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Abstract: In this paper, the concept of ultrametric structure is intertwined with the SLAM procedure.
A set of pre-existing transformations has been used to create a new simultaneous localization and
mapping (SLAM) algorithm. We have developed two new parallel algorithms that implement the
time-consuming Boolean transformations of the space dissimilarity matrix. The resulting matrix
is an important input to the vector quantization (VQ) step in SLAM processes. These algorithms,
written in Compute Unified Device Architecture (CUDA) and Open Multi-Processing (OpenMP)
pseudo-codes, make the Boolean transformation computationally feasible on a real-world-size dataset.
We expect our newly introduced SLAM algorithm, ultrametric Fast Appearance Based Mapping
(FABMAP), to outperform regular FABMAP2 since ultrametric spaces are more clusterable than
regular Euclidean spaces. Another scope of the presented research is the development of a novel
measure of ultrametricity, along with creation of Ultrametric-PAM clustering algorithm. Since
current measures have computational time complexity order, O(n3) a new measure with lower time
complexity, O(n2), has a potential significance.

Keywords: ultrametricity; dissimilarity spaces; Fast Appearance Based Mapping; Open Multi-Processing

1. Introduction

Advances in robotics and artificial intelligence have enabled the creation of au-
tonomous systems and vehicles (AV). AVs are expected to localize themselves, create
maps, and navigate through unknown environments. These major tasks are typically
achieved through simultaneous localization and mapping (SLAM). It is attempted in this
study to use and combine the concept of ultrametricity in the SLAM process. Clustering is
critical in the Vector Quantization (VQ) step of the SLAM process for loop closure detection
because it helps to reduce the cumulative error of the robot’s estimated pose and generate
a consistent global map. SLAM algorithms have several sub-problems, the most important
of which is loop closure detection (LCD). In this paper, we look at how clustering using
ultrametric distance matrices affects the LCD part of the SLAM. Subdominant ultrametric
distances are calculated by performing the transformations described in [1–3] on Euclidean
distance matrices. The primary reason for using ultrametric spaces is that they can improve
clustering algorithms by generating more compact clusters with a higher Donn index,
which is calculated as a ratio of the smallest within-cluster distance to the largest between-
cluster distance; a higher Donn index indicates better clustering. Ultrametric spaces are
high-dimensional Hilbert spaces with a completely hierarchical structure. These spaces
offer several computational benefits. For example, using an ultrametric configuration of
the space can improve searching. The ability to structure data as a tree, as illustrated by
our observations embedded in an ultrametric topology, provides a significant advantage
for proximity searching. If we preprocess the data using such an embedding, we can find
an observation’s nearest neighbor in constant computational time, i.e., O(1) time, [4–7].
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In order to create clusters, we apply the PAM algorithm [8] which searches a data
set for k representative objects (K Medoids) and assigns each object to the closest Medoid.
The overall goal is to minimize the sum of dissimilarities between cluster objects and the
cluster’s center (Medoid) [9]. One of the advantages of PAM clustering algorithm is that
it is less sensitive to outliers than the other partitioning algorithms [10]. In this work, we
present a new Ultrametric-PAM and incorporate it into the LCD pat of the Fast Appearance
Based Mapping (FABMAP) SLAM procedure. The regular FABMAP [11], is available online
at [12]. It significantly improves accuracy and speeds up computations by a factor of 1000.

Furthermore, we introduce a new measure of ultrametricity and demonstrate that
the new measure significantly reduces the time complexity from order O(n3) to O(n2) in
several different algorithms.

We parallelize the serial algorithm presented in Section 5, which can be embedded in
the VQ part of FABMAP algorithm, to scale up our proposed approach to large data sets.
For real-world-size datasets, parallelization of set of transformations is required because
applying these transformations serially is nearly intractable. We present two different
implementations of this algorithm, with Compute Unified Device Architecture (CUDA)
and Open Multiprocessing (OpenMP).

