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Abstract—Manifold-based Semi-supervised classifiers have attracted increasing interest in recent years. However, 

they suffer from over learning of locality and cannot be applied to the point cloud sampled from a stratified space. 

This problem is resolved in this paper by using this fact that the smoothness assumption must be satisfied with the 

interior points of the manifolds and may be violated in the non-interior points. This fact is based on the property of 

graph Laplacian in the ϵ-neighborhood of the intersection points. We first generalize this property to 𝐾NN graph 

representing the stratified space and then propose a new algorithm that penalizes the smoothness on the non-interior 

points of the manifolds by modifying the edge weights of the graph. Compared to some recent multi-manifold semi-

supervised classifiers, the proposed method does not require neither knowing the dimensions of the manifolds nor 

large amount of unlabeled points to estimate the underling manifolds and does not assume similar properties for 

neighbors of all data points. Some experiments have been conducted in order to show that it improves the 

classification accuracy on a number of artificial and real benchmark data sets. 
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1. INTRODUCTION 

The manifold-based semi-supervised classification has achieved promising success in many applications in recent 

years [8, 21, 32]. These algorithms assume that data resides on a single manifold [30, 31] and impose the smoothness 

assumption along the neighborhood graph, which represents the manifold. The geodesic distance has been 

approximated by the local Euclidean distance in the neighborhood graph. This approximation is not accurate in the 

point clouds sampled from the intersecting multi manifolds. That’s because near points in the ambient space may be 

far in the intrinsic space, which occurs at the intersection points of manifolds. The smoothness assumption, which 

expresses near points have the same label with high probability, has been violated in these points. So, label propagation 

across these points in the intersection regions propagates large errors . In many real applications, data lie on some 

intersecting manifolds with different dimensionality [19, 26]. Intersecting manifolds are created when two classes 

representing different structures give rise to similar objects. For instance, in handwritten digit recognition “2” and “3” 

are similar objects, in face recognition the similarity of the patches of two eyes from two different subjects is usually 

higher than that of an eye and a cheek of the same person, when we consider all the patches of an image as a data 

manifold [11]. As a consequence, semi-supervised classification by considering these points is invaluable and increases 

accuracy.  

In the last years, some methods have been proposed for dealing with high dimensional data lying on the 

intersecting manifolds. However, they have limited by some improper prior knowledge: (1) The assumption of 

knowing the number and dimensions of manifolds [27], (2) similar neighborhood properties in all data points [13] and 

(3) applying regularization on the KNN graph without regard to non-interior points of the manifolds [11] are the main 

challenges. 
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In this paper, we propose a new semi-supervised classification method for classifying stratified space, roughly 

speaking some manifolds with different dimensionalities [15], by considering non-smooth points in the construction 

of graph. Smoothness assumption is true in the interior points of manifold and may be violated in the other points. 

Recent studies show that graph Laplacian, which is always used for applying the smoothness assumption and 

converge to Laplace-Beltrami operator, has different behavior in the ϵ-neighborhood of intersecting regions and tends 

to a first-order differential operator with different scaling. We exploit this property for modifying the edge weights 

of neighborhood graph. Our main contribution is: (1) we prove that the different behavior of points near the non-

interior points is also established in the 𝐾NN graph, (2) a new algorithm is proposed which penalizes the high 

weights in the non-interior regions and (3) experimental evaluation confirm our claims by decreasing the error 

classification in the comparison with the state-of-the art methods. The proposed algorithm modifies the weight 

function and can be applied to any graph base learning algorithm which assumes data lies on the stratified space. We 

evaluate it on the semi-supervised classification problem by applying the manifold regularization framework. 

Section 2 reviews related works. Section 3 details our proposed method. In section 4 the experimental results are 

presented and conclusions are made in section 5. The experiments show the effectiveness of the proposed method.  

2. RELATED WORK 

The manifold-based semi-supervised classification (MBSSC) methods apply the smoothness assumption along the 

manifold, which expresses that two near points along the manifold have the same label with high probability. 

