
    

Abstract—The generalization and robustness of an 

electroencephalogram (EEG)-based system are crucial 

requirements in actual practices. To reach these goals, we 

propose a new EEG representation that provides a more realistic 

view of brain functionality by applying multi-instance (MI) 

framework to consider the non-stationarity of the EEG signal. 

In this representation, the non-stationarity of EEG is considered 

by describing the signal as a bag of relevant and irrelevant 

concepts. The concepts are provided by a robust representation 

of homogeneous segments of EEG signal using spatial 

covariance matrices. Due to the nonlinear geometry of the space 

of covariance matrices, we determine the boundaries of the 

homogeneous segments based on adaptive segmentation of the 

signal in a Riemannian framework. Each subject is described as 

a bag of covariance matrices of homogeneous segments and the 

bag-level discriminative information is used for classification. 

To evaluate the performance of the proposed approach, we 

examine it in a cultural neuroscience application for 

classification Iranian versus Swiss normal subjects to discover 

if strongly differing cultures can result in distinguishing 

patterns in brain electrical activity of the subjects. To confirm 

the effectiveness of the proposed representation, we also 

evaluate the proposed representation in EEG-based mental 

disorder diagnosis application for Attention Deficit 

Hyperactivity Disorder/Bipolar Mood Disorder, Schizophrenia/ 

normal, and Major Depression Disorder/normal diagnosis 

applications. Experimental results confirm the superiority of the 

proposed approach, which is gained due to the robustness of 

covariance descriptor, the effectiveness of Riemannian 

geometry, the benefits of considering the inherent non-

stationary nature of the brain by applying bag-level 

discriminative information, and automatic handling the 

artifacts. 
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I. INTRODUCTION 

n this paper, we propose a new representation of EEG signal 

to be used in EEG-based classification systems with the aim 

of increasing the robustness and generalization of the system. 

Automatic analysis of EEG signal based on machine learning 

techniques has been applied to a variety of real-world 

applications. For instance, analysis of EEG signals is 

considered as a tool for some basic research in the field of 

computational neuroscience which evaluate the validity of 

using EEG databases for diagnosis purposes by investigating 

the differences in EEG signals of the different nationality by 

different cultures [58, 59], mental disorder diagnosis [1] [2] [3], 

brain-computer interfacing [4] [5] [6], and emotion recognition 

[53]. 

 EEG-based computer-aided diagnosis (CAD) as a 

quantitative method for diagnosis, which relies on analysis of 

electrical activity of the brain, can help clinicians to increase 

the confidence of diagnosis in comparison with classical 

diagnosis methods which relied on qualitative diagnostic 

criteria, such as diagnostic and statistical manual of mental 

disorders [1], used in clinical interview, which can be impressed 

by physician knowledge and attitude, with a relatively low 

agreement in different clinicians’ decision. Recently, numerous 

studies have investigated this problem from different points of 

views. However, the generalization and robustness of those 

systems are still crucial bottlenecks. 

The EEG-based diagnosis systems usually are based on using 

models or comparison with references which are captured from 

subjects with different cultures [60]. The influence of culture 

on EEG [59] may affect the robustness of diagnosis systems and 

its generalization cross cultures. The existence of similar 

patterns between normal subjects with the same culture and 

dissimilarity of the patterns cross cultures strongly influence the 

validity of quantitative diagnosis based on EEG signals.  

The generalization and robustness of the model is an essential 

challenge for BCI systems [54].   

The generalization and robustness of a classification system 

in different EEG-based application can be considered in each 

R. Rostami is with the Psychology and Human Science Department, Tehran 

University, Tehran, Iran (e-mail: rrostami@ut.ac.ir). 
R. Kazemi is with the Atieh Clinical Neuroscience Center, Tehran, Iran.  

EEG Representation Using Multi-Instance 

Framework on The Manifold of Symmetric 

Positive Definite Matrices  

Khadijeh Sadatnejad, Mohammad Rahmati, Reza Rostami, Reza Kazemi, Saeed S. Ghidary, Andreas 

Müller, Fatemeh Alimardani  

 

I 

mailto:rahmati@aut.ac.ir


component of the system, including preprocessing, feature 

extraction, and classification components. In a general 

categorization, EEG-based systems, for representing signals, 

can be divided into two linear and non-linear approaches. Some 

researchers have shown promising results using linear 

approaches [2, 3, 4, 5]; however complex, non-linear, and non-

stationary nature of EEG signals inevitably leads to 

insufficiency of linear methods for representing EEG signals [2, 

52]. Variety of nonlinear methods such as Higher Order 

Spectra, different entropies, fractal dimension, correlation   

dimension, largest Lyapunov exponent, and Hurst exponent 

have been used for representing EEG signals in different 

applications, including seizure detection, diagnosis of epilepsy 

[6, 7, 8, 9, 10], Alzheimer [11], Schizophrenia [12], and 

depression [13, 14, 15], BCI [55], and other EEG-based 

applications [56]. The promising results achieved by these 

methods confirm the suitability of non-linear approaches for 

representing EEG in EEG-based systems [54, 55, 56]. 

Recently a new approach for EEG signal analysis based on 

the Riemannian geometry has been developed [16], which uses 

the spatial covariance matrix of EEG recording as a non-linear 

representation of EEG signals. This method has gained 

promising results in EEG-based applications, especially in 

brain-computer interfacing (BCI). Other researches also have 

reported reliability, robustness, and high performance by 

considering the Riemannian geometry of symmetric positive 

definite (SPD) matrices in comparison to the usual Euclidean 

approaches [17]. These findings advocate us to use the spatial 

covariance matrix of EEG segments for representing the 

recordings. 

The analysis of covariance matrices or in general terms, 

statistical data processing approaches for EEG signal analysis 

is based on the assumption of stationarity of the signal, while 

the brain activity is essentially non-stationary [18]. A common 

approach to resolve this conflict, divides the EEG signal into 

short time segments to satisfy piecewise stationary condition 

(i.e. fixed-size segmentation approach) [19]. Analysis of these 

segments may lead to some practical insight, however, it is 

statistically inefficient and provides an incomplete 

representation of the EEG signal [18]. This shortcoming results 

from the trade-off between the length of time segments and the 

stationarity assumption. For example, in the case of covariance 

matrices being used as descriptors, computing sample 

covariance matrices in very short time segments would lead to 

indefinite matrices, while in longer time segments it would lead 

to the occurrence of heterogeneities within segments with 

higher probability. Dividing EEG signals into the homogeneous 

pieces using adaptive segmentation methods [19], fairly resolve 

this problem by determining the length of homogeneous 

segments adaptively.  

In spite of usual approaches that consider non-stationarity to 

be the result of external stimuli on brain functioning, the non-

stationarity can be considered as the result of switching of the 

metastable state of the neural assemblies [18] or pathological 

changes. Ignoring these significant sources of non-stationarity 

can result in missing some valuable information about the brain 

functionality or loss of robustness in EEG-based systems [55, 

56]. 

It is noteworthy that all derived homogeneous segments are 

not necessarily relevant to the subject’s class label, (e.g. regions 

dominated by noise, different artifacts, biological functioning). 

In addition, the patterns which are related to a class may have 

multi-modal distribution in feature space or in other words, it 

may have different patterns related to each class. For example, 

for assessment of patients with epilepsy, different epileptiform 

EEG patterns are identified [57]. In the case of children with 

different types of ADHD, the intergroup differences in EEG 

power provide insight into the brain function of the subjects 

[65]. In BCI application, patterns related to each subject may 

differ in different sessions (considerable inter class-variation 

exist) [62].   

