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Abstract

Variational techniques to calculate estimates of bound-state energies and
wave functions for single states are applied to simple electronic systems in
magnetic fields. Explicit constraints to other state functions are not required.
Our numerical energies compare favourably with results of other calculations,
and the speed of our calculations is greatly enhanced by using a separable
basis set and analytical integration.
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1 Introduction

Many calculations of the effects of magnetic fields on atomic and molecular
systems have concentrated on small field strengths, and have usually been
performed in the framework of perturbation theory. Here, we treat large
fields as well as small, and so resort to variational calculations suitable for
discrete bound states. Details of our calculations are given in the following
sections, together with a simple example that illustrates both the theory and
the method of our calculations. Essentially, our choice of basis is tailored
for each state treated, and contains a set of linear and non-linear parameters
appropriate to each state studied. With these parameters fixed, we under-
take an N ×N matrix calculation of the lowest N states of the system. As is
well-known, the eigenvalues of this matrix provide upper bounds to each of
the states separately , and may be minimised with respect to all embedded
parameters for each state separately [1,2,3]. Slightly different choices have
been examined recently using a more complicated energy functional [4]. In
the present calculations, a single nonlinear parameter suffices. We treat the
atom H, and the diatomic ion H+

2 , in the latter case with the field parallel
to the internuclear axis. Our results are compared with some earlier treat-
ments [5,6] and some more recent work [7,8,9] which extend the traditional
treatment to very large fields.

2 Specification of a state variatiationally

For any normalised real wave function ψ and Hermitian H we have

E =
< ψ|Hψ >
< ψ|ψ >

, W =
< (ψ + dψ)|H(ψ + dψ >

< ψ + dψ|ψ + dψ >
(1)

then since ψ is normalied

W =
E + 2 < dψ|Hψ > + < dψ|Hdψ >

1 + 2 < dψ|ψ > + < dψ|dψ >
(2)

so that

W = E +
2 < dψ|(H − E)ψ > + < dψ|(H − E)dψ >

1 + 2 < dψ|ψ > + < dψ|dψ >
(3)
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which may be written

W = E+dE+d2E, dE =
2

N0

< dψ|(H−E)ψ >, d2E =
1

N0

< dψ|(H−E)dψ >

(4)
with

N0 = 1+ < dψ|dψ >> 0

where without loss of generality we may choose dψ orthogonal to ψ. Thus
the stationary points of the functional W are the eigenstates of H:

Hψn = Enψn n = 0, 1, 2.... En < En+1 (5)

where W − En is second-order and

W − En =
1

N0

< dψn|(H − En)dψn > (6)

If n = 0 , that is the ground state, since

∆(m) =< ψm|(H − E0)ψm > > 0 m 6= 0 (7)

then variations around ψ0 give positive changes to W and we have a minimum
principle However if we have a general ψn then

∆(m) = (Em − En) < 0, m < n (8)

and otherwise for m > n we have ∆(m) > 0. Thus if we choose dψn from
the space spanned by the orthogonal set

{ψm,m = 0...(n− 1)} (9)

then d2E < 0 and similarly choosing dψn from

{ψm,m = (n+ 1)...} (10)

leads to d2E > 0 (Note that this analysis is applied to a En of H from
a standard Schrödinger equation with a discrete spectrum bounded below
and for which all eigenstates are square integrable). Consequently the nth
eigenstate may be found from a variational principle that is not a minimum
principle but a ”saddle point’ principle which is simultaneously a maximum
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in a space spanned by n + 1 functions {ψm,m = 0...n} and a minimum in
the space spanned by {ψm,m = n...} .

However in using such a principle to estimate (En, ψn) it may be more
convenient to use different basis for the variations . If we choose any non-
singular operator so that

φm = Uψm (11)

then the incremental changes dψn may still be written in terms of U−1φm =
ψm. Thus the size of the subspace which generates d2E < 0 universally is
unchanged and similarly for the space where d2E > 0 .

