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Projection of Rainfall Intensity-Duration-Frequency Curves at Ungauged Location 

under Climate Change Scenarios 

 

 

Abstract 

It is vital to quantify the changes in the IDF relationship due to climate change for designing 

climate-resilient urban hydraulic structures. Such projections are also important for ungauged 

locations due to the possible urban expansion or human settlements. This work proposed a 

method for IDF curve construction with associated uncertainty at ungauged locations under 

climate change scenarios, considering peninsular Malaysia as a case study. The bias in Global 

Satellite Mapping of Precipitation Gauge Calibrated (GSMaP_GC) data was estimated by 

comparing its IDF curve with the observed IDF curve. Daily rainfall simulations of four global 

climate models (GCMs), most suitable for the study area, were employed to approximate the 

possible alterations in future rainfall distribution for four radiative concentration pathways 

(RCPs). The results revealed changes in rainfall intensity by -3.4 - 26.7% during 2010-2039, 

-0.1 - 34.5% in 2040-2069 and -4.3 - 96.8% during 2070-2099 compared to base period 

1971-2000 for different RCPs. Overall, the changes were pronounced for short-duration 

compared to high-duration rainfall. Also, higher emission scenarios showed a greater change 

than the lower scenarios. The climate change uncertainty range was wider for high-duration 

and smaller for short-duration. The uncertainty was also higher in the far future.  

 

Keywords: Rainfall intensity-duration-frequency, satellite precipitation, global climate model, 

uncertainty, bias correction  
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1. Introduction 

Intensity-duration-frequency (IDF) curves illustrate the interrelation among rainfall intensity, 

duration and frequency. They are essential in many water resources engineering and 

management fields, including assessing rainfall regimes, classifying rainfall zones, designing 

stormwater drainage systems, and operating flood control structures (Langousis and 

Veneziano, 2007; Noor et al., 2018; Tousi et al., 2021; Oberascher et al., 2022). The IDF curves 

are generally constructed using in-situ rainfall records considering a stationary climate, i.e. 

considering rainfall changes over time as insignificant (Koutsoyiannis et al. 1998). However, 

a large change in climate due to global warming is now being recognised (Iqbal et al., 2021; 

Salman et al., 2020). Rainfall variability has changed significantly in most parts of the world 

due to changes in atmospheric moisture under a warmer climate (Shahid 2011; Trenberth 

2011). A small deviation in the mean value can lead to a big change in extremes. Therefore, an 

upsurge in intense rainfall has been noticed in many regions (Hajani et al., 2017; Pour et al., 

2020; Pour et al., 2014). It means IDF curves developed in a stationary rainfall regime would 

not be applicable to design hydraulic structures (Rodríguez et al. 2014; Jalaei et al., 2020; 

Young et al., 2020). 

Several attempts have been made to consider nonstationary in constructing IDF curves 

and supporting climate-resilient hydraulic infrastructure development (Agilan and Umamahesh 

2017; Noor et al., 2018; Cheng and AghaKouchak 2014; Ouarda et al. 2019; Yan et al. 2019; 

Yilmaz and Perera 2014). In most studies, the existing trends in rainfall were incorporated into 

the rainfall distribution parameters as covariates. For example, Cheng and AghaKouchak 

(2014) added the trend in historical annual maximum rainfall intensity (AMRI) in probability 

distribution function (PDF) parameters of AMRI for constructing nonstationary IDF curves. 

Agilan and Umamahesh (2017) incorporated nonlinear trends in distribution parameters and 

reported that bias in estimating IDF curves can be minimised by considering the linear trend. 

A different approach was adopted by Ouarda et al. (2019), whereby the Southern Oscillation 

Index (SOI) is used as a covariate to produce nonstationary IDF curves. They reported the 

incorporation of teleconnections and climate change information in the IDF curves could be 

more reliable under climate change scenarios. However, a major drawback of the existing 

nonstationary IDF curves is their dependency on the exiting trends in AMRI or the relationship 

with climate indices. Future changes in climate due to global warming obviously would not 

follow historical changes (Alamgir et al. 2020). The existing relationship of rainfall with 

different large-scale indices like SOI would change as well (Khan et al. 2020). However, the 

climatic change would depend on policies adopted globally to reduce greenhouse gas emissions 
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and other socioeconomic pathways. Therefore, the IDF curves need to be developed based on 

projected climate, i.e. different climate change scenarios, to make them effective for climate-

resilient infrastructure development. 

Global climate models (GCMs) project the changes in rainfall properties over a century. 