When the spatial covariance matrices are used for describing 

the segments of EEG signal and a Riemannian metric is used to 

compute the distances [17], we can assume artifacts, noise, and 

any kind of brain activity that is not related to the class label to 

have representations that are adequately different than the 

representation of patterns appeared by the class label in EEG 

signal. Therefore, it could be expected to have a feature space 

with a multi-modal distribution of data points to represent a 

subject. If we assign the same label to all pieces extracted from 

the signal recorded for a person and then embed all of the 

derived homogeneous segments in a single instance learning 

framework, it would result in a complex and non-linear 

separable distribution of data points (i.e., with overlapping 

between two classes in some parts). Especially when the signals 

are dominated by the physiological artifacts in different time 

segments, the overlapping between two classes would be 

considerable (in single instance framework). Therefore, in such 

cases, a discriminative classifier such as SVM would suffer 

from high training error rate, which leads to increasing the 

upper-bound of the probability of the test errors (i.e., the low 

generalization of the system) [63]. 

In addition, in some applications, there is a dependency 

between the rates of some physiological artifacts and the 

subjects’ class label [33,  62]. In such applications, the artifacts 

may convey important information about the class type. 

Therefore, removing the artifact in a preprocessing step or 

analyzing the EEG signals in a single instance framework 

without removing the artifacts, which leads to overlapping 

between classes and misclassification of similar patterns (i.e., 

representation of segments dominated by the artifacts) miss the 

discriminative information conveying by some artifacts.  

By considering the above-mentioned facts, our aim in this 

study is to introduce a new representation which has three 

simultaneous objectives; 1) to include the non-stationarity of 

the EEG signal and considering the different sources which 

cause the non-stationarity in EEG, 2) to overcome the 

shortcoming of fixed-size segmentation technique by using 

adaptive segmentation and 3) to overcome the shortcomings of 

single-instance learning process using multi-instance learning 

framework [47]. 

In our new representation, we describe the extracted 

segments using a robust representation, e.g. covariance matrix, 

then the resulting positive or negative patterns are embedded in 



a multi-instance (MI) framework. This representation is 

conceptually compatible with the heterogeneity of the EEG 

signal during recording, which is produced by different sources 

of non-stationarity. Therefore, a subject is described using a bag 

of concepts (representation of homogeneous intervals) in the 

MI framework [20]. The concepts are derived by applying an 

adaptive segmentation approach to avoid the shortcomings of 

using fixed-size segmentation of EEG signals. The robust 

representation of homogeneous segments and applying bag-

level discriminative information lead to increasing the 

generalization of the system. Our proposed representation is 

based on applying Riemannian geometry for determining the 

boundaries of homogeneous segments and describing the 

dataset as- a similarity matrix using the MI kernel. 

The remainder of the paper is organized as follows: In section 

II we describe the mathematical preliminaries which are 

required for better understanding of this paper. In section III our 

proposed approach for representing and analyzing EEG signal 

is described. Experimental setups and the results are described 

in section IV. Finally, the results are concluded in section V.  

II. BACKGROUND 

 

In this section, we first review some basic concepts in 

Riemannian geometry, then describe the preliminaries of multi-

instance learning framework, which are necessary for reading 

the paper.  

A. Riemannian geometry and the manifold of SPD matrices 

A Riemannian manifold (𝑀, 𝑔) is a differentiable manifold 𝑀, 

which is endowed with a smooth inner product (Riemannian 

metric 𝑔(𝑢 , 𝑣)) on each tangent space 𝑇𝑃𝑀. The 𝑃 denotes the 

base point of the tangent space. The inner product (Riemannian 

metric) in Riemannian manifolds is a metric that allows 

measuring similarity or dissimilarity of two points on the 

manifold [21, 22, 23]. 

A curve 𝛾: 𝐼 ⊂ 𝑅 → 𝑀 is a geodesic if the rate of change 

of γ̇ has no component along the manifold for all 𝑡 ∈ 𝐼 or γ̈ is 0 

[21]. Given a vector 𝑣 in the tangent space 𝑇𝑃𝑀, there is a 

geodesic γ(t) which is characterized by its length, where 

geodesic issued from 𝛾(0) = 𝑃, and �̇� = 𝑣/‖𝑣‖. Two points on 

the manifold may have multiple geodesic between them, but the 

ones which have minimum length is called minimizing 

geodesic [21]. 

In this paper, we describe the inputs of our system (e.g. 

recorded EEG) using the covariance matrices. The space of 

covariance matrices or in general terms symmetric positive 

definite matrices, does not satisfy the scalar multiplication 

axiom of a vector space (i.e. the multiplication of an SPD matrix 

with a negative scalar value is not an SPD matrix). Since the 

space of 𝑑 × 𝑑 dimensional SPD matrices, Symd
+, forms a 

convex cone in ℝ𝑑2
Euclidean space, using a Riemannian metric 

to analyze the geometry of the space of Symd
+ is more 

compatible with its non-linear structure in comparison with 

investigating it in ℝ𝑑2
Euclidean space.  A number of different 

metrics have been proposed for Symd
+ to capture its non-linear 

structure [17, 24, 25]. For example, log-Euclidean [24] and 

affine-invariant Riemannian metric [25], which induce log-

Euclidean and affine-invariant geodesic distances, are two 

popular metrics used over the manifold of SPD matrices. A 

geodesic that connects two SPD points using log-Euclidean 

metric is defined as: 

𝛾(𝑡) = 𝑒𝑥𝑝((1 − 𝑡) 𝑙𝑜𝑔(𝐶1) + 𝑡𝑙𝑜𝑔(𝐶2))     (1) 

where 𝑡 𝜖 [0,1] and 𝐶1, 𝐶2 𝜖 Symd
+. Log-Euclidean geodesic 

distance between 𝐶1 and 𝐶2 (i.e. the minimizing geodesic 

derived from log-Euclidean metric) can be expressed as: 

𝑑𝐿𝐸(𝐶1, 𝐶2) =  ‖𝑙𝑜𝑔(𝐶1) − 𝑙𝑜𝑔 (𝐶2)‖𝐹     (2) 

where 𝑑𝐿𝐸(𝐶1, 𝐶2) is the log-Euclidean distance 

and ‖. ‖𝐹 denotes the Frobenius matrix norm. The affine-

invariant metric is the other effectiveF metric which induces 

geodesic distance over the manifold of SPD matrices: 

𝑑𝐴𝐼(𝐶1, 𝐶2) =  ‖𝑙𝑜𝑔(𝐶1
−1/2𝐶2𝐶1

−1/2)‖
𝐹

     (3) 

where 𝑑𝐴𝐼  denotes the affine-invariant geodesic distance 

between two 𝐶1, 𝐶2 𝜖 Symd
+ points [24]. 

B. Multi-instance learning framework 

Multiple-instance (MI) learning [20] is a variety of inductive 

machine learning methods (commonly supervised learning), 

which instead of learning over a set of individually labeled 

instances, the learner receives sets of labeled bags. For 

example, in the multiple-instance binary classification, let 𝜒 be 

the instance space (or the space of feature vectors) and Ω =
{+, −} be the binary class attributes. The aim of learning in MI 

framework is finding a 𝜈𝑀𝐼: ℕ𝜒 → Ω function, using training 

samples, where ℕ𝜒 refers to the set of all functions from 𝜒 to 

ℕ. ℕ𝜒 is isomorphic to the set of all multi-subset 𝜒 and a 

function 𝑔(𝑥)𝜖ℕ𝜒  returns the number of occurrence of 

instance 𝑥 in the multi-set [47]. In other words, 𝜈𝑀𝐼  maps a bag 

composed of one or more occurrences of different instances to 

a positive or negative label.  

