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Correcting bias of satellite rainfall data using physical empirical model   
 

Abstract 

 

The provision of high resolution near real-time rainfall data has made satellite rainfall products 

very potential for monitoring hydrological hazards. However, a major challenge in their direct-

use can be problematic due to measurement error. In this study, an attempt was made to correct 

the bias of Global Satellite Mapping of Precipitation near-real-time (GSMaP_NRT) product. 

Physical factors, including topography, season, windspeed and cloud types were accounted for 

correcting bias. Peninsular Malaysia was used as the case study area. Gridded rainfall, 

developed from 80 gauges for the period 2000-2018, was used along with  physical factors in 

a two-stage procedure. The model consisted of a classifier to categorise rainfall of different 

intensity and regression models to predict intensity class of different rainfall amount. An 

ensemble tree-based learning algorithm, called random forest, was used for classification and 

regression. The results revealed a big improvement of near-real-time GSMaP_NRT product 

after bias correction (GSMaP_BC) compared to the gauge corrected version (GSMaP_GC). 

Accuracy evaluation for complete time series indicated about 110% reduction of normalized 

root-mean-square error (NRMSE) in GSMaP_BC (0.8) compared to GSMaP_NRT (1.7) and 

GSMaP_GC (1.75). On the other hand, the bias of GSMaP_BC became nearly zero (0.3) 

compared to 2.1 and -3.1 for GSMaP_NRT and GSMaP_GC products. The spatial correlation 

of GSMaP_BC was >0.7 with observed rainfall data for all months compared to 0.2-0.78  for 

GSMaP_NRT and GSMaP_GC, indicating capability of GSMaP_BC to replicate spatial 

pattern of rainfall. The bias-corrected near-real-time GSMaP data can be used for monitoring 

and forecasting floods and hydrological phenomena in the absence of dense rain-gauge network 

in areas, frequently experience hydro-meteorological hazards.  

 

Keywords Near-real-time rainfall, satellite precipitation, bias correction, ensemble learning 

algorithm, physical-empirical model 

 

 

 

  



1. Introduction 

Precipitation is a major input for understanding hydrological processes, monitoring 

hydrological hazards, and evaluating different climatic studies. In-situ gauges records are 

generally used for reliable and accurate estimation of precipitation. However, space-time 

variation of several gauge records is often inadequate for hydrological study, particularly in 

areas having rainfall heterogeneity (Nashwan et al., 2019a; Shiru et al., 2018). Besides, 

installation of in-situ instruments in inaccessible locations such as mountainous regions and 

large waterbodies precludes reliable estimation of precipitation (Ahmed et al., 2017; Ji et al., 

2020). Remote sensing technique for global precipitation observation helped to overcome such 

difficulty. Satellite-based precipitation products are not only capable of providing large 

synoptic coverage, they are cost-effective relative to in-situ networks (Nashwan et al, 2019b; 

Suliman et al., 2020).  

 Several satellite precipitation products have been developed over the last two decades 

and have become important data source for a wide range of applications. The products are 

mainly based on infrared or microwave sensors and observed precipitation data (Nashwan et 

al., 2019b). However, their performance vary significantly according to areas of interest. 

Global Satellite Mapping of Precipitation (GSMaP) (Kubota et al.2007) is one of such products 

which is shown to be more accurate compared to other satellite-based products (Gosset et al., 

2018; Islam, 2018; Reddy et al., 2019; Shawky et al., 2020). Even though the 

performance of GSMaP is better compared to other remote sensing precipitation products for 

many regions, studies showed that this product is far less accurate compared with in-situ 

records (Islam, 2018; Tan et al., 2018; Aslami et al., 2019; Chen et al.., 2020; Shawky et al., 

2020).  Chen et al. (2020), for instance, reported that GSMaP overestimates light rainfall 

globally, with an error of >2 mm, on daily scale. Shawky et al. (2020) showed an 

overestimation of light rain and underestimation of heavy rainfall over arid environments. 

Aslami et al. (2019) revealed that GSMaP overestimates precipitation in the northwest of Iran. 

Mastrantonas et al. (2018) noted that GSMaP performs better for estimating low-intensity 

rainfall events but underestimation (>50%) was prevalent for high-intensity rainfall in Kinu 

basin of Japan. Tan et al. (2018) showed underestimation of rainfall amounts with GSMaP 

products over major river basins of China. Islam (2018) reported that GSMaP perform poorly 

in detecting extreme rainfall accumulations in Bangladesh. Ning et al. (2017) reported GSMaP 

tends to overestimate light rainfall (<16 mm/day) and underestimate precipitation with rain rate 



>16 mm/day in Eastern China. These studies emphasize the need for bias correction of GSMaP 

product prior to use in hydrological studies. 

