
Page 1 of 327

AN ACTIVITY THEORY-BASED ARCHITECTURE TO

ENHANCE CONTEXT-AWARE COLLABORATION IN

SOFTWARE DEVELOPMENT IN THE CLOUD

STANLEY FRANCIS EWENIKE

STAFFORDSHIRE UNIVERSITY

A thesis submitted in fulfilment of the requirement of Staffordshire University for the

degree of Doctor of Philosophy

2023

Page 2 of 327

Acknowledgment

This PhD journey has been quite a learning curve and a roller-coaster of emotional

fluctuations. Some days were very exciting and brimming with motivation and confidence.

Some days were quite frustrating, where one is surrounded by a sea of information but still

clueless. Some days brought me close to tears, while some other days brought a glimmer of

hope. Some days, I felt like I knew it all and had everything figured out. Other days, I felt lost

and in over my head. Words cannot describe all the days, nor the emotions. However, at the

end of the journey, nothing is left, except the feeling of gratitude. It is finished!

I am grateful to: God Almighty, to my supervisors - Professor Elhadj Benkhelifa and Professor

Claude Chibelushi, for their mentorship and guidance; to the external and internal examiners

for their time and feedback on this piece of work; to my family - parents, wife, siblings and

even my babbling 3-month-old son who doubled as my intermittent biological alarm clock

during the last days of my thesis write-up; to my colleagues and friends – Siyakha Mthunzi,

Oluwasegun Adedugbe, David Odebade, Chigozie Onyekaba, Thomas Welsh; and to

Staffordshire University. A special thanks to Russell Campion, Clare Stanier and Uchitha

Jayawickrama. And to anyone not mentioned here, just know you are not forgotten. Your

support is probably too much to fit on a page. May God bless everyone. And me too. Let me

catch my breath, and then, on to the next learning curve, because life is one un-ending school.

It is finished!

Page 3 of 327

Table of Contents

1 Introduction ... 15

1.1 Background .. 15

1.2 Key research motivation .. 18

1.3 Research questions .. 19

1.4 Research aims .. 20

1.5 Research objectives ... 20

1.6 Research contributions .. 20

1.7 Summary .. 20

2 Research philosophy and methodology .. 22

2.1 Introduction ... 22

2.2 Research philosophy .. 25

2.3 Underlying principles of a research philosophy .. 26

2.4 Positivism vs Interpretivism ... 27

2.5 Adopted research philosophy and methodology for this research project 29

2.6 Analysis of methods and justification .. 30

2.7 Summary .. 31

3 Literature review .. 32

3.1 Introduction ... 32

3.2 Methodology .. 34

3.3 Review of software engineering trends and its relevance 38

3.4 Extending Boehm’s software engineering trends’ diagram 41

3.5 Software development process and models ... 44

3.6 Gaps and challenges facing collaborative software development in the cloud 51

3.7 Impact analysis of some of the more prominent gaps and proposed

recommendations .. 65

3.7.1 Need for cloud-based collaborative software development architectures with

explicit theoretical foundation .. 66

3.7.2 Need for effective methods for capturing and representing contexts and other

related data in a cloud-agnostic format for generation of actionable insights............... 68

3.7.3 Need for effective ways of managing complexity throughout cloud-based

collaborative software development process ... 69

3.7.4 Need for standards and adequate metrics for benchmarking cloud-based

collaborative development and testing ... 70

Page 4 of 327

3.8 Summary .. 70

4 Conceptual foundations ... 73

4.1 Introduction ... 73

4.2 Cloud computing overview .. 74

4.3 A SWOT analysis of cloud computing .. 76

4.4 Collaboration overview .. 79

4.5 Key dimensions for collaboration .. 80

4.5.1 Coordination .. 81

4.5.2 Communication .. 82

4.5.3 Balance of member contributions ... 83

4.6 Classification of approaches for enhancing collaboration 83

4.6.1 Classification based on empirically measured activities within software

development process ... 84

4.6.2 Classification derived from objectives of activities ... 85

4.6.3 Classification based on software development process characteristics 86

4.6.4 Classification based on analysis of interactions between all aspects of the

process ... 88

4.7 Context awareness overview ... 89

4.8 Relevance of context-awareness and proposed process for application of

contextual information to collaborative software development process in the cloud 91

4.9 Summary .. 99

5 Theoretical framework .. 101

5.1 Introduction ... 101

5.2 Related work .. 104

5.3 A formal process for adoption of an appropriate theoretical basis 108

5.3.1 Overview of the proposed formal process .. 109

5.3.2 The problem scenario .. 110

5.3.3 Criteria for theoretical foundation .. 111

5.3.4 Question ... 111

5.3.5 Parameters ... 112

5.3.6 Assumptions ... 113

5.3.7 Initial conditions... 113

5.3.8 Modelling the process.. 113

5.4 Application of the proposed formal process ... 116

Page 5 of 327

5.5 Cross-sectional review of relevant theories .. 117

5.5.1 Information Foraging Theory (IFT) ... 118

5.5.2 Game Theory .. 119

5.5.3 Complexity Theory ... 121

5.5.4 Actor-Network Theory (ANT) ... 122

5.5.5 Activity Theory (AT).. 123

5.6 Analysis and justification for Activity theory as theoretical basis for cloud-based

collaborative software development... 129

5.7 Developing an AT-based framework for enhancing context-aware collaboration in

cloud-based software development .. 135

5.7.1 Step 1: Define use case scenario ... 135

5.7.2 Step 2: Define requirements .. 137

5.7.3 Step 3: Identify Activity theory concepts/components to leverage 137

5.7.4 Step: Mapping of Activity theory concepts to cloud-based software

development aspects ... 142

5.7.5 Step: Define baseline activity structure for collaborative software development

process ... 153

5.8 Summary .. 157

6 The Architecture .. 158

6.1 Introduction ... 158

6.2 Overview of an Architecture .. 160

6.3 Review of architecture patterns .. 162

6.3.1 Layered architecture pattern ... 162

6.3.2 Service-oriented architecture (SOA) pattern ... 163

6.3.3 Microservices pattern .. 163

6.3.4 SOA architectural patterns vs. Microservices architectural patterns................ 164

6.4 Modelling the architecture .. 170

6.5 Architecture description of activity scenario for collaborative software

development process in the cloud .. 174

6.6 High-level architecture components ... 175

6.7 Activity and activity sequence decomposition .. 178

6.8 Operation-condition sequences for activity .. 180

7 Architecture implementation and evaluation ... 193

7.1 Introduction ... 193

7.2 Evaluating and validating an architecture ... 193

Page 6 of 327

7.3 Architecture Implementation approach .. 195

7.4 Software requirements specifications (SRS) for POC implementation of

architecture .. 198

7.5 Development and deployment .. 200

7.6 Evaluation of POC implementation and functionality performance 202

7.6.1 Case study Test Scenario: .. 203

7.6.2 Implemented service, roles, and activity sequence for POC 205

7.7 Operation-condition sequences for case study scenario 206

8 Conclusion and future work ... 208

9 References ... 212

10 Appendices ... 239

A. List of publications ... 239

Publications .. 239

Seminar presentation .. 239

B. POC IMPLEMENTATION – SOURCE CODE .. 240

Clients ... 240

Providers .. 245

Models ... 248

Services .. 249

HTTP (Controllers, middleware, requests)... 258

Configuration ... 277

Console ... 300

Exceptions .. 300

Public .. 301

API .. 302

Database .. 305

Tests ... 306

C. POC IMPLEMENTATION OF FUNCTIONALITY ... 307

Source code for API call ... 316

#YAML source script for test scenario (Plugin tool used – Blazemeter) 318

Metadata for Test scenario .. 320

Check-Login-functionality.jmx source file .. 320

Page 7 of 327

List of Figures

Figure 1: An illustration of typical factors affecting direction of a research project. 22

Figure 2: Highlighting “what” influences a researcher's initial approach towards research. . 23

Figure 3: Adapted approach used for design of appropriate research methodology for this

project (Easterby-Smith et al., 2012) ... 25

Figure 4: Characteristic principles underlying research philosophy and design. 27

Figure 5 Barriers to collaboration in Cloud-based software development process 33

Figure 6 Decade survey of relevant collaborative software development within cloud

context, grouped by year ... 36

Figure 7 A flowchart representation of the adopted method ... 37

Figure 8: A timeline of software engineering trends spanning six decades (Boehm, 2006a). 39

Figure 9: Typical makeup of a Software development project ... 51

Figure 10: representation of Cloud computing characteristics based on NIST definition

(Badger, Lee et al., 2012) ... 74

Figure 11: A view of the Cloud computing architecture (Zafar et al., 2017) 75

Figure 12: Service provisioning of Cloud Computing (Whaiduzzaman et al., 2014) 76

Figure 13: A view of Cloud challenges & Issues ... 77

Figure 14: Key dimensions for examining and assessing collaboration needs in collaborative

cloud-based software development processes ... 83

Figure 15: Classification based on empirically measured development activities 85

Figure 16: Classification based on objectives of development activities 86

Figure 17: Classification based on both internal and external characteristics of the

development process ... 88

Figure 18: Classification based on analysis of interactions between all development process

aspects ... 90

Figure 19: Classification of context .. 91

Figure 20: Understanding context-awareness requirements for cloud-based collaborative

software development ... 93

Figure 21: Adapted key dimensions for collecting, categorizing, analysing, and applying

contextual information .. 96

Figure 22: Applying contextual information to the Collaborative Software Development

process ... 97

Figure 23: Classification of theory use ... 102

Figure 24: Systematic protocol for identifying relevant literature 105

Figure 25: Relevance of an adequate theoretical foundation for cloud-based collaborative

software development ... 112

Figure 26: Flowchart for a formal process for adoption of an appropriate theoretical basis

.. 115

Figure 27: key focus points and impact areas for cloud-based collaborative software

development based on output of formal theoretical process applied in Sections 5.1 – 5.4, in

line with Gregor’s taxonomy (Gregor, 2006; Gregor & Jones, 2007) 117

Figure 28: First generation of Activity Theory ... 129

Figure 29: object-oriented transitive relationship between object and activity instance 130

file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389517
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389539
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389541
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389541
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389544

Page 8 of 327

Figure 31 A representation of time context between activity instances 134

Figure 32 Conceptualizing the problem scenario .. 136

Figure 33 Initial working requirements model for stakeholder collaboration 137

Figure 34 Hierarchical breakdown of the Activity ... 139

Figure 35 Hierarchical breakdown of the Subject component of Activity theory 140

Figure 36 Hierarchical breakdown of the Object component of Activity theory 141

Figure 37 Hierarchical breakdown of the Tool component of Activity theory 141

Figure 38 Visualizing future context-aware collaborative software development process

enabled at the core by solid theoretical foundation ... 146

Figure 39 Adopted mapping of main software development process components to activity

theory components .. 147

Figure 40 AT-based conceptualization of distributed interacting activity systems in the cloud

.. 147

Figure 41 Mapping proposed theoretical framework - Initial architecture block diagram for

existing system ... 148

Figure 42 Zooming in on Mapping proposed theoretical framework - Initial architecture

block diagram for existing system: Presentation layer .. 149

Figure 43 Zooming in on Mapping proposed theoretical framework - Initial architecture

block diagram for existing system: Activity layer .. 150

Figure 44 Zooming in on Mapping proposed theoretical framework - Initial architecture

block diagram for existing system: Managed cloud platform layer 151

Figure 45 Mapping proposed theoretical framework to existing system – architecture block

diagram .. 152

Figure 46 Distinction between Activity levels ... 154

Figure 47 Proposed Activity baseline structure (schema) for designing/creating a

collaborative software development activity .. 154

Figure 48 Modelling context-aware development process sequence 155

Figure 49 Object-task specification transformation sequence .. 156

Figure 50 Prominent identified use cases for the proposed platform 160

Figure 51 Context model for proposed AT-based architecture for enhancing context-aware

collaboration cloud-based software development process .. 171

Figure 52 Database service categories .. 177

Figure 53 Service decomposition & structure ... 182

Figure 54 Project stakeholders, Cloud frontend and API Gateway 183

Figure 55 Cloud frontend, API Gateway, Cloud Activity service, and Stakeholder service ... 184

Figure 56 API Gateway and cloud software development services 185

Figure 57 API gateway Cloud collaboration services, Cloud infrastructure services and Cloud

activity analysis services .. 186

Figure 58 Datastores for Cloud software development services .. 187

Figure 59 Datastores for Cloud collaboration services, Cloud infrastructure services and

Cloud activity analysis services .. 187

Figure 60 Event-driven interservice communication for Activity layer 188

Figure 61 Messaging Middleware pattern (Publish/Subscribe) .. 189

file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389547
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389548
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389555
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389555
file:///C:/Users/stanl/Dropbox/My%20Portfolio/Stanley%20Ewenike%20-%20PhD_WIP/_Thesis%20Work%20File/_Submission/Corrections%20guide/PhD%20Thesis%20-%20Stanley%20Ewenike%2009009265%20-%20Corrected%20version%20v2.0.docx%23_Toc124389561

Page 9 of 327

Figure 62 AT Cloud-based collaborative software development process workflow (cross-

functional flow chart)... 190

Figure 63 CFTM_Test workflow ... 191

Figure 64 PM_Stakeholder Workflow .. 192

Figure 65: Cloud activity workflow .. 203

Figure 66 Summary of the research journey ... 209

Page 10 of 327

List of Tables

Table 1: Summary of differences between Positivist and Interpretivist philosophical

approaches (Weber, 2004) .. 28

Table 2: Query strings for systematic literature search .. 35

Table 3 Software engineering trends post 2010 till date. ... 42

Table 4 Cross-sectional comparison of software development models 46

Table 5 summary of the gaps covering collaboration in both traditional and cloud-based

collaborative software development... 55

Table 6 A Survey of cross-section of notable open-source industry tools/platforms towards

Cloud-based SDLC process ... 60

Table 7: SWOT analysis of Cloud Computing .. 78

Table 8: Adaptation of Zachman's framework for definition of context data and levels 95

Table 9 Adapted contradiction matrix for analysis of contextual information for an object in

cloud-based software development .. 98

Table 10 Adapted contradiction matrix for representation of activities and tasks in cloud-

based software development .. 98

Table 11 Employing matrix multiplication in adapting contradiction matrix for applying

contextual information to activities and tasks in cloud-based software development 99

Table 12 Overview of steps for searching, selecting, and deduping relevant articles based on

use of relevant keywords ... 105

Table 13 Cross-sectional summary of categories of common approaches for selecting

theoretical foundations in the field of software development ... 107

Table 14 Proposed process’ variables and description ... 112

Table 15 4-point Likert scale for the formal process for selecting theoretical foundation... 114

Table 16 Summary of evaluated theories and their matches to appropriate importance or

use category for cloud-based collaborative software development:.................................... 126

Table 17 Mapping AT to collaborative software development components 144

Table 18 Summary of gaps in cloud-based collaborative software development (Ewenike et

al., 2010, 2017b) .. 158

Table 19 comparative summary of common software architecture patterns (Richards,

2015b) .. 166

Table 20 Components of context model for proposed AT-based architecture for enhancing

context-aware collaboration cloud-based software development process 172

Table 21 Summary best practice design and evaluation criteria (Bruegge & Dutoit, 2004) . 194

Table 22 Architecture implementation approach ... 196

Table 23: Test cases for sample feature to test ... 204

Page 11 of 327

List of abbreviations

ABBREVIATION MEANING

ALMA Architecture Level Modifiability Analysis

ANT Actor Network Theory

API Application Programming Interface

AT Activity Theory

ATAM Architecture Trade-off Analysis Method

AT-based architecture Activity Theory-based Architecture

AWS Amazon Web Services

CCSD Cloud-based Collaborative Software Development

CFTM Cross-Functional Team Members

CSD Collaborative Software Development

CU Community Users

DFX Design For Excellence

EC2 Elastic Compute Cloud

FOSS Free Open-Source Software

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFT Information Foraging Theory

LAMP Linux, Apache, MySQL, and PHP

MSMQ Microsoft Messaging Queuing

PCSDE Process-Centred Software Development Environments

PFIS Programmer Flow by Information Scent

PHP Hypertext Pre-processor

PM Project Manager

Page 12 of 327

POC Proof-Of-Concept

R&D Research & Development

REDIS Remote Dictionary Server

REST Representational State Transfer

SAAM Software Architecture Analysis Method

SDLC Software Development Lifecycle

SOA Service-Oriented Architecture

SQL Structured Query Language

SRS Software Requirements Specifications

SVM Software Version Management

SWOT Strengths, Weaknesses, Opportunities, Threats

TWQ Teamwork Quality Model

UDAO User Data Access Object

UDM User Delegate Module

UO User object

Page 13 of 327

Abstract

This research study reviews collaborative software development and assesses the impact of

cloud computing in this domain. This is with a view towards identifying challenges to effective

context-aware collaboration, as well as opportunities, risks, and potential benefits that could

come from a well-defined structured leverage of cloud capabilities. Findings from systematic

review of literature indicate that adoption of cloud computing played a significant part in

bringing about trends such as: movement of traditional applications and processes to the

cloud; cloud development environments; increased distribution in teams and resources;

increased diversity in requirements; changes in how software is developed, tested, deployed,

accessed, and maintained. These trends have in turn introduced factors such as: massive

scale; additional layers of complexity in abstraction levels, entity characteristics and entity

relationships within the development process. This additional layer of complexity translates

into increase in contexts i.e., information that can be used to characterize states of entities.

This is in addition to existing traditional complexity i.e., measure of proportionality of

activities and tasks within the process.

Some notable efforts towards improving collaboration in software development in the cloud

include: transitioning development environments, tools and teams to the cloud; provision of

code repositories and version control functionality to support collaboration between

developers; provision of platforms to enhance collaboration between developers and end-

users in early stages of the process via registered project campaigns and targeted

questionnaires; provision of platforms with integrated social networking tools. However, an

essential missing piece for more effective context-aware collaboration in the process is, the

need for ways of addressing resultant complexity from cloud adoption and capturing

actionable contexts. Capturing and communicating contextual information can help improve

awareness and understanding and facilitate role-based coordination of distributed team

members including users, and not just developers. This would ensure all stakeholders are

always on the same page even if not in same location, across all phases of development.

The main aim of this research study is to apply a new architecture framework underpinned

by the right theoretical foundations, capable of leveraging cloud capabilities, harnessing

contexts and addressing complexity to enhance context-aware collaboration in cloud-based

software development. To achieve this aim, knowledge gleaned from the systematic

Page 14 of 327

literature review and the gap-impact analysis was thematized and synthesized to provide

optimal recommendations to serve as roadmap guide for the development and evaluation

carried out, and subsequent knowledge contributions. Key dimensions were adapted, along

with development of classifications for approaches to enhancing collaboration in software

development in the cloud. The key dimensions created were for - assessing collaboration

needs; definition of context data and levels; collecting, categorizing, analysing, and applying

contextual information to tasks, activities, and stages within software development in the

cloud. These dimensions and classifications are useful for identification of reliable ways of

measuring collaboration and success factors, as well as managing complexity and ensuring

synchronous regularity of process and understanding within the development process in the

cloud. A formal process was proposed to aid selection of an appropriate theoretical basis and

assembling of a theoretical framework and methodology to underpin the architecture for

enhancing context-aware collaboration in cloud-based software development. This was

necessary due to the current lack of a de-facto architecture method for cloud-based software

development. An activity theory-based architecture has been designed and developed, along

with a Proof-of-Concept (POC) implementation that leverages cloud capabilities, for

evaluation of the architecture. This architecture presents a novel approach for enhancing

collaboration in software development in the cloud due to its underlying activity theory-based

tenets that considers ‘activity’ as the unit of analysis, and ideal for activity systems and ease

of identification of congruencies and contradictions present or capable impacting related

components of the activity system and its ecosystem. The conclusions for this research study,

limitations and future research directions have been discussed at the end of this thesis work.

Page 15 of 327

1 Introduction

1.1 Background

Today’s global economy is characterised by organisations that are increasingly decentralised,

geographically distributed, with diverse workforce that must share resources in day-to-day

operations. Almost all organisations need software for different day-to-day operations, for

different reasons, and, in different scenarios(Murthy & Suma, 2017; Mourad et al., 2020). The

goal of the software development process is to create software that can be utilized for

different scenarios as required (Johnson & Ekstedt, 2016). There are many aspects and

stakeholders in the software development process, that come together to ensure software

developed is fit for intended purpose i.e., meets users’ needs or stated requirements.

Collaborative software development process refer to how all stakeholders and aspects within

a software development project, work together throughout the development process to

achieve a desired final goal or outcome (Mistrík et al., 2010).

Central to collaborative software development process, are activities which result in creation

of knowledge-based artefacts, requiring contributions from multiple persons or

teams(Whitehead et al., 2010). These activities can be defined as actions of individuals or

members of the development teams that can be measured based on characteristics such as

quantity, correctness of execution, complexity of tasks within activities, speed or ease of

execution, etcetera (Lindsjørn et al., 2018). These individuals or team members are connected

by interactions that can be studied via frequency and intensity. Both empirical and anecdotal

evidence emphasize that the success of the software development process depend not only

on quantity of activities and correctness of activities carried out by the individuals involved;

but also on the quality of collaboration or interactions between the individuals involved in the

process (Weimar et al., 2017; Lindsjørn et al., 2016; Mistrík et al., 2010).

The advent of cloud computing has impacted the nature of interactions individuals and teams,

as well as, the process of developing software(Kannan, 2012). One of such impact of cloud

computing on the software development process is the movement of development

environments to the cloud. This has contributed to software development process in the

cloud and the potential to benefit from the ability of the cloud to provide a substrate platform

for collaboration support. This support can be via: on-demand broad network access to a pool

Page 16 of 327

of decentralised or distributed resources that can be quickly provisioned for development and

testing activities(Fylaktopoulos et al., 2016a); relative reduction in time and effort needed to

set up high availability development and testing environments (Hiremath & Patil, 2015);

provision of cloud-based applications and tools for communication, collaboration and

resource sharing on the fly, for distributed teams (Oberhauser, 2013a, 2014).

However, in addition to such benefits, moving the software development process to the cloud

has brought about increase in complexity and contexts that need to be duly considered

(Hiremath & Patil, 2015). The various components that make up a distributed team

collaborating within the software development process in the cloud needs to be able to have

access to relevant data pertaining to every component or entity, at all times. This will facilitate

creation or improvement of shared understanding, as well as, inform technical improvements

and decisions (Fylaktopoulos et al., 2016a). This data is referred to as contextual information.

Contextual information can help to create and improve understanding across roles within the

development process, as well as, improve shared meaning about the state of entities,

activities, tasks and artefacts involved in cloud-based software development process

(Omoronyia et al., 2010). It can also be used for making managerial and technical decisions

and improvements. Context-awareness provides the ability to be able to obtain and process

contextual information that can help to ascertain state of entities within the development

process, and support proactive, timely actions and operations(van Engelenburg et al., 2019).

However, these contextual information are sometimes underestimated, ignored, or not given

enough consideration, with possible consequences including (Mistrík et al., 2010):

i. undermining of collaboration in the cloud-based development process

ii. gaps between theoretical benefits of collaborative software development in the cloud

and practical challenges to an effective collaborative development process

(Omoronyia et al., 2010)

iii. negative impact on the ability to facilitate a reproducible, context-aware development

process in the cloud.

Notable efforts in cloud-based collaborative software development has been mainly in areas

of: asynchronous collaboration; collaboration in isolated aspects of the development process

such as coding activities; use of open-source tools for contributing, improving, and managing

code; design of context-based systems for complex environments; and leveraging of social

Page 17 of 327

networking as an enabler (Mahmood & Saeed, 2013; van Engelenburg et al., 2019;

Fylaktopoulos et al., 2016). Leveraging key characteristics of the cloud present a research area

of potential synergies for collaborative software development process. Prominent among

such characteristics is the ability to provide on-demand network access to a configurable

ample pool of resources(Mahmood & Saeed, 2013), and capability of the cloud to be used as

a platform for effective collaboration, communication and data exchange (Barenji et al., 2021;

Ramis et al., 2016). These key characteristics present potential for effective synchronous

collaboration and management of knowledge-based artefacts in cloud-based software

development.

The advent and increased adoption of cloud computing, has brought about movement of

traditional applications and development environments to the cloud(Mistrik et al., 2016).

Results of this include: introduction and increase in tool heterogeneity; distribution of

services and teams; changes in how software is developed, tested, maintained, accessed and

stored (Guha & Al-Dabass, 2010); increased availability of operational data for development

and deployment insights; API-driven infrastructure instances; spawning and stopping of

cloud-based development instances(Cito et al., 2015), increased diversity and differences in

team makeup, operations and communication (Sangwan et al., 2020). All the above-

mentioned, create a need to investigate gaps and impact, as well as ascertain potentially

better ways to leverage the cloud for more synchronous, context-aware collaboration.

Without appropriate research and development efforts, attempts at cloud-based software

development risk increase in the number of defects and issues that could result within cloud-

based software development process(eds. Z. Mahmood & S. Saeed, 2013). This would

ultimately affect the quality and usability of software, as well as release time.

Existing literature have shown that leveraging the above-mentioned cloud capabilities can

improve collaboration and efficiency (Rauch et al., 2016a; Valilai & Houshmand, 2013;

Golightly et al., 2016). With adequate research and development efforts, areas of synergy

could be identified towards a more collaborative software development process for creating

applications with features and performance tailored for best results in the cloud. Cloud

computing has the potential to be an important substrate for support and improvement of

collaboration within the software development process via its ability to provide on-demand

broad network access to ample pool of resources (Fylaktopoulos et al., 2016a), whilst at the

Page 18 of 327

same time, reducing cost of developing, testing, deploying and maintaining software in

distributed organizations.

1.2 Key research motivation

The advent of relatively modern trends and paradigms such as grid computing, virtualization,

cloud computing, etc., have contributed to increasing distribution (geographic),

decentralisation (control) and diversity in modern organisations (Sitaram & Manjunath, 2011;

Boehm, 2006a; Dillon et al., 2010; Boehm, 2010; Bojanova et al., 2013). These trends

increased the reach of organisations, reduced cost, created new revenue streams, and

improved business models and opportunities (Chhabra et al., 2010; Gai & Li, 2012). However,

these trends also ushered in some challenges e.g., availability and privacy(Patidar et al., 2012)

and increased emphasis on need for better ways of facilitating and supporting efficient

collaboration. In today’s global economy, teams and individuals within the workforce must

share resources, collaborate in day-to-day operations, improve productivity and business

agility, as well as reduce cost and waste. This is the situation faced by software teams in

organisations with traditional or convention software development processes (Mistrík et al.,

2010).

Though cloud computing offers a lot of upsides for the software development process e.g.,

greater degree of abstraction of underlying infrastructure, and elastic allocation of resources,

the area of cloud-based collaborative software development is still under-exploited in terms

of enhancing effective collaboration (Benfenatki et al., 2014; Chhabra et al., 2010). It remains

a viable area in need of academic research efforts (Rellermeyer et al., 2013). The following

points outlined below, provide motivational basis for this research project:

Firstly, though software engineering is a well-established discipline for the design and

development of software; software engineering trends and adoption of cloud computing,

necessitate a review of the current software development process in the cloud(Mahmood &

Saeed, 2013; Krishna & Jayakrishnan, 2013). Preliminary research reveals the need for

adaptation of the current software development process for more effective context-aware,

collaboration and management in the cloud. This need has been further exacerbated with the

increase in distribution of teams and resources in the cloud due to effects of

globalisation(Haig-Smith & Tanner, 2016). Leveraging the characteristics of the cloud as an

Page 19 of 327

enabler would help to create: improved understanding across roles, technical improvements,

and better shared meaning within entities(Mistrík et al., 2010; Benfenatki et al., 2014)

Secondly, a review of current industry offerings reveals a need for context-aware cloud-based

collaborative software development architectures with explicit theoretical

foundation(Chhabra et al., 2010). A growing school of thought that has gained traction points

to the existence of two main classes of challenges in this need category and their unique

distinction (Ralph et al., 2013; Johnson & Ekstedt, 2016; Zahedi et al., 2017; Adolph &

Kruchten, 2013; Clear, 2009; Benfenatki et al., 2014; Chhabra et al., 2010). The first class of

challenges are those that exist because of fundamental flaws in the suitability of the existing

process methodology for a more distributed process in the cloud, hence the need for a more

suitable process methodology grounded in theoretical foundations(Panigrahi et al., 2017).

The second class of challenges in this need category alludes to challenges that exist as a result

of unsuitability of architectures and development environments for cloud based development

and the mismatch between the these structures and the process methodologies they are

supposed to enable (Cico & Cico, 2019). This results in a lack of de-facto standard for cloud-

based software development architectures (Gill & Chana, 2012).

Lastly, there is a need for more efficient interoperability, awareness, and communication, to

enhance context-aware collaboration within the cloud-based software development

process(Nogueira et al., 2016). This requires standardised approaches and models that can

help to ensure both data and applications are interoperable across distributed setups(Andres

et al., 2021).

1.3 Research questions

The questions this research seeks to answer are as follows:

i. Does the gradual shift in the way applications are accessed, utilized, and stored in the

cloud imply a need to review current software engineering methodologies for the

software development process?

ii. What are the challenges to context-aware, collaboration in software development in

the cloud and how can these be addressed using suitable theoretical concepts or

foundation?

Page 20 of 327

iii. How can cloud computing be further leveraged for more efficient collaboration in

cloud-based software development process?

1.4 Research aims

To propose an architecture framework to enhance context-aware collaboration in the cloud-

based software development process.

1.5 Research objectives

i. Assess existing collaborative software development practices and research efforts.

ii. Review stages in software development to identify challenges, opportunities and

benefits facing a typical cloud-based software development process.

iii. Investigate and assess the impact of cloud computing on the software development

process.

iv. Investigate cloud capabilities that can be leveraged within the software development

process and review relevant challenges and issues that may arise.

v. Propose a theoretical framework architecture for enhancing context-aware

collaboration in cloud-based software development process.

vi. Carry out a proof-of-concept implementation and evaluation of proposed framework

architecture based on identified priorities from research outcomes.

1.6 Research contributions

i. A formal process for the adoption of an appropriate theoretical basis for a research

project

ii. An activity theory framework and methodology to enhance context-aware

collaboration in the cloud-based software development process.

iii. An activity theory-based architecture to enhance context-aware collaboration in the

cloud-based software development process.

iv. A proof-of-concept prototype implementation and evaluation

1.7 Summary

In today’s distributed environment, the ability to be able to capture and communicate

contextual information in a timely manner, among all stakeholders involved in a software

Page 21 of 327

development project is an essential requirement for fostering engagement, effective action

and enhancing collaboration(Singh & Chana, 2013; Lau et al., 2017; Alvertis et al., 2016a). This

can contribute towards improvement of the quality of software artefacts developed, as well

as consistency and compliance. This research attempts to identify cloud characteristics and

aspects that could be leveraged as collaborative mechanisms, and aligned with appropriate

theoretical concepts and cloud-centric methodologies(Raj et al., 2013), to create a

streamlined formal architecture to address increasing and diverse collaboration needs of

cross-functional software development teams in today’s global organisations.

The outline of this research thesis is as follows:

Section 1 of this thesis introduces the research area, presents research motivation, research

questions, aims, objectives and contributions of this thesis.

Section 2 presents the adopted research philosophy and methodology, as well as an analysis

and justification for the approach adopted in this research.

Section 3 reviews existing body of knowledge in collaborative software development in the

cloud to identify gaps, challenges, and issues pertinent to the research area. This section also

presents a gap analysis and impact analysis of gaps addressed.

Section 4 reviews pivotal conceptual foundations for architecture developed in this thesis and

presents classifications based on thematic analysis of recurrent themes from literature

review.

In Section 5, a formal process for streamlining search for adequate theoretical foundations

for analysing collaborative software development in the cloud is developed. This process is

applied in the selection process, along with justification. Finally, this section presents a

theoretical framework for enhancing context-aware collaboration in cloud-based software

development process.

Section 6 presents and describes the Activity Theory-based architecture for enhancing

context-aware collaboration in cloud-based software development.

Section 7 discusses the implementation and evaluation of POC implementation of the

developed architecture.

Section 8 presents the conclusion and potential future direction for work done in this thesis.

Page 22 of 327

2 Research philosophy and methodology

2.1 Introduction

In industry and academic settings, the word "research" sometimes has different connotations.

The most basic distinction between industrial research and academic research is that the

former generally tends to be more applied in nature, while the latter generally tends to be

more fundamental in nature, seeking to introduce novelty within research projects(Saunders

et al., 2009). Industrial research seeks to identify or develop a solution, or a set of solutions

to a specific problem. A typical academic research process has its basis on understanding of

underlying philosophical set of elements, also known as scientific paradigms (Cumming,

2012). These include - pre-existing values, assumptions, beliefs, and perspectives. Underlying

philosophical set of elements are often shaped by various life events, experiences and

personal beliefs; and condense into research methodology (Somekh & Lewin, 2005).

Scientific paradigms constitute a starting point for reasoning about research, highlighting

relationship between belief and approach towards conceiving research. The direction of a

research project can be directly or indirectly influenced by the research strategy a researcher

chooses to take, and is underpinned by philosophical assumptions(Coleman & O’Connor,

2007). The researcher’s decision on research direction is dependent on individual

understanding of a variety of influential concepts, related information, and research skills (see

Figure 1). One of these influential concepts is the research philosophy and underlying

theory(Pathirage et al., 2007). It is important to explore the theory behind research

philosophy types, especially the ones that have received relatively more attention in literature

(Bryman, 2001). Positivism and interpretivism are predominant in this regard. The aim of

exploring theories behind research philosophy types is to show the relevance of research

philosophies in the research process and how it can influence the direction of research.

Figure 1: An illustration of typical factors affecting direction of a research project.

Research

Understanding of related
concepts

Understanding of other related
information

Research strategy

Research philosophy

Research skills

Page 23 of 327

D
ir

ec
ti

o
n

 o
f

im
p

ac
t

One of the essentials, when it comes to undertaking any research is the possession of an

understanding of one’s pre-existing values, assumptions, beliefs and perspectives(Cumming,

2012). Scientific paradigms are normally condensed into the research methodology (Guba et

al., 1994). It is shaped or influenced by education, life events, individual experiences, and

beliefs about existence, tradition and culture (Somekh & Lewin, 2005). Altogether, these

elements form the basis of correlated reasoning which informs how one views research,

approaches research, ‘does’ research, organizes research activities, or engages in research.

This is also known as research philosophy. The relationship between the base elements of

correlated reasoning is illustrated in Figure 2. This type of reasoning influenced by the set of

pre-existing elements mentioned above has some inherent shortcomings (Walliman, 2005).

Shortcomings include quickly drawn conclusions, ill-tested or inadequately tested

knowledgebase such as ‘common sense’.