Standard MI assumption assumes that each instance 

belonging to a bag has a hidden label which is either positive or 

negative 𝑙 ∈ Ω = {+, −}. A positive label can be assigned to a 

bag if and only if it contains at least one positive instance. In 

other words, let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁𝑋
} be a bag or multi-set with 

𝑁𝑋 instances. The label of an instance is defined by a 

function ℎ: 𝜒 → Ω. Considering the positive and negative labels 

in concept-level as logical “true” and “false” constants, we can 

state the standard MI assumption as: 

𝜈𝑀𝐼(X) ⟺ (ℎ(𝑥1) ∨ ℎ(𝑥2) ∨ … ∨ ℎ(𝑥𝑁𝑋
))     (4) 

where 𝜈𝑀𝐼 is the MI concept function and ∨ is the logical 

disjunction operator. Several single-instance learning methods 

such as support vector machine (SVM) [26], neural networks 

[27], decision trees [28, 29], and ensemble-based learning [30] 

have been adapted to the multi-instance framework under the 

standard MI assumption. 

In MI learning literature, different relaxations of this hard 

assumption are proposed to satisfy the requirements of some 

other problems, which are not exactly compatible with the 

standard MI assumption. For example, a metadata-based 

approach is a simple MI learning approach which replaces each 

bag with a metadata feature vector derived somehow from the 

https://en.wikipedia.org/wiki/Supervised_learning
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instances of that bag. Therefore, the MI learning problem is 

converted to a single instance learning problem. This 

transformation can be done either implicitly or explicitly. After 

this transformation, in the learning process, a single-instance 

learning algorithm can be applied to the resulting transformed 

feature space. This approach implicitly is based on an 

assumption, called metadata assumption, which states that the 

labels of the samples are directly related to their representation 

in transformed space (metadata feature space) [47]. For 

example, [31] proposed MI kernels that can apply any kernel-

based method such as standard SVM algorithm to MI data. The 

kernel is defined as: 

𝑘𝑀𝐼(𝑋, 𝑌) =  ∑ 𝑘𝜒
𝑝

(𝑥𝑖 , 𝑦𝑖)𝑥𝑖∈𝑋,𝑦𝑖∈𝑌      (5) 

where 𝑘𝜒
𝑝
 is the 𝑝th power of an instance-level kernel 𝑘𝜒, 𝑥𝑖 and 

𝑦𝑖  denote instances while 𝑋 and 𝑌 denote bags. For a positive 

definite (PD) kernel 𝑘𝐼, the 𝑝th power of it generates a PD 

kernel and it is proved that for 𝑝 values that are sufficiently 

large [50], if the instance-level kernel is separable its 

corresponding MI kernel is separable too.  

III. PROPOSED METHOD 

Although the information geometry in EEG processing 

shows the promising results in the related literature, the golden 

way to use it for representing the non-stationarity of EEG signal 

is open. We propose a new representation of an EEG signal, 

which intends to model the non-stationary of the signal and 

increase the robustness of the system (Fig.  1).  In this section, 

we first introduce our representation and then describe the EEG 

segmentation method used to provide homogeneous segments.  

A. MI representation of EEG signal 

To represent the variations produced by different sources of 

non-stationarity (ex., switching of the metastable state of the 

neural assemblies or pathological changes, ambient noise, 

artifacts, and biological sources ), we interpret the recorded trial 

of subject 𝑋 as a bag of 𝑁𝑋 different concepts (𝑋 =
{𝑥1, . . , 𝑥𝑖 , … , 𝑥𝑁𝑋

}, 𝑥𝑖 ∈ 𝜒). First of all, the different EEG 

signals are filtered by different band-pass filters. Then the 

signals are divided into the homogeneous segments based on an 

adaptive segmentation approach described in section III.B. 

After that, the concepts are described by the covariance 

matrices of homogeneous segments. The covariance matrices 

are approximated using sample covariance matrices as: 

𝐶(𝑡, 𝑇)  =
1

𝑇−1
𝐸(𝑡,𝑇) × 𝐸(𝑡,𝑇)

𝑇      (6) 

where 𝐸(𝑡,𝑇) denotes an EEG segment started at the time 𝑡 of the 

recording with the total length of 𝑇 seconds, and 𝐶(𝑡, 𝑇) 

denotes the empirical covariance matrix of this segment. 

Therefore, a subject is described as a bag of 𝑛𝑐  × 𝑛𝑐 matrices 

(i.e., as 2nd-order tensors) where 𝑛𝑐 denotes the number of 

channels used in the analysis. 

Different sources of non-stationarity of EEG signal lead to 

two types of concepts in the EEG signal: the concepts which are 

relevant to the class label and the concepts which are not 

relevant to the class label. Let consider the relevant ones as 

positive concepts (+) and the irrelevant ones as negative 

concepts (−). In an EEG-based system, a subject can be labeled 

with a specific class if there exist a specific pattern or 

combination of patterns corresponding to that class in its brain 

electrical activity. For example, in an EEG-based diagnosis 

system, obviously, a subject can be labeled with a specific 

disorder if its EEG contains the patterns which are 

corresponding to that disorder (positive instances 

corresponding to that class). This representation and 

interpretation of recorded non-stationary trials are compatible 

with the multi-instance learning assumption. Therefore, by 

embedding the retrieved instances in MI framework, we can 

consider the discriminative information on bag-level using MI 

learning algorithms. 

In some applications, the patterns of a specific class are easily 

recognized by experts via visual inspection of the subjects’ 

brain electrical activity. However, in some others, more 

accurate analysis of the EEGs is required to detect the patterns 

of the signal affected by a specific class (ex., the disorder, the 

culture, or action imagery). In these cases, explicit concept-

level labeling of the signals is impossible and it is required to 

adapt machine learning techniques for mining the underlying 

patterns. As the MI kernel approach is able to compute 

similarities without explicitly inducing the concepts [31], we 

use it for EEG signal representation. 

In MI kernel approach, the similarity between subjects is 

 
 
Fig. 2.  Different types of relations in computing MI kernel between two bags  

 

 

Fig. 1.  The diagram of the proposed system based on MI kernel for 

representing the feature space. 
 

