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Evaluating Intensity-Duration-Frequency (IDF) curves of Satellite-based 31 

precipitation datasets in Peninsular Malaysia 32 

 33 

Abstract  34 

 35 

In recent years the use of remotely sensed precipitation products in hydrological studies has 36 

become increasingly common. The capability of the products in producing rainfall intensity-37 

duration-frequency (IDF) relationships, however, has not been examined in any great detail. 38 

The performance of four remote-sensing-based gridded rainfall data processing algorithms 39 

(GSMaP_NRT, GSMaP_GC, PERSIANN and TRMM_3B42V7) was evaluated to determine 40 

the ability to generate reliable IDF curves. The work was undertaken in Peninsular Malaysia. 41 

The best-fitted probability distribution functions (PDFs) of rainfall totals for different durations 42 

were used to generate the IDF curves. The accuracy of the gridded IDF curves was evaluated 43 

by comparing observed versus estimated IDF curves at 80 locations. The results revealed that 44 

a generalized extreme value (GEV) distribution had the best fit to the rainfall intensity for 45 

different durations at 62 % of the stations, and this was then used to develop the IDF curves. A 46 

comparison of these remote sensing derived IDF curves with the observed IDF data revealed 47 

that the GSMaP_GC product performed best. In general, the satellite-based precipitation 48 

products tended to underestimate the IDF curves. The GSMaP_GC IDF curves were found to 49 

be the least biased (8%-27%) compared to the TRMM_3B42V7 IDF curves (65%-67%). The 50 

biases in rainfall intensity of different return periods for GSMaP_GC for all grid points were 51 

estimated. These results can be used in designing hydraulic structures where gauged data are 52 

unavailable.  53 

 54 
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1 Introduction 59 

 60 

The changing nature of the earth’s climate is now widely recognised. One result of this climate 61 

change is that the water holding capacity of the atmosphere is likely to increase (Trenberth, 62 

2011). This has serious implications for the distribution of global precipitation (IPCC, 2014). 63 

Changes in extreme rainfall events will occur due to increased evaporation and atmospheric 64 

moisture content (Wang et al. 2014,  Abbaspour et al., 2015; Pour et al., 2020a). Since rainfall 65 

is the major element of the hydrological cycle, any additional change in its distribution and 66 

volume may result in large scale flooding (Pour et al., 2014, Hajani et al., 2017; Pour et al., 67 

2020b), resulting in significant damage to infrastructures such as dams, stormwater drainage 68 

systems (Shahid et al., 2017, Almazroui et al., 2019).       69 

Global intensity-duration-frequency (IDF) curves are typically used to incorporate 70 

hydrological information into water infrastructures design (Watt and Marsalek, 2013, 71 

Koutsoyiannis et al., 1998, Şen, 2019). Such curves are based on the relationships between the 72 

frequency, intensity and duration of rainfall data (Koutsoyiannis et al., 1998), and the use of 73 

probability distribution functions (PDFs) of maximum rainfall depth (for a specific duration). 74 

This enables a relationship to be defined between the properties of a specific rainfall episode 75 

and the likelihood of rainfall totals (Chow et al., 1988). IDF curves can therefore be used to 76 

estimate probable extreme rainfall totals over differing durations and intensities. A number of 77 

studies have employed these IDF curves, utilising data from: a) in-situ rain-gauge (Willems, 78 

2000; De Paola et al., 2014; Al-Amri and Subyani, 2017; Noor et al., 2018) and b) remote 79 

sensing rainfall products (Endreny and Imbeah, 2009; Liew et al., 2014; Marra et al., 2017; 80 

Ombadi et al., 2018; Courty et al., 2019); both at local and global scales.    81 

 Traditionally ground-based rain gauge data has been used to construct IDF curves. 82 

Unfortunately a lack of consistent rainfall records at high temporal resolutions (hourly or sub-83 

hourly) and a spatial sparseness of weather stations in many locations, are major barriers to the 84 

successful generation of IDF curves, particularly in countries where data is scarce (Nashwan 85 

and Shahid, 2019a, Prein and Gobiet, 2017, Nashwan et al., 2018). As the spatial nature of IDF 86 

curves vary widely due to variations in the pattern of rainfall intensity and duration (Kidd et 87 

al., 2017, Sorooshian et al., 2011), it is common to use data from nearby recording stations to  88 

generate IDFs. This, however, may not be an ideal solution when used in the design of water 89 

infrastructure as it has been found that the accuracy of IDF curves tends to decrease 90 

significantly with distance from rain gauge locations (Marra et al., 2017). To overcome the 91 

difficulties associated with sparse observational records, alternative data source is suggested to 92 



tackle engineering challenges (Courty et al., 2019), induced by climate warming (Liew et al., 93 

2014). 94 

 95 

A range of global, gridded precipitation products are now available which may be categorized 96 

as gauge-based (Herrera et al., 2012; Schiemann et al., 2010; Yatagai et al., 2009; Faiz et al., 97 

2018), remote sensing-based (Nashwan and Shahid, 2019b; Huang et al., 2018; Palomino-98 

Ángel et al., 2019; Almazroui and Saeed, 2020), reanalysis-based (Belo-Pereira et al., 2011; 99 

Yao et al., 2020), as well as a combination of the above three (Alijanian et al., 2017; Laiti et 100 

al., 2018). Because their spatial and temporal (hourly or sub-hourly) resolution is reasoanbly 101 

high, remotely sensed data products are particularly useful in developing IDF curves for hydro-102 

climatic studies conducted at ungauged and data-sparse locations (Yang et al., 2014, Prakash 103 

et al., 2015, Belo-Pereira et al., 2011, Herrera et al., 2012, Schiemann et al., 2010, Yatagai et 104 

al., 2009, Nashwan and Shahid, 2019b). Furthermore, gridded precipitation data can assimilate 105 

the variability and dynamics of extreme rainfall events at ungauged locations which cannot be 106 

captured by rain gauges, and can thus help in overcoming issues related to the interpolation of 107 

point data (Chen et al., 2013, Marra et al., 2016, Panziera et al., 2016).  The use of remotely 108 

sensed precipitation products in hydrological studies is, therefore, an area of increasing 109 

research focus.  110 

 111 

Despite extensive use of gridded precipitation products obtained from satellite observation, 112 

such as stream flow simulation (Kumar and Lakshmi, 2018), flood modelling (Yuan et al., 113 