Notwithstanding these shortcomings, the base element of correlated reasoning constitutes a

starting point for reasoning about research. Hence the reason for viewing research

sometimes, from the point of trying to study and understand something (explorative); or

trying to solve a problem (formulative); or gaining familiarity with a concept or phenomenon,

or generating new insights(Kothari, 2004). Isaeva et al.(2015) suggest the use of reflection on

one’s beliefs, values and assumptions as a tool to better informing and developing one’s

understanding of the relationship between one’s beliefs and one’s approach. This translates

into a more informed approach to designing and undertaking research. This approach

Initial

Correlated
reasoning

Body of pre-
existing values,
assumptions,

beliefs &
perspectives

Life events, education, individual
experiences, beliefs (existence,

tradition & culture)

“If I approach this

research problem this
way, and use surveys, I

will achieve best results”

Informs

Figure 2: Highlighting “what” influences a researcher's initial approach towards research.

Page 24 of 327

improves on the view that a lack of self-reflection could lead to a problematic reduction in

the likelihood of a researcher conceiving viable approaches to undertake research(Slife,

1998). The various ways of viewing research could result in diverse research definition,

classification, and approach continuum. One of such ways is the research process. Figure 3 is

a useful conceptual aid and guide when designing an appropriate research process. Figure 3

illustrates the various stages and progression involved in the research process, starting from

the outer layer, and working inwards towards the inner core. Also, it provides insight into

available choices within the research process. An awareness of these choices helps to provide

a vantage point for better understanding of research and guidance for making appropriate

choice for the research project - from choosing a research philosophy, to making a choice of

research method that best encapsulate the strategy adopted to optimize the research, and

the choice of an adequate method of data collection for a defined time horizon(Bryman,

2012). Making the right choices enables an easier path towards ensuring adherence to good

practice in conducting the research, and ensuing review and analysis of evidence base,

towards a better understanding of the phenomenon under study. The overall validity and

reliability of the research work undertaken is significantly influenced by the choice of methods

of data collection. Research may also be conceived from the perspective of the research

approach (inductive, deductive, etc.) undertaken.

Page 25 of 327

Figure 3: Adapted approach used for design of appropriate research methodology for this project (Easterby-Smith et al., 2012)

2.2 Research philosophy

The way or approach a researcher adopts to examine, study, or research a phenomenon is

referred to as the research philosophy (Bajpai, 2011). It relates to the source of knowledge,

nature and development of knowledge and knowledge creation as valid aspects or

considerations within any research. Research philosophies include - positivism,

interpretivism, pragmatism, realism, and critical theories. Preference of one approach over

another may be dependent on a number of factors such as: nature of research, skill or choice

of the researcher and policies of the organization sponsoring or partaking in the research

(Creswell, 2002). These are some of the common factors which might influence the choice of

any or some part of the philosophical approach. Potential philosophical problems could arise

if mixed approaches have deep ontological and epistemological significance. This is referred

to as 'method slurring' and can undermine the credibility of a research project because it

violates the assumptions and principles governing the methods used within the research

(Rolfe, 2006). However, method slurring ceases to be a problem when the adoption of a mixed

method approach can be justified within the context of the research and deemed necessary

to achieving the aims and objectives of the research (Rolfe, 2006).

Method of data collection and
analysis: sampling, secondary
data, survey, observation,
interviews, questionnaires, etc...

Time horizons:
cross-sectional, longitudinal

Research method choice:
single or mono method
(qualitative, quantitative, or,
other), mixed or hybrid methods,
multi-methods
Research strategies:
Experiments, Surveys, Case
study, Action research, Grounded
theory, Ethnography, Archival
research
Research philosophy:
pragmatism, interpretivism,
realism, positivism, post-
structuralist, etc

Page 26 of 327

Notwithstanding, the existence of many research philosophies (Eriksson & Kovalainen, 2015)

adopting and applying the right approach can add a substantial amount of value to any

research project. Hence, the need to review the differences, similarities, and underlying

principles of the research philosophies, along with an assessment of related merits. This

would be useful for evaluating the most appropriate approach for any research project.

After initial literature review, out of existing research philosophies, two main ones were

explored – positivism and interpretivism, along with characteristics, strengths, weaknesses,

and advantages, as well as ontological, epistemological, and methodological perspectives

associated with each. These form the basic underlying principles or key concepts of any

philosophical approach. When a philosophical approach is clearly defined, it enables the

creation of a viable and coherent research design based on an appropriate research strategy

(Eriksson & Kovalainen, 2015). Subsequent sections expand on what these approaches are,

and the ontological, epistemological, and methodological perspectives associated with each.

Table 1 summarises the differences between positivism and interpretivism based on defined

underlying principles that describe or characterize these philosophical approaches, thereby

providing a way of analysing these approaches.

2.3 Underlying principles of a research philosophy

There are five main prominent characteristics or aspects of any approach to research

design(Easterby-Smith et al., 2012). The subsequent paragraphs and Fig 4 illustrate this

relationship. For a viable research design, these aspects need to be considered and applied in

a consistent and coherent manner because they form the basic underlying principles or key

concepts of any philosophical approach(Eriksson & Kovalainen, 2015). They also help to

identify the dichotomy between underlying research philosophies and approaches.

Ontology

Refers to view of the world, and assumptions of the nature of the world and reality, or object

of focus. It is regarded as the nature of reality(Easterby-Smith et al., 2012). What is this

reality?

Epistemology

Refers to assumptions about how best to investigate the world or reality, or the object of

focus. It is viewed as the relationship that exists between a researcher and reality, i.e. how

Page 27 of 327

the researcher captures or constructs reality in his or her mind(Easterby-Smith et al., 2012).

What and how can one know this reality?

Methodology

Refers to ways of grouping research techniques in order to create a coherent and consistent

picture of reality or of the object of focus(Easterby-Smith et al., 2012). A research

methodology tends to be more concerned with the overarching strategy or philosophical

framework used to guide the research. For example, what procedure or process can one

employ to acquire knowledge about this reality?

Methods

These refer to the way investigations are carried out and how data or knowledge about reality

or object of focus is collected(Easterby-Smith et al., 2012). Research methods tend to be more

concerned with techniques, tools and methods used in knowledge gathering. What tools and

techniques can one use to acquire knowledge about this reality?

Before embarking on any research, careful thought needs to be given to choice of methods

and techniques to be employed. This is dependent to an extent on how the researcher views

reality, which then influences the choice of how best to investigate and understand it.

Figure 4: Characteristic principles underlying research philosophy and design.

2.4 Positivism vs Interpretivism

Positivism takes a scientific approach to studying the world or object of focus and promotes

the use of formal logical reasoning methods(Thanh & Thanh, 2015). The fundamental belief

in positivism is that the world or the object of focus is real and capable of independent

existence. It makes use of scientific methods and tools in a bid to understand the nature or

makeup of the phenomenon. It seeks to understand cause and effect in a scientific manner.

REALITY/OB
JECT OF

RESEARCH
Ontology

Epistemology

Methodology

Methods

Axiology

Page 28 of 327

For example, this might entail developing a hypothesis, testing and evaluating the hypothesis

using scientific tools and methods (Denscombe, 2010). The methods used in this approach

are usually measurable and organized. An example of a common method used for obtaining

information about a phenomenon using this approach is the use of observational techniques.

Interpretivism approaches the study of a phenomenon by looking at the various

interpretations of that phenomenon by the world around it (Thanh & Thanh, 2015). This can

incorporate a lot more subset factors than the positivist approach. In this approach, the

researcher views the world or the object of focus through the lens of others’ experiences and

perspectives about said object (Schwartz-Shea & Yanow, 2011). From the perspectives and

experiences gathered, a researcher can make his own interpretations and constructions. One

of the benefits of this approach is that it allows the comparison and accommodation of

multiple perspectives and contexts. This impact is felt in the degree of comprehensiveness

and robustness of the data gathered. The methods used in this approach tend towards

qualitative data collection techniques (Willis, 2007). They are usually less structured than

those used in positivist approach. An example of such methods is the use of unstructured

interviews in data collection. In this approach, there is a tendency for a researcher to

influence, and be influenced by the research they are involved with. This has an impact on

the degree of bias in the research.

Table 1: Summary of differences between Positivist and Interpretivist philosophical approaches (Weber, 2004)

CHARACTERISTICS POSITIVIST APPROACH INTERPRETIVIST APPROACH

Ontology Reality and researcher exist as

independent entities

Reality and researcher exist as interrelated

entities

Epistemology Objective reality exists beyond the

human mind.

Knowledge of the object of focus is constructed

through understanding of experiences

Methodology Mostly objective Mostly subjective

Method Statistics, experiments, quasi-

experiments, longitudinal methods

Case studies, interviews, hermeneutics,

phenomenological, ethnographical, etc.

Object of research

focus

Inherent qualities of object exist

independent of the researcher

Researcher constructs his own understanding of

object via experiences and perspectives

Theory of truth There can be only one truth Truth is dependent and relative to experiences

and perspectives

Page 29 of 327

Validity Certainty: data truly measures

reality.

Knowledge constructed are defensible.

Reliability Reproducible Awareness of bias implications arising from

subjective interpretations

2.5 Adopted research philosophy and methodology for this research project

An 'objective interpretivist’ stance was adopted towards the nature of knowledge for this

research project and the investigation. Rationale for choice of research philosophy includes:

• Level of complexity of research area. This makes a positivist ontological perspective,

inadequate and restrictive for this research project (Jespersen, 2011)

• The concept of software development process being an activity (Buhrer, 2003) that

is inherently collaborative (Mistrík et al., 2010) and involves a diverse set of people

with a remix set of culture, skills, practices, environments, tools, and

experiences(Zimmermann & Bird, 2012)

• The software development process investigation relies on elicitation, understanding

and interpretation of experiences of software development teams and the reality of

related projects. This is more in line with qualitative research methods and the

interpretivist approach which gravitate towards a person’s view, understanding and

interpretation of experiences(Coleman & O’Connor, 2007).

• Evidence from literature advocates use of qualitative method-based research

approaches for software engineering research(Coleman & O’Connor, 2007).

Rationale for this is because such approaches provide opportunity to explore the

complexity of the research problem thereby allowing more informative results.

The adopted ontological and epistemological stance underlies the research process, forming

the main governing factor in the review of related literature, selection of an adequate

theoretical perspective, design of adequate research questions, and choice of methodology,

which in turn, guided and informed the research methods chosen. The principal method for

data collection was iterative collection (Charmaz, 2013) and review of all related diverse

perceptions, conducted experiments, opinions and views, as well as, standards in software

development process. These were gathered from peer-reviewed literature and necessary for

ensuring confirmability, credibility, dependability, and transferability. To strengthen the

quality, validity, robustness, and convergence of the research project, the data gathered was

Page 30 of 327

analysed using a triangulation method to generate a set of general constructs subject to

bounding delimitations(Mertens & Hesse-Biber, 2012; Carter et al., 2014).

These constructs then form the basis for development of a solution concept. However, certain

methods deemed positivist, are adopted with appropriate justification for the evaluation of

the solution concept. The justification for this is to satisfy the need for empirical ways of

validating research outcomes, credible confidence; to add rigor to the evaluation of the

mutual dependency between the nature of collaborative activities and the science of software

engineering methods employed in any collaborative software development project(Patton,

2002). Crotty's view (Crotty, 1998) of research terminologies representing very distinctive

levels of decision-making within a research process has been adapted within the case study

2.6 Analysis of methods and justification

Though software engineering cannot be considered an inordinate discipline, it is not overly or

unduly concerned with core or explicit theories. Hence, it may not be uncommon to see

scenarios or research projects where combination of multidisciplinary theories, principles,

models, and methods are used to generalize or explain phenomena, ideas, and contributions

in each domain(de Souza & Redmiles, 2003). For instance, there is evidence of adoption and

application of collaborative learning theories in supporting and analysing collaborative

software development(Hazeyama et al., 2007) but not in cloud-based collaborative software

development. Though these theories may not be software engineering-based theories,

literary evidence (Hazeyama et al., 2007) highlights their usefulness and impact within the

field of collaborative software development. Therefore, adopting theories outside of the

principal research area intersection represent an area of synergy with potential for the

research project. The question may arise - why undertake survey of different theories,

including theories from other disciplines outside software engineering? Stol and

Fitzgerald(2018) have demonstrated the efficacy of borrowed theories in expanding horizons

within software engineering. However, this poses quite a challenge when it comes to

developing or generating necessary and appropriate linkages between borrowed theories and

the research or problem domain. This could be accomplished via either an inductive or

deductive approach, or both(Folkestad, 2008). A combination of both approaches has been

adopted to form the necessary and appropriate linkages between borrowed theories and this

research.

Page 31 of 327

The inductive part of the approach employed in this project involve observations via review

of literary works of relevant theoretical concepts and standards of practice, and their

applications within the research domain. A condensation of this review into brief outline or

summary format makes it easier to identify and establish links between theories, the research

objectives, and the findings from literature review. The aim of doing this is to make it easier

to analyse processes or experiences present in theoretical concepts and their applications,

for valid, reliable, and quality information and insights. This process is not without bias, but it

has been known to yield effective results (Folkestad, 2008).

The deductive approach adopted for this quest entails the use of logical reasoning in

determining what construes as pros and cons of the theories when considered in the light of

preliminary review of the research domain. Information generated from this exercise then

undergoes some generalization. The next step entails evaluation using a defined theoretical

basis selection process for the research project and subsequently translated into constructs

that are combined with literature findings to form theoretical basis for an appropriate

overarching high-level framework for this research project. The mathematical selection

process adopted is used partly for emphasis and assurance in the validity of the outcomes of

this quest for a theoretical basis (Kenneth F. Hyde, 2000).

2.7 Summary

In research, philosophical aspects underlying methodology and choice of research methods

are among foremost issues to be considered for good understanding of capabilities and

limitations of methods to be adopted. The impact of understanding and choosing a

philosophical stance can be felt when: defining path from research questions to conclusions,

making decisions about research design, research strategy, data collection techniques and

analysis. It also helps in creating awareness of possible issues that may affect research design.

The choice of an approach to research should ideally, optimise the research, and aid in

achieving the purpose of the research. Therefore, there should be a way of evaluating

research to ensure that its purpose has been met. In cases, where the purpose of the research

has not been met, justification should be provided. This research undertakes a hybrid

approach, by employing both qualitative and quantitative methods of research. This includes

the use of primary research tools such as surveys and the use of secondary research sources

such as articles, journals, and whitepapers.

Page 32 of 327

3 Literature review

3.1 Introduction

This Section reviews literature from software engineering domain to ascertain current trends

in software development. This review examines related efforts in collaborative software

development in the cloud, to better assess existing gaps and challenges. The review carried

out reveal relatively more activity from industry in cloud-based collaboration than academia.

The efforts were mainly in areas such as: content management, sharing and storage,, privacy

and risks, but less in cloud-based collaborative software development(Oberhauser, 2013a).

A structured systematic approach was adopted to ensure verifiable gap findings and laying of

groundwork for synthesizing new approaches towards improving collaboration in cloud-

based software development process (Zhang & Ali Babar, 2013).

Literary evidence reveal a variety of problems and factors which act as barriers to

collaboration in cloud-based software development process (Serçe et al., 2011; Dafoulas et

al., 2009; Lanubile, 2009; Noll et al., 2010; Zafar et al., 2018). These are broadly grouped into:

geographical factors, sociocultural and linguistic factors, temporal factors, management, and

process factors, infrastructure/technological factors, organizational factors, and trust. These

barriers reveal a need for better and more cohesive collaboration within cloud-based

software development process.

One popular recommendation for addressing some of the barriers to collaboration in

software development is, leveraging benefits and opportunities offered by cloud computing

paradigm(Derntl et al., 2015; Begel et al., 2012; Mistrík et al., 2010; Magdaleno et al., 2012).

These barriers and common characteristics are shown in Fig. 7. Geographical barriers consist

of factors that arise because of distribution in team, or, and activities(Bendas et al., 2017a).

Socio-cultural and linguistic barriers refer to factors that exist due to differences in language

and communication medium/approach(Magdaleno, 2010b). Temporal barriers refer to

barriers that arise due to differences in time zones, which can also be linked to geographic

barriers(Haig-Smith & Tanner, 2016). Management barriers include barriers that relate to

differences and inefficiencies in the management and visibility of stakeholders, resources,

and changes(Ghandehari & Stroulia, 2014). Process barriers include barriers that arise

because of process planning, process implementation, and process monitoring(Noll et al.,

Page 33 of 327

2010). Infrastructure barriers refer barriers that are technology-related and often centre

around use, deployment, integration, and management of infrastructure, amongst others

(Strode, 2016; Valilai & Houshmand, 2013).

Figure 5 Barriers to collaboration in Cloud-based software development process

Barriers to collaboration in
Cloud-based software
development(CCSD)

Geographical

Inadequate coordination
between distributed teams

Lack of efficient
coordination of distributed

activities

low activity or task visibility

Sociocultural & linguistic

Communication barriers

inadequacy of shared
understanding

Temporal
low responsiveness to

events

Management

inefficient management of
stakeholder participation &

expertise

inadequate change
management and visibility

improper requirements
change management

Process

Inadequate process
planning

Inadequate process
implementation

Infrastructural

Poor resource management

Improper tool selection

lack of proper integration of
tools

Organizational

Trust

Page 34 of 327

The prospect of leveraging cloud computing paradigm within the structured collaborative

software development process presents a research area of possible synergies yet to be fully

exploited (eds. Z. Mahmood & S. Saeed, 2013). The real-time collaboration and efficiency

opportunities offered by the cloud, promises close-knit collaboration for cloud-based

processes(Jackson, 2011; Box, 2012). Increased adoption of cloud applications and services

introduce a shift in how computing resources and applications are provisioned, accessed,

utilized, stored and managed(Riungu-Kalliosaari et al., 2012; Zardari & Bahsoon, 2011); and

creates the need to explore and adapt collaborative software development process for the

cloud (Yigitbasioglu, 2014; Ghaffari et al., 2014; Chang et al., 2013a, 2013b).

3.2 Methodology

Review of relevant literature in collaborative software development was carried out via an

adapted systematic approach(Kitchenham & Charters, 2007). The review analyses existing

body of knowledge in collaborative software development; related concepts that could be

leveraged to enhance context-aware collaboration in software development process in the

cloud. Table 2 presents the query strings used in the search and retrieval of literature for

review. The search was done using Mendeley, a reference manager useful for finding, storing,

managing and correlating academic research materials and libraries(Raubenheimer, 2014).

Mendeley was chosen because of its reasonably fair approximation of research databases,

such as Scopus. It has one of the largest databases in terms of research articles and journal

coverage, and traffic(Cronin & Sugimoto, 2014).

1st tier de-duplication involved merging articles with fields where details match, or are

conflicting, using the capabilities present in Mendeley(Raubenheimer, 2014). 2nd tier de-

duplication involved exporting data in an xml format into Excel. In Excel, it underwent further

de-duplication process by using the ‘Remove Duplicates’ functionality within Excel to easily

identify fields that contain duplicate data. Combining these fields to form a composite set

allowed further identification and removal of duplicates. This de-duped data table was then

normalized, reviewed, and analysed using charts and a combination of methods involving

thematic analysis (Jugder, 2016). This helped to identify gaps, challenges, issues, concepts,

categories, ideas, and existing relationships and applications. This method was useful for

generating themes, patterns and categories, as well as, for testing generated data against any

Page 35 of 327

existing data (Grbich, 2012). Also, it is useful for a better understanding of gaps, challenges,

issues, concepts, categories, ideas, and existing relationships and applications.

The chart highlights the timely relevance of this research project as can be seen from the

proximity value of the coefficient of determination, R2. However, the coefficient of

determination R2, does not indicate the cause of the relatively lower research effort in this

research area, neither does it indicate the level of appropriateness of the chosen independent

variable. This approach to literature review played an important role in definition of research

themes, key dimensions, related concepts, as well as facilitating efforts towards the

generation of taxonomies and ontologies (Bradley et al., 2007). The information generated

was via analysis and review of data presented, in line with context, experience and

understanding of authors, and this research(Basit, 2003).

Table 2: Query strings for systematic literature search

Area of

literature

search/topic

Query strings Time

span

Articles

before de-

duplication

Articles after

first tier de-

duplication

Extending

Boehm’s

Software

Engineering

trends timeline

(title: “Software engineering trends” AND year: [2008 TO

2019]) OR (title: “trends in Software engineering” AND

year: [2010 TO 2019]) OR ((title: “*Software

engineering*” AND “*trends*”) AND year: [2008 TO

2019])

2008 -

2019

161 97

Collaborative

Software

Development

((title: “distributed software development”) OR (title:

“collaborative software development”) OR (title: “global

software development”)) AND (year: [2008 TO 2019])

2008 -

2019

1309 607

Collaborative

Software

Development

in the Cloud

((((title: “*software development*”) OR (title:

“*collaborative software development*”) OR (title:

“*software engineering*”) OR (title: “*collaborative

software engineering*”)) AND (title: “*cloud*”)) AND

(year: [2008 TO 2019]))

2008 -

2019

118 76

Collaboration

in Software

development

(title: “*collaboration*”) AND ((title: “*Software

engineering*”) OR (title: “*software development*”) OR

(title: “*cloud*”)) AND (year: [2008 TO 2019])

2008 -

2019

356 277

Page 36 of 327

Figure 6 Decade survey of relevant collaborative software development within cloud context, grouped by year

Page 37 of 327

Keyword search for relevant
literature on theories related to

Research Domain

Keyword(done by combining and permuting keywords):
Collaboration theories, Software development theories, cloud

computing theories, cloud-based software development
theories, context-aware software development theories,

collaborative software development theories, context-aware
cloud-based software development theories,

Extract and store literature
(papers) in Research

Database

Research
Database

Extract and review paper for
theoretical concepts

(Inductive reasoning applied)

Extract key constructs of
theory

Extract recorded
applications of theory

within research domain

Discuss and critique

Un-reviewed Literature on related
theories remaining in Table?

Yes

Condense into itemised summary or outline form (table,
chart, bullet points or other appropriate representation)

Select each condensed itemised theory, apply logical
reasoning process below

Start

End

Deductive
reasoning

Extract relative
cons of theoretical

concept

Extract relative pros of
theoretical concept

Any more condensed
itemised theory left?

Evaluate and select theoretical basis using the theoretical
basis selection process defined for the Research project

Generate Theoretical
constructs

Literature Review
Findings

Generate Theoretical basis for the Research
project

Towards developing over-arching high level framework for
Research project

Related Theories
 Table

Figure 7 A flowchart representation of the adopted method

:

Page 38 of 327

3.3 Review of software engineering trends and its relevance

Software engineering is a discipline that seeks to take away randomness in the way software

is developed(Bourque et al., 2014). This is achieved by establishing and applying systematic,

disciplined and procedural approaches, principles, practices, frameworks, models, and

methodologies to the design, development and testing of software products and the

management of the development process (Stol & Fitzgerald, 2013). A typical software

engineering process involves harmonious interaction between a set of people with various

skills, an environment, tangible, and intangible artefacts; towards achieving an end goal.

However, factors such as constant changing needs and requirements affect interactions

between different aspects of the process and ultimately the end goal. This gives rise to a

constant need for adequate processes and environments that can adapt or react

appropriately to changing contexts to ensure continuously meeting end goals and outcomes.

The software engineering trend timeline in Figure 8 captures the current state by identifying

various underlying phenomena and trends influencing evolution of software engineering

practices. This timeline gives rise to predictions about future of the development process,

based on observed trend pattern (Boehm, 2006a, 2010, 2006b). Verifying the veracity of these

predictions and ascertaining relevance and usefulness, can be done by calibrating the

prediction after reviewing the build-up to the prediction (Münch & Schmid, 2013). Calibrating

predictions help in identifying current trends that were predicted and those that were not

predicted. The timeline diagram reveals problems of software engineering that remain

fundamentally the same. Over time, these problems have morphed into different forms

identified by different labels or terminologies, and still prevail till date. These include:

• demand, growth, and diversity (issues affecting productivity, scalability,

collaboration)

• software differences (issues affecting integration, interoperability, and

compliance) and

• skills shortfall (technological issues)

Page 39 of 327

Figure 8: A timeline of software engineering trends spanning six decades (Boehm, 2006a).

Page 40 of 327

However, with the advent of cloud computing, newer problems such as geographic

distribution and time zone/cultural/language differences, have been added to the mix (Ulhaq

et al., 2011). The former, negatively affects coordination and visibility, while the latter

negatively affects communication and cooperation, inadvertently adding to complexity and

barriers. The timeline also reveals trends that have contributed in ways such as continuous

integration, collocation of customers, more simplistic designs, short development builds or

increments, agile methods towards collaborative software development. However, the

impact of these contributions has been mostly felt in small projects, but not so much in larger

or distributed projects (Boehm, 2010). The trends timeline positions collaboration as a

spotlight issue of this decade, because of factors such as: scale issues; clashes in models,

platforms and technologies; global connectivity issues; business needs and requirements;

efficiency; and security issues (Oberhauser, 2013a, 2014; Begel et al., 2012; Zimmermann &

Bird, 2012; Mohtashami et al., 2009; Boehm, 2010; Jastroch, 2009; Chanda & Liu, 2015).

Investigating and developing better ways of tackling issues and challenges in collaborative

software development in the cloud is not just about another trend in software engineering. It

is about responding to both existing and evolving software engineering and business needs,

in alignment with, available resources and technologies of the time(Nordio et al., 2011).

Equally important is development and implementation of practices and context-aware

mechanisms, in line with predicted future trends, likely to influence evolution and

appropriate adaptation of the development process.

The timeline identifies introduction of factors such as complexity and diversity due to

distribution, and differentiation at different levels. These include hardware level, the software

level, cultural aspects, and software development activity phases. The identified trends

impact inherent existing collaboration within the development process resulting in need to

support existing collaboration and create more context-aware collaborative processes.

Analysis of the trends timeline and the calibration of predicted trends highlight increasing

dependence of organizations, products, services, and systems. This is indicative of the

following:

• gradual trend of software-defined or software-enabled ecosystems

• need for competitive differentiation

• need for rapid adaptability to change

Page 41 of 327

• need for facilitation of rapid adaptation of products to align with business and

client requirements

• need for reliability and security of software-defined systems or ecosystem.

• need for cohesive collaboration between stakeholders on products/services

• need for paradigm shift from conventional to responsive to support new trends

and applications(Lü et al., 2015)

Addressing these needs will entail changes to the way software is collaboratively defined,

designed, developed, and deployed.

3.4 Extending Boehm’s software engineering trends’ diagram

Investigating and developing better ways of tackling issues and challenges in collaborative

software development, is not just about another trend, but rather, about responding to both

existing and evolving software engineering and business needs, and in alignment with

available resources and technologies of the time (Nordio et al., 2011). Equally important is

the development and implementation of practices in line with predicted future trends to

allow software development processes and practices to adapt and evolve appropriately

(Boehm, 2010, 2006a). An attempt is made to capture and calibrate some of Boehm’s

predicted related challenges of future trends, alongside current trends, and opportunities.

This is to foster better understanding of considerations for planning and developing the right

approach, architecture, strategy, process, and support to enhance and sustain the

collaborative software development process. The trends, though a means to an end,

introduce factors such as complexity and diversity because of aspects such as distribution,

differentiation at different levels and aspects e.g., hardware level, the software level, cultural

aspects, the software development activity phases.

The identified trends undermine and impact the inherent and existing collaboration within

the collaborative software development process and result in the need for more efforts

toward supporting any existing collaboration, as well as, emphasizing the need for more

efforts towards enhancing and creating more context-aware collaborative processes that

would be adaptive, or harder to undermine. Analysis of the trends timeline, and the

calibration of the predicted trends highlighted increasing dependence of organizations,

products, services, and systems. It clearly indicated:

Page 42 of 327

• a gradual trend of software-defined or software-enabled ecosystem.

• need for competitive differentiation.

• need for facilitation of rapid adaptation of products to changes in business and client

requirements.

• need for reliability and security of these software-defined systems or ecosystem.

Addressing these needs will entail changes to the way software is defined, designed,

developed, and deployed. The trends timeline traces the path of software engineering

evolution, influencing factors and trends. It culminates at the point where it highlights

collaboration in software engineering as a spotlight issue of this decade. Boehm also made

predictions regarding the future of software engineering in this decade. Calibrating those

predictions, and building on them, with the aid of review of related literature, an attempt is

made in this research to further extend the timeline.

 Table 3 Software engineering trends post 2010 till date.

2010 POST 2010 PREDICTION 2010 – TILL DATE

issues &

challenges

Trends Issues &

challenges

Predicted

trends

Predicted

trend

category

Current trends &

opportunities

Issues & challenges

Model

clashes

Enterprise

Architectures

Rapid change,

unpredictability,

optimisation,

need for

enterprise

integration,

human factors

Increasing

integration of

Software

Engineering &

System

Engineering

Surprise-

free trend

More maturity

models, more

standards,

Software-Defined

systems

Compliance with

document –driven

requirements,

requirements-deliverables

mismatch, defects & bugs

Scale System

building by

users

Adaptability to

user, rapid

change, better

support, need

for ambiguity-

tolerance,

business

practicality

User, Usability

& End value

emphasis

Surprise-

free trend

Adaptive systems,

DevOps, usability

enhancement

techniques,

enterprise

support packages,

data access and

mining tools

Inter and intra-

collaboration needs, need

for value-driven metrics,

context-awareness, need

for value-driven metrics,

Page 43 of 327

Global

connectivity

Collaborative

environments

and

infrastructure

Unforeseeable

change,

unanticipated

software-

induced

catastrophes,

inadequacy of

current

methods,

processes, lack

of prioritization

of dependability

and assurance

Software

criticality,

quality

assurance &

dependability

Surprise-

free trend

Software testing,

Testing-as-a-

Service,

CrowdTesting,

Cloud-based

testing

Scaling up and integration

of pre-emptive

development and testing,

rapid change and agility,

approaches increasing

software vulnerabilities

Business

practicality

Value-based

Software

Engineering

and Methods

Moore’s Law,

increasing need

for

differentiation

of products,

global

connectivity,

rapid change

Rapid

development

and

adaptability

Surprise-

free trend

DevOps, hybrid

mix of methods

and models

(Agile-driven and

plan-driven),

cloud

development

Emerging system

requirements, need for

flexible integration and

compatibility with legacy

processes and systems,

change management,

rapid change

Security

threats

Quality

Assurance

methods and

security-

driven

development

Global

connectivity,

increasing need

for scalability,

complexity,

business

practicality

Globalization

and

interoperabilit

y

Surprise-

free trend

Location-

independence,

mobile services,

apps and devices,

global

distribution,

pervasive and

ubiquitous

environments and

ecosystems,

outsourcing,

crowdsourcing,

Open-source

software

Development

Management visibility and

control, need for shared

trust and value building,

efficient communication

formats and semantics,

need for standards

application-based-

infrastructure, need for

effective global

collaborative processes,

need for bridging of cross-

cultural practices, real-

time change, and activity

synchronization, need for

sustainable collaborative

processes

Page 44 of 327

Massive

systems of

systems

Enterprise

Architectures

and

infrastructure

s

 Surprise-

free trend

3.5 Software development process and models

The importance of software in business and in daily activities is evident in daily scenarios,

resulting in a lot of attention and attempts been directed towards standardizing and

improving the software development process. Further fuelling these attempts at improving

the process are: increase in size, complexity, and distribution, involved in large and cloud-

based software development projects (Kalliamvakou et al., 2015; Mistrík et al., 2010). This far

exceeds what any one individual or component can handle. Hence, the need for some sort of

standardized collaboration approach between diverse set of people, skills, activities,

locations, tools, and environments.

Software development is a collaborative activity, involving divergent and convergent

activities, carried out by people or teams, in an environment, towards achieving a set of

objectives or outcome (Zimmermann & Bird, 2012). The software development process refers

to the entire process of developing software, encompassing: a team, framework of activities,

set of practices providing guidelines for designing, developing, testing, deploying,

maintaining, and managing software. The entire process involves all the different parts

working together towards an outcome. This process spans the entire development lifecycle

and is usually embodied in a defined high-level abstraction commonly referred to as a

software development model (Sommerville, 2010).

Software development models describe approaches for the development process that

facilitate and guide activities needed to transform problem definitions and requirements into

working software (Sommerville, 2010; Magdaleno et al., 2012). Various types of software

development models adapted as development methodologies are essentially efforts aimed

at standardizing and improving the process of developing software (Mahmood & Saeed,

2013). These process models can be broadly classified based on how linear or sequential,

Page 45 of 327

iterative, incremental, responsive or collaborative the approaches are (Magdaleno et al.,

2012; Mohtashami et al., 2009; Sommerville, 2010; Munassar & Govardhan, 2010).

Linear models employ an approach that steadily flows sequentially through various clearly

delineated activities. Drawback to this kind of models include difficulty in response to changes

after process; software is delivered at end of project making it hard to incorporate feedback

on changes; lengthy durations, etc. An example is the waterfall approach.

Iterative and incremental models are a response to the drawbacks of linear models, and

employ iterative activities in tandem with risk analysis or evaluation activities(Munassar &

Govardhan, 2010). This is in a bid to accommodate changes. Nonetheless, these models still

release software at the end of the project. An example is the spiral model(Magdaleno et al.,

2012).

Agile or responsive models tend to be structured but do not focus on intensive or complete

upfront planning as in the previous models(eds. J. Garbajosa et al., 2018). Agile models are

more empirical in nature because changes and errors are viewed as opportunities for

adaptation of software to be released. Therefore, the focus of agile models is more on

individuals, interactions between individuals, changing requirements and the working

condition of released software rather than on the process, tools, and documentation. Agile

models tend to take relatively less development time. Examples include: Extreme

programming, Scrum, test-driven development, Kanban, etc(Dybå & Dingsøyr, 2008).

Some inherent similarities amongst the models include: reliance on collaborative

development process and the team; accountability of team and process along lines of

responsibility, roles, and functions; iteration within activities, geared towards management

of change, risks and performance; design, development and testing activities geared towards

achieving a common overall outcome (Lepmets & Nael, 2011). Nonetheless, when properly

implemented within various activities of the software development process, any of the

models has capacity to deliver quality solutions. However, some limitations still abound with

existing models such as: need for mechanisms for quick assimilation, interpretation, reaction

to, and application of change and review feedback from all stakeholders, across entire

development lifecycle activities (Rodríguez et al., 2017).

Page 46 of 327

The different models of the software development process may have distinct approaches to

development of software, but ultimately, they work towards the same goal – improvement

of the software development process. Depending on an organization’s software project

characteristics, needs or requirements, one or more models may be selected over others.

