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1. Introduction  

In this paper, we propose an adaptive mapping to transform 

the indefinite similarity matrices to positive semi-definite (psd) 

kernels. Similarity matrices are used for representing the 

similarity between instances in different applications, such as 

natural language processing, information retrieval, 

Bioinformatics, and computer vision (Schleif and Tino, 2015). 

Similarity-based representation extensively generates non-psd 

matrices. In a general categorization, three sources can be 

identified for negative eigenvalues of similarity matrices; 1) 

using  non-Euclidean metrics, where data points lie on a 

nonlinear manifold, 2) using non-metric distances, for example, 

in the case of extended objects, and 3) the noise, which is the 

result of numerical or measurement inaccuracies (Xu, 2013). For 

example, measuring pairwise similarity between protein 

sequences and DNA in Bioinformatics applications using 

Dynamic Time Warping (DTW) (Noma and Shimodaira, 2002), 

the Smith-Waterman algorithm, or BLAST (Altschul et al., 

1990) generates indefinite (non-psd) kernel matrices. Dynamic 

partial function (Qamra et al., 2005) and earthmover’s distance 

function (Rubner et al., 2000), which are efficient measures for 

representing perceptual dissimilarity between instances in 
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image/video retrieval application, are non-metric. An effective 

measure for calculating the distance between two characters in 

handwritten-digit recognition is the tangent distance, which 

despite its strength in overcoming the translation and rotation 

phenomenon (Simard et al., 1993), its induced kernel might be 

indefinite (Haasdonk, 2005). 

The two major approaches for analyzing proximity data are 

treating the similarity matrix as inner products between samples 

and considering the similarities with each sample as its feature 

vector (Duin et al., 1997; Pękalska and Duin, 2002; Schleif and 

Tino, 2015). One popular technique in the former approach, 

which has led to great success, is using the kernel-based learning 

techniques (Pekalska et al.,2002; Pelillo, 2013; Schleif and Tino, 

2015; Wu et al., 2005). In this approach, for learning over the 

similarity matrix, it is assumed that the proximities represent the 

inner product in a Hilbert space. Projection to Reproducing 

Kernel Hilbert space (RKHS) using an implicit feature mapping 

φ(. ), imposes the psd constraint to kernel functions. This 

constraint is required for finding the optimal solution for 

optimization problem in induced feature space. Using indefinite 

kernels in methods, which relied on empirical risk minimization 

(ex. Support Vector Machine (SVM) (Vapnik, 2013)) leads to a 

non-convex optimization problem. Solving this problem, which 
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produces a saddle point solution, does not guarantee the 

minimization of risk function (Wu et al., 2005). In addition, 

embedding into real-valued Euclidean space is not possible due 

to negative eigenvalues of the non-psd similarity matrices. In 

such cases, projection to pseudo-Euclidean space, as a solution 

that does not distort the original distances, leads to a non-metric 

embedding space. Therefore, the popular geometric learning 

techniques, which are adapted to a vector space, cannot be used 

for learning in resulting embedding space. The problem of 

learning with non-psd similarity matrix has been addressed by 

two major approaches: transforming a non-psd similarity matrix 

to become a psd matrix, and providing methods that can adapt 

to non-metric data without being sensitive to violations of metric 

conditions.  

Spectrum clip, flip, shift, and square transformations, which 

are some spectrum transformation techniques, provide psd 

similarity matrices from indefinite kernels. All of these methods 

somehow neglect the negative eigenvalues; clip replaces them 

with zero, flip replaces them with their absolute value, shift adds 

a constant value to eigenvalues to make them positive, and 

square uses their squared values. Neglecting negative 

eigenvalues or transforming them without topological 

consideration will lead to missing geometrical information 

(Pekalska et al., 2002; Pękalska et al., 2006). 

On the other hand, topology of data points plays an essential 

role in different machine learning techniques. For instance, 

representing and preserving the structure of the dataset are the 

main challenges in dimensionality reduction techniques (Lee 

and Verleysen, 2007). In addition, solving a classification 

problem can be based on the compactness hypothesis (Arkadev 

and Braverman, 1967; Duin, 1999), which states similar objects 

have close representations, in other words, distribution of 

classes are affected by the topology of data points.  

These considerations motivate us to handle negative 

eigenvalues using spectrum transformation from a geometrical 

point of view. For this purpose, we propose an adaptive 

approach for rectifying an indefinite similarity matrix while 

preserving geometrical information provided by all eigenvalues. 

We manipulate the indefinite similarity matrix using a 

conformal transform such that the non-Euclidean characteristics 

of data points decrease. Emphasis on preserving the topology in 

spectrum transformation results in considerable performance 

improvement of classical machine learning techniques for 

analyzing the proximity data in comparison with common 

competitors.  