Thus for any suitable chosen basis we can simultaneously maximise in the
lower space and minimise in the upper space giving rise to the possibility of
a variational calculation for an excited state without reference to the lower
states. Conventionally one need to ensure all trial functions are independent
of the lower states and this is usually done approximately by orthogonalising
the trial functions to pervious calculated estimates of the lower state wave
functions. Here we start with a set of functions in the domain of the Hamil-
tonian from which we assume the eigenfunctions form a complete set and
consequently the transformed φn form a complete set. The maximisations
and minimisations are carried out using a finite basis which theoretically may
be expressed in terms of such a complete set.

We consider such a basis {φm},m = 0..N which depends on a set of
parameters. Thus these parameters can be varied along with N, the finite
number of basis functions used, in order to refine the calculation. For any
such fixed set of functions we can form the matrix h and overlap s where

h[i, j] =< φi|Hφj >, s =< φi|φj > (12)

and we solve the eigenvalue equation

(h− λs)a = 0 (13)

This is equivalent to a variation of W subject to < ψ|ψ >= 1 where the
trial function is given by

ψ =
N∑
k=0

akφk (14)

Note that we do not assume that the basis is an orthogonal basis but with-
out loss of generality we assume that each basis element is normalised.The
eigenvalues and eigenvectors, (ek, wk), k = 0..N , found by this procedure
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are functions of the parameters in the basis elements and in particular en
is the maximum of the variation of W in the space spanned by the set
F = {wk, k = 0...n} and simultaneously the minimum in the space spanned
by the set G = {wk, k = n...N}. We note that in the space generated by
the set F, since it is of dimension n + 1, there exists at least one function v
say , which is orthogonal to the space generated by {ψm,m = 0...(n − 1)}
and is therefore in the space generated by {ψm,m ≥ n...}. Consequently
calculating W with ψ = v gives E(v) where

en ≥ E(v) ≥ En (15)

since en is the maximum value of W in the space generated by F. We now vary
the parameters in the basis elements and the number of basis elements N, so
that en is a minimum. Note that we attain en = En if wk = ψk, k = 0..n.
This calculation is equivalent to a constrained minimisation of W. In many
calculations such a minimisation to find the nth state is carried out subject
to the trial function being constrained to be orthogonal to n fixed functions.
(These being the estimates of eigenvectors of the lower states found from
previous calculations). In the calculations proposed here it is unnecessary to
use any previous estimates. Furthermore since this minimisation procedure
can be applied to any level of h, then it follows that for any choice of the
parameters en ≥ En . This result is well known see for example [1,2,3].

3 A simple example

Here we consider a set of 3 functions u1 = exp(−αr), u2 = r exp(−αr),
u3 = r2 exp(−αr) and seek to find the 2s state of atomic hydrogen by a
variational calculation. The three exact lowest s states are can be expressed in
terms of these functions for suitable choices of linear multiplying parameters
and the non-linear exponent; a different choice of the latter is necessary for
each of the three eigenstates. Thus the trial function used in the variational
calculations has the form

Ψ = Ψ(α, a1, a2, a3) =
3∑

k=1

akuk (16)

For any fixed value of α we can form the 3 × 3 matrices h and s whose
elements are

h[n,m] =< un|Hum >, s[n,m] =< un|um > (17)

5
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where the Hamiltonian is

H = −1

2
∇2 − 1

r
(18)

We choose λ = E1(α) to be the second eigenvalue of the equation

(h− λs)x = 0 (19)

We assume that the eigenvalues are ordered so that E0 < E1 < E2 and denote
the eigenfunctions by wn, n = 0..2 For this fixed value of α this is equivalent
to a maximisation in the space spanned by {w0, w1}. We may simultaneously
choose α to minimise E1 which may be regarded as a minimisation in the
space spanned by {w1, w2}. In the calculation here we minimise E1(α) by
choosing a sequence of values of α so that

αi = α0 + δ(i
√

2− Int[(i
√

2]), i = 1...M (20)

where Int denotes the integer part. The range of the values of αi is controlled
by choices of α0 and δ and we simply choose the minimum of E1. ( The
values of α form an equi-distributed sequence in the interval α0− δ...α0 + δ .)
Taking α0 = 0, δ = 1,M = 10 leads to the estimates E1 = −0.12499997, α =
0.485281. Another 10 iterations with α0 = 0.485281, δ = 0.02 leads to E1 =
−0.1250000, α = 0.499839.The eigenvalues obtained for this value of α are:
−0.4893339,−0.1250000,−0.01074646 which illustrates that only the first
excited state is obtained accurately and that this has been obtained without
taking into account information from the lower state wave function. The
wave functions for the other states cannot be represented exactly in this basis
with this value of α ; for the lower state we require α = 1 .The unnormalised
expansion of the eigenvector for the first excited state in this basis is

φ1 = u1 − 0.500161u2 + 0.0000804u3 (21)

compared to the exact result when α = 0.5.

