3 = 0.2, respectively. A survivability

value defines a previously developed survivability matrix to aid in the decision-making �̃�𝑖𝑗.

Survivability is parametrically shown by trapezoidal and triangular fuzzy numbers as shown

below.

 �̃�𝒊𝒋 = �̃� 𝑨𝒊, 𝑺𝒋

Table 16. Fuzzy Survivability target matrix

Action State of survivability

S1: 0.3 S2: 0.5 S3: 02

A1 (80; 90; 99; 105) (75; 85; 90; 100) (50; 60; 70)

A2 (135; 145; 150; 165) (120; 130; 140) (-40; -30; -20)

A3 (170; 190; 210; 230) (100; 110; 125) (-90; -80; -70; -60)

A4 70 70 70

Expected fuzzy survivability of each action Ai (I = 1, 2 ..., 4) is computed according to

(Zadeh, 1978) as below:

�̃� 𝐴𝑖 = ⋀ 𝑝𝑗 �̃�𝑖𝑗

 3

𝑗=1

6

, Where Ʌ and indicate extended addition and multiplication, respectively. Based upon

the survivability target matrix in Table 16, applying equation 6 yields expected survivability

values in Table 17 below.

Table 17. Expected fuzzy survivability

Action Expected fuzzy survivability Centroid

A1 (71.5; 81.5; 87; 97) (84.25)

A2 (92.5; 102.5; 104; 115.5) (103.7)

165

A3 (83; 96; 104; 119.5) (100.76)

A4 70 70

Visualising the membership function of expected survivability is presented using Fuzzy

Inference System Professional (FisPro); a collaborative framework for fuzzy systems

modelling (Guillaume, Charnomordic & Lablée, 2002). By simple inspection of the

membership function shown in Figure 60, it is quite clear that A3 and A2 are better

alternatives in contrast to A4 and A1.

Thus, for CloudSea, the most appealing decision is one which increases CloudSea’s

capacity by 100% (A3) followed by actions which increase its capacity by 50%. Likewise,

decisions to do nothing and increase capacity by 25% are less favourable.

Figure 60. Membership function of expected survivability: A1 is shown in green,

A2 in red, A3 in blue and A4 is black.

Nonetheless, it is not clear which among the above alternatives is better than the other, i.e.

A3 or A2 and A4 and A1. (Chang, Yeh & Chang, 2013)’s opinion is that there is no generally

accepted the best method to achieve consistent ranking outcomes. (Zanakis et al., 1998)

concurs, and in fact suggests that different methods produce different results even when

applied to the same problem. Here, if using the centroid of fuzzy numbers as the ranking

criterion, the ranking order is A2; A3; A1; A4.

6.4.2 Netflix and Hulu

Netflix (Havens, 2019) and Hulu(Hulu, 2016) are two of the major video streaming service

providers. While Netflix owns its extensive infrastructure, Hulu does not, yet it provides

166

competitively large-scale video streaming services (Adhikari et al., 2015). Hence, Hulu can

support additional platforms, e.g., set-top boxes and mobile devices and offers HD video

quality. Let us suppose that due to adaptive streaming, its user-base has varied prioritisation

as to what content to access, at what speed, and consistency, hence different parameter

choices and behaviour choices over the same or dissimilar service. Essentially, Hulu is

faced with the task of managing decision choices considering uncertain priorities and user

choices on services. For brevity’s sake, Hulu’s survivability mission is defined according to

actions. A1, A2, A3 and A4 in the previous example. Similarly, Hulu’s survivability capacity

is determined by an unknown factor, and historical information enables an estimation of

at least three (states) which correspond to service survivability” values”. These are critical,

neutral and general, whose associated prior probabilities for each state are known and

computed as P1 = 0.3, P2 = 0.5 and P3 = 0.2, respectively. A previously developed

survivability matrix summarised in Table 16, assists decision-making according to

survivability value �̃�𝑖𝑗.

From an infrastructure management point of view, Hulu’s survivability requirements and

survivability decision strategy are important for varied use and user choices. As observed

earlier, the survivability decision-making character parameter key specificities three main

decision strategies, which will be considered in the case of Hulu: an optimistic strategy for

critical services streaming time-sensitive content, pessimistic strategy for critical services

streaming risk or cost-sensitive content and a neutral strategy for critical and non-critical

services. Suppose a domain for survivability values is defined as D = [-90, 230], and

optimist target is defined based according to the optimistic requirements of the running

survivability strategy, where

SurvStrat𝑜𝑝𝑡 𝑐 =
𝑐 + 90

230

, Then invoking this strategy yields a derived decision matrix summarised in Table 18.

Similarly, invoking the neutral, SurvStratneut, and pessimistic strategy, SurvStratpess
 yields the

derived neutral decision matrix and pessimistic decision matrix summarised in Table 19

and Table 20, respectively.

Table 18. Derived optimistic decision matrix

Action State of survivability

167

S1 S2 S3

A1 0.3346 0.3079 0.2199

A2 0.5584 0.4728 0.0353

A3 0.8229 0.3974 0.0026

A4 0.25 0.25 0.25

Table 19. Derived neutral decision matrix

Action State of survivability

S1 S2 S3

A1 0.5781 0.5547 0.4688

A2 0.747 0.6875 0.1875

A3 0.9063 0.6302 0.0469

A4 0.5 0.5 0.5

Table 20. Derived pessimistic decision matrix

Action State of survivability

S1 S2 S3

A1 0.8216 0.8014 0.7176

A2 0.9356 0.9022 0.3397

A3 0.9896 0.8630 0.0911

A4 0.75 0.75 0.75

As shown in the previous example, applying the value function in Equation 10, Table 21

summarises the value function for each decision-making strategy as well as the ranking

order.

Table 21. Ordering based on different targets

Action State of survivability Ranking order

A1 A2 A3 A4

Opt 0.2983 0.411 0.4461 0.25 A3 _ A2 _ A1 _ A4

Neu 0.7907 0.7997 0.7466 0.75 A2 _ A1 _ A4 _ A3

Pessi 0.5445 0.6053 0.5964 0.50 A2 _ A3 _ A1 _ A4

The following observations can be made from the results above. The ranking order of

actions associated with the neutral target is the same as that obtained by using the fuzzy

expected survivability with the centroid-based ranking criterion, where the risk neutrality

is assumed. A neutral target induces a linear utility function which is also equivalent to risk

neutrality behaviour, as opposed to optimistic which is equivalent to a risk-seeking

behaviour. Thus, in the optimistic strategy, the decision system takes aggressive actions to

achieve max survivability despite high risks, whereas in the former, the decision systems

aim to achieve survivability and hence risk averse.

168

The survivability value attained with the different actions depends upon an unknown

variable, i.e. unpredictable. Due to the amount of information the decision system

estimates three states of nature corresponding to ‘high’, ‘average’ and ‘low’ survivability

with associated prior probabilities of p1 = 0.3, p2 = 0.5, and p3 = 0.2, respectively.

Moreover, assume that the prior matrix of fuzzy profits ˜Ui j is given in Table 8, where

fuzzy targets are represented parametrically by triangular and trapezoidal fuzzy numbers.

Then, the expected fuzzy target of each alternative Ai (i = 1, . . . , 4) can be calculated as

˜E (Ai) = 3 _ j=1 (p j ⊗ ˜Ui j) (22) where ⊕ and ⊗ stand for the extended addition and

multiplication, respectively, and risk neutrality is assumed. Using Zadeh’s extension

principle for Equation 10 then results in the expected fuzzy profits of alternatives.

The issue under consideration is how best to encode the natural concept of prey survival

into precise measures about decision-making (adaptation and escalating actions) around

multiple evolving states. Conceivably, such efforts may not be perfect and in some cases,

may completely misrepresent information if a context changes. There are, however, proven

mitigations add complexity to an already complex situation. While dynamic programming

conceptualises numerical algorithms with the optimal solution, this approach is

computationally prohibitive in practical problems (Kreidl & Frazier, 2004a). Fuzzy theory

qualitatively deals with ambiguity, particularly concerning human reasoning (León et al.,

2010). The mathematical framework proposed in this chapter attempts to add practical

value to cloud computing’s survivability challenge. It identifies and defines an appropriate

balance between uncertainty and countermeasure actuation.

6.5 Summary

There is merit to the claim that TBDM is a significant basis for decision analysis under

unpredictability. It seems an appealing that the TBDM technique is a generalisable

approach for formulating decision functions that can be automated to adapt to contextual

cues. Such cues include decision attitudes and preferences of varied and perhaps

unpredictable decision problems. However, as this element is outside the scope of the

current work, it will require further investigation. This chapter presented a fuzzy-based

technique to leverage decision-making towards survivability targets. The target-based

169

decision technique addresses the research hypothesis by considering the fuzziness of

information when faced with UUURs.

The approach brings fuzzy survivability information, i.e. survivability state which

directly impacts the survivability actions (escalation), closer to survivability

decision processes. Figure 55 illustrates this by considering survivability

preferences and survivability attitudes.

• The investigation suggests that it is possible to institute variable survivability

actions (escalation) based upon the known survivability preferences and attitudes.

• Moreover, the target-based approach ensures that the decision model focuses upon

achieving survivability outcomes under UUURs. This is a promising method to

address the problem of survivability decisions under UUURs.

• The numerical examples show that the decision technique introduces the

possibility to generalisable survivability SLAs according to variable requirements

and priorities. For instance, survivability decision requirements for a critical system

as different for a neutral system. With further work, dynamic automation for

instance and evolutionary computing, the decision system, including the actions to

recover can be contrived to adapt dynamically and intelligent to suit changing

survivability requirements.

170

Chapter 7 Evaluating Pi-CCSF

using Pi-CCSF simulator

This chapter presents the Pi-CCSF simulator, developed and implemented to evaluate Pi-CCSF’s

theoretical conception of escalating actions proposed in 5.4.2. The aim is to understand the implications of

escalation (prey-inspired survivability mechanisms) in the context of practical application in a real-world

cloud environment. To achieve this, the experiments in this chapter assess the impact of prey-inspired

escalating survivability actions on VMs in various states of compromise. Analysing the implication of

escalating actions on the vitality of VMs and the overall survivability will help identify the best conditions

for survivability. In addition, hypothesis testing will help to prove if indeed the escalation concept has no

effect on survivability.

7.1 Introduction

It is common practice in research to evaluate systems using CTMC, simulation or system

prototype. A common influence on the choice of an evaluation approach is the level of

development of the system under evaluation. For instance, CTMC evaluation is suitable

where a system architecture exists. However, a system prototype brings experimentation

closer to real-world systems, albeit with limitations of scalability. Simulation is suitable

where a system architecture is developed. Thus, Pi-CCSF simulator is presented in this

section as suitable to study the behaviour of the prey-inspired survivability mechanisms

and the contributions proposed. While CloudSim provides near real results (Sakellari &

Loukas, 2013)(Haas, 2014), its use for the current context is not suitable for several

reasons. Foremost is the time limitation, learning the CloudSim framework and adapting

it to current considerations is a timeous task. In addition, CloudSim is more suited for

171

modelling Discrete-Time Event-driven models, which limits its suitability for the current

experiment. On the contrary, the main application models supported by the Pi-CCSF a

multiple-phase analysis of continuous Markov-chain models for the proposed prey-

inspired escalation. Thus, using CloudSim in this instance will add useful but unnecessary

complexity and render it challenging to scale these models. Restricted validation that allows

for a scientific computing researcher to employ separate validation methods (Oberkampf

& Roy, 2011) is employed. (Oberkampf & Roy, 2011)’s opinion is that the alternative

approach; all-encompassing approach, is confusing when communicating results.

The approach in this research hence comprises one key component: A python

implementation based on the Lotka-Volterra predator-prey model (Wangersky,

2003)(Parker & Kamenev, 2009) validates Pi-CCSF’s theoretical escalation concept. LV’s

model is the base model upon which the current hypothesis of prey-inspired survivability

property is built. Many pieces of research have shown that LV’s properties and behaviour

are valid indicators for survivability, and hence, the system model in this simulation are

deemed valid for the Pi-CCSF simulation.

To evaluate Pi-CCSF, it is assumed that cloud environments by default are vulnerable, and

if the vulnerability is unresolved, an attack is launched (attacked state) leading to

compromise (compromised state). Pi-CCSF’s objective is, therefore, the application of

prey-like actions to alter the transition processes of cloud system states from various levels

of compromise to the survivable state. These transient states have a steady-state

probability, which implies that the probability of an action being aborted, the probability

that action proceeds another and the probability of escalating actions, etc. do not change

with time. Related approaches include (Nguyen, Kim & Park, 2016) steady-state analysis

of cloud service availability, (Zheng, Okamura & Dohi, 2015)’s single-phase survivability

analysis of VM-based architectures and (Changa et al., 2016)’s multiple-phase survivability

analysis of continuous Markov-chain model to capture a datacentre recovery process.

The remainder of this chapter is as follows: Section 7.2 presents the Pi-CCSF simulator;

details the Pi-CCSF simulation environment and simulation code description. Section 7.3

outlines the simulation design. Section 7.4 presents the simulation results in the analysis.

Section 7.5 concludes the chapter with a summary of key findings.

172

7.2 Pi-CCSF simulator

The simulator and experiments presented in the chapter are designed around Pi-CCSF.

Specifically, the experimental approach aims to gather the details of VMs survivability

dynamics under different scenarios. A python simulator hence is developed to investigate

VMs’ behaviour when prey-inspired survivability mechanisms are employed. The

expectation is that simulation results give an indication of the extent to which prey-inspired

actions alter the state of the cloud system, and precisely demonstrates the consequences of

escalating actions to cloud systems or services in vulnerable, attacked or compromised

states.

7.2.1 Environment

For a visual illustration of the application of the conceptual framework, Figure 61 is

presented as an example of the cloud service application view of Pi-CCSF. Survivability

areas 1 and 2 emulate the traditional survivability configuration; one is operational whereas

the other acts as backup or standby, with redundant resources. From left, a gateway enables

CSP and CC to access Pi-CCSF via a web front-end, e.g. an API. Based upon an existing

SLA and the cloud infrastructure, different scheduling policies will have different effects

in terms of task execution. Pi-CCSF’s management layer (SSM) is publicly available,

enabling both CPS and CC to interact directly and influence the survivability management

strategy. However, low-level prey-inspired survivability mechanisms are private and only

accessible to the CPS, to secure survivability mechanisms against malicious attack,

manipulation or misapplication. Survivability data repository stores running configuration

files and facilitates efficient configurations reuse at real-time. Suppose an incident occurs

in Area 1, the system configuration reverts to the traditional setup, whereupon the CSP

and CC operations are provided via the backup survivability Area 2

173

Figure 61. A cloud service application of Pi-CCSF around running survivability service area (Area 1) and a backup area (Area 2)

174

CCSF simulator is tested on Microsoft Windows 10 workstation and implemented in

Python providing an intuitive GUI (Figure 62 and Figure 63). Since Pi-CCSF simulator

uses Python code libraries, it can be integrated into real or near cloud environments with

relative ease (Hwang & Li, 2010).

Figure 62. Part of the graphical user interface (GUI) to set virtual machine

variables. A user can launch a simulation based upon specified variables, memory

generated variables or using the best variables in memory

Figure 63. Part of the graphical user interface (GUI) to set memory variables. A

user can launch a simulation by specifying the amount of actions that can be

stored in memory, the numbe of VMs and a threshold VM survivability vitality.

As shown in the following section, the Python scripting system forms the underlying

simulation platform, providing a conduit between the GUI and the underlying

programmatic prey-inspired survivability components.

175

Two simple programmatic functions are performed, setting up virtual machine and

memory variables. These enable a researcher to simulate with specified parameters, run the

simulation with generated memory and run a simulation to compares the implications of

generated memory. Also, the researcher can automate the launch and termination of a

simulation run. Pi-CCSF simulator is designed to provide the features to simulate prey-

inspired survivability, specifically unique features that facilitate the development of

escalation models. The quantitative analysis aims to evaluate VM vitality and survival rate

(as indicated by population changes) in the presence of an unpredictable (random) attack

(attacking VM). Pi-CCSF simulator also includes customisable models of memory

generation, VM population dynamics, model parameter integration and an intuitive GUI.

The use of python to create Pi-CCSF simulation models implies that various component

groups are defined with specific dependencies defined among them. Whereas simulation

parameters are determined in advance, incremental learning algorithms (Xiao et al., 2014;

Yoon et al., 2018) would be most suitable with further development to the simulator due

to its adaptiveness and dynamicity in large-scale systems. The complete code is provided

in Appendix B. It should be noted that in its current form, Pi-CCSF simulator does not

fully integrate all Pi-CCSF’s components, as integration can be quite complex. As such, the

decision system (DS) is addressed separately in Chapter 6. While decision triggers and

decision targets and attitudes, are assumed in the experiments, none of these requirements

is met in simulation. Decisions associated with escalating actions are hardcoded in the

python script to allow for analysis.

To create the default parameters, the following code example defines the timestamp,

number of VMs, the number of actions, including historic (or learned) actions, preferred

number of VMs to achieve survivability and the preferred vitality for survivability, etc.

based upon properties from the prey inspiration. In addition to creating and modifying the

default models parameters, Pi-CCSF simulator defines a range of common tasks. For

instance, to define a “stimuli” or input which invokes the simulation of VMs with respect

to the input and the current state. Hence, controller.py allows the researcher to evaluate

the survivability models by running multiple simulations, changing parameters and storing

and outputting simulation data. The sample code (See Appendix C) generates memory

parameters and searches and stores historic actions. In addition, the code allows the

researcher to explore the behaviours of VMs through the simulations cycle; define

vulnerability parameters, the vitality of vulnerable VMs, the average survivability of VMs

176

in general and record the simulation output to a local directory. In the code simulation

(sample provided in Appendix C), the simulation performs a search task, to identify the

number of vulnerable VMs and execute survivability actions if the number is below a

threshold value. If current actions improve VM vitality, the search and execute task

(escalation) is not necessary, i.e. raiseSpeed = False, and stores the actions for future use.

Given the novelty of the escalation concept for cloud computing survivability as

conceptualised for Pi-CCSF, it would be necessary to develop the escalation model further.

In its current form, this model simplicity facilitates easy definition and execution of the

escalation process throughout Pi-CCSF’s system components. In a real cloud environment,

escalation is triggered by several of Pi-CCSF components including the SM, SSM and other

related adaptation and dynamic support sub-tasks. However, in its current form, escalation

model behaviours are deliberately designed to be triggered by simple rules, i.e. if several

survivable VMs or VM vitality falls beneath a certain value, then execute escalation from a

set of actions. Theoretically, the escalation process implies that an action vector maps

actions to probabilities of an occurrence (compromise, exploiting a vulnerability and

surviving). Thus, it defines the escalation sequences imposed by vulnerable, attacked and

compromised VMs. Due to its current simplicity, the escalation model can be translated

into mathematical models and further code and so on, as the simulator is developed. To

mimic prey animals’ efficient learning and future threat prediction and response (Systems,

2006), escalation outcomes are retained in memory. Actions are randomly computed to

search for a survival solution and retain its value when the vitality of vulnerable VM

decreases (it is assumed to indicate negative survivability), otherwise no solution is saved

if the vulnerable VMs survive.

7.3 Simulation design

While knowledge of an adversary informs the type of countermeasure implemented,

(Albanese, Jajodia & Venkatesan, 2018)’s opinion is that possessing such knowledge with

certainty when dealing with UUURs. Pi-CCSF simulator does not consider any attack or

adversary model but instead, the properties of adversaries are identified simply around the

outcomes of UUURs (Ma & Krings, 2011)(Ma et al., 2014). Hence, a worst-case scenario

177

is assuming that VMs are by default “vulnerable”, implies that they are to some degree

under the control of an adversary. Hence, discovering the behaviour of the simulation

requires an analysis of the dynamics of VMs’ probable state transitions concerning prey-

inspired escalation upon the vulnerable state. Figure 64 illustrates the Pi-CCSF simulator

component and the interactions between them. SurvivabilityModel.py simulates the vitality

of vulnerable VMs; equation 7 and rate of survival for attacked VMs equation; 8.

Furthermore, the simulation aims to discover the distribution of survivable VMs equation;

9 over time, if executing survivability actions recovers VMs from the compromised state;

equation 10. For the purposes of this simulation, this is assumed to be closed system, i.e.

V_VM(t) + A_VM(t) + C_VM(t) + S_VM(t) 1. Known attacks (with established

solutions) pose a threat with known and established solutions. The computing of VM

dynamics is according to the probabilities summarised in Table 22.

Table 22. Summary of default parameters

Description Annotation

Probability of exploiting VVM

Probability of AVM resisting attack 𝛾

Probability of compromising SVM

Survivability action a

Rate of compromising SVM 1/a

Escalating action, a = {a1, a2, ... an} Esc

Probability of CVM recovering to SVM Ƞ, increase with escalation

Rate of juvenile VM α= V
VM
 t + AVM(t)

Rate of parent VM 1-α=SVM t + CVM(t)

Specifically, survivable and vulnerable VMs are presented analogous to parent and juvenile

preys, respectively. “Juveniles” represents a system of two VM systems; Vulnerable

(V_VM) and Attacked (A_VM), distinguished by their inability to resist attack., “Parents”

represents a system of two VM systems; (Compromised (C_VM) and Survivable (S_VM),

distinguished by their capacity to recover from compromise.

178

Figure 64. Pi-CCSF simulator components

179

To observe the distribution of vulnerable VMs over time concerning the relationship

between the probability of a vulnerability being exploited (successfully or otherwise) and

the probability of resting an attacker at a point in time during the simulation, the evaluation

is according to the following:

 ΔV t

Δt
= − βVVMS t ∗ AVMs t + γAVMs t

7

, where VVMS (t) and AVMS (t) are the total number of vulnerable and attacked VMs at

time t, ΔV(t) specifies the rate of a range of change of vulnerable VMs considering the

given probabilities specific to each VM state.

To observe the distribution of attacked VMs over time, based upon the relationship

between the probabilities of a vulnerability being exploited, the probability of failing to

resist an attack and the total number of attacked VMs at a time, the evaluation is according

to the following:

 ΔA t

Δt
= βVVMs ∗ AVMs t − γAVMs t

8

, Where ΔA(t) represents the rate of attacked VMs at a given time t, AVMs(t) and VVMs(t)

specify the total number of attacked and vulnerable VMs, respectively, at any given time t.

Intuitively, - γAVMs (t) is a negative constraint on the number of attacked VMs.

To observe the distribution of survivable VMs over time-based upon the relationship

between the total number of survivable VMs and attacked VMs, with respect to the

strength of an action performed, where the probability of compromise is a constraint on

the total number of compromised VM and the rate of survival, the evaluation is according

to the following:

 ΔS t

Δt
= −

αSVMS t ∗ AVMs t

a
+ CVMs t

9

, Where ΔS(t) is the rate of survival, i.e. survivability at a time t, the action(s) taken, impacts

upon the survival rate, intuitively, inadequate action(s) harm survivability.

180

The evaluation to observe the distribution of compromised VMs over time-based upon

the relationship between the total number of survivable VMs and attacked VMs at a time

with respect to action(s) taken is according to the following:

 ΔC t

Δt
=

αSVMS t ∗ AVMs t

a
− CVMs t

10

, Whereas ΔC(t) is the rate of compromised VMs at time t of the simulation, SVMs (t) and

AVMs (t) specify the number of survivable and attacked VMs at that time t, of the

simulation. Intuitively, −𝐶𝑉𝑀𝑠 𝑡 in the equation points to a negative constraint on the

number of compromised VMs. Simulation parameters were chosen to reflect best the prey-

parentage upon which Pi-CCSF is developed. A pilot experiment presented in section 4.5

which simulated prey survival dynamics against predators suggests the current experiments

as plausible. For the experiment below, the following benchmarks are used: a known

vulnerability probability, , the probability of resisting an attack, probability of

compromise and the probability of recovering, i.e. surviving; denoted by λ, and Ƞ,

respectively.

7.3.1 Simulating base model with escalation

Figure 65 shows the Pi-CCSF’s simulation dynamic. The simulation is initialised with

default parameters after which the escalation model is deployed.

Figure 65. Graphical representation of the simulation dynamic

181

An escalation model provides escalation parameters such that at run-time, “set simulation

data” and “get simulation data” methods are called until the end of the simulation.

Suppose CS is a set of requirements that a cloud application must achieve to deliver a cloud

service. At instantiation, every aspect of CS, i.e. CSi
th is met (provided all other service

levels are met). Suppose 𝐹𝑐𝑠𝑖 is an evaluation function of CS, such that Fcsi t : R → [0,1],

where R is a set of all positive values. Fcsi hence stipulates the degree to which the ith

requirement from Fcs is satisfied at any given time, (t).

Suppose in functional analysis of a complete system, a subsuming function gCS t : R →

[1,0], defines the degree to which the whole system requirements are met at any given

time. Without UUUR events, assume gSC = 1 to imply service delivery at expected levels,

whereas gSC = gCS ≠ 1 or gSC ≤ 1 implies the negative effects of UUUR. The deviation

from gCS = 1, upward or downward is indicative of the UUUR and gCS = 0, being

catastrophic. A restorative movement towards gCS = 1 is indicative of actions that are

applied to reach acceptable service requirements, i.e. escalating actions.

Let us consider a set of systems states, i.e. survivable, vulnerable, attacked, compromised

(and catastrophic) such that 0 ≤ gCS ≤ 1. Let the maximum and minimum state of gCS,

i.e. vulnerable but not attacked, attacked but not compromised, compromised but not

catastrophic, define a cloud service states before complete catastrophe such as when

services are completely unavailable. Suppose a dead threshold (DT) is an unacceptable

service state, i.e. where gCS < DT. Nonetheless, in rare circumstances, DT can be induced

from a service security administration perspective, e.g. where a VM is killed. Intuitively, a

dead set is a set of undesirable dead states, i.e. 0 ≤ gCS ≤ DT, and the probability of exiting

a dead set is insignificantly. Figure 66 illustrates this context of the dead set explained

above. Hence, a system’s survivability (SS) is generally defined as a function of two

variables such that 𝑆𝑆 gCS̅̅ ̅̅ ̅, 𝑡̅ : [0,1] ×→ [0,1, where gCS̅̅ ̅̅ ̅ is the mean of gCS and t ̅is the

meantime to reach the dead state from the vulnerable state. Hence, escalation is both

conditional and jointly dependent upon other probabilities. In this example, escalation is

considered in space modelling a series of prey-inspired survivability actions. An escalation

space is defined as follows.

3-tuple (C, μ, δ), where C represents all available survivability actions such that 𝐶 =

{𝑐1,𝑐2 … , 𝑐𝑛}.

182

𝜇 . : 𝐶 × 𝑐𝑠 → [0,1] is a function to evaluate the effectiveness of each survivability

action concerning a cloud service.

𝛿 . : 𝐶 → 𝑍∗ is a function to evaluate the cost of a survivability action, and 𝑍∗ =

{1,2, … 𝑛}, i.e. a set of positive integers.

Figure 66. Illustration of variable systems states including the dead set

For simplicity, it is assumed that action selection varies depending upon the state of a cloud

environment and across variable cloud services. Thus, an effectiveness evaluation is a

function for both the survivability action and the cloud service. Hypothetically, it implies

that survivability action X may be effective against a certain vulnerability in one cloud

service, and yet insufficient to recover a compromised service. It is quite clear in this case

that the dependency between escalation and service state decisions must be optimised to

achieve survivability. Although optimisation and decision making are both outside the

scope of this chapter, an optimal solution is reached when both escalation and service

states are selected to maximise effectiveness against compromise and minimise risk.

7.3.2 Experiments

The experiments performed are executed over several runs and the results are summarised

into four experiments according to the parameters in Table 23. For each experiment

(Simulation Id), a number of VMs are considered with a predefined survivability threshold

value to stipulate a point to invoke escalation. Theoretically, this emphasises a value upon

183

which a survivability SLA is agreed as acceptable to service provision. For each

experimental run, some survivability actions are retained to emulate memory. In a practical

application, this process improves decision-making for real-time escalation (RTE). Since

vulnerable VMs (V_VM) and attacking VMs (A_VM) both act as a set of 5 escalating

actions, escalating actions lead to a desirable outcome, i.e. enhanced survivability,

dependent upon the scenario in question. Survivability is evaluated in range 1 and 0;

illustrated as the vitality of a VM.

Theoretically, 1 implies a high degree of survivability, while 0 vitality implies the opposite.

If the vitality reaches 0, the VM is considered as dead. In real terms, a dead VM

characterises an undesirable outcome, i.e. compromised, such as an event whose effect

means that cloud services are not available to the CC. It is necessary to suppress NAN and

infinity values, i.e. computations whose values cannot be expressed as a number to observe

VMs dynamics over time. Hence, survivability exists within the solution space (-1, 0, 1).

For each vulnerable VM, an attacking VM will exist in the simple model (survivability

model.py in Appendix B). Due to computational constraints, each VM perform a limited

number of different actions and the results are liberalised using an average of 100 groups

of simulations. Each group of simulation will simulate vulnerable virtual machines

(V_VMs) and attack or attacked (A_VMs). The simulation starts from random survivability

value whereas the simulation time number of VM components is variable. To the best of

this researcher’s knowledge, exact resolution of survivability analysis with escalation as

presented here does not exist in current literature. Thus, in principle, the analysis of results

presented here is limited due to the absence of a comparative reference to evaluate the

effectiveness of escalation model presented in this work.