 Several attempts have been made to correct the bias of satellite-based rainfall products 

(Chaudhary and Dhanya, 2019; Yeh et al., 2019; Gebremedhin et al., 2020). Approaches to 

correcting bias include nonparametric quantile mapping (Yang et al., 2016; Alharbi et al., 

2018), cumulative distribution function matching (Mastrantonas et al., 2018), linear scaling 

(Hashemi et al., 2017; Chaudhary and Dhanya, 2019), intensity thresholds (Saber and Yilmaz, 

2018), non-linear Power Transformation (Pratama et al., 2018), local correction (Yeh et al., 

2019), censored shifted mixture distribution (Ma et al., 2019), ratio bias correction 

(Mastrantonas et al., 2018) and regression analysis (Yeh et al., 2019) and dynamic bayesian 

model (Ma et al., 2018). Use of these methods indicated that the performance of satellite-based 

precipitation products improves significantly. However, most of these studies reported 

unacceptable performance even after correcting bias, particularly in replicating extreme rainfall 

amounts. Mastrantonas et al. (2018) reported correction of bias  only improves the performance 

for high temporal scale and no improvement can be found for <6-hour rainfall amount. Deng 

et al. (2018) showed that bias correction can reduce error of GSMaP estimates though bias 

removal can also lead to disappearing of some rain events. Findings of previous studies 

therefore indicated the necessity of a more efficient method for bias correction of satellite 

precipitation.  

 Biases with remotely sensed rainfall products vary with geography, topography, season, 

windspeed and cloud type (Zeng and Yong, 2019; Saber and Yilmaz, 2018; Chen et al., 2019). 

Yeh et al. (2019) mentioned that bias in GSMaP rainfall estimation depends on the area being 

investigated together with elevation, and season. Relatively high uncertainty is found to be 

associated with GSMaP precipitation at high altitude regions compared with flat topography 

(Zeng and Yong, 2019). Utsumi and Kim (2018) reported IR-based precipitation product 

considerably overestimates rainfall intensity, as a result, bias tends to be related to cloud types. 

Saber and Yilmaz (2018) revealed that bias in GSMaP depends on rainfall thresholds, i.e., 

higher rainfall amount presents larger bias. Trinh-Tuan et al. (2019) showed the dependency 

of GSMaP bias on elevation and zonal windspeed in central Vietnam. Therefore, consideration 

of different factors can improve bias of satellite rainfall products. However, only a few attempts 

have been made to correct for bias using physical factors. Velasqeuez et al. (2020) proposed a 

method by taking orographic factor into account. Yeh et al. (2020) corrected bias of GSMaP 

data using elevation. To the best of our knowledge, no study utilises multiple physical factors 

to account for bias of satellite rainfall products such as GSMap.  



 In this study, a novel bias correction method is proposed. Hourly data from Global 

Satellite Mapping of Precipitation (GSMaP) v.7 is used and elevation, windspeed, season and 

rainfall types are considered. An ensemble algorithm, based on a large number of classification 

and regression trees (CARTs) called Random Forest (RF) (Breiman, 2001), is employed to 

correct raw GSMaP precipitation data by taking in-situ precipitation, elevation, distance to 

coast, month of the year, and threshold of precipitation into account. As different cloud types 

are accountable to produce amounts and intensities of precipitation, different intensity 

categories are considered as a proxy to could type. For example, stratus clouds produce light 

precipitation while nimbostratus clouds yield elevated precipitation. Likewise, distance from 

coast was used as a proxy to windspeed due to the fact that speed of wind usually decreases 

from the coast to inland (Kubota and Ahmad, 2006). Separate models were developed for 

different months in order to consider seasonality. Observed hourly precipitation, recorded at 

80 locations over peninsular Malaysia, is used for model development and validation of the 

bias correction models.  

 

2. Materials and methods  

2.1 Peninsular Malaysia 

Peninsular Malaysia (latitude 1.20º-6.40ºN; longitude 99.35º-104.20ºE) encompasses an area 

of 130,598 km2 (Figure 1). Topography of the country is composed of an irregular mountainous 

region in the middle and flat seashores around. It has a tropical climate with year-round high 

temperatures and humidity. Annual mean temperature in the peninsula varies between 21º C 

and 32º C (Pour et al., 2020). Rainfall climatology of the region is controlled by two monsoons 

and their interactions with heterogeneous land surface and coastlines. Most of the rainfall 

occurs during two monsoons, i.e, northeast monsoon (NEM) ranges from November to 

February, and southwest monsoon (SWM) occurs between May and August (Muhammad et 

al., 2019). Between the two monsoons, NEM is intense. Several extreme rainfall events often 

occur in consecutive days during NEM, resulting in floods, particularly to the west of 

peninsular Malaysia (Nashwan et al., 2018). 

Being a tropical country, peninsular Malaysia is more subtle to alteration in climatic 

characteristics (Shahid et al., 2017). Recent works reported increasing frequency and severity 

of  extreme events, causing societal and economic disruptions to peninsular Malaysia (Noor et 

al., 2018, Noor et al., 2020, Abdullah et al., 2019). For instance, an increase in monsoonal 

floods due to rainfall extremes is already evident in the region (Noor et al., 2018). The most 



recent flood (December 2014) affected thousands of people and registered huge economic 

damage (Shahid et al., 2017). Thus, reliable estimation of high-resolution real-time 

precipitation is very important for peninsular Malaysia, which could allow efficient monitoring 

of floods and consequent reduction of damage to  society and economy. 