2019, Nashwan et al., 2019), aridity assessment (Hasan et al., 2019), statistical structure of 114 

rainfall behaviour (Dewan et al., 2019), drought observation (Jiang et al., 2017, Yang et al., 115 

2018), only a handful works have been conducted to date in developing IDF curves in different 116 

regions. This includes areas of the United States (Wright et al., 2013; Ombadi et al., 2018), 117 

eastern Mediterranean region (Marra et al., 2017), Netherlands (Overeem et al., 2009) and 118 

Ghana (Endreny and Imbeah, 2009) and nine different cities of the world (Courty et al., 2019). 119 

The studies that have used gridded precipitation products, either from satellite or reanalysis, 120 

have shown immense potential, particularly in locations where precipitation data is scarce. For 121 

example, Courty et al. (2019) developed a universal IDF formula at the global scale using 122 

ERA5 reanalysis data. (Ombadi et al., 2018) developed IDF curves over the USA using 123 

PERSIANN-CDR data. Marra et al. (2017) developed IDF curves for East Mediterranean 124 

regions using radar and satellite (CMORPH) rainfall. Endreny and Imbeah (2009) used TRMM 125 



and observed rainfall data to develop IDF curves in Ghana. These studies suggest that a 126 

potential issue could be the reliability of the satellite-derived rainfall products as this differs 127 

from place to place, depending on the calculation processes and specific weather conditions 128 

(Serrat-Capdevila et al., 2016, Tan and Duan, 2017, Chen and Li, 2016). As a result, IDF curves 129 

developed from gridded rainfall data tend to deviate from curves developed from the observed 130 

rainfall data (Peleg et al., 2018). An exact match between IDF curves is not possible when the 131 

curves have been generated using two different datasets – (i) gridded, precipitation-based 132 

curves, and (ii) gauged-based IDF curves (Marra et al., 2017). Endreny and Imbeah (2009) also 133 

suggested that the combined use of the satellite and observed data could provide useful insights 134 

for generating the IDF curves. It is essential to find the best remote sensing data product in 135 

order to generate bias-free or least biased IDF curves, and to subsequently correct the bias of 136 

remote sensing based IDF curves prior to use in any hydraulic design work. 137 

 138 

The IDF curves at sub-daily scale are of prime importance in designing hydraulic structures 139 

(Lima et al., 2018). The urban catchments are sensitive to shorter rainfall events and thus 140 

requires a drainage system designed based on sub-daily IDF curves (Courty et al., 2019). The 141 

IDF curves at sub-daily temporal resolution are particularly important for tropical regions 142 

where intense short-duration rainfall is very common (Tien and Dutto, 2018). The aim of this 143 

current work is to assess the ability of remotely sensed precipitation data to generate sub-daily 144 

IDF curves. Four remote sensing rainfall products, namely Global Satellite Mapping of 145 

Precipitation - Gauge Calibrated (GSMaP), Global Satellite Mapping of Precipitation - Near 146 

Real-Time (GSMaP_NRT), Precipitation Estimation from Remotely Sensed Information using 147 

Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM), 148 

are used to generate sub-daily IDF curves in countries where data is difficult to obtain. 149 

Although several remote sensing data products are available for use in hydrological studies, 150 

the temporal resolution and short period of availability have restricted their application. The 151 

hourly rainfall data for longer periods were available only for GSMaP_GC, GSMaP_NRT, 152 

PERSIANN and TRMM, and so only the performance of these products in developing of IDF 153 

curve was assessed in this study.  154 

 155 

 156 

2 Materials and methods 157 

2.1 Study area 158 



 159 

The study area is located in Peninsular Malaysia between latitudes 1.20º N and 6.80º N, and 160 

longitudes 100.10º E and 104.20º E (Figure 1). The area annually records 2000-4000 mm of 161 

rain from 150-200 wet days due to the tropical, humid climate (Nashwan et al., 2018, Noor et 162 

al., 2019). Monsoon winds, complex land-sea interactions and mountainous topography control 163 

the spatial variation of rainfall in the region (Pour et al., 2020c). Extreme rainfall events usually 164 

occur during the northeast monsoon (November to March), although these rainfall events can 165 

also occur during the inter-monsoon period (September–October and March–April), 166 

particularly in the west of the Peninsula (Mayowa et al., 2015; Khan et al., 2019). The mean 167 

annual temperature in the study area ranges from 21º C to 32ºC.  168 

 169 

 170 

 171 

 172 

 173 

 174 
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 189 

 190 



Figure 1 Geographical boundary and topography of Peninsular Malaysia. Rain gauge stations 191 

used in this work are shown    192 

 193 

2.2 Observed rainfall data 194 

 195 

Hourly rainfall data from the 80 rain gauge stations distributed across the Peninsula were 196 

obtained from the Department of Irrigation and Drainage (DID), Malaysia. Locations of these 197 

stations are shown in Figure 1. A common period of data for observed rainfall and satellite-198 

based products (2000-2018) was used.  199 

 200 

DID uses a standardised procedure for the measurement and archiving of rainfall data. In 201 

previous hydro-climatic studies conducted in this area, the quality of the DID rainfall data was 202 

found to be fit-for-purpose (Mayowa et al., 2019), however as part of the normal due diligence 203 

process, the quality of the rainfall data to be used in the current study was evaluated prior to 204 

processing using both subjective and objective evaluation methods. DID has 199 rain gauges 205 

available to record rainfall in Peninsular Malaysia. Data from 80 stations missing less than 1% 206 

of the hourly data for the 2000 to 2018 period were selected. Checks included looking for an 207 

absence of negative values, presence of hourly rainfall figures showing more than 50 mm, and 208 

one-day cumulative rainfall figures of more than 200 mm. Hourly, daily and monthly rainfall 209 

time series and histogram plots were prepared to find any irregularity in the dataset (Ahmed et 210 

al., 2019). Hourly and daily average values over a day and a year respectively were prepared 211 

to evaluate the consistency of the data. Data quality was also assessed using sequential student 212 

t-tests. All the rainfall data was deemed to be of adequate quality for the work and no 213 

abnormalities in the plots was noted. No significant differences among the different subsets of 214 

data was noted using the t-test.   215 

 216 

2.2.2 Remote sensing precipitation data 217 

 218 

Four remotely sensed precipitation data products were acquired and evaluated in the present 219 

study (Table 1). The GSMaP precipitation product is collected and compiled by Core Research 220 

for Evolutional Science and Technology (CREST) of the Japan Science and Technology 221 