GCM projections have been used in recent years to review and update the IDF curves for 

adaptation measures in water management infrastructures  (Feitoza Silva et al., 2021; Khazaei, 

2021). Several assumptions are made in GCM development due to a lack of knowledge on 

complete details of various earth and atmospheric processes, which cause a large uncertainty 

in GCM simulations. This also incurs risks in applying IDF curves developed using GCM 

projected rainfall. Uncertainties in projected IDF curves are generally incorporated to reduce 

risk in hydraulic design. It is expected that the uncertainty in the projected IDF should not be 

large, which is the main basis for designing cost-effective hydraulic structures. The selection 

of a suitable GCM subset based on their skill in estimating present climatology is generally 

suggested for trustworthy climate simulations (Iqbal et al. 2020; Samadi et al. 2010).  

Projection of IDF curves at ungauged locations is a major challenge in hydraulics. 

Although several studies have been conducted to project IDF curves using GCM and remote 

sensing data, there is little attempt so far to project IDF curves at ungauged locations. However, 

such information is essential for developing a long-term climate-resilience society in any 

region.  

This work proposed constructing IDF curves with associated uncertainty at ungauged 

locations under climate change scenarios. The curves were generated through bias correction 

of remote sensing rainfall using recorded hourly rainfall data. The GCM projected rainfall was 

used to project the IDF curves for four representative concentration pathways (RCPs). The 

methodology proposed in this study can be employed for projecting IDF curves at ungauged 

locations for climate change scenarios to mitigate the challenge of data scarcity and climate 

change in hydraulic engineering. 

 

2. Study area and data 

2.1 Peninsular Malaysia 

Geographically, peninsular Malaysia (1.20º-6.80º N; 100.10º-104.20º E) with an area of 

130,598 km2, is surrounded by Singapore in the south and Thailand in the north. Figure 1 shows 

the location of peninsular Malaysia and the rain gauges. The rainfall distribution of the study 

area is influenced by monsoon winds, orography and intricate land-sea boundaries. The 
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interaction of sea winds with mountains determines precipitation climatology (Khan et al., 

2019). Most of the rainfall in peninsular Malaysia is received during the northeastern and 

southwest monsoons. In addition, extreme rainfall is often reported particularly in the western 

regions during transitional periods (Suhaila and Jemain 2009). The annual average 

precipitation of the area ranges between 2000 and 4000 mm, while the temperature ranges from 

21 to 32°C (Nashwan et al., 2018; Pour et al., 2020). 

 

 
Figure 1 Location of the study area and in-situ rain gauges  
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2.2 Data and sources 

The methodology adopted in the current study was implemented in peninsular Malaysia. 

Observed rainfall data, Global Satellite Mapping of Precipitation gauge calibrated 

(GSMaP_GC) and Coupled Model Intercomparison Project (CMIP5) GCM's rainfall were used 

for projecting IDF curves at ungauged locations under climate change scenarios. Table 1 

describes the data used in this study. 

 

Table 1 The rainfall datasets utilised in the current study 

Rainfall  
data  

Temp 
resolution 

Data  
period 

Spatial 
resolution Source 

Observed  1-hour 1971-2018 80 stations DID Malaysia 

Global Satellite Mapping 
of Precipitation V6 gauge 
calibrated (GSMaP_GC) 

1-hour 2000-2018 0.1°×0.1° https://sharaku.eorc.jaxa.jp
/GSMaP/index.htm 

Coupled Model 
Intercomparison Project 
(CMIP5) Global Climate 
Models (GCMs) 

daily 

Historical 1971-2005 http://www.ipcc-
data.org/sim/gcm_monthly
/AR5/ Reference-
Archive.html 

Projected 2010-2099 

 

2.2.1 Rainfall data 

The in-situ hourly rainfall records of 80 stations for 1971–2018 (Figure 1) were obtained from 

the Malaysian Department of Irrigation and Drainage (DID). The data homogeneity was 

evaluated in earlier studies (Noor et al., 2021) which reported adequate quality for hydro-

climatic studies. Description of the stations is provided in Supplementary Table S1. 

GSMaP_GC rainfall for the period 2000–2018 was utilised for constructing IDF curves 

at ungauged locations. Previous studies on skill assessment of satellite rainfall datasets revealed 

that GSMaP_GC is the most suitable for peninsular Malaysia (Noor et al., 2021). Precipitation 

estimated using passive microwave and infrared radiometers is corrected using the in-situ 

rainfall data to generate the GSMaP_GC product (Kubota et al., 2007). 

 

2.2.2 GCM Simulations  

The GCM simulated daily rainfall data of peninsular Malaysia was collected from the CMIP5 

data portal. Noor et al. (2019a) evaluated CMIP5 GCMs in reconstructing historical rainfall 

climatology and suggested four GCMs most suitable for rainfall projections for peninsular 
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Malaysia (Table 2). The rainfall projections of these models were used for projecting IDF 

curves with associated uncertainties.  

 

Table 2 Global Climate Models employed in the current study  

 

 

3. Methodology 

The methodology used for projecting IDF curves at ungauged locations with associated 

uncertainties is illustrated in Figure 2. The in-situ and GSMaP_GC hourly AMRI series were 

used to generate corresponding IDF curves and estimate bias in the GSMaP_GC IDF curve. 

