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Abstract—In the post-genome era, it is becoming more complex
to process high-dimensional, low-instance available and nonlinear
biological datasets. This study aims at addressing these char-
acteristics as they have adverse effects on the performance of
predictive models in bioinformatics. In this paper, an interval
type-2 Takagi Sugeno fuzzy predictive model is proposed in
order to manage high-dimensionality and nonlinearity of such
datasets which is the common feature in bioinformatics. A new
clustering framework is proposed for this purpose to simplify
antecedent operations for an interval type-2 fuzzy system. This
new clustering framework is based on overlapping regions
between the clusters. The cluster analysis of partitions and
statistical information derived from them have identified the
upper and lower membership functions forming the premise
part. This is further enhanced by adapting the regression
version of support vector machines in the consequent part. The
proposed method is used in experiments to quantitatively predict
affinities of peptide bindings to biomolecules. This case study
imposes a challenge in post-genome studies and remains an
open problem due to the complexity of the biological system,
diversity of peptides and curse of dimensionality of amino acid
index representation characterising the peptides. Utilizing four
different peptide binding affinity datasets, the proposed method
resulted in better generalisation ability for all of them yielding
an improved prediction accuracy of up to 58.2% on unseen
peptides in comparison with the predictive methods presented
in the literature.

Index Terms—Interval Type-2 Fuzzy Systems, Support Vec-
tor Regression, Overlapping Clusters, Peptide Binding Affinity,
Clustering, High-Dimensionality.

I. INTRODUCTION

Peptides, a small sequence of amino acids, often interacts
with proteins in cellular processes [1]. One of the important
peptide-protein interactions occur when a peptide binds to a
Major Histocompatibility Complex (MHC) forming a peptide-
MHC (pMHC) complex. pMHC is transported to the cell
membrane where it is recognized by a T-cell in order to induce
an immune response. Therefore, in pharmaceutical studies,
validation of a pMHC binding with the drug of interest is cru-
cial. However, this is a complicated process and computational
methods are constantly being developed to support traditional
empirical research to identify most likely candidates out of a
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library of thousands of peptides. Moreover, predictive models
based on sequence-based methods are needed to approximate
the binding affinities.

In recent years, the problem for binding affinity predictions
became two-fold. Qualitative studies consider classifying bind-
ing predictions as ‘binders’ and ‘non-binders’ [2] or ‘weak’
and ‘strong’ binders [3]–[5] whereas quantitative studies allow
real-value binding predictions [6]. Lately, regression-based
approaches have become more prevalent in sequence-based
studies. A number of methods are used as predictors such as
the partial least squares [7], random forests [8], support vector
regression [9] and regularization methods [10]. Nevertheless,
the complexity of a biological system, diversity of peptides,
and curse of dimensionality of amino acid index representation
that characterise the peptides have adverse effects on the
performance of peptide-binding predictive models. Moreover,
uncertainties are prevalent in peptide binding affinity datasets
due to imprecise or noisy measurements, and these datasets
need to be analysed appropriately [11]. There is still a lack of
methods accounting for this aspect of peptide-protein bindings
[12].

In certain applications, where the data is complex and
non-linear, fuzzy systems are more tolerant of imprecise
information and capable of modelling linguistic and numerical
uncertainty. Moreover, they form a rule-based structure similar
to human reasoning. Presently, type-2 fuzzy systems [13] have
a wider use in real-world applications than ever before [14].
They, in certain applications, perform better than type-1 fuzzy
systems in terms of modelling and minimizing uncertainties
[15]–[17]. Type-2 fuzzy systems are preferred due to the
consideration of membership functions being imprecise and
being able to cope with the uncertainties associated with them.

In this paper, an overlapping clusters and support vector
machines based interval type-2 Takagi Sugeno fuzzy system
is proposed to address the aforementioned shortcomings of the
sequence-based predictive models. A novel clustering frame-
work is proposed in order to simplify antecedent operations
for an interval type-2 fuzzy system. This clustering framework
is based on overlapping regions between the clusters. The
cluster analysis of partitions and statistical information derived
from them have identified the upper and lower membership
functions forming the premise part. This is further enhanced
by adapting the regression version of support vector machines
(SVR) in the consequent part [18]. The computational demand
in the defuzzification process is addressed by a method which
has the closed-form representation. In addition, feature selec-
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Fig. 1. An interval type-2 fuzzy set

tion is used in order to reduce the high number of amino
acid biochemical descriptors, representing a peptide, which
formed the input scheme of the learning model. The prediction
results indicate that the proposed model not only minimized
the effects of uncertain continuous peptide binding affinities
but also provided high precision in unravelling the binding
affinities of unobserved peptides.

