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Abstract
Evidence highlights the intrinsic link between nurse staffing and expertise, and outcomes for service users of 
healthcare, and that workforce retention is linked to the clinical and organisational experiences of employees. 
However, this understanding is less well established in mental health. This study comprises a retrospective 
observational study carried out on routinely collected data from a large mental healthcare provider. Two 
databases comprising nurse staffing levels and adverse events were modelled using latent variable methods 
to account for the presence of multiple underlying behaviours. The analysis reveals a strong dependence of 
the rate of adverse events on the location and perceived clinical demand of the wards, and a reduction in 
adverse events where registered nurses exceed ‘clinically required levels’. In the first study of its kind, these 
findings present significant implications for nursing workforce policy and present an opportunity to not only 
improve safety but potentially impact nurse retention.
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Introduction

Since the publication of To Err Is Human,1 patient safety has received growing attention from 
researchers and policymakers worldwide.2 The National Health Service (NHS) in England is no 
exception to this and remains the subject of numerous reports condemning the state of patient 
safety and highlighting insufficiencies that contribute to patient harm.3–5 Evidence suggests that 
one in 10 patients come to harm as a result of healthcare, and almost half are considered avoidable.6 
However, understanding of staff safety is far more limited.7 Staff safety is pertinent in the current 
climate within the NHS, which is facing a growing shortage of overall staff,8,9 and registered 
nurses (RNs) in particular.10–13 Safety measures within healthcare have historically related to the 
patient. The collection of data on ‘violence and aggression’ in the Mental Health Safety Thermometer 
is a recognition of this being a common harm experienced in this care setting.14 However, the met-
ric does not distinguish between harm to other patients and harm to staff. There has been some 
qualitative work that highlights the concept of the absence of threat of harm to staff as being essen-
tial for nurses to be able to work effectively in the inpatient psychiatric setting,15 but there is little 
published research quantifying staff harm and exploring its relationship with staffing.

Of the limited research that is available regarding staff harm and safety measures, it has been 
found that feelings of safety correlate with experiences of stress and burnout. Evidence suggests 
that concern for personal safety is a high stressor and can contribute to burnout.16 Given that 
higher burnout has been linked with staff being more likely to view their work environment as 
‘unsafe’ but reduces the likelihood of ‘near misses’ being reported,17 staff wellbeing is important 
in ensuring both an adequate workforce and being able to accurately capture the state of safety 
in healthcare.

The NHS currently utilises a number of operational databases for adverse events reporting and 
management of staffing levels, which collate routine patient and operational data that could be 
used for such purposes. The inherent availability of large, routinely collected datasets,18,19 along-
side the emerging power of machine learning and knowledge-driven decision-making tools,20 has 
been championed as a promising area for improving healthcare services.21,22 Indeed, the overlap 
between patient safety and staffing has been well established utilising such datasets.23–27

This study utilises existing data from a large English mental healthcare provider of both acute 
and community services, focusing on the analysis of reported incidents to examine how such data 
can be used to monitor and predict where staff safety may be at risk. We examine the extent to 
which the perceived demand for RNs and unregistered nurses, as well as the variations from the 
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‘clinically required’ levels, is correlated with increases in staff adverse event reporting. By utilising 
the clinically perceived requirements in place of the pre-planned levels, the analysis better reflects 
the shift by shift requirements.

This study utilises anonymised, routinely collected administrative data and therefore was not 
subject to NHS ethical approval. HRA algorithm institutional ethical approval was sought and 
granted by the University and access was granted by the participating trust’s research and develop-
ment department following protocol review.

Data selection criteria

Two databases were extracted from a large English mental healthcare provider in England providing 
both acute and community services – one containing safety incidents and one containing nurse staff-
ing data. The nurse staffing dataset comprised a single data table detailing the ward-level nursing 
complement on each shift (early, late, and night) by nurse type (registered or unregistered) specifi-
cally for inpatient areas. In addition, the dataset comprised the ‘planned level’ and ‘clinically 
required level’ of nurse staffing. The planned level was determined annually in line with available 
budgets, whereas the clinically required level allowed clinical staff to report additional staff require-
ments in accordance with demand and clinical judgements for safe staffing. The incident reporting 
system is a commonly used system for reporting adverse events comprising a web-form for data 
capture and SQL engine for data storage. The data storage element comprised two key data tables 
– one detailing the incident (including location, severity, likelihood to repeat, and date) and the other 
detailing those involved (patient vs staff, victim vs perpetrator vs witness, age). The database was 
initially aggregated to day and ward level, pooling adverse events to find the total daily rate. This 
selection was then aligned with the trust’s staffing database by date and ward ID.