Rainfall data of 80% of stations (64 stations) were used for estimating bias correction 

parameters, and the remaining 16 stations for evaluating the precision of the developed curves. 

The bias correction performance was evaluated for different ratios of data divisions, including 

60:40, 70:30 and 80:20. A data division ratio of 80:20 was finally used as it provided the best 

performance. The stations for calibration and validation were selected randomly. The bias 

correction factor, derived via validation, was then used for correcting bias in the IDF curves at 

ungauged locations, estimated through GSMaP_CG rainfall (Noor et al., 2021). 

The GCM projected daily rainfall for three periods (2010-2039, 2040-2069 and 

2070-2099) for four RCPs, i.e. 2.6, 4.5, 6.0 and 8.5, was interpolated at observed grid points. 

The best-fit PDF for the interpolated daily AMRI, estimated based on the negative likelihood 

ratio, was used to estimate the changes in the PDF parameters or climate change factor (CCFs) 

for three future periods compared to the reference period (1971-2000). These CCFs were 

applied to PDF parameters of AMRI of GSMaP_GC, and the perturbed PDFs were used to 

project IDF curves.  

 
 
  

Data source Model Resolution (lat ×lon) 

Beijing Climate Center, China BCC-CSM1-1(m) 2.8° × 2.8° 
National Center for Atmospheric Research, 
USA 

CCSM4 0.94° × 1.25° 

Commonwealth Scientific and Industrial 
Research Organization (CSIRO), Australia 

CSIRO-Mk3-6-0 1.8° × 1.8° 

Met Office Hadley Centre, UK HadGEM2-ES 1.25° × 1.875° 
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Figure 2 Procedure used for projecting IDF curves with uncertainties at ungauged locations 
under climate change scenarios 
 

3.1 Bias Correction of Satellite Rainfall IDF Curve  

The biases in GSMaP_GC rainfall for 1, 3, 6, 12, 24, 48, 72-hour duration, each for 2, 5, 10, 

25, 50, 100 years return periods (RPs) were estimated. The difference in observed IDF and 

nearest grid point GSMaP_GC IDF was used to estimate bias in GSMaP_GC IDF. Estimated 

biases at 64 stations were interpolated at all GSMaP_GC grid points using the inverse distance 

weighting (IDW) function. The IDW was employed as it has been reported to be the most 

reliable for rainfall interpolation in peninsular Malaysia (Ziarh et al., 2021). Interpolated bias 

Future Rainfall 
(2010-2099) 

Historical Rainfall 
(1971-2000) 

Observed Hourly 
Rainfall (2000-2018) 

Remote Sensing 
Rainfall (2000-2018) 

CMIP5 GCM (1971-2099) 

Annual Maximum Rainfall 

Fitting of PDF 
(GEV) 

Observed 
IDF Curves 

Remote Sensing 
IDF Curves 

PDF of Historical 
GCM Rainfall 

PDF GCM 
Projected Rainfall 

Climate Change Factor % Biases 

Spatial Distribution of Biases 

Start 

IDF curves at Ungauged Locations 

IDF Projections at Ungauged Locations with 
Uncertainty  
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values were then used to correct biases in GSMaP_GC IDF at 16 validation locations. The 

interpolated bias in rainfall intensity for all durations and RPs was added to GSMaP_GC 

rainfall intensity for corresponding durations and RPs to correct the bias of the GSMaP_GC 

IDF curve. The bias-corrected IDF curves were compared with the observed curves to validate 

the bias correction method in estimating IDF curves at ungauged locations from GSMaP_GC 

rainfall. The procedure used for the estimation and correction of bias of GSMaP_GC IDF 

curves is presented in Figure 3. This procedure has been widely used for correcting bias in IDF 

curves generated from satellite precipitation (Ombadi et al., 2018; Noor et al., 2021; Venkatesh 

et al., 2021). 

 

 
Figure 3 Procedure used for estimation and bias correction of remotely sensed IDF curves 

 

3.2 Projection of IDF Curves at Ungauged Locations 

GCM simulated rainfall for the period 1971-2099 was interpolated to the observation station 

using bilinear interpolation algorithm. This interpolation algorithm is generally used for GCM 

data interpolation due to its ability to transfer coarse resolution GCMs to fine resolution without 

changing the GCM simulated climate change signal (Nashwan and Shahid, 2020; Iqbal et al., 

2021). The interpolated rainfall at each station for reference (1971-2000) and future periods 

(2010-2039, 2040-2069 and 2070-2099) was used to estimate daily AMRI for each period. The 

daily AMRI series for each period was then fitted with a common PDF. The changes in daily 
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AMRI PDF parameters in the future periods compared with the reference period were estimated 

as CCF. The CCFs were added with the corresponding PDF parameters of GSMaP_GC AMRI 

for different durations to approximate AMRI PDFs for future periods. The approximated PDFs 

were finally used to generate IDFs for different RPs for three future periods and four RCPs. 

