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ABSTRACT In this paper, we propose a deep generative model named multimodal conditional deep belief
network (MCDBN) for cross-modal learning of 3D motion data and their non-injective 2D projections on
the image plane. This model has a three-sectional structure, which learns conditional probability distribution
of 3Dmotion data given 2D projections. Two distinct conditional deep belief networks (CDBNs), encode the
real-valued spatiotemporal patterns of 2D and 3Dmotion time series captured from the subjects’ movements
into compact representations. The third part includes a multimodal restricted Boltzmann machine which
in the training process, learns the relationship between the compact representations of data modalities by
variation information criteria. As a result, conditioned on a 2D motion data obtained from a video, MCDBN
can regenerate 3D motion data in the generation phase. We introduce Pearson correlation coefficient of the
ground truth and the regenerated the motion signals as a new evaluation metric in motion reconstruction
problems. The model is trained with human motion capture data and the results show that the real and the
regenerated signals are highly correlated, which means the model can reproduce the dynamical patterns of
the motion accurately.

INDEX TERMS Motion analysis, signal reconstruction, artificial neural networks, time series analysis.

I. INTRODUCTION
Regenerating 3D human motion from 2D projections of body
landmarks on the image plane is a challenging task with
multiple applications such as interactive human-robot inter-
faces, computer graphics, and virtual reality. 3D motion data
contain frame-wise 3D positions of the human joints in the
real world which are usually referred to as 3D pose. Sim-
ilarly, the sequences of the 2D pixel-wise address of body
landmarks on the image plane or 2D poses form the 2D
motion data. The depth values of 3D poses (distances of joints
from the camera) are lost when they are projected onto the
image plane. Therefore, 3D motion reconstruction from 2D
motion data is an ill-posed inverse problem; meaning a single
2D pose may concur with infinite 3D poses as a solution
of the non-injective projection. Of course, not all of these
solutions are probable or physically feasible. So, consider-
ing the extra information and imposing physical constraints
can limit the space of solutions. Any independent channel
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of sensory input/output between a human and the world
is referred to as modality. Humans can learn to regenerate
any arbitrary trajectory from demonstration via cross-modal
processing. If a person regenerates a special trajectory many
times, the produced trajectories are not exactly the same, but
they are very similar. It can be supposed that humans learn a
multimodal generative model and regenerate a new trajectory
through sampling from this model.

Most of the previous methods do not consider the whole
2D and 3D motion time series and only try to find a model
that can estimate a single 3D pose from corresponding 2D
pose [1]. Likewise, utilizing tools such as deterministic neural
networks [2], mathematical optimizers [3] and parameter
estimators [4] lead to the deterministic models. It means these
models reproduce exactly the same output, providing a fixed
input. However, in many other applications such as virtual
reality, robotics, and animation, models with the capability
of regenerating accurate movements with a controlled level
of stochasticity are desired. Human movements are rich spa-
tiotemporal data with many variations and this stochasticity
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causes the regenerated motions to seem more humanlike and
realistic.

Providing the ability to model the high dimensional time
series of 2D and 3D motion data with complex dependencies
requires a powerful machine learning tool. Generativemodels
are among the best candidates. They are able to learn the
spatiotemporal patterns of motion data and regenerate new
variations of motions while preserving a certain style via their
sampling procedure. The recent successes of deep generative
models in handling multimodal temporal data with compli-
cated non-linear interactions persuade us to focus on deep
generative models in this study.

In this paper, a multimodal deep generative architecture
is proposed to capture the cross-modal relation of 3D and
2D motion data modalities. We refer to the proposed model
as Multimodal Conditional Deep Belief Network (MCDBN).
MCDBN learns the cross-modal relation of data modalities
in the training phase. As a result, it would be able to regen-
erate 3D motions conditioned on 2D motion data during
the generation process. The model can be used in the vast
area of applications including imitation learning and human
character generation.

MCDBN is inspired from the mentioned ability of the
humans in recreating 3Dmotions that are seen in a video upon
prior knowledge and intuition about kinematic constraints
[5]. Most of the previous approaches learn priors explicitly
through the ground truth data [6]. As mentioned, there is an
infinite 3D pose whose projections match a single 2D pose.
But the motion data are highly structured since the body
joints hinge on each other in a single frame, and also their
trajectories are dependent across the frames. So, the solution
space can be limited. MCDBN takes into account the prior
knowledge and constraints implicitly via its weights and
parameters by exploiting 2D -3D motion data coincidence
patterns in the training data.

MCDBN acts as an estimator of the joint distribution
of 2D and 3D motion data time series. It is trained as an
encoder-decoder model that learns rich statistical relation-
ships between 2D and 3D motion data in the form of a shared
latent representation. Given 2D motion data as input, the 3D
motion data are regenerated by sampling from the learned
joint distribution. The key property of our approach is that
it considers both anthropometric and kinematic constraints,
simultaneously. In more details, the training process tunes
the parameters of the model in such a way that MCDBN
assigns a low probability to improbable and implausible
poses.

We use the variation of information (VI) as the training
criterion as an alternative to the common Negative Log-
Likelihood (NLL). VI is a metric of informativeness of
two random variables about each other [7], [8]. It is based
on a simple linear expression of the mutual information.
Using VI as a training criterion causes to learn more robust
shared representation which maximizes the intra-modality
association.

Our main contributions in this paper are:

• Propounding a new approach for 3D motion reconstruc-
tion from 2D motion data as a probabilistic cross-modal
learning problem

• Proposing a new deep architecture for modeling the
coupled time series

• Using variation information criteria instead of NLL for
cross-modal learning of coupled time series

• Evaluating the presented model on realistic datasets and
proposing new error generation measurement

Remaining of the paper is organized as follows. Some
of the related papers are discussed in the next section. The
required backgrounds are presented in Section III. Section IV
provides the details of the proposed method and the train-
ing and the inference procedures. Our experimental results
are presented in Section V and the last section includes a
conclusion.

II. RELATED WORK
3D pose estimation from 2D pose has been studied exten-
sively in computer vision [9], [10], multimodal learning [11]
and robotics [12]. In this section, some of the most relevant
papers in robotics and multimodal deep learning literature are
investigated.

Ngiam et al. [13] proposed an Autoencoder based [14]
model to learn the multimodal features. The model has a
three-step learning process. The main application of this
paper was discriminating letters in audiovisual data. The pro-
posed model outperforms unimodal structures only in noisy
data. They believed unimodal clean data have less ambigu-
ity and multimodal data help distinguishing letters in noisy
situations.

Srivastava and Salakhutdinov [15] proposed a structure to
reconstruct the missing modality in text and image namely
Multimodal Deep Boltzmann Machine (MDBM). MDBM
learns a joint distribution over the multimodal space and in
the absence of one of the modalities, it estimates the other
one. MDBM contains a modality-specific Deep Boltzmann
Machine for eachmodality. One of the DBMs takes the binary
coded text input and another one is a Gaussian RBM that is
assigned to the image modality. A similar architecture called
Multimodal Deep Belief Network (MDBN) has been pro-
posed by Srivastava and Salakhutdinov [16], but the results
have shown that MDBM outperforms MDBN. It seems the
information flow manner causes this superiority. In MDBM,
information streams both bottom-up and top-down, while
MDBN has a one-sided flow of information. So, the task of
multimodal modeling in MDBM is distributed in entire of the
network while in MDBN, solely the top layer is responsible
for learning the data association.

An Autoencoder based [14] computational framework for
integration of sensory-motor time-series has been proposed
by Noda et al. [11]. They implemented the framework in a
humanoid robot for modalities including raw RGB images,
sound spectrums, and joint angles. The framework has been
examined for the ability of cross-modal memory retrieval
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and time series prediction considering the root mean square
(RMS) of the estimated signals and the ground truth values
as an error measurement.

Aiming gesture detection and localization Neverova et al.
[17] proposed a multiscale and multimodal deep architecture.
Similar to the other deep models, careful initialization was
one of their keys to success. They fused data modalities
gradually through a technique that was namedModDrop [18].
Authors claimed that fusing multiple modalities at several
spatial and temporal scales causes to a significant increase in
the recognition rate, and provides the ability to compensate
errors of the individual classifiers as well as noise in the
separate channels. Likewise, it ensures the robustness of the
classifier to missing signals in one or several channels to pro-
duce meaningful predictions from any number of available
modalities.