The Pi-CCSF simulator implements a “shared memory” folder to simulate simple

communication between vulnerable VMs (V_VM). In real cloud environments, inter-VM

communication mechanisms facilitate a range cloud computing process, e.g. VM live

migration (Ren et al., 2012)(Author & Author, 2013)(Zhang et al., 2013). Hence, for this

investigation, a shared directory is assumed synonymous to XenSocket which implements

communication between VMs based on shared memory (Jamal et al., 2009) (Gebhardt &

Tomlinson, 2010)(Mthunzi et al., 2018). Similarly, Xway and IVC use the shared memory

concept based upon the Xen hypervisor architecture. VM behaviours are compared based

upon a constant initial vitality and the best-known actions; a random action performed

without memory and a random action with memory. Random actions with memory imply

184

that the best action is learnt and saved in memory if the best action exists and the “gain”

is above 0, otherwise, a random action will be used. This best action behaviour is used as

a baseline to provide a realistic comparison since both mechanisms are not optimised.

Unless stated otherwise, it is assumed that all simulation intervals are exponentially

distributed, and survivability actions are performed randomly according to a generic action

matrix presented in section 5.2.3 .

Table 23. Input parameters for five simulation runs

Simulation id Nbr of VMs Threshold in % Number of actions saved

Sim 1 1_1 1000 0 0

Sim 1 1_2 1000 0 0

Sim 2 1_2 50 50 1

Sim 2 1_3 50 75 1

Sim 2 1_4 50 90 1

Sim 2 2_2 50 50 3

Sim 2 2_3 50 75 3

Sim 2 2_4 50 90 3

Sim 2 3_2 50 50 5

Sim 2 3_3 50 75 5

Sim 2 3_4 50 90 5

Sim 3 1_2 200 50 1

Sim 3 1_3 200 75 1

Sim 3 1_4 200 90 1

Sim 3 2_2 200 50 3

Sim 3 2_3 200 75 3

Sim 3 2_4 200 90 3

Sim 3 3_2 200 50 5

Sim 3 3_3 200 75 5

Sim 3 3_4 200 90 5

Sim 4 1_2 500 50 1

Sim 4 1_3 500 75 1

Sim 4 1_4 500 90 1

Sim 4 2_2 500 50 3

Sim 4 2_3 500 75 3

Sim 4 2_4 500 90 3

Sim 4 3_2 500 50 5

Sim 4 3_3 500 75 5

Sim 4 3_4 500 90 5

Sim 5 1_2 1000 50 1

Sim 5 1_3 1000 75 1

Sim 5 1_4 1000 90 1

Sim 5 2_2 1000 50 3

Sim 5 2_3 1000 75 3

Sim 5 2_4 1000 90 3

Sim 5 3_2 1000 50 5

Sim 5 3_3 1000 75 5

Sim 5 3_4 1000 90 5

185

7.4 Results and analysis

Several experiments were performed, with varied escalating actions configurations tested

around survivability. The goal is to study how survivability evolves with respect to the

number of actions, sharing memory and the memory parameters such as the threshold

value and the number of saved actions. As a control will be required, some simulation

results will also be realised to allow a comparison. Each simulation performs ten runs to

simulate a network composed of ten different groups. Each group has its shared memory,

and each simulation supposes that five different actions are available. The simulations will

run 50 clock times (ticks) including the initialisation as the results stabilise after each step.

50 ticks are chosen due to the computational limitations. These summaries correspond to

the rounded results at 10-3 obtained for each group. Appendix C presents the simulation

results for the best actions.

7.4.1 The vitality of random and best actions

To enable synthesis and to view in graphs, minimum and maximum vitality values are

observed to cater to the huge variance in results. For each graph, the x-axis shows the

simulation time in ticks while the y-axis shows the vitality value. The results in this section

plot VMs’ responses when random actions (RD) and the best action (BA).

Table 24 presents a sample summary for vitality evolution (Min-Max) of vulnerable VMs,

whereas Figure 67 tracks the response of vulnerable VMs and shows that random action

marginally outperforms the best action, and vitality is relatively unchanged.

Table 24. Sample data of vitality evolution for vulnerable VMs over 10 ticks

Min-Vitality
V_VMs

0.329 0.357 0.348 0.340 0.333 0.328 0.325 0.323 0.322 0.321

Max Vitality
V_VMs

0.346 0.377 0.369 0.360 0.357 0.355 0.353 0.351 0.350 0.349

186

Figure 67. The vitality of vulnerable VMs.

Table 25 presents a sample summary for vitality evolution (Min-Max) of survival VMs and

Figure 68 plots the behaviour of survivable VMs and shows a relative decline of vitality

over the simulation period.

Table 25. Sample data of vitality evolution for survival VMs over 10 ticks

Max- Vitality
S_VMs

0.345 0.336 0.326 0.321 0.310 0.298 0.287 0.278 0.270 0.264

Min-Vitality
S_VMs

0.316 0.276 0.264 0.255 0.244 0.233 0.226 0.220 0.216 0.212

Figure 68. The vitality of survivable VMs.

RD and BA both generally have a marginally different impact, despite a deficit when

considering the Min RD.

187

Table 26 presents a sample summary for vitality evolution (Min-Max) of attack VMs

whereas Figure 63 plots the behaviours of attack VMs’ response to both random and best

actions. Foremost, both RD and BA have marginal differences although RD seems in parts

to outperform BA. Moreover, A_VMs achieve the highest vitality (about 0.5) than any

VMs over the simulation period.

Table 26. Sample data for vitality evolution for attack VMs over 10 ticks

Min-Vitality
 A_VMs

0.316 0.310 0.346 0.377 0.400 0.417 0.427 0.433 0.437 0.441

Max-Vitality
A_VMs

0.345 0.343 0.389 0.423 0.442 0.455 0.465 0.472 0.476 0.479

Figure 69. The plot of vitality of Attack VMs

Table 27 presents a sample summary for vitality evolution (Min-Max) of corrupt VMs and

Figure 70 plots the response of corrupted (interchangeably referred to as compromised)

VMs to RD and BA. This graphic shows a steady increase in vitality considering both

actions. Moreover, the random action outperforms the best action.

Table 27. Sample vitality evolution for corrupted VMs over ten ticks

Min-Vitality
C_VMs

0.000 0.010 0.017 0.024 0.033 0.045 0.067 0.091 0.116 0.135

Max Vitality
C_VMs

0.000 0.049 0.061 0.075 0.098 0.129 0.159 0.183 0.201 0.214

188

Figure 70. Sample data for vitality of Corrupted VMs

7.4.2 The vitality of actions and threshold values

This section presents the result of running 5 actions based upon similar simulation

parameters in terms of probabilities of compromise, attack, survival, etc. The first

escalation model is are random actions which are not preserved for future use. This

contrasts with best actions which arise from actions evaluated and stored in memory based

upon their outcomes. The tested actions have four distinct regions to plot survivability

trajectory in a graph. All actions have the same initial random action (RD) vitality value.

Each has a minimum and a maximum vitality value and a transition between one action

and its threshold value and a consecutive action with its threshold value.

Figure 71. A plot showing the evolution of the vitality for action one (1).

Figure 71, Figure 72, Figure 73, Figure 74 and Figure 75 depict the vitality trajectories when

actions A = {1, 3 and 5} are evaluated against a survivability threshold, T = 90. The x-axis

189

in each depicts the action type; random (RD), the action (A*) and survivability threshold

value (T*). The y-axis represents vitality, which is a value synonymous to the survivability

in this section. In Figure 71, A1 and T75 both produce the highest vitality.

Figure 72. A plot showing the evolution of the vitality for action two (2).

In Figure 72 a prior A1 and T1 achieve a vitality above 60%. In Figure 73, A1 and T1, A1

and T75, and A5 and T1 achieve over 60% vitality. In Figure 74, over 60% vitality is

achieved at A1 and T1 at two intervals during simulation whereas the same vitality is

achieved across five different intervals in Figure 75; A1 and T75, A1 and T1 and A3 and

T1. This depicts the overall escalation process averaging over 60% vitality.

Figure 73. A plot showing the evolution of the vitality for action three (3).

190

Figure 74. A plot showing the evolution of the vitality for action four (4).

Figure 75. A plot showing the evolution of the vitality for action five (5).

Figure 76 illustrates an ideal escalation process encompassing five actions with their vitality

outcomes according to corresponding threshold values. The highlighted areas (pink) in

Figure 76 are significant as probable escalation decision points. Since survivability is

stochastic phenomena (Ren et al., 2007)(Oreifej et al., 2018), path-dependent and

unpredictable, vitality in any simulation run is not representative of decision-making point.

Instead, these are points of reference or data sample points from a continuous distributions

of probable survivability lifecycles.

191

Figure 76. An overall plot showing the evolution of vitality for five actions and the overall survivability

192

This section presents simulation results for the general evolution of VM vitality over a

simulation run. Moreover, it identifies unique patterns that leverage vitality among

preferred VMs. Table 28 presents a summary sample for the overall vitality evolution

presented in Figure 77 below.

Table 28. Sample summary of overal vitality evolution data over 10 ticks

Max- A_VMs 0.345 0.343 0.389 0.423 0.442 0.455 0.465 0.472 0.476 0.479

Max- C_VMs 0.000 0.049 0.061 0.075 0.098 0.129 0.159 0.183 0.201 0.214

Max- S_VMs 0.345 0.336 0.326 0.321 0.310 0.298 0.287 0.278 0.270 0.264

Max- V_VMs 0.346 0.377 0.369 0.360 0.357 0.355 0.353 0.351 0.350 0.349

Min- A_VMs 0.316 0.310 0.346 0.377 0.400 0.417 0.427 0.433 0.437 0.441

Min C_VMs 0.000 0.010 0.017 0.024 0.033 0.045 0.067 0.091 0.116 0.135

Min S_VMs 0.316 0.276 0.264 0.255 0.244 0.233 0.226 0.220 0.216 0.212

Min V_VMs 0.329 0.357 0.348 0.340 0.333 0.328 0.325 0.323 0.322 0.321

Figure 77. The plot of overall evolution of VMs’ vitality over simulation

Figure 77 is a plot highlights the evolution of VMs’ vitality over a simulation run. As is

expected, attacking VMs have overall higher vitality due to the model design. Interestingly,

however, compromised VMs show a relative vitality improvement. Vulnerable VMs have

relatively unstressed evolution as vitality is largely stable, while survivable VMs indicate

stressed evolution.

Figure 78 shows the vitality of VM 491 in different states of compromise; vulnerable,

attack, corrupt and survive. The appendices section (Appendix C) provides the complete

simulation data. Figure 79 shows the plot of the vitality of vulnerable VMs in simulation

groups 7, 8 and 9. In both graphs, vulnerable VMs gain significant vitality over the

simulation run. In Figure 78, VM 491 sharply increases and achieves maximal vitality from

193

its vulnerable state as compared to the compromised state. In Figure 78, vulnerable VMs

488 and 489 with similar gains in vitality but achieving different levels, i.e. VM 489 achieve

almost 50% of VM 488 vitality.

Figure 78. The plot of vitality of VM 491 in simulation group 7. This data shows

positive vitality on corrupted VMs over a simulation run

Figure 79. The plot of vitality of vulnerable VMs in groups 7, 8 and 9. This data

shows positive vitality on vulnerable VMs over a simulation run

194

7.4.3 Analysis

Simulations in the thesis gives direction for future research. A similar implementation is

scalable and useful for developing larger adaptive software systems than was previously

possible (Kwiatkowska, Parker & Qu, 2011). Implementing LV’s predator-prey model as

the base model for the survivability solution of VMs ensures the reliability of the numerical

formulations in this experiment. The main concept within Lotka and Vito Volterra’s model

(Luo, He & Li, 2004)(Rozenfeld et al., 2006)(Campillo & Lobry, 2012)(da Silva Peixoto, de

Barros & Bassanezi, 2008) is that population changes are a result of a combination of

forces, including the rate of predation and the interaction between species. This model is

adapted by (Pinol & Banzon, 2011) who introduces a Verhulst factor, i.e. survival

probability as a capacity to recover from compromise. These results show that the system

has good stability, at least over the simulation period. The small oscillations in survivability

rate and the average vitality of survivable VMs over both, evolution over a simulation run

and the simulation time, suggest that the system is stable. Python in many research works

(Klugl & Bazzan, 2012)(Manapragada, Webb & Salehi, 2018), especially for analysing

quantitative data, particularly to handling complex data. Its use in this experiment ensures

that the simulation code is easily debugged to eliminate procedural errors in the simulation

input and, or output.

Figure 80 suggests that the vitality of vulnerable VMs is stable when considering random

actions (note that green arrows indicate an increase, red indicate a decline and orange

arrows indicate no change). As shown in this sample analysis, it can also be observed that

at the end of the simulation, more than half of the vulnerable VMs are survivable albeit

with low vitality.

Figure 80. Illustrating vitality changes for vulnerable VMs.

RD 0.34631 0.37732 0.36875 0.36035 0.35668 0.35466 0.35288 0.35128 0.35003

RD 0.32929 0.35702 0.34752 0.34016 0.33319 0.32802 0.32502 0.32327 0.32183

BA

BA 0.31886 0.35608 0.34662 0.33742 0.33025 0.32617 0.32332 0.32133 0.31939

A1 & T90 0.39308 0.44364 0.44658 0.45159 0.45725 0.45849 0.45453 0.44487 0.44308

A1 & T90 0.30174 0.33271 0.3117 0.29506 0.28534 0.2799 0.27068 0.26415 0.26292

A3 & T90 0.39308 0.44364 0.44658 0.45159 0.45725 0.45849 0.45453 0.44487 0.44308

A3 & T90 0.29268 0.30293 0.30935 0.30998 0.31014 0.31398 0.31285 0.30807 0.30061

A5 & T90 0.39308 0.44364 0.44658 0.45159 0.45725 0.45849 0.45453 0.44487 0.44308

A5 & T90 0.24977 0.25061 0.25098 0.26136 0.2672 0.26147 0.24969 0.24441 0.24368

195

Since the initial simulation values are generated randomly, even if the best action is

performed, the vulnerable VMs might not survive. This implies two possibilities. The

results suggest that with only random actions performed over the time, the V_VMs are

easily compromised and hence only a few of them avoid the attackers (less than 10%). This

is an expected outcome as vulnerable VMs are not designed to attack in this experiment;

Attack VMs are nonetheless in most of the simulation able to attack continuously.

Alternatively, the results suggest that the majority of C_VMs may ultimately be

compromised since exploited vulnerabilities result in compromise. Nonetheless, even with

the 10% of vulnerable VMs with higher vitality, it can be observed that some behaviours

correspond to an ideal system as hypothesised in section 1.2. In cloud environments, these

behaviours illustrate two distinct cases; one where vulnerable VMs invoke a suicidal

instruction (Hirai, 2017) (and shutdown of an attack) before being compromised (survival

rate over corrupted rate). Alternatively, the case where vulnerable VMs are successfully

recovered from compromise despite vitality going close to the dead set, i.e. close to 0.

Random behaviour seems better for the final average vitality. This outcome results from

the simulation goal to enhance the survival rate and not the vitality. In the comparisons

between the best actions and shared memory of 5 actions, the simulation moves closer to

the best actions than the random one. Moreover, a random action (RD) can outperform

the best action (BA). Logically, this is due to the existence of a randomised parameter that

is influencing the interactions between virtual machines. A random factor in this sense

represents an external element affecting the simulation. For instance, a second prey or

introducing poison during simulation. Thus, as assumed, the best actions are overall

outperforming the random actions to the rate of survivability.

The results obtained by performing the best actions are slightly close to the random one

but are still slightly above. It is key to note that the current model favours attack VMs and

therefore, where a vulnerable VMs is initialised with a random vitality, it might not be able

to survive even if it corresponds to the best action possible. Another possibility for the

inefficiency of the random action is the vitality that each VM is assumed to possess at the

beginning of the experimentation, i.e. a random vitality [0;1]. For instance, where the

vitality received approaches zero (0), e.g. 0.00001, the best action could be one that reduces

the damage received as much as possible. It stands to reason that under of UUURs threats,

and there is no best action to address the current threat, escalation implies that the best

action available is an aggressive action such as “suicide”. In this sense, this suggests that

196

immediately executing an aggressive action such as suicide is the best action to avoid

malware or a virus from spreading in a VM cluster or network and ensure survivability.

7.4.3.1 Hypothesis testing

The hypothesis under investigation is that prey-inspired survival actions against known

and unknown predators, are applicable to enhance survivability in cloud environments.

Such survivability is integrated into the management and control system and the user-

space, to enable user-level input at run-time. Put more accurately, this implies that if an

action increases the vitality of VMs in a shorter time difference than another action, the

action improves survivability. Thus, hypothesis testing aims to prove that the escalation

concept does not arrive at a null hypothesis, i.e. what is perhaps the default state of “the

world”. Notwithstanding existing debates, for and against the application of the null

hypothesis for hypothesis testing, there is convergence to what elements inform its

adequacy. Summarily, that a null hypothesis is possible, additionally, that experiment

results are consistent with a null hypothesis, and finally, that experiment intended to find

and effect. This section therefore evaluates how close the prey-inspired survivability

hypothesis is to survivability in real cloud environment. Whereas a range of techniques and

methods, for instance the KS test and specifically, the goodness of fit (Magalhães et al.,

2015) have a successful application, their strict use in this research is limited. Thus, for

simplicity, evaluating the hypothesis error bars will be used.

While this method assesses how close the mean statistic is the true mean, error-bar plots

have more value and tend to be more persuasive than statistical testing, however, this is

not a consensus view among researchers. According to (Motulsky, 2002), error bars do not

explicitly identify the statistical significance of data, and randomness complicates

hypothesis testing. It is nonetheless a useful method to produce evidence that the best

conclusion to a hypothesis has been reached (Munger, 2008). In order to conclude data

being analysed, it is vital to assess whether bars overlap or do not overlap among different

data groups. If error bars do not overlap, this concludes that data to be different from

other data. Inversely, if errors bars overlap, it can be concluded that data within

overlapping data groups is not different.

Figure 81 is an illustrative example of the preceding and shows the error bar plot of data

on vitality of vulnerable, compromised, survivable and attack VMs. This data shows that

197

for individual plots in Figure 67. Figure 81 data shows that attacking VMs have the highest

vitality whereas corrupted VMs have the least vitality. Since data on compromised VMs

does not overlap with other data, it can be conclusively noted that compromised VMs have

low vitality and therefore are logically less survivable. However, the same cannot be

concluded about attacking or vulnerable VMs since error bars show an overlap among data

groups.

Figure 81. A within-group inference error bar plot: Maximum vitality of A_VMs,

C_VMs, S_VMs and V_VMs

Thus, this data is said to be inconclusive. Since hypothesis testing in this section seeks to

test H1, the following deductions are presented for simplification.

• Escalating actions that invoke a positive increase in vitality on vulnerable and

compromised VMs enhance survivability

• A vitality approaching or equal to 1 implies increasing survivability of VMs other

than A_VM.

• Actions that do not change vitality result in Null hypothesis.

Figure 82 shows data of VM 491 whose vitality behaviour results are analysed below it. As

noted earlier, the data suggests that actions upon VM 491 improve survivability. Hence, to

test the escalation hypothesis (H1), the error bar plot below is analysed, and conclusions

are drawn below. It is conclusive that vulnerable VMs have reached the highest vitality

198

since V_VM data does not overlap with any other data groups. It shows that 1 and 2

directly satisfy the alternative hypothesis (H1). Based upon the experimental assumptions

presented earlier, i.e. vulnerable VMs do not attack but attack VMs do, the expected

outcome is that A_VM has higher vitality than V_VMs. The foregoing conclusively

satisfies items 1 and 2. Logically, it can also be inferred that this supports the hypothesis

that prey-inspired actions can be applied as an unconventional method to enhance

survivability in the cloud.

Figure 82. Within-group inference error bar plot: Vitality of VM 491 in the attack,

compromised, survivable and vulnerable states

Figure 83 is an error bar plot for group 0 VM 67. By applying the overlapping and non-

overlapping concept above, survivable VM data does not overlap with any other VM state

data. Hence, it can be observed that items 2 and 3 of the H1 above are satisfied. As noted

earlier in this analysis, compromised, survivable and vulnerable VMs are not designed to

attack in this experiment but attack VMs are.

Based upon earlier assumptions that V_VMs, C_VMs and S_VMs can execute prey-

inspired actions against attack, the experiments seek to evaluate how compromised,

survivable and vulnerable VMs’ respond to attack. S_VMs’ vitality does not overlap with

any other state. In addition, the vitality of S_VM 67 is over 0.6, which implies a significant

statistical difference to the attack state at 0 vitality. The foregoing conclusively satisfies

items 1 and 2 of the H1 above.

199

Figure 83. Within-group inference error bar plot: Vitality of VM 67 in the attack,

compromised, survivable and vulnerable states.

Considering V_VM 67 with A_VM 67 and C_VM 67 (attack and compromised states),

V_VM 67 does not overlap and vitality is significantly higher. Due to the initial experiment

setup, the foregoing implies that vulnerable VMs have gained vitality due to the prey-

inspired actions and hence satisfies conclusively satisfies 1 and 2 of the H1 above.

Nonetheless, C_VM 67 and A_VM 67 vitality data overlap and therefore does not

conclusively indicate a clear effect prey-inspired actions impose. These findings

conclusively support the hypothesis (H1) that escalation mechanisms for avoiding

predation can be applied to enhance the survivability of cloud computing systems. By

analysing results and identifying target or preferable behaviours (in terms of survivability)

of group 0; VM 67 and group 7; VM 491 suggest that it was possible to proactively and

intelligently manage and control survivability by deciding the best actions to achieve

targeted survivability outcomes. As Figure 84 seems to suggest, the task to enable

survivability focuses upon the capabilities of vulnerable VM 491, and both vulnerable VM

and survivable VM 67.

Figure 84. Illustration of vitality changes for VMs 491 and 67

V_VM 491 0.001 0.853 0.968 0.991 0.996 0.997 0.997 0.997 0.997

A_VM 491 0.995 0.144 0.029 0.006 0.001 0.000 0.000 0.000 0.000

C_VM 491 0.000 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004

S_VM 491 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000

C_VM 67 0.000 0.093 0.009 0.000 0.000 0.000 0.000 0.000 0.000

A_VM 67 0.384 0.044 0.002 0.000 0.000 0.000 0.000 0.000 0.000

S_VM 67 0.590 0.497 0.582 0.590 0.590 0.590 0.590 0.590 0.590

V_VM 67 0.025 0.366 0.408 0.410 0.410 0.410 0.410 0.410 0.410

200

The key question for achieving survivability through escalating VM actions revolves

around the underlying decision support processes. As has been shown earlier, maintaining

survivability requires timely decisions. Such decisions encompass survivability targets,

survivability preferences and the best survivability actions that are necessary to support

critical cloud services.

7.5 Summary

This chapter has investigated the behaviour of VMs in different states of compromise, i.e.

vulnerable, attacked, compromised and demonstrated vitality dynamics when survivability

actions are applied. These experiments should be considered what prey-inspired escalation

is capable of, in relation to survivability as an additional complement of security, rather

than as an alternative to security.

The experiment result indicates that escalating actions can improve the overall survivability

of VMs. The results of group 0 VM 67 and group 7 VM 491 provide conclusive evidence

to support the hypothesis that prey-inspired escalation can improve survivability in cloud

computing. The results in this chapter support the hypothesis under test.

Chapter 8 Conclusion and

recommendations

This chapter summarises the research works, including an outline of the research process and the research’s

contributions. It evaluates the research limitations and recommends the directions for future research work.

8.1 Research process

It was clear at the beginning of this research that within the cloud computing domain

(academia in particular), there was no consensus concerning the maturity perceptions of

cloud computing. On the one hand, extensive adoption by industry and international

organisations suggested cloud computing had reached maturity with wide use and

acceptability. On the other hand, its adoption was viewed with scepticisms among

dissenters, foremost based upon cloud computing’s relative novelty. In addition, the vast

reportage of security issues was viewed as an indication of the immaturity. From a research

perspective, this implied that several alternatively competing approaches could have been

followed. For instance, explorative research in the former or descriptive research in the

case of the latter.

Another observation was that the application of biological inspiration for cloud computing

security was underwhelming. For this reason, bio-inspired research suggested itself as a

possible approach based upon its potential for novel research. The predator-prey system

was an under-researched area and a potential niche in bio-inspired cloud computing

context. Hence, mechanisms in non-extinct prey seemed most suited to the research

concept. Predation avoidance and anti-predation behaviours and mechanisms were

therefore identified as central to the technical conceptualisations and developments of this

thesis. This notably was a multi-faceted task, cutting across at least two domains, which

202

both required comprehensive investigation and analysis. Subsequently, this had an impact

on the overall progress as this part of the research was prolonged concerning the overall

timeline. Achieving prey-inspired survivability was challenging on several fronts.

Foremost, prey survivability ideally required learning among autonomous agents to mimic

nature’s animals. In a real nature-like scenario, agents learn, decide and act autonomously.

Interactions are local, and decisions and actions are taken towards a global goal. Hence, in

the process of researching the technical models and implementations, much time was spent

on attempts to retain the characteristics of the natural prey system.

8.2 Thesis summary and contributions

This thesis aimed to develop a prey-inspired solution to address cloud computing’s security

challenges. The predator-prey system was chosen in view of non-extinct prey communities’

survival against predators. A formal method for the interdomain bio-inspired design

process was implemented, specifically by following a problem-driven holistic approach to

gather, translate and transfer concepts from nature to cloud computing. Moreover, TRIZ

was utilised to proffer specific solutions for cloud computing by addressing known

contradictions in published literature. Pi-CCSF is then designed, verified and validated in

a multi-step evaluation approach (Mehresh & Upadhyaya, 2015). Thus, the following high-

level challenges are particularly addressed in this research. First, how to manage and

control security in a manner that complements existing approaches yet leveraging the

mission to provide services regardless of threat type continuously. Also, how to leverage

prey survival mechanisms to achieve enhanced survivability in cloud computing

environments.

Chapter 1 introduces the research and outlines the motivating themes around the

challenges mentioned above. It presents the research hypothesis which defines the bio-

inspired themes that develop in the thesis chapters. Furthermore, this chapter introduced

the research aim and objectives, the research contributions and the research methodology

followed to achieve them. This chapter’s conclusions form the remarks which inform the

directions of Chapter 2. Summarily, that inadequate security approaches contribute to the

current cloud computing security landscape. Also, the unpredictability of UUURs

203

particularly complicates the ability to detect and predict threats. Finally, that instead of

security alone, survivability has promise as a suitable property to address the risks imposed

by UUURs. There is potential in bio-inspired systems which have established survivability

solutions.

Chapter 2 presents the literature review to establish the current state of cloud computing

security. It conducts a comparative analysis of the traditional and cloud security view,

against the backdrop of current security challenges. This analysis exposes gap areas with

respect to how challenges are handled in existing countermeasures. In addition, this

chapter presented a literature review of the survivability concept to establish a critical

understanding of its traditional use compared to the cloud computing context. Finally, the

literature review also presented the current state-of-the-art of the use of the bio-inspired

approach in computing. This review also aimed to identify suitable mechanisms to address

gap areas identified in the previous sections (Section 2.2. and Section 2.3). The significance

of this section is as follows: It presented a comprehensive state-of-the-art around the

thesis’s motivating themes. It complements the research methodology by allowing

subjective interpretations of subject areas while also allowing for objective and logical

inference and measurability of verifiable facts. This chapter’s work culminates into the

contribution of Chapter 3. The contributions provided by these chapters are the following.

Chapter 3 proposes a holistic taxonomy for cloud computing security challenges based

upon the findings in section 2.2. The holistic taxonomy forms the foundational basis for

cross-domain design. A formal definition of a holistic taxonomy is proposed to emphasise

comprehensive understanding of cloud security challenges from a source or origin

perspective. Most significantly, the holistic taxonomy satisfies H1 of the research

hypothesis and is utilised in the discussions in section 5.6.

Chapter 4 outlines a 3-step method to systematically transfer concepts from nature to

cloud, and TRIZ-based approach for developing creative solutions to achieve survivability

while addressing cloud computing challenges. This chapter addresses the research

hypothesis and satisfies the applicability aspect of H1 (escalating survival behaviours and

mechanisms). Bio-inspired design theory is seen from the biology to computing or

engineering lenses to exploit design contexts including creative design, complex system

design, sustainable design, etc.

204

Chapter 5 presents a conceptual prey-inspired cloud computing survivability framework

(Pi-CCSF). Pi-CCSF is significant as it supports the extension of existing frameworks for

prey-inspired survivability and model-based analysis of systematically deduced survivability

requirements. Such satisfy the hypothesis for escalating survivability design principles and

decision techniques presented (H2).