The procedure is elaborated in Figure 4.  

 Previous studies (Noor et al., 2021; Yusof et al., 2009) showed generalised extreme 

value (GEV) distribution best fits the daily and hourly rainfall of peninsular Malaysia. The 

GEV is a three-parameter distribution, scale (σ), location (μ) and shape (k), where σ indicates 

the spread of the distribution, μ describes the centre of mass (mean) of the distribution and k 

indicates the influence of the tail structure of distribution. It can be expressed as, 

𝐹(𝑦) = exp	 *− ,1 + 𝑘 0!
"
− 𝜇23

#$/&
4 ,									𝑦 ≥ 𝜎(𝜇 − 1/𝑘).    (1) 

The difference (%) of these three parameters for three future periods for four RCPs compared 

to the reference period was estimated as shown in Figure 4. GCMs do not provide projections 

of hourly rainfall. Therefore, it was considered that the shift in GEV distribution of hourly 

rainfall maxima between the reference period and future period would be the daily rainfall. 

Similar perturbation of GEV parameters has been previously used for IDF curve projections 

by Peck et al. (2012) and Ragno et al. (2018). 

The CCF for each GEV parameter was estimated as the difference (delta) between GEV 

parameters fitted to projected (kp, μp, σp) and historical (kh, μh, σh) daily rainfall, which are 

presented as ∆k, ∆μ and ∆σ in Figure 4. The CCFs were added with the GEV distribution 

parameters of GSMaP_GC hourly rainfall to generate IDF curves for future periods.  
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Figure 4 Development of IDF curve for future periods by estimating changes in daily rainfall 
distribution parameters between the reference and future periods.  
 

  

 The present study estimated the CCF at each GSMaP_GC grid point for three future 

periods and four RCPs. The IDF curve was generated for each of the four selected GCMs. Their 

average provided the mean, while the upper and the lower bounds provided the uncertainty 

range of the IDF curves. The procedure used for projecting IDF curves with uncertainties is 

presented in Figure 5. 

 

 
Figure 5 Procedure used for projecting IDF curves with climate change uncertainties 
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4. Results and Discussion 

4. 1 Construction of IDF Curves at Ungauged location 

The bias or difference between GSMap_GC IDF curves and the in-situ IDF curves was 

estimated at 64 stations (80% of available stations). The estimated difference was interpolated 

at 16 locations, used for validation, and then added with the IDF curves to correct the curves. 

The estimated difference in rainfall intensity as a percentage of observed rainfall intensity for 

different RPs of hourly AMRI at 64 stations is presented using boxplots in Figure 6. The results 

showed less difference for shorter RPs which gradually increases for longer RPs. The long 

whiskers of the boxes indicate the increase in the spatial variability of bias with RPs. 

 

 
Figure 6 Estimated difference (%) in GSMaP_GC rainfall intensity compared to observed 
rainfall intensity for different return periods  
 

  The corrected IDF curves at 16 validation stations were used to evaluate the reliability 

of the IDF curves at ungauged locations, estimated using GSMaP_GC rainfall. The obtained 

results at a station used for validation are shown in Figure 7. The results show a perfect match 

of IDF curves for all the RPs, constructed using in-situ and bias-corrected GSMaP_GC rainfall. 

The scatter plot of in-situ and bias-corrected GSMaP_GC rainfall intensity at all 16 stations is 

shown in Figure 8. The coefficients of determination between in-situ and bias-corrected 

GSMaP_GC rainfall intensity for all RPs were higher than 0.91. The estimated IDF curves 
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matched well with the in-situ IDF curves for both the low and high RPs. This indicates the 

suitability of derived IDF curves at an ungauged location for practical applications. The 

GSMaP_GC IDF correction result for another station is presented in Supplementary Figure S-

1. 
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Figure 7 In-situ and corrected GSMaP_GC IDF curves for different return periods at a station 
located south of peninsular Malaysia, presented as an example.  
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Figure 8 Scatter plot of in-situ and corrected GSMaP_GC rainfall intensity for different return 
periods at ungagged locations 
 

4.2 Projection of IDF Curve at Ungauged Locations with Uncertainties 

The changes in GEV parameters of daily AMRI for future periods in comparison to the 

reference period at 80 stations were interpolated at all the GSMaP_GC grid points to generate 

the map of CCFs. The spatial distribution of changes in σ, μ and k of the GEV distribution for 

BCC-CSM1-1(m) for four RCPs for 2070-2099 in comparison to the reference period 

(2071-2000) is shown in Figure 9. The change values of GEV parameters interpolated at a 

GSMaP_GC grid point for a particular scenario and future period were used to perturb the GEV 

distribution parameters of GSMaP_GC rainfall to generate GEV distribution parameters for 

that scenario and period. The distribution parameters were then used to construct IDF curves 

for RCPs. The bias in GSMaP_GC of the location was finally added to project the IDF curve. 