The remainder of the study starts with introducing the
materials and methods (Section II). This section describes the
identification of SVR based interval type-2 fuzzy system with
overlapping clusters concept. Section III shows the results of
the case study along with the discussion. Finally, concluding
remarks are given in Section IV.

II. MATERIALS AND METHODS

A. Support Vector-based Interval Type-2 Fuzzy System

Type-2 fuzzy sets, which are defined through membership
functions, are themselves fuzzy. However, the computations
of type-2 fuzzy sets are complex and in order to ease these
computations Interval Type-2 (IT2) fuzzy sets can be used
[19]. Takagi-Sugeno model is one of the widely used fuzzy
systems [20]. This model structure presents the design of
consequent parameters using a linear function. The rule-base
of the interval type-2 Takagi Sugeno fuzzy system with r rules
can be expressed as:

Ri : IF x1 is Ãi1 and x2 is Ãi2 ... and xn is Ãin
THEN yi = c0i + c1ix1 + ...+ cnixn

(1)

where, x1, x2, ..., xn represent the input vector and c0, c1, c2,
..., cn are the regression coefficients; IT2 fuzzy set is denoted
by Ãin for the variable n and rule r; and yi is the rule output.

Type-2 fuzzy sets should be placed in the premise or conse-
quent part (or both) in order to define a type-2 fuzzy system.
IT2 fuzzy sets are characterized by the upper membership
functions (UMFs) and lower membership functions (LMFs).
This is how the uncertainty is modeled for the IT2 membership

function. Bounded region between UMF and LMF is the
footprint of uncertainty (FOU). Each interval type-2 fuzzy set
within the footprint of uncertainty is unity. Three-dimensional
representation of an interval type-2 fuzzy set is depicted in
Fig. 1. The firing strengths of interval type-2 fuzzy system are
determined by using the t-norm operator and can be calculated
as:

fi =

n∏
k=1

µ(xk) (2)

fi =

n∏
k=1

µ(xk) (3)

where fi (fi) is the lower (upper) firing strength; µ(xk)
(µ(xk)) is the lower (upper) membership degree for input
variable xk; respectively, and

∏
denotes the product t-norm

operation.
The output of an IT2 fuzzy system is obtained through type-

reduction and defuzzification. Karnik-Mendel algorithm is the
widely used type-reduction method that can compute the left
and right end points required for the IT2 fuzzy set [21]. Then
these end points are defuzzified to get the final output. Karnik-
Mendel is an iterative algorithm and suffers from time intense
computations. Therefore, alternate approaches have been pre-
sented in the literature [22]–[24]. However, the proposed IT2
fuzzy system implements Biglarbegian-Melek-Mendel (BMM)
method [25] which has the closed mathematical form as
described in (4)

YBMM = q

r∑
i=1

fi yi

r∑
i=1

fi

+ p

r∑
i=1

fi yi

r∑
i=1

fi

(4)

where q and p are the parameters used to design the upper and
lower weighted average of the rule consequents, respectively.

Lately, support vector machines are incorporated with in-
terval type-2 fuzzy systems to identify the parameters of the
consequent part [26], [27]. The regression coefficients (~w and
b) that weighs the linear SVR are obtained by training samples.
To incorporate SVR with the interval type-2 fuzzy system, the
input for each data item as in (5) is transformed to (6). The
coefficients of rule consequents (~w) and b are computed using
the linear SVR. For this purpose LIBSVM tool was used [28].
Then, the output of support vector-based interval type-2 fuzzy
system (y′′) is obtained from (7) and (8).