Chapter 6 is dedicated to the decision system (DS) component of Pi-CCSF and formulates

a target-based decision-making technique (TBDM) for managing survivability decision-

making. Instead of specifying decision-making in line with the traditional sense of

survivability (as a constraint with an allowable level of service loss), TBDM specifies

decision-making with respect to survivability targets. This is significant as decision-making

can be adaptive to evolving survivability targets and controlled and prioritised on the fly

via the SSM (Section 5.3.1) according to requirements.

Notwithstanding this significance, a finding borne out of this chapter is the need to

integrate the DS within the Pi-CCSF simulator and evaluate the efficacy of TBDM.

Nonetheless, it is also notable that the TBDM technique addresses the research hypothesis

by bringing evolving and uncertain survivability information closer to survivability decision

processes, survivability preferences and attitudes. Moreover, this technique is observed to

ensure that even under unpredictability, the decision model is focused on achieving

survivability outcomes, i.e. targets.

In Chapter 7, a python simulator (Pi-CCSF simulator) is developed and implemented to

evaluate the applicability of the conceptual Pi-CCSF. This is a custom-built environment

to understand Pi-CCSF’s implications in a practical application of escalating survivability

actions upon vitality of VMs in various states of compromise and overall survivability. The

experiment results suggest that certain actions improve the vitality of vulnerable VMs and

average overall survivability. Analysis of experimental results identify outright instances

where corrupted, vulnerable and survivable VMs gain significant vitality, thereby informing

desirable escalation configurations. By analysing these VMs, e.g. group 7’s VM 491 and

group 0’s VM 69, evaluations suggest that Pi-CCSF offers the potential for enhancing

survivability. In addition, the hypothesis testing on VM data conclusively supports the view

that escalating actions can enhance survivability. However, there is a need for further

development of the simulator, with complete integration of all components and more

exhaustive experiments to reach a firm conclusion.

205

This thesis’s main contribution is the prey-inspired survivability framework (Pi-CCSF)

which is presented in Chapter 5 and Chapter 6 and evaluated in Chapter 7. Other

contributing areas of this research include the holistic taxonomy presented in Chapter 3

and the application of the TRIZ method for prey-inspired cloud computing survivability

presented in Chapter 4. Some of these contributions are published in peer-reviewed

journals and conferences. The following broadly represent the main contributions of this

work. Based upon a comprehensive review of the literature on cloud computing security

and bio-inspired systems, cloud security taxonomies, survivability and bio-inspired

approached are discussed. Each is analysed and propositions are posited to address

identified gap areas. Thus, contributions provided by these chapters are the following:

1. A holistic taxonomy of cloud computing security challenges (Publication PR 2 is the

contributing publication to this section),

1. A theoretical model from mimicking predator-prey systems exhibited in nature

(PR3, PR4 and PR6 are some contributing publications to this section).

Section 4.2, Section 4.3 and Section 4.4. resented the TRIZ-based method for the prey-

inspired survivability design, the prey-inspired cloud computing survivability framework,

the target-based decision-making technique to achieve survivability targets and a practical

framework simulation environment to evaluate the Pi-CCSF, respectively.

2. A conceptual framework: Pi-CCSF is developed, discussed and evaluated. Analysis

of experimental data conclusively suggests that escalation actions improve overall

survivability. Hence, Pi-CCSF offers conclusive support to the hypothesis under

investigation. (PR1, PR3 and PR 6 are some contributing publications to this

section).

3. A target-based decision-making technique (TBDM); a component of Pi-CCSF, is

presented to address decision-making processes for selecting survivability actions

and targets, prioritising survivability actions during escalation and prioritising

contextual survivability information relative to CC or CSP under unpredictable

scenarios.

4. A simulation environment is developed and customised to evaluate Pi-CCSF’s

escalation concepts. The experimentations and hypothesis testing on experimental

data proves some merit to the H1 and H2 of the hypothesis under investigation.

206

8.3 Limitations

While the aim of the research and the objectives set out have been fulfilled, this author

contends with some limitations borne out of the research. These may be addressed in

future work.

• The simulator is not a full implementation of the prey-inspired survivability

concept in Pi-CCSF. Nonetheless, it provides the core functions of escalation

proposed in Pi-CCSF and serves as a proof of concept to the prey-inspired

approach for survivability that Pi-CCSF proposes.

• Pi-CCSF depends on the DS component to institute optimal survivability

decisions. Although the DS component is not integrated into the simulator.

Nonetheless, the Pi-TBDM technique developed in Chapter 6 shows how Pi-

CCSF prioritises survivability decisions when a VM’s vitality drops below an

expected threshold. Moreover, how a preceding decision impacts upon other

subsequent decisions and countermeasure selection. The above is critical as Pi-

CCSF the notion of decentralised management and control to be key.

• Pi-CCSF is not developed into a system prototype. Hence, the evaluations suffer

from inherent limitations of simulation as compared to prototype. For instance,

the simulations are performed in a constrained environment, which does not

resemble real cloud computing environments. Nonetheless, the results indicate the

behaviours of VMs in different states of compromise after employing prey-inspired

escalation. These results provide a foundation for further development and

research.

8.4 Future work

Despite the strengths of the simulated models, the simulation environment (local machine)

and the model, is affected by state explosion where the size of the model exponentially

increases with the size of the modelled system. Specifically, computational overheads limit

207

the realistic scaling of the cloud environment. For instance, the python implementation

simulates models associated with a shared memory configuration. However, a large system

configuration that characterises the learning attributes of survivable preys makes the

simulated system complex. Two further research directions are worth exploring to bring

Pi-CCSF closer to cloud environments and improve the effectiveness and/efficiency of its

various components described above.

Collective actions and strategic behaviour are two key components of survivability in

natural preys. The former is central to the survival of prey animals who live in groups,

while the latter is present in prey’s escalating predation-avoidance and anti-predation

techniques. Thus, collective action is seen as outcomes of local interactions among prey

agents, while strategy construed as coordination protocols (which can be either explicit or

implicit or both). Synthesising and integrating prey’s survival behaviours requires effective

translation of natural language ecological terms. This process is error-prone and thus can

be improved upon.

Moreover, self-adaptation entails meeting goal changes and calls for automated synthesis

to achieve survivability in dynamic and complex cloud environments. Automated synthesis

generates survivability specifications to characterise a range of adaptation abilities. This

approach will improve upon current survivability characterisation methods which rely on

experts or an engineer’s prior analytical models. Due to UUURs, prior analytical model

analysis is currently prone to produce high occurrences of inaccurate information (false

positives and false negatives). These inaccuracies are significant shortcomings in

survivability engineering and design. The following research directions are worth

exploring:

• Further development to integrate the DS into the Pi-CCSF simulator and

investigate the overall efficacy of the complete prey inspiration as opposed to

independent individual modules.

• Implementation of Pi-CCSF with extended algorithms and simulations models in

a real or near environment. For instance, using machine learning approaches for

the proposed prey mechanisms.

• It would be an interesting to develop prey-inspired survivability for testing and

experimentation in any environment.

208

References

’Amiri, E. (2009) CA Identity Manager: Capabilites and Architecture.

Active, I., Systems, D. & Networks, P. (n.d.) InfoSec Reading Room Implementing Active Defense

Systems on Private.

Adams, K.M. (2015) Understandability, Usability, Robustness and Survivability. In:

Nonfunctional Requirements in Systems Analysis and Design. pp. 201–220.

Adhikari, V.K., Guo, Y., Hao, F., Hilt, V., et al. (2015) Measurement Study of Netflix,

Hulu, and a Tale of Three CDNs. IEEE/ACM Transactions on Networking. [Online]

Available from: doi:10.1109/TNET.2014.2354262.

Afrin, T. & Yodo, N. (2019) Resilience-Based Recovery Assessments of Networked

Infrastructure Systems under Localized Attacks. Infrastructures. [Online] 4 (1), 11.

Available from: doi:10.3390/infrastructures4010011.

Ahamed, F., Shahrestani, S. & Ginige, A. (2013) Cloud computing: Security and reliability

issues. Communications of the IBIMA. 2013, 1.

Ahmad, M., Belloir, N. & Bruel, J.M. (2015) Modeling and verification of Functional and

Non-Functional Requirements of ambient Self-Adaptive Systems. Journal of Systems

and Software. [Online] 107, 50–70. Available from: doi:10.1016/j.jss.2015.05.028.

Ahmed, A.A., Sadiq, A.S. & Zolkipli, M.F. (2016) Traceback model for identifying sources

of distributed attacks in real time. Security and Communication Networks. [Online]

Available from: doi:10.1002/sec.1476.

Aibin, M., Walkowiak, K. & Sen, A. (2017) Software-defined adaptive survivability for

elastic optical networks. Optical Switching and Networking. [Online] 23, 85–96. Available

from: doi:10.1016/j.osn.2016.06.008.

Alam, T. (2019) Iot-fog: A communication framework using blockchain in the internet of

things. International Journal of Recent Technology and Engineering.

Albanese, M., Jajodia, S. & Venkatesan, S. (2018) Defending from Stealthy Botnets Using

Moving Target Defenses. IEEE Security and Privacy. [Online] Available from:

209

doi:10.1109/MSP.2018.1331034.

Alert Logic (2016) DEFEND YOUR DATA FROM RANSOMWARE WITH ALERT

LOGIC. 4 (0).

Alert Logic (2015) Vulnerability Response Best Practice: Shellshock Case Study. 2015.

Ali, A.B., Robson, E. & Boukerche, A. (2016) Performance analysis of bio-inspired

scheduling algorithms for cloud environments. In: IEEE International Parallel and

Distributed Processing Symposium Workshop (IPDPSW). 2016 pp. 776–785.

Ali, M., Khan, S.U. & Vasilakos, A. V (2015) Security in cloud computing: Opportunities

and challenges. Information Sciences. 305, 357–383.

Almomani, A., Gupta, B.B., Atawneh, S., Meulenberg, A., et al. (2013) A survey of phishing

email filtering techniques. IEEE Communications Surveys and Tutorials. [Online] 15 (4),

2070–2090. Available from: doi:10.1109/SURV.2013.030713.00020.

Almorsy, M., Grundy, J. & Müller, I. (2016) An {Analysis} of the {Cloud} {Computing}

{Security} {Problem}. arXiv:1609.01107 [cs].

Almorsy, M., Grundy, J. & Müller, I. (2010) An analysis of the cloud computing security

problem. 17th Asia-Pacific Software Engineering Conference (APSEC 2010) Cloud

Workshop,Sydney, Australia. [Online] (December), 7. Available from:

http://researchbank.swinburne.edu.au/vital/access/services/Download/swin:2010

3/SOURCE2.

Altshuller, G.S. (1999) The innovation algorithm: TRIZ, systematic innovation and technical creativity.

[Online]. Available from: http://www.amazon.com/dp/0964074044.

AlZain, M., Pardede, E., Soh, B. & Thom, J. (2012) Cloud computing security: from single

to multi-clouds. In: System Science (HICSS), 2012 45th Hawaii International Conference on.

2012 IEEE. pp. 5490–5499.

Amaratunga, D., Baldry, D., Sarshar, M. & Newton, R. (2002) Quantitative and qualitative

research in the built environment: application of “mixed” research approach. Work

Study. [Online] 51 (1), 17–31. Available from: doi:10.1108/00438020210415488.

Amazon Web Services (2011) Amazon Elastic Compute Cloud (Amazon EC2). Amazon

Web Services LLC. [Online] 2010. Available from: http://aws.amazon.com/ec2/.

Anderson, D. & Ellenbogen, K.M. (2012) Learning science in informal contexts-

epistemological perspectives and paradigms. In: Second International Handbook of Science

Education. [Online]. pp. 1179–1187. Available from: doi:10.1007/978-1-4020-9041-

7_78.

Andersson, J., De Lemos, R., Malek, S. & Weyns, D. (2009) Modeling dimensions of self-

210

adaptive software systems. In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [Online]. 2009 pp. 27–

47. Available from: doi:10.1007/978-3-642-02161-9_2.

Arcaini, P., Riccobene, E. & Scandurra, P. (2017) Formal Design and Verification of Self-

Adaptive Systems with Decentralized Control. ACM Transactions on Autonomous and

Adaptive Systems. [Online] 11 (4), 1–35. Available from: doi:10.1145/3019598.

Ardagna, C.A., Asal, R., Damiani, E. & Vu, Q.H. (2015a) From Security to Assurance in

the Cloud: A Survey. ACM Comput. Surv. [Online] 48 (1), 2:1–2:50. Available from:

doi:10.1145/2767005.

Ardagna, C.A., Asal, R., Damiani, E. & Vu, Q.H. (2015b) From Security to Assurance in

the Cloud: A Survey. ACM Computing Surveys (CSUR). 48 (1), 2.

Armbrust, B.Y.M., Fox, A., Griffith, R., Joseph, A.D., et al. (2010) of Cloud Computing.

Communications of the ACM. [Online] 53 (4), 50–59. Available from:

doi:10.1145/1721654.1721672.

Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A.S., et al. (2015) Big Data

computing and clouds: Trends and future directions. Journal of Parallel and Distributed

Computing. [Online] Available from: doi:10.1016/j.jpdc.2014.08.003.

Author, M.K. & Author, J.A. (2013) An Inter-VM Communication Model Supporting Live

Migration. [Online] 63–68. Available from: doi:10.1109/CUBE.2013.22.

Autili, M., Di Ruscio, D., Di Salle, A. & Perucci, A. (2014) CHOReOSynt: Enforcing

Choreography Realizability in the Future Internet. Proceedings of the 22Nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering. [Online] 723–

726. Available from: doi:10.1145/2635868.2661667.

Auty, M. (2015) Anatomy of an advanced persistent threat. Network Security. [Online]

Available from: doi:10.1016/S1353-4858(15)30028-3.

Aviram, A. & Ford, B. (n.d.) No Title. Determinating timing channels in statistically multiplexed

clouds, Mar.2010.

Baars, T. & Spruit, M. (2012) Analysing the Security Risks of Cloud Adoption Using the

SeCA Model: A Case Study. J.UCS. 18 (12), 1662–1678.

Balme, G., Hunter, L. & Slotow, R. (2007) Feeding habitat selection by hunting leopards

Panthera pardus in a woodland savanna: prey catchability versus abundance. Animal

Behaviour. 74 (3), 589–598.

Balusamy, B., Sridhar, J., Dhamodaran, D. & Krishna, P.V. (2015) Bio-inspired algorithms

for cloud computing: a review. International Journal of Innovative Computing and

211

Applications. 6 (3–4), 181–202.

Baran, B. & Sosa, R. (2000) A new approach for AntNet routing. In: Computer

Communications and Networks, 2000. Proceedings. Ninth International Conference on. 2000

IEEE. pp. 303–308.

Basu, S., Bardhan, A., Gupta, K., Saha, P., et al. (2018) Cloud computing security challenges

& solutions-A survey. In: 2018 IEEE 8th Annual Computing and Communication

Workshop and Conference, CCWC 2018. [Online]. 2018 p. Available from:

doi:10.1109/CCWC.2018.8301700.

Bays, L.R., Oliveira, R.R., Barcellos, M.P., Gaspary, L.P., et al. (2015) Virtual network

security: threats, countermeasures, and challenges. Journal of Internet Services and

Applications. [Online] 6 (1), 1. Available from: doi:10.1186/s13174-014-0015-z.

BBC online UK (2018) Dixons Carphone admits huge data breach. [Online]. 2018. BBC.

Available from: https://www.bbc.co.uk/news/business-44465331 [Accessed: 13

June 2018].

BBC online UK (2015) TalkTalk hack ‘affected 157,000 customers’. [Online]. 2015. BBC.

Available from: https://www.bbc.co.uk/news/business-34743185 [Accessed: 10

June 2018].

BBC online UK (n.d.) Vodafone Germany hack hits two million customers. [Online]. BBC.

Available from: https://www.bbc.co.uk/news/technology-24063621 [Accessed: 10

June 2018].

Beckmanna, H. (2015) Method for transferring the 40 inventive principles to information

technology and software. In: Procedia Engineering. [Online]. 2015 pp. 993–1001.

Available from: doi:10.1016/j.proeng.2015.12.413.

Behl, A. (2011) Emerging security challenges in cloud computing: An insight to cloud

security challenges and their mitigation. In: Information and Communication Technologies

(WICT), 2011 World Congress on. 2011 IEEE. pp. 217–222.

Behl, A. & Behl, K. (2012) An analysis of cloud computing security issues. In: Information

and Communication Technologies (WICT), 2012 World Congress on. 2012 IEEE. pp. 109–

114.

Bendovschi, A. (2015) Cyber-Attacks – Trends, Patterns and Security Countermeasures.

Procedia Economics and Finance. [Online] Available from: doi:10.1016/s2212-

5671(15)01077-1.

Bernsmed, K., Jaatun, M.G., Meland, P.H. & Undheim, A. (2011) Security SLAs for

federated cloud services. In: Availability, Reliability and Security (ARES), 2011 Sixth

212

International Conference on. 2011 IEEE. pp. 202–209.

Betz, D.J. & Stevens, T. (2013) Analogical reasoning and cyber security. [Online] Available from:

doi:10.1177/0967010613478323.

Bigham, J. (2010) Security and Survivability of Large Scale Critical Infrastructures. [Online] 84–85.

Available from: doi:10.1007/3-540-36080-8_9.

Bitglass (2014a) What is a CASB? Cloud Access Security Broker. 2014.

Bitglass (2014b) What is a CASB? Cloud Access Security Broker. [Online]. 2014. Available

from: https://www.bitglass.com/casb-cloud-access-security-broker [Accessed: 10

December 2018].

Blue Coat and Symantec (2015) CloudSOC. [Online]. 2015. Available from:

https://www.elastica.net/applications [Accessed: 20 November 2016].

Bluecoat (2015a) Cloud Data Protection. 2015.

Bluecoat (2015b) Cloud Data Protection. [Online]. 2015. Available from:

https://www.bluecoat.com/en-gb/resources/cloud-data-protection/life-cycle-

protection [Accessed: 10 December 2018].

Bohn, R.B., Messina, J., Liu, F., Tong, J., et al. (2011) NIST cloud computing reference

architecture. In: Proceedings - 2011 IEEE World Congress on Services, SERVICES 2011.

[Online]. 2011 p. Available from: doi:10.1109/SERVICES.2011.105.

Bordley, R. & LiCalzi, M. (2000) Decision analysis using targets instead of utility functions.

Decisions in Economics and Finance. [Online] Available from:

doi:10.1007/s102030050005.

Botta, A., de Donato, W., Persico, V. & Pescapé, A. (2016) Integration of cloud computing

and internet of things: a survey. Future Generation Computer Systems. 56, 684–700.

Boutin, S. (1995) Testing predator-prey theory by studying fluctuating populations of small

mammals. Wildlife Research. [Online] Available from: doi:10.1071/WR9950089.

Brabazon, A. & O’Neill, M. (2006) Biologically inspired algorithms for financial modelling. Springer

Science & Business Media.

Bracha, A. & Brown, D.J. (2012) Affective decision making: A theory of optimism bias.

Games and Economic Behavior. [Online] 75 (1), 67–80. Available from:

doi:10.1016/j.geb.2011.11.004.

Brief, S. (2015) McAfee Cloud Security Platform.

Buecker, A., Andreas, P. & Scott Paisley (2008) Understanding IT Perimeter Security. Ibm.

1–22.

Burke, D. (2007) AN ABSTRACT OF THE DISSERTATION OF Title: An

213

Autoethnography of Whiteness.

Buyya, R., Calheiros, R.N., Son, J., Dastjerdi, A.V., et al. (2014) Software-Defined Cloud

Computing: Architectural elements and open challenges. Proceedings of the 2014

International Conference on Advances in Computing, Communications and Informatics, ICACCI

2014. [Online] 1–12. Available from: doi:10.1109/ICACCI.2014.6968661.

CA Technologies (2014) Identity and Access Management as-a-Service: Enabling and Protecting

Digital Relationships. [Online]. 2014. Available from:

https://www.ca.com/us/register/forms/collateral/identity-and-access-

management-as-a-service-enabling-and-protecting-digital-relationships.aspx

[Accessed: 8 September 2015].

Calheiros, R.N., Ranjan, R., De Rose, C.A.F. & Buyya, R. (2009) CloudSim: A Novel

Framework for Modeling and Simulation of Cloud Computing Infrastructures and

Services. arXiv preprint arXiv:0903.2525. [Online] 9. Available from:

http://arxiv.org/abs/0903.2525.

Calinescu, R., Autili, M., Cámara, J., Di Marco, A., et al. (2017) Synthesis and Verification

of Self-aware Computing Systems. Self-Aware Computing Systems. [Online] 337–373.

Available from: doi:10.1007/978-3-319-47474-8_11.

Calinescu, R., Johnson, K. & Rafiq, Y. (2013) Developing self-verifying service-based

systems. In: 2013 28th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2013 - Proceedings. [Online]. 2013 pp. 734–737. Available from:

doi:10.1109/ASE.2013.6693145.

Calinescu, R., Johnson, K., Rafiq, Y., Gerasimou, S., et al. (2013) Continual verification of

non-functional properties in cloud-based systems invited paper. In: CEUR Workshop

Proceedings. 2013 pp. 1–5.

Cámara, J., Peng, W., Garlan, D. & Schmerl, B. (2018) Reasoning about sensing uncertainty

and its reduction in decision-making for self-adaptation. Science of Computer

Programming. [Online] Available from: doi:10.1016/j.scico.2018.07.002.

Campillo, F. & Lobry, C. (2012) Effect of population size in a predator-prey model.

Ecological Modelling. [Online] 246 (C), 1–10. Available from:

doi:10.1016/j.ecolmodel.2012.07.015.

Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., et al. (1999) Adaptive security for

threshold cryptosystems. In: Advances in Cryptology -CRYPTO - 99. 1999 Springer. pp.

98–116.

Caro, G. Di & Dorigo, M. (1998) AntNet: Distributed stigmergetic control for

214

communications networks. Journal of Artificial Intelligence Research. 317–365.

Caro, T.M. (1986) The functions of stotting in Thomson’s gazelles: some tests of the

predictions. Animal Behaviour. 34 (3), 663–684.

Caron, E., Le, A.D., Lefray, A. & Toinard, C. (2013) Definition of security metrics for the

Cloud Computing and security-aware virtual machine placement algorithms.

Proceedings - 2013 International Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery, CyberC 2013. [Online] 125–131. Available from:

doi:10.1109/CyberC.2013.28.

Carvalho, C.A.B. de, Andrade, R.M. de C., Castro, M.F. de, Coutinho, E.F., et al. (2017)

State of the art and challenges of security SLA for cloud computing. Computers and

Electrical Engineering. [Online] Available from:

doi:10.1016/j.compeleceng.2016.12.030.

Castro, L.N. De & Zuben, F.J. Von (2002) Learning and optimization using the clonal

selection principle. Evolutionary Computation, IEEE Transactions on. 6 (3), 239–251.

Chalmers, M. (2013) Design perspectives in visualising complex information. In: Visual

Database Systems 3. [Online]. p. Available from: doi:10.1007/978-0-387-34905-3_7.

Chang, X., Lv, S., Rodriguez, R.J. & Trivedi, K. (2018) Survivability model for security and

dependability analysis of a vulnerable critical system. Proceedings - International Conference

on Computer Communications and Networks, ICCCN. [Online] 2018-July (August).

Available from: doi:10.1109/ICCCN.2018.8487446.

Chang, Y.H., Yeh, C.H. & Chang, Y.W. (2013) A new method selection approach for fuzzy

group multicriteria decision making. Applied Soft Computing Journal. [Online] Available

from: doi:10.1016/j.asoc.2012.12.009.

Changa, X., Zhang, Z., Li, X. & Trivedi, K.S. (2016) Model-based Survivability Analysis of a

Virtualized System. [Online] (November). Available from: doi:10.1109/LCN.2016.104.

Chapman, K.W., Lawless, H.T. & Boor, K.J. (2001) Quantitative descriptive analysis and

principal component analysis for sensory characterization of ultrapasteurized milk.

Journal of dairy science. [Online] 84 (1), 12–20. Available from: doi:10.3168/jds.S0022-

0302(01)74446-3.

Chardonnens, T., Cudre-Mauroux, P., Grund, M. & Perroud, B. (2013) Big data analytics

on high Velocity streams: A case study. In: Proceedings - 2013 IEEE International

Conference on Big Data, Big Data 2013. [Online]. 2013 p. Available from:

doi:10.1109/BigData.2013.6691653.

Checkland, P. (1981) Systems Thinking, System practice.

215

Chen, Y., Paxson, V. & Katz, R.H. (2010) What’s new about cloud computing security.

University of California, Berkeley Report No.UCB/EECS-2010-5 January. 20 (2010), 2010–

2015.

Cheng, A.C., Chen, C.J. & Chen, C.Y. (2008) A fuzzy multiple criteria comparison of

technology forecasting methods for predicting the new materials development.

Technological Forecasting and Social Change. [Online] Available from:

doi:10.1016/j.techfore.2006.08.002.

Cheng, L., Li, Y., Li, W., Holm, E., et al. (2013) Understanding the violation of IS security

policy in organizations: An integrated model based on social control and deterrence

theory. Computers & Security. 39, 447–459.

Cheng, R., He, C., Jin, Y. & Yao, X. (2018) Model-based evolutionary algorithms: a short

survey. Complex & Intelligent Systems. [Online] Available from: doi:10.1007/s40747-

018-0080-1.

Chiacchio, F., Pennisi, M., Russo, G., Motta, S., et al. (2014) Agent-based modeling of the

immune system: NetLogo, a promising framework. BioMed research international.

[Online] 2014, 907171. Available from: doi:10.1155/2014/907171 [doi].

Chow, R., Golle, P., Jakobsson, M., Shi, E., et al. (2009a) Controlling data in the cloud:

outsourcing computation without outsourcing control. In: Proceedings of the 2009 ACM

workshop on Cloud computing security. 2009 ACM. pp. 85–90.

Chow, R., Golle, P., Jakobsson, M., Shi, E., et al. (2009b) Controlling data in the cloud.

Proceedings of the 2009 ACM workshop on Cloud computing security - CCSW ’09. [Online]

85. Available from: doi:10.1145/1655008.1655020.

Chowdhury, M., Rahman, M.R. & Boutaba, R. (2012) ViNEYard: Virtual network

embedding algorithms with coordinated node and link mapping. IEEE/ACM

Transactions on Networking. [Online] Available from:

doi:10.1109/TNET.2011.2159308.

Chraibi, M., Harroud, H. & Maach, A. (2013) Classification of Security Issues and

Solutions in Cloud Environments. In: Proceedings of International Conference on Information

Integration and Web-based Applications & Services. 2013 ACM. p. 560.

CipherCloud (2016) CIPHERCLOUD TRUST PLATFORM CLOUD SECURITY

BROKER.

Citrix (2015) Defend Web Properties from Modern Threats with Citrix NetScaler - White paper. 10.

Cloud Security Alliance (2013a) The Notorious Nine. Cloud Computing Top Threats in

2013. Security. [Online] (February), 1–14. Available from:

216

doi:http://www.cloudsecurityalliance.org/topthreats.

Cloud Security Alliance (2013b) The Notorious Nine. 2013.

CloudLock (2015a) Cisco Cloudlock is a Cloud Cybersecurity Platform. 2015.

CloudLock (2015b) Cisco Cloudlock is a Cloud Cybersecurity Platform. [Online]. 2015. Available

from: https://www.cloudlock.com/platform/ [Accessed: 10 December 2018].

Coiro, J. (2014) Handbook of Research on New Literacies. [Online]. Available from:

doi:10.4324/9781410618894.

Colomer, M.A., Margalida, A., Sanuy, D. & Perez-Jimenez, M.J. (2011) A bio-inspired

computing model as a new tool for modeling ecosystems: the avian scavengers as a

case study. Ecological Modelling. 222 (1), 33–47.

Commission, E. and H.R. (2016) Article 8: Respect for your private and family life. [Online]. 2016.

Available from: https://www.equalityhumanrights.com/en/human-rights-

act/article-8-respect-your-private-and-family-life [Accessed: 1 January 2016].

Coppolino, L., D’Antonio, S., Mazzeo, G. & Romano, L. (2017) Cloud security: Emerging

threats and current solutions. Computers and Electrical Engineering. [Online] 59, 126–140.

Available from: doi:10.1016/j.compeleceng.2016.03.004.

Coty, S. (2014) Shellshock vulnerability: impact, analysis, and protection. [Online]. 2014. Available

from: https://blog.alertlogic.com/blog/shellshock-vulnerability-impact,-analysis,-

and-protection/ [Accessed: 22 December 2019].

Courbin, N., Loveridge, A.J. & Macdonald, D.W. (2015) Reactive responses of zebras to

lion encounters shape their predator - prey space game at large scale. Oikos.

Couto, R. de S., Secci, S., Campista, M.E.M. & Costa, L.H.M.K. (2016) Reliability and

survivability analysis of data center network topologies. Journal of Network and System

Management. [Online] 24 (2), 346–392. Available from: doi:10.1007/s10922-015-9354-

8.

Cox Louis Anthony (Tony), J. (2009) Game Theory and Risk Analysis. Risk Analysis.

[Online] Available from: doi:10.1111/j.1539-6924.2009.01247.x.