  



computed by a generalization of the inner product between 

every two concepts obtained from distinct subjects as: 

𝑘(𝑋, 𝑌) =
∑ 𝑘𝜒

𝑝(𝑥𝑖.,𝑦𝑗)𝑥𝑖𝜖𝑋 ,𝑦𝑗𝜖𝑌

𝑁𝑋×𝑁𝑌
      (7) 

 
where 𝑘(𝑋, 𝑌) denotes the similarity between 𝑋 and 𝑌 bags that 

represents two subjects, 𝑥𝑖  and 𝑦𝑗  denote the concepts that 

belong to the 𝑋 and 𝑌 bags, respectively, and 𝑁𝑋 and 𝑁𝑌 denote 

the number of concepts in the 𝑋 and 𝑌 bags. 𝑘𝜒(𝑥𝑖 , 𝑦𝑗) is an 

instance-level kernel defined in instance space χ. According to 

the (7), computing MI kernel 𝑘(𝑋, 𝑌) leads to computing 

 𝑁𝑋 × 𝑁𝑌 concept-level computation of the kernel function. By 

considering that, each subject is represented by positive and 

negative concepts, as illustrated in Fig. 2. These  𝑁𝑋 × 𝑁𝑌 

calculations can be categorized into three groups, according to 

the types of the concepts involved in the computation; 

computing 𝑘𝜒(𝑥𝑖 , 𝑦𝑗) between two positive instances, two 

negative instances, and a positive and a negative instances 

(abstracted as discriminative relation, noise contribution, and 

negligible relations in Fig. 2). From the machine learning point 

of view, the discrimination between two classes depends on the 

classification between their positive instances. Therefore, we 

consider the relationship between instances of two subjects as 

discriminative relations. All pairs which are dominated by other 

sources of non-stationarity of the signal are considered as noise 

contribution. In other words,  𝑘(𝑋, 𝑌) can be considered as the 

sum of three types of similarities: 

𝑘(𝑋, 𝑌) = 𝑘+,+(𝑋, 𝑌) + 𝑘+,−(𝑋, 𝑌) + 𝑘−,−(𝑋, 𝑌)     (8) 

𝑘+,+(𝑋, 𝑌) =  ∑ 𝑘𝜒(𝑥𝑖 , 𝑦𝑗)

𝑥𝑖𝜖𝑋+,𝑦𝑗𝜖𝑌+

  

𝑘−,−(𝑋, 𝑌) =  ∑ 𝑘𝜒(𝑥𝑖 , 𝑦𝑗)

𝑥𝑖𝜖𝑋−,𝑦𝑗𝜖𝑌−

 

𝑘+,−(𝑋, 𝑌) = ∑ 𝑘𝜒(𝑥𝑖 , 𝑦𝑗) +

𝑥𝑖𝜖𝑋+,𝑦𝑗𝜖𝑌−

∑ 𝑘𝜒(𝑥𝑖 , 𝑦𝑗)

𝑥𝑖𝜖𝑋−,𝑦𝑗𝜖𝑌+

 

where 
𝑋+ = {∀𝑥𝑖𝜖 𝑋| ℎ( 𝑥𝑖) ==′+ ′} 
𝑋− = { ∀𝑥𝑖𝜖 𝑋|ℎ( 𝑥𝑖) ==′− ′} 
𝑌+ = {∀𝑦𝑖𝜖 𝑌 | ℎ( 𝑦𝑖) ==′+ ′} 
𝑌− = {∀𝑦𝑖𝜖 𝑌 | ℎ( 𝑦𝑖) ==′− ′} 

where ℎ(. ) is an implicit concept level function and  | and & 

are logical or and and operators, . By considering the negative 

(non-discriminative) concepts (i.e. noise, artifact,..) as any kind 

of concepts which are different enough to be compared to the 

positive (discriminative) concepts [31], 𝑘+,−(𝑋, 𝑌) would have 

a negligible contribution in computing the similarity between 

every two subjects (i.e. 𝑘+,−(𝑋, 𝑌) ≅ 0).  

The 𝑘+,+(𝑋, 𝑌) term denotes the similarity between positive 

instances of two subjects and represents the discriminative 

information. It is expected that the subjects with the same label 

will show higher 𝑘+,+(𝑋, 𝑌). For example, in EEG-based 

disorder diagnosis, similarity of the patterns which are the result 

of the same psychiatric disorders or in the application of 

investigating the effect of culture on brain electrical activity, the 

existence of similar patterns evolved as the result of the similar 

culture leads to high similarity, while subjects with dissimilar 

class will show smaller 𝑘+,+(𝑋, 𝑌). The smaller 𝑘+,+(𝑋, 𝑌) 

value is the result of dissimilarity of positive concepts. This 

results in higher/lower 𝑘(𝑋, 𝑌) value for similar/dissimilar class 

(i.e. 𝑘(𝑋, 𝑌) ≫  𝑘(𝑋, 𝑍) where 𝜈𝑀𝐼(𝑋) == 𝜈𝑀𝐼(𝑌) 

and 𝜈𝑀𝐼(𝑋) ≠ 𝜈𝑀𝐼(𝑍)).  

The electrical activities arising from sources other than the 

brain are termed artifacts and can be divided into physiologic 

and extra-physiologic artifacts. Since the setups are the same 

during recording in the laboratory for all subjects in an 

experiment, extra-physiologic artifacts, arising from outside the 

body, can be considered approximately the same for all the 

subjects   ) i.e., 𝑘−,−(𝑋, 𝑌) ≅ 𝑐𝑡𝑒). 

It may exist correlation between the rate of some physiologic 

artifacts and the class type in some applications. For example, 

in mental disorder diagnosis application, for some disorders 

such as Schizophrenia, seasonal affective disorder, and 

depression exist dependency between eye blink rate and the 

disorder type [33, 62]. In such cases, the increased rate of an 

artifact within a class leads to increased 𝑘−,−(𝑋, 𝑌) and 

consequently increased 𝑘(𝑋, 𝑌) in comparison with 𝑘(𝑋, 𝑌) 

between the subjects of the other class without such 

dependency. Intuitively, this lead to increasing the margin size 

or decreasing the summation of slack variables in resulting 

feature space for SVM classifier and consequently decreasing 

the upper bound of probability of test error which means more 

generalization to test samples. While, in single-instance 

learning framework, high rate of an artifact within a class leads 

to increasing the probability of missing these samples by an 

SVM classifier, due to overlapping between classes on these 

concepts. By increasing the summation of slack variables for 

SVM classifier, the upper bound of probability of test samples 

is increased which means lower generalization of the system to 

test samples [67].  

Since analyzing the covariance matrices as 2nd-order tensors 

in Riemannian framework leads to superior results in 

comparison with analysis of its vectorized equivalent in 

Euclidean space [32], we choose 𝑘𝜒(𝑥𝑖 , 𝑦𝑗) compatible with 

the Riemannian geometry of the manifold of SPD matrices. 

Depending on the classifiers that are used, different types of the 

kernel can be selected from different points of view. We have 

studied two popular kernels which are compatible with the 

manifold of SPD matrices: 

1) Log-Euclidean  

The Log-Euclidean kernel is defined as: 

 

𝐾𝐿𝐸: 𝑆𝑦𝑚𝑑
+ × 𝑆𝑦𝑚𝑑

+ →  ℝ 

𝑘𝐿𝐸,𝜒(𝑥𝑖 , 𝑦𝑗) = 𝑒𝑥𝑝(−
𝑑𝐿𝐸

2 (𝑥𝑖 ,𝑦𝑗)

𝜎
)     (9) 

 

where 𝑘𝐿𝐸,𝜒(𝑥𝑖 , 𝑦𝑗) denotes the similarity between 𝑥𝑖  and 

𝑦𝑗  concepts based on the Log-Euclidean distance, 𝑑𝐿𝐸  and 𝜎 is 

a positive value known as bandwidth parameter. Since Log-

Euclidean Gaussian kernel satisfies mercer condition for all 

𝜎 > 0 [32] (i.e. it is a positive semi-definite kernel), the 

resulting 𝑘(𝑋, 𝑌) which would be the sum of multiple positive 



semi-definite (PSD) kernels is a PSD kernel and can be used in 

any kernel-based learning method. 