The IDF curves generated for three future periods and four RCPs for BCC-CSM1-1(m) at a 

station located south of the peninsula are presented in Figure 10. The lowest changes in IDF 

were observed for RCP 2.6 and the highest for RCP 8.5. The intensity of rainfall showed an 
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increase over time, and therefore, the greatest changes in the IDF were projected for 2070-

2099.                  

 
Figure 9 Changes in scale, location and shape parameters during 2070-2099 compared to the 
reference period (2071-2000) for four RCPs of BCC-CSM1-1(m) at different grid points in 
peninsular Malaysia 



17 

    
Figure 10 The IDF curves developed for three future periods and four RCP scenarios of BCC-
CSM1-1(m) at a station located south of peninsular Malaysia    
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The projected IDF curves were developed for all the four selected GCMs for four RCPs 

and three future periods. The mean, upper and lower bounds of the IDF curves of different 

GCMs were estimated to construct the projected IDF curves with uncertainties. The obtained 

IDF curves with uncertainty band for (a) RCP 2.6 and (b) RCP 8.5 during 2070-2099 are shown 

in Figure 11. Overall, uncertainty in the IDF curve was higher for high emission scenarios and 

far future compared to low emission scenarios and near future. The results also showed a higher 

increase in short-duration rainfall intensity than large duration rainfall intensity. Particularly, 

the increase would be more for short duration high RP rainfall intensity. For example, 2-year 

RP 1-hour rainfall intensity will increase from 53 mm/hr to 65 mm/hr, while 24-hour rainfall 

intensity will be from 12.1 mm/hr to 15.8 mm/hr for RCP 8.5. In contrast, the 100-year RP 

rainfall intensity will increase from 70 mm/hr to 95 mm/hr for 1-hour, while from 12.6 mm/hr 

to 19.6 mm/hr for 24-hour. 

The minimum, mean and maximum changes (%) in rainfall return periods in three 

future periods and four RCPs for whole peninsular Malaysia are presented in Table 3. The 

results revealed mean changes in the IDF, ranging from 7.5 to 15.5% for 2010-2039, 5.0 to 

19.7% for 2040-2069 and 5.0 to 40.7% for 2070-2099 than the base period. The mean changes 

were in the range of 7.8-8.4% for RCP 2.6, 7.5-8.4% for RCP 4.5, 14.4-15.7% for RCP 6.0 

and 12.9-13.5% for RCP 8.5 during 2010-2039. The largest changes were found in the far 

future (2070-2099) for all scenarios. The projected changes were 5.0-5.5% for RCP 2.6, 

10.8-11.8% for RCP 4.5, 24.5-27.9% for RCP 6.0 and 31.0-40.7% for RCP 8.5. The results 

indicate the projection was high for higher scenarios and the far future.  



19 

 
            (a)   
  

 
         (b) 

 
Figure 11 Projected IDF curves at a station located south of peninsular Malaysia with 
uncertainty for (a) RCP 2.6 and (b) RCP 8.5 during 2070-2099. The X-axis represents rainfall 
intensity in mm/hour, and Y-axis denotes duration in hours. 
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Table 3 also shows higher uncertainty in projected changes in rainfall intensities of 

higher return periods for all scenarios and future periods. For example, the projected changes 

in the 2-year RP rainfall intensity were 16.5-18.7% during 2010-2039, 10.3-21.3% during 

2040-2069, and 16.7-44.1% during 2070-2099 for different RCPs. In contrast, the projected 

100-year RP rainfall intensity changes were 18.7-22.2% during 2010-2039, 14.0-28.6% 

during 2040-2069 and 19.7-87.4 during 2070-2099. The range in the projected increase in 

rainfall intensity for all RPs was higher for higher RCPs. For example, the projected increase 

in rainfall intensity for different RPs over the whole future period (2010-2099) was in the range 

of 18.7- 87.4% for RCP 8.5, while the ranges were 10.3-19.7% for RCP 2.6, 7.9-23.8% for 

RCP 4.5, and 12.0-37.8% for RCP 6.0. The results indicate an overall increase in uncertainty 

in projected rainfall intensity with return period, RCPs and time in peninsular Malaysia. 

