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ABSTRACT

Geographically weighted Poisson regression models (GWPR) are the class of spatial count regression mod-

els that capture the localisation effect on various influencing factors on the dependent variable. The main

challenge with the GWPR models is to set appropriate kernel function to give weights for each neighbour-

ing point during the model calibration. In this paper, we consider GWPR models for many different kernel

functions, including box-car, bi-square, tri-cube, exponential and Gaussian function. Likelihood function,

parameter estimation and model selection criteria have been shown in details. We applied the model formu-

lation to the road traffic accident data in Oman as the country is one of the largest road traffic accident-prone

countries in the Gulf region. Akaike information criterion (AIC), corrected Akaike information criterion

(AICc) and geographically weighted deviance (GWD) have been used to assess the model fitting. The

model with the exponential kernel weighted function provides the best fit for the data and captures the

spatial heterogeneity and factors better with the exponential kernel weighting function.
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1. Introduction

1.1. Background

Spatial models are found to be an elegant technique to capture the localisation effect on various influenc-

ing factors in many different areas including health, energy, transport, business, earth and environment

sciences. As the effect of factors may vary with locations, spatial modelling techniques provides signifi-

cantly improved estimates and better prediction in comparison to non-spatial models [21]. Ignoring the

spatial effect in regression modelling may cause bias and a higher standard error in the estimation of

model parameters and a lower amount of regression variation explained by the model [4]. Many studies

have been carried out to date, in which spatial models capture spatial effects in a variety of ways based

on the different form of spatial distributions. Some of those spatial models are: spatial autoregressive

(SAR) models [3, 32], spatial error models (SEM) [1, 31], multiple memberships models (MMM) [12],

extended multiple membership models (EMMM) [7]. Although these models are spatial models, the
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parameter estimates remain fixed for all locations. The spatial variations in these models are taken into

account only through the spatial error structure [29]. However, there is another type of spatial modelling

approach that provides a set of local models obtained by the calibration of multiple geographical entities.

Two widely used forms of such models are– geographically weighted regression (GWR) models when

the response variable is measured in continuous scale [8, 15, 36] and geographically weighted Poisson

regression (GWPR) models when the response variable is a count [21, 27, 29]. These geographically

weighted models allow the parameters to vary through the spatial units in a study region to capture the

local factors. Therefore, these models focus on the geographic difference of factors affecting the outcome

variable [17]. Despite these promising features of a geographically weighted model, there are two main

challenges involved in fitting the geographically weighted regression models, which are the selection of

bandwidth and kernel weighting function.

During the calibration of a geographically weighted model, the bandwidth, also referred to as window

size, controls the fit of a localised model. Small bandwidths result in high spatial variation while the

large bandwidth leads to the estimates close to the global models [24]. Generally, there are two suggested

methods in the literature for the selection of bandwidth– classical fixed bandwidth approach or adaptive

bandwidth approach [11]. Several studies found that adaptive (optimal) bandwidth performs better than

fixed bandwidth [11, 20, 36]. Recently, [11] compared the fixed and adaptive (optimal) bandwidth and

recommended that adaptive bandwidth is optimal due to its performance, which is estimated through the

integrated squared error between a given density estimate and the true density under a given scenario.

The main challenge of a GWR and GWPR model is to find the most suitable kernel weighting function

which gives weights for the neighbouring observations during model calibration. If the generated weights

through a kernel function are not accurate then the parameter estimates have large standard errors and

the fitted model gives less reliable predictions [21]. There are five different kernel functions used for

GWR or GWPR modelling: box-car, bi-square, tri-cube, exponential and Gaussian weighted function

[21]. These weighting functions generate weights for each observation and use them to calibrate the

parameter estimates according to the spatial position of data points [21]. However, the potential problem

for a modeller is to select the best possible kernel weighting function to generate the weights [8].

Several studies applied different kernel functions for the geographically weighted models in many

areas including road traffic accidents. [21] chose an adaptive bi-square kernel for weighting schemes

in a GWPR model. [29] found that Gaussian weighted functions with adaptive bandwidth are the most

suitable in GWRP models while comparing the bi-square and the Gaussian kernel weighting functions.