 

2.2 Data sources 

Hourly observed rainfall records for the period 2000-2018 at 80 locations, distributed over 

peninsular Malaysia, were collected from Department of Irrigation and Drainage (DID), 

Malaysia. DID employs automatic tipping bucket rain gauge for measuring and recording of 

rainfall data. Figure 1 shows locations of rainfall stations in the study area.  

  

 
 

Figure 1 (a) Distance to coast; and (b) elevation of peninsular Malaysia. Point features 

represent rainfall gauges  

 

GSMaP near-real-time (GSMaP_NRT) and GSMaP gauge corrected (GSMaP_GC) 

hourly precipitation data (v.7) were acquired from 2000-

2018(https://sharaku.eorc.jaxa.jp/GSMaP/index.htm). It has a spatial resolution of 0.1°×0.1° 

(latitude × longitude) and developed by Japan Science and Technology Agency (Okamoto et 

al., 2005; Ushio et al., 2009; Yamamoto et al., 2017). GSMaP_NRT is developed by integrating 



precipitation rates, extracted from passive microwave radiometers and cloud images (Nashwan 

and Shahid, 2019b). GSMaP_GC is generated by correcting bias of GSMaP_NRT using 

observed precipitation database of climate prediction center (CPC) of the National Oceanic and 

Atmospheric Administration (NOAA). The CPC database includes 14 rain gauges records, 

mostly located in the coastal region of peninsular Malaysia. They are used to correct for 

GSMaP_NRT rainfall. 

 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) was re-sampled to the spatial resolution of GSMaP 

(0.1º×0.1º) and shown in Figure 1(a). Distance to coast at each GSMaP grid over peninsular 

Malaysia was estimated using proximity tool, available in ArcGIS (v. 10.7.1). Distance map 

was then converted to raster, maintaining resolution of GSMaP (0.1º×0.1º) (Figure 1(b)). 

 

3. Methodology 

Observed hourly rainfall data were used as  reference for correcting bias of GSMaP_NRT 

product. The GSMaP_NRT data was interpolated to station locations using an ordinary kriging 

technique as it is one of the most suitable methods for rainfall interpolation in Peninsular 

Malaysia (Jamaludin and Suhaimi, 2013; Hassim et al., 2020). A two-stage bias correction 

method was proposed in this study. In the first step, a classifier was used to categorise rainfall 

of different intensity based on observed data, and then a regression algorithm was used to 

predict rainfall for each intensity category. An algorithm, based on an ensemble of 

classification and regression trees (CART), known as random forest (RF), was used to classify 

rainfall categories and prediction of rainfall amounts for each category. A separate model was 

developed for each month to account for the influence of wind in different months. Out of 80 

stations, 70% of stations (56 stations) was used for model development and the rest (24 

stations) was used for validation. Stations used for model calibration and validation are shown 

in Figure 1 (black and red dots).  

Methodological procedure of this study is presented in Figure 2. GSMaP_NRT rainfall, 

elevation of each station, and distance to coast were used as inputs from which observed rainfall 

was derived. A classification model is developed first to classify GSMaP_NRT rainfall to 

different intensity categories. Thresholds used for classification of rainfall are given in Table 

1 Note that different regions classifies rainfall intensity differently regions. For example, 

American Meteorological Society classifies <2.5 mm/hour as light rainfall and >7.5 mm/hour 

as heavy rain, while UK Meteorological Office categorises < .5 mm/hour as light and > 4.0 

mm/hour as heavy rainfall (Barthiban et al., 2012). There is no universal definition to classify 



rainfall intensity for peninsular Malaysia. In Indonesia, rainfall intensity is classified as 0-1 as 

no rain, >1 -5 as light rainfall, >5-10 as moderate and >10 as heavy and >20 as very high 

rainfall. In Malaysia, Tan et al. (2015) classified hourly rainfall <2mm as low based on 

probability distribution function. Therefore,  classification developed by Indonesian 

Meteorological Department was adopted here with a slight modification of Tan et al. (2015) to 

define low rainfall intensity.  

 

Table 1 Thresholds used to classify hourly rainfall in Peninsular Malaysia 
 

Rainfall categories Threshold (mm) 

Low  ≤ 2 

Moderate > 2 to ≤ 5  

Moderately high > 5 to ≤ 10 

High > 10 to ≤ 20 

Extreme > 20 

 

Classified values of GSMaP_NRT rainfall, elevation of rainfall location, and distance 

to coast were used as inputs and classified values of observed rainfall was outputted to develop 

classification model. The output was then compared with GSMaP_NRT rainfall to make the 

first stage of the model. If GSMaP_NRT rainfall was within the range of classified model by 

the classifier, no correction is made. However, if it was found more than the upper range of the 

category modelled by the classifier, GSMaP_NRT rainfall was considered equal to the upper 

bound of the category or vice versa. The correction based on classified outputs can be expressed 

as: 

 

𝑅!"! =

⎩
⎪
⎨

⎪
⎧
𝑈# 									𝐼𝑓	𝑅$ > 𝑈# 									

𝑅$ 										𝐼𝑓𝑈# > 𝑅$ ≤ 𝑈#

𝐿# 										𝐼𝑓	𝑅$ < 𝑈# 								

      (1) 

 

where 𝑅!"! is the corrected rainfall based on classification, 	𝑅$  is GSMaP_NRT rainfall; 𝑈# 	is 

the upper bound; and 𝑈# is the lower bound of a category. For example, if a GSMaP_NRT 

rainfall amount of 7 mm was classified as moderate category (> 2 to ≤ 5 mm), then it was 

corrected as equal to the upper bound of that category (or 5 mm). 



