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Abstract

The aim of this thesis is to investigate the application of physics-based image
formation models to change detection in the context of indoor workplace video
surveillance.

First, video surveillance applications are reviewed. Based on this review, a new
classification of video surveillance applications is proposed and indoor workplace
surveillance is chosen as the target application. A new workplace surveillance model
is then introduced, which relates the needs of workplace surveillance applications,
their implications and the capabilities of video surveillance techniques. Furthermore,
a set of requirements for workplace surveillance applications are elicited and a video-
based workplace system structure is proposed.

Change detection is then reviewed, and the suitability of using physics-based
image formation models to enhance change detection algorithms is investigated.
Two physics-based change detection techniques are developed. The foundations of
these techniques are advances of colour constancy techniques which extract physical
features from the camera output; this approach is unlike other change detection
algorithms which use the camera output directly without considering its physical
meaning.

The performance of the proposed techniques is measured and compared against
the Horprasert algorithm, using objective and computational complexity
evaluation methods, where the quality of the change detection is measured using
recall and precision measures. The Horprasert algorithm was shown, in an
independent study by other researchers, to have the best trade-off between
segmentation quality and computational complexity among other state-of-the-art
algorithms such as Cavallaro, McKenna and Shen under experimental conditions
which covered different lightings and background structures.

The first proposed algorithm is based on an approximated physical model,
known as shading model. In this algorithm the illumination variation is modelled
using ratios of RGB values of foreground and background pixels, coupled to the
Mahalanobis distance to segment foreground objects. Compared to the Horprasert
algorithm, the results show that the proposed method increases the recall by
8.85% on average, while the average decrease of the precision is 1.45%. The overall
performance is improved by an average increase of 2.7%.

The second proposed algorithm uses a consistent colour descriptor model which
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Abstract

has a physical underpinning, where the full spectrum of surface spectral reflectance
is estimated from the camera output; and a real-time correlation between foreground
and background surface spectral reflectance is used to segment foreground objects
from the static background. The results achieved show that the proposed method
increases the recall by 7.45%, the precision by 2.5% on average, while the overall
performance is improved by 7.85%, compared to the Horprasert algorithm. The
second algorithm achieves more accurate change detection with fewer false alarms,
compared to the Horprasert algorithm. This confirms the effectiveness of using the
surface spectral reflectance as a cue for change detection.

The second algorithm needs from 3 to 8 background frames, to build its
background model, in order to achieve its maximum performance. The first
algorithm requires from 9 to 16 background frames, whereas the Horprasert
algorithm requires between 9 to 63 frames. This means that the second algorithm
can adapt faster to scene variations. This rapid adaptation underpins the
robustness of this algorithm. The second algorithm processes one CIF frame in 40
ms on average, which is twice as fast as the Horprasert algorithm and the first
algorithm.

The tolerance of an algorithm to threshold variation demonstrates its
flexibility. The results show that the performance of the Horprasert algorithm for
one sequence declines between −1.75% and −5.67% on average, when using a
threshold optimised for a different sequence, and the performance of Algorithm 1
declines between −1.16% and −3.51% on average, however the performance of
Algorithm 2 declines only between −0.11% and −0.24% on average. This shows
that Algorithm 2 is more flexible and, once optimised for one environment, it can
maintain its performance when applied to different environments.

In the context of indoor workplace video surveillance, the results of the
comparison between the second algorithm and the other algorithms investigated in
this thesis show that it matches better the operational requirements of a
surveillance system, in terms of real-time performance and robustness to cope with
changes in illumination, scene structure and scene activity, with little or no human
intervention. This better match with operational requirements boosts the
applicability of the algorithm in real-world scenarios, in line with the 3D workplace
surveillance model introduced in this thesis, where technical capability and
applicability are important considerations.
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“The development of complex surveillance systems

is capturing interest of both research and industrial

world as there are strong requirements coming from

the society in the direction of increasing safety and

security in different applications.”

C. Regazzoni, V. Ramesh, and G. Foresti [1]

1
Context and Scope of Work

1.1 Context

As one of the most important applications of image processing, understanding and

computer vision, computer-based video surveillance has recently received significant

attention, especially during the past decade.

Video surveillance can be defined as observation or analysis of a particular site

for security and business purposes. A basic closed circuit television CCTV video

surveillance system consists of a collection of video cameras, mounted in fixed

positions, or on Pan-Tilt-Zoom (PTZ) devices. The video streams are transmitted

to a central location (control room), cyclically displayed on one or several video

monitors, and recorded. A human operator observes the video, to determine if

there is an activity that warrants a response.

1



1.1. Context

The need for analysing video information captured by CCTV cameras has

grown and is becoming a crucial issue. This growth is accelerated by the wide

range of commercial and law enforcement applications [1], and by advances in

signal processing and computer vision techniques, along with the rising uptake of

CCTV installations, and the increasing availability of cheap computational power

which makes real-time systems for video processing feasible [2, 3].

1.1.1 Video surveillance

The video surveillance market in UK continues to expand, boosted by large

government spending. The forecast growth of the market is expected to be boosted

by the technological advances of algorithms and systems, combined with further

take up of digital CCTV installations and networked solutions. One of the market

segments of this expansion is the area of algorithmic components, which system

integrators incorporate into their products [2].

With approximately 4.25 million CCTV cameras in the UK, according to the

British Security Industry Association (BSIA) [4], only small fractions of the captured

videos are ever watched. Some surveys, [5], figure out that camera to screen ratios

is between 1:4 and 1:78, and the ratio of operators to screens can be as high as 1:16.

For a relatively empty scene, an operator misses 45% of action after 10 minutes and

after 22 minutes misses 95% of action. In a busy scene, an operator can see even

less action and can virtually never detect a stationary or missing object. Practically,

each operator can only monitor 1-4 screens at a time [6], so as few as 3% of cameras

are likely to be actively monitored by an operator at any one time [5].

Given the high demand for a solution to the practical problem of insufficient

human resources to monitor the ever increasing number of CCTV cameras, a number

of video surveillance generations have been evolved. Video surveillance systems can

be divided into three main generations, operator-controlled video surveillance, basic

automated video surveillance, and smart video surveillance [3].

2



1.1. Context

a. Operator-controlled video surveillance systems

This type is the first generation of video surveillance systems, which are based on

analogue signal and image transmission and monitoring. In first-generation systems,

visual information is processed entirely by human operators. The operator assigned

to surveillance tasks has the role of:

• Performing the surveillance from the central control room by giving attention

to the cyclic scan of all CCTV cameras.

• Concentrating its attention to specific cameras only, in case of a predefined,

critical, emergency situation.

• Detecting critical situations and activating the prescribed procedures.

• Revealing and managing misbehaviour of anti-intrusion and detected

emergencies, by alerting other departments.

• Coordinating between different services.

• Remotely configuring and controlling CCTV cameras.

There is a limit on the number of video signals that an operator can efficiently

process, and the performance of a surveillance operator rapidly decreases with the

time, as the operator gets tired. An increase in the number of cameras would also

correspond to higher surveillance personnel costs. And the fact that the person,

who is exposed to surveillance, gets the feeling that his privacy is violated, due to

the fact that a human operator is watching him decreases the acceptance of video

surveillance by public.

In practice, the video streams are barely monitored or not at all [7]; CCTV

footage is often used merely as a record to be examined after an event is known to

have occurred.

b. Basic automated video surveillance systems

Second generation, basic automated video surveillance systems attempt to reduce

the load on the operator by employing video motion detectors to determine where

3



1.1. Context

there is motion in a given scene. Simple change detection algorithms are used and

programmed to generate alarms for a variety of predefined situations [8].

Second-generation systems use the available digital video signal transmission

and processing techniques, trying to solve some of the drawbacks of

first-generation systems. The common characteristics of this generation is the

exploitation of advanced video processing techniques in order to automatically

select the most probable part of the video sequence of interest for the surveillance

task, to be finally examined by the surveillance operator. The main advantages of

second generation systems are:

• Improving the work conditions of human operators, by requesting his/her

attention only whenever there is a change in the scene.

• Decreasing the need of more human operators.

• Decreasing the transmission traffic in video surveillance networks, by sending

only the relevant change whenever it occurs, instead of sending the full video

signal all the time.

Due to the fact that a large amount of motion is not relevant so a more smart

automated video surveillance system is required to actually extract the relevant

information from specific motion [9].

c. Smart video surveillance systems

Smart video surveillance systems (SVSS) are part of the third generation surveillance

systems. They achieve more than motion detection. The common functions of

smart video surveillance systems are to detect, classify, track, localise and interpret

activities of targets in a given scene [10].

Third generation surveillance systems take advantage of progress in low cost

high performance processors and video communications, as well as the advance in

video processing and computer vision techniques [11, 13, 15]. The global aim for

the majority of these systems is to:

• Extract targets and events in real-time.

4



1.1. Context

• Interpret interesting targets and activities.

• Present a report of such activities to the operator.

• Provide an appropriate automatic response when predefined activities occur.

• Apply efficient storage and rapid retrieval of video data and associated meta-

data for later analysis.

• Visualise surveillance video scenes to aid operators to perform monitoring.

The main advantages of smart video surveillance systems are:

• They provide effective transmission of video (possibly via low bandwidth

connections from remote sites), by sending an abstract (meta-data) or a

report instead of the full video stream.

• They enable better handling of critical situations.

• They enable improved communication and coordination between services.

• They can increase the acceptance of the video surveillance service by the

public.

Smart video surveillance systems, can be defined as distributed computer systems

connected to a camera network which use image processing and computer vision

techniques either for focusing the attention of a human operator or for automatic

alarm generation [12]. Smart video surveillance system architectures are discussed

in [13] and classified into three different architectures:

1. Basic Smart Surveillance Architecture (BSSA), where the cameras are wired

to a central location.

2. Active Smart Surveillance Architecture (ASSA), where the automatic video

analysis is used to automatically control cameras, to focus on detected

activities or events of interest.

3. Distributed Smart Surveillance Architecture (DSSA), where smart cameras

are used to minimize the cost of deployment. These cameras would typically

5
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Figure 1.1: Smart video surveillance system architecture

use wireless communication to coordinate with a central camera coordinator.

A smart camera would use automatic visual analysis to determine how to use

the limited storage and bandwidth to effectively transmit only abstract data

(meta-data) to the server.

Figure 1.1 shows a generic SVSS architecture, where the outputs of video cameras

are recorded digitally and simultaneously analysed by the smart surveillance

server, which produces real time alerts and a rich video index, controls an active

camera server, accepts queries from a human operator and sends real-time report

to a communication server.

Interpreting the activities of objects and their interactions in a real environment

is a difficult task. The smart surveillance server uses video processing, and computer

vision technologies in order to automatically segment moving objects (blobs), localise

then track the segmented blobs, classify detected objects into semantic categories

such as (human, human group, vehicle), identify detected objects if possible, track

their positions, and automatically classify their movements, depending on a user

query, and insert them into active scene visualisation, as shown in Figure 1.2.

Existing practical CCTV installations rely on human attention and labour.
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Figure 1.2: Internal structure of smart video surveillance server

Smart video surveillance systems are developed to act as intelligent video viewers

to increase the efficiency of surveillance systems by providing real-time alerts and

alarms when preset conditions (which represent activities) appear on a video feed.

These immediate notifications can greatly improve the response times when critical

events occur while reducing the manpower required for watching the monitors.

Smart video surveillance techniques were initially developed for military

applications. They then transferred to commercial applications, for the purpose of

improving either security or safety. The objective of most smart video surveillance

systems was originally security [14], because of the easiness and simplicity that

they provide especially when it comes to security surveillance. However in practice

video surveillance systems are being used for other purposes. Unintended

opportunities offered by video surveillance systems have been discovered; for

example, video surveillance systems are also used to some extent, for improving

workplace efficiency in terms of workflow, resource utilisation and handling critical

situations.

There are practical needs for smart video surveillance techniques, which can

integrate with the existing CCTV infrastructure in order to improve its efficiency

and effectiveness. A survey of hundreds of US security executives found that systems
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which could process the video streams, generated by the spiralling number of CCTV

cameras, were among the top items in demand 1.

Smart video surveillance systems are based on video processing and

understanding techniques for change detection, object classification, object

tracking, movement classification, and activity classification.

Change detection aims to segment moving objects in the scene. It typically

provides a focus of attention, for object classification or tracking. The segmentation

of moving objects in video streams is not an easy task; a comprehensive modelling

of all types of changes is required for reliable object segmentation.

Tracking refers to the association of segmented objects across the timeline.

Object tracking adds temporal consistency to sequence analysis. While tracking

objects which are moving, it is important to know the nature of the object of

interest; object classification can be considered as a standard pattern recognition

task. Objects can be classified into semantic categories. Movement classification

and activity classification are largely a matter of applying a set of pre-determined

spatio-temporal rules, often based on statistical learning techniques, which have

been found to correlate to what humans, would interpret as situations of interest,

corresponding to threats.

The research community has addressed, with various degrees of success, the

technical problems associated with these stages. For example, some smart video

surveillance techniques developed by researchers can analyze human motion or

model human interactions. However, these techniques have not reached the

maturity required for unconstrained real-world applications; their value to the

video surveillance industry in the near- and mid-term is minimal.

There is a very broad spectrum of systems proposed in the literature which

claim to be useful for smart video surveillance. Unfortunately very few of them

are up to the challenges of a real world operating environment, where robustness,

efficiency, and flexibility are essential. A particular deficiency of these systems is

the inadequate performance of the front-end processing sub-system, which comprises

elements such as object detection and segmentation.

1New Scientist, 12 July 2003, page 5.
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Hence, the literature is preoccupied with a lot more mundane problems at the

moment. Chief among these problems is the front-end processing, which comprises

elements such as change detection and object segmentation. The reason for the

preoccupation with reliable front-end processing is that failures at the segmentation

level can propagate downstream of the surveillance processing chain, and result in

incorrect outputs [16], which may lead to incorrect responses in critical situations,

for example.

1.1.2 Change detection

Change detection module represents the core of an automated video surveillance

system, while in a smart video surveillance system the performance of the change

detection module affects the efficiency of later video surveillance processes.

Although, a smart video surveillance system consists of a number of modules, only

few of these modules represent the core of such system. Change detection, object

classification and object tracking are the key modules. Change detection

algorithms combined with conditional statements (e.g. size, shape) and tracking

are used and programmed to generate alarms, for a variety of predefined situations.

Due to the high influence of change detection module effectiveness on the

efficiency and robustness of later smart video surveillance modules and the overall

system performance, the development of a robust change detection algorithm is a

priority.

Change detection algorithms use computer computational power to analyze

information associated with patterns of colour or movement contained in the video

and associate pixel colour or movement with groups of pixels, which correspond to

scene entities, such as objects. This process is called segmentation. The output of

this phase is a binary mask, a set of connected pixels which correspond to moving

object (foreground).

Proposed change detection techniques in the literature have limited capability

to meet the accuracy required by most real-world applications; this limitation is

partly due to sensitivity to variation in illumination and noise levels [17]. Robust

surveillance systems should maintain adequate performance in the face of difficult
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and fluctuating operating conditions, such as shadows and illumination variation.

For outdoor scenes, illumination variation could be due to moving clouds, weather

changes, or the time of day or night. Although indoor environments are less prone

to changes in ambient lighting, indoor lighting changes could be caused by

reflections and intermittent light-source occlusion due to a window or door

opening, for example.

One of the key steps of change detection module is the selection of a suitable

image representation. An important factor in change detection and object

segmentation is the choice of the image representation and the transformation that

is applied to the raw data in order to obtain the information that are relevant to

the specific application domain.

Most of smart video surveillance systems use well-known colour spaces to

represent the image, trying to model the variation in illumination and camera

noise using statistical modelling techniques. These algorithms still suffer from

illumination change and camera noise and the gap appears to be in the image

representation used which does not give any consideration to the elements which

govern the camera output. Using camera output directly without considering the

illumination type, camera sensor characteristics, and the physical meaning behind

this output, makes it more difficult to develop robust algorithms. This issue will

be discussed in more detail later in Chapter 3.

Change detection approaches may be classified depending on the image

representation used as physics-based or non-physics-based. Non-physics based

change detection methods use one of the known colour spaces as a cue to model

the scene. While the word physics refers to the extraction of intrinsic features

about the materials contained in the scene based on an understanding of the

underlying physics which govern the image formation. This process is achieved by

applying physics-based image formation models which attempt to estimate or

eliminate the illumination and/or the geometric parameters in order to extract

information about the surface reflectance.
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1.1.3 Physics-based image formation models

The colour appearance of a point on a surface depends both on the characteristics

of the surface, the scene illumination and on the geometric arrangement of surface,

illuminant, and imaging device. For many computer vision applications, the

possibility of deriving colour models which are less sensitive to changes in the

imaging parameters than raw camera outputs is highly desirable. When recording

objects in different pose, illumination conditions, or from a different viewpoint, the

segmentation accuracy degrades. To overcome this limitation, physics-based image

formation models that are able to represent the effects of changes in imaging

factors have been proposed by a number of researchers. Indexing on such models

has shown to deliver better recognition results [18].

Conventional video cameras, analogous to a retina, sense reflected light so that

colour values are the integration of the product of incident illumination power

spectral distribution, object’s surface spectral reflectance and camera sensors

sensitivities. Humans have the ability to separate the illumination power spectral

distribution from the surface spectral reflectance when judging object appearance,

such ability is called colour constancy [19].

Researchers in the field of colour constancy [19–22] have done great efforts to

extract new physics-based features from the image giving more care to the

elements which govern the camera output and new models are introduced. This

physical approach, used in colour constancy field, studies colour image formation

and estimate or eliminate scene illumination in order to extract object’s surface

spectral reflectance, taking into consideration camera sensors sensitivities.

The adopted physics-based image formation models to denote the image

representation in change detection algorithms as well as their links to different

colour spaces used in existing approaches are explained in Chapter 4.

Smart video surveillance literature shows a limited work done toward the use of

physics-based image representations; only simple approximated models, discussed in

Section 4.3.1, are investigated and implemented [17]. The main gap, in the literature

of smart video surveillance, is that the use of such physical models has not been fully

investigated.
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1.1.4 Applications of video surveillance systems

For years, research into video surveillance was confined to the military domain.

The military applications of video surveillance systems include patrolling national

borders, measuring the flow of refugees in troubled areas, monitoring peace

treaties, and providing secure perimeters around military bases and embassies [23].

Recently, as the technology matured, the attention of researchers turned to

practical applications, especially for public and personal security [24–27].

Companies suffer a great deal of damage from shoplifting and vandalism, and

managers of retail organisations are increasingly experiencing similar problems.

Much of today’s practical video surveillance systems are about protecting public,

private and business assets.

Smart video surveillance systems offer functionality which caters for crime

prevention and surveillance; for example, they are used to ensure the safety of

young, elderly and disabled people indoors, in care hostels, in nursing homes and

in public places [28].

Video surveillance systems are also used to monitor vehicle traffic flow, detect

accidents, monitor congestion, and give statistical reports. They are used in

inspection applications, like monitoring of staff, compiling consumer demographics

in shopping malls and amusement parks, monitoring livestock, performing

engineering surveys, logging routine maintenance tasks at nuclear facilities,

inspecting agriculture and counting endangered species.

In sports, smart video surveillance systems are used to improve the performance

of players by monitoring and analysing their movements [29]. Tracking the positions

of players, and ball, during a match is also often used for improving entertainment

experience.

The majority of the literature associates video surveillance with security

applications. While the objective of most of these systems was originally security,

however in practice they are being used for other purposes. Video surveillance

systems are being used daily, for improvement of efficiency of the workplace in

terms of work-flow, management of resources, to handle critical situations and

coordination of services and information [30]. Smart video surveillance systems
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have the ability to contribute in much more practical applications rather than

security applications. Where in this thesis the meaning of ‘practical’ is the

consideration of the realistic operating conditions of video surveillance systems,

actual requirements of their applications as well as the real capabilities of the

techniques used.

One of the main issues related to the application side of video surveillance systems

is the one stated by Hannah and Velastin in [5]

“Researchers have developed a number of sub-systems and partial

solutions which go some way towards solving elements of the problem

of surveillance. Much progress has been made, but in a piecemeal

fashion, and often without reference to the situations in which such

systems might actually be used.”

Many techniques and approaches which represent partial solutions to the video

surveillance problem have been proposed. Although, much progress has been made,

however the majority of such contributions do not refer to the application area as

well as the practical requirements for such application.

It is important to specify the application area in which a specific module will

be designed for, and to link the practical requirements of such application with the

technologies proposed in order to be able to deliver practical solutions.

1.1.5 Workplace surveillance

Social scientists are highlighting the unexpected increase of surveillance systems and

they are introducing the coming of the ‘surveillance society’ [31]. Employers argue

that workplace surveillance is necessary to increase productivity and efficiency [32].

The 1998 American Management Association report [33] gave the three reasons for

using surveillance in the workplace, 1. Performance evaluation, 2. Compliance with

laws in regulated industries and 3. Safety and security [34].

A number of surveys in social science [31, 35, 36] state that video surveillance is a

vital activity in the offices that are studied, and that both managers and employees

recognise the need of monitoring. The second, but very important, conclusion of
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these surveys is that the employee attitudes towards monitoring depend largely on

the use of the monitoring process output.

There is practical and industrial need for smart video monitoring systems that

can make use of the advances of video processing techniques and the existing video

surveillance infrastructure, to assist in managing resources in the workplace.

The appeal of using smart video monitoring for workplace applications is for

maximizing the utilisation efficiency and effectiveness of resources. Smart video

surveillance systems are primarily software based and can offer continued

improvement and additional capabilities over time with little or no additional

investment in infrastructure [13]. However, workplace surveillance has a number of

implications, there are conflicting rights and interests. There is therefore a need for

better understanding of the capabilities of smart video surveillance algorithms

versus the requirements and implications of workplace surveillance applications.

Chapter 2 attempts to relate the requirements of workplace surveillance and its

implications with practical smart video surveillance technologies, in order to

propose a framework for smart video-based workplace surveillance.

1.2 Scope and objectives of the investigation

This thesis tackles the problem of change detection as a front-end module of a

smart video surveillance system. This difficult problem can be formulated as one

of representing objects in the scene and segmenting them from the background.

The thesis investigates the use of physics-based image formation models in order to

extract meaningful physical features suitable to represent the scene. Ultimately, the

segmentation should result in a partition corresponding to semantic video objects,

which correspond to meaningful things in the real-world. The definition of such

semantic video objects depends on the application; it incorporates complex domain

specific knowledge. The problem of segmentation is an ill-posed problem; no unique

segmentation of a scene exists. In most situations, knowledge about the specific

application in which the segmentation is to be used is crucial. The solution needs

to deal with issues and challenges related to a specific context. General-purpose
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Figure 1.3: Scope of the work

segmentation of video objects is virtually impossible. Typical scenarios of workplace

surveillance are confined indoor areas where the camera is near from moving objects.

As Figure 1.3 shows, this work specifically investigates the use of physics-based

change detection algorithms to fulfil the practical requirements of indoor workplace

surveillance applications. The objectives of the investigation are as follows:-

• Study existing smart video surveillance applications.

• Identify promising practical applications, rather than security and safety,

which can share the video surveillance infrastructure and make use of the

advances in computer vision techniques.

• Study workplace surveillance needs and implications, as well as the link

between such issues with smart video surveillance technologies.

• Carry out a detailed study of existing methods and techniques for change

detection in smart video surveillance.
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• Carry out a detailed study of existing physics-based image formation models

and other colour spaces.

• Investigate the use of image formation models for the change detection

problem and explore the possibility to introduce new models used in the

colour constancy field to solve the change detection problem.

• Develop robust change detection algorithms to fulfil the proposed

requirements.

• Evaluate the effectiveness of the proposed change detection algorithms.

1.3 Main contributions

The main contributions presented in this work can be divided into primary and

secondary contributions, the primary contributions are as follows:

• A novel change detection algorithm using colour constancy techniques is

proposed. The algorithm computationally estimates a consistent

physics-based colour descriptor model of surface spectral reflectance from the

camera output and then correlates the full-spectrum reflectance of the

background and foreground pixels to segment the foreground from a static

background.

• A new change detection algorithm, based on a shading model, is proposed. The

algorithm uses the reflectance ratio to model the illumination variation and

applies the Mahalanobis distance to model the correlation between this ratio

triples in order to segment foreground and shadows from a static background.

The secondary contribution is:

• A new classification of practical applications for smart video surveillance is

presented. A new workplace surveillance model is introduced which relates

the requirements of workplace surveillance applications, and their

implications in relation to the capabilities of smart video surveillance
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technologies. A set of requirements for a workplace surveillance system using

smart video surveillance techniques is proposed.

1.4 Organisation of the thesis

This thesis has the following structure:

Chapter 1 gives an overview of the existing video surveillance systems, their

generations, techniques and applications. The objectives, as well as the contribution

to knowledge of this research work are stated. Finally the chapter concludes with a

brief overview of the chapters to follow.

Chapter 2 identifies the requirements of smart video surveillance practical

applications. Architectures and techniques of smart video surveillance systems are

introduced. A 3D workplace surveillance model is then proposed and discussed.

Requirements for a workplace surveillance system and its structure are then

proposed and discussed.

Chapter 3 reviews the state-of-the-art of change detection. The change

detection problem is first defined, different factors that can produce apparent

image change are then discussed. The main computational steps involved in

change detection are introduced. The various physics-based and non-physics-based

image representations are reviewed. Background modelling approaches that exploit

this information for change detection are then described. Methods for threshold

selection, noise removal and shadow detection are briefly explained. Subsequently,

principles and methods for evaluating and comparing the performance of change

detection algorithms are discussed. Finally, the survey findings are concluded.

Chapter 4 introduces fundamental physics-based image formation models and

their relation with different colour spaces.

Chapter 5 proposes two novel change detection methods. The first is based on

reflectance ratio. The second is based on surface spectral reflectance.

Chapter 6 presents a performance evaluation of the proposed change

detection algorithms and one of the state-of-the-art algorithms which derives the

same functionality. Three evaluation methods are adopted, illustrative visual
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comparison, objective, and computational complexity evaluation.

Chapter 7 presents conclusions and recommendations for future work. It

discusses the contributions of this research work, the practical results obtained,

and the future work required for improving the proposed change detection

algorithms.
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“A useful source of information and guidance is

often overlooked by academics creating automated

video surveillance systems, and that is the experience

of real-world closed circuit television (CCTV)

installations and operatives.”

M. Hannah Dee and A. Sergio Velastin [5]

2
Workplace Video Surveillance

2.1 Introduction

The previous chapter identified smart video surveillance as the latest generation of

video surveillance systems capable of interpreting the activities of objects and their

interactions in a real environment. In order to understand the capabilities of such

systems, this chapter starts by reviewing their applications’ requirements and the

techniques used to fulfil these requirements. In the literature, smart video

surveillance applications are mainly tied to security and safety applications. The

fact that video surveillance systems are been used in practice for other purposes as

well as the reviewed capabilities of such systems motivate us to classify smart

video surveillance systems in terms of their practical applications. This

classification leads to the introduction of workplace surveillance, as an example of
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efficiency improvement applications. Subsequently, workplace application as a

promising application is discussed along with its limitations. The perspective of

the potential users of workplace surveillance systems is discussed. The workplace

surveillance needs and implications are then studied and the practicality of using

video-based surveillance techniques to address workplace surveillance applications

is discussed. The chapter proceeds by introducing a model which relates the

requirements of workplace application, its implications with practical smart video

surveillance capabilities. The scope of workplace surveillance application is then

presented. Requirements for a workplace surveillance system and its structure are

then proposed and discussed.

2.2 Smart video surveillance systems

Demand for smart video surveillance is increasing; making selection of the

appropriate surveillance system a difficult task, depending on an application’s

requirements. There is a very broad spectrum of systems that claim to be useful

for smart video surveillance. Unfortunately very few of them are up to the

challenges of a real world operating environment where robustness, efficiency, and

flexibility are essential [30]. Understanding the requirements of smart surveillance

systems is a key to selecting the right solution(s) for specific application(s).