2) Affine-invariant Gaussian kernel 

Using affine-invariant Riemannian distance as (10) is called 

affine-invariant Gaussian kernel: 

𝐾𝐴𝐼: 𝑆𝑦𝑚𝑑
+ × 𝑆𝑦𝑚𝑑

+ →  ℝ     (10) 

𝑘𝐴𝐼,𝜒(𝑥𝑖 , 𝑦𝑗) = 𝑒𝑥𝑝(−
𝑑𝐴𝐼

2 (𝑥𝑖 , 𝑦𝑗)

𝜎
) 

Although this kernel generally is not a PD kernel, an 

empirical affine-invariant Gaussian kernel might be a PD 

kernel depending on the distribution of data points and its 

bandwidth parameter. 

Both of these kernels are able to provide a discriminative 

projection of data points into the feature spaces, therefore they 

are appropriate choices for SVM classifier. SVM is based on 

minimizing a regularized combination of empirical and 

structural risk. This objective function, which can be interpreted 

as maximizing the margin between two classes in the feature 

space, leads to the robustness of the SVM classifier in EEG 

analysis [51]. 

B. Identifying the homogeneous segments 

To determine the boundaries of homogeneous segments, we 

apply an adaptive segmentation approach in which the 

boundaries of the segments are recognized as points where the 

resulting segments satisfy stationarity condition (being 

homogeneous in the statistical sense). At first, the EEG signals 

are divided into elementary segments using fixed-size 

segmentation approach. We describe the segments using spatial 

covariance of the pieces (6). To detect the boundaries of 

homogeneous segments we compare spatial covariance 

matrices of the successive elementary segments in terms of 

geodesic distance. By applying a thresholding method, we can 

detect the local peaks that are identified as cut points or the 

boundaries of homogeneous segments of the recorded EEG. 

New segments will be generated from merging the successive 

elementary segments between two cut points. This process can 

be summarized as: 

𝑑𝐺(𝐶(𝑡, 𝑇), 𝐶(𝑡 + 𝑇, 𝑇)) > 𝑡ℎ = {
𝑡 + 𝑇 ∈ T𝑖𝑛𝑡       𝑖𝑓 𝑁𝑜
𝑡 + 𝑇 ∈ T𝑐𝑢𝑡      𝑖𝑓 𝑌𝑒𝑠

 (11) 

where the 𝑡ℎ is an empirical threshold level, 𝑑𝐺 denotes the 

geodesic distance, T𝑐𝑢𝑡  denotes the set of cut points of a trial, 

and T𝑖𝑛𝑡  denotes the set of boundary points of elementary 

segments of a trial, which should be considered as interior 

points of a segment resulted by adaptive segmentation. 

IV. EXPERIMENTS 

 

In this section, we evaluate the proposed representation in two 

different applications. These two applications are indoor 

problems and all the datasets are recorded in the laboratory with 

the same set-up for all the subjects involved in an experiment. 

The aim of first experiment is finding the answer of this 

question that whether there exists any considerable difference 

between brain electrical activity of Iranian versus Swiss normal 

subject.  The second application is EEG-based mental disorder 

diagnosis, that includes different psychiatric disorder diagnosis 

applications: Attention Deficit Hyperactivity Disorder (ADHD) 

/ Bipolar Mood Disorder (BMD), depression/ normal, and 

Schizophrenia/ normal group.  

We first describe the datasets and the recording conditions of 

EEG signals for these two datasets, then we describe different 

experimental setups and results, and finally discuss the results. 

 
(a) 

 
(b) 

 

 
(c) 

 

Fig. 3.  Comparison of the classification accuracy of different features 

extracted from EEG signals of the (a) ADHD/BMD (b) Depression/Normal 
(c) Iranian/Swiss normal subject’s datasets in the eyes-closed resting 

condition. 
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Datasets 

The specification and recording conditions of the datasets are 

described in details as follows: 

1) Iranian/Swiss normal subjects 

This dataset includes the EEG signal of 50 Iranian and Swiss 

healthy people recruited by an announcement. Data collection 

was performed in Atieh Clinical Neuroscience Center (ACNC) 

and Brain and Traumafoundation Grison/Switzerland. The 

inclusion criteria were the male and female in the range of 18-

70 years old and have normal IQ.  The exclusion Criteria were 

substance abuse, brain trauma, and having psychiatric or 

neurological disorders.  

The SCL90 was used for the assessment of mental health and 

SPM for evaluation of psychometric (IQ) in people. 

Psychometric, demographic and socioeconomic status were 

measured for all participants.  

The EEG data were recorded in both eyes-closed and eyes-open 

resting condition for five minutes.  

The Mitsar 201 (Mitsar Ltd.) equipment was used for recording 

19 channel EEG. The input signals referenced to the linked ears. 

The signals were filtered between 0.5 and 50 Hz and the 

sampling rate was 500 Hz. The impedance of the electrodes was 

under 5 kΩ. Electrodes placement were according to the 10-20 

system using an electrode cap with tin electrodes (Electro-cap  

Inc.). The quantitative data were obtained using WinEEG 

software.  

ADHD/BMD  

ADHD and BMD are psychiatric disorders with similar clinical 

symptoms. The overlap between clinical symptoms of these two 

disorders leads to the unreliability of qualitative diagnosis 

approach. This dataset consists of the EEG signals of 43 

children and adolescents, with 21 subjects with ADHD (age 

range: 10–20, age mean ± std: 14.36 ± 2.9) and 22 subjects with 

BMD (age range: 13–22, age mean ± std: 16.50 ± 2.50). Data 

acquisition was performed in the Biophysics Laboratory of 

Shiraz University of Medical Sciences. The children, 

adolescents and at least one of their parents were interviewed 

using DSM_IV criteria for diagnosis [36]. It should be noted that most of the subjects were followed up by the psychiatrist 

for at least 6 months and the psychiatrist was assured about their 

TABLE I 

THE COMPARISON BETWEEN THE PROPOSED DESCRIPTOR (MI-ADAPTIVE-COV) 

WITH SOME COVARIANCE-BASED DESCRIPTORS, IN TERMS OF CLASSIFICATION 

ACCURACY ON (A) ADHD/BMD (B) DEPRESSION/NORMAL (C) 

SCHIZOPHRENIA/NORMAL (D) IRANIAN/ SWISS NORMAL SUBJECTS DATASETS IN 

THE EYES-OPEN AND EYES-CLOSED RESTING CONDITIONS. 

 

ADHD/BMD (Eye-open) 

 Theta Alpha Beta Gamma 3-50 Hz 
SI-Cov+SVM 79.07 83.72 83.72 83.72 79.07 
Mean-Cov+SVM 76.74 86.05 86.05 79.07 79.07 
MI-fixed-Cov+SVM 79.07 86.05 88.37 81.40 83.72 
MI-Adaptive-Cov+SVM 88.37 88.37 90.70 88.37 83.72 

ADHD/BMD (Eye-closed) 

SI-Cov+SVM 79.07 72.09 76.74 67.44 74.42 
Mean-Cov+SVM 72.09 72.09 72.09 69.77 62.79 
MI-fixed-Cov+SVM 79.07 76.74 79.07 81.40 79.07 
MI-Adaptive-Cov+SVM 83.72 83.72 88.37 76.74 88.37 

(a) 

 

Depression/normal (Eye-open) 

 Theta Alpha Beta Gamma 3-50 Hz 

SI-Cov+SVM 70.00 62.00 72.00 62.00 60.00 

Mean-Cov+SVM 62.00 56.00 66.00 60.00 56.00 
MI-fixed-Cov+SVM 72.00 76.00 76.00 64.00 82.00 
MI-Adaptive-Cov+SVM 72.00 80.00 80.00 78.00 86.00 