Imposing this assumption require the definition of the data closeness model, which defines what points are near and 

the label coupling model, which defines how labels propagate on the near points [12]. Early works on the MBSSC focus 

on the label coupling models and data closeness model simply is either 𝐾NN or ϵNN graph, where data points are 

nodes of the graph and edges connect the nearest points w.r.t. Euclidean distance. They assume that data lie on a single 

smooth manifold, where local Euclidean distance represents the geodesic distance along the manifold. The manifold 

regularization (MR) framework [2], one of the most representative works on semi-supervised classification, assumes 

that the support of the intrinsic data probability distribution is a compact manifold. MR incorporates a regularization 

term, to minimize the functional complexity along the manifold. Since MR impose the smoothness assumption along 

the neighborhood graph which locally constructed based on Euclidean distance, MR cannot handle directly 

intersecting manifolds. However, many studies verify that the data closeness model is very important and the success 

of the label propagation method mainly depends on how well the constructed neighborhood graph follows the 

underlying data manifold [10, 13, 28]. Some semi-supervised neighborhood graph construction methods by using the 

discriminative power of labeled data in addition to unlabeled data have been proposed. Methods of kernel learning 

have been proposed to build a kernel by transforming the eigenvalues of the Laplacian of the initial graph. The non 

parametric kernel learning has been formalized by maximizing the alignment to labeled data [17, 33]. In [22] a 

supervised neighborhood graph construction method has been proposed which constructs a 𝐾NN graph with large 

enough 𝐾 and then delete some additional edges using supervised SVM which classifies the graph’s edges. The SVM 

uses the estimated labels of the Tikhonov regularization using the Laplacian matrix of initial graph which is at the risk 

of wrong label propagation, where the data lie on the some intersecting manifolds.  

The above mentioned methods are based on the assumption that the high dimensional data lie on a single low 

dimensional manifold.  Recent studies show that the data lie in the stratified space that contains some intersecting 

manifolds with possibly different intrinsic dimensions which nicely glued together [14, 15]. MBSSC methods are not 

efficient in the stratified space, since they suffer from over-learning locality, where near points in the Euclidean 

distance may be far in the intrinsic distance. Recently, some supervised, semi-supervised and unsupervised 

approaches have been proposed that aim to learn from high diminution data when it lies on multi intersecting 

manifolds. A multi-manifold discriminant analysis (MMDA) method under the fisher discriminant framework has 

been proposed [29]. In MMDA, the within-class graph can represent the sub manifold information, while the 



 

 

3 

 

between-class graph can represent the multi-manifold information. It is a supervised algorithm that overfits when 

labeled data are rare.  

There are some multi manifold clustering algorithms which assume the intrinsic manifolds in the intersection points 

have a linear structure [26], however, the real world data often have nonlinear structures. K-manifolds [24]is an 

extension of ISOMAP which applies an EM algorithm and handles the nonlinear structure, however, it is failing when 

classifying intersecting manifolds because the estimation of geodesic distance is limited to separated clusters. 

Unsupervised methods didn’t consider the labeled data. In what follows, we discuss about related semi-supervised 

methods. 

To address the multi manifold, Goldberg et al. [14] focus on the theoretical analysis and proposes an algorithm, 

namely MMSSA (Multi-Manifold Semi-Supervised Algorithm), which uses the Hellinger distance for constructing 

the graph and then applies size-constraint spectral clustering to the graph. A greedy procedure is used to select a 

subset of unlabeled data. Hellinger distance is sensitive to density of data and requires large unlabeled data to 

represent real distances on intersecting regions [27]. A geometrical similarity function based on local tangent space 

and principal angles has been introduced in multi-manifold semi-supervised Gaussian mixture model (M2SGMM) 

and nonlinear manifolds have been modeled by a Gaussian mixture model [27]. This method assumes that the 

number of manifolds is known and has the same dimension, which is not a real assumption and the computation of 

them is an open problem [5, 6]. Besides, intrinsic dimension reduction is very important since, according to statistical 

learning theory [25], the capacity and generalization capability of a given classifier may depend on the intrinsic 

dimension [5]. 