Some research efforts have been focused on tailoring of software development processes

towards needs of organizations and their projects, along the lines of collaboration and

discipline, while some have favoured development of hybrid models(Magdaleno, 2010b,

2010a). Table 4 summarises comparison between the most common software development

models. Other considerations for choice of a model include: experience with problem domain;

experience with tools and technology for implementing solutions; complexity of problem

domain and solution; process maturity of team; team size & expertise, team location;

regulatory and compliance requirements; need for concurrence, portability and scalability;

team and organizational culture; dynamics of functional requirements and change;

subjectivity of software projects to quality, cost, time, space constraints and domain

knowledge; awareness; and communication (Lepmets & Nael, 2011).

Table 4 Cross-sectional comparison of software development models

CATEGORY DIFFERENTIATIN

G ASPECTS

SOFTWARE DEVELOPMENT MODELS

Linear/Sequential models Agile/responsive

models

Free Open-

Source

Software

(FOSS)

models

Consideration

points

Underlying

Philosophical

objective

Seeks to establish and

ensure reliability,

predictability, and stability

Seeks quick

ways of adding

value to

business, as well

as adaptation to

changes

Mainly seeks

to ensure

freedom for

user

 Disciplined definition Formal – Defined stages

and activities

Formal – Agile

Manifesto

Informal –

works on

voluntary

collaboration

Page 47 of 327

Development Cycles Sequential and relatively

longer

Iterative +

relatively shorter

+ more focus on

testing

Iterative +

relatively

shorter + more

focus on

testing + free

software

Focus of

development

activities

Sequential processes and

documentation

Customer

collaboration

User

participation

and four

freedoms –

run code,

study code,

improve code,

and distribute

code

Location emphasis Favours both co-location

and geographically

distributed stakeholders or

team members

Emphasis on co-

location

Favours both

co-location

and

geographically

distributed

stakeholders

or team

members

Release period Relatively less frequent Relatively more

frequent

Same as in

Agile

Documentation Relatively more

documentation

Relatively less

documentation

Same as in

Agile

Client involvement Relatively lower Relatively higher Relatively

lower

Reliance on tool

support for

development tasks

Yes No Yes

Overall goal Improvement of software

development process

Improvement of

software

Improvement

of software

Page 48 of 327

development

process

development

process

Other

Examples Waterfall, Unified process

(e.g., as implemented in

IBM’s Rational)

Extreme, Scrum,

Kanban, Crystal,

Rapid

Application

Development

(RAD), Lean

Development

methodology,

GNU, Linux,

Apache,

Mozilla

Typical

number of

activity stages

0-4 No Yes Yes

5-9 Yes No No

Prominent

challenge and

issues

 Less client involvement,

long development times,

inflexibility with

management of changes in

requirements, delays, and

development backlog,

more predictive than

reactive

Less concrete

planning, size of

team is relatively

smaller, less

emphasis on

documentation,

can be tasking

for the team in

terms of time

commitment,

product

evolution may be

quite different

from that

envisaged, more

reactive than

predictive

Varies

Similarities

and

dissimilarities

Communication Emphasis on formal

communication

Emphasis on

informal

communications

Varies

Page 49 of 327

Control/Management Approaches and

implements control

through structure

Approaches and

implements

control through

flexibility

Varies

Planning/coordinatio

n

Tends to be more upfront Tends to be on-

going as and

when

Varies

Despite differences in various models, inherent similarities amongst mentioned

models(Magdaleno et al., 2012; Omicini, 2013) provide rationale for considering a single

iteration of the development life cycle of a software product in this research project. These

similarities include: reliance on collaborative development process and the team;

accountability of the team and process along the lines of responsibility, roles, and functions;

iteration within the process geared towards management of change, risks and performance;

design, development and testing activities geared towards achieving a common overall

outcome (Lepmets & Nael, 2011).

At the beginning of any software development project, determining scope of collaboration is

one of the most challenging aspects of the project. Understanding and defining what presents

as core aspects and what is not is necessary and could sometimes come from stated business

values, requirements, as well as from, architectures (Skerrett, 2009). This definition of core

aspects underlies collaboration through stages of the development process. Stages in the

development process are usually carried out via different activities grouped according to

development model used, with some stages or activities overlapping(Lepmets & Nael, 2011).

The stages are not always set in stone neither are the boundaries of the stages always clearly

delineated or differentiated (Magdaleno et al., 2012; Munassar & Govardhan, 2010; Dybå &

Dingsøyr, 2008), but the activities are usually, by consensus (Mistrík et al., 2010; Lepmets &

Nael, 2011) centred around addressing questions like:

• What needs to be done – requirement gathering and analysis

• How to do what needs to be done – design

• Doing what needs to be done – coding/development

• Verifying, validating, and evaluating the solution – testing

Page 50 of 327

• Deploying or handing over the solution to client or customer or user - deployment

• Ensuring that the solution remains useable and useful – maintenance

In the context of this research, collaborative software development may be defined as a set

of goal-bound actions or activities, by a group or team to satisfy the requirements of various

stages across the software development life cycle within collaborative context of the specified

domain. In the case of this research, the specified domain of interest is the cloud. The need

for more efficient collaboration within the process is driven by increasing distribution,

complexity, and need for more efficient way of improving innovative and quality aspects of

software, as well as delivery time, to meet changing needs. However, collaborative software

development is yet to reach the level where the practice is routine (Chanda & Liu, 2015;

Skerrett, 2009). Improving the development process necessitates standardization of

collaboration between diverse set of people, skills, activities, processes, locations, tools and

environments, configurations and specifications, and other relevant components or activities

(Skerrett, 2009).

The collaborative software development process in the cloud comprises of divergent and

convergent activities carried out by distributed team or teams. The team(s) is made up of

people of diverse cultures, skillset, technical expertise, technological and non-technological

viewpoints. The people either work together on different tasks or separately on

complementary tasks at each stage of the process towards a common goal, all the while

ensuring communication via a variety of tools or medium (Mistrík et al., 2010). This makeup,

calls for efficient collaboration and management in the software development process

(Zimmermann & Bird, 2012). Furthermore, the important role of software in the society and

other factors such as: increase in size, complexity, and distribution involved in software

development projects have generated a lot of attention, leading to efforts directed towards

leveraging paradigms like cloud computing as one of the ways of improving the collaborative

development process (Mistrík et al., 2010).

Page 51 of 327

Figure 9: Typical makeup of a Software development project

3.6 Gaps and challenges facing collaborative software development in the cloud

A single person may be able to develop a piece of software, but it takes more than one person

to work on large software projects. In a world where globalization is an increasingly growing

trend with results such as changes in business process and operations, the need to spawn

new forms of cooperation and concurrence keeps growing for domains such as software

development(Chadli et al., 2016). In such distributed environments created by globalization,

qualitative anecdotal evidence shows the efficacy of collaborative software development

over non-collaborative or individual-based development process especially for large software

projects(Weimar et al., 2017; Lindsjørn et al., 2016a; Herbsleb et al., 2005; Mistrík et al., 2010;

Mahmood & Saeed, 2013). Nonetheless, this anecdotal evidence acknowledges that software

development in its traditional sense, entails a degree of collaboration because it is a process

made up of interdependent tasks or activities carried out by members of a team towards a

pre-defined common goal.

Furthermore, experimental projects involving comparison of various software development

concepts/processes such as – ‘pair programming’ versus ‘personal software processes’,

emphasize the importance and advantage of a collaborative software development process

(Moiz & Rizwanullah, 2012; Magdaleno et al., 2012). Related efforts in the area of

collaborative software development include: open source software development movement,

client-server development model, agile manifesto, global software development, integrated

Makeup of a
typical software

development
project

Teams

Resources

(tools&
environmen

ts)

Activities

(tasks)

Data

Artefacts

Documentat
ion

Page 52 of 327

systems and software engineering, and service-oriented architecture model of software

development (Lepmets & Nael, 2011; Dybå & Dingsøyr, 2008; Chadli et al., 2016). These all

reflect and show constant research efforts steadily directed at integrating and developing the

collaborative software development process to ensure timely delivery of quality software.

The advent of cloud computing and virtualization ushered in a change in end-user

environments and practices, alongside challenges and issues bordering on distribution,

increased complexity, context capture/context-awareness, backward compatibility,

integration, process optimisation, standardization, portability, change management, security

and need for collaborative development models or processes based on sound/solid software

engineering theories and principles. Amongst all the challenges identified, the most notable

key challenges are: inefficient communication and coordination among distributed teams and

stakeholders, and lack of effective group awareness(da Silva et al., 2010; Lanubile, 2009;

Lanubile et al., 2010). Table 5 presents a summary of the gaps obtained from review of related

literature in the area, publication data and trends, covering collaboration in both traditional

and cloud-based collaborative software development. However, none of these efforts

approached software development in the cloud from the point of enhancing collaboration

that is underpinned by theoretical foundations and takes into consideration context-

awareness from all participants in the process, both human and non-human.

To date, the focus of majority of R&D efforts in cloud-based software development mostly

concentrate on specific aspects of the development process resulting in insufficient attention

being paid to other aspects. A review of related literature reveal that related efforts towards

cloud-based collaborative software development have been mainly in the areas of: trust and

privacy; risks facing global software development; collaborative cloud manufacturing;

asynchronous collaboration; isolated collaboration in specific aspects of the process such as

coding activities; use of open-source tools for contributing, improving, and managing code;

security; leveraging of social networks; collaborative cloud platform for integrating product

design and contradiction analysis(Cito et al., 2015; Oberhauser, 2013a, 2014; Valilai &

Houshmand, 2013; Andres et al., 2021; Liu et al., 2016; Rauch et al., 2016b). Although these

efforts represent valid contributions and important enablers, they are still missing important

aspects that enable a more holistic process. These aspects need to be based on solid

theoretical foundation in the Cloud (Nordio et al., 2011; Oberhauser, 2014).

Page 53 of 327

The concept of leveraging the cloud to create or enhance collaboration in different activities

is shaping up and gaining solid ground in a lot of areas and field – manufacturing, cyber-

physical systems, multimedia, learner engagement, blockchain, supply chain and

contradiction analysis (Andres et al., 2021; Mourad et al., 2020; Rauch et al., 2016b; Han et

al., 2013; Bendas et al., 2017a; Fisher, 2017; Barenji et al., 2021; Cancian et al., 2020; Ramis

et al., 2016). Table 6 highlights some notable current reported knowledge on related work

from a cross section of industry. However, it is important to state that this table is not an

exhaustive list. This is attributed to reasons such as: unrecorded or unpublished work; closely

guarded or undocumented industrial intellectual property (IP); experimental projects yet to

be verified or validated (Cito et al., 2015; Jun & Meng, 2011; Linux Foundation, 2014).

Highlighting and reviewing related work helps in highlighting gaps and emphasizing need for

more research efforts (Mistrík et al., 2010; Mahmood & Saeed, 2013). Table 6 shows that

leveraging the cloud for collaborative software development is a viable area that is gaining

traction and being explored by industry in a bid to:

• address inefficiencies and inconsistencies of the traditional process and environment

for software development

• align software development with current trends and changing business requirements

• leverage new concepts and methods for optimal development process

• address economies of scale and efficient use of resources

• enhance tighter collaboration

• facilitate more efficient management from automation and context-aware linking and

sharing of information

There is growing activity from industry in cloud-based collaboration with a lot of emphasis in

content management, sharing and storage, but less in the software development process.

Some notable industry players, as can be seen from Table 6, have made breakthroughs in

collaborative cloud-based software development. However, it is difficult to ascertain the

compliance of their solutions to sound theories and principles of software engineering, even

though these industry giants spare no expense at hyping the benefits and advantages of their

platforms (Oberhauser, 2013a, 2014). From table 6, it can also be seen that most current

solutions offered in Industry as 'cloud-based solutions' offer more support for the coding and

deployment stages of the software process, and less for other stages such as the

Page 54 of 327

requirements gathering stage, the testing stage, and the design stage. Some of the solutions

attempt to integrate social communication by featuring some social communication tools

(Begel et al., 2013; Dabbish et al., 2012; Gadea et al., 2011; Ardaiz, 2011).

Since merely developing applications compatible with the cloud does not necessarily make

the applications cloud-agnostic, integrating social communication features with a cloud-

based IDE does not necessarily make the development environment a collaborative cloud-

based development platform. Integrating social networks in the enterprise with cloud

development environments would be an approach towards enabling or enhancing

collaboration in cloud development environments. But leveraging the cloud for a fully

collaborative development environment in the Cloud is more than that(eds. A. Bento & A. K.

Aggarwal, 2012). Table 6 present a survey of a cross-section of notable open-source tools in

industry. These represent efforts towards collaborative software development process in the

cloud. These have been categorized according to various emerging themes from surveyed

literature. As can be seen from the table, most of the surveyed open-source development

tools are cloud-based and are more collaborative in some stages of the development process

than others. A good proportion of the surveyed tools are collaborative in all the stages with

little or no defined metrics for specifically benchmarking collaboration in the process.

The main areas of focus for most of the tools include - continuous code quality management

via inspection, analysis, and reporting on issues, bugs, or errors in code, providing interface

to mash-able collection of popular development tools, and repository hosting. For example,

in the case of GitHub, collaboration in the process exists in the form of team members working

together via pull requests and commit actions(Kalliamvakou et al., 2014, 2015; Dabbish et al.,

2012). It is sometimes difficult to figure out which projects are live, and which are abandoned.

Only way of doing so is through history of commit actions, because not all pull requests are

guaranteed to be accepted and merged. Another way of considering collaboration in

development processes using GitHub is by considering projects in light of partial contexts such

as: actions on code; who executed the actions; manual linking of related commits, comments

and issues, in order to make inferences and reasoning (Arora et al., 2017). This platform used

to be collaborative only in some stages of the software development lifecycle and makes

provisions for using various methodologies. However, recent updates extended this

collaboration across all stages. The end-to-end traceability offered by artefacts is a good

Page 55 of 327

feature but there is still needed to have a full cloud-agnostic, contextualized artefact format

for artefacts from all stages to allow for easy automations and implementation of

automations, as well as synchronized understanding. GitHub focuses mainly on developers.

Collaboration exists but mostly centred on the development, testing, and deployment of

applications. Collaboration is mostly asynchronous. This is applicable to most of the surveyed

tools. Collaboration is not a focal point, neither does it extend to other stages in the life cycle

development process not involving code. Less focus is placed on the activity. Some of the

tools seek to promote collaboration between end-users and teams via participation and

incentives. They do not address underlying issues undermining collaboration such as:

complexity or unified formats for output to ensure synchronized understanding. Addressing

the latter could lead to developing a formal empirical way of validating that the final product

meets user requirements, or the proposal of metrics for benchmarking the collaboration in

the cloud-based development process.

Table 5 summary of the gaps covering collaboration in both traditional and cloud-based collaborative software development

NO. GAP ANALYSIS SUMMARY

1 Need for adequate theoretical

foundations for cloud-based

collaborative software development

process

A lot of existing collaborative software development tools and

platforms lack solid theoretical underpinnings and foundations.

This randomizes and undermines the science behind the software

development process, leaving innovative solutions to rely on

results from failed implementations and glitches (Oberhauser,

2013a, 2014; Buhrer, 2003; Chhabra et al., 2010; Panigrahi et

al., 2017; Gill & Chana, 2012)

2 Distance or distribution-related

optimisation challenges

Massive scale and distribution of teams and processes introduce

challenges in: ways of communicating actions, changes and

updates in a way that avoids miscommunication and decision-

making delays within the cloud-based development process;

methods for reducing coordination overhead while optimising

development process with regards to development and testing

times, timely awareness of actions, motives and changes

(Bendas et al., 2017b; Gorton et al., 2016; Tell & Babar, 2012)

3 Need for efficient methods for

managing complexity, synchronous

regularity, and verifiable

Certain disciplines such as mechanical engineering, electrical

engineering, are usually, guided, constrained and regulated by

physical laws that ensure regularity and a way of keeping

Page 56 of 327

outputs/outcomes at various stages

of the collaborative development

process

complexity in check (Münch & Schmid, 2013). Conversely,

distributed software development is not easily regulated or

bound by physical laws, and so, it is not unusual to see software

artefacts grow in complexity, becoming harder to understand,

develop and test in the right way and correctly. This can cause

reduction in productivity and delays(Münch & Schmid, 2013;

Pankratius, 2010).

4 Need for efficient and adaptable

techniques/methods for change

management, visibility, and control

The constantly changing technology landscape and software

engineering trends changes the way software is accessed,

utilised, stored and maintained. It introduces consideration

points such as distribution, more complexity, adaptation, and

contexts. It creates a constant need to develop safe, secure, and

reliable software that will continuously evolve and adapt to

changing requirements, drive software engineering trends and

process evolution(Boehm, 2006a, 2010). This implies the need

for adequate methods and techniques for managing changes in

requirements, change in the process and in the way the process

adapts or learns from change (Jeffery, 2000; Zimmermann &

Bird, 2012)

5 Inadequacy of conventional or

traditional software development

methodologies and paradigms

Recent trends have changed the way software is utilized and

introduced new dimensions and levels of complexity, which

have implications for the way software is currently designed,

developed and deployed (Lü et al., 2015)..

6 Lack of adequate analytics

mechanism for capturing actionable

insights

Actionable insights could be captured from logs and feedback,

from tasks, activities, interactions, executions, and

transformations. These could be stored and analysed to aid

improvements in management, technical, and coordinating

aspects of the process. In addition, it could be used towards

domain knowledge for the process, troubleshooting purposes,

creation of libraries and templates, as well as improving the

adaptability of the process(Gorton et al., 2016).

7 Need for standards-based

environment/infrastructure

The existing standards commonly used in software development

processes are quite generic in the sense that, they are mostly

used for assessing and analysing how organizations follow their

defined processes as well as modelling processes to monitor and

control the development of software(Boehm, 2006a). It does not

Page 57 of 327

expressly cater for the analysis, assessment, and measurement

of the collaborative process, not to mention the collaborative

process within the cloud. The commonly used standards

include: ISO 9000, CMMI, ISO 15504(OGC, 2013; Chrissis et al.,

2011; Csa, 2013; Ralph, 2013b)

8 Ambiguous or missed information Requirements, artefacts from various activities, action plans,

feedback, and other important information necessary to achieve

a goal are sometimes not clearly and accurately defined and

agreed upon by all concerned, hence need to balance and

optimise flow of information within software development

teams (Mark, 2002). Furthermore, automating this flow of

information can free up valuable resources such as time, reduce

unnecessary noise (assumptions and discussions), and make it

easier to monitor and manage - conversations, alerts,

notifications, changing parameters and values, exchanges,

design progress and status, and changing mission parameters,

directives, and instructions(Gill & Chana, 2012). This could

positively impact awareness

9 Need for culture-sensitive,

collaboration-oriented, and context-

aware groupware

Trends like cloud computing introduce complexity and diversity

to software development which can undermine and impact the

inherent and existing collaboration within software development

process if not efficiently managed. The complexity and diversity

are introduced via increased distribution, differentiation at

various levels and aspects such as: hardware level, software

level, cultural aspects, software development stages and

communication/co-ordination strategies. This results in need for

more efforts toward supporting existing collaboration and

creating more context-aware collaborative processes that would

be adaptive(Kocurova et al., 2012; Ramis et al., 2016; Valilai &

Houshmand, 2013; Haig-Smith & Tanner, 2016).

10 Appropriate data capture and

Knowledge management techniques

to facilitate learning from historical

data

Too little data is collected, or data is ignored or poorly

understood. Can sometimes lead to late threat detection,

identification, and resolution. It can also lead to inadequate

tracking of project progress; conflicts in perspectives,

understanding, interpretation and execution of activities often

resulting in defective software, or software needing more

Page 58 of 327

rework(Mohtashami et al., 2011b, 2011a, 2009; Chanda & Liu,

2015; Marlowe, n.d.; Jastroch, 2009).

11 Difficulty in capturing reusable

application support knowledge

This gap arises due to increase in unique complex dependencies

on environment and context variables, arising from increase in

distribution, software development participants, development

environments and tools in cloud development

environments(O’Leary, 2010).

12 Portability and interoperability of

tools and other mediating artefacts

The development process could have a plethora of tools and

mediating artefacts. This involves a lot of disparate technologies

and data sources. Increased chances of complexity, lock-in

scenarios, and compliance or interoperability issues. This can

sometimes prove detrimental to collaboration within the

development process(Gill & Chana, 2012; Guillén et al., 2013;

Mourad et al., 2020; Karunakaran, 2013).

14 Synchronization and coordination

issues

Challenges in synchronizing activities and contributions across

distributed teams and sites. Short of using shared code

repositories which tends to result in large and complex

codebases that place builds in un-releasable states most of the

time; there is a lack of readily available tools and frameworks

supporting real-time synchronous collaboration in software

development process. Related efforts such as GitHub, use

feature branches as a way of coordinating activities and

contributions amongst teams that have a lot of developers

committing frequently to same code repository. However, this

feature branching approach often results in unpleasant, difficult,

long merging process, unsuitable for continuous development,

testing, integration, and deployment (Boehm, 2010).

15 Need to bridge gap between

development teams, users, and other

stakeholders

Since the success of a software project depends on fulfilment of

client requirements, there is need for involvement of all

distributed stakeholders in ALL the activities within a cloud-

based software development project (Alvertis et al., 2016b;

Franken et al., 2015). However, research shows an existing

collaboration gap between development teams and end users,

due to inability of end users to provide continuous feedback to

the development team process during the development process

rather than at the end, or at intervals(Lange et al., 2016) .

Page 59 of 327

Integrating the end user community within the development

process helps to improve trust and feedback. This will help in

early detection, discussion, and resolution of conceptual,

design, build, testing, or deployment flaws. It also allows direct

interaction; ensures that everyone involved is on the same page

at any point in time; misunderstandings are minimized; the

development process is sped up; and unnecessary costs are

avoided(Alvertis et al., 2016b; Franken et al., 2015).

16 Inadequate log and metrics

management for Cloud-based

collaborative software development

process

Although development teams can define operational metrics and

logs in the cloud, there is still a stated need to introduce tracing

and metric definition as part of the development workflow. This

would provide support for improved error traceability; ease of

problem resolution; and benchmarking collaborative

development and testing process in the Cloud(Cito et al., 2015).

The need for processes based on sound theories brought about notable attempts at finding

suitable theories within software engineering and from other disciplines, in a bid to enhance

the development process (Stol & Fitzgerald, 2013; Ralph, 2013b, 2013a, 2014). One of such

attempts adopted the Activity theory for the analysis and evaluation of software development

environments. The development environment is a space shared by the persons or teams,

involved in the collaborative development activity and indeed, necessary in one form or the

other, for any collaborative activity to take place (Kats et al., 2012; Soriano Camino et al.,

2008). However, the analysis and evaluation carried out was restricted to development

environments, which were portrayed as external to collaboration, rather than an integral part

of the collaborative activity. The analysis did not take into consideration in entirety all other

aspects of the software development process. In addition, it did not take into consideration,

emergence and impact of pervasive environments, such as cloud-based development

environments (Oberhauser, 2013a).

Cloud-based development environments arose as a result of increased adoption of cloud

computing and virtualization technologies, and contributed towards increased geographic

and organizational distribution in development teams (Barcus & Montibeller, 2008; Herbsleb,

2007; Gill & Chana, 2012; Fylaktopoulos et al., 2016b; Benfenatki et al., 2014; Oberhauser,

2014). However, the adoption of cloud development environments and increased distribution

in teams have introduced: differences in time zones, often leading to problems in

Page 60 of 327

optimisation of software development process with regards to development and testing

times; poses difficulties in terms of timely awareness and communication; increase in

complexity in terms of planning and coordination(Bendas et al., 2017b; Gorton et al., 2016);

massive scale and additional layers of complexity in terms of abstraction levels and related

components of the development process, along with their corresponding characteristics. This

is in addition to existing traditional complexity in terms of measure of proportionality of

activities and tasks within the development process. This further translates into an increase

in contexts i.e., information that can be used to characterize the situation of entities, within

the development process. These problems give rise to need for seamless and synchronized

development within distributed teams. Table 6 adds perspective to this discussion context by

capturing and summarising related works from a cross-section of industry practitioners and

academic researchers. Furthermore, this table assists in the examination of gaps and

discrepancies. It is an attempt at ‘empiricising’ state-of-the art secondary literature review.

Table 6 A Survey of cross-section of notable open-source industry tools/platforms towards Cloud-based SDLC process

Differentiation

themes

GitHub CloudTeams Sonarqube Atlassian

Confluence.

Jira

IBM

jazz/CLM

CollabNet/

TeamForge

Heroku

Cloud-

based/Cloud-

hosted/non-

Cloud

Cloud-

hosted

Cloud-based Cloud-

hosted

Partially

Cloud-based

Cloud-

hosted

Cloud-

based

Cloud-

based

Explicit activity-

themed,

theoretical

basis for

architecture for

Cloud-based

collaborative

software

development

process

None /

Indetermi

nate

Indetermina

te

None /

Indetermin

ate

None /

Indetermina

te

None /

Indetermin

ate

None /

Indetermin

ate

None /

Indetermin

ate

Implicitly

associated

theories

Social

Network

Graph

None /

Indetermina

te

Cognitive

Complexity

None /

Indetermina

te

None /

Indetermin

ate

None /

Indetermin

ate

None /

Indetermin

ate

Page 61 of 327

Cloud-agnostic,

contextualized

artefact format

for artefacts

from all stages

partial partial partial Partial partial None/Indet

erminate

partial

Collaboration in

all SDLC stages

partial partial partial Yes Yes Yes partial

Formal testing

across all stages

(Validation &

verification)

partial partial partial Partial Yes partial partial

Metrics/bench

marks

Yes partial partial Yes Yes Yes Yes

Metrics/bench

marks for

analyzing/meas

uring

collaboration

within entire

development

process

partial None/Indet

erminate

None/Indet

erminate

None/Indet

erminate

partial None/Indet

erminate

None/Indet

erminate

Traceability Yes None /

Indetermina

te

partial Yes Yes Yes partial

Awareness partial partial partial partial partial partial partial

Co-ordination Yes Yes partial Yes Yes Yes Yes

Communication Yes Yes partial Yes Yes Yes Yes

Shared

Workspace

Yes partial Yes Yes Yes Yes Yes

Shared memory Yes partial Yes Yes Yes Yes Yes

Context-

awareness

partial Partial partial Partial Yes partial partial

Page 62 of 327

Main features Code

repository

,

Developer

profiles,

dedicated

project

pages,

code-

related

actions

(Commits,

forks, pull

requests),

subscripti

on

actions,

version

control,

document

ation

Customizabl

e platform,

allows

‘mashable’

endpoint

connection

of

developmen

t tools,

interface to

allow

anonymous

end-user

engagement

with

developmen

t teams in

early stages

Java-code

analysis

engine,

metrics &

issue

detectors,

GUI

Dashboard

with drill-

down

features,

Plug-in

extension

capabilities

Cloud

Platform, UI

Modules,

Webhooks,

Rest API,

device

drivers,

plugin

managers,

network

abstractions

and generic

services

Integrated

set of tools

developed

on IBM Jazz

platform,

web-based

interface,

extension

capabilities;

Integrated

toolchain

combining

open-

source

tools for

end-to-end

application

developme

nt &

testing.

Include:

Eclipse, Git,

Subversion,

Jenkins,

Visual

Studio,

Atlassian

Jira, JFrog

Managed

Containers,

Heroku

Pipelines,

built-in

monitoring

tools,

extension

capabilities,

GitHub

integration,

single point

dashboard

for

managing

teams &

processes,

API

Moving on from the development environments onto the development process itself, the

various aspects of the cloud-based development process i.e., environment, activities, actors,

requirements, and outputs, provide a rich source of contexts. These contexts are sometimes

ignored, misunderstood, or missed during the process (Mistrik et al., 2016; Mistrík et al.,

2010)Some impact of this includes - lack of efficient traceability and appropriate links

between activities, tasks, and artefacts from various stages or phases of the development

process. This undermines the links between requirements and the developed software,

weakens the analysis, reporting and tracking of change and change impact within phases, as

well as making it harder to debug and fix error in time. Results of this include missed

deadlines, inadequate solutions, longer time to market, a lot of bugs and defects requiring

fixes or rework. Tackling these issues would help to improve awareness, thereby enhancing

collaboration within the software development process.

Alongside the need to enhance collaboration, is the need to develop new metrics to measure

collaboration through assessing quality of outputs, processes, exchanged information and

teams, and through dynamic tracking of the processes. Current metrics have not kept up with

Page 63 of 327

the evolution of software development process in line with technological advancements,

therefore leading to gaps between the practical models and available data needed to validate

the process, or, and output according to business requirements (Concas et al., 2011). And

with cloud adoption, the need to develop adequate metrics for measuring effective

collaboration in cloud-based software development becomes doubly emphasized, along with

appropriate context-aware management capabilities.

Distribution has seen the rise in use of mobile devices by distributed teams working together

on various projects, but still needing to stay connected whether on the move or stationery.

These mobile devices have varying form factors which create the need for development of

software with dynamic output that would take into consideration possible contexts of

use(Baride & Dutta, 2011; Mahmood et al., 2012; Gordon, 2013; Howard et al., 2012). The

challenge is not limited to form factor alone. There is a rising need for location-based

services/applications, because of increased mobility and constant connectivity that comes

with the use of mobile devices (Gordon, 2013). These challenges could be tackled by

investigating ways to leverage the broad network access of the cloud, to ensure that

developed applications are constantly accessible, and can easily update location-based

characteristics as dictated by needs of mobile users (Maximilien & Campos, 2012; Begel et al.,

2013, 2012).

Another pertinent issue from review of related literature in software development in the

cloud is, the issue of backward compatibility and optimisation. It is not easy to convert an old

or legacy application into an application that can fully exploit cloud capabilities such as

scalability and auto-provisioning. Such attempts often result in increase in the number of

defects and issues such as: functionality errors, interoperability, and performance issues,

even security bugs. Testing legacy software, or even modern software, with the limited

toolset of traditional testing practices can be quite cumbersome and does not effectively

feedback into the other stages of software development in the cloud. There is need for

modern methods or techniques of improving quality assurance for software and services

offerings (Tilley & Parveen, 2010; Parveen & Tilley, 2010; Riungu et al., 2010; Riungu-

Kalliosaari et al., 2012; Foley, 2013). Currently in the industry, there exists different

development environments and platform solutions offered by various vendors, each

promoting specific sets of tools. This often results in complex code and software from various

Page 64 of 327

third parties that can increase chances of vendor lock-in scenarios, compliance, or

interoperability issues. This also can impact collaboration in software development in the

cloud (Guillén et al., 2013). Provision of context-aware functionalities to manage and audit

various stages within software development in the cloud, retrieve, store, and analyse

metadata for insights, could lead to improved feedback process and enable rapid defect/bug

resolution(eds. Z. Mahmood & S. Saeed, 2013). Adapting software development stages, for

example the testing stage, to the Cloud is an opportunity to address the shortcomings of the

current/traditional software testing practices , by leveraging the strengths and opportunities

of cloud computing towards delivering robust and scalable on-demand applications and

services(Gao et al., 2011). Leveraging cloud computing within software development is not

without risks and security issues. For example, securing the location of developed

applications’ data, test data depending on the degree of sensitivity, whilst also taking into

considerations any legislative or privacy issues that could arise is an area of huge concern

(Maximilien & Campos, 2012).

Another identified area requiring more research efforts, that could facilitate collaboration

within software development in the cloud, is the development of ways for representing

artefacts, data, requirements, and metadata from various stages within a software

project(Hashmi, 2013). Each stage of the software development process yields some sort of

output or artefact. These outputs or artefacts feed into every other stage in either: sequential,

iterative, or some sort of hybrid format; and affect decision making, productivity, quality of

final software and completion time. Finding a way to represent these artefacts within

software development in the cloud in a common representation format that is cloud-agnostic,

will play a crucial part in facilitating and enhancing collaboration in cloud-based development.

This representation format could be like the use of XML for representing documents on the

web, or the use of DFXML in the field of digital forensics (Garfinkel, 2011). This can ensure -

proper better understanding and flow down of requirements; sharing of interoperable

artefacts and metadata; effective co-ordination of development activities; facilitation of

continuous and more accurate verification and validation process across stages; and

reduction in the analysis/result distortion that can occur due to differences in culture,

language, or disparate technologies(Hashmi, 2013). An IDG survey among more than 260

enterprises revealed that 86% of IT managers attach a high level of importance to

Page 65 of 327

collaboration. Industry bodies believe cloud computing is changing collaboration by making it

efficient, more effective, and faster to collaborate on projects (Box, 2012).

A classic example that further buttresses the issues discussed in the paragraphs above and

emphasizes the need to evolve the development process is the report submitted by the

Engineering Division within the National Defence Industrial Association (National Defense

Industrial Association, 2010). This report highlighted some persistent issues which could be

potentially addressed via efficient collaboration. Some of the identified issues facing existing

management practices and methodologies include - little or no ability to evolve, scale and

deal with changes in growth and complexities in technology, user needs and evolving

paradigms, provision of adequate actionable insights commensurate with emerging

development platforms. These issues restrict improvements in collaboration that could be

enabled or amplified from integrating paradigms such as cloud computing with existing

models.

The industrialization of the software development process emphasizes and promotes the

mechanistic aspects (physical aspects, deterministic aspects – cause/effect)(Barthelmess &

Anderson, 2002a; Panigrahi et al., 2017), as a way of achieving standardization. Ensuing

reusable components are then built from this bedrock to preserve the standardized practice,

attributes, or characteristics. Since the founding process already lacks the adequate

theoretical foundation, by implication, any reusable components built from this practice

suffers the same lack. Hence, one of the reasons for the need for an appropriate theoretical

framework that will achieve same goal of standardization, but based on sound theoretical

foundations, which take into cognizance both mechanistic aspects, as well as all collaborative

aspects, and changing demands or landscape(Chhabra et al., 2010). This is one of the key gaps

addressed by this research project.

3.7 Impact analysis of some of the more prominent gaps and proposed recommendations

A popular belief among experts of agile software development is that typical software

development teams comprise of various parts interacting, adapting, and learning within a

boundary(Mistrík et al., 2010). This gives rise to complexities in the software project, including

fragmentation and silo effects, amongst others. Partly to understand the various activities and

complex changing parts of a software project and ecosystem, various software project teams

Page 66 of 327

have either adopted, or adapted, various theories and concepts including multidisciplinary

ones as well.

Theories to be considered and examined with relevance to this research project during the

quest for a suitable theoretical basis, based on relevant constructs and known applications

within the research area include Complexity Theory, General Systems Theory, Dynamic

Systems Theory, Chaos Theory, Evolution Theory, Game Theory, Actor Network Theory, and

Activity theory (Stol & Fitzgerald, 2013; Ahmedshareef et al., 2014; Fleming et al., 2013; John

et al., 2013). These theories have been used and applied in a variety of areas within the

software development domain. However, with respect to the questions in this research

project, more emphasis and focus should be towards the context-aware and collaborative

aspects of cloud-based software development activities. This necessitates an evaluation of

cloud case for enhancing the collaborative software development process, to better ascertain

and position necessary adjustments or adaptations for addressing the gaps and issues in the

collaborative software development process (Jadeja & Modi, 2012; Armbrust et al., 2010;

Lenk et al., 2009). These challenges and gaps span the entire software development process.