 In the next step, a regression model was developed to predict the amount of rainfall in 

each class. However, separate model was used for each category. The model was developed as 

described above, except for rainfall amount. In this case, classified value of rainfall amount 

was used to predict depth of rainfall.  

 Calibrated models were used to correct the bias of GSMaP_NRT rainfall during the 

validation period (April 2012 to Dec 2018). Results from validation for all months were merged 

to assess the performance of the bias-correction method. The bias-corrected rainfall using the 

model proposed in this study is termed as GSMaP_BC. The GSMaP_BC was then compared 

with GSMaP_NRT and GSMaP_GC during the validation period to indicate the efficacy of 

proposed method. The performance of the bias correction method was measured using a set of 

statistical metrics. A brief description of the RF algorithm and the statistical metrics used for 

evaluating the performance are described below. 

 

 
Figure 2 Workflow, used for bias correction of GSMaP_NRT rainfall product  

 

3.1 Random Forest 

Random Forest is a promising classification and regression method, developed by Breiman 

(2001) by combining previously developed ‘random decision trees’ by Ho (1995) and his own 

method ‘bagging of predictors’ (Breiman 1996). In brief, a random forest method uses a series 

or ‘forests’ of classification or regression trees (CART) that partition a set of explanatory 



variables recursively to predict a response variable. The algorithm first creates a training 

dataset by sampling cases randomly from a large dataset with replacement, popularly known 

as ‘bootstrap samples’ from which the trees are ‘grown’. Then RF selects a subset of 

explanatory variables and finds a variable (predictor) that partitions the response variable the 

‘best’ in the training dataset. The partitioning is performed based on the identification of 

predictor that minimizes error if the response variable is continuous. However, if the response 

variable is categorical then it minimizes within-group variance. This optimal prediction forms 

the first node in the tree and also splits the data. In the same way, the algorithm randomly 

selects a subset of predictors each time at each node and split the data. The process stops when 

further split is not possible. The random selection method of samples and explanatory variables 

reduces bias and variation within and between trees, resulting in an increase in the predictive 

power of the technique (Rokach, 2016). For classification trees, samples those are not included 

in the training data are referred to as ‘out-of-bag’ (OOB) and they are then used to predict their 

response using the tree. The misclassification of cases is subsequently used as an estimate of 

the predictive error rate known as ‘out-of-bag error’ (OOB-ER).  

 Mathematically, a random forest (Breiman, 2001) can be defined as a collection of 

decision tree predictors 𝑔(x; 𝜃%), 𝑘 = 1,2, … , 𝐾 where, x is the observed set of explanatory 

variables (predictors) associated with random vector X, 𝜃% is the parameter vector assumed to 

be independent and identically distributed random vector. The training data (observed) are 

assumed to be independently drawn from a joint distribution of (X, 𝑌) and forms 𝑛(𝑝 + 1) 

tuples (X&, 𝑌&), (X', 𝑌'), …, (X(, 𝑌(). In case of regression, random forest prediction is the 

average over the set as: 

�̅�(X) = 	
1
𝐾	B𝑔(x; 𝜃%)

)

%*&

 
(2) 

 

The average prediction error (PE) for an individual tree can be written as: 

𝑃𝐸 = 𝐸+𝐸,-E𝑌	 − 	𝑔(x; 𝜃%)G
' 

 

(3) 

RF is employed in such a way that it (i) grows trees to maximum depth keeping individual error 

low; (ii) grows each tree based on a bootstrap sample from the training data; (iii) selects m 

covariates and chooses the best split of that node, based on these covariates at each node of 

every tree.  



RF employs many decision trees and combines them to provide a more precise and 

stable prediction. Therefore, RF is a better prediction compared to a single model. RF 

randomizes in two stages, i.e., selecting training subset and then select variable at each node of 

a tree. This helps RF to overcome issue of overfitting which is usually common in other tree-

based algorithms. Additionally, random subsampling helps RF to generalize data in an efficient 

way to obtain a better prediction. Internal validation and relative importance of the variables 

are evaluated in RF during data sampling which is also used to estimate optimum number of 

trees. Therefore, optimization of hyperparameter of RF (number of trees) is not a pre-requisite, 

common to other machine learning algorithms. The RF can be used for both classification and 

regressions, consequently, it is flexible and used in diverse applications. Fern´andez-Delgado 

et al. (2014) evaluated 179 classifiers and showed that RF is the best among classifiers. Sa'adi 

et al (2017) summarized that RF is capable of avoiding overfitting, handling a large amount of 

data, and has better analytical flexibility. The bias correction algorithm proposed in this study 

needs both classification and regression algorithms. Considering its robust prediction 

capability and diverse applicability, RF was therefore chosen. The “randomForest” package in 

R program was used for model development.  

