Psychosocial and Behavioural Factors Associated with Self Injurious Behaviour (SIB) in Individuals with Autism Spectrum Disorders (ASD).

Katie Vandewalle^{a*}, Yvonne Melia^b

^{ab} Present address: Science Centre, School of Life Sciences and Education, Staffordshire University College Road, Stoke-on-Trent, ST4 2DE, UK.

* Corresponding author. Email address: V024120h@student.staffs.ac.uk

Abstract

Background: Self-injurious behaviour (SIB) is a persistent and distressing difficulty which may be more prevalent and enduring for individuals with an Autism Spectrum Disorder (ASD). SIB has been largely conceptualised in research as a challenging behaviour or a repetitive and restricted behaviour, rather than a unique construct to research. As its own construct, the aetiology of SIB has been conceptualised from a neurobiological perspective, however there remains a need to explore psychosocial and behavioural factors associated with SIB and ASD. A review was conducted to compile evidence and establish current understanding of this behaviour.

Method: 6 databases were systematically searched for research exploring factors relating specifically to SIB limited to ASD populations. Studies were critically appraised using a tool developed for the purpose of this review, adapted from the CASP, AXIS and STROBE quality appraisal tools.

Results: 15 studies met the eligibility criteria. SIB was found to be associated with impairments in adaptive ability, communicative ability, IQ, sleep, atypical sensory processing, and impulsivity/ over-activity. There were mixed findings supporting an association between autism severity and self-injury.

Conclusions: The development of SIB in ASD populations is complex. The range of factors associated with SIB and ASD imply a clinical need for a robust assessment and a multi-disciplinary approach to intervention. Theoretical perspectives regarding the role of impaired behavioural inhibition, communication, and sensory processing difficulties are considered. Limitations and future research are discussed.

Keywords: Autism, ASD, Self-injurious Behaviour, Associations, Review

Psychosocial and Behavioural Factors Associated with Self Injurious Behaviour in Individuals with Autism Spectrum Disorders

Introduction

Self-injurious behaviour (SIB) refers to self-directed behaviours which result in physical harm to the individual without showing apparent intent of harm (Fee & Matson, 1992). Such behaviours include head banging, biting, hitting, and eye gouging. SIB can range from 'mild' to 'severe' and as such are concerning to those who work with the individuals presenting with these behaviours (Durand & Crimmins, 1988). SIB is observed across different groups of individuals at different points in life. Selfdirected injurious behaviours and repetitive behaviours, such as head-banging and rocking, can occur in typically developing populations as part of normal development (Berkson & Tupa, 2000; Berkson, Tupa & Sherman, 2001), however these behaviours usually diminish before 3 years old. Self-directed 'proto-injurious' behaviours can also occur from birth in those with developmental difficulties/disorders and differ from SIB as they do not yet cause tissue damage (Roane et al, 2007; Tate & Baroff, 1966). Self-injurious behaviours can also present in individuals with mental health difficulties such as Borderline Personality Disorder (Crowell & Kaufman, 2016), although these behaviours are usually episodic and individuals hold intent to cause themselves harm. The aetiology of SIB is yet to be fully comprehended, although it is understood that self-injury may be underpinned by neurobiological processes (such as in individuals with Lesch-Nyhan Syndrome, Smith-Magenis Syndrome, see Furniss & Biswas, 2020) and is developed and maintained by social and non-social reinforcement and resulting influences in the social and physical environment (Carr, 1977; Guess & Carr, 1991; Iwata et al., 1994; Hastings & Brown, 2000; Kurtz et al 2003). However, in some disorders, such as Autism Spectrum Disorder, some individuals engage with SIB, while others do not. This indicates that other psychosocial and behavioural factors are significant to consider in the emergence of SIB.

Autism Spectrum Disorder (ASD) is a pervasive developmental disorder which is characterised by differences in social interaction, communication, and restricted and repetitive behaviours or interests. ASD is an umbrella term used to describe previous subcategories of autism, including terms such as Asperger's Syndrome and Autistic Disorder (see Diagnostic and Statistical Manual, 5th ed.; DSM-5; American Psychiatric Association, 2013). Individuals with autism can present with a number of challenging behaviours (see Emerson, 2001), including SIB. This is not considered a core symptom of ASD or part of the diagnostic criteria, possibly because it is not endemic to ASD (Minshawi et al, 2014). Indeed, SIB can also be observed in those with Learning Disabilities (LD)/ Intellectual Disabilities (ID) (Cooper et al, 2009). SIB behaviours in individuals with ASD are distinguished by being repetitive and stereotypic in nature, without intent of harm, as opposed to compulsive or episodic self-injury (Yates, 2004); such conceptualisations are considered in this review. Episodic self-injury (where individuals hold intention to cause harm) can also present in individuals with ASD (see Maddox, Trubanova & White, 2016; Hannon & Taylor, 2013), and will be distinguished as 'self-harm' in this paper.

SIB has been extensively researched across different fields. Neurobiological factors have contributed significantly to an understanding about the aetiology of SIB, where a number of factors have been suggested to associate with SIB, including pain reactivity and alterations in the somatosensory system, among other things. Exploration of this research base is beyond the scope of the present review; for further discussion see Deurden et al (2014), Tordjman et al (2018), Shirley et al (2016), Christenson et al (2009), Kolevzon et al (2014), Devine et al, (2014), Summers et al (2017) and Wolff et al (2013). Additionally, SIB has been conceptualised as part of different constructs of behaviour. First it is conceptualised as a challenging behaviour, and second, as a repetitive and restricted behaviour (RRB). Factors associated with challenging behaviours and RRB have also been explored in previous research (Matson et al, 2010; Cohen et al, 2018; Rattaz et al, 2018; McTiernan et al, 2011; Stratis & Lecavalier, 2013; Antezana et al, 2019).

However there has been a recent emphasis on conducting research into SIB as an individual difficulty. A primary reason for this emphasis centres around the prevalence of SIB both for individuals with ID and autism (Oliver, Licence & Richards, 2017; McClintock, Hall and Oliver, 2003). Accurate

prevalence estimates are difficult to determine due to methodological differences across studies, definitions of SIB, and participant characteristics (Summers et al, 2017). However, findings from a 37-paper meta-analysis has indicated that current pooled prevalence estimates of self-injury in individuals with autism is 42% (Steenfeldt-Kristensen, Jones & Richards, 2020). It has been long established that people with autism may be at particular risk of developing SIB (see Ando & Yoshimura, 1979). Research has indicated that individuals with higher rates of autistic behaviours displayed significantly more SIB across those with ASD, Fragile X Syndrome and Downs Syndrome (Richards et al, 2012). Researchers have been cautioned not to assume that SIB in ASD and ID populations arise from the same motivations (according to Weiss, 2002), and that research into SIB in ASD specific populations is warranted.

SIB has also been shown to be a persistent difficulty. Longitudinal and follow up studies have evidenced that SIB can be enduring for those with ASD (Richards et al, 2016; Baghdadli et al, 2008; Rattaz et al, 2015; Taylor et al, 2011). This is not to say that SIB is always life-long and untreatable, however, interventions such as medication and behavioural interventions are mixed in terms of efficacy (Schroeder et al, 1978; Eurtuk, Machalicek & Drew, 2018; Baghdadli et al, 2008).

Besides the high prevalence and persistence of SIB in ASD populations, it is an important area to research due to the associated outcomes. Individuals with ASD displaying SIB may cause long term damage or injury to themselves, including concussions, contusions, bleeding, lacerations, fractures, loss of sensory function and infections which cumulatively present as one of the primary reasons for adolescents with ASD accessing hospital emergency departments (lanuzzi et al, 2012; Soke et al, 2018; Minshawi et al, 2014). The chance of placement in residential facilities or inpatient hospital settings increases for ASD populations with the presentation of SIB (Siegal et al 2012; Mandell, 2008). SIB also impacts significantly on carers such as teachers and parents, where SIB is considered to relate to increased caregiver stress and lower parental reported quality of life (Konstantareas & Homatidis, 1989; Lecavaller, Leone & Wiltz, 2006; Rattaz, Michelon & Baghdadli, 2015; South, Ozonoff, & McMahon, 2005).

Risk markers and factors associated with SIB have been explored in previous review. McClintock, Hall and Oliver (2003) conducted a meta-analysis and demonstrated that SIB was associated with autism, more profound LD/ID, and deficits in receptive and expressive communication. A systematic review conducted by Furniss and Biswas (2012) also indicated that SIB is associated with increased aggression, impulsivity and repetitive behaviour, although this research was limited to individuals with an LD/ID (also see Symons, Devine & Oliver, 2012; Richman, 2008). There are currently no systematic reviews which explore SIB in an ASD focused population.

Rationale

The association between SIB and ASD is an important area of research due to individuals with ASD seemingly being at higher risk of SIB. Prevalence estimates and persistence of SIB are higher in this population, which not only impacts on the individual and places them at risk of harm, but impacts more widely on parents, carers and teachers. This demonstrates the importance of developing targeting interventions to reduce SIB in this population, where it has been proposed that interventions should be based on hypotheses about the cause of a problem (Repp & Karsh, 1994). Furthermore, behavioural outcomes are improved by early identification and treatment of emerging SIB (Lance et al, 2014; Richman, 2008). Thus, exploration of risk markers and factors associated with SIB is key to better understanding and intervening for SIB, yet there remains limited understanding of the role of psychosocial and behavioural factors associated with SIB.

Research Question

What are the associated psychosocial and behavioural factors and predictors for self-injurious behaviour in individuals with autism spectrum disorders?

Terminology

Self-Injurious Behaviour (SIB)

Throughout this review, SIB is the term used to describe repetitive and stereotypic self-directed behaviours which results in physical harm to the individual without showing apparent intent of harm (Fee & Matson, 1992; Yates, 2004).

Autism

Since the release of the Diagnostic and Statistical Manual 5th Edition (DSM-5; American Psychiatric Association, 2013) diagnostic terminology reflects the conceptualisation of autism as a spectrum, thus the diagnostic term is 'Autism Spectrum Disorder'. Previously this would have included terms such as 'autism spectrum condition', 'high functioning autism' and pervasive developmental disorders such as Asperger's syndrome. For the purpose of this review, the term 'autism' is used to incorporate these previous diagnostic terminologies.

Psychosocial

For the purpose of this review, psychosocial factors refer to the combined influence of two categories of variables. This includes psychological factors which exist at an individual level, and second, social factors which are situated within surrounding environmental structures. (Singh-Manoux, MacLeod & Smith, 2003). Examples of psychosocial factors may be mood, intelligence, social communication.

Behavioural

The Australian Institute of Health and Welfare define behavioural risk factors as behaviours which individuals have the most ability to modify, which holds associations to a health disease (AIHW, 2016). Examples of this may be sleep, levels of activity or adaptive ability. This description was utilised in this review.

Associated Factors

This terminology is inclusive of both risk markers, which are factors which are associated with the occurrence of a behaviour, and of risk factors, which are causal to the emergence of a behaviour. Factors associated with SIB are therefore not protective factors which may prevent or reduce the likelihood of a behavioural occurrence.