Craig, S., Harrison, D., Cripps, A. & Knott, D. (2008) BioTRIZ Suggests Radiative Cooling

of Buildings Can Be Done Passively by Changing the Structure of Roof Insulation to

Let Longwave Infrared Pass. Journal of Bionic Engineering. [Online] 5 (1), 55–66.

Available from: doi:10.1016/S1672-6529(08)60007-4.

Creativity, S. (2019a) TRIZ40. [Online]. 2019. Available from:

http://www.triz40.com/TRIZ_GB.php [Accessed: 10 March 2019].

Creativity, S. (2019b) TRIZ40. 2019.

217

Cser, A. (2016) The Eight Providers That Matter Most and How They Stack Up.

Cybenko, G., Jajodia, S., Wellman, M.P. & Liu, P. (2014) Adversarial and Uncertain Reasoning

for Adaptive Cyber Defense: Building the Scientific Foundation. In: Information Systems

Security. Springer. pp. 1–8.

Darst, C.R., Menéndez‐Guerrero, P.A., Coloma, L.A. & Cannatella, D.C. (2005) Evolution

of Dietary Specialization and Chemical Defense in Poison Frogs (Dendrobatidae): A

Comparative Analysis. The American Naturalist. [Online] 165 (1), 56–69. Available

from: doi:10.1086/426599.

David, M. & Kris, D. (2016) How to Leverage Cognitive Technology to Think Like a Security

Expert. [Online]. 2016. Available from:

https://securityintelligence.com/events/leverage-ibm-cognitive-technology-ifa/

[Accessed: 21 December 2017].

Demchenko, Y., Ngo, C., Laat, C. De, Wlodarczyk, T.W., et al. (2011) Security

infrastructure for on-demand provisioned cloud infrastructure services. In: Cloud

Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on.

2011 IEEE. pp. 255–263.

Díaz, M., Martín, C. & Rubio, B. (2016) State-of-the-art, challenges, and open issues in the

integration of Internet of things and cloud computing. Journal of Network and Computer

Applications. [Online]. Available from: doi:10.1016/j.jnca.2016.01.010.

Djenouri, D., Khelladi, L. & Badache, N. (2005) A survey of security issues in mobile ad

hoc networks. IEEE communications surveys. 7 (4), 2–28.

Domb, E., Miller, J., MacGran, E. & Slocum, M. (2011a) Explanation of the 39 Parameters of

the Contradiction Table (Matrix). [Online] 1–12. Available from:

http://triz40.com/aff_Principles.htm.

Domb, E., Miller, J., MacGran, E. & Slocum, M. (2011b) Explanation of the 39 Parameters of

the Contradiction Table (Matrix). 1–12.

Dong, W.M. & Wong, F.S. (1987) Fuzzy weighted averages and implementation of the

extension principle. Fuzzy Sets and Systems. [Online] Available from:

doi:10.1016/0165-0114(87)90163-1.

Dorey, P.G. & Leite, A. (2011) Commentary: Cloud computing-A security problem or

solution? information security technical report. 16 (3), 89–96.

Dressler, F. & Akan, O.B. (2010) A survey on bio-inspired networking. Computer Networks.

54 (6), 881–900.

Eiger, M.I., Luss, H. & Shallcross, D.F. (2011) Network restoration under a single link or

218

node failure using Preconfigured Virtual Cycles. Telecommunication Systems. [Online]

Available from: doi:10.1007/s11235-009-9273-7.

Eiger, M.I., Luss, H. & Shallcross, D.F. (2012) Network restoration under dual failures

using path-protecting preconfigured cycles. Telecommunication Systems. [Online]

Available from: doi:10.1007/s11235-010-9374-3.

Eisner, T., Eisner, M., Rossini, C., Iyengar, V.K., et al. (2000) Chemical defense against

predation in an insect egg. Proceedings of the National Academy of Sciences of the United States

of America. [Online] Available from: doi:10.1073/pnas.030532797.

Ellison, R., Linger, R., Lipson, H., Mead, N., et al. (2002) Foundations for survivable

systems engineering. The Journal of Defense Software Engineering. 10–15.

Ellison, R.J., Ellison, R.J., Fisher, D. a, Fisher, D. a, et al. (1997a) Survivable Network

Systems: An Emerging Discipline. 1999 IEEE International Performance, Computing and

Communications Conference (Cat. No.99CH36305). [Online] (May), 469–475. Available

from: doi:CMU/SEI-97-TR-013.

Ellison, R.J., Fisher, D.A., Linger, R.C., Lispson, H.F., et al. (1997b) Survivable Network

Systems: An Emerging Discipline. 1999 IEEE International Performance, Computing and

Communications Conference (Cat. No.99CH36305).

Eoin, C., Taylor, D., John, F., German, L., et al. (2018) McAfee Labs 2019 Threats Predictions

Report. [Online]. 2018. Available from: https://www.mcafee.com/blogs/other-

blogs/mcafee-labs/mcafee-labs-2019-threats-predictions/ [Accessed: 22 December

2019].

Fackler, P.L. & Haight, R.G. (2014a) Monitoring as a partially observable decision

problem. Resource and Energy Economics. [Online] 37, 226–241. Available from:

doi:10.1016/j.reseneeco.2013.12.005.

Fackler, P.L. & Haight, R.G. (2014b) Monitoring as a partially observable decision

problem. Resource and Energy Economics. [Online] 37, 226–241. Available from:

doi:10.1016/j.reseneeco.2013.12.005.

Fan, G., Yu, H., Chen, L. & Liu, D. (2013) A game theoretic method to model and evaluate

attack-defense strategy in cloud computing. In: Proceedings - IEEE 10th International

Conference on Services Computing, SCC 2013. [Online]. 2013 p. Available from:

doi:10.1109/SCC.2013.110.

Fang, X., Koceja, N., Zhan, J., Dozier, G., et al. (2012) An artificial immune system for

phishing detection. In: Evolutionary Computation (CEC), 2012 IEEE Congress on. 2012

IEEE. pp. 1–7.

219

Farooq, M.U., Waseem, M., Khairi, A. & Mazhar, S. (2015) A Critical Analysis on the

Security Concerns of Internet of Things (IoT). International Journal of Computer

Applications. 111 (7).

Fenton, N. & Wang, W. (2006) Risk and confidence analysis for fuzzy multicriteria decision

making. Knowledge-Based Systems. [Online] 19 (6), 430–437. Available from:

doi:10.1016/j.knosys.2006.03.002.

Finstadsveen, J. & Begnum, K. (2011) What a webserver can learn from a zebra and what

we learned in the process. In: Proceedings of the 5th ACM Symposium on Computer Human

Interaction for Management of Information Technology. 2011 ACM. p. 5.

Firdhous, M., Ghazali, O. & Hassan, S. (2012) Trust Management in Cloud Computing: A

Critical Review. International Journal on Advances in ICT for Emerging Regions (ICTer).

[Online] 4 (02), 24–36. Available from: doi:10.4038/icter.v4i2.4674.

Fitzgibbon, C.D. (1990a) Anti-predator strategies of immature Thomson’s gazelles: hiding

and the prone response. Animal Behaviour. 40 (5), 846–855.

Fitzgibbon, C.D. (1990b) Why do hunting cheetahs prefer male gazelles? Animal Behaviour.

40 (5), 837–845.

Floratou, A., Potti, N. & Patel, J.M. (2014) Online replica placement in Cloud

Environments. In: ACM Symposium on Cloud Computing. 2014 ACM Press. p.

Foote, R. (2007) Mathematics and complex systems. Science. [Online]. 318 (5849) pp.410–

412. Available from: doi:10.1126/science.1141754.

Fryxell, J.M., Mosser, A., Sinclair, A.R.E. & Packer, C. (2007) Group formation stabilizes

predator-prey dynamics. Nature. [Online] Available from: doi:10.1038/nature06177.

Fu, K., Moreno, D., Yang, M. & Wood, K.L. (2014) Bio-Inspired Design: An Overview

Investigating Open Questions From the Broader Field of Design-by-Analogy. Journal

of Mechanical Design. [Online] Available from: doi:10.1115/1.4028289.

Furuncu, E. & Sogukpinar, I. (2015) Scalable risk assessment method for cloud computing

using game theory (CCRAM). Computer Standards & Interfaces. [Online] 38, 44–50.

Available from: doi:10.1016/j.csi.2014.08.007.

G, S. & S, M. (2013) Securing Software as a Service Model of Cloud Computing: Issues

and Solutions. International Journal on Cloud Computing: Services and Architecture. [Online]

Available from: doi:10.5121/ijccsa.2013.3401.

García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., et al. (2016) Big data

preprocessing: methods and prospects. Big Data Analytics. [Online] Available from:

doi:10.1186/s41044-016-0014-0.

220

Gebhardt, C. & Tomlinson, A. (2010) Challenges for inter virtual machine communication.

[Online] (September), 0–17. Available from:

http://www.rhul.ac.uk/mathematics/techreports.

Glier, M. & McAdams, D. (2011) Concepts in biomimetic design: methods and tools to

incorporate into a biomimetic design course. ASME 2011. [Online] Available from:

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1641

340 [Accessed: 15 June 2017].

Gonzalez, F.A. & Dasgupta, D. (2003) Anomaly Detection Using Real-Valued Negative

Selection. Genetic Programming and Evolvable Machines. [Online] 4 (4), 383–403. Available

from: doi:doi:10.1023/A:1026195112518.

Gonzalez, N., Miers, C., Redigolo, F., Simplicio, M., et al. (2012) A quantitative analysis of

current security concerns and solutions for cloud computing. Journal of Cloud

Computing. 1 (1), 1–18.

Gopal, R.D. & Sanders, G.L. (2000) Global software piracy: You can’t get blood out of a

turnip. Communications of the ACM. 43 (9), 82–89.

Gorman, S.P., Kulkarni, R.G., Schintler, L.A. & Stough, R.R. (2004) A predator prey

approach to the network structure of cyberspace. In: Proceedings of the winter international

synposium on Information and communication technologies. 2004 Trinity College Dublin. pp.

1–6.

Grand, T.C. & Dill, L.M. (1999) The effect of group size on the foraging behaviour of

juvenile coho salmon: Reduction of predation risk or increased competition? Animal

Behaviour. [Online] Available from: doi:10.1006/anbe.1999.1174.

Grant, C. & Osanloo, A. (2014) UNDERSTANDING, SELECTING, AND

INTEGRATING A THEORETICAL FRAMEWORK IN DISSERTATION

RESEARCH: CREATING THE BLUEPRINT FOR YOUR “HOUSE”.

Administrative Issues Journal Education Practice and Research. [Online] Available from:

doi:10.5929/2014.4.2.9.

Grant, T. (2017) Speeding up parliamentary decision making for cyber counter-attack. In:

Proceedings of the 12th International Conference on Cyber Warfare and Security, ICCWS 2017.

2017 p.

Gras, R., Devaurs, D., Wozniak, A. & Aspinall, A. (2009) An Individual-Based Evolving

Predator-Prey Ecosystem Simulation Using a Fuzzy Cognitive Map as the Behavior

Model. Artificial Life. [Online] 15 (4), 423–463. Available from:

doi:10.1162/artl.2009.Gras.012.

221

Gregory, D. (2011) From a View to a Kill: Drones and Late Modern War. Theory, Culture

& Society. [Online] 28 (7–8), 188–215. Available from:

doi:10.1177/0263276411423027.

Grimes, R. (2001) Malicious mobile code: Virus protection for Windows. ‘ O’Reilly Media, Inc.’

Grobauer, B., Walloschek, T. & Stocker, E. (2011) Understanding cloud computing

vulnerabilities. Security & privacy, IEEE. 9 (2), 50–57.

Gu, F., Shaban, K., Ghani, N., Khan, S., et al. (2015) Survivable cloud network mapping

for disaster recovery support. IEEE Transactions on Computers. [Online] 64 (8), 2353–

2366. Available from: doi:10.1109/TC.2014.2360542.

Guh, Y.Y., Hon, C.C., Wang, K.M. & Lee, E.S. (1996) Fuzzy weighted average: A max-

min paired elimination method. Computers and Mathematics with Applications. [Online]

Available from: doi:10.1016/0898-1221(96)00171-X.

Guillaume, S., Charnomordic, B. & Lablée, J.-L. (2002) FisPro Fuzzy inference system design

and optimization. [Online]. 2002. Available from:

https://www.fispro.org/en/contributors/ [Accessed: 10 January 2019].

Gulla, J. (2011a) Gaining efficiency and business value through better management of your IT

infrastructure. 2011.

Gulla, J. (2011b) Gaining efficiency and business value through better management of your IT

infrastructure. [Online]. 2011. Available from: http://www-

01.ibm.com/common/ssi/cgibin/ssialias?infotype=SA&subtype=WH&htmlfid=S

SW03005USEN [Accessed: 29 August 2015].

Gupta, B., Agrawal, D.P. and Yamaguchi, S. eds. (2016) Handbook of research on modern

cryptographic solutions for computer and cyber security. IGI Global.

Gupta, A. & DuVarney, D.C. (2004) Using predators to combat worms and viruses: A

simulation-based study. In: Computer Security Applications Conference, 2004. 20th Annual.

2004 IEEE. pp. 116–125.

Gupta, B.B., Arachchilage, N.A.G. & Psannis, K.E. (2017) Defending against phishing

attacks: taxonomy of methods, current issues and future directions. Telecommunication

Systems. [Online] Available from: doi:10.1007/s11235-017-0334-z.

Haas, C. (2014) Incentives and two-sided matching: Engineering coordination mechanisms for social

clouds. [Online]. Available from: doi:10.5445/KSP/1000041861.

Habib, M.F., Tornatore, M., Dikbiyik, F. & Mukherjee, B. (2013) Disaster survivability in

optical communication networks. Computer Communications. [Online] 36 (6), 630–644.

Available from: doi:10.1016/j.comcom.2013.01.004.

222

Hansman, S. & Hunt, R. (2005) A taxonomy of network and computer attacks. Computers

and Security. [Online] Available from: doi:10.1016/j.cose.2004.06.011.

Hariri, S., Eltoweissy, M. & Al-Nashif, Y. (2011) Biorac: biologically inspired resilient

autonomic cloud. In: Proceedings of the Seventh Annual Workshop on Cyber Security and

Information Intelligence Research. 2011 ACM. p. 80.

Harknett, R.J. & Stever, J.A. (2011) The New Policy World of Cybersecurity. Public

Administration Review. [Online] 71 (3), 455–460. Available from: doi:10.1111/j.1540-

6210.2011.02366.x.

Hashizume, K., Yoshioka, N. & Fernandez, E.B. (2013) Three Misuse Patterns for Cloud

Computing. Security Engineering for Cloud Computing: Approaches and Tools. [Online] 36–

53. Available from: doi:10.4018/978-1-4666-2125-1.ch003.

Havens, T. (2019) Netflix. In: From Networks to Netflix. [Online]. p. Available from:

doi:10.4324/9781315658643-30.

Hegselmann, R. & Flache, A. (1998) Understanding Complex Social Dynamics: A Plea For

Cellular Automata Based Modelling. Journal of Artificial Societies and Social Simulation.

1(13), 30.

Heimbigner, D. (1990) Proscription versus prescription in process-centered environments.

In: Software Process Workshop, 1990.’Support for the Software Process’., Proceedings of the 6th

International. 1990 IEEE. pp. 99–102.

Heinrich, B. (1979) Foraging strategies of caterpillars. Oecologia. 42 (3), 325–337.

Heiser, G., Goldwasser, S., Micali, S. & Franson, J.D. (2015) Communications acm. ACM

Computing Surveys. [Online] 58 (1), 1–5. Available from:

doi:10.1017/CBO9781107415324.004.

Helms, M., Vattam, S. & Goel, A. (2009) Biologically inspired design: process and

products. Design studies. [Online] Available from:

http://www.sciencedirect.com/science/article/pii/S0142694X09000283 [Accessed:

15 June 2017].

Henderson, R. (2006) Design, simulation, and testing of a novel hydraulic power take-off

system for the Pelamis wave energy converter. In: Renewable Energy. [Online]. 2006 p.

Available from: doi:10.1016/j.renene.2005.08.021.

Henning, M. (2007) API design matters. Queue. 5 (4), 24–36.

Himma, K.E. (2007) The Ethics of ‘Hacking Back’: Active Response to Computer Intrusion. In:

Anderson Tim (ed.). Internet Security: Hacking, Counterhaking, and Society. 1st

edition. Jones and Barlett. pp. 99–100.

223

Hirai, Y. (2017) Defining the ethereum virtual machine for interactive theorem provers.

In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). [Online]. 2017 p. Available from: doi:10.1007/978-

3-319-70278-0_33.

Hogan, K. & Maglienti, M. (2001) Comparing the epistemological underpinnings of

students’ and scientists’ reasoning about conclusions. Journal of Research in Science

Teaching. [Online] 38 (6), 663–687. Available from: doi:10.1002/tea.1025.

Hone, D.W.E. & Benton, M.J. (2005) The evolution of large size: how does Cope’s Rule

work? Trends in Ecology & Evolution. 20 (1), 4–6.

Hordijk, W. (2005) An Overview of Biologically Inspired Computing in Information

Security. In: Proceedings of the National Conference on Information Security, Coimbatore, India.

2005 pp. 1–14.

Horikoshi, H., Nakagawa, H., Tahara, Y. & Ohsuga, A. (2012) Dynamic reconfiguration

in self-adaptive systems considering non-functional properties. Proceedings of the 27th

Annual ACM Symposium on Applied Computing - SAC ’12. [Online] (i), 1144. Available

from: doi:10.1145/2245276.2231956.

Houidi, I., Louati, W., Ben Ameur, W. & Zeghlache, D. (2011) Virtual network

provisioning across multiple substrate networks. Computer Networks. [Online]

Available from: doi:10.1016/j.comnet.2010.12.011.

Howard, J.D. (1998) An Analysis of Security Incidents on the Internet 1989-1995.

Howard, J.D. & Longstaff, T.A. (1998) A common language for computer security

incidents. Sandia National Laboratories.

Hsieh, H.-N., Chen, J.-F. & Do, Q. (2015) Applying TRIZ and Fuzzy AHP Based on Lean

Production to Develop an Innovative Design of a New Shape for Machine Tools.

Information. [Online] Available from: doi:10.3390/info6010089.

Hsu, H., Tsai, B. & Chen, K. (2013) A TRIZ Approach to Business Management

Formulation - A Case of HRMS Industry. In: Proceedings of the International

MultiConference of Engineers and Computer Scientists. 2013 p.

Hsu, W. & Liu, B. (2000) Conceptual design: issues and challenges. Computer-Aided Design.

[Online] Available from: doi:10.1016/s0010-4485(00)00074-9.

Huang, D. & Wu, H. (2018) Mobile Cloud Computing Taxonomy. In: Mobile Cloud

Computing. [Online]. p. Available from: doi:10.3109/13813458509070424.

Huang, W., Ganjali, A., Kim, B.H., Oh, S., et al. (2015) The State of Public Infrastructure-

as-a-Service Cloud Security. ACM Computing Surveys (CSUR). 47 (4), 68.

224

Hulu (2016) ABOUT HULU. Hulu Press.

Hummaida, A.R., Paton, N.W. & Sakellariou, R. (2016) Adaptation in cloud resource

configuration: a survey. Journal of Cloud Computing. [Online]. Available from:

doi:10.1186/s13677-016-0057-9.

Hussain, S.A., Fatima, M., Saeed, A., Raza, I., et al. (2017) Multilevel classification of

security concerns in cloud computing. Applied Computing and Informatics. [Online] 13

(1), 57–65. Available from: doi:10.1016/j.aci.2016.03.001.

Huston, M., DeAngelis, D. & Post, W. (1988) New computer models unify ecological

theory. Bioscience. 38 (10), 682–691.

Hutchins, E.M., Cloppert, M.J. & Amin, R.M. (2011) Intelligence-Driven Computer

Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill

Chains. 6th Annual International Conference on Information Warfare and Security. [Online]

(July 2005), 1–14. Available from: http://papers.rohanamin.com/wp-

content/uploads/papers.rohanamin.com/2011/08/iciw2011.pdf%5Cnhttp://www.

lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM-

White-Paper-Intel-Driven-Defense.pdf.

Huynh, V., Ryoke, M. & Ho, T.B. (2007) Decision making under uncertainty with fuzzy targets.

[Online] (May 2014). Available from: doi:10.1007/s10700-007-9011-0.

Hwang, K. & Li, D. (2010) Trusted cloud computing with secure resources and data

coloring. IEEE Internet Computing. [Online] Available from:

doi:10.1109/MIC.2010.86.

II, J.C.R. & Al-Hamdani, W. (2011) Who can you trust in the cloud?: a review of security

issues within cloud computing. In: Proceedings of the 2011 Information Security Curriculum

Development Conference. 2011 ACM. pp. 15–19.

Iivari, J. (2007) A Paradigmatic Analysis of Information Systems As a Design Science A

Paradigmatic Analysis of Information Systems As a Design Science. Scandanavian

Journal of Information Systems. [Online] 19 (2), 5. Available from: doi:10.1.1.218.2636.

Ilevbare, I.M., Probert, D. & Phaal, R. (2013) A review of TRIZ, and its benefits and

challenges in practice. Technovation. [Online]. 33 (2–3) pp.30–37. Available from:

doi:10.1016/j.technovation.2012.11.003.

Isasi, P. & Hernandez, J.C. (2004) Introduction to the applications of evolutionary

computation in computer security and cryptography. Computational Intelligence. 20 (3),

445–449.

Isbell, L.A. (1994) Predation on primates: ecological patterns and evolutionary

225

consequences. Evolutionary Anthropology: Issues, News, and Reviews. 3 (2), 61–71.

Jabir, R.M., Khanji, S.I.R., Ahmad, L.A., Alfandi, O., et al. (2016) Analysis of cloud

computing attacks and countermeasures. International Conference on Advanced

Communication Technology, ICACT. [Online] 2016-March, 117–123. Available from:

doi:10.1109/ICACT.2016.7423296.

Jamal, M.H., Qadeer, A., Mahmood, W., Waheed, A., et al. (2009) Virtual Machine Scalability

on Multi-Core Processors Based Servers for Cloud Computing Workloads. [Online] Available

from: doi:10.1109/NAS.2009.20.

Jamil, D. & Zaki, H. (2011) Security Issues in Cloud Computing and Countermeasures.

International Journal of Engineering Science and Technology. [Online] 3 (4), 2672–2676.

Available from: doi:10.1109/GSIS.2011.6043978.

Jansen, W. (2011) Cloud hooks: Security and privacy issues in cloud computing. In: System

Sciences (HICSS), 2011 44th Hawaii International Conference on. 2011 IEEE. pp. 1–10.

Janson, C.H. & Goldsmith, M.L. (1995) Predicting group size in primates: foraging costs

and predation risks. Behavioral Ecology. 6 (3), 326–336.

Jeff, B. (2015) AWS Config Rules – Dynamic Compliance Checking for Cloud Resources. [Online].

2015. AWS News Blog. Available from: https://aws.amazon.com/blogs/aws/aws-

config-rules-dynamic-compliance-checking-for-cloud-resources/ [Accessed: 20

December 2017].

Jefferson, A., Bortolotti, L. & Kuzmanovic, B. (2017) What is unrealistic optimism?

Consciousness and Cognition. [Online] 50, 3–11. Available from:

doi:10.1016/j.concog.2016.10.005.

Ji, Z. & Dasgupta, D. (2009) V-detector: An efficient negative selection algorithm with

probably adequate detector coverage. Information Sciences. 179 (10), 1390–1406.

Jiang, X., Xu, D. & Wang, Y.M. (2006) Collapsar: A VM-based honeyfarm and reverse

honeyfarm architecture for network attack capture and detention. Journal of Parallel

and Distributed Computing. [Online] 66 (9), 1165–1180. Available from:

doi:10.1016/j.jpdc.2006.04.012.

Jiao, W. & Sun, Y. (2016) Self-adaptation of multi-agent systems in dynamic environments

based on experience exchanges. Journal of Systems and Software. [Online] 122, 165–179.

Available from: doi:10.1016/j.jss.2016.09.025.

Jing, X., Bi, Y. & Deng, H. (2016) An innovative two-stage fuzzy kNN-DST classifier for

unknown intrusion detection. International Arab Journal of Information Technology.

Jinyin, C. & Dongyong, Y. (2013) Data security strategy based on artificial immune

226

algorithm for cloud computing. Appl.Math. 7 (1L), 149–153.

Johns, M. (2011) Code-injection Vulnerabilities in Web Applications-Exemplified at

Cross-site Scripting. it-Information Technology Methoden und innovative Anwendungen der

Informatik und Informationstechnik. 53 (5), 256–260.

Jormakka, J. & Mölsä, J.V.E. (2005) Modelling Information Warfare as a Game. Journal of

Information Warfare.

Joshi, B. & Joshi, B.K. (2012) Securing cloud computing environment against DDoS

attacks. In: Computer Communication and Informatics (ICCCI), 2012 International Conference

on. 2012 IEEE. pp. 1–5.

Joshi, B., Vijayan, a. S. & Joshi, B.K. (2012) Securing cloud computing environment

against DDoS attacks. 2012 International Conference on Computer Communication and

Informatics. [Online] 1–5. Available from: doi:10.1109/ICCCI.2012.6158817.

Jr, E.D.B., Jr, D.R.F. & III, E.D.B. (1991) Predator avoidance and antipredator

mechanisms: distinct pathways to survival. Ethology Ecology & Evolution. 3 (1), 73–77.

Kamhoua, C.A., Kwiat, L., Kwiat, K.A., Park, J.S., et al. (2014) Game theoretic modeling

of security and interdependency in a public cloud. In: IEEE International Conference on

Cloud Computing, CLOUD. [Online]. 2014 p. Available from:

doi:10.1109/CLOUD.2014.75.

Kao, C. & Liu, S.-T. (2002) Fractional programming approach to fuzzy weighted average.

Fuzzy Sets and Systems. [Online] Available from: doi:10.1016/s0165-0114(99)00137-2.

Kasravi, K. & Fellow, H. (2010) Applications of TRIZ to IT: Cases and Lessons Learned.

trizjournal.

Kauffman, S.A. (1993) THE ORIGINS OF ORDER. SELF-ORGANIZATION AND

SELECTION IN EVOLUTION.

Keele, S. (2007) Guidelines for performing systematic literature reviews in software engineering. In:

Technical report, Ver. 2.3 EBSE Technical Report. EBSE. p.

Kephart, J.O. (1994) A biologically inspired immune system for computers. In: Artificial

Life IV: proceedings of the fourth international workshop on the synthesis and simulation of living

systems. 1994 pp. 130–139.

Khalil, I., Khreishah, A. & Azeem, M. (2014) Cloud Computing Security: A Survey.

Computers. [Online] 3 (1), 1–35. Available from: doi:10.3390/computers3010001.

Khan, M.M.A., Shahriar, N., Ahmed, R. & Boutaba, R. (2015) SiMPLE: Survivability in

multi-path link embedding. In: Proceedings of the 11th International Conference on Network

and Service Management, CNSM 2015. [Online]. 2015 p. Available from:

227

doi:10.1109/CNSM.2015.7367361.

Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., et al. (2007) Immune system approaches

to intrusion detection - A review. Natural Computing. [Online]. 6 (4) pp.413–466.

Available from: doi:10.1007/s11047-006-9026-4.

Kingsolver, J.G. & Pfennig, D.W. (2004) Individual-level selection as a cause of cope’s rule

of phyletic size increase. Evolution. [Online] Available from: doi:10.1111/j.0014-

3820.2004.tb01740.x.

Kloeden, P.E. & Pötzsche, C. (2010) Dynamics of modified predator-prey models. In:

International Journal of Bifurcation and Chaos. [Online]. 2010 pp. 2657–2669. Available

from: doi:10.1142/S0218127410027271.

Klugl, F. & Bazzan, A.L.C. (2012) Agent-Based Modeling and Simulation. AI Magazine.

[Online] 33 (3), 29–40. Available from: doi:0738-4602.

Knemeyer, A.M., Zinn, W. & Eroglu, C. (2009) Proactive planning for catastrophic events

in supply chains. Journal of Operations Management. [Online] Available from:

doi:10.1016/j.jom.2008.06.002.

Knight, C. & Munro, M. (1999) Comprehension with[in] virtual environment

visualisations. In: Proceedings - 7th International Workshop on Program Comprehension, IWPC

1999. [Online]. 1999 p. Available from: doi:10.1109/WPC.1999.777733.

Ko, R.K.L., Jagadpramana, P., Mowbray, M., Pearson, S., et al. (2011) TrustCloud: A

framework for accountability and trust in cloud computing. In: Services (SERVICES),

2011 IEEE World Congress on. 2011 IEEE. pp. 584–588.

Koch, C. (2003) Efficient processing of expressive node-selecting queries on XML data in

secondary storage: A tree automata-based approach. In: Proceedings of the 29th

international conference on Very large data bases-Volume 29. [Online]. 2003 pp. 249–260.

Available from: http://portal.acm.org/citation.cfm?id=1315474.

Koga, T., Backwell, P.R.Y., Christy, J.H., Murai, M., et al. (2001) Male-biased predation of

a fiddler crab. Animal Behaviour. 62 (2), 201–207.