φ1 = w1 = u1 − 0.5u2 (22)

Similar calculations for the other two states are:

1. For the ground state calculation we obtain the eigenvalues:
−0.4999999,−0.0964758, 0.79024566 and the estimate of the ground
state wave function is

φ0 = u1 − 0.0.08164u2 − 0.002850u3 exact result : u1 (23)

6

Page 6 of 15AUTHOR SUBMITTED MANUSCRIPT - JPHYSB-105977.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2. For the second excited state we obtain:
−0.4339775,−0.1204813,−0.0555529 and the estimate of the second
excited state wave function is

φ2 = u1−0.66502u2+0.07371u3, exact result : u1−0.66667u2+0.07407u3
(24)

More precise values of the solution can easily be obtained using more itera-
tions but the values at this stage merely illustrate the procedure.

4 The construction of the basis for the mag-

netic field problems

The one-electron Hamiltonian for H+
2 is the presence of a magnetic field

directed along the molecular axis is is given in atomic units by

H = −1

2
∇2 − 1

ra
− 1

rb
+

1

R
+ ALz +B(x2 + y2) (25)

where R is the distance between the atoms. Here we restrict the calculations
to zero angular momentum so that A = 0 and we have azimuthal symmetry.
The states considered have an additional symmetry that they are symmetric
or anti-symmetric with respect to a plane through mid point of the internu-
clear axis. We choose the origin for our calculation at this mid-point and use
spheroidal coordinates :

p =
ra + rb
R

, q =
ra − rb
R

(26)

We choose a natural basis for this two-centred problem in the form

φn = N̄nL(n1, 2α(p−1))exp(−α(p−1))P (m1, q) 0 ≤ n1 ≤ N1, 0 ≤ m1 ≤M1

(27)
where for integers n1,m1 L(n1, 2α(p − 1)) is a Laguerre polynomial in

the variable 2α(p − 1), P (m1, q) is a Legendre polynomial and N̄n is a nor-
malisation constant. For symmetric states we choose m1 even and for anti-
symmetric states m1 is odd. Thus the basis depends on the single non-linear
parameter, α, which can be varied .We note that the specification of H by
the operator in (25) is not a sufficient definition since we need to specify the
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domain of the operator. We are interested in bound states so that for all α
the basis used is part of a complete set for square integrable wave functions,
and is an appropriate set to choose.

The Hamiltonian operator for atomic hydrogen in the presence of a mag-
netic field

−1

2
∇2 − 1

ra
+B(x2 + y2) (28)

where again we consider states with zero orbital angular momentum and the
domain of the operator is the square integrable functions. Analogous to the
treatment of H+

2 we choose a basis from a complete set that will reduce to
the bound state zero field solutions as B tends to zero. For this system we
choose

φn = N̄nL(n1, 2αu)exp(−α(u))L(m1, 2αv)exp(−α(v)), 0 ≤ n1,m1 ≤ N1

(29)
where u, v,Φ are parabolic coordinates so that

x =
√

(uv)cos(Φ), y =
√

(uv)sin(φ), z =
1

2
(u− v) (30)

Since we are considering states of zero orbital angular momentum the basis
is independent of Φ. For both systems all the integrals can be evaluated
analytically in terms of α and the field strengths considered range from 108G
which is a typical field strength from white dwarf stars to 1012G which is level
typically attained in neutron stars. In our calculations we work in atomic
units and use a conversion factor 2.3505× 109G = 1a.u. which differs in the
last digit to that used in some of the references.