The co-variates of interest selected from the staffing database were the clinically required staff-
ing level and the variation of actual staffing from the required levels for each of the three shifts 
(referred to as the DeltaShift

Staff type  terms). This clinically required level showed a change (either more 
or less) from the planned level on 37 per cent of the ward-shift pairings (and 72% of ward-days 
having at least one shift recommending a change). These clinically required levels have the advan-
tage of reflecting both the perceived demand, combining case complexity and ward activity, and 
the confidence of the staff in delivering safe care.

The variation from the clinically required staffing levels was used instead of the absolute staff-
ing level to reduce the collinearity of the covariates. Where the level of staffing is less than the 
clinical demand, we can infer a situation in which staff members must optimise their time, with a 
greater risk of tasks going undone or work being rushed. Hence, where staffing levels are less than 
the demand requires, we could expect to see low priority tasks (such as the reporting of near 
misses) going undone.

The other confounding variable included for analysis was the geographical location of the ward. 
The data from this trust were tagged within the incident reporting database for one of 10 geographi-
cal locations, which have been pseudonymised for this analysis. A brief description of the special-
ties and characteristics of each location are supplied in Table 1.

Each feature of the constructed dataset was inspected as histograms in order to remove extreme 
outliers, which were then classified as miss-entered data, constituting 1.2 per cent of the extracted 
data. The analysis subsequently addressed the relationship between the variation of nurse staffing 
(by shift) and perceived clinical demand on the rate at which members of staff were reported as 
victims of adverse events. The definition of ‘victim’ arises from the event reporting system where 
each individual is flagged for their involvement, for example, ‘victim’, ‘perpetrator’, or ‘witness’. 
To allow for variation in ward sizes, the rate of reports was corrected for the total number of nurses 
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on shift for a given ward and day. The analysis hence models the number of staff reported as vic-
tims of an adverse event per nurse on shift as a function of perceived clinical demand, and variation 
in staffing from the perceived clinical demand with location ID serving as a proxy for safety and 
reporting culture.

Method

The data were analysed via a selection of count-based models including Poisson, zero-inflated 
Poisson, negative binomial, and hurdle regressions.28 The Poisson regression is the typical form of 
general linear model to apply to count data, with the others dealing with variations from the basic 
Poisson distribution. The negative binomial regression is designed to model count data with over-
dispersion (i.e. larger error variance than allowed for by Poisson regression), while the hurdle and 
zero-inflated regression models count data that contain more zeros than is typical of the Poisson 
process. Each analysis routine used the well-documented implementations in the R language in the 
PSCL29 and MASS30 packages. Model comparisons were made using the Bayesian information 
criteria (BIC) in which a smaller BIC score is indicative of a superior model.31

Subset selection was carried out via LASSO-regularised regression routines,32 in particular the 
Poisson and binomial-family glmnet algorithms implemented in R by the glmnet package.33 The 
LASSO-regularisation approach aims to extract the smallest subset of features that explain the 
model without the reduced error bars inherent in stepwise selection.34 The regularisation parameter 
λ was tuned via 10-fold cross validation (CV), and model coefficients are reported for the ‘one 
standard error’ λ term, λ1SE . Using λ1SE  has been suggested to result in a simpler model, minimis-
ing over-fitting error, and hence give the more parsimonious explanation of the system.33,35

The Expectation–Maximisation (EM) algorithm36–38 used in the study makes use of the ‘emax.
glm’ R implementation. The data analysis was limited to two competing Poisson regression models 
for simplicity, using 20 randomly selected starting conditions to perform early ending fits in order 
to explore the parameter space and check for an optimal starting point.

Results

The aggregated dataset analysed comprised 40,123 observed days (total) divided between 51 wards 
and 10 locations (see Table 1 for descriptions). The data were recorded over 3 years as part of the 

Table 1. Location descriptions.