The following is how the paper is structured. Section 2 is devoted to a review of
previous works in this field as well as the motivation for introducing a new measure of
ultrametricity. The set of transformations on the Euclidean distance matrices defined in [1]
are then briefly reviewed in Section 3. Sections 4 and 5 define the Ultrametric-FABMAP
SLAM method, introduce the new measure, and describe the parallel algorithms used to
compute the transformations. In Section 6 we present the necessary definitions as well as
the notion of ultrametric space, as well as motivating examples. To evaluate the results of
the Ultrametric-PAM algorithm, we run simulation experiments on large-scale datasets.
Furthermore, we compare the presented measure with Rammal’s measure [13].

2. Prior Works

Several solutions to the LCD problem have been proposed in recent years, the majority
of which are based on odometry, which uses ultrasonic sensors or lasers. Advances in
computer vision and image processing, as well as widespread use of digital cameras, have
accelerated the adoption of SLAM methods. Several deep learning-based solutions have
been developed. LCD-Net [14], identifies concurrently visited locations and computes the 6-
Dof transformation matrix to map loop closures in LiDAR point clouds. A global descriptor
extraction block, a shared encoder and a relative pose head construct the transformation
matrix between the point clouds in this model. Such customized deep learning methods,
however, fail when the robot revisits previous locations with a significantly different
perspective. DeepRING [15] solves this problem by learning a rotation-translation invariant
representation from LiDAR scan, which prevents performance degradation due to extreme
changes in the local view.

In [16,17], an autoencoder (AE) and a hyperbolic graph convolutional neural network
(HGCN) were used in the vector quantization step of the FAB-MAP algorithm. For the
clustering task, the AE-FABMAP model employs a self-supervised module, which can be
thought of as a type of unsupervised algorithm. This approach requires significantly less
memory (1/100) than the alternative semi-supervised approach implemented in HGCN-
FABMAP. This significant reduction in memory requirements motivated us to investigate
unsupervised clustering methods further.

During the 1990s, hierarchical clustering algorithms were among the best options.
These methods, however, are not scalable because their parallelization requires keeping the
entire dataset in memory, effectively limiting their applicability to datasets with fewer than
500,000 items [18]. Murtagh [18] developed a technique to avoid this problem by using
ultrametrization via Baire space embedding [19–21]. For examples of Baire space please
look at [18].
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There has been a great deal of research into measuring the ultrametricity of dissim-
ilarity spaces. A dissimilarity space is a set of points along with a function defined on
them with properties of positiveness, symmetry, and reflectivity. An ultrametric space is
a dissimilarity space with a strong triangular inequality as an additional condition. As
an example of an ultrametricity measure, Rammal [13] defines the ultrametricity index
as follows:

R = ∑
x,y∈spaceX

(
d(x, y)− dc(x, y)

)/
∑

x,y∈spaceX
d(x, y) (1)

where d and dc are the Euclidean and the Cophenetic distance matrices of the space X.
The dc(X, Y) is the proximity at which X and Y are grouped into the same cluster. Please
note that R ∈ [0, 1]. For instance, if X is an ultrametric space, R(X) = 0 and if X is a
non-hierarchical space, R(X) = 1. For a more in-depth discussion of Rammal’s measure,
see [13].

Murtagh introduced a new ultrametricity index based on the shape and proportion
of triangles in the space in [22] where triangles that are “almost” isosceles form a more
hierarchical data space. For real-size datasets, computing Murtagh’s measure is intractable
because counting the number of triangles in a given space with n points is of order O(n3).
As a result, we need to define a new measure based on the shape of the triangles in the space.
The following section provides a brief overview of the transformations that increase the
hierarchiality of a data space. The transformations are required as input to PAM clustering,
which is a critical module in the VQ step of FABMAP.

3. Review of the Transformation

In what follows, we introduce a set of transformations defined by [1], on the Euclidean
distance matrix A, that improves the hierarchical structure of dissimilarity space. These
transformations are in the form of powers of Euclidean distance matrices over a lattice
structure.