The remainder of this paper is organized as follows: We first 

review the major methods in spectrum transformation in section 

2. Then, in section 3 we review some mathematical 

preliminaries, which are required for having a good 

understanding of the proposed approach for adaptive spectrum 

transformation that is described in section 4. The experimental 

results for comparing the proposed approach with other 

spectrum transformation techniques on standard benchmarks are 

reported and discussed in section 5. We conclude the results in 

section 6. 

2. Related Works 

In this section we review four major spectrum-transformation 

techniques, which generate psd matrices from non-psd ones.  

2.1. Spectrum clip 

Spectrum clip generates a psd matrix from an indefinite 

similarity matrix by setting all negative eigenvalues to zero 

(Chen and Gupta et al., 2009; Wu et al., 2005). The main idea 

behind clip is that the negative eigenvalues of similarity matrix 

are generated due to the noise and therefore clip acts as a 

denoising process (Wu et al., 2005). 

 Let 𝑆 = 𝑈 𝛬 𝑈𝑇 represents the similarity matrix, where 𝛬 is 

a diagonal matrix that the eigenvalues of 𝑆  (denoted as 𝜆𝑖 ) are 

its diagonal entries, and 𝑈 is the matrix of eigenvectors of 𝑆. 

Applying a clip transformation on 𝑆 will produce: 

  

𝑆𝑐𝑙𝑖𝑝 = 𝑈 𝑑𝑖𝑎𝑔(𝑚𝑎𝑥(𝜆1, 0) , … , 𝑚𝑎𝑥(𝜆𝑛, 0))𝑈𝑇 .         (1) 

Obviously, in the cases that negative eigenvalues are not 

negligible, the clip spectrum transformation leads to losing a 

significant part of the information that were provided by 

negative eigenvalues (Chen and Garcia, et al., 2009). Cliping a 

matrix is equal to approximating a non-psd matrix by a psd 

matrix in terms of Frobenious norm (Wu et al., 2005). 

2.2. Spectrum flip 

In contrast with researches that consider negative eigenvalues 

of similarity matrix as the result of noise; multiple researches 

manifest that negative eigenvalues may convey significant 

topological and discrimination information (Laub and Müller, 

2004; Laub, 2006). In order to preserve the information of 

negative eigenvalues, spectrum flip replaces each eigenvalue by 

its absolute value (Wu et al., 2005): 

  

𝑆𝑓𝑙𝑖𝑝 = 𝑈 𝑑𝑖𝑎𝑔(|𝜆1|, … , |𝜆𝑛|)𝑈𝑇 . (2) 

Flip transformation is equal to projecting data into Krein 

space 𝜅 = ℋ+ ⊕ ℋ− where the similarity is defined as < 𝑥, 𝑦 >
 =< 𝑥+, 𝑦+ >ℋ+

−< 𝑥−, 𝑦− >ℋ−
 in this space. The space κ is the 

direct sum of two disjoint Hilbert space denoted by ℋ+ and ℋ−, 

where for any 𝑥 and 𝑦 that are the members of 𝜅 we have 𝑥 =
𝑥+ + 𝑥− and 𝑦 = 𝑦+ + 𝑦−such that 𝑦+, 𝑥+ ∈ ℋ+ and 𝑦−, 𝑥− ∈
ℋ−.    

2.3. Spectrum shift 

Spectrum shift is a popular approach for providing a psd 

matrix from non-psd kernel by adding a constant value to all 

eigenvalues. In this approach, any eigenvalue is shifted by the 

magnitude of the minimum of the eigenvalues: 

  

𝑆𝑠ℎ𝑖𝑓𝑡 = 𝑈 𝑑𝑖𝑎𝑔(𝜆1 + |𝑚𝑖𝑛(𝜆𝑚𝑖𝑛(𝑆), 0)| , … , 𝜆𝑛

+ |𝑚𝑖𝑛(𝜆𝑚𝑖𝑛(𝑆), 0) |) 𝑈𝑇. 
(3) 

In comparison with clip and flip spectrum transformation 

techniques, this approach merely changes self-similarity and 

does not modify similarity between different samples (Roth et 

al., 2003). 

2.4.  Spectrum square 

The square strategy for spectrum transformation is recently 

developed by Muñoz and Diego, 2006.This approach changes 

the eigenvalues of similarity matrix by squaring them:  

  

𝑆𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑈 𝑑𝑖𝑎𝑔(𝜆1
2, … , 𝜆𝑛

2)𝑈𝑇. (4) 

It is claimed that this transformation produces a kernel, which 

if it is used as a kernel for SVM classifier it would lead to 

promising results.  



3.  Mathematical preliminaries  

In this section, we describe some basic concepts of kernel’s 

geometry that are required for better understanding of this paper. 

First, we review the formulation of generating a similarity 

matrix from distances, and then describe the relationship 

between a kernel and volume element corresponding to the 

induced metric in input space. 