Depression/normal (Eye-closed) 

SI-Cov+SVM 68.00 60.00 72.00 62.00 58.00 

Mean-Cov+SVM 62.00 68.00 72.00 68.00 56.00 

MI-fixed-Cov+SVM 70.00 70.00 80.00 82.00 86.00 

MI-Adaptive-Cov+SVM 74.00 74.00 80.00 84.00 90.00 

(b) 

 

Schizophrenia/normal (Eye-open) 

 Theta Alpha Beta Gamma 3-50 Hz 

SI-Cov+SVM 68.00 72.00 72.00 84.00 86.00 

Mean-Cov+SVM 74.00 76.00 76.00 90.00 82.00 
MI-fixed-Cov+SVM 90.00 86.00 88.00 88.00 96.00 
MI-Adaptive-Cov+SVM 92.00 88.00 88.00 90.00 96.00 

Schizophrenia/normal (Eye-closed) 

SI-Cov+SVM 78.00 66.00 74.00 80.00 80.00 

Mean-Cov+SVM 84.00 86.00 80.00 70.00 88.00 

MI-fixed-Cov+SVM 84.00 84.00 78.00 90.00 88.00 

MI-Adaptive-Cov+SVM 90.00 88.00 88.00 90.00 94.00 

 
(c) 

 

Iranian/Swiss (Eye-open) 

 Theta Alpha Beta Gamma 3-50 Hz 
SI-Cov+SVM 97.00 96.00 91.00 97.00 97.00 
Mean-Cov+SVM 95.00 88.00 88.00 97.00 93.00 
MI-fixed-Cov+SVM 100 93.00 90.00 99.00 94.00 
MI-Adaptive-Cov+SVM 100 99.00 94.00 100 98.00 

Iranian/Swiss (Eye-closed) 

SI-Cov+SVM 92.00 96.00 92.00 97.00  97.00 
Mean-Cov+SVM 87.00 93.00 92.00 94.00 90.00  
MI-fixed-Cov+SVM 93.00 98.00 95.00  98.00 96.00 
MI-Adaptive-Cov+SVM 94.00 99.00 96.00 100 97.00 

(d) 

  

  

 
Fig. 4.  Comparison of different descriptors based on mean accuracy and 

standard deviation extracted from EEG signals 3-50 Hz on ADHD/BMD, 

Depression/Normal, and Iranian/Swiss normal subject’s datasets in the eyes-

closed resting condition. 
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type of illness. For each patient, the EEG signals were recorded 

in two eyes-open and eyes-closed resting conditions for 3 

minutes, in order to analyze the natural behavior of their EEGs. 

The EEG signals were recorded using the Neuroscan-LT setup 

(equipped with a 16bit A/D card). The signals were recorded 

using 22 electrodes according to the 10–20 international 

recording system. The scalp channels were located in the 

following positions: G, Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, 

F3, F4, F7, F8, P3, P4, T5, T6, O1, O2, A1, and A2. The average 

value of the A1and A2 electrodes, which were attached to the 

earlobes, was used as the reference. The ground electrode (G) 

was placed on the forehead center. The impedances of the 

electrodes were lower than 10 kΩ through the recording and the 

sampling rate of the EEG was 250 Hz. 

Depression/Normal  

Depression is a common disorder with a high prevalence of 

critical outcomes, such as a suicidal attempt. The World Health 

Organization (WHO) has predicted that the depression would 

be the second largest burden of disease by 2020. Fifty patients 

with bipolar depression and major depressive disorder (MDD) 

were recruited for this study after their disorder was confirmed 

according to the DSM IV-TR criteria through a clinical 

interview. The patients were examined at the Atieh Clinical 

Neuroscience Center during a period from February to 

September 2017. The inclusion criteria were the following: 

outpatient subjects whose age ranged from 18 to 65, diagnosed 

as having major depression or bipolar mood disorder, according 

to the DSM IV-TR, had a Beck depression inventory (BDI-II) 

score of more than 14. The exclusion criteria were: personality 

disorder in Axis II, seizures, epilepsy in the first degree 

relatives, pregnancy and head trauma [37]. 

For recordings, a 19 ElectroCap (ElectroCap, Inc; OH) was 

used, with its electrodes placed on Fp1, Fp2, F7, F3, Fz, F4, F8,  

T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2 by a 10–20 

system. An A1 + A2 electrode was used for reference. The 

impedance of the electrodes was under 5 kΩ. EEG was recorded 

in 5 minutes, while the subjects were in the resting state with 

their eyes closed and in 5 minutes for eyes open resting 

condition. The recording was carried out using a Mitsar system 

in an acoustic room. The data were converted into numbers with 

500 sample rates and with a high-frequency filter of 50 Hz, a 

low-frequency filter of 0.3. 

Schizophrenia/ Normal 

This dataset is composed of 25 Schizophrenic and 25 normal 

subjects. The patients participated in the study (mean age 25) 

who were diagnosed with schizophrenia based on clinical 

interview by a psychiatrist using the criteria in the fifth edition 

of diagnostic and statistical manual of mental disorders (DSM-

V). Mean age of the patients in the time of onset of the disorder 

was 18 years. Seven of them have been hospitalized and two 

have received ECT. The recording performed in two eyes-open 

and eyes-closed resting condition in Atieh center. The set-up of 

EEG recording is the same as depression/normal dataset. 

 

B. Experiments & discussion  

To evaluate the proposed approach, we designed several 

experiments in two different applications. As the first 

experiment, we examined the effectiveness of covariance in 

against a wide range of descriptors commonly used EEG-based 

applications, including Higuchi [39], descriptor autoregressive 

[40], power spectrum [41], spectral entropy [42], 

and wavelet energy [43] methods. Iranian/Swiss normal 

subjects, ADHD/BMD, and depression/normal datasets in the 

eyes-closed resting conditions are used in this experiment. We 

first filter the signal into the Theta (3-8Hz), Alpha (8-12 Hz), 

Beta (12-28 Hz), and Gamma (28-50 Hz) sub-bands using the 

5th–order band-pass Butterworth filter. Then the above 

methods are used for representing the signal in segments 

resulted from applying fixed-size segmentation over the 

recorded signals. The signals are divided into overlapping 

windows (50% overlapping between segments) and the length 

of the segments is determined empirically by applying the 

leave- one subject-out cross-validation and investigating a wide 

range of values (up to 20 seconds) as window length. For each 

candidate window size, we apply leave-one subject-out, seek 

the parameters of optimal classifier for that selected window 

size, compare the result with the result of optimal models in 

other window sizes, and choose the best window size for further 

analysis on that dataset. In this experiment, we consider these 

features as the vectors in Euclidean space. These vectors are the 

result of the application of above-mentioned methods on all 

recorded channels except A1, A2, and G channels [12]. In order 

to have a quantitative comparison between different 

descriptors, an SVM classifier [44] with RBF kernel is used for 

classification. We used the LIBSVM package [45] for 

implementing SVM classifier. Tuning the bandwidth parameter 

of RBF kernel and 𝐶 parameter of SVM classifier is done by 

applying leave- one subject-out cross-validation and examining 

a wide range of values (i.e. 𝐶𝜖 {0.1, 10, … , 100000}, 

𝜎𝜖{0.1,1, 10, 20, … ,1000}) for selecting the best value over the 

validation set.    