Kreidl, O.P. & Frazier, T.M. (2004a) Feedback control applied to survivability: A host-

based autonomic defense system. IEEE Transactions on Reliability. [Online] 53 (1), 148–

166. Available from: doi:10.1109/TR.2004.824833.

Kreidl, O.P. & Frazier, T.M. (2004b) Feedback control applied to survivability: A host-

based autonomic defense system. IEEE Transactions on Reliability. [Online] Available

from: doi:10.1109/TR.2004.824833.

Krsul, I.V. (2014) Software Vulnerability Analysis. Uma ética para quantos?. [Online]

228

Available from: doi:10.1007/s13398-014-0173-7.2.

Kushida, K.E., Murray, J. & Zysman, J. (2012) The gathering storm: Analyzing the cloud

computing ecosystem and implications for public policy. Communications & Strategies.

(85), 63–85.

Kwiatkowska, M., Parker, D. & Qu, H. (2011) Incremental quantitative verification for

Markov decision processes. In: Proceedings of the International Conference on Dependable

Systems and Networks. [Online]. 2011 p. Available from:

doi:10.1109/DSN.2011.5958249.

Labuda, I. (2015) Possibilities of applying TRIZ methodology elements (the 40 Inventive

Principles) in the process of architectural design. In: Procedia Engineering. [Online].

2015 pp. 476–499. Available from: doi:10.1016/j.proeng.2015.12.443.

Landau, I.D. (1999) From robust control to adaptive control. Control Engineering Practice.

[Online] 7, 1113–1124. Available from: doi:10.1016/S0967-0661(99)00076-3.

León, M., Rodriguez, C., García, M.M., Bello, R., et al. (2010) Fuzzy cognitive maps for

modeling complex systems. In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [Online]. 2010 p.

Available from: doi:10.1007/978-3-642-16761-4_15.

Leone, W. (2015) IBM Cloud. Agenda. 7793.

Lertpalangsunti, N., Chan, C.W., Mason, R. & Tontiwachwuthikul, P. (1999) Toolset for

construction of hybrid intelligent forecasting systems: Application for water demand

prediction. Artificial Intelligence in Engineering. [Online] Available from:

doi:10.1016/S0954-1810(98)00008-9.

Levitin, G., Hausken, K., Taboada, H.A. & Coit, D.W. (2012) Data survivability vs. security

in information systems. Reliability Engineering and System Safety. [Online] 100, 19–27.

Available from: doi:10.1016/j.ress.2011.12.015.

Levy, J. (2018) Sophoslabs 2019 Threat Report. [Online] Available from:

https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-

2019-threat-report.pdf.

Li, M., Zhang, Y., Bai, K., Zang, W., et al. (2012) Improving Cloud Survivability through

Dependency based Virtual Machine Placement. Proceedings of the International Conference

on Security and Cryptography (SECRYPT). (Dom 0), 321–326.

Liang, X. & Fengbin, Z. (2013) Detector optimization algorithm with co-evolution in

immunity-based intrusion detection system. In: Measurement, Information and Control

(ICMIC), 2013 International Conference on. 2013 IEEE. pp. 620–623.

229

Liao, D., Sun, G., Anand, V. & Yu, H. (2014) Survivable provisioning for multicast service

oriented virtual network requests in cloud-based data centers. Optical Switching and

Networking. [Online] 14 (PART 3), 260–273. Available from:

doi:10.1016/j.osn.2014.05.019.

Lindqvist, U. & Jonsson, E. (1997) How to Systematically Classify Computer Security Intrusions.

154–163.

Liou, T.S. & Wang, M.J.J. (1992) Fuzzy weighted average: An improved algorithm. Fuzzy

Sets and Systems. [Online] Available from: doi:10.1016/0165-0114(92)90282-9.

Lipson, H.F. & Fisher, D. a. (1999) Survivability - a New Technical and Business

Perspective on Security. Proceedings of the 1999 workshop on New security paradigms -

NSPW ’99. [Online] 33–39. Available from: doi:10.1145/335169.335187.

Lipson, H.F. & Fisher, D.A. (2004) Survivability---a new technical and business perspective on

security. In: [Online]. 2004 p. Available from: doi:10.1145/335169.335187.

Lischka, J. & Karl, H. (2009) A virtual network mapping algorithm based on subgraph

isomorphism detection. In: SIGCOMM 2009 - Proceedings of the 2009 SIGCOMM

Conference and Co-Located Workshops, VISA 2009. [Online]. 2009 p. Available from:

doi:10.1145/1592648.1592662.

Liu, F., Tong, J., Mao, J., Bohn, R., et al. (2011) NIST cloud computing reference

architecture. NIST special publication. 500, 292.

Liu, H. & Wang, S. (2012) The analysis and design of trusted computing applied into cloud.

In: Proceedings - 2012 IEEE Control and System Graduate Research Colloquium, ICSGRC

2012. [Online]. 2012 pp. 5–9. Available from: doi:10.1109/ICSGRC.2012.6287124.

Liu, H.C., You, J.X., Zhen, L. & Fan, X.J. (2014) A novel hybrid multiple criteria decision

making model for material selection with target-based criteria. Materials and Design.

[Online] Available from: doi:10.1016/j.matdes.2014.03.071.

Liu, K. & Jiang, L. (2011) Bio-inspired design of multiscale structures for function

integration. Nano Today. [Online] 6 (2), 155–175. Available from:

doi:10.1016/j.nantod.2011.02.002.

Liu, W. (2012) Research on cloud computing security problem and strategy. In: Consumer

Electronics, Communications and Networks (CECNet), 2012 2nd International Conference on.

2012 IEEE. pp. 1216–1219.

Liu, Y., Sun, Y., Ryoo, J., Rizvi, S., et al. (2015) A survey of security and privacy challenges

in cloud computing: Solutions and future directions. Journal of Computing Science and

Engineering. [Online] Available from: doi:10.5626/JCSE.2015.9.3.119.

230

Lo, C.C., Huang, C.C. & Ku, J. (2010) A cooperative intrusion detection system framework

for cloud computing networks. In: Proceedings of the International Conference on Parallel

Processing Workshops. [Online]. 2010 pp. 280–284. Available from:

doi:10.1109/ICPPW.2010.46.

Lo, H.-Y. & Liao, W. (2017) CALM: Survivable Virtual Data Center Allocation in Cloud

Networks. IEEE Transactions on Services Computing. [Online] 1–1. Available from:

doi:10.1109/TSC.2017.2777979.

Lombardi, F. & Pietro, R. Di (2011) Secure virtualization for cloud computing. Journal of

Network and Computer Applications. 34 (4), 1113–1122.

Longo, F., Ghosh, R., Naik, V.K. & Trivedi, K.S. (2011) A scalable availability model for

Infrastructure-as-a-Service cloud. In: Proceedings of the International Conference on

Dependable Systems and Networks. [Online]. 2011 pp. 335–346. Available from:

doi:10.1109/DSN.2011.5958247.

Lu, W., Xu, S. & Yi, X. (2013) Optimizing active cyber defense. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). [Online]. 2013 pp. 206–225. Available from: doi:10.1007/978-3-319-

02786-9_13.

Lui, F., Tong, J., Mao, J., Bohn, R., et al. (2011) NIST Cloud Computing Reference

Architecture: Recommendations of the National Institute of Standards and

Technology. NIST Special Publication 500-292. [Online] Available from: doi:500-299.

Luo, Z., He, Z.R. & Li, W.T. (2004) Optimal birth control for predator-prey system of

three species with age-structure. Applied Mathematics and Computation. [Online] 155 (3),

665–685. Available from: doi:10.1016/S0096-3003(03)00808-7.

Luttbeg, B. & Schmitz, O.J. (2000) Predator and Prey Models with Flexible Individual

Behavior and Imperfect Information. The American Naturalist. [Online] Available

from: doi:10.1086/303344.

Lytinen, S.L. & Railsback, S.F. (2012) The evolution of agent-based simulation platforms:

a review of NetLogo 5.0 and ReLogo. In: Proceedings of the fourth international symposium

on agent-based modeling and simulation. 2012 Citeseer. p.

Lytinen, S.L. & Railsback, S.F. (2010) The evolution of agent-based simulation platforms:

a review of NetLogo 5.0 and ReLogo. European Meetings on Cybernetics and Systems

Research. 1–11.

Ma, Z. (2010) Towards a unified definition for reliability, survivability and resilience (I):

The conceptual framework inspired by the handicap principle and ecological stability.

231

IEEE Aerospace Conference Proceedings. [Online] (I). Available from:

doi:10.1109/AERO.2010.5446843.

Ma, Z. (Sam), Krings, A.W. & Sheldon, F.T. (2009) An outline of the three-layer

survivability analysis architecture for strategic information warfare research. In:

Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research

Cyber Security and Information Intelligence Challenges and Strategies - CSIIRW ’09. [Online].

2009 p. 1. Available from: doi:10.1145/1558607.1558639.

Ma, Z., Yang, L., Neilson, R.P., Hess, A., et al. (2014) A survivability-centered research

agenda for cloud computing supported emergency response and management

systems. In: 2014 IEEE Aerospace Conference. [Online]. 2014 pp. 1–17. Available from:

doi:10.1109/AERO.2014.6836515.

Ma, Z.S. & Krings, A.W. (2011) Dynamic hybrid fault modeling and extended evolutionary

game theory for reliability, survivability and fault tolerance analyses. IEEE

Transactions on Reliability. [Online] 60 (1), 180–196. Available from:

doi:10.1109/TR.2011.2104997.

Magalhães, D., Calheiros, R.N., Buyya, R. & Gomes, D.G. (2015) Workload modeling for

resource usage analysis and simulation in cloud computing. Computers and Electrical

Engineering. [Online] Available from: doi:10.1016/j.compeleceng.2015.08.016.

Malecic, A. (2017) Footprints of General Systems Theory final. [Online] 636 (September), 631–

636. Available from: doi:10.1002/sres.2484.

Malterud, K. (2001) Qualitative research: standards, challenges, and guidelines. The lancet.

358 (9280), 483–488.

Manapragada, C., Webb, G. & Salehi, M. (2018) Extremely Fast Decision Tree. [Online]

(August). Available from: http://arxiv.org/abs/1802.08780.

Mandiki, S.N.M., Babiak, I., Krol, J., Rasolo, J.F.R., et al. (2007) How initial predator-prey

ratio affects intra-cohort cannibalism and growth in Eurasian perch Perca fluviatilis

L larvae and juveniles under controlled conditions. Aquaculture. [Online] 268 (1-4

SPEC. ISS.), 149–155. Available from: doi:10.1016/j.aquaculture.2007.04.036.

Mansouri, K., Alti, A., Roose, P. & Laborie, S. (2018) Dynamic semantic-based green bio-

inspired approach for optimizing energy and cloud services qualities. Transactions on

Emerging Telecommunications Technologies. [Online] Available from: doi:10.1002/ett.3305.

Marmol, F.G., Perez, G.M. & Skarmeta, A.F.G. (2009) TACS, a trust model for P2P

networks. Wireless personal communications. 51 (1), 153–164.

Marshak, D. & Duer, K. (2016) Intelligent Finding Analytics: Your Cognitive Computing

232

Application Security Expert. [Online]. 2016. Application Security. Available from:

https://securityintelligence.com/intelligent-finding-analytics-cognitive-computing-

application-security-expert/ [Accessed: 21 December 2017].

Mateos, C., Pacini, E. & Garino, C.G. (2013) An ACO-inspired algorithm for minimizing

weighted flowtime in cloud-based parameter sweep experiments. Advances in

Engineering Software. 56, 38–50.

Mathisen, E. (2011) Security challenges and solutions in cloud computing. In: In Digital

Ecosystems and Technologies Conference (DEST), 2011 Proceedings of the 5th IEEE

International Conference. 2011 pp. 208–212.

Matsuda, H., Hori, M. & Abrams, P.A. (1996) Effects of predator-specific defence on

biodiversity and community complexity in two-trophic-level communities.

Evolutionary Ecology. 10 (1), 13–28.

Mazur, S., Blasch, E., Chen, Y. & Skormin, V. (2011) Mitigating cloud computing security

risks using a self-monitoring defensive scheme. In: Aerospace and Electronics Conference

(NAECON), Proceedings of the 2011 IEEE National. 2011 IEEE. pp. 39–45.

McGee, S., Sabett, R. V & Shah, A. (2013) Adequate Attribution: A Framework for

Developing a National Policy for Private Sector Use of Active Defense. J.Bus.&

Tech.L. 8, 1.

McQueen, M.A. & Boyer, W.F. (2009) Deception used for cyber defense of control

systems. In: Proceedings of the 2nd conference on Human System Interactions, HSI. 2009 p.

Mead, N.R., Ellison, R.J., Linger, R.C., Longstaff, T., et al. (2000) Survivable Network Analysis

Method. [Online] (September), 1–59. Available from:

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD

A383771%5Cnhttp://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA383771.

Medathati, N.V.K., Neumann, H., Masson, G.S. & Kornprobst, P. (2015) Bio-inspired

computer vision: Towards a synergistic approach of artificial and biological vision.

Computer Vision and Image Understanding. [Online] Available from:

doi:10.1016/j.cviu.2016.04.009.

Mehresh, R. & Upadhyaya, S. (2012) A Deception Framework for Survivability Against

Next Generation Cyber Attacks. Proceedings of the International Conference on Security and

Management (SAM). The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp). (Section 5).

Mehresh, R. & Upadhyaya, S. (2015) Surviving advanced persistent threats in a distributed

environment – Architecture and analysis. Information Systems Frontiers. [Online] 17 (5),

233

987–995. Available from: doi:10.1007/s10796-015-9569-y.

Meisel, M., Pappas, V. & Zhang, L. (2010) A taxonomy of biologically inspired research in

computer networking. Computer Networks. 54 (6), 901–916.

Mekdeci, B., Ross, A.M., Rhodes, D.H. & Hastings, D.E. (2011) Examining Survivability

of Systems of Systems. Symposium A Quarterly Journal In Modern Foreign Literatures.

[Online] Available from: doi:10.1002/j.2334-5837.2011.tb01226.x.

Mell, P. & Grance, T. (2011) The NIST definition of cloud computing.

Mezzetti, C. & Samuelson, L. (2006) Evolutionary Games and Equilibrium Selection.

Southern Economic Journal. [Online] Available from: doi:10.2307/1061220.

Microsoft Mobility Management (2016) Cloud App Security What does Cloud App Security

provide ?

Mirza, R.S. & Chivers, D.P. (2001) Chemical alarm signals enhance survival of brook charr

(Salvelinus fontinalis) during encounters with predatory chain pickerel (Esox niger).

Ethology. [Online] 107 (11), 989–1005. Available from: doi:10.1046/j.1439-

0310.2001.00729.x.

Modi, C., Patel, D., Borisaniya, B., Patel, H., et al. (2013) A survey of intrusion detection

techniques in cloud. Journal of Network and Computer Applications. 36 (1), 42–57.

Moradi, M. (2016) A centralized reinforcement learning method for multi-agent job

scheduling in Grid. In: 2016 6th International Conference on Computer and Knowledge

Engineering, ICCKE 2016. [Online]. 2016 p. Available from:

doi:10.1109/ICCKE.2016.7802135.

Moreno, C., Aquino, R., Ibarreche, J. & Perez, I. (2019) Rivercore: IoT device for river

water level monitoring over cellular communications. Sensors (Switzerland). [Online]

Available from: doi:10.3390/s19010127.

Morrow, B. (2012) BYOD security challenges: Control and protect your most sensitive

data. Network Security. [Online] Available from: doi:10.1016/S1353-4858(12)70111-3.

Mosharaf, N.M., Chowdhury, K., Rahman, M.R. & Boutaba, R. (2009) Virtual network

embedding with coordinated node and link mapping. In: Proceedings - IEEE

INFOCOM. [Online]. 2009 p. Available from: doi:10.1109/INFCOM.2009.5061987.

Motulsky, H. (2002) The link between error bars and statistical significance. Graphpad.com.

[Online] Available from: doi:10.1007/s10350-007-9150-y.

Mthunzi, S.N. & Benkhelifa, E. (2017) Trends towards Bio-Inspired Security

Countermeasures for Cloud Environments. In: Proceedings - 2017 IEEE 2nd

International Workshops on Foundations and Applications of Self* Systems, FAS*W 2017.

234

[Online]. 2017 pp. 341–347. Available from: doi:10.1109/FAS-W.2017.170.

Mthunzi, S.N., Benkhelifa, E., Alsmirat, M.A. & Jararweh, Y. (2018) Analysis of VM

Communication for VM-based Cloud Security Systems *. [Online] 182–188. Available from:

doi:10.1109/SDS.2018.8370441.

Munaretto, D., An, C., Widmer, J. & Timm-Giel, A. (2011) Resilient data gathering and

communication algorithms for emergency scenarios. In: Telecommunication Systems.

[Online]. 2011 p. Available from: doi:10.1007/s11235-010-9346-7.

Munger, D. (2008) Most researchers [do not] understand error bars. 2008. ScienceBlogs.

MURAT, M.T. (2015) Diffusion of Innovation and Collective Action in Complex Networks.

Nagarajan, A. (n.d.) Realizing Cyber Resilience with Hybrid Intrusion Tolerance Architectures.

Nagel, J.K.S. & Stone, R.B. (2011a) A systematic approach to biologically-inspired

engineering design. In: Proceedings of the ASME Design Engineering Technical Conference.

[Online]. 2011 pp. 153–164. Available from: doi:10.1115/DETC2011-47398.

Nagel, J.K.S. & Stone, R.B. (2011b) A systematic approach to biologically-inspired

engineering design. In: Proceedings of the ASME Design Engineering Technical Conference.

[Online]. 2011 pp. 153–164. Available from: doi:10.1115/DETC2011-47398.

Nagel, J.K.S., Stone, R.B. & Mcadams, D.A. (2010) An Engineering-To-Biology Thesaurus

for Engineering Design. ASME 2010 International Design Engineering Technical Conference

& Computers and INformation in Engineering Conference. [Online] (October), 1–11.

Available from: doi:10.1115/DETC2010-28233.

Nakano, T. (2011) Biologically inspired network systems: a review and future prospects.

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on. 41

(5), 630–643.

Nasr, K., Abou El Kalam, A. & Fraboul, C. (2011) A holistic methodology for evaluating

wireless Intrusion Detection Systems. Proceedings - 2011 5th International Conference on

Network and System Security, NSS 2011. [Online] Available from:

doi:10.1109/ICNSS.2011.6059954.

National Institute of Standards and Technology (2018) Framework for Improving Critical

Infrastructure Cybersecurity, Version 1.1. [Online] Available from:

doi:10.6028/NIST.CSWP.04162018.

Nguyen, T.A., Kim, D.S. & Park, J.S. (2016) Availability modeling and analysis of a data

center for disaster tolerance. Future Generation Computer Systems. [Online] 56, 27–50.

Available from: doi:10.1016/j.future.2015.08.017.

Ni, N.M., McCalley, J.D., Vittal, V. & Tayyib, T. (2002) Online Risk-Based Security

235

Assessment. IEEE Power Engineering Review. [Online]. Available from:

doi:10.1109/MPER.2002.4311832.

Nickerson, R.C., Varshney, U. & Muntermann, J. (2013) A method for taxonomy

development and its application in information systems. European Journal of Information

Systems. [Online] Available from: doi:10.1057/ejis.2012.26.

NIST (2016) NIST Definition of Cloud Computing. [Online]. 2016. The National Institute of

Standards and Technology (NIST). Available from: http://www.nist.gov/itl/cloud/.

O’Connell, P.E., Cunge, J.A., Erlich, M. & Bomel, P. (2014) Assessment of large transport

infrastructure projects: The CBA-DK model. Journal of Construction Engineering and

Management. [Online] 2 (1), 131–137. Available from: doi:10.1007/s11270-013-1706-

y.

O’Connor, P.D.T. & Kleyner, A. (2011) Practical Reliability Engineering: Fifth Edition.

[Online]. Available from: doi:10.1002/9781119961260.

Oates, R., Milford, M., Wyeth, G., Kendall, G., et al. (2009) The implementation of a novel,

bio-inspired, robotic security system. In: Robotics and Automation, 2009. ICRA’09.

IEEE International Conference on. 2009 IEEE. pp. 1875–1880.

Oberkampf, W.L. & Roy, C.J. (2011) Verification and validation in scientific computing. [Online].

Available from: doi:10.1017/CBO9780511760396.

Olumide, A., Alsadoon, A., Prasad, P.W.C. & Pham, L. (2015) A hybrid encryption model

for secure cloud computing. In: ICT and Knowledge Engineering (ICT & Knowledge

Engineering 2015), 2015 13th International Conference on. 2015 IEEE. pp. 24–32.

Oreifej, R.S., Al-Haddad, R., Zand, R., Ashraf, R.A., et al. (2018) Survivability Modeling

and Resource Planning for Self-Repairing Reconfigurable Device Fabrics. IEEE

Transactions on Cybernetics. [Online] 48 (2), 780–792. Available from:

doi:10.1109/TCYB.2017.2655878.

Over, S. (2014) Symantec Data Center Security : 1–5.

Padhy, R.P., Patra, M.R. & Satapathy, S.C. (2011) Virtualization techniques & technologies:

State-of-the-art. Journal of Global Research in Computer Science. [Online] 2, 29–43.

Available from: http://www.jgrcs.info/index.php/jgrcs/article/view/269/233.

Panigrahi, D. (2013) Survivable Network Design Problems in Wireless Networks. In: [Online].

2013 p. Available from: doi:10.1137/1.9781611973082.78.

Paquette, S., Jaeger, P.T. & Wilson, S.C. (2010) Identifying the security risks associated

with governmental use of cloud computing. Government Information Quarterly. [Online]

Available from: doi:10.1016/j.giq.2010.01.002.

236

Park, S. & Ruighaver, T. (2008) Strategic approach to information security in organizations.

In: Information Science and Security, 2008. ICISS. International Conference on. 2008 IEEE.

pp. 26–31.

Parker, M. & Kamenev, A. (2009) Extinction in the lotka-volterra model. Physical Review E

- Statistical, Nonlinear, and Soft Matter Physics. [Online] Available from:

doi:10.1103/PhysRevE.80.021129.

Pearce, M., Zeadally, S. & Hunt, R. (2013) Virtualization: Issues, security threats, and

solutions. ACM Computing Surveys (CSUR). [Online] Available from:

doi:10.1145/2431211.2431216.

Pearson, S. & Benameur, A. (2010) Privacy, Security and Trust Issues Arising from Cloud

Computing. 2010 IEEE Second International Conference on Cloud Computing Technology and

Science. [Online] 693–702. Available from: doi:10.1109/CloudCom.2010.66.

Petchey, O.L. (2000) Prey diversity, prey composition, and predator population dynamics

in experimental microcosms. Journal of Animal Ecology. [Online] Available from:

doi:10.1046/j.1365-2656.2000.00446.x.

Petukhov, A. & Kozlov, D. (2008) Detecting security vulnerabilities in web applications

using dynamic analysis with penetration testing. In: Application Security Conference

(OWASP). 2008 p.

Pinol, C.M.N. & Banzon, R.S. (2011) Stability in a population model without random

deaths by the Verhulst factor. Physica A: Statistical Mechanics and its Applications. 390 (7),

1295–1299.

Pokharel, M., Lee, S.L.S. & Park, J.S.P.J.S. (2010) Disaster Recovery for System

Architecture Using Cloud Computing. In: Applications and the Internet (SAINT), 2010

10th IEEE/IPSJ International Symposium on. [Online]. 2010 pp. 304–307. Available

from: doi:10.1109/SAINT.2010.23.

Polash, F., Abuhussein, A. & Shiva, S. (2014) A survey of cloud computing taxonomies:

Rationale and overview. In: Internet Technology and Secured Transactions (ICITST), 2014

9th International Conference for. 2014 IEEE. pp. 459–465.

Prasad, P., Ojha, B., Shahi, R.R., Lal, R., et al. (2011) 3 Dimensional security in cloud

computing. In: ICCRD2011 - 2011 3rd International Conference on Computer Research and

Development. [Online]. 2011 p. Available from: doi:10.1109/ICCRD.2011.5764279.

Priami, C. (2009) Algorithmic systems biology. Communications of the ACM. 52 (5), 80–88.

Prusty, A.R., Sethi, S. & Nayak, A.K. (2016) Analysis of energy complexity under mobility

for cluster routing in Wireless Ad hoc Sensor Networks. In: 2015 International

237

Conference on Microwave, Optical and Communication Engineering, ICMOCE 2015. [Online].

2016 p. Available from: doi:10.1109/ICMOCE.2015.7489755.

PwC (2015) INFORMATION SECURITY BREACHES SURVEY: Technical-Report.

[Online]. Available from: https://www.pwc.co.uk/assets/pdf/2015-isbs-technical-

report-blue-03.pdf.

Quach, D.Q., Willemse, J.M., Preez, V. Du & Hawick, K.A. (2013) Species Survivability and

Altitude Dependence in a Lotka-Volterra Predator-Prey Spatial-Agent Based System Altitudes

and the Spatial Lotka-. [Online] 7. Available from: http://worldcomp-

proceedings.com/proc/p2013/BIC7290.pdf.

Rabai, L.B.A., Jouini, M., Aissa, A. Ben & Mili, A. (2013) A cybersecurity model in cloud

computing environments. Journal of King Saud University-Computer and Information

Sciences. 25 (1), 63–75.

Rafsanjani, M.K. & Fatemidokht, H. (2015) FBeeAdHoc: A secure routing protocol for

BeeAdHoc based on fuzzy logic in MANETs. AEU-International Journal of Electronics

and Communications. 69 (11), 1613–1621.

Ragin, C.C. (2014) The Comparative Method - Moving Beyond Qualitative and Quantitative Strategies.

[Online]. Available from:

http://wisc.eblib.com/patron/FullRecord.aspx?p=1698820.

Rahman, M.R. & Boutaba, R. (2013) SVNE: Survivable virtual network embedding

algorithms for network virtualization. IEEE Transactions on Network and Service

Management. [Online] 10 (2), 105–118. Available from:

doi:10.1109/TNSM.2013.013013.110202.

Rahman, N.H.A. & Choo, K.-K.R. (2015) A survey of information security incident

handling in the cloud. Computers & Security. 49, 45–69.

Railsback, S.F., Lytinen, S.L. & Jackson, S.K. (2006) Agent-based simulation platforms:

Review and development recommendations. Simulation. 82 (9), 609–623.

Rao, J.R., Chari, S.N., Pendarakis, D., Sailer, R., Stoecklin, M.P., Teiken, W. and Wespi, A.

(2016) Security 360°: Enterprise security for the cognitive era. IBM Journal of Research

and Development. 60 (4), 1–1.

Rao, R.V. & Selvamani, K. (2015) Data Security Challenges and Its Solutions in Cloud

Computing. Procedia Computer Science. [Online] 48 (Iccc), 204–209. Available from:

doi:10.1016/j.procs.2015.04.171.

Razzaq, A., Latif, K., Farooq Ahmad, H., Hur, A., et al. (2014) Semantic security against

web application attacks. Information Sciences. [Online] Available from:

238

doi:10.1016/j.ins.2013.08.007.

Redman, J., Warren, M. & Hutchinson, W. (2005) System survivability: a critical security

problem. Information Management & Computer Security. [Online] Available from:

doi:10.1108/09685220510602004.

Ren, S., Yu, Y., Kwiat, K.A. & Tsai, J. (2007) A coordination model for improving software

system attack-tolerance and survivability in open hostile environments. International

Journal of Distributed Sensor Networks. [Online] 3 (2), 175–199. Available from:

doi:10.1080/15501320701205068.

Ren, Y., Liu, L., Liu, X., Kong, J., et al. (2012) A fast and transparent communication

protocol for co-resident virtual machines. Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom), 2012 8th International Conference on.

[Online] 70–79. Available from: doi:10.4108/icst.collaboratecom.2012.250405.

Resetarits, W.J. (2001) Colonization under threat of predation: avoidance of fish by an

aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia. 129 (1),

155–160.

Ribeiro, C.C. & Hansen, P. (2012) Essays and surveys in metaheuristics. Springer Science &

Business Media.

Richards, M.G., Hastings, D.E., Rhodes, D.H. & Weigel, A.L. (2007) Defining

Survivability for Engineering Systems. Conference on Systems Engineering Research. 1–12.

Rieke, R., Coppolino, L., Hutchison, A., Prieto, E., et al. (2012) Security and reliability

requirements for advanced security event management. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). [Online]. 2012 p. Available from: doi:10.1007/978-3-642-33704-8-15.

Ristenpart, T., Tromer, E., Shacham, H. & Savage, S. (2009) Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of the 16th

ACM conference on Computer and communications security. 2009 ACM. pp. 199–212.

Rodríguez, R.J., Merseguer, J. & Bernardi, S. (2014) Modelling Security of Critical

Infrastructures: A Survivability Assessment. Computer Journal. [Online] 58 (10), 2313–

2327. Available from: doi:10.1093/comjnl/bxu096.

Romine, C.H. (2019) Cyber Crime: An Existential Threat to Small Business. [Online]. 2019.