Addressing these challenges and gaps require trade-offs which may involve the development

of new architectures, approaches, and processes.

Conversely, there is growing activity from industry in Cloud-based collaboration, with a lot of

emphasis in content management, sharing and storage, but relatively less in collaborative

software development. Although some notable industry players like IBM, Atlassian,

CollabNet, Microsoft, etc., have managed to make breakthroughs in collaborative Cloud-

based software development, there is little detailed documentation available (Mistrík et al.,

2010; Mahmood & Saeed, 2013). But questions exist as to the compliance of their solutions

with sound theories and principles of SE, even though these industry giants spare no expense

at hyping the benefits and advantages of their platforms(Oberhauser, 2014, 2013a).

3.7.1 Need for cloud-based collaborative software development architectures with explicit

theoretical foundation

Emerging technologies and software engineering trends change the way software is accessed,

utilized, stored, and maintained. These introduce consideration points such as: more

distribution, greater complexity and increase in contexts. The result of this is a constant need

to develop safe, secure, and reliable software that will continuously evolve and adapt to

Page 67 of 327

changing requirements, and a constantly evolving development process. Current innovative

solutions rely on results from a mix of successful and failed implementations and glitches

(Oberhauser, 2013a, 2014; Buhrer, 2003).

Impact

• randomness in the science of the development process

• Undermined collaboration in the software development process

• Increase in emphasis on need for better and sustainable frameworks,

architectures, methods, tools, practices, and strategies, with explicit theoretical

foundations to embrace and adapt to changing trends in technology, process,

requirements, and related complexity, whilst still facilitating effective

collaboration across the entire development process

• need for sustainable change management and self-learning methods in cloud-

based collaborative software development

Proposed recommendation

Provision of explicit theoretical framework with activity underpinnings to:

• facilitate sustainable and reproducible blueprint for cloud-based context-aware,

collaborative software development process

• aid understanding and conceptualisation of ways to enhance collaboration in

cloud-based software development

• lay a foundation for defining processes, activities, and aligning them with goals and

deliverables

• synthesize empirical knowledge to facilitate future research, development, and

adaptation of collaborative models for development and testing of cloud

applications

• Flag up irregularities, inconsistencies, and other factors which might impact an

activity.

• reduce or eliminate randomization and reliance on results from failed

implementations and glitches

Page 68 of 327

3.7.2 Need for effective methods for capturing and representing contexts and other related

data in a cloud-agnostic format for generation of actionable insights

Requirements, artefacts, action plans, feedback, and other important related information,

necessary to achieve the defined goal are sometimes not clearly and accurately defined within

the cloud-based development process. Some factors contributing to this include - poor

collection methods, unsynchronized understanding, and poor application of contexts and

other related metadata (Gorton et al., 2016; Chanda & Liu, 2015; Kyriakidou-Zacharoudiou,

2011; Zimmermann & Bird, 2012).

Impact

• negative impact on balancing and optimisation of information flow within

development environments and teams.

• late detection and resolution of issues and bugs that could have been otherwise

avoided via appropriate collection, consideration, and application of enough

context data within development activities.

• inadequate tracking of project progress.

• conflicting perspectives, understanding, interpretation and execution of activities,

often resulting in defective software, or software needing more rework

Proposed recommendation

Design and implementation of a common representational format for: context information,

requirements, outputs from each stage of the lifecycle development process, logs, feedback,

ideas, instructions, concerns, and other related data. Also recommended is the design and

implementation of knowledge management mechanisms and modules for data processing,

analytics, visualization, and reporting functions. This would require scalable data storage.

Benefits include:

• Effective traceability, change management, better visibility and synchronized

understanding and awareness

• Generation of actionable insights from: logs, feedback from tasks, activities,

interactions, executions, and transformations. This would facilitate self-learning

from historical data, process improvement in management, technical, and

coordinating aspects

Page 69 of 327

• Building up of domain knowledge for the process, troubleshooting purposes,

creation of libraries and templates, as well as improving adaptability of the process

• Automation of information flow frees up valuable resources; reduces unnecessary

noise (assumptions and discussions) and makes it easier to monitor and manage -

conversations, alerts, notifications, changing parameters, exchanges, design

progress, status, changing mission parameters, directives, and instructions.

3.7.3 Need for effective ways of managing complexity throughout cloud-based collaborative

software development process

Certain disciplines such as the engineering disciplines, are usually guided, constrained, and

regulated by physical laws that ensure regularity and a way of keeping complexity in check.

Conversely, software engineering is not easily regulated or bound by physical laws. This makes

it harder to ensure synchronous collaboration and verifiable outputs at the various stages of

the process (Münch & Schmid, 2013; Pankratius, 2010; Gorton et al., 2016; Mahmood &

Saeed, 2013; Mistrík et al., 2010)

Impact

• Growth in complexity of software artefacts and throughout the cloud-based

development process

• Differences and difficulty in understanding, developing, and testing in the right

way, and correctly.

• Increased need to challenge and validate results via some form of empirical effort

Proposed recommendation

One way to approach and reduce impact of this gap would be to limit complexity via the

development of an architecture. An architecture would contribute towards managing

complexity through decomposition and abstraction of main components of the cloud-based

development process. Furthermore, the provision of an activity-themed and collaboration-

themed theoretical foundation for the architecture would help to boost confidence in the

architecture, and its sustainability. Like in the case of the engineering disciplines, this

theoretical foundation can be derived from existing laws, theories, and concepts, that should

be applied to guide different aspects of both the architecture and the process. Benefits

include:

Page 70 of 327

• Reduction of constraints impacting the ability to understand, design, develop, test,

and maintain software artefacts. This helps to manage complexity and impact.

• Promotion of integrity of the process and outcomes

• Facilitation of reusability and impact analysis

3.7.4 Need for standards and adequate metrics for benchmarking cloud-based collaborative

development and testing

The existing standards commonly used in software development processes are quite generic.

They are mostly used for assessing and analysing how organizations follow their defined

processes, as well as modelling processes to monitor and control the development of

software. These standards do not expressly cater for the analysis, assessment, and

measurement of the collaborative process within the cloud. Presently, the commonly used

standards include ISO 9000, CMMI, ISO 15504 (Chrissis et al., 2011; Mohtashami et al., 2011b,

2011a; Bouwers, 2013).

Proposed recommendation

Introduction of suitable methods for benchmarking Cloud-based collaborative software

development process to ensure monitoring and management of the process, and continuous

process improvement

3.8 Summary

Research and industrial trends show a noticeable shift in the way computing resources and

applications are provisioned, accessed, utilized, stored, and managed. For example, accessing

applications on the desktop is giving way to accessing applications now stored in the cloud,

via a web browser, API, portal, or a web application. Accessing and housing software

applications in the Cloud, implies a need for change in the way these applications are

engineered(Riungu et al., 2010). Furthermore, organizations are getting more distributed in

terms of their distinctive groupings, processes, location, and applications(Sriram & Khajeh-

Hosseini, 2010; Riungu-Kalliosaari et al., 2012). All these, call for more cohesive collaboration.

Collaboration in the cloud can take varying forms, can extend across technical and social

aspects of a project, and can be aimed at solving common or diverse problems encountered

during the development lifecycle. Collaboration can be as simple as sharing code and designs

or could take the form of real-time distributed development and testing activities across

Page 71 of 327

organizational and geographic boundaries. The software development process has seen a lot

of collaborative efforts over the years such as: structured processes (Agile, Scrum etc.),

version control tools (e.g., Git, GitHub), client-server development, Computer-Aided Software

Engineering tools, cloud-based integrated development environments, etcetera. While tools

such as the above-mentioned are of immense help towards helping developers cooperate in

the design and coding stage, they do little to further collaboration in other stages.

From extensive literature review, the most prevalent gaps in collaborative software

development in the could surmised as follows:

• Adaptation of the software development process in the cloud based on solid

theoretical foundations

• Sharing artefacts, data, metadata, support, and requirements from different stages

within the development process in a timely manner.

• Scalable and flexible management of configurations and access privileges to shared

data, shared artefacts, shared workspace, shared memory, and changes; across

homogenous/heterogeneous teams in a distributed environment. Heterogeneity in

this case could be in the makeup of team, tools, platforms, locations, or supporting

components.

• enhancing awareness of group activities through designing custom mechanisms and

automated workflows for features such as proactive notifications, timely updates, and

intelligent predictions from data insights, artefacts, and team activities within the

stages of the development process.

• facilitation of effective communication and co-ordination of activities across all stages

in a distributed environment.

• Provision of a context-aware management functionality, to manage the various stages

within software development by auditing the stages, retrieval, and storage of

metadata for analytics and generating insights that could lead to improved feedback

process and enable rapid defect/bug resolution (Mahmood & Saeed, 2013).

Overall, the literature review highlights a strong correlation between collaboration and cloud-

based software development maturity. However, further analysis show collaboration within

the cloud-based development to be mostly informal and unstructured and does not

effectively capture militating contexts. This indicates potential opportunities for more

Page 72 of 327

context-aware, structured collaborative activities within the cloud-based development

process. There is also potential to significantly improve the process via context-aware,

structural and process enhancements such as integration of an architecture with an activity-

based process. This would provide stakeholders with a guide for adding contributions to

software development projects, thereby increasing efficiency, and reducing development

time.

Page 73 of 327

4 Conceptual foundations

4.1 Introduction

Cloud computing is a technology trend that is changing the IT landscape and changing

collaboration. One of its most notable advantage lies in its adaptability to varying contexts of

use, its extensibility, as well as the numerous possibilities and opportunities it presents for all

stakeholders to collaborate (Puthal et al., 2015). Stakeholders need up-to-date shared

information and understanding to ensure success of a software development project. The

more distributed the scenario, the greater the need for and importance of this shared

understanding. Contexts have an impact on collaboration because they directly affect the

quality of communication which translates into the level and quality of coordination and

awareness that can be created or generated in any given scenario. Context is a continuous

variable, capable of taking any infinite number of values, or pieces of information from an

infinite number of variables. Currently, there are no general guidelines on how to consider or

categorize contexts in software development projects (Dybå et al., 2012; Petersen & Wohlin,

2009). To get around this, this Section analyses previous related works that have attempted

to provide frameworks or categorization structures that provide discrete variables offering a

finite number set for providing context information (Dybå et al., 2012). This information is

then synthesized and adapted for distributed teams carrying out software development

process in the cloud, to ensure efficient collaboration and success of the project.

However, like most emerging paradigms, mixed feelings trail adoption of the Cloud (Ghaffari

et al., 2014; Leavitt, 2009). For collaborative software development, benefits include, but are

not limited to, cost savings, scalability, agility for business and development peak period

needs, motivation for innovation and increased R&D (Maximilien & Campos, 2012).

On the other hand, there are fears about: security issues; vendor lock-in and interoperability

issues; portability issues; automation; performance issues; availability issues; handling

uncertainty about heterogeneity, content type, and location of client; bandwidth

unpredictability, dynamic workload variations; varying workflow schedules; architecture and

resource optimisation issues; availability and integrity of relevant information within

participating teams and systems; context awareness and reproducibility within contexts;

amongst others (Zhang et al., 2010; Puthal et al., 2015; Armbrust et al., 2010). Some of these

Page 74 of 327

challenges and issues are partly inherited since cloud computing itself, is a paradigm that

leverages a couple of other technologies (Hashemi & Bardsiri, 2009). It is necessary to analyse

advantages offered by the Cloud, amongst other features and characteristics to make the

make the case for suitability of the cloud for collaborative software development. Leveraging

the cloud would require the adaptation of existing collaborative software development

processes to align with the cloud capabilities. However, this is likely to raise issues for legacy

applications, existing management practices and methodologies in software development

projects if not done properly (Maximilien & Campos, 2012)

4.2 Cloud computing overview

One of the most adapted definitions of cloud computing is that offered by the NIST - “…. a

model for enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

interaction” (Badger et al., 2011). This definition captures the five main characteristic features

of the cloud that represent the strengths from whence, most of the benefits attributed to the

cloud come from. This definition also captures one key point that is sometimes overlooked -

the minimal effort it entails to provision services or resources.

Figure 10: representation of Cloud computing characteristics based on NIST definition (Badger, Lee et al., 2012)

The advent of cloud computing has brought about an increase in the ‘servicification’ of IT

resources such as: Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform

Characteristics
of cloud

computing

Rapid
elasticity

Measured
service

Broad
network
access

On-demand
self-service

Shared
configurable

Resource
pool

Page 75 of 327

as a Service (PaaS); resulting in the consumption of these resources as services on a pay-per-

use basis which greatly favours organizations and companies with limited resources(Armbrust

et al., 2010, 2009). These services are deployed either publicly, privately, in hybrid form, or as

a community model. The area of software development is not left out too. Effect of these

changes can be seen in the paradigm shift from use of desktop IDEs to Cloud IDEs and Cloud

APIs in building software projects. Various Cloud services providers, for example, Amazon,

Google, Microsoft, IBM, and a host of others, all have their own API offerings, often built on

top of their IaaS offerings(Maximilien & Campos, 2012; Doddavula et al., 2013).

Figure 11: A view of the Cloud computing architecture (Zafar et al., 2017)

Prior to the advent of cloud computing, traditional data centres and IT setups often relied on

architectures that could at best be described as like silos, making it difficult for fluid and easily

scalable interactions between infrastructure, applications, and data. Situations synonymous

with these include waste of resources, complex administrative and management functions,

less agility, and response to changing business and user needs, high costs associated with

scaling, staffing, maintenance, development, operations, maintenance, and even capital for

expansion (Quest, 2012). However, the emergence of cloud computing introduces a lot of

benefits, as well as open doors for countless opportunities and models of computing and

business (Durao et al., 2014). Cloud computing has become an enabler of various platforms

capable of relatively higher degrees of flexibility; faster and much larger scale of computation,

Page 76 of 327

processing and sharing; wider accessibility and greater availability (Warth et al., 2017). Other

benefits of cloud computing include cost flexibility and efficiency; scalable resources for

storage, backup, and recovery; relatively easier setting up of customized environments and

quicker deployments; and a myriad of service provisioning options (Whaiduzzaman et al.,

2014).

Figure 12: Service provisioning of Cloud Computing (Whaiduzzaman et al., 2014)

More efforts are directed towards exploiting and leveraging cloud computing for the range of

benefits and advantages it offers, mostly as services; and this is now evident in a range of

services springing up e.g., Big Data-as-a-Service, analytics-as-a-service, and a host of other

service offerings in the industry(Skourletopoulos et al., 2017). However, leveraging cloud

computing for more efficient collaboration in the software development process in the cloud

requires a thorough understanding of what the cloud has to offer and its pitfalls.

4.3 A SWOT analysis of cloud computing

The benefits and advantages offered by the cloud makes the case for suitability of cloud for

cloud-based collaborative software development. Although the cloud allows rapid

provisioning of resources for rapid responsive development and provisioning of environments

to enhance collaboration, adaptation of existing software development processes to align

Page 77 of 327

with and take advantage of the capabilities of the Cloud is needed (Jackson, 2011;

Oberhauser, 2014, 2013b). An attempt is made in this research project to summarise

strengths, weaknesses, opportunities, and threats of cloud computing via SWOT analysis to

highlight aspects of cloud computing that need to be critically considered and evaluated, and

others that need to be further exploited for more benefits.

Figure 13: A view of Cloud challenges & Issues

Majority of R&D efforts in Collaborative software development process in the Cloud

concentrates mostly on certain aspects of the process, and not paying enough attention to

other factors undermining collaboration in the process such as complexity and distribution

(Maximilien & Campos, 2012). In addition to providing a scalable platform for a network-

based, metered utilization of elastic, shared configurable computing resources, the cloud also

CLOUD
CHALLENGES

& ISSUES

security
issues

vendor lock-
in issues

interoperabi
lity issues

portability
issues

automation
issues

performanc
e issues

availability
issues

handling
uncertainty

of
heterogenei
ty & content

type

handling
uncertainty

about
location of

client,

handling
uncertainty

of
bandwidth

unpredictabi
lity

handling
uncertainty
of dynamic
workload
variations

handling
uncertainty
of workflow
schedules

architecture
and

resource
optimization

availability
& integrity

of
information

context
awareness

&
reproducibili

ty within
contexts

Page 78 of 327

provides a platform that can be leveraged for a more efficient collaborative software

development process (Tsai et al., 2014; Peng et al., 2014).

Table 7: SWOT analysis of Cloud Computing

STRENGTHS (INTERNAL) OPPORTUNITIES (EXTERNAL)

• Scalable and elastic infrastructures

• On-demand self-service

• Measured usage: pay-as-you go

• Agility. Ease of resource provisioning and pooling

• Broad network access

• Provider assurances of over 95% availability rate

• Minimal management effort

• Regular and easy update

• Shared resources allow for greater visibility,

awareness, and collaboration

• Broad network access promotes mobility

and accessibility

• Scalable and elastic infrastructures facilitate

responsiveness

• Ease of resource provisioning reduces

overhead and allows redirection/optimal

use of resources

• Ease to setup and ease of implementation

WEAKNESSES (INTERNAL) THREATS (EXTERNAL)

• Absence of universally accepted cloud

interoperability standards

• Requires a fast and constant internet connection

for best performance

• Dependency on provider, to an extent

• Inability to predict peak and trough periods for

resource usage

• Service level agreement changes and API changes

• Auditability of services/data

• Legislative issues: lack of international

regulatory legal precedents or framework

• Security issues, privacy, and risks such as

insider threat

• Ownership of data and services

• Scheduled and unscheduled service failures

and outages

Leveraging the cloud for context-aware, collaborative software development process

development is necessary for the following reasons:

• to address inefficiencies and inconsistencies of the traditional process and

environment for software development.

Page 79 of 327

• to align software development with current trends and changing business

requirements

• to leverage new concepts and methods for optimal development process

• for economies of scale and efficient use of resources, tighter collaboration, efficient

management from automation and context-aware linking and sharing of information

Anticipated benefits and impact include:

• capturing of related contexts

• better and synchronized understanding, interpretation, representation, and sharing

of cloud-agnostic and interoperable artefacts and metadata

• better awareness, communication, and coordination of activities

• facilitation of continuous integration

• accurate verification and validation process across stages

• reduction in analysis or result distortion due to differences in culture, language, or

disparate technologies

• enhanced collaboration and decision making

• timely resolution of bugs and issues

• better quality

• improved completion time

4.4 Collaboration overview

What is collaboration? According to the Oxford dictionary, Collaboration is “the action of

working with someone to produce or create something”(Oxford Dictionaries, 2013).

Collaboration is a concept spanning different context and disciplines, but is commonly used

to refer to the act of working together towards a common goal (Thomson & Perry, 2006;

Thomson et al., 2009a; Henneman et al., 1995). Collaboration may be in either of two forms

– synchronous or asynchronous; and may be based on a variety of factors – model-based

collaboration, process-based collaboration, infrastructure-based collaboration, activity-based

collaboration, distance-based collaboration and inter-discipline/multi-discipline based

collaboration (Lanubile et al., 2010; Lanubile, 2009; Noll et al., 2010; Whitehead, 2007).

Synchronous collaboration refers to real-time collaboration, whereas asynchronous

collaboration is the exact opposite. However, there have been cases of adjusted variations of

Page 80 of 327

these two main forms, resulting in occurrences of semi-asynchronous or semi-synchronous

forms.

Despite the numerous definitions of collaboration as a concept, it has often been

misconstrued, and used quite interchangeably with other concepts or terms like: cooperation,

communication, and coordination, depending on context (Camarihna-Matos & Afsarmanesh,

2008). Hence, for the purpose of this research, collaboration is used to refer to - the set of

activities involving: jointly working together to solve common problems, carrying out

complementary activities to solve diverse problems, and all other activities geared towards

achieving or accomplishing a common goal(Mistrík et al., 2010). These activities could involve

building and sharing knowledge; accessing shared knowledge; deriving and using insights

from shared knowledge, working together in a shared space or distributed space, towards

common goals. Collaboration involves more than one entity or group, working together

recursively, towards common set of goals.

4.5 Key dimensions for collaboration

Though collaboration can take many forms, and may be implemented in various ways, not

every form of collaboration is effective or necessary. Some forms can be quite detrimental,

for example - creating more administrative and management overhead; or generating more

information than useful resulting in important and necessary information being obscured or

overlooked(Mistrík et al., 2010). Literature review reveals a need for clear and effective

collaboration models, especially for software development in the cloud (Erickson et al., 2009).

There is also emphasis on the importance of measuring collaboration to be able to “inform

practice” for more success outcomes (Thomson et al., 2009b).

One of the most empirically comprehensive model for defining and measuring collaboration

in software teams, is the Teamwork Quality model - TWQ(Lindsjørn et al., 2016b, 2018). The

TWQ model shows the relationship between collaboration and the success of a software

development project, as well as product quality. The earliest TWQ model was extensively

tested using structural models comprising of data extracted from an experiment involving

ratings from 145 software teams comprised of 575 team members, managers, and team

leaders. These ratings are based on interactions on common tasks(Lindsjørn et al., 2016b,

2018). The TWQ model measures collaboration via six facets: coordination; communication;

balance of member contributions; cohesion; mutual support and effort. The one drawback or

Page 81 of 327

oversight from this concept is that it does not factor in data from users and software owners

who also constitute part of the stakeholders in a software project. Weimar et al(2017)

extended these TWQ experiments using data from 29 teams comprising of 252 team

members and stakeholders with similar results, and addition of three new measurement

facets for the TWQ model – value sharing, trust and coordination of expertise. These findings

have been reiterated and confirmed by reports from various further experiments involving a

cross-section of teams, a total of 64 agile teams consisting of 320 team members and team

leaders – 33 teams in large projects, 31 teams in small projects(eds. J. Garbajosa et al., 2018).

The measurement facets from the TWQ experiments have been grouped into two categories

– interaction and motivation. The interaction aspect allows benchmarking of collaboration via

assessment of communication, coordination and mutual support within development teams,

while the motivation aspect allows benchmarking of collaboration through assessment of

effort, balance of member contributions and cohesion(eds. J. Garbajosa et al., 2018). The

relative importance of the interaction aspect over the motivation aspect is directly

proportional to the size of the project due to factors such as increased complexity and task

uncertainty within larger team settings than in smaller team settings(Hoegl et al., 2004).

Therefore, the larger the development project, the more important the role of the interaction

aspect in collaboration.

Due to the validity offered by their empirical nature, results from these experiments are

combined and adapted in this research, to form key dimensions. These key dimensions, based

on TWQ constructs are then used as base reference points for examining, assessing,

reasoning, and measuring collaboration in cloud-based software development process. These

key dimensions are coordination, communication, awareness and balance of member

contributions, cohesion of tasks and activities, value sharing and trust and are illustrated in

figure 14 below.

4.5.1 Coordination

This refers to the management of dependencies between activities within the project. It is an

approach to ensuring common understanding and agreement on tasks, schedules, and

deliverables. Literature posits that coordination models could help implementation of

features such as autonomy and self-organization at both component and system level,

Page 82 of 327

respectively. Adapting the four goals of nature-inspired computing from the works of Omicini

(2013), co-ordination could be enhanced through the following approach:

• devising what constitute sources of complexity in software development

process

• understanding the mechanisms, as well as patterns which need to be exploited

to enable tackling issues and unpredictability that comes with distributed or

large-scale software development

• mapping or substituting these patterns and mechanisms with suitable and

relevant equivalents

• Ensuring that these equivalents work with selected desirable features of the

cloud, and in accordance with relevant underlying software engineering theories

and principles. Including the notion of agents at this point would be a value-add

consideration at this point. The agents, should ideally be autonomous software

components capable of achieving tasks via interaction with the immediate

environment (Ciancarini et al., 2000).

The above approach aimed at enhancing coordination will only work, if suitable models,

methodologies, or techniques/technologies are used to express or re-engineer existing

activities within the software development process. The result of a successful implementation

of the above approach could be an intelligent, context-aware, and automated or self-

organizing software development process.

4.5.2 Communication

This refers to the various ways in which stakeholders communicate about activities within a

software project. Communication can be classed in a variety of ways. Current modes of

communication in software development in the cloud and other web environments are

considered to be ill-suited for software development in the cloud (Omicini et al., 2004). This

is attributed to the direct nature of such communication forms. They sometimes lack

capability of full expressiveness required to deal with issues such as dynamicity,

heterogeneity, and security within the software development process. This often leads to

disparaging meaning being attributed to otherwise useful information, often resulting in

oversight. This accounts for some cases of failed software projects, where requirements had

Page 83 of 327

been overlooked at various stages of the software development process. These key

dimensions can be adapted to the collaborative software development process as highlighted

in the illustration below, to improve representation and adaptation within the development

process.

4.5.3 Balance of member contributions

This refers to how member stakeholders’ skills and expertise can be used to achieve the

activity goal.

Mutual support: refers to the ability of stakeholders to assist each other when and how

needed.

Effort: refers to the relative proportion of workload undertaken or carried out by stakeholders

on tasks

Cohesion: refers to the ability and tendency of stakeholders to stick together to ensure that

the goal and objectives of activities are met.

Figure 14: Key dimensions for examining and assessing collaboration needs in collaborative cloud-based software

development processes

4.6 Classification of approaches for enhancing collaboration

The very nature of the software development process as a group activity requiring joint efforts

geared towards a common goal implies a need for collaboration. A review and classification

of collaborative approaches is necessary to foster better understanding, analysis, and

KEY DIMENSIONS
FOR

COLLABORATION

Coordination

Common
understanding of

tasks & deliverables

Common agreement
on activities

management of
dependencies

between activities

Communication

Internal v External

Formal v informal

Written v Oral

Balance of member
contributions

Mutual Support

Effort

Cohesion

Page 84 of 327

evaluation of ways to align and streamline collaborative activities. Sequel to this would be the

investigation of paradigms and technologies to leverage towards addressing challenges in the

collaborative software development process. To be able to identify an adequate collaborative

approach for the cloud-based software development process, it is necessary to identify the

components of a typical development process, related aspects and contexts that would be

present. In addition, it is also necessary to identify the activities and practices involved, as

well as other points of consideration. Below are different ways of analysing collaboration or

collaborative approaches and activities within the software development process. Different

schools of thought exist with regards to classification of collaborative work within the

software development process ((Hajjdiab & Al Shaima Taleb, 2011; Nordio et al., 2011;

Dabbish et al., 2012)).

4.6.1 Classification based on empirically measured activities within software development

process

This is broken down into smaller categories for easier understanding of interactions and how

best to support collaboration within. This classification focuses more on main actors, rather

than all actors, process, and related contexts. The four classes are: mandatory collaborative

activities, called collaborative activities, ad-hoc collaborative activities and individual

collaborative activities(Robillard & Robillard, 2000; Clear, 2009; Mistrík et al., 2010).

Mandatory collaborative activities refer to formally scheduled activities. Can be either

technical or non-technical. Called collaborative activities refer to activities initiated primarily

to solve a problem - mostly technical in nature. Ad-hoc collaborative activities refer to

activities requiring more than one team member/process working on same task

simultaneously.

Page 85 of 327

Figure 15: Classification based on empirically measured development activities

4.6.2 Classification derived from objectives of activities

The interactions between components of the software development process provides

another perspective for analysing and classifying collaborative work, as well as motivation for

enhancing the process (Strode, 2012; Strode et al., 2012; Magdaleno, 2010b). This

classification stems from the need for effective and efficient interactions between all aspects

and components of the process or activity, to ensure meeting the desired goal. As such,

classification is done based on interactions according to objectives of the activity(Munassar

& Govardhan, 2010; Souza, 2010). This is depicted in figure 16 below, showing a generalized

view of stages in a typical software development project.

Within each stage or parent activity, smaller or sub-activities are carried out, to ensure that

the objectives of the parent activity are met. If the need arises, these sub-activities are further

broken down into sub-sub-activities, which are further broken down till it gets to the nth

activity. This decomposition goes on and on, depending on need. Within each activity,

interactions take place to achieve the desired transformation or objective. These interactions

may be sequential or concurrent, subject to dependencies, and may be in any, or all the

following forms: human to human; human to non-human; non-human to non-human. These

interactions may involve the sharing of artefacts such as code, design specifications,

requirement documentation and use cases, test scripts, test specifications, etcetera. Suffice

to say, the larger the project, the more the components, the more the number of interactions,

Page 86 of 327

and the more the artefacts. Hence the increase in complexity, that would need to be kept

track of, and managed properly. Situations like this in any of the stages, say for example, the

requirements’ stage, could quickly lead to backlogs of inconsistent and ambiguous user

stories or use cases. Arising results from this include inadequate or very poor-quality output,

oversights, and late schedules (Hajjdiab & Al Shaima Taleb, 2011).

Figure 16: Classification based on objectives of development activities

4.6.3 Classification based on software development process characteristics

This classification focuses on characteristics of the process, rather than context or activity

levels (Hildenbrand et al., 2008; Lanubile et al., 2010; Dafoulas et al., 2009; Serçe et al., 2011).

These characteristics are grouped into distribution-based characteristics and process-based

characteristics. Distribution-based characteristics include organizational, spatial, and

temporal distributions.

Organizational distribution refers to distribution of the development process based on

organizational units – these could be exhibiting inter-organizational or intra-organizational

characteristics; or project-related characteristics – these could be inter-individual or inter-

team; or business-related - these could be either company-wide or on the scale of the

business unit.

Spatial distribution makes the distinction between spatial distribution and spatial collocation

which can occur either within or across organizations. These characteristics can include tacit

Page 87 of 327

knowledge transfer considerations, personal contact considerations, and coordination

considerations, differences in time zones, and development culture and practice, along with

potential impact on collaboration contexts.

Temporal distribution refers to making the distinction between synchronous and

asynchronous characteristics of software development processes or activities. This includes

processing of requirements, artefacts, or information. Process-based characteristics include

process disciplines, process directions and process intensity. Process disciplines refer to the

phases, also known as disciplines, of the software development process e.g., requirements

gathering/analysis, design, development etc. Process direction encompasses collaboration

which occurs either within value-creation phases of the software development process

(horizontal), or the collaboration which occurs between value-creation phases (vertical).

Process intensity distinguishes between higher and lower flow of information and knowledge

between the actors of the process. These are referred to as higher intensity and lower

intensity, respectively. The process intensity is dependent on either work done collectively,

or, on collaborative exchange of information or knowledge between disjoint complementary

activities.

Page 88 of 327

Figure 17: Classification based on both internal and external characteristics of the development process

4.6.4 Classification based on analysis of interactions between all aspects of the process

The need for more efficient collaboration within the process is driven by increasing

distribution within teams, complexity within the process, and need for more efficient ways of

improving quality aspects of software, as well as delivery time, to meet changing needs.

However, Cloud-based collaborative software development is yet to reach the level where

the practice and interactions amongst all the components of the process is routine(Skerrett,

2009; Chanda & Liu, 2015). Improving the development process necessitates standardization

of collaborative interactions between diverse set of people, skills, activities, processes, tools,

configurations, specifications, and other relevant components, across factors such as

location, distance, characteristics, objectives, and nature of being. Analysis of interactions

between all components of the process that contribute to bringing about a successful

outcome, yields another basis for classification (Mistrík et al., 2010; Skerrett, 2009; Strode,

2016; Strode et al., 2012; Strode, 2012).

Page 89 of 327

Enhancing collaboration in Cloud-based software development requires the ability to

recognize and identify various possible collaboration contexts, as well as approaches aimed

at these. When designing efficient architectures, frameworks, and methodologies for cloud-

based software development process, it is important to consider both implicit and explicit

differences present, as a result of varying contextual factors and characteristics. This creates

a more inclusive awareness of more subtle aspects of collaboration and development

contexts with potential to impact effectiveness. Furthermore, this provides a useful means

for making trade-offs and selecting most apposite contingencies when seeking to leverage

cloud capabilities and design solutions to improve collaboration and efficiency in software

development process in the cloud.

4.7 Context awareness overview

Context-awareness refers to the ability to perceive, identify and understand contexts

pertaining to a subject, or object of focus; as well as, respond or adapt accordingly, even if

the contexts changes (Brézillon & Gonzalez, 2014). Any process or system with the ability to

acquire contexts, process contexts, react to contexts, and utilize contextual information in

adapting, customizing, or meeting needs or requirements is referred to as context-

aware(Cassens & Kofod-Petersen, 2006; Vilela et al., 2016).

Page 90 of 327

Figure 18: Classification based on analysis of interactions between all development process aspects

Context refers to any piece of information, or collection of pieces of information, that can be

used to characterize an object or entity, or situation of an object or entity(Ntanos et al., 2014).

It is an essential element that provides an entity with the ability to understand and interpret

impact of surrounding occurrences, as well as “infer possible actions and information

needs”(eds. T. R. Roth-Berghofer et al., 2006). Annotating an object with information that

explains or comments on the object, or any aspect related to the object, provides context for

the object. It can also help to track the structure or associated changes of the object, and any

related relationships, thereby enabling cross-function collaboration(Goede et al., 2004).

Page 91 of 327

An object or entity about which context can be collected, could be a person, tool, place, or

even an abstract concept considered relevant to an interaction between the object itself, and

another object (Dey, 2001). Context could vary depending on the bounding system or

environment containing, or interacting with the object (Ntanos et al., 2014). Research

identifies different categories of contexts, with Dewey(2009) giving the most comprehensive

and encompassing categorization to aid in more explicit identification of contexts.

Figure 19: Classification of context

Relatively more research efforts in the area of context have been focused on technical and

syntactic perspectives, than from a knowledge perspective or socio-technical

perspective(Cassens & Kofod-Petersen, 2006). This research focuses on approaching context

from a knowledge perspective to ensure that the user is aware of relevant knowledge capable

of describing situations and impacting actions and resulting artefacts. This is geared towards

facilitating and supporting effective collaboration among all stakeholders.

4.8 Relevance of context-awareness and proposed process for application of contextual

information to collaborative software development process in the cloud

In the same way humans interact, share and convey ideas within a context, or create a context

when doing so, same applies to teams or individuals working together on a software

development project(Petersen & Wohlin, 2009). Empirical studies show that contexts help in

CONTEXT

Temporal

intellectual

tradition habits/practice science

existential

selective
interest

situation

Spatial

contemporary
parameters

Page 92 of 327

improving validity of software and contribute towards ensuring that developed software

meets both functional and non-functional requirements via (Oh et al., 2010; Ntanos et al.,

2014):

• Provision of more information about artefacts, objects, subjects, activities, and

virtually anything, for more understanding, exploitation, and innovation.

• Enhancement of the validity of drawn conclusions or decisions made at each stage of

the software development process, or before, or during a task, by providing intelligent

insights and services (Oh et al., 2010).