Let 𝐷 be the pairwise dissimilarity matrix between 𝑁 

samples, which are denoted by {𝑥𝑖}𝑖=1
𝑁 . The similarity matrix 

(including the similarities between the pairs of data points) is 

computed by applying double centering method (Cox and Cox, 

1994) to the dissimilarity matrix: 

  

𝑆 = −(1/2)𝐽𝐷2𝐽 (5) 

𝐽 = 𝐼𝑁×𝑁 − (1/𝑁)1𝑁 × 1𝑁
𝑇  

where 𝑆 is the similarity matrix, 𝐼𝑁×𝑁 is an 𝑁 × 𝑁 identity 

matrix, and 1𝑁 is a column vector that all its elements are 1.  

A positive semi definite similarity matrix can be considered 

as a kernel (𝐾 = [𝑘(𝑥𝑖 , 𝑥𝑗)]) in an empirical feature space, 

which is corresponding to an inner product in Hilbert space (i.e., 

 𝑘(𝑥𝑖 , 𝑥𝑗) =< 𝜑(𝑥𝑖), 𝜑(𝑥𝑗) >, where 𝜑(. ) is an implicit feature 

mapping from input space to an implicit feature space).  

The kernel function 𝐾(. , . ) induces a Riemannian metric to 

input space using feature mapping 𝜑(. ), which is computed as 

(Amari and Wu, 1999; Wu and Amari, 2002 ): 

  

𝑔𝑖𝑗(𝑥, 𝑥′) = 𝜕/𝜕𝑣𝑖 𝜕/𝜕𝑣′
𝑗𝐾(𝑥, 𝑥′)|𝑥=𝑥′  (6) 

where 𝑣𝑖 denotes 𝑖th basis of 𝑥 vector. Eq. (6) is written in 

Einstein summation notation. The volume element 

corresponding to the induced metric in input space is computed 

as (Wu, Amari, 2002): 

  

𝑑𝑉 =  √𝑔(𝑥)𝑑𝑣1 … 𝑑𝑣𝑛 
(7) 

where 𝑔(𝑥) represents the determinant of the matrix whose 

elements are 𝑔𝑖𝑗  and 𝑑𝑉 denotes the volume element. The 

expression √𝑔(𝑥) is a factor that controls the expansion and 

contraction of volume elements (Williams et al., 2007). This 

equation confirms the influence of modifying the feature 

mapping and consequently kernel function on volume element. 

4. Adaptive conformal spectrum transformation 

In this section, we describe our proposed approach to 

transform an indefinite similarity matrix to a kernel that satisfies 

Mercer’s condition (Burges, 1998).  

We first describe the proposed transformation to rectify non-

Euclidean characteristics of an indefinite similarity matrix, then 

introduce a criterion for defining an objective function, and 

finally find appropriate optimization technique for solving the 

objective function.  

4.1. Conformal mapping 

Given an indefinite similarity matrix 𝑆0, we wish to find a psd 

matrix using an adaptive spectrum transformation that preserves 

the topology of the data.  

We begin by applying a conformal transform, which is a local 

topology preserving transformation, over the centralized 

similarity matrix ( 𝑆0). The conformal transformation preserves 

the structure by keeping angles unchanged. Eq. (6) and Eq. (7) 

imply that modifying the similarity matrix leads to changes in 

the induced Riemannian metric and, consequently, the volume 

element.  

A conformal map 𝐶, applied to similarity matrix 𝑆0, will 

produce matrix 𝑆: 

  

𝑆 =  𝐶 × 𝑆0 × 𝐶, 

𝐶 = 𝑑𝑖𝑎𝑔([𝑐(𝑥1), … , 𝑐(𝑥𝑁)]) 

(8) 

where 𝐶 is an 𝑁 × 𝑁 diagonal matrix with 𝑐(𝑥𝑖) as its diagonal 

entries (Eq. (9)). 𝑁 represents the number of training data, which 

are denoted by  𝑥𝑖 , and 𝑐(𝑥𝑖) is the conformal transformation of 

𝑥𝑖. It is calculated based on dissimilarity between the 

corresponding sample and some or all of the other samples using 

following formula (Xiong at al., 2005): 

𝑐(𝑥) =  𝛼0 + ∑ 𝛼𝑗𝑒−𝛿‖𝑥−𝑚𝑗‖
2𝑀

𝑗=1
= 𝑆1(𝑥)𝑇𝛼, 

𝑆1(𝑥) = [1  𝑒−𝛿‖𝑥−𝑚1‖2
…   𝑒−𝛿‖𝑥−𝑚𝑀‖2

]
𝑇

 

𝛼 = [𝛼0 … 𝛼𝑀]𝑇 

(9) 

where  𝑚𝑗s called empirical cores can be selected randomly or 

based on the geometry of the training dataset and 𝑀 denotes the 

number of cores. The 𝛼0 , … , 𝛼𝑀, which denote the weight or 

contribution of dissimilarity to each core (i.e. ‖𝑥 − 𝑚𝑗‖ ) in 

𝑐(𝑥), are the unknown parameters of our transformation. 