Agency (JSTA) in collaboration with the Japan Aerospace Exploration Agency (JAXA) 222 

Precipitation Measuring Mission (PMM) Science Team (Okamoto et al., 2005, Ushio et al., 223 

2009). It comprises two products - (i) GSMaP_NRT, developed by integrating global 224 



precipitation rates extracted from passive microwave radiometers and cloud moving vectors 225 

derived from infrared images, and (ii) GSMaP_GC, which is an adjusted product of 226 

GSMaP_NRT using the NOAA Climate Prediction Center (CPC) precipitation data (Nashwan 227 

and Shahid, 2019b). PERSIANN is precipitation estimated from geostationary satellite-based 228 

infrared brightness temperature using a neural network function (Nguyen et al., 2018). It is 229 

produced by the Center for Hydrometeorology and Remote Sensing (CHRS) at the University 230 

of California, Irvine (UCI). Tropical Rainfall Measuring Mission (TRMM) data is a joint 231 

mission between JAXA and NASA (Huffman, 2016). In this study, 3-hour real time TRMM 232 

multi-satellite precipitation analysis information (TRMM_3B42V7) (Mission, 2011) is used.  233 

 234 

Table 1 Remote sensing precipitation datasets used in this study  235 

Data Set 
Temp 
Resoluti
on 

Period Pixel size Source 

GSMaP_NRT 1-hour 2000─till 0.1×0.1 https://sharaku.eorc.jaxa.jp/GSMaP/inde
x.htm 

GSMaP_GC 1-hour 2000─till 0.1×0.1 https://sharaku.eorc.jaxa.jp/GSMaP/inde
x.htm 

PERSIANN 3-hour 2000─till 0.25×0.25 https://chrsdata.eng.uci.edu/ 
TRMM_3B42V7 3-hour 1997─2019 0.25×0.25 https://pmm.nasa.gov/data-

access/downloads/trmm 
 236 

 237 

3 Methodology 238 

 239 

3.1 General IDF relationship for different distributions 240 

The intensity-duration-frequency (IDF) relationship is a popular method that relates rainfall 241 

intensity with its duration and annual frequency. For a given duration 𝑑, return period T and 242 

the maximum intensity 𝑖(𝑑, 𝑇) of rainfall at a specific location, the general form of the 243 

intensity-duration-frequency (IDF) curve (Koutsoyiannis et al., 1998) can be formulated as: 244 

𝑖(𝑑, 𝑇) = 	𝑎(𝑑, 𝑇) ⋅ 	 (𝑑	 + 𝜃)!",       (1) 245 

where 𝑎(𝑑, 𝑇) and 𝑖(𝑑, 𝑇) are functions of 𝑑 and 𝑇, 𝜃 and 𝜂 are parameters with 𝜃 > 0 and 246 

1 < 𝜂 < 0. Koutsoyiannis et al. (1998) established the relationship between the cumulative 247 

distribution function (CDF) of the maximum intensity and the return period T given as: 248 

𝑎(𝑑, 𝑇) = 𝐹#(𝑦$) = 1 −	 %
$
	.       (2) 249 



The IDF relationship (Koutsoyiannis et al., 1998) between the maximum amounts of rainfall 250 

with distribution function 𝐹#(⋅) with T for d is, therefore, presented as:  251 

𝑦$ = 𝑎(𝑑, 𝑇) = 𝐹#!%(1	 − 	1/𝑇).      (3) 252 

 253 

In this study, we consider four widely used probability distributions to fit IDF curves and 254 

evaluate the individual performances. These are Exponential, Generalised Pareto (GP), 255 

Gumbel and Generalized Extreme Value (GEV). The exponential distribution is a fundamental 256 

distribution for establishing several other distributions. The exponential distribution function 257 

is broadly applied in hydrological studies (Kjeldsen et al., 2000). This distribution has 258 

applicability in such things as the frequency analysis of rainfall amount and extreme events 259 

(Zhu et al., 2019). The PDF of the exponential random variable is given by:  260 

𝐹(𝑦) = 7	1 − 	exp ;−
&
'
+ 𝜓= ,															𝑥 ≥ 0

0,																																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (4) 261 

where 𝜆 and 𝜓 are the scale and location parameters respectively. The IDF relationship for the 262 

exponential distribution (Koutsoyiannis et al., 1998) can be expressed as: 263 

𝑦$ 	≡ 𝑎(𝑇) = 𝜆(𝜓 + ln 𝑇).       (5) 264 

Pikands (1975) suggested the Generalized Pareto (GP) distribution, which has been 265 

applied in the various fields. GP distribution plays a significant role in modelling of extreme 266 

events e.g., the analysis of the highest annual flood values, the precipitation data analysis, in 267 

the analysis of flood frequency, etc. The PDF of generalized pareto distribution is expressed 268 

as: 269 

𝐹(𝑦) = 	1 −	K1 + 𝑘 ;&
'
− 𝜓=M

!!" , 𝑦 ≥ 𝜆𝜓	     (6) 270 

where k is the shape parameter. For the GP distribution, the IDF relationship (Koutsoyiannis et 271 

al., 1998) is obtained as:  272 

𝑦$ 	≡ 𝑎(𝑇) = 𝜆	 ;𝜓	 +	$!%
(
=.       (7) 273 

Gumbel distribution or Extreme Value Type I (EV1) distribution is often used in the 274 

frequency analysis of hydrological extremes e.g., floods, storms, wind speed, droughts, etc. 275 