2.2.1 Requirements of smart video surveillance

The global aim for video surveillance systems is to extract targets and events in

a real-time, interpret targets and activities, which might be considered interesting,

present a report of such activities to the operator, provide an appropriate automatic

response when predefined activities occur, supply efficient storage and rapid retrieval

of video data and associated meta-data, for later analysis. Requirements for smart

video surveillance systems to achieve these aims could be divided into four main

categories, which are segmentation, indexing, content analysis and video retrieval.

• Segmentation : To enable efficient video search, the surveillance system has

to employ motion segmentation techniques to segment foreground objects from
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the scene background in each frame and then analyse the segmented video to

create a symbolic representation of the foreground objects and their movement.

• Indexing : After extracting objects of interest from a series of consecutive

video frames, video indexing is used to provide access to the video sequences

by annotating the meta-data, the area, shape, contour and semantic visual

template of each object in every video frame. The system then tracks each

object through successive video frames, estimating the velocity at each frame

and determining the trajectory of the object and its intersection with the

trajectories of other objects. An index mark is then placed to identify the

activities of interest such as appearance, disappearance, place, removal,

entrance, exit, motion and rest of these objects. This meta-data, symbolic

record of video content, is stored in the database to be used for later

indexing and retrieval.

• Retrieval : In order to analyse the recorded video, it is required to retrieve

the scenes of interest from the video sequence. The surveillance indexing

sub-system stores the metadata in a database for video retrieval through the

user interface. The interface allows the operator to retrieve a video sequence

of interest, play it forward or backward and stop on individual frames. The

commonly used retrieval methods for video data are text based query,

metadata based query and content based query. Surveillance videos are

associated with the date and time of creation as a text metadata; the text

information may be derived from automatic analysis of video. A text based

search can be used as a first filter for a video retrieval process. As an

example of metadata based query the operator may specify queries on a

video sequence based upon object-based and activity-based parameters. In

content based query, the query is based on abstract features of images, i.e.

colour and texture are extracted in the indexing stage and compared in the

search stage to find similar images. This search scheme also supports various

queries based on object motion trajectory information.
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• Content Analysis : The types of queries practical applications are interested

in typically require the recognition of certain activities or objects in the scene,

smart systems move toward understanding the content.

2.2.2 Techniques for smart video surveillance systems

Due to the structural and functional similarities between smart video surveillance

servers discussed in the literature, the general decomposition proposed in [37] is

used here. A smart video surveillance server consists of change detection, blob

localisation, blob tracking, object classification, object identification, object

tracking, movement classification, activity classification, and scene visualisation

modules.

In order to understand each module, interactions between different modules and

the used techniques applied to solve each task, we have captured the required input

and output of each module and we have identified various features used. Figure 2.1,

presents a comprehensive visualisation of the smart video surveillance process. This

information has been captured by studying the video surveillance system literature

and capturing their main features.

• Video Acquisition : A smart video surveillance system starts by acquiring a

video stream from imaging sensors. A number of colour components, such as

intensity, luminance, chromaticity, hue and saturation are extracted from the

video stream and a suitable image representation is to be selected, as shown

in Figure 2.1.

• Change Detection : This module aims to segment video stream into

background (static) and foreground (moving) components [17], to provide a

focus of attention for later stages, making these later processes more efficient

since only foreground pixels need be considered. The output of this module

is a binary mask, a set of connected pixels which correspond to foreground

(moving objects). Chapter 3 presents an overview of change detection

algorithms.

• Blob Localisation : This module has the role of determining the position
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of the detected target within the 2D image; the real-world 3D position could

be extracted by combining 2D positions from more than one camera. This

module uses mainly spatial features extracted from the detected moving blob.

As Figure 2.1 shows, the 2D position (centroid) of a detected blob, its contour,

corners, and area are examples of spatial features.

• Blob Tracking : Once the 2D positions of blobs have been detected; the

next step is to track these detected positions. Figure 2.1 shows that temporal

features, features that are linked with an entire track and cannot be obtained

from a single frame, are extracted from detected blobs and are tracked to create

a trajectory for each blob. Direction, speed or trajectory of a moving blob are

examples of temporal features. Foreground blobs detected from each new

frame are associated with previously tracked blobs. Spatio-temporal features

are combined to identify features that are unique on the blob and in order

to associate the right blob to its previous tracking history. Also, tracking

can incorporate validity checking to remove false positives from the detection

phase.

• Object Classification : While tracking moving blobs, it is important to

know the nature of the object of interest. Object classification can be

considered as a standard pattern recognition issue. This module classifies

tracked objects into semantic categories using a model database. Detected

objects are categorised as dynamic objects, semi-static objects and static

objects, as shown in Figure 2.1. Dynamic objects include human, parts of

human body, human-groups, vehicles, where semi-static objects include

man-made resources. Object classification is to assign a label to each

potential target pixel. Ideally, all pixels that belong to the same object will

share the same label.

• Object Tracking : Once objects have been classified; the next step is to track

these detected classes. Object tracking adds temporal consistency to sequence

analysis; otherwise, objects may appear and disappear in consecutive frames

due to detection failure. By tracking multiple objects, detection of occlusion
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Figure 2.1: A generic model of a smart video surveillance server
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is made easier, as occlusion is expected when two or more tracked object move

past each other, giving the ability to track the exchange of objects between

people or that a person is carrying a particular type of object.

• Movement Classification : This module attempts to understand the

trajectories of tracked objects and the interactions between them. In this

stage, the system may attempt to classify the consistent and predictable

object motion [38]. In Figure 2.1 movements are classified into two

categories, stand-alone or interactive, where stand-alone movements refer to

the action of an individual object, while interactive movements refer to the

interaction between two or more objects.

• Activity Classification: Statistical learning techniques are often utilised to

classify between normal and abnormal activities, based on a priori information,

and a user query, as shown in Figure 2.1. The overall aim is to produce a high-

level, compact, natural language description of the scene activities.

• Scene Visualisation : This module describes the cooperative process of

activity classification and the subsequent derivation of a representative visual

presentation of the core of the content. Video visualisation uses video retrieval

methods like text based query, content based query, and metadata based query.

2.3 Classification of smart video surveillance

applications

The majority of the literature associates the video surveillance with security

applications, the main reasons for this fact are:

• First generation surveillance systems (i.e. CCTV) were more suitable for

security applications, where operator controlled CCTV systems and basic

automated video surveillance systems are more suitable for security

application requirements rather than other applications.

• The market was more interested in security and safety applications.
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• Image processing techniques were not mature enough to fulfil other application

requirements.

• The diversity of requirements in different applications.

• The missing link between applications needs and techniques, limitations and

capabilities.

Different classification for video surveillance systems, have been proposed in the

literature. It has been classified under a technological perspective as belonging to

three successive generations [39], or according to the degree of awareness of observed

people being monitored [13]. However, none of the published video surveillance

systems reported classification of practical applications for smart video surveillance

systems. In this thesis, smart video surveillance applications have been divided

into four categories: security, safety, entertainment, and efficiency improvement

applications.

• Security Applications : To alert security officers to a burglary in progress

or to a suspicious individual loitering in the parking lot is an example of

security improvement applications. Security is critical in public areas, and

there is a growing need from the public for improved security in urban

environments [1]. The purpose is to detect anomalous behaviours from a

person or a group of people, in malls, lobbies, banks, shopping complexes,

subways, highways, tunnels, parking areas, public areas and large facilities.

The requirement of high speed reaction to dangerous situations and the need

to implement a reliable system, explains why exiting commercial applications

in the security domain are implemented using automated video surveillance

rather than smart video surveillance. This is due to the fact that smart video

surveillance techniques are still computationally expensive which limits their

real-time capabilities.

• Safety Applications : Improved safety is one of the growing needs from

the public, in-house, in transport and in public areas. Examples of safety

improvement applications are detection of accidents on highways, and
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provision of safe public areas. The requirements for safety applications are

less than those for security applications, which gives smart video surveillance

the ability to contribute more in the practical side in particular to help

disabled people, the elderly or children, living in a domestic environment.

• Entertainment Applications : Tracking the positions of players and ball,

during a match is used for improving entertainment experience, applied in

augmenting digital TV, or low-bandwidth match play animations for Web or

wireless display (i.e. mobile, PDA,..). Although, requirements of

entertainment applications are higher than those of security applications,

there are fewer life threatening situations and the market is mainly driven by

communication and interactive games interfaces companies trying to use

video surveillance to increase public use of their networks. The increasing use

of mobile devices has opened a huge market for entertainment applications.

• Efficiency Improvement Applications :

In addition to the previous applications, video surveillance technology has

been proposed to improve efficiency of an activity or process. It has been

used to measure traffic flow, monitor pedestrian congestion in public places,

and compile consumer demographics in shopping malls and amusement

parks, which are all considered as efficiency improvement applications.

Performance improvement applications and resource utilisation improvement

applications are the two main types of efficiency improvement applications.

For example, human motion analysis is an important tool for improving the

performance of players and patients in sports and medical applications. A

system for tracking multiple people with multiple cameras in sports

environment is used in efficiency improvement applications for the analysis of

fitness and tactics of teams and players [40]. The resource utilisation

improvement is concerned with managing different types of resources in the

best way possible to attain the objectives of the business. Workplace

surveillance is an example of efficiency improvement application.

Video-based workplace surveillance has been chosen to be the proposed

27



2.4. Video-based workplace surveillance

application for the rest of this thesis.

2.4 Video-based workplace surveillance

A definition of workplace surveillance is given by [35] as

“Any form of systematic management monitoring of individual staff

members’ job performance, with an eye to ensuring compliance with

management expectation.”

Workplace surveillance includes a wide range of issues: computer monitoring,

such as Internet, e-mail and computer terminal keystrokes monitoring; video and

audio surveillance; work site searches; access to medical records; information about

personal lifestyle and off-duty conduct; drug testing; background checks, such as

arrest and conviction records; insecure personnel records; polygraphs; and

performance monitoring [32].

In this thesis workplace surveillance means, the use of a video-based data

collection process to gather data about workers activities, job performance and

resource utilisation, while the main objective is to manage different types of

resources in the best possible way to attain the objectives of the business.

The application of smart video monitoring for workplace surveillance aims to

improve the utilisation efficiency and effectiveness of resources. Smart video

surveillance techniques can offer continued improvement and additional

capabilities over time with little or no additional investment in infrastructure [13].

However, workplace surveillance has a number of implications, there are conflicting

rights and interests. There is therefore a need for better understanding of the

capabilities of smart video surveillance algorithms versus the requirements and

implications of workplace surveillance applications.

It is found that monitoring has potential for control or feedback, and that the

difference is in the way the system is introduced. Alison Cripps concludes in [41]

that:

“While advances in surveillance technologies are generally welcomed by

employers, there is a growing sense of unease amongst employees,
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academics and interest groups as to the ethical boundaries that such

technologies may cross. There is a concern that new technologies will

leave employees open to abuse and discrimination and further, that

workplace surveillance represents a threat to worker privacy and

dignity.”

For a workplace surveillance system to be effective, both people and technology

must be taken into account during the development of the system [41]. A

workplace surveillance system does not address the cultural issues associated with

resource management directly. However, it facilitates the creation of an

environment for managing resources, through a comprehensive video surveillance

system that captures and stores accumulated workplace knowledge and make it

more widely available [31].

There is therefore a need to have a better understanding of smart video

surveillance algorithms capabilities versus requirements and implications of

workplace surveillance applications.

2.4.1 Implications of workplace surveillance

The growth of new surveillance technology and practices has increased the potential

for negative effects on the people subjected to it. Some of the negative feedback of

video surveillance in the workplace can best be interpreted as acts of resistance [36],

like: decreased work productivity, increased stress, lack of privacy and uncertainty.

It is argued that workplace surveillance leads to perception that work quantity is

more important than quality, which leads to increase performance in simple tasks

and decrease performance in complex tasks [36]. These systems may also increase

stress on employees in the workplace because of continuous monitoring of their

behaviours, even if that is not objectively the case.

Employees may be concerned that the surveillance system is not giving their

managers a complete picture about their performance, and that the employers might

apply inappropriate values when judging this part of the picture.

Since, workplace surveillance is generally an employer initiative, it is important

for the researcher to understand the factors that affect the monitoring activity: what
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works and what does not work; and what is practically feasible by the available

technology; and finally what is or can make an activity acceptable to employees.

Application specific requirements are a key to selecting the right solution(s) for

the right application(s). In order to put the requirements of smart video-based

workplace surveillance, it is important to select what to survey, what is feasible

using the current technology, and most importantly, one has to select how to value

what is found in surveillance data. It is also required to see what is accepted by

employees and what is not accepted. In [36] it is concluded that “the way the system

is used makes a big difference in employee attitudes towards computer monitoring”.

In the workplace, the acceptability of a system depends mainly on the manner in

which surveillance technologies are employed, the information collected, the purpose

for which it is used and the benefits which derive. If the employee is convinced that

surveillance mechanisms are used incorrectly, intrusively or without justification,

then this might affect the employee’s trust and commitment to the business [42].

2.4.2 Workplace surveillance model

The quadrant model of workplace surveillance proposed in [31] consists of two

dimensions as shown in Figure 2.2. The first dimension is the employers’ opinion of

surveillance effectiveness, depending upon whether a certain monitored activity

can improve productivity. The second dimension is the acceptability of surveillance

by employees.

As shown in Figure 2.2, quadrant 1 locates activities that work effectively,

needed by employers, and are acceptable by employees. Some examples are by

implementing features which improve employee’s safety and security, or features

which are used to establish outcomes (such as raises and promotions), or to be

automatically identified to access specific locations. To use an overt surveillance

system is effective as deterrent, and acceptable by employees. Quadrant 2 has

activities which are socially acceptable but do not improve the work efficiency.

Quadrant 3 contains activities that are not acceptable by employees and not

required by employers, quadrant 2 and 3 will not be considered because there is no

point in monitoring activities if productivity benefits are not likely to happen [31].
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Figure 2.2: A quadrant model of workplace surveillance as proposed in [31]

The main conflict appears to be in quadrant 4, with activities that are important

in increasing work efficiency, but considered not acceptable by employees. For

example, it will not always be possible to convince employees to be automatically

identified and tracked in order to evaluate their performance, or to accept being

under covert surveillance. There are therefore contradictions between the

employee’s rights and employer’s interests. Employers have legal interests in

increasing work efficiency, while employees have rights to privacy. Solutions must

be found to resolve these conflicts.

A broad examination of workplace surveillance must combine a number of

different aspects, including the maturity of the used techniques. A theoretical

analysis is required to differentiate between relevant employers requirements;

implications for employees, trust, and capabilities of algorithms. An examination

of the technology is required to clarify what can be done, how easily, and at what

cost it can be done, and how invasive it will be.

Smart video surveillance system in the workplace should be considered as a tool

of resource management, and the output of the system is just a factor which should

be combined with a number of other factors, for the managers to get the complete

picture.

This thesis proposes a 3D model workplace surveillance, which extends the 2D

quadrant model proposed in [31] by adding a third dimension which is the
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Figure 2.3: An octant model of workplace surveillance

applicability of surveillance using current smart video surveillance techniques.

As shown in Figure 2.3, octant 1 corresponds to activities that work, are socially

acceptable and practically applicable. Examples of activities that belong to octant 1

are, tracking employees (without identification) and measuring the time, space and

resource utilisation in the workplace, tracking and identifying valuable resources.

Octant 2 corresponds to activities which cause no offense, and contribute to

increased productivity, but are practically not feasible. For example, measuring the

amount of the work done is not feasible using the current technology for smart video

surveillance.

Octant 3 and 4 are the areas where activities are acceptable by the employees,

but they are ineffective in increasing productivity, for example, measuring how much

time the employee is standing, or walking. In octant 4 where the activities are

practically feasible, more efforts are needed to find some use of the information

extracted from the system.

Some activities are practically feasible and effective for managing the work-flow

but they are unacceptable to employees, like in octant 5. Hence, there should be a

clear understanding and mutual agreement regarding the reasons for and objectives

of monitoring these activities. Data collection, collation and utilisation should be
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transparent at all times, the process must be perceived to be ‘fair’ with a legitimate

purpose. Its design and development should include representation and input from

those meant to be monitored. The design of the system must allow individuals to

challenge any incorrect ‘facts’ and to have the appropriate corrections made.

Tracking identified employees is not feasible practically and not acceptable, while

it is effective, this example of activities belongs to octant 6.

Finally octants 7 and 8 contain activities that are not favoured by either

employers or employees, and there is no point in monitoring activities if

productivity benefits are not likely to happen.

2.4.3 Scope of workplace surveillance

The main uses of smart video surveillance systems in workplace applications are,

efficient utilisation of resources (e.g. human, time, natural, material,...),

coordination of services, handling critical situations, communication and training.

Those represent the ones discussed in Octant 1.

To achieve the above features and at the same time for the system to be

acceptable by employees, this thesis proposes that a video-based workplace

surveillance system must be an overt and smart system that can classify, identify

and track all valuable material resources.

Due to the specific nature of workplace application, where the monitored scene

contains valuable material resources owned by the employer, it is possible to tag all

valuable resources which make the object classification, identification and tracking

practical and feasible.

The scope of this work is on indoor workplaces, where the moving blob is classified

directly as a moving person, a snapshot of the face is to be taken, using a skin

detection algorithm, and stored securely, only authorised persons (e.g. manager, or

director) can access these snapshots to be identified for communication, to handle

a critical situation or for training purposes and after an agreement between the

employer and the employee is established. Human’ identification is done manually

by the authorised person; otherwise employees are not identified, and so their privacy

is not invaded.
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The output of the proposed workplace surveillance system is the location of all

valuable resources, in the workplace; tracking the movement of resources; detecting

human activities in the workplace, for example walking, talking; detecting

human-human interactions; and detecting the interaction between humans and

other resources.

2.4.4 Requirements for workplace surveillance systems

Efficiency improvement in the workplace refers to the directing, organizing and

controlling of different resource utilisation activities to ensure that:

• The material resources are utilised effectively.

• The schedules are followed to ensure accomplishment of activities on time.

• Individual employee work performance is monitored.

• Customer service is improved.

• Employees comply with legal obligations.

• Health and safety standards are enhanced.

• Staff training is assisted.

• Production processes are monitored.

A smart video surveillance system could be effectively applied to the following tasks

• Automatic detection, identification and tracking of pre-tagged resources.

• A snapshot of the face is to be taken, to be manually identified for

communication, to handle a critical situation or for training purposes and

after an agreement between the employer and the employee is established.

• Automatic people tracking and counting in each room to improve the

utilisation of the space and for managing critical situations (e.g. fire).

• Automatic people counting in a waiting room to improve the comfort of

customers or (guests).
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• Automatic detection of persons in unauthorised areas.

• Automatic detection of not moving people for more than a certain period of

time to improve safety.

• Automatic detection of human-object interaction to improve the utilisation of

different resources.

• Access control for authorised people in certain areas

• Detecting human activities in the workplace, for example walking, standing;

by attaching these behaviours to each person, identified by his/her tag, after

his/her agreement, to be used in for communication or for training purposes.

The operational requirements for smart video-based workplace surveillance

system depend to some extent on the specific context and functional requirements.

A workplace surveillance system should be robust, able to operate for extended

periods of time, possibly weeks or months, requiring little or no human

intervention. The system should be extensible and adaptable.

Adaptability would enable accommodating changes in the workplace

environment, to cope with changes in lighting, scene geometry and scene activity.

The system should operate in real-time and provide continuous and accurate

natural language annotations of scene activities.

Tagged objects should be detected, identified, tracked. Humans and group of

humans should be detected and their behaviours should be recognised depending

on the application being considered. The proposed workplace surveillance system

should have the ability to take real-time decisions. The annotated video generated

should be efficiently stored and allow a smart querying for later retrieval by the

appropriate authorities.

2.4.5 Proposed workplace surveillance structure

Figure 2.4 presents the proposed smart video-based workplace surveillance structure,

the system uses models of tags and keeps detecting the existence of any of these tags.
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Figure 2.4: Smart video-based workplace surveillance proposed structure within
the constraints limitations of current state of the technology

A complete identification of the resource is captured from its tag, dimension, colour,

to whom it belongs and where should it be.

Moving objects are assumed to be human, a change detection module segments

foreground in order to detect human existence. Skin detection module is required

to detect skin and to capture a snapshot of human faces. The positions of the

detected resource and moving objects are extracted from the 2D image using an

object localisation module and then resources are tracked using an object tracking

module. Where the requirement of workplace surveillance is to detect normal basic

movements, a simple movement classification module is required.

The main challenge of this proposed structure is the development of a robust

change detection module, which can deal effectively with different indoor workplace

environments, where the surveillance task is done within confined areas, and the

camera is near from moving objects. The main focus of this thesis is to develop the

front end module of a video-based workplace surveillance system which is the change

detection module. The change detection technique needs to address the practical

requirements of the workplace surveillance system.

The main operational requirements for a video-based workplace surveillance

system include real-time operation, flexibility in operation with minimum settings,

adaptability to scene variations as well as being robust and reliable. The failure of

such systems reflects weakness in their front end modules, mainly the change
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detection module.

2.5 Summary

In this chapter, the requirements of commercial applications using smart video

surveillance are identified as segmentation, indexing, content analysis and video

retrieval. Smart video surveillance techniques including change detection, blob

localisation, blob tracking, object classification, object identification, object

tracking, movement classification, activity classification, and scene visualisation

have been introduced. Different inputs and outputs of each smart video

surveillance system component have been discussed and various features have been

identified. An overall visualisation of the smart video surveillance process has been

presented.

A new classification of smart video surveillance for commercial applications is

then proposed. Workplace surveillance presents a very promising application, which

can make use of the existing techniques in smart video surveillance to improve the

efficiency of workplace. Importance and implication of workplace video surveillance

have been discussed.

A new 3D workplace surveillance model has been introduced and discussed. This

model links capabilities of smart video surveillance algorithms versus requirements

and implications of workplace surveillance applications in order to conclude feasible,

useful and acceptable requirements for smart video-based workplace surveillance.

The scope of such application has been discussed and a set of requirements has been

proposed. Finally, a video-based workplace surveillance structure has been proposed

to fulfil the proposed requirements.

A workplace surveillance system should operate in real-time and should be

robust, extensible and adaptable, able to accommodate changes in the workplace

environment, to cope with changes in lighting, scene geometry and scene activity.

The majority of the workplace scenarios cover indoor environments, where the

surveillance area is confined, video sensors are assumed to be near from moving

objects and therefore appearance and disappearance of objects affects the scene
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illumination. The change detection module is responsible for eliminating

illumination variation and camera noise from changes caused by meaningful

objects, which shows the robustness of the system. Other modules rely on the

effectiveness of this module. The thesis will focus on the development of a robust

change detection technique to fulfil the operational requirements of the indoor

workplace surveillance application.
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“If the technology takes off it could put an end to a

longstanding problem that has dogged CCTV almost

from the beginning. It is simple: there are too many

cameras and too few pairs of eyes to keep track of

them. With more than a million CCTV cameras

in the UK alone, they are becoming increasingly

difficult to manage.”

J. Hogan [43]

3
Change Detection-Review

3.1 Introduction

Robust change detection techniques with high detection probabilities and low-false

alarm rates is subject of extensive research [23, 44]. Developments of such techniques

have become important in the past two decades. This is due to the fact that it

represents a key computer vision component which contributes in a wide spectrum

of applications in diverse disciplines.

Change detection has been subject of many studies in a number of application

areas including video analytics [23], medical diagnosis [45], industrial inspection [46],

remote sensing [1], object-oriented video coding [47] and interactive gaming [48].

The task of change detection is to extract pixels which are changing due to

motion of objects in image sequences of a dynamic scene and labelling such pixels
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which belong to the moving objects (foreground) or regions from the rest of the

scene (background).

The output of these techniques is a foreground mask, a set of connected pixels

which correspond to moving objects (foreground). The mask provided by such

techniques can then be considered as a valuable low-level visual cue to perform

high-level object analysis tasks such as object classification, tracking, and activity

classification [17, 38, 49–51].

The scope of the change detection problem discussed in this thesis falls to moving

object segmentation in image sequences captured by a static camera or motion

compensated camera and taken at different times. Where, in this thesis, ‘change’

refer to changes due to the motion of objects (either a new object or a background

object which starts to move). Although change detection has been studied for several

decades, it still remains a difficult problem to automatically and accurately segment

moving objects under various types of illuminations from video sequences [17].

In relation to the main concern in this work, namely, the change detection for

indoor workplace surveillance purposes, discussed in the previous chapter, it must

be said that change detection is an essential and critical component of such video

surveillance system. Besides, it is one of the most difficult tasks in image processing,

it is very difficult to correct errors made at this abstraction level [52].

This chapter presents a review of current advances within the field of change

detection. The chapter begins by formally defining the change detection problem,

illustrating different factors that can produce apparent image change and

discussing the main computational steps involved in change detection. In order to

achieve an image representation which is useful for change detection, the various

physics-based and non-physics-based image representations are reviewed.

Background modelling approaches that exploit this information for change

detection are then described. Methods for threshold selection, noise removal and

shadow detection are briefly explained. Subsequently, principles and methods for

evaluating and comparing the performance of change detection algorithms are

discussed. Finally, the survey findings are concluded.
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3.2 Change detection problem

Appearances of scenes depend on different factors such as sensor properties,

illuminant spectrum, material properties and viewing geometry. Most often, these

parameters combine non-linearly to yield an image [53]. An image is the product

of the illumination, reflectance and shape in a scene. For foreground segmentation

task, only a subset of this information is required, and this piece of information

should be extracted in a manner that is invariant to variations in the remaining

scene properties.

Apart from the motion of objects relative to the background or disappearance of

background object, the foreground mask may result from a combination of different

physical problems, being a consequence of the image formation, e.g. sensor noise,

illumination variation, shadows, reflections, in addition to camouflage foreground,

similar background-foreground coloured objects, which result in two types of errors,

false alarms and missed detections.

1. False alarms: Pixels that actually belong to the background, but which are

classified as foreground, because of sensor noise, illumination variation,

shadows or reflections.

2. Missed detections: Pixels that belong to the foreground object, but which are

classified as background, because they are occluded by background objects or

their colour is very similar to the background at the same position.

In [54] change detection methods are classified into two groups. One group

uses pixel-based methods and the other uses region-based methods. Region-based

algorithms usually divide an image into blocks and calculate block-specific features;

change detection is achieved via block matching. Pixel-based approaches have a

lower computational cost than region-based methods because they compute the

values for individual pixels at each instant. However, they are very sensitive to

image noise, and cannot discriminate small changes in grey level, because of limited

quantization levels. Region-based approaches work well against image noise, but

they cannot show robust results when the illumination conditions change [55].
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This review covers pixel-based approaches due to the special problem of indoor

change detection and the importance of estimating or eliminating local illumination

variations, the output is then post-processed to enforce smooth regions in the change

mask.

In the literature, the problem of change detection is discussed, identifying three

different kinds of approaches: optical flow [38, 85]; temporal differencing [56]; and

background modelling, commonly known as background subtraction [51, 57–66] or

a hybrid approach which combines a number of approaches.

For surveillance applications, approaches based on background modelling are

most promising [50]. And as it is concluded in [52], most surveillance cameras are

static or have small temporal motion that is corrected by using motion

compensation, so a computationally complex optical flow approach is not

necessary. Temporal differencing is computationally attractive, but it cannot

handle homogeneously coloured objects.

Background modelling main idea is to automatically generate and maintain a

representation of the background, from a number of static background frames that

is then used to classify any new observation as background or foreground. A detailed

modelling of all type of changes is required to segment relevant changes for a given

application.

3.3 Architecture of change detection systems

The architecture of change detection approaches based on background modelling

typically consists of two cascaded modules, background modelling and

post-processing, a feedback module, background maintenance (see Figure 3.1).