4.1 Bound state energies for the hydrogen molecular
ion in a magnetic field

In Tables 1,2 and 3 we give the results of calculations using the functions
in (27) which are obtained by choosing values α and the intermolecular sep-
aration R and each calculation provides a bound. Partial optimisation is
carried out by generating α using the technique described in (20) and for a
sequence of values of R. Different approximations can be obtained by choices
of N1 and M1 which are increased until we have consistency in the total
energies to a chosen number of significant figures.We have been guided by
this choice by the values in the literature that we have used for comparison.
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The wave functions can be classified as symmetric or antisymmetric with re-
spect to plane through the mid point of the intermolecular axis and normal
to this axis (the mid-point plane).Note that for symmetric wave functions
the odd values of m1 are omitted and for antisymmetric functions the even
values are omitted but we have used the same number of basis functions in
both variables. In Table 1 we present results for the symmetric ground state
and in Table 2 the results correspond to the first excited state of symmetric
functions. These calculations are completely independent and correspond to
zero angular momentum so the there is azimuthal symmetry. In Table 3 we
present analogous results for the lowest antisymmetric state.

Since our results are bounds we can see that they improve or agree with
the comparison results.The exact position of the equilibrium internuclear
distance is difficult to determine since the parameter space is flat near the
minimum, but there is consistent variation of R as the field strength increases.
The values of α, depend on R,B and also on the size of the matrix. For a
fixed matrix size these values vary consistently but become large for the larger
fields, especially for the excited state. However the comparisons show that
the total energies are well represented. The increase in α with B for fixed
matrix size, illustrates how the optimal basis changes from one that describes
an isolated molecule to one that is good for describing the field. All of the
calculations can be carried out in a few minutes but for larger matrices the
time taken is longer. The time is depends on the number of values of the
parameters used in the optimisation, but initially partial optimisation can
be carried out with a smaller basis in order to reduce the calculation time.
For a fixed field strength B, as the size of the matrix increases the values of
α and R do not vary significantly. In the case of the excited symmetric state
and B = 1×1012 where the largest matrix is required, we have used only one
set of values of the α and R from a smaller matrix calculation. The gain in
speed has arisen from the evaluation of the integrals which can all be done
analytically compared with extensive numerical techniques which are usually
required ([7],[8]). If a different basis was used, incorporating a mixture of
terms describing the field and describing the isolated molecule, then the size
of the matrix might be smaller but then numerical integration would almost
certainly be necessary. The eigenvalue calculations carried out here use the
MAPLE programs .

9
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Table 1: The lowest symmetric state minima

B R(a.u.) α E Comparison
0 2.0 1.5738 -0.60263 -0.60263[5]

1× 108 2.0 1.5738 -0.60234 -0.60234[5]
5× 108 1.98 1.5249 -0.59551 - 0.59548[5]
1× 109 1.92 1.6206 -0.57537 -0.57535[7]
1a.u. 1.75 1.8953 -0.47498 -0.47496[7]

5× 109 1.50 2.1434 -0.17478 -
1× 1010 1.25 2.2360 0.54489 0.54522[7]
1× 1011 0.58 2.6135 17.52081 17.5216[7]
1× 1012 0.283 3.4965 204.1499 204.1947[7]

where the comparison results are taken from [5] and [7].The field strength is
in Gauss and the energies in a.u..We use the same number,( N1 ) , of Laguerre
functions and Legendre functions.The minimum size used is N1 = 4 but for
the largest field strength N1 = 20 is required.

Table 2: The first excited symmetric state minima

B R(a.u) α E Comparison
0 8.8 3.1661 -0.17505 -0.17505[5]

1× 108 8.8 3.0619 -0.17272 -017270[5]
5× 108 8.2 2.5218 -0.13384 - 0.12939[5]
1× 109 7.6 5.0604 -0.060792 -0.06062[5]
1a.u. 6.6 5.3946 0.174487 0.17456[7]

5× 109 5.8 6.4229 0.685415 -
1× 1010 5.2 8.0545 1.699210 1.69969[7]
1× 1011 3.9 17.7582 20.70149 20.7045[7]
1× 1012 3.55 80.6912 212.1062 212.11385 [7]

where the comparison results are taken from [5] and [7].The field strength is
in Gauss and the energies in a.u..We use the same number,( N1 ) , of Laguerre
functions and Legendre functions.The minimum size used is N1 = 4 but for
the largest field strength N1 = 49 is required.