Fan et al. [11] proposed a semi-supervised classification algorithm which presents a semi-supervised graph 

construction method and considers the geodesic distance on the graph as a kernel, then gives the regularized 

regression model based on this kernel using both the local and label information to find the low dimensional 

representation of data. Finally, it applies nearest neighbor classifier. However, over-learning of locality has not been 

considered  and manifolds are specified by the connected components of the graph. Ensemble manifold regularization 

(EMR) is designed to automatically target the intrinsic manifold structure of data [13]. It assumes that the optimal 

manifold lies in the convex hull of some initial manifolds and tries to find the suitable combination of them. It is 

noticeable that the optimal solution of EMR reaches the similar neighborhood properties for all data points. It means 

that the locality of data points in the intersection points and other points have the same impact on the label 

propagation, which is not a correct assumption.   

3. PROPOSED ALGORITHM 

3.1. Problem Setup 

Let χ = {xiϵR
d, … i = 1,⋯ , n}   be the whole data set consisting two subsets  χ = {χ

l
, χ

u
} , where without loss of 

generality, χ
l
= {x1, ⋯ , xl}  is the labeled subset and χu = {xl+1, ⋯ , xl+u}  is the unlabeled subset. Given a binary 

classification task, ciϵ{+1,−1} for i = 1,⋯ , l are the partial available labels and 𝑙 ≪ 𝑛. Cl = {ci}i=1
l    is the label set of 

labeled data. The object of semi-supervised classification algorithms is to find the classification function, 𝑓, with the 

assumption that this data is sampled from the stratified space, where the labels vary smoothly on each manifold. 

The underlying manifold of data is represented based on the local neighborhood relations, which often are constructed 

using the 𝐾 nearest neighbor graph (the graph with one vertex per observed example, and arcs between 𝐾 nearest 

neighbors). Matrix 𝐿  =D-W, is the Laplacian matrix, where W  is the data adjacency weight matrix, wherein each 

element wi,j   is the edge between two samples xi and xj, and  D is a diagonal matrix where D(i, i) = ∑ W(𝑥𝑖 , 𝑥𝑗)𝑗 . One 

typical weight function is Gaussian, defined as Wt(xi, xj) = e−
‖xi−xj‖

2

2t , where t is bandwidth.  
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If points are uniformly randomly sampled from a smooth manifold, then in the interior of the manifold, in the limit as 

n goes to infinity and 𝑡 tends to 0 at an appropriate rate, the Laplacian operator,  ℒ𝑡 , would converge to the Laplace-

Beltrami operator  [1]: 

ℒ𝑡𝑓(x) = Δ𝑓(x) + O(1)  (1) 

Where Δ is the Laplace-Beltrami operator of the manifold. The graph Laplacian applied to function 𝑓 is computed as: 

Lt𝑓(𝑥) = ∑ Wt(x, xj)[f(x) − f(xj)]
n
j=1   (2) 

, where Lt𝑓 is the discontinuous form of ℒ𝑡.  

3.2. The Proposed Semi-Supervised Algorithm 
 

The traditional methods [2, 8] have been focused on well-separated manifolds while in many applications data can 

be better modeled by considering intersecting manifolds. Theses algorithms cannot effectively deal with such 

conditions because in the intersection of manifolds, the graph connects points belonging to different manifolds 

strongly, therefore the manifold regularization on the graph assigns similar labels to the intersection points with high 

probability leading to wrong propagation of labels. For example, the weights of the KNN graph of dollar sign data set 

are shown in Figure 1. The weights of edges connecting two manifolds (sign and S curve) have large values. 

Consequently, manifold regularization on this graph assigns similar labels to the points from different manifolds 

with high probability.  