Although some studies [17, 27, 37] compared the bi-square and Gaussian kernel functions with both

fixed and adaptive bandwidths. Broadly speaking, these empirical studies concentrated only on two ker-

nel functions, bi-square and Gaussian weighted functions, to inspect spatial factors in GWPR models.

Despite these efforts, it remains unclear which kernel function would provide the best fit for a geograph-

ically weighted Poisson regression (GWPR) model.

In this study, we compared the suitability of a GWPR model for five different kernel weighting func-

2



tions: box-car, bi-square, tri-cube, exponential and Gaussian weighted function. The model formulation

has been shown in details including the likelihood function, estimation of parameter through calibration

of models for different kernel weighting functions. The framework has been applied to the road traffic

accident (RTA) data in Oman to explore different factors associated with RTA and give insights into

geographical variations of such factors. Several diagnostic tools, namely, Akaike information criterion

(AIC), corrected Akaike Information Criterion (AICc) and geographically weighted deviance (GWD)

have been used to find the most suitable model with the associated kernel weighting function.

The rest of the paper is structured as: model development, formulation and estimation of the likelihood

function in Section 2, data and software in Section 3, results and discussion in Section 4 and some

concluding remarks in Section 5.

2. Methods

2.1. Poisson count model and likelihood function

Spatial Poisson model, a special form of spatial count model, allows parameter values to vary with spatial

unites ui which is a vector describing the location i [21, 27]. A spatial Poisson model can be written as

Yi ∼ Poisson

[
exp

(
∑
k

βk(ui)xik

)]
,

where xik is kth explanatory variable in location i, βk is the parameter for the kth explanatory variable

and ui =
(
uli ,uhi

)
is the vector describing the latitude and longitude at location i. The model is defined

with a geographically varying coefficient βk(ui) that is a function of location ui and known as geograph-

ically weighted Poisson regression (GWPR). The covariate form of the model GWPR with a group of

predictors, in which the parameters are allowed to vary over space can be written as

ln(Y) = ln(β0(ui))+β1(ui)X1 +β2(ui)X2 + · · ·+βK(ui)XK + εi,

where βk is the function of the location ui = (uli ,uhi) denotes the two dimensional coordinates of the

ith point in space. The parameters in the model β = (β0,β1, . . . ,βK) are allowed to be different between

locations. Thus, the GWPR modelling framework addresses the spatial heterogeneity.

To estimate the parameters of a geographically weighted Poisson regression, a form of maximum like-

lihood principal is considered [21, 27]. The method is analogous to a locally maximum likelihood prin-

ciple and can be referred to as geographically weighted likelihood method. The geographically weighted

log-likelihood at location ui can be given by

L(ui) =
N

∑
j=1

(
−Ŷj (β (ui))+Yj logŶj (β (ui))

)
·ωi j (‖ui−u j‖) ,
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where

Ŷj (β (ui)) = exp

(
∑
k

β̂k(ui)x jk

)
,

is the predicted number of events at location ui = (uli ,uhi) with estimated parameter vector β̂ at regres-

sion point i, ωi j is the geographical weight of the jth observation at ith regression point. The weights ωi j

of the observations decreases gradually as the distance between the regression point i and the observation

at location j becomes larger.

The model needs to be calibrated as used in geographically weighted regression and smoothed with

a spatial weighting function [21, 27]. The spatial weighting function is, in general, the spatial weighting

kernel. In particular, the calibration of the GWPR model is performed to generate the localised effect by

weighting each observation in the data set according to a proximity point or centred point. Based on a

kernel weighting scheme, observations which are close to the proximity points are highly weighted than

further points [14]. However, finding the appropriate kernel is crucial as the weights of the neighbouring

observations contribute to the estimates through a distance decay function.

2.2. Kernel weighting functions

There are several kernel functions used for weighting in GWPR model including box-car, bi-square, tri-

cube, exponential and Gaussian [5, 16, 23, 35]. The simple form of a kernel function is the box-car kernel

function. It is a discontinuous function and uses only the observations that are within a distance, say b,

from the GWPR model calibration point. However, the box-car function is computationally efficient as

it uses a smaller subset of observations to fit the local model at each GWPR model calibration point.