• Provision of assistance in troubleshooting scenarios

Context awareness within collaborative software development process, concerns itself with

the development, provisioning, and maintenance of readily available shared understanding

of overall state of the development object within the process, in relation to:

• project

• team

• related activities

• tasks

• artefacts and

• resources

Some related works have implicitly considered contexts (Runeson & Höst, 2009), while others

have used some elements within a project, such as study objectives, baseline, and constraints,

to consider contexts for the project (Kitchenham et al., 2004; Babar & Kitchenham, 2007).

Figure 20 shows one of the most apt categorizations of contexts covering six main facets –

product; processes; practices, techniques, tools; people, organization, and market; with the

object of focus or study at the centre, and sources of contexts round it. Each facet in turn,

comprise of various context elements. It is an attempt to propose a complete checklist to

cover all possible context facets, gathered from review of industrial studies of non-cloud-

based development projects (Petersen & Wohlin, 2009). The limitation of this context

categorization is that it excludes reviews of reports, surveys, whitepapers, and open-source

experimentations, thereby creating room for extending and simplifying the structure to align

with cloud-based software development. Literature emphasizes the impact of contexts on

Page 93 of 327

awareness during the process, validity at each delineation, and the interdependence of

component context elements, as well as the extensibility of these facets and elements

(Petersen & Wohlin, 2009).

An understanding of the different contexts within existing software development process is

necessary when moving existing development processes into the cloud. This is because such

a move is bound to introduce more contexts into the process due to the presence of more

entities, as well as any other external factors – see Fig 20 below (Dybå et al., 2012). This

understanding helps in the categorization of contexts within the process, thereby raising

awareness. Rationale for this line of thought comes from the fact that every context within

the development process, introduces an opportunity and a possibility, to create, or enhance

the effectiveness of the process (Kim et al., 2004).

Figure 20: Understanding context-awareness requirements for cloud-based collaborative software development

The journey towards making the cloud-based software development process to be context-

aware, begins with management of contextual information. This entails the following

considerations (Ntanos et al., 2014):

• how to gather contextual information

• representation of contextual information

• application of contextual information to the process

Other
External
contexts

Cloud-
based

contexts

Non

Cloud-
based

Contexts

Contextual
information

Page 94 of 327

• storing and retrieval of the contextual information

Challenges facing the management of contextual information includes (Ntanos et al., 2014;

Dybå et al., 2012):

• a uniform representation of types of context (taxonomy)

• suitable framework that provides a means of designing, implementing, adapting, and

improving context-awareness within the development process

• theoretical structure for reporting contextual information to ensure that common or

recurrent context factors can be identified and collected.

• use of sensitive analytical and implementation strategies

Context management is the function within the software development process that is

responsible for management and publication of context data. The impact of context data in

planning and coordinating activities within the process include:

• Tracking and management of changes to artefact-related data

• less time spent in organizing and tracking artefact-related data

• Improvement in productivity through reuse of artefact-related data

• Enhancement of collaboration

• Provision of collaboration services on artefact structure management, activity

management, alignment of activities with stated goal

The existing process manages data from activities via SVM systems like Git and subversion

during development. However, it does not take multi-disciplinary integration into

consideration to reduce the number of possible contradictions to resolve during the

development process. Contradictions refer to conflicts or tensions between two or more

parameters or entities (Liu et al., 2016). Contradictions may present as obstacles, but also

represent potential opportunities for improvement and innovation, through the elimination

of compromise (de Souza & Redmiles, 2003).

Some ways of resolving contradictions include the use of contradiction matrix for solving

technical contradictions(Engeström, 2001); use of separation principles for solving physical

contradictions; inventive principles; application of DFX approach in generation and

application of knowledge to improve, control and invent traits for an artefact(Liu et al., 2016).

Page 95 of 327

In proposing a method for context data management for cloud-based collaborative software

development process, general characteristics and attributes of contexts need to be

considered(Varaee et al., 2015; Fazil et al., 2010). This consideration should be with respect

to artefacts from various activities within the process. This lays the groundwork for adapting

the use of contradiction matrix (Engeström, 2001) for contradiction analysis and for solving

technical contradictions afterwards.

Table 8: Adaptation of Zachman's framework for definition of context data and levels

Context

levels or

scope/Con

text types

What How Who When Why Where Other

Pre-

existing

Objects

important/r

elated to

the activity

(Entity =

class of

thing).

E.g., data,

relationshi

ps

Actions/Ta

sks to be

performed

(function =

class of

action)

E.g.,

function or

operation,

views

Subjects

related to

thing or

action.

E.g.,

people,

organizatio

nal unit,

roles

Remarkabl

e events or

frequency.

E.g., time

of event,

event cycle

Goals/strat

egy. E.g.,

motivation,

objective

Location

of

task/action.

E.g., cloud

node

Anything

else

relevant to

activity/tas

k

Emerging Objects

important/r

elated to

the activity

(Entity =

class of

thing).

E.g., data,

relationshi

ps

Actions/Ta

sks to be

performed

(function =

class of

action)

E.g.,

function or

operation,

views

Subjects

related to

thing or

action.

E.g.,

people,

organizatio

nal unit,

roles

Remarkabl

e events or

frequency.

E.g., time

of event,

event cycle

Goals/strat

egy. E.g.,

motivation,

objective

Location

of

task/action.

E.g., cloud

node

Anything

else

relevant to

activity/tas

k

Proposed Objects

important/r

elated to

the activity

Actions/Ta

sks to be

performed

(function =

Subjects

related to

thing or

action.

Remarkabl

e events or

frequency.

E.g., time

Goals/strat

egy. E.g.,

motivation,

objective

Location

of

task/action.

Anything

else

relevant to

Page 96 of 327

(Entity =

class of

thing).

E.g., data,

relationshi

ps

class of

action)

E.g.,

function or

operation,

views

E.g.,

people,

organizatio

nal unit,

roles

of event,

event cycle

E.g., cloud

node

activity/tas

k

Some key questions, along with an adequate representational format structure, have been

adapted to provide simplified, but expandable key dimensions for collecting, structuring, and

analysing contextual information for the collaborative software development process

(Kitchenham et al., 2002; Broens et al., 2006; Dybå et al., 2012).The objective of the adapted

questions is to collect as much contextual information as possible for the project from defined

sources built around: measures, entities and attributes that carefully consider and answer the

related questions in alignment with the object of focus.

Figure 21: Adapted key dimensions for collecting, categorizing, analysing, and applying contextual information

The contextual information collated using the process shown in Figure 21, is applied to the

different stages in the development process using an appropriate algorithm or process - see

Figure 22.

CONTEXTUAL
INFORMATION OF

OBJECT

(Social, technical,
environmental,

strategic)

What?
element|value|format

• Phenomenon, artefact

Who?
element|value|format

• Subject - person,
team, community,

Where?
element|value|format

• Location - physical,
virtual or abstract

When?
element|value|format

• Time/duration/period/
cycle

Why?
element|value|format

• Rationale

How?
element|value|format

• Method/function

Page 97 of 327

Context Analysis process

Context Data

What

When

WhenWhere

Who

Why

Context Data

Datastore

Deployment activity
 +

Related context data

 Maintenance
 activity
 +
 Related context data

Requirement Activity
 +

Related context data

 Design activity
 +

 Related context data

Testing Activity
+

Related context data

Build activity
+

 Related context data

Applying Contextual information to the Software
Development Process

store

Figure 22: Applying contextual information to the Collaborative Software Development process

In this research project, matrix multiplication is employed in adapting the contradiction matrix

(Engeström, 2001; Childs, 2019) for applying contextual information to different activities and

tasks within the different stages in the collaborative software development process to aid

analysis/technical resolution of contradictions that arise during context management. This

matrix multiplication method is used as a way of further discretizing context variables and

contextual information (Bini, 2013), thereby reducing complexity, and optimising analysis for

improved accuracy (see Table 9, 10, and 11 below). This result can then be converted into an

appropriate format as the artefact from each activity, task, or stage for use in the

collaborative process. This represents all “knowable” or holistic information about each

activity, task, or stage, to ensure an optimal product that meets both functional and non-

functional requirements(Geszten et al., 2018). Given that number of activities or tasks or

Page 98 of 327

resources for any software development project could scale up and down in line with project

requirements, this translates into direct proportionality for contexts that could arise.

Given above discourse, contextual information for object of focus is represented as matrix C:

Table 9 Adapted contradiction matrix for analysis of contextual information for an object in cloud-based software
development.

What Where Who When Why How

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

:::: :::: :::: :::: :::: ::::

Cm1 Cm2 Cm3 Cm4 Cm5 Cm6

Similarly, information, activities, tasks, and processes relating to the various stages within a

software development process, SD is represented as the matrix, S below. This scenario takes

n iterations of a standard waterfall process. For an agile process, or other methodology,

stages can be removed, or added, as needed.

Table 10 Adapted contradiction matrix for representation of activities and tasks in cloud-based software development.

Requirements stage SD11 SD12 :::: :::: SD1n

Design stage SD21 SD22 :::: :::: SD2n

Build stage SD31 SD32 :::: :::: SD3n

Testing stage SD41 SD42 :::: :::: SD4n

Deployment stage SD51 SD52 :::: :::: SD5n

Maintenance stage SD61 SD62 :::: :::: SD6n

The total information pertinent to each stage, activity, task of the collaborative software

development process is represented as a product of matrices C and S.

S =

C =

Page 99 of 327

Table 11 Employing matrix multiplication in adapting contradiction matrix for applying contextual information to activities
and tasks in cloud-based software development.

C11 C12 C13 C14 C15 C16

 X

SD11 SD12 :::: :::: SD1n SD11

C21 C22 C23 C24 C25 C26 SD21 SD22 :::: :::: SD2n SD21

:::: :::: :::: :::: :::: :::: SD31 SD32 :::: :::: SD3n SD31

Cm1 Cm2 Cm3 Cm4 Cm5 Cm6 SD41 SD42 :::: :::: SD4n SD41

 SD51 SD52 :::: :::: SD5n SD51

 SD61 SD62 :::: :::: SD6n SD61

The adapted key dimension for collecting contextual information helps in providing bounding

limits, which could be applied to the various stages. This method is flexible enough to scale

up and down as either contexts, or stage activities increase or decrease, and helps to provide

combinatorial logic (Cohn et al., 2005) for matching contextual information to stages. Matrix

multiplication have been applied in other similar areas to optimise the analysis and matching

of bounded large data (Akutsu et al., 2000). The arithmetical complexity of the scenario could

be evaluated and addressed using a matrix dot product operation (Bini, 2013), incorporating

the minimum set of contexts and stages for any software development project in the cloud.

4.9 Summary

The importance of context in any system, scenario, or process, lies in the provision of

characteristic information pertinent to that system, scenario or process(Hong et al., 2009).

Contextual information could pertain to people, places, artefacts, processes, practices, tools,

techniques, products, or literally, any facet of the whole(Petersen & Wohlin, 2009).

Contextual information could be of different types or categories - implicit or explicit - i.e.,

either stated clearly, or indirectly expressed or suggested, but still related to the situation.

Contextual information can also exist in different forms - naturally occurring, or as a by-

product of something, someone, or some action. Nonetheless, no matter the type or form,

contexts are very useful for characterization, for better, holistic and truthful representation

of form at any given time or place (Petersen & Wohlin, 2009). The cloud possesses

functionalities such as cloud repositories, that could be leveraged as a scalable distributed

Page 100 of 327

mechanism for storing contextual information, project artefacts, requirements, user reviews

and feedback. These scalable repositories can be accessed by all stakeholders in the team

irrespective of distribution and decentralisation settings, via suitable synchronous and

asynchronous means of communication

Page 101 of 327

5 Theoretical framework

5.1 Introduction

Generally, theories are often adapted to better understand, generalize, abstractify, explain,

predict, represent or back up phenomena, ideas, and contributions in any field (Gregor, 2006;

Gregor & Jones, 2007). Theories can be multidisciplinary body of knowledge, providing a

scientific basis for any phenomena (de Souza & Redmiles, 2003; Stol & Fitzgerald, 2013; Iyer

& Power, 2014). Collaborative software development is not a new concept (Mistrík et al.,

2010) but cloud-based collaborative software development is relatively new. Evidence shows

that in large scale software development projects, collaboration takes place between people

with a diverse remix set of different skills and experiences to ensure successful attainment of

desired goal (Soriano Camino et al., 2008; DeFranco-Tommarello & Deek, 2002; Mockus &

Herbsleb, 2001). Software engineering trends and emerging paradigms like cloud computing

have impacted the collaborative nature of the development process in terms of distribution,

complexity, adaptability and so on (Jeffery, n.d.; Zimmermann & Bird, 2012). Adequate

theoretical basis is necessary for synthesis of knowledge and conceptualisation efforts

towards enhancing collaboration in cloud-based collaborative software development (Jeffery,

2000; Ralph, 2013).

Cloud-based collaborative software development process refers to how all stakeholders

within a software development project work together throughout the software development

lifecycle, to achieve a common goal or outcome (Nordio et al., 2011; Skerrett, 2009). The

collaborative software development process is one giant activity, made up of sub-activities.

These involve requirements that undergo transformations via interactions, to yield artefacts.

Artefacts from preceding activities, along with development tools, mediate and influence

succeeding or subsequent activities. These artefacts also form the basis for verifying and

validating each stage of the process, until the end goal is achieved. This process can be very

resource-intensive and sometimes resource-specific.

Companies who have transitioned their development environments to the cloud, have started

realizing benefits such as: cost reduction in hardware; relatively accelerated software

development process via reduction of time and effort needed to set up development and

testing environments; unified management; service and functionality expansion; on-demand

Page 102 of 327

provisioning; and access to resources and development environments (Oberhauser, 2014,

2013; Jackson, 2011; Mahmood & Saeed, 2013). Collaborative software development process

in the cloud presents complexities and contexts, amidst other factors, that need to be

considered during the process (Mahmood & Saeed, 2013; Boehm, 2010). These are

sometimes underestimated, ignored, or just not given enough consideration and planning.

Result includes undermined collaboration in the process; negative impact on ability to

facilitate a reproducible, sustainable, context-aware collaborative software development

process in the cloud (Oberhauser, 2014, 2013). The factors and impact outlined in the

paragraph above constitute principal motivation for need for adequate theoretical basis.

Consistent reproduction of the software development process in the cloud requires

standardization.

Figure 23: Classification of theory use

A suitable theoretical basis would ensure solid underpinnings for frameworks and

architectures used in cloud-based development processes. It would contribute greatly

towards facilitating reproducibility within the development process in the cloud. Currently,

there are no existing theoretical foundations explicitly for architectures and frameworks for

collaborative software development process in the cloud (Hunt & Wang, 2013; Ralph et al.,

2013; Ralph, 2015). Software architectures provide foundational basis for large scale software

General use of Theory

Explanation/communication of
empirical knowledge

(Batory, 2013)

Analysis & description(Gregor, 2006)

Prediction of phenomena (Gregor &
Jones, 2007; Stol & Fitzgerald, 2013)

Prescription of action or course of
action (Johnson & Ekstedt, 2016;
Hunt & Wang, 2013; Exman et al.,

2016).

Page 103 of 327

development and evolution. Because a software architecture serves as the intellectual

centrepiece for developing software, it is necessary that all facets of the architecture be based

on solid theoretical constructs and principles that support collaborative creation of software

(Taylor et al., 2015). A review of current industry offerings highlights the need for

architectures and frameworks with explicit theoretical foundations (Oberhauser, 2014;

Richards, 2015; Chanda & Liu, 2015; Franken et al., 2015). This need is further reemphasized

by reports of failed software projects (National Defense Industrial Association, 2010).

Other motivations for this research include: a need for identification of reliable ways of

managing and measuring collaboration and success factors within the development process

in the cloud; a need for new methodologies for enhancing effective collaboration across the

entire development process; need for effective ways of managing complexity and ensuring

synchronous regularity of process and understanding (Mohtashami et al., 2011; Bouwers,

2013; Münch & Schmid, 2013; Gorton et al., 2016). Software development concepts and

methodologies show evidence of inherent collaboration within the software development

process (Mistrík et al., 2010). The process typically involves different people with different

background, skill sets and cultural practices of development, working together to-wards a

common goal (Zimmermann & Bird, 2012).

However, the inherent collaborative nature of the software development process has been

impacted in various ways by trends and emerging paradigms (Boehm, 2010, 2006). Some of

these trends, alongside new paradigms, have also contributed towards undermining

collaboration in some aspects of the software development process. These salient points call

for a shift in research efforts, and more focus on how to enhance and improve collaboration

in the software development process (Zimmermann & Bird, 2012). To do this, research efforts

have sometimes veered away from traditional software engineering theories, and forayed

into external disciplines for possible theories to leverage as basis, in the formulation of

hypotheses, or design of systems (Jeffery, 2000).

In this research, a formal process is proposed to aid the selection of an appropriate theoretical

basis for cloud-based collaborative software development. Prior to the proposal, related

approaches that have previously been used in selecting theoretical foundations in software

development are reviewed. The proposed formal process aids in the adoption of an

appropriate theoretical basis for cloud-based collaborative software development process.

Page 104 of 327

This process helps in the identification and review of a cross-section of relevant theories and

concepts in relation to cloud-based collaborative software development. From this review, an

adequate theoretical basis is selected with justification provided.

5.2 Related work

Recent research studies have shown increasing interest in the role of theories for software

engineering, and emphasis on need for stronger, explicit theoretical foundations (Ralph,

2015; Stol & Fitzgerald, 2013; Ralph, 2016). Theories provide a solid body of knowledge that

provide suitable framework for: communicating empirical knowledge, focusing on

fundamental aspects and conceptual abstraction; rigorous hypothesis design,

implementation, and evaluation (Batory, 2013; Johnson & Ekstedt, 2016). This has further

fuelled existing efforts toward development of guidelines and approaches for selecting

appropriate theoretical foundations for the software development process. Proponents agree

that efforts should not only be restricted to synthesis of only existing theories within software

engineering discipline but should extend to other reference disciplines too (Hunt & Wang,

2013; Exman et al., 2016). However, there is a lack of consensus regarding the process of

selecting a theoretical foundation, with related ontological and epistemological aspects

involved (Hunt & Wang, 2013). A consensus approach to selecting a theoretical foundation

would facilitate choosing the right quality theoretical basis that would broadly explain, unify,

and support collaborative cloud-based software development.

Software development entails a variety of phenomena (Hunt & Wang, 2013) which has

multiplied with the advent of cloud environments. According to Gregor’s taxonomy (Gregor

& Jones, 2007; Gregor, 2006), appropriate theories and concepts can be adapted for use in:

analysis and description of phenomena; explanation of workings or processes; predictions;

and prescription of best course of action, based on predictions made. Theories used can be

multidisciplinary, or transcend various disciplines (de Souza & Redmiles, 2003; Iyer & Power,

2014). The theories present a body of knowledge that provide a scientific basis for

phenomena under investigation; and may derive inspiration from other directions. These

directions may be technical, demographic, ethnographic, biological, economic, academic, or

sociological. However, it is not always the case, for a selection of reviewed theories to have a

homogenous mixture of best-fit concepts or features (Stol & Fitzgerald, 2013). There is need

for proper consideration before adopting a theoretical basis.

Page 105 of 327

A methodical protocol was developed and used in conjunction with concise query strings to

guide and streamline the search and retrieval of relevant literature for review. This was done

using Mendeley, a reference manager with a massive interconnected academic database,

useful for finding, storing, managing, and correlating academic research materials and

libraries (Raubenheimer, 2014). Mendeley was chosen because of its reasonably fair

aggregation of research databases and has one of the largest databases in terms of research

articles and journal coverage, and traffic (Cronin & Sugimoto, 2014).

Table 12 Overview of steps for searching, selecting, and deduping relevant articles based on use of relevant keywords.

S/N Keyword-based Query Strings # Articles

before de-dupe

Articles

after first de-

dupe

Articles after

second de-dupe

1 (title: "theoretical basis" OR "theoretical

foundation" AND "*software

development*”)

100 52 20

2 (title: "theoretical basis" OR "theoretical

foundation" AND "*software engineering*”)

104 86 53

Figure 24: Systematic protocol for identifying relevant literature

Page 106 of 327

3 (title: "theoretical basis" OR "theoretical

foundation" AND "*collaborative software

engineering*”)

0 0 0

4 title: "*theory*" AND "*collaborative

software development*"

1 1 1

5 title: "*foundation*" AND "*collaborative

software engineering*"

1 1 1

6 title: "*foundation*" AND "*collaborative

software development*"

0 0 0

7 title: "*basis*" AND "*collaborative

software development*"

0 0 0

8 title: "*basis*" AND "*collaborative

software engineering*"

0 0 0

Total Number of Articles 204 138 73

Table 13 shows a cross-sectional summary of approach categories that have been used for

selecting and adopting theoretical foundation in related works in software development

projects. The observations made from a review of these approaches formed part of the

considerations in the development of the proposed formal process. The proposed formal

process described in this Section, is an approach that is reproducible, verifiable, and

generalizable for conventional purposes. Although with formal methods, possibility of over-

simplification and over-rationalization of reality exists, these could be addressed via trade-

offs between possibility and empiricism (Ralph, 2014, 2013). The formal process developed in

this research is similar in some respects to the “inductive grounded” theory approach in Table

13. This similarity is in terms of analysis and evaluation of information gathered, for “best

potential” for research objectives according to pre-established set of guidelines. Information

gathered is not based on subjective accounts, but rather on verifiable peer-reviewed

literature.

Page 107 of 327

Table 13 Cross-sectional summary of categories of common approaches for selecting theoretical foundations in the field of
software development.

 Approach Description Observation

1 Randomized control

trials (Concato et al.,

2000; Webb et al., 2010;

Ralph, 2014)

- Focus mostly on causal relationships

between constructs.

- For evaluating theories with

dependent/independent variables.

- Inadequate for focus on how a

phenomenon changes, develops; is

applied, described, predicted, or

analysed

2 Observation approach

(Noor, 2008; Ralph, n.d.,

2014)

- Used in qualitative research.

- Involves making observations

compatible with constructs of

proposed theoretical foundations.

- Observations can also be

incongruous, and mostly about

responses.

- Easily open to unconscious observer

and response bias exploitation, to

favour positive results

3 Quantitative

questionnaire study

(Ralph, 2013a; Ralph et

al., 2013; Ralph, 2014)

- Involves making propositions for

testing rival theories.

- Propositions serve as basis for

distinguishing between rival theories.

- Survey questions, designed based on

the propositions, are used to provide

response distributions

- Validity and objectivity of devised

questions are not always reliable

indicators of underlying theory

constructs.

- Need additional validation from

experts or focus groups via detailed

interpretations.

4 Qualitative field study

(Given, 2008; Taylor et

al., 2015; Ralph, 2014)

- Involves development of schemes for

coding and listing constructs and

relationships of a theory.

- Coding scheme used as basis for

building evidence for or against theory.

- Evidence can be weighed and used to

arrive at a conclusion.

- Valid approach, but subject to mono-

method bias.

- Bias can be mitigated by facilitating

data triangulation, for example,

through introduction of empirical

aspects

5 “Inductive grounded”

theory approach

(Hansen & Kautz, 2005;

Urquhart, 2012;

- Allow generation of theory based on

experiential accounts of practitioners.

- Perspectives from experiential

Investigations focus on experiential

accounts of actors and their

interrelations. Accounts are evaluated

and used to generate mid-level

Page 108 of 327

Coleman & O’Connor,

2007; Adolph &

Kruchten, 2013)

accounts are reconciled and evaluated

for “best potential” according to pre-

established set of guidelines.

theories to aid in design of software

methodologies and architectures.

These accounts are subjective; hence

veracity is not assured. Accounts may

lack the view of the big picture.

6 Separability Principles

approach(Exman et al.,

2016)

- based on separability principle in

software engineering.

- involve use of software design

techniques to identify and understand

relations between gathered candidate

theories.

- Relations are used to guide assembly

of general theoretical framework.

Originally meant to address problem of

how to assemble appropriate

theoretical concepts from a

heterogeneous mix of theories.

However, it does not cater to process

of how to determine relevancy when

gathering theories to be considered

5.3 A formal process for adoption of an appropriate theoretical basis

Due to the multi-faceted nature of the research area of cloud-based collaborative software

development, the exploration of different theories from other disciplines external to the area

of software engineering is necessary. This is sometimes the case for some research projects

having interrelated themes or requiring multidisciplinary approaches or alternative approach

to solution (Berg, 2017). The exploration of multidisciplinary theories could also be because

of limitations or inadequacy of general theories in each domain or project, sometimes

resulting in similar constructs showing up when exploring suitability of theories for adoption

(de Souza & Redmiles, 2003; Stol & Fitzgerald, 2013; Ralph, 2013). There exists the likelihood

that selected theories for various projects within same domain could differ in how and where

they have been applied. Hence, there is need for a process that takes this into consideration.

Keyword search was carried out for literature on relevant theories relating to the following

main interest areas - collaborative software development in the cloud, context-awareness,

and collaboration, in line with Gregor’s proposed theory taxonomy (Gregor & Jones, 2007;

Gregor, 2006). The search yielded scenarios or research projects where combination of

multidisciplinary theories, principles, models, and methods were used to generalize or explain

phenomena, ideas, and contributions in various domains. Reviewed literature also showed

evidence that theoretical concepts of multidisciplinary theories had also been adopted in

proposals and applications of ways for supporting and analysing software development.

Page 109 of 327

However, very few showed adoptions for the entire cloud-based collaborative software

development process lifecycle. The multidisciplinary nature of adopted theories creates

challenges when it comes to creating common basis for comparison; and, developing

necessary and appropriate linkages between borrowed theories, and the specified project or

domain. One way to approach this challenge could be via an inductive or deductive approach,

or both (Fereday & Muir-Cochrane, 2006). To form the necessary and appropriate linkages

between borrowed theories and this research problem domain, a combination of both

inductive and deductive approach was adopted.

The inductive part of the approach entailed obtaining observations via review of literature on

relevant theoretical concepts and the application of these concepts within cloud-based

collaborative software development. This review was then condensed into a summary, to

make it easier to identify and establish links between theories and defined objectives.

Applying this inductive approach makes it easier to analyse processes present in theoretical

concepts and applications, for valid, reliable, and quality information and insights. This

process is not without bias, but it has been known to yield effective results (Fereday & Muir-

Cochrane, 2006; Thomas, 2006). The deductive part of the approach entails the use of logical

reasoning in determining pros and cons of reviewed theories with respect to cloud-based

collaborative software development. This information can be evaluated for constructs

towards forming the theoretical basis for an appropriate over-arching high-level framework

for cloud-based collaborative software development.

5.3.1 Overview of the proposed formal process

The proposed process provides a means of capturing essential features of a defined problem

scenario within a given project or domain. These captured essential features form a set of

predefined themes that represent domain-based or project-based dimensions and can be

used as frame of reference (Fereday & Muir-Cochrane, 2006). The set of predefined themes

could be changed according to the chosen domain or project and used by the process as

frames of reference for analysing, measuring, and evaluating various theories with the aim of

selecting an appropriate theoretical basis (Chorin & Hald, 2014). The chosen domain case

study in this paper is cloud-based collaborative software development. The values for the

predefined themes for the proposed process can be numerical values or weighted vectors.

These values are used to measure the increase or decrease in relevance or suitability of a

Page 110 of 327

theory to cloud-based collaborative software development. To measure the relevance or

suitability of theories, it is important to understand main constructs, organization,

application, and limitations.

Generally, it is easier to measure and analyse quantitative value data than qualitative value

data, using analytical techniques (Jr & Boone, 2012). Qualitative value data possess non-

numeric attributes such as descriptions and so on. Therefore, they are mostly nominal in

nature, but still capable of generating insights that enable conclusions to be drawn. An

approach to enabling empirical conclusions from qualitative value data is via a reliable

quantification of qualitative data. One way of doing this is by identifying patterns that can be

quantified in terms of relationships or frequencies (Jr & Boone, 2012). To do this, qualitative

value data must be organized into groups; systematically categorized according to carefully

chosen labels or themes relevant to the domain or project. These labels or themes can either

be assigned numerical values or weights. The resulting frequencies of emerging patterns are

identified and counted; allowing for estimations based on some sort of content intervals

(Johnson et al., 2010). In the absence of naturally occurring patterns in each set of qualitative

value data, it is possible to adapt a Likert scale-type method of measurement to generate

patterns that can be quantified and measured (Chorin & Hald, 2014). The benefits of this

approach to quantifying qualitative data cannot be overemphasized as highlighted by Johnson

et al (Johnson et al., 2010).

One of the rationales for developing this approach is to attempt to standardize the selection

of theoretical basis in software engineering and cloud computing research projects, as well as

to having a means to deal with any multiplicities that may arise. The process proposed in this

paper, provides a means of measuring similar constructs via selecting and combining

appropriately correlated variables to form composites for general measurements (Marusteri

& Bacarea, 2010; Stuckey et al., 2014). The adopted process for selecting theoretical basis,

with the mathematical evaluation method of the process, is used partly for emphasis and

assurance in the validity of the outcomes of this quest for a theoretical basis (Kenneth F. Hyde,

2000). This formal process is depicted using a flowchart in Fig. 26 below.

5.3.2 The problem scenario

In selecting an adequate theoretical foundation for the domain - cloud-based collaborative

software development, a universal set or group of theories characterized by a set of

Page 111 of 327

observable and measurable variables is considered. Can any theory or theories from this

universal set be shown to be related to collaborative activities and interactions between

members of a team geared towards achievement of a stated goal or outcome? Relationship

between the theories and the collaborative activities could be with respect to theory

constructs; application areas; identified patterns, themes, or dimensions; etcetera. The goal

is to identify and select from the universal set of theories, a theory or set of theories that best

meet the criteria for an adequate theoretical foundation, given the specified area of interest

and initial conditions.

5.3.3 Criteria for theoretical foundation

An appropriate theoretical foundation for a domain or project, must be able to meet all, or

some of the importance/uses of theory, in line with Gregor’s taxonomy (Gregor, 2006; Gregor

& Jones, 2007). These uses are:

• analysis and description

• explanation of workings or processes

• prediction

• prescription of best course of action based on predictions

5.3.4 Question

Which theory or set of theories best satisfy, or meet the criteria for theoretical foundation?

Page 112 of 327

Figure 25: Relevance of an adequate theoretical foundation for cloud-based collaborative software development

5.3.5 Parameters

The following variables are defined for this process:

 Table 14 Proposed process’ variables and description

CLOUD-
BASED

COLLABORATI
VE

SOFTWARE
DEVELOPME
NT PROCESS

Analysis and
Description

Explanation of
Workings or

processes

Prescription,
based on

predictions

Predictions

VARIABLES DESCRIPTION

P Specified domain or project

RIAp Set of main related interest areas of domain or project.

Xp Set of n observable variables (theories) related to the domain or project.

TIp Importance/use categories for theory. Equal weights of 1

Analyse/Describe = TI 1; Explain = TI 2; Predict = TI 3; Prescribe = TI 4

Wp Likert-style weighting of theory relevance based on sum of weights: W1 =

Neutral; W2 = Somewhat relevant; W3 = Relevant; W4= Very relevant 4

Yp set of parameters characterizing the project or domain

TF Result of the estimate process

Page 113 of 327

5.3.6 Assumptions

Given any collection of multidisciplinary or same-discipline theories, any subset has the

potential to pre-send as an adequate theoretical foundation, depending on constructs, and

trade-off between application of constructs and limitations, relative to importance or use of

theory for a project or domain in question.

5.3.7 Initial conditions

At start of process,

𝑅𝐼𝐴𝑝 = { }; 𝑋𝑝 = { }; 𝑇𝐼𝑝 = 0; 𝑊𝑝 = 0

5.3.8 Modelling the process

The selection process for adequate theoretical basis for a given domain or project depicted in

Fig.26 below, follow the steps depicted below:

i. Carefully identify and define the main related interest areas, (RIA) of the domain or

project.

RIAP = {RIA1, RIA2, RIA3, …, RIAn}

ii. Identify/define set of theories and concepts to be evaluated for suitability as

theoretical basis

XP = {X1, X2, X3, …, Xn}

iii. Analyse and categorize data from literature pertinent to each Xi above, into the

themes or labels defined below. These are assumed defaults to give a sense of

direction. These defaults can be changed for more suitable ones depending on project

considerations. The default analysis themes, or labels are as below:

• Constructs – refers to main or general concepts of the identified theory

• Known applications – refers to known applications of the identified theory

within any or all the main related interest areas

• Pros – refers to known positives/benefits or advantages of identified theory

with respect to any or all main related interest areas

• Cons - refers to known negatives or disadvantages of identified theory with

respect to any or all the main related interest areas

Page 114 of 327

iv. From (III), match theory Xi to most appropriate importance/use category TI, for

domain or project, in relation to defined related interest areas (RIAP) and based on the

themes in (III) above. A value of 1 is assigned for every match, while a value of 0 is

assigned if there is no match. Assignment of weights of 1 to identified matches,

ensures that stability is observed in the values

 For any given member of Xp, the degree of relevance is denoted as:

TIp = ∑ 𝑇𝐼𝑛
𝑖=1

v. Since theory can be used to guide alignment and integration of sub-components of a

domain (Taxén, 2007; Gregor, 2006; Batory, 2013; Gregor & Jones, 2007), the

alignment of the candidates for theoretical foundation can be altitudinally measured

by mapping the degree of relevance TIp, to the defined 4-point Likert scale.

 Table 15 4-point Likert scale for the formal process for selecting theoretical foundation.

LIKERT

SCALE

DESCRIPTION WEIGHT CONDITION

W1 Not relevant 0 TIp = 0

W2 Neutral 1 TIp = 1

W3 Somewhat

relevant

2 TIp = 2

W4 Relevant 3 TIp = 3

W5 Very relevant 4 TIp = 4

vi. Make selection based on element of set XP evaluating to highest value on defined

Likert scale.