According to Sohn et al. [19], having the ability of rea-
soning about missing data based on available data modalities
is a mandatory condition for any multimodal model. So,
they introduced a new representation learning framework
that explicitly aims at this goal. They proposed to train the
model by minimizing the variation of information rather than
minimizing NLL. The paper is one of the main references of
our work and we will discuss the novel learning criteria in the
next sections.

RNN-RBM is a probabilistic model based on a recur-
rent neural network that has been proposed by Boulanger-
Lewandowski et al. [20]. RNN-RBM has been applied in
the music transcription problem [21]. It learns the relation-
ships between the input and the output variables by several
CRBMs whose parameters are tuned by a recurrent neural
network. Villegas et al. [22] used a recurrent neural network
for the motion regeneration. The proposed network consists
of two main parts. The first part solves the forward kinematic
problem, and the second part that is named cycle consistency
learns to solve the inverse kinematic problem in an unsuper-
vised manner.

For the multimodal gesture segmentation and recogni-
tion, Wu et al. [23] presented a semi-supervised hierarchical
dynamic framework that is called Deep Dynamic Neural
Networks (DDNN). DDNN is based on the HMM whose
emission probability is obtained through a feedforward neu-
ral network. The input modalities of DDNN are skeletal
information, depth, and RGB images. The model contains
a Gaussian-Bernoulli Deep Belief Network for handling the
skeletal dynamics and a 3D Convolutional Neural Network
(3DCNN) for processing and fusing batches of depth and
RGB.

Peng et al. [24] utilized deep Reinforcement Learning (RL)
for regenerating the actions including locomotion, acrobatics,
and martial arts from the video. Firstly, they used deep meth-
ods for the pose estimation. Then, the deep RL framework
has been trained based on the estimated motion capture. They
claimed that their method can predict the potential human
motions from the still images. Lin and Amer [25] proposed a

generative model for human motion modeling using Genera-
tive Adversarial Networks (GANs).

Bo and Sminchisescu [26] proposed twin Gaussian pro-
cesses (TGP) for the structured prediction. TGP uses Gaus-
sian process (GP) priors on both covariates and responses
and estimates outputs by minimizing the Kullback-Leibler
divergence between two GPs. They applied their proposed
model on the 3Dmotion reconstruction problem.Manymeth-
ods have been proposed for the motion modeling based on
GP [27]. The main drawback of these approaches is the high
computational complexity.

Amer et al. [28] proposed a temporal hybrid model (gener-
ative and discriminative) for classifying the sequential data
from multiple heterogeneous modalities. According to the
authors, such a hybrid model can exploit the power of dis-
criminative classifiers along with the representation power
of the generative models. With the aim of combining tempo-
ral discriminative and generative architectures into a unified
single model, they have added a discriminative component
to the CRBM and named the new architecture discrimina-
tive CRBM (DCRBM). A modality specific DCRBM has
been trained for each data modality followed by training
a fusion layer. The new structure has been named Multi-
modal Discriminative CRBMs (MMDCRBMs). To exploit
the generative capability of MMDCRBMs, the model has
been trained in such a way that it generates the lower-level
data corresponding to the specific label that closely matches
the actual input data. In an earlier version of this paper [29],
the authors had used a Conditional Random Field (CRF) as a
discriminative part in which the input representation to it had
been extracted through a Conditional Deep Belief Network
(CDBN).

III. PRELIMINARIES
In this section, the required backgrounds are briefly summa-
rized. We refer interested readers to some review articles [30]
and references therein for more information.

A. RESTRICTED BOLTZMANN MACHINE (RBM)
A Boltzmann Machine (BM) which is depicted in Fig. 1 can
be viewed as either a probabilistic neural network or an
undirected graphical model. It consists of visible and hidden

FIGURE 1. Boltzmann machine (BM).
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layers of the binary variables with fully connected links
[31], [32]. The variables in the visible layer represent the
data while the hidden variables have the role of enlarging
class of representable distributions. BM updates the values
of variables according to a Bernoulli trial. As a result, in the
limit of infinite time, the joint distribution of the visible
and the hidden variables is the Gibbs-Boltzmann probability
distribution.

The main extension of BM has been named Restricted
BoltzmannMachine (RBM), owing to restricting the network
connections to the inter-layer links and omitting the intra-
layer ones. As it is depicted in Fig. 2, the RBM has a bipartite
architecture in which the variables are connected through the
symmetric undirected links that are fully connected between
the layers. RBM learns a generative model of data distribu-
tion through an unsupervised method. Employing stochastic
variables makes RBM less vulnerable to local minima and
provides excellent generalization capability [30].

FIGURE 2. Restricted boltzmann machine (RBM).

Joint distribution of the visible and the hidden variables of
a typical RBM is defined through an energy function which
associates with a scalar energy to every possible configura-
tion of the variables. Let v = (v1.v2. · · · .vn) be the set of
observed variables and h = (h1.h2. · · · .hm) be the set of
hidden variables, then an energy-based probabilistic model
defines the joint distribution of visible and hidden variables
as (1):

p (v, h) =
1
Z
exp (−E(v, h)) (1)

E (v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
ij

viwijhj (2)

Z =
∑
v,h

exp (−E (v, h)) , (3)

where i and j are used to index the visible and the hidden
variables respectively; ai and bj are the biases. wij is the
weight between the ith visible and the jth hidden variables and
Z is the partition function that normalizes the probabilities
with respect to all possible configurations. The marginal and
the conditional distributions of RBM are defined according
to (4) to (7):

p (v) =
∑
h

p(v, h) (4)

p (h) =
∑
v

p(v, h) (5)

p (v | h) =
∏
i

p (vi | h) =
∏
i

σ (ai +
∑
j

wijhj) (6)

p (h | v) =
∏
j

p
(
hj | v

)
=

∏
j

σ (bj +
∑
i

wijvi), (7)

where σ is the sigmoid function:

σ (x) =
(

1
1+ exp?(−x)

)
. (8)

To provide the ability of modeling real-valued data,
the binary visible variables can be replaced by real-valued
variables that have Gaussian distributions. So the energy of a
Gaussian RBM (GRBM) is defined as (9):

E (v, h) = −
∑
i

(vi − ai)2

2σ 2
i

−

∑
j

bjhj −
∑
ij

vi
σi
wijhj. (9)

The conditional distributions of the visible and the hidden
variables are as follows:

p (vi | h) = N

ai + σi∑
j

wijhj, σ 2
i

 (10)

p (hi= 1 | v) = σ

(
bi +

∑
i

vi
σi
wij

)
. (11)

The parameters of RBM are trained by maximizing the
likelihood function. But, maximum likelihood estimation
is computationally intractable. The problem has been cir-
cumvented by applying Stochastic Gradient Descent (SGD)
while approximating the gradient with Contrastive Diver-
gence (CD) [33] or any variant of it like the Persistent CD
(PCD) [34] CD follows the gradient via (12).

CDn ∝ DKL(p0(x)||p∞(x))− DKL(pn(x)||(p∞)). (12)

where pn is the distribution of a Markov chain running for n
steps and DKL symbolizes the Kullback-Leibler divergence.
Bi-linearity of the energy function and lack of the inter-layer
connections cause conditional independence of the hidden
variables given the visible ones and vice versa. As a result,
the computation of log-likelihood is more efficient and less
expensive in RBM compared with BM.

The idea of stacking RBMs on top of each other makes
two well-known deep generative models Deep Boltzmann
Machine (DBM) [35] and Deep Belief Network (DBN) [36],
[37]. DBM and DBN have similar architectures except that
the DBM connections are undirected while DBN connec-
tions are directed except the top layer. It seems that having
undirected connections makes two-way (bottom-up and top-
down) inference in DBM much easier which is a favorable
property when facing imperfect and missing data. Hinton
et al. [38] proposed a greedy and layer-wise training proce-
dure for DBN in which the hidden layers of lower RBMs are
considered as visible data for upper RBMs.
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B. CONDITIONAL RESTRICTED BOLTZMANN
MACHINE (CRBM)
The RBM only can model the static data. So far, several
variants of the RBM like Temporal RBM [39], [40] and
Conditional RBM (CRBM) [41] have been proposed for
incorporating temporal information. CRBM is a biologically-
inspired nonlinear generative model proposed for modeling
the high dimensional time series [41]–[45]. It contains binary
hidden and real-valued visible variables. In order to consider
the temporal dynamics of data, CRBM incorporates long-
term temporal dependencies by adding two types of directed
autoregressive connections (Fig. 3). These two types of links
connect the visible variables in the lastN frames to the current
hidden variables and the visible variables in the lastM frames
to the current visible variables , respectively. Taylor assumed
M = N and named it as the order of model. For ease of
visualization, we show the fully connected links between
layers with bold arrows. So, each arrow between two layers
represents a set of links that connect all the variables of two
layers together.