The bi-square is also a discontinuous function and gives null weights to spatial units observation with a

distance greater than the bandwidth [16]. Similar to bi-square, the tri-cube kernel gives a cubic weight.

The exponential kernel is a continuous function of the distance between two spatial observation points

or a calibration and an observation points. The weights can be a maximum of equal to 1 for an inspection

at the GWPR model calibration point and will have an exponential decrease with the increase of the

distance between calibration points [5, 16]. Gaussian kernel function provides the classical Gaussian

weights. Table 1 shows the functional forms of different kernel functions.

2.3. Likelihood estimation and scoring method for GWPR

In this section, we provide the details of model formulation including the derivation of likelihood func-

tion, model calibration, parameter estimation and model diagnostics as appeared in several literature

[21, 27]. Consider a GWPR model of the form

Yi ∼ Poisson

[
exp

(
∑
k

βk(ui)xik

)]
,
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Table 1. Different kernel functions

Kernel Functional form

Box-car
ωi j =

1 if |di j|< b,

0 otherwise.

Bi-square
ωi j =


(

1−
(

di j
b

)2
)2

if |di j|< b,

0 otherwise.

Tri-cube
ωi j =


(

1−
(
|di j|

b

)3
)3

if |di j|< b,

0 otherwise.

Exponential
ωi j = exp

(
−
|di j|

b

)
.

Gaussian
ωi j = exp

(
−1

2

(
di j

b

)2
)
.

where ωi j is the jth element of the diagnoal matrix when a model is calibrated for i calibration point,

di j is the distance between i and jth points and b is the chosen bandwidth.

with the likelihood function

L(ui) =
N

∑
j=1

(
−Ŷj (β (ui))+Yj logŶj (β (ui))

)
·ωi j (‖ui−u j‖) .

The parameter vector β is estimated by solving

∂L(ui)

∂ β̂ (ui)
= 0. (1)

Equation (1) gives

∂

∂ β̂

[
N

∑
j=1

(
−Ŷj (β (ui))+Yj logŶj (β (ui))

)
·ωi j (‖ui−u j‖)

]
= 0. (2)

Maximum likelihood estimates are obtained by using the iterative re-weighted least square method using

(2) which can also be referred as local Fisher’s scoring method and gives as

β
(l+1)(ui) =

(
XT

Ψ(ui)Γ
(l)(ui)X

)−1
XT

Ψ(ui)Γ
(l)(ui)y∗(l)(ui), (3)
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where β
(l+1)(ui) is a vector of local parameter estimates specific to location i while superscript (l +1)

gives the number of iterations. At lth stage, the parameter vector

β
(l)(ui) = (β

(l)
0 (ui),β

(l)
1 (ui), ...,β

(l)
K (ui))

T ,

where XT denotes the transpose of the design matrix X , Ψ(ui) is the spatial weight matrix and Γ
(l)(ui)

is the variance weights matrix for the location i. The vector of adjusted dependent variables y∗(l)(ui) is

given by

y∗(l)(ui) =
(

y∗(l)1 (ui),y
∗(l)
2 (ui), · · · ,y∗(l)N (ui)

)T
,

where

y∗(l)j (ui) =

(
β
(l)
0 (ui)+

K

∑
k

β
(l)
k (ui)x jk

)
+

Yj− Ŷj(β
(l)(ui))

Ŷj(β
(l)(ui))

= η j(β
(l)(ui))+

Yj− Ŷj(β
(l)(ui))

Ŷj(β
(l)(ui))

and η j is a linear predictor of jth observation. The sets of the local parameter can be estimated by

repeating the iterative procedure for each location i. The final estimate can be written as

β (ui) =
(
XT

Ψ(ui)Γ(ui)X
)−1 XT

Ψ(ui)Γ(ui)y∗(ui).

The prediction of each observation j at each regression points i would be

Ŷi j = Cy∗(u),

where the ith row of the matrix C is

ci = xi(XT
Ψ(ui)Γ(ui)X)−1XT

Ψ(ui)Γ(ui).