Code

Loc1 Low security unit (Men)
Loc2 Hospital with high security wards
Loc3 Inpatient adult ward
Loc4 Adult working age
Loc5 Older people
Loc6 Older people
Loc7 General inpatient including PICU
Loc8 Medium security unit
Loc9 Community inpatient (autism and substance abuse assisted living)
Loc10 Long stay rehab

PICU: paediatric intensive care unit.



Jones et al. 1337

routine function of the trust with the earliest observations taken from September 1, 2014, until 
March 31, 2017. Within the study, there were 10,119 events reported, accounting for 19,693 mem-
bers of staff being the victim of an adverse event, inclusive of near misses and non-harm incidents. 
The events reported have a raw prevalence of 0.252 (±0.004) events reported per ward per day and 
0.491 (±0.009) members of staff being a victim of an event per day per ward.

Prior to analysis, the rate of adverse events where staff were victims was first characterised 
before removing outliers. The majority of day–ward combinations resulted in no adverse events 
being reported, accounting for 84 per cent of the dataset. Where events were reported, each was 
tagged for an incident type. Aggregating by incident type, the most prevalent events were 
‘Aggression by Patient on Staff or Other’ (6520 events reported with 12,138 members of staff as 
victims), ‘Inappropriate Behaviour’ (1762 events reported with 4058 members of staff as victims), 
‘Self-Harm’ (429 events reported with 929 members of staff as victims), and ‘Sexual Incidents’ 
(298 events reported with 493 members of staff as victims).

Initial trials of the Poisson model (BIC = 74,295) demonstrated evidence of over-dispersion, 
with the deviance residuals showing non-normal behaviour on a Q-Q plot (see Figure 1(a)). The 
model dispersion was estimated at 3.07 via auxiliary ordinary least squares (OLS) regression (with 
an associated p value below numeric precision) implying over-dispersed errors. Trials of the dis-
persion-corrected count models showed an improvement in the BIC scores, with the negative bino-
mial giving the optimal model (BIC = 52,726) compared to the zero-inflated (BIC = 56,928) and 
hurdle (BIC = 56,916) models. The negative binomial model resulted in a sizable reduction in the 
BIC score in comparison to the Poisson model, indicating that the reporting of adverse events is 
better explained by the negative binomial model.

Despite the improvement in BIC score, inspection of the negative binomial deviance residuals 
reveals a distinct structure. Notably, the model shows a bias to under-estimating larger values 

Figure 1. Comparison of residuals via a) QQ-plot and b) prediction-residual plot for the Poisson and 
negative-binomial regression models.
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(Figure 1(b)) and a strong discontinuity in the Q-Q plot (see Figure 1(a)). This behaviour may well 
be explained by having two competing processes – one driving the inflated zero counts and the 
other the expected Poisson behaviour.

Two competing behaviours are relatively common, and should, in theory, be well modelled via 
the hurdle or zero-inflated models. However, if the variables being modelled do not account for 
which of the two behaviours dominate, these models will have only limited performance. As an 
alternative, we turn now to consider how well a latent variable model, such as the EM algorithm, 
explains the data.

Having fit the EM algorithm, the data were found to be well divided between the two models. 
Dividing the data at a model-probability of 0.5, the two models show remarkably different average 
rates of adverse events per nurse on the ward of 0.175 (±0.002) and 0.00087 (±0.00004) for 5908 
and 34,079 observations, respectively. With these values in mind, it appears that the system is 
divided between adverse events being reported at a moderate rate and at a low rate. We, hence, 
adopt the term ‘Moderate Reporting Model’ (MRM) and ‘Low Reporting Model’ (LRM) to 
describe the two competing scenarios.

To explore how well we can predict which model applies to a new observation, the LRM prob-
abilities arising from the EM algorithm were fit using LASSO-logistic regression. By aggregating 
the data into two groups, LRM versus MRM, the regression becomes a binomial regression prob-
lem and is hence referred to as the Binomial Model (BM). The initial BM, performed using the 
same variables as the EM algorithm, showed some predictive power (‘receiver operator curve – 
area under curve’ score (roc-auc) = 0.7474). The roc-auc score takes values between 0.5 (unable 
to predict the correct model) and 1 (perfect prediction of the correct model), with a value of 0.75 
suggesting only moderate predictive power.