(Yue and Wang, 2004; Hong at al., 2013). The PDF of Gumbel distribution can be given as: 276 



𝐹(𝑦) = exp	 ;− exp ;	!&
'
	+ 𝜓	==      (8) 277 

The IDF relationship for Gumbel distribution (Koutsoyiannis et al., 1998) can be given by 278 

𝑦$ 	≡ 𝑎(𝑇) = 𝜆	 ;𝜓 − ln K−ln ;1 −	 %
$
=M=.     (9) 279 

The Generalized Extreme Value (GEV) distribution (developed within the extreme 280 

value theory) is a family of continuous probability distributions. The GEV distribution 281 

originated from the extreme value axiom and is the limit distribution of normalized maxima of 282 

an independent and identically distributed random variable. The PDF of the GEV is represented 283 

as (Jenkinson, 1955), 284 

𝐹(𝑦) = exp	 N− K1 + 𝑘 ;&
'
− 𝜓=M

!%/(
O ,									𝑦 ≥ 𝜆(𝜓 − 1/𝑘)  (10) 285 

Koutsoyiannis et al. (1998) established the IDF relationship for the GEV distribution can be 286 

given as: 287 

𝑦$ 	≡ 𝑎(𝑇) = 𝜆	 P𝜓 +	
*! +,-%!	!#/0

$"
!	%

(
Q.     (11) 288 

 289 

3.2 Estimation of Parameters and Fitting IDF Curve 290 

The Maximum Likelihood Estimation (MLE), Generalized Maximum Likelihood Estimation 291 

(GMLE), Bayesian and L-moments are commonly used methods for fitting PDFs for annual 292 

extreme rainfall time series data (Martins & Stedinger, 2000). In this study, performance of all 293 

the four methods were compared to find the best parameter estimation method. Goodness of fit 294 

test was used for the selection of best parameter estimation method. Several goodness of fit 295 

tests are available in practice, but there is no general criteria for selection of suitable goodness 296 

of fit test (Rahman et al., 2013). However, the log likelihood approach developed by R.A Fisher 297 

(Fisher, 1912) is most widely used for performance assessment of PDF parameter estimation 298 

method (Fienberg, 1997, Zhu et al., 2018, Bierman et al., 1989, Poudel and Cao, 2013).  299 

The likelihood is the joint density of n independent observations, 	𝑦 = (𝑦%… . . 𝑦1)´ which can 300 

be expressed as, 301 

𝐿(𝜃) = 𝑓(𝒚|𝜃) = ∏ 𝑓(𝑦3		|𝜃)1
34% , (12) 302 

where 𝑓(𝑦|𝜃) is the PDF and 𝜃 is the unknown parameter (Hilbe & Robinson, 2013). Often, 303 

natural logarithm of the likelihood function 𝐿(𝜃) is called the log-likelihood function (𝐿𝐿(𝜃)), 304 



which is used to estimate parameters (instead of the likelihood function) due to mathematical 305 

tractability. Due to the monotonicity property, the estimates from the log-likelihood function 306 

𝐿𝐿(𝜃) also gives the same estimates by retaining all properties (Hilbe & Robinson, 2013). The 307 

𝐿𝐿(𝜃) is defined as   308 

𝐿𝐿(𝜃) = ln 𝐿(𝜃) = ∑ log 𝑓(𝑦3 	|𝜃))1
34% .     (13) 309 

For ease of computation, the negative logarithm of the likelihood estimates or the negative log 310 

likelihood is commonly practiced (Bosman and Thierens, 2000).  311 

The GMLE estimates parameters in a similar manner to that used in the MLE method (Martins 312 

& Stedinger, 2000). Additional conditions eliminate the set of potential invalid values on some 313 

parameters while estimating the parameter of interest. This is done by setting initial 314 

distributions for those parameters (Martins & Stedinger, 2000). The GMLE involves solving 315 

the following optimization problem, 316 

\]^!	_"(`;b)
c	~	e]\\]	(f,g)         (14) 317 

where 𝜃 is the parameter of interest and 𝛽 is the other parameter which follows a gamma prior 318 

distribution. The GMLE method is, therefore, analogous to the Bayes estimation method as it 319 

is equivalent to maximizing a posterior distribution. Since the posterior form is unknown, in 320 

general, numerical techniques like Markov chain Monte Carlo (MCMC) is applied to calculate 321 

parameters.  322 

 323 

Bayesian method of parameter estimation involves specifying a prior probability density 324 

function, say 𝜋(𝜃) (Reis & Stedinger, 2005). After the prior has been specified, the posterior 325 

distribution of 𝜃 is computed, and from this inferences can be made. Using Bayes Theorem, 326 

the conditional density of 𝜃 given data 𝑦%, 𝑦5, … , 𝑦1 is written as 327 

𝜋(𝜃	|	𝑦%, 𝑦5, … , 𝑦1) = 	
6(&!,&%,…,&&	|	;)	=(;)

6(&!,&%,…,&&)
=	 [?'	6(&'	|	;)]=(;)

	∫ [?'	6(&'	|	;)]	=(;)B;( 		
,  (15) 328 

where Ω is the parameter space. Re-writing Π3 	𝑓(𝑦3 	|	𝜃) as the likelihood function, 𝐿(𝑦3 	|	𝜃), 329 

we get 330 

𝜋(𝜃	|	𝑦%, 𝑦5, … , 𝑦1) = 		
C(&'	|	;)	=(;)

	∫ 	C(&'	|	;)	=(;)B;( 		
.     (16) 331 



The posterior distribution is then maximized for the parameter values 𝜃 (Reis & Stedinger, 332 

2005). 333 

 334 

Hosking (1986, 1990) proposed the L-moments method which is frequently used for the 335 

characterization of data, characteriztaion of PDFs, testing of PDF hypotheses and parameter 336 

estimation of PDFs. For a real valued ordered random variate Y of n samples, 𝑦%:1 ≤ 𝑦5:1 ≤337 

⋯ ≤ 𝑦1:1  for cdf F(y) and quantile function y(F), the  r-th L-moment of Y can be described as 338 

a linear function of the expected order statistics and can be represented as (Hosking, 1990) 339 

𝜆E =
%
E
∑ (−1)(nE!%( o
E!%
(4F 𝐸𝑌E!(:E ,							𝑟 = 1, 2, 3….    (17) 340 

The letter ‘L’ in ‘L-moments’ reveals the fact that r-th L-moment 𝜆E is a linear function of the 341 

expected order statistics. Furthermore, based on the oberved sample the natural estimate of the 342 

L-moment 𝜆E is the L-statistics. The probable value of order statistics can be represnted as:  343 

𝐸(𝑌G:E) =
E!