~x = [x1, ..., xn] (5)

~x′′ = [qf1+pf1, qf1x11+pf1x11, ..., qfrxrn+pfrxrn] (6)

y′′i = w0 +

n∑
k=1

(wixi) (7)
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Fig. 2. Stages of the proposed interval type-2 fuzzy system for the prediction
of peptide binding affinity.

y′′ = q

r∑
i=1

fi y
′′
i

r∑
i=1

fi

+ p

r∑
i=1

fi y
′′
i

r∑
i=1

fi

+ b (8)

B. Identification of Interval Type-2 Fuzzy Sets with Overlap-
ping Clustering Concept

This section will introduce a novel method based on the
overlapping clusters concept in order to initialise the interval
type-2 membership function parameters. The footprint of
uncertainty of an interval type-2 fuzzy set can be defined by
varying either the mean (see Fig. 3) or the standard deviation
(see Fig. 4) of the Gaussian membership function. As the
overlapping regions between the clusters applicable to the
latter approach, the footprint of uncertainty is formed with
fixed mean and blurred standard deviations. Once the interval
[σ1, σ2] is determined, upper and lower Gaussian membership
functions are obtained as follows:

µ(x) = exp
[
− (x− c)2

2(σ2)2

]
(9)

Fig. 3. Footprint of uncertainty of an interval type-2 fuzzy set when the
standard deviation is fixed and the center is blurred.

Fig. 4. Footprint of uncertainty of an interval type-2 fuzzy set when the
center is fixed and the standard deviation (std) is blurred.

µ(x) = exp
[
− (x− c)2

2(σ1)2

]
(10)

The issues that need to be considered during the system
identification for a fuzzy system using clustering can be found
in [29]. We considered finding interval type-2 membership
function parameters with clustering methods such as the
soft clustering (e.g., fuzzy c-means clustering [30]) and the
crisp clustering methods (e.g., hard c-means clustering [31],
hierarchical cluster analysis [32]). Statistical characteristics of
clusters are used to identify the membership functions. It is
assumed that statistical information that characterises a crisp
cluster will involve more knowledge to identify an interval
type-2 membership function than the arbitrary initialisation.

In triangular membership function generation one can use
the left, right end points and the centre whereas in Gaussian
membership function generation one can use the centre and
standard deviation. Algorithm 1 outlines the steps of finding
the end points and the centre of upper membership function
and lower membership function using the overlapping clusters
concept. The proposed overlapping clusters method derives
the lower membership function from the provided upper
membership function approach [33], [34]. Fig. 5 illustrates
how the interval type-2 fuzzy sets are formed based on the
overlapping clusters as a single input-single output scheme.
Overlaps between clusters are projected into one-dimensional
data points. Neighbour clusters located on either side of the
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Fig. 5. Illustration of overlapping clustering concept used to identify the
end points of the interval type-2 membership function. FOU: Footprint of
Uncertainty. UMF: Upper Membership Function. LMF: Lower Membership
Function.

cluster identify the lower left and right end points. As a result,
these end points along with the cluster centre define the pa-
rameters of the lower membership function. The corresponding
membership function may not be uniform on each wing. For
a non-uniform case, even though mean remains the same
for a Gaussian membership function, two separate standard
deviations are required; one representing the left wing, and
the other representing the right wing.

C. Peptide Binding Affinity Datasets

A peptide consists of an amino acid sequence with a size
of approximately 10 residues long [35]. Peptide fragments
form binding with MHC class proteins as a cellular event.
pMHC complexes are translocated to the membrane of the
host cell where they meet T-cells. When receptors of the T-cell
recognize pMHC complexes, they elicit an immune activity to
happen. These immune activities range from cytotoxic killing
to phagocytosis of the infected cell. One main difficulty for
experimental peptide studies is that the amount of possible
peptides that can bind for a particular MHC class molecule
is extraordinarily large (≥ 500 billion) [36]. However, un-
derstanding how peptide-MHC class molecule interactions
work and finding their binding affinities are crucial for health
studies.