FIGURE 3. Conditional restricted boltzmann machine (CRBM).

The autoregressive connections are treated as dynamically
changing biases, so the conditional independence assump-
tions of the RBM still hold, i.e. the conditional distributions
of visible or hidden variables given the other variables fac-
torizes completely. The conditional distribution of current
real-valued visible variables vt and the current binary hidden
variables ht given the history of visible variables from time
step t−1 to t−q (H t ), is obtained through the energy function
as follows:

p
(
vt , ht |H t)

=
1
Z
exp

(
−E

(
vt , ht |H t)) (13)

E
(
vt , ht |H t)

=

∑
i

(vi − âi)2

2σ 2
i

−

∑
j

b̂jhj −
∑
ij

vi
σi
wijhj

(14)

H t
= [vt−n, vt−n+1, . . . , vt−1] (15)

âi = ai +
∑
k

n∑
q=1

At−qki vt−qk (16)

b̂j = bj +
∑
k

m∑
q=1

Bt−qkj vt−qk , (17)

where âi and b̂j are the dynamic biases of the ith visible
variable and the jth hidden variable, respectively; vt−qk is the
kth visible variable at time t − q and At−qki and At−qkj are the
weights of connection from the kth visible variable at time
t − q to the ith current visible and the jth current hidden
variables.

Similar to RBM, CRBMs can also be stacked on each other
to create a Conditional Deep Belief Network (CDBN). A two-
layer CDBN is depicted in Fig. 4. In this figure, the hidden
layer of lower CRBM and the hidden layer of upper CRBM
are denoted by h1 and h2, respectively. Besides, the super-
scripts are used to denote the time steps and fully connected
links between layers are shown with bold arrows, for ease of
visualization.

FIGURE 4. Conditional deep belief network (CDBN).

CDBNhas a greedy layer-wise training algorithm. The par-
tition function of CRBM (Z ) is computationally intractable
and the model parameters are learned through any variant of
the CD. Top-down weights are used to regenerate the lower
visible data during the inference. The visible data in each
individual layer are produced by alternating Gibbs sampling
between hidden (ht ) and visible states (vt ). To start alternating
Gibbs sampling, it is necessary to initialize either ht or vt .
Taylor [41] decided to initialize ht . They simply clamp the
visible variables in the early steps and alternate between
stochastically updating the hidden and the visible variables.
Likewise, as explained, there are no connections between the
variables of the same layer and the inference procedures are
done in a parallel manner for all the visible and the hidden
variables. The reader is referred to Taylor publications [41]–
[45] for more details.

C. MULTIMODAL RESTRICTED BOLTZMANN
MACHINE (MRBM)
Extension of the RBM to the Multimodal Restricted Boltz-
mann Machine (MRBM) has been proposed in some studies
[46]. MRBM is like two distinct RBMs which tied together
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FIGURE 5. Multimodal restricted boltzmann machine (MRBM).

in their hidden layers (Fig. 5). The hidden layer is treated
as the joint representation across modalities and the joint
distribution over the hidden layer and the visible layers is
defined according to (18):

p
(
vm1 , vm2 , h

)
=

1
Z
exp

(
−E

(
vm1 , vm2 , h

))
(18)

E (v, h) = −
∑
i

am1
i vm1

i −
∑
j

am2
j vm2

j −
∑
k

bkhk

−

∑
ik

vm1
i wm1

ik hk −
∑
jk

vm2
j wm2

jk hk (19)

p
(
vm1 , vm2

)
=

1
Z

∑
h

p
(
vm1 , vm2 , h

)
= 1/Z

∑
h

exp
(
−E

(
vm1 , vm2 , h

))
, (20)

where Z is the normalizing constant, vm1 , vm2 and h are the
binary visible variables assigned to the input modalities and
binary hidden variables , respectively. wm1 and wm2 are the
weights between each input modality and the hidden layer
and am1 and am2 are the bias vectors corresponding to each
modality.

Due to the bipartite structure, the variables in the same
layer are conditionally independent given the variables of the
other layers. As a result, the conditional probabilities could
be written as follows:

p
(
hk= 1 | vm1 , vm2

)
= σ (bk +

∑
i

vm1
i wm1

ik +
∑
j

vm2
j wm2

jk )

(21)

p
(
vm1
i = 1 | h

)
= σ (am1

i +
∑
k

wm1
ik hk ) (22)

p
(
vm2
j = 1 | h

)
= σ

(
am2
j +

∑
k

wm2
jk hk

)
. (23)

Variation of information (VI) or shared information dis-
tance [7], [8] is a metric that measures howmuch two random
variables are informative about each other. In other words,
VI is the total amount of uncertainty remaining about vari-
ables after the other one is known. It is defined as the addition
of conditional entropies of two variables according to (25).

VI (X · Y ) = [H (X)−I (X · Y )]+[H (Y )+ I (X · Y )] (24)

VI (X · Y ) = H (X |Y )+ H (Y |X) , (25)

where H and I are used to denote the entropy and mutual
information of two random variables named X and Y . Using
the conditional entropy formula, (25) can be rewritten as (27).

H (X |Y ) = Ep(X ·Y )[log p (X |Y )] (26)

VI = Ep(X ·Y )
[
log p (X |Y )+ log p (Y |X)

]
, (27)

where conditional entropy of Y given X can be written in
a similar way, p (X · Y ) is the joint probability, p (Y |X) and
p (X |Y ) are the conditional probabilities of variables.

Sohn et al. [19] considered data modalities as random vari-
ables and defined new multimodal learning criteria, namely
minimum variation of information learning (MinVI) as fol-
lows:

MinVI : LVI (θ) : min
θ

LVI (θ)

= −EpD(X ·Y )
[
log pθ (X |Y )+ log pθ (Y |X)

]
, (28)

where, pθ is any distribution on random variables which is
parametrized by θ and pD denotes the estimated probabilities
from data. It is shown that MinVI objective can be decom-
posed into a sum of two negative conditional log likelihoods.
Sohn et al. [19] provided a theoretical proof of why the
proposed learning objective is sufficient to estimate the joint
distribution of the multimodal data.

Taking a look at conventional NLL criteria, it includes
four KL divergence terms including two marginal and two
conditional distributions. Due to the greater number of modes
in the marginal distributions compared with the conditional
distributions, Sohn et al. [19] reasoned that KL divergences of
marginal distributions may become a dominant factor during
the minimization process. Thus, it prevents the model from
learning a good association between data modalities. In fact,
models with NLL training criteria try to learn whole data
distribution and in turn, MinVI objective focuses on mod-
eling the conditional distributions of data modality which is
arguably easier to minimize and will result in learning much
more informative cross-modal representations.

ML : min
θ

LNLL (θ) : LNLL (θ)

= −EpD(X ·Y )
[
log pθ (X · Y )

]
(29)

LNLL (θ) =
1
2
(KL(pD(X )||pθ (X))+ KL(pD (Y ) ||pθ (Y ))

+EpD(Y ) [KL(pD(Y |X )||pθ (Y |X )]

+EpD(Y ) [KL(pD(X |Y )||pθ (X |Y )]
)
+ C (30)

LNLL =
1
2

(
LVI (θ)+

(
EpD(Y ) [KL(pD(Y |X )||pθ (Y |X )]

+EpD(Y ) [KL(pD(X |Y )||pθ (X |Y )]
)
+C

)
(31)

A similar idea has been used for Generalized Denoising-
Autoencoder (GDAE) [47] and Generative Stochastic Net-
works (GSNs) [48]. The intractable problem of learning
whole data density is bypassed by focusing on learning the
transition operators between clean and corrupted version of
data or data and an arbitrary latent variable. Bengio et al. [47]
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proved that the stationary density of GDAE converges to the
original data distribution in the proposed successive noising
and denoising process. Likewise, learning transition opera-
tors of GSNs is sufficient to learn a good generative model
that estimates the data-generating distribution [48].