(G!%)!(E!G)!∫𝑦[𝐹(𝑦)]
G!%		[1 − 𝐹(𝑦)]E!G𝑑𝐹(𝑦).    (18) 344 

The first four L-moments are derived as (Hosking, 2006): 345 

𝜆% = 𝐸(𝑌) = ∫ 𝑦(𝐹)𝑑𝐹%
F ,        (19) 346 

𝜆5 =
%
5
𝐸(𝑌5:5 − 𝑌%:5) = ∫ 𝑦(𝐹)	(2𝐹 − 1)	𝑑𝐹%

F ,     (20) 347 

𝜆I =
%
I
𝐸(𝑌I:I − 2𝑌5:I + 𝑌%:I) = ∫ 𝑦(𝐹)	(6𝐹5 − 6𝐹 + 1)	𝑑𝐹%

F ,   (21) 348 

𝜆J =
%
J
𝐸(𝑌J:J − 3𝑌I:J + 3𝑌5:J − 𝑌%:J) = 	∫ 𝑦(𝐹)	(20𝐹I − 3𝐹5 + 12𝐹 − 1)	𝑑𝐹%

F . (22) 349 

 350 

3.3 Development of IDF Curves  351 

 352 

The process used for the development of the IDF curves is shown in Figure 2. The parameters 353 

of best-fitted PDF are used to generate observed IDF curves, using hourly rainfall observations 354 

and remotely sensed-based rainfall IDF curves at 80 stations. They are developed by fitting the 355 

PDF to annual precipitation maximum data e.g. annual maximum of daily one-, two-, three-, 356 

or more hour rainfall amount. The parameter of the fitted PDFs is then applied to calculate the 357 

return period of maximum rainfall depth for each duration. The return periods of the rainfall 358 

intensities of corresponding durations are then plotted to prepare the IDF curves. In the present 359 



study, IDF curves are constructed for 2-, 5-, 10-, 2-5, 50- and 100-year return periods and 1-, 360 

3-, 6-, 12-, 24-, 48- and 72-hour rainfall durations. 361 

 362 

Figure 2 Flowchart showing the development of IDF curves   363 

 364 

3.4 Performance Assessment 365 

 366 

Two approaches can be used for comparing gridded rainfall data with in-situ rainfall: (i) in-situ rainfall 367 

is converted into gridded rainfall through interpolation, and then a grid-to-grid comparison is made; (ii) 368 

gridded data is interpolated to in-situ location and then compared with in-situ data (Nashwan et al., 369 

2019; Ahmed et al., 2019; Pour et al., 2020d). In the present study, the second approach was used as 370 

the resolution of the remote sensing datasets differed. The satellite rainfall data of the four nearest grid 371 

points of an observed station were interpolated at the observed location using an inverse distance 372 

weighting method and then compared with the observed rainfall. Five statistical metrics were used to 373 

assess the performance of the remote sensing data - normalized root mean square error (NRMSE), 374 

percentage of bias (PBIAS), ratio of standard deviations (rSD), modified index of agreement 375 

(md) and Kling-Gupta Efficiency (KGE). The formulas, range and optimum values of the 376 

metrics are presented in Table 2. 377 



 378 

 379 

Table 2 Description of the statistical metrics used for evaluation of remote sensing data 380 

Metric Formula Range Optimal 
Value 

𝑁𝑅𝑀𝑆𝐸 = 100 ∗	
}1𝑛 ∗ ∑ (𝑦3 − 𝑥3)51

34%

𝑠𝑑𝑣(𝑥3)
 0 to ¥ 0 

𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑦3 − 𝑥3)K
34%

𝑥3
 -¥ to +¥ 0 

𝑚𝑑 = 1 −
∑ (𝑥3 − 𝑦3)G1
34%

∑ (|𝑦3 −	�̅�| + |𝑥3 − �̅�|)G1
34%

 0 to 1 1 

𝑟𝑆𝐷 =
𝑠𝑑(𝑥3)
𝑠𝑑(𝑦3)

 0 to ¥ 1 

𝐾𝐺𝐸 = 1 − �(𝑟 − 1)5 + (𝛾 − 1)5 + (𝛽 − 1)5 

 
-1 to -¥ 1 

 381 

where n is the samples number; 𝑥3 and 𝑦3	refer to the observed and remote sensing data, 382 

respectively for time step 𝑖; 𝑠𝑑 is the standard deviation; �̅�	and 𝑦� are the mean of the observed 383 

and remote sensing data, respectively. 𝑟 is Pearson’s correlation of the remote sensing data (y) 384 

and observed data (x), 𝛾 represents the bias which is normalized by the standard deviation of 385 

the observed data, and 𝛽 is a fraction of the coefficient of variation representing spatial 386 

variability. 387 

 388 
 389 

4 Results and Discussion 390 

 391 

4.1 Performance of satellite-based rainfall data products  392 

 393 

The annual average rainfall figures recorded at 80 rainfall gauges is interpolated to a resolution 394 

of 0.1°×1° (the finest resolution of the remote sensing data used) using an inverse distance 395 

weighting technique to compare the spatial distribution of the observed and the remotely sensed 396 



rainfall (Figure 3).  The spatial distribution of GSMaP_NRT and GSMaP_GC rainfall appeared 397 

to have a better match with the spatial distribution of the observed rainfall than those of    398 