To achieve our goal, the expansion and contraction of the 

volume element using conformal transformation should result a 

Euclidean similarity matrix. Therefore, we encounter with a 

kernel parameter selection problem. For an appropriate model 

selection, we express this problem as an optimization problem 

and introduce a proper criterion to modify the metric such that it 

results in a psd similarity matrix. 

4.2. Euclidean factor criterion  

To deal with negative eigenvalues of the similarity matrix, 

which are the result of non-Euclidean characteristics of the 

feature space, we introduce a criterion based on this fact that 

magnitudes of negative eigenvalues represent the departure from 

Euclidean behavior. For this purpose, we introduce Euclidean 

Factor (𝐸𝐹) criterion, which shows similarity of the feature 

space to the Euclidean space. This criterion is based on this fact 

that dataset shows Euclidean behavior if and only if its 

corresponding grammian matrix is psd. Therefore, we define 𝐸𝐹 

criterion to include the overall contribution of negative 

eigenvalues of the similarity matrix: 

  

𝐸𝐹 (𝑆) = ∑ 𝜆𝑖(S)
𝜆𝑖<0

/ ∑ |𝜆𝑖(S)|
𝑖

. (10) 

4.3. Optimizing the 𝑬𝑭 criterion 

To maximize 𝐸𝐹(𝑆(𝛼)), first we show that 𝐸𝐹(𝑆(𝛼)) is 

compatible with the following fractional programming problem: 

  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝐹(𝑆(𝛼)) = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑓(𝛼)/𝑔(𝛼)

= 𝛼𝑇𝑃𝛼/𝛼𝑇𝑄𝛼 

(11) 



where 𝑓(𝛼) and 𝑔(𝛼) are continuous and real values in ℝ𝑛\{0}. 

𝑛 denotes the length of vector  𝛼 or the number of unknown 

parameters, 𝛼𝑖𝑠. In addition, 𝑔(𝛼) > 0 for all 𝛼 ∈ 𝐴, where 𝐴 is 

a convex set.  

Lemma 1: let 𝜆1(𝛼), 𝜆2(𝛼), … , 𝜆𝑁(𝛼) be the eigenvalues of 

𝑆(𝛼) matrix; then 𝜆𝑖(𝛼) maximally has degree 2 in 𝛼. 

Proof: Given that, 𝜆𝑖(𝛼)s are the roots of the characteristic 

polynomial of matrix 𝑆, which depends on unknown 

parameter 𝛼, the characteristic polynomial, 𝑝(𝜆, 𝛼), can be 

written as (Horn and Johnson, 2012): 

  

𝑝(𝜆, 𝛼) = 𝑑𝑒𝑡(𝑆(𝛼) − 𝜆𝐼) 

= ∑ (−1)𝑖+𝑙  𝑡𝑖𝑙  𝑇𝑖𝑙

𝑁

𝑖=1
 1 ≤ 𝑙 ≤ 𝑁 

𝑇 = [𝑡𝑖𝑗] = 𝑆(𝛼) − 𝜆𝐼 

(12) 

where  𝑇𝑖𝑙, which denotes the sub-matrix of 𝑇, is derived by 

removing the 𝑖th column and 𝑙th row of matrix 𝑆. Computation of 

this inductive presentation can begin by computing the 

determinant of a single entry matrix. For a 1 × 1 matrix we 

have:  

  

 T1×1 = [c(x) S0(x, x)c(x) − λ] 

p(λ, α) = αT S′(x, x)α − λ = 0, 

S′(xi, xj) =  S1
T(xi)  S0(xi, xj) S1(xj, : )  →

 
    

λ =  αTS′(x, x)α. 

(13) 

The characteristic polynomial of a 2 × 2 transformed matrix is 

defined as:  

  

 𝑇2×2 = [
𝛼𝑇𝑆′(𝑥, 𝑥)𝛼 − 𝜆 𝛼𝑇𝑆′(𝑥, 𝑦) 𝛼

𝛼𝑇  𝑆′(𝑦, 𝑥)𝛼 𝛼𝑇  𝑆′(𝑦, 𝑦) 𝛼 − 𝜆
] 

𝑝(𝜆, 𝛼) = 𝛼𝑇  𝑆′(𝑥, 𝑥)𝛼 𝛼𝑇  𝑆′(𝑦, 𝑦) 𝛼 + 𝜆2
 
  

−𝜆(𝛼𝑇  𝑆′(𝑥, 𝑥)𝛼 + 𝛼𝑇  𝑆′(𝑦, 𝑦)𝛼) 

− 𝛼𝑇  𝑆′(𝑥, 𝑦) 𝛼 𝛼𝑇𝑆′(𝑦, 𝑥)𝛼 

(14) 

and so on. Due to equations 12, 13, and 14, the characteristic 

polynomial of an 𝑁 × 𝑁 matrix has degree 𝑁 in 𝜆 and degree 2𝑁 

in 𝛼. Therefore, the roots of the characteristic polynomial cannot 

be larger than 2 ( i.e. 𝜆𝑖(𝛼) ∈ 𝑂(𝛼2)).  