To predict the number of events at a location, the diagonal elements of the matrix on the lefthand side in

equation (3) are utilised. The mapping from adjusted dependent variable to linear predictor can be given

below

η̂ = Sy∗,

where

η̂ = (η̂1(u1), η̂2(u2), . . . , η̂N(uN))
T andy∗ = (y∗1(u1),y∗2(u2), . . . ,y∗N(uN))

T .
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Analogous to the hat matrix, S is the matrix with the (i j)th element Si j being

Si j =Ci j
y∗i (u j)

y∗j(u j)
,

where Ci j is the (i j)th element of the matrix C.

2.4. Model diagnostic tool

To compare and evaluate the GWPR model performance with five aforementioned kernel weighting

functions, we have used three most common methods of model evaluation: Akaike information criterion

(AIC) [33], corrected Akaike information criterion (AICc) [9] and geographically weighted deviance

(GW) [27]. The AIC function for a model with bandwidth b is defined as

AIC(b) = D(b)+2K(b),

where D is the deviance of the model, K is the effective number of parameters in the model and b is the

bandwidth used in the kernel weighting function for the model. A model with minimum AIC value has

the higher goodness of fit [27]. However, in case of a local spatial regression model with a small degrees

of freedom, a bias adjustment in the AIC is introduced [29]. The Akaike information criterion with bias

correction (AICc) can then be defined as

AICc(b) = D(b)+2
(

K(b)+
K(b)(K(b)+1)

N−K(b)−1

)
,

where N is the number of spatial observations. For a geographically weighted Poisson regression model

the deviance statistic, referred to as geographically weighted deviance (GWD) [27], can be given by

GWD(b) =

[
N

∑
i=1

Yi log
(

Yi/Ŷi (β (ui),b)
)
−

N

∑
i=1

(
Yi− Ŷi (β (ui),b)

)]
.

where Yi is observed number of events in the ith location, Ŷi is the predicted value for the ith location and

β (ui) is the parameter vector for the set of K explanatory variables. The most suitable would be the one

with the lowest values of the Akaike information criterion (AIC), corrected Akaike information criterion

(AICc) and geographically weighted deviance (GWD).

3. Application: road traffic accident

Statisticians have prompted to find ways to gain a better understanding of road traffic accidents (RTA)

due to the loss of lives and high cost to the societies. More than 1.2 million people die every year in

roadway-related accidents and over fifty million faces different form of injuries throughout the world.

By 2030, road traffic accidents are forecasted to be the fifth main cause of deaths globally [25]. More-

over, it has been considered as one of the significant causes of health problems in terms of death and
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disability [6, 19]. Therefore, statistical analysis of RTA data has become one of the major concern for

the development and implementation of the standards and diverse road safety policies [26]. Statistical

modelling, analysis and prediction of road traffic accidents would provide a greater depth of understand-

ing of the causes, associated factors and implement or revise policies and countermeasures to reduce

the number of RTA [22]. An extensive amount of research on road traffic accident has been performed

in many different contexts to achieve different goals [26]. Many researchers tried to quantify the effect

of significant determinants (explanatory variables)[1, 6, 17], or to use the statistical models to forecast

the number of accidents [2, 12, 13], or to evaluate the efficiency of identified safety countermeasures

[21, 29, 32] .

Majority of the studies in RTA show that the number of road traffic accidents significantly varied over

space or regions [1, 6, 17]. Therefore, statistical modelling and analysis should be contemplated with the

spatial correlation and geographical factors for road traffic accident research. Recently, a considerable

amount of literature has been found on the theme of spatial modelling and analysis of RTA. Several

studies applied the geographically weighted Poisson regression (GWPR) model in accident analysis

[21, 29]. As mentioned in the introduction, selecting the best kernel weighting function with a GWPR

model is a complex task for any data as it depends on how the neighbouring units affect an observed

outcome. Furthermore, we found that only bi-square and Gaussian kernel functions have been used to

evaluate the GWPR models for road traffic accident data [21, 29]. To the best of our knowledge, there

is no study in the literature, which evaluates all the kernel weighting functions for the traffic accidents

data. Therefore, we attempt to evaluate geographically weighted Poisson regression (GWPR) models for

different kernel weighting functions to choose the most suitable one for the road traffic accident data in

this study.