As expressed before, MRBM can be trained through min-
imizing the joint NLL using SGD while approximating the
gradient with one member of CD family, but Sohn et al. [19]
adapted two training methods to train MRBM with MinVI
criteria including CD-PercLoss [49] and Multi-Prediction
(MP) [50]. They stated that MP has a higher preference due to
a few practical issues of the CD-PercLoss. MP computes the
values of the hidden and the visible layers of MRBM via (21)
to (23), where there is no missing modality and all required
data are available in the training phase. Considering vm2 as
the missing modality, the variational inference proceeds by
alternately updating the mean-field parameters ĥ and vm2

which are initialized with all zeroes through the following
equations:

ĥk = σ (bk +
∑
i

vm1
i wm1

ik +
∑
j

V̂m2
j wm2

jk ) (32)

V̂m2
j = σ

(
am2
j +

∑
k

wm2
jk ĥk

)
. (33)

We refer the reader to the work of Sohn et al. [19] to see
more details and proofs of theorems and declare that we use
MRBM trained with MinVI in the top layer of our model.

IV. PROPOSED MODEL
Although CDBN has the high modeling capability, it is pro-
posed for modeling unimodal time series and it must be
modified to account for multiple modalities jointly. So, in this
paper, a new architecture named Multimodal Conditional
Deep Belief Network (MCDBN) is proposed. Determining
the structure, training and inference algorithms are required
to specify a deep architecture completely. So in the remainder
of this section, three aforementioned items are described in
the same order as listed.

A. MODEL STRUCTURE
As can be seen in the reviewed papers in Section II, most of
the proposed multimodal deep structures choose the common
strategy to learn a compact representation through the lay-
ers of modality-specific networks, firstly. Then the obtained
representations are fused by a higher level network to learn
a joint representation that is shared across multiple modali-
ties. In this way, the learned representation has less within-
modality correlation than the raw features and it is much
easier for the fusion layer to model and capture between the
modality relations. As it is depicted in Fig. 6, we utilize a
similar bisectional structure that has a CDBN for each input
time series in two lower layers and the top layer contains an
MRBM. Applied CDBNs have two layers with the similar
architecture. Since the motion data is a real-valued data,
Gaussian CRBM is used in lower layers of CDBNs. The hid-

den units of Gaussian CRBM are binary so the conventional
binary CRBM can be used in the upper layers.

FIGURE 6. Multimodal conditional deep belief network (MCDBN).

In Fig. 6, fully connected links between layers in CDBNs
and fully connected links between hidden and visible lay-
ers of MRBM are shown with bold arrows, for simplicity
of visualization. So, each arrow between two layers either
directed or bidirectional represents a set of links that connect
all the variables of two layers together.

Multimodal motion datasets contain two synchronized 3
× n-dimensional time series of 3D motion data and 2 × n-
dimensional time series of 2D motion data. Let V 3D denotes
the 3D motion data and V 2D denotes the 2D motion data.
MCDBN is able to regenerate 3D motion data, given 2D
motion data via sampling from p(V 3D

|V 2D). Due to the com-
plexity and intractability of computing such a conditional
density, we used the chain rule according to (35) and used
a distinct architecture for learning each of the conditional
density.

p
(
V 3D
|V 2D

)
= p

(
V 3D
|H3D

)
p
(
H3D
|H2D

)
p
(
H2D
|V 2D

)
, (34)

where H3D, H2D and HMRBM denote the hidden layer of
CDBN for 3D motion data, the hidden layer of CDBN for 2D
motion data and the hidden layer of the MRBM, respectively.

B. TRAINING
Equation 36 defines the training objective of MCDBN. Due
to the independence of optimization terms in this equation,
the CDBNs for 2D and 3D motion data and the MRBM are
trained, separately.

ML : min
θMCDBN

L (θMCDBN ) : L (θMCDBN )

=
1
2

[
LNLL (θ3DCDBN )+LNLL (θ2DCDBN )+LVI (θMRBM )

]
(35)
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Algorithm 1 Training Procedure of MCDBN Pseudocode
1:MCDBN Training ()
2: input: V 3D, V 2D

3: output: θMCDBN = [θ3DCDBN , θ2DCDBN , θMRBM ]
4:
[
H3D, θ3DCDBN

]
= Train_3Dmotion_CDBN (V 3D,NLL)

5:
[
H2D, θ2DCDBN

]
= Train_2Dmotion_CDBN (V 2D,NLL)

6:
[
HMRBM , θMRBM

]
= Train_MRBM (H3D,H2D,VI )

7: end MCDBN Training

Algorithm 2 CD-K Pseudocode [35]
1: CD_K ()
2: input: K , Training data D
3: for s← 1 to size of Traininig data (D)
4: for k ← 1 to K
5: Select the sth train data and consider it as a visible
variables
6: Update all the hidden variables in parallel
7: Update all the visible variables in parallel to get recon-
structed data
8: Update all the hidden variables again
9: Update all the hidden variables
10: end for
11: Update all the parameters (weights and biases)
12: end for
13: end CD_K

where θ3DC DBN , θ2DCDBN , and θMRBM denote the parameters
of CDBN for 3D motion data, the parameters of CDBN for
2D motion data and the parameters of MRBM, respectively.
The pseudocode of MCDBN training procedure is men-
tioned in Algorithm 1. The training procedure has three main
steps. In each step, the parameters of each unit are trained
through the corresponding optimization. In the pseudocode,
the training function of CDBN for 3D motion data and the
training function of CDBN for 2D motion data are denoted
by Train_3Dmotion_CDBN and Train 2Dmotion_CDBN ,
respectively. CDBNs are trained disjointedly to learn condi-
tional probabilities p(H3D

|V 3D) and p(H2D
|V 2D).

In training CDBNs, we used the same greedy layer-wise
algorithm which is proposed by Taylor [41]. In more details,
for training a CDBN Each individual CRBM either Gaus-
sian or binary is trained by CD, initializing weights by
random values drawn from the standard normal distribu-
tion. The parameters of lower CRBMs are frozen while
training upper layers and the sequence of hidden variables
driven by the data are treated as new visible data for train-
ing upper CRBMs. This greedy learning algorithm is guar-
anteed to never decrease in a variational lower bound on
the log probability of the data under the full generative
model [38].

CD is based on a maximum likelihood learning rule that is
mentioned in (36):

1θCDBN ∝〈
∂LNLL(θCDBN )

θCDBN
〉data−〈

∂LNLL(θCDBN )
θCDBN

〉rec (36)

where 〈·〉data is the expectation with respect to the real data
distribution and 〈·〉rec is the expectation with respect to the
reconstructed data, starting from a data vector on the visible
units and Gibbs sampling between all the hidden and all the
visible variables, K times. The pseudocode of CD algorithm
is mentioned in Algorithm 2.

The update rule mentioned in line 11 of Algorithm 2 is
done using (37) to (41). These update rules consider the
effects of the previous visible variables on the current hidden
units. The updates for the directed weights are also based on
simple pairwise products.

1Wij ∝ 〈vtih
t
j 〉data − 〈v

t
ih
t
j 〉rec (37)

1Aki ∝ 〈vtiH
t
k 〉data − 〈v

t
iH

t
k 〉rec (38)

1Bkj ∝ 〈htjH
t
k 〉data − 〈h

t
jH

t
k 〉rec (39)

1ai ∝ 〈vti 〉data − 〈v
t
i 〉rec (40)

1bj ∝ 〈htj 〉data − 〈h
t
j 〉rec (41)

where vti and ai are the ith current visible variable and its
dynamic bias, htj and bj are the jth current hidden variable and
its dynamic bias, respectively. H t

k is the kth visible variable
at history and Aki and Bkj are the weights of connection from
the kth visible variable at history to the ith current visible and
the jth current hidden variables, respectively. While learning
a single CRBM, there is no need to proceed sequentially
through the training data sequences. The updates are only
conditional on the previous N (the order of CRBM) time
steps. So, each of N + 1 frames are mixed into a mini-batch.
After training CDBNs, the values of hidden variables pro-

duced from 3D motion data (H3D) and the values of hidden
variables produced from 2D motion data (H2D) are fed as
inputs to the MRBM which handles the fusion task. In the
pseudocode, the training function of MRBM is denoted by
Train_MRBM . Then, the parameters of the MRBM (θMRBM )
would be tuned through the following optimization (MinVI
criteria).