Information Technology Laboratory National Institute of Standards and Technology.

Available from: https://www.nist.gov/speech-testimony/cyber-crime-existential-

threat-small-business [Accessed: 22 May 2019].

Rong, C., Nguyen, S.T. & Jaatun, M.G. (2013a) Beyond lightning: A survey on security

239

challenges in cloud computing. Computers & Electrical Engineering. 39 (1), 47–54.

Rong, C., Nguyen, S.T. & Jaatun, M.G. (2013b) Beyond lightning: A survey on security

challenges in cloud computing. Computers & Electrical Engineering. [Online] 39 (1), 47–

54. Available from: doi:10.1016/j.compeleceng.2012.04.015.

Roux, A. Le, Cherry, M.I., Gygax, L. & Manser, M.B. (2009) Vigilance behaviour and

fitness consequences: comparing a solitary foraging and an obligate group-foraging

mammal. Behavioral Ecology and Sociobiology. 63 (8), 1097–1107.

Roy, A., Sarkar, S., Ganesan, R. & Goel, G. (2015) Secure the Cloud. ACM Computing

Surveys. [Online] 47 (3), 1–30. Available from: doi:10.1145/2693841.

Rozenfeld, A.F., Luis Gruver, J., Albano, E. V. & Havlin, S. (2006) Altruism: A natural

strategy for enhancing survival. Physica A: Statistical Mechanics and its Applications.

[Online] 369 (2), 817–822. Available from: doi:10.1016/j.physa.2006.01.088.

Russo, D. & Spreafico, C. (2015) TRIZ 40 Inventive principles classification through FBS

ontology. Procedia Engineering. [Online] 131, 737–746. Available from:

doi:10.1016/j.proeng.2015.12.367.

Ryan, M.D. (2013) Cloud computing security: The scientific challenge, and a survey of

solutions. Journal of Systems and Software. [Online] 86 (9), 2263–2268. Available from:

doi:10.1016/j.jss.2012.12.025.

Sabahi, F. (2011) Cloud computing security threats and responses. In: Communication

Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on. 2011 IEEE.

pp. 245–249.

Sadava, D.M., Hillis, D., Heller, H.C. & Berenbaum, M.R. (2011) Life: The science of biology.

9th edition. [Online]. Available from: doi:10.1073/pnas.0404206101.

Saghafian, S. (2018) Ambiguous partially observable Markov decision processes: Structural

results and applications. Journal of Economic Theory. [Online] 178 (Cmmi), 1–35.

Available from: doi:10.1016/j.jet.2018.08.006.

Sahoo, J., Mohapatra, S. & Lath, R. (2010) Virtualization: A survey on concepts, taxonomy

and associated security issues. In: 2nd International Conference on Computer and Network

Technology, ICCNT 2010. [Online]. 2010 p. Available from:

doi:10.1109/ICCNT.2010.49.

Sakellari, G. & Loukas, G. (2013) A survey of mathematical models, simulation approaches

and testbeds used for research in cloud computing. Simulation Modelling Practice and

Theory. [Online] 39, 92–103. Available from: doi:10.1016/j.simpat.2013.04.002.

SANS (2016) No TitleCIS Critical Security Controls. 2016. The CIS Critical Security Controls

240

for Effective Cyber Defense.

Sarkar, A., Bhattacharya, A., Dutta, S. & Parikh, K.K. (2019) Recent Trends of Data

Mining in Cloud Computing. In: Data Mining and Information Security. Singapore,

Springer. pp. 565–578.

Saudi, M.M., Woodward, M., Cullen, A.J. & Noor, H.M. (2008) An overview of apoptosis

for computer security. In: Information Technology, 2008. ITSim 2008. International

Symposium on. 2008 IEEE. pp. 1–6.

Saunders, M.N.K. (2009) Research Onion. Unversity of Derby. [Online]. Available from:

doi:10.1007/s13398-014-0173-7.2.

Savransky, S.D. (2000) Engineering of creativity: Introduction to TRIZ methodology of inventive

problem solving. CRC Press.

Sayed, A.H. (2014) Adaptive networks. Proceedings of the IEEE. 102 (4), 460–497.

Schoener, T.W., Spiller, D.A. & Losos, J.B. (2001) Predators increase the risk of

catastrophic extinction of prey populations. Nature. [Online] 412 (6843), 183–186.

Available from: doi:10.1038/35084071.

Security, F.N., Fireeye, W., Security, N., Windows, M., et al. (2018) FireEye Network Security.

1–12.

Serageldin, A., Krings, A. & Abdel-Rahim, A. (2013) A survivable critical infrastructure control

application. In: [Online]. 2013 p. Available from: doi:10.1145/2459976.2460015.

Server, S. (2015) Data Sheet Symantec Data Center. 1–4.

Shahriar, N., Ahmed, R., Chowdhury, S.R., Khan, A., et al. (2017) Generalized recovery

from node failure in virtual network embedding. IEEE Transactions on Network and

Service Management. [Online] 14 (2), 261–274. Available from:

doi:10.1109/TNSM.2017.2693404.

Shahzad, F. (2014) State-of-the-art Survey on Cloud Computing Security Challenges,

Approaches and Solutions. Procedia Computer Science. [Online] 37, 357–362. Available

from: doi:10.1016/j.procs.2014.08.053.

Shahzad, K. & Woodhead, S. (2014) Towards automated distributed containment of zero-

day network worms. 5th International Conference on Computing Communication and

Networking Technologies, ICCCNT 2014. [Online] Available from:

doi:10.1109/ICCCNT.2014.6963119.

Sharif, A.M. & Irani, Z. (2006) Exploring Fuzzy Cognitive Mapping for IS Evaluation.

European Journal of Operational Research. [Online] Available from:

doi:10.1016/j.ejor.2005.07.011.

241

Shehabat, A. & Mitew, T. (2017) Distributed Swarming and Stigmergic Effects on ISIS Networks :

OODA Loop Model. 10 (December), 0–20.

Shi, L., Jia, C., Lu, S. & Liu, Z. (2007) Port and address hopping for active cyber-defense. In:

Intelligence and Security Informatics. Springer. pp. 295–300.

Shi, T., Zhao, J., Yin, X. & Wang, J. (2008) Research on telecommunication switching

system survivability based on stochastic petri net. In: 3rd International Conference on

Innovative Computing Information and Control, ICICIC’08. [Online]. 2008 p. Available

from: doi:10.1109/ICICIC.2008.460.

Shi, Y., Chen, G. & Li, J. (2018) Malicious Domain Name Detection Based on Extreme

Machine Learning. Neural Processing Letters. [Online] Available from:

doi:10.1007/s11063-017-9666-7.

Shon, T., Kovah, X. & Moon, J. (2006) Applying genetic algorithm for classifying

anomalous TCP/IP packets. Neurocomputing. [Online] 69 (16–18), 2429–2433.

Available from: doi:10.1016/j.neucom.2006.01.023.

Shorov, A. & Kotenko, I. (2014) The Framework for Simulation of Bioinspired Security

Mechanisms against Network Infrastructure Attacks. The Scientific World Journal. 2014.

da Silva Peixoto, M., de Barros, L.C. & Bassanezi, R.C. (2008) Predator-prey fuzzy model.

Ecological Modelling. [Online] 214 (1), 39–44. Available from:

doi:10.1016/j.ecolmodel.2008.01.009.

Sim, K.M. (2012) Agent-based cloud computing. IEEE Transactions on Services Computing.

[Online] 5 (4), 564–577. Available from: doi:10.1109/TSC.2011.52.

Singh, A.K. & Srivastava, S. (2018) A survey and classification of controller placement

problem in SDN. International Journal of Network Management. [Online] Available from:

doi:10.1002/nem.2018.

Singh, R.K., Joshi, R. & Singhal, M. (2013) Analysis of security threats and vulnerabilities

in mobile ad hoc network (manet). International Journal of Computer Applications. 68 (4).

Singh, S., Jeong, Y.S. & Park, J.H. (2016) A survey on cloud computing security: Issues,

threats, and solutions. Journal of Network and Computer Applications. [Online] 75, 200–

222. Available from: doi:10.1016/j.jnca.2016.09.002.

Skyttner, L. (2010) General Systems Theory - Problems, Perspectives, Practice. [Online]. Available

from: doi:10.1142/9789812774750.

Smith, C.L. (1979) FUNDAMENTALS OF CONTROL THEORY. Chemical Engineering

(New York). [Online]. 86 (22) pp.11–39. Available from:

doi:doi:10.1201/9781420036572.ch14.

242

Smith, R.J.F. (1992) Alarm signals in fishes. Reviews in Fish Biology and Fisheries. 2 (1), 33–63.

Sobh, T.S. & Mostafa, W.M. (2011) A cooperative immunological approach for detecting

network anomaly. Applied Soft Computing. 11 (1), 1275–1283.

Sochor, T. & Zuzcak, M. (2014) Study of internet threats and attack methods using honeypots and

honeynets. In: Computer Networks. Springer. pp. 118–127.

Solutions, V.E. (2015) 2015 Dbir. Verizon Business Journal. [Online] Available from:

http://www.verizonenterprise.com/resources/reports/rp_data-breach-

investigation-report_2015_en_xg.pdf.

Somayaji, A., Locasto, M. & Feyereisl, J. (2007) Panel : The Future of Biologically-Inspired

Security : Is There Anything Left to Learn? In: NSPW’07, September 18-21, 2007, North

Conway, NH, USA. [Online]. 2007 pp. 49–54. Available from:

doi:10.1145/1600176.1600185.

Sommarive, V. & Report, T. (2013) KEYWORD QUERY TO GRAPH Zekarias Kefato

Matteo Lissandrini Davide Mottin Themis Palpanas. (October).

Srinivasan, M.K., Sarukesi, K., Rodrigues, P., Manoj, M.S., et al. (2012) State-of-the-art

cloud computing security taxonomies - A classification of security challenges in the

present cloud computing environment. Proceedings of the International Conference on

Advances in Computing, Communications and Informatics - ICACCI ’12. [Online] 470.

Available from: doi:10.1145/2345396.2345474.

Stage, F.K. & Manning, K. (2003) Research in the college context: Approaches and methods.

[Online]. Available from: doi:10.4324/9780203952740.

Sterbenz, J.P.G., Hutchison, D., Cetinkaya, E.K. & Jabbar, A. (2010a) Resilience and

survivability in communication networks: Strategies, principles, and survey of

disciplines. Computer Networks. [Online] 54 (8), 1245–1265. Available from:

doi:10.1016/j.comnet.2010.03.005.

Sterbenz, J.P.G., Hutchison, D., Jabbar, A., Rohrer, J.P., et al. (2010b) Resilience and

survivability in communication networks: Strategies, principles, and survey of

disciplines. Computer Networks. 54 (8), 1245–1265.

Stoykov, G. (2015) A Biomorphic model for automated cloud adaptation.

Stoykov, G. & Yazidi, A. (2016) A Biomorphic Model for Automated Cloud Adaptation.

Proceedings - 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing,

UCC 2015. [Online] 179–185. Available from: doi:10.1109/UCC.2015.34.

Subashini, S. & Kavitha, V. (2011) A survey on security issues in service delivery models

of cloud computing. Journal of network and computer applications. 34 (1), 1–11.

243

Sullivan, T. & Regan, F. (2011) Biomimetic design of novel antifouling materials for

application to environmental sensing technologies. Journal of Ocean Technology. [Online]

6 (4), 42–54. Available from: doi:10.1016/j.cirp.2011.06.001.

Sun, D., Chang, G., Sun, L., Li, F., et al. (2011) A dynamic multi-dimensional trust

evaluation model to enhance security of cloud computing environments. International

Journal of Innovative Computing and Applications. [Online] 3 (4), 200–212. Available from:

doi:10.1504/IJICA.2011.044529.

Sun, F. & Cheng, S. (2009) A gene technology inspired paradigm for user authentication.

In: Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009. 3rd International

Conference on. 2009 IEEE. pp. 1–3.

Sundell, J., Dudek, D., Klemme, I., Koivisto, E., et al. (2004) Variation in predation risk

and vole feeding behaviour: A field test of the risk allocation hypothesis. Oecologia.

[Online] Available from: doi:10.1007/s00442-004-1490-x.

Systems, C. (2006) 思科 Adaptive Security Appliance 产品动手培训实验指南 实验环境说

明. 1–52.

Tahvildari, M.S. and L. (2009) “Self-adaptive software: Landscape and research

challenges”. ACM Transactions on Autonomous and Adaptive Systems.

Takabi, H., Joshi, J.B.D. & Ahn, G.-J. (2010) Security and privacy challenges in cloud

computing environments. IEEE Security & Privacy. (6), 24–31.

Taleb, T., Samdanis, K., Mada, B., Flinck, H., et al. (2017) On Multi-Access Edge

Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and

Orchestration. IEEE Communications Surveys and Tutorials. [Online] Available from:

doi:10.1109/COMST.2017.2705720.

Talia, D. (2012) Clouds meet agents: Toward intelligent cloud services. IEEE Internet

Computing. [Online]. 16 (2) pp.78–81. Available from: doi:10.1109/MIC.2012.28.

Tara, S. (2018) Cloud security concerns surge. [Online]. 2018. Infosecurity Manazine. Available

from: https://www.infosecurity-magazine.com/news/cloud-security-concerns-

surge/ [Accessed: 22 December 2019].

Thornton, A. & Clutton-Brock, T. (2011) Social learning and the development of

individual and group behaviour in mammal societies. Philosophical transactions of the

Royal Society of London.Series B, Biological sciences. [Online] 366 (1567), 978–987. Available

from: doi:10.1098/rstb.2010.0312 [doi].

Tian, H., Chen, Z., Chang, C.C., Huang, Y., et al. (2019) Public audit for operation behavior

244

logs with error locating in cloud storage. Soft Computing. [Online] Available from:

doi:10.1007/s00500-018-3038-8.

Toemeh, R. & Arumugam, S. (2015) Breaking Transposition Cipher with Genetic

Algorithm. Elektronika ir Elektrotechnika. 79 (7), 75–78.

Vakili, V. & Shu, L.H. (2001) Towards Biomimetic Concept Generation. ASME 2001

Design Engineering Technical Conferences. [Online] 4 (February), 1–9. Available from:

http://www.mie.utoronto.ca/labs/bidlab/pubs/Vakili_Shu_DTM_01.pdf.

Vassalos, D. (2019) Damage stability of passenger ships—notions and truths. In: Fluid

Mechanics and its Applications. [Online]. pp. 779–801. Available from: doi:10.1007/978-

3-030-00516-0_46.

Verizon (2016) Evolution of the Verizon Data Breach Investigations Report: 2008-2016. [Online].

2016. Available from: http://www.verizonenterprise.com/verizon-insights-

lab/dbir/ [Accessed: 10 December 2016].

Verizon Business (2011) 2011 Data Breach Investigations Report (DBIR). Trends. [Online]

1–72. Available from: doi:10.1109/CyberSec.2012.6246130.

Verma, A.K., Dave, M. & Joshi, R.C. (2007) Genetic algorithm and tabu search attack on

the mono-alphabetic substitution cipher i adhoc networks. In: Journal of Computer

science. 2007 Citeseer. p.

Vermeij, G.J. (1994) The evolutionary interaction among species: Selection, escalation, and

coevolution. Annual Review of Ecology and Systematics. [Online]. Available from:

doi:10.1146/annurev.es.25.110194.001251.

Vessey, I., Ramesh, V. & Glass, R.L. (2005) A unified classification system for research in

the computing disciplines. Information and Software Technology. [Online] Available from:

doi:10.1016/j.infsof.2004.08.006.

Vincent, J.F.V., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., et al. (2006) Biomimetics:

Its practice and theory. Journal of the Royal Society Interface. [Online] 3 (9), 471–482.

Available from: doi:10.1098/rsif.2006.0127.

Virvilis, N. & Gritzalis, D. (2013) The big four-what we did wrong in advanced persistent

threat detection? In: Availability, Reliability and Security (ARES), 2013 Eighth International

Conference on. 2013 IEEE. pp. 248–254.

Vitanov, N.K., Dimitrova, Z.I. & Ausloos, M. (2010) Verhulst-Lotka-Volterra (VLV)

model of ideological struggle. Physica A: Statistical Mechanics and its Applications. [Online]

389 (21), 4970–4980. Available from: doi:10.1016/j.physa.2010.06.032.

Voellmy, I.K., Goncalves, I.B., Barrette, M.-F., Monfort, S.L., et al. (2014) Mean fecal

245

glucocorticoid metabolites are associated with vigilance, whereas immediate cortisol

levels better reflect acute anti-predator responses in meerkats. Hormones and behavior.

66 (5), 759–765.

Wagle, S.S., Guzek, M., Bouvry, P. & Bisdorff, R. (2016) An evaluation model for selecting

cloud services from commercially available cloud providers. In: Proceedings - IEEE 7th

International Conference on Cloud Computing Technology and Science, CloudCom 2015.

[Online]. 2016 pp. 107–114. Available from: doi:10.1109/CloudCom.2015.94.

Wainer, J., Novoa Barsottini, C.G., Lacerda, D. & Magalhães de Marco, L.R. (2009)

Empirical evaluation in Computer Science research published by ACM. Information

and Software Technology. [Online] Available from: doi:10.1016/j.infsof.2009.01.002.

Wallom, D., Turilli, M., Martin, A., Raun, A., et al. (2011) MyTrustedCloud: Trusted cloud

infrastructure for security-critical computation and data managment. In: Proceedings -

2011 3rd IEEE International Conference on Cloud Computing Technology and Science,

CloudCom 2011. [Online]. 2011 p. Available from: doi:10.1109/CloudCom.2011.41.

Walraven, S., Truyen, E. & Joosen, W. (2011) A middleware layer for flexible and cost-

efficient multi-tenant applications. In: Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [Online]. 2011 p.

Available from: doi:10.1007/978-3-642-25821-3_19.

Walther, F.R. (1969) Flight behaviour and avoidance of predators in Thomson’s gazelle

(Gazella thomsoni Guenther 1884). Behaviour. 34 (3), 184–220.

Waltman, P., Braselton, J. & Braselton, L. (2002) A mathematical model of a biological

arms race with a dangerous prey. Journal of Theoretical Biology. [Online] 218 (1), 55–70.

Available from: doi:10.1006/jtbi.2002.3057.

Wang, C., Fang, L., Dai, Y., Ming, L., et al. (2012a) Network survivability evaluation model

based on immune evolution and multiple criteria decision making. Proceedings of the

2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge

Discovery, CyberC 2012. [Online] 178–184. Available from:

doi:10.1109/CyberC.2012.37.

Wang, C., Ming, L., Zhao, J. & Wang, D. (2012b) Shielding wireless sensor network using

Markovian intrusion detection system with attack pattern mining. Ecological Modelling.

[Online] 11 (1), 32–44. Available from: doi:10.1016/j.ins.2011.03.014.

Wang, C. & Yan, H. (2010) Study of cloud computing security based on private face

recognition. In: Computational Intelligence and Software Engineering (CiSE), 2010

International Conference on. 2010 IEEE. pp. 1–5.

246

Wang, J. & Mu, S. (2011) Security issues and countermeasures in cloud computing. In: Grey

Systems and Intelligent Services (GSIS), 2011 IEEE International Conference on. 2011 IEEE.

pp. 843–846.

Wang, P., Lin, W.-H., Kuo, P.-T., Lin, H.-T., et al. (2012c) Threat risk analysis for cloud

security based on Attack-Defense Trees. In: Computing Technology and Information

Management (ICCM), 2012 8th International Conference on. 2012 IEEE. pp. 106–111.

Wang, T., Ye, B., Li, Y. & Yang, Y. (2010) Family gene based Cloud Trust model. In:

ICENT 2010 - 2010 International Conference on Educational and Network Technology.

[Online]. 2010 pp. 540–544. Available from: doi:10.1109/ICENT.2010.5532096.

Wang, W., Zeng, G. & Yuan, L. (2006) Ant-based reputation evidence distribution in P2P

networks. In: Grid and Cooperative Computing, 2006. GCC 2006. Fifth International

Conference. 2006 IEEE. pp. 129–132.

Wang, Y., Wang, Y., Liu, J. & Huang, Z. (2014) A network gene-based framework for

detecting advanced persistent threats. In: Proceedings - 2014 9th International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2014. [Online]. 2014 p.

Available from: doi:10.1109/3PGCIC.2014.41.

Wangersky, P.J. (2003) Lotka-Volterra Population Models. Annual Review of Ecology and

Systematics. [Online] Available from: doi:10.1146/annurev.es.09.110178.001201.

Warfield, J.N. & Staley, S.M. (1996) Structural thinking: Organizing complexity through

disciplined activity. Systems Research and Behavioral Science.

Wen, G., Yu, W., Yu, X. & Lü, J. (2017) Complex cyber-physical networks: From

cybersecurity to security control. Journal of Systems Science and Complexity. [Online] 30

(1), 46–67. Available from: doi:10.1007/s11424-017-6181-x.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., et al. (2013) On patterns for decentralized

control in self-adaptive systems. In: Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [Online]. 2013 pp.

76–107. Available from: doi:10.1007/978-3-642-35813-5_4.

Wilensky, U. (1999) NetLogo. [Online]. 1999. Center for Connected Learning and

Computer-Based Modeling, Northwestern University, Evanston, IL. Available from:

https://ccl.northwestern.edu/netlogo/ [Accessed: 23 June 2016].

Wiles, J. (2018) Top Risks for Legal and Compliance Leaders in 2018. 2018 Legal and

Compliance Hot Spots. [Online] 13 March. Available from:

https://www.gartner.com/smarterwithgartner/top-risks-for-legal-and-compliance-

leaders-in-2018/.

247

Williams, A.C. & Flaxman, S.M. (2012) Can predators assess the quality of their prey�s

resource? Animal Behaviour. 83 (4), 883–890.

Xiao, L., Xu, D., Mandayam, N.B. & Poor, H.V. (2018) Attacker-Centric View of a

Detection Game against Advanced Persistent Threats. IEEE Transactions on Mobile

Computing. [Online] Available from: doi:10.1109/TMC.2018.2814052.

Xiao, T., Zhang, J., Yang, K., Peng, Y., et al. (2014) Error-Driven Incremental Learning in

Deep Convolutional Neural Network for Large-Scale Image Classification. Proceedings

of the ACM International Conference on Multimedia - MM ’14. [Online] (November), 177–

186. Available from: doi:10.1145/2647868.2654926.

Xu, J., Tang, J., Kwiat, K., Zhang, W., et al. (2013) Enhancing survivability in virtualized

data centers: A service-aware approach. IEEE Journal on Selected Areas in

Communications. [Online] 31 (12), 2610–2619. Available from:

doi:10.1109/JSAC.2013.131203.

Xu, J., Tang, J., Kwiat, K., Zhang, W., et al. (2012) Survivable virtual infrastructure

mapping in virtualized data centers. In: Proceedings - 2012 IEEE 5th International

Conference on Cloud Computing, CLOUD 2012. [Online]. 2012 pp. 196–203. Available

from: doi:10.1109/CLOUD.2012.100.

Xu, Y., Bailey, M., Jahanian, F., Joshi, K., et al. (2011) An exploration of L2 cache covert

channels in virtualized environments. In: Proceedings of the 3rd ACM workshop on Cloud

computing security workshop. 2011 ACM. pp. 29–40.

Yager, R.R. (1995) An approach to ordinal decision making. International Journal of

Approximate Reasoning. [Online] 12 (3–4), 237–261. Available from: doi:10.1016/0888-

613X(94)00035-2.

Yager, R.R. (2003) Fuzzy Modeling for Multicriteria Decision Making Under Uncertainty. 30 (1),

60–70.

Yager, R.R. (2004) Uncertainty modeling and decision support. In: Reliability Engineering and

System Safety. [Online]. 2004 p. Available from: doi:10.1016/j.ress.2004.03.022.

Yallouz, J. & Orda, A. (2017) Tunable QoS-Aware Network Survivability. IEEE/ACM

Transactions on Networking. [Online] 25 (1), 139–149. Available from:

doi:10.1109/TNET.2016.2606342.

Yallouz, J., Rottenstreich, O. & Orda, A. (2014) Tunable survivable spanning trees. In:

Performance Evaluation Review. [Online]. 2014 p. Available from:

doi:10.1145/2637364.2591997.

Yang, H., Luo, H., Ye, F., Lu, S., et al. (2004) Security in mobile ad hoc networks:

248

challenges and solutions. Wireless Communications, IEEE. 11 (1), 38–47.

Yang, J., Liu, X., Li, T., Liang, G., et al. (2009) Distributed agents model for intrusion

detection based on AIS. Knowledge-Based Systems. 22 (2), 115–119.

Yannakogeorgos, P., Lowther, A. & Hayden, M. (2013) The Future of Things Cyber. In:

Conflict and Cooperation in Cyberspace. [Online]. p. Available from: doi:10.1201/b15253-

3.

Yao-Min Chen & Yanyan Yang (2004) Policy management for network-based intrusion detection

and prevention. In: [Online]. 2004 p. Available from: doi:10.1109/noms.2004.1317855.

Yesil, E., Urbas, L. & Demirsoy, A. (2014) FCM-GUI: A graphical user interface for big

bang-big crunch learning of FCM. Intelligent Systems Reference Library. [Online] 54, 177–

198. Available from: doi:10.1007/978-3-642-39739-4_11.

Yoon, J., Yang, E., Lee, J., Hwang, S.J., et al. (2018) Lifelong Learning with Dynamically

Expandable Networks. 1–11.

Yu, H., Anand, V., Qiao, C. & Sun, G. (2011) Cost efficient design of survivable virtual

infrastructure to recover from facility node failures. In: IEEE International Conference

on Communications. [Online]. 2011 p. Available from: doi:10.1109/icc.2011.5962604.

Yu, M., Wang, A.H., Zang, W. & Liu, P. (2010) Evaluating survivability and costs of three

virtual machine based server architectures. 2010 International Conference on Security and

Cryptography (SECRYPT). 1–8.

Yu, R., Huang, X., Kang, J., Ding, J., et al. (2015) Cooperative resource management in

cloud-enabled vehicular networks. IEEE Transactions on Industrial Electronics. [Online]

62 (12), 7938–7951. Available from: doi:10.1109/TIE.2015.2481792.

Yu, R., Xue, G., Zhang, X. & Li, D. (2017) Survivable and bandwidth-guaranteed

embedding of virtual clusters in cloud data centers. In: Proceedings - IEEE INFOCOM.

[Online]. 2017 p. Available from: doi:10.1109/INFOCOM.2017.8056945.

Yuill, J., Denning, D.E. & Feer, F. (2006) No Title. Using deception to hide things from hackers:

Processes, principles, and techniques.

Yurcik, W. & Doss, D. (2002) A Survivability-Over-Security (SOS) Approach to Holistic Cyber-

Ecosystem Assurance. (June).

Zadeh, L.A. (2013) Fuzzy logic. In: Computational Complexity: Theory, Techniques, and

Applications. [Online]. p. Available from: doi:10.1007/978-1-4614-1800-9_73.

Zadeh, L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems.

[Online] Available from: doi:10.1016/0165-0114(78)90029-5.

Zafar, F., Khan, A., Malik, S.U.R., Ahmed, M., et al. (2017a) A survey of cloud computing

249

data integrity schemes: Design challenges, taxonomy and future trends. Computers and

Security. [Online] 65, 29–49. Available from: doi:10.1016/j.cose.2016.10.006.

Zafar, F., Khan, A., Malik, S.U.R., Ahmed, M., et al. (2017b) A survey of cloud computing

data integrity schemes: Design challenges, taxonomy and future trends. Computers and

Security. [Online] 65, 29–49. Available from: doi:10.1016/j.cose.2016.10.006.

Zanakis, S.H., Solomon, A., Wishart, N. & Dublish, S. (1998) Multi-attribute decision

making: A simulation comparison of select methods. European Journal of Operational

Research. [Online] Available from: doi:10.1016/S0377-2217(97)00147-1.

Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., et al. (2015) Cloud computing resource

scheduling and a survey of its evolutionary approaches. ACM Computing Surveys.

[Online] Available from: doi:10.1145/2788397.

Zhang, Q., Liu, L., Ren, Y., Lee, K., et al. (2013) Residency aware inter-VM communication

in virtualized cloud: Performance measurement and analysis. In: IEEE International

Conference on Cloud Computing, CLOUD. [Online]. 2013 pp. 204–211. Available from:

doi:10.1109/CLOUD.2013.116.

Zheng, C. & Sicker, D.C. (2013) A survey on biologically inspired algorithms for computer

networking. Communications Surveys & Tutorials, IEEE. 15 (3), 1160–1191.

Zheng, J., Okamura, H. & Dohi, T. (2015) Survivability analysis of VM-based intrusion

tolerant systems. IEICE Transactions on Information and Systems. [Online] E98D (12),

2082–2090. Available from: doi:10.1587/transinf.2015PAP0007.

Zhou, X. (2009) Research on immune pathology in artificial immune system. In: Control

and Decision Conference, 2009. CCDC’09. Chinese. 2009 IEEE. pp. 1366–1370.