3.1. Data and software

The road traffic accidents (RTA) data of 2017 have been collected for the Sultanate of Oman for this

study. The data includes the number of road traffic accidents by eleven governorates in Oman, which

have been considered as spatial units in this study. The RTA database in Oman is maintained by the

Royal Omani Police (ROP). ‘Statistical Summary Bulletins’ are published annually by the Directorate

of Road Traffic as part of the ROP [30]. In this study, we also use explanatory variables such as pop-

ulation size, population density, number of registered vehicles, number of unemployed persons, speed

driving, season (February-June-July or otherwise). Population size and population density data are col-

lected from the National Centre for Statistics & Information (NCSI) monthly reports, called ‘Monthly

Statistical Bulletin’ [28]. The number of jobs seekers (unemployment) data in each governorate of Oman

were collected from the Public Authority of Manpower register. Number of registered vehicles in each

governorate, speed driving, season are collected from the RTA database.

There are several tools and softwares that can be implemented to model and analyse road traffic

accidents. The open-source software R has been extensively used as a sophisticated tool to fit models
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and analyse data in many areas [34]. We have implemented the R software in our model framework to

perform the spatial analysis and fit the geographically weighted Poisson regression models.

4. Results and discussion

In this study, five geographically weighted Poisson regression (GWPR) models are evaluated and com-

pared with different kernel weighting functions including box-car, bi-square, tri-cube, exponential and

Gaussian kernel weighting function. We have considered GWPR models with different kernel weighting

functions to evaluate the model performance and find out the most suitable one. There are eleven spatial

units in this study, namely, governorates (regions) in Oman. The bandwidth size also plays a key role

during model calibration to give weights for the nearest spatial units. The adaptive bandwidth was em-

ployed for each kernel weighting functions in our work. Three common diagnostic tools have been used

to evaluate the performance of the GWPR models: geographically weighted deviance (GWD), Akaike

information criterion (AIC) and the corrected Akaike Information Criterion (AICc).

Our secondary data consist of seven variables: number of RTA as the dependent variable and six

variables: population density, population size, number of registered vehicles, number of unemployed

persons, speed driving and seasons as explanatory variables for the Sultanate of Oman in 2017. There

are eleven governorates considered as the eleven spatial units for the GWPR model. A primary analysis

has been conducted by fitting a Poisson generalised linear model to learn about the significant factors.

Table 2 provides the fitting of the global Poisson regression model in generalised linear modelling (GLM)

framework. However, the Poisson GLM model shows that population size, number of registered vehicles,

number of unemployed persons and season are significant.

Table 2. Poisson GLM fitting

Coefficients Estimate Standard Error Z-value p-value

Intercept 4.40e+00 5.19e−02 84.82 < 2e−16∗∗∗

Population size 8.42e−07 4.15e−07 2.03 0.042∗

Population density 8.28e−04 1.46e−03 0.57 0.570

No. of registered vehicles −3.16e−06 7.75e−07 −4.08 4.54e−05∗∗∗

No. of unemployed persons 2.42e−05 1.46e−05 1.66 0.097

Speed driving 1.48e−03 1.31e−03 1.13 0.260

Season 7.08e−03 2.96e−03 2.39 0.017∗

Level of significance: ∗p < 0.05, ∗∗p < 0.001, ∗∗∗p < 0.0001

The mean and variance of the number of accidents in Oman are found to be 350 and 110,577, respec-

tively per governorate per year. This clearly indicates the over-dispersion in the data and the inadequacy

of the fitted global Poisson GLM model in Table 2. Therefore, we fitted a generalised Poisson GLM [10]

and a negative binomial GLM [18] and the evaluation of model fitting is shown in Table 3 in the next
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section. However, the high variation of the number of accidents at different governorate level provides

an indication that different factors may have impacted the RTA differently at each governorate level and

local level models may explain the variation more clearly. This motivates applying the geographically

weighted Poisson regression.