Methodology

Scoping Searches


An initial unlimited search of Google Scholar, the Cochrane Library and Staffordshire University Library collection (Summon) was conducted, where existing reviews on this topic by Minshawi et al (2014) and Weiss (2002) were identified. These studies were narrative in nature, considering a broad range of topics. As these narrative overviews were not systematic reviews focusing uniquely on psychosocial and behavioural factors associated with SIB, the current review proceeded.

Search Strategy

Systematic searches of online databases were carried out during April 2019. Studies were identified through searches of the following databases: PsycINFO, PsycArticles, Scopus, Medline, CINAHL, and Research Autism. The search terms used were as follows: (Autis* OR "autism spectrum disorder" OR "autism spectrum condition" OR Asperger* OR PDD-NOS OR ASD OR ASC) AND ("self-injurious behaviours" OR "self-injurious behaviour" OR "self-injury") AND (Predictors OR "risk factors" OR "associated factors" OR associat* OR predisposition OR correlation). Each database was searched separately. Limiters of English language and peer reviewed studies were set to ensure quality of the review. A limiter of publication after 1987 was set as this was the release date of the Diagnostic and Statistical Manual III-R, when people with autism were considered to potentially present with self-injury, such as head banging, as a form of RRB. The eligibility criteria are outlined in Table 1. Citations from eligible studies identified in the main search were then reviewed to identify additional relevant studies. No additional studies were identified through this citation review. The search strategy followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA, Moher et al, 2009) and is illustrated in Figure 1.

Criteria	Inclusion	Exclusion
Participants	Research with a primary focus	Research focusing on people
	on people with an Autism	with learning disabilities or
	Spectrum Diagnosis	genetic disorders, due to the
		clinical distinctions between
		these populations
Study Design	Peer reviewed, empirical	Book chapters
	research which reports	Overviews
	qualitative, quantitative or	Summaries
	mixed method results	Discussion papers
Торіс	Research exploring	Research on interventions,
	psychosocial and behavioural	Genetic, physical,
	factors associated with self-	neurobiological research,
	injury	research on self-harm, research
		into general challenging or
		repetitive behaviour.
Publication Year	1987 onwards	Pre-1987, before the release of
		the DSM-III-R which references
		repetitive and restricted
		behaviours (e.g. head banging)
Language	Written in the English	
	Language	
	Research conducted in any	
	country.	

Table 1. Eligibility criteria for inclusion in review

Publication Bias

A search of the grey literature was conducted to minimise publication bias (see Dickersin, 1990). This search included Google Scholar, the Ethos Database for unpublished dissertations, and searches of charitable organisations including the National Autistic Society and the Interactive Autism Network. No additional empirical studies were identified, and no relevant unpublished theses were identified.

Quality Assessment

Eligible studies were all quantitative observational studies using cross sectional and cohort designs. Due to the mixed designs of the research, no single appraisal tool was identified from existing literature which was deemed sufficiently fit for purpose. An 18-item critical appraisal checklist was developed from evaluation tools for cohort studies and cross sectional studies, and from quality guidance for observational studies (Appendix 1). The use of a single tool rather multiple tools was also necessary to operationalise the quality of studies and allow for direct comparisons between studies. This informed the development of a data extraction tool which was applied to eligible studies. Specifically, the tools used to develop the critical appraisal checklist were:

- The Critical Appraisal Skills Programme checklist for cohort studies (CASP, 2018). 8 items from the CASP tool were used in the development of the current appraisal tool.
- The Appraisal of Cross-Sectional Studies tool (AXIS; Downes et al, 2016). 9 items from the AXIS tool were used in the development of the current tool.
- The Strengthening the Reporting of Observational Studies in Epidemiology statement (STROBE; Von Elm et al, 2007). 1 item in the current tool was taken from the STROBE statement.

Items were selected through a process of exhaustive comparison across the three tools; each item on the CASP was systematically considered against the items on the AXIS and STROBE, and items which were unaccounted for by the CASP on the AXIS tool were considered against the STROBE to produce a comprehensive list of items. Where appropriate certain items were then collapsed to ensure that questions were binary rather than qualitative, which allowed for operationalised scoring. All items were scored in the same way and given equal weighting. Items which were answered 'yes' received 1 point, items which were answered 'no' or 'can't tell/comment' received 0 points. Points were totalled and a score was calculated as a percentage of the total score possible.

Results

Search Results

The initial search produced 1113 results from the combined database searches. Citations were transferred to RefWorks ProQuest. Duplicates were removed, limiting the results to 1040. Studies were then screened by title and abstract which resulted in 25 studies. These were read in full to assess for relevance, where 10 studies were removed. Of these 10, two studies were excluded only after discussion with a supervisor and independent reviewer. Overall a total of 15 studies were retained for inclusion.

Study Characteristics

The main characteristics of the eligible studies are outlined in Table 2. Of the design of studies included, five were cross sectional observational studies (Gulsrud et al, 2018; Handen et al, 2018; Richard, Davies & Oliver, 2017; Duerden et al, 2012; Poustka & Lisch, 1993), and three were cross sectional observational studies which utilised existing data (Baghdadli et al, 2003; Soke et al 2018; Lance et al, 2014). Four studies were observational studies based on information obtained from databases and data repositories (Richman et al, 2013; Soke et al, 2017; Dempsey et al, 2016; Soke et al, 2019). One was a prospective cohort study (Richards et al, 2016), two were a longitudinal follow up of data reported in previously existing studies (Bagdadli et al, 2008; Rattaz, Michelon & Baghdadli, 2015). 8 studies originated from the USA, 1 from Canada, 1 from Germany, 2 from the UK and 3 from France.

Table 2. Summary of studies included in the review.

Critical	Limitations	Findings	Analysis	Method	Sample	Author, Year of
Appraisal						Publication, Aims
Tool Rating						
(%)						
41	Limitations are not	Association between lower	Statistical methods	Cross	Sample originated	Poustka & Lisch,
	discussed, although there	IQ and increased SIB was	not outlined, but	sectional	from Germany	1993
	are potential limitations	visibly observed, but	reference given to	observation		
	around sample size,	statistical analyses <mark>did not</mark>	chi-square	study	N=61 individuals	Aims to find out if
	recruitment and sampling	reveal significant correlation.	correlations and		diagnosed with ASD	self-injury in ASD
	strategy.		multivariate			is significantly
		No correlation between SIB	analyses		The median age of the	correlated with
		and severity of			sample was	autistic
		communication difficulties,			15.3years, mean age	phenomena and/or
		social interaction difficulties,			not reported.	degree of
		and repetitive stereotyped			80% were males	intellectual
		behaviours.				functioning.
		and repetitive stereotyped				intellectual

Baghdadli et al,	Sample originated	Cross	Mann-Whitney test	Significant relationships	Limitations are not	47
2003	from France	sectional	and Chi-Square	between SIB and presence	discussed, although there	
		observation	tests used to	of perinatal condition	are limitations around	
Aims to identify risk	N=222 children with	study.	compare groups	(<mark>p<0.05),</mark> higher speech	recruitment and sampling.	
factors for SIB	ASD		(no SIB, SIB)	delay (<mark>p<0.01</mark>), higher		
among children	Mean age of the	Data already		adaptive delays in		
with ASD with	sample was 5 years.	existing from	Logistic regression	communication, socialisation		
respect to age, ID,	80% were males	previous		and daily living skills		
medical condition,		study.		(<mark>p<0.05)</mark> , degree of autism		
degree of autism	A subset of	A subset of		<mark>(p<0.001)</mark> . SIB was more		
and parental social	participants from a	data collected		severe in children with higher		
class	cohort study	during a		autism severity, lower		
	identifying prognosis	cohort study.		speech level, and lower		
	factors in children with			adaptive skills (<mark>p<0.01).</mark>		
	autistic disorders					
	(Ausilloux et al, 2001)			Risk factors (by adjusted		
				odds ratio [OR]): higher		
				degree of autism (<mark>OR=1.1),</mark>		
				daily living skills delay		

(<mark>OR=0.98</mark>), perinatal

condition (OR=5.5), low

chronological age

(<mark>OR=0.69</mark>).

Baghdadli et al,	Sample originated	Observation	Mann-Whitney test	Significant relationship	Sample may not be	61
2008	from France	study	and Chi-Square	between SIB persistence or	representative: Psychiatric	
			tests used to	emergence and adaptive	clinics- may be lower	
A follow up study	N=185 children with	A longitudinal	compare groups	delay <mark>(p<0.001),</mark> worse	functioning	
of Baghdadli et al,	ASD	follow up of a	(no	cognitive deficits <mark>(p<0.001)</mark> ,		
2003.	Mean age of the	subset of	SIB/disappearance	speech impairment	SIB rating obtained by	
	sample was 8 years.	data	of SIB, persistent	(<mark>p<0.001)</mark> autism severity	caregivers so maybe not	
Aims to describe	80% were males.	previously	SIB or emergence	(p<0.05) use of psychoactive	reliable.	
the changes in		reported in an	of SIB)	drugs <mark>(p<0.007).</mark>		
children's SIB and		existing		Risk factors for persistent or	SIB questionnaire had not	
determine whether		study.	Logistic regression	new SIB: greater autism	been validated	
childhood risk				severity <mark>(OR=1.1)</mark> , lower		
factors are related				speech level <mark>(OR=3.5).</mark>	SIB between time 1 and 2	
to a negative					not analysed.	
outcome of SIB						

Duerden et al	Sample originated	Cross	Hierarchical	Factors predicting SIB:	Significant predictors did	78
Duerden et al	Sample originated	Closs	nierarchicai	Factors predicting SID.	Significant predictors did	10
2012	from Canada.	sectional	regression	atypical sensory processing	not account for much	
		(cohort)	analysis	(explaining 12% of variance,	overall variance	
Aims to assess	N=250 children and	observation		p<0.0001), IQ (<mark>explaining 4%</mark>		
incidents of SIB in	adolescents with ASD.	study	Multivariate linear	<mark>of variance, p<.01),</mark> social	Participants had a high rate	
ASD in a large	Mean age of the		model	ability, (<mark>explaining 3% of</mark>	of autism severity: may not	
sample of children	sample was 7.4 years			variance, p<0.55) and	be representative	
and adolescents	old.			sameness/resistance to		
with ASD with	85% were males			change (<mark>explaining further</mark>		
previously defined				10% of variance, p<0.001).		
risk factors.				Severity of autism and rituals		
				and compulsions did not		
				predict self-injury.		
Richman et al,	Sample originated	Cross	Structural equation	SIB predicted by impulsivity	Use of database – more up	65
2013	from the USA	sectional	modelling	<mark>(p<0.01),</mark> stereotypy <mark>(p<0.01)</mark>	to date information may	
		observation		and low IQ <mark>(p<0.05).</mark>	have been available	
Aims to replicate	N=617 individuals with	study				
and extend	ASD.			Unanticipated positive	Error through	
previous research				correlation between IQ and	measurement and use of	

on risk factors	Average age of the	Analysis of		Autism Severity (<mark>p<0.0001</mark>)	indirect measures (use of	
associated with	sample was 11.2	information		but no relation between	secondary data).	
SIB using items	years old.	from a		Autism severity and SIB.		
from the Aberrant	83% were male.	database.				
Behaviour						
Checklist						
Lance et al, 2014	Sample originated	Observational	Logistic regression	No significant differences in	Selection bias	71
	from the USA	retrospective		SIB observed between		
Aims to examine		review		individuals with or without	Small samples	
the associations				social, language, and		
between types of	N=125adolescent			behavioural regression.	Limited generalisability	
SIBs and a history	inpatients with ASD					
of regression in a	The mean age of the				Non-standardised	
group of	sample was 10.9				definitions	
hospitalised	years old.					
patients with	75% were male					
neuro-behavioural						
disorders.						