 

Figure 1. The edge weights of the 𝐾NN graph on dollar sign data set 

To address the above issue, we propose a multi manifold regularization framework which decreases the importance 

of the non-interior connections in the label propagation. The proposed optimization problem can be formulated as 

the bivariate optimization problem which simultaneously estimates the weight edge values and classifier. This 

objective takes the following form: 

  

𝑚𝑖𝑛𝑓𝜖𝐻𝑘,𝑊′≥0
1

𝑙
∑ 𝑉(𝑓, 𝑥𝑖 , 𝑦𝑖)

𝑙
𝑖=1 + 𝛾𝐴‖𝑓‖𝐾

2 + 𝛾𝐼′ ∑ 𝑤𝑖𝑗
′ (f(𝑥𝑖) − f(𝑥𝑗))

2
𝑛
𝑖,𝑗=1  

 𝑠. 𝑡 {
0 ≤ 𝑤𝑖𝑗

, < 𝑤𝑖𝑗      𝑥𝑖  𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡

 𝑤𝑖𝑗
, = 𝑤𝑖𝑗                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(3) 

 

where 𝐻𝑘is the reproducing kernel Hilbert space (RKHS); and V is a general loss function such as the hinge loss or the 

square loss, ‖𝑓‖𝐾
2  is a smooth penalty term in ambient space. Parameters γA and𝛾

𝐼′
 are used for trade off between the 

loss function and the ambient regularization term and intrinsic regularization term along the stratified space. The 

classifier smoothness along the stratified space estimated from the unlabeled data and is approximated by the last 

term. wij
′  is the element of 𝑖th row and jth column of W′. To distinguish the interior points of the manifold from the 
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rest, [14] proposed to use the Hellinger distance which detect changes in support, density, dimensionality or 

orientation of data and [27] proposed to compute the geometric similarity of points using the principal angle between 

the local tangent spaces. The first method needs large amount of data and the second assumes that the number of 

manifolds and the intrinsic dimension of it are known from the prior knowledge. To address those mentioned issues, 

we propose an approach for computing 𝑊′ by exploiting the behavior of the Laplacian near the non-interior points 

[3]. We modify the graph such that non-interior points are also being considered.  

      Theoretical studies in recent years show that non-interior points containing intersection points, boundary and 

edges are important aspects of data. For a point x lying in the ϵ-neighborhood of non-interior points, we have 

ℒ𝑡𝑓(𝑥) =
1

√𝑡

π

2
∂n⃗⃗ 𝑓(𝑥) + 𝑂 (

1

√𝑡
)           (4) 

where ∂n⃗⃗  is the unit outward normal to the point x and ∂n⃗⃗ f(x) is the directional derivative of 𝑓 in direction ∂n⃗⃗   [3]. 

According to the (4), ℒtf(x) is of the order O (
1

√t
), which is much larger than ℒtf(x) of the interior points for the small 

number t, which is of the order O(1). Therefore, large values of ℒtf(x) represent the points near to the non-interior 

points. We exploit the above property for modifying the neighborhood in the nearest neighborhood graph. 

As mentioned, large values of ℒtf(x) represent the points in the ϵ-neighborhood of non-interior points. So, this 

property could specify the interior points in the ϵNN graph. However, ϵNN is prone to generate disconnected or 

almost complete graph w.r.t. its threshold. 𝐾NN graph is robust to this problem and frequently is used in the manifold 

based methods [2, 8, 18, 22, 31]. Therefore, it is desirable to find a method to specify interior points in the stratified 

space, when it is presented by 𝐾NN graph.  

 If we prove there exist ε > 0 (εmin < 𝜀 < εmax ) in 𝐾NN graph representing the stratified space, such that the 

neighborhood of  Bx(εmin ) contains fewer than K points and the neighborhood of  Bx(εmax ) contains more than K 

points with high probability, then it is shown that 𝐾NN graph contains all points in the neighborhood of Bx(ε). 

Asymptotic analysis proves the existence of ε. We have provided details of such proof in Appendix A. 