4.1. GWPR model evaluation

One of the main aims of this study is to evaluate different kernels for the GWPR models with Oman road

traffic accident data and suggest a model with the most suitable one. The results, shown in Table 3, are

obtained from the evaluation of the five GWPR models with five different kernel weighting functions.

As mentioned earlier, the most suitable model is the one which has the lowest values of GWD, AIC and

AICc. As expected, the Poisson GLM is found to be the worst model as the model gives the highest

residual deviance, AIC and AICc values in comparison to any GWPR model.

Although bi-square and Gaussian kernel functions have been found in the literature, in particular, for

modelling and analysing road traffic accident data, however, the other kernel methods are also found to

be equally potential from the analytical point of view. Box-car kernel weighting function is the simplest

form of the kernel functions and GWPR model with box-car function (GWPR1) gives the highest values

for all three indicators: GWD equals to 107.76, AIC 121.76 and AICc 159.09. Gaussian kernel function

seems to be the most popular kernel method for spatial analysis and also for road traffic accident data.

Interestingly, the GWPR model with Gaussian kernel (GWPR5) found to be the second least preferred

method for our data as the model gives second largest values of GWD equals to 98.95, AIC 113.22

and AICc 153.74. The GWPR model with a bi-square kernel function gives a substantially better result

than the model with Gaussian kernel function (Table 3). Comparison between the GWPR models with

bi-square and tri-cube kernel function is difficult as the GWD and AIC values are lower for the model

with the tri-cube kernel while the AICc values are higher (GWPR2 vs GWPR3).

Table 3. Evaluation of different GWPR models for different kernel weighting functions

Model Kernel weighting function Deviance∗ or GWD AIC AICc

GLM (Poisson) — 107.76∗ 202.29 239.62

GLM (Generalised Poisson) — 107.76∗ 108.14 145.48

GLM (Negative binomial) — 11.60∗ 137.18 209.18

GWPR1 Box-car 107.76 121.76 159.09

GWPR2 Bi-square 84.14 99.00 147.75

GWPR3 Tri-cube 80.56 95.79 150.61

GWPR4 Exponential 75.37 90.46 143.09

GWPR5 Gaussian 98.95 113.22 153.74

Deviance∗ is used for GLMs (Poisson, generalised Poisson and negative binomial models)

Clearly, the GWPR model with exponential kernel weighting function (GWPR4) has the lowest values
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of GWD (75.36), AIC (90.46) and AICc (143.09) in comparison to those obtained from the other models.

Here all three indicators give the lowest value for the model and can be considered as the most suitable

one. Note that we used the adaptive kernel method for bandwidth selection as it has been suggested as

the optimal bandwidth for spatial analysis.

4.2. GWPR model estimate

In our analysis, GWPR model (with exponential kernel weighting function and adaptive bandwidth)

(GWPR4) found to be the most suitable one for road traffic accident data in Oman. Therefore, we pro-

duce the local parameter estimates from the fitted model and also the maps for the parameter estimates

for the variables: population density, population size, number of registered vehicles, number of unem-

ployed persons, speed driving and season. Table 4 provides the summary statistics of the local parameter

estimates obtained from the GWPR4 model.

Table 4. Summary of local parameter estimates by GWPR model with exponential kernel weighting function

Variable Min. 1st Quartile Median 3rd Quartile Max.

Intercept 4.37e+00 4.41e+00 4.44e+00 4.45e+00 4.450

Population density −6.90e−04 −2.97e−04 9.08e−04 1.51e−03 0.002

Population size 6.78e−07 7.62e−07 8.11e−07 8.87e−07 0.000

No. of registered vehicles −3.45e−06 −3.20e−06 −2.94e−06 −2.74e−06 0.000

No. of unemployed persons 1.39e−05 1.75e−05 2.43e−05 2.95e−05 0.000

Speed driving 8.38e−04 1.82e−03 2.49e−03 2.81e−03 0.003

Season 2.96e−03 4.11e−03 4.65e−03 5.46e−03 0.009

The parameter estimates of the GWPR model are necessarily the estimated values of local coefficients,

which are plotted by regions (governorates) in Figure 1. The maps in Figure 1 demonstrate the spread

of local coefficients values over the geographical regions (eleven governorates) for Oman. It is clear

from Figure 1 that the effects of different explanatory variables are varying over the regions in Oman.