  

3.2 Performance Evaluation of Prediction Models 

To evaluate the performance of the proposed method, observed rainfall data at each grid 

was compared with GSMaP_NRT, GSMaP_BC, and GSMaP_rainfall. Four categorical 

indices, namely Probability of Detection (POD), Critical Success Index (CSI), hit BIAS 

(HB) and False Alarm Ratio (FAR) (Rozante et al., 2018; Nashwan et al., 2019) were used 

to evaluate the performance of the classifier. Four statistical indices, namely normalized 

root mean square error (NRMSE), Nash-Sutcliff efficiency (NSE) (Nash and Sutcliffe, 

1970), modified index of agreement (md) (Willmott, 1981) and Kling-Gupta Efficiency 

(KGE) index (Kling et al., 2012) were used to evaluate accuracy in replicating observed 

rainfall amount. Detail description of the metrics used in this study can be found in 

Nashwan et al. (2019). The four categorical indices are defined as: 

  

𝑃𝑂𝐷 =	 ./01
./0123/1141

        (2) 

𝐶𝑆𝐼 = 	 ./01
./0123/11412	67814	987:;1

      (3) 

𝐻𝐵 =	./01268714	987:;1
./0123/1141

       (4) 



𝐹𝐴𝑅 = 	 67814	987:;1
./01267814	987:;1

       (5) 

where, Hits represent number of success in categorizing the GSMaP_NRT rainfall to observed 

class while Misses indicate vice versa. False Alarms indicate a prediction of rainfall when no 

rainfall occurred. The ideal value for POD, CSI and HB is 1 while it is 0 for FAR. The statistical 

indices used here are defined as: 

 

𝑁𝑅𝑀𝑆𝐸	 = 	
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   (9) 

where 𝑥1/;,/ and	𝑥LM1,/ are the i-th GSMaP and observed data; 𝑛 is the sample size; 𝑟 is 

Pearson’s correlation; 𝜇	and σ	are mean and standard deviation, respectively of bias-corrected 

(sim) and observed (obs) data. The values of NRMSE ranges between 0 and µ, NSE between 

1.0 and -µ, MD between 1.0 and -1.0, and KGE between - µ and 1.0. The optimum value of 

NSE, MD and KGE is 1.0 while NRMSE is 0.  

 

4. Results 

4.1 Correlation between rainfall and distance to coast and elevation 

The relationship of annual mean rainfall with distance to coast and elevation is presented in 

Figure 3 which shows a decrease in rainfall according to two parameters. Considering non-

normal distribution of distance to coast and elevation variables, Spearman’s rank correlation 

was performed. The correlation coefficients between rainfall and distance to coast and 

elevation were -0.32 and -0.45 (p<0.01), suggesting an influence of these two physical 

parameters on rainfall in the study area.  



 

 
Figure 3 Correlations between annual mean rainfall: (a) distance to coast; and (b) elevation  

 

4.2 GSMaP in reconstructing spatial distribution of mean annual rainfall 

Annual average precipitation of peninsular Malaysia estimated with observed, GSMaP_NRT, 

and GSMaP_GC rainfall is presented in Figure 4. Observed precipitation data at 80 locations 

were gridded to the same resolution of GSMaP (0.1º×0.1º).  

Both GSMaP_NRT and GSMaP_GC were able to show high rainfall in the northeastern 

coast and low rainfall area of central region. However, low rainfall region in Peninsular 

Malaysia is elongated from northwest corner to central east coast, while both GSMaP_NRT 

and GSMaP_GC showed that the extent of low rainfall zone stretches between central north 



and west coast. Both products also failed to replicate low rainfall zone in the south of peninsula. 

This means that gauge correction was insufficient to improve the performance of GSMaP_NRT 

precipitation in the region.  

 

 

Figure 4 Annual average precipitation of peninsular Malaysia, derived from observed records, 

GSMaP_NRT and GSMaP_GC during 2000-2018 

 



4.3 Performance in reconstructing different rainfall categories 

The performance of classification of GSMaP_NRT rainfall was estimated by comparing the 

number of events belongs to different categories detected using categorical metrics. The total 

number of observed events belongs to different categories and those that are detected by 

different rainfall products are presented in Figure 5. Rainfall data at all stations used for 

validation (24 stations) was used to estimate rainfall events. The number of events belongs to 

low rainfall category was very high compared to other categories for all products. Therefore, 

low rainfall events are not presented in Figure 5 in order to have a useful comparison of rainfall 

events that belong to different categories of different products. The number of observed low 

rainfall events was 118,321, while detected number of low rainfall events by GSMaP_NRT, 

GSMaP_GC, and GSMaP_BC were 125,241, 124,674, and 116,133, respectively. Figure 5 

shows that the number of rainfall events of other categories estimated by GSMaP_BC was also 

closest to the observed value. The GSMaP_NRT estimated a higher number of moderate and 

moderately high rainfall events, while less number of high and extreme rainfall events 

compared to GSMaP_GC. This indicates that mean annual rainfall estimated by GSMaP_NRT 

was close to GSMaP_GC. Therefore, spatial distribution of annual average rainfall of 

GSMaP_NRT and GSMaP_GC resembled to each other (Figure 2). 