Let M(L) be a set of square matrices over a distributive lattice L, then for any
A1, A2, A3 ∈M(L).

A1 ∗ A2 is defined as:

n∨
l=1

(ail ∧ bl j) f or 1 ≤ i, j ≤ n (2)

The
∨

and
∧

operators are defined as follows:

n∨
l=1

(X1, X2, . . . , Xn) = min{X1, X2, . . . , Xn} (3)

n∧
l=1

(X1, X2, . . . , Xn) = max{X1, X2, . . . , Xn} (4)

Let the identity element be:

In = (δij)

{
1 i = j
0 i 6= j

(5)

Then from the definition of
∨

and
∧

:
A1 ∗ (A2 ∗ A3) = (A1 ∗ A2) ∗ A3

A1 ∗ I = I ∗ An

Ai+1= Ai ∗ A

(6)
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Remark 1. For all A ∈ M(L), the sequence A1, A2, . . . , An, . . . is ultimately periodic, because
it contains a finite number of distinct matrices. This sequence forms a cyclic group in terms of
multiplication [1].

The relation ≤ between any two matrices A1, A2 from set {A1, A2, ..., An} is defined
as follows:

A1, A2 ⇐⇒ [A]ij ≥ [A2]ij ∀i, j ∈ [1 . . . n] (7)

Theorem 1. Let A ∈ Mn, with the property A ≤ A2, then A converges to Ak(A) with k(A) ≤ n.

For proof, see Theorem 5.1 in [1].

4. The New Ultrametricity Measure

We propose a new measure of ultrametricity based on the deviation of large triangles
from the closest isosceles triangles. The following definitions are for large triangles that form
the general structure of the space. To define the term large triangle, we first ascendingly
sort the distances between data points in the Euclidean distance matrix. Then, for each of
the three consecutive triplets of distances that satisfy the triangular inequality, we choose
one. The triangle they form is compared to the closest isosceles triangle by subtracting the
largest side from the second largest side. The smaller the difference, the closer the triangle
is to the isosceles one.

∑
i∈[0,(n×n−1)/2]

Tringular(di ,di+1,di+2)

1
|di − di+1 − ε| (8)

In (8), each di refers to a triangle side. For the isosceles and equilateral cases, the
parameter 0 < ε < 1 is included in the denominator. For example, consider the distances 3,
2, 1.5 that form triangle A and 2, 2, 1.5 that form triangle B, and ε = 0.001. For triangle A
the new measure will be 1/|2− 2 + 0.001| which is larger than 1/|3− 2 + 0.001| and at the
end these values should be normalized.

5. Ultrametric-PAM and Ultrametric-FABMAP

In this section, we describe a set of serial and parallel algorithms(Algorithms 1–4) to
transform an Euclidean distance matrix into a hierarchical distance matrix.

The standard Ultrametric-PAM algorithm will be discussed first. It is desired to
investigate how compactness, Donn index, and other clustering evaluation criteria change
when higher ultrametric configuration dissimilarity matrices are used as input to the PAM
clustering algorithm.

Algorithm 1 determines how well PAM clustering algorithm identifies clusters in a
dataset by evaluating clustering compactness, Donn index, sum of squared errors, and nor-
malized mutual information (NMI), for dissimilarity spaces (X, A1), (X, A2), . . . , (X, Ak(A)).
The NMI, compactness, sum of squared error, and Donn index criteria are measured. One of
the algorithm’s potential benefits is that it can detect spiral clusters, which most clustering
algorithms that are not density-based fail to detect. However, Algorithm 1 can only be used
on toy datasets; for real-world-size datasets, this algorithm takes a long time. As a result,
it must be parallelized. A possible parallel version can be achieved using OpenMp and
Intel intrinsic Advanced Vector Extension (AVX-256) functions. Algorithm 2 is designed to
speed up the transformations even further.

Another option is to parallelize the slow serial Algorithm 1 using GPU programming.
Algorithm 3 presents the proposed solution.