The background modelling module is the core of the change detection algorithm,

which aims to model different local illumination variation and background periodic

dynamics such as waving trees or ocean waves. A post-processing stage is crucial to

filter out irrelevant changes, such as camera noise, holes in foreground objects and

shadows before making the change detection decision. A background maintenance

stage is required, to update the background model with global illumination variation,

42



3.3. Architecture of change detection systems

B a c k g r o u n d  M o d e l l i n g

V i d e o

F o r e g r o u n d
M a s k

P o s t - P r o c e s s i n g

I m a g e
R e p r e s e n t a t i o n

Sta t i s t i ca l
M a n i p u l a t i o n

T h r e s h o l d
S e l e c t i o n

B a c k g r o u n d
M a i n t e n a n c e

Figure 3.1: Change detection block diagram

a foreground object which stops and becomes part of the background or moving

background object.

This survey decomposes background modelling module into three major steps,

image representation, statistical manipulation and threshold selection, similar to the

decomposition proposed in [48]. The first step comprises the choice of the image

representation feature(s), where an ideal representation is the one able to convert

the camera output into information which describes the material and is invariant

to the illumination. The second step aims to statistically manipulate the chosen

feature(s) to discount for background periodic motion and illumination variation.

The third step aims to define the decision rule which will be implemented to segment

foreground objects from the background.

In this chapter, existing methods for change detection based on background

modelling are classified as either non-physics-based or physics-based depending on

the chosen type of image representation. Non-physics based methods use one of the

known colour spaces as a cue to model the scene. While the word physics refers to

the extraction of intrinsic features about the materials contained in the scene based

on an understanding of the underlying physics which govern the image formation.

This process is achieved by applying image formation models which attempt to
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estimate or eliminate the illumination and/or the geometric parameters in order to

extract information about the surface surface spectral reflectance.

The rest of the chapter is completely dedicated to the review of most important

algorithms for pixel-based background modelling change detection. It is nearly

impossible to inform here about all the literature in this area. A number of surveys

have been conducted by other researchers in this area [17, 38, 50, 51], which have

been of great help.

3.4 Image representation

An important factor in change detection and foreground-background segmentation

is the choice of the transformation that is applied to the raw data in order to obtain

the information that are relevant to the specific application domain.

The basic idea behind image representation is how to select the photometric

invariant features which are the best invariance to the background changes while

maintaining a high detection rate for the foreground objects. For example, in indoor

scenes, the classification must be invariant to a shadow, reflection and change of

illumination that might occur due to light from a nearby light source. Similarly, in

outdoor scenes, periodic background dynamics such as waving trees or ocean waves,

in-variance to such periodic motion is critical.

Several image representations have been proposed, which can be classified into

three types: spectral, spatial, and temporal features. Spectral features could be

associated with greyscale (intensity, brightnes, luminance) [11, 61, 67, 68], raw

colour [58, 69–71], normalised colour [71–75], colour information (Saturation, Hue,

chromaticity)[73, 76–78, 111, 112], intrinsic image [79] and reflectance ratio

[80, 81]. Some spatial features are also exploited such as spatial gradients

[66, 71, 74, 82, 83], texture [65, 84] and optical flow [85], and temporal features

could be associated with temporal gradients at the pixel [68, 86], interframe

changes.

A summary of different features used in state-of-the-art change detection

techniques, their advantages and disadvantages are presented in Table 3.1.
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Table 3.1: A summary of different features used in state-of-the-art change detection
techniques

Features References Advantages Disadvantages

Spectral
features

[11, 61, 68]
[58, 69, 75]
[70, 71, 73]

Crucial to discriminate a
foreground object from its
surrounding background.

Sensitive to camera noise.
Cannot be computed accurately in
regions that have low intensities.

Spatial
features

[66, 71, 74]
[65, 83, 84]

Can obtain invariance to local
illumination and camera noise.

Not very suitable for a region that
has low spatial gradients.

Temporal
features

[11, 80, 85]
[68, 86]

Useful in handling dynamic
scenes.
Can eliminate transient
environmental noise such as rain
and snow.

Cannot be computed accurately in
regions that have low texture.

Spectral features are crucial to discriminate a foreground object from its

surrounding background; however such features are sensitive to camera noise and

cannot be computed accurately in regions that have low intensities. Spatial

features can obtain invariance to local illumination and camera noise but not very

suitable for a region that has low spatial gradients. General robustness to lighting

changes can be achieved using edge-based or block-correlation methods. However,

the foreground segmentation achieved by these methods is not precise, as the

foreground is either made of blocks or of edges and not of accurate regions [87].

The temporal features suffers from the same problem, where it can not be

calculated accurately in regions that have low textures, however it is useful in

handling dynamic scenes and camera motion. Spatial and temporal smoothing are

often used to reduce camera noise and to eliminate transient environmental noise

such as rain and snow [50].

In most background modelling algorithms, the features are chosen arbitrarily

and the same features are used globally over the whole scene. Recently, a number

of authors start to propose frameworks for selecting suitable features for different

parts of the scene [62, 64].

A Bayesian framework that incorporates spectral, spatial, and temporal

features to characterize the background appearance is proposed by Li et al. in [62].

Principal feature representations for both the static and dynamic background

pixels are investigated. Under this framework, the background is represented by
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the most significant and frequent features, i.e. the principal features, at each pixel.

A Bayes decision rule is derived for background and foreground classification based

on the statistics of principal features.

Another framework for feature selection for background modelling has been

introduced recently by Parag et al. [64]. The use of a boosting algorithm, namely

RealBoost, to choose the best combination of features at each pixel is proposed.

Given the probability estimates from a pool of features calculated by Kernel

Density Estimate (KDE) over a certain time period, the most useful features to

discriminate foreground objects from the scene background are selected. In their

framework they conclude that while temporal gradients may be useful in handling

dynamic scenes, however it cannot be computed accurately in regions that have

low texture and is thus not very useful in such regions. Similarly, normalized

colour, spatial gradients or texture features may be considered for obtaining

invariance to illumination. Nevertheless, spatial gradients or texture is not very

suitable for a region that has low spatial gradients since such feature will be unable

to detect any object that has a low gradient itself.

Among these cues, proposed in the literature, spectral features offer the greatest

generality with respect to the content of the scenes considered in video surveillance

applications. The motion of moving objects results in intensity changes in magnitude

such that intensity changes are important cues for locating moving objects in time

and space, however, their relationship is not unique [88].

Colour-based vision applications face the challenge that colours are variant to

illumination. Each image representation has its strength and weakness and is

particularly applicable for handling a certain type of variation [64].

Photometric invariant features are functions describing the colour configuration

of each image pixel to compute a function of the input images that is invariant to

confounding scene properties but is discriminative with respect to desired scene

information [89]. There has been considerable work in developing photometric

invariants [53, 90]. One photometric invariant practical approach is discounting

local illumination variations, such as shadows and reflections.

Examples of photometric invariant features for Lambertian or matte surfaces
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Table 3.2: A summary of different spectral features used in state-of-the-art change
detection techniques

References Image
representation

Advantages Disadvantages

[11, 61, 68] Grey-scale
(Intensity,
Luminance,
Brightness)

A simple way of combining
colour information.
Computationally inexpensive.

Suffer from the effect of
camouflage foreground .

[58, 69, 75]
[70, 71]

RGB Computationally inexpensive The high correlation among the
R, G, and B components if
the intensity changes, all the
three components will change
accordingly.
The measurement of a colour in
RGB space does not represent
colour differences in a uniform
scale.

[73, 76] Y UV

Y CbCr

The colour distribution in
UV and CbCr spaces is
comparatively stable.
Partly gets rid of the correlation
of RGB

Correlation still exists due
to the linear transformation,
though not as high as RGB.

[71, 72, 74, 75]
[73]

rgb It is relatively robust to fast
illumination changes.
It is invariant to illumination
variation and viewing
geometry.
More effective than RGB

coordinates for suppressing
unwanted changes due to
shadows.

It suffers from a problem
inherent to the normalisation:
Very noisy (unstable chromatic
components) at low intensities
this is due to the nonlinear
transformation from the RGB.

[58, 77, 91] HSV Hue and Saturation are
insensitive to surface
orientation changes,
illumination direction changes
and illumination intensity
changes.
Hue depends only on the
spectral reflectance of the
surface and the spectral power
distribution (SPD) of the
illuminant.
Hue can be used for
segmentation in 1-D space if
the saturation is not low.

It faces the problem of unstable
hue values at low saturation.
If the colour lies close to white
or black, Hue and Saturation
play little role in distinguishing
colours.

[92] CIELab It is standardised.
It separates chrominance and
luminance information.
Can control colour and
intensity information
independently.
Provide efficient measuring of
small colour difference.

The coordinates of the white
point are needed.
Has the same singularity
problem as other nonlinear
transformations .

[81, 93, 94]
[80, 99]

Reflectance ratio It is based on shading model.
It is invariant to either
local geometry or spectral
reflectance.

Valid only for Lambertian
surfaces

[81, 95, 96] Intrinsic images It is invariant to illumination
variation.

Computationally expensive.
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Figure 3.2: Classification of change detection approaches

are the normalised-RGB colour space, UV plane which represents chromaticity in

Y UV colour space, are insensitive to the luminance change [97] as well as hue and

saturation in the HSV colour space [77]. Section 4.4.2 shows that those features

depend only on the spectral reflectance of the surface and the spectral power

distribution of the illuminant, and are invariant to the geometric relation between

a surface normal and the illumination direction.

Other photometric invariant features are the reflectance ratio and intrinsic

images. The reflectance ratio is introduced by [98] and used in

[80, 81, 93, 94, 99, 100] which is invariant to either spectral reflectance or local

geometry as Section 4.3.1 shows. Reflectance ratios can be computed when

multiple images of a scene are available. Intrinsic images and the

Log-Chromaticity Domain (LCD) are developed by [101], they are invariant to the

illuminant spectral power distribution.

Additional photometric invariant is the surface spectral reflectance derived

from the Shafer’s dichromatic model [102]. The reflectance can be estimated by an

analytic Bi-directional Reflectance Distribution Function (BRDF) model [103], or

using a linear basis of reference objects [104–107].
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Table 3.2 gives a summary of different spectral features used in state-of-the-

art change detection techniques. The gap appears to be in the use of physics-based

linear models and features such as surface spectral reflectance to represent the image

in change detection algorithms.

Figure 3.2 classifies change detection approaches in terms of the image

representation used to either physics-based or non-physics-based. We describe it as

physics-based because it does not only contain colour images but also data on

colour image formation such as spectral reflectance measurements, illuminant

spectral power distribution, and camera spectral response. The dotted part

represents the gap in the literature.

Physics-based representations have proven success in solving real-world computer

vision problems, i.e. shadow detection, where limited number of assumptions about

the scene are considered. However, few solutions have been proposed in the literature

with regard to the use of physical models of image formation to solve the change

detection problem. Only approximated models, e.g. shading model, have been used

to derive physics-based photometric invariants, namely reflectance ratio and intrinsic

images.

Researchers in the field of colour constancy [19–22], have introduced physics-

based colour features, giving more care to the elements which govern the camera

output. These features have not been fully investigated in the context of change

detection in video surveillance. A limited amount of work has been done towards

the use of physics-based image representations; only simple approximate models,

discussed in 4.3.1, have been investigated and implemented [17].

Although the linear models for image formation have been applied and proven

useful for a number of applications involving human skin [108] and pigment-based

analysis and synthesis [109], nevertheless this model has not been applied yet in the

field of change detection. The reason appears to be the computational complexity

of such models, and hence unfeasibility of real-time implementation. This thesis is

the first attempt to investigate the use of such models in change detection.
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3.4.1 Non-physics-based image representations

Early change detection approaches were described for the intensity case (grey-scale

images) [11, 61, 67, 68], the reason is that processing colour images require

computational times considerably larger than those needed for grey-scale images.

Nevertheless, this is no longer a major problem due to the decreasing costs of

computation, increasing speed and relatively inexpensive colour cameras are easily

available nowadays.

However, the main problem, which still resides, is to determine how to combine

the information from colour channels and to determine which colour space is

appropriate [55]. Because grey-scale images are the 1D projection of the three

channels of colour images, so grey-scale images are regarded as a simple way of

combining colour information.

An interesting approach is proposed by Fuentes and Velastin in [97], where a

modified version of the luminance contrast is used, comparing the luminance

coordinate in the Y UV colour space ‘Y ’ of a pixel in both the current and

background images.

A recent algorithm, [63] uses grey-scale image representation, and introduces

a background subtraction scheme using Independent Component Analysis (ICA)

and, particularly, aims at indoor surveillance for possible applications in home-care

and health-care monitoring, where moving and motionless persons must be reliably

detected. The results show that parts of the foreground objects were missing due

to the camouflage foreground in grey-scale images; therefore Tsai et al. [63] suggest

the extension of their ICA model to separate vector-valued signals in RGB colour

images, in order to eliminate the effect of camouflage, where colour may provide more

information to discriminate a foreground object from its surrounding background.

There are several techniques that attempt to pre-compensate for illumination

variations between frames caused by changes in the strength or position of light

sources in the scene. In some of the earliest attempts to deal with illumination

changes intensity normalization is used [110], i.e. normalizing the pixel intensity

values to have the same mean and variance as those in the estimated background.

Alternatively, both, the current frame and the background can be normalized

50



3.4. Image representation

to have Zero mean and unit variance. This allows the use of decision thresholds

that are independent of the original intensity values. Instead of using global

statistics, the frames can be divided into corresponding disjoint blocks, and the

normalization independently performed using the local statistics of each block.

This can achieve better local performance at the expense of introducing blocking

artefacts [17]. However, algorithms which generally employ normalized colours

typically work poorly in dark areas of the image.

As colour images can provide richer information than grey ones to measure the

difference between two pixels, colour image is becoming more popular in the change

detection literature [58, 70, 71, 74–76]. Generally, these are sort of dimensional

extensions of techniques originally designed for grey-scale images.

The colour distribution in RGB space has a wide range of evolution because of

the illumination variation at different parts of the field, Lu et al. [112] show that

the colour distribution in UV space is comparatively stable. They conclude from

their initial empirical data that a colour classifier defined on UV plane is capable

of accurately classifying colours despite the mild illumination variation on the field

under a stable lighting condition.

Developers have used different colour spaces, e.g. RGB, rgb, HSV , Y UV and

CIELAB. However normalised rgb and HSV are the most common colour spaces

used. It has been shown that these colour spaces are more tolerant to minor

variations in the illumination [113].

The rgb colour space, is one of the photometric invariants widely used in change

detection [71, 73–75] but a rationale is usually not given [143]. Section 4.4.2 shows

that rgb representation is invariant to illuminant intensity, it depends on illumination

colour and surface reflectance but not on its orientation which makes it useful for

material-based segmentation [89, 90].

The rgb colour space is widely used for its fast computation, and it is more

effective than RGB coordinates for suppressing unwanted changes due to shadows

of objects [72], however the rgb space, suffers from a problem inherent to the

normalisation, where low intensities result in unstable chromatic components [78].

Like rgb, many existing invariants seek to isolate information about the
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material properties in a scene and are therefore designed to be invariant to local

illumination and viewing geometry [89, 90]. The hue H and saturation S of an

HSV colour space are used in [58, 91] to obtain a limited level of intensity

invariance in an indoor scene, however the HSV colour space faces the problem of

unstable Hue values at low Saturation. Blauensteiner et a. [78] deal with this

problem by modelling the hue-saturation relationship using saturation-weighted

hue statistics. The method builds upon the improved Hue, Luminance, and

Saturation space (IHLS), where they represent chrominance information for

background modelling and shadow suppression.

Colour space selection

In order to utilize colour images, the selection of a colour space is a crucial issue.

Applying different colour spaces can significantly change the detection results. Some

authors [92, 113, 114] have compared the performance of several colour spaces, the

detection results show different error ratios according to which colour space is used.

A colour space comparison has been carried out by Hwang et al. [92]. Their aim

was to determine an appropriate colour space for their proposed change detection

method. They have compared RGB, CIELAB, and CIELCH colour spaces. They,

then propose a criterion, by means of statistical formulation, for measuring the

expected number of error pixels in order to determine which specific colour space

that has best change detection result corresponding to current image sets. They

conclude that each colour space’s ability to detect changes differs according to the

camera used, the captured scene, and the illumination. Their results show that the

CIELAB and CIELCH colour spaces give the best performance for indoor scenes,

while the CIELAB and RGB colour spaces give the best performance for outdoor

scenes.

An empirical study has been carried out by Kumar et al. in [113] with the

motivation of determining which colour space is best for foreground segmentation.

They compared different colour spaces, which includes RGB, XY Z, Y CbCr, HSV

and the rgb, for foreground and shadow detection, their results show that the Y CbCr

is the best colour space for optimal foreground and shadow detection and they used
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this in their proposed framework for real-time behaviour interpretation from traffic

video in [115]. They conclude that different colour spaces show different efficiency

in detection of foreground objects.

Most of the recent change detection techniques [58, 70, 71, 74–76] use well-known

colour spaces to represent the image, trying to model the variation in illumination

and camera noise using either statistical manipulation techniques or post-processing

adjustments. These algorithms still suffer from illumination change and camera

noise [17].

3.4.2 Physics-based image representations

The colour is not a physical property of an object as stated by Maloney in [104],

rather it is a perceptual phenomenon and therefore a subjective human concept.

The perceptual ability that permits humans to discount spectral variation in the

illumination and assign stable colours to objects is called colour constancy.

The camera output is dependent upon: the camera characteristics, the incident

illuminant and the scene content. For Indoor surveillance application using static

camera, the scene and camera never change, then the aim of colour constancy is to

identify and eliminate the effects of the illuminant.

The physical approach, used in colour constancy [20, 102, 104], studies colour

image formation in order to estimate scene illuminant spectral power distribution in

order to extract the full objects surface spectral reflectance taking into consideration

camera sensors sensitivities. Physics-based representations of objects using images

under a large number of lighting conditions have been proposed for illumination

invariant change detection [100, 116, 117] and shadow removal [80, 118].

Change detection based on physical models would permit image representation

via the study of the process of image formation. Algorithmically, the basics of these

approaches are often very similar to those of other change detection methods, and

only differ from them in the fact that these algorithms explicitly use the reflectance

models of surfaces to represent a colour image.

Various reflection models are used that describe the light reflected by a surface

as a weighted combination of a diffuse and a specular components, most of them are
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developed in the field of computer graphics [102, 119, 120]. They differ in the way

these two components are modelled and weighted when combined.

Some models, such as the Phong model [119] empirically approximate some of

the underlying rules of optics and thermal radiation, however, it does not have

a physical basis. This can represent a limitation if the model is used to predict

the colour appearance of a surface. Other models, such as the Torrance-Sparrow

model [120] are thoroughly derived but they are impractical for computer vision

applications. Approximate models, such as the Dichromatic Reflection Model [102],

are still derived from physics-based reflectance models, but they are modified so

as to emphasize the desired aspects of the models as well as to ignore their other

unnecessary aspects. The Dichromatic Reflection Model is used for these reasons in

this thesis.

The dichromatic reflection model in [102] is a usual choice for those algorithms

employing a physical model to represent colour images. This model postulates that

the light reflected from an infinitesimal piece of surface of an inhomogeneous

dielectric material is the result of the addition of two components, namely, the

surface (specular) reflection and the body (diffuse) reflection. Each of these parts

is further divided into two elements, one accounting for the geometry and another

purely spectral. The main limitation of this technique is that it can be applied

only to inhomogeneous dielectrics, Lambertian surfaces. Many common materials

can be described this way, including paints, varnishes, paper, ceramics, and

plastics. Metals, glass, and crystals are excluded as they are optically

homogeneous. Only opaque surfaces are considered in the model.

By applying the dichromatic reflection model for lambertian surfaces, three

main photometric invariants which represent the intrinsic surface reflectance can

be extracted, reflectance ratio, intrinsic image and surface spectral reflectance.

Reflectance ratio

Reflectance ratio is a photometric invariant developed by Nayar et al. [98, 121].

Originally, it was developed for grey-scale images and used to obtain a surface

segmentation that is invariant to illumination and surface geometry. Bunyak et
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al. [99] extend the reflectance ratio in [98, 121] to three colour components in order

to classify each pixel locally by exploiting this invariant. Their algorithm exploits

spatial and spectral information; no a priori knowledge about camera, illumination

or object/scene characteristics are required. A method for estimating the body

colour of surfaces based on a physical model is introduced in [80], using the spatio-

temporal reflectance ratio test, derived from dichromatic reflection model. Lu et

al. [112] present a colour classification algorithm for their Robocup system that

is adaptive to continuous variable lighting, motivated by the dichromatic reflection

model.

A change detection method based on Phong’s model is proposed in [100]. The

ratio of the intensities of two frames of an image sequence is used to detect

changes in the time-varying illumination case. Durucan et al. extend the former

method by combining it with optical flow method in [94] and by proposing the

Linear Dependence Detector (LDD) in [93].

Intrinsic image

Assuming that the scenes contain Lambertian surfaces, intrinsic image which

contains mainly physical object information can be extracted. In [81], a

homomorphic filter is applied to the input intensities in order to extract the

reflectance component. The reflectance component is then provided as input to the

decision rule step of a moving object detection process.

Weiss [79] uses multiple input images of a fixed scene, assuming constant

reflectance and changing illumination, and proposes a Maximum Likelihood (ML)

estimation framework to estimate a single reflectance image, intrinsic image, and

multiple illumination images. Matsushita et al. [96] extend Weiss’s algorithm and

introduce an eigenspace that captures the illumination variations to eliminate

shadows from surveillance images. Tappen et al. [122] propose an algorithm that

uses multiple cues to recover shading and reflectance intrinsic images from a single

image. Using both colour information and a classifier trained to recognize

grey-scale patterns, each image derivative is classified as being caused by shading

or a change in the surfaces reflectance. Porikli [95] proposes a method that
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decomposes a scene into time-varying background and foreground intrinsic images

and proves the effectiveness of the intrinsic background/foreground decomposition

even under sudden and severe illumination changes.

Finlayson et al. [101, 123] prove that the log-chromaticity domain (LCD),

ln(R
G
) and ln(B

G
), are independent of light intensity and there even exists a

weighted combination of LCD which is independent of both light intensity and

light colour. Finlayson et al. [101] recently devised a method for the recovery of an

illumination invariant image, which is similar to the intrinsic image, from a single

colour image. They assume the input image contains both non-shadowed surfaces

and shadows cast on those surfaces. They calculate an angle for an“invariant

direction” in a log-chromaticity space by minimizing the entropy of colour

distribution.

Surface spectral reflectance

In much of the previous literature, computational models are used to model the

surface reflectance [102, 124] and illuminant [19, 21] spectra by a finite weighted

sum of basis functions [125, 126]. Given a linear model for image formation [105–

107], there exists a linear relationship between the sensor absorptions under two

differing illuminants [127].

Negahdaripour [128] uses Principal Component Analysis (PCA) to extract a

set of basis images that represent the views of a scene under all possible lighting

conditions. Pizarro and Singh [129] model the illumination component as a piecewise

polynomial function.

According to Radke et al. [17], these sophisticated models of illumination

compensation are not commonly used in the context of foreground detection.

However, these linear models have been applied successfully in a number of

real-time computer vision problems [108, 109, 130].
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3.5 Statistical manipulation

Change detection methods typically build a statistical model in order to define

a decision rule which discriminates between the pixels of the moving object and

those of background pixels. Background modelling approaches build an object-free

model of the background; this model is learned over time using a series of salient

background frames. The new frame is compared to the background model and the

differences are marked as foreground objects [61].

If the camera is fixed and the background can be expected to stay relatively

constant, the background can be modelled as a single static image that may be easily

estimated and segmented. The required measurement in this case is the intensity

in case of grey-scale images, the colour components in case of colour images or the

reflectivity components in case of a physics-based representation. If the background

is not actually constant, then modelling both the mean intensity at a pixel and its

variance gives an adaptive tolerance for some variation in the background.

Haritaoglu et al. [11], in their W4 surveillance system, use a grey-scale image

representation, and the background is modelled by determining the minimum and

maximum background intensity values as well as the largest inter-frame distance

between consecutive frames. If the observed pixel is more than certain threshold

levels away from either the minimum or the maximum, it is considered foreground.

These values are estimated over several frames and are periodically updated for

background regions.

Various approaches of increasing complexity have been considered in the

literature. If a scene contains motion that should be considered part of the

background, more tolerant models are required. Statistical models used in existing

change detection approaches are divided into parametric and non-parametric

approaches. Parametric approaches use a specific functional form with adjustable

parameters chosen to fit the model to the data set; examples are: Gaussian models

such as mixtures of Gaussians, and elliptic boundary model. Examples of

non-parametric approaches are: normalised lookup table, Bayes classifier and self

organizing map.
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3.5.1 Parametric methods

Several researchers [58, 76] have described adaptive background subtraction

techniques in which a single Gaussian density is used to model the background.

Pixels belonging to the foreground are determined as if they lay a number n of

standard deviations from the mean of the background model, and then they are

clustered into objects. In [58, 76], a single Gaussian was considered to model the

statistical distribution of the background at each pixel. The parameters of this

model are the mean and covariance matrix.

Horprasert [73] uses the Ycbcr colour space or normalised rgb and assumes that

there is an expected chromaticity line on which the pixel value should be kept. The

distortion from this line is given as both chromaticity and brightness distortion being

generated by standard deviation. Shadows and highlights are also detected. The

limitation of this algorithm is that shadows on very dark backgrounds or several

shadows added together will not be detected effectively.

Francois and Medioni et al. [58] use the HSV colour space, and build a

background model as a Gaussian distribution. The current image is subtracted

from the mean value model and the resulted difference values of each pixel give the

information of classifying to either foreground or background by comparing it to

the standard deviation model. With this assumption a background model is

generated by considering the mean value and standard deviation for each pixel.

Similar to the previous assumption McKenna [71] models the background with

mean value and also standard deviation. However, his system considers the

normalized rgb colour space and the edge. For each channel the models are

generated and a combination of both classification results gives the final

segmentation mask.

Jabri [74] uses both information the colour and the edge similar to the one

of McKenna [71]. The background model is trained in both mentioned parts by

calculating the mean and standard deviation for each pixel of any colour channel.

With subtraction of the incoming current image on each channel, confidence maps

are generated for both information colour and edge. After that a combination of the

two maps are utilized by taking its maximum values.
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Hong [75] uses well-known RGB and normalized rgb colour to model the

background. As mentioned in previous methods the mean and standard deviation

are used again and these are calculated over each colour components. Each colour

space has its own classification part in which the current image is converted first in

each colour space. Within each colour space the pixel can be classified in four

categories, background, foreground, highlight, or shadow. This method is efficient

only in less dynamic scenes but has difficulties with periodic backgrounds motion

(e.g. swaying trees), background elements moving, and fast illumination changes

(flood of sunlight, shadows or lights switched on).

The previous model does not work well in the case of dynamic natural

environments since they include periodic motions like waving trees or ocean waves.

By using more than one Gaussian distribution per pixel, it is possible to handle

such backgrounds. When a single Gaussian is insufficient to model the distribution

of pixel values, a finite Mixture of Gaussians (MoG) may be used instead.

The MoG method is quite popular and is the basis for a large number of

related techniques, many authors have proposed improvements and extensions to

this algorithm [69, 115, 118, 131]. MoG maintains a density function for each

pixel. Thus, it is capable of handling multimodal background distributions. In

MoG, the model parameters can be adaptively updated without keeping a large

buffer of video frames.

For example, Raja et a. [91] use mixture of Gaussians with the HSV colour

space to model a multi-coloured foreground object, in which each Gaussian models

one colour in the object. Stauffer and Grimson [69] use multiple Gaussians to model

the scene and develop a fast approximate method for updating the parameters of

the model incrementally. Such an approach is capable of dealing with multiple

hypotheses for the background and can be useful in scenes such as waving trees,

beaches, escalators, rain or snow.