 



Figure 5 Categories of rainfall events calculated from observed rainfall, GSMaP_NRT, 

GSMaP_GC and GSMaP_BC data 

 

The performance of classified GSMaP_NRT rainfall at each grid point was estimated 

using categorical indices and results are presented in Figure 6 which showed a large 

improvement of bias-corrected rainfall in terms of categorical indices. The POD for 

GSMaP_NRT and GSMaP_GC were estimated to be 0.59 and 0.60 , while it was 0.85 for 

GSMaP_BC. A similar improvement was also noticed in terms of other metrics. The CSI, HB 

and FAR of GSMaP_BC were 0.68, 0.79 and 0.38, respectively, much better than that of 

GSMaP_NRT and GSMaP_GC. 

 

 

 

Figure 6 Performance of the classifier in classifying GSMaP_NRT rainfall to different 
observed rainfall categories estimated using four categorical metrics: (a) probability of 
detection; (b) critical success index (CSI); (c) hit bias (HB); and (d) false alarm ratio (FAR) 
 

4.4 Performance in estimating rainfall depths 

The performance of bias-corrected rainfall compared to GSMaP_NRT and GSMaP_GC was 

evaluated for each rainfall category and for complete timeseries. The performance was 

evaluated using both statistical metrics and visual inspection of scatterplot and the Taylor 

diagram.  

The performance of different rainfall products compared to observed data for rainfall 

events ≤2 mm/hour, based on four statistics, are presented in Figure 7. In this figure, median 

(horizontal line in the box), interquartile range (height of the box), and total range with outliers 

(whiskers and dots) of statistical metrics, estimated at different grids are shown. The boxplots 

of the metrics clearly indicated a higher performance of GSMaP_BC compared to 

(a) (b) (c) (d) 



GSMaP_NRT and GSMaP_GC. The median of NRMSE, PBIAS, md and KGE for 

GSMaP_BC were much higher than those for GSMaP_NRT and GSMaP_GC. 

Results for other rainfall categories were also found more or less similar. GSMaP_BC 

performed much better than GSMaP_NRT and GSMaP_GC. The median NRMSE for low, 

moderate, moderately high, high, and extreme rainfall categories were 0.9, 1.0, 1.8, 3.6, and 

4.9 for GSMaP_BC while they were 1.1, 2.0, 4.9, 9.1 and 23.1 for GSMaP_NRT and 1.1, 1.9, 

4.7, 7.9 and 22.1 for GSMaP_GC. Similar improvements were noticed in terms of other 

statistics. 

The height of the box for GSMaP_BC was found less compared to GSMaP_NRT and 

GSMaP_GC for all statistics except md, which indicated a similar performance of the 

GSMaP_BC for most of the grid points. The height of the box for md was much higher for 

GSMaP_BC, but location of the median line in the lower side of the box indicated near to the 

perfect value of md in some locations. 

The scatterplot of observed and estimated rainfall by the three products is shown in 

Figure 8. The GSMaP_NRT, GSMaP_GC, and GSMaP_BC rainfall were presented using 

orange, blue and green dots. The GSMaP_NRT and GSMaP_GC rainfall appeared to be 

completely scattered. The correlation coefficient for both products was always <0.06, 

suggesting a poor outcome. The correlation lines for the products (orange and blue lines) were 

far apart from the diagonal line of the plot. The performance appeared to improve significantly 

after bias correction method. The GSMaP_BC aligned with diagonal line of the scatterplot. The 

green line represents that the GSMaP_BC was much closer to the diagonal line with a 

coefficient value of 0.12, 0.07, 0.08, 0.33, and 0.7 for low, moderate, moderately high, high, 

and extreme rainfall categories, much higher than GSMaP_NRT and GSMaP_GC. 

 

 



 

Figure 7 Performance of bias correction method in replicating five categories of observed 
rainfall: (a) low; (b) moderate; (c) moderately-high; (d) high; and (e) extreme  
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Figure 8 Performance of bias correction method in replicating five categories of observed 
rainfall: (a) low; (b) moderate; (c) moderately-high; (d) high; and (e) extreme  
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The areal average of observed and three rainfall datasets was used to compare their 

performance using the Taylor diagram. Three statistical metrics (correlation, standard deviation 

(SD) and root-mean-square (RMS) error))) are presented to compare timeseries rainfall. The 

Taylor diagram presented in Figure 9 shows that the points representing GSMaP_BC rainfall 

are much closer to observed values (deep green square box in x-axis) compared to 

GSMaP_NRT and GSMaP_GC. The difference in SD of GSMaP_BC and observed rainfall 

was less than 0.1 while RMS difference was only 0.15 for low rainfall category. Rainfall values 

of all other categories also improved significantly after accounting bias. In all cases, the point 

representing bias-corrected rainfall was much closer to observed value.  