Algorithm 3, is the CUDA-C implementation of Algorithm 1. In Section 6 we compare
Algorithm 3 to Algorithm 2 and show that by distributing the program on computer
processors and using Intel intrinsic modules, we can achieve superior performance that is
even faster than GPU implementation. As shown in Algorithm 4, the resulting clustering is
then incorporated into the FABMAP SLAM process.
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Algorithm 4 generates the cluster centroids and BoW representation of the training
and testing data required by the FABMAP algorithm. To train the Chow-Liu tree in the
FABMAP algorithm, we use the BoW representation and the clustering centroid of the
training data set. In the next section, we present the clustering evaluation metrics used in
performance benchmarks.

Algorithm 1 (Ultrametric-PAM) Runs PAM with the transformed distance matrices
Input: Euclidean distance matrix A
Output: matrix of a dendrogram

1: procedure ULTRAMETRIC-PAM(K ← 1, B← A, S← {}, C = n× n)
2: while AK 6= AK+1 do
3: PAM(AK, n)/PAM(AK, n)
4: err(K) = Sum of squared errors
5: Calculate Clusterings Compactness and Donn index
6: for i = 1 to n do
7: for j = 1 to n do
8: for t = 1 to n do
9: Add Max(A[i, t], B[t, j])) to S

10: end for
11: C[i, j]← Min(S)
12: Make S empty
13: end for
14: end for
15: A← C
16: K ← K + 1
17: end while
18: Return A
19: end procedure
Because the algorithm is a very slow serial procedure, it must be parallelized before it can be
used on real-world-sized datasets. For this purpose, we propose two different algorithms.

Algorithm 2 AVX-256 Transformation

1: omp–set–num–threads(80);
2: # pragma omp parallel for
3: for (int = 0; l < rows; l++)
4: for (int p = 0; p < rows; p++)
5: float *a, *b,copyC;
6: –m256 *aAVX, *bAVX, *cAVX;
7: posix–memalign((void **)& copyC, 32, Size);
8: posix–memalign((void **) & a, 32, Size);
9: posix–memalign((void **) & b, 32, Size);

10: a = Distance–matrix[l]; b = Distance–matrixT[l]
11: aAVX = (void*)a; bAVX = (void*)b; cAVX = (void*) copyC;
12: for (int g=0; g < length; g += 8, aAVX++, bAVX++, cAVX++)
13: *cAVX = –mm256 –max –ps(*aAVX, *bAVX);
14: result[l][p] = AVX–find–peaks(copyC,lenth);
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Algorithm 3 CUDA-TRANSFORMATION

1: ––global ––void CUDA-Transformation(float ∗M, float ∗N, float ∗P){
2: int tx = blockIdx.x * blockDim.x + threadIdx.x;
3: int ty = blockIdx.y * blockDim.y + threadIdx.y;
4: Minimum = large number;
5: If (tx < blockDim.x & ty < blockDim.y )
6: for k = 0 to WIDTH
7: If (fmax (M[ty* WIDTH +k],N[k* blockDim.x +tx]) ≤Minimum)
8: Minimum =fmax(M[ty* WIDTH +k],N[k* blockDim.x +tx])
9: P[ty* blockDim.x +tx] = Minimum

Algorithm 4 (Ultrametric-FABMAP). Runs FABMAP with the transformed distance matrices
Input: Euclidean distance matrix A, Training, Testing Dataset
Output: confusion matrix

1: procedure ULTRAMETRIC-FABMAP( Training, Testing Images)
2: Extract 128-d surf features from all collected images
3: Both for tranining and testing dataset
4: Apply PCA on the training and testing images matrix
5:
6: Centroids←Call Ultrametric-PAM for the feature matrix
7:
8: for X ∈ {Train/Test} do
9: for All images ∈ X do

10: Vector quantize image descriptors
11: set on the obtained centroid
12: Perform TF-IDF Vector Quantization
13: Obtain BoW representation of of image set X
14: end for
15: Normalize BoW representation, Obtained
16: Start FABMAP procedure using Clustering centroids and BoW representaion
17: end for
18: Return confusion matrix
19: end procedure