Tian et al. [131] use both grey-scale images and colour images, to extend and

improve MoG background subtraction method developed by Stauffer and Grimson

[69, 132] by integrating texture and intensity information to remove shadows and

to enable the algorithm working for quick lighting changes. They discriminate
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between static foreground objects, and abandoned or removed objects by analyzing

the change in the amount of edge energy associated with the boundaries of the

static foreground regions, without using any tracking or motion information.

In [115] three Gaussians are used to model the histograms of each channel of

the three colour components to model the background for traffic surveillance

application. The Expectation-Maximization (EM) algorithm is used which gives

very good model-fitting but is computationally expensive [64]. This idea was

extended but instead of using the exact EM algorithm, an online K-means

approximation was used.

Liu et al. [118], assume Phong reflection model, extract surface reflectance

component using homomorphic filtering. They assume that reflectance component

fits Gaussian distribution, and then use a MoG to model it in order to remove

shadow. They show that their method is not sensitive to the change of

illumination.

The Mahalanobis distance is used with a correlated image representation to

measure the distance between background pixels and a foreground pixel.

Background pixels are associated with the least Mahalanobis distance. The log

likelihood value l(x,y) is computed and used to classify pixels.

Wren et al. [76], in his Pfinder system, uses the Y UV colour space, and includes

a background estimation module, by associating each pixel in the background with

its mean colour value and a covariance matrix. The colour for each pixel is described

by Gaussian distribution. Pixels are classified into background or moving objects

by measuring the deviations from the background model. Deviations are measured

in terms of Mahalanobis distance in Y UV colour space. If the distance is sufficient

then the process of building a blob model is initiated.

Hidden Markov Models (HMM) can also be used to represent the pixel process

where its states can represent different states that might occur in the pixel process,

such as background, foreground, shadows, day and night illumination. It can also be

used to handle the sudden changes in illumination where the change from a status

to another, such as the change from dark to light, day to night, indoor to outdoor,

can be represented as the transition from state to state in the HMM. Three-states
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HMM are used in [70] to represent background, shadows and foreground, where both

background and shadows are modelled as single Gaussian distribution.

However, parametric approaches are generally computationally intensive and are

sensitive to the tuning of their parameters. These approaches are very sensitive to

sudden changes in global illumination. For the case of a static scene, the variances

of the background components may become very small. A sudden change in global

illumination can then turn the entire frame into foreground. This method can deal

with periodic background motion, however it cannot follow fast illumination changes,

which cause spurious “foregrounds” and may miss targets in such cases. To deal

with the limitations of parametric methods, when the Gaussian assumption for the

pixel intensity distribution does not hold a nonparametric approach to background

modelling is used.

3.5.2 Non-parametric methods

When the density function is more complex and cannot be modelled

parametrically, a non-parametric approach able to handle arbitrary densities is

more suitable. This approach utilizes a general nonparametric kernel density

estimation technique for building a statistical representation of the scene

background. Each pixel is modelled as a random variable in a feature space with

an associated probability density function estimated directly from the data

without any assumptions about the underlying distributions. It avoids having to

choose a model and estimate its distribution parameters.

A computational framework for efficient density estimation is introduced by

Elgammal et al. in [72]. They propose the use of Fast Gauss Transform (FGT) for

efficient computation of colour densities, allowing the summation of a mixture of

M Gaussians at N evaluation points. They use the median of the absolute

differences between successive frames as the width of the kernel. Thus, the

complexity of building the model is the same as median filtering.

Hwang et al. [55] show that each colour band’s noise does not follow the

well-known zero means Gaussian distribution. To accurately model each channel’s

noise, they propose a Generalized Exponential Model (GEM), which estimates the

61



3.5. Statistical manipulation

noise distribution on the Euclidean distance and corresponds to unchanged

regions. Subtracting the estimated noise distribution from the whole distribution

provides the distribution of unchanged regions and changes. The detection is then

done by a simple pattern classification step.

Other approaches use fuzzy classification where a difference image is generated

for each RGB colour space component. For every channel’s result a corresponding

threshold is determined by use of unimodal thresholding method for considering the

fuzzy set of moving pixels. Then these thresholds avail to generate fuzzy images

which at least are combined to one final fuzzy image. Subsequently, a preliminary

mask is achieved by thresholding which describes all detected moving pixels in all

appearances.

For example, Shen [133] uses the well-known RGB colour space and the system

can be represented in two sections. One of them is the block for generation of

fuzzy classification and the other one is the block for elimination of falsely detected

segmentation regions. The fuzzy classification is applied to take into account the

mobility of pixels precisely instead of the so called binary classification.

The background can also be represented by a group of clusters which are ordered

according to the likelihood that they model the background and are adapted to deal

with background and lighting variations. Incoming pixels are matched against the

corresponding cluster group and are classified according to whether the matching

cluster is considered part of the background. Butler et al. [134] model each pixel

by a group of K clusters where each cluster consists of a weight wk and an average

pixel value or centroid ck.

Kim et al. [135] quantize sample background values at each pixel into codebooks

which represent a compressed form of background model for a long image sequence.

They adopt a quantization/clustering technique, their method can handle scenes

containing moving backgrounds or illumination variations, and it achieves robust

detection for different types of videos. Mixed backgrounds can be modelled by

multiple codewords.

Unlike MoG, Kim et al. do not assume that backgrounds are multimode

Gaussians. Also, in contrast to Kernel, Kim does not store raw samples to
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maintain the background model.

A background subtraction scheme which uses Independent Component

Analysis (ICA) is proposed recently by Tsai et al. in [63]. They use an ICA model

to measure the statistical independency based on the estimations of joint and

marginal probability density functions from relative frequency distributions of the

background. Their proposed ICA model can separate two highly-correlated

images. Then, their trained de-mixing vector is used to separate the foreground in

a scene image with respect to the reference background image.

The creation of a small number of eigenbackgrounds to capture the dominant

variability of the background rather than implicitly modelling the background

dynamics, is introduced in [136]. This approach looks at global statistics rather

than the local constraints used in the previously described approaches. A threshold

on the difference between the original image and the part of the image that can be

generated by the eigen-backgrounds differentiates the foreground objects from the

background, with the assumption that the remaining is due to foreground objects.

3.6 Threshold selection

The simplest method for detecting changes is by differencing the intensities of

corresponding pixels. If the difference in grey-scale exceeds a preset threshold, the

pixel is regarded as changed. Therefore, the threshold chosen is critical: if the

threshold is too high, it will suppress significant changes, if too low, it will flood

the difference map with false changes [55]. By changing the decision threshold, in

order to reduce one type of error, the other type of error increases; it is not

possible to minimize both errors at the same time.

The threshold in the decision rule determines if a pixel in the test image

corresponds to a moving object or not. Due to camera noise and illumination

variations, a certain number of pixels are classified as a moving object even if they

do not belong to it: a high value of the threshold allows maintaining a low number

of false detections. On the other hand, objects presenting a low contrast with

respect to the moving object risk to be eliminated if the threshold is excessively
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high.

Several pixel-based methods for determining the threshold of change detection

have been proposed. Rosin and Ioannidis [137] carry a comprehensive survey and

comparison of four different threshold selection methods: the noise intensity

model, the signal intensity model, the noise spatial model, and the signal spatial

model. Smits and Annomi [138] present a method of threshold selection for specific

application requirements (in terms of missed detection and false alarm rates) using

Receiver Operating Characteristics (ROC) curve. Wren et al. [76] propose a

method for selecting thresholds at each pixel adaptively, based on the grey-level

distributions of the background points.

The use of ROC curves to select the optimal threshold for a set of parameters

is proposed in [139]. This work is extended in [140] which introduces a minimax

threshold selection method, a probabilistic criterion designed to minimise the

maximum possible Bayesian risk when no knowledge about source probabilities is

available. The minimax equation and the related line can be represented on the

ROC curve. Oberti et al. [140] show that the interaction between the minimax

equation and an ROC curve gives the best operating point. The threshold can be

computed to produce a desired false alarm rate or missed detection rate.

3.7 Post-processing adjustments

The outputs of foreground region detection algorithms explained in previous

section generally contain noise and therefore are not appropriate for further

processing without special post-processing. A post-processing step can be divided

into two stages, noise removal and shadow detection.

3.7.1 Noise removal

A noise removal step helps in improving the quality of the segmented mask using

some morphological operations. Small holes in objects are most likely segmentation

errors and the segmentation can be improved by closing such holes in objects. Small

regions in the mask are likely to be either camera noise errors or small changes
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which are irrelevant for the application in hand. Hence, a filter is applied to remove

regions if their size is below a small threshold.

Morphological operations, erosion and dilation [11], can be applied to the

foreground pixel map in order to remove noise that is caused by items listed above.

The aim in applying these operations is to remove noisy foreground pixels that do

not correspond to actual foreground regions and to remove the noisy background

pixels near and inside object regions that are actually foreground pixels. Erosion,

as its name implies, erodes one-unit thick boundary pixels of foreground regions.

Dilation is the reverse of erosion and expands the foreground region boundaries

with one-unit thick pixels. The order of these operations affects the quality and

the number of units used affects both the quality and the computational

complexity of noise removal [17].

3.7.2 Shadow detection

Although shadow is not part of the foreground, the drop in luminance of the shadow

pixels is usually interpreted as a significant change in the pixel’s colour and hence,

misclassified as foreground object [141]. Shadows increase false alarms rate in change

detection and lead to severe changes in the shapes of objects or merging of multiple

objects.

Shadow detection and suppression from the set of foreground points aim to

prevent moving shadows being misclassified as moving objects, thus improving

object detection [142, 143].

If the brightness reduction is not very significant, shadow detection algorithms

can classify foreground pixels as shadow pixels if the change in hue is small and

the brightness is reduced slightly [144]. Many algorithms have been proposed to

handle the shadow problem. Wren et al. [76] use the normalised components, U/Y

and V/Y , of a Y UV colour space to remove shadows in a relatively static indoor

scene. In [145] a non-parametric approach is proposed that use colour, global and

dynamic features for shadow removal to enhance object detection. The detection

is based on the observation that shadows change significantly the brightness of an

area without significantly modifying the colour information. On the basis of the
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same observation, a statistical background subtraction algorithm which exploits a

computational colour model that separates the brightness from the chromaticity

components of a pixel is presented in [73].

Physics-based shadow removal

Marchant et al. [146] propose a physics-based method for shadow compensation in

scenes illuminated by daylight. The illumination is represented as a black body and

the colour RGB camera filters are assumed to be of infinitely narrow bandwidth.

The ratio (R
B

)/(G
B

A
) is used to detect shadows where A is found only depending on

surface reflection as the illumination changes and can be pre-calculated from the

daylight model and for the specific camera.

Nadimi and Bhani [80] introduce a physics-based approach to separate moving

cast shadows from the moving objects in an outdoor environment. Their approach

does not rely on any geometrical assumptions such as camera location and ground

surface/object geometry. The approach is based on a new spatio-temporal albedo

test and dichromatic reflection model and accounts for both the sun and the sky

illuminations.

In [99], Bunyak et al. extend the reflectance ratio in [98, 121] to detect moving

cast shadows to improve the performance of moving object detection, in which they

use the MoG approach.

3.8 Background maintenance

The role of the background modelling process is to estimate a background model

by observing the scene during a training period; this model could be updated

continuously. Continuous updating of the model can make the foreground

extraction more robust to illumination change or objects that become part of the

background.

Haritaoglu et al. [11], in his W4 surveillance system, detect when its

background model is invalid by detecting when 80% of the image appears as

foreground. Limitations are the existence of many people, occlusion, shadows and
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slow moving objects.

Another class of background modelling methods try to model the short-term

dynamical characteristics of the input signal. Several authors [61, 147] have used

a Kalman-filter [148] based approach for modelling the dynamics of the state at a

particular pixel. Ridder et al. [147] propose a linear prediction method which model

each pixel value using a Kalman Filter to compensate for illumination variation and

adaptively estimate the background and detect the foreground. Monnet et al. [61]

present an autoregressive form to predict the frame to be observed. Two different

techniques are studied to maintain the model, one that update the states in an

incremental manner and one that replaces the modes of variation using the latest

observation map.

A simpler version of the Kalman filter called Weiner filter was considered in [68]

that operates directly on the data. Toyama et al. [68] use a one step Wiener filter

which is linear predictor of the intensity at a pixel, based upon the time history of

intensity at that particular pixel. This can account for periodic variations of pixel

intensity. The measurement includes two parts, the intensity at the current frame,

and the recent time history of intensity values at a given pixel. Toyama et al. [68]

proposes the Wallflower algorithm in which background maintenance and

background subtraction are carried out at three levels: the pixel level, the region

level, and the frame level. Toyama computes the current background estimate by

applying a linear predictive filter on the pixels in the buffer using a Wiener filter to

predict a pixel’s current value from a linear combination of its N previous values.

Pixels whose prediction error is several times worse than the expected error are

classified as foreground pixels. The filter coefficients are estimated at each frame

time based on the sample covariance, making this technique difficult to apply in

real-time. Kahl et. al. [149] enhance the computational efficiency of the previous

approach by using an incremental linear PCA model in combination with local,

spatial transformations. They propose a new scheme for novelty detection by

classifying new observations from previous samples, as either novel or belonging to

the background. This approach is capable of handling non-stationary background

scenarios, such as waving trees, rain and snow.
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Koller et al. [83] handle the change of lighting condition using a moving-window

average method. An obvious problem with this technique is that all information

coming from both background and foreground is used to update the background

model. If some objects move slowly, these algorithms will fail. The solution to this

problem is that only those pixels not identified as moving objects are used to update

the background model.

KaewTraKulPong and Bowden [150] present a new update algorithm for learning

mixture models, for their proposed method for detecting moving shadows. Zivkovic

[152] extends the former method by updating the number of components of the

mixture which is constantly adapted for each pixel.

Elgammal et al. [72] present a way to combine the results of two background

models (a long term and a short term) in such a way to achieve better update

decisions. Short-term model is a very recent model of the scene. It adapts to

changes quickly to allow very sensitive detection. The sample is updated using a

selective-update mechanism, where the update decision is based on the final result of

combining the two models. Long-term model captures a more stable representation

of the scene background and adapts to changes slowly. The sample is updated using

a blind-update mechanism. Computing the intersection of the two detection results

eliminate the persistence false positives from the short term model and will eliminate

as well extra false positives that occur in the long term model results. Grimson and

Stauffer [69] use an online estimation method to update background images in order

to adapt to illumination variance and disturbance in backgrounds.

3.9 Evaluation methods

Change detection approaches can be evaluated using analytical or empirical

methods. The analytical method considers the principles, requirements and

complexity of algorithms, while, empirical methods measure the quality of the

segmentation results [151].

Empirical evaluation methods for change detection approaches can be classified

into two classes: discrepancy (reference) methods and goodness (stand-alone)
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methods. The former class needs some reference images to arbitrate the quality of

segmentation while the latter class can perform the evaluation without the help of

reference images. Discrepancy methods use objective criteria which indicate the

difference between the segmented images and reference images [153]. Goodness

methods use subjective criteria which reflect some desirable properties of

segmented images.

Erdem et al. [154] present three performance evaluation metrics that do not

require segmented ground truth. They propose spatial differences of colour and

motion and the boundary of the segmented video image and the temporal difference

between the colour histogram of the object in the current frame and previous video

frames. The authors show that under certain assumptions, the time-consuming

annotation of ground truth is not necessary. However, when more than segmentation

only is required, ground truth will have to be generated anyway.

In most cases ground truth is essential for performing a quantitative analysis of

an algorithm’s results. There are three main approaches to generating ground truth.

The first uses synthetic data; this method enables ground truth to be easily provided,

the problem is that the synthetic data will probably not faithfully represent the full

range of real data. Alternatively, real image data can be manually annotated, or to

specify an ideal image segmentation. Now we have the opposite problem: the image

data is good, but the ground truth is dubious. Since manual mark-up is tedious

and time consuming large volumes of ground truthed data are likely to have errors.

In addition, the process has become subjective, and different annotators often give

different ground truth. A third approach avoids explicitly determining a ground

truth dataset, and relies instead on evaluating the algorithms’s outputs by a human

panel. Two disadvantages are the time consuming nature of the exercise (more

images need to be viewed), and the difficulty in incorporating additional algorithms

into the evaluation results at a later date (unless the same panel is reconvened).

A framework for performance evaluation of change detection in traffic and

surveillance applications is introduced by Desurmont et al. in [155]. They propose

the creation of ground-truth data; available evaluation of data sets; performance

metrics; and presentation of the evaluation results.
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Metrics for evaluation of image segmentation methods are proposed in [156]

with the goal to create objective measures corresponding to evaluation by a human

observer.

The use of Receiver Operating Characteristics (ROC) curves and pixel-based

metrics for evaluation is proposed in [139], which includes the probability of a False

Alarm (FA) against the probability of a Miss-Detection (MD), to extract useful

information about the system performance. A Perturbation Detection Rate (PDR)

analysis is proposed by Chalidabhongse et al. in [157] that has some advantage

over ROC analysis. No ground truth is needed for the evaluation method, but the

method does not consider detection rates through the video frame or over time.

A pixel-based evaluation framework for testing thresholding algorithms in the

content of surveillance applications is introduced by Rosin et al. in [137].

Zhang [153] concludes that the results obtained in the field of segmentation

evaluation are still far from satisfactory. A number of factors still limit the

advancements of segmentation evaluation and the performance improvements of

segmentation algorithms:

1. There is no common mathematical model or general strategy for evaluation.

2. It is difficult to define wide-ranging performance metrics and statistics.

3. The testing data used in evaluation are often not representative enough for

actual application.

4. Appropriate ground truths are hard to determine objectively.

5. Often large costs (both time and effort) are involved in performing

comprehensive valuations.

3.10 Summary

The main problem in change detection algorithms is how to separate changes due to

sensor noise, global and local illumination variations, background periodic motion,

static foreground, moving background, and similar background-foreground coloured

objects from those caused by moving objects.
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Although the change detection problem has been increasingly studied in recent

years there exists no generally accepted method to detect moving objects in image

sequences [17, 38, 50, 51]. The conclusion is that different approaches to change

detection should be taken when addressing different kind of scenes.

For surveillance applications, approaches based on background modelling are

widely used, which may be decomposed into three major steps, image representation,

statistical manipulation and threshold selection. Table 3.3 summaries other steps

involved in change detection and how each step contributes toward the solution of

one or more problem. For example, statistical modelling contributes mainly to the

background periodic motion problem using both spectral and temporal features.

The background maintenance step is crucial to overcome static foreground objects,

moving background as well as global illumination variation. Camera noise causes

mainly false alarms, which could be solved using spatial features either as part of

the image representation or in the post-processing stage. Other post processing

techniques such as shadow removal are important to eliminate the variation in local

illumination. The main source of missed detection is the camouflaged foreground,

which could be solved mainly by the use of an appropriate image representation.

Various spectral, spatial and temporal features have been proposed in the

literature as cues to inform the presence of a moving object in a scene. Among

these cues, spectral features offer the greatest generality with respect to the

content of the scenes considered in video surveillance applications. Change

detection approaches may be classified depending on these spectral features as

either physics-based or non-physics-based.

The analysis of the state-of-the-art outlined the fact that most of the reviewed

approaches are non-physics-based that use well-known colour spaces to represent

the image. Various statistical approaches have been proposed for modelling a given

scene background. In the majority of these approaches, the image representations

are chosen arbitrarily and the same representations are used for different scenes,

without empirical studies or even justifications to the rationale behind the chosen

representation. Nevertheless, the selection of an image representation is a crucial

issue; each image representation’s ability to detect changes differs according to the
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Table 3.3: Summary of change detection problems

Problem Consequence(s) Solution Features

Camera Noise False Alarm
Missed Detection

Post-Processing Spatial

Global Illumination
Variation

False Alarm Illumination Estimation
Background Maintenance

Spectral
Temporal

Local Illumination
Variation

False Alarm
Missed Detection

Post-Processing
Image Representation

Spectral

Camouflaged
Foreground

Missed Detection Image Representation Spectral

Periodic Background
Motion

False Alarm
Missed Detection

Statistical Modelling Spectral
Temporal

Static Foreground False Alarm
Missed Detection

Background Maintenance Spectral
Temporal

Moving Background False Alarm
Missed Detection

Background Maintenance Spectral
Temporal

camera used, the captured scene, and the illumination.

These algorithms still suffer from illumination change and camera noise and

the gap appears to be in the image representation used which does not give any

consideration to the elements which govern the camera output. Using camera output

directly without considering the illumination type, camera sensor characteristics,

and the physical meaning behind this output, makes it more difficult to develop

robust algorithms.

Few solutions have been proposed in the literature with regard to the use of

physical models of image formation to solve the change detection problem. Only

approximated models, e.g. shading model, have been used to derive physics-based

photometric invariants, namely reflectance ratio and intrinsic images. In the next

chapter, this issue is investigated and the image formation models that are used in

the proposed change detection approaches are discussed.

The gap appears to be in the use of physics-based linear models and features such

as surface spectral reflectance to represent the image in change detection algorithms.
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These models have not been applied yet in the field of change detection. The reason

appears to be the computational complexity of such models, and hence unfeasibility

of real-time implementation. This thesis is the first attempt to investigate the use

of such models in change detection.

The criteria used in the evaluation method for judging the performance of the

segmentation represent an essential element and critical factor in change detection

evaluation. However, the review of the principles and methods for evaluating and

comparing the performance of change detection approaches shows that there is no

widely accepted evaluation test framework. Moreover, Most of the goodness metrics

proposed gives a measure to the segmentation quality not to the robustness of the

algorithm.
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“Understanding the physics of light, reflection and

image formation is a requisit for effective low-level

computer vision.”

A. Cavallaro [158]

4
Image Formation Models

4.1 Introduction

The majority of change detection approaches, reviewed in Chapter 3 use one of

the colour spaces as its input directly, without relying on any physical aspects of

image formation. This chapter presents an overview of the image formation process

through a review of each of its elements and their interaction. The purpose of the

review is to introduce the fundamental models and features that will be of use in

the proceedings of this thesis for the foreground segmentation and change detection.

The theory of image formation is discussed along with the introduction of a number

of physical features, namely, reflectance ratio, intrinsic image and surface spectral

reflectance. This is followed by a review of a number of colour spaces as well as the

relation between each colour space and image formation models.
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4.2 Image formation

Appearances of scenes depend on four fundamental elements: an illuminant, a

medium, a material and a vision system. The illuminant represents the source of

visible electromagnetic energy and is characterised by its SPD . The medium is the

medium in which electromagnetic waves travel 1. The surface of the material

modulates the incident electromagnetic energy and is represented by the surface

spectral reflectance, the fraction of incident radiation reflected by this surface. The

vision system is identified by the spectral sensitivities of its photosensitive sensors

which represent the response of such elements to the received electromagnetic

waves.

Apart from the aforementioned spectral features which characterise the elements

of the scene appearance another important parameter is the geometrical features,

which represent the scene structure, the illuminant orientation, the surface roughness

and the viewing geometry. These features combine non-linearly to yield a digital

image. Recovering these features from images is an important problem in image

processing; however, this recovery is generally hard with the limited amount of

information provided by standard commercial imaging devices.

4.2.1 Illuminants

A light source illuminates the material surface by emitting electromagnetic waves

composed by a mixture of energy at different wavelengths. The emitted light

denotes the visible part of the electromagnetic energy that covers wavelengths

from approximately 400 nm to 700 nm. The visible spectrum represents only a

small portion of the complete electromagnetic spectrum 2. The power emitted at

each wavelength gives the SPD of the source.

Black-body (Planckian) radiator is a special type of theoretical light that emits

radiation, due only to thermal excitation, at a maximum rate for its given

temperature (T oK) and absorbs all the radiations that strikes it.

1where in this thesis the medium is assumed be air
2Infra Red illuminants spans the range of IR-A 700 nm to 1400 nm, IR-B 1400 nm to 3000 nm

and IR-C 3000 nm to 1m, are used for applications such as military, surveillance, night vision, etc..
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Figure 4.1: Relative spectral power distribution of six Planckian radiators,
the relative spectral power distribution is normalised such that

it has a value of 100 at a wavelength of 560nm

The SPD of a black-body may be described as a function of its absolute

temperature and wavelength by Planck’s formula:

E(λ) = c1λ
−5
(
e

c2
λT − 1

)
−1

≈ c1λ
−5e

−c2
λT (4.1)

where E(λ) is the light SPD in Watts/m2; c1 = 3.74183 · 10−16 Watts · m2; c2 =

1.4388·10−2 m·oK; T is the illuminant colour temperature in oK; λ is the wavelength

in m. Given the intensity of the radiation e (depends on the power of the illuminant

but is independent of surface and light colour); Plank’s law gives the spectral power

of the lighting source as:

E(λ) ≈ e · c1λ
−5e

−c2
λT (4.2)

Figure 4.1 shows the relative spectral power distribution of six Plankian

radiators, the relative spectral power distribution is normalised such that it has a

value of 100 at a wavelength of 560nm. The temperature of the Planckian radiator

and the wavelength together determine the relative amount of radiation being

emitted (colour of the light source). The temperature of a Planckian radiator is

called colour temperature which uniquely specifies the colour of the source.

An important measure that can be used to describe the colour properties of a
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4.2. Image formation

light source is its Correlated Colour Temperature (CCT) [159]. The CCT of a source

represents the colour temperature of a black-body radiator that has nearly the same

colour as the source.

Correlated colour temperature

CCT is a measure of the shade of whiteness of a light source, by comparison with

a blackbody. For example, the CCT of a typical incandescent lighting is 2700oK

which is yellowish-white. CCT for Halogen lighting is 3000oK. Fluorescent lamps

are manufactured to a chosen CCT by altering the mixture of phosphors inside the

tube. Warm-white fluorescents have CCT of 2700oK and are popular for residential

lighting. Neutral-white fluorescents have a CCT of 3000oK or 3500oK. Cool-white

fluorescents have a CCT of 4100oK and are popular for office lighting. Daylight

fluorescents have a CCT of 5000oK to 6500oK, which is bluish-white.

Another way of describing the colour properties of a typical light source (i.e.

candle, lamp or sun) may be done by means of standard illuminants, such as the

Commission Internationale de l’Eclairage (CIE) illuminants.

CIE illuminants:

CIE has codified the SPDs of different types of white light sources and called them

CIE illuminants [160]. There is a wide range of illuminants available, which represent

the general types of white illumination found indoors and outdoors, some examples

of CIE illuminants are:

• A represents incandescent or tungsten light (2856oK) found in the home.

• B and C simulate average daylight, where B represents non sunlight of

4874oK and C represents average sky daylight of 6774oK.

• D is the standardized representation of natural daylight, illuminant D65

represents mid-day sun of 6504oK.

• F represents the spectral quality of the most common fluorescent lamp found in

office environment. 12 CIE fluorescent illuminants are in active use today (F1,

F2,, F12), e.g. F2 represents cool white fluorescent 4100oK, F7 represents a
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Figure 4.2: Relative spectral power distribution of CIE illuminant D65

broadband florescent lamp which simulates CIE illuminant D65 (6504oK) and

F11 represents a narrow tri-band of 4000oK.

Figure 4.2 shows the relative SPD of CIE illuminant D65 and the equivalent

blackbody radiator of 6504oK represented by Plank’s formula. The CIE standard

illuminants are used in the calculation of colour measurements in colourimetric

software.

4.2.2 Materials

Once a material surface is hit by a bundle of light emitted by an illuminant, the

electromagnetic waves may be transmitted, absorbed, or reflected back into the air.

The quantities of transmitted, absorbed and reflected energy sum to the incident

energy at each wavelength. Those quantities are typically measured in relative terms

as fraction of the incident energy. Some materials may emit light, or fluorescence

effect may occur, where the material absorbs light at specific wavelengths and then

reflect light at different wavelengths. The surface’s absorptance, transmittance and

reflectance are obtained.