MinVI : min
θ

LVI (θMRBM ) : LVI
(
θMRBM

)
= −EpD(H3D·H2D)

[
log pθMRBM

(
H3D
|H2D

)
+ log pθMRBM

(
H2D
|H3D

)]
, (42)

As declared in the Section III.c, the MRBM is trained via
the MP algorithm that tries to find the parameters that mini-
mize the above optimization using SGD while computing the
gradient by back-propagating the error between the ground
truth data and the predicted data via (32) and (33).

In contrast to the conventional approach in the deep learn-
ing community, our experiments showed that fine-tuning does
not improve the results much considerably. It seems rational
because in most cases, network fine tuning is done in case of
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the end-to-end learnings but MCDBN consists of successive
separate networks; so finally, there is no need to fine-tune the
whole structure.

After the training procedure, the CDBNs would be able
to extract the compact representation from raw data and
also they have the ability to regenerate visible data given
hidden layer values. Likewise, the MRBM learns the cross-
modal relationship in the training phase and would be able
to regenerate representation of 3Dmotion data given only 2D
motion data. So, the MCDBN is able to regenerate data in the
inference phase.

Considering the described training procedure in Algo-
rithm 1, the computational complexity of training MCDBN
can be calculated according to (43):

O (trainingMDBN ) = O (Train_2Dmotion_CDBN )

+O (Train_3Dmotion_CDBN )

+O (Train_MRBM) . (43)

If the computational cost of one Gibbs transition is T , and
the computational cost of evaluating variables is denoted
by L, the computational cost of the CD-K algorithm for a
dataset of size n is O(n(KT + 2L)) [51]. In the proposed
MCDBN, the computational cost of one Gibbs transition and
also the cost of evaluating variables both are equal to O(1),
so the overall cost of utilized CD algorithm for training all
CRBMs is O(n). The training procedure of the MRBM with
VI criterion is also based on CD and its training cost would be
O(n), too. Therefore, the total computational cost of training
proposed MCDBN can be considered as O(n), where n is the
size of input data (number of frames).

C. INFERENCE
After learning MCDBN parameters in the training phase,
the MCDBN should be able to regenerate 3D motion data
given only 2D motion data in the inference time. If the
regenerated 3D motion is represented by V̂ 3D, the inference
equation will be as (44):

p
(
V̂ 3D
|V 2D

)
= p

(
V̂ 3D
| Ĥ3D

)
p
(
Ĥ3D
|H2D

)
p
(
H2D
|V 2D

)
. (44)

The pseudocode of MCDBN inference procedure is men-
tioned in Algorithm 3. Similar to the training procedure,
three actions must be done. First, the compact representation

Algorithm 3 Pseudocode of Inference Procedure for
MCDBN

1:MCDBN Inference ()
2: input: V 2D, θMCDBN = [θ3DCDBN , θ2DCDBN , θMRBM ]
3: output: V̂ 3D

4:
[
H2D

]
= Inference_2D motion_CDBN (V 2D, θ2DCDBN )

5:
[
Ĥ3D

]
= Inference_MRBM (H2D, θMRBM )

6:
[
V̂ 3D

]
= Inference_3Dmotion_CDBN (Ĥ3D, θ3DCDBN )

7: end MCDBN Inference

of 2D motion data (H2D) is generated from 2D motion data
(V 2D). Secondly, the compact representation for 3D motion
data (Ĥ3D) is produced by the top layer MRBM from the
compact representation of 2D motion data (H2D). To model
p
(
V̂ 3D
| Ĥ3D

)
, the estimated compact representation for 3D

motion data (Ĥ3D) will be forwarded to 3D motion CDBN
to infer the visible 3D motion data V̂ 3D, using it as the
hidden states. In the pseudocode, the inference functions of
CDBN for 2D motion data, the CDBN for 3D motion data
and the MRBM are denoted by Inference_2Dmotion_CDBN
and Inference_3Dmotion_CDBN , and Inference_MRBM ,
respectively.

Algorithm 4 Pseudocode of CDBN Inference Proposed by
Taylor [41]
1: CDBN Inference ()
2: inputs: the first N1 + N2 frames of V , θCDBN
= θ1CRBM , θ2CRBM ], fn

3: output:V̂
4: Initialize the first N1 + N2 frames of V̂ with the
corresponding frame in V (

[
V 1
: VN1+N2

]
= [V̂ 1

: V̂N1+N2 ])
5: Initialize N2 frames of the first hidden layer using
a mean-field up-pass through the first CRBM

6: for i← 1 to fn
7: Initialize the hidden layer variables at N1 + N2 + i to
the value of the hidden layer variables at N1+N2+i−1.

8: Perform an alternating Gibbs sampling in the 2nd layer
CRBM.

9: Do a mean-field down-pass in the first layer CRBM
to obtain the visible variables at time N1 + N2 + i
(V̂N1+N2+i )

10: end for
11: end CDBN Inference

In contrast to learning procedure in which training both
CDBNs is done through the proposed approach by Tay-
lor, the inference is somehow different. More concretely,
generating compact representation from 2D motion data is
straightforward using the learned parameters. The top layer
MRBM would also generate 3D motion compact represen-
tation through the manner described in Section III.c. But,
inference procedure is slightly different from the approach
proposed by Taylor for inferring in 3D CDBN. The inference
procedure of a two-layer CDBN proposed by Taylor [41] is
mentioned in Algorithm 4. It is assumed that the order of
lower CRBM is N1 and the order of upper CRBM is N2.
V̂ is the regenerated data, fn is the desired number of frames
to regenerate, θ1CRBM and θ2CRBM denote the parameters of
the lower CRBM and the parameters of the upper CRBM,
respectively.

Our proposed inference procedure for 3D CDBN is men-
tioned in Algorithm 5, where Ĥ3D

i denote the hidden variables
of ith frame and V̂ 3D

i denote the ith frame of 3D regenerated
data. In the Taylor’s approach, except the firstN1+N2 frames,
the hidden variables of next frames are initialized by copying
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Algorithm 5 Pseudocode of Proposed Inference Procedure
for 3D CDBN

1: Inference_ 3Dmotion_CDBN()
2: input: Ĥ3D, θ3DCDBN
3: output: V̂ 3D

4: for i← 1 to size (Ĥ3D
i )

5: Initialize the hidden layer variables at the top-most
layer to Ĥ3D

i .
6: Perform a layer-wise alternating Gibbs sampling using
θ3DCDBN parameters.

7: Do a mean-field down-pass to obtain the visible
variables V̂ 3D

i .
8: end for
9: end Inference_3Dmotion_CDBN

the previous time step hidden variables. But, in our approach,
the hidden variables of all time frames are available in the
3D compact representation which are inferred by MRBM.
So, there is no need to initialize them by copying previous
time steps and hidden states of upper CRBM are initialized by
MRBM produced data. Then an alternative Gibbs sampling
will be done to generate the visible 3D motion data.

Considering the inference procedure described in Algo-
rithm 3, the computational complexity of MCDBN inference
can be calculated according to (45):

O (trainingMDBN ) = O (Inference2Dmotion)

+O (InferenceMRBM)

+O (Inference3Dmotion) , (45)

All the inference functions for 2D CDBN, 3D CDBN, and
the MRBM are used Gibbs transitions to obtain the hidden
and visible variables. Since the computational cost of Gibbs
transition is O(1), the computational cost of all three men-
tioned networks are O(1), and the computational complexity
of inference procedure for MCDBN is O(1).

V. EVALUATION
In this section, we investigate the performance of the pro-
posedmodel on two datasets. The datasets, the pre-processing
and the post-processing steps are described firstly. Then, the
evaluation metric is discussed and our results are presented.