To improve the predictive power of the BM, the covariates were expanded to include the 
last reported rate of adverse event on each ward. The addition of the extra term dramatically 
improved the roc-auc score (0.9983, near perfect prediction). This suggests that the model 
division learnt through the EM algorithm may be well predicted for new observations, not 
merely learnt retrospectively, and is highly dependent on the previous reporting rate. The 
parameter values for the optimal BM are given in Table 2, and the odds ratio and confidence 
intervals for the staffing parameters are included in Figure 2 where a positive parameter value 
indicates a preference for the LRM.

Table 2. Location parameters for the three models (with 95% confidence intervals and significance level).

Binomial model Moderate reporting model Low reporting model

Loc1 0.341 [0.0924, 1.17] (–) –1.75 [–1.95, –1.47] (***) 0 [0, 0] (–)
Loc2 0 [–0.0808, 0.0808] (–) –1.03 [–1.23, –0.749] (***) 0 [0, 0] (–)
Loc3 0.769 [0.352, 2.32] (–) –1.08 [–1.62, –0.471] (***) 0 [0, 0] (–)
Loc4 1.6 [1.33, 2.63] (***) –1.46 [–1.66, –1.18] (***) 0 [0, 0] (–)
Loc5 1.97 [1.74, 2.9] (***) –1.39 [–1.6, –1.1] (***) 0 [0, 0] (–)
Loc6 1.26 [0.947, 2.38] (**) –1.48 [–1.69, –1.2] (***) 0 [0, 0] (–)
Loc7 0.931 [0.643, 1.89] (**) –1.47 [–1.69, –1.16] (***) 0 [0, 0] (–)
Loc8 0.299 [0.0703, 1.05] (–) –1.58 [–1.8, –1.27] (***) 0 [0, 0] (–)
Loc9 2.39 [2.17, 3.25] (***) –1.42 [–1.64, –1.14] (***) –0.87 [–1, –0.745] (***)
Loc10 2.96 [2.77, 3.85] (***) –1.37 [–1.6, –1.09] (***) 0 [0, 0] (–)
prev_rate –169 [–185, –161] (***)  

*Significant at the 0.05 level; **significant at the 0.005 level; ***significant at the 0.0005 level.
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BM interpretation

The BM, which describes the likelihood of an observation belonging to the LRM, shows a strong 
dependency on the location. Four locations (1, 2, 3, and 8) have no significant parameter, implying 
a baseline 50 per cent probability of being in either model, if demand is not considered. Of the 

Figure 2. Bootstrapped 95 per cent confidence intervals for the staffing parameters across the BM, MRM, 
and LRM.
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other locations, there is a steadily growing likelihood of the ward following the LRM with Locations 
6 and 7 having the lowest chance (75%), and Locations 9 and 10 the highest (93%).

Across the trust, the best predictor for which model will dominate (LRM or MRM) is the rate at 
which adverse events were previously reported. In general, the more the events are reported by a 
ward on the previous day, the greater the probability the ward will remain in the MRM. The level of 
reporting needed varies, with Location 10 requiring 0.017 events reported per nurse on shift to give 
even odds of either model. To put this into context, across the dataset, the average rate of reporting 
is 0.0265 (±0.0005) events reported per nurse, so each location can attain the MRM scenario.

The clinically required staffing levels show a marked effect on the BM as well. As the clinically 
required levels of RNs increase (i.e. as the demand for more clinical nursing skills increases), there 
is a growing preference for the LRM. Hence, a greater RN demand appears indicative of a decrease 
in adverse events being reported. Considering this dataset includes near misses, this is not overly 
surprising. As workload increases, there is a distinct possibility that staff will prioritise delivering 
care over reporting near misses or adverse events. The exception to this is the night shift for unreg-
istered nurses, where a greater perceived demand leads to a preference for the MRM.