The covariance matrix as a descriptor was estimated 

empirically by applying (6) on time segments of 19 recorded 

channels. The setup of this experiment was the same as the 

above-mentioned conditions. With the exception that the 

analysis was based on the Riemannian geometry of the 

manifold of SPD matrices and affine-invariant Gaussian kernel 

[32] was used for computing similarities. Fig. 3 illustrates a 

comparison between above-mentioned descriptors. It is obvious 

that in most sub-bands covariance matrix as a descriptor leads 

to superior results. To assess the standard deviation of classifier 

on different descriptor, we compute mean accuracy and 

standard deviation on 3-50 Hz sub-band for ADHD/BMD, 

Depression/Normal, and Irannian/Swiss normal subjects data 

sets, illustrated in Fig. 4.  

In the second experiment, we compared the proposed MI–

based representation (MI-Adaptive-Cov) with other 

covariance-based approaches. In the case of adaptive 

segmentation, the signals are divided into segments with 2 

seconds length, without overlapping between windows, and the 

threshold value for merging or splitting consequent segments 

are set by the mean value of the differences between every two 

successive segments, in terms of geodesic distance, for each 

subject. The goal of these comparisons is to evaluate the 



different components involved in our representation. The 

representations of the EEG signals for methods involved in our 

comparisons are as follows: 

1) Representing subjects in MI framework using MI-kernel, 

each subject is a bag of covariances of the segments generated 

by fixed-size segmentation (MI-fixed-Cov). 

2) Representing the feature space using a group of covariance 

matrices [19]. The covariances are computed in segments 

generated by a fixed-size segmentation approach and the 

segments are labeled the same as the subject’s label 

(Representing in single instance framework called SI-Cov).  

3) Representing each subject using the geometric mean [46] 

of the covariance matrices of the segments generated by the 

fixed-size segmentation of the trial (Mean-Cov). 

 We applied SVM classifier with an affine-invariant 

Gaussian kernel for discrimination over SI-Cov  and Mean-Cov. 

In addition, in this experiment, the basic kernel in MI-fixed-Cov 

and MI-Adaptive-Cov is affine-invariant Gaussian kernel.  The 

𝜎 and 𝐶 parameters, as described in the first experiment, were 

set using cross-validation. The 𝑝  parameter in equation (7) is 

set to 1 in our experiments. We evaluate the methods using 

leave-one subject-out cross-validation approach. The 

experimental evidences confirm the superiority of the MIL-

Adaptive-Cov+SVM for the Iranian/Swiss normal subjects, 

ADHD/BMD, Depression/normal, Schizophrenia/normal 

datasets, in two eyes-open and eyes-closed resting conditions 

(Table I).  

The superiority of the proposed method is further investigated 

by: 

1) Considering the non-stationarity of the EEG signal by 

applying the MI framework in the proposed representation. It is 

evaluated by (SI-Cov+SVM/ MI-fixed-Cov+SVM) and (SI-

Cov+SVM/ MI-Adaptive-Cov+SVM) comparisons (Table I 

and Table 2). 

2) Determining the boundaries of the segments adaptively, 

which is evaluated by (MI-fixed-Cov+SVM / MI-Adaptive-

Cov+SVM) comparison (Table I and Table 2). 

3) Doing all of the analysis in Riemannian framework. We 

did some analysis over covariance matrices using Euclidean 

geometry which led to the overfitting to the training samples 

[66].  

4) Applying appropriate representation for basic elements 

(concepts) in the proposed representation, confirmed by the first 

experiments (Fig. 3 and Fig. 4). 

The significance of the superiority of the proposed approach 

is examined in comparison with other covariance-based 

methods (Table II). We apply paired t-test over the 

classification rates resulted from applying MI-Adaptive-Cov 

for describing subjects versus SI-Cov, Mean-Cov, and MI-

fixed-Cov in different sub-bands for Iranian/Swiss normal 

subjects, ADHD/BMD, depression/normal, 

Schizophrenia/normal datasets. The resulting p-values for 

 

TABLE III. COMPARISON BETWEEN AFFINE-INVARIANT AND LOG-

EUCLIDEAN GAUSSIAN KERNELS USED IN THE PROPOSED APPROACH 

Depression/Normal ADHD/BMD 

Kernels Eyes-open Eyes-closed Eyes-open Eyes-closed 

AIGK 86.00 90.00 83.72 88.37 
LEGK 76.00 80.00 74.42 76.74 

 

TABLE IV.  PERFORMANCE OF MI-ADAPTIVE-COV+SVM ON ADHD/BMD, 

DEPRESSION/NORMAL, IRAN/SWITZERLAND NORMAL SUBJECTS’ DATASETS IN 

THE EYES-OPEN AND EYES-CLOSED RESTING CONDITIONS, THE DATASETS ARE 

CONTAMINATED BY WHITE GAUSSIAN NOISE WITH DIFFERENT SNR LEVELS. 

 10db 5db 0db 

Depression/normal (eyes-closed) 88.00 88.00 86.00 
Depression/normal (eyes-open) 84.00 82.00 82.00 

ADHD/BMD (eyes-closed) 86.05 86.05 86.05 
ADHD/BMD (eye-open) 81.40 81.40 79.07 

Iranian/Swiss (eyes-closed) 96.00 96.00 96.00 
Iranian/Swiss(eyes-open) 96.00 95.00 95.00 

Schizophrenia/normal (eyes-closed) 94.00 94.00 92.00 
Schizophrenia/normal (eyes-open) 96.00 96.00 96.00 

    

 

 
 

 
Fig. 5.  Comparison of the classification accuracy of MI-Adaptive-

Cov+SVM and LDA_XCSF_AMR [36] on ADHD/BMD dataset. 

 

70

80

90

100

Theta Alpha Beta Gamma

Eye-Open

MI-Adaptive-Cov+SVM LDA_XCSF_AMR

70

80

90

100

Theta Alpha Beta Gamma

Eye-Close

MI-Adaptive-Cov+SVM LDA_XCSF_AMR

A
cc

u
ra

cy

   TABLE II 

EXAMINING THE STATISTICAL SIGNIFICANCE OF THE PROPOSED METHOD IN COMPARISON WITH ITS COMPETITORS REPORTED IN TABLE. I, *:  P < 0.05, **: P < 0.0125 

AFTER BONFERRONI CORRECTION 

Depression/Normal ADHD/BMD Swiss/Iran Schizophrenia/normal 

 Eyes-open Eyes-closed Eyes-open Eyes-closed Eyes-open Eyes-closed Eyes-open Eyes-closed 

MI-Adaptive-Cov/SI-Cov 0.0279* 0.0267* 0.0029** 0.0029** 0.0728 0.0830  0.0031** 0.0005** 

MI-Adaptive-Cov/ Mean-Cov 0.0057** 0.0502 0.0190* 0.0129* 0.0115** 0.0032** 0.0046** 0.0187* 

MI-Adaptive-Cov/ MI-fixed-Cov 0.0897 0.0249* 0.0705 0.1197 0.1036 0.2126   0.5262 0.0282* 

MI-fixed-Cov/ SI-Cov 0.0915 0.0423* 0.2414 0.0972 0.5000 0.2229   0.0054** 0.0125** 
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comparison between MI-Adaptive-Cov versus SI-Cov, reported 

in Table II, confirm the significance of the superiority of the 

proposed approach (p-value < 0.05) against classic covariance-

based representation using single instance framework (SI-Cov) 

in most cases. Considering the results reported in table II, 

confirm that the strength of the proposed representation is 

especially in the cases where the classes are not linear 

discriminative in single instance framework and there is 

correlation between some artifacts and the class type (ex., 

Schizophrenia/normal dataset). In the cases, two classes are 

fairly separable in single instance framework the improvement 

resulted by our proposed approach is not statistically significant 

(Iranian/Swiss dataset). 