Rattaz, Michelon	Sample originated	Cross	Kruskal-Wallis	Factors associated with SIB:	Subset of data – bias as	67
& Baghdadli, 2015	from France	sectional	Bonferroni post	increased aberrant	the observations were not	
		observation	hoc	behaviours, autism symptom	random	
Aims to identify the	N= 152 adolescents	study		severity <mark>(p<0.001</mark>), drug use		
risk factors for SIB	with ASD, recruited		Two polytomic	(<mark>p<0.006</mark>), lower adaptive		
among	from 46 autism-	A longitudinal	logistic	skills <mark>(p<0.001</mark>), person		
adolescents with	specialist clinics.	follow up of	regressions	related cognition (including		
ASD, to describe	Average age of the	data reported		theory of mind, attention,		
the prevalence of	sample was 15 years	previously.		imitation and symbolic play)		
SIB and the	old.			and object related cognition		
relationship	82% were male.			(spatial reasoning),		
between SIB and				(p<0.001) functional		
clinical or	A subset of			language (<mark>p<0.001</mark>), and		
environmental	participants from the			developmental trajectory		
factors.	French 'EpiTED'			(<mark>p<0.001</mark>).		
	cohort, which follows					
	the development of			Risk factors: autism		
	children with ASD over			symptom severity <mark>(p<0.04</mark>).		

	a 10 year period (see	·		Protective factors: IQ,		·
	Baghdadli et al, 2012).			communicative ability		
Dempsey et al,	Sample originated	Cross	Multivariate linear	Factors associated with SIB:	Significant predictors did	71
2016	from USA	sectional	regression	lower non-verbal IQ (<mark>p<0.01</mark>)	not account for much	
		observation		and social communication	overall variance	
Aims to update the	N=2341 children with	study.	Multivariate logistic	(<mark>p<0.05</mark>), increased anxiety		
model of Deurden	ASD		regression	<mark>(p<0.001</mark>), insistence on	Function of SIB not	
et al (2012) by re-	Mean age of the	Analysis of		sameness <mark>(p<0.001</mark>),	analysed	
running in a large	sample was 9 years.	information		atypical sensory seeking		
sample, including	85% were male.	from		<mark>(p<0.001</mark>)		
anxiety as a factor,		databases				
exploring the						
impact of IQ, and						
using a						
dichotomous and						
clinically relevant						
definition of SIB.						

						_
Richards et al,	Sample originated	Prospective	McNemar and	SIB is persistent and stable	Relatively small sample	83
2016	from the UK	cohort	Wilcoxen signed	over time.	prevented some data	
			ranks tests	SIB associated with non-	analysis	
Aims to compare	N=67 carers of	Follow up		verbal communication		
SIB over time and	individuals with ASD	time was 36.4	Chi-square,	(<mark>p=0.005</mark>), lower ability	Under-representation of	
establish	Median age of sample	months	relative risks	(<mark>p=0.008)</mark> , mood (<mark>p=0.032</mark>),	individuals with self-injury	
persistence, to	was 13.5 years old		statistics and	social interactions (<mark>p<0.001</mark>),	at T2 may limit external	
investigate	85% were males		Mann-Whitney U	higher levels of stereotyped	validity.	
variables			tests.	behaviour (<mark>p<0.013</mark>),		
associated with				compulsive behaviour	Did not collect data on	
SIB at Time 2, to			Kruskall Wallis	<mark>(p=0.005),</mark> over-activity	pharmaceutical and	
evaluate variables			tests	<mark>(p=0.004</mark>), sameness	behavioural treatments for	
at Time 1 to				(<mark>p=0.043</mark>), repetitive	SIB.	
assess presence of				behaviour (<mark>p<0.001</mark>)		
SIB at Time 2.						
				SIB risk markers: lower		
				social interaction (p=0.026)		
				and higher impulsivity		
				<mark>(p=0.021)</mark>		

Richards, Davies	Sample originated	Cross	Chi Square tests	Associations with SIB in child	Possible sampling bias	82
& Oliver,	from the UK	sectional		sample: lower ability,		
2017		observation	Relative Risk	increased self-restraint,	Use of screening tool	
	N=424 individuals	study	statistics	overactive/ impulsive	rather than in depth	
Aims to describe	attending National			behaviours, health problems	instrument	
the prevalence,	Autistic Society adult		Binary logistic	(skin and digestive		
topography and	services or schools.		regressions	problems).	Studied limited number of	
severity of SIB and	Mean age of the			Associations with SIB in	factors previously identified	
self-restraint within	sample was 24.10			adult sample: self-restraint	in literature	
and between	years.			repetitive behaviour, and		
children and adults	78% were male.			overactivity/impulsivity		
with ASD.						
				SIB predicted by:		
				overactivity/ impulsivity for		
				child and adult samples. SIB		
				in child sample also		
				predicted by increased		

repetitive/restricted

behaviour, health problems,

lower ability. (A<mark>II statistics</mark> reported as relative risk statistics with 99% confidence intervals, smallmedium effect sizes across

all significant factors)

Soke et al, 2017	Sample originated	Cross	Non-linear mixed	Across datasets, SIB	Retrospective data – not all 71
	from the USA	sectional	method model,	associated with: impaired	desired data available.
Aims to assess		observation	multiple imputation	adaptive behaviour	
factors associated	N=13,167 children with	study.		<mark>(p=0.006</mark>), developmental	Selection bias
with SIB in two	ASD			regression (p=0.003),	
large and distinct	The mean age of the	Analysis of		maladaptive behaviours	Different methods of data
national samples,	ADDM database was	information		(aggression, <mark>p=<0.001</mark> .	collection
and to determine if	8 years old.	from the		hyperactivity, <mark>p=0.05</mark>),	
any associations	82% were males.	ADDM and		problems with sleep	Possible type II errors
found are		AS-ATN		(p=0.004) and sensory	
moderated by	The mean age of the	databases		processing <mark>(p=0.004).</mark>	
gender, IQ, or	AS-ATN database was				
	5.7 years old.				

maternal	83% were males				·	
education.						
Gulsrud et al,	Sample originated	Cross	ANOVA	Small-medium effect sizes	Sample size	53
2018	from the USA	sectional		<mark>(between 0.18-0.64</mark>) found		
		observation	Likelihood Ratio	for differences between	No direct observation of	
Aims to utilise a	N=144 individuals with	study	Chi-square	individuals with/without SIB.	SIB	
sample of	ASD			Variables associated with		
individuals with				current functioning:	Unable to collect desired	
ASD across a wide	The mean age of the			Impairments in verbal	data e.g. SIB persistence,	
range of variables	sample was 9.3 years			(<mark>p=0.019</mark>) and non-verbal IQ	onset.	
to provide	old			(<mark>p=0.036),</mark> cognition		
characteristics of	81% were males			(<mark>p=0.012</mark>), awareness	Large number of statistical	
markers				(<mark>p=0.014</mark>), social	tests may have obscured	
associated with				communication (<mark>p=0.005</mark>)	findings.	
SIB				and communication		
				(<mark>p=0.037</mark>).		
				Early markers associated		
				with SIB: lower birth weight,		
				premature birth, delayed		

				crawling and bladder and		
				bowel control		
Handen et al 2018	Sample originated	Cross	ANOVA tests	SIB is associated with lower	Naturalistic study –	82
	from the USA	sectional	Chi-square and	non-verbal IQ (<mark>p<0.0001</mark>),	differences between	
Aims to explore		naturalistic	Fisher's exact	higher externalising	recruitment sites e.g.	
whether individuals	N=302 children and	observation	tests	behaviours (irritability,	length of stay, level of	
who present with	adolescents with ASD			<mark>p<0.0001</mark>), hyperactivity,	observation.	
SIB at home and in	in hospital inpatient		Tree structure	p<0.0001, and stereotypy		
hospital show more	units		classification	<mark>(p<0.0001</mark>).	Inpatient setting -onset of	
irritability and	Mean age of the				interventions and	
hyperactivity, and	sample was 12.9			ASD severity and age not	medications.	
to explore	years old			associated with SIB.		
predictors of SIB	79% were males					
for an inpatient						
population						
Soke et al, 2018	Sample originated	Cross	Log-binominal	Multivariable analysis of	Large sample but SEED	59
	from the USA	sectional	regression	Current/Ever SIB factors:	network only included 6	
Aims to enhance		observation		lower adaptive skills, sleep,	sites – not generalizable.	
our knowledge of		study		and behavioural difficulties,		

factors influencing	N=692 children with			gastrointestinal problems,	Parent reports – possible
SIB, and to	ASD	Using data		younger maternal age.	over reporting due to stress
evaluate the	The mean age of the	from the			or 'proto' SIB.
concordance	sample was 4.7 years	Study to		Additional factors for Current	
between parental	old.	Explore Early		SIB: genetic conditions,	
report of SIB and	82% were males	Development		higher IQ, caesarean	
clinical		(SEED)		delivery, sensory problems.	
observations of				All statistically significant to	
SIB.				minimum p<0.05 level.	
Soke et al, 2019	Sample originated	Cross	Non-linear mixed	SIB associated with:	Did not consider severity of 65
	from the USA	sectional	models.	developmental regression	SIB
Aims to explore		observation		(<mark>OR = 1.35</mark>) IQ (<mark>OR=1.34</mark>),	
associations		study		sleep (<mark>OR=1.61</mark>) and	Missing data
between SIB and	N=4343 children from			sensory problems	'Ever' SIB may include
perinatal, prenatal	the Autism and			(<mark>OR=1.35</mark>), aggression	'proto' SIB.
and neonatal	Developmental			(<mark>OR=2.15</mark>) and	
factors, and to	Disabilities Monitoring			argumentative behaviours	Information may have been
validate	Network surveillance.			(<mark>OR=1.24</mark>), temper tantrums	under/over reported.
associations				(OR=1.24), co-occurring	

between SIB and	Average age of the	developmental (OR=1.21)	Sample not representative
developmental,	sample was 8 years	and psychiatric diagnoses	
medical and	old.	(OR=1.77) (95% confidence	Possible type II errors
behavioural	83% were males	intervals).	
factors.		SIB associated with maternal	
		smoking and education, and	
		electronic fetal monitoring	
		during labour.	