In this thesis, materials are assumed to be opaque so light transmission through

the material is not considered. The materials are assumed not to be fluorescence
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4.2. Image formation

and so the emission is not considered to focus on reflection. The radiance, reflected

light, regardless of the material types as well as the shape of the material can be

described as:

Radiance(λ) = E(λ)S(λ) (4.3)

Where λ is the wavelength, Radiance(λ) is the SPD of the reflected light, E(λ) is

the SPD of the incident light, S(λ) is the surface spectral reflectance of the material.

The surface spectral reflectance of a material refers to the ability of the

material to reflect different spectral distributions when some kind of light shine on

it. A reflectance model is the function which describes the relationship between

incident illumination SPD and reflected light at a given point on a surface and at

each wavelength. S(λ) is defined as the ratio between the reflected SPD to the

incident SPD. This model depends on the material composition, surface’s structure

and viewing geometry. For human perception, this reflectance model is a crucial

factor in recognizing an object optically; since different materials will have

different spectral reflectance. The Bidirectional Reflectance Distribution Function

(BRDF) is the general model of reflectance, however the measurement of such

model is difficult and computationally expensive, simplified models are proposed to

model the reflectance for computer vision problems.

Different materials have different mechanisms of reflection, optically; most

materials can be divided into two categories:

1. Homogeneous materials

2. Inhomogeneous materials

Homogeneous materials

Homogeneous materials have a uniform refractive index throughout their surface

and bodies, so if a bundle of light enters its surface, it will be totally reflected and a

specular only reflection is produced. Most homogeneous objects, have constant SPD

over the visible wavelength, making the reflected light, Radiance(λ), have similar

SPD to the incident light E(λ). Examples of homogeneous materials are mirrors
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4.2. Image formation

and polished metal.

A second important class of surfaces are the glossy or mirror-like surfaces, often

referred to as specular surfaces. Radiation arriving at a specular surface along a

particular direction can leave only along the specular direction, obtained by

reflecting the direction of incoming illumination about the surface normal.

Relatively few surfaces are either ideal diffuse or perfectly specular. The BRDF

of many surfaces can be approximated as a combination of a Lambertian component

and a specular component. A model that models the interaction between light and

surfaces and that takes the two components into account is discussed in the following

section.

Inhomogeneous materials

On the other hand, inhomogeneous materials have varying refractive index

throughout their surfaces and bodies. If a light hits its surface, part of the light

reflects (specular reflection), while the other part enters the object and then reflect

back to the air causing diffuse reflection. Examples of such surfaces include cloth,

many carpets, matte paper and matte paints. Such material’s surfaces are known

as diffuse (matte) surfaces or Lambertian surfaces. The radiance leaving a

lambertian surface is independent of illumination incidence angle, and such surface

looks equally bright from any direction. For Lambertian surfaces, the diffuse

reflectance is often called albedo.

Specularities or highlights are the bright spots on the surface of inhomogeneous

materials. Relatively few materials are either ideal diffuse or perfectly specular. The

reflection models discussed in Section 4.3 model reflection of opaque inhomogeneous

objects as a linear combination of diffuse and specular reflections.

4.2.3 Vision system

The light emitted by sources of illumination and modulated by surfaces in the

scene arrives at the capturing sensors of the colour vision system that is observing

the scene. The vision system senses the captured electromagnetic signal and then

transforms the information carried by light into a colour image of the physical
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Figure 4.3: Spectral sensitivity characteristics of the Sony ICX098BQ camera [161]

world.

Colour Charge Coupled Device (CCD) camera, which is an example of a typical

vision system, contains a set of sensors which convert electromagnetic energy into

electric signals, which are, then sampled and quantized. Conventional CCD cameras

insert colour filters, with different spectral sensitivity to the various wavelengths,

over each sensory element, typically red, green, and blue filters in order to obtain

colour information. The sensor Irradiance is a measure of signal that reaches the

camera’s sensor,

Irradiance(λ) = E(λ)S(λ)Q(λ) (4.4)

where Q(λ) is the spectral sensitivity of each of the three colour filters(QR, QG and

QB). These sensors transform the continuous colour signal into three components

by performing a spectral integration transformation between the space of spectral

colours and the sensors response colour space. The colour spectral space, Ω, which

has infinite dimension, is then represented by a finite-dimensional colour space.

Io =

∫

Ω

E(λ)S(λ)Q(λ)dλ (4.5)

where Io is the image intensity received by a given sensor of the camera, and

represented in a vector of three colour components Ro, Go, Bo.

A 3-CCD camera has three CCD sensors for each pixel element, however a single-

CCD camera, captures one colour component with each CCD sensor and the two

missing colour components are estimated from the adjacent existing sensors using
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4.2. Image formation

Bayer filters.

Figure 4.3 shows the spectral sensitivities of the Sony ICX098BQ [161] CCD

sensors, excluding lens characteristics and light source characteristics, as an example

of a typical surveillance camera.

Apart from the spectral sensitivity of the colour filters, the formation of digital

image colour values includes other factors, such as lens characteristics, and the

electronics of the camera.

Camera model

There are several noise sources in a CCD imaging systems that prevent the

measurement of the actual scene intensity. Healey et al. [162] examine the effect of

these noise sources and describe the following model for a single pixel recorded

using a CCD camera:

I = g(Io + µDC + NS + NR) + NQ (4.6)

where I is the measured image intensity for a given sensor, g is the camera gain, Io

is image intensity received by a given sensor of the camera, µDC is an offset which

represents the dark current, NS is the shot noise, NR is the readout noise and NQ is

the quantisation noise. The dark current µDC is constant over time. The shot noise

NS has a Poisson distribution with µS = 0 and σS depends on Io. The readout noise

NR has a Gaussian distribution with µR = 0 and constant σR. The quantisation

noise NQ has a uniform distribution U(− q

2
, q

2
) where q is the smallest step in pixel

value.

Gamma correction

Cathode Ray Tube (CRT) monitors have a non-linear relationship between the

input voltages and the rendered intensities. To reproduce an image accurately, the

image is gamma-corrected in such a way that the monitor displays the desired

intensities [160]. The ITU-R Recommendation BT.709 transfer function defines

gamma-compensated values R̀, G̀ and B̀ from R, G and B as :
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Ì =






4.5I if I ≤ 0.018

1.099I0.45 − 0.99 if 0.018 < I

(4.7)

where Ì represents a vector of R̀ G̀ and B̀. Since gamma-correction is already applied

by the camera as standard practice, most digital image data should be interpreted

as R̀G̀B̀ and not RGB. The prime symbols in this equation, and in these to follow,

denote non-linear components.

In order to simulate the physical world of image formation, linear-light coding

is necessary, non-linear gamma correction that is imposed by the camera has to

be removed, to convert the image data back into its linear-light representation, as

shown in Figure 4.4.

I =





Ì
4.5

if Ì ≤ 0.081
(

Ì+0.099
1.099

) 1
0.45

if 0.081 < Ì

(4.8)

Withagen et al. [163] analyze a range of different types CCD cameras for their

use in measurements, and they extend the camera model in Equation 4.6 by adding

a parameter h with a value in the range of [0, 1] to model the effect of the iris and

shutter control and another parameter γ to represent the gamma adjustment.

I = gγ(h(Io + µDC) + NS + NR)γ + NQ (4.9)

Using experiments, Withagen et al. [163] show that for several cameras, except a

typical consumer webcam, the amount of additive noise is exceeded by the amount of
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4.2. Image formation

multiplicative noise at intensity values larger than 10%−30% of the intensity range.

They propose a simplification of the model under normal operating conditions, where

they neglect the dark current and the additive noise.

Ì = gγ(h · Io + NS)γ (4.10)

The image pixel colour value on which image processing tools operate represent

a measure of signal that reaches the camera’s sensor (Irradiance) from a point on

a surface mixed with camera calibration parameters and camera noises. For image

analysis, the signal that is radiated from the material surface (Radiance) is more

important. Therefore, information about the radiance needs to be extracted from

the image pixel value.

By combining the measured colour modeled by Equation 4.5 and the camera

model in Equation 4.9, the relation between camera irradiance and material radiance

may be than presented by means of Equation 4.11. In this case, the signal Io that

reaches the camera’s sensor from a point on a surface is proportional to the surface

reflactance.

Ic = g(h(

∫

Ω

E(λ)S(λ)Qc(λ)dλ + µDC) + NS (4.11)

where Ic is represented in a vector of three Gamma-corrected camera output

colour components R, G, B. Unlike Equation 4.10, the assumption used in [163] is

not considered and the effect of the dark current is considered.

Equation 4.11 concludes that image pixel colour values may be interpreted as

a function of physical phenomena. To this end, the first objective of the chapter,

that is defining different image formation elements and linking the physical scene

properties to a digital colour image, is achieved. Different image formation models

and colour representation systems have been proposed in order to process colour

information, those are reviewed in the next sections.
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4.3. The dichromatic reflection model

Figure 4.5: Schematic diagram of image formation

4.3 The dichromatic reflection model

There is a great number of reflection models, most of them developed in the field of

computer graphics [102, 119, 120]. Among these methods, the dichromatic reflection

model in [102] is a usual choice for those algorithms employing a physical model to

represent colour images.

The dichromatic model represents the reflected light of an inhomogeneous

dielectric material as a linear combination of diffuse and specular reflections. Each

of these parts is further divided into two elements, one accounting for the

geometry and another purely spectral.

I(λ, x̄) = wd(x̄)E(λ, x̄)Sd(λ, x̄) + ws(x̄)E(λ, x̄)Ss(λ, x̄) (4.12)

Where λ is the wave length, x̄ is the position of a surface point in a 3D world

coordinate system, I(λ) is the reflected light spectral power distribution, wd is a

geometrical parameter for diffuse reflection, ws is a geometrical parameter for

specular reflection, E(λ) is the spectral power distribution function of the

illumination, Sd(λ) is the diffuse surface spectral reflectance of the object, Ss(λ) is

the specular surface spectral reflectance of the object.

The neutral interface reflection assumption [164] states that the spectral
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4.3. The dichromatic reflection model

distribution of the specular component, E(λ, x̄)Ss(λ, x̄) is similar to the spectral

power distribution of the incident light E(λ, x̄). So Ss(λ, x̄) is assumed to be a

constant scalar with respect to the wavelength Ss(λ, x̄) ≈ Ks(x̄), so assuming

w̃s(x̄) ≈ wsKs(x̄), then the dichromatic model becomes:

I(λ, x̄) = wd(x̄)E(λ, x̄)Sd(λ, x̄) + w̃s(x̄)E(λ, x̄) (4.13)

Starting with both dichromatic reflection model and camera model, the camera

output (R, G and B) depends on three factors:

1. Illuminant (light source) (E)

2. Camera (sensors) spectral sensitivity characteristics (Q)

3. Spectral reflectance of the object (S)

R =wd

∫

Ω

E(λ)S(λ)QR(λ)dλ + w̃s

∫

Ω

E(λ)QR(λ)dλ

G =wd

∫

Ω

E(λ)S(λ)QG(λ)dλ + w̃s

∫

Ω

E(λ)QG(λ)dλ (4.14)

B =wd

∫

Ω

E(λ)S(λ)QB(λ)dλ + w̃s

∫

Ω

E(λ)QB(λ)dλ

where Ω is the visible range from 400nm to 700nm, I(λ) is the spectral power

distribution of the reflected light, wd is a geometrical parameter for diffuse

reflection, ws is a geometrical parameter for specular reflection, E(λ) is the

spectral power distribution function of the illumination, S(λ) is the surface

spectral reflectance of the object, QR(λ), QG(λ) and QB(λ) are the Red, Green

and Blue camera sensor spectral sensitivities characteristics respectively. Figure

4.5 shows a schematic diagram of image formation mdel.

The assumptions made by the dichromatic reflection model are:

1. There is a single light source, that can be a point source or an area source;

2. The illumination has a constant SPD across the scene;

3. The amount of illumination can vary across the scene.

For what concerns the surface properties, the model assumes that:
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4.3. The dichromatic reflection model

1. The surface is opaque;

2. The surface is not optically active (no fluorescence);

3. The colorant is uniformly distributed

The assumption of illumination being due to only one source of illumination is

limiting the application of such models to scenes where there is a dominant

illuminant. The assumptions about the surface are typical for reflection models

and not too unrealistic.

4.3.1 Shading model

Shading model is an approximated model derived from the dichromatic reflection

model. For images of scenes which contain Lambertian surfaces; shading reflection

model adopt two approximations to the dichromatic model: diffuse only reflection

and narrowband sensor sensitivity approximation.

Diffuse only reflection approximation

Assuming Lambertian surfaces, theoretically, an image taken by a digital colour

camera (for diffuse only reflection) can be described as:

Ic = wd

∫

Ω

E(λ)S(λ)Qc(λ)dλ (4.15)

Narrowband sensor sensitivity approximation

The second approximation that may be taken is ideal camera sensors, combined with

the first approximation (diffuse only reflection). For narrowband sensor sensitivity,

camera sensors are assumed ideal and are expressed using the Dirac delta function

as:

Qc = δ(λ − λc) (4.16)

the observed image intensity at a pixel x can then be modelled as the product of

two components: the illumination E(λ) from the light source(s) in the scene and
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4.3. The dichromatic reflection model

the reflectance S(λ) of the object surface. Thus each colour channel becomes:

Ic = E(λc) S(λc) = Ec Sc (4.17)

Intrinsic image

Only the reflectance component S contains information about the objects visible in

the scene. A type of illumination-invariant feature, intrinsic image, can be derived

by first filtering out the illumination component E from the image. If the

illumination has lower spatial frequency content than the reflectance component S,

a homomorphic filter can be used to separate the two components of the intensity

signal. That is, logarithms are taken on both sides of the shading model to obtain:

ln(Ic(x,y)) = ln(Ec(x,y)) + ln(Sc(x,y)), (4.18)

Since the lower frequency component is now additive, it can be eliminated using a

high-pass filter. The intrinsic image can thus be estimated as:

Sc(x,y) = eF (ln(Ec(x,y))+ln(Sc(x,y))), (4.19)

where F (·) is a high-pass filter. The intrinsic image can be provided as input to the

decision rule step of a change detection process.

4.3.2 Linear models

Several researchers [105–107] show that both illumination and surface spectral

reflectance are relatively smooth functions of the wavelength of light in the visual

spectrum and that they can be expressed using finite-dimensional linear models.

Judd et al. [126] showed that the daylight could be accurately described by a

linear mixture of three basis functions.

E(λ) ≈
3∑

i=1

eiEi(λ) (4.20)

The surface reflectances of a great variety of materials have been studied.

88



4.3. The dichromatic reflection model

−0.2

−0.1

0

0.1

0.2

0.3

S
ur

fa
ce

 S
pe

ct
ra

l R
ef

el
ec

tiv
ity

 (
 φ

 )

 

 

wavelength, nm(λ)
400 450 500 550 600 650 700

φ1

φ2
φ4

φ3

Figure 4.6: Parkkinen’s first 4 basis functions [165]

Parkkinnen et al. [125], Maloney [106] studied the reflectance properties of the

Munsell chips, which is a database of experimentally measured surface spectral

reflectance characteristics. Parkkinen concludes that 8 basis functions can cover

almost all existing data in Munsell chips database [166]. However, it has been

shown in the literature [20] that the spectral reflectance calculated using the first

three basis functions has average error 0.0055 and 0.01. Figure 4.6 shows the first

4 Parkkinen basis functions. As it can be seen from the figure, a significant

characteristic of Parkkinen basis functions is the flat distribution of his first basis

function.

S(λ) ≈
n∑

i=1

wiφi(λ) (4.21)

where φi(λ) is the ith reflectance linear basis function, and wi is its corresponding

weight, n is the number of basis functions used.

Using finite-dimensional linear models to represent the surface spectral

reflectance provides a compact description of data, with few basis functions we can

represent surface spectral reflectance for general materials. The linear models have

been extensively used in some colour constancy algorithms where the main aim

was to recover either the illumination or the reflectance functions, or both of them.

Main works in such topics are those of Tominaga and Wandell [116], Marimont

and Wandell [107].
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Illuminant estimation

The aim of illuminant estimation is to imitate the human ability to separate the

illumination PSD from the surface reflectance. Several approaches have been

proposed, this includes methods relying on linear models [19], neural networks [21],

reliance on highlights and mutual reflection [20], and Bayesian and probabilistic

approaches [22].

From a mathematical point of view the problem of estimating the illuminant is

under-determined, using a camera which gets only three spectral samples. If there

are enough surfaces in the scene, then, in theory, the illuminant can be reliably

estimated, and therefore, in turn, can surface reflectance. For example, the scene

can be assumed to be colourimetrically unbiased, a uniform background that was

everywhere set to the average, adaptation reflectance, that is, no particular colour

predominates (equivalent background hypothesis or the grey ‘grey-world’

assumption). The spatial average colour then coincides with the illuminant colour

[167].

The Grey-world assumption is one of the earliest developed, and is based upon

the assumption that the spatial average of surface reflectances in a scene is

achromatic. Since the light reflected from an achromatic surface is changed equally

at all wavelengths, it follows that the average of the light leaving the scene is the

colour of the unknown iluminant [127]. The implied diagonal transform is simply

the ratio of the average grey of the image illuminated under the canonical to that

of the unknown.

The Retinex model uses similar assumptions to those of the Grey-world

algorithm. This method assumes the presence of a white patch, from which the

chromaticity of the illuminant is perfectly preserved. The maximum of the channel

responses is assumed to arise from the reflectance of a white surface, and is

subsequently used in the computation of the diagonal transform. The method is

susceptible to specularities, since they can produce a maximum reflectance easily

greater than that of a pure white surface. However, priori knowledge of the

presence of specularities is beneficial as they preserve more of the illuminant

chromaticity.
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Gamut-mapping is an alternative technique used to determine an unknown

illuminant by recovering the transform which best projects the measured gamut

into that of the canonical. The diagonal transforms are determined by computing

the convex hull of both the canonical and unknown illuminant reflectances,

computing the set of mappings which take individual hull points from the

unknown hull onto those of the canonical hull, and choosing the best transform

from the intersection of all the transform sets. Each variant of the gamut mapping

technique can be differentiated by their process of selecting the diagonal transform

from the feasible set. The feasible set is further constrained by restricting the

amount in which the illumination can vary [127].

McCamy et a. [159] derived a simple equation to compute correlated colour

temperature from CIE 1931 chromaticity coordinates x and y, which is useful in

designing sources to simulate CIE illuminants.

n =
x − xe

ye − y
(4.22)

where xe = 0.3320 and ye = 0.1858 Then

CCT = 449n2 + 3525n3 + 6823.3n + 5520.33 (4.23)

This equation proves useful for implementation in real-time applications. It was

derived from the assumption that CCT may be represented by a third-order

polynomial function of the reciprocal of the slope of the line from specular pixels

to the chromaticity of the light. The method is based on the fact that the

isotemperature lines for CCTs of principal interest nearly converge towards a point

on the chromaticity diagram. McCamy’s method has a maximum absolute error of

less than 2oK for colour temperatures ranging from 2856oK to 6500oK

(corresponding to CIE illuminants A through D65) [168].

4.4 Colour spaces

A colour space is a mathematical representation of continuous spectral colours in a

three-dimensional vector space, using three primary colours, which allows colour

analysis and manipulation. Different colour spaces can be derived by defining
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different primary colours.

Colour spaces are developed according to output devices, physiological or

physical properties. A number of standard colour space specifications are well

developed. However, different definitions can often be found for the same colour

space. For more information about colour spaces, the reader is referred to [169] for

a detailed review.

In this section, the main colour spaces that have been proposed for change

detection problem, reviewed in Chapter 3, are discussed. Colour spaces can be

classified by their device dependency, e.g. device independent colour components

are the same on all output devices. On the other hand, device dependant colour

spaces will have different components for different output devices. Colour spaces

can be also classified as user-oriented models which try to build a bridge between

the user and the hardware used to manipulate colour. However in this section a

classification of colour spaces depending on the transformation from the camera

output is used. This presentation follows a classification of colour spaces in two

groups:

1. Linear colour spaces

2. Nonlinear colour spaces

4.4.1 Linear colour spaces

A linear colour space can be defined by a linear transformation of the colour matching

functions of another. Such a transformation provides a corresponding invertible

linear mapping between the tristimulus component vectors in the two spaces.

RGB colour space

The RGB camera output maps spectral power densities to a triple of numerical

components that are the mathematical coordinates of R, G and B. It is device-

dependent colour space used for capture and display devices. It is an additive colour

system. RGB space may be modelled as a cube with the three axes corresponding

to red, green and blue. The bottom corner, when red = green = blue = 0 is black,
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while the opposite top corner, where red = green = blue = 255 (for an 8-bit per

channel display system), is white. The RGB colour space suffers from the high

correlation among the R, G and B components; if the intensity changes, all the

three components will change accordingly. Therefore, the measurement of a colour

in RGB space does not represent colour differences in a uniform scale; it is difficult

to evaluate the similarity of two colours from their distance in RGB space. RGB

space is used in some change detection algorithms since no transform is required.

Grey-scale

grey-scale represents the 1D projection of the three channels of colour images that

is regarded as a simple way of combining colour information. In Rec. 709 [169]

standard, the weights to compute true CIE luminance from linear red, green and

blue (indicated without prime symbols) are:

Y709 = 0.2125R + 0.7154G + 0.0721B (4.24)

To compute non-linear video luma (Ỳ601) BT. 601-4 (formerly CCIR Rec. 601) from

non-linear red, green and blue:

Y601 = 0.299R̀ + 0.587G̀ + 0.114B̀ (4.25)

YUV colour space

The Y UV colour space separates RGB into luminance and chrominance

information [169], by subtracting Luma (Ỳ ) from non-linear blue to form (B̀ − Ỳ )

and by subtracting luma (Ỳ ) from non-linear red (to form (R̀ − Ỳ ) ), Chroma.




Ỳ

U

V


 =




0.299 0.587 0.114

−0.299 −0.587 0.886

0.701 −0.587 −0.114







R̀

G̀

B̀


 (4.26)

with Ỳ in the range of [0, 1] and U , V , in the range of [−0.5, +0.5]
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4.4. Colour spaces

YCbCr colour space

The Y CbCr colour space separates RGB into luminance and chrominance

information [169]. Luminance information is stored as a single component (Ỳ ), and

chrominance information is stored as two colour-difference components (Cb and

Cr). Cb represents the difference between the blue component and a reference

value. Cr represents the difference between the red component and a reference

value. Digital video widely uses this colour space. Given R, G and B in the range

of [0, 1], 


Ỳ

Cb

Cr


 =




65.841 128.553 24.966

−37.797 −0.587 112

112 −93.786 −18.214







R̀

G̀

B̀


 (4.27)

with Ỳ in the range of [16, 235] and Cb, Cr, in the range of [16, 240].

4.4.2 Non-linear colour spaces

HSV colour Space

The HSV is a non-linear transformation from the RGB camera output, which is

more intuitive to human vision. It separates colour information of an image from

its intensity information. Colour information is represented by Hue and

Saturation values, while Intensity describes the brightness of an image pixel.

Hue represents basic colours, and is determined by the dominant wavelength in

the spectral distribution of light wavelengths. It is the location of the peak in the

spectral distribution. The Saturation is a measure of the purity of the colour, and

signifies the amount of white light mixed with the Hue. It is the height of the

peak relative to the entire spectral distribution.

(H, I, S) = (arctan(

√
3(R − B)

(2R − G − B)
),

R + G + B

3
, 1 − min(R, G, B)

I
(4.28)

H =arctan(

√
3(
∫
Ω

E(λ)S(λ)(QR(λ) − QB(λ))dλ)∫
Ω

E(λ)S(λ)(2QR(λ) − QG(λ) − QB(λ))dλ)
) (4.29)
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4.4. Colour spaces

S =1 − 3 · min(
∫

Ω
E(λ)S(λ)QR(λ)dλ,

∫
Ω

E(λ)S(λ)QG(λ)dλ,
∫
Ω

E(λ)S(λ)QB(λ)dλ)∫
Ω

E(λ)S(λ)(QR(λ) + QG(λ) + QB(λ))dλ

(4.30)

The Hue and Saturation are dependant on the absolute illuminant power

distribution, the sensors sensitivities and the surface spectral reflectance. However,

they are insensitive to surface orientation changes, illumination direction changes

and illumination intensity changes. Hue is invariant to certain types of highlights,

shading, and shadows, therefore it can be used for segmentation in 1D space if the

saturation is not low.

The main drawback of the hue that it has a nonremovable singularity near the

axis of the colour cylinder, where a slight change of input R, G and B values can

cause a large jump in the transformed values. Hue and Saturation play little role

in distinguishing colours if the intensity of the colour lies close to white or black.

The singularities may create discontinuities in the representation of colours. The

hue values near the singularity are numerically unstable. That is why pixels having

low saturation are left unassigned to any regions in many segmentation algorithms.

There are some variants of HSI colour spaces, such as HSB Hue Saturation

Brightness, HSL Hue Saturation Lightness, and HSV Hue Saturation V alue.

rgb colour space

The rgb colour space attempts to represent the real colour information of an image

pixel and to be invariant to the brightness of the image. This colour space

normalises the variations of intensities uniformly across the spectral distribution in

order to make colours invariant to the change in lighting intensities. It is a

non-linear transformation from the RGB camera output. The rgb colour space is

formulated as:

(r, g, b) =(
R

R + G + B
,

G

R + G + B
,

B

R + G + B
) (4.31)
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This transformation projects a colour vector in the RGB cube into a point on the

unit plane. Two of the rgb components suffice to define the coordinates of the colour

point in this plane. Since rgb is redundant (b = 1−r−g), the generalised normalised

colour is given by

(I, r, g) =(αR + βG + γB,
R

R + G + B
,

G

R + G + B
) (4.32)

Where α, β and γ are chosen constant such that α + β + γ = 1. I represents the

intensity component, while r and g are chromatic components of an image pixel. By

substituting Equation 4.15 in 4.31,

r =
wd

∫
Ω

E(λ)S(λ)QR(λ)dλ

wd

∫
Ω

E(λ)S(λ)(QR(λ) + QG(λ) + QB(λ))dλ
)

g =
wd

∫
Ω

E(λ)S(λ)QG(λ)dλ

wd

∫
Ω

E(λ)S(λ)(QR(λ) + QG(λ) + QB(λ))dλ
) (4.33)

b =
wd

∫
Ω

E(λ)S(λ)QB(λ)dλ

wd

∫
Ω

E(λ)S(λ)(QR(λ) + QG(λ) + QB(λ))dλ
)

Equation 4.33 shows that the three components, r,g, and b are dependant on the

absolute illuminant power distribution, the sensors sensitivities and the surface

spectral reflectance, and are insensitive to surface orientation (viewing geometry)

changes, illumination direction (local illumination ) changes and illumination

intensity changes. The rgb colour space is relatively robust to the change of the

illumination; however the normalization reduces the sensitivity of the distribution

to the colour variability. It is more effective than RGB coordinates for suppressing

unwanted changes due to shadows. But an obvious shortcoming of normalised

RGB is that the normalised colours are very noisy if they are under low intensities

[78]. This is due to the nonlinear transformation.

4.5 Summary

The transformation from real scenes to digital images depends on four main

elements: an illuminant, a medium, a material and a vision system. Colour values

are the integration of the product of incident illumination spectral characteristics,
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4.5. Summary

intrinsic object surface spectral reflectance and camera sensors sensitivities.

Geometrical features represent the scene structure, the illuminant orientation, the

surface roughness and the viewing geometry. Spectral and geometrical features

which characterise the elements of the scene appearance combine non-linearly to

yield digital image.

This chapter shows that among the various reflection models, which describe the

image formation process, proposed in the literature; the dichromatic reflection model

represents a practical choice for image processing and computer vision approaches.