The delta staffing variables (variation from ‘clinically required levels’) suggest a shift to the 
MRM when the number of RNs exceeds the clinically required levels on the late and night shifts, 
and a shift to the LRM when the number of unregistered nurses exceeds the clinically required 
levels on the early shift. The increase in reporting with more RNs is unsurprising, considering that 
the more staff members that are present, the easier it is for events to be observed and reported. The 
lower reporting with more unregistered nurses than required may be due to the division in respon-
sibilities between registered and unregistered nursing staff – it is not merely a question of higher 
headcount but the nurse’s professional practice and education as well.

The strong dependency of the BM on location and previous rate of reporting suggests there 
is a cultural aspect to the divide between the MRM and LRM scenarios. Interpreting what a 
low reporting of adverse events and near misses means is complex, and we consider two com-
peting hypotheses – a reduction occurs either because of less adverse events occurring or 
because fewer adverse events are reported. If the later of these is true, and the variation in 
reporting is due to changes in reporting culture, we would expect these locations to be biased 
towards reporting higher severity incidents. The result of this would be a decrease in the rela-
tive proportion of ‘near miss’ and ‘no harm’ events compared to higher severity incidents. 
Table 3 summarises the relative event severity across the 10 locations, and we observe that 3 
of the 4 locations with the highest rate of ‘no harm’ events reported (Locations 1, 2, and 8) are 
among the 3 locations most favouring the MRM. It appears that a higher rate of reporting, as 
implied by favouring the MRM, is linked to a better reporting culture, as implied by the 
increase in ‘no harm’ events, and hence, the MRM should be considered the preferred behav-
iour we wish to instil on a ward.

MRM interpretation

Assuming that a ward’s event reporting follows the MRM, the rate at which events are reported is 
reasonably consistent across locations. The only exceptions are Location 1, which shows the low-
est baseline rate, and Locations 2 and 3, which show the highest. Considering this model is consist-
ent with a good reporting culture, we can assume that the shift in rate is due to shifts in prevalence 
of adverse events. Location 1 being a low security location while Location 2 being a high security 
location could be the reason for this shift in inherent safety of the location.

In the MRM scenario, the rate of reporting appears to be weakly linked to the clinically 
required staffing levels. The only significant parameter is the required level of unregistered 
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nurses on the night shift, where each extra unregistered nurse required reduces the rate of 
incidents reported by 15 per cent. Fewer events being reported as the perceived demand grows 
implies more events reported at the lowest perceived demand. Considering that the night shifts 
generally run with the fewest staff members (between one to two RNs and zero to six unregis-
tered nurses) where perceived demand is lowest, the risk of very low numbers of staff on shift 
would inherently increase. It appears that even a small increase in unregistered nurses on the 
late shift above what clinical staff perceive as being required can result in a strong increase in 
staff safety.

The reporting of adverse events in the MRM scenario also appears to be only weakly linked to 
variation in staffing. The only two significant terms show a reduction in adverse events on staff 
being reported as the levels of RNs on the early and late shifts exceed the clinically required levels. 
Given the assumption that these observations arise from wards with a good reporting culture, the 
remaining explanation is that more RNs result in a safer environment for staff.

LRM interpretation

Assuming that a ward’s event reporting follows the LRM, the rate at which events are reported is 
relatively consistent across locations, with only Location 9 showing a strong decrease in rate (58% 
decrease) compared to the others.

The LRM has the majority of its behaviour arising from the staffing parameters, with a strong 
link between increasing demand and decreased reporting on the night shift for RN staffing, and all 
shifts for unregistered nurses, though the signal arising from the night shift is by far the strongest. 
This supports the idea that as wards increase in demand, event reporting becomes increasingly rare, 
with staff members likely more focussed on the delivery of care than filling out near misses. 
However, the marked increase in signal for the night shift suggests that this may be in addition to 
the signal suggested for the MRM. A decrease in events being reported with more perceived 
demand means far more events reported when demand is low. Where the level of unregistered 
nurses on the night shift is low, the risk of low staffing levels would be enhanced, and more obvi-
ous accidents occur (e.g. of a higher severity than near miss).

The reporting of adverse events in the LRM scenario shows a similar link to variation in staffing 
as the MRM. The only two significant terms show a reduction in staff adverse events being reported 
as levels of RNs on the early and late shifts exceed the clinically required levels. Whether this is a 
result of improved safety culture or indicative of something else is hard to say.