10
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Table 3: The lowest antisymmetric state minima

B R(a.u) α E Comparison
0 12.55 6.24654 -0.500061 -0.500061[5]

1× 108 12.55 6.24654 -0.499610 -0.499610[5]
5× 108 12.00 7.68703 -0.489251 - 0.489050[5]
1× 109 11.5 7.6031 -0.460563 -0.460515[7]
1a.u. 9.58 10.43018 -0.3314365 -0.3314365[8]

5× 109 8.4 10.5749 0.020852 0.10097[5]
1× 1010 7.0 11.72655 0.8191167 0.81995[7]
1× 1011 5.0 28.47712 18.41176 18.41835[7]
1× 1012 3.2 50.051336 206.7727 206.8038 [7]

where the comparison results are taken from [5],[7] and [8].The field strength
is in Gauss and the energies in a.u..We use the same number,( N1 ) , of
Laguerre functions and Legendre functions.The minimum size used is N1 = 5
but for the largest field strength N1 = 35 is required.

To improve the efficiency of the calculation we have chosen to construct
smaller matrices in order to set up the Hamiltonian matrix. For H+

2 these
are:

LP [k] =
∫ ∞
1

L(n1, 2α(p− 1))pkL(n2, 2α(p− 1)exp(−2α(p− 1))dp (31)

of size N1 ×N1. Similarly the moments of q , LQ[k],can be calculated using
the functions Pm(q) leading to matrices of size M1×M1. To treat the Kinetic
energy terms we need two extra matrices , TP and TQ, of size N1 ×N1 and
M1×M1 respectively.The matrix TQ is simply a diagonal matrix whose diag-
onal elements are determined from the Legendre differential equation and the
elements of TP may be calculated in the basis in (27) where additionally the
generalised Legendre polynomial L(n, 1, x) is used for the derivative terms.
All the Legendre functions are available in MAPLE. The matrix elements
are functions of α and for any given numerical value of this parameter the
matrices can be used to evaluate the N1M1 × N1M1 matrix elements of the
total Hamiltonian. For example for a given α

< φi|(
1

ra
+

1

rb
)φj >= KiKjLP [1][n1, n2]LQ[0][m1,m2] (32)

11
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where Ki, Kj depend on the normalisation, i is associated with the pair
(n1,m1) and j with (n2,m2) . Thus the size of the calculation has been
reduced from O(N2

1M
2
2 ) to O(N̂2) where N̂ is the maximum of N1 and M1.

The minimisation procedure used is as is described in (20) where
√

2 may
be replaced by

√
Pr for any prime number Pr .The range of values required

in the calculations with large fields can be pre-determined by less accurate
calculations with a smaller basis.

4.2 Bound state energies for hydrogen in a magnetic
field

In parabolic coordinates (28) becomes

H = −1

2
∇2 − 2

u+ v
+Buv (33)

Since this is symmetric in the interchange of u and v, then, provided there
is no degeneracy, the eigenfunctions are either symmetric or antisymmetric
in the interchange of u and v. (For degenerate eigenfunctions, they can be
chosen symmetric or antisymmetric in this interchange). Thus in the limit
as B tends to 0 we obtain s and p states respectively; but in this case there
is degeneracy. This simplifies the calculation since rather than the full basis
described in (29),we may use

φn = N̄nL(n1, 2αu)exp(−α(u))L(m1, 2αv)exp(−α(v))±

N̄nL(n1, 2αu)exp(−α(u))L(m1, 2αv)exp(−α(v)), n1 ≥ m1 (34)

with + used for symmetric states and − for antisymmetric states. With these
choices the sizes of the matrices are reduced from N2

1 to (N1+1)(N1+2)/2 or
N1(N1+1)/2 respectively . In tables 4, 5, and 6 we present results for the two
lowest symmetric states and the lowest antisymmetric state.For a fixed basis
size the value of α decreases as the field strength increases and the results
are consistent with the comparisons available. In tables 4 and 5, where more
comparison results are available, we increase the size of the basis to match
the results in the literature. In table 6 the only comparisons used are with [5]
which are not bounds. However our results, which are bounds, are consistent
with the values in [5].We conclude that the variational scheme proposed here
is useful even for more difficult problems such as the application of a large
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magnetic field. One big advantage is that the calculation for each state can
be done without reference to the other states. The calculations presented
here are carried out using analytical integration and this is one of the main
reasons that they do not take excessive time.