The dichromatic model represents the reflected light of an inhomogeneous dielectric

material as a linear combination of diffuse and specular reflections. Each of these

parts is further divided into two elements, one accounting for the geometry and

another purely spectral. The main limitation of this technique is that it can be

applied only to inhomogeneous dielectrics.

Colour constancy is the ability to separate the illumination power spectral

distribution from the surface spectral reflectance. Extracting information about

surface reflectance is a necessary condition for colour constancy. Because a surface

reflectance spectrum cannot be recovered uniquely from three colour components,

perfect extraction of a surface spectral reflectance is physically impossible. The

colour constancy techniques are intorduced with the intention of using them in the

context of change detection and foreground segmentation.

By applying the dichromatic reflection model for Lambertian surfaces, three main

photometric invariants which are sensitive to changes in surface reflectance can be

extracted, reflectance ratio, intrinsic image and surface spectral reflectance (using

a linear model). Reflectance ratio and intrinsic image are derived from the shading

model, which represents an approximated form of the dichromatic model, assuming

sharp sensors.

This chapter shows that understanding the definition of different colour spaces

with respect to its physical basis; is important to identify the most suitable

photometric invariant feature for image representation.
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“In our endeavor we came to learn that good

laboratory technology should be supported by deep

knowledge of the business, market, and user realities

to become a success story. Actually, we can now

corroborate that in certain cases technology transfer

can be as challenging as the basic research that

precede it.”

C. Regazzoni, V. Ramesh, and G. Foresti [1]

5
Proposed Physics-Based Change Detection

Algorithms

5.1 Introduction

The problem of change detection and foreground segmentation has been investigated

within several research domains. The accurate segmentation of moving objects in

video sequences represents a key process for smart and automated video surveillance

systems. Consequently, the development of robust and flexible methods for the

automatic segmentation of moving objects is of primary interest.

The workplace surveillance framework proposed in Chapter 2 is one of the

applications where important objects are the moving objects. The automatic

segmentation of such moving objects is possible through change detection. An
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5.1. Introduction

accurate segmentation is especially required where the objects and their

movements are analysed to obtain information from the scene.

In Chapter 3, the image representation for change detection was reviewed. The

review shows that different colour spaces have been proposed to represent the

image in the majority of change detection algorithms. Most of the work has been

the application to the three-dimensional colour space of algorithms originally

developed and used for analysing grey-scale images. However several noise

components limits the capabilities of such approaches. The main sources of noise

are camera noise, illumination variation and texture similarity between foreground

objects and background. Section 4.2.3 shows that the camera model suffers from

various additive and multiplicative sources of noise, which can be represented by

different distributions. The complexity of the model along with the diversity of

such distributions makes it difficult for both parametric and non-parametric

statistical modelling techniques, reviewed in Chapter 3, to discount for all these

types of noise. Statistical modelling techniques are more suitable to model the

periodic background motions in outdoor applications.

The physical approach used in the colour constancy field studies colour image

formation while taking into consideration the characteristics of camera sensors, in

order to estimate scene illumination and to extract the surface spectral reflectance

of objects. Image formation models which aim to capture the full surface reflectance

spectra are reviewed in 4.3.2. A gap, in the literature of change detection, is that

the use of such physical models have not been fully investigated.

Linear models for image formation has been applied and proven useful for a

number of applications [108, 109], nevertheless these models have not been applied

yet in the field of change detection. The reason appears to be the computational

complexity of such models, and hence unfeasibility of real-time implementation.

However, the linear models developed in [105–107] to estimate the surface spectral

reflectance give a good starting point toward the solution for such a problem. This

thesis is the first attempt to investigate the use of such models in change detection.

Change detection based on physical models would permit image representation

via the study of the process of image formation. Algorithmically, the basics of these
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approaches are often very similar to those of other change detection methods, and

only differ from them in the fact that these algorithms explicitly use the reflectance

models of surfaces to represent a colour image.

This chapter starts by investigating the challenges of using models of image

formation as a basis for change detection algorithms which target smart

video-based workplace surveillance application. Two methods for change detection

and the segmentation of foreground objects for indoor environments are proposed.

The adopted strategy exploits physics-based features and namely relies on surface

reflectance based properties of objects and is designed to be able to work

automatically when illumination and scene’s characteristics are unknown.

This chapter is devoted to the description of the proposed methodologies and of

the adopted algorithmic solutions. An evaluation of the performance of the proposed

algorithms to a number of test sequences and through the comparison with one of

the state-of-the-art algorithms will be provided in Chapter 6.

5.2 Challenges

There are many challenges which face the use of physics-based image formation

models as a basis for change detection algorithms in order to target indoor workplace

surveillance applications. This can be divided into two different types. Firstly,

challenges imposed by the operational requirements of the workplace application.

Secondly, challenges related to the mathematical complexity of the reflection models.

The first type of challenges is related to the development of robust change

detection techniques which can deal effectively with different indoor environments,

where the surveillance task is done within confined areas, and the camera is near

from moving objects. Robustness means the algorithm ability to operate for

extended periods of time, with no or minimum parameter adjustments. The

algorithm should adapt itself automatically with changes in the workplace

environment, to cope with changes in lighting, scene geometry and scene activity

without missing a significant number of events. The algorithm needs to operate in

real-time.
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The second type of challenges is related to the application of reflection models

and colour constancy techniques in a real-time video surveillance application. There

are three primary considerations:

1. The choice of a suitable reflection model.

2. The variability of surface spectral reflectance.

3. How to represent a reference of the scene surface reflectance under varying

illumination conditions.

4. The choice of suitable colour constancy techniques.

These considerations are the main focus of this chapter. There are different

reflection models proposed in the literature, as discussed in Section 4.3, however the

choice of the suitable reflection model for such real-time change detection algorithm

is not easy. There is a need to consider the assumptions of different models and

to adopt the model with the set of assumptions which do not contradict with the

real-world operational conditions.

The other consideration is the variability of surface spectral reflectance for

different materials. Ideally, the algorithm should be able to model all types of

materials contained in a workplace environment. However the available models are

trained for only a limited number of materials.

One of the main problems is the illumination variation and how to represent

a reference of the scene under varying illumination conditions. This leads to the

challenge of estimating the illumination in real-time, and the choice of the suitable

colour constancy technique which can ensure a rapid and convenient estimation of

the illumination and extraction of the surface spectral reflectance.
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5.3. Change detection algorithm based on reflectance ratio

5.3 Change detection algorithm based on

reflectance ratio (Algorithm 1)

5.3.1 Background theory

This section describes a new change detection technique which models illumination

variation using the ratio between foreground pixels and background pixels, based

on reflectance ratio, assuming stationary camera. This method is based on shading

model. The assumptions which has been made are that the scene contains only

inhomogeneous materials, diffuse only reflections are considered and camera

sensitivities are sharp. The Mahalanobis distance is chosen as a measure to

segment foreground and shadows from static background. This method is an

extension to the method proposed by Wren et. al. [76], but instead of using the

Y UV as an image representation, the reflectance ratio is proposed.

This method uses the RGB colour space and calculates the ratio (for each colour

component) between a representative frame (i.e. background median) from a set of

static background frames, and each new video frame. Statistical means, variances

and covariances between ratio triples are calculated to build a background model;

Mahalanobis distance is then calculated and several thresholds are determined to

classify the pixel to one of the following types: foreground, background, and shadow.

5.3.2 The algorithm

Figure 5.1 shows a block diagram of Algorithm 1, the algorithm consists of three

phases, the training phase, the testing phase and the post-processing phase.

Training phase

In the training phase, the background model and the covariance matrix for the

reflected-intensity ratios from a pool of background frames are built (per pixel).

Starting with the shading model, discussed in Section 4.3.1, the intensities of the

background model Rbackground, Gbackground and Bbackground and the new frame under
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T r a i n i n g  P h a s e

V i d e o

Sta t i s t i ca l
M o d e l

A c q u i r e
T r a i n i n g  F r a m e s

M e d i a n  F i l t e r
R e f l e c t a n c e

R a t i o s

M a h a l a n o b i s
D i s t a n c e

T e s t i n g  P h a s e

A c q u i r e
T e s t i n g  F r a m e s

R e f l e c t a n c e
R a t i o s

M a h a l a n o b i s  
D i s t a n c e

D e c i s i o n
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P o s t - P r o c e s s i n g  P h a s e

S h a d o w
D e t e c t i o n

F o r e g r o u n d
M a s k

N o i s e  R e m o v a l

Figure 5.1: Algorithm 1 block diagram

103



5.3. Change detection algorithm based on reflectance ratio

investigation Rnew, Gnew and Bnew, could be expressed as follows:

I i
background = Ei

background · Si
background (5.1)

I i
new = Ei

new · Si
new (5.2)

where I represents the pixel value at location (x, y), but the subscript (x, y) is

removed for clarity, i refers to one of the colour components Red, Green, or Blue.

The main idea of this method is that the surface reflectance information could

be eliminated by taking the ratio of the shading model of each new frame and a

background representative frame (background model), I i
median, where:

I i
median = median(I i

background) (5.3)

If both the background model and the new video frame correspond to pixels

which have got the same intrinsic colour information, then the reflectance ratios RR

are:

RRi =
I i
new

I i
median

=
Ei

new · Si
new

Ei
median · Si

median

(5.4)

If the new pixel belongs to the background, the illumination might vary but the

surface reflectance remains constant, then Si
new = Si

median for all i, so the RRi are:

RRi =
I i
new

I i
median

=
Ei

new

Eimedian

(5.5)

These three variables, RRR, RRG and RRB, are statistically correlated, so the

Mahalanobis distance D has been chosen to be the statistical metric. A pixel with

small Mahalanobis distance is classified as background, otherwise the pixel is

classified to either foreground or shadow.

D2 = (RR − µRR)T σ−1
RR(RR − µRR) (5.6)

where µRR and σRR represent the mean and the covariance matrix of the reflectance

ratios, respectively.

104



5.3. Change detection algorithm based on reflectance ratio

Testing phase

In the testing phase, for each new video frame, the reflectance ratios are calculated

followed by Mahalanobis distance (per pixel). If the new pixel belongs to the

foreground (a new object), then Si
new 6= Si

median for all i, then the RRi are :

RRi =
I i
new

I i
median

=
Ei

new · Si
new

Ei
median · Si

median

(5.7)

The ratio now depends on both illumination and surface reflectance and does not

belong anymore to the statistical model of the background; higher Mahalanobis

distance. Then an initial FGMask is calculated:

FGMask =





1 if D > τfg

0 otherwise

(5.8)

where τfg is chosen using a threshold selection criteria discussed in Chapter 6.

Post-processing phase

Shadow detection

After the initial foreground mask FGMask has been created from the new frame by

the testing stage, a shadow detection stage is required to differentiate between

foreground pixels and background pixels which are in the shadow. The shadow

detection approach adopts both the conventional condition of the drop in the

pixel’s colour in addition to an implicit range of Mahalanobis distance. A set of

thresholds τsh, τ1 and τ2 are applied which depend on the intensity of the pixel and

the Mahalanobis distance. A pixel is then classified into one of two categories

background (BGMask) or shadow (SHMask) by the following decision procedure:

SHMask =






1 if D > τsh AND τ1 < (RRi − µi
RR) < τ2

0 otherwise

(5.9)

BGMask = NOT ( FGMask OR SHMask ) (5.10)

where τsh, τ1 and τ2 are chosen threshold empirically.
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Noise removal

A noise removal stage then follows the shadow detection stage and applies a dilation

step which performs a dilation operation thereon to expand or thicken the initial

foreground mask FGMask. The dilation operation is the union of all translations

of the mask by the structuring element SE. Then an erosion step performs an

erosion operation on the resultant mask, which reduces the size of an object by

eliminating area around the object edges. After the erosion operation has been

completed; the detection stage performs a connected component blob analysis on

the foreground mask FGMask. The erosion operation removes noise and eliminates

foreground mask details smaller than the structuring element, where the size of the

structuring element for both dilation and erosion is: SE = 2 pixels.

Sample Results for the algorithm are shown in Figure 5.2. Chapter 6 will discuss

the results, and a comparison between this technique and one of the state-of-the-art

techniques will be carried out.

Algorithm 1 Change detection based on reflectance ratio

Input: N -background frames
Output: Foreground mask
{Modelling Phase}

Step 1: Initialization. Calculate the median of n-background frames.
Step 2: Division. Divide each frame from the N -background frames by the

median.
Step 3: Background Modelling. Calculate the covariance matrix for the

reflectance ratios calculated in Step 2 above.
{Testing Phase}

Step 4: Initialization. Retrieve the covariance matrix and the median frame
produced in the background modelling phase.

Step 5: Division. Divide each new frame by the median frame (per pixel).
Step 6: Statistical Manipulation. Calculate Mahalanobis distance for these

three ratios, using Equation 5.6.
Step 7: Thresholding. Compare the Mahalanobis distance to the threshold τfg,

using Equation 5.8
Step 8: Shadow Detection. Compare both Mahalanobis distance to the

threshold τsh and the intensities to the thresholds τ1 and τ2 to obtain the shadow,
using Equation 5.9.
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5.3. Change detection algorithm based on reflectance ratio

(a) Ground truth (part1) (b) Ground truth (part2)

(c) Output without noise removal (Part1) (d) Output without noise removal (Part2)

(e) Output with noise removal (Part1) (f) Output with noise removal (Part2)

Figure 5.2: Samples of Algorithm 1 results for ‘Intelligent Room’ sequence
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5.4 Change detection algorithm based on surface

spectral reflectance (Algorithm 2)

5.4.1 Background theory

This section introduces a novel change detection technique, based on image

formation models. Motivated by the dichromatic colour reflectance model, this

method presents a new approach to change detection using explicit hypotheses

about the physics that create images. The assumptions which have been made are

that diffuse-only-reflection is applicable, and the existence of a dominant

illuminant.

This approach is different from all the previous work, in that it relies on models,

which can represent wide classes of surface materials. It makes use of the pre-trained

linear Surface Spectral Reflectance (SSR) models, i.e. Parkkinnen basis functions,

to represent the SSR of the objects in the scene. The method proposes a change

detection that tries to identify image pixels exhibiting similar colour, but possibly

varying intensity.

The rationale behind this approach is that the segmentation between foreground

and background objects can be done through the matching between the SSR over

the visible wavelengths of a reference background frame and each new frame. A

possible implementation could use the value of correlation as the metric of the

similarity between the pixels in the new frame with corresponding pixels in the

background. A computational physical model and methods used to calculate the

model is discussed first.

Surface spectral reflectance calculations

Figure 5.3 shows the block diagram of the SSR recovery module. this module is

responsible for the calculations of the SSR. In order to build a computational physical

model, discussed in Section 4.3.2, we start with the dichromatic model:

Ic =wd

∫

Ω

E(λ)S(λ)Qc(λ)dλ + w̃s

∫

Ω

E(λ)Qc(λ)dλ (5.11)
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S S R
R e c o v e r y

S e n s o r
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F o r m u l a

P a r k k i n e n
B a s i s  F u n c t i o n s

V i d e o
I l l um ina t i on
P a r a m e t e r s

S S R
M o d e l

Figure 5.3: Surface spectral reflectance recovery block diagram

The first 3 basis functions of Parkkinen (n = 3) are used, shown in Figure 4.6, and

the SSR is represented with :

S(λ) ≈
3∑

i=1

wiφi(λ) (5.12)

The characteristic of the camera sensors shown in Figure 4.3 are used to represent

the camera sensitivities. The SSR recovery module aim is to calculate the weights

of Parkkinen basis functions, to obtain the SSR of the object, the model could be

rewritten now as:

Ic =wd

∫

Ω

E(λ)

(
3∑

i=1

wiφi(λ)

)
Qc(λ)dλ + w̃s

∫

Ω

E(λ)Qc(λ)dλ (5.13)

or

Ic =

∫

Ω

E(λ)

(
3∑

i=1

w̃iφi(λ)

)
Qc(λ)dλ + w̃s

∫

Ω

E(λ)Qc(λ)dλ (5.14)

where

w̃i = wdwi, i = 1, 2, 3

Knowing that the first basis function of Parkkinen is constant so φ1(λ) = Kφ, which
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Figure 5.4: Reconstructed spectral reflectance for one pixel (Foster data set 1)

then could be merged with the specular component to give:

Ic = (w̃1kφ + w̃s)

∫

Ω

E(λ)Qc(λ)dλ +

∫

Ω

E(λ)

(
3∑

i=2

w̃iφi(λ)

)
Qc(λ)dλ (5.15)

by taking

Xic =

∫

Ω

E(λ)φi(λ)Qc(λ)dλ, i = 1, 2, 3 (5.16)

These integrations are calculated to obtain the transformation matrix:




R

G

B


 =




X1R X2R X3R

X1G X2G X3G

X1B X2B X3B







w̃1

w̃2

w̃3


 (5.17)

Now the weights of the basis functions can be obtained from RGB values by:




w̃1

w̃2

w̃3


 =




X1R X2R X3R

X1G X2G X3G

X1B X2B X3B




−1 


R

G

B


 (5.18)

In order to validate the estimated surface spectral reflectance, a set of measured

SSR provided by Foster [167] are used. Figure 5.4.1 presents both measured and

estimated surface spectral reflectance of one pixel. The result shows that the

estimation is close to the measured one. Appendix A shows more results (see

Figures A.1, A.2, A.3 and A.4).
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Figure 5.5: Statistical manipulation block diagram

Figure 5.5 shows the block diagram of the statistical manipulation module. This

module role is to measure the deviation of SSR of two objects, whether they have the

same material and colour or not, the statistical manipulation (matching) between

their spectral reflectance functions can be used. Hence, The second transformation

is the correlation between all three Parkkinen basis functions.




K11

K22

K33

K12

K13

K23




=




Corr(φ1, φ1)

Corr(φ2, φ2)

Corr(φ3, φ3)

Corr(φ1, φ2)

Corr(φ1, φ3)

Corr(φ2, φ3)




(5.19)

If a first surface has weights w̃1, w̃2 and w̃3, while another second surface has

weights w̃1new
, w̃2new

and w̃3new
, then the correlation between two surfaces becomes:

C = w̃1w̃1new
K11 + w̃2w̃2new

K22 + w̃1w̃1new
K33

+ (w̃1w̃2new
) K12 + (w̃1w̃3new

)K13 + (w̃2w̃3new
) K23 (5.20)

Figure 5.6 shows a block diagram for the illumination estimation phase. This

phase aims to calculate the correlated colour temperature as an illumination

parameter of the illuminant. McCamy’s method is used in this approach, which is
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Figure 5.6: Illumination estimation block diagram

able to estimate the CCT from CIE 1931 chromaticity coordinates x and y.

The illumination estimation phase starts by segmenting areas in the image which

represent high specularities (highlights); where a value for the illuminant CCT is

initially set depending on the available knowledge of the environment. For indoor

applications, as the one considered in this work, a value around 4000oK is reasonable

to cover the range of illumination used, this value is used to initialise the algorithm.

McCamy’s formula is then applied and the CCT is calculated. The illumination

SPD is then calculated using Plank’s formula (Equation4.2).

McCamy’s method has a maximum absolute error of less than 2oK for colour

temperatures ranging from 2, 856 to 6, 500oK (corresponding to CIE illuminants

A through D65) [168]. These errors are negligible over the range of interest in

this technique. McCamy’s method proves useful for implementation in real-time

applications. It is derived from the assumption that CCT may be represented by

a third-order polynomial function of the reciprocal of the slope of the line from

specular pixels to the chromaticity of the light.

Highlights segmentation

In order to segment the areas with high specularities (HighlightMask), one of the

acquired background frames BG is used and converted using the above SSR recovery

module, then the autocorrelation for all pixels is performed using the statistical
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5.4. Change detection algorithm based on surface spectral reflectance

Measured CCT = 4827 oK
Estimated CCT = 5024 oK

Figure 5.7: Segmented highlights from Foster data set 1

manipulation module. The highlights are then segmented as follows:

HL(x,y) =





0 if Corr(BG, BG) < τHL

1 otherwise

(5.21)

where τHL is chosen empirically, the value of 0.5 was found to be suitable.

Illumination estimation

The segmented pixels with high specularities are then converted to CIExyz and used

to estimate the actual illuminant’s correlated colour temperature, using McCamy’s

method according to the following two equations:

n =
x − xe

ye − y
(5.22)

where xe = 0.3320 and ye = 0.1858 Then

CCT = 449n2 + 3525n3 + 6823.3n + 5520.33 (5.23)

Samples of the segmented highlights are shown in Figure 5.7. Foster et al [167]

recorded this scene in the Gualtar campus of University of Minho, Portugal, on 31

July 2002 at 17:40 under direct sunlight and blue sky. Their Telespectroradiometer

reading produced CCT value of 4827oK. The estimated CCT from the illumination

estimation module is 5024oK. More examples are given in Figures B.1 (Appendix

B) .
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Figure 5.8: Algorithm 2 block diagram
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5.4.2 The algorithm

Figure 5.8 shows the block diagram of Algorithm 2, the algorithm consists of four

phases, the training phase, the testing phase, the post-processing phase and the

background update phase.

Training phase

In order to build a model for the background, the training phase starts by

acquiring a sequence of N input frames which represent relatively static

background frames, followed by the illumination estimation module which

estimates the CCT. Then the SSR recovery module converts the acquired

background frames into SSR weights BGW using the estimated CCT. The mean of

the background training frames BGWmean is then calculated as a reference SSR ,

BGWmean = mean(BGW ) (5.24)

The statistical manipulation module then passes through all background training

frames BGWi and calculates the correlation CRBG between the SSR of each frame

and the mean SSR of background frames using Equation 5.20,

CRBG = Corr(BGWi, BGWmean) (5.25)

where i represents the background frame number from 1 to N , where N is the

number of background frames used to estimate the SSR of the background.

Finally, the statistical manipulation module calculates the maximum CRmax and

minimum CRmin of CRBG as a statistical model of the background,

CRmin = min(CRBG) (5.26)

CRmax = max(CRBG) (5.27)

Testing phase

To perform the foreground segmentation, the testing phase starts by capturing a

new frame, and then the SSR recovery module converts the new frame NF to

basis function weights NFW representing its SSR, using the illumination parameter
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5.4. Change detection algorithm based on surface spectral reflectance

calculated in the illumination calculation stage of the training phase.

Figures 5.10(a) and 5.9(a) represent the reconstructed spectral reflectance for one

pixel which has not been changed in the background frame and the new frame in

‘Hall Monitor’ and ‘Intelligent Room’ Sequences respectively. The figures show that

the pixel maintain its spectral characteristics. Figure 5.10(b) and 5.9 (b) represent

one pixel which has been changed in the background frame and the new frame in

‘Hall Monitor’ and ‘Intelligent Room’ Sequences respectively. The figures show that

the pixel changes it spectral characteristics where new object covers the background.

The statistical manipulation module then calculates the correlation CR between

the SSR of the new frame NFW and the mean SSR of background frames BGmean,

CR = Corr(NFW, BGWmean) (5.28)

The threshold operation creates an initial binary foreground mask defined as

FGMask, using the maximum CRmax and minimum CRmin values of correlation

ratio CRBG measured from the pool of background frames.

FGMask =





0 if (1 − τc)CRmin < CR < (1 + τc)CRmax

1 otherwise

(5.29)

The threshold τc is calculated using a threshold selection criterion, discussed in

Chapter 6.

Post-processing phase

After the initial foreground mask FGMAsk has been created from the new frame by

the testing phase, a post-processing phase which consists of a noise removal

module applies a dilation step which performs a dilation operation thereon to

expand or thicken the initial foreground mask FGMAsk. The dilation operation is

the union of all translations of the mask by the structuring element SE. Then an

erosion step performs an erosion operation on the resultant mask, which reduces

the size of an object by eliminating area around the object edges. After the erosion

operation has been completed; the detection stage performs a connected

component blob analysis on the foreground mask FGMAsk. The erosion operation
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Figure 5.9: Reconstructed spectral reflectance for one pixel (‘Intelligent Room’
Sequence)
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Figure 5.10: Reconstructed spectral reflectance for one pixel (‘Hall Monitor’
Sequence)
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removes noise and eliminates foreground mask details smaller than the structuring

element, where the size of the structuring element for both dilation and erosion is:

SE = 2 pixels.

Updating phase

The statistical background model is derived by observing the scene during a

training period; this model may be updated continuously, especially where

illumination changes occurs, or where objects may enter the scene and remain

static for substantial time periods.

The background model is updated through a model maintenance phase, using

an update rate α, according to the following formulas: if FG = 0 then update

BGWmean as:

BGWmean = (1 − α) · BGWmean + α · NF

The algorithm stores the value of the CCT recorded during the background

modelling phase CCTBG. For each new frame the algorithm calculates the new CCT

value CCTn. The algorithm then check if abs(CCTn − CCTBG) > τCCT , where by

experiments τCCT = 100oK is found to be a reasonable change in the illumination.

If the illumination changes the background model is then updated as follows:

CRmin = min(CRmin, CR) (5.30)

CRmax = max(CRmax, CR) (5.31)

The value of the update rate used for the background model is α = 0.001. Sample

Results for the algorithm are shown in Figure 5.11. More discussion about the results

as well as the comparison between this technique with one of the state-of-the-art

techniques will be carried out as part of the evaluation chapter (Chapter 6).

119



5.4. Change detection algorithm based on surface spectral reflectance

Algorithm 2 Change detection algorithm based on surface spectral reflectance

Input: N -background frames
Output: Foreground mask
{Modelling Phase}

Step 1: Spectral Reflectance Conversion. Calculate the spectral reflectance
weights using the transformation in 5.18.

Step 2: Background Model. Calculate the mean of the N background spectral
reflectance.

Step 3: Correlation. Calculate the correlation between each background frame
and the background model.

Step 4: Statistical. Calculate the maximum and the minimum of the correlation
calculated in Step 3 (per pixel).
{Testing Phase}

Step 5: Spectral Reflectance Conversion. Calculate the spectral reflectance
weights for the new video frame using the transformation in Equation 5.18.

Step 6: Correlation. Calculate the correlation between each new video frame
and the background model.

Step 7: Segmentation. Compare the correlation calculated in Step 6 with the
maximum and minimum calculated in Step 4 using Equation 5.29.
{Updating Phase}

Step 8: Updating the BGWmean. Update the background SSR model BGWmean.
Step 9: CCT Estimation. Calculate the CCT from each new frame.
Step 10: Updating Statistical Model. If illumination changes update the

statistical model using Equation 5.30.

120



5.4. Change detection algorithm based on surface spectral reflectance

(a) Ground truth (part1) (b) Ground truth (part2)

(c) Output without noise removal (Part1) (d) Output without noise removal (Part1)

(e) Output with noise removal (Part2) (f) Output with noise removal (Part2)

Figure 5.11: Samples of Algorithm 2 results for ‘Intelligent Room’ sequence
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5.5 Summary

An investigation on the challenges of using physics-based models for image formation

as a basis for change detection algorithms has been carried out in this chapter. Two

novel algorithms have been developed which are based on a physical meaning of

image formation and which use advances in colour constancy techniques.

The first algorithm models illumination variations using the ratio between

foreground pixels and background pixels, based on shading model. The assumption

which has been made is that only diffuse components are considered and

narrow-band camera sensitivities are applicable. The Mahalanobis distance of

these ratio triples are then used to segment foreground and shadows from static

background.

The second algorithm is based on physics-based image representations which

transforms the RGB colour space into weights which represent the surface spectral

reflectance of the material. The assumptions are that only diffuse reflections are

considered and the existence of a dominant illuminant is applicable.

The challenge of the change detection approach based on surface spectral

reflectance arises from the new idea of processing the full-spectrum of the surface

spectral reflectance instead of the three samples used by other colour spaces. The

spectral representation uses a linear model, which consists of a number of basis

functions (pre-trained from a set of materials) and weights (calculated for the

object under investigation). A numerical estimation of the physics-based model for

image formation and the real-time transformation from the camera output to the

physical parameters is carried out. The segmentation between foreground and

background objects is done through the correlation between the intrinsic spectral

reflectance over the visible wavelengths of a reference background frame and each

new frame.
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“Segmentation results depend on the task at hand

and on the visual content. No single segmentation

technique is universally useful for all applications.