Therefore, we conclude that with high probability larger values of ℒtf(x) in 𝐾NN graph specify the non-interior 

points. Where smoothness assumption may be violated in these points, we assign a confidence to weights as 

 𝑤𝑖𝑗
, = 𝑤𝑖𝑗 × 𝑐𝑐𝑜𝑓  ,      

𝑐𝑐𝑜𝑓 = {
𝑐𝑑𝑒𝑐          𝑥𝑖  𝑜𝑟 𝑥𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡  

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(5) 

, where 0 < 𝑐𝑑𝑒𝑐 < 1 is a confidence coefficient. 

For a fixed W,, (3) simplified to: 

𝑚𝑖𝑛𝑓𝜖𝐻𝑘

1

𝑙
∑ 𝑉(𝑓, 𝑥𝑖, 𝑦𝑖

)𝑙
𝑖=1 + 𝛾

𝐴
‖𝑓‖𝐾

2 + 𝛾
𝐼
‖𝑓‖𝐼

2  (6) 

, where  W′ = Wt. The minimizer of (6) is  

𝑓∗(𝑥) = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥)𝑛
𝑖=1   (7) 

, where 𝐾 is the kernel of associated RKHS [2].  

On the other hand, with a fixed 𝑓, we obtain 𝑊′ by (5), where non-interior points are  the top 𝑛𝑑𝑒𝑐  data points with 

largest values of 𝐿𝑓 computed by (2); where 𝑛𝑑𝑒𝑐  is a predefined number. So, for optimizing (3), we compute iteratively 

(7) by modifying the weight matrix using (5). The proposed Algorithm is shown in Figure 2.  

The proposed algorithm learns the function using Expectation Maximization (EM). It alternates between the 

assignments of data points to either interior or non interior points in E step and the function re estimation in M step. 

We propose three suitable candidates for initializing: (1) the available labels for labeled data and zero for unlabeled 
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data, (2) the classification result of the manifold regularization and (3) random labeling. We initialize 𝑓 by assigning 

all three candidates and then repeat step 2 of algorithm independently for each of them. 

Input: χ, Cl,  𝑛𝑑𝑒𝑐, 𝑐𝑑𝑒𝑐 

Output: f 

Step1: Initial 𝑓. 

Step2: Repeat following steps until the objective function (5) is not decrement or reach predefined max number of  iterations  

1. Compute Laplacian of 𝑓 by (4). 

2. Determine top  𝑛𝑑𝑒𝑐 data points with largest value of  𝐿𝑓 as the non-interior points. 

3. Compute 𝑊 ′  by (7). 

4. Compute 𝑓𝑛𝑒𝑤 by (2) 

5. Set 𝑓 = 𝑓𝑛𝑒𝑤 

Figure 2. The proposed algorithm 

4. Experiments 
We have conducted some experiments on artificial and real world data sets to evaluate our proposed algorithm. 

All experiments were repeated 10 times with random labeled data. The mean of the error rate and standard deviation 

have been reported for each experiment. We compare the proposed method with three graphs based semi-supervised 

classifiers: MR [2], M2SGMM [27] and EMR [13]. MR is based on a single manifold assumption; M2SGMM is based on 

multi-manifold assumption and EMR assumes that data lie in the linear combination of some pre given manifolds. We 

apply squared loss function to MR, EMR and the proposed algorithm. In all experiments cdec is set to 0.0001. For fair 

comparison, we select λA  and λI  from ranges  

{. 0001,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}  and  {0.9,1,5,10,15,20}   respectively. 

The maximum number of iterations of proposed algorithm is set to 5. 

4.1. Simulation on Synthetic Data 

We have experimented with four synthetic datasets (Figure 3): (1) Dollar sign has the “S” manifold intersecting an 

“|” manifold, (2) Surface-helix containing two intersecting manifolds: one 1D toroidal helix and a  surface, (3) Surface-

sphere involving a sphere intersecting a surface, (4) Two intersecting planes containing two overlapping planes. 