A. DATASETS
We focus our analysis on Berkeley Multimodal Human
Action Database (Berkeley MHAD) [52] and Carnegie Mel-
lon University motion capture (CMU Mocap) [53] datasets,
which are numbered among standard benchmarks. Berkeley
MHAD [52] dataset is one of the most complete available
datasets. It contains about 1 Terabyte of information. 12 sub-
jects do 11 actions in 5 repetitions. Five synchronal distinct
systems including one optical motion capture system, four
multi-view stereo vision camera arrays, twoMicrosoft Kinect
cameras, six wireless accelerometers, and four microphones
were mounted to capture the performed actions that are done

in a 2m × 2m square. Since the dataset provides camera
parameters, 2D motion data on the image plains easily can
be obtained from their corresponding 3D motion data.

CMU Mocap [53] dataset is one of the well-known
datasets. It contains a vast variety of movements, performed
by different subjects and captured from different point of
views. CMU Mocap provides synchronized images and
motion capture data. Videos are captured by 12Vicon infrared
MX-40 cameras mounted around a 3m × 8m area. The
dataset contains both marker positions and skeleton move-
ments.We used the skeletonmovements for jumping, forward
jump and walking actions. Unfortunately, this dataset does
not provide camera parameters, so we assume a camera view
with known parameters and generate 2Dmotion data from 3D
motions synthetically.

We utilized these two datasets, due to their completeness
and the diverse type of actions they contain. So, accept-
able performance on these datasets could provide confidence
about the results and show the robustness of MCDBN to
variations in viewpoint, subject’s anthropometric features and
other factors such as rapidness of movement.

The bio-vision hierarchy or BVH file format is a popular
way to store and manipulate human motion data. A BVH file
contains ASCII text in which the first part of it stores the ini-
tial pose specifications of a human skeleton and specifications
for subsequent poses which are provided in the remaining.
We assume that the input 3D motion data are in BVH format.
Berkeley MHAD contains BVH files, but CMU Mocap is in
a different format. So, we downloaded and used CMU dataset
in BVH format from [54]. The data are mean subtracted and
are divided by the standard deviation to get a normalized data
before training.

The regenerated 3D outputs motions are also in BVH
format. It is required to convert regenerated BVH signals to
3D joint positions for playing and comparison purposes. So,
a post-processing step has taken on these signals to generate
the joints positions. Selecting coordinates systems will have
no effect on the final results because the regenerated trajecto-
ries can be transformed into any arbitrary coordinate system
through appropriate translations.

B. EVALUATION METRIC
Many evaluation metrics have been introduced for 2D and
3D pose estimations. However, finding a suitable evaluation
metric for generativemodels is an active area of research [25].
The previously proposed evaluation metrics can be catego-
rized into two main groups. The metrics of the first group that
are usually used in computer vision literature, are measure-
ments based on the Euclidean distance of the estimated and
the ground-truth joint positions in data frames. Probability of
Correct Key-Points (PCK) [55], Probability of Correct Pose
(PCP) [56], whole body Root Mean Square Error (RMSE) [3]
and Mean Per Joint Position Error (MPJPE) [57] are samples
of these metrics. The measurements of the second group
are introduced for evaluating the generative models [58].
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They are commonly based on Log-likelihood or equivalently
Kullback-Leibler divergence.

As declared earlier in this paper, our main purpose is to
provide a learning model which can regenerate similar not
but exact 3D movements given 2D motion data. So, we need
to apply a metric in which its evaluation would be via resem-
blance of the generated and the original data. Furthermore,
if an action is performed by different subjects or when an
individual does the action at different times, the motion tra-
jectories are not exactly the same, but they are correlated. So,
we have to check how all the regenerated motions are similar
and check it against correlations of real motion signals to
verify the convergence properties. Therefore, the regenerated
motions should be investigated from two points of view. First,
howmuch the 3D regenerated motions are correlated with the
ground truth 3D motions and second, the similarity of whole
regenerated motions with each other and comparing it against
the similarity of real motions done by humans.

The correlation coefficient is a metric for measuring the
dependence of two random variables. One type of correla-
tion coefficient developed by Karl Pearson is named Pear-
son correlation coefficient (PCC), also referred to as the
Pearson’s r , Pearson product-moment correlation coefficient
(PPMCC) or bivariate correlation [59], [60]. When PCC is
applied to a population, usually it is represented by the Greek
letter ρ and referred to as the population Pearson correlation
coefficient. The PCC measures the strength and direction of
the linear relationship between two random variables as the
covariance of the two variables divided by the product of their
standard deviations as follows:

ρXY =

(
cov(X ,Y )
σXσY

)
. (46)

where cov(X ,Y ), σX and σY are covariance and standard
deviations of two random variables X and Y , respectively.
Applying Pearson’s correlation coefficient to a sample would
result in a measurement named as sample correlation coeffi-
cient or the sample Pearson correlation coefficient. It is usu-
ally represented by the letter r and it can be obtained by sub-
stituting estimations into the above formula. So, if each ran-
dom variable hasN scalar observations, the PCC is defined as
the sample covariance of the variables divided by the product
of their sample standard deviation according to (48).

rXY =
1

N − 1

N∑
i=1

(
Xi − µX
sX

)(
Yi − µY
sY

)
(47)

rXY =
(∑

XiYi − NµXµY
(N − 1) sX sY

)
, (48)

where Xi and Yi are the single samples indexed with i. The
symbols µ and s denote the sample means and sample stan-
dard deviations, respectively. Both sample and population
PCCs have the values between +1 and −1, where 1 is a
total positive linear correlation, 0 is no linear correlation, and
−1 is a total negative linear correlation. It is a symmetric

measurement, so:

ρXY = ρYX (49)

Another desired mathematical property is that PCC is
invariant under the separate changes in location and scale of
the two variables. This property is expressed in (50). Equa-
tion (50) shows that if variable X is transformed to a + bX
and variable Y is transformed to c+ dY , where a, b, c, and d
are constants with b, d > 0, the population and sample PCC
would not change. So, if the regenerated motion data differ
from the ground truth data only in time shift and/or domain
scale, this metric would not fail. In more details, in many
cases where two real subjects do an action or a single subject
repeat an action, motions visually look similar, but the subject
starts the motion earlier or later. In other cases, the skeletal
movements have similar trajectories with different domains.
So, the distance metric should be robust to time shift and time
scaling as well.

ρXY = ρ(a+bX )(c+dY ) (50)

rXY = r(a+bX )(c+dY ). (51)

To investigate the proposed architecture, the PCCs of
ground truth 3D motions and each of the regenerated ones
are computed. Then, a histogram of these PCCs is plotted
and statistics of PCCs are reported for each action. To check
the second property, PCCs of every pair of real motion sam-
ples are computed. Then PCC histograms of randomly chosen
pairs of regenerated movements against PCC histograms of
real movements are sketched for the comparison.

Then, both real and regenerated data histograms were
checked for the best fitting distributions in terms of AIC
and BIC measurements. In most histograms, Generalized
Extreme Value (GEV) distribution was placed in the first
rank; while in all cases, the shape parameters of the GEV
distributions were negative. Since a GEV distribution with
negative shape parameter corresponds to Weibull families.
We fit Weibull distributions to histograms and report the
fitted parameters and the Kullback-Leibler (KL) divergence
of these distributions.

The probability density function (PDF) of Weibull distri-
bution is defined for x ∈ [0.∞) as:

f (x;k · l) =
(
k
l

)(x
l

)k−1
e

[
−( xl )

k
]
, (52)

where k > 0 and l > 0 are the shape and scale parameters,
respectively. The Weibull shape parameter is also known as
the slope parameter because its value is equal to the slope of
the regressed line in the probability plot. Different values of
the shape parameter affect the behavior of the distribution,
obviously. Variations in the scale parameter will change the
abscissa scale. Increasing the value of k would stretch out
the PDF while holding l constant and due to the constancy
of area under the PDF, the peak value of the PDF curve will
decrease with the increase in k . If k is increased while l is kept
fixed, the distribution curve will stretch out to the right and
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its height will decrease. If k is decreased while l is constant,
the distribution curve gets pushed in towards the left and its
height increases.