Theorem 1: All the eigenvalues of 𝑆(𝛼) are quadratic 

polynomials of 𝛼. 

Proof: The determinant of 𝑆(𝛼) is computed using the following 

inductive representation: 

  

𝑑𝑒𝑡(𝑆(𝛼)) =  ∑ (−1)𝑖+𝑙  𝑠𝑖𝑙   𝑆𝑖𝑙

𝑁

𝑖=1
, 1 ≤ 𝑙 ≤ 𝑁 

(15) 

where  𝑠𝑖𝑙 representes (𝑖, 𝑙)th entry of 𝑆 matrix and  𝑆𝑖𝑙  is a sub-

matrix of 𝑆 resulted from removing 𝑖th column and 𝑙th row of 𝑆 

matrix. Computing 𝑑𝑒𝑡(𝑆(𝛼)) using its inductive representation 

shows that it has degree of 2𝑁 in 𝛼. On the other hand, 

𝑑𝑒𝑡(𝑆(𝛼)) is equal to the product of eigenvalues of 𝑆(𝛼): 

  

𝑑𝑒𝑡 (𝑆(𝛼)) = ∏ 𝜆𝑖(𝛼)

𝑁

𝑖=1

 
  

(16) 

where 𝜆𝑖(𝛼) is an eigenvalue of 𝑆(𝛼).  

Now assume that: 

  

∃ 𝜆𝑖(𝛼): 𝜆𝑖(𝛼) ∈ 𝑂(𝛼𝑙), 𝑙 < 2. (17) 

Since 𝑑𝑒𝑡(𝑆(𝛼)) = ∏ 𝜆𝑖(𝛼)𝑁
𝑖=1 ∈ 𝑂(𝛼2𝑁), there should be at 

least one eigenvalue, such that:  

  

∃ 𝜆𝑖(𝛼): 𝜆𝑖(𝛼) ∈ 𝜃(𝛼𝑙), 𝑙 > 2 (18) 

which is in contradiction with lemma 1. This contradiction 

proves that the proposition (18) is false. Therefore, we infer that 

  

∄ 𝜆𝑖(𝛼): 𝜆𝑖(𝛼) ∈ 𝑂(𝛼𝑙), 𝑙 < 2. (19) 

From Eq. (19) and lemma 1 we infer that all eigenvalues of 𝑆(𝛼) 

are quadratic polynomials (i.e., 𝜆𝑖(𝛼) =  𝛼𝑇 𝑆𝑖
" 𝛼). Therefore, 

for positive eigenvalues (𝜆𝑖(𝛼) > 0), we have 𝛼𝑇  𝑆𝑖
"𝛼 > 0. 

According to the definition of positive definiteness (Horn and 

Johnson, 2012), we can infer 𝑆𝑖
"is positive definite. In the same 

way, 𝑆𝑖
"is negative definite for a negative eigenvalue. 

Lemma 2. 𝐸𝐹(𝑆(𝛼)) is a concave-convex quadratic polynomial.  

Let 𝜆𝑖(𝛼) be the eigenvalues of 𝑆(𝛼) that are sorted in 

ascending order; 𝜆1(𝛼) ≤ 𝜆2(𝛼) ≤ ⋯ ≤  𝜆𝑁(𝛼). Assume 𝑛𝑁𝑒𝑔 

denotes the number of negative eigenvalues of 𝑆(𝛼) matrix. 

Since 𝐶 is a non-singular matrix, 𝑛𝑁𝑒𝑔 is equal to the number 

of negative eigenvalues of 𝑆0 (Horn and Johnson, 2012). 

Assume 

  

𝑓(𝛼) =  ∑ 𝜆𝑖(𝛼)𝑛𝑁𝑒𝑔
𝑖=1    , 

g(𝛼) =  ∑ |𝜆𝑖(𝛼)|𝑁
𝑖=1 = − ∑ 𝜆𝑖(𝛼)𝑛𝑁𝑒𝑔

𝑖=1 +
∑ 𝜆𝑖(𝛼)𝑁

𝑖=𝑛𝑁𝑒𝑔+1 . 

(20) 

The summation of PD/ND matrices produces a PD/ND matrix. 