Table 3. Event severity by location.

No harm (%) Low (%) Moderate (%) Severe (%)

Loc1 97.8 2.0 0.2 0.0
Loc2 94.8 4.2 0.8 0.2
Loc3 83.3 16.7 0.0 0.0
Loc4 89.7 10.0 0.3 0.0
Loc5 83.8 16.0 0.1 0.0
Loc6 87.7 11.7 0.5 0.1
Loc7 89.8 9.6 0.7 0.0
Loc8 90.5 9.3 0.2 0.0
Loc9 92.5 6.7 0.9 0.0
Loc10 85.7 14.3 0.0 0.0
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Discussion

The marked improvement in BIC as the model moves from the standard count behaviours to the 
mixed Poisson behaviour suggests that the reporting of staff adverse events is relatively complex. 
There is strong evidence that the trust’s rate of staff being victims of adverse events is not continu-
ous across the locations operated, with some locations reporting far fewer incidents than others. 
This variation in reporting appears to go hand in hand with an improved culture of reporting ‘no 
harm’ events where a greater number of incidents are reported, and suggests that of the two models 
extracted, the MRM represents a desirable culture.

Across all locations, there is strong evidence that the clinically required level of unregistered nurses 
on the night shift is inversely proportional to the rate at which staff members are reported as the victims 
of adverse events. Both LRM and MRM scenarios suggest that as the clinically required staffing levels 
of unregistered nurses decrease, the rate at which staff members are recipients of adverse events 
increases. The extent to which ward staffing varies from these required levels is relatively small, in 
general falling between 1 over or under the required level, and hence, a low required level is indicative 
of a greater risk of very low staffing levels, which could explain why the number of adverse events on 
staff increases where the locations have a lower clinically required level of staffing.

Considering the majority of adverse events suffered by staff members arise from aggressive/
inappropriate behaviour, and sexual incidents, the combination of low clinical demand and a 
greater risk of very low staffing levels establishes a clear image of a high-risk environment for staff 
members. Such a risk is becoming increasingly well-understood as the growing demands on com-
munity nursing lead to higher lone working;39 however, the safeguarding needs may be unlikely to 
transport easily across disciplines.

The greater risk of harm that may be associated with very low staffing levels may also be coun-
termanded by an increase in RN staffing. The analysis shows that RN levels exceeding those rec-
ommended by clinical judgement on the early and late shift were linked to a decrease in adverse 
events on staff. Interestingly, equivalent behaviour on the night shift was not observed, although 
this may be due to the relatively low variation in RN staffing on the night shift in the dataset (83% 
of shifts running at the correct level with 12% running one under and 4% running one over). 
Alternatively, the increase in RN levels on the previous shifts may result in fewer tasks going 
undone and reducing the pressure on the night shift, resulting in a safer environment.40

An increase in RN numbers has already been linked to improved patient outcomes;26,41 how-
ever, the effect of increased nursing levels may also lead to greater nurse retention. Considering the 
reported links between increased nurse stress with poor retention42 and a poor perceived safety 
culture with burnout,17 it is foreseeable that staffing above the level set from clinical demand may 
have compounded benefits. If the wards considered to have the lowest clinical-requirements 
received just a small increase in RN levels, it may lead to not only fewer staff members experienc-
ing harm, but potentially reduce staff turnover and improve the safety culture. Clinical judgement 
is clearly of use in determining staffing levels; however, it needs to be complimented with opera-
tional considerations. Increasing the use of RNs is a growing ‘silver bullet’ by which we can fix the 
pressures faced by the NHS, but increasing demand does not fix the issue of supply.43,44

Although the findings of this study suggest that increased staffing could improve staff safety, in 
reality, the system is far more complex than this. Consideration needs to be given to optimal 
improvements in the context of budget and resource constraints. It is intriguing that shifts in unreg-
istered nurse levels showed a far weaker link to the rate of events reported, suggesting that this is 
not a ‘bodies on the ground’ problem but rather something to do with the attributes of the RN. The 
dynamics involved in the skill mix of a workforce are not linear, and safety cannot be improved by 
simply increasing the proportion of the unregistered workforce. Furthermore, increasing staffing 
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indefinitely does not yield respective increases in safety indicating other factors are at play. 
Griffiths et al.44 highlighted that wider leadership and environment factors played a significant 
role, alongside having the right numbers of staff. The absence of real-terms increases in healthcare 
budgets in the context of growing demand, during a time of austerity and government instability, 
compounds the issue of growing demand, both in volume and complexity, and a solution to this is 
not imminent.