Due to the exponential form of Weibull distributions, KL
divergence of two Weibull distributions has closed form and
has been computed by Bauckhage [61]. According to the
Bauckhage computation, the KL divergence between two
Weibull densities f (x; k1.l1) and f (x; k2.l2) amounts to:

KL(f 1|| = ln

(
k1
lk11

)
− ln

(
k2

lk22

)
+ (k1 − k2)

[
ln (l1)−

γ

k1

]
+

(
l1
l2

)k2
× 0

(
k2
k1
− 1

)
− 1 (53)

where 0 is Gamma function and γ ≈ 0.5772 is the
Euler-Mascheroni constant. In fact, performing actions by
humans or regenerating actions is like generating a sample
from these distributions. So whatever these distributions have
the lower KL divergence, the generated motions are more
similar and seem more realistic.

C. RESULTS
We evaluate our method on six motion categories of Berkeley
MHAD dataset including Jumping in place, jumping-jacks,
waving two hands, waving one hand, clapping hands and
throwing a ball. Moreover, the proposed method is evaluated
on three actions of CMU Mocap dataset, including jump-
ing, walking, and forward jump. The specification of hard-
ware and software utilized for the experiments is described
in Table 1.

TABLE 1. Hardware/software specification.

The MCDBN has two types of parameters. The first group
contains parameters that are used in the training and inference
procedures and the other type of parameters corresponds to
the architecture of MCDBN. Table 2 summarizes the lean-
ing and inference parameters. We investigated the effect of
parameter k in both training and inference procedures. This
parameter controls the number of Gibbs transitions in CD-
k algorithm. Increasing k would result in performance rise,
as well as increasing the training and inference time. Accord-
ing to our results setting k = 5 and k = 3 lead to the
best tradeoff between time and performance in training and
inference procedures, respectively. We initialize the learning
rate, momentum and batch size parameters inspiring from
previous works [19] and tune them through the validation
procedure.

TABLE 2. MCDBN parameters.

There are two architectural parameters for MCDBN
including the model order and the number of hidden vari-
ables. We also investigated the effects of these parameters
via the validation procedure. Although, increasing the num-
ber of hidden variables and the order of CRBMs increase
the performance, but they cause prolonging the training and
inference procedures. So, there is a tradeoff between training
and inference time and performance based on the number of
hidden variables and model order. We tried different archi-
tectures with different orders and different number of hidden
variables. The results are depicted in Fig. 7. In this graph,
we encode theMCDBN architecture as a triplet where the ele-
ments show the order of CRBMs, number of hidden variables
of CRBMs and the number of hidden variables of theMRBM,
respectively. The vertical axis of this figure shows the mean
value of PCCs gained by the mentioned architecture. The
horizontal axes show the training and inference time. The
winner architecture is depicted in red color in Fig. 7. It has
300 hidden variables in all CRBMs with order 5 and it has
150 hidden variables in the MRBM. The MCDBN with this
architecture was successful in the trade-off between time and
performance.

As mentioned before, every action in Berkeley MHAD
dataset was performed by 10 subjects in 5 repetitions. So,
the dataset contains 50 distinct samples for each action.
We have randomly picked 4 samples out of 50 samples
of MHAD dataset as training data for each action. Since
the model only tries to learn the conditional distribution of
current frames given previous ones, this number of training
samples is enough. A typical sample of MHAD dataset con-
tains about 3000 frames on the average, so the train data
contain about 12000 frames. Moreover, 1 sample of each
action is used for validating parameters. Given 2D motion
data of these samples, the 3D motion data are regenerated
10 times. So, we have 500 regenerated 3D motions. Due
to the few numbers of training and validation samples in
comparison with the number of test samples and considering
that we regenerate each sample ten times, we have reported
the results for all actions not only test samples to be more
significant.

According to the described reasons in the SectionV.B, PCC
of ground truth 3D motions and every ten regenerated ones
have been computed. The histograms of PCCs between the
real movements and 500 regenerated movements for different
actions are depicted in Fig. 8 and the statistics of PCCs are
reported in Table 3. All the PCCs in all actions in Fig. 8 are
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FIGURE 7. Performance, inference and training time of different architectures.

TABLE 3. Statistics of PCCs for regenerated actions of MHAD dataset.

greater than 0.85 that indicate a high correlation between the
regenerated and the ground truth signals.

The minimum value of the PCCs in the histogram of
jumping in place action (Fig. 8a) is about 0.89 and most of
the PCCs are about 0.98. The mean PCC value is 0.9534 and
the low standard deviation (0.288) shows the high confidence
of results in different runs. The PCC histogram of real and
regenerated movements for jumping-jacks action (Fig. 8b)
shows the minimum value of PCC is about 0.88, the mean
PCC value is 0.9436 and the standard deviation is (0.0208).

Fig. 8c shows the PCC histogram of real and regenerated
movements for waving two hands action. Theminimum value
of PCCs is about 0.92. The PCC values are approximately
equally distributed and one-third of PCCs are in the range of
[0.98,0.99]. The mean PCC value is 0.9624 and low standard
deviation (0.0213) shows the high confidence of results in
different runs. The PCC histogram of real and regenerated
movements for waving one hand action is plotted in Fig. 8d.
Most of the PCC values are greater than 0.9 and near half of
them are greater than 0.95. The mean PCC value is 0.9547
and although the standard deviation is higher than the other

actions, it is about 0.13 which can be considered as a low
value.

The minimum value of PCCs in the PCC histogram of real
and regenerated movements for clapping hands (Fig. 8e) is
about 0.88. The mean PCC value is 0.9727 and sixty percent
of PCCs are in the range of [0.98, 1]. The histogram bin
counts have an ascending order in the range of [0.87 1]. Fig. 8f
shows the PCC histogram of real and regenerated movements
for throwing a ball action. The PCC values are in the range of
[0.86, 0.98], but most of the PCC values are greater than 0.88.
The mean PCC value is 0.9356 and the standard deviation is
0.0275.

To inspect the convergence properties of regenerated
movements, we have computed PCCs of every pair
of 500 regenerated motion samples for all six actions of
MHAD. It would result in 124750 PCCs. Histograms of
PCCs for different actions are depicted in Fig. 9 and the
parameters of fitted Weibull distributions to PCC histograms
are reported in Table 4. We also report the significance levels
for estimated parameters. The third and fourth columns of
Table 4, give lower and upper bounds of 95% confidence
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FIGURE 8. PCC histograms of regenerated actions of MHAD dataset a) jumping in place b) jumping-jacks c) waving two hands d) waving
one hand e) clapping hands f) throwing a ball.

interval for shapes parameters and the fifth and sixth columns
of Table 4, give lower and upper bounds of 95% confidence
interval for scale parameters, respectively. Near all PCCs for
all actions in Fig. 9 are greater than 0.98 andmost of the PCCs
are in the range of [0.99, 1]. It shows that there is a high
correlation between regenerated 3D motions. Furthermore,
the confidence intervals are tight that show the results are
significant.

For each action, PCCs of every pair of 50 real
motion samples have been computed which would result
in 1225 PCCs. To compare the results fairly, the PCC his-
tograms of 1225 randomly chosen pairs of regenerated move-
ments against the PCC histograms of all real movements are
depicted (Fig. 10). Two Weibull distributions are fitted to the
histograms in red and blue colors for real and regenerated

data, respectively. The parameters of the fitted distributions
are reported in Table 5. The range of PCCs in Fig. 9 and
Fig. 10 are very similar, that indicate sampling from PCCs
is done unbiasedly and the sampled PCCs are distributed
according to the main distributions in Fig. 9. However,
the shape parameters in Table 4 tend to upper values due to
more sample numbers.

The PCC histograms of pairwise real and regener-
ated motions for jumping in place action are very simi-
lar (Fig. 10a). The real data have lower mean PCC val-
ues in comparison with regenerated data. The PCC his-
tograms of pairwise real and regenerated motions for
jumping-jacks action are somehow similar (Fig. 10b). The
real data have greater standard deviation and PCC val-
ues of real data are usually lower than the regener-
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FIGURE 9. Pairwise PCC histograms of all regenerated actions of MHAD dataset a) jumping in place b) for jumping-jacks c) waving two hands d)
waving one hand e) clapping hands f) throwing a ball.

TABLE 4. Parameters of fitted distributions to histograms of pairwise PCCs for all regenerated actions of MHAD dataset.

ated data which means the regenerated data have lower
stochasticity.