Therefore, we have: 

  

∑ 𝜆𝑖(𝛼)
𝑛𝑁𝑒𝑔

𝑖=1
=  𝛼𝑇 ∑ 𝑆𝑖

"
𝑘

𝑖=1
𝛼 

 

where ∑ 𝑆𝑖
"𝑛𝑁𝑒𝑔

𝑖=1 is a ND matrix. In addition, considering that the 

negation of an ND matrix is a PD matrix, we can show that the 

denominator of 𝐸𝐹(𝑆(𝛼)) is a quadratic polynomial with PD 

coefficient matrix: 

  

∑ |𝜆𝑖(𝛼)|
𝑁

𝑖=1
= ∑ − 𝛼𝑇𝑆𝑖

"𝛼
𝑛𝑁𝑒𝑔

𝑖=1
 

+ ∑ 𝛼𝑇𝑆𝑖
"

𝑁

𝑖=𝑛𝑁𝑒𝑔+1
𝛼 

=  𝛼𝑇 (− ∑ 𝑆𝑖
"

𝑛𝑁𝑒𝑔

𝑖=1
)  𝛼 +  𝛼𝑇 ∑ 𝑆𝑖

"
𝑁

𝑖=𝑛𝑁𝑒𝑔+1
𝛼 

=  𝛼𝑇(− ∑ 𝑆𝑖
"

𝑛𝑁𝑒𝑔

𝑖=1
+ ∑ 𝑆𝑖

"
𝑁

𝑖=𝑛𝑁𝑒𝑔+1
)𝛼 

(22) 



where − ∑ 𝑆𝑖
"𝑛𝑁𝑒𝑔

𝑖=1  and ∑ 𝑆𝑖
"𝑁

𝑖=𝑛𝑁𝑒𝑔+1 are PD matrices and 

therefore (− ∑ 𝑆𝑖
"𝑛𝑁𝑒𝑔

𝑖=1 + ∑ 𝑆𝑖
"𝑁

𝑖=𝑛𝑁𝑒𝑔+1 ) is PD.  

Therefore, we can formulate the objective function as: 

  

𝐸𝐹(𝑆(𝛼)) = 𝑓(𝛼)/𝑔(𝛼)

= 𝛼𝑇 (∑ 𝑆𝑖
"

𝑛𝑁𝑒𝑔

𝑖=1
 ) 𝛼

/ 𝛼𝑇 (− ∑ 𝑆𝑖
"

𝑛𝑁𝑒𝑔

𝑖=1
+ ∑ 𝑆𝑖

"
𝑁

𝑖=𝑛𝑁𝑒𝑔+1
) 𝛼 

(23) 

where coefficient matrices in the numerator and the denominator 

are ND and PD, respectively and the 𝐸𝐹(𝑆(𝛼)) is a concave-

convex fractional problem. 

As proved in lemma 2, maximizing the 𝐸𝐹 criterion is 

compatible with a concave-convex fractional problem with 

quadratic numerator and denominator that its optimal solution 

can be found using Dinkelbach’s algorithm (Dinkelbach, 1967). 

Although lemma 2 and Dinkelbach’s algorithm guarantee 

finding the optimum of Eq. (11), but increasing the size of 

similarity matrix and consequently computing the eigenvalues 

of 𝑆 matrix, which depends on parameter 𝛼, would be an 

intractable problem. Therefore, we use numerical methods for 

approximating the optimal value of the objective function.  

5. Experimental evaluations 

To assess the proposed spectrum transformation method, we 

examine it in three different experimental setups. First, we 

evaluate it in a dimensionality reduction problem with an 

artificial dataset to illustrate the effectiveness of the proposed 

method in preserving geometrical information. We run two other 

evaluations of the proposed approach over real datasets 

represented by the dissimilarities between instances in clustering 

and classification setups. In this section, we first describe the 

datasets involved in our experiments, and then express more 

details about the experiments. 

5.1. Datasets  

To evaluate our proposed method we use one dataset 

composed of dissimilarity between points lying over a spherical 

manifold, and six datasets that are given in terms of proximity 

data.  

First, we run our experiments on a fishbowl dataset composed 

of about 1000 equi-distance instances that are sampled from a 

spherical manifold with radius 1.  

For real world problems, we have chosen six different datasets 

representing dissimilarities in a wide range of applications: 

• Catcortex dataset describes connection strengths between 

65 cortical areas of a cat from auditory, somatosensory, 

visual, and frontolimbic regions (Scannell et al., 1995). This 

dataset is represented as a 65 × 65 dissimilarity matrix and 

is used in classification (Graepel et al., 1999) and clustering 

(Denœux and  Masson, 2004 ) applications. 

• Proteins dataset consists of dissimilarity between 226 

protein sequences that belong to four classes of globins, 

including heterogeneous globin (G), hemoglobin-A (HA), 

hemoglobin-B (HB), and myoglobin (M). The dissimilarity 

between the protein sequences are compared based on the 

concept of evolutionary distance ((Graepel et al., 1999). 

This dataset is used in both clustering and classification 

problems. 

• Music-EMD and Music-PTD contain distances between 

music pieces that are measured by the Earth Mover’s 

Distance (EMD) and the Proportional Transportation 

Distance (PTD) respectively. The dataset contains 

dissimilarities between 22 music pieces from Georg 

Friedrich Händel and 28 pieces from Joseph class (Typke 

et al., 2003). 