6. Experiments
6.1. Metrics

For clusterings C = {C1, C2, C3, . . . , Cn} where Ci is the ith cluster:
The Dunn Index is calculated as the ratio of the smallest distance between observations

that are not in the same cluster to the greatest intra-cluster distance. Donn index is defined
as follows:

DonnIndex(C) =
min

Ck ,Cl∈C,Ck 6=Cl
(dist(i, j))

max diam(Cm)
Cm∈C

(9)

A higher Dunn Index will indicate compact, well-separated clusters, while a lower
index will indicate less compact or less well-separated clusters. We can now try to calculate
the metric for the dataset we’ve created previously. Another clustering evaluation technique
that we have used is compactness which can be defined as:

Compactness = ∑
Ci∈C

1
|Ci| − 1 ∑

x∈Ci−{mi}
d(x, mi)

/
|C| (10)

Compactness determines how close the data points within a cluster are, to the cluster’s
Medoid. Formula adds the distances between data points of a clusters and each cluster’s
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Medoid, mi. A lower within-cluster variation indicates a good compactness (i.e., good
clustering).

6.2. Definition and Examples:

A dissimilarity space (X ,F ), is a pair where X , is a set of points and F :X ×X −→ R
is a single-valued distance function defined on them with the following three properties:

F (x, x) = 0
F (x1, x2) > 0 (positiveness)
F (x1, x2) = F (x2, x1) (symmetry) for all x1, x2 ∈ X .

(11)

An ultrametric space is a dissimilarity space with additional conditions F(x1, x2) = 0,
if and only if x1 = x2, and F(x1, x3) ≤ maxF(x2, x3), F(x1, x2). This inequality is called
the strong triangular or ultrametric inequality. In this case, every triple of points in an
ultrametric space forms an isosceles triangle.

6.3. Datasets

We applied Algorithm 1 on data sets Jain, Spiral, Iris, and Seeds. These datasets
are available online (https://archive.ics.uci.edu/ml/index.php, accessed on 20 December
2017). Jain is a dataset including 373 two-dimensional points divided into two clusters.
The Spiral dataset contains 300 data points and is made up of three spiral shape clusters
in two-dimensional space. The Iris dataset contains three classes of 50 instances each,
and each class represents a different type of plant. The Seeds dataset contains 210 data
points and consists of kernels from three different wheat varieties. We discovered that
increasing ultrametricity increased the Donn index of the clusters. Also, the Spiral dataset’s
compactness improves, but for the datasets Jain, Iris, and Seeds, lowering the ultrametric
configuration improves compactness. We noticed that sum of squared error decreases with
increasing ultrametricity for data sets Iris and Seed, while normalised mutual information
improves for datasets Jain and Spiral.

Figure 1 shows that the Ultrametric-PAM algorithm correctly identifies clusters in the
Jain dataset while increasing the ultrametricity of the dissimilarity space (X, A).

(a) A3 (b) A4

(c) A5 (d) A32

Figure 1. Identifying clusters in Jain dataset using PAM clustering algorithm as we apply the
transformation discussed in Section 5 repeatedly.

https://archive.ics.uci.edu/ml/index.php
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Figure 2 shows the three clustering evaluation metrics Compactness, Donn index, and
NMI increasing for the Jain dataset as the ultrametricity of the dataset’s dissimilarity matrix
increases. Figure 2 depicts how these metrics change in general, and Table 1 shows the
numerical values of these criteria at each iteration of Algorithm 1.

Figure 2. Compactness, Donn index and Normalized mutual information. Jain dataset.

According to Table 1, increasing the ultrametricity of the dissimilarity matrix of the Jain
dataset results in clusterings with a better Donn index and higher compactness variation.

Table 1. Measuring compactness and Donn index as increase ultrametricity. Jain data set.

Compactness
Avg.

Compactness
Ratio Avg.