Quality Appraisal

Studies were appraised based on the information reported in individual studies. All studies reported clear aims and objectives of the research and provided a sufficient rationale for the study, and designed a study appropriate to the aims.

The majority of studies sought ethics approval or consent from participants or parents, although this was not explicitly achieved by Lance et al (2014), Richman et al (2013), or Deurden et al (2012), however there was no evidence of ethical misconduct. Limitations and theoretical or practical implications were discussed in all studies except two which were Poustka and Lisch (1993) and Baghdadli et al (2003). This may not be reported in the latter case because the study was continued and findings published in a separate article (Baghdadli et al, 2008) which did report such details.

There were a number of issues with study methodology. Richards et al (2017), Richards, Davies & Oliver (2016) and Handen et al (2018) appeared to recruit a representative sample and collected data in a way that would minimise bias. However, for the majority of studies there was generally a lack of explanation or transparency about methodology, particularly regarding sampling, recruitment and data collection methods. A number of studies utilised secondary data and stated that sampling and data collection methods were reported in a primary data source. The means of approaching participants were generally not reported and purposive sampling was generally used rather than random sampling which has implications for selection bias and representativeness. A wide range of subjective and standardised measures were used, some of which were not accurate measures of variables.

Sample size was justified only in one study (Deurden e al, 2012). A number of samples were limited by small or modest sample sizes (Lance et al, 2014; Richards et al, 2016; Gulsrud et al, 2018; and Rattaz et al, 2015; Poustka & Lisch, 1993) and studies reported various comorbidities. With the exception of Poustka and Lisch (1993), all studies reported on statistical analysis methods, although four studies lacked clear justification for the data analysis method carried out (Soke et al, 2019; Lance et al, 2014; Soke et al, 2018; Gulsrud et al, 2018). Four studies did not report confidence intervals to support precision of results (Deurden et al, 2012; Poustka & Lisch, 1993; Richman et al, 2013; and Gulsrud et al, 2018), although Gulsrud et al (2018) did report high effect sizes. All studies except Poustka and Lisch (1993) reported statistical significance levels. Six studies reported methods sufficiently to allow for replication (Handen et al, 2018; Richard, Davies & Oliver, 2017; Richman et al, 2013; Deurden et al, 2012; Richards et al, 2016; Soke et al, 2017). See table 2 for information about the strength of associations, such as significance levels.

Three studies reported conflicts of interest which could affect the interpretation of results, either due to the support that authors' received or due to funding arrangements and participant recruitment (Handen et al, 2018; Soke et al, 2018; Dempsey et al, 2016). Five studies reported no conflicts of interest (Soke et al, 2019; Richards et al, 2016; Gulsrud et al, 2018; Deurden et al, 2012, Richards, Davies & Oliver, 2016). The remaining seven studies did not report this information.

Using the critical appraisal tool the lowest scoring study was appraised at 41% (Poustka & Lisch, 1993) and the highest scoring article was appraised at 83% (Richards et al, 2016). Studies by Baghdadli and colleagues (Baghdadli et al, 2003; Baghdadli et al, 2008; Rattaz et al, 2015) received similar critiques largely focused around their methodology and lack of transparency. Upon reading the full text it becomes apparent to the reader that each study uses a subset of data from primary publications (Ausilloux et al, 2001; Baghdadli et al, 2007). Whilst authors direct readers to primary sources for full explanations of their sampling and participants, readers are left without clarity as to information regarding population, sampling method, sample size calculation, justification for eligibility criteria, definitions of variables, and use of standardised measures. Similar concerns can be reported regarding the study by Poustka and Lisch (1993), which lacks clarity and transparency both around the methodology and the statistical analyses undertaken and reported on. For these reasons, results and conclusions from these studies might be viewed with particular caution.

Overview of Methodological Quality of Studies

Sample

Sample sizes ranged from 61 (Poustka & Lisch, 1993) to 13, 167 participants (Soke et al, 2017). The age of participants ranged between 2 years (Baghdadli et al, 2003; Soke et al, 2017; Soke et al, 2018) to 61 years (Richards, Davis & Oliver, 2017). Twelve studies focused exclusively on child and adolescent populations (Baghdadli et al, 2003; Soke et al, 2017; Soke et al, 2018; Duerden et al, 2012; Rattaz et al, 2013; Handen et al, 2018; Soke et al, 2019; Richards et al, 2016; Richman et al, 2013; Baghdadli et al, 2008; Lance et al, 2014; Dempsey et al, 2016), while three studies also included adult populations (Richards, Davis & Oliver, 2017; Gulsrud et al 2018; Poustka & Lisch, 1993).

Participants were recruited from different settings. This included clinic-based populations (Soke et al, 2017; Baghdadli et al, 2003; 2008, Soke et al, 2018; Rattaz et al, 2015) hospital based clinics (Gulsrud et al, 2018), community populations (Richards e al, 2016; Richards, Davies & Oliver, 2017; Soke et al, 2019; Dempsey et al, 2016) and inpatient hospital settings (Lance et al, 2014; Handen et al, 2018). In three studies, the setting from which individuals were recruited from was not stated (Richman et al, 2013; Poustka & Lisch, 1993; Duerden et al, 2012).

Of the studies reviewed, four involved the active recruitment of participants (Richards et al, 2016; Richards, Davis & Oliver, 2017; Poustka & Lisch, 1993; Gulsrud et al, 2018). Of these, two studies utilised a volunteer sampling method and recruitment via questionnaire packs (Richards et al, 2016; Richards, Davis & Oliver, 2017). One study involved a mixture of self-referral and referral by primary care physician or school for a neurodevelopmental evaluation. The method of advertising the neurodevelopmental evaluation was not specified (Gulsrud et al, 2018). The means of recruitment were not outlined by Poustka and Lisch (1993).

Eleven studies did not directly recruit a sample of participants, but instead used samples from other studies, subsets of existing study data, database repositories, or reviews of information pertaining to specific existing samples. Samples were extracted from: the Autism Inpatient Collection (Handen et al, 2018), the admission database for the Maryland Neurobehavioural Unit (Lance et al, 2014), the Autism and Developmental Disabilities Monitoring Network (Soke et al, 2019; 2017), the Autism Speaks- Autism Treatment Network (Soke et al, 2017), the Simon's Simplex Collection (Dempsey et

al, 2016), the National Database for Autism Research (Richman et al, 2013), Genetic studies at the Offord Centre or the Autism Research Unit in Canada (Duerden et al, 2012), the Study to Explore Early Development (Soke et al, 2018), and the EpiTED cohort in France (Rattaz, Michelon & Baghdadli, 2015). Baghdadli et al (2003; 2008) used data collected in another study by Aussilloux et al (2001). From the majority of these studies it was difficult to determine if a representative sample was obtained due to the nature of their recruitment.

Procedure

Studies collected data from a variety of sources. Soke et al (2019) collected information through reviewing summary files comprising health and education records as well as birth certificates. Data from health or school records were also accessed by Rattaz et al (2015). Lance et al (2014) collected data from inpatient admission medical records.

Most studies, with the exceptions of Soke et al (2019) and Poustka and Lisch (1993) involved the use of questionnaires. The sole use of questionnaires to collect data was implemented by Richards, Davis and Oliver (2017) and Richards et al (2016). While this method reduces interviewer bias, questionnaire designs are more prone to social desirability, potential sampling bias, and may not provide 'rich' data (Pattern, 2016).

The majority of studies involved standardised assessments (Deurden et al, 2012; Rattaz et al, 2015; Richman et al, 2013; Baghdadli et al, 2008; Soke et al, 2019; Dempsey et al, 2016; Handen et al, 2018; Soke et al, 2017; Gulsrud et al, 2018; Poustka & Lisch, 1993). The use of standardised assessments increases the validity and reliability of the studies. Four studies also conducted semi-structured interviews (Baghdadli et al, 2003; Baghdadli et al, 2008; Dempsey et al, 2016; Poustka & Lisch, 1993) or clinician observations (Rattaz et al, 2015; Baghdadli et al, 2003; Baghdadli et al, 2008).

Measures

SIB

Different measures were used to measure self-injury. Three studies (Handen et al, 2018; Richman et al, 2013; and Rattaz, 2015) used the *Aberrant Behaviour Checklist (ABC)*, which assesses problem behaviour in children and adults with developmental disabilities. This includes subscales of hyperactivity, irritability, impulsivity, stereotypy, and lethargy, where SIB can be derived from items on the subscales. Handen et al (2018) report the measure to be reliable in ASD populations. SIB was also measured by items on the *Challenging Behaviour Questionnaire* (Richards et al, 2016; Richards, Davies & Oliver, 2017) by the self-injurious subscale of the *Repetitive Behaviour Scale-Revised* (Handen et al, 2018; Deurden et al, 2012), and in three studies, item 83 of the *Autism Diagnostic Interview-Revised* was used as a measure of SIB (Dempsey et al, 2016; Soke et al, 2018; Duerden et al, 2012). SIB was also coded 'yes/no' from observational data and records (Soke et al, 2019; Soke et al, 2019; Lance et al, 2014), and rated by clinical judgement (Baghdadli et al, 2008; Baghdadli et al, 2003; Poustka & Lisch, 1993).

Autism

A range of measures were used to confirm the diagnosis of autism. Five studies used the *Autism Diagnostic Interview* – *Revised (ADI-R)* measure, which assesses the presence of the core domains of autism (Gulsrud et al, 2018; Poustka & Lisch, 1993; Soke et al, 2018; Rattaz et al, 2015; Deurden et al, 2012). The properties of the ADI-R were reported in one study (Gulsrud et al, 2018) as having good inter-rater reliability for the three core domains, between 0.62 and 0.89, and good internal consistency with domains ranging between 0.69 and 0.95. Use of such a measure suggests increased validity in the participants' ASD diagnosis. Baghdadli et al, (2003) also used the ADI-R, but as a measure of expressive speech.

Two studies referred to confirmation of diagnosis using the *Autism Diagnostic Observation Schedule (ADOS)* (Handen et al, 2018; Soke et al, 2017), which is an assessment tool that is used to examine the core components of autism. Neither study included information about the reliability or validity of the assessment. Eight studies did not use standardised measures to explicitly confirm a diagnosis of

autism (Richards et al, 2016; Richards, Davies & Oliver, 2017; Soke et al, 2019; Lance et al, 2014; Richman et al, 2013; Baghdadli et al, 2003; Baghdadli et al, 2008; Dempsey et al, 2016).

Associated Variables

However, most studies conducted an assessment of autism severity. Seven studies used the *Autism Diagnostic Observation Schedule (ADOS)* to assess the presence and severity of autism (Duerden et al, 2012; Richman et al, 2013; Soke et al, 2017; Soke et al, 2018; Gulsrud et al, 2018; Handen et al, 2018; Poustka & Lisch, 1993). Autism severity was also assessed using the *Childhood Autism Rating Scale (CARS)* which measures autism between 1 (normal) and 4 (maximum severity). Three studies used this measure whereby after a 20 minute video recording of the participant and an adult, the participant's autism severity was observed and rated by two independent clinicians (Baghdadli et al, 2003; Baghdadli et al, 2008; Rattaz et al, 2015).