(a) Dollar sign (b) Surface-helix 
 

(c) Surface-sphere 
 

(d) Two intersecting planes 

Figure 3. Artificial datasets 

We set 𝐾 = 5, t = 100 and kernel width  to 0.6  in all data sets. There are  n = 5000 data in all artificial data sets, 

with equal number of samples in each class and ndec  set to 300. The mean error rate (%) and standard deviation on 

artificial datasets when l = 100  are presented in Table 1. Our algorithm clearly outperforms MR on all four data sets. 

For more detailed analysis, we compute both the absolute of Laplacian of correct labels of all data, 𝐿𝑓, (Figure 4(a)) 

and the ratio of weight of neighbors which belong to different classes to the weight of all neighbors in 𝐾NN graph, 𝑊𝑑 

(Figure 4 (b)). As we see, in all data sets, the data points which have strong connections to the data points of other 

classes have the largest values of Lf as we expected from theoretical analysis.  
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Table 1. Error rate (%) and standard deviation of different distance functions on artificial data sets 

Dataset Error rate  (Standard deviation) 

MR 
The proposed 

algorithm 

Dollar Sign 13.05 (6.19) 8.26 (2.09) 

Surface-helix 13.62 (3.5)   10.68 (2.36) 

Surface-sphere 6.97 (1.65) 5.8 (0.98) 

Two intersecting planes  2.99 (0.99) 2.66 (0.89) 

 

    

    

Figure4. (a) Top row presents the sorted absolute of the Laplacian of correct labels of the data, (b) Bottom row presents the ratio of weights of nearest 

neighbors which belongs to different classes to the weight of all neighbors (%) in 𝐊NN graph 

 

4.2. Experiment on real data sets 

In this section, we present the result of our proposed method on four datasets including a well known face data set, 

CBCL, and an object category recognition data set, COIL, a text categorization data set, WebKB and BCI data set [16]. 

These data sets are frequently used for the evaluation of semi-supervised methods [8, 11, 13]. The specification of them 

is given in Table 2.  

Table 2. The specification of real world data sets 

Dataset 𝒏 
(# of data) 

𝒅 
 (# of  

dimensions) 

𝒍 
(# of  labeled data) 

COIL 1500 241 150 

CBCL 3000 361 300 

WebKB (Page) 1051 3000 12 

BCI 400 117 40 

COIL, the Columbia object image library contains a set of color images of different objects taken from different 

angles in steps of 5 degrees [20]. We downloaded the binary version of it [8]. CBCL data set is a set of 2429 face images 

and 4548 non-face images [7]. Each image has 19 × 19 pixels and is transformed into a 361-dimensional vector. We use 

a subset of it, which contains 1500 face and 1500 non-face images.  
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WebKB1 is a subset of web documents of four universities, which belong to two categories of course and non-

course. We consider the textual content of documents (page representation) and join it with link to other web pages 

pointing to documents to make a new representation (Page+Link). BCI (brain computer interface) data set contains  

400 trails of imaginary movements with either the right hand or the left hand of a single person. Each trail is 

represented by 170 parameters about its EEG (electroencephalography) [16]. 

 

For WebKB, we use the same kernel parameters, graph weight function and graph weight parameter as [23]. For COIL 

and CBCL, the number of nearest neighbors in the 𝐾NN graph is selected from the smallest value which keeps the 

graph connected, 𝐾𝑐𝑜𝑛, and 2 𝐾𝑐𝑜𝑛  . The graph weight parameter is set to 100. Gaussian base kernels and Euclidean 

nearest neighbor graphs with Gaussian weights are used. The kernel width is set to 0.6.  

The parameters of M2SGMM are set according to [27]: the number of components and the number of nearest 

neighbors of graph are set to ⌈
n

10N
⌉ and ⌈1.5⌈Logn⌉ ⌉ , respectively, and it is assumed that all underlying manifolds have 

the same dimension 0 < din < 10, where the original data are reduced to the 10-dimensional subspace by PCA. We 

tried with all possible values of din and the best result has been reported here. For fair comparison, graph weight 

parameters are set equal to the proposed method. 