• Kimia dataset contains dissimilarity between 72 binary 

images belonging to 6 different classes. A modified 

Hausdorff distance is used for measuring the pairwise 

dissimilarity between distances (Pekalska et al., 2002; 

Sebastian et al., 2001). 

• UNIPEN-DTW contains a fraction composed of 250 

handwritten sequences from 5 different classes of the 

original UNIPEN dataset. Dynamic-time-warping measure 

is used for measuring dissimilarities (Bahlmann et al., 

2002; I Guyon et al., 1994).  

• USPS-TD composed of 250 samples, including 1-250, 251-

500, 501-750 and 751-1000 subsets of the original USPS 

dataset. Tangent distance is used for measuring 

dissimilarities (Haasdonk and Keysers, 2002; Keysers et 

al., 2004). This problem is considered as a binary 

classification problem by assigning the digits 0,1,2,3, and 4 

to class 1 and considering the digits 5, 6, 7, 8, and 9 as class 

2.  

The specifications of these datasets are briefly reviewed in table 

1. 

Table 1. Specifications of benchmark datasets 

Datasets No. of 

classes 

No. of 

samples 

∑ |𝛌𝐢(𝐒)|𝛌𝐢<0

∑ |𝛌𝐢(𝐒)|𝐢

 

Catcortex 4 65 0.2082 

Proteins 4 226 7.4148e-04 

Music-EMD 2 50 0.2819 

Music-PTD 2 50 0.2047 

Kimia 6 72 0.0745 

Unipen-DTW 5 250 0.3129 

USPS-TD 2 250 0.1486 

 

5.2. Experiments 

5 .2 .1 .  Dimensional i ty  reduct ion  setup  

Fig.1. (a) shows the original 3 dimensional fishbowl dataset.  

The spectrum of this dataset has strong negative components. 

The dissimilarities between samples are computed along the 

manifold (i.e. geodesic distance). We compute the similarity 

matrix for this dataset by applying Eq. (5) over the dissimilarity 

matrix. We apply our method that we call it “Adaptive Topology 

Preserving Spectrum Transformation method (ATPST)” to 

generate a psd similarity matrix from proximity data and 

compare it with flip, clip, shift, and square spectrum 

transformation approaches in a dimensionality reduction setup. 

For this purpose, we use resulting psd similarity matrices as 

the kernels for Kernel Principal Component Analysis (KPCA) 

method. As illustrated in Fig.1. (f), projection in 2-dimensional 

space using ATPST preserves the local geometry completely, 
while the other approaches,  although providing psd matrices, 

lead to overlapping of the samples (note overlapping of red 

points over green and orange points in Fig. 1. (b), (c), (d), and 

(e)). Overlapping of the samples indicates the shortcoming of 

clip, flip, shift, and square techniques in preserving geometry. 



 
(a) 

 
(b) 

 
(c)  

(d) 

 
(e) 

 
(f) 

Fig. 1.  (a) 3-D fishbowl dataset. 2-D representations of it using kernel 

PCA, the kernel is rectified by (b) clip (c) flip (d) shift (e) square (f) 

ATPST spectrum transformation. 

 

5.2 .2 .  Cluster ing  se tup  

To show the performance of the proposed algorithm in 

clustering problems, we compare the performance of ATPST 

with EVCLUS algorithm (Denœux and Masson, 2004), which is 

a reference method for clustering the proximity data, in the same 

experimental setting (Denœux and Masson, 2004). EVCLUS 

has shown to have good results as compared with several state 

of the art clustering techniques (Denœux and Masson, 2004). 

Proximity matrices rectified by ATPST method are used as 

kernels for kernel k-means algorithm to make them applicable 

for clustering the Catcortex and Proteins datasets.   Two-

dimensional representations of different groups found by this 

algorithm for Catcortex and Proteins datasets are shown in Fig.2. 

The different clusters of these two datasets are specified by 

different symbols for each group in corresponding figure. As 

illustrated in Fig. 2.  kernel k-means using ATPST kernel leads 

to misclassification of 2 instances among 65 instances of 

Catcortex dataset and misclassification of 1instance among 226 

instances of Proteins dataset. The EVCLUS algorithm has 3 

misclassifications out of 65 points of Catcortex dataset and 1 

misclassification in Proteins dataset.   

5.2 .3 .  Class i f ica t ion  se tup  

As the last experiment, we evaluate ATPST in classification 

setup using the resulting similarity matrix as a kernel for the 

SVM classifier (Table. 2) and using it for running 1- Nearest 

Neighbor classifier (1-NN) (Table. 3).  

For each dataset, we apply 10-fold cross validation and report 

the mean accuracy and standard deviation. The lib-svm (Chang 

and Lin, 2011) package is used for implementing SVM. In 

multi-class cases, one-against-one scheme is used for 

classification. Tuning the C parameter of SVM classifier is done 

by changing it in a wide range of values [10−6, 10−4, … , 106] . 
The value of C, which leads to the best result in 10-fold cross-

validation on the training set, is used in the evaluation of the test 

set. In our experiments, the ATPST’s δ parameter is selected by 

applying cross-validation and is proportional to the variance 

between instances (Amari and Wu, 1993). 