The Vineland Adaptive Behaviour Scales (VABS) was used in eight studies as a measure of adaptive functioning (Soke et al, 2017; Gulsrud et al, 2018; Handen et al, 2018; Soke et al, 2018; Duerden et al, 2012; Rattaz et al, 2015; Baghdadli et al, 2003; Baghdadli et al, 2008). The VABS is used across age groups, typically completed in a semi-structured interview with parents, and is comprised of communication, daily living skills, and socialisation domains. Gulsrud et al (2018) reported internal consistency as 0.86 to 0.98, and test-retest reliability ranging from 0.83 to 0.96, suggesting this is a reliable measure.

Ten studies completed a measure of intelligence (IQ), which varied depending upon the age and ability of the participant (Handen et al, 2018; Richman et al, 2013; Duerden et al 2012, Gulsrud et al, 2018; Soke et al, 2017; Dempsey et al, 2016; Soke et al, 2018; Baghdadli et al, 2008; Rattaz et al, 2015; Poustka & Lisch, 1993). Measures used across these studies were the *Leiter International Performance Scale*, the *Mullen Scales of Early Learning (MSEL)*, the *Wechsler Preschool and Primary Scale of Intelligence 4th edition (WPPSI-IV)*, the *Wechsler Intelligence Scale for Children Third Edition (WISC-III)* the Wechsler Intelligence Scale for Children Fourth Edition (WISC-IV), the Wechsler Intelligence Scale for Children Fifth Edition (WISC-V), the Stanford-Binet Intelligence

Scales, Fifth Edition, Wechsler Abbreviated Scales of Intelligence- Second Edition (WASI-II), the Wechsler Adult Intelligence Scale Fourth Edition (WAIS-IV), the Differential Ability Scales-II, the Peabody Picture Vocabulary Test, and the Brunet-Lezine Test. Poustka and Lisch (1993) used German translated versions of the WISC and WAIS. The range of tools used to measure IQ makes it difficult to compare findings across studies.

Particular hypotheses were tested in individual studies, for example, exploration of the role of executive functioning, or affect. Relevant measures were utilised to assess such hypotheses, namely the *Behaviour Rating Inventory of Executive Function (BRIEF)* and the *Mood Interest and Pleasure Questionnaire- Short (MIPQ-S)* respectively. A full list of additional measures is listed in Appendix 2. Richards et al (2016) and Richards, Davies & Oliver (2017) generally report good reliability of their measures. However, limited information is provided about measures in a number of other studies, which calls into questions the robustness of findings based on these measures.

Synthesis of Main Findings

Autism Severity

Mixed findings were reported regarding the association between autism severity and SIB. Four studies found that severity of ASD or increased ASD phenomenology was associated with SIB (Richards et al, 2016) and that it is a risk factor for SIB (Baghdadli et al, 2003; Baghdadli et al, 2008; Rattaz et al, 2015). On the other hand, no associations were found between ASD severity and SIB in five studies (Handen et al, 2018; Gulsrud et al, 2018; Soke et al, 2017;Deurden et al, 2012;Richman et al, 2013). Is has been suggested that this discrepancy could be due to sampling differences, measurement variables, data analysis procedures and the characterisation of autism severity (Duerden et al, 2012; Handen et al, 2018).

Characteristics of ASD

A number of studies explored core characteristics of ASD as factors associated with SIB. Lower levels of social communication and social interactions were found to be related to, or predictive of, increased SIB (Gulsrud et al, 2018; Richards et al, 2016; Deurden et al, 2012). An association between SIB and insistence on sameness was found in two studies, (Richards et al, 2016; Deurden et al, 2012). An increased level of RRB was identified as a factor increasing SIB in two papers (Richards, Davies & Oliver, 2017; Richards et al, 2016). However, Deurden et al (2012) and Gulsrud et al (2018) contradicted this, reporting that RRB was not a significant predictor of SIB. Poustka and Lisch (1993) reported no associations between SIB and the core features of ASD.

IQ

Results generally suggested a negative association between IQ and increased levels of SIB. Studies reported a fairly consistent finding that lower IQ is associated with SIB (Handen et al, 2018; Gulsrud et al, 2018; Baghdadli et al, 2008; Soke et al, 2019; Rattaz et al, 2015; Duerden et al, 2012; Dempsey et al, 2016) and is a risk factor for SIB (Rattaz et al, 2015; Richman et al, 2013). Soke et al (2017) reported a negative association between IQ and SIB, however this did not reach statistical significance. Unlike other studies, Soke et al (2018) conversely reported a positive relationship between IQ and SIB. Authors suggested that decreased IQ might affect functional ability to engage in SIB. No association was found between SIB and IQ by Poustka and Lisch (1993).

Adaptive Behaviour

Findings were generally consistent for adaptive behaviour. Five studies found an association between low adaptive ability and increased SIB (Baghdadli et al, 2003; Soke et al, 2018; Baghdadli et al, 2008; Soke et al, 2017; Rattaz et al 2015). Two studies (Richards, Davies, & Oliver, 2017; Richards et al, 2016) did not explore adaptive behaviour per se, but explored ability levels; they reported an association between lower ability and increased SIB. Although findings were generally consistent, no association was found between adaptive behaviour delay and higher levels of SIB in Gulsrud et al. (2018). Authors suggested that this finding may be due to small sample size. Findings for the role of adaptive behaviour were not explicitly reported in one study exploring this variable (Handen et al, 2018).

Impulsivity and Over-activity

Consistent findings in four studies reported an association between SIB and increased impulsivity and aberrant behaviours such as over-activity and stereotypy (Richman et al, 2013; Richards et al 2016; Rattaz et al 2015; Richards, Davies & Oliver, 2017). Over-activity, which appears to be conceptualised in the same way as hyperactivity, and Impulsiveness was found to be predictive of SIB in both child and adult populations.

Language/ Lower Speech ability

Lower speech level, lower levels of functional language, and non-verbal communication is found to be a risk factor associated with increased levels of SIB, whereas higher levels of communicative ability is found to be a protective factor against SIB (Baghdadli et al, 2003; Baghdadli et al, 2008; Richards et al 2016; Rattaz et al, 2015). These findings were not supported by Deurden et al (2012), where functional communication was not significantly predictive of SIB.

Atypical Sensory Processing

A further factor associated with increased SIB was atypical sensory processing, where individuals with ASD can present with a number of abnormalities in processing sensory stimuli which could cause stress (Soke et al 2017; Dempsey et al, 2016; Soke et al, 2019; Deurden et al, 2012). In two studies (Deurden et al, 2012; Dempsey et al, 2016) atypical sensory processing was the single biggest predictor of SIB. However, in both studies this only accounted for a small proportion of the overall variance, suggesting other relevant factors may be unaccounted for.

Sleep

Although sleep was only investigated as a variable in three studies (Soke et al, 2017; Soke et al, 2018; Soke et al, 2019), all reported sleep to be a significant variable associated with SIB. These studies which found sleep to be a significant factor were all focused on child samples.

The factors described above are those with the strongest evidence. However, a number of other factors were found to be associated with SIB which includes, externalising behaviours such as aggression and behavioural difficulties (Handen et al, 2018; Soke et al, 2018; Soke et al, 2018), and mood (Richards et al, 2016). Mixed findings were found for the role of regression (reverting back to 'younger' behaviours) where one study reported no association (Lance et al, 2014) and others identified a role for developmental regression and SIB (Soke et al, 2017; Soke et al, 2019).

Discussion

The purpose of this review was to determine what psychosocial and behavioural factors are associated with self-injurious behaviour for individuals with autism spectrum diagnoses. 15 studies were systematically identified, reviewed and critically appraised. The quality of the studies was generally good overall, although the methodology was poor across a number of them, potentially influencing the validity of the results due to bias. A number of behavioural and psychosocial factors were associated with, or predictive of, increased levels of SIB in individuals with ASD. These factors include lower levels of IQ, adaptive ability, speech and language skills, sleep, atypical sensory processing, and higher levels of impulsivity and overactivity. Mixed findings were reported regarding the association between increased levels of SIB and autism severity and phenomenology.

While the finding of an association between factors does not elucidate the function of the behaviour, the results of the studies can offer insights into theoretical perspectives regarding SIB. The finding that impulsivity and over-activity has been consistently found to be associated with increased SIB lends support to a theory that SIB is underpinned by an impaired behavioural inhibition (Richards et al, 2016). This theory is in line with previous research in the Attention Deficit Hyperactivity Disorder (ADHD) literature, where individuals with ADHD display similar impulsive and over-active behaviours. Here, individuals experience deficits in response inhibition, which are considered a primary form of executive dysfunction contributing to such impulsive behaviours (Barkley, 1997; Scheres et al, 2004). Thus it could be intuitively argued that if SIB is associated with impulsivity in individuals with ASD, there could be a similar link to deficits in response inhibition (Richman et al, 2013).

Research indicating that SIB is associated with lower speech abilities may support a theory that SIB is used as a way of communicating. This converges with previous research indicating that deficits in communicative ability is associated with more behavioural problems in individuals with developmental difficulties (Sigafoos, 2000) and learning disabilities (Chamberlain, Chung & Jenner, 1993). It has also been demonstrated that interventions to increase functional communication reduce 'maladaptive behaviours' in individuals displaying behaviours such as self-injury and aggression (Carr & Durand, 1985). The association between communication and behaviour is embedded in wider research. For example, literature on self-harm suggests that a function of the behaviour may be to communicate distress (Nock, 2009).

Consideration that SIB is a means of communication opens wider channels of theoretical exploration. Literature highlights that lower communicative ability is related to adaptive functioning, severity of autism symptomology, and IQ (Klin et al, 2007; Kjellmer et al, 2012). A relationship has also been identified between lower communicative ability and increased abnormalities in sensory processing (Patten, 2013). This complex association between SIB and deficits in communication, IQ, sensory processing and adaptive ability may relate to information processing and how individuals with ASD make sense of the world around them.

Limitations of Included Studies

Although the studies were generally appraised as being of good quality, several limitations need to be considered before drawing conclusions from the research. First, definitions used to refer to SIB are inconsistent and research continues in its struggle to distinguish SIB and self-harm in a way which might be meaningful to readers and participant groups. This is of particular importance considering that research has relied predominantly on parent report, and that data has largely been collected through questionnaires, where researchers may not have chance to qualify terms, meaning that parents may report higher levels of SIB or be referring to self-harm or proto-SIB.

Second, the majority of studies used secondary data, most of which relied on databases or case files/ chart reviews. Acknowledged by most authors, there remain limitations associated with this around recruiting a representative sample, differing definitions of variables, and only analysing data which is readily available. Several studies were insufficiently transparent with their methodology to allow replication of results, calling into question the scientific value of the research. A number of studies were limited by selection bias, and potential under/over reporting of data.