The parameters of candidate manifolds of EMR are set to 𝐾 = {5,10,15, 𝑘′}, where 𝑘′is set to the value of 𝐾 of the 

proposed algorithm to ensure fair comparison, 𝑡 = {(
𝜏

15
)
2

, (
𝜏

10
)
2

, (
𝜏

5
)
2

, 𝜏2, (5𝜏)2, (10𝜏)2, (15𝜏)2, ( 20𝜏)2, 𝑡′}, where 𝜏 =

(
1

𝑛2
∑ ‖𝑥𝑖 − 𝑥𝑗‖

2𝑛
𝑖,𝑗=1 )−1 and 𝑡′is set to the  value of 𝑡 of the proposed algorithm and  λR = 0.01λI [13]. 

In the proposed method, ndec  is set to {
𝑛

12
,

𝑛

10
,
𝑛

8
,
𝑛

6
}. Table 3 presents the average accuracy of the best parameter 

configuration. As we see, the proposed method clearly outperforms MR, EMR and M2SGMM. 

Table 3. Error RATE (%) AND Standard Deviation of different distance functions on real Datasets 

Dataset 

Error rate  (Standard deviation) 

MR M2SGMM EMR 
Proposed 

Method 

COIL20 8.09 (0.71) 9.07 (0.01) 3.56 (2.77) 2.76 (2.13) 

CBCL 7.75  (0.76) 9.71 (0.02) 7.48 (0.47) 6.88 (0.57) 

WebKB (Page) 13.87 (4.72) 7.10 (3 .56) 9.43(5.24) 5.87 (1.40) 

WebKB( Page+Link) 10.14 (9.25) 5.12 (3.3) 7.43(4.94) 3.48 (0.42) 

BCI 42.15 (2.49) 47.74 (3.06) 
43.27 (2.59) 

 
41.42 (2.26) 

 

5. Conclusion 

In this study, we have introduced a novel framework for classifying data residing on intersecting manifolds. Instead 

of forcing the impact of locality on label propagation, that is the source of large errors in the label prediction, we 

introduce a confidence coefficient for the connections between the points; the locality then need not be strictly enforced 

during the manifold regularization and may be violated in the non interior points of the manifolds. Our empirical 

studies reveal that the proposed method works better than M2SGMM, which uses the knowledge of the number of 

manifolds and their intrinsic dimensions and EMR, which represents the structure of data by the convex hull of some 

predefined manifolds. The last is because we do not constrain all connections to equally exploit the locality information 

and therefore avoid over learning of locality by giving more confidence to internal connections.  
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Appendix A 
 

In the following, we provide a proof for the following theorem: 

Main Theorem: Let G is  is 𝐾NN graph on {𝑥𝑖} sampled from the stratified space, then there exists  ε > 0 such that 

the neighborhood of Bx(ε) of each point contains about K points. 

Proof: If we sample a 𝑑j  dimensional manifold with 𝑛  points, the proportion of points falling in the 𝐵𝑥𝑖
(ε)  is 

αj(𝑖)η𝑑j
ε𝑑j . Consider the inhomogeneous process P(r, xi) which counts the points inside the 𝐵𝑥𝑖

(ε) of the manifold Ω̅𝐣 . 

This process is a binomial process. If  𝑛 ⟶ ∞,  𝑘 ⟶ ∞ and 
𝑘

𝑛
⟶ 0 and, this process is approximated by the Poisson 

process and if  we assume that αj(i) is constant in  the small neighborhood of ε , its  expected number  is αjηdj
εj [4]. The 

main notations used in our proof are given in Table 4.If we sample {xi} from intersecting manifold, the number of 

points falling in the Bx(ε)  is modeled by the mixture of poisons distribution, specified by λj, the expectation of each 

component and πi, the weight of each component [15] . If we consider K + 1 = αminηdε
d and construct KNN graph, the 

maximum of edge length at any given node would be about ε. The details are given in the εmin theorem and εmax 

theorem, which are the extension of lmin and lmax theorems in [4], respectively. 