 

 

Figure 9 Taylor diagram, showing the performance of bias correction in replicating five 
categories of observed rainfall: (a) low; (b) moderate; (c) moderately-high; (d) high; and (e) 
extreme  

 

4.5 Performance in reconstructing complete rainfall time series 

The performance of bias-correction was further evaluated for whole timeseries at each grid 

location and results are presented in Figure 10. The statistical metrics estimated for complete 

time series revealed about 110% reduction of NRMSE in GSMaP_BC (0.8) compared to 

GSMaP_NRT (1.7) and GSMaP_GC (1.75) (Figure 10a). The PBIAS of GSMaP_BC was 

found near to zero (0.3) while it was 2.1 and -3.1 for GSMaP_NRT and GSMaP_GC. The md 

values for GSMaP_NRT, GSMaP_GC and GSMaP_BC were 0.48, 0.51 and 0.75 and the KGE 

(a) (b) 

(c) (d) 

(e) 



as -0.31, -0.33 and 0.51, signifying a big improvement in terms of the performance of 

GSMaP_NRT rainfall, after bias correction. The performance was also higher compared to 

gauge-corrected rainfall product of GSMaP.  

 The scatterplot of GSMaP datasets against observed rainfall are presented in Figure 

10(b). Complete timeseries at all 24 stations used for validation were averaged to prepare the 

scatterplot. The range of rainfall was reduced (0 to ~50 mm) due to averaging. The scatterplot 

showed a complete scattering of GSMaP_NRT and GSMaP_GC rainfall with near to zero 

correlation coefficient (0.03). In contrast, GSMaP_BC rainfall was aligned with the diagonal 

line. The R2 value of 0.63 for GSMaP_BC, indicating a significant improvement of rainfall 

values with the proposed method.   

The Taylor diagram in Figure 10(c) also revealed that the point representing 

GSMaP_BC rainfall was much closer to observed rainfall compared to GSMaP_NRT and 

GSMaP_GC. The difference in SD of GSMaP_BC and observed rainfall was less than 0.4 

while the RMS difference was only 0.5. 

 

  



 
 

 

 

                                

 

Figure 10 Taylor diagram, showing the performance of bias correction method in replicating 
complete timeseries of observed rainfall in terms of: (a) NRMSE; (b) PBIAS; (c) md; and (d) 
KGE: scatter plot of observed rainfall against (e) GSMaP_NRT; (f) GSMaP_GC; and (g) 
GSMaP_BC; and (h) Taylor diagram 

 

4.6 Performance in replicating spatial pattern of rainfall 
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The performance of the model in replicating spatial pattern of observed rainfall was finally 

evaluated. The correlation of monthly observed and GSMaP estimated rainfall at each grid 

point was estimated for all months during the validation process. The Pearson’s correlation 

coefficienta for different months for three products are presented in Figure 11, which revealed 

higher R2 of GSMaP_BC rainfall with observed rainfall compared to GSMaP_NRT and 

GSMaP_GC for all months. The R2 values for GSMaP_BC were mostly >0.7 while they were 

in the range of 0.2-0.78 for GSMaP_NRT and GSMaP_GC. The R2 values for GSMaP_BC 

were higher than the critical value of 0.505 (p=0.01). This indicated capability of GSMaP_BC 

to replicate spatial pattern of observed rainfall accurately, and therefore, capable of monitoring 

hydrological events such as floods. 

 

Figure 11 Spatial association of different rainfall products with observed rainfall over 
peninsular Malaysia for all months  

 

5. Discussion 

Estimation of precipitation with spatial and temporal accuracy is very indispensable for hydro-

meteorological studies (Iqbal et al., 2020, Ahmed et al., 2017). Satellite-based products are 

becoming reliable source to obtain spatially distributed rainfall estimates at regional and global 

scales (Bhatti et al., 2016, Noor et al., 2019a). The requirement of high spatial resolution 

precipitation is more demanding in tropical region because of its large variability over a short 

distance. Therefore, several studies have been conducted to evaluate the performance of 

different satellite-based precipitation products, including IMERG-E, IMERG-L, IMERG-F, 

GSMaP_NRT, GSMaP_GC, TRMM 3B42RT, CMORPH, TMPA 3B42V7, PERSIANN-CDR 

and GPCP-1DD in peninsular Malaysia. Comparing the results of this study with existing 



studies revealed better performance of GSMaP rainfall products for peninsular Malaysia (Tan 

et al., 2015; Paska et al., 2017; Tam et al., 2019; Soo et al., 2020; Noor et al., 2020). Tam et al. 

(2019) showed GSMap-NRT is the best product for hydrological simulation in the Kelantan 

River basin, located in northeast high rainfall region. Noor et al. (2020) showed GSMaP_GC 

is the best product for estimating rainfall intensity-duration-frequency curve for peninsular 

Malaysia. Despite better performance of GSMaP products in peninsular Malaysia, they still 

showed large bias. Noor et al. (2020) showed that GSMaP_GC underestimated rainfall 

intensity in the range of 8-27% while underestimation by GSMaP_NRT was in the range of 

35-49%. Therefore, this study attempted to improve the performance of GSMaP_NRT rainfall 

in peninsular Malaysia. 