Third, studies which explored variance reported that significant factors predicting SIB accounted for a small proportion of the overall variance. Findings from Deurden et al (2012) and Dempsey et al (2016) identified a number of significant variables predicting SIB. However, overall there is still up to 71% variance unaccounted for by these models, which has led to criticism regarding the extent to which we can draw conclusions about factors influencing SIB (Forgeot D'Arc et al, 2012). Thus, even significant and precise findings regarding factors associated with SIB may only give us limited understanding of aetiology.

Limitations of Current Review

The critique and analysis tool presented in this review has been undertaken by an individual researcher. The protocol was not registered with an open science platform. This introduces potential subjectivity and bias, where there is a lack of inter-rater reliability. This said, the use of PRISMA guidelines, specific eligibility criteria and verification from a research supervisor could sufficiently reduce subjectivity. Although the current appraisal tool lacks formal validity and reliability, items on the new appraisal tool were taken directly from valid appraisal tools which were systematically amalgamated and verified by a supervisor to reduce subjectivity.

Furthermore, researchers should be cautious in drawing concrete conclusions based solely on this review due to its strict inclusion criteria. Here, SIB has been studied as a single construct presenting in ASD populations. Although the reasons for this are understandable due to its prevalence, persistence, and association with negative outcomes, it limits and possibly simplifies the presentations observed across the literature for this population. Beyond the scope of this review, SIB is also classified as a challenging behaviour, and as a repetitive and restricted behaviour in wider areas of research. Readers are therefore directed to consult literature in these domains which may reveal further insights to factors associated with SIB.

Implications

This review has highlighted the complexity of presentations of SIB in ASD populations and has indicated a broad range of factors which could be significant to consider. Assessments in clinical practice need to be mindful of this and be sufficiently comprehensive to explore behavioural, social and psychological factors which could relate to the behaviour. Assessments should endeavour to include direct interview with parents to offer clarity of terms and explore SIB thoroughly, as questionnaires may offer limited information. Furthermore, parental involvement is necessary for more effective treatments for children with ASD (Burrell & Borrego, 2012). There is also a need for direct assessment of SIB, such as conducting a functional behavioural assessment, which is deemed as one of the most prominent means of assessing any challenging behaviour, including SIB (Neidert et al, 2013; see Emerson, 1995).

These findings have also supported the view that assessments should be offered as early as possible so proactive early interventions could be targeted for individuals identified as 'at risk' of SIB (Richards et al, 2016; Soke et al, 2017; Gulsrud et al, 2018). It has been suggested that intervention and prevention of SIB could begin before diagnosis, as similar factors associated with SIB have been identified in very young children pre-diagnosis, at risk of autism (Dimian et al, 2017).

Clinical practice should focus on the development of targeted treatment protocols and differential treatments (Dempsey et al, 2016; Richman et al, 2013). Results have emphasised the need for specific treatments aiming to develop interventions to focus on factors including communicative abilities, sensory processing, and the need for sameness (Rattaz et al, 2015; Baghdadli et al, 2008; Deurden et al, 2012). With this is mind, there are implications for formulation from Clinical Psychologists to make sense of such complex assessments and offer insights to guide treatment plans.

The various factors highlighted in influencing SIB and the identification of target areas for intervention give rise to the need for multi-disciplinary working in autism services. Difficulties with behaviour and affect suggest the need for mental health professionals such as psychologists and **Board Certified Behavioural Analysts** to implement psychological and behavioural approaches, while factors associated with SIB such as communication, adaptive ability, sensory processing difficulties, and sleep suggest that Speech and Language Therapists, **Psychiatrists**, and Occupational Therapists could have a significant role in providing intervention for individuals presenting with SIB.

Lastly, there are clinical implications around the wider impact that the development of such interventions may have. Namely, early intervention to reduce SIB could significantly reduce hospital admissions for this population and improve their quality of life through minimising the long term negative physical effects of self-injury. Reduction in SIB through awareness of risks and early intervention may also have a distinct positive impact on parents, carers, and teachers, who experience a person's self-injury as distressing. In other words, targeting a reduction in SIB holds implications not just for individuals with SIB, but for their carers, support systems, and for health services.

Future Research

Future research should attempt to address the limitations outlined in this review. The inconsistent definitions of SIB make comparisons across studies difficult, and definitions may be compounded with

descriptions of self-harm. Clarity is needed not only in terms, but in methodology. A need for more studies employing methodologies to investigate associations with SIB which collect primary data is called for.

It is noted that the majority of research included in this review predominantly collected data from parental reports. This may be natural given that parents are generally the primary caregiver and may hold the most insight to a child, indeed often acting as an advocate or 'voice' for a child with ASD during health appointments (Boshoff, Gibbs, Phillips, Wiles, & Porter, 2016). However, considering that autism presentations are persistent across different settings, perspectives from other carers, respite workers, teachers, and the individuals themselves is lacking. Wider insights may impact on perceptions of important factors associated with SIB.

The majority of research was also cross sectional in design. To explore risk markers for SIB and factors predicting SIB it is suggested that an emphasis be placed on longitudinal research to further explore the variables highlighted by current research. To achieve this successfully, researchers would be encouraged to recruit sufficiently sized samples.

Furthermore it is recommended that research explore a wider population base beyond the emphasis on children. This focus potentially limits our understanding of the course of SIB since different factors have shown to be associated with SIB in children and adults (Richards, Davies & Oliver, 2017). Autism is a lifelong disorder, and presentations of SIB are also observed in older adult populations (Kats et al, 2015). In light of this, research is encouraged to be more age inclusive in their samples to make findings more generalizable.

Conclusion

This review aimed to establish the current understanding of factors associated with SIB in ASD populations. Current research lacks robustness due to methodological issues and a reliance on secondary data. Findings demonstrated that a number of factors are associated with or predictive of

SIB, including levels of adaptive functioning, atypical sensory processing, communicative ability, IQ, sleep, and impulsivity and over-activity. Mixed findings were revealed as to the role of severity of autism phenomenology with SIB. There is evidence that SIB may be associated with different factors during different stages of life, although it would be recommended that future research explore this further through longitudinal designs. Multidisciplinary teams could be utilised to provide early assessment, develop and provide differential targeted treatments given the wide range of factors associated with SIB in this population, although further research is needed to inform such treatments.

Acknowledgements

The authors would like to thank Dr Helen Scott for her guidance on developing a critical appraisal tool.

Conflicts of Interest

There are no conflicts of interest to report.

References

Australian Institute of Health and Welfare (2016). Evidence for chronic disease risk factors. Retrieved from: <u>https://www.aihw.gov.au/reports/chronic-disease/evidence-for-chronic-disease-risk-factors/behavioural-and-biomedical-risk-factors</u>.

- American Psychiatric Association (2000). *Diagnostic and statistical manual of mental disorders* (4th ed., Text Revision). Washington, DC: Author
- American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.). Washington, DC: Author.
- Ando, H., & Yoshimura, I. (1979). Effects of age on communication skill levels and prevalence of maladaptive behaviors in autistic and mentally retarded children. *Journal of Autism and Developmental Disorders*, 9(1), 83-93.
- Antezana, L., Factor, R. S., Condy, E. E., Strege, M. V., Scarpa, A., & Richey, J. A. (2019). Gender differences in restricted and repetitive behaviors and interests in youth with autism. *Autism Research*, *12*(2), 274-283.
- Baghdadli, A., Pascal, C., Grisi, S., & Aussilloux, C. (2003). Risk factors for self-injurious behaviours among 222 young children with autistic disorders. *Journal of Intellectual Disability Research*, 47(8), 622-627.
- Baghdadli, A., Picot, M. C., Pry, R., Michelon, C., Burzstejn, C., Lazartigues, A., & Aussilloux, C.
 (2008). What factors are related to a negative outcome of self-injurious behaviour during childhood in pervasive developmental disorders? *Journal of Applied Research in Intellectual Disabilities*, *21*(2), 142-149.

- Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. *Psychological bulletin*, *121*(1), 65.
- Berkson, G., & Tupa, M. (2000). Early development of stereotyped and self-injurious behaviors. *Journal of Early Intervention*, 23, 1–19.
- Berkson, G., Tupa, M., & Sherman, L. (2001). Early development of stereotyped and self-injurious behaviors: I. Incidence. *American Journal on Mental Retardation*, *106*(6), 539-547.
- Boshoff, K., Gibbs, D., Phillips, R., Wiles, L., & Porter, L. (2016). Parent's voices: 'why and how we advocate'. A meta-synthesis of parents' experiences of advocating for their child with autism spectrum disorder. *Child: care, health and development, 42* (6), 784-797.
- Burrell, L. & Borrego, J. (2012). Parent's involvement in ASD treatment: What is their role? *Cognitive and Behavioural Practice, 19 (*3), 423-432.
- Carr, E. G. (1977). The motivation of self-injurious behavior: a review of some hypotheses. *Psychological bulletin*, *84* (4), 800.
- Carr, E. G., & Durand, V. M. (1985). Reducing behavior problems through functional communication training. *Journal of applied behavior analysis*, *18* (2), 111-126.
- Chamberlain, L., Cheung Chung, M., & Jenner, L. (1993). Preliminary findings on communication and challenging behaviour in learning difficulty. *The British Journal of Development Disabilities*, 39 (77), 118-125.
- Christensen, T. J., Ringdahl, J. E., Bosch, J. J., Falcomata, T. S., Luke, J. R., & Andelman, M. S. (2009). Constipation associated with self-injurious and aggressive behavior exhibited by a child diagnosed with autism. *Education & Treatment of Children, 32* (1), 89-103.

- Cohen, S., Fulcher, B. D., Rajaratnam, S. M. W., Conduit, R., Sullivan, J. P., St Hilaire, M.,A., & Lockley, S. W. (2018). Sleep patterns predictive of daytime challenging behavior in individuals with low-functioning autism. *Autism Research: Official Journal of the International Society for Autism Research, 11* (2), 391-403.
- Cooper, S. A., Smiley, E., Allan, L. M., Jackson, A., Finlayson, J., Mantry, D., & Morrison, J. (2009).
 Adults with intellectual disabilities: prevalence, incidence and remission of self-injurious
 behaviour, and related factors. *Journal of Intellectual Disability Research*, 53 (3), 200-216.

Critical Appraisal Skills Programme. (2018). CASP Cohort Studies Checklist. Retrieved from: https://casp-uk.net/casp-tools-checklists/.

- Crowell, S. E., & Kaufman, E. A. (2016). Development of self-inflicted injury: Comorbidities and continuities with borderline and antisocial personality traits. *Development and psychopathology*, 28 (4pt1), 1071-1088.
- Dempsey, J., Dempsey, A. G., Guffey, D., Minard, C. G., & Goin-Kochel, R. (2016). Brief report:
 Further examination of self-injurious behaviors in children and adolescents with autism spectrum disorders. *Journal of Autism and Developmental Disorders*, *46* (5), 1872-1879.
- Devine, D. P. (2014). Self-injurious behaviour in autistic children: A neuro-developmental theory of social and environmental isolation. *Psychopharmacology*, *231* (6), 979-997.
- Dickersin, K. (1990). The existence of publication bias and risk factors for its occurrence. *Journal of the American Medical Association, 263* (10), 1385-1389.