The proposed approach has been tested using the peptide
datasets that have been obtained from various papers [37]–
[40]. Each peptide dataset has been considered as a task
and organized in training and test datasets [10]. For Tasks
III and IV, two separate testing datasets were used even
though training dataset remained the same. Table I lists the
characteristics of the peptide binding affinity tasks. Tasks I,
III and IV consist of nona-peptides whereas Task II consists
of octa-peptides. Table II depicts the statistics of the peptide
binding affinity tasks. Sequence logo (position specific amino

Output: upper and lower end points of the overlapping
clusters

set the number of clusters;
apply the clustering method;
obtain statistics of each cluster;
foreach cluster do

set upper left point = min(cluster);
set upper center = mean(cluster);
set upper right point = max(cluster);
initialize lower left point;
set lower center = mean(cluster);
initialize lower right point;
foreach neighbour cluster do

set condition left = evaluate
statistical values (min, mean and max)
of the neighbour cluster to find
whether any of them is in the
upper interval [left point, mean];
if condition left then

set lower left point = select
statistics value found which is
closer to the upper left point;

end
set condition right = evaluate
statistical values (min, mean and max)
of the neighbour cluster to find
whether any of them is in the
upper interval [mean, right point];
if condition right then

set lower right point = select
statistics value found which is
closer to the upper right point;

end
end

end

Algorithm 1: Finding the End Points of the Overlapping
Clusters.

acid frequency) representations of peptide datasets are shown
in Fig. 6.

Amino acid feature datasets such as the AAindex database
[41] and CISAPS [42], contain many physico-chemical and
bio-chemical attributes of amino acids. Each descriptor in
the amino acid feature dataset has twenty different numer-
ical values along with their descriptions that correspond to
each amino acid. However, previous studies usually use 643
descriptors which are mostly selected from the amino acid
feature datasets. To be consistent, we have encoded each amino
acid in a peptide with 643 descriptors as shown in Fig. 7.
The number of total descriptors becomes 5144 (643×8) and
5787 (643×9) when octa-peptide sequence and nona-peptide
sequence are encoded, respectively.

III. RESULTS AND DISCUSSION

This section will present the experimental results of over-
lapping clusters and support vector based interval type-2
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TABLE I
CHARACTERISTICS OF THE PEPTIDE BINDING AFFINITY TASKS.

Tasks #Trng #Test #Total Descriptors

I 89 88 5787

II 76 76 5144

III 133 133 5787

IV 133 47 5787

#Trng: Number of peptides in the training set. #Test: Number of
peptides in the testing set. #Total Descriptors: Number of total
descriptors when the peptide is encoded.

TABLE II
STATISTICS OF THE PEPTIDE BINDING AFFINITY TASKS.

Tasks

I II III IV

Min Trng 2.94 5.01 4.30 4.30

Test 3.13 5.01 5.08 13.00

Max Trng 8.65 8.34 8.77 8.77

Test 8.17 8.40 8.96 121.00

Mean Trng 5.41 7.55 7.08 7.08

Test 5.41 7.58 7.10 60.96

Std Trng 1.01 0.77 0.82 0.82

Test 0.95 0.74 0.80 33.94

Trng: Training set. Test: Testing set. Std: Standard deviation.

fuzzy system that conducted on peptide binding datasets to
predict the real value of affinities. The stages of the proposed
interval type-2 fuzzy model are illustrated in Fig. 2. In our
implemented fuzzy model structure, type-2 fuzzy sets are in
the premise and rule consequents are crisp numbers. Interval
type-2 fuzzy sets of the proposed approach are determined
using the overlapping clusters concept. During the structure
identification process of the fuzzy rule base, membership
function parameter values are characterized using different
clustering methods. The statistics found at the end of the
cluster analysis generated the upper and lower membership
functions of the interval type-2 fuzzy model. Additionally,
support vector regression is used to learn the parameters of rule
consequents. SVR not only enhanced the learning capability
of the proposed model but also decreased the effects of over-
fitting. For the defuzzification process, Biglarbegian-Melek-
Mendel method, which has the closed-form representation was
used. We used grid search in order to find the SVR and
Biglarbegian-Melek-Mendel method design parameters for the
proposed interval type-2 fuzzy system.

Blind validation experiments were implemented to reveal
the accuracy performance of the proposed method. Each pep-
tide in both training and testing peptide datasets are encoded

Fig. 6. Sequence logo plots of Tasks 1-4. Training (left) and test (right)
peptide datasets are represented in position specific amino acid frequencies.