Two physical factors, distance to coast and elevation were considered to correct for bias 

in GSMaP_NRT rainfall. Mean annual rainfall in peninsular Malaysia was found to have a 

significant negative association with distance to coast and elevation parameters. Northeast 

monsoon (NEM) brings moist air from the South China sea that produces intense rainfall in 

west coast of Malaysia. The southwest monsoon (SWM) flows from the Indian Ocean to 

eastern coast of the peninsula. Therefore, western coastal region receives higher rainfall during 

NEM and eastern coastal region receives during the SWM. Rainfall gradually decreases from 

coast to inland. Therefore, a significant correlation (p<0.05) between annual mean rainfall and 

distance to coast was observed in this study. Negative association between rainfall and 

elevation in peninsular Malaysia is due to less inter-monsoonal rainfall in high elevation zones 

(Wong et al., 2009). Besides two monsoons, a major portion of rainfall occurs during two inter-

monsoonal break periods (April and October). Thunderstorm is a major cause of intense rainfall 

during inter-monsoonal periods. Thermally driven local circulation develops convective clouds 

and causes localized rainfall in the late afternoon, mostly in the valleys and in flat coastal 

regions (Joseph et al., 2008). In addition, most of the elevated interior regions receive less 

rainfall during NEM due to blockage of westward monsoon progression by the Titiwangsa 

mountain range (Juneng et al., 2007). The relationship of annual mean rainfall with elevation 

(Figure 3) showed a very week association between rainfall and elevation for low altitude and 

e high for elevated zones. As most of the stations used to derive the relationship are located at 

low elevation, overall correlation of rainfall with elevation was week. However, the correlation 

was still significant at p<0.05. 

A major drawback of satellite precipitation products is overestimation of the occurrence 

of rainfall. This was also observed in this work. Both GSMaP_NRT and GSMaP_GC estimated 



more low and moderate rainfall events and underestimated high and extreme rainfall events. 

Classification of rainfall in the first stage of bias correction approach, proposed in this study, 

helped correcting classification of rainfall, and thus, reduces uncertainty in the estimation 

compared to other bias correction approaches that are based on mean, variability and 

distribution matching. Pour et al. (2016) showed better performance in bias correction of global 

circulation model (GCM) precipitation, especially when a classification is used to identify 

rainfall days before estimating rainfall amounts using a regression model. 

This study revealed a large improvement in the performance of GSMaP_NRT rainfall 

in terms of all statistics, and the proposed bias correction method with two physical parameters 

is highly effective. The PBIAS in GSMaP_NRT was in the range of -24-23% with a median 

of 2.1%. After correction, the bias in GSMaP_BC was in the range of -10-9.5% with a median 

of 0.3%, much lower than the median bias of GSMaP_GC (-3.1%). The use of physical factors 

significantly affected the prediction of rainfall which can be employed for reducing bias in 

satellite-based rainfall products. However, the proposed method is highly dependent on the 

classification scheme of rainfall events. The use of RF also improved the performance of 

GSMaP_NRT rainfall. In future, other classification and regression algorithms can be used to 

compare the performance of the proposed bias correction method. 

The bias correction model was developed using rainfall data of 70% of the stations 

selected randomly. The performance of any prediction model varies according to the 

percentage of data used for model development. For developing IDF models at ungauged 

locations in peninsular Malaysia, Noor et al. (2020) employed 80% of data for model 

development and 20% for validation. For the prediction of seasonal extreme rainfall events in 

peninsular Malaysia, Pour et al. (2020) used 70% of data for model development and the 

remaining 30% data for validation. A review of previous studies indicated that no certain rule 

can be used for model calibration and validation. In future, the performance of bias correction 

method for different data classification can be evaluated. 

Rainfall in peninsular Malaysia, particularly convective rainfall during inter-monsoonal 

periods, is highly localized. The cell diameters of such convective rainfall are usually <10 km 

(Schroeer and Sungmin, 2018), which may not be detected by satellite sensors, having a spatial 

resolution of 10 km. However, a comparison was made in this study among rainfall products 

having the same spatial resolution (0.1°×0.1°). The categorical metrics like FAR may not 

provide an accurate estimation of the rainfall events, however, they still can be used to evaluate 



relative performance of different rainfall products with the same spatial resolution. This fact 

should be considered in the interpretation of the results, presented in this work. 

 

6. Conclusion 

 

A physical empirical model was developed for correcting bias of GSMaP precipitation product. 

The performance of the proposed method was evaluated by comparing it with GSMaP_NRT 

and GSMaP_BC. Results revealed a significant improvement in GSMaP_BC rainfall product 

compared to GSMaP_NRT and GSMaP_GC. The two-step bias correction approach, based on 

classification and regression techniques, was able to reconstruct categories of different rainfall 

intensity using observed data with a reasonable error. The bias-corrected rainfall was able to 

replicate spatial distribution of observed rainfall. Accurate near-real-time high-resolution 

hourly rainfall is very important for monitoring and forecasting floods and landslides, triggered 

by intense rainfall. Accurately corrected near real-time GSMaP data can be used for this 

purpose in the absence of dense rain-gauge network. This can be particularly important for 

peninsular Malaysia, where flash floods and landslides, driven by short-lived intense rainfall, 

are common. The proposed methods can be applied to other near-real-time satellite 

precipitation datasets to find the best bias-corrected rainfall product for peninsular Malaysia. 

Besides, other classification and regression algorithms, particularly those based on intelligence 

algorithms can be used to explore further improvement of the model. 
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