The PCC histogram of pairwise real data in Fig. 10c has
greater standard deviation and it contains lower PCCs. But it
should be noted that, although the fitted distributions are not
as similar as the other actions, their ranges are very close.

The PCC values of real data are in the range of [0.92, 1]
and the PCC values of regenerated data are in the range of
[0.96, 1]. The PCC histogram of pairwise real data in Fig. 10d
has greater standard deviation and it contains lower PCCs.
Due to the similarity of this action with the previous action,
the results are similar. The fitted distributions are not as
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TABLE 5. Parameters of fitted distributions for real actions and samples of regenerated actions of MHAD dataset.

FIGURE 10. Pairwise PCC histograms of real and regenerated actions of MHAD dataset a) jumping in place b) for jumping-jacks c) waving two hands d)
waving one hand e) clapping hands f) throwing a ball.

similar as the other actions. But it should be noted that the
PCC values of real data are in the range of [0.951] and the
PCC values of regenerated data are in the range of [0.971].

The fitted shape and scale parameters for these two actions
in Table 5, obviously show the described situations. The
PCC histogram of pairwise real and regenerated motions for
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clapping hands action are very similar (Fig. 10e) and the
parameters of fitted distributions are close to each other. The
PCC histograms of pairwise real and regenerated motions for
throwing a ball action is depicted in Fig. 10f. The real data
has greater standard deviation and PCC values of real data are
usually lower than regenerated data which means regenerated
data has lower stochasticity.

Comparing jumping in place and jumping-jacks actions,
we see that jumping in place action have more uniform
distribution of PCCs in different bins of histograms (Fig. 8a
and Fig. 8b). Furthermore, pairwise PCC histograms of real
and regenerated motions (Fig. 10a and Fig. 10b) and the
parameters of fitted Weibull distributions for these actions
show that the regenerated motions for jumping in place best
fit the real data. We believe that fewer employed joints in the
jumping in place action causes this event.

The PCCs of regenerated motions in both waving two
hands and waving one hand actions are nearer to one com-
pared with real motions. It seems the difference could be jus-
tified as humans frequently do the small movement in joints
of other parts of the body in addition to hands while doing this
action, but the regenerated motions contain movements only
in the joints of hands. The KL divergence of fitted Weibull
distributions shows that the regenerated motions of waving
one hand action are fitted better to real data. The reason
could be the lower number of used joints in this action that
simplifies the learning process.

The mean of PCCs for real and regenerated movements
of clapping hands is the greatest mean compared with other
PCC means. Likewise, the KL divergence of the real and
regenerated motions has the lowest value among KL diver-
gence of all actions. We believe that the uncomplicatedness
of the clapping action, few numbers of engaged joints and
symmetric joints movements in both sides of body simplifies
the learning process and causes this superiority. The mean of
PCCs of real and regenerated movements for throwing a ball
action is the minimum value among all PCC means. It can
be seen in pairwise PCC histogram of real and regenerated
motions of throwing a ball action that the PCC values of real
motions have greater range. It means the action is harder
to learn due to variations in real data. So, the results are
reasonable.

A similar procedure is performed for CMU dataset. The
only difference is that the number of samples in CMUMocap
are not equal for different actions. There are 6 samples for
jumping, 9 and 81 samples for forward jump and walking,
respectively. The histograms of PCCs between real and regen-
erated movements of CMU Mocap dataset are depicted in
Fig. 11 and the statistics of results are reported in Table 6.

The pairwise PCC histogram of real and regenerated
motions for CMU Mocap dataset are depicted in Fig. 12 and
the parameters of fitted distributions are reported in Table 7.

Fig. 11a and Fig. 12a show the PCC histogram of real and
60 regenerated motions and the PCC histograms of pairwise
real and regenerated motions for jumping action of CMU
dataset, respectively. All the PCC values are in the narrow

FIGURE 11. PCC histograms of regenerated actions of CMU Mocap
dataset a) jumping b) forward jump c) walking.

TABLE 6. Statistics of PCCs for regenerated actions of CMU Mocap
dataset.

range of [0.950.99]. The mean PCC value is 0.9662 and the
low standard deviation (0.0161) show high confidence of the
results in different runs. The histograms are very similar and
the fitted parameters are also close to each other.
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FIGURE 12. Pairwise PCC histograms of real and regenerated actions of
CMU Mocap dataset a) jumping b) forward jump c) walking.

TABLE 7. Parameters of fitted distributions for real and regenerated
actions of CMU Mocap dataset.

Fig. 11b shows the PCC histogram of real and 90 regen-
erated movements for forward jump action of CMU dataset.
Two-third of the PCC values are in the range of [0.930.99].

The pairwise PCC values of the real motions in Fig. 12b have
greater standard deviation and lower values compared with
PCC values of the regenerated data. The fitted shape and scale
parameters, obviously show the situation. The results show
that the MCDBN performs better in the jumping action of
CMUdataset comparedwith forward jump action. The reason
is the greater number of employed joints in the forward jump
action and higher variation of joints positions especially in
depth values of joints (the distance from the camera).

Most of the PCC values in the PCC histogram of real
and 810 regenerated movements for walking action of CMU
dataset (Fig. 12c) are in the range of [0.80.92]. The shapes of
the PCC histograms of pairwise real and regenerated motions
for walking action of CMU dataset are very similar and the
parameters of fitted distributions are close to each other. Due
to the complicatedness of walking action and other factors
such as walking styles, the pairwise PCCs of real and regen-
erated motions for walking action have a very wide range.
But, the mean and standard deviation of PCCs and the values
of KL divergence of fitted Weibull distributions show the
regenerated motions have good quality.

As can be seen in pairwise PCC histograms of real and
regenerated motions for all actions of MHAD and CMU
datasets, the regenerated motions have PCCs nearer to one.
In other words, the real motions have more variations in com-
parison to regenerated motions and the regenerated motions
seem artificial compared to real motions. This phenomenon is
according to intuition because the real motions usually have
some stochastic deviations due to humane factors.

Although there are some variations in the values of PCCs,
the shapes of PCC histograms and the shapes of the pairwise
PCCs histograms of real and regenerated motions, the PCCs
ranges, their scatterings in different histograms bins and
the statistics of distributions confirm that the MCDBN has
learned to regenerate 3D motions for all the actions in both
datasets accurately.

VI. CONCLUSION AND FUTURE WORK
Regenerating human-like, realistic 3D human motions from
2D motions on the image plane is an ill-posed problem due
to the ambiguities and number of possible projections. Con-
sidering coupled time series of 2D and 3D human motion as
data modalities, in this paper, we propose a multimodal deep
structure that is able to learn the cross-modal relationship
of these modalities. The deep architecture named MCDBN
consists of three distinct parts including two CDBNs for each
data modalities and an MRBM for missing data generation.
As the training procedure, the CDBNs extract compact rep-
resentations from real-valued spatiotemporal patterns of 2D
and 3Dmotion time series and theMRBM is trained based on
the variation information criteria, in such a way that it would
be able to regenerate compact representation of 3D motion
data only given a compact representation of 2D motion data.
Utilizing this property provides the ability of cross-modal
data regeneration.While proposing a new evaluation criterion
in the problem, the tests on two common datasets, Berkley
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MHAD and CMUMocap show that the model can regenerate
3D motions accurately and realistically and also the model
achieved very outstanding quantitative results in terms of the
proposed metric.

The results show that MCDBN achieves acceptable per-
formance in 3D motion reconstruction. However, it is trained
in an unsupervised manner and some useful kinematic and
anthropometric constraints cannot be imposed directly. Find-
ingmethodswhich utilize powerful generativemodel and also
have the capability of accepting some intuitive constraints
can be the subjects of further studies. In addition, the hidden
representation of the MRBM can be taught as the principal
components of the input motion that will be useful in dis-
criminative tasks such as action recognition. It seems that
finding appropriate and justifiable evaluation metrics for the
generative models in the motion modeling task and designing
architecture that considers these metrics in the training and
in the inference steps are the research problems that require
more affords.

For the futurework, we aim at applying themodel in amore
realistic situation and interactive environment like imitation
learning or providing the ability to get raw videos as input
and extracting required 2D and 3Dmotion data automatically
which enable us to utilize the common monocular cameras as
input sensor and the training data would not limit to special
datasets.
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