Theoretical foundation = Max (TIp) =Max (∑ 𝑇𝐼)𝑛
𝑖=1

Page 115 of 327

Figure 266: Flowchart for a formal process for adoption of an appropriate theoretical basis

Page 116 of 327

5.4 Application of the proposed formal process

i. Where P represents cloud-based collaborative software development domain, the

main related interest areas, (RIA) are:

RIAp = {software development, cloud computing, collaboration, context-

awareness}

ii. The set of theories to be evaluated for suitability as theoretical foundation for cloud-

based collaborative software development is as shown below:

Xp = {Information Foraging Theory, Complexity Theory, Game Theory, Actor-

Network Theory, Activity Theory}

Note: These theories are selected based on applicability of theoretical concepts to the main

related interest areas for cloud-based collaborative software development. Evidence is

supplied from literature analysis

iii. Section 4.1 shows the analysis of data from literature pertinent to each Xp above,

based on defined themes – constructs, known applications, pros, and cons

iv. Each member of Xp is matched to the most appropriate importance or use category TI,

in relation to defined related interest areas for cloud-based collaborative software

development (RIAp) and based on the themes in (III). A value of 1 is assigned for

matches, while a value of 0 is assigned for non-matches. This is shown in Table 15.

v. For any given member of Xp, the degree of relevance is denoted as:

TIp = ∑ 𝑇𝐼𝑛
𝑖=1

From Table 15 above,

TIInformation Foraging Theory = 2

TI Complexity Theory = 3

TI Game Theory = 3

TI Actor-Network Theory = 3

TIActivity Theory = 4

Since, Selected theoretical foundation = Max (Wp)

Hence, Selected theoretical foundation = Activity Theory

Page 117 of 327

Figure 27: key focus points and impact areas for cloud-based collaborative software development based on output of formal

theoretical process applied in Sections 5.1 – 5.4, in line with Gregor’s taxonomy (Gregor, 2006; Gregor & Jones, 2007)

5.5 Cross-sectional review of relevant theories

This section presents a cross-sectional review of relevant theories and evaluation using the

theoretical basis selection process (see Table 16). The results are presented in Table 16 and

shows how evaluated theories match up to appropriate importance or use category for cloud-

based collaborative software development. To reduce the likelihood of false negatives,

expanded keyword-based query strings to ensure wider range of relevant literature was

gathered for observation and review. To reduce over-simplification and over-rationalization

during review and evaluation, trade-offs had to be made between possibility and empiricism

by ensuring that analysis and evaluation was carried out for “best potential”, rather than

“exactness”, and based on peer-reviewed accounts rather than subjective accounts. Adopting

this approach comes with a negligible risk of introducing false positives because of the

reduction in threshold for significance (Ralph, 2014, 2013). However, this was managed by

keeping the investigation focus experiential accounts of actors and their interrelations. In

addition, alternative data collection and analysis methods were employed to help to confirm

the findings.

•Prescribe (TI4)
•Key Dimensions

•Predict (TI3)
•Context Sources
•types & forms
•Applying context

•Explain (TI2)
•Characteristic
•Models
•SWOT
•Case for CCSD

•Analyse/describe (TI1)
•SDLC methodology
•SDLC Activities

RIA1

Software
development

RIA2

Cloud
computing

RIA4

Collaboration
RIA3

Context
awareness

Page 118 of 327

5.5.1 Information Foraging Theory (IFT)

Concepts/Constructs:

The three major components of IFT are – information diet, information patches, and

information scents, all used towards achieving a goal (Kwan et al., 2012; Lawrance et al.,

2007). IFT postulates that useful information features (diet), are usually found in patches

connected by scents or links, with associated costs. These information features have values.

Possible gains that could accrue from following a link are suggested by cues (Pirolli, 2005).

This helps in predicting navigations based on the supposition that the forager would ideally

want to find or navigate to patches which pro-vide or contain rich and valuable information

at very low cost.

Known Applications:

IFT has been applied in the design of program maintenance support tools and environments

to aid developers in seeking, relating, collecting, and applying in-formation to tasks and

activities in a timely fashion (Ko et al., 2011). The rationale for this was based on the following:

when programmers, testers, or designers are faced with tasks or issues, they tend to spend a

sizeable amount of time to navigate or sift through various hypotheses, or methods of either

approaching a task or solving an issue. Not knowing where to look, or taking too long doing

so, may sometimes result in delays in the development, or resolution of issues, or an endless

loop of interleaving between courses of action.

Information Foraging Theory has been adopted in some areas to address how to approach a

task or problem, by optimising how developers and testers can navigate source codes and

designs, as well as, in predicting maintenance and coding behaviours. It also proved useful in

helping developers to find and apply relevant information during the development process,

for desired outcomes. This is particularly useful for testing and maintenance activities within

the software development process, and in the design of notification, or awareness systems,

to support the establishment and maintenance of awareness of team members’ activities,

intentions, tasks, and results (Carroll et al., 2003). Other applications of IFT include: CogTool-

Explorer (John et al., 2013), Hipikat and PFIS (Cubranic et al., 2005; Lawrance et al., 2010).

Observation:

Page 119 of 327

Though conducted experiments showed relationships between predictions of developers’

behaviours with their actual behaviours, the missing link was the explanation as to the cause

of the behaviour (Fleming et al., 2013; Kwan et al., 2012). Knowing the root cause of a

behaviour could be useful in increasing the accuracy of pinpointing and identifying

relationships, which would of course, translate into greater accuracy in pre-dictions, as well

as the generation of other useful in-sights. Furthermore, in cases where a disparity exists

between predicted and actual behaviour, it can be quite difficult to determine the cause or

fault.

Secondly, IFT does not fully take into consideration the complexity of systems, or in this case,

the potential complexity in a large scale or distributed development process, such as software

development in the Cloud. It remains to be seen how adequate it would be in supporting

more complex and persistent activities across heterogeneous environments, or team makeup

(Cubranic et al., 2005; Lawrance et al., 2010). However, the application of IFT could be

effective in other activities involving planning, coordination and collaborative foraging or

exploration of information.

5.5.2 Game Theory

Concepts/Constructs:

Game theory is a theoretical model which is mainly used for interactive analysis and decision

making, through evaluation and weighing of choices, and interactions between participants

in a system or model (Camerer, 2003). The outcome for each participant is dependent on, or

affected by, the collective actions of all the participants. It can also provide insights in

situations where the participating individuals, or individual groups, have individual

preferences or goals (Savani & Stengel, 2014). The application of game theory comes in very

handy, in scenarios where strategic thinking is necessary for striking a balance between

competition and cooperation.

Known Applications:

Commonly used to model agent-based decision systems, games, game engines, simulation

applications and scenarios e.g., Game Theory Explorer, involving strategic thinking, strategic

interaction, conflicts, and cooperation interaction (Parsons et al., 2012; Sazawal & Sudan,

2009).

Page 120 of 327

Observation:

Although game theory provides a very resourceful framework for analysing and evaluating

problems to work out best strategy or decision for optimal gain or utility; with respect to

collaborative software development, its adequateness is not proportional to all the identified

aspects of cloud-based collaborative soft-ware development (Sazawal & Sudan, 2009). Game

theory tilts more towards facilitating coordination, and strategically alternates between

optimising cooperation or competition, depending on identified stakes. Guarantees for any

evaluated decisions and alternatives are only available in hindsight (Highsmith, 2013).

One school of thought suggests that, because collaboration does not always comprise of

mutually aligned goals or values, adopting game theory would be appropriate (Saoud & Mark,

2006). This opinion is hinged on game theory’s strategic significance when it comes to

overcoming goals or values that are negative, or, not mutually aligned, and optimising

outcomes, via optimal cooperation or competition. This stance is depicted in the classic

Prisoner’s Dilemma scenario, where game theory is sought to evaluate and address the

interactions between the two parties, towards revealing the importance of knowing when to

compete, versus when to cooperate (Saoud & Mark, 2006). Enhancing the collaboration

within the software development process in the cloud is not about evaluating competition

versus cooperation scenarios in the face of mutually aligned and mutually exclusive scenarios

within the process (Oberhauser, 2013, 2014). Rather, it is about facilitating, enhancing, and

optimising consistent and continuous collaboration and integration within the software

development process, irrespective of mutuality clauses present.

With respect to software development, applying game theory to make strategic decisions,

one may need to be aware of how all composite components within a software development

ecosystem function, or work together within the ecosystem. This does not explicitly mean

that it facilitates or implements the functionalities of the individual composite components

of a soft-ware development ecosystem. Although, it may appear to take into consideration

various aspects of interaction, it does not necessarily proactively facilitate awareness

mechanisms or techniques. The known applications of game theory emphasize its usefulness

when evaluating decisions involving cooperation versus competition, ultimately geared

towards an optimal outcome, rather than, explicit collaboration towards an identified

common goal. This is not to say that it can-not be used in collaborative endeavours.

Page 121 of 327

5.5.3 Complexity Theory

Concepts/Constructs:

This comprises of a set of procedures, practices, and techniques for studying and investigating

complex systems, and the interactions between the actors and components of complex

systems (Axelrod, 2015). Complex systems are usually referred to as systems, made up of

composite parts and their interactions (Manson, 2001). Collaborative software development

can be viewed in the light of the above definition, as a complex system or process, since it

does conform to the general characteristics of a complex system, even if marginally so.

Introducing Cloud computing contexts to this, arguably adds to the complexity. Complexity

theory usually concerns itself with three categories of complexity - algorithmic, deterministic,

and aggregate complexity (Barthelmess & Anderson, 2002b). All three forms of complexity

share similar historical antecedents, as well as, are concerned with the characterization of a

complex system with reference to constituent parts in a manner that is classed as non-

reductionist manner. Because it is one of the antecedents of complexity theory, a review of

General Systems Theory is not done (Ponti, 2011).

Known Applications:

One of the significant applications of the complexity theory is the construction of agent-based

simulators to aid collaboration for design teams (Axelrod, 2015). These simulators are then

used to simulate various scenarios based on parameters and values and used to identify best-

case scenarios and worst-case scenarios for collaborative engineering design workloads.

Agent-based simulators can be useful in planning and modelling processes. Other areas of

application of complexity theory include design and tuning of networks to collaborative

structures (Saoud & Mark, 2006).

Observation:

 From the definition and applications highlighted above, it can be deduced that the use of

complexity theory comes across as a passive approach. Passivity is used here to represent

being more pro-active, than reactive. For instance, adopting complexity theory would be

useful in understanding and modelling complex systems, identifying best scenarios, worst

scenarios, and good strategies. This is good because it contributes towards answering the

‘what’, and a bit of the ‘when’ when modelling scenarios and solutions. But it does not answer

Page 122 of 327

the ‘how’, nor the ‘when’ aspect relating to the ‘how’. It also does not clearly offer much with

regards to introducing flexibility for non-existent components or interactions, at the time of

modelling or building. This presents the potential for introducing integration or compatibility

issues, amongst others. Complexity theory investigates the known aspects of a complex

system, as well as the known interactions. However, collaborative software development in

the Cloud is not so close-ended as to be oblivious to the possibility of the introduction of

unknowns during a software development project. Besides, the parameters and values

garnered from studying or investigating one instance of Cloud-based collaborative

development does not represent a conclusive representation of all other instances. Hence,

adopting complexity theory as a suitable theoretical basis does not present as the best

alternative.

5.5.4 Actor-Network Theory (ANT)

Concepts/Constructs:

ANT is a conceptual approach (Ahmedshareef et al., 2014), a theory geared towards modelling

and understanding complexities, or organizations, as well as the contextual role and impact

of technology (Cresswell et al., 2010). ANT is acknowledged to be useful in understanding and

describing human inter-actions with objects – both animate and inanimate. ANT is mostly

used in practice to examine and de-scribe the relationships and interactions between people,

objects, things, organizations, and ideas, as well as the creation, maintenance, and

modification of these over time, in their journey towards achieving a goal. In actor-network

theory, the emphasis lies more with the actors (nodes) existing within a network and their

interactions (links) needed to achieve a goal. Actors in this context refer to either human or

non-human counterparts with different makeup or value.

Known Applications:

Some of the applications of ANT theory include understanding and implementation of

information systems in healthcare; application of quantitative project metrics analysis and

ANT-based qualitative analysis in software project management research (Cresswell et al.,

2010; Heeks & Stanforth, 2015).

Page 123 of 327

Observation:

There are some criticisms and scepticisms around the application of ANT in software

development research and other projects from other disciplines. Firstly, although ANT can

prove helpful in understanding interactions or how things happen within a system or network

or group, it falls a little short when it comes to providing satisfactory reasons why they happen

(Rivers et al., 2009). This could translate into ambiguity or difficulty when it comes to

employing ANT as an approach for developing practical guidelines for implementations. This

is not an oversight from the development or formulation of the theory. Rather, it is an

inherent approach embedded in the ANT methodology. Arguably, though there is an

affirmation of the in-separability of description from explanation, the methodology promoted

by ANT sidesteps this as a way of avoiding any explanations with pointers to principles, or

aspects unconnected with the actions of the actors. The ANT methodology does not

acknowledge the existence of contexts outside those generated by the actions of the actor

(Ahmedshareef et al., 2014). This aspect of ANT does not align with the objectives of cloud-

based collaborative software development, which seeks to acknowledge the possibility of

collaboration being impacted by all other contexts, implicitly or explicitly associated within a

software development project. However, ANT’s methodology can be useful in explaining

relationships between actors, or process or trajectory of interactions, as well as the role

played by any underlying technology. It can also help in the analysis of outcomes dependent

on either the actors or the interactions.

5.5.5 Activity Theory (AT)

Concepts/Constructs:

AT is a descriptive and analytical framework whose earliest form was represented by the

external and internal relationships and interactions between three aspects or components of

an activity – subject, object, and mediating tools (Rivers et al., 2009; C. Ghaouied, 2006). This

theory can be summarised by three questions: Who is doing what? Why? How is it being

done? AT was originally created to aid in better understanding the structure, context, and

development of activities (Engeström, 2001; Engestrom, 2000).

Page 124 of 327

Known Applications:

Some of the applications of AT include analysis and evaluation of software development

environments and their collaborative capabilities; in the design of human computer

interfaces, collaborative educational learning systems and other interactive systems (C.

Ghaouied, 2006).

Observation:

The subject represents the human elements and activities that strive to satisfy the objectives;

the object can represent either a concrete entity, or an abstract notion (e.g., an idea); the

mediating tools represent the sup-porting tools (e.g., models, physical like IDEs, etc.) that

mediate the relationship between the subject and object and used in the transformation of

the object into a desired outcome. This representation connotes or implies an alignment with

the principles of software engineering – abstraction, separation of concerns, modularity,

change anticipation and management, generality, incremental development, as well as

concepts such as object-orientation (Desai, 2007). AT in its original form as postulated by

Vygotsky was quite restrictive in the sense that it was focused mainly on human psychology,

and quite difficult to extend or even apply to other domains outside the social sciences. It

required more research efforts to be extended to a wider domain.

Additional efforts by researchers, further expanded AT into the second and third generation

forms by introducing cultural and social contexts (Ilʹenkov, 2009; Leontʹev, 2009). These

expanded forms broke the tools down and incorporated the following: community, to

mediate the relationship between the subject and the object; rules, to mediate the

relationship between the subject and the community; division of labour, to mediate the

relationship between the community and the object. The community represents grouping or

alignment of common interest; the division of labour represents the separation of concerns

or complexities and allocation of responsibilities; the rules represent the regulations,

boundaries, syntax, semantics, constraints, and guidelines that arise from the existence of

division of labour.

In AT, the unit of analysis is the Activity, which comprises of focused, goal-oriented actions

geared towards the transformation of the object. The main characteristics or fundamental

generalizations of an activity espoused by the AT framework include: an activity is directed

Page 125 of 327

towards an object, distinguishable by that object, and realized through a set of actions or

operations; an activity is mediated by tools; and exist within contexts which could be either

social, cultural, or technical. All three characteristics are underlined or guided by anticipation,

which is synthesized from an afferent synthesis of the mediating tools, the subject, and the

object. This anticipation is enabled by the recurrent nature of these three components, and

dependent on time.

The latter generation of AT facilitates the implementation of a framework which allows for

the coordination of resources via rules and division of labour, whilst taking into consideration

contextual conditions. While the rules play a fundamentally formal role in the organization of

activities necessary for the trans-formation of the object, the contexts help to ensure that

adequate considerations and conditions are considered to ensure alignment with the

objectives, to ensure the right outcome. The conceptualisation afforded by this analytical

framework, makes it possible to implement a loosely coupled, but all-inclusive Cloud

framework to facilitate and enhance contextualized collaborative activities geared towards

the successful achievement of a desired goal.

Page 126 of 327

 Table 16 Summary of evaluated theories and their matches to appropriate importance or use category for cloud-based collaborative software development:

THEORIES

GENERAL USE CASE

EXAMPLE APPLICATION

PROS

CONS

Theory Importance

aspects

Weight Scale

(W1, W2, W3, W4, W5)

TI(AD) TI(E) TI(P) TI(Pr) W1 W2 W3 W4 W5

Information

Foraging

Theory

➢ Information search,

gathering, filtering,

use & tracking

➢ Design of collaborative

tools and support tools for

timely and collaborative

seeking, relating,

collecting, & applying of

information and resources

relevant to tasks &

activities in global

software teams e.g.,

CogTool Explorer, HipiKat,

PFIS

➢ Design of tools for

information-intensive,

recurring activities

➢ promote awareness of

relevant information

➢ optimise navigation of

relevant information to

support development

process

➢ positive impact on activity

coordination

➢ Knowledge-centric

➢ tendency to starve other

aspects of attention

➢ time consuming

0
1 1 0 - - X - -

Complexity

Theory

➢ Investigation of

complex systems &

concerns –

algorithmic,

deterministic &

aggregate

➢ Analysis of

interaction

between

➢ Construction of agent-

based simulators to aid

collaboration for design

teams

➢ Design and tuning of

networks to collaborative

structures

➢ Proactive approach for

planning, designing, and

modelling scenarios and

strategies in existing

systems

➢ Useful for investigating

known aspects of a

system

➢ Not ideal for processes

requiring flexibility for future

components or interactions

➢ Not ideal for open-ended

collaborative systems,

projects, and platforms

1 1 1 0 - - - X -

Page 127 of 327

components &

actors

Game Theory ➢ Analysis/evaluation

of interactions and

collective actions of

system participants

➢ Games, game engines,

simulation applications,

strategy applications and

scenarios e.g., Game

Theory Explorer

➢ Modelling of agent-based

decision systems and

practical applications in

fields e.g., Economics,

Biology, etc.

➢ Resourceful framework

for analysing and

evaluating best strategy

out of a given set of

strategies

➢ Facilitates awareness of

possible and best

outcomes in a situation

➢ Facilitates and promotes

coordination when

applied towards

optimising cooperation or

competition

➢ Useful in facilitating

implicit & partial

collaboration

➢ Not ideal for enhancing,

explicit, continuous, holistic

collaboration and integration

➢ Enhancing communication is

not one of the strongest suits

1 1 1 0 - - - X -

Actor-

Network

Theory

➢ Description/modelli

ng of nodes, links &

interactions within

a network

➢ Modelling and

implementation of

information systems in

healthcare and other

fields

➢ Application of quantitative

project metrics analysis in

Software Project

management

➢ Useful for analysing and

describing actors’

interactions from

creation, through

modification and

maintenance

➢ Useful for modelling

actor-related contexts

surrounding actors and

interactions.

➢ Ambiguity in analysis and

modelling of interactions un-

connected to actors

➢ inability to provide

satisfactory explanations for

lack of connection between

interactions & existing actors

➢ little or no acknowledgement

of other contexts un-related

with actors

1 1 1 0 - - - X -

Page 128 of 327

Activity

Theory

➢ Contextual

definition and

modelling of

activity,

components,

interactions &

transformations

➢ Analysis/evaluation of

Process-centred software

development

environments (PCSDE)

with respect to the impact

of their capabilities on the

collaborative nature of

Software development

projects

➢ Provide different

perspective from

production-oriented one

➢ Descriptive tool useful in

analysis of collaborative

work

➢ Centres on broader

classification of

collaborative

work/activities

➢ Acknowledges existence of

interactions necessary for

object transformations, but

no clearly defined major or

minor steps or interactions

between subject and object

1 1 1 1 - - - - X

Page 129 of 327

5.6 Analysis and justification for Activity theory as theoretical basis for cloud-based

collaborative software development

The use of AT in this research project focuses on better understanding of collaborative

software development process as an activity and the interactions within; as well as, gaining

insight into the value and adequateness of AT for modelling an efficient framework for

context-aware, collaborative software development in the cloud. There is evidence of

inherent collaboration in the software development process, but research also highlights gaps

present, alongside effects of emerging technology trends(Mahmood & Saeed, 2013; Boehm,

2010). Rapidly changing distributive trends like cloud computing, create urgent need for

creation of better frameworks with sound theoretical underpinnings to withstand the test of

time and to embrace such trends and the complexity they introduce, whilst facilitating greater

productivity and experience (Kyriakidou-Zacharoudiou, 2011).

Activity theory stems from early work in the field of psychology towards the development of

a psychological theory, with relation to human action and thinking (Kozulin, 1986). These early

efforts differentiate between people and things based on motive and consciousness. Activity

theory is a conceptual framework, with ‘Activity’ as unit of analysis, making it ideal for:

studying activities or activity systems and related practices; identifying congruencies and

contradictions emerging from interactions (Dennehy & Conboy, 2016, 2017; Spinuzzi, 2015).

An activity in the first generation of activity theory refers to interactions between subject or

subjects (‘actors’), and the object (‘world’), mediated by tools, or artefacts(Soegaard & Friis

Dam, 2013). The interactions refer to the process that relates the subject and the object,

implying that an activity is dependent, or can be influenced by attributes of both object and

subjects.

Outcome

Mediating artefacts

Subject Object

Figure 28: First generation of Activity Theory

Page 130 of 327

The first generation activity theory used the concept of activity to investigate a wider scope

of problems related to societal phenomena, by taking into account the dynamics of all social

interactions in relation to the societal phenomena, in a bid to achieve a better outcome(Bedny

& Harris, 2005). One of the strengths of first generation of activity theory is its basis - not on

any abstract concept, but rather, on humans, activities, associated conditions and artefacts

(Roth & Lee, 2007; Kozulin, 1986). Secondly, it focuses on social-cultural perspectives of

human activity which underlines relationship between the object and subject, and its

inseparability from the human mind, existing side-by-side, in various social and cultural

contexts (Bedny & Harris, 2005; Roth & Lee, 2007). This represents an introduction of context

as a factor capable of affecting actions within the activity.

However, one of the lapses of first generation of activity theory, is lack of a clear distinction

between action and activity (Engestrom, 2000; Engeström et al., 1999). It takes for granted,

or rather, gives the subject(s) free rein to infer the aims of actions based on the artefact or

the preceding action, without taking into consideration the potential impact of all contexts

on actions. This introduces a lack of uniform or systematic approach towards a means of

synchronized understanding of the object and create room for potential misunderstandings,

misinterpretations, misrepresentations, and by-passing of relevant aspects necessary to

better understand the object and enhance the desired outcome (Engestrom, 2000). This in

turn affects the next action and any subsequent generated object, since objects motivate and

direct activities, just as much as activities are directed towards objects and are differentiated

or distinguished from one another by each activity’s respective object(Soegaard & Friis Dam,

2013). This object-oriented transitive relationship is represented in Figure 29. As a result of

this relationship, analysis of the object and consideration of all related contexts is a necessary

requirement for individual and collective understanding of activities. This immediately

highlights the next limitation of the first generation of activity theory – the focus of the unit

of analysis from an individual perspective (Uden et al., 2008).

Figure 29: object-oriented transitive relationship between object and activity instance

Gives rise to Object
Transformat

ion by
subjects

Activity
instance

Gives rise to
Object

2.0
.....

Activity
instance

2.0

Page 131 of 327

The second and third generations of activity theory extend this individual focus to reflect joint

activity, interactions between subjects and their environments in activity analysis, as well as,

other context factors such as the community, responsibilities within activity systems and rules

to govern interactions and transformations (Engestrom, 2000; Uden et al., 2008). This

expanded perspective result in a structure extended to include the afore-mentioned context

factors as three key components used to establish more collective context – rules,

community, and division of labour. These components introduce focus on the collectiveness

of an activity through actions contributed by individuals, groups, and organizations

(community); governed by rules; supported by tools and signs; and carried out in defined

structures or patterns (division of labour).

The rules, tools, and division of labour aspects, mediate interactions between the community

and the subject, as well as interactions between the community and the object. They can also

be extended for coordination and management purposes. This is because the mediating rules

are binding on subjects and community within the activity, in a pattern aligned with their roles

and responsibilities. These rules ensure that activity transformations (actions of the subject

and community) remain focused on the goal and are object-oriented. The second and third

generation of AT ensure that activity acknowledges the “influential nature and

interrelatedness of the larger social context” within which an individual or group of individual

carries out goal-oriented actions on an object subject to constraints or bounding logic and

conventions(Dennehy & Conboy, 2016).

Tool

Subject Object OUTCOME

Rules Community
Division of

Labor

Figure 30 Engestrom’s model (2001) of Activity Theory

One lapse of the second and third generation of activity theory, which is crucial for

collaborative software development process is the non-explicit representation of the time

Page 132 of 327

context of the activity, along with related historical elements, as well as future elements (Tell

& Babar, 2012). The value of this lies in providing the ability to analyse historical activity

instances (historical transformations of objects by subjects/members of the activity instances

and mediating tools/rules) and predict future transformations based on current context.

Another lapse of activity theory that needs addressing to make it suitable for collaborative

software development process is, the issue of lack of clear distinction between activity and

action. This can be done by decomposing the activity into hierarchical levels, such that each

level comprise of subset(s) of the activity that lend towards achieving the goal of the

activity(Uden et al., 2008). Any change in the activity components that does not correspond

or contribute to the goal of the activity, represents an undesirable change in the activity.

Even though Activity theory have seen more applications in the social realm, than in the

technological realm, it provides a transferrable approach to analysing and conceptualising

cloud-based software development. (Núñez, 2009; Bedny & Harris, 2005; O’Leary, 2010;

Elizabeth, 2013; Frans Prenkert, 2006). There have been quite a few successful adoptions or

applications of this theory in the domain of software development(Dennehy & Conboy, 2016;

Barthelmess & Anderson, 2002b; de Souza & Redmiles, 2003; Georg, 2011; De Souza, 2003;

de Souza & Redmiles, 2003). Reasons for making a choice of a theoretical basis is not solely

based on the objectivity of the selected theory or model when representing a phenomena,

but rather on theory suitability when it comes to shaping or analysing a phenomena for the

identification of issues or gaps (Barthelmess & Anderson, 2002b).

To aid effective adoption of Activity theory as the most appropriate theoretical basis of choice

for software development in the cloud, the process is viewed as an activity. Activity theory is

known for its suitability for structuring and conceptualising activities and human

practices(Said et al., 2014). Prior related work(Dennehy & Conboy, 2016; de Souza &

Redmiles, 2003; Georg, 2011) have also taken and justified this view, although not exactly in

the same direction as this project. Programming is often viewed as a personal activity, but,

the development of large scale software is considered a collaborative activity (Barthelmess &

Anderson, 2002b). This is understandably so, because, the level of complexity involved in

developing such software requires a team of people with different individual skillsets and skill

levels, necessary for performing various tasks geared towards achieving a common goal

(Ghezzi et al., 2002).

Page 133 of 327

With the advent of cloud computing, teams can be distributed, collaborating on different

development activities within a single project. The use of Activity theory as the underlying

basis helps in identification and classification of a broader range of influential factors capable

of affecting cloud-based collaborative software development. This in turn ensures that all the

right parameters can be factored in at the different stages of the collaborative development

process where they occur. The downside is that the wider or broader the classification, the

more the chances of complexity within the process.

Page 134 of 327

Figure 30 A representation of time context between activity instances

Page 135 of 327

5.7 Developing an AT-based framework for enhancing context-aware collaboration in

cloud-based software development

Adapting Activity theory to model collaborative software development process, helps in

context-specific analysis of activity systems within the process, thereby providing basis for

creating a viable blueprint that supports context-awareness and collaboration (Méndez

Fernández & Passoth, 2019). Though the introduction of context-specific analysis by Activity

theory extends the problem scope, it helps to flag up irregularities, inconsistencies, and other

factors which might impact an activity. For example, with the second and third Activity theory

generations, came realization of need for tools to: aid understanding and communication of

multiple perspectives; and formation of effective interacting activity systems networks

(Engeström, 2001).

Most existing collaborative software development tools and platforms are mostly

paradigmatic and lack solid explicit theoretical underpinnings and foundations(Méndez

Fernández & Passoth, 2019). The cloud is one of such platforms that possess capability to

enable multiple activity instances of a development process concurrently or sequentially, for

collaboration across distributed networks. One way of leveraging for better collaboration

within cloud-based software development process is, the use of Activity theory for a priori

structuring and modelling of activity instances to support and improve coordination of the

process, and ultimately enhance collaboration(Tell & Babar, 2012; Said et al., 2014).

The approach taken is guided by an interpretive qualitative methodology(Cohen et al., 2009)

that attempts explain reality through understanding of software development process

activities, and the interactions amongst component parts, within collective and individual

contexts.

5.7.1 Step 1: Define use case scenario

The importance of defining the use case scenario lies in the role it plays in the clarification of

the goals of the activity system. A well-defined use case scenario helps in the understanding

of:

• how the activity system or process is currently envisaged

• what takes place within the activity system or process

• motivations and components of the current activity system or process

Page 136 of 327

Collaborative software development process encompasses the set of joint or complementary

activities, engaged upon by various stakeholders (may be distributed or co-located) using

support tools (may be decentralized or centralized), throughout the development lifecycle of

software to ensure the final goal of developing usable software that meets stated or defined

requirements (Mistrík et al., 2010). In order to promote consistent characterization and

standardization, the activity scope for software development process is defined by Bourque

et al.(2014) as comprising of 7 main phases or classes of sub-activities. These are: software

requirements activities, software design activities, software construction or build activities,

software testing activities, software maintenance activities, software configuration

management activities and software process management activities. To collaborate within

these activities, stakeholders must adopt the use of enabling tools, models, and methods for

tasks for each activity. Below is a quick summary of each activity within the process.

Software requirements activities refers to activities concerned with requirement elicitation,

analysis, specification, validation, and management throughout the software life cycle.

Software design activities refers to activities concerned with the production of descriptions

of internal structures, components, and characteristics of software to be designed, from the

analysis of requirements specification. These descriptions provide the basis for software

construction activities. Software construction or build activities refers to activities concerned

with the creation or building of working or usable software. Software testing activities refers

to activities concerned with verification and validation of software in line with identified

requirements.

Complexity
&

collaboratio
n barriers

In
Cloud-based

Cooperation
Communication
Misunderstandin
g

 Awareness

Coordination
 Visibility
 Trust

Geographic
distribution
Time zone
differences

Cultural differences

Affects

Figure 31 Conceptualizing the problem scenario

Page 137 of 327

5.7.2 Step 2: Define requirements

Activity theory is a conceptual framework with ‘Activity’ as unit of analysis, making it ideal for:

studying activities or activity systems and dynamics of interactions in relation to the

objectives; identifying possible congruencies and contradictions emerging from interactions,

towards a better outcome(Núñez, 2009; Antoniadou, 2011). The AT-based consideration of

the entire cloud-based collaborative software development process is with a primary focus

on the following:

• enhancing collaboration in the face of increasing distribution of software

development teams and other stakeholders

• effective coordination and management of development teams, all other

stakeholders, development activities; team efforts and interactions; large

number of resources, artefacts, information, and contexts to ensure

delivery of an outcome that meets stated objectives of the software

project.

• timely awareness of stakeholder contributions and resulting artefacts

• reinforcing emphasis on the importance of the outcome

5.7.3 Step 3: Identify Activity theory concepts/components to leverage

Abstracting and decomposing Activity theory concepts into hierarchical components present

one way of approaching complexity; and facilitating generalizations based on analysis of

common behaviours and structures. This relies on the assumption that components of related

abstraction would logically, mostly exhibit similar properties, structure or behaviour (ed. C.

Ghaoui, 2006). However, the perspective provided by Activity theory is very broad and

Stakeholders

Stakeholders

Stakeholders

Objective(s)

Outcome

Figure 32 Initial working requirements model for stakeholder collaboration

Page 138 of 327

functions at a macro level (Elizabeth, 2013). One of its focuses is – analysis of how objects are

transformed through interactions of components of the activity system and how this

transformation is mediated. This focus extends from any one component, across all other

components of the activity system and proffers the premise that - the type of transformation

that can be directed to an object by any subject or group of subjects, is influenced by the sum

of all components and inherent tensions existing within. Therefore, an examination of all

components of the activity system becomes necessary for a unified or collaborative activity

system.

The components of Activity theory make up a classification scheme or taxonomy that can be

used for an activity system, providing class concepts and a template approach for capturing

activity contexts within the system, whether team or individual (O’Leary, 2010). This is useful

as a foundational basis for mappings between the activity system and Activity theory.

However, the drawback to this approach is that Activity theory acknowledges existence of

interactions as a necessity for object transformation but lacks clearly defined interaction steps

between the subject/community and the object. Due to this reason, and partially due to the

abstract nature of Activity theory, another suitable method e.g., object-oriented

decomposition method, could be used as an appropriate approach for breaking down Activity

theory concepts into abstract components. These components can be viewed as separate

entities coming together to enable activity at various levels to achieve transformation of the

object into a desired outcome. The activity itself, can be considered an object for other

activities, and therefore, included in the decomposition (C. Floyd et al.eds., 1992, Mota et al.,

1994).

The components of an activity system are dynamic and interact with each other continuously

to define the system and the outcome. Therefore, to fully examine or redefine the activity

system, consideration of all the components and their interactions is necessary, including any

characteristic tensions therein. Tensions refer to the dualities that exist along the value chain.

An example of such dualities is as follows: an action is performed, to yield an outcome, or to

achieve a goal (Barab et al., 2002). Examining these tensions help to better understand

interplay involved within dualities of the activity system. This translates into an ability to

better leverage dynamics of the dualities within the activity system, as well as better

understanding of ways to support the activity system.

Page 139 of 327

Activity

Human activity is the focus of AT. Activity is defined as any motivated form of action directed

towards transforming some object into an outcome or set of outcomes (Barthelmess &

Anderson, 2002). The activity is defined by the object and its existence is motivated by

transformations of the object. Due to this self-regulating integration of motivation and

behaviour towards a defined or stated goal, the activity is considered goal directed (Bedny &

Harris, 2005). An activity may comprise of one or more related or unrelated child activities

which can be realized via actions/tasks; and may be dynamically distributed and re-distributed

along internal and external dimensions and components(ed. C. Ghaoui, 2006). Actions can be

further decomposed into operations (automated actions). Each level of activity breakdown is

driven by a different need and provides a clear separation which helps to fundamentally

improve understanding of activities at a more granular level(Tell & Babar, 2012). This, in turn

allow the generation of more detail on the activity based on the analysis of the workings of

the lower levels of an activity (O’Leary, 2010). Since activities may vary, so also activity

breakdown. An activity may comprise of interactions which are either transformation actions

or development actions, and can happen inter (between subjects), or intra (within a subject).

Figure 33 Hierarchical breakdown of the Activity

Operations level

Action/Task level

Sub-activity level

Activity level
Parent
Activity

1.0

Child
activity 1.1

Action/Tas
k 1.1.1

Operation
1.1.1.1

Operation
1.1.1.2

Action/Tas
k 1.1. 2

Action/Tas
k 1.1. 3

Child
activity 1.2

Action/Tas
k 1.2.1

Action/Tas
k 1.2.2

Child
activity 1.n

Action/Tas
k 1.n.1

Page 140 of 327

Subject

This refers to any person or system that performs an action or undertakes an activity (Bedny

& Harris, 2005). A subject is usually a part of a collective effort, acting in a role to transform

an object using information, tools, or some other artefact. The actions and interactions

performed by the participants in the activity system are directed towards the object, resulting

in transformations that finally yield the desired outcome. These transformations are

mediated by other aspects or components of the activity system. The subject or subjects

provide the lines along which activity internalization and externalization are defined.