5 Conclusion

We have adapted a well known variational method so as to obtain bounds for
each state independently of the other states and applied this to the problems
of hydrogen and the hydrogen molecular ion in weak and strong magnetic
fields. To do this we use a basis taken from complete sets in the space.
Each of these sets contains an arbitrary positive parameter, α. The basis
is chosen by truncating the expansion in a particular set and choosing α as
a variational parameter for one particular state. The variational estimate
of the energy is then found by optimising the appropriate eigenstate of the
secular equation in this basis. In each case we have chosen a separable
basis which reduces the number of matrix element calculations required and
all integrations may be evaluated analytically in terms of α , B and R so
that the same elements can be used for different problems. For weak fields
the secular equation calculation converges for small-sized matrices but for
the stronger fields larger matrices are required in order to obtain at least
5 digit accuracy in the comparisons.More qualitative results to less than 1
precent accuracy can be obtained with much smaller matrices but for all the
calculations carried out here the Maple routines were sufficient. In general
a more sophisticated choice of basis with more variational parameters may
result in smaller matrices for a given accuracy, but this will almost certainly
require numerical integration for which there will be additional problems of
accuracy and the time taken for each calculation.
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Table 4: The lowest symmetric state minima for H

B α E Comparison Comparison
1× 108 5.12409 -0.499548 -0.499548[5] -
0.1a.u. 2.4655 -0.4975265 -0.4975265[9] -0.49753[6]
1× 109 1.9685 -0.460427 - 0.4604113[9] -

1a.u 1.95252 -0.3311689 -0.331166[9] -0.33052[6]
1× 1010 1.76349. 0.819733 0.820181[9] -
10a.u. 1.637226 3.252203 3.25261[9] 3.2575[6]

1× 1011 1.49617 18.41261 18.4199[9] -
100a.u 1.4439 46.211 46.2178[9] 46.275[6]

1× 1012 1.389027 206.814439 206.831 [9] -

where the comparison results are taken from [5] [6] and [9].The field strength
is in Gauss( 1.a.u = 2.3505 × 109G) and the energies in a.u.The minimum
number of Laguerre functions used is 4 but for the largest field strength 15
Laguerre functions are required.
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Table 5: The lowest antisymmetric state minima for H

B α E Comparison
1× 108 4.1246 -0.122403 -0.12237[5]
0.1a.u. 2.96190 -0.1124100 -0.1124099[9]
1× 109 1.860171 -0.00439568 -0.004351[9]

1a.u 1.6833996 0.23999339 0.24004[9]
1× 1010 1.64 1.7881937 1.78895[9]
10a.u. 1.63 4.61735 4.61795[9]

1× 1011 1.63 20.83136 20.837[9]
100a.u 1.63 49.5367 49.537[9]

1× 1012 1.63 212.28 212.28 [9]

where the comparison results are taken from [5] and [9].The field strength
is in Gauss( 1a.u = 2.3505 × 109G) and the energies in a.u.The minimum
number of Laguerre functions used is 9 but for the largest field strength 71
Laguerre functions are required.

Table 6: The first excited symmetric state minima for H

B α E Comparison
1× 108 2.682 -0.119091 -0.1207[5]
0.1a.u. 1.999 -0.098089 -
1× 109 1.53 0.063190 0.06080[5]

1a.u 1.39 0.339642 -
1× 1010 1.40 1.938609 -
10a.u. 1.36 4.80949 -

1× 1011 1.33 21.3254 -
100a.u 1.31 162.4052 -

1× 1012 1.31 218.9834 -

where the comparison results are taken from [5] .The field strength is in Gauss
( 1.a.u = 2.3505 × 109G) and the energies in a.u.The number of Laguerre
functions used in all of the calculations is 15 .
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