Moreover different techniques are not equally suited

for a particular application. An effective evaluation

of segmentation is important in selecting the most

appropriate technique for a specific application, and

furthermore for optimally setting its parameters.”

A. Cavallaro [158]

6
Performance Evaluation

6.1 Introduction

Change detection algorithms are a key component of a surveillance system.

However, the required performance of such techniques differs depending on the

target application [170], and on the particular characteristics of the monitored

environment.

Due to the diversity of smart video surveillance applications and the increasing

development of change detection algorithms, an automatic assessment procedure is

desired to compare the results provided by different algorithms. This procedure is

referred to as objective evaluation, which compares the output of each algorithm

with the ground truth, obtained manually, and measures the differences according

to objective metrics. The key challenge here is the presence of a decision process
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parameter(s) (threshold(s)) that influence the outcome of the algorithms. So, such

evaluation procedures should assist in both selecting optimal parameters for each

algorithm and ranking different algorithms, depending on specific application

requirements.

This chapter aims to evaluate the performance of the proposed change

detection algorithms proposed in Chapter 5 and one of the state-of-the-art

algorithms which derives the same functionality, targeting the requirements of the

workplace surveillance application proposed in Chapter 2. Discrepancy empirical

evaluation methods for change detection approaches, discussed in Chapter 3, are

adopted in this chapter. An objective criteria which indicates the difference

between the segmented frames and reference frames will be used. Real image data

will be manually annotated, to specify an ideal frame segmentation (ground truth).

In the case of physics-based algorithms, the synthetic data will not faithfully

represent the physical parameters of the real monitored scene.

Three evaluation methods are adopted, illustrative visual comparison,

objective, and computational complexity evaluation. Section 6.2 discusses the

performance metrics which will be used in the threshold selection criterion and

objective evaluation throughout this chapter. The experiments setup, and the data

set used in this chapter are introduced in Section 6.3. Optimal algorithms decision

rules (thresholds) that provide the best performance for each algorithm are chosen

in Section 6.4. In section 6.7 the performance metrics are applied to objectively

evaluate the proposed algorithms. The algorithms are evaluated in terms of their

computational complexity in Section 6.8. Finally, a new performance evaluation

metric is proposed and discussed.

6.2 Performance metrics

In this thesis, objective metrics are adopted to evaluate the performance of the

proposed change detection algorithms by comparing the output of the algorithms

with the ground truth obtained by manual edition. False alarms and detection

failures are considered as types of errors. A false alarm occurs when a foreground
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Table 6.1: Contingency table

True Class
Foreground Background

Output Class
Foreground TP FP
Background FN TN

object is detected at a position where none is present. The detection failures are

caused by missing regions which should have been detected. Ground truth based

measures are used to evaluate the segmentation quality of different change detection

algorithms, using pixel-based measures.

Given the contingency table where True Positives (TP ), number of correctly

detected foreground pixels, False Positives(FP ), number of pixels falsely detected

as foreground, and False Negatives (FN),, number of pixels falsely detected as

background, as shown in Table 6.1. The Precision P and Recall R may be estimated

as follows:

Recall = R(k) =
TP

TP + FP

where k is the frame number. The Recall can be used to estimate the tendency

of an algorithm to under-segment. The higher the recall the less likely is the under-

segmentation.

Precision = P (k) =
TP

TP + FN

The Precision can be used to analyse the tendency of an algorithm to over-

segment. The higher the recall the less likely is over-segmentation.

F (k) =
2

1
P (k)

+ 1
R(k)

The Harmonic Mean (HM), which is called the F-measure, will be used as a single

measure which combines Precision and Recall with equal weights, it assumes a high

value only when both Precision and recall are high.
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CDR =1 − MDR = Precision

FAR =1 − Recall

It is possible to estimate a pair (CDR(k), FAR(k)) for each frame in a sequence

under certain threshold value. Averaging of CDR(k) and FAR(k) over a whole

sequence of K frames (k = 1 → K), processed by the system, gives a more robust

estimate of the Receiver operation characteristics (ROC) curve

point(CDR(k),FAR(k)).

ROC curves

ROC curves were developed to characterise the ability of a radar operator to

correctly distinguish between target echoes and false echoes.

ROC curves have been extensively used: in medical sciences, to evaluate and

compare diagnostic systems; for the performance evaluation of image processing

algorithms e.g. edge detection algorithms; and for the evaluation of machine learning

algorithms. In this thesis ROC curves provide a well assessed tool that can be used

for the purpose of evaluating the performance of change detection algorithms.

An ROC curve is generated by plotting the correct detection rate (CDR) on the

vertical axis and the false alarm rate (FAR) on the horizontal axis. Each point on

the ROC curve represents a specific CDR and FAR obtained at a specific value of

the decision rule threshold.

In a complex algorithm, one main problem is that CDR(k) and FAR(k) depend

on many thresholds. Varying these thresholds, different ROC curves describing the

performance of the algorithm under different configurations can be obtained.

Consequently, the probability of correct detection and false alarms, used in the

ROC curves can be defined for a quite large class of application requirements. On

this basis, performances of different systems modules can be assessed in terms of

their capability to produce intermediate results potentially capable of satisfying

proposed workplace surveillance requirements.
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The crucial point is the estimation of detection and false alarm rates for the

considered task. For obtaining these quantities, the output of the algorithm under

evaluation has to be examined. A ground-truth reference is required in order to

compare the algorithm output with the segmentation produced by a surveillance

operator monitoring the scene.

6.2.1 Parameter selection criterion

In change detection algorithms, the decision rule threshold determines if a pixel in

the current frame corresponds to a moving object or not. Due to camera noise and

illumination variations, a certain number of pixels are different from the

background eventhough they do not belong to moving objects: a high value of the

threshold allows maintaining a low number of false alarms. On the other hand,

foreground objects presenting a low contrast with respect to the background risk

to be eliminated if the threshold is excessively high.

The parameter selection criterion chooses thresholds which maximise the

performance of the algorithm for a specific application. The parameters can be

selected by two different methods, either by selecting the parameter which

corresponds to a maximum F-measure or using ROC curves (minimax criterion).

Minimax criterion

ROC curves are used as a basic tool; a method is used that consists of tracing ROC

curves for decision rule threshold(s). Such curves will be analysed in order to allow

the maximisation of the global performance from the change detection algorithms

under test according to a statistical criterion related to minimax one as the one used

in [139]. The minimax criterion is a probabilistic criterion designed to minimise the

maximum possible Bayesian risk when no knowledge about source probabilities is

available [140]. Using this criterion gives:

CDR = 1 − (
Cf

Cm

)FAR
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where Cm and Cf are costs associated with mis-detection and false alarm errors,

respectively and they can be fixed by using knowledge related to the specific video

surveillance application [171].

For the application of the indoor workplace surveillance for example, Cm can

be related to the cost paid when an event is not detected, while Cf can represent

the detection of unimportant event, and the generation of a false alarm. A balance

between the higher corrrect detection rate and lower false alarm rate is important.

In the present evaluation Cf and Cm are considered equal without losing generality.

The minimax equation and the related line can be represented on the ROC curve

(CDR,FAR) plane. In particular, it can be shown that the interaction between

the minimax equation and an ROC curve gives the best operating point, i.e. the

configuration of system parameters that minimise the maximum Bayesian risk under

no knowledge of a-priori source probabilities.

6.3 Experiments setup

6.3.1 Data sets

The dataset used in this evaluation consists of three full-frame rate video sequences:

two public domain video sequences (‘Intelligent Room’ [172] and ‘Hall Monitor’

[173]) and the video sequence ‘Lab’ captured by the author. Figure 6.1 shows

samples of the used data set.

A video manipulation interface has been implemented on Matlab in order to allow

a human operator to segment moving objects from the static background. A total

number of 899 frames are segmented manually by marking-up the pixel boundary

of foreground objects, for use as ground truth in experiments1. The ground truth

data was validated for manual segmentation errors. The ‘Intelligent Room’ [172]

test sequence consists of 300 frames and the frame rate is 25 fps. It is a (320× 240)

uncompressed video sequence. In the ‘Intelligent Room’ sequence the clothes of the

person in the scene are textured which result in higher discrimination rates. The first

83 frames of the ‘Intelligent Room’ sequence contain no moving objects, and this

1Thanks to Mr Noaman and Mr Dawood who have performed the manual segmentation.
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(a) ‘Intelligent Room’ (b) ‘Hall Monitor’ (c) ‘Lab’

Figure 6.1: Samples of the used data set

means that these frames can be used to build the background model. The following

frames of the sequence represent one participant who enters from a door on the left

and moves toward the far end of the room away from the camera. The participant

then start raising his hands up and lowering them down to the normal position, and

then he proceeds back toward the camera, passing the door and walking toward the

front end of the room. Appendix C show sample visual frames which represent this

scenario (Figure C.1).

The famous ‘Hall Monitor’ [173] test sequence is a CIF (352 × 288) MPEG-4

which contains 299 frames and the frame rate is 25 fps. It is a challenging sequence

for change detection, due to the colour content of objects and background, which are

quite similar. The sequence also contains a cluttered background as well as a high

level of noise. These features make the sequence a significant test case. The first 12

frames of the ‘Hall Monitor’ sequence contain no moving objects, and this means

that these frames can be used to build the background model. The following frames

of the sequence represent two participants, participant A and B. Participant A enters

the scene from the left side door, while carrying a briefcase and walks through the

corridor, away from the camera. After a few meters he places the briefcase on

a bench and walks toward another door on the left. Before participant A exits,

participant B enters the scene through a door on the right, and walks towards the

camera. On his way he picks up a television set from another bench on the right.

Appendix C shows sample frames which represent this scenario (Figure C.2).

The ‘Lab’ test sequence is a (320×240) uncompressed video sequence. It contains

300 frames and the frame rate is 25 fps. It is a challenging sequence for change

detection due to several factors. Firstly, due to the camera field of view, the camera
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is always situated near to the moving objects. Secondly, the participant is moving

very near to the camera. Thirdly, the sequence contains a cluttered background and

a high level of noise. All of these factors are known to impact upon the accuracy of

change detection algorithms and make the sequence a significant test case. Appendix

C shows selected frames which represent this scenerio (Figure C.3). They show a

cluttered computer lab with tables, chairs and computer equipment seen through a

camera situated on the ceiling at the near left of the room. The first 76 frames of

the sequence contain no moving objects and this means that these frames can be

used to build the background model. Following these static frames, the sequence

shows one participant who enters the scene from the far right corner of the room.

This participant then walks between the desks to the near left corner of the room

and exits the scene.

6.3.2 Comparison of state-of-the-art algorithms in a

previous independent study

Karaman et al. [174] carry out a comparison between nine of the state-of-the-

art change detection methods each other in terms of the segmentation quality and

computational complexity. Those methods are image differencing, Cavallaro et al.

[48], Shen et al. [133], Haritaoglu et al. [11], Francois et. Al [58], McKenna et

al. [71], Hong et al. [75], Jabri et al. [74] and Horprasert et al. [73]. Figure

6.2 shows the results of the objective evaluation as in [174]. These results are the

average of the results obtained from five video sequences. As can be seen from

the figure both Shen, Horprasert and Cavallaro outperforms other algorithms, see

Figure 6.2 (a). However Horprasert and Cavallaro are three times as fast as Shen,

see Figure 6.2 (b). Although both Horprasert and Cavallaro are very close in terms

of their segmentation quality and computational complexity, the only difference lies

in the balance in Horprasert method between Precision and Recall. Horprasert et

al. utilize a pixel-based background model including luminance and chrominance

information.

The approach of Horprasert et al. [73] was adopted, for the comparison, since it

gives the best trade-off between segmentation quality and computational complexity,
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(a) Precision, Recall and F-measure

(b) Average time to process one frame

Figure 6.2: Comparison of state-of-art algorithms [174]

allowing real-time performance. The method starts by building a background model

from a number of static background frames. This method models the background

using a model that separates luminance and chrominance information. Based on this

model the luminance and chrominance distortion of an unknown pixel are calculated

and used for classifying each pixel as foreground, background, highlight or shadow.

This algorithm represents a multi-class approach that allows coping with several

change detection problems.

6.4 Parameter selection

In this section, the parameter selection criteria defined in section 6.2.1 are used

to select optimal parameters for the background subtraction and shadow detection

algorithm developed by Horprasert [73], the change detection method based on the

reflectance ratio (Algorithm 1), and the change detection algorithm based on the

spectral reflectance (Algorithm 2). The F-measure as well as the ROC curves using

the minimax criterion are applied for selecting the optimal threshold values for the
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data sets used.

6.4.1 Horprasert algorithm

The performance of the Horprasert algorithm at different threshold values has

been evaluated by computing the related ROC and PRF (Precision, Recall,

F-measure) curves, according to the definitions introduced in Section 6.2 and

traced for each threshold value. In particular, 200 different values of change

detection threshold τcd have been selected which regulates the behaviour of the

algorithm from 0.1 to 20 with step of 0.1. Figure 6.3 shows the ROC and PRF

curves for the background subtraction and shadow detection method developed by

Horprasert [73]. Taking τalo = −100 and considering different video sequences in

order to estimate the optimal τcd. For the ‘Intelligent Room’ sequence, the optimal

value for τcd is 12.7 using ROC curves and 12.4 using the maximum F-measure.

For the ‘Hall Monitor’ sequence, the optimal value for τcd is 8.7 using ROC curves

and 8.8 using the maximum F-measure. For the ‘Lab’ sequence, the optimal value

for τcd is 6.3 using ROC curves and 6.5 using the maximum F-measure.

6.4.2 Algorithm 1

The performance of Algorithm 1 at different threshold values has been evaluated

by computing the related ROC and PRF curves and traced for each threshold

value. In particular, 276 different values of change detection threshold τm have

been selected which regulates the behaviour of the algorithm from 25 to 300 with

step of 1. Figure 6.4 (a) and (b) show the ROC and PRF curves for Algorithm 1

respectively. Considering different video sequences in order to estimate the optimal

τm. For ‘Intelligent Room’ sequence, the optimal value for τm is 125 using ROC

curves and 175 using the maximum F-measure. For the ‘Hall Monitor’ sequence,

the optimal value for τm is 145 using ROC curves and 165 using the maximum

F-measure. For the ‘Lab’ sequence, the optimal value for τm is 95 using ROC

curves and 125 using the maximum F-measure. The other used thresholds τsh, τ1

and τ2 are fixed with τsh = 180, τ1 = −0.5 and τ2 = 0.3 for all data sets.

132



6.4. Parameter selection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

False Alarm Rate (FAR)

C
o

rr
e

c
t 

D
e

te
c
ti
o

n
 R

a
te

 (
C

D
R

)

 

 

The Corresponding Threshold = 12.7

1−FAR

(a) ROC curves(‘Intelligent Room’)
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The Corresponding Threshold = 8.7

(c) ROC curves(‘Hall Monitor’)
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(e) ROC curves(‘Lab’)
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Figure 6.3: ROC curves and PRF curves for threshold selection of Horprasert
method
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(a) ROC curves(‘Intelligent Room’)
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The Corresponding Threshold = 145

(c) ROC curves(Hall Mnitor)
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The Corresponding Threshold = 95 

(e) ROC curves(‘Lab’)
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Figure 6.4: ROC curves and PRF curves for threshold selection of Algorithm 1
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(a) ROC curves(‘Intelligent Room’)
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(c) ROC curves(‘Hall Monitor’)
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(d) RPRF curves(‘Hall Monitor’)
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(e) ROC curves(‘Lab’)
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Figure 6.5: ROC curves and PRF curves for threshold selection of Algorithm 2
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6.4.3 Algorithm 2

The performance of Algorithm 2 at different threshold values has been evaluated by

computing the related ROC and PRF curves. In particular, 126 different values of

change detection threshold τc have been selected which regulates the behaviour of the

algorithm from 0.05 to 1.25 with step of 0.01. Figures 6.5 (a) and (b) show the ROC

and PRF curves for Algorithm 2, respectively. For the ‘Intelligent Room’ sequence,

the optimal value for τc is 0.09 and 0.17 using ROC curves and the maximum F-

measure respectively. For the ‘Hall Monitor’ sequence, the optimal value for τc is

0.12 using ROC curves and equals 0.14 using the maximum F-measure. For the

‘Lab’ sequence the optimal value for τc is 0.12 and 0.19 using ROC curves and the

maximum F-measure respectively.

6.5 Tolerance to threshold variation

By plotting the F-measure of different data sets for the same algorithm, it is possible

to evaluate the tolerance of the algorithm performance to variation of the threshold.

Figure 6.6 shows the overall performance metric (F-measure) of Horpraset

algorithm for the ‘Intelligent Room’ video sequence plotted against the decision

rule threshold. The figure includes three vertical markers which represent different

optimal thresholds for ‘Lab’, ‘Hall Monitor’ and ’Intelligent Room’ video

sequences. Using the optimal threshold of the ‘Intelligent Room’ video sequence

gives peak F-measure of 85.39%. However, using the optimal thresholds of either

the ‘Hall Monitor’ or the ‘Lab’ sequences for the ‘Intelligent Room’ sequence

results in the reduction of the F-measure. Using the optimal threshold of the ‘Hall

Monitor’ sequence gives peak F-measure of 83.97%, while using the optimal

threshold of the ‘Lab’ sequence gives peak F-measure of 79.38%. Figure 6.7(a) is

similar to Figure 6.6 as it shows the same results of the Horprasert algorithm for

the ‘Intelligent Room’ sequence, however this figure also includes the results of the

‘Hall Monitor’ and ‘Lab’ sequences. Figures 6.7(b) and (c) show similar plots for

Algorithm 1 and Algorithm 2 respectively.

Table 6.2 summarises the results obtained from Figure 6.7. It is divided into
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Figure 6.6: F-measure vs. Threshold example

three parts; each part represents one of the three algorithms. The first row of table

6.2(a) summarises the process described above for the ‘Intelligent Room’ sequence

using the Horprasert algorithm. The minimum and maximum deviations from the

maximum F-measure are also shown. Subsequent rows show the results for the ‘Hall

Monitor’ and ‘Lab’ sequences. The last row shows the mean of the maximum and

minimum deviations. The same process is repeated in part (b) for Algorithm 1 and

in part (c) for Algorithm 2.

From Table 6.2(a) it can be seen that the performance of Horprasert algorithm

declines between −1.75% and −5.67% on average. The performance of Algorithm

1 declines between −1.16% and −3.51% on average, as can be seen from Table

6.2(b). However, table 6.2(c) shows that the performance of Algorithm 2 declines

only between −0.11% and −0.24% on average.

These results can be visualised from Figure 6.7, by comparing the peaks of

different F-measure curves for the three sequences. For Algorithm 2 the peaks are

clearly coincident (occur at similar range of threshold values), while the peaks of

the Horprasert algorithm and Algorithm 1 are much more dispersed. This shows

that Algorithm 2 is more flexible and, once optimised for one environment, it can

maintain its performance when applied to different environments.
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Figure 6.7: F-measure vs. Threshold for threshold sensitivity comparison
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Table 6.2: Threshold Sensitivity comparison

(a)Horprasert

‘Intelligent Room’ ‘Hall Monitor’ ‘Lab’ Min Max

Threshold Threshold Threshold

‘Intelligent Room’ 85.39% 83.97% 79.38% -1.42% -6.01%
‘Hall Monitor’ 74.52% 77.80% 75.77% -2.03% -3.28%

‘Lab’ 75.03% 80.81% 82.60% -1.79% -7.57%
Mean -1.75% -5.62%

(b)Algorithm 1

‘Intelligent Room’ ‘Hall Monitor’ ‘Lab’ Min Max

Threshold Threshold Threshold

‘Intelligent Room’ 87.84% 85.80% 82.85% -2.04% -4.99%
‘Hall Monitor’ 81.98% 82.14% 78.53% -0.16% -3.61%

‘Lab’ 81.84% 82.50% 83.77% -1.27% -1.93%
Mean -1.16% -3.51%

(c)Algorithm 2

‘Intelligent Room’ ‘Hall Monitor’ ‘Lab’ Min Max

Threshold Threshold Threshold

‘Intelligent Room’ 91.50% 91.50% 91.50% 0% 0%
‘Hall Monitor’ 84.51% 85.10% 84.86% -0.24% -0.59%

‘Lab’ 84.86% 84.9% 85.00% -0.1% -0.14%
Mean -0.11% -0.24%

6.6 Illustrative visual comparison

The results are evaluated by visual comparison between one of the state-of-the-art

techniques (e.g. Horprasert [73]) and the proposed algorithms. The segmentation

result is compared visually to reference segmentation. This reference segmentation

represents the ground truth which is generated manually. The optimal threshold

values obtained from the PRF curves are used. The same noise removal procedure,

discussed in 5.3.2 is applied for all outputs.

Due to space constraints, only certain frames from the processed sequences are

presented.

Figures 6.8 and 6.9 divide the ‘Intelligent Room’ scenario into two parts. Part

1 shows a combination of five sample frames which represents movement of the

participant from the door to the far end of the room. Part 2 is a combination of six
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(a) Ground truth (part 1) (b) Ground truth (part 2)

(c) Horprasert algorithm (part 1) (d) Horprasert algorithm (part 2)

(e) Algorithm 1 (part 1) (f) Algorithm 1 (part 2)

(g) Algorithm 2 (part 1) (h) Algorithm 2 (part 2)

Figure 6.8: Algorithms comparison for ‘Intelligent Room’ sequence (without noise
removal)
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(a) Ground truth (part 1) (b) Ground truth (part 2)

(c) Horprasert algorithm (part 1) (d) Horprasert algorithm (part 2)

(e) Algorithm 1 (part 1) (f) Algorithm 1 (part 2)

(g) Algorithm 2 (part 1) (h) Algorithm 2 (part 2)

Figure 6.9: Algorithms comparison for ‘Intelligent Room’ sequence (with noise
removal)
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frames showing the movement of the participant from the far end to the front end

of the room.

Figure 6.8 (a) and (b) show the hand-labelled ground truth of Part 1 and 2 of

the Intelligent room equence respectively. Figure 6.8 (c) and (d) show the output

of Horprasert algorithm without noise removal for Part 1 and 2 respectively. As

can be seen in the figure, the segmented participant is fragmented and parts of the

shadows are included, as can be seen below the participant. Figure 6.8 (e) and (f)

show the output of Algorithm 1 without noise removal for Part 1 and 2 respectively.

As expected, the shadows have been reduced significantly due to the inclusion of

a shadow detection module which tries to eliminate shadows from the segmented

objects. The output of Algorithm 2 for Part 1 and 2 without noise removal are shown

in Figure 6.8 (g) and (h) respectively. The segmented objects in Figure 6.8 (g) are

much closer to the ground truth shown in Figure 6.8 (a) than those of Horprasert

algorithms and Algorithm 1. The same applies for Figure 6.8 (h), however the

segmented object is more fragmented due to the fact that the participant is closer to

the camera. A very small amount of isolated noise and shadows have been captured.

Figure 6.9 shows the output of the three algorithms after the noise removal

stage. The noise disappears from Algorithm 2; however the output of the

Horprasert algorithm and Algorithm 1 still suffers from some noise. The output of

Horprasert algorithm includes shadows. The segmented participant is fragmented

in both Algorithm 1 and Horprasert as Figures 6.9 (c) and (e) show. Algorithm 2

output shows much better segmentation in terms of less fragmentation and fewer

shadows beeing captured, and is very similar to the ground truth output.

Figure 6.10 (a) and (b) show the hand-labelled ground truth of Part 1 and 2

of the Hall Monitor sequencerespectively. Figure 6.10 (c) and (d) show the output

of Horprasert algorithm without noise removal for Part 1 and 2 respectively. As

can be seen in the figure, the segmented participants are fragmented and parts of

the shadows are included. Figure 6.10 (e) and (f) show the output of Algorithm

1 without noise removal for Part 1 and 2 respectively. As expected, the shadows

have been reduced significantly, due to the inclusion of a shadow detection module

which tries to eliminate shadows from the segmented objects. However, this has an
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(a) Ground truth (part 1) (b) Ground truth (part 2)

(c) Horprasert algorithm (part 1) (d) Horprasert algorithm (part 2)

(e) Algorithm 1 (part 1) (f) Algorithm 1 (part 2)

(g) Algorithm 2 (part 1) (h) Algorithm 2 (part 2)

Figure 6.10: Algorithms comparison for ‘Hall Monitor’ sequence (without noise
removal)
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(a) Ground truth (part 1) (b) Ground truth (part 2)

(c) Horprasert algorithm (part 1) (d) Horprasert algorithm (part 2)

(e) Algorithm 1 (part 1) (f) Algorithm 1 (part 2)

(g) Algorithm 2 (part 1) (h) Algorithm 2 (part 2)

Figure 6.11: Algorithms comparison for ‘Hall Monitor’ sequence (with noise
removal)
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impact upon the segmentation as the removal of shadows from foreground objects

means that the participants appear more fragmented. A future improvement to this

algorithm is to exploit geometric shadow properties related to shadow boundaries

and to the adjacency of each object and its cast shadow as in [18]. The output of

Algorithm 2 for Part 1 and 2 without noise removal are shown in Figure 6.10 (g)

and (h) respectively. Although the segmented objects are less fragmented, a few

shadows are captured. However the shadows captured by Algorithm 2 are not as

significant as in Horprasert algorithm. Algorithm 1 and 2 include a small amount

of isolated noise.

Figure 6.11 shows the output of the three algorithms after the noise removal

stage. The noise disappears from all the algorithms; however the output of the

Horprasert algorithm still suffers from intensive shadow. The segmented participants

are fragmented in both Algorithm 1 and Horprasert algorithm e.g. the segmented

participant B is largely corrupted as Figures 6.11 (c) and (e) show. Algorithm 2

output shows better segmentation in terms of less fragmentation and fewer shadows

being captured. The lab scenario is divided into two parts in Figure 6.12 which

shows the sequence without noise removal and Figure 6.13 which shows the sequence

with noise removal. Part 1 represents a combination of five sample frames which

represents the movement of the participant as he enters the scene from the far right

of the scene. Part 2 is a combination five frames showing the movement of the

participant as he walks to the near left of the scene. Figure 6.12 (a) and (b) show

the hand-labelled ground truth of Part 1 and 2 respectively. Figure 6.12 (c) and

(d) show the output of Horprasert algorithm without noise removal for Part 1 and 2

respectively. As can be seen in the figure, the segmented participant is fragmented

and parts of the shadows are included. Figure 6.12 (e) and (f) show the output of

Algorithm 1 without noise removal for Part 1 and 2 respectively. As expected, the

shadows have been reduced significantly. However, the participant appears more

fragmented. The output of Algorithm 2 for Part 1 and 2 without noise removal

are shown in Figure 6.12 (g) and (h) respectively. Although the segmented objects

are less fragmented than for Algorithm 1, a small amount of shadow is captured.

However the shadows captured by Algorithm 2 are not as significant as in Horprasert
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(a) Ground truth (part 1) (b) Ground truth (part 2)

(c) Horprasert algorithm (part 1) (d) Horprasert algorithm (part 2)

(e) Algorithm 1 (part 1) (f) Algorithm 1 (part 2)

(g) Algorithm 2 (part 1) (h) Algorithm 2 (part 2)

Figure 6.12: Algorithms comparison for ‘Lab’ sequence (without noise removal)
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6.6. Illustrative visual comparison

(a) Ground truth (part 1) (b) Ground truth (part 2)

(c) Horprasert algorithm (part 1) (d) Horprasert algorithm (part 2)

(e) Algorithm 1 (part 1) (f) Algorithm 1 (part 2)

(g) Algorithm 2 (part 1) (h) Algorithm 2 (part 2)

Figure 6.13: Algorithms comparison for ‘Lab’ sequence (with noise removal)
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algorithm. Both Algorithms 1 and 2 include a small amount of isolated noise more

than Horprasert algorithm.