 

 

Table 3 The minimum, mean and maximum changes (%) in rainfall return periods in three 
future periods and four RCPs 
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20
10

-2
03

9  

2 -0.1 7.8 16.4 -2.7 7.5 17.4 5.9 14.5 22.5 5.6 13.3 24.3 
5 0.1 7.8 16.3 -2.6 7.5 17.3 5.6 14.4 22.4 5.0 12.8 23.8 
10 0.2 7.9 16.7 -2.8 7.7 17.8 5.4 14.6 23.1 4.8 12.9 24.2 
25 0.2 8.1 17.5 -3.0 8.0 18.7 5.3 15.0 24.3 4.6 13.0 25.1 
50 0.2 8.2 18.1 -3.2 8.2 19.5 5.3 15.3 25.3 4.6 13.2 25.9 
100 0.1 8.4 18.8 -3.4 8.4 20.4 5.3 15.7 26.4 4.5 13.5 26.7 

20
40

-2
06

9 

2 6.1 9.8 16.4 0.1 10.1 19.1 8.7 13.1 20.1 5.7 17.6 27.1 
5 5.6 9.7 16.2 -0.4 10.0 19.0 9.0 13.0 21.0 6.0 17.5 27.2 
10 5.4 9.7 16.7 -0.5 10.1 19.6 9.1 13.2 21.8 6.0 17.8 28.5 
25 5.2 9.9 17.5 -0.7 10.4 20.7 8.8 13.5 22.9 6.0 18.5 30.6 
50 5.1 10.1 18.2 -0.9 10.6 21.7 8.7 13.8 23.8 5.9 19.1 32.5 
100 5.0 10.3 19.0 -1.0 10.9 22.7 8.7 14.1 24.7 5.9 19.7 34.5 

20
70

-2
09

9 

2 -3.2 5.0 13.5 7.2 11.1 15.1 14.5 24.6 38.9 9.2 31.0 53.3 
5 -3.4 5.0 13.4 6.2 10.8 15.7 14.6 24.5 39.9 9.5 31.6 57.5 
10 -3.6 5.1 13.7 5.8 10.9 16.3 14.7 25.0 42.1 9.6 33.1 64.2 
25 -3.9 5.2 14.3 5.6 11.2 17.1 14.6 26.1 45.8 9.5 35.8 75.5 
50 -4.1 5.4 14.8 5.5 11.5 17.7 14.6 27.0 49.0 9.4 38.1 85.5 
100 -4.3 5.5 15.4 5.5 11.8 18.3 14.6 27.9 52.4 9.4 40.7 96.8 
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5. Discussion 

Despite enhanced precipitation sensing technologies over time, satellite precipitation is still 

prone to high bias. It generally overestimates light precipitation and underestimates high 

precipitation (Nashwan et al., 2019; Ziarh et al., 2020). Underestimation of intense 

precipitation caused satellite precipitation to underestimate the IDF curve (Sun et al., 2019, 

Ombadi et al., 2018, Noor et al., 2021). The underestimation is significantly high in most cases. 

For example, Sun et al. (2019) showed a nearly 70% underestimation of observed IDF curves 

in Singapore using GSMaP. Ombadi et al. (2018) found 3 and 22% underestimation using 

satellite rainfall IDF curves in the US. The present study showed underestimation of observed 

IDF curves by 16 to 54% using GSMaP_GC. The underestimation was 8-12% for RPs higher 

than ten years and nearly 36-54% for RPs less than ten years. The previous studies showed 

successful reduction of bias in satellite IDF curves by adding or subtracting the bias for 

different durations and return periods (Ombadi et al., 2018; Noor et al., 2021; Venkatesh et al., 

2021).  

 The method presented in this study assumed that the changes in rainfall distribution for 

different durations would be the same as the change in daily rainfall distribution. Global 

warming-driven rainfall changes follow a complex and spatially heterogeneous pattern. 

However, there is an overall assumption that shorter duration rainfall will be more intense due 

to climate change. However, the presently available GCMs cannot provide reliable hourly or 

sub-hourly rainfall estimates. Martel et al. (2021) showed that all current methods fail to 

estimate the future extreme rainfall. Therefore, using an available method to estimate future 

hourly and sub-hourly rainfall extremes adds uncertainty to projected IDF curves. Therefore, 

the results presented in this study should be interpreted with caution. 

Previous studies showed an increase in precipitation extremes, particularly one-day 

maximum rainfall and rainfall intensity in peninsular Malaysia (Noor et al., 2019a; Ngai et al., 

2020; Liang et al., 2021). The studies also projected a larger increase in extremes for higher 

emission scenarios. Therefore, the uplift of IDF curves obtained in the present study is 

justifiable. The present study also showed a higher increase in IDF curves for higher RCPs. 

However, the IDF curves were found to vary significantly over peninsular Malaysia due to 

variations in rainfall depth. Overall rainfall intensity was observed more on the east coast of 

the peninsular than on the west coast. The results agree with Khan et al. (2019). The higher 

uncertainty is associated with higher rainfall intensity. Therefore, the uncertainty in projected 

IDF was also more on the peninsula's east coast than on the west coast.  
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The present study showed a large bias in projected IDF curves for all RCPs. The sources 

of uncertainty in IDF curve projections include GCMs, projection scenarios, and the bias 

correction method. GCM projection uncertainty can be reduced using a GCM ensemble (Taylor 

et al., 2012). This study employed an ensemble of four GCMs for the projection of IDF curves. 