Figure 34 Hierarchical breakdown of the Subject component of Activity theory

Object

This refers to the Activity theory component that is modified or transformed by the subject,

in line with the goal of the activity. This reference includes problem spaces, specifications,

stated problems or identified needs, conceptual understandings, or any form of raw material

that is the principal focus or point of direction of an activity or activities. An object is a

structured, discretely existing entity, with objective meanings capable of being wholly or

partly determined by relationships with the subject, or other objects. This relationship forms

the basis of an activity and provides the lines along which an object should be analysed for a

better understanding of the activity. The object can be material, immaterial, or useable

SUBJECT(s)

Animate

Human
(Person)

Role

Responsibility

Bias

Teams/Groups

Roles

Responsibilities

Bias

Inanimate

Systems

Role

Responsibility

Processes

Role

Responsibility

Page 141 of 327

knowledge, defining and motivating actions and goals of the activity system (Engeström,

2005; Bedny & Harris, 2005).

Figure 35 Hierarchical breakdown of the Object component of Activity theory

Tools

Refers to physical or non-physical artefacts that shape interactions and transformations

through either capture or use of information, or influence on behaviour. Tools can also be

shaped by experience, practice, or culture. Tools provide enhanced capabilities and

interactions, or limit capabilities and interactions. Tools can be external, internal, physical,

and symbolic. Together with object, tools provide the cultural and historical contexts of the

activity.

Figure 36 Hierarchical breakdown of the Tool component of Activity theory

OBJECT
(Entity)

Tangible

Procedures

Behaviour

Properties Values
Variables

Constants

Intangible

Procedures

Behaviour

Properties Values
Variables

Constants

MEDIATING
ARTEFACTS

Mediation
through Object

Tangible

Intangible

Mediation
through Rules

Implicit

Explicit

Mediation
through Division

of Labour

Roles

Responsibilitie
s

Mediation
through Contexts

Social

Cultural

Historical

Page 142 of 327

Community

This refers to all the stakeholders of an activity i.e., all the people involved in the activity for

the entire lifecycle of that activity. These usually share general or common objects, and

together with the subject, provide the social contexts of the activity

Rules

This refers to all conventions, constraints, guidelines, policies, regulations, processes,

methodologies, specifications, configurations, logic, and standards that guide the activity and

every aspect of the activity.

Division of labour

This refers to the structuring or organization of activities and component parts to ensure

balance. Division of labour refer to how tasks are distributed and run, both vertically and

horizontally along the lines of equality status and hierarchy. This could also be non-

hierarchical.

Goal

One school of thought proposes the existence of the goal concept as a way of representing

the expected result or expected outcome of an activity (Bedny & Harris, 2005). The goal drives

the activity and is embodied by the outcome or result of the activity. This can be material or

immaterial. Goals represent a future state and can be modified at any point in time during

the lifecycle of the activity.

Outcome

The outcome constitutes the result of the activity and represents the embodiment of the goal

of the activity (Bedny & Harris, 2005).

5.7.4 Step: Mapping of Activity theory concepts to cloud-based software development

aspects

The adoption of activity theory as a theoretical basis is based on the following premises of the

collaborative software development process (Barthelmess & Anderson, 2002b):

Page 143 of 327

• software development process is inherently, a collaborative activity geared towards a

defined goal or set of goals, and normally involving one or more persons, supported

by resources and techniques e.g., techniques, tools, etc.

• The various resources involved in a typical software development process can

influence the process, or/and the outcome or goal. Hence the need to analyse and

evaluate them in terms of capabilities and impact on collaboration.

• The development process relies on artefacts to mediate the entire process and its

interactions

Applicable postulates of AT to the collaborative software development process are as follows:

• Activity is the unit of analysis.

• Activity comprises of subject and community, interacting with an object through goal-

directed actions, towards achieving an outcome.

• Rules govern the collective and individual actions of the subject and community.

• Tools support actions & interactions of the subject and community.

• Actions & interactions of the subject and community execute in defined structures or

patterns – division of labour.

• Inseparability of the mind from activity

• Rules, tools, and division of labour components mediate interactions between the

community and subjects, as well as interactions between community and object.

This research adopts and focuses on the above postulates of Activity theory, specifically

chosen to aid theoretical analysis and understanding of cloud-based collaborative software

development, and gain insight into the process. These extracted postulations encapsulate a

set of principles that provide a conceptual system for explaining phenomena such as collective

work and for accounting or justifying actions and interactions. Furthermore, Activity theory

provides a framework for holistic analysis and consideration of the entire cloud-based

collaborative software development process. The primary focus of this collaboration include:

• increasing distribution of software development teams.

• large number of resources, artefacts, information, and contexts at play in any sizeable

software project.

• importance of the end goal

Page 144 of 327

The Activity framework enables examination at a more macro level of the collaborative

software development process and its entire makeup: teams/groups; communications,

interactions in socio-technical and cultural contexts, relationships, historical factors,

information, motivations; and artefacts, and goals/outcomes. All these can be studied,

patterned, and used for inferential purposes, as well as expanding knowledge.

 Table 17 Mapping AT to collaborative software development components

ID
AT

COMPONENT
DESCRIPTION

EQUIVALENT SOFTWARE

DEVELOPMENT

COMPONENTS

1

Activity

Refers to the instance unit of analysis.

It comprises of all the other

components below

A project instance of the software

development process

2 Transformations “relates to a defined tasks/actions

towards a defined goal”(Bedny &

Harris, 2005)

Software development tasks within the

project including requirements analysis tasks,

designing tasks, build/coding tasks, testing

tasks, deployment tasks etcetera.

3 Subject refers to individual, group or subgroup

chosen as point of view of activity

analysis(Dennehy & Conboy, 2016)

Include development or cross functional team

members: analysts, designers, developers,

testers, manager

4 Object Refers to problem space/definition or

material which is shared and

transformed into outcome(s) (Dennehy

& Conboy, 2016)

Includes: requirements, designs,

specifications, code, and artefacts within

various phases of the process

5 Tools Refers to different tools, environments,

and signs used for transforming the

object(Dennehy & Conboy, 2016)

Includes the cloud platform or development

environments, other cloud resources or third-

party tools needed or used in the development

process, as well as development environment

6 Rules refers to requirements for membership

of community, and conventions/logic

constraining interactions and actions

within activity system(Dennehy &

Conboy, 2016)

guidelines, standards, logic, and conventions

used for instantiating and managing

interactions/practices within the process

Page 145 of 327

7 Community Refers to group or sub-group of

multiple individuals sharing same

general object or goals(Dennehy &

Conboy, 2016)

Grouping of users, software owners, focus

groups, analysts, developers, testers,

designers, project manager etcetera.

8 Division of

labour

Refers to horizontal or vertical division

and distribution of tasks(Dennehy &

Conboy, 2016)

One-to-one task assignment or one-to-many

task assignment to members of the software

development team depending on complexity

of task and availability of resources.

9 Outcome Result of the activity. This can be

material or immaterial. (Dennehy &

Conboy, 2016)

Refers to the final outcome of the process

e.g., feature, functionality, software, or

knowledge artefact

Page 146 of 327

A Context-aware Collaborative Software Development Process

Mediating Artefacts

Rules

Community

Division of Labour

Subject

Object

THEORETICAL
FOUNDATION

Context
Logic

Collaboration
Logic

Benchmark

Roles Responsibilities

Distribution Organization

Roles Responsibilities

SpecificationsRequirements

Cloud
resources

Methodology
/Practice

Syntax/
Semantics

Configurations

TimelinesBudget
Distibution/
Organization

Team/Stakeholders

Goal

Knowledge

Requirement
gathering & analysis

D
e

sig
n

C
o

d
e

/B
u

ild

Test

D
e

p
lo

y
M

a
in

ta
in

Refactored artefacts with
context wrapper

Refactored artefacts with
context wrapper

R
e

fa
c
to

re
d

 a
rte

fa
c
ts

 w
ith

c

o
n

te
xt w

ra
p

p
e

r

R
e

fa
c

to
re

d
 a

rt
e

fa
c

ts
 w

it
h

c
o

n
te

xt
 w

ra
p

p
e

r

Refactored artefacts with
context wrapperRefactored artefacts with

context wrapper

Knowledge

Outcome

Refactored artefacts with
context wrapper

Figure 37 Visualizing future context-aware collaborative software development process enabled at the core by solid
theoretical foundation.

Page 147 of 327

Figure 39 AT-based conceptualization of distributed interacting activity systems in the cloud

Cloud

resources

Development

team

Object (feature,

Problem, need) Outcome

Rules
Community

(Users &

Owners)

Responsibilities,

roles

Figure 38 Adopted mapping of main software development process components to activity theory components.

Tool

Subject Object1

ACTIVITY SYSTEM 1

Rules Community
Division of

Labour

Tool

Object1 Subject

Activity system 2

Division of

Labor
Community Rules

OUTCOME

Object 2

Page 148 of 327

Optimizers & enhancers

MANAGEMENT
LAYER

Cloud
Manager

Analytics/
Reporting
Module

Activity
Manager

Shared
Storage
Module

Context
Logic Module

Plugin
Management

Module

API
Management

Module

Collaboration
Logic Module

LAYER C2: ACTIVITY ORCHESTRATION LAYER – SHARED WORKSPACE

LAYER R3: PRESENTATION LAYER

Interface-agnostic API

Web App Website CLI interpreter Terminal Services

A Context-aware Collaborative Software Development Process

Mediating Artefacts

Rules

Community

Division of Labour

Subject

Object

THEORETICAL
FOUNDATION

Context
Logic

Collaboration
Logic

Benchmark

Roles Responsibilities

Distribution Organization

Roles Responsibilities

SpecificationsRequirements

Cloud
resources

Methodology
/Practice

Syntax/
Semantics

Configurations

TimelinesBudget
Distibution/
Organization

Team/Stakeholders

Goal

Knowledge

Requirement
gathering & analysis

Design
Code/Build

Test

Dep
loy

Ma
inta

in

Refactored artefacts with
context wrapper

Refactored artefacts with
context wrapper

Refactored artefacts with
context wrapper

Ref
act

ore
d ar

tefa
cts

wit
h

con
text

 wr
app

er

Refactored artefacts with
context wrapperRefactored artefacts with

context wrapper

Knowledge

Outcome

Refactored artefacts with
context wrapper

LAYER C1: MANAGED CLOUD ENVIRONMENT LAYER

Node R1b➔Type 2 Hypervisor scenario

Host OS

Live Hypervisor

Live Hyper-V VM

Live Vms

Live Hyper-V VM

Live Vms

Node R1b➔Type 1 Hypervisor scenario

Live Hypervisor

Live Hyper-V VM

Live Vms

Live Hyper-V VM

Live Vms

Bare Metal

Bare Metal API

Libvirt API

LAYER C0: INFRASTRUCTURE LAYER (IAAS CLOUD PROVIDER)

Proprietary IaaS Cloud
Provider

Hybrid IaaS Cloud Provider
Open Source IaaS Cloud

Provider

Prioritizers

Software
sensors

Selectors

Algorithms

Microservices

Figure 40 Mapping proposed theoretical framework - Initial architecture block diagram for existing system.

Page 149 of 327

Figure 41 Zooming in on Mapping proposed theoretical framework - Initial architecture block diagram for existing system: Presentation layer.

Page 150 of 327

Figure 42 Zooming in on Mapping proposed theoretical framework - Initial architecture block diagram for existing system: Activity layer.

Page 151 of 327

Figure 43 Zooming in on Mapping proposed theoretical framework - Initial architecture block diagram for existing system: Managed cloud platform layer.

Page 152 of 327

Project Manager Cross-functional Team Community users

API Gateway

Collaborative Activity layer
(via intercommunicating Event-driven Microservices)

Cloud Platform layer

3rd party plug-in
tools (e.g.

versioning tools like
GitHub)

Cloud Infrastructure layer

Connector

Project Manager
Testers Analysts Developers Users Software ownerOperations staff

Figure 44 Mapping proposed theoretical framework to existing system – architecture block diagram.

Page 153 of 327

5.7.5 Step: Define baseline activity structure for collaborative software development

process

The collaborative software development process is directed by and based on

objectives/object of the activity and aided by tools. The rules are binding on subjects within

the community in which the activity takes place, in a pattern aligned with the roles and

responsibilities of the subject, or subjects within the community. This ensures that the activity

is analysed and carried out within all related contexts. A key requirement of activity theory is

analysis of activities within contexts to provide a deeper understanding of the object, which

is key to showing object transformations(Uden et al., 2008). However, because interactions

within the activity uniquely differ from object to object, based on the objective, type, or level

of transformation or action, the implication is lack of a prescribed method for this kind of

analysis. This implies that similar objects with similar interactions will have to an extent,

similar contextual activity analysis. Therefore, enabling analysis of complete object

transformation trajectory improves understanding of the object, and could act as predictive

input with regards to any further or future transformations. To do this would require

definition of a baseline activity structure; as well as a way of capturing contextual information

relating to the object, and other components interacting with the object.

The goal of an activity can be met via a variety of actions, or/and tasks, which in turn, can

contribute to other activities. In the same vein, actions may require operations that meet

certain conditions that help to meet the goals, and in turn, operations can contribute to

actions. However, a distinction is made between tasks and actions. Tasks can be regarded as

conscious and goal-driven actions, whereas, actions are dependent on operational conditions

of tasks, and hence, can become routine or become automatic through defined constant or

routine use(Uden et al., 2008). This distinction between tasks and actions reveals that a task

is not dependent on an operational layer but can specify operational conditions for actions.

The distinction between motives, goal and conditions, as well as distinction between activity,

tasks and actions, provides a means of defining activity levels and relationships, which can in

turn, be collectively analysed, by using and integrating the viewpoints of the contexts

introduced by the second generation of activity theory(Uden et al., 2008).

However, though operational elements e.g. environments, are not directly related to the goal

of an activity, it is necessary and recommended that the form of the activity be adapted to

Page 154 of 327

them(Wolff-Piggott & Rivett, 2016; Bærentsen & Trettvik, 2002). An activity orientates

towards a goal. The objectives of the goal correspond to what subjects of the activity need to

attain. Goal-directed actions constitute how subjects attain the goal, and these actions are

implemented via automatized or conscious improvised steps

Figure 46 Proposed Activity baseline structure (schema) for designing/creating a collaborative software development
activity.

Goal

Sub-goals

Sub-goal

Sub-goal

Operations

Activity

Tasks

Commands

Queries

<<include>>

Task specs

entry / Action
do / Action++
exit / Release

<<extend>>

directed by

directed by

Conditions
Command
conditions

Query
conditions

ACTIVITY BASELINE STRUCTURE (SCHEMA)

ACTIVITY

Action(s)

Goal

Sub-goal(s)

Operation(s) Condition(s)

Task(s)

Figure 45 Distinction between Activity levels

Page 155 of 327

Re
qu

ire
m

en
ts

 A
na

ly
st

s
De

sig
ne

rs
De

ve
lo

pe
rs

/p
ro

gr
am

m
er

s

M
ai

nt
ai

ne
rs

/S
up

po
rt

De
pl

oy
er

s
Te

st
er

s/
Q

ua
lit

y
An

al
ys

ts

Pr
oj

ec
t

Co
m

m
un

ity

U
se

r/
Cl

ie
nt

Ad-hoc sub-process

Ad-hoc tasks

Ad-hoc sub-process

Ad-hoc tasks

Ad-hoc sub-process

Ad-hoc tasks

Ad-hoc sub-process

Ad-hoc tasks

Ad-hoc sub-process

Ad-hoc tasks

Ad-hoc sub-process

Ad-hoc tasks

Requirement
gathering/

Analysis

Design

Build/code Test

Deploy

Maintain

Initiate
Receive Task
Specification

Object
(input)

Tested
Object

 (Output)

Task

Object-task
specification

transformation
sequence

Subject

Process
Task

TaskTest

Receive Task
Specification

Tested
Object

 (Output)

Task

Object-task
specification

transformation
sequence

TaskTest

Receive Task
Specification

Tested
Object

 (Output)

Task

Object-task
specification

transformation
sequence

Task
Test

Object
(input)

Object
(input)

Object
(input)

Object
(input)

Object
(input)

Receive Task
Specification

Tested
Object

 (Output)

Task

Object-task
specification

transformation
sequence

Task
Test

Receive Task
Specification

Tested
Object

 (Output)

Task

Object-task
specification

transformation
sequence

Task
Test

Receive Task
Specification

Tested
Object

 (Output)

Task

Object-task
specification

transformation
sequence

TaskTest

EVENT BUS
Message
Broker

Context-aware development process sequence v.2

Object
context
data

Object
context
data

Object
context
data

Object
context
data

Object
context

data

Object
context

data

Object
context

data

Object
context

data

Object
context

data

Object
context
data

Object
context
data

Object
context
data

Figure 47 Modelling context-aware development process sequence

Page 156 of 327

Object review process

Initiate

review

previous actions
& context

required
actions

retrieve

Task Specification

Object (input)

object-context
requirements checklist (OCR)

OCR evaluated?

Generate

identify

Generate

incomplete

inform

Subject

Process
Task

Subject

Process
Task

Approved

Task specs.
Review

inform

Rejected

Object-task specification transformation sequence

Object
context

data

Figure 48 Object-task specification transformation sequence

Page 157 of 327

5.8 Summary

The proposed process for selecting appropriate theoretical basis as outlined above serves to

provide a formal and systematic approach. The target is to deliver an optimal choice of

theoretical foundation (i.e., a choice which competes favourably with any other available

option in a consistent manner) for architectures for cloud-based software development. This

process can be adapted for application in other domains or projects. The proposed process

may prescribe more than one suitable outcome, depending on the given parametric model,

input and method of analysis applied. At first glance, this process may appear to be more

complicated than the existing ad-hoc methods of adopting theoretical foundations, but it

presents a more empirical and reproducible method that is applicable in any domain. A case

study example is used to demonstrate how the process may be applied. This application

demonstrates the usefulness of this proposed process as a detailed empirical prescription of

theoretical behaviour. Application of selection process resulted in the identification of activity

theory as a more appropriate theoretical framework for collaborative cloud-based software

development process. The tenets of AT discussed in this Section can be reified using any

arbitrary number of models or frameworks. These can be designed and modelled to be

representations of the desired principles and characteristics for collaborative cloud-based

software development process.

Page 158 of 327

6 The Architecture

6.1 Introduction

In the previous Sections, a systematic review of literature was carried out to identify and

extract gaps, themes and other relevant building blocks including theoretical foundations,

necessary to form underlying constructs for proposal of a suitable Cloud-based architecture.

Main identified gaps and addressed in this research include: underestimated or ignored

complexities and contexts that end up undermining collaboration in the process; motivations

include: need for identification of reliable ways of managing collaborative activities and

managing complexity within the process; ways to ensure synchronous regularity; and need

for sound theoretical methodologies for enhancing effective collaboration to ensure

verifiable and quality outputs and outcomes at all stages of the development process

(Ewenike et al., 2017a, 2010). Being able to consistently reproduce the enhanced

development process would require standardization in the form of frameworks, architectures

and standards(Benedek & Lajos, 2012). Summary of main concerns from literature, along with

recommendations and anticipated benefits are discussed in the literature review Section. The

main gaps to be addressed by architecture are summarised in table 18 below and published

in conference transactions captured below.

Table 18 Summary of gaps in cloud-based collaborative software development (Ewenike et al., 2010, 2017b)

Main identified gaps addressed Comments
Observed impact include:

➢ Need for cloud-based,

context-aware collaborative

software development

architectures, with explicit

theoretical foundation

➢ Emerging technologies change

the way software is accessed,

utilized, stored, and maintained.

They introduce or emphasize

new considerations such as:

distribution, more complexity,

and more contexts.

➢ There is need to develop

reliable software for continuous

adaptation to changing

requirements.

i. Randomness in the science of

Software Engineering process

ii. Undermined collaboration in

collaborative software

development process

iii. Emphasis on need for better and

sustainable frameworks,

architectures, tools, and

strategies, with explicit

theoretical foundations for more

Page 159 of 327

➢ Current innovative solutions

rely on results from mix of

successful and failed

implementations, as well as

glitches.

structured adaptation and

sustainable collaboration

iv. need for adequate methods for

managing change in the cloud-

based development process in

the cloud, and knowledge

creation

➢ Need for effective capture and

representation of context data

and all related data across

entire development lifecycle

in a cloud-agnostic format for

generation of actionable

insights

➢ Insufficient context data and

other related data are

sometimes poorly collected,

completely missed, ignored,

misunderstood, or poorly

applied

➢ Requirements, artefacts from

various activities, action plans,

feedback, and other important

related information necessary to

achieve a goal are sometimes

not clearly and accurately

defined, and agreed upon by all

concerned

i. negative impact on balancing

and optimising of flow of

information within the

development environments and

teams.

ii. late detection and resolution of

issues and bugs that could have

been otherwise avoided if

enough context data are

collected, and taken into

consideration and applied

within activities.

iii. inadequate tracking of project

progress.

iv. conflicts in perspectives,

understanding, interpretation

and execution of activities. This

often results in defective

software, or software needing

more rework

➢ Need for effective ways for

managing complexity across

stages in the lifecycle of

cloud-based development

process to ensure

synchronous collaboration

and verifiable

outputs/outcomes at various

stages of the process

➢ Certain disciplines such as the

engineering disciplines, are

usually guided, constrained,

and regulated by physical laws

that ensure regularity and a way

of keeping complexity in check.

Conversely, Software

Engineering is not easily

regulated by physical laws.

i. Growth in complexity of

software artefacts and the

lifecycle process

ii. Differences and difficulty in

understanding, developing, and

testing in the right way and

correctly.

Page 160 of 327

These gaps identified above, comprise the requirements which form the basis for the top-

level use cases for the proposed architecture. The reasons for translating the requirements

from the gaps into use cases include - consolidation of requirements into simplified use case;

to aide development and mapping of functionality to address requirements; elimination of

redundancies; to aid prioritization of phased implementation of functionalities; and to aid and

simplify explorative study.

Figure 49 Prominent identified use cases for the proposed platform

6.2 Overview of an Architecture

An architecture refers to the abstraction structure for mapping process functionality to

systems or system components or modules - helping to realize requirements specifications

(Gerber, et al., 2006). It represents the foundational structure of a system - an abstract

depiction of a system (Clements et al., 2001). An architecture is made up of components or

Provision suitable
communication approach for

distributed development
activities, changes & updates

Provision suitable coordination
mechanism for activities
among distributed teams

Provision software
development activities as

cloud-based services

Enable stakeholder
collaboration across all
activities of software
development lifecycle

Provision of adequate
mechanisms for benchmarking

collaboration within teams

Provision of aequate theory-
based architecture for cloud-

based collaborative
development process

Provision of mechanism for
timely awareness of actions,
feedback, changes & updates

Provision of suitable
coordination approach for

development activities among
distributed cloud teams

Elimination of decision-making
delays

Manament of software
artefact growth and
traceability to goal/

requirement

 iii. Increased need to challenge and

validate results via some form

of empirical effort

Page 161 of 327

elements, with relationships and constraints that guide the functions of the components.

Pressman (2004) defines an architecture as a “comprehensive framework that describes the

form and organization of its constituent components and their organizations”. It can be

viewed as a model, an abstraction that represent views of significant aspects of a real-world

process or system (Bass, et al., 2003; Pressman, 2004).

The absence of a “clear and well-defined” formal architecture for the cloud-based software

development process results in the process resorting to a de-facto standard type architecture

– the n-tier architecture. In this type of unplanned architecture, source code modules are split

into packages. These packages are implicit layers that are not well organized and planned with

considerations for clear roles and relationships to one another (Richards, 2015). The result of

this includes tight or close coupling of components, lack of clear direction or vision, difficulty

in managing change, etcetera. Considerations when building a formal architecture should

include architecture pattern or style, components along with features or properties, and

relationships between the components (Obrenovic & Starcevic, 2006; Fowler, 2003).

Another key consideration when building an architecture is to allow logical reasoning of

constraints, key requirements and any subsequent modifications to ensure sustainability

(Gonzalez-Huerta et al., 2015).Clearly defining key consideration aspects is central to ensuring

proper development and provision of adequate runtime support for the system or process

for which the architecture is developed (Georgantas, et al., 2011). These aspects help to

specify the right abstractions and abstraction level needed to model the proposed

architecture.

Without a formal architecture design prior to implementation, there is a risk of developing

software applications or platforms that are just collections of modules packaged together but

lacking clarity in terms of roles, responsibilities and relationships between modules(Newman,

2015). This is known as an architecture anti-pattern. Other impact of lack of a formal

architecture pattern include brittle and tightly coupled components; difficulty in effecting

change; consideration of factors such as dependencies, change responsiveness, deployment,

and performance characteristics, etc. Formal architecture patterns help to provide:

justification for architectural decisions and choices; performance assurance through

identification and definition of basic characteristics, behaviour, strengths and the weaknesses

Page 162 of 327

of the software application or platform to be developed, that best meets identified business

requirement needs and goals(Mistrik et al., 2016; Richards, n.d.).

6.3 Review of architecture patterns

A pattern is a description of repetitive problem in a specific setting, as well as, its reusable

solution core(Richards, 2015b). Architectural patterns refer to architectural recurrences

within architectural models that provide an approach for defining behaviour, basic

characteristics and functions of an application or system(Richards, 2015a). These patterns

provide a best-practice solution to recurring problems in a specified environment.

To choose an appropriate architecture pattern for designing an adequate architecture for a

process, it is necessary to understand the weaknesses, strengths, and characteristics of

different patterns via a review of common architecture design patterns (Richards, 2015;

Gonzalez-Huerta et al., 2015). Richards(2015b) discusses and compares five common

software architecture patterns based on the following: pattern description, key concepts of

the patterns, examples illustrating the application of these patterns, and key considerations

to bear in mind; as well as a pattern analysis. The table below provides a comparative

summary of common software architecture patterns and provides an analysis scoring based

on pattern considerations such as agility, scalability, development, testability, deployment,

and performance. The analysis scoring helps in determining patterns best suited for a formal

architecture development; and provides guidance towards making and justifying architectural

decisions for collaborative software development process in the cloud. Reasons for a formal

architecture include:

• Clear definition of basic characteristics of a system or process

• Clear definition of behaviour of the system or process

• Management of complexity

• To answer questions about deployment, scale, performance characteristics

• Change management

• Understanding, description and further development of multifaceted systems

6.3.1 Layered architecture pattern

Architectural components are arranged into n layers with specific roles and responsibilities.

Examples of common layers include presentation layer to handle browser and user interface

Page 163 of 327

logic and communication; business layer for handling user request-associated business rules,

etc. Benefits of this kind of organization include separation of concerns between components

– each layer has a specific role/responsibility allowing ease of introducing new roles and

responsibilities in the future. The figure below illustrates a layered architecture pattern.

6.3.2 Service-oriented architecture (SOA) pattern

This pattern lends itself to the organization and utilization of distributed capabilities under

the control of different domain ownership (Kreger & Estefan, 2009). SOA patterns provide a

framework that matches needs to capabilities and combines matched capabilities to address

needs. In SOA, bringing together needs and capabilities is done via a mechanism referred to

as a service. Interaction, visibility and effect are among the key concepts of this pattern

(Hodges, 2002). These concepts provide entities within an SOA pattern, access to capacity

that enables them to see and match needs to capabilities (and vice versa). This is done via

accessible and understandable description of requirements, functions, related constraints,

policies, and access and response mechanisms. Interactions are mediated by message

exchange and invoked actions while service descriptions promote visibility. The result of these

two concepts yields an effect. SOA is task-focused and promotes reuse of capabilities or

solutions, service visibility, interaction support, interoperability, ease of growth and

modification. An SOA architectural pattern is commonly implemented with the aid of web

services.

6.3.3 Microservices pattern

This is an architectural pattern comprised of loosely coupled service elements having

bounded contexts. This architectural approach decomposes a process or application into

service components that form the unit of modularity for the architecture, and each service

component focuses on a cohesive set of responsibilities(Richardson, 2019). This cloud-native

architecture pattern facilitates development of processes and applications as suites of small,

self-contained, task-oriented services that are easy to understand, independently scale and

deploy, and communicating via lightweight mechanisms (Cerone & Roveri, 2018). In the

microservices architecture pattern, an application or process can be scaled or decomposed

using the three-dimensional scale cube model (Ref – Martin Abbott and Michael Fisher, 2015:

The art of scalability). This model defines the following approach for scaling: scaling along the

X-axis balances process or application requests across multiple instances of the process or

Page 164 of 327

application; scaling along the Y-axis functionally decomposes the service or application ton

functional service components; and scaling along the Z-axis routes process or application

requests based on the attribute of the requests(data partitioning).

The microservices architecture pattern provides a useful reference frame for building

reusable self-contained services around functions or capabilities, accessible via a prescribed

interface in line with specified constraints and policies (Mirri et al., 2016). Modelling various

functions as services allows the standardization of collection of data from different services

and accessibility via standardized interfaces. Due to its distributed nature, service

components are remotely accessed via remote access protocols e.g., representational state

transfer (REST), Microsoft Messaging Queuing (MSMQ), etc.

Advantages of microservices pattern include: scalability, decoupling due to loosely coupled

nature of components; better management of development, testing, deployment and

maintenance due to self-contained and modular nature of components(Wolff, 2016).

Considerations to tackle when adopting this architecture pattern include:

• Service contract: agreement between service (remote) and service consumer or client,

specifying both inbound and outbound data, format (XML, JSON, etc), versioning

(homogenous or heterogeneous) and maintenance. Can be service based or

consumer-driven contract

• service access: choice of remote access protocol

• Service availability and response: ability to establish connection to service and ability

to get a response from service

• Service security: securing access to remote services and levels of such access to

functionality within service i.e., authentication, authorization

• Service composition: Level of granularity of service component during design to avoid

increase in complexity. This considers scope and functionalities

• Distributed transaction management –managing atomicity, consistency, isolation &

durability of transactions at transaction level, as well as transaction state

6.3.4 SOA architectural patterns vs. Microservices architectural patterns

Both architectural patterns are distributed patterns that involve service components

providing functionality or capability to other components as services remotely, via standard

Page 165 of 327

communication protocols over a network(Cerny et al., 2018). In both patterns, each service

component has a defined responsibility and is commonly implemented using web services

e.g. RESTful Web services(Zimmermann, 2017). In SOA pattern, the service components are

integrated via an Enterprise Service Bus (ESB) which allows communication via a common

communication bus – the ESB. This bus can comprise of a variety of point-to-point

connections between service components and other components of the architecture

accessing the services. In Microservices pattern, service components communicate with each

other via well-defined REST APIs that are language agnostic. The implication of this is that - in

SOA, each service needs to be aware of the common communication mechanism for

communicating with each other. This communication dependence on the ESB as the common

communication mechanism in SOA, makes it a single point of failure or performance

degradation(Richards, 2015a). However, in Microservices pattern, each service is

independent of the other, and can be developed or deployed as such, allowing for greater

fault tolerance and independent scaling or deployment. Inter-service communication

mechanism in microservices architectural pattern is implemented via well-defined APIs and

advanced message queues to shared repositories(Richards, 2015b).

Microservices architecture patterns tend to be smaller in size and scope, often consisting of

relatively smaller, finely grained, self-contained services capable of being developed, tested,

and deployed independently. SOA patterns tend to be relatively larger in size and scope and

can comprise of multiple microservices. Although the goal of both patterns is to break

applications into loosely coupled, more manageable service components, the finely-grained

nature of services with less dependency in microservices patterns, offers greater flexibility,

scalability and performance(Rademacher et al., 2017).

Page 166 of 327

Table 19 comparative summary of common software architecture patterns (Richards, 2015b)

Architecture

pattern

Key concepts Description Pros Cons Pattern Analysis scoring

Agility Deployment Testability Performance Scalability Development

Layered • Distinct

layers

• 4 standard

layers. Can

create more

• Open-close

concept

• “Layers of

isolation”

concept for

changes

• Organizes

components into

n distinct layers

• Each layer has

specific role

• Layer stacking

determined by

relationship or

organization of

components.

• Uses “open” &

“close” concepts

to define layer

relationships

• Higher layers use

services defined

by immediate

lower layer (in

closed layering),

or all lower layers

(in open layering)

• Widely known

• Separation of concerns

makes it easy to build

roles

• Limited component

scope & well-defined

interfaces make it easy

to develop & test

• Breaks apart complex

systems

• each layer can function

as a coherent whole

• Layer dependencies

are minimized

• Supports

standardization

through definition of

layers & interfaces

• Can introduce

overhead e.g., storage

or speed

• Risk of architecture

sinkhole anti-pattern

• Can become monolithic

(tightly coupled) &

difficult to

test/maintain without

open-close concept

Page 167 of 327

Event-driven • 2 Topologies

– broker &

mediator

• Decoupled

single

purpose

component

• Asynchronou

sly process

events

•

•

• Mediator

topology for

orchestrating

multiple steps of

an event using a

central mediator.

• Broker topology

for chaining

together multiple

events without

using a central

mediator

• Mediator

topology event

components

(event queues,

event mediator,

event channels,

event processors)

• Distributed

• Asynchronous

• Highly adaptable

• Highly scalable

Space-based • Processing

unit

• Virtualized

middleware

• Processing unit

comprising of

application

modules & in-

memory data

grid for handling

functionality

• solves concurrency &

scalability issues

• Replicated application

in-memory (distributed

shared memory)

• Components can be

implemented through

3rd party services

• Complex to implement

• Expensive to

implement

• Not well-suited for

large-scale database

application with large

data

Page 168 of 327

• Virtualized

middleware

component to

handle requests,

data, sessions,

communications,

and other

requirements.

Comprise of four

grids –

messaging, data,

processing, and

deployment

manager

• Good for small web-

based applications

• Quick scaling of

processing units.

• Responds well to

changes

• Generally, not

decoupled

Service-based

patterns

• Separate

deployable

units

• service

components

• distributed

architecture

• Topologies: API

REST-based,

Application REST-

based and

centralized

messaging

• components

designed as

services with

varying degrees

of granularity

• Each service

component can

• Distributed service

architecture

• Offers considerable

levels of abstraction

• Heterogeneous

connectivity

• Easier deployment

• Streamlined delivery

• Service orchestration

• Increased scalability

due to distributed

nature

• Challenging to design

right level of

granularity

• Too many fine-grained

service components

can turn architecture

into complex pattern.