PERSIANN and TRMM. However, the GSMaP_NRT results were found to overestimate the 399 

annual rainfall at more grid points when compared to GSMaP_GC. PERSIANN and TRMM 400 

were found to underestimate the annual rainfall in the northeast high rainfall regions and 401 

overestimate the rainfall in most other areas.  402 

 403 

 404 

 405 

Figure 3: Annual average rainfall in Peninsular Malaysia derived from observed and satellite 406 

data products for the period 2000-2018 407 

 408 

The bias percent in the median value of the annual average of remotely sensed rainfall data is 409 

shown in the boxplots in Figure 4. The results show an overestimation of rainfall by all the 410 

remote sensing precipitation data. The overestimation in median precipitation was 14.1% for 411 



GSMaP_NRT, 7.2% for GSMaP_GC, 23.9% for PERSIANN and 21.2% for TRMM_3B42V7. 412 

Overall, the results indicate a better performance by GSMaP_GC in replicating the spatial 413 

distribution of annual average Malaysian rainfall, with the least bias. However, the range of 414 

bias in GSMaP_GC at different grid points was higher than for the other precipitation products. 415 

This indicates a wide variation in the spatial performance of GSMaP_GC in Peninsular 416 

Malaysia. 417 

 418 

Previous studies conducted on remote sensing precipitation products in the study area have also 419 

reported an overestimation of rainfall. Zad et al. (2018) looked at the performance of 420 

TRMM_3B42V7 in the Pahang river basin of Peninsular Malaysia and reported an overestimation 421 

of daily rainfall by TRMM at most locations. Tan et al. (2015) also reported an overestimation 422 

of rainfall by TRMM and PERSIANN-CDR. Giarno et al. (2018) evaluated the performance 423 

of TRMM satellite rainfall products over the Makassar Strait in Indonesia and also reported an 424 

overestimation of rainfall. 425 

 426 

 427 

 428 

Figure 4 Percent of bias in median of annual average of remotely sensed rainfall data 429 

 430 

The time series of observed and remote sensing data at all 80 grid points were compared in 431 

order to evaluate the capability of remote sensing data to replicate the observed time series. 432 

The results are presented in Figure 5. The GSMaP_GC indicated less NRMSE and PBIAS in 433 

comparison to the other products. Three other statistical metrics of GSMaP_GC were also 434 



found to be nearer to the optimum value when compared to other products. In construction, 435 

PERSIANN performed the worst of the four products in term of all statistical metrics. 436 

 437 

Hur et al. (2018) compared the performance of TRMM and GSMaP_GC rainfall in Singapore 438 

and reported both products were unable to replicate the observed rainfall, although overall 439 

GSMaP performed more effectively than TRMM. Islam (2018) compared six remote sensing 440 

products over Bangladesh including PERSIANN, CMORPH, IMERG (non-gauge-calibrated 441 

and gauge-calibrated), and GSMaP_NRT and GSMaP-GC. GSMaP_GC performed best, while   442 

PERSAINN was the worst performer. 443 

444 

Figure 5 A comparison of time series of remote sensing rainfall data with observed rainfall 445 

data at all the 80 observed locations.  446 

 447 

4.2 Fitting PDF and Estimation of PDF Parameters 448 

 449 

An evaluation was conducted on the performance of the four PDFs and four parameter 450 

estimators using negative log likelihood goodness-of-fit tests. Annual maximum rainfall 451 

amount of 1, 3, 6, 12, 24, 48 and 72-hour durations for the PDFs and parameter estimation 452 

methods were assessed at all eighty stations. Log-likelihood estimates for one location in the 453 

southern peninsular (station Johor 2025001) are presented in Table 2. The GEV distribution 454 



and MLE estimator provided the lowest log-likelihood estimates for rainfall amount of all 455 

durations. No significant variation was observed in the log-likelihood estimates for MLE, 456 

GMLE and L-moment approaches. For most of the cases MLE provided the least likelihood 457 

values for estimating the distribution parameters.  458 

 459 

The best PDF and parameter estimator of rainfall of different duration is shown in Figure 6. 460 

Results revealed that GEV is the most suitable PDF with MLE is the best parameter estimation 461 

method at most of the stations. The GEV distribution with MLE estimator provided the least 462 

log-likelihood estimates at 62% of the stations, followed by GEV with a GMLE estimator at 463 

14% of the stations. The GP distribution with MLE at 11%, Exponential with MLE at 5%, 464 

GEV with L-moments at 4% and Gubmle with MLE at 4% of the stations. Therefore, the 465 

rainfall properties were fitted with GEV and the distribution parameters were estimated using 466 

the MLE method for the generation of the IDF curves.    467 

 468 

Based on the goodness of fit test, most suitable PDF was selected using the annual maximum 469 

of observed rainfall data in this work. The PDF selected was fitted to annual maximum of both 470 

observed and remote sensing rainfall data for developing IDF curves for observed and remote 471 

sensing data. Therefore, it is suggested to compare various PDFs separately for developing 472 

remote sensing IDF curves in the future. 473 

 474 

Table 2   Results of goodness-of-fit test for different probability distribution functions and 475 

parameter estimation methods for rainfall amounts of differing duration at a location in 476 

Southern Malaysia (station Johor 2025001)   477 

Estimator Distribution Duration (hours) 
1 3 6 12 24 48 72 

MLE 

GEV 175.25 194.05 199.39 202.48 206.24 216.27 217.67 
Gumbel 279.44 299.13 304.49 307.05 309.87 322.57 323.93 
Exp 222.61 238.37 241.84 244.98 249.55 257.89 263.14 
GP 296.27 330.07 343.16 354.56 374.85 358.47 356.47 

GMLE 

GEV 185.62 197.89 203.30 204.28 212.53 219.23 222.62 
Gumbel 279.44 299.13 304.49 307.05 309.87 322.57 323.93 
Exp 222.61 238.37 241.84 244.98 249.55 257.89 263.14 
GP 487.07 495.39 493.95 496.71 498.34 478.35 491.01 