Noor et al. (2019a) evaluated the performance of all available CMIP5 GCMs in simulating the 

rainfall climatology of peninsular Malaysia. They suggested those four GCMs for climate 

change projections. The use of the ensemble of most reliable GCMs has added reliability to the 

IDF curves projected in this study.  

The present study showed changes would be more pronounced for short duration than 

for high duration. This is particularly true of higher RP short-duration rainfall. For example, 

the intensity of the 100-year RP 1-hour duration rainfall will increase more than other durations 

and return periods. The results agree with Wasko and Sharma (2015) and Fadhel et al. (2017). 

However, it should be noted that the projected changes in rainfall depend on the considered 

reference period. Fadhel et al. (2017) showed that projected IDF curves significantly vary for 

different reference periods. This is justifiable as rainfall intensity varies on a multidecadal 

scale, and thus, with the reference period. This study employed 30-year (1971-2000) reference 

period for IDF curve projections. Generally, multidecadal climate cycles are less than 30 years. 

Therefore, the results obtained using 30 years as a reference period can be considered reliable. 

However, future studies can be conducted with different reference periods to assess uncertainty 

due to the reference periods. 

This study employed CMIP5 GCMs to project IDF curves at ungauged locations for 

RCPs. Recently, CMIP6 GCMs have been released, which used the same emission scenarios 

used in RCPs. However, the CMIP6 GCMs also considered the global socioeconomic changes 

over the century and provided climate change projections for newly defined pathways known 

as shared socioeconomic pathways (SSPs). Therefore, mitigation, adaptation, and climate 

change initiatives are incorporated into SSPs based on future social and economic 

developments (Neill et al., 2016). The methodology used in the study can be employed in the 

future for the projections of IDFs for SSPs. 

 

6. Conclusion 

A methodological framework was developed in this study for generating rainfall IDF curves at 

ungauged locations for climate change scenarios with associated uncertainty. GSMaP_GC 

rainfall, observed station record and GCM rainfall simulations were used for this purpose. The 
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bias-corrected GSMaP_GC IDF curves could accurately replicate the observed IDF curves. 

Therefore, the projected IDF curves can be utilised for designing climate-resilient hydraulic 

structures with confidence. The short-duration higher return period rainfall intensity was 

projected to increase more than the long-duration lower return period. The rainfall intensity 

was also projected to increase more for higher emission scenarios and in the far future. 

Uncertainty in the projected IDF curves was found to become wide with an increase in RPs, 

emission scenario and time. Hence, the highest uncertainty in the projected IDF curves was 

found for 100-year RP for RCP 8.5 in the far future (1970-2099). Projection of IDF curves, 

particularly at ungauged locations, is important for long-term development planning. The 

procedure developed in this study can be used in any other region for reliable projection of the 

IDF curves for different RCPs scenarios. Besides, the uncertainty of the estimated IDF can 

support better decision making. In future, a study can be conducted to project IDF curves by 

disaggregating daily GCM rainfall to hourly rainfall and comparing the results obtained in this 

study. Besides, IDF can be developed for SSP scenarios and considering multiple reference 

periods.  
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Supplementary Materials 

 

Table S1 Description of the 80 rainfall observation stations used in the present study 

No. Station ID  Longitude Latitude Elevation Annual Rainfall 
1 Johor 1437116 103.7528 1.4708 26 2535.2 

*2 Johor 1541139 104.1847 1.5264 38 1813.9 
3 Johor 1737001 103.7194 1.7639 49 1928.6 

*4 Johor 2025001 102.5778 2.0514 7 1699.7 
5 Johor 2237164 103.7361 2.2569 35 2226.6 

*6 Johor 2534160 103.4194 2.5389 30 3279.8 
7 Johor 2636170 103.6208 2.65 8 2463.7 

*8 Kedah 5806066 100.6319 5.8139 38 2340.2 
9 Kedah 5808001 100.8944 5.8806 160 2252.5 

10 Kedah 6103047 100.3917 6.1056 6 2013.1 
11 Kedah 6108001 100.8472 6.1056 128 2181.3 
12 Kedah 6206035 100.6125 6.2542 32 1924.8 
13 Kedah 6207032 100.7722 6.2403 124 1788.1 
14 Kedah 6306031 100.6903 6.3431 41 1594.6 
15 Kelanatan 4819027 101.9694 4.8792 127 2227.9 
16 Kelanatan 4923001 102.3528 4.9375 88 2433.8 
17 Kelanatan 5320038 102.0153 5.3778 47 2281.6 