 

(a) 

 

(b) 

Fig. 2. Two-dimensional representation of (a) Catcortex and (b) 

Proteins datasets. A different color is used for each group found by the 

kernel k-means algorithm using ATPST for rectifying proximity data.  

True class membership is specified using different symbols. 

 

Since computing eigenvalues of a matrix that depends on 

parameters is NP-hard, it would be intractable to find an optimal 

transformation by increasing the size of the similarity matrix. 

Therefore, we use a numerical method for approximating 

optimal values of the unknown parameters. For this purpose, we 

use Matlab’s nonlinear multi-variable solver for approximating 

the optimal solution.  

Table 2. Classification accuracy and standard deviation of similarity 

matrices rectified by ATPST, clip, flip, shift, and square approaches and 

used as the kernels for SVM 

 ATPST Clip Flip Shift Square 

Catcortex 95.48±  7.31 92.38±10.52 89.29±  7.47 89.29±10.05 91.19±10.17 

Proteins 96.46± 5.84 95.59±  6.57 96.03±  6.72 95.59± 6.57 94.25± 6.24 

Music-EMD 60.00±13.33 48.00±19.32 54.00±21.19 48.00±25.30 46.00±1897 

Music-PTD 60.00±18.86 50.00±21.60 52.00±19.32 52.00±19.32 50.00±17.00 

Kimia 90.36±11.64 86.07±13.49 93.21±  9.85 76.43±16.10 79.82±19.74 
Unipen-DTW 91.20± 6.75 90.40±  6.85 90.80±  5.98 87.20± 4.92 90.80± 5.67 

USPS-TD 94.80± 5.67 92.80±  6.75 92.00±  6.25 76.40±11.84 90.80± 5.67 

Table 3. Classification accuracy and standard deviation of 1-NN based 

on similarity matrices that are rectified using ATPST, clip, flip, shift, 

and square approaches 

 ATPST Clip Flip Shift Square 

Catcortex 97.14± 9.04 96.90± 6.55 95.71± 6.90 95.24± 7.69 92.38± 8.08 

Proteins 97.37± 3.05 97.37± 3.05 97.37± 3.05 97.37± 3.05 88.54± 5.53 

Music-EMD 64.00±18.38 54.00±25.03 58.00±17.51 56.00±24.59 48.00±25.30 

Music-PTD 60.00±18.86 52.00±13.98 56.00±12.65 48.00±13.98 56.00±18.38 

Kimia 88.57±13.13 88.57±13.13 92.86±12.14 74.46±17.70  80.18±18.14  
Unipen-DTW 83.60± 6.92 81.60±10.36 82.80±  7.07 77.20±10.34 70.80±  6.55 

USPS-TD 98.40± 2.07 98.00±  2.11 96.00±  2.67 98.40± 2.07 84.00±  5.66 

 

The statistical significance of the classification accuracy of 

the proposed method is reported in Table 4. Comparing it with 

respect to the other competitors is computed by one-sided 

Wilcoxon signed-rank test.  

Table 4. P-values resulted from applying one-sided Wilcoxon signed-

rank test over a classification rate resulted by ATPST for rectifying 



similarity matrices and SVM/1NN classifier versus clip, flip, shift, and 

square spectrum transformation+ SVM/1NN 

 ATPST/Clip ATPST/Flip ATPST/Shift ATPST/square 

SVM 0.008991 0.045514 0.008991 0.008991 

1NN 0.021588 0.013868 0.021588 0.008991 

 

As the results in Table 2 and 3 show, the superiority of the 

proposed method is considerable where the negative eigen-

fraction of the similarity matrix is significant. In the case of 

Proteins dataset with very small negative eigen-fraction, all 

approaches lead to similar accuracy for the 1-NN classifier. The 

significant superiority of ATPST+SVM and ATPST-1NN over 

competitors are confirmed by p-values<0.05 reported in Table 

4.  

6. Conclusion 

In this paper, we proposed an adaptive approach for rectifying 

indefinite proximity data using spectrum transformation. 

Modifying the volume element by applying a conformal 

transform is our contribution for generating a psd kernel from an 

indefinite similarity matrix. This goal is achieved by 

maximizing 𝐸𝐹 criterion, which shows similarity of the feature 

space to the Euclidean space.  

As the conformal transform keeps angles unchanged, it can 

preserve the spatial relationship between the data points. 

Therefore, it can avoid overlapping problem, which is caused by 

missing topological information conveyed by negative 

eigenvalues and reach superior results in classification 

problems. The superiority of the proposed method is especially 

in the cases, where the spectrum of proximity data has strong 

negative components. The experimental evidences confirm that 

the semantic preservation, provided by preserving the topology 

of data points, leads to better results in dimensionality reduction 

and clustering setups. 
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