Zhu, J., Li, D., Wu, J., Liu, H., et al. (2012) Towards bandwidth guarantee in multi-tenancy

cloud computing networks. In: Proceedings - International Conference on Network Protocols,

ICNP. [Online]. 2012 p. Available from: doi:10.1109/ICNP.2012.6459986.

Zhuo, T., Zhengding, L. & Kai, L. (2006) Time-based dynamic trust model using ant

colony algorithm. Wuhan University Journal of Natural Sciences. 11 (6), 1462–1466.

Ziring, N. (2015) The Future of Cyber Operations and Defense. Warfare. 14, 1–7.

Zissis, D. & Lekkas, D. (2012) Addressing cloud computing security issues. Future

Generation computer systems. 28 (3), 583–592.

Zott, C., Amit, R., Massa, L. & Zhu, Y. (2012) Financial Consumer Protection and the

Global Financial Crisis. Journal of Consumer Research. [Online] 15 (2), 1–6. Available

from: doi:10.1007/978-3-642-13757-0.

250

Appendices

Appendix A – Definitions and Concepts
Figure 85 demonstrates the relationship between proactive, reactive and hybrid
approaches. There are briefly described below, and examples presented where possible.

Figure 85. Proactive, hybrid and reactive security approaches

• Proactive approaches are implemented such that security systems are continuously
operational and aware of changes in their environment throughout their operation
(Djenouri, Khelladi & Badache, 2005). As suggested by (Yang et al., 2004), these
mechanisms intuitively aim to stop the occurrence of a security incident well before
it occurs.

• Reactive approaches operate intermittently; active after an incident occurs and
perhaps after the detection of an intrusion (Himma, 2007). These approaches aim
to stop further damage to an infrastructure after intrusion. It is not uncommon for
reactive approaches execute overlapping processes, i.e. the detection and response
processes may run concurrent with the intrusion itself (Himma, 2007).

• Hybrid approaches offer integration opportunities, i.e. proactive and reactive
processes. Depending on their implementation, hybrid approaches possess both
inherent deficiencies and strengths of both (proactive and reactive approaches).

SANS defined security controls as the recommended set of actions that provide specific
and actionable ways to stop attacks (SANS, 2016). Security controls are briefly described
below, along with references to known examples.

• Preventative controls include devices such as firewalls, which are present to stop
the occurrence of a security incident (Ko et al., 2011), or limit further damage when
an attack occurs.

• Detective controls include security audit trails, security analysis tools, IDS, etc. that
are present to identify the presence of a security risk (Ko et al., 2011).

• Corrective controls are implemented to Minimise or fix the effect of a security
incident that has occurred (Ko et al., 2011).

• Pre-emptive controls are described as intelligent systems that are self-defending
and capable of real-time monitoring, detection and prevention of known and zero-
day attacks (Behl, 2011).

• Deterrent controls may be implemented as formal goals to prevent deliberate
attacks, or against violation of Information Systems (IS) security policy (Cheng et
al., 2013). For instance, those commonly used against software piracy, including
legal aspects of copyright law, or collaboration between governments pertaining to
law enforcement (Gopal & Sanders, 2000).

• Prescriptive controls can be invoked prior or post risk detection, in real-time or
otherwise, to prevent any damage from a security occurrence. Such controls are
exemplified in process environments, whereupon a prescription describes how a
task should be completed and the order it should be performed (Heimbigner,

251

1990). A key advantage of prescriptive controls is their specificity and the provision
of precise and immediate feedback where there is a deviation from the process
(Heimbigner, 1990).

• Adaptive controls describe real-time dynamic threat intelligence, capable of
identifying and blocking threats in real-time without the use of signatures. (Canetti
et al., 1999) discussed adaptive controls based on an attacker-security model
scenario, i.e. where the attacker is dynamic, they can carry out their exploit within
a permissible threshold. According to the authors, adaptive controls enable
capturing of real threats (Canetti et al., 1999). (Almorsy, Grundy & Müller, 2010)
suggest adaptive measures to exist where security is based on current and expected
threat levels in changing environmental conditions (Almorsy, Grundy & Müller,
2010).

• Deceptive controls by definition are deliberate acts to distort entity A’s perception
of reality as perpetrated by entity B (McQueen & Boyer, 2009). In computing
terms, deceptive controls include randomization and obfuscation techniques, as
well as simulation measures such as mimicking and decoying (McQueen & Boyer,
2009).

The summary of security approaches and controls are presented to highlight the security
processes and procedures necessary to protect information technology infrastructures and
their alignment with business objectives. This research suggests the above considerations
as key for cloud computing since processes for implementing and enforcing security
involve not only the organisations, but also other third parties. Since cloud computing has
its foundations in traditional computing systems, cloud computing security enterprise is
contrasted against traditional computing security enterprise. Traditional perimeter security,
i.e. where security technologies and end-users exist within the boundaries of an
organisation to protect assets inside the organisation, is considered as relatively successful.
In contrast, cloud computing security, i.e. considered in relation to where control-based
technology and compliancy adherence to protect data, applications and infrastructures
associated with the cloud, as facing some challenges.

Appendix B - Cloud computing
Cloud computing’s key cloud players (NIST, 2016) represent individuals or organisations
that interact to perform tasks (Lui et al., 2011). Figure 85 illustrates a generic view of the
cloud computing paradigm. In practice, CSP such as Amazon EC2 is responsible for the
security and availability of services to their customers, including security incidents that
affect the customers’ infrastructure (AlZain et al., 2012).

Cloud computing is designed to facilitate optimal resource utilisation through augmenting
virtualisation technologies (Hummaida, Paton & Sakellariou, 2016), both logically and
physically (Zhu et al., 2012)(Almorsy, Grundy & Müller, 2016). The capabilities of the
tenancy/multi-tenancy concepts mean that, by co-locating users/tenants, cloud
computing’s compute costs are lower (Walraven, Truyen & Joosen, 2011). Multi-tenancy,
as illustrated in Figure 3, enables the sharing of an application instance among multiple
tenants, but with isolated regarding performance and data privacy (Coppolino et al., 2017).
Despite its usefulness, the literature shows that a CC’s data in a multi-tenancy environment
is at risk of compromise through lax access management or malicious attack. A side-
channel attacker can implant arbitrary code into a neighbour’s VM environment with little
to no chance of detection (Ristenpart et al., 2009). Moreover, multi-tenancy complicates
vulnerability management due to interactions among different service domains with

252

different service requirements (Behl & Behl, 2012). While multi-tenancy ensures that
consumers are completely unaware of a neighbour’s identity, their security profile or
intentions, this introduces risks for co-located consumers.

Figure 86. A generic cloud computing model

Figure 87. The tenancy concept; single tenancy (left) and multi-tenancy (right).

Cloud deployment models, including private, public, community and hybrid, offer cloud
consumers a level of flexibility at the amount of control they have on data. The entity
performing the role of CSP will vary according to the type of deployment model. The role
of CSP may be assigned to more than one entity in a community or hybrid cloud scenario,
whereas private clouds’ superior security credentials are due to the amount of control an
organisation has on the cloud infrastructure. To understand the assigning of
responsibilities in a deployment model, the following are brief descriptions of each.
Private cloud: is managed on-premise, the CSP role is within the client organisation.

253

Community cloud: the CSP could be one of the client organisations within the community
or a separate third party
Public cloud: the CSP is a third party that is an organisationally separate entity to its clients.
Hybrid cloud: the CSP’s role is related to both internal and third-party entities for different
elements of the overall cloud infrastructure.
Cloud services are provided as virtualised or abstracted infrastructures of resources (Zissis
& Lekkas, 2012) and encapsulated as virtualised data, virtual machines (VMs) and
hypervisors (Liu et al., 2011). Responsibilities for implementing, operating and managing
security controls are shared differently across the cloud’s service models and thus needs to
be clearly understood by both the CC and CSP.
SaaS: enables a one-to-many delivery of services and applications through a browser over
the internet. SaaS allows organisations to outsource services to other parties, arguably
offsetting licensing costs, servers’ e.tc. Scalability means organisations can improve their
infrastructural requirements at minimal additional costs.
PaaS: gives access and control to a CC, to devices and platforms that help them build
applications on the internet.
IaaS: provisions the infrastructural agreements about computing systems, storage,
processing power, hardware, and networking infrastructure as a service. CCs have no prior
requirement for the maintenance and performance of such hardware.

The traditional and cloud security view

With the recent growth of cloud computing (Yannakogeorgos, Lowther & Hayden, 2013)
and a plethora of emerging technologies driven by (Taleb et al., 2017) (Zafar et al., 2017b),
incidents in German and UK telecommunications giants Vodafone (BBC online UK, n.d.)
and TalkTalk (BBC online UK, 2015), respectively, have become commonplace. Most
recently, in the UK, Dixons Carphone suffered a huge data breach involving 5.9 million
payment cards and 1.2 million personal data records (BBC online UK, 2018). According
to (Solutions, 2015), exploited vulnerabilities rapidly rise every year. (Yao-Min Chen &
Yanyan Yang, 2004)’s opinion is that traditional patching strategies are no longer effective.
Consistent prevention against data breaches through centrally managed security processes,
constrained user permissions, restricted software and controlling network traffic through
firewall policies,. (Buecker, Andreas & Scott Paisley, 2008)’s opinion is that these
approaches are only effective for networks and devices within a security perimeter.

Figure 88. A traditional security view

The existing literature offers varying rationales as to why traditional security mechanisms
are no longer adequate in current computing environments. One is the suggestion that
traditional security systems are simply failing due to their inherent architecture. Figure 87
demonstrates this traditional notion in which traditional threats are managed and
controlled within a static security boundary or perimeter.

254

Table 29 is a summary of some example, traditional security systems and brief descriptions
of their method for protection.

Table 29. Summary of traditional security systems

System Method

Signature Scanner Search files for known malicious signatures. Low/High if
unknown

Static behaviour
analysis

Analysis executable functions for suspiciousness. High/Low

Dynamic behaviour
analysis

Emulates malicious software and observes behaviour. High/Low

Integrity checker Compare files against a cryptographically secure hash. Low/Low
If kept updated

Misuse detection Compare activity against known attacks. Low/High if unknown

Anomaly detection Compare activity against a nominal model. High/Low If kept
updated

Firewall Enforces access rules according. Low/low – will strictly enforce
rules as instructed but may be subverted

Review of cloud security countermeasures

Overwhelming efforts in the literature, both academic and industry, is dedicated to
addressing security challenges in cloud computing environments. This section aims to
interrogate some these works and later analyse them in subsequent subsections. The main
challenges for cloud security are discussed and analysed in a contributing publication (PR
2). The current author posits that multiple perspectives on security issues imply that
countermeasures are developed only for specific perspectives of security issues. A recent
example is the collation of user-data security and countermeasures survey by (Basu et al.,
2018).

Countermeasures in academia

A framework solution proposed by (Jabir et al., 2016) aims to achieve the following. First,
a penetration testing component that highlights vulnerabilities within a private cloud
infrastructure and an attack simulation component that attempts to discovers exploits for
identified vulnerabilities. Finally, through applying countermeasures, this framework can
proffer best practice protection mechanism.
(Singh, Jeong & Park, 2016) Comprehensively survey security issues affecting public and
private cloud computing entities and propose requirements for security management. A 3-
tier security architecture is encompassing the application, cloud-service middleware and
infrastructure layer proposed towards security mitigation. According to the authors,
focusing on the application level provides end-to-end security of data against client-end
scripting attacks such as XSS, network data security, API security and malicious programs
in general. Cloud-service middleware countermeasures against susceptibility to protocol
standards attacks such as Simple Mail Transfer Protocol (SMTP), Transmission Control

255

Protocol (TCP), Hyper T HTTP, Dynamic Host Control Protocol (DHCP) to name a few,
whose vulnerabilities are well-known. The authors suggest cryptographic solutions as well
as enhanced authentication between users and middleware. Also, they suggest a Cloud
Trust Protocol (CTP) between end-users and service providers (Singh, Jeong & Park,
2016).
Whereas the solutions proposed address the challenges identifies, they are limited to the
public cloud context. For instance, process and regulatory challenges concerns in the
perspective of outsourcing cloud services (Srinivasan et al., 2012) vary among different
cloud deployment models. Along the middleware solutions proposed above, (Lombardi &
Pietro, 2011) propose an Advanced Cloud Protection System (ACPS) for guest Virtual
Machine (VM) and middleware. Middleware represents a layer of data storage technologies,
including those in cloud computing which is generally prone to unauthorised access, DDoS
attacks and threats of malicious insiders (Farooq et al., 2015),. Their experimental results
offer some insights into future VM security in general and behavioural analysis in proactive
VM protection systems. By allowing host-based asynchronous monitoring, ACPS is said
to detect behaviour and performance on a guest VM while staying immune to timing
attacks (Lombardi & Pietro, 2011). However, the assumption of trust is a major concern,
since a compromised host will inadvertently or otherwise compromise the guest VM and
possibly the infrastructure.
The authors (Joshi, Vijayan & Joshi, 2012) propose Cloud Trace Back model (CTB) for
traffic detection and filtering against DDoS attacks using routing mechanisms. By
appending an extra tag, Cloud Trace Back Mark (CTM) on a packet header and propagate
with routing information, it possible to prevent an attack before it occurs. In the event of
an attack, with CTB handling service requests between the cloud infrastructure and its
peripherals, the CTB functionality can anticipate an attack before it traverses into the cloud
network. Additionally, the authors advance the possibility to reveal an attack source by
analysing the CTM tag. Theoretically, the CTB model achieves its design aim; however, it
a real cloud environment, CTM deployment in this form comes with some operational
challenges. One of such challenges is that it is quite possible for routing traffic in large
networks to grow exponentially and hence introduce undesired operational overheads. As
(Ahmed, Sadiq & Zolkipli, 2016) note in their paper, it is on its own often time-consuming
to locate the source of a distributed attack.
A survey by (Subashini & Kavitha, 2011) focuses on security issues in service delivery
models including PaaS, IaaS and SaaS. In their conclusion, the authors argue that security
issues arising from all aspects of the cloud require an integrated approach to securing the
cloud. The authors propose a dynamic and localised security model, which adapts to
different security environments allowing users to tailor their security requirements
(Subashini & Kavitha, 2011). Subashini & Kavitha’s notion of unpredictability is subsumed
to reduce the vulnerability factor. The notion of unpredictability is also posited by (Levitin
et al., 2012) who contrasts data security according to an attacker’s ability to steal or destroy
data.
While both notions perhaps encapsulate obfuscation and diversity as a solution, there are
two apparent limitations. Foremost, diversity and heterogeneity in cloud environments
mean that assert value and vulnerability factor vary from one application to another.
Besides, as a common security methodology, obfuscation motivates hackers to attack the
cloud (Subashini & Kavitha, 2011). As noted by (Auty, 2015), well-resourced attackers
such as nation-state actors can launch a persistent attack, and hence require a different
approach.
The authors; (Bendovschi, 2015) proposes security countermeasures to support business
and organisations in defence against attackers from an information security perspective.

256

According to the author,” external” countermeasures include risk awareness through
organisations such as Secure Domain Foundation. “Internal” countermeasures according
to these authors include continuous risk assessment, internal security posture including
patching and updates, authentication methods including biometrics, access control and
other security controls (preventative, detective and corrective).
In the works by (Bernsmed et al., 2011), the Security SLA Management for cloud
computing as a life cycle has the following key stages; publishing, negotiation,
commitment, provisioning, monitoring and termination. From the commitment stage, the
life-cycle approach ensures that iteration revisits a later stage. In typical cloud services with
several levels of abstraction, Security SLA Management enables SLA negotiations in
multiple levels (Rong, Nguyen & Jaatun, 2013a) including security, QoS, and others
mitigation aspects of the lock-in effect. Since SLA is a critical component for service
provision, this approach serves to address SLA-related challenges. However, the assurance
of service levels is a challenge considering ongoing security threats within cloud
computing. Most recently, (Carvalho et al., 2017) map several solutions to open SLA issues
in cloud computing.
Isolation measures on several levels mitigate risks and vulnerabilities associated with multi-
tenancy (Behl & Behl, 2012). First, they propose isolation of tenants’ data in IaaS (VMs,
storage, processing, memory, and access paths networks). Also, the authors propose
isolation of tenants’ data in PaaS API calls, Operating System (OS) level calls and running
services. These authors further propose isolation in SaaS tenants’ transactions on the same
instance and their respective data. In conclusion, the authors suggest relevant isolation
policies and security measures to be implemented by the CSP.
Along similar lines, (Rao & Selvamani, 2015) demonstrate that data segregation and
protection and data leakage protection, are some of the major data security challenges in
cloud computing environments. Heterogeneous data-centric security controls such as
encryption is argued as adequate measures to control the access of data. The authors
propose a data security model encompassing authentication, encryption, and integrity,
recovery and user protection. They suggest the integration of identity-based cryptography
and RSA Signature enhance data integrity. In addition, a network-based intrusion detection
system is suggested as adequate for real-time presentation of against threats. In the former
conception, there is limited detail on how to achieve isolation in each domain. Whereas
the latter provides greater details, a recent study by (Shi, Chen & Li, 2018) shows that
signature-based security is not suited to address complex multi-stage attacks whose
signatures are often unknown.
A trust framework is developed to enhance efficiency in capturing a generic set of
parameters required for establishing trust and manage evolving trust and
interaction/sharing requirements (Mell & Grance, 2011). The cloud’s policy integration
tasks should be able to address challenges such as semantic heterogeneity, secure
interoperability, and policy evolution management. Furthermore, customers’ behaviours
can evolve rapidly, thereby affecting established trust values. This suggests a need for an
integrated, trust-based, secure interoperation framework that helps establish, negotiate,
and maintain trust to adaptively support policy integration (Mell & Grance, 2011).
A Trusted Third Party (TTP) authored by (Demchenko et al., 2011) addresses trust in a
distributed system by allowing other TTP domains to span different geographical
locations. However, a point of contention in implementations of trust in the cloud using
TTP rests in inherent contradictions and interpretations of trust, from one perspective to
the next. For instance, some argue that trust relations between the server and the client
should be established dynamically (Demchenko et al., 2011). From a CC and CSP
perspective, trust relations are the acknowledgement of risk factor by the replying party

257

(Zissis & Lekkas, 2012). As the authors contend, trust is not a new research topic in
computer science, spanning areas as diverse as security and access control in computer
networks, reliability in distributed systems, game theory and agent systems, and policies
for decision making under uncertainty (Zissis & Lekkas, 2012). However, a shift from
traditionally managed infrastructures where security controls exist within contained
environments makes trust solutions in cloud computing contentious (Zissis & Lekkas,
2012).
The author is Ryan (2013) propose an incident-based solution to mitigate access to
customer data. The proposed solution relies on the assumption that good practice entails
a customer trusting the CPS and their employees, whereas legislation and contracts act as
deterrents for unlawful disclosure (Ryan, 2013). Ryan fosters a debate for fully
homomorphic encryption where in theory, a cloud customer maintains the privacy,
integrity and confidentiality of their data by encrypting it, while on the other hand, the
cloud service provider can perform processing operations on the same data but without
access to the data itself. However, this practice is not viable in the cloud, based upon the
mechanisms’ efficiency and viability limitations. Moreover, the notion that the technical
and service maturity of a CSP is an essential assurance that CSP will not disclose user
information is both debatable and an inadequate countermeasure.
(Mazur et al., 2011) Posit a three-pronged approach to managing security in the cloud. In
this conception, the authors argue cloud security as a balance between the potential impact
of cloud computing on the competitive business edge, and the evaluation of business-
critical security components. Whereas the authors view cloud security from a business
perspective, this approach not a generalisable approach for cloud security
countermeasures.
Furthermore, their classification lacks detail on which security solutions or techniques are
at each management level. According to the authors, a trusted monitor audits a cloud server
to provide proof of compliance with the data owner. The Integrity of the trusted monitor
is itself ensured by running in isolation, the monitor bootstrap along with the Operating
system and Applications. Additionally, the authors argue for the implementation of
cryptographic mechanisms such as homomorphic encryption, searchable encryption, that
allow CSP to process ciphertext. Although in theory, techniques (Mazur et al., 2011) ensure
integrity and compliance in computing, in practice, these techniques have so far proven to
be usable in the cloud.
Authors in (Mazur et al., 2011) posit a compelling argument for a self-monitoring defensive
mechanism; a contract of intelligent agents that collect data within the cloud, including
code execution. Also, they suggest computational intelligence that uses ontology-based
fusion engines for situational analysis and brokering, synonymous with how human breath
without consciously having to think through every breath (Mazur et al., 2011). The authors
posit the need for ontologies, not only as a useful tool for identifying malware, but also
individual components that perform specific functions. For instance, a generative ontology
for future malware signatures which will be useful in future detections using comparative
analysis. (Rao, J.R., Chari, S.N., Pendarakis, D., Sailer, R., Stoecklin, M.P., Teiken, W. and
Wespi, 2016) It is Security 3600, is an operational model developed to protect services,
enterprise and data in cloud computing environments. Through passive monitoring of
network traffic and near-field monitoring of disk images, VMs and the hypervisor, Security
3600 can provide comprehensive end-to-end contextual view of the security of an
enterprise.
(Sabahi, 2011) Proposes formal procedures to mitigate cloud security challenges.
According to the authors, since traditional mechanisms need to be changed to work
efficiently in the cloud, solutions should be viewed in terms of access control and incident

258

response. However, the proposals presented here require deeper details as some aspects
remain arguable. For instance, access control in a SaaS model is restricted to their software
as the customer is only responsible for managing how they authenticate to the cloud service
and what level privilege. In the PaaS where the CSP retains control to the network, server
and applications, Sabahi argues that the cloud customer retains and manages access rights
to the applications they run. Likewise, in the IaaS scenario, the cloud customer is
responsible for access control management of the virtual platforms they run, including
virtual servers, virtual network and virtual storage (Sabahi, 2011).
(Bays et al., 2015) Whose work investigated countermeasures in virtual networks observe
an unbalanced correlation between security threats and security countermeasures in the
available literature. For instance, the authors note disruption and disclosure (both security
threats) and availability and confidentiality (both security countermeasures) as dominant
across most of the literature. The author also notes that across the literature, most
publications propose a single countermeasure for a single threat (Bays et al., 2015). Is also
clear as demonstrated in these authors’ finding, that no publication addressed the issue of
nonrepudiation. Nonrepudiation is an indispensable component for user behaviour
credibility attribution in the forensic investigation process. As alluded to by (Tian et al.,
2019), nonrepudiation is particularly critical for cloud storage scenarios where verification
of the integrity of logs files before the investigation is important. The table below
summarises the distribution of countermeasures according to these authors. In the
following section, the review of industry countermeasures follow criteria set out by (Cser,
2016); restricted to leading vendors dominating cloud security world markets.

Countermeasures in industry

CloudLock (CloudLock, 2015b) is lauded as the only complete security platform capable
of protecting assets within the cloud. Content monitoring service employs heuristic
algorithms to monitor and determine the sensitivity of data across SaaS, PaaS and IaaS
environments. Behaviour analytics detects anomalies in user activity and usage, based on
thresholds prescribed in centralised policies. In addition, CloudLock uses a policy
automation service for classifying data based on its unique attributes, automated
notifications, and remediation management capabilities to end-users. Central auditing
provides evidence for compliance with internal policies, by recording an audit trail of all
actions. In addition, CloudLock uses a central incident management service to investigate,
prioritise, and “track to closure” security incidents. To leverage AES-256 encryption and
key management, CloudLock argues that automating encryption will enable users to secure
their sensitive data effectively.
On the other hand, they posit their security analytics service to leverage security
compliance with both internal and external auditors. Two clear limitations with CloudLock
are centred on its centralised nature. (Moradi, 2016) Shows that centralised management
introduces a single point of failure and fails to scale in distributed systems. In additions,
like traditional systems, CloudLock’s firewall systems only discover and controls security
risk in deployed black and whitelists which require knowledge of the risk before
deployment. Uncertainty due to the sophistication of attacks limits the amount of
knowledge about an attacker, countermeasures possess.
Blue Coat’s Cloud Data Protection Gateway (Bluecoat, 2015b) protects data in transit, data
at rest and data in use. According to Blue Coat, their solution support searching, sorting,
or reporting of strongly encrypted or tokenised data. Protecting data in transit is aimed at
mitigating eavesdropping by third parties. Cryptographic methods such as Secure Socket
Layer (SSL) and Transport Layer Security (TLS) are some common techniques

259

implemented to protect data in transit. Protecting data at rest on the other end is about
preventing the access of persistent data, ensuring that data maintains the same form or
format, as a file or in a database. Blue Coat argue the Heartbleed vulnerability in which
usernames and passwords were leaked through exploiting vulnerabilities in OpenSSL
necessitates the need to protect data being processed in memory. Elastica CloudSOC (Blue
Coat and Symantec, 2015) produced by Blue Coat and Symantec to audit, detect, protect,
and investigate security incidents in cloud environments. According to Blue Coat, their
audit module facilitates the evaluation of cloud services adopted by an organisation,
identifying the types of devices they are accessed with, as well as their business readiness.
In addition, they posit their detection module to utilise machine learning and data science
to detect threats, activities, and users within an organisation’s cloud network. The
investigation module is useful after an incident occurs, ensuring that cloud-based data is
available and accessible for an organisation’s requirements analysis, including legal,
compliance, and human resources.
Microsoft’s Cloud App Security (Microsoft Mobility Management, 2016) ensures that
cloud users can maintain visibility, control, and protection of their cloud application data.
According to Microsoft, this is primarily due to the failure by traditional security solutions
such as firewalls and intrusion prevention systems (IPSs), “do not offer visibility into
transactions that are unique to each application, and traffic off-premises”. Thus, Microsoft
Cloud App Security is aimed for SaaS offerings to enhance auditing, visibility, and the
amount of control CC have on-premises, to cloud applications. Microsoft Cloud Apps
security is argued to provide risk scoring and assessment of all identified applications
within a CC network, including all devices. In addition to network and device discovery,
this solution provides granular controls and policies for data sharing. Finally, Cloud App
Security’s threat protection component adds intelligence using machine-learning
techniques to identify high-risk security incidents and abnormal behaviour detection.
IBM’s security paradigm, developed in response to the changing security threat domain,
including botnets, advanced persistent threats and polymorphic malware (Gulla, 2011b).
In their work, IBM postulates the notion of a quick response as critical in dealing with data
breaches in the cloud. IBM’s security paradigm consists of the following: Fine-grain
contextual security, provenance: Honey pot.
Alert Logic’s response plan is premised on a case study of Shellshock vulnerability in 2014,
culminated into the development of their 6-step approach. According to Alert Logic, their
outline is a template for a vulnerability response action plan (Alert Logic, 2015, 2016).
Comprehension: Exposure: Communication: Security Content Creation: Patching:
Lessons Learned: BitGlass (Bitglass, 2014b) argues their solution to provide end-to-end
security for any device on the cloud network, through access controls, limit sharing, and
to mitigate data leakage. The authors suggest that a single-pane view of applications in the
network, enables organisations to gain instant visibility over their cloud data (data at rest),
detect abnormal user and usage behaviours, and can anticipate emerging threats. Using a
cloud DLP engine, BitGlass protects data in transit using watermarking, DRM, and
blocking techniques, as well as create custom security policies. BitGlass suggest it is
possible to identify managed and unmanaged devices, and limit device access based on
contextual information, e.g. location, device type and network.
According to Citrix’s white paper (Citrix, 2015), their product is highly scalable and
designed to mitigate against traditional and modern DoS attacks, and application-layer
attacks on web properties. Citrix postulates that solutions should prioritise establishing
how well resourced (organisation, funding) an adversary is, as opposed to the exploit they
are going to use. Citrix® NetScaler Application Delivering Control (ADC) exhibits
important capabilities that ensure security in web applications on at least two fronts. On

260

one end, load balancing algorithms that dynamically route traffic during outages or failures
ensure the availability of services. Additionally, health monitoring components proactively
monitor services for efficient operation and performance. According to the authors,
NetScaler is a useful disaster recovery tool; Global Server Load Balancing (GSLB) ensures
availability of services by routing traffic to other datacentres during a disaster. On the other
end, a combination of a reactive firewall (NetScaler App Firewall), protocol defences, and
NetScaler’s compliance with other third-party products such as the Payment Card Industry
Data Security Standard (PCI- DSS) prevents application-layer threats.
CA Technologies’ automated identity management lifecycle ensures efficient management
of identities throughout their lifecycle, including policy and identity auditing thereby
supporting compliance concerns (’Amiri, 2009). By logically layering and separating
components, CA’s lifecycle ensures effective disaster recovery and high availability.
Furthermore, Advanced Encryption Standard (AES), Federal Information Processing
Standard (FIPS) 140-2, and information standard protocols such as HTTPS and LDAPS,
ensure that data is secured in accordance to industry-standard best practices. Additionally,
correlation capabilities with real-world data improve security visibility.
The Data Loss Prevention component utilises data mining tools to optimise policy creation
through the effective classification of data at rest. Similarly, McAfee Email and Web
Protection enable bidirectional protection against inbound threats, data loss prevention in
emails, and secure communication for web application through proactive reputation and
intent-based protection.