Figure 6.13 shows the output of the three algorithms after the noise removal

stage. The noise disappears from all the algorithms; however the output of the

Horprasert algorithm still suffers from intensive shadow. The segmented participant

is fragmented in both Algorithm 1 and Horprasert algorithm. The three algorithm

achieve comaratively similar performance, however, the object structures are more

clear in the output of Algorithm 2.

6.7 Objective evaluation

In this section, the objective evaluation metric defined in Section 6.2 is used to

compare and rank the proposed change detection algorithms with the Horprasert

algorithm. These results complement the illustrative visual comparison results in

Section 6.6 and those presented in Chapter 5. The evaluation of the accuracy of

detection is carried out using Precision, Recall and the overall metric F −measure,

before and with noise removal. The same noise removal procedure, discussed in 5.3.2

is applied for all outputs. The optimal threshold values obtained from the PRF

curves are used.

By analysing the F-measure without noise removal, change detection techniques

could be ranked as shown in Figures 6.15(a), 6.14(a) and 6.16(a). The best

performance on average is shown by Algorithm 2 with 74.98 − 88.94%, followed by

Horprasert algorithm with 72.04 − 76.35%, then Algorithm 1 with 70.26 − 77.93%.

The analysis of the F-measure with noise removal, change detection techniques

could be ranked as shown in Figures 6.15(b), 6.14(b) and 6.16(b). The best

performance on average is shown by Algorithm 2 with 84.5 − 91.5%, followed by

Algorithm 1 with 82.1 − 87.8%, then Horprasert algorithm with 77.8 − 85.3%.

The algorithm with the lowest oversegmentation (the highest Precision) is

Algorithm 2 with 78.9 − 88.5%, it is followed by Horprasert with 77.4 − 84.9%,

then Algorithm 1 with 77.8 − 80%. On the other hand, the algorithm with the

lowest undersegmentation (the highest Recall) is Algorithm 2 with 84 − 97.3%, it
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is followed by Algorithm 1 with 86.5 − 94.8%, then Horprasert with 77.4 − 84.9%.

The illustrative visual comparison performed in Section 6.6, supports the results

of the objective evaluation. It can be seen that Algorithm 2 achieved the best

segmentation quality with both low false positives and false negatives.

The results achieved show that Algorithm 1 enhances by an average increase of

the recall by 8.85%, while the average decrease of the Precision declines by 1.45%,

However the overall performance is improved by an average increase of 2.7%.

The results achieved by Algorithm 2 show that the proposed method enhances

by an average increase of the recall by 7.45%, the Precision by 2.5% and the overall

performance is improved by 7.85%, this can be considered a significant ratio.

It is possible to notice that the use of the reflectance ratio to represent the image

as in Algorithm 1, and the decomposition of the pixel colour into chromaticity

and luminance as in Horprasert algorithm leads to comparable results. the results

of the two above mentioned techniques are however less accurate than those of

the proposed Algorithm 2 that is based on surface spectral reflectance that better

succeeds in detecting moving objects under varying light conditions.

6.8 Computational complexity evaluation

Computational complexity is important for change detection algorithms, especially

for real-time applications where limited computational power is available and a

given processing time must be attained. Computational complexity can be divided

into two parts: time and memory consumption. A trade-off between both parts

exists. Large data structures can be used to increase the speed at the cost of higher

memory requirements and the reverse is also true. Time consumption is considered

by measuring the processing time for the segmentation of one frame.

The computational complexity for the proposed algorithms is evaluated in terms

of average processing time for the segmentation of one frame, time required to

build the background model and memory consumption. Memory consumption is

considered in terms of the amount of memory that is used to store one background

model.

149



6.8. Computational complexity evaluation

(a) without noise removal

(b) with noise removal

Figure 6.14: PRF for the ‘Intelligent Room’ sequence
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(a) without noise removal

(b) with noise removal

Figure 6.15: PRF for the ‘Hall Monitor’ sequence
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(a) without noise removal

(b) with noise removal

Figure 6.16: PRF for the ‘Lab’ sequence
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The results presented in this thesis are obtained using a Xeon personal computer

(processor:Intel Xeon 3GHz, memory: 2GB DDR RAM), an implementation in

Matlab (version: 7.4, release: R2007a). All values are stored using double Precision

(32 bit). Karaman et al. [174] carried out some implementations of change detection

methods in C++ and Matlab, they concluded that the overall increase in speed is of

factor 13 between Matlab (version: 7, release: 14) and C++(compiler: Visual C++

7.1).

The memory consumption is proportional to the frame size of the video

sequence. However the processing time is independent of the video sequence. The

results obtained from the CIF ‘Hall Monitor’ video sequence are considered in this

evaluation, each frame is 352 × 288 pixels.

Concerning the time consumption, Figures 6.17(a) and 6.18(a) show the

processing time of the 300 frames of the ‘Intelligent Room’ sequence for all three

algorithms, before and with noise removal respectively. Figures 6.17(b) and 6.18(b)

show the average processing time over the whole video sequence, before and with

noise removal respectively. The fastest algorithm is Algorithm 2 with 36.6 msec

without noise removal and 40.8 msec with noise removal. The second is Horprasert

algorithm with 81 msec without noise removal and 85.3 msec with noise removal.

The third is Algorithm 1 with 82.7 msec without noise removal and 87.3 msec with

noise removal.

As it was expected, the speed of Algorithm 2 is approximately double the speed

of the other algorithms. The reason is that both the other algorithms rely heavily

on statistical models in the segmentation process, however Algorithm 2 is based on

pre-trained models (the surface spectral reflectance models) and less sophisticated

statistical manipulation.

Figure 6.19 shows the time required to build the background model using 50

background frames. Algorithm 2 requires 8.87 sec, Horprasert algorithm requires

9.98 sec and Algorithm 1 requires 17.5 sec. This is due to the computational

complexity of the implementation of Mahalnobis distance in Algorithm 1.

Regarding the memory consumption, the amount of memory that is needed to

store one background model for Algorithm 2 and for Horprasert algorithm is 3960
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Figure 6.17: Processing time comparison (without noise removal)
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Figure 6.18: Processing time comparison (with noise removal)
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Figure 6.19: Time to build the background model (50 frames) comparison

Table 6.3: Computational complexity comparison

Average Time Time for Background Model Memory for storing

(for one frame) (50 frames) (the background model)

Horprasert 85.3 msec 9.98 sec 3960 Kbytes
Algorithm 1 87.3 msec 17.5 sec 9240 Kbytes
Algorithm 2 40.8 msec 8.87 sec 3960 Kbytes

Kbytes, however Algorithm 1 requires 9240 Kbytes. More memory is requires for

Algorithm 1 due to the inclusion of the covariance matrix in the background model,

which is part of the calculation of Mahalanobis distance.

Table 6.3 shows a comparison between all three algorithms in terms of the average

processing time required for the segmentation of one frame(with noise removal), time

to build the background model using 50 frames and the memory required for storing

the background frame.

6.9 Proposed assessment criterion

Change detection algorithms based on background modelling require a number of

static background frames to build their statistical background model. As discussed

in Section 3.2, in real-world operational conditions sometimes it is difficult to capture

a sufficient number of static background frames. In such situations, the algorithm
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has to deal with the available number of background frames. If the system fails

at any point, i.e due to changes in illumination, the algorithm has to rebuild its

model. The system needs to wait for the required number of background frames to

be captured and processed. During this period the system may miss some events.

In normal operation, the background maintenance module updates the model with

the scene variations, with an adaptation parameter α. This parameter is closely

related to the sensitivity of the algorithm to the scene contents. If the system is

able to capture those variations using fewer frames the adaptation process will be

faster, which will affect the overall performance of the system.

This thesis proposes the minimum number of background frames required by

the algorithm to achieve its maximum performance to be used as a new evaluation

metric. This new metric is important for the evaluation of change detection

algorithms because it demonstrates the effectiveness of the algorithm, and

underpins the robustness of the algorithm to scene variations.

The use of such metric can give a better indication of the time required by a

specific algorithm to build its background model. When it comes to the comparison

between different algorithms, instead of specifying a fixed number of background

frames, each algorithm will be featured with its minimum number of background

frames and this will be used to calculate the time required to build the model.

To the knowledge of the author, there is no evaluation criterion which identifies

the minimum number of background frames required. In this criterion, it is

proposed to plot the F-measure versus the number of background frames used to

build the background model. The minimum number of background frames is

identified from the curve as the minimum number of background frames that can

achieve the maximum F-measure, as Figure 6.20 shows.

For the ‘Intelligent Room’ sequence [172], while the Horprasert algorithm requires

a minimum of 63 frames to achieve 85.3% (its maximum F-measure), Algorithm 1

requires a minimum of 16 frames to achieve 87.8% (its maximum F-measure), where

as the Algorithm 2 requires a minimum of 7 frames to achieve 91.5% (its maximum

F-measure).

For the ‘Hall Monitor’ sequence, while Horprasert algorithm requires a minimum
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Figure 6.20: F-measure vs. number of background frames
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of 5 frames to achieve 81.45% (its maximum F-measure), the Algorithm 1 requires

a minimum of 9 frames to achieve 84.4% (its maximum F-measure), where as the

Algorithm 2 requires a minimum of 3 frames to achieve 86.53% (its maximum F-

measure).

For the ‘Lab’ sequence, while Horprasert algorithm requires a minimum of 8

frames to achieve 82.6% (its maximum F-measure), the Algorithm 1 requires a

minimum of 11 frames to achieve 83.7% (its maximum F-measure), where as the

Algorithm 2 requires a minimum of 3 frames to achieve 85% (its maximum F-

measure).

6.10 Summary

In this chapter the proposed physics-based segmentation algorithms have been

quantitatively evaluated. Three evaluation methods are adopted: illustrative visual

comparison, objective, and computational complexity evaluations.

The optimal decision rule thresholds have been obtained using tow different

criteria: the minimax criterion using ROC curves and the maximum F-measure

criteria. A number of illustrative visual examples have been discussed. Manually

segmented ground truth data have been used and pixel-based error measures have

been applied for objective evaluation.

The method proposed by Horprasert et al. [73] is chosen, based on the

comparison of various state-of-the-art methods in [174]. This method is quite

robust and its complexity is rather low in comparison to other approaches,

allowing for real-time performance. A comparison between the proposed methods

and the state-of-the-art change detection method, (Horprasert [73]), for several

types of video sequences was conducted.

This chapter proposes a new assessment criterion for change detection

algorithms. The new criterion includes the calculation of the minimum number of

background frames required by an algorithm to achieve its maximum performance.

A more comprehensive comparison between different algorithms is achieved by

plotting the F-measure versus the number of background frames used to build the
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background model.

The proposed algorithms have been evaluated by means of objective quality

assessments on a variety of video data. The evaluation shows that those

algorithms have achieved accurate segmentation results in different real world

indoor environments. The results achieved show that the first proposed method

(Algorithm 1) enhances the Recall between 6.2% and 11.5%, the Precision between

-4.9% and 2% and the overall performance is improved between 1.1% and 4.3%.

The Recall is enhanced significantly in Agorithm 1 due to the shadow detection

module which eliminates shadows from foreground objects. This method requires

approximately 87.3 msec to process one frame, which is approximately the same

time required by the Horprasert method (85.3 msec). The results achieved by the

second method (Algorithm 2) show that the proposed method enhances the Recall

between 5.9% and 9%, the Precision between -0.9% and 5.9% and the overall

performance is improved between 2.4% and 7.3%. Algorithm 2 outperforms the

other two methods due to the use of the surface spectral reflectance as a cue to

model the scene, which indicates its effectiveness in representing different

environments. This method is twice as fast as the Horprasert method, it requires

approximately 40.8 msec to process one frame. This was expected as Algorithm 2

adopts a simple statistical manipulation approach, relying on the physical

parameters derived from the image. Where this algorithm shows that it needs from

3 to 8 background frames in order to achieve its maximum performance, the first

algorithm requires from 9 to 16 where the Horprasert algorithm requires between 9

to 63 background frames. This means that the Horprasert algorithm requires from

1.79 to 12.57 seconds to build the background model. While algorithm 1 requires

from 3.15 to 5.6 seconds, Algorithm 2 requires only from 0.17 to 0.47 seconds.

Tolerance to threshold variation was evaluated by considering the performance of

each algorithm using the optimal threshold derived for different sequences. This

evaluation shows that the performance of Horprasert algorithm declines between

−1.75% and −5.67% on average, and the performance of Algorithm 1 declines

between −1.16% and −3.51% on average, however the performance of Algorithm 2

declines only between −0.11% and −0.24% on average. This shows that Algorithm
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2 is more flexible and, once optimised for one environment, it can maintain its

performance when applied to different environments.

The results of the comparison between the second algorithm and the other

algorithms investigated in this thesis show that it matches better the operational

requirements of a workplace surveillance system, in terms of real-time performance

and robustness to cope with changes in illumination, scene structure and scene

activity, with little or no human intervention. Moreover, this solution not only

improves the robustness of the algorithm but also enhances its flexibility.
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“Researchers have developed a number of sub-

systems and partial solutions which go some

way towards solving elements of the problem of

surveillance. Much progress has been made, but in

a piecemeal fashion, and often without reference to

the situations in which such systems might actually

be used.”

M. Hannah Dee and A. Sergio Velastin [175]

7
Conclusions and Further Work

7.1 Conclusions

Video surveillance is a growing industry which is expected to be boosted by the

technological advances of smart algorithms and systems, combined with further

take up of digital CCTV installations and networked solutions.

Practical requirements of smart video surveillance applications are identified as

segmentation, indexing, content analysis and video retrieval. These requirements

are fulfilled by a number of different techniques, namely: change detection, object

classification, object tracking, object classification, activity classification and scene

visualisation.
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The research community has addressed, with various degrees of success, the

technical problems associated with these stages. However, these techniques have

not reached the maturity required for unconstrained real-world applications; their

value to the video surveillance industry in the near- and mid-term is minimal.

Very few of the proposed systems are up to the challenges of a real world

operating environment, where robustness, adaptability, and flexibility are essential.

A particular deficiency of these systems is the inadequate performance of the

front-end processing sub-system. Hence, the literature is preoccupied with a lot

more mundane problems at the moment. Chief among these problems is the

front-end processing, which comprises elements such as change detection and

object segmentation. The reason for the preoccupation with reliable front-end

processing is that failures at the segmentation level can propagate downstream of

the surveillance processing chain, and result in incorrect outputs which may, for

example, lead to incorrect responses in critical situations.

The objective of most of video surveillance systems was originally security,

however in practice they are being used for other purposes. The link between

application requirements and current smart video surveillance techniques leads us

to propose a new classification for practical applications of smart video

surveillance. Applications are split into: security, safety, entertainment, and

efficiency improvement. Efficiency improvement applications, and entertainment

applications are expected to share the video surveillance infrastructure with

security and safety applications.

Workplace surveillance presents a very promising application, which can make

use of the existing techniques in smart video surveillance to improve the efficiency of

workplace. There are practical needs for smart video surveillance systems to assist

the decision makers in managing resources, in the workplace.

There is a conflict in needs, rights and understanding capabilities and limitations

of the techniques between managers, people exposed to surveillance and developers

of surveillance system. A 3D workplace surveillance model is proposed which links

capabilities of smart video surveillance algorithms versus needs and implications of

workplace surveillance applications.
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The majority of workplace scenarios covers indoor environments, where the

surveillance area is confined, video sensors are assumed to be near to the moving

objects, and appearance or disappearance of objects can affect the scene

illumination. A set of practical requirements are identified such as robustness,

adaptability, flexibility as well as being a real-time system.

The challenge of using smart video surveillance techniques in order to improve

the efficiency of workplace is the development of a robust segmentation

(extraction) of moving or displaced objects. The change detection module is

responsible for eliminating illumination variation and camera noise from changes

caused by meaningful objects. Other video processing modules, in the surveillance

system, rely on the effectiveness of this module.

The change detection problem has been extensively studied in the last decade,

however there is no generally accepted method to detect moving objects in image

sequences. Approaches based on background modelling are widely used for

surveillance applications. Background modelling may be decomposed into two

major steps, image representation and statistical manipulation. Change detection

based solely on statistical methods fails to tackle the practical requirements of

indoor applications. The literature suggests that the best combination between

these two steps is a key success to develop a real-time, robust and adaptive change

detection algorithm.

The review of the literature outlined the fact that the majority of the change

detection approaches are non-physics-based and use well-known colour spaces to

represent the image. The selection of an image representation is a crucial issue;

the ability of each image representation to detect changes differs according to the

camera used, the captured scene, and the illumination.

This thesis argues that understanding the underlying physics which govern the

image formation process is crucial to deal with the variation in imaging

parameters. Image formation models offer interesting alternative physics-based

cues for foreground segmentation compared with other representations used in

conventional methods.

Among the various reflection models, which describe the image formation
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process, proposed in the literature; the dichromatic reflection model represents a

practical choice for image processing and computer vision. The main limitation of

this technique is that it can be applied only to inhomogeneous dielectrics. By

applying the dichromatic reflection model for Lambertian surfaces, three main

photometric invariants which are sensitive to changes in surface reflectance can be

extracted: reflectance ratio, intrinsic image and surface spectral reflectance. The

reflectance ratio and intrinsic image are derived from the shading model, which

represents an approximated form of the dichromatic model.

Few solutions have been proposed in the literature with regard to the use of

physical models of image formation to solve the change detection problem. Only

approximated models, such as the shading model, have been used to derive physics-

based photometric invariants, namely reflectance ratio and intrinsic images.

It can be concluded that features such as surface spectral reflectance have not

been applied yet in the field of change detection, which represents a gap in the

literature. The reason is the computational complexity of such models, and hence

possible unfeasibility of real-time implementation.

The linear models developed in [105–107] to estimate the surface spectral

reflectance give a good starting point towards the solution for such a problem.

This thesis is the first attempt to investigate the use of such models in change

detection.

The most significant cues for the purpose of designing a robust change

detection approaches have been selected and investigated. In the context of this

thesis, ‘significant’ means that they can be exploited based only on image-derived

information and with a limited number of assumptions about the scene, and they

are suitable for real-time processing. The validity of the approach has been

demonstrated through two novel algorithms which are based on a physical meaning

of image formation and which use advances in colour constancy techniques.

The first algorithm is a change detection algorithm based on reflectance ratio.

This algorithm proposes a new moving object segmentation which models the

variation in illumination using the reflectance ratio between foreground pixels and

background pixels. The correlation between this ratio triples are then used to
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segment foreground and shadows from a static background using Mahalanobis

distance. Furthermore, shadows are detected and segmented using explicit criteria

which have been developed to define a method for shadow segmentation from ratio

triples components using the Mahalanobis distance. This combination between an

approximated physics-based model (the shading model) for image formation and a

statistical method proves its ability to give a robust real-time segmentation for

both foreground and shadows.

The second algorithm presents a novel physics-based image representation

where a real-time transformation from RGB space to weights, which represent the

surface spectral reflectance of objects, was developed. This method starts by

proposing a method for highlight detection, which is then used to estimate

illumination characteristics of a scene, represented by a parameter called

‘correlated colour temperature’, using McCamy’s method. Then, the surface

spectral reflectance of the objects in the scene is calculated, and the correlation

between the full spectrum of a background model and surface spectral reflectance

of foreground objects is adopted as the classification strategy, to segment the

moving or displaced foreground objects. This method is different from those

typically used in literature and this represents an element of originality of the

proposed approach.

The criteria used in the evaluation method for judging the performance of the

segmentation represent an essential element and critical factor in change detection

evaluation. The review of the principles and methods for evaluating and

comparing the performance of change detection approaches shows that there is no

widely accepted evaluation test framework. Moreover, most of the goodness

metrics proposed give a measure of the segmentation quality but not the

robustness of the algorithm.

A new assessment criterion for change detection algorithms is proposed. A more

comprehensive comparison between different algorithms is achieved by plotting the

over-all performance metric (F-measure) versus the number of background frames

used to build the background model. The minimum number of background frames

required by the algorithm to achieve its maximum performance is proposed to be
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used as an evaluation metric. This metric is important for the evaluation of change

detection algorithms because it demonstrates the effectiveness of the algorithm, and

underpins the robustness of the algorithm to scene variations.

A comparison between one of the state-of-the-art change detection methods and

the proposed methods for several types of video sequences was conducted. The

technique of Horprasert et al. [73] was adopted, for the comparison, since it gives the

best trade-off between segmentation quality and computational complexity, allowing

real-time performance. The objective assessment results show that the physics-based

method has a higher performance over this conventional method, are more tolerent

to variation of their thresholds. Moreover, the minimum number of background

frames required to train the background model is much less for the physics-based

methods.

The results achieved show that the first proposed method enhances the recall

between 6.2% and 11.5%, the precision between -4.9% and 2%, and the overall

performance is improved between 1.1% and 4.3%. The results achieved by the second

method show that the proposed method enhances the recall between 5.9% and 9%,

the precision between -0.9% and 5.9% and the overall performance is improved

between 2.4% and 7.3%. Whereas this algorithm needs from 3 to 8 background

frames in order to achieve its maximum performance, the first algorithm requires

from 9 to 16 background frames and the Horprasert algorithm requires between 9

to 63 background frames.

Tolerance to threshold variation was evaluated by considering the performance

of each algorithm using the optimal threshold derived for different sequences. This

evaluation shows that the performance of Horprasert algorithm declines between

−1.75% and −5.67% on average, and the performance of Algorithm 1 declines

between −1.16% and −3.51% on average, however the performance of Algorithm 2

declines only between −0.11% and −0.24% on average. This shows that Algorithm

2 is more flexible and, once optimised for one environment, it can maintain its

performance when applied to different environments.
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7.2 Contribution to knowledge

The challenges which face the use of image formation models as a basis for change

detection algorithms in order to target indoor workplace surveillance applications are

challenges imposed by the operational requirements of the workplace application and

challenges related to the mathematical complexity of the image formation models.

The challenge to develop robust change detection techniques which can deal

effectively with different indoor environments is tackled by taking into consideration

the physics which govern the image formation. The image is represented in the

proposed change detection algorithms using physics-based cues. Information about

the illumination and intrinsic features about the material contained in the scene are

extracted and used to solve the problem of robustness.

The challenge related to the mathematical complexity of the image formation

models is tackled. Firstly, by choosing an appropriate reflection model, the

dichromatic reflection model, which proves it effectiveness in computer vision

applications.

Secondly, setting a feasible set of assumptions for such model which best match

the reduction of model complexity and does not contradict with real-world

operational conditions. Two assumptions have been considered, diffuse-only

reflection and the existence of a dominant illuminant. No assumption is made

about surface geometries, surface texture, or types and shapes of shadows, objects,

and background, which shows the applicability of the model for practical

operational requirements.

Thirdly, to tackle the challenge of the variability of surface spectral reflectance

for different materials, the linear model was adopted which consists of a number of

basis functions, pre-trained from a set of materials; and weights, calculated for the

object under investigation.

Fourthly, the challenge of the choice of suitable colour constancy techniques

which can ensure a rapid and convenient estimation of the illumination and

extraction of the surface spectral reflectance is solved by choosing an illumination

estimation method (McCamy’s method), which has been proven successful and

useful for real-time processing. The surface spectral reflectance has been extracted
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and adopted as a reference of the scene under varying illumination conditions.

The main contributions presented in this work can be divided into primary and

secondary contributions.

1. The primary contributions are as follows :

(a) A novel change detection algorithm using colour constancy techniques is

proposed. The algorithm computationally estimates a consistent physics-

based colour descriptor model of surface spectral reflectance from the

camera output and then correlates the full-spectrum reflectance of the

background and foreground pixels to segment the foreground from a static

background.

(b) A new change detection algorithm, based on a shading model, is

proposed. The algorithm uses the reflectance ratio to model the

illumination variation and applies the Mahalanobis distance to segment

foreground and shadows from a static background.

2. The secondary contribution is :

(a) A new classification of practical applications for smart video surveillance

is presented. A new workplace surveillance model is introduced which

relates the requirements of workplace surveillance applications, and their

implications in relation to the capabilities of smart video surveillance

technologies. A set of requirements for a workplace surveillance system

using smart video surveillance techniques is proposed.

Performance assessment results show that the novel algorithm (contribution 1.a)

matches better the operational requirements of a workplace surveillance system, in

terms of real-time performance, flexibility and robustness to cope with changes in

illumination, scene structure and scene activity, with little or no human intervention.

These match better with the operational requirements which boosts the

applicability of the algorithm in real-world scenarios, in line with the 3D workplace

surveillance model introduced (contribution 2.a), where technical capability and

applicability are important considerations.
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7.3 Recommendations for further work

The modular structure of the proposed approach to change detection makes it

particularly suitable for extending its capabilities and performances. Each level of

analysis can be independently extended and improved. Some directions for further

work are proposed below.

• A future improvement to shadow detection module included in Algorithm 1,

is to exploit geometric shadow properties related to shadow boundaries and to

the adjacency of each object and its cast shadow as in [18].

• In estimating the surface spectral reflectance, in Algorithm 2, the specular

reflectance component is neglected assuming diffuse only reflectance. The

estimation of the surface spectral reflectance can be extended by taking into

consideration both diffuse and specular reflections which would enhance the

segmentation.

• In order to fulfil the practical requirements of the proposed workplace

surveillance application, a suitable selection of skin detection algorithm is

important. The goal of the moving skin detection module is to classify skin

from non-skin areas of a moving object. The output of this phase is a skin

mask, a set of connected pixels, which correspond to human skin-colour

[176, 177]. The estimation of surface spectral reflectance gives us the

opportunity to segment objects with same type of materials. Pixels are

grouped based on their surface spectral reflectance of the object in order to

extract meaningful semantic objects, where segmentation involves the

grouping of pixels into regions that should represent semantic units.

• Apart from the results presented in this thesis, the proposed approaches have

been tested on a variety of video data. Different video feeds, including recorded

videos, live streams as well as streams from IP cameras have been used. The

algorithms have been applied to a large number of video sequences, outside

the scope of this work for testing purposes, showing a range of different indoor

and outdoor scenes with different levels of complexity. Tests were conducted
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7.3. Recommendations for further work

on image sequences containing targets of interest in a variety of environments,

e.g., offices, public buildings, subway stations, campuses, parking lots, airports,

and sidewalks. All of the obtained results are consistent with those presented

in the evaluation chapter. A normal extension, is the application of such

algorithms for other application areas.

171



A
Computational Spectral Reflectance

172



APPENDIX A. COMPUTATIONAL SPECTRAL REFLECTANCE
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Figure A.1: Samples of measured and estimated surface spectral reflectance for
Foster data set 1
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Figure A.2: Samples of measured and estimated surface spectral reflectance for
Foster data set 2
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Figure A.3: Samples of measured and estimated surface spectral reflectance for
Foster data set 3
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Figure A.4: Samples of measured and estimated surface spectral reflectance for
Foster data set 4
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APPENDIX B. HIGHLIGHTS SEGMENTATION AND CCT ESTIMATION

Measured CCT = 5803 oK
Estimated CCT = 5173 oK

Measured CCT = 4827 oK
Estimated CCT = 5024 oK

Measured CCT = 5601 oK
Estimated CCT = 5283 ok

Figure B.1: Samples of segmented highlights from Foster data set
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APPENDIX C. DATA SETS

(a) frame # 1

(b) frame # 90 (c) frame # 150

(d) frame # 240 (e) frame # 300

Figure C.1: Samples of ‘Intelligent Room’ data set
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APPENDIX C. DATA SETS

(a) frame # 1)

(b) frame # 40 (c) frame # 100

(d) frame # 170 (e) frame # 240

Figure C.2: Samples of ‘Hall Monitor’ data set

181



APPENDIX C. DATA SETS

(a) frame # 1)

(b) frame # 70 (c) frame # 140

(d) frame # 210 (e) frame # 260

Figure C.3: Samples of ‘Lab’ data set
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