The exploration of this incident reporting system for staff harms is novel; traditionally, research 
in this area focuses on harm to patients. However, to not consider the implication of more than 
10,000 reported incidents, resulting in nearly 20,000 staff victims over 32 months in the context of 
nurse retention would be a missed opportunity. Data warehoused in incident reporting systems are 
rarely considered in aggregate form, where the scale of incidents can be truly understood and, 
therefore, actioned. Instead, organisations tend to deploy root cause analysis techniques to indi-
vidual events that meet a particular threshold (typically severity), and this threshold may or may 
not include harm to staff. Given that it is known that poor staff safety is linked to burnout16 and that 
there is a cyclical effect of burnout on perceived poor safety,17 it is important for organisations to 
reflect on the available intelligence housed in their data warehouses to ensure safe working envi-
ronments for their staff.

Finally, when considering the usefulness of this analysis and the underlying role of routinely 
collected data within healthcare as a whole, we should reflect on the human factor. It has been 
shown that transparency within an organisation, when it comes to decision making, is known to 
have a positive impact on reducing staff absenteeism, and increasing staff retention rates. The 
databases that underpin this analysis have analogues in all NHS trusts, of varying quantity and 
quality, which have often remained as isolated silos of knowledge, and yet, it is feasible to mine 
them for insight. The data may contain inherent biases and validity issues, which will only become 
clear as the data are explored,45 but it is only as the value of the data to patient care is demonstrated 
to frontline staff that we can expect compliance to improve.

There are opportunities in other methodologies to explore the reasons behind the behaviours 
exhibited in these datasets, such as qualitative research methods. This sort of research could help 
generate hypotheses for areas of improvement, which could then be subjected to experimental 
design interventions to improve staff harm.

Conclusion

This study demonstrates a method for modelling routinely collected data from a single mental 
health care provider in the NHS to explore the extent to which clinical judgement of demand, and 
more notably variations from these clinically required levels, align with adverse event reporting. 
There appears to be a consistent theme of reporting adverse events across the trust’s separate geo-
graphic locations, with different lessons to be learnt depending on location, ward acuity, and shift.

The models suggest that the greatest risk to staff is present when night shift staffing levels are 
at their lowest, possibly as a result of very low staffing levels. This risk might be balanced by the 
addition of an RN, but does point to a limitation of clinical judgement. The required level to deliver 
care may be less than that required to protect staff. Establishing a good safety culture is inherently 
difficult; however, the reporting of no harm events does appear to be a key marker of culture. Once 
staff members have the resources to deal with the recognised clinical demand, they appear to have 
better confidence in taking the time to report events, allowing for a trust to learn from near misses 
before they grow to actual harm.

The variation in unregistered nurse levels from the clinically required levels showed the least 
effect on the adverse event rate, yet the inherent rate at which these staff members are required is 
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linked. It appears that clinical staff recognise the task required of unregistered nurses, but the wards 
show high resilience to under-staffing, while over-staffing gives little benefit. It is not only a ques-
tion of increased headcount, but of the skill-set and expertise they bring to the environment.

Finally, the way in which we value healthcare staff has been brought to light here. Traditionally, 
the concept of safety is prepositioned by ‘patient’, and so, safety in healthcare is conceptualised as 
patient safety; little consideration is given to the safety of the staff delivering care. In a time where 
workforce retention is proving difficult and the quality and safety of care to patients is compro-
mised, greater efforts should be made to improve staff safety, which might improve retention and 
simultaneously patient safety.

The methods presented represent a flexible approach to mobilise knowledge from the growing 
silos of routinely collected data in order to shape local safe staffing practices. They demonstrate 
that the analysis of such data via the application of data mining techniques represents a currently 
untapped opportunity to improve staff safety in healthcare.

Data are not currently available in a suitable format for open access. If you would like to request 
access to the data, please contact the named authors directly.
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