Dunn Index Dunn Index
Ratio

B3 0.4826358111 1.0163461701 0.0246030 0.7697904
B4 0.4663649138 0.9820825208 0.04667035 1.460238898
B5 0.4799552411 1.0107013609 0.0418983 1.310931155
B6 0.5017430685 1.056582695 0.047757 1.494265365
B8 0.5400191638 1.1371854226 0.1781176 5.5730085
B32 0.8553148705 1.8164010431 043437224 13.5907955

Figure 3 shows that as the ultrametricity of the dataset’s dissimilarity matrix increases,
Algorithm 1 correctly identifies clusters in the Spiral dataset. Figure 4 depicts how the
evaluation metrics change over time for Algorithm 1. It was found that the criteria NMI and
Donn index improve at each stage of Algorithm 1, however, compactness decreases. We
believe that the method works by gridding the plane into cells, and if the clusters are present
in separate cells, the compactness improves; otherwise, the compactness degenerates.
Figure 4 depicts how the Compactness and Donn index change for the Spiral dataset.

(a) A (b) A7 (c) A35

Figure 3. As we repeatedly apply the transformation discussed in Section 6, the PAM clustering
algorithm correctly identifies clusters in the Spiral dataset.
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Figure 4. Compactness, Donn index and Normalized mutual information. Spiral dataset.

Table 2 displays the numerical values of compactness and the Donn index at each stage
of Algorithm 1. It demonstrates that they improve for the Spiral dataset as the ultrametricity
of the dataset’s dissimilarity matrix increases.

Table 2. Compactness, Donn index as we increase ultrametricity. Spiral dataset.

Compactness
Avg.

Compactness
Ratio Avg.

Dunn Index Dunn Index
Ratio

B1 0.456225532 1 0.01110 1
B2 0.499903924 1.095738596 0.042091 3.7914944142
B7 0.60707534 1.330647448 0.169928 15.3067877
B35 0.286708931 0.628436839 1.7971900 161.88682261

Figure 5 depicts the correct identification of clusters in the Iris dataset. It also shows
that as the dataset’s ultrametricity increases, so does its compactness.

(a) A (b) A2 (c) A3

(d) A7 (e) A10 (f) A15

Figure 5. As the ultrametricity of the distance matrix of the Iris data set increases, clusters are better
separated.

Figure 6 shows the improvements in the Iris dataset’s sum of squared errors (SSE),
Donn index, and compactness. Table 3 also shows that increasing the ultrametricity im-
proves the Donn index at each iteration of Algorithm 1.

Figure 7, shows that increasing ultrametricity results in clusterings with a higher
compactness for the Seeds dataset.

Figure 8, shows the improvements in clustering Donn index. It also shows that the
sum of squared errors is decreasing for the Seeds dataset as we increase the ultrametricity.
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Figure 6. Compactness, Donn index and Sum of Squared errors. Iris dataset.

Table 3. Compactness, Donn index as we increase ultrametricity. Iris dataset.

Compactness
Avg.

Compactness
Ratio Avg.

Dunn Index Dunn Index
Ratio

B1 0.258152 1 0.09880 1
B2 0.287839 1.114996 0.14560 1.47364530
B3 0.317521 1.229975 0.138675 1.4034885859
B7 0.34202 1.324878 0.46684 4.7248466

(a) A7 (b) A10 (c) A11

(d) A12 (e) A16 (f) A17

Figure 7. As the ultrametriciy of the Seed dataset increases, clusters become more distinct.

Figure 8. Compactness, Donn index and Sum of Squared errors. Seed dataset.

Table 4 contains the exact value of Compactness and the Donn index.
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Table 4. Compactness, Donn index as we increase ultrametricity. Seeds dataset.

Compactness
Avg.

Compactness
Ratio Avg.