*18 Kelanatan 5322044 102.275 5.3083 52 2290.7 
19 Kelanatan 5522047 102.2028 5.5319 34 2329.3 
20 Kelanatan 5718033 101.8389 5.7014 88 2302 

*21 Kelanatan 6019004 101.9792 6.0236 11 3113.3 
22 Melaka 2224038 102.4917 2.2889 20 1680.2 
23 Melaka 2321006 102.1931 2.3639 48 1481.5 
24 N.Sembilan 2719001 101.9556 2.7375 69 2245.4 
25 N.Sembilan 2725083 102.5125 2.7194 77 1549.7 

*26 N.Sembilan 3020016 102.0736 3.0931 163 1818.9 
27 Pahang 2828173 102.8556 2.85 42 1341.6 
28 Pahang 2924096 102.4189 2.9375 71 1194.3 
29 Pahang 3121143 102.1972 3.175 84 1502.3 

*30 Pahang 3129177 102.9764 3.1681 43 1681.2 
31 Pahang 3134165 103.4417 3.1375 10 1942.4 
32 Pahang 3231163 103.1889 3.2875 19 2353 
33 Pahang 3330109 103.0264 3.3903 27 1960.5 
34 Pahang 3424081 102.42 3.43 40 1149.1 
35 Pahang 3519125 101.9153 3.5125 115 1942.3 

*36 Pahang 3533102 103.3569 3.5611 5 2509.6 
37 Pahang 3628001 102.8556 3.6333 71 1598 

*38 Pahang 3924072 102.4333 3.9042 52 1759.5 
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No. Station ID  Longitude Latitude Elevation Annual Rainfall 
39 Pahang 4023001 102.325 4.0319 65 1714.4 
40 Pahang 4219001 101.9403 4.2333 99 1797.4 
41 Pahang 4324001 102.4028 4.3861 91 1836.3 
42 Pahang 4513033 101.3833 4.5167 1832 2066.7 
43 Perak 3615003 101.5236 3.6833 45 2583.9 
44 Perak 4010001 101.0361 4.0167 6 2215.1 
45 Perak 4012143 101.3 4.0486 44 2263.6 

*46 Perak 4207048 100.7 4.2181 7 1399.4 
47 Perak 4209093 100.9 4.2556 16 1973.3 
48 Perak 4311001 101.1556 4.3056 208 3154.9 
49 Perak 4409091 100.9014 4.4611 26 1712.1 
50 Perak 4511111 101.125 4.5889 50 2238.9 
51 Perak 4611001 101.1694 4.6806 98 1959.7 
52 Perak 4708084 100.8944 4.775 98 1668.3 
53 Perak 4807016 100.7931 4.8625 864 3220.6 
54 Perak 4811075 101.175 4.8931 111 1643.3 
55 Perak 4908018 100.8042 4.9792 43 2050.2 
56 Perak 5005003 100.5458 5.0139 3 1485.9 
57 Perak 5207001 100.7014 5.2167 22 2036.6 

*58 Perak 5210069 101.0583 5.2986 115 1597.6 
59 Perak 5411066 101.1542 5.4167 132 1721.2 
60 Perak 5610063 101.0806 5.6042 198 1658 
61 Perak 5710061 101 5.7083 334 1754.4 
62 Perlis 6401002 100.1875 6.4458 7 1681.6 

*63 Perlis 6603002 100.3097 6.6569 69 1507.3 
64 Pinang 5504035 100.4306 5.5347 5 2083.7 
65 Selangor 2913001 101.3931 2.9306 8 1624.5 
66 Selangor 3118102 101.8722 3.1736 104 2358.1 

*67 Selangor 3314001 101.4122 3.3689 9 1669.4 
68 Selangor 3411017 101.1733 3.4236 4 1533.5 
69 Selangor 3710006 101.0831 3.7286 6 1593.1 
70 Terengganu 4234109 103.4222 4.2319 8 2776.7 

*71 Terengganu 4734079 103.4194 4.7625 10 2683.9 
*72 Terengganu 4929001 102.9667 4.9528 38 4065.7 
73 Terengganu 4930038 103.0611 4.9389 32 3740.7 
74 Terengganu 5029034 102.9417 5.0667 25 3513.4 
75 Terengganu 5328044 102.8861 5.3556 29 3755.3 
76 Terengganu 5331048 103.1333 5.3181 3 2548.9 
77 Terengganu 5426001 102.675 5.4764 40 4409.6 
78 WP 3116003 101.6847 3.1514 63 2818 
79 WP 3216001 101.6861 3.2722 137 2444.8 
80 WP 3317004 101.7708 3.3681 1004 2551.7 

  *Stations used for validation 
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Figure S-1 In-situ and bias-corrected GSMaP_GC IDF curves for different return periods at a 
station located in central peninsular Malaysia (PAHANG 3129177) 
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