The estimated coefficients show that population size, density, number of unemployed persons, speed

driving and season have a positive impact on the number of accidents in the governorates in Oman.

Interestingly, the number of registered vehicles found to have a negative impact on accidents in Oman.

The parameter estimates of population density range from 0.0005 to 0.0025 and the number of accidents

in east governorates (both North and South Sharqiyah) are affected the most by population density in

comparison to other regions while the governorates in the north-west are less affected as displayed in

Figure 1(a). The estimates of the parameter for Population size range between 7.00e−7 and 1.05e−06

and Musandam (in the most north of the country) is the highest affected governorate by population size,

see Figure 1(b). From Figure 1(d) and 1(f), we see that Dhofar is the governorate in the south, where

the number of RTA affected by the unemployment and season. Moreover, the region is less affected by

11



Estimated coefficients for density

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

(a) Population density

Estimated coefficients for population

7.00e−07

7.50e−07

8.00e−07

8.50e−07

9.00e−07

9.50e−07

1.00e−06

1.05e−06

(b) Population size

Estimated coefficients for motarisation

−3.4e−06

−3.2e−06

−3.0e−06

−2.8e−06

−2.6e−06

−2.4e−06

−2.2e−06

(c) No. of registered vehicles

Estimated coefficients for unemployment

1.5e−05

2.0e−05

2.5e−05

3.0e−05

(d) No. of unemployed person

Estimated coefficients for speed

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(e) Speed driving

Estimated coefficients for season

0.003

0.004

0.005

0.006

0.007

0.008

0.009

(f) Season

Figure 1. The estimates of local coefficients from the GWPR model with the exponential kernel.
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population size, the number of registered vehicles and speed driving than other governorates in Oman

as showing in Figure 1(b), 1(c) and 1(e). The variable season is found to have the highest impact on the

region Dhofar because Dhofar celebrates the ‘Salalah Tourism Festival’ in the June-August period and

the number of accident is significantly higher during that period.

Our model showed the spatial variation of the estimates of the parameters for the data and considered

the effect of neighbouring regions. The map gives a clear indication to the policy-makers, relevant gov-

ernment departments and researchers to consider the associated factors related to the number of accidents

in Oman and take appropriate actions and measures to prevent accidents in Oman.

5. Conclusion

This study aimed to fit geographically weighted Poisson regression (GWPR) models with different kernel

weighting functions and evaluate the models to find out the most suitable one in the context of road traffic

accident data. We compared the performance of five GWPR models with five kernel weighting functions

including box-car, bi-square, tri-cube, exponential and Gaussian weighting function by implementing

the model formulation and evaluation to the road traffic accident data in Oman. The study would help

the decision-makers to assess the factors associated with the number of accidents so that necessary and

appropriate measures can be taken to reduce the number of accidents. The model framework has been

implemented through the open-source software R to calibrate the GWPR models, fit the most suitable and

estimates the parameters. We used three popular information criteria– geographically weighted deviance

(GWD), Akaike information criterion (AIC) and the corrected Akaike Information Criterion (AICc) to

evaluate the performance of models.

The study found that GWPR models can substantially capture the heterogeneity of the spatial factors

over the regions or spatial units. The crucial finding to emerge from this study is that the GWPR model

with the exponential kernel function and the adaptive bandwidth is the most suitable for modelling, fitting

and analysing road traffic accident data. Although several studies suggested that the GWPR model with

bi-square kernel function with the adaptive bandwidth is more suitable [21, 27], our results suggest that

the GWPR model with the exponential kernel weighting function outperformed over other weighting

functions. Some studies used the GWPR model with the Gaussian weighting kernel function assuming

that the Gaussian kernel function would give better result than others [29]. We found that the GWPR

model with the tri-cube kernel function or even Gaussian kernel function is less adequate than the model

with the exponential kernel. As we applied the model formulation to a specific dataset the GWPR model

with exponential kernel weighting is not generalisable for other types of datasets. However, the proposed

model formulation shows– how to apply and choose the best GWPR models for different kernels with a

specific dataset.
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