Dunn Index Dunn Index
Ratio

B1 0.339115 1 0.049510 1
B6 0.570942 1.683624 0.312755 6.31701349
B10 0.67483 1.989974 0.37255 7.52478121
B12 0.70014 2.06461 0.429812 8.681313
B20 0.716623 2.113215 0.445516 8.9985077

The ultrametricity of data sets Iris, Seeds, Spiral, Jain, Yeast, and Breast cancer was
then assessed using Rammal’s measure, as discussed in [13]. In Rammal’s measure, smaller
numbers represent higher ultrametricity. Using the measure defined in Section 4, we also
calculated the degree of ultrametricity for the aforementioned datasets. Figure 9 on the
following page compares the proposed measure to Rammal’s measure. We see that the
two measures are pointing in the same direction and are linearly correlated with a Pearson
correlation of 0.9528. For a better demonstration of the relationship, a blue regression line
of degree one is also plotted.

Figure 9. Rammal’s measure is pointing in the same direction as our new measure.

To have a preview of the datasets used in the Ultrametric-FABMAP Figure 10 is plotted.
Table 5 displays the recall and accuracy results of the Ultrametric-FABMAP, Ultrametric-

BoW, regular FABMAP2, and BoW algorithms.
Newer College one loop is considered as the training data, while Newer College three

loop is considered as the test data. Table 6 shows the results of applying Ultrametric-BoW
on Lip6indoor dataset. We also switched the training and testing sets to see if there was
any improvement in accuracy and recall. Table 7 displays the results of using Ultrametric-
FABMAP and the remaining methods in Table 5. In this case, the Newer College three
loop is considered training data, while the Newer College one loop is considered test data.
Figure 11 depicts the rationale for using ultrametric-BoW and ultrametric-FABMAP as our
ground truth.
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Figure 10. Example of datasets used in Ultrametric-FABMAP.

Table 5. Comparison of FABMAP2, Ultrametric-FABMAP and BOW considering Ultrametric-
FABMAP as our ground truth.

Dataset
No,
Extracted
Features

Method BoW

Train/Test Train/Test ———— %Acc %Rec

Newer
College

One Loop
(Train)
Newer

College
Three Loops

(Test)

11,208

6736

Ultrametric
FABMAP

Ground
Truth

Ground
Truth

Ultrametric
BoW

%89.6 %97.4

FABMAP2
%50.3
%54.83
%59.55

%100
%90.9
%81.5

BoW %42
%96

%93
%86

Table 6. Accuracy and Recall for Lip6indoor dataset considerin TUM sequence 16 as training data.

Dataset Method Acc Recall

Lip6
Indoor

Ultrametric
Bow

%68.11
%57

%66
%87
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Table 7. Comparison of FABMAP2, Ultrametric-FABMAP and BOW considering Ultrametric-BoW as
our ground truth (Training and testing data are swapped according to Table 5).

Dataset
No,

Extracted
Features

Method Acc Recall

Train/Test Train/Test ______ ___ _____

Newer
College

One Loop
(Train)
Newer
College

Three loops
(Test)

11,208

6736

Ultrametric
FABMAP

%57
%62

%66.1

%93
%84

%81.66
Ultrametric

BoW
Ground

Truth
Ground

Truth
FABMAP2 %51

%61
%92.9
%83

BoW %63 %100

We run experiments on real-world-size datasets Lip6indoor (publicly available at:
https//animatlab.lip6.fr/AngeliVideosEn, accessed on 2 March 2019) and Newer College
(publicly available at: https://ori.ox.ac.uk/publications/datasets/, accessed on 20 March
2022), which is a video (which we converted into 200 image sequences), and sequence
16 Monocular Visual Odometry collected at Technical University of Munich (TUM) (pub-
licly available at: https://vision.in.tum.de/data/datasets/mono-dataset, accessed on
20 March 2020)). Sequence 16 of TUM is simple loop within a corridor. In this case, we
use Algorithm 4 on a set of specific train/test datasets. To build a Chow-Liu tree in the
training phase, we use the clustering centeroids and BoW representation of training images.
Then, for each image in the test dataset, we select the corresponding BoW representation
and calculate the new place likelihood. Using a motion model, we can either insert a
new location or declare a loop closure detection. The confusion matrix is returned by this
algorithm. Each (i,j) element in this matrix represents a binary value indicating whether or
not images i and j are similar. We define several thresholds and calculate the accuracy and
recall of the loop closure as follows:

accuracy =

∑
i

∑
j
((Con f usion Matrix[i][j] > threshold) ∧ ground truth[i][j] == 1)