Fig. 7. Encoding of a peptide sequence as amino acid descriptors. A) octa-
peptide amino acid composition B) nona-peptide amino acid composition.

into physico-chemical and bio-chemical descriptor vectors.
Then, the descriptors were normalized using minmax scaling
so that every descriptor varied in the range between 0 and 1.
When there is a large number of features available, feature
selection is often required in bioinformatics to get rid of
irrelevant features, avoid overfitting and provide an improve-
ment in model performance [43]. As the encoded feature
set became large (over ≥ 5000), a feature selection method
(multi-cluster feature selection) is considered to be used in this
work [44]. Multi-cluster feature selection is an unsupervised
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Fig. 8. The correlation between measured and predicted peptide binding affinities; the training set is the former and the testing set is the latter.

feature selection method that does not require labeled data and
already used in many bioinformatics applications [45]–[47].
We decreased the high-dimensionality from many thousands
to a few hundred. We found 161, 247, 172 and 141 descriptors
are adequate to preserve a model for Tasks I, II, III and IV,
respectively. It is also found that amino acid polarity appeared
in the selected features of Tasks I, II and III as being the most
discriminative descriptor.

To be consistent in comparisons with similar prediction
methods, the coefficient of determination (q2) [48] and the
Spearman rank correlation coefficient (ρ) [49] were used.
Percentage improvement of the proposed model as compared
to the models found in this research domain (I1%) and to our
previous work (I2%) were computed as in (11).

I% = |Model1 −Model2
Model2

| × 100 (11)

Table III reports the training and testing prediction perfor-
mances of the proposed method when hard c-means clustering
(HCM), fuzzy c-means clustering (FCM), and hierarchical
cluster analysis (HCA) were used to initialize the member-
ship grades of the interval type-2 fuzzy sets. For all tested
models, the number of clusters varied in the range between
two and four. The best predictive accuracy performances are
achieved with FCM (three tasks) and HCA (one task). As
can be seen underneath the best models, their SVR (C and
ε) and Biglarbegian-Melek-Mendel method design parameters
(q and p) were given. For all tasks, we trained SVR with a
linear kernel to obtain the rule consequent coefficients of the
proposed interval type-2 fuzzy system.

The correlation between measured and predicted real value
binding affinities are shown in Fig. 8. The best models of the
proposed method (overlapping clustering and support vector
based interval type-2 fuzzy system) achieved higher accuracy
and significant increase in prediction performance than the
previously published methods [7], [8], [10] on unseen peptides
as shown in Table IV. As compared to the best predictive
methods (0.691, 0.746, 0.232 and 0.586) presented in the
literature, the proposed method resulted in better generaliza-
tion ability for all of them yielding an improved prediction
accuracy of 4.1%, 1.3%, 58.2% and 12.5% for Tasks I, II,
III and IV, respectively. Additionally, as compared to our
previous work (support vector based type-1 fuzzy system),
the proposed method achieved an accuracy improvement in
prediction performance of 3.3%, 1.8%, 18.4% and 2.5% for
Tasks I, II, III and IV, respectively.

Defining fuzzy sets and the number of rules is the main
concerns in structure identification of a fuzzy system. The
formation of rules can be automated with the help of the cluster
analysis where each partition maps to a fuzzy rule. In cluster-
ing, the parameter to indicate the number of clusters should
be preset before the cluster analysis is performed. However,
determining the exact number of clusters is a considerable
difficulty. We performed a grid search to observe (from two
to up to seven clusters) to see the tendency of groupings
within the peptide binding affinity datasets. We found that
mostly three clusters are the natural number of the grouping of
peptide binding affinities when incorporated with the proposed
interval type-2 fuzzy system. The number of clusters we found
for the peptide binding affinity datasets also agree with the
fact that the number of membership functions should be ≤ 7
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TABLE III
THE PREDICTION SCORES OF THE PROPOSED METHOD BASED ON DIFFERENT CLUSTERING METHODS.

Task I Task II Task III Task IV

Clustering #k∗ q2(trainset) q2(testset) k∗ q2(trainset) q2(testset) k∗ q2(trainset) q2(testset) k∗ ρ(trainset) ρ(testset)

HCM 3 0.849 0.714 3 0.987 0.743 3 0.466 0.350 2 0.853 0.646

FCM 3 0.868 0.719 2 0.996 0.729 3 0.450 0.367 3 0.852 0.659

SVR (C = 0.75; ε = 0.05) SVR (C = 1.25; ε = 0.85) SVR (C = 1.75; ε = 0.45)

BMM (q = 0.55; p = 0.50) BMM (q = 0.45; p = 0.50) BMM (q = 0.70; p = 0.55)

HCA 2 0.833 0.679 4 0.996 0.756 2 0.473 0.278 2 0.829 0.652

SVR (C = 1.40; ε = 0.05)

BMM (q = 0.65; p = 0.45)

#k∗: Number of Clusters.
HCM: Hard C-Means Clustering; FCM: Fuzzy C-Means Clustering; HCA: Hierarchical Cluster Analysis.
The best results are highlighted in bold font type along with their design parameters set underneath.