Appendix C – Pi-CCSF simulator code
1. import random
2. import math
3. from operator import add
4. import matplotlib.pyplot as plt
5. from creation_default_variables import *
6. import copy
7. import csv
8.
9. random.seed(101);
10. #_actionsI = [random.randint(1,NbrAction) for i in range(Timestamp)]
11. class Static_simulation:
12. def __init__(self, Timestamp, Nbr_VM, actionsI= None, NbrAction=5):
13. # print("The timestamp is of: "+ str(Timestamp))
14. # print("The Nbr_VM is of: "+ str(Nbr_VM))
15. self._V_VMs = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
16. self._A_VMs = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
17. self._S_VMs = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
18. self._C_VMs = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
19. self._A_eval = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
20. self._C_eval = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
21. self._phis = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
22. ##### Creation of the vectors to store random values ######
23. self._alphas = [[-100 for i in range(Timestamp)] for i in range(Nbr_VM)]
24. self._Betas = [random.uniform(-1, 1) for i in range(Nbr_VM)]
25. self._Gammas = [random.uniform(-1, 1) for i in range(Nbr_VM)]
26. self._Ethas = [random.uniform(-1, 1) for i in range(Nbr_VM)]
27. if actionsI == None:
28. self._actionsI = [random.randint(1,NbrAction) for i in range(Timestamp)]
29. else:
30. self._actionsI = actionsI
31. self._actions = [[random.randint(1,NbrAction) for i in range(Timestamp)] for i in range(Nbr_VM)]
32. self._Memory = None
33. self._Timestamp = Timestamp
34. self._Nbr_VM = Nbr_VM
35. self._NbrActions = NbrAction
36. # initialise the first value for each VM

261

37. for i in range(Nbr_VM):
38. invalid = True
39. while invalid:
40. # First value generated randomly
41. self._V_VMs[i][0] = random.uniform(0, 1);
42. self._A_VMs[i][0] = random.uniform(0, 1);
43. # print(self._V_VMs[i][0])
44. # print(self._A_VMs[i][0])
45. # print(self._phis[i][0])
46. self._phis[i][0] = self._V_VMs[i][0]+ self._A_VMs[i][0];
47. self._alphas[i][0] = self._V_VMs[i][0]+self._A_VMs[i][0]
48. # print(1- alphas[i][0])
49. # To simplify the equation : C_VM[0] =0
50. self._S_VMs[i][0] = 1 - self._alphas[i][0];
51. self._C_VMs[i][0] = 0;
52. if self._S_VMs[i][0]>0:
53. invalid = False
54. def get_Access_VM_Value(self, VM_id):
55.

return(self._Betas[VM_id],self._Gammas[VM_id], self._Ethas[VM_id], self._V_VMs[VM_id], self._A_VMs[
VM_id], self._C_VMs[VM_id], self._S_VMs[VM_id], self._alphas[VM_id])

56. def replaceNAN(self, list, time_id):
57. max_id = len(list)
58. if (time_id>0 and time_id< max_id):
59. if list[time_id] < 0:
60. list[time_id] = 0
61. if time_id+1 < max_id:
62. list[time_id+1] = 0
63. else:
64. if list[time_id] > 1:
65. list[time_id] = 1
66. if time_id+1 < max_id:
67. list[time_id+1] = 1
68. def V_VM_AVM_iteration(self, time_indice, VM_id):
69.

current_Beta, current_Gamma, current_Etha, V_VM, A_VM, C_VM, S_VM, alpha = self.get_Access_VM_
Value(VM_id)

70.
V_VM[time_indice+1] = V_VM[time_indice] - current_Beta*V_VM[time_indice]*A_VM[time_indice] + cur
rent_Gamma*A_VM[time_indice]

71.
A_VM[time_indice+1] = A_VM[time_indice] + current_Beta*V_VM[time_indice]*A_VM[time_indice] - cur
rent_Gamma*A_VM[time_indice]

72. self.replaceNAN(V_VM,time_indice)
73. # print("A_VM:")
74. self.replaceNAN(A_VM,time_indice)
75. alpha[time_indice+1] = V_VM[time_indice+1] + A_VM[time_indice+1]
76. self._phis[VM_id][time_indice] = self._V_VMs[VM_id][time_indice]+self._A_VMs[VM_id][time_indice];
77.

self._A_eval[VM_id][time_indice] = current_Beta*(self._phis[VM_id][time_indice] - self._A_VMs[VM_id][ti
me_indice])*self._A_VMs[VM_id][time_indice] - current_Gamma*self._A_VMs[VM_id][time_indice]

78.
self._C_eval[VM_id][time_indice] = self._actions[VM_id][time_indice] *((1 - self._phis[VM_id][time_indice]
- self._C_VMs[VM_id][time_indice]) *self._A_VMs[VM_id][time_indice])/self._actionsI[time_indice] - curr
ent_Etha*self._C_VMs[VM_id][time_indice]

79. def S_VM C_VM_iteration(self, time_indice, VM_id):
80.

current_Beta, current_Gamma, current_Etha, V_VM, A_VM, C_VM, S_VM, alpha = self.get_Access_VM_
Value(VM_id)

81. #Si the VM attack is dead
82. if V_VM[time_indice] <= 0:
83. S_VM[time_indice+1] = 0
84. S_VM[time_indice] = 0
85. else:
86. if V_VM[time_indice] == 1:
87. S_VM[time_indice+1] =1
88. S_VM[time_indice] = 1

262

89. else:
90.

S_VM[time_indice+1] = S_VM[time_indice] - (alpha[time_indice]*S_VM[time_indice]*A_VM[time_indice])
/self._actionsI[time_indice] + current_Etha*C_VM[time_indice]

91. #If the Attacking VM is shutting down
92. if A_VM[time_indice] <= 0:
93. C_VM[time_indice+1] =0
94. C_VM[time_indice] =0
95. else:
96. if A_VM[time_indice] == 1:
97. C_VM[time_indice+1] = 1
98. C_VM[time_indice] = 1
99. else:
100.

C_VM[time_indice+1] = C_VM[time_indice] + (alpha[time_indice]*S_VM[time_indice]*A_VM[time_indice
])/self._actionsI[time_indice] - current_Etha*C_VM[time_indice]

101. self.replaceNAN(S_VM, time_indice)
102. self.replaceNAN(C_VM, time_indice)
103. def one_iteration_WithMem(self, time_indice, VM_id):
104. self.V_VM A_VM_iteration(time_indice, VM_id)
105. if self._V_VMs[VM_id][time_indice-1] >0: #If the VM was alive
106. # print(time_indice)
107. if time_indice >= int(self._Memory._nbrAtomicAction-

2):# If I have performed enough action to saved in memory
108. # print("here")
109. #Get the last actions to compute the key in memory
110. lastActionKey = []
111. for a in range(self._Memory._nbrAtomicAction-1):
112. actionNb = self._Memory._nbrAtomicAction - a
113. lastActionKey.append(self._actions[VM_id][time_indice-actionNb])
114. # get the best action if exist, random value in another case
115. lastActionKey = tuple(lastActionKey)
116. newAction = self._Memory.getBestAction(lastActionKey)
117. lastActionKey= list(lastActionKey)
118. lastActionKey.append(newAction)
119. lastActionKey = tuple(lastActionKey)
120.

newGain = self._V_VMs[VM_id][time_indice+1] - self._V_VMs[VM_id][time_indice- (self._Memory._nbrA
tomicAction-2)]

121. if lastActionKey in self._Memory._Memory.keys():
122. # if the action is known, add the score
123.

self._Memory._Memory[lastActionKey] = (self._Memory._Memory[lastActionKey][0]+newGain, self._Mem
ory._Memory[lastActionKey][1]+1)

124. else: # otherwise, add the new key
125. self._Memory._Memory[lastActionKey] = (newGain, 1)
126. # print("action added")
127. self.SVM_CVM_iteration(time_indice, VM_id)
128. def one_iteration_WithoutMem(self, time_indice, VM_id):
129. self.VVM_AVM_iteration(time_indice, VM_id)
130. self.SVM_CVM_iteration(time_indice, VM_id)
131. def run_simulation(self):
132. return (self.run_simulationFromInit())
133. def run_simulationFromInit(self):
134. #### compute VM evolution with memory access
135. for time_indice in range(self._Timestamp-1): #Delay_betweens_share,
136. #print(time_indice)
137. for VM_id in range(self._Nbr_VM):
138. #print(self._Memory)
139. if(self._Memory != None):
140. if(self._Memory._nbrAtomicAction > 0):
141. #print("use memory")
142. self.one_iteration_WithMem(time_indice, VM_id)
143. #self._Memory.savedIn("test.json")
144. else:
145. self.one_iteration_WithoutMem(time_indice, VM_id)
146. def run_BestResult(self):

263

147. for VM_id in range(self._Nbr_VM):
148. self._actions[VM_id] = self._actionsI
149. for time_indice in range(self._Timestamp-1):
150. self.one_iteration_WithoutMem(time_indice, VM_id)
151. def setMemory(self, Memory):
152. self._Memory = Memory

Model memory.py

1. import json
2. import random
3. class Memory:
4. def __init__(self, path="", nbrSaved=3, nbrActions = 5):
5. self._Memory = {}
6. self._nbrAtomicAction = nbrSaved
7. self._nbrActions = nbrActions
8. if path != "":
9. with open(path) as currentFile:
10. data = json.load(currentFile)
11. currentFile.close()
12. for key in data.keys():
13. newkey = copy.deepcopy(key)
14. newkey = newkey.replace('(', '').replace(')', '')
15. if len(newkey)>= 3:
16. newkey = newkey.split(",")
17. newkey = list(map(int,newkey))
18. else:
19. newkey = newkey.replace(",", "")
20. newkey = [int(newkey)]
21. self._Memory[tuple(newkey)] = tuple([sum(data[key]) , len(data[key])])
22. def savedIn(self, filename):
23. with open(filename, 'w') as file:
24. file.write("{ \"nbrActionsSaved\": \" "+str(self._nbrAtomicAction)+"\",\n\"Data\": ")
25. file.write(json.dumps({str(k): str(v) for k, v in self._Memory.items()}))
26. file.write("}")
27. file.close()
28. def chargeMemory(self, filename):
29. #print("charge file TTOTO")
30. with open(filename) as currentFile:
31. data = json.loads(currentFile.read())
32. #print("after open the file")
33. #self._nbrSaved = int(data['nbrActionsSaved'])
34. for key in data['Data']:
35. value = data['Data'][key]
36. key = key[1:-1]
37. key= key.replace(' ', '')
38. key = key.split(',')
39. if(self._nbrAtomicAction == 1):
40. key = int(key[0])
41. else:
42. #key.split(',')
43. for elem in key:
44. if type(elem) == int:
45. #print(elem)
46. elem = int(elem)
47. key = tuple(key)
48. value = value.replace('(', '').replace(')', '')
49. value = value.split(",")
50. #print("key : "+str(key))
51. #print("value : "+str(value))
52. self._Memory[key] = tuple([float(value[0]) , int(value[1])])
53. currentFile.close()
54. def getMoyOf(self, key):
55. return(self._Memory[key][0]/self._Memory[key][1])
56. def getBestAction(self, pastActions):
57. listActions = list(self._Memory.keys())

264

58. nextList = []
59. for i in range(len(pastActions)):
60. for j in range(len(listActions)):
61. if pastActions[i] == listActions[j][i]:
62. nextList.append(listActions[j])
63. listActions = nextList
64. nextList = []
65. if len(listActions)< self._nbrActions:
66. return random.randint(1,self._nbrActions)
67. bestScore = self.getMoyOf(listActions[0])
68. bestAction = listActions[0][-1]
69. for key in listActions:
70. newScore = self.getMoyOf(key)
71. if bestScore < newScore:
72. bestScore = newScore
73. bestAction = key[-1]
74. if bestScore > 0:
75. return bestAction
76. else:
77. return random.randint(1,self._nbrActions)

Controller.py

1. import copy
2. from matplotlib import rcParams
3. import os, os.path
4. from model_Memory import Memory
5. from model_StandardSimulation import Static_simulation
6. import matplotlib.pyplot as plt
7.
8. rcParams['font.family'] = 'Palatino Linotype'
9. choiceDone = False
10. def generate_memory(numberWishVM, Timestamp, Nbr_VM, NbrAction, TimeRaisedSearch, rateVitalityW

ished, NbrAction_historic):
11. counter = 0
12. memory = Memory(nbrSaved=NbrAction_historic)
13. Actions_saved = {}
14. while counter < numberWishVM:
15. simulation = Static_simulation(Timestamp, Nbr_VM)
16. simulation.run_simulation()
17. V_VMs = simulation._V_VMs
18. S_VMs = simulation._S_VMs
19. actions = simulation._actions
20. # Search in the Vulnerable VMs the one with the the hiest survivability
21. indice_VM =0
22. # 1. for each Vulnerable VM
23. while indice_VM < (len(V_VMs)) and counter< numberWishVM:
24. #print(NbrAction_historic)
25. #If the VM survived and nbr actions to save >0
26. if V_VMs[indice_VM][-1] >0 and NbrAction_historic>0 :
27. #If at a time, her vitaliy raise rapidly
28. raiseSpeed = False
29. t= NbrAction_historic
30. while (not raiseSpeed) and (t<Timestamp):
31. if (S_VMs[indice_VM][t] - S_VMs[indice_VM][t-NbrAction_historic]) > rateVitalityWished:
32. #saved the actions performed
33. key = []
34. for i in range(TimeRaisedSearch):
35. key.append(actions[indice_VM][t-(TimeRaisedSearch-i)])
36. key = tuple(key)
37. value = (S_VMs[indice_VM][t] - S_VMs[indice_VM][t-NbrAction_historic])
38. # print(str(S_VMs_saved[indice][t])+" - "+str(S_VMs_saved[indice][t-

TimeRaisedSearch])+" = "+str(value))
39. if key not in Actions_saved.keys():
40. memory._Memory[key] = (value, 1)
41. else:

265

42. memory._Memory[key] = (memory._Memory[key][0]+ value, memory._Memory[key][1]+1)
43. #count in result
44. raiseSpeed= True
45. counter+=1
46. t+=1
47. indice_VM+=1
48. return memory
49. def summariseResult(Simulation, evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, e

volution_moyVitalityA):
50. nbrSurvivedV = sum([1 for i in range(Simulation._Nbr_VM) if Simulation._V_VMs[i][-

1]>0])/Simulation._Nbr_VM
51. nbrSurvived = sum([1 for i in range(Simulation._Nbr_VM) if Simulation._A_VMs[i][-

1]>0])/Simulation._Nbr_VM
52. moySurvivabilityV = sum([Simulation._V_VMs[i][-

1] for i in range(Simulation._Nbr_VM)])/Simulation._Nbr_VM
53. moySurvivabilityA = sum([Simulation._A_VMs[i][-

1] for i in range(Simulation._Nbr_VM)])/Simulation._Nbr_VM
54. evolution_nbrSurviveV.append(nbrSurvivedV)
55. evolution_nbrSurviveA.append(nbrSurvivedA)
56. evolution_moyVitalityV.append(moySurvivabilityV)
57. evolution_moyVitalityA.append(moySurvivabilityA)
58. def saving(currentplot, prefix):
59. directory = "./img"
60. try:
61. os.makedirs(directory)
62. except FileExistsError:
63. pass
64.

nbr_file_in_directory = len([name for name in os.listdir(directory) if os.path.isfile(os.path.join(directory, nam
e))])

65. plt.savefig("./img/"+prefix+str(nbr_file_in_directory)+".png")
66. def plotSummaryOne(evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evolution_

moyVitalityA, nameFile, champValue):
67. fig1, axes = plt.subplots(nrows = 2, ncols=2)
68. plt.figure(figsize=(800/96, 800/96), dpi=96)
69. ax1 = plt.subplot(2, 1, 1)
70. ax1.plot(evolution_nbrSurviveV, color='b', label=champValue[4])
71. ax1.plot(evolution_nbrSurviveA, color='r', label=champValue[5])
72. ax1.legend(loc="upper right")
73. ax1.set_title(champValue[0])
74. plt.xlabel(champValue[1])
75. plt.ylabel(champValue[2])
76. ax2 = plt.subplot(2, 1, 2)
77. ax2.plot(evolution_moyVitalityV, color='b', label=champValue[4])
78. ax2.plot(evolution_moyVitalityA, color='r', label=champValue[5])
79. ax2.legend(loc="upper right")
80. plt.ylabel(champValue[3])
81. saveimg(plt, nameFile)
82. #plt.show()
83.

def plotSummaryOneliner(evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evoluti
on_moyVitalityA, nameFile, champValue):

84. evolution_nbrSurviveV2 = []
85. evolution_nbrSurviveA2 = []
86. evolution_moyVitalityV2 = []
87. evolution_moyVitalityA2 = []
88. for i in range(len(evolution_nbrSurviveV)//100):
89.
90. print(evolution_nbrSurviveV2)
91.

plotSumaryOne(evolution_nbrSurviveV2, evolution_nbrSurviveA2, evolution_moyVitalityV2, evolution_mo
yVitalityA2, nameFile, champValue)

92. def plotSummaryTwo(evolution_nbrSurviveV,evolution_nbrSurviveV2, evolution_nbrSurviveA,evolution_n
brSurviveA2, evolution_moyVitalityV,evolution_moyVitalityV2, evolution_moyVitalityA, evolution_moyVita
lityA2, nameFile, champValue):

93. fig1, axes = plt.subplots(nrows = 2, ncols=2)
94. plt.figure(figsize=(800/96, 800/96), dpi=96)

266

95. ax1 = plt.subplot(2, 1, 1)
96. ax1.plot(evolution_nbrSurviveV, color='b', label=champValue[1][5])
97. ax1.plot(evolution_nbrSurviveV2, color='k', label= champValue[2][5])
98. ax1.plot(evolution_nbrSurviveA, color='r', label=champValue[1][6])
99. ax1.plot(evolution_nbrSurviveA2, color='m', label=champValue[2][6])
100. ax1.legend(loc="upper right")
101. ax1.set_title(champValue[0])
102. plt.xlabel(champValue[1][1])
103. plt.ylabel(champValue[1][2])
104. ax2 = plt.subplot(2, 1, 2)
105. ax2.plot(evolution_moyVitalityV, color='b', label=champValue[1][5])
106. ax2.plot(evolution_moyVitalityV2, color='k', label=champValue[2][5])
107. ax2.plot(evolution_moyVitalityA, color='r', label=champValue[1][6])
108. ax2.plot(evolution_moyVitalityA2, color='m', label=champValue[2][6])
109. ax2.legend(loc="upper right")
110. plt.xlabel(champValue[2][1])
111. plt.ylabel(champValue[1][3])
112. saveimg(plt, nameFile)
113. #plt.show()
114.
115. def plotSumaryTwoliner(evolution_nbrSurviveV,evolution_nbrSurviveV2, evolution_nbrSurviveA,evolution

_nbrSurviveA2, evolution_moyVitalityV,evolution_moyVitalityV2, evolution_moyVitalityA, evolution_moy
VitalityA2, nameFile, champValue):

116. evolution_nbrSurviveV_2 = []
117. evolution_nbrSurviveA_2 = []
118. evolution_moyVitalityV_2 = []
119. evolution_moyVitalityA_2 = []
120. evolution_nbrSurviveV2_2 = []
121. evolution_nbrSurviveA2_2 = []
122. evolution_moyVitalityV2_2 = []
123. evolution_moyVitalityA2_2 = []
124. for i in range(len(evolution_nbrSurviveV)//100):
125.
126. def run(valueInt, Timestamp, NbrTimestamp, Nbr_VM, NbrAction, NbrAction_historic, Delay_betweens_s

hare,numberWishVM,rateVitalityWished, nameMemoryFile,nameMemoryFile2):
127. from model_Memory import Memory
128. #print("-----------------")
129. if valueInt == 1:
130. #print("Begin running simulation")
131. evolution_nbrSurviveV = []
132. evolution_nbrSurviveA = []
133. evolution_moyVitalityV = []
134. evolution_moyVitalityA = []
135. memory= Memory(nbrSaved = NbrAction_historic)
136. # print("The NbrTimestamp is of: "+ str(NbrTimestamp))
137. # print("The timestamp is of: "+ str(Timestamp))
138. # print("The Nbr_VM is of: "+ str(Nbr_VM))
139. try:
140. #print("try begin")
141. memory.chargeMemory(nameMemoryFile)
142. #print("after charge")
143. #print("truc: \n"+str(memory._Memory))
144. except:
145. pass
146. for i in range(NbrTimestamp):
147. Simulation = Static_simulation(Timestamp=Timestamp, Nbr_VM=Nbr_VM)
148. Simulation._Memory = memory
149. Simulation.run_simulation()
150. summariseResult(Simulation, evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evol

ution_moyVitalityA)
151. plotSumaryOne(evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evolution_moyVit

alityA)
152. #print("Ending running simulation")
153. else:
154. if valueInt == 2:
155. #print("Begin generate memory")

267

156.
memory = generate_memory(numberWishVM, Timestamp, Nbr_VM, NbrAction, NbrAction_historic, rate
VitalityWished, NbrAction_historic)

157. memory.savedIn(nameMemoryFile)
158. #print("Memory saved")
159. else:
160. #print("begin comparing simulation")
161. evolution_nbrSurviveV = []
162. evolution_nbrSurviveA = []
163. evolution_moyVitalityV = []
164. evolution_moyVitalityA = []
165. evolution_nbrSurviveV2 = []
166. evolution_nbrSurviveA2 = []
167. evolution_moyVitalityV2 = []
168. evolution_moyVitalityA2 = []
169. memory = Memory(nbrSaved= NbrAction_historic)
170. try:
171. #print(nameMemoryFile)
172. Memory = chargeMemory(nameMemoryFile)
173. except:
174. pass
175. Memory2 = Memory(nbrSaved=NbrAction_historic)
176. try:
177. Memory2 = chargeMemory(nameMemoryFile2)
178. except:
179. pass
180. # print(NbrAction_historic)
181. # print(NbrAction_historic2)
182. for i in range(NbrTimestamp):
183. #print("'''''''''''''''''''''''''''")
184. memory = Memory(nbrSaved= NbrAction)
185. Simulation = Static_simulation(Timestamp, Nbr_VM)
186. Simulation.setMemory(memory)
187. Simulation2 = copy.deepcopy(Simulation)
188. # run_simulationFromInit(Timestamp,Nbr_VM, NbrAction, NbrAction_historic, Memory, V_VMs,A_VMs

,S_VMs, C_VMs,alphas,Betas, Gammas, Ethas, actions)
189. Simulation.run_simulationFromInit()
190. Simulation2.run_simulationFromInit()
191.

summariseResult(Simulation, evolution_nbrSurviveV, evolution_nbrSurviveA, evolution_moyVitalityV, evol
ution_moyVitalityA)

192.
sumerizeResult(Simulation2, evolution_nbrSurviveV2, evolution_nbrSurviveA2, evolution_moyVitalityV2, ev
olution_moyVitalityA2)

193. #print(Simulation._actions == Simulation._actions)
194.

plotSumaryTwo(evolution_nbrSurviveV,evolution_nbrSurviveV2, evolution_nbrSurviveA,evolution_nbrSur
viveA2, evolution_moyVitalityV,evolution_moyVitalityV2, evolution_moyVitalityA, evolution_moyVitalityA
2)

195. #print("ending comparing simulation")

Default variables

1. import json
2. from pprint import pprint
3. # get the default variables from the files
4. with open('default_variable.json') as file:
5. data = json.load(file)
6. file.close()
7. Timestamp = data['timestamp']
8. Nbr_timestamp = data['Nbr_timestamp']
9. Nbr_VM = data['Nbr_VM']
10. NbrAction = data['NbrAction']
11. NbrAction_historic= data['NbrAction_historic']
12. NbrAction_historic2 = data['NbrAction_historic2']
13. Delay_betweens_share = data['Delay_betweens_share']

268

14. numberWishVM = data['Nbr_VM_For_Memory']
15. rateVitalityWished = data['Min_Vitality_raised']
16. Memory_fileName = data['Memory_fileName']
17. Memory_fileName2 = data['Memory_fileName2']

Appendix D - Simulation results

Table 30. Sample results for Group 7 -VM 491 and group 0 -VM 67

group 7 gen491 group 0 generation 67

V_VM A_VM C_VM S_VM V_VM A_VM C_VM S_VM

0.001 0.995 0.000 0.003 0.025 0.384 0.000 0.590

0.853 0.144 0.002 0.002 0.366 0.044 0.093 0.497

0.968 0.029 0.002 0.001 0.408 0.002 0.009 0.582

0.991 0.006 0.002 0.001 0.410 0.000 0.000 0.590

0.996 0.001 0.002 0.001 0.410 0.000 0.000 0.590

0.997 0.000 0.003 0.001 0.410 0.000 0.000 0.590

0.997 0.000 0.003 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.003 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.004 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.004 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.005 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.005 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.006 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.006 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.007 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.008 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.009 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.010 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.011 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.013 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.014 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.016 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.018 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.020 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.022 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.025 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.028 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.031 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.034 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.039 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.043 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.048 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.054 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.060 0.000 0.410 0.000 0.000 0.590

269

0.997 0.000 0.068 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.076 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.085 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.095 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.106 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.119 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.133 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.148 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.166 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.186 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.208 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.291 0.000 0.410 0.000 0.000 0.590

0.997 0.000 0.326 0.000 0.410 0.000 0.000 0.590

Table 31. Sample results for best Action synthesis

Attacki
ng
VMs

0.3
34

0.3
21

0.3
57

0.3
89

0.4
14

0.4
32

0.4
45

0.4
54

0.4
60

0.4
65

0.4
69

0.4
72

0.4
74

0.4
81

0.4
83

0.4
84

0.4
85

0.4
85

0.4
86

Corrup
ted
VMs

0.0
00

0.0
13

0.0
20

0.0
40

0.0
49

0.0
63

0.0
86

0.1
11

0.1
33

0.1
52

0.1
68

0.1
81

0.1
93

0.2
18

0.2
23

0.2
25

0.2
28

0.2
30

0.2
32

Surviva
l VMs

0.3
35

0.3
22

0.3
16

0.2
95

0.2
87

0.2
79

0.2
71

0.2
64

0.2
58

0.2
53

0.2
49

0.2
46

0.2
42

0.2
35

0.2
33

0.2
34

0.2
33

0.2
33

0.2
32

Vulner
able
VMs

0.3
31

0.3
64

0.3
57

0.3
48

0.3
43

0.3
39

0.3
36

0.3
34

0.3
33

0.3
32

0.3
31

0.3
30

0.3
30

0.3
29

0.3
28

0.3
28

0.3
28

0.3
28

0.3
28

Attacki
ng
VMs

0.3
33

0.3
22

0.3
58

0.3
91

0.4
14

0.4
30

0.4
42

0.4
50

0.4
56

0.4
60

0.4
64

0.4
67

0.4
69

0.4
76

0.4
77

0.4
78

0.4
78

0.4
79

0.4
80

Corrup
ted
VMs

0.0
00

0.0
20

0.0
31

0.0
41

0.0
56

0.0
74

0.0
98

0.1
23

0.1
47

0.1
65

0.1
80

0.1
92

0.2
02

0.2
26

0.2
30

0.2
34

0.2
37

0.2
39

0.2
42

Surviva
l VMs

0.3
31

0.3
12

0.3
01

0.2
91

0.2
79

0.2
70

0.2
62

0.2
55

0.2
48

0.2
44

0.2
40

0.2
37

0.2
34

0.2
28

0.2
27

0.2
26

0.2
25

0.2
25

0.2
24

Vulner
able
VMs

0.3
36

0.3
68

0.3
59

0.3
52

0.3
47

0.3
43

0.3
41

0.3
40

0.3
38

0.3
38

0.3
37

0.3
36

0.3
36

0.3
35

0.3
35

0.3
35

0.3
35

0.3
35

0.3
34

Attacki
ng
VMs

100
0

958 924 916 914 914 914 914 914 914 914 914 914 914 914 914 914 914 914

Corrup
ted
VMs

0 100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

100
0

Surviva
l VMs

100
0

100
0

100
0

992 961 928 895 870 852 834 822 813 804 781 778 776 773 771 770

Vulner
able
VMs

100
0

845 746 684 645 619 600 588 581 573 568 564 560 550 549 548 547 546 545

Attacki
ng
VMs

100
0.0
00

955
.90
0

923
.60
0

916
.40
0

914
.90
0

914
.70
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

914
.60
0

Corrup
ted
VMs

0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

100
0.0
00

Surviva
l VMs

100
0.0
00

100
0.0
00

996
.20
0

981
.40
0

950
.60
0

915
.90
0

886
.50
0

860
.70
0

838
.10
0

823
.40
0

810
.80
0

801
.00
0

794
.00
0

775
.20
0

772
.30
0

769
.50
0

765
.80
0

763
.50
0

762
.10
0

Vulner
able
VMs

100
0.0
00

848
.20
0

745
.90
0

684
.50
0

651
.30
0

625
.70
0

608
.00
0

597
.70
0

589
.50
0

582
.10
0

576
.80
0

571
.50
0

568
.90
0

560
.30
0

559
.30
0

558
.20
0

556
.60
0

555
.60
0

555
.20
0

END