Table 4. Notations 

Ω̅  The stratified Space 

𝐱𝐢  𝑖th input data point 

D The intrinsic dimension of stratified space 

𝑑𝑖  The intrinsic dimension of 𝑖th manifold 

𝑛  The total number of data points 

Ω̅𝐣  𝑗th manifold 

αj: Ωj
̅̅ ̅ → R+  Sampling function of Ω̅j 

α: Ω̅ → R+  Sampling function of Ω̅ 

𝛼𝑚in  The minimum value of αj on Ω̅ 

𝛼𝑚ax  The maximum value of αj on Ω̅ 

η
𝑑

  The volume of unit sphere in 𝑅d 

Vmax(ε)  The volume of largest metric ball in  Ω̅ of  radius ε 

Vmin(ε)  The volume of smallest metric ball in  Ω̅ of radius ε 

 

The  ε𝐦𝐢𝐧 Theorem. Consider εmin such that αmaxVmax(2ε𝑚𝑖𝑛) <
(𝐾+1)

2
 , then, with probability of at least 1 − 𝜇, no 

ball with radius εmin contains more than K + 1 data points, where 𝜇 = (
𝑒

4
)(

𝐾+1

2
) 𝑉

𝑉𝑚𝑖𝑛(
ε𝑚𝑖𝑛

2
)
 

Proof. According to the  lmin theorem [4],  

 Pr(The number of data points of  Bx(εmin) of  Ωj̅  )     > 𝐾 + 1) ≤ (
e

4
)(

K+1

2
) Vj

Vmin,j(
εmin

2
)
 

Then we have for Ω̅,  

  Pr(  The number of data points of  Bx(εmin) of  Ω̅   > 𝐾 + 1) ≤ ∑ πj (
e

4
)
(
K+1

2
) Vj

Vmin,j(
εmin

2
)

j   

≤ ∑ πj(
e

4
)(

K+1

2
) V

Vmin(
εmin

2
)

j = (
e

4
)(

K+1

2
) V

Vmin(
εmin

2
)
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The  ε𝐦𝐚𝐱 Theorem. Consider εmax such that αminVmin (
ε𝑚𝑎𝑥

2
) > 2 (𝐾 + 1), then, with probability of at least 1 − 𝜇, 

no ball with radius εmax contains fewer than K + 1 data points, where  𝜇 = 𝑒−(
𝐾+1

4
) 𝑉

𝑉𝑚𝑖𝑛(
ε𝑚𝑎𝑥

4
)
 

Proof. According to the  lmax theorem [4],  

 Pr(The number of data points of  Bx(εmax) of  Ωj̅  )    < 𝐾 + 1) ≤ 𝑒−(𝐾+1
4

) 𝑉𝑗

𝑉𝑚𝑖𝑛,𝑗(
ε𝑚𝑎𝑥

4
)
 

Then we have for Ω̅,  

  Pr(  𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓  𝐵x(ε𝑚ax) 𝑜𝑓  Ω̅  < 𝐾 + 1) ≤ 𝑒−(
𝐾+1

4
) 𝑉𝑗

𝑉𝑚𝑖𝑛,𝑗(
ε𝑚𝑎𝑥

4
)
≤ 𝑒−(

𝐾+1

4
) 𝑉

𝑉𝑚𝑖𝑛(
ε𝑚𝑎𝑥

4
)
 

According to above theorems, 𝑘NN graph specifies the 𝜖 neighborhood of each data point sampled from stratified 

space, under suitable conditions.  

From first parts of above theorems, we have  

2η𝑑(2εmin)
𝑑 ≤

(𝐾+1)

αmax
  

αminη𝑑(
ε𝑚𝑎𝑥

2
)
𝑑

2
≥ 𝐾 + 1  

If we let equality in both above conditions, we have  

 εmin =
ε𝑚𝑎𝑥

4∗(2𝐴)
1
𝑑

 

, where 𝐴 =
αmax

αmin
. 

If K and α tends to infinity, the probability of Bx(lmin) containing too many points and Bx(lmax) containing too few 

points, becomes exponentially small. 
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