∑
i

∑
j
(Con f usion Matrix[i][j] == 1 > threshold)

(12)

recall =
∑
i

∑
j
((Con f usion Matrix[i][j] > threshold) ∧ ground truth[i][j] == 1)

∑
i

∑
j

ground truth[i][j] == 1
(13)

Figure 11’s rows and columns both represent images, and the value of the heatmap for
parts (a) and (b) is the cosine similarity between the image’s TF-IDF representations. For
parts (c) and (d), it is a binary confusion matrix value returned by the FABMAP algorithm,
where 1 indicates that two images are similar and zero indicates that they are not. The
brighter the points in the confusion matrix, the more similar the corresponding images are.

https //animatlab.lip6.fr/AngeliVideosEn
https://ori.ox.ac.uk/publications/datasets/
https://vision.in.tum.de/data/datasets/mono-dataset
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Figure 11. (a) Newer College dataset (three loops), (b) Portion of New College dataset (one loop)
(Ultrametric-BoW), (c) Newer College dataset (three loops), (d) Portion of New College dataset) (one
loop (Ultrametric-FABMAP).

To determine whether we needed to use OpenMP/AVX-256 or a GPU implementation
with the following specifications, we compared the speeds of Algorithms 2 and 3. Table 8
shows that using the CUDA C implementation as our base method, OpenMp/AVX-56
improves transformation speed by 50% over CUDA implementation. Experiments are
carried out on a Lenovo ThinkCenter i5, 8500, which has a total of six 3.00 GHz cores
and six threads. To achieve the greatest possible speedup, we chose 20 OpenMp threads.
In contrast, we used a Geforce 710 GT GPU with 192 CUDA cores and a total of 2GB of
memory. It is also worth noting that this is the cost of one iteration of the algorithm, and
we have set the algorithm to not exceed 500 multiplications. We compared the speed of
clustering in both cases to demonstrate that Ultrametric-PAM is superior for clustering,
not only in terms of clustering compactness, NMI, SSE, and Donn index, but also in terms
of speed.

Table 8. OpenMP/AVX-256 Implementation vs. GPU speed up.

Dataset-Size Method Time Speedup

6736 × 6736 AVX-256 1 min 6 s 1.51
6736 × 6736 GPU 1 min 39 s 1.

Table 9 shows that if we use a comparatively hierarchical distance matrix, we can
speed up the PAM clustering algorithm up to 1254 times faster.
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Table 9. PAM vs. Ultrametric-PAM speed of clustering.

Dataset-Size PAM Ultrametric-PAM Speedup

6736 × 6736 3.5 days 18 min ×280
11,712 × 11,712 14 days 2 h and 23 min ×1254.

7. Conclusions

In this paper, we demonstrated that the degree of ultrametricity has a direct relation-
ship with the performance of the PAM clustering algorithm. Ultrametric PAM is a thousand
times faster than regular PAM. The performance was also evaluated using the clustering
Donn index, compactness, sum of squared errors, and normalised mutual information.
Clusters with a better Donn index, higher normalised mutual information, and a lower
sum of squared errors are obtained by using the PAM algorithm in spaces with higher
ultrametric configuration. Furthermore, we demonstrated that our new measure and Ram-
mal’s measure are pointing in the same direction, with a Pearson’s correlation close to
1. It has been demonstrated that adding a hierarchical structure to the dataset distance
matrices improves the accuracy and recall of loop closure detection by at least 6%. In future
works, we will attempt to define Boolean Strassen matrix multiplication in order to reduce
transformation time calculation.
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