L-Moments 

GEV 440.55 669.89 733.69 808.03 744.84 817.29 882.53 
Gumbel ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
Exp ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
GP 487.07 495.39 493.95 496.71 498.34 478.35 491.01 

Bayesian GEV 436.67 669.32 763.45 753.54 703.70 777.73 793.23 



Gumbel ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
Exp ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
GP ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

 478 

 479 

4.3 Development of IDF curves  480 

 481 

IDF curves were developed using both hourly observed and satellite rainfall data for the 482 

period 2000-2018 at all 80 stations. The curves of Pahang station (ID: 3628001), which is 483 

located in the central region of the Peninsula, are shown in Figure 7. The y-axis represents 484 

rainfall intensity (in mm/hr) and the x-axis indicates duration (in hours). IDF curves for 485 

different return periods are also presented. An increase in rainfall intensity with different 486 

return periods and a decrease in rainfall intensity with duration is noted (Figure 7). The 487 

result of one station is shown as an example.  488 

 489 



 490 
 491 

Figure 6 Best fitted probability distribution function (PDF) for different rainfall periods 492 

and most suitable parameter estimation method  493 

 494 



 495 

Figure 7 IDF curves for Pahang station (ID: 3628001), showing suitable PDF and 496 

parameter estimate  497 

 498 



4.4 Assessing the performance of remotely-sensed products    499 

 500 

IDF curves, developed using both remotely sensed and observed rainfall data, were compared 501 

in order to estimate the bias in the IDF curves generated using the satellite-derived rainfall. The 502 

bias in median rainfall intensity for all durations was estimated. The bias of different remote 503 

sensing precipitation products was then used to rank the products at the different stations. The 504 

remote sensing precipitation data which best replicated the observed IDF curves is presented 505 

in Figure 8. The best precipitation product for estimating IDF curves was found to be 506 

GSMaP_GC (at 51 of the 80 stations, or 66%), followed by GSMaP_NRT (34%). The 507 

PERSIAN and TRMM_3H42V7 products did not perform well at any of the locations. In 508 

Figure 8 shows locations at which GSMaP_GC ranked 1st (blue) and at which GSMP_GC 509 

ranked 2nd (yellow). GSMaP_GC performed next to GSMaP_NRT at the locations, where 510 

GSMaP_NRT performed best. Similarly, GSMaP_NRT performed next to GSMaP_GC at the 511 

locations, where GSMaP_GC was found to perform best. The TRMM_3B42V7 product 512 

showed a high bias in its IDF curves.  513 

 514 

Figure 8 Remote sensing precipitation product ranking in the replication of observed IDF 515 

curves at different rain gauge locations 516 

 517 



The performance of IDF curves estimated using remote sensing precipitation was assessed by 518 

comparing them with IDF curves estimated using the observed rainfall. Rainfall intensity for 519 

different return periods using the observed and remote sensing precipitation data are presented 520 

in Figure 9. The results show that rainfall intensity for different duration estimated using 521 

GSMaP_GC was most similar to in-situ rainfall intensity for all return periods. A large 522 

difference was observed between GSMaP_NRT and the observed rainfall intensity for all the 523 

return periods (except for the 2-year period). GSMaP_NRT was found to overestimate the 524 

rainfall intensity for ≥10-year return periods. PERSIANN and TRMM appeared to 525 

underestimate rainfall intensity for all return periods. Previous studies have also reported an 526 

underestimation of high rainfall using remote sensing precipitation products (Hur et al., 2018; 527 

Sharifi et al., 2019, Peng et al., 2020, Yao et al., 2020, Liu et al., 2019, Mahmoud et al., 2019). 528 

 529 

 530 

Figure 9 Rainfall intensity at different return periods estimated using observed and remotely 531 

sensed rainfall data 532 

The percentage of bias in the median rainfall intensity for different durations at all locations 533 

were calculated and are presented in Figure 10. The figures clearly show that all of the remote 534 



sensing precipitation data underestimated rainfall intensity of all durations, with the exception 535 

of GSMaP_NRT for the higher return periods (>10-year). GSMaP_GC was found to be the 536 

best performer, (underestimating by 8-27%) followed by PERSIANN (28-32%) and 537 

GSMaP_NRT (35-49%). The underestimation was highest for TRMM_3B42V7 (65-67%). 538 

Bias in GSMaP_GC was found to be less (8-12%) for the higher return periods (>10-year) and 539 

also high for the lower return periods (18-27%). The bias in other rainfall product was 540 

consistently high for all return periods. 541 

 542 

 543 

 544 

Figure 10 Percent of bias in median intensity of remote sensing rainfall for different return 545 

periods at all stations 546 

 547 

It has been reported that most of the remote sensing precipitation products overestimate light 548 

rainfall and underestimate high rainfall (Sharifi et al., 2019, Peng et al., 2020, Yao et al., 2020, 549 

Liu et al., 2019, Mahmoud et al., 2019). This causes a high bias in IDF curve estimated using 550 

remote sensing precipitation data.  Sun et al. (2019) used remote sensing rainfall for developing 551 

IDF curves in Singapore and reported 70% bias in remote sensing based IDF curves compared 552 

to observed IDF curves. Ombadi et al. (2018) evaluated the performance of PERSIANN-CDR 553 



against NOAA Atlas 14 for estimating IDF curves in the USA, with results showing a median 554 

bias of between 3 and 22% for precipitation durations of one to three days.  555 

 556 

Rainfall intensity for different durations at all stations was used to evaluate individual 557 

performances using a Taylor diagram (Taylor, 2001). The results are presented in Figure 11. 558 

The circle in black located on the x-axis represents the observed rainfall while filled circles 559 

with different colours denote precipitation based on remote sensing products. The diagram 560 

shows the performance of datasets based on similarity in correlation and variability. The circle 561 

nearest to the observed one represents the best product. The analysis shows good performance 562 

of the GSMaP_GC rainfall product for lower return periods (<10-year), with an almost similar 563 

performance for higher return periods.   564 

 565 

A gradual decrease in correlation with return period was observed. This is mainly due to a 566 

higher bias in the rainfall intensity of the higher return periods.  Similar results were also found 567 

by Marra et al. (2017a) when comparing radar and satellite (CMORPH) IDF curves in the East 568 

Mediterranean region; specifically a high correlation for shorter return period, and then a 569 

gradual decrease in correlation with increasing return periods. 570 

 571 



572 

Figure 11 Taylor diagram, showing performance of different remote sensing rainfall products 573 

in replicating observed rainfall intensity at different return periods 574 

 575 

The picture can't be displayed.