- Dimian, A. F., Botteron, K. N., Dager, S. R., Elison, J. T., Estes, A. M., Pruett, J. R. J., & Wolff, J. J. (2017). Potential risk factors for the development of self-injurious behavior among infants at risk for autism spectrum disorder. *Journal of Autism and Developmental Disorders, 47* (5), 1403-1415.
- Downes, M. J., Brennan, M. L., Williams, H. C., & Dean, R. S. (2016). Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). *BMJ open*, *6*(12). Retrieved from:

https://bmjopen.bmj.com/content/6/12/e011458?int_source=trendmd&int_medium=cpc&int campaign=usage-042019

- Duerden, E., Oatley, H., Mak-Fan, K., McGrath, P., Taylor, M., Szatmari, P., & Roberts, S. (2012).
 Risk factors associated with self-injurious behaviors in children and adolescents with autism spectrum disorders. *Journal of Autism & Developmental Disorders, 42* (11), 2460-2470.
- Duerden, E. G., Card, D., Roberts, S. W., Mak-Fan, K., Chakravarty, M. M., Lerch, J. P., & Taylor, M.
 J. (2014). Self-injurious behaviours are associated with alterations in the somatosensory system in children with autism spectrum disorder. *Brain Structure & Function, 219* (4), 1251-1261.
- Durand, V. M., & Crimmins, D. B. (1988). Identifying the variables maintaining self-injurious behavior. *Journal of Autism and Developmental Disorders*, *18* (1), 99-117.
- Emerson, E. (1995). *Challenging Behaviour: Analysis and intervention in people with learning difficulties*. UK: Cambridge University Press.
- Emerson, E. (2001). *Challenging behaviour: Analysis and intervention in people with severe intellectual disabilities*. New York: Cambridge University Press.

- Erturk, B., Machalicek, W., & Drew, C. (2018). Self-injurious behavior in children with developmental disabilities: A systematic review of behavioral intervention literature. *Behavior modification*, *42* (4), 498-542.
- Fee, V. E., & Matson, J. L. (1992). Definition, classification, and taxonomy. In J. K. Luiselli, J. L.
 Matson, & N. N. Singh (Eds.), Self-injurious behavior: Analysis, assessment, and treatment (pp. 3 20). New York: Springer-Verlag.
- Forgeot d'Arc, B., Dawson, M., Soulières, I., & Mottron, L. (2012). Self-injury in autism is largely unexplained: Now what? *Journal of Autism and Developmental Disorders, 42* (11), 2513-2514.
- Furniss, F., & Biswas, A. B. (2012). Recent research on aetiology, development and phenomenology of self-injurious behaviour in people with intellectual disabilities: a systematic review and implications for treatment. *Journal of Intellectual Disability Research*, 56 (5), 453-475.
- Furniss, F., & Biswas, A. B. (2020). Neurobiology of Self-Injurious Behavior. In *Self-Injurious Behavior in Individuals with Neurodevelopmental Conditions* (51-110). Springer, Cham.
- Guess, D., & Carr, E. (1991). Emergence and maintenance of stereotypy and self-injury. *American Journal on Mental Retardation, 96* (3), 299–319.
- Gulsrud, A., Lin, C. E., Park, M. N., Hellemann, G., & McCracken, J. (2018). Self-injurious behaviours in children and adults with autism spectrum disorder (ASD). *Journal of Intellectual Disability Research, 62* (12), 1030-1042.
- Handen, B. L., Mazefsky, C. A., Gabriels, R. L., Pedersen, K. A., Wallace, M., Siegel, M.. The Autism and Developmental Disorders Inpatient Research Collaborative. (2018). Risk factors for selfinjurious behavior in an inpatient psychiatric sample of children with autism spectrum disorder: A naturalistic observation study. *Journal of Autism & Developmental Disorders, 48* (11), 3678-3688.

- Hannon, G., & Taylor, E. P. (2013). Suicidal behaviour in adolescents and young adults with ASD: Findings from a systematic review. *Clinical psychology review*, 33 (8), 1197-1204.
- Hastings, R. P., & Brown, T. (2000). Functional assessment and challenging behaviors: Some future directions. *Journal of the Association for Persons with Severe Handicaps*, 25 (4), 229-240.
- Horner, R. H., Carr, E. G., Strain, P. S., Todd, A. W., & Reed, H. K. (2002). Problem behavior interventions for young children with autism: A research synthesis. *Journal of autism and developmental disorders*, 32 (5), 423-446.
- Ianuzzi, D. A., Cheng, E. R., Broder-Fingert, S., & Bauman, M. L. (2015). Brief report: Emergency department utilization by individuals with autism. *Journal of Autism and Developmental Disorders*, 45 (4), 1096-1102.
- Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E., & Richman, G. S. (1994). Toward a functional analysis of self-injury. *Journal of applied behavior analysis*, 27 (2), 197-209.
- Kats, D., Payne, L., Parlier, M., & Piven, J. (2013). Prevalence of selected clinical problems in older adults with autism and intellectual disability. *Journal of neurodevelopmental disorders*, 5 (1), 27.
- Kjellmer, L., Hedvall, Å., Fernell, E., Gillberg, C., & Norrelgen, F. (2012). Language and communication skills in preschool children with autism spectrum disorders: Contribution of cognition, severity of autism symptoms, and adaptive functioning to the variability. *Research in developmental disabilities*, 33 (1), 172-180.
- Klin, A., Saulnier, C. A., Sparrow, S. S., Cicchetti, D. V., Volkmar, F. R., & Lord, C. (2007). Social and communication abilities and disabilities in higher functioning individuals with autism spectrum disorders: The Vineland and the ADOS. *Journal of autism and developmental disorders*, 37 (4), 748-759.

- Kolevzon, A., Lim, T., Schmeidler, J., Martello, T., Cook, E. H. J., & Silverman, J. M. (2014). Selfinjury in autism spectrum disorder: An effect of serotonin transporter gene promoter variants. *Psychiatry Research, 220* (3), 987-990.
- Konstantareas, M., & Homatidis, S. (1989). Assessing child symptom severity and stress in parents of autistic children. *The Journal of Child Psychology and Psychiatry*, *30* (3), 459-470.
- Kurtz, P. F., Chin, M. D., Huete, J. M., Tarbox, R. S., O'Connor, J. T., Paclawskyj, T. R., & Rush, K. S. (2003). Functional analysis and treatment of self-injurious behavior in young children: A summary of 30 cases. *Journal of applied behavior analysis*, 36 (2), 205-219.
- Lance, E. I., York, J. M., Lee, L., & Zimmerman, A. W. (2014). Association between regression and self injury among children with autism. *Research in Developmental Disabilities,* 35 (2), 408-413.
- Lecavalier, L., Leone, S., & Wiltz, J. (2006). The impact of behaviour problems on caregiver stress in young people with autism spectrum disorders. *Journal of Intellectual Disability Research*, *50* (3), 172-183.
- Maddox, B. B., Trubanova, A., & White, S. W. (2017). Untended wounds: Non-suicidal self-injury in adults with autism spectrum disorder. *Autism*, *21*(4), 412-422.
- Mandell, D. S. (2008). Psychiatric hospitalization among children with autism spectrum disorders. *Journal of autism and developmental disorders*, **38** (6), 1059-1065.
- Matson, J. L., Neal, D., Fodstad, J. C., & Hess, J. A. (2010). The relation of social behaviours and challenging behaviours in infants and toddlers with autism spectrum disorders. *Developmental Neurorehabilitation, 13* (3), 164-169.

- McClintock, K., Hall, S., & Oliver, C. (2003). Risk markers associated with challenging behaviours in people with intellectual disabilities: a meta-analytic study. *Journal of Intellectual Disability Research*, 47 (6), 405-416.
- McTiernan, A., Leader, G., Healy, O., & Mannion, A. (2011). Analysis of risk factors and early predictors of challenging behavior for children with autism spectrum disorder. *Research in Autism Spectrum Disorders, 5* (3), 1215-1222.
- Minshawi, N. F., Hurwitz, S., Fodstad, J. C., Biebl, S., Morriss, D. H., & McDougle, C. J. (2014). The association between self-injurious behaviors and autism spectrum disorders. *Psychology Research and Behavior Management*, *7*, 125-136.
- Minshawi, N. F., Hurwitz, S., Morriss, D., & McDougle, C. J. (2015). Multidisciplinary assessment and treatment of self-injurious behavior in autism spectrum disorder and intellectual disability: integration of psychological and biological theory and approach. *Journal of autism and developmental disorders*, 45 (6), 1541-1568.
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Annals of internal medicine*, *151* (4), 264-269.
- Neidert PL, Rooker GW, Bayles MW, Miller JR (2013) *Functional analysis of problem behavior.* In handbook of crisis intervention and developmental disabilities. Springer: New York, 147-167.
- Nock, M. K. (2009). Why do people hurt themselves? New insights into the nature and functions of self-injury. *Current directions in psychological science*, *18* (2), 78-83.
- Oliver, C., Licence, L., & Richards, C. (2017). Self-injurious behaviour in people with intellectual disability and autism spectrum disorder. *Current opinion in psychiatry*, *30* (2), 97-101.

Patten, E., Ausderau, K. K., Watson, L. R., & Baranek, G. T. (2013). Sensory response patterns in nonverbal children with ASD. *Autism research and treatment*, *2013*, 1-9.

Patten, M. L. (2016). Questionnaire research: A practical guide. New York: Routledge.

- Poustka, F., & Lisch, S. (1993). Autistic behaviour domains and their relation to self-injurious behaviour. *Acta Paedopsychiatrica*, *56*(2), 69-73.
- Rattaz, C., Michelon, C., & Baghdadli, A. (2015). Symptom severity as a risk factor for self-injurious behaviours in adolescents with autism spectrum disorders. *Journal of Intellectual Disability Research, 59* (8), 730-740.
- Rattaz, C., Michelon, C., Munir, K., & Baghdadli, A. (2018). Challenging behaviours at early adulthood in autism spectrum disorders: Topography, risk factors and evolution. *Journal of Intellectual Disability Research, 62* (7), 637-649.
- Repp, A. C., & Karsh, K. G. (1994). Hypothesis-based interventions for tantrum behaviors of persons with developmental disabilities in school settings. *Journal of Applied Behavior Analysis*, 27 (1), 21-31.
- Richards, C., Oliver, C., Nelson, L., & Moss, J. (2012). Self-injurious behaviour in individuals with autism spectrum disorder and intellectual disability. *Journal of Intellectual Disability Research*, 56 (5), 476-489.
- Richards, C., Moss, J., Nelson, L., & Oliver, C. (2016). Persistence of self-injurious behaviour in autism spectrum disorder over 3 years: A prospective cohort study of risk markers. *Journal of Neurodevelopmental Disorders, 8 (1),* 21 -33.