TABLE IV
COMPARISON OF THE RESULTS OF THE PROPOSED METHOD WITH RESPECT TO THOSE REPORTED IN THIS RESEARCH DOMAIN.

Task I Task II Task III Task IV

Models Number of Features q2 Number of Features q2 Number of Features q2 Number of Features ρ

Lasso [10] 50 0.667 43 0.642 56 0.205 41 0.548

Ridge Regression [10] 50 0.691 43 0.668 56 0.131 41 0.586

Partial Least Squares [7] 584 0.455 147 0.401 180 0.153 n/a

G-Kernel Partial Least Squares [7] 584 0.678 147 0.746 180 0.200 n/a

E-Kernel Partial Least Squares [7] 584 0.691 147 0.590 180 0.219 n/a

Support Vector Regression [8] 200 0.682 100 0.639 100 0.232 n/a

Random Forests [8] 200 0.661 200 0.607 100 0.208 n/a

SV-based T1 Fuzzy System [12] 161 0.696 247 0.743 172 0.310 141 0.643

OCSV-based IT2 Fuzzy System 161 0.719 247 0.756 172 0.367 141 0.659

I1% 4.1% 1.3% 58.2% 12.5%

I2% 3.3% 1.8% 18.4% 2.5%

I1%: Percentage improvement of the proposed model as compared to the models found in this research domain.
I2%: Percentage improvement of the proposed model as compared to the models of our previous work.
n/a: not available.
G-Kernel: Gaussian Kernel. E-Kernel: Exponential Kernel.
SV-based T1 Fuzzy System: Support Vector-based Type-1 Fuzzy System.
OCSV-based IT2 Fuzzy System: Overlapping Clustering and Support Vector based Interval Type-2 Fuzzy System.
The best results are highlighted in bold font type.

in each input domain for the practical design of an interval
type-2 fuzzy logic system [50]. This magical number is based
on a study [51] stating that keeping in mind more than
7± 2 objects at the same time becomes more confusing for a
human and beyond his/her processing information capacity.
To conclude, the utilization of overlapping clusters aimed
for overcoming the difficulties of parameter identification

process in an interval type-2 fuzzy system. When required,
interval type-2 membership function parameters can be further
optimised using a learning algorithm [52]. As the initialisation
of membership functions depend also the parameter values of
learning algorithms, the proposed initialisation process will
eliminate this necessity and lead a learning algorithm to focus
its ultimate purpose.
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IV. CONCLUSION

This paper presents a robust hybrid system that incorpo-
rates an overlapping clustering concept and support vector
regression for the design of an interval-type-2 fuzzy system.
This study is one of the first studies that a support-vector
based interval type-2 fuzzy system is applied to a real bioin-
formatics problem. The performance and robustness of the
proposed hybrid predictive model were demonstrated over one
of the most challenging problems in biology. The analyses
on four different case studies in the prediction of peptide
binding affinity have yielded better generalisation ability and
higher predictive accuracy than those of the predictive models
presented in the literature. This study has demonstrated both
biological and computational intelligence impacts. The bio-
logical contribution is that the predictive model has yielded
a number of useful biological characteristics of the peptides
that could help the prediction more accurate and the design
of peptides with more appropriate binding affinity features.
In addition to the development of such a robust predictive
model with applications in high dimensional datasets (rare
in fuzzy system-based studies), one of the most important
contributions of the study is to present successful development
of the overlapping clustering framework for the design of an
interval type-2 fuzzy system. As this framework can also help
determine initial values of the interval type-2 fuzzy system,
it could be further incorporated with any type of clustering,
machine learning and optimisation methods to help further
improve its outcome. Further research will be carried out
towards this direction.
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