   Our proposed method also has significantly superior results 

in most cases (Table II) in comparison with Mean-Cov, which 

misses a large amount of information by describing each subject 

using the geometric mean point of the covariance of segments 

resulted by segmenting EEG of each subject.  

To show the importance of adaptive segmentation, we 

compared non-adaptive MI-fixed-Cov method against MI-

Adaptive-Cov. As shown in Table II, the adaptive segmentation 

is not the reason of significant superiority of our proposed 

approach. Adaptive segmentation for determining the concepts 

besides the analyzing the resulting concepts in MI framework 

leads to the significant superiority of MI-Adaptive-Cov+SVM 

against SI-Cov+SVM in most cases. 

The resulting similarity matrix of our proposed 

representation has to satisfy the PSD constraint if it is going to 

be used as an empirical kernel matrix for kernel-based learning 

systems. Using non-PSD kernels, when the learning system 

minimizes the empirical risk (such as SVM) leads to a non-

convex optimization problem. In such cases, the minimization 

of risk function is not guaranteed [49]. The positive definiteness 

of our proposed representation is controlled by the type of 

concept-level kernel and its parameters.  

Similar to any kernel-based method, the type of kernel plays 

an important role in the classification results. We have studied 

the performance of two well-known kernels, including Log-

Euclidean Gaussian kernel (LEGK) and affine-invariant 

Gaussian kernel (AIGK) at concept-level (Table III). These 

comparisons are performed on the ADHD/BMD and 

depression/normal datasets in two eyes-open and eyes-closed 

resting conditions. The EEG signals are filtered in 3-50 Hz. 

The concept-level positive definiteness of Log-Euclidean 

Gaussian kernel, leads to positive definiteness of its sum over 

different pairs of concepts in MI framework. Therefore, it 

provides a PD representation. Gaussian kernel based on the 

affine-invariant Riemannian metric is not PD in general. 

 Although the positive definiteness of the similarity matrix, 

guarantees the convergence of the kernel-based method to an 

optimal solution, but it does not necessarily lead to superior 

classification performance in comparison with non-PSD 

kernels. The superior results achieved by affine-invariant 

Gaussian kernel in this experiment confirm this fact. One 

interesting observation in this experiment is the positive 

definiteness of empirical affine-invariant Gaussian kernel 

achieved on ADHD/BMD and depression/normal datasets. This 

observation is confirmed by a recent work done by Feragen and 

Hauberg [48], which states that the affine-invariant Gaussian 

kernel has a high probability of being PD for a given data set in 

a large range of values.  

To confirm the usefulness of the proposed representation, we 

compare the result of the MI-Adaptive-Cov+SVM in 

comparison with the results of another research [36] which is 

applied on the same ADHD/BMD dataset (Fig. 5). The 

experimental results confirm the superiority of our proposed 

approach. In addition, comparison between our proposed 

method with the state of the arts of analysis over the manifold 

of symmetric positive definite matrices in Riemannian 

framework, including MDM, TSLDA, FGMDM [64], and 

RKSVM [68] methods are reported in Table V. In this 

experiment, the schizophrenia/normal dataset in the eyes-open 

resting condition is used. The significant superiority of MI-

Adaptive-Cov+SVM in comparison with competitors is 

confirmed by applying paired t-test, reported in table VI.  

Robustness of the proposed approach against noise was 

examined by adding the white Gaussian noise with different 

signal-to-noise ratios (SNR) to signal (10db, 5db, 0db). We 

tried this experiment on Iranian/Swiss normal subjects, 

ADHD/BMD, depression/normal, and schizophrenia /normal 

datasets in the eyes-closed and eyes-open resting conditions. 

The signals involved in this experiment are filtered in 3-50Hz 

and leave-one subject-out cross-validation is used for 

evaluation. The performances of the proposed method on 

signals which are contaminated by white Gaussian noise with 

different SNR levels are reported in Table IV. As the 

experimental evidences confirm, the proposed approach is 

relatively robust in noisy conditions.  The performance of the 

method decreases about 2 to 4 percent where the noise is 

considerable (0db) and about 2 percent where the SNR is equal 

to 10db.    

TABLE V. THE COMPARISON BETWEEN THE PROPOSED DESCRIPTOR (MI-
ADAPTIVE-COV) WITH MDM, TSLA, AND FGMDM ON 

SCHIZOPHRENIA/NORMAL DATASET 
Schizophrenia/normal (Eye-open) 

 Theta Alpha Beta Gamma 3-50 Hz 
MI-Adaptive-Cov 92.00 88.00 88.00 90.00 96.00 

MDM 74.00 66.00 66.00 88.00 84.00 

TSLDA 82.00 86.00 86.00 86.00 86.00 

FGMDM  76.00 86.00 86.00 76.00 84.00 

RKSVM 90.00 84.00 86.00 82.00 90.00 

 
TABLE VI. EXAMINING THE STATISTICAL SIGNIFICANCE OF THE PROPOSED 

METHOD IN COMPARISON WITH ITS COMPETITORS REPORTED IN TABLE.V,   *:  
P < 0.05, **: P < 0.0125 AFTER BONFERRONI CORRECTION. 

 

 MI-ADAPTIVE  

/ MDM 
MI-ADAPTIVE 

/TSLDA 
MI-ADAPTIVE 

/ FGMDM 
MI-ADAPTIVE  

/ RKSVM 

P-VALUE 0.006467 ** 0.005431** 0.005137** 0.039743 * 

 

V. CONCLUSION  

In this paper, we proposed a new representation for 

describing EEG signals. In this representation, we apply the MI 



framework to consider the non-stationarity of the EEG signal. 

The concepts in this representation are described by the sample 

covariance matrix of EEG segments. These segments are the 

result of the adaptive segmentation of the signal and all the 

analysis are performed in Riemannian framework. Using MI 

kernel for describing EEG signal is a suitable choice which 

magnifies the discriminative information by considering the 

similarity between each pair of concepts (including positive and 

negative concepts). In addition, automatically attenuating the 

extra-physiologic noise contribution and exploiting the 

discriminative information of physiological artifacts, where  

there exists any dependency between the artifact and the class  

 

 

label, lead to superior result of the proposed representation in 

comparison with representation in single instance framework.  

Experimental evidences confirm the significant superiority 

of this representation, especially in the cases the data are not 

linearly separable in single instance framework. The superiority 

of the proposed representation in comparison with competitors 

comes from considering the non-stationarity of the EEG signal 

using MI framework without the need for explicit induction of 

EEG segments, using covariance matrix for describing 

segments, determining the boundaries of the segments 

adaptively and using the benefits of analysis of covariance 

matrices in Riemannian framework.  

Describing a subject using a bag of patterns and the existence 

of similar patterns within a class and dissimilar patterns 

between the classes lead to high within class similarity and low 

between class similarity in describing the subjects using a 

similarity matrix. 

This representation also confirms the existence of some 

discriminative patterns between Iranian/ Swiss normal subjects, 

depression/normal subjects, ADHD/BMD subjects, and 

Schizophrenia/ normal subjects. 

Using MI framework for EEG representation in outdoor 

problems would be investigated as a future work and the 

efficiency of MI kernel would be investigated for representing 

the dataset in this category of problems.  
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