- Richards, C., Davies, L., & Oliver, C. (2017). Predictors of self-injurious behavior and self-restraint in autism spectrum disorder: Towards a hypothesis of impaired behavioral control. *Journal of Autism and Developmental Disorders, 47* (3), 701-713.
- Richman, D.M. (2008). Annotation: Early intervention and prevention of self injurious behaviour exhibited by young children with developmental disabilities. *Journal of Intellectual Disability Research, 52 (1),* 3-17.
- Richman, D. M., Barnard-Brak, L., Bosch, A., Thompson, S., Grubb, L., & Abby, L. (2013). Predictors of self-injurious behaviour exhibited by individuals with autism spectrum disorder. *Journal of Intellectual Disability Research*, 57 (5), 429-439.
- Roane, H. S., Ringdahl, J. E., Vollmer, T. R., Whitmarsh, E. L., & Marcus, B. A. (2007). A preliminary description of the occurrence of proto-injurious behavior in typically developing children. *Journal of Early and Intensive Behavior Intervention*, *4* (1), 334-347.
- Scheres, A., Oosterlaan, J., Geurts, H., Morein-Zamir, S., Meiran, N., Schut, H., & Sergeant, J. A. (2004). Executive functioning in boys with ADHD: primarily an inhibition deficit? *Archives of Clinical Neuropsychology*, *19* (4), 569-594.
- Schroeder, S. R., Schroeder, C. S., Smith, B., & Dalldorf, J. (1978). Prevalence of self-injurious behaviors in a large state facility for the retarded: A three-year follow-up study. *Journal of Autism and Childhood Schizophrenia*, 8 (3), 261-269.
- Shirley, M. D., Frelin, L., López, J. S., Jedlicka, A., Dziedzic, A., Frank-Crawford, M., & Pevsner, J.
 (2016). Copy number variants associated with 14 cases of self-injurious behavior. *PLoS ONE, 11*(3), e0149646.

- Siegel, M., Doyle, K., Chemelski, B., Payne, D., Ellsworth, B., Harmon, J., & Lubetsky, M. (2012).
 Specialized inpatient psychiatry units for children with autism and developmental disorders: a
 United States survey. *Journal of Autism and Developmental Disorders*, *42* (9), 1863-1869.
- Sigafoos, J. (2000). Communication development and aberrant behavior in children with developmental disabilities. *Education and Training in Mental Retardation and Developmental Disabilities*, 35 (2), 168-176.
- Singh-Manoux, A., MacLeod, J., & Davey Smith, G. (2003). Psychosocial factors and public health. *Journal of Epidemiology & Community Health*, 57, 553-556.
- Soke, G. N., Rosenberg, S. A., Hamman, R. F., Fingerlin, T., Rosenberg, C. R., Carpenter, L., & DiGuiseppi, C. (2017). Factors associated with self-injurious behaviors in children with autism spectrum disorder: Findings from two large national samples. *Journal of Autism & Developmental Disorders*, 47(2), 285-296.
- Soke, G. N., Rosenberg, S. A., Rosenberg, C. R., Vasa, R. A., Lee, L., & DiGuiseppi, C. (2018). Selfinjurious behaviors in children with autism spectrum disorder enrolled in the study to explore early development. *Autism: The International Journal of Research & Practice, 22* (5), 625-635.
- Soke, G. N., Rosenberg, S. A., Hamman, R. F., Fingerlin, T. E., Rosenberg, C. R., Carpenter, L., & DiGuiseppi, C. (2019). Prenatal, perinatal, and neonatal factors associated with self-injurious behaviors in children with autism spectrum disorder. *Research in Autism Spectrum Disorders,* 61, 1-9.
- South, M., Ozonoff, S., & McMahon, W. M. (2005). Repetitive behavior profiles in Asperger syndrome and high-functioning autism. *Journal of autism and developmental disorders*, *35* (2), 145-158.

- Steenfeldt-Kristensen, C., Jones, C. A., & Richards, C. (2020). The prevalence of self-injurious behaviour in autism: a meta-analytic study. *Journal of autism and developmental disorders*. https://doi.org/10.1007/s10803-020-04443-1
- Stratis, E. A., & Lecavalier, L. (2013). Restricted and repetitive behaviors and psychiatric symptoms in youth with autism spectrum disorders. *Research in Autism Spectrum Disorders*, 7 (6), 757-766.
- Summers, J., Shahrami, A., Cali, S., D'Mello, C., Kako, M., Palikucin-Reljin, A., Savage, M., Shaw, O.,
 & Lunsky, Y. (2017). Self-injury in autism spectrum disorder and intellectual disability: exploring the role of reactivity to pain and sensory input. *Brain sciences*, 7 (11), 140.
- Tate, B. G., & Baroff, G. S. (1966). Aversive control of self-injurious behavior in a psychotic boy. *Behaviour Research and Therapy*, *4*(4), 281-287
- Taylor L, Oliver C, & Murphy G. (2011). The chronicity of self-injurious behaviour: A long-term followup of a total population study. Journal of Applied Research in Intellectual Disabilities, 24, (2), 105–117.
- Tordjman, S., Anderson, G. M., Charrier, A., Oriol, C., Kermarrec, S., Canitano, R. &, Mottron, L. (2018). Relationships between self-injurious behaviors, pain reactivity, and ß-endorphin in children and adolescents with autism. *Journal of Clinical Psychiatry*, 79 (2)
- Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., & Vandenbroucke, J. P. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Annals of internal medicine*, 147 (8), 573-577.

Weiss, J. A. (2002). Self-injurious behaviours in autism: A literature review. *Journal on Developmental Disabilities*, 9, 129-143.

- Wolff, J. J., Hazlett, H. C., Lightbody, A. A., Reiss, A. L., & Piven, J. (2013). Repetitive and selfinjurious behaviors: Associations with caudate volume in autism and fragile X syndrome. *Journal* of Neurodevelopmental Disorders, 5 (1), 1-9.
- Yates, T. M. (2004). The developmental psychopathology of self-injurious behavior: Compensatory regulation in posttraumatic adaptation. *Clinical Psychology Review*, *24* (1), 35-74.

Appendix 1. Quality Assessment Tool

- 1. Were the aims/objectives of the study clear?
- 2. Was a sufficient background and rationale for the study provided?
- 3. Was the study design appropriate for the aims?
- 4. Was the cohort recruited in an acceptable way?
- 5. Was the sample size justified?
- 6. Were variables accurately measured to minimise bias?
- 7. Have the authors identified all important confounding factors?
- 8. Was the follow up of subjects long enough?
- 9. Was the follow up of subjects complete enough?
- 10. Were the methods (including statistical methods) sufficiently described to enable them to be repeated?
- 11. Was ethical approval or consent of participants attained?
- 12. What are the results and do you believe the results?
- 13. Were the results presented for all the analyses described in the methods?
- 14. Are the results precise? (What are the confidence intervals?)
- 15. Were the authors' discussions and conclusions justified by the results?
- 16. Were the limitations of the study discussed?
- 17. Are there implications of this study for practice, theory or future research?
- 18. Were there any funding sources or conflicts of interest which may affect the authors' interpretation of the results?

Name of measure	Authors who utilised measure	Description of measure
The Social	Richards et al	A carer report questionnaire, based on the
Communication	<mark>(2016)</mark>	Autism Diagnostic Interview, this 40 item
Questionnaire		measure screens for ASD
The Social	Gulsrud et al (2018)	A parent report used to assess the level of
Responsiveness Scale,		ASD related impairment
second edition		
The Repetitive	<mark>Deurden et al</mark>	A 44-item parent-completed questionnaire
Behaviour Scale-	<mark>(2012), Dempsey et</mark>	that measures repetitive behaviours in
Revised (RBS-R)	al (2016), Handen <mark>et al (2018).</mark>	children and adolescents with ASD.
The Activity	Richards et al	A carer report measure to assess
Questionnaire	<mark>(2016)</mark>	overactivity, impulsivity and impulsive
		speech across 18 items, not validated
The Self-Restraint	Richards, Davies &	A carer report questionnaire which describes
Checklist	Oliver (2017)	seven topographies of self-restraint,
		caregivers are asked to endorse whether the
		<mark>behaviour is present.</mark>
The Wessex Scale	<mark>Richards et al</mark>	An carer report of ability in children and
	<mark>(2016)</mark>	adults with intellectual disabilities, not
		validated
The Child Behaviour	<mark>Gulsrud et al</mark>	A parent-report questionnaire assessing
Checklist (CBCL)	<mark>(2018), Dempsey</mark>	social, emotional and behavioural
	<mark>et al (2016)</mark>	functioning. Dempsey et al (2016) used this
		questionnaire as a measure of anxiety.
The Adult Behaviour	Gulsrud et al (2018)	A parent report questionnaire assessing
Checklist		social, emotional and behavioural
		functioning.
The Behaviour Rating	<mark>Gulsrud et al (2018)</mark>	A parent-report questionnaire used to
Inventory of Executive		measure executive functioning in real life
Functioning (BRIEF)		situations. For children ages 2-5years, the
		BRIEF-Preschool Version was used.

Appendix 2. Table to show additional measures used across included studies

	$O_{\rm obs} = 1 (0047)$	
The Parental Concerns	Soke et al (2017)	A screening tool for identifying problem
Questionnaire		behaviour for young children at risk of
		developmental delays
Self-Injury Aggression	Richards, Davies &	Developed as a carer report screening
and Destruction	Oliver (2017)	measure to assess putative risk markers for
Screening		challenging behaviour -
Questionnaire (SAD-SQ)		Overactivity/Impulsivity,
		Repetitive/Restricted Behaviours and Ability.
Seibert and Hogan's	<mark>Baghdadli et al</mark>	A measure for clinician's use of person-
Scale	<mark>(2008)</mark>	related cognition consisting of subscales for
		social interaction, joint attention and
		behaviour adjustment.
The Early Social	Rattaz et al (2015)	Items were taken from this scale for
Communication Scale		clinicians to assess person-related cognitive
		functioning including theory of mind,
		symbolic play, imitation and joint attention
The Oral and Written	Duerden et al	A clinician's measure to assess expressive
Language Scales	<mark>(2012)</mark>	and receptive language skills.
(OWLS)		
The Mood Interest and	Richards et al	A carer report questionnaire comprising of
Pleasure Questionnaire-	(2016)	12 items to assess affect across mood and
Short		interest and pleasure.
The Child Sleep Habit	Soke et al (2018)	A standardised parent-report instrument for
Questionnaire		assessing sleep across 5 domains.
The Gastrointestional	Soke et al (2018)	No description provided. An assessment of
Symptom Inventory	. ,	gastrointestinal symptoms, not validated.
The Parental-	Rattaz et al (2015)	A parent-report questionnaire to measure
developmental-		parental quality of life.
disorders-Quality of Life		
(PAR-DD-QoL)		
(