The study revealed a high bias in the IDF curves which were estimated using the remote sensing 576 

data, with the least bias being shown by GSMaP_GC. The bias in GSMaP_GC for return 577 

periods >10-year was 8-12%, while it was a bit higher for the lower return periods (18-27%). 578 

This indicates that GSMaP_GC rainfall can be used for generating IDF curves once the small 579 

amount of bias has been corrected. The study revealed that the good performance of remote 580 

sensing rainfall data in terms of their ability to replicate annual or seasonal rainfall totals, or 581 

the actual spatial distribution of rainfall, does not mean that this data can be used to provide a 582 

better estimation of the IDF curves. The reliability of the remote sensing rainfall data should 583 

be based on their ability to reproduce reliable observed IDF curves.  584 

 585 

4.5 Spatial distribution of bias 586 

 587 

Sixty-four of the 80 stations (80% stations) were randomly selected for estimation of the spatial 588 

distribution of bias in GSMaP_GC rainfall intensity for differing return periods. The remaining 589 

16 stations (20% of the total) were used to assess the performance of the bias-corrected IDF 590 

curves at defined ungauged locations. Though the bias in the median was less for higher return 591 

periods and high for lower return periods, the spatial variability of bias was reduced for the 592 

lower return periods and increased for the higher return periods (Figure 12). The bias was found 593 

to be higher in the coastal areas and lower in the central region. The highest bias in rainfall 594 

intensity for all return periods was found in the northeast. Rainfall intensity in this region is 595 

high compared to other regions. As the GSMaP_GC rainfall failed to capture the high rainfall 596 

intensity, the bias is therefore very high. 597 

 598 

The biases in remote sensing rainfall data depend on various physiographic factors. This 599 

includes topography, elevation and proximity to shorelines, as well as climatic factors such as 600 

wind speed and cloud cover type (Yao et al., 2020, Kalimeris and Kolios, 2019, Cavalcante et 601 

al., 2020, Sobral et al., 2020). Future studies should concentrate on correlating specific 602 

physiographic and climatic factors with the noted bias in remote sensed rainfall in order to 603 

better understand the various factors affecting the bias. These factors can then be incorporated 604 

into a bias correction process to provide a better estimation of IDF curves generated from 605 

remotely sensed precipitation products. 606 

 607 

 608 



 609 

 610 

4.6 Performance bias corrected IDF curves   611 

 612 

Bias estimates for the 16 stations not used to estimate the spatial distribution of bias (Figure 613 

12) were used to assess the performance of the bias-corrected GSMaP_GC IDF curves at 614 

ungauged locations. An example of the evaluation results for the observed and bias-corrected 615 

GSMaP_CG IDF curves for different return periods of a station located in the south of the 616 

peninsula (Johor 2025001) are shown in Figure 13. This shows a good match between observed 617 

and bias-corrected GSMaP_GC IDF curves for the different return periods. The graphed results 618 

are presented in Figure 14, showing a perfect match in rainfall intensity between observed and 619 

GSMaP_GC data. The respective median values agree well for the lower return periods (<10-620 

year). The bias in the median of the rainfall intensity of GSMaP_GC for the higher return 621 

periods was also found to be very close to the intensity of the observed rainfall and the range 622 

of rainfall intensity for the different return periods was also found to match well. These results 623 

indicate that the bias-corrected IDF curves derived from GCMaP_GC rainfall are eminently 624 

suitable for hydrological studies and hydraulic design work. 625 

 626 

  627 



 628 

Figure 12 Spatial distribution of bias in GSMaP_CG rainfall intensity for different return 629 

periods   630 

The picture can't be displayed.



 631 

 632 

 633 

Figure 13 Observed and bias-corrected GSMaP_CG IDF curves for different return periods of 634 

a station located in the south of the Peninsula 635 

 636 

 637 

 638 

Figure 14 Observed and GSMaP_GC rainfall intensity after bias-correction for different return 639 

periods 640 

  641 



5. Conclusion  642 

 643 

In a study, four satellite-derived rainfall data products were evaluated to determine their ability 644 

to replicate IDF curves in Ppeninsular Malaysia. An analysis of the initial results indicated that 645 

all the remote sensing rainfall underestimated the rainfall intensities for different durations and 646 

return periods. When the results were corrected for bias, however, the outcomes looked more 647 

promising. This shows that the correction for bias is essential when generating IDF curves 648 

using remote sensing precipitation data. The results indicate that GSMaP_GC is the best 649 

product to use for the IDF curves (with an 8-27% bias). The spatial distribution of bias for 650 

different rainfall return periods for GSMaP_GC was also generated in this study, and can be 651 

used for correction of bias in the IDF curves estimated using GSMaP_GC. This enables use at 652 

locations where actual rainfall data is not available and so the procedure used in this study can 653 

be used to develop IDF curves in any regions where suitable data is lacking. These study results 654 

can be used when designing hydraulic structures in the regions of Peninsular Malaysia where 655 

gauged data are unavailable. Biases in remote sensing data can be corrected before being use 656 

in IDF curve development and compared with the results obtained in this study. The 657 

performance of different bias correction methods can be evaluated to improve the performance 658 

of remote sensing rainfall in generating IDF curves. The best PDFs can be estimated for both 659 

observed and remote sensing data when preparing corresponding IDF curves to allow a better 660 

comparison with remote sensing rainfall products. The performance of remote sensing data 661 

based on different rainfall extremes such as intensity, duration and frequency can also be 662 

evaluated. Besides, the performance of other high-resolution satellite-based rainfall products 663 

that offer data for shorter period can be compared and evaluated.  664 

 665 

 666 

 667 

  668 
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