• Database bottleneck

due to use of

centralized (shared)

database

Page 169 of 327

contain one or

more

modules/functio

ns

• components are

accessed through

remote access

protocol

• Evolved to address

monolithic issue of

layered architecture

• Manages growth of

large systems

• Facilitates service

provisioning & usage

• Service orchestration

• Alignment of business

goals with capabilities

• Ubiquitous

• Relative difficulty in

implementation

• Difficult to understand

– complex.

• Can be expensive

Page 170 of 327

6.4 Modelling the architecture

Key assumptions

• The development process scenario is distributed and multi-phased

• The development process scenario is made up of at least one activity

• The development process scenario involves at least two people

• The development process scenario has at least one goal

• Resources involved within the development process are distributed

• People and systems interact within development process through exchange of

messages and artefacts

• A service can be represented as implementation of a clearly defined activity or task

• Services can be provided by an individual or a component of the process

It is proposed that the cloud-based software development process adapt 6 key AT-based

categories, as well as guiding principles, for all aspects of the collaborative development

process(Engeström, 2001). These categories are:

• subject (stakeholders i.e., project managers, cross functional team members,

community users),

• object (requirements which eventually influence task creation, modification,

evaluation and sign off),

• cloud resources (tools – can be plugins),

• division of labour (team roles/responsibilities),

• Community, rules, and outcome.

These categories make up a unit of the collaborative development process and provide

contexts to the process. The key assumptions and AT-based categories above are illustrated

in the context model diagram in the Figure 43 below. Guiding principles are as follows:

• Collectiveness: The collective activity system (with all objects & artefacts) viewed in

relation to other activity systems, is represented as a prime unit of analysis. This prime

unit of analysis must be:

o Goal-directed (tasks & actions are directed towards an identified goal)

o Object-oriented (tasks & actions are focused on object transformation)

o Reproducible through generation of tasks/actions/operations

Page 171 of 327

• Multi-voicedness: activity system must be able to collect, translate and negotiate the

views of the different participants in the various roles & responsibilities

• Historicity: The activity system needs to analyse object transformations against

object’s own historical transformations and actions that have shaped the object.

• Mediation: The activity system’s interactions and transformations are mediated by

tools and signs

Figure 50 Context model for proposed AT-based architecture for enhancing context-aware collaboration cloud-based
software development process.

Page 172 of 327

 Table 20 Components of context model for proposed AT-based architecture for enhancing context-aware collaboration cloud-

based software development process.

Name Classification Data Flows

AT-BASED CLOUD SOFTWARE

DEVELOPMENT PLATFORM (POC)

Process

Project manager (PM) External entities PM registration

PM authentication

PM authorization

 PM service request

PM service instantiation

Project creation

Team creation

Task spec & context data creation

Scheduled task review

PM publish

PM subscription (CFTM & CU)

Task spec output (release) testing

Platform-generated publish (report)

PM Logging

Cross-functional team members

(CFTM)

External entities CFTM registration

CFTM authentication

CFTM service request

CFTM service instantiation

Task specification & context data

Scheduled task review

Dev environment configuration

Dev environment setup & access

Task spec aligned actions

Page 173 of 327

Task output (release) & context data

Task output (release) testing

Change implementation

CFTM publish

CFTM Subscription (PM & CU)

Platform-generated publish(report)

CFTM Logging

Community users (CU) External entities CU registration

CU authentication

CU service request

CU service instantiation

CU requirements

Scheduled task review

Task output (release) testing

CU change initiation

CU final approval

CU publish

CU subscription (PM & CFTM)

Platform-generated publish (report)

CU Logging

Third-party plugins (TPP) External entities TPP registration

TPP configuration

TPP connection

TPP connection test

TPP de-registration

TPP Logging

Page 174 of 327

6.5 Architecture description of activity scenario for collaborative software development

process in the cloud

The software development process has the capacity to produce software-based and

knowledge–based artefacts (the underlying capability). A context-aware AT-based

architectural framework (the platform/service) will provide means to support collaboration

within the software development process in the cloud (service functionality). A stakeholder

(client or team member) will access activities, resources, and artefacts within the architectural

framework (the output of invoking the platform service) via a standard interface (service

interface). To access activities, resources and artefacts, a stakeholder will need to understand

what type of resources to use, and other aspects of the cloud-based process, including

possible limitations. There is a presumption that stakeholders will only be able to securely

access activities, resources, and artefacts they participate in or collaborate on (service

technical assumptions).

A stakeholder (client or team member) will need to create an account to use the service

(service constraint) and the cloud-based architectural framework will meter usage and expect

the stakeholder to use only what they are authorized to use, at the rate prescribed (service

policy). When the stakeholder is authenticated on the platform, thereby agreeing on

constraints and polices (service contract), the stakeholder receives authorization to access

activities, resources and artefacts using the service as long as team membership and

connection to service remain intact (e.g. leaving the team or lack of strong network

connection would disrupt service distribution) and the stakeholder can have reports, alerts

and payment sent (e.g. by messages, notifications or logs) to the registered account

(reachability).

 Another stakeholder (for example, a guest user or guest reviewer or guest developer) may

use a contracted (limited) service without any registered account or any requirement to also

satisfy the initial service constraint (i.e., reachability only requires intact network connection)

but would nonetheless be expected to be compatible with the service interface. In certain

situations (for example, excessive demand), an account may limit service usage or allow

offline saves (service policy). A stakeholder might lodge a formal complaint if this occurs

frequently (stakeholder's implied policy). If the account requires dedicated connection to

Page 175 of 327

every activity, resource and artefact, the underlying capability would still be there, but this

would be a very different service and have a very different service interface.

6.6 High-level architecture components

Architectural components are useful for the specifying the principal elements and behaviour

of the system or architecture (Portocarrero et al., 2017). This diagram features the main

components of the Architecture in tiers, for ease of modification or extension

Cloud Service Manager

Responsible for:

• service management

• Installing service on node

• Configuring service

• Rebalancing service across nodes

• Service failure detection

• Starting service

• Stopping service

• Pausing service

• Monitoring service

• Service logging

Service registry

Responsible for:

• maintaining list of services and service definitions

• maintaining list of service nodes

• enabling service lookup functionality

API Gateway

Responsible for:

• providing entry point for clients’ requests and access to services

• forwarding client requests to appropriate service at the backend (Activity manager)

• aggregating and returning service responses to clients

Page 176 of 327

• allowing decoupling of service from clients to facilitate ease of service refactoring

• providing client authentication

• providing logging functionality

• aiding load balancing

• Error detection

Activity Manager (Orchestrator)

• Create, define & sequence activities

• Create & assign roles

• Define environment variables

• Set up environments

• Suspend, resume & end activities/environments

• Synchronize activities/environments

• Environment/activity/role logging

• Manage activity workflow/environment

• Logic controller

• Manage artefacts

• Manage contexts

• Handle collaboration logic

• Handle context logic

Database service

This storage component of the architecture implements an efficient and structured storage

mechanism for storing, organizing, and protecting data related to software projects before,

during and after the process. This component of the framework implements an efficient and

structured storage mechanism for storing, organizing, and protecting data related to software

projects before, during and after development.

Page 177 of 327

Figure 51 Database service categories

DATABASE SERVICE

Structured Data

(Structured Schema)

RDBMS

Unstructured Data

(Flexible Schema)

NoSQL DBMS

Document Stores

Key-value stores

Graph databases

Data related to Mobile &
Object-Oriented

Development

OODBMS

Object-Relational
mapping(ORM) frameworks

XML-based data

Xml-DBMS

Page 178 of 327

6.7 Activity and activity sequence decomposition

1. Stakeholder management services (Based on roles)

a) Cross-functional team member (CFTM) stakeholder service

b) Community user (CU) stakeholder service

c) Project manager (PM) stakeholder service

2. Core activity services - have been adapted from SWEBOK v3.0 (2014)

a) Project management service (Accessible to PM role only)

• Create project

• Register goal

• Create team

• Create task

• Manage/monitor goal

• Manage/monitor Project

• Manage/monitor team

• Manage/monitor task

b) Requirements service (accessible to CFTM roles)

Modules

• Retrieve task specification

• Setup tasks

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

c) Design service – accessible to CFTM roles

Modules

• Retrieve task specification

• Setup tasks

Page 179 of 327

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

d) Build service – accessible to CFTM roles

Modules

• Retrieve task specification

• Setup tasks

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

• Release

e) Continuous Test service - – accessible to CFTM roles

Modules

• Retrieve task specification

• Setup tasks

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

f) Deployment service – accessible to CFTM roles

Modules

Page 180 of 327

• Retrieve task specification

• Setup tasks

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

g) Maintenance service – accessible to CFTM roles

Modules

• Retrieve task specification

• Setup tasks

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

3. Value-add services

• Cloud Activity Review service

• Message broker service (Messaging Middleware)

• Reporting service – Cloud Activity Data Aggregation Service

• Resource Management service

• Cloud Activity Security service

• Database service

6.8 Operation-condition sequences for activity

1. Operation: Suppose a client or software owner has a need or goal e.g., needs

development of an online pizza ordering system. The client enters this need using the

CU service component. This action becomes the initial event and might be given a

Page 181 of 327

topic like – ‘need or goal event’; with a message like – ‘require development of online

pizza online system’.

2. Operation: This event is published to event channels (message broker).

3. Condition: Every action within any service component is treated as an event and

automatically published to the event channels

4. Condition: Every published event is received and stored by every service component.

5. Condition: All service components are subscribed to event channels.

6. Operation: All service components receive, and store published event; and react to

only those important to their function, or those with possible impact on their function.

7. Operation: The review service component can be invoked from within any other

service component, and by any stakeholder.

8. Operation: Once the review service component is invoked, every other service is

automatically paused, and will have to be manually resumed.

9. Operation: The entire process continues until the project management service

component publishes a ‘project complete’ event.

10. Operation: Service components other than the reporting service component, can then

discard unrelated published events that are stored in their data store periodically. The

reporting service component stores every published event.

11. Operation: The reporting service component stores every published event and can be

queried to generate reports and insights for the entire activity process, or filtered by

service components, or some other criteria.

Page 182 of 327

Cloud-based software development
process by sub-domain using Y-axis scaling

from Scale cube model

Project (Activity)
Management service

Requirements
Gathering & analysis

service

Build service

Design service

Continuous Test
service

Deployment service

Maintainance service

Load balancer

Activity
(service)
Schema

Goal

Sub-goals

Sub-goal

Sub-goal

Operations

Activity

Tasks

Commands

Queries

<<include>>

Task specs

entry / Action
do / Action++
exit / Release

<<extend>>

directed by

directed by

Conditions
Command
conditions

Query
conditions

ACTIVITY BASELINE STRUCTURE (SCHEMA)

 Scaling Service into n-identical
instances using the X-axis scaling

from Scale cube model

Service
Instance 2

Service
Instance 1

Service
Instance n

Figure 52 Service decomposition & structure

Page 183 of 327

Figure 53 Project stakeholders, Cloud frontend and API Gateway

Page 184 of 327

Figure 54 Cloud frontend, API Gateway, Cloud Activity service, and Stakeholder service

Page 185 of 327

Figure 55 API Gateway and cloud software development services

Page 186 of 327

Figure 56 API gateway Cloud collaboration services, Cloud infrastructure services and Cloud activity analysis services

Page 187 of 327

Figure 57 Datastores for Cloud software development services

Figure 58 Datastores for Cloud collaboration services, Cloud infrastructure services and Cloud activity analysis services

Page 188 of 327

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID PUBLISHER/SUBSCRIBER ID
TOPOLOGY LEGEN D/K EY

Implementing Event-driven
microservices for inter-
service communication using
pub-sub model message
broker within Activity layer
To ensure all activities within
each microservice are
handled as a single
transaction that can be used
to coordinate the process, as
well as notify(awareness) all
other microservices about
activities. Using a message
broker & pub/sub model
helps to decouple services
and handle interaction
between service, as well as
ensure services achieve
eventual consistency

Activity Security
service

Activity
Security

Database

2 Save

Activity Security
APIConsume event

Publish

event

User(s)

Execute

action(s)
Event

Notification

 PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID PUBLISHER/SUBSCRIBER ID

 PUBLISHER/SUBSCRIBER ID

API
GATEWAY

Requirements
service

Requirements
Database

2. Save

4. Consume event

3. Publish event

Requirements
API

User(s)

1. Execute

action(s)
5. Event

Notification

Event
Cloud Activity

Review (CARev)
service

CARev
Database

CARev API
Consume event

Publish event

User(s)

Execute
action(s)

Event
Notification

Event

Design serviceDesign
Database

(2) Save

(4) Consume event

(3) Publish event
Design API

User(s)

(1) Execute

action(s)
Event

Notification

Event
Cloud Activity

Message Broker
(CAMB) service

CAMB
Database

2 Save

CAMB API
Consume event

Publish event

User(s)

Execute

action(s)
Event

Notification

Event

Build serviceBuild
Database

(2) Save

(4) Consume event

(3) Publish event
Build API

User(s)

(1) Execute

action(s)
Event

Notification

Event Cloud Activity
Resource
manager

(CARM) service

CARM
Database

2 Save

CARM API
Consume event

Publish event

User(s)

Execute

action(s)
Event

Notification

Event

Continuous Test
service

Continuous
Test

Database

(2) Save

(4) Consume event

(3) Publish event

Continuous Test
API

User(s)

(1) Execute

action(s)
Event

Notification

Event
Cloud Activity

Registry
(CAReg) service

CAReg
Database

CAReg API
Consume event

Publish event

User(s)

Execute

action(s)
Event

Notification

Event

Deployment
service

Deployment
Database

(2) Save

(4) Consume event

(3) Publish event
Deployment API

User(s)

(1) Execute

action(s)
Event

Notification

Event
Cloud Activity
Plugin (CAP)

service

CAP
Database

2 Save

CAP API
Consume event

Publish event

User(s)

Execute

action(s)
Event

Notification

Event

MESSAGING
MIDDLEWARE

(Publish/Subscribe
Channel)

MESSAGING
MIDDLEWARE

(Publish/Subscribe
Channel)

MESSAGING
MIDDLEWARE

(Publish/Subscribe
Channel)

MESSAGING
MIDDLEWARE

(Publish/Subscribe
Channel)

MESSAGING
MIDDLEWARE

(Publish/Subscribe
Channel)

Maintenance
service

Maintenance
Database

(2) Save

(4) Consume event

(3) Publish event

Maintenance
API

User(s)

(1) Execute

action(s)
Event

Notification

Event Cloud Activity
Data

Aggregation
(CADA) service

CADA
Database

2 Save

CALA API
Consume event

Publish event

User(s)

Execute

action(s)
Event

Notification

Event

2 Save

2 Save

Cloud Activity
Log

Aggregation
(CALA) service

CALA
Database

2 Save

CALA API
Consume event

Publish event

User(s)

Execute

action(s)
Event

Notification

Event

Stakeholder
service

Stakeholder
Database

(2) Save

(4) Consume event

(3) Publish event
Stakeholder API

User(s)

(1) Execute

action(s)
Event

Notification

Event

Event

MESSAGING
MIDDLEWARE

(Publish/Subscribe
Channel)

MESSAGING
MIDDLEWARE

(Publish/Subscribe
Channel)

API
Services

Cloud Activity Analytics
services

Cloud Infrastructure
services

Cloud collaboration
services

Cloud database
services

Cloud security
services

Cloud Software development
services

Stakeholder
services

Figure 59 Event-driven interservice communication for Activity layer

Page 189 of 327

Messaging Middleware pattern (Publish/Subscribe)
Coordination: Access to services and related data are coordinated through APIs

Trade-off - Using request-response model.
Pros: inter-service communication is synchronous; Abstraction to hide implementation details and flexibility to use/change implementation technologies with minimum impact on users.
Cons: services have to wait for data from API in order to perform required action

Using publish-subscribe model.

Publisher
(Microservice publishing

event e.g. Continuous Test
service)

PUB

SUB

Subscriber
(Microservice subscribed to

event e.g. Stakeholder
service)

SUB

Subscriber
(Microservice subscribed to
event e.g. Review service)

SUB

Subscriber
(Microservice subscribed to

event e.g. Build service)

Publish event
e.g. CreateTestScriptEvent

Consume event
e.g. CreateTestScriptEvent

Consume event
e.g. CreateTestScriptEvent

Consume event
e.g. CreateTestScriptEvent

Consume event
e.g. CreateTestScriptEvent

Figure 60 Messaging Middleware pattern (Publish/Subscribe)

Page 190 of 327

AT Cloud-based collaborative software development process workflow (cross-functional flow chart)

API (Tool) PM (Subject stakeholder)
Message broker (enabling cross-function

collaboration via TWQ)
CU (Community User) CFTM (Subject stakeholder)Cloud Activity Resource Manager service (Tool)

Define Activity

goal

based on Need

Checkpoint:

Review Goal

Changes

required?

N

Any related

sub-goal?

Y

Define sub-goal

based on Goal

decomposition

N

Checkpoint:

Review sub-

goal(s)

More sub-

goals

y

Changes

required?

N

Retrieve related

requirements

(objectives)

N

Y

Change

management

process

Y

Change

management

process

More related

requirements?

Y

N

Checkpoint:

Review

requirements

Changes

required?
Y

Change

management

process

N

Enter Task

required to meet

requirements

Any related

 sub-task?

Y

Enter sub-task?

Any more sub-

task?

Enter task-related

conditions

(constraints)

N

Any more

conditions?

Y

Checkpoint:

Review Tasks

& conditions

Changes

required?
Y

Change

management

process

N

Generate task

specification Checkpoint:

Review Task

specification

Changes

required?
Y

Change

management

process

Assign task to

CFTM

stakeholder

All tasks

assigned?

N

Y

Checkpoint:

Review

Assignment

Changes

required?
Y

Change

management

process

N

N

Close Project

Activity

Start Stakeholder

service

Registered

Stakeholder?

Y

Authenticate

Stakeholder

N
Register

Stakeholder

Role = PM? N Role = CU? N Role = CFTM?

N

Y

Access

Stakeholder

Service

context

Y

Access CU

Stakeholder

Service

context

Y

Access CFTM

Stakeholder

Service

context

Saved service

instance state

New service

instance?

Create new

service in Cloud

Activity Service

Registry

Provision new

service

instance

Configure &

intitialize

service

instance

Start

PM_Service

instance

Resume service

instance sate?

Retrieve &

resume Saved

service

instance state

Start

CFTM_Service

instance

Start

CU_Service

instance

Retrieve task

specification

Publish task spec

N

Execute

action

Checkpoint:

Review

Action

Changes

required?

N

Y

Change

management

process

All actions

complete?

N

Generate

Rrelease

Checkpoint:

Review

Release

Changes

required?

N

Y

Change

management

process

Test Release

Checkpoint:

Review Test

Changes

required?

N

Y

Change

management

process

Output

Release

Checkpoint:

Review

Release

Changes

required?

N

Y

Change

management

process

New Need?

Yes

Enter Need

Additional data

needs?

Y

Present in sub

data?

Retrieve

additional

data needs

Check data in

sub data

Y

N

Pub

addition

al data

needs

Pub Sub-

Activity

[name]

Status =

complet

e

Retrieve

 Activity

status

complete

sub data

Retrieved All?

Pub

Project

Activity

status =

Complet

e

Y

Pub

Awaiting

Sub-

Activity

[Name]

status

N

Output Final

Release

Release

(Task

specs)

Release

(Sub-

activity

[name]

Final

Release

N

Retrieve

saved service

instance state

Resume

Saved service

instance

Does service

exist?

Y

N

Service

request

Y

Figure 61 AT Cloud-based collaborative software development process workflow (cross-functional flow chart)

Page 191 of 327

Start

End

Access API Gateway

Existing
Stakeholder?

No
Register

Stakeholder
Account

Authenticate
Stakeholder

Authentication
successful?

No

Yes

Access
Continuous
Test Service

Select
CustomTesting

Service

Select Template
Testing Service

Capture Client SUT/
AUT

SUT/AUT Input
Confirmed?

No

Yes

Verify Extra
custom files to

be input?

No

Capture Custom
Client requirements

Yes

Upload extra
custom files -test
scenarios, test
cases, test data

Save to
Database with

appropriate
Pre-defined
extension

Save to
Database with

appropriate
pre-defined
extension

Captured Client
Requirements?

No

Yes

Define & Extract
Specific Test

related-Data into
Custom Testing
Service Package

Define & Generate

Create & Design

Setup Test
environment

Record/Generate
Scripts

Build Test suites/
Test Library

Save to
Template

Database with
pre-defined
extension

Review/Confirm
test design/test

strategy/test case/
test scripts

Prioritise test

Initialise test

Execute Test

Save to
Database with

appropriate
pre-defined
extension

Select Template
Testing Service

Package

Define &
Extract Test

AUT/SUT

Define &
extract test

type

Define &
extract specific

client test
requirements

Define &
Extract specific
client criteria

Define &
Extract specific

client
configuration

files

Define &
Extract specific
client test data

Define &
Extract specific

domain-
specific

knowledge

Define &
Extract

environment
variables and

constants

Define &
Generate final
test scenarios

Define &
Generate final

recovery
scenarios

Define &
Generate final
test criteria/
conditions

Define &
Generate final

test
specifications

Define &
Generate final

test data

Define &
Generate final

expected
results

Define &
Generate test

metrics for
measurement

Define &
Generate final

test
boundaries

Define &
Generate final
test starting

points

Define &
Generate final
test exit points

Define &
Generate final

test check
points

Define &
Generate final
environment
specifications

Create &
Design Test
Case Library

from
everything
Generated

Create &
Design test
strategy -
Keyword-

driven/data-
driven/

modular/
model

Create &
Design test/

test procedure

Create &
Design Object
repositories,

function
libraries, and
data tables

Create &
Design

mechanism for
updating/

extending test
library

End of Define &
Extract?

Yes

No

End of Define &
Generate

Yes

No

Confirm Create
& Design end?

No

Yes

Provision
Resources for
Cloud instance

Test
Environment

Configure Test
Environment

with variables,
constants and

other
requirements

Test
Environment

setup complete?

No

Record/
Generate test

scripts

Record/
Generate test
configuration

scripts

Record/
Generate
Clean up
scripts

Record/
Generate

Driver scripts

All Scripts
Generated

Review/confirm
complete?

Yes

No

Build complete?

No

Yes

Prioritisation
complete?

Yes

No

Test
Initialisation
complete?

Yes

No

Bugs/anomaly
detected?

YesDebug

Match test logs/
results against test
check points & Exit

points

Debug
Successful?

Yes

No

Re-Debug? Yes

No

Exit point met? No
Keep

monitoring?

Yes
Match test results

against Final
Benchmark Metrics

Yes

No

Create Final
Benchmark

metrics

Any mismatch/
discrepancy?

Yes
Flag mismatch/

discrepancy

Output
mismatch/
discrepancy

Output Test results

No

Save to
Database with

pre-defined
extension

End Test

Format Test Results

Output Test Results
to client

Figure 62 CFTM_Test workflow

Page 192 of 327

Register/define

Activity goals &

Dependencies

Checkpoint:

Review Goal

Changes

required?

N

Check for more

goals?

N

Y

Retrieve related

requirements

(sub-goals/

objectives)

Y

Change

management

process

More related

requirements?

Y

N

Checkpoint:

Review

requirements

Changes

required?
Y

Change

management

process

N

Enter

requirement-

related Task

More

requirement-

related Task?

Enter task-related

conditions

(constraints)

N

Any more

conditions?

Y

N

Checkpoint:

Review Tasks

& conditions

Changes

required?
Y

Change

management

process

N

Auto-

generate task

specification

N

Checkpoint:

Review Task

specification

Changes

required?
Y

Change

management

process

Release:

Task

specifications

Checkpoint:

Review

Release

Changes

required?
Y

Change

management

process

N

N

End

Start Stakeholder

service

Automatic

Restore Point

(Save service

instance

state)

New service

instance?

Resume
saved project

instance/
create New?

Y

Y

N

Service in

Service

Registry?

Y

N

Y

Access

PM_Stakeholder

Service context

Service request

Retrieve saved

service instance

state

Create NEW

service in Cloud

Activity Service

Registry

Provision service

instance

Configure &

intitialize service

instance

Start PM_Service

instance

N

Create/Initiate

Project

Create Project

Team

Y

Any more

additions?

Y

Retrieve & resume

Saved service

instance state

Close Project

Manage/monitor

Team

Checkpoint:

Review Team

Changes

required?
Y

Change

management

process

N

Manage/monitor

Project

Checkpoint:

Review

Project

Changes

required?
Y

Change

management

process

N

Manage/monitor

Goals

Checkpoint:

Review Goals

Changes

required?
Y

Change

management

process

N

Manage/monitor

Tasks

Checkpoint:

Review Tasks

Changes

required?
Y

Change

management

process

N

Manage/monitor

Releases

Checkpoint:

Review

Releases

Changes

required?
Y

Change

management

process

N

All Tasks

complete?

N

Y

All releases

complete?

N

Y

All Goals met?

N

Workflow Description:
This stakeholder workflow describes
PM_stakeholder scenario interaction
with the Microservice architecture

Restore points
are automatically
created after

every release

Boxes of this
nature(with inner
lines) represent
pre-defined
processes that
signify formal
collaboration
points by subject
stakeholder(initia
ting stakeholder/

primary actor)

Figure 63 PM_Stakeholder Workflow

Page 193 of 327

7 Architecture implementation and evaluation

7.1 Introduction

This section seeks to establish the trustworthiness of the research outcomes in this work. This

is done through validation of literature review by means of published work in peer-reviewed

conferences (see List of publications on page) and evaluation of the proposed architecture via

a proof-of-concept implementation (POC). The POC implementation is based on the proposed

microservice architecture and leverages the Cloud (Amazon EC2 instances). This implementation

is then evaluated in terms of accessibility, functionality and performance through test

scenarios, test cases and simulated mock services. The evaluation criteria of Usability,

Functionality, Modifiability, Subset-ability, Reliability, and Performance have been discussed

in Section 4.7.4 (of Section 4). First, Section 7.2 summarises the design of the evaluation

exercises performed, the case study scenario and use cases involved. Then, Sections 7.3 and

7.4 report the methods (test scenarios, test cases) and test results. Section 5 already

discussed the theoretical framework and methodology underpinning the architecture, while

Section 6 already discussed and presented the architecture in terms of topology, description,

and workflow, designed to accommodate the proposed recommendations in Section 3 using

the conceptual foundations and theoretical framework discussed in Section 4 & 5. Finally,

Section 7.6 summarises the main findings from the evaluation.

7.2 Evaluating and validating an architecture

The best way to assess and validate the ability of an architecture to meet stated requirements,

as well as determine sustainability of the architecture, is through evaluation (Gonzalez-Huerta

et al., 2015). Various ways or methods exist for evaluating an architecture: simulation or

controlled experiments (Golden et al., 2005; Babar & Kitchenham, 2007); experience-based

evaluations through expert knowledge; simulation or proof-of-concept based evaluations;

use of mathematical models, methods and proofs; or scenario-based evaluation methods

(e.g. Architecture Trade-off Analysis Method (ATAM), Architecture Level Modifiability

Analysis method (ALMA), and Software Architecture Analysis Method (SAAM)); evaluation

using ontologies (Erfanian & Shams Aliee, 2008; Mattsson et al., n.d.; Szwed et al., 2013;

Omidvar & Vaziri, 2013). Maurya & Hora (1970) provide a comparison to allow for the

selection of an evaluation method that could evaluate an architecture for more than one

Page 194 of 327

quality attribute. Other methods evaluate software architecture for quality attributes by

adopting aspect-orient programming methods, or use of metrics or use cases, or static

evaluation techniques (Zayaraz et al., 2009; Barros et al., 2009; Bouwers, 2013; felienne,

2013; Knodel et al., 2006). Quality attributes of an architecture that can be evaluated include:

• Usability – refers to a measure of how well a user can effectively use a system

• Functionality – refers to a measure of the system’s ability to carry out functions that

meet stated requirements

• Modifiability – refers to a measure of how easy & cost-effective it is to make changes

to the system

• Subset-ability – refers to a measure of how easy it is to decompose a system into its

component parts and keep it functional

• Reliability – refers to a measure of the operational accuracy/correctness of the system

over time

There is lack of consensus in literature with regards to design and evaluation criteria for

architectures (Gerber, et al., 2006). Therefore, to ensure availability of valuable information

that provide insight into requirements of the architecture; guide architecture design; as well

as comparatively evaluate against existing architectures, the following best practice criteria

list have been compiled from literature.

 Table 21 Summary best practice design and evaluation criteria (Bruegge & Dutoit, 2004)

CRITERIA DESCRIPTION EVALUATION QUESTION REFERENCE

Clear

context

Relates to determination of important

aspects of the architecture model,

components of system & properties,

relationship between components

• Does the architecture description highlight

or identify context?

(Bass, et al.,

2003) (Fowler,

2003) (Bruegge

& Dutoit, 2004)

(Gerber, et al.,

2006) (Parnas,

2001)

Appropriate

abstraction

level &

hiding of

Relates to ensuring sufficiently high-

level holistic visibility of only relevant

aspects of an architecture model at a

system or subsystem level.

Implementation details are hidden

• Can level view of the architecture model be

considered holistic, within context?

• Can any component, property or

relationship be removed without losing

(Bass, et al.,

2003) (Fowler,

2003) (Bruegge

& Dutoit, 2004)

Page 195 of 327

implementa

tion details

wholeness of architecture model at the

specified abstraction level?

• Are there any visible implementation

details in the description of architecture,

components, or relationships?

(Gerber, et al.,

2006)

Clear

definition

of

component

functionalit

y

Refers to determination of

architecture model components

and/or component grouping

• Is the function of the component within the

architecture model, specified by the

component description?

• Is the position of the component within the

architecture model specified by the

component description?

• Can the component be removed without

compromising architecture integrity?

(Bass, et al.,

2003) (Fowler,

2003) (Bruegge

& Dutoit, 2004)

(Gerber, et al.,

2006)

Modularity relates to modular organization or

structuring of components or

component grouping, to allow

flexibility to make implementation

changes provided functionality and

interface remain same

• Can component implementation be

replaced with another of same functionality

and interface, without compromising

architecture integrity?

(Bass, et al.,

2003) (Fowler,

2003) (Bruegge

& Dutoit, 2004)

(Gerber, et al.,

2006)

Appropriate

organizatio

n/structure

Relates to how components are

organized/structured within the

architecture model. This criterion

includes specification of relationships

and dependencies

• Are the components or component

grouping clearly structured?

• Are there components or component

grouping requiring or depending on

functionality defined or provided by

another?

• Are the dependencies clearly specified?

(Bass, et al.,

2003) (Fowler,

2003) (Bruegge

& Dutoit, 2004)

(Gerber, et al.,

2006)

7.3 Architecture Implementation approach

The architecture adopts a hybrid of the service-based architecture pattern and layered

architecture pattern. This translates into components exposed or modelled as services and

running in an instance on top of a cloud middleware layer. Each service component is

modelled as a single, self-contained service with functionalities. Each service is responsible

for managing its data and state.

Page 196 of 327

Table 22 Architecture implementation approach

PATTERN COMPONENT ROLE/RESPONSIBILIT

Y

SUB-

COMPONENT

S

RESPONSIBILITY

Implementing Microservices Architecture

Microservic

es

Service

Components

• perform specific

functions of process

 Service access

component

• Provide access to

remote service

• Can use

REST-based

User

interface to

access

service OR

• lightweight

centralized

message

broker as

lightweight

transport to

access

service

• Both above

REST-based API

• Expose Services to stakeholders through API

• Receive stakeholder requests and messages

• Provide remote access to services

Lightweight message broker

• Lightweight transport to access remote

services

• Provide advanced queueing mechanisms and

asynchronous messaging

• Monitor service

• Provide error handling

• Provide load balancing and scalability

• Provide broker clustering & broker federation

 Utility

components

• Handle shared

functionality within

service components

 Shared

database

• Handles inter-

service

communication

• Handle information

needs

• Define

Shared

repositories

as needed

• Define repository responsibilities as needed

Implementing Layered Architecture

Page 197 of 327

Layered Presentation

layer

• Handle browser

communication

logic

• user interface

• Handle

presentation logic -

format data for

display

• User screen

• User

delegate

module

(UDM)

Incoming

• User request is received through user screen

• UDM locates appropriate UO

• UDM determines what request-related data

needs to be sent to responsible UO

• UDM determines how to get request-related

data to responsible UO

• UDM assigns user request or process to

responsible UO

Outgoing

• UDM formats result data

• Passes formatted result data to User screen

for onward display

 Activity

orchestration

layer

• Execute

collaboration/conte

xt rules associated

with user

requests/processes

• Perform

collaboration/conte

xt logic on data

• User object

(UO)
Incoming

• Receives request & related data from UDM

• Aggregates all info needed to execute request

• Passes this info to appropriate UDAO (calls

out)

Outgoing

• Checks result data to ensure it meets request

requirements

• Passes verified result data back to UDM

 n-layer e.g.,

shared

services layer

• To expand

functionality

• As needed • Define as needed

 Persistence

layer

• User data

access

object

(UDAO)

Incoming

• Receives aggregated request-related info

from UO

• Gets requested data related to user request

from database

Outgoing

• Aggregates result data from database

• Passes result data back to UO

Page 198 of 327

To evaluate the architecture developed in this research thesis, a proof-of-concept

implementation was carried out, along with a simulation of a cloud-based activity scenario to

evaluate performance of implemented functionality. Simulation was the approach chosen in

this research thesis as a means of evaluating important approaches that can be employed to

explore activity designs and gain confidence in the ability of the architecture to perform as

expected(Taušan et al., 2017). The simulation conceptual model was used to describe and

evaluate the architecture, what it represents, assumptions, and capabilities for satisfying

specified requirements. The simulation was instrumental to troubleshooting and informing

design decisions by allowing quantification of performance aspects, generation of test data

and qualification of the system. Other pros to the use of simulation in this research thesis

include reduction in costs (expense, resources, and time) of validation and verification that

came from prototype implementation and testing using AWS services and Blazemeter tool for

more horizontal test coverage. Usually, simulation can either be carried out in one phase, or

broken down into some or all the following phases: verification, validation, and accreditation

and simulation conceptual model (Peltz, 2003; Dijkman & Dumas, 2004). Verification: refers

to the process undertaken to determine that an architecture or framework model, and

related data, are an accurate representation of a conceptual description and specification.

Validation: refers to the process taken to determine degree of accuracy to which an

architecture or framework model and related data, accurately represents the real world, from

the perspective of the model’s intended use. Accreditation: refers to the official certification

of an architecture or framework model, and related data, as acceptable for specific use. In

this research thesis, all phases were bundled up into one phase.

7.4 Software requirements specifications (SRS) for POC implementation of architecture

The following requirements outlined below cover the core requirements for the proof-of-

concept and provide additional bounded contexts for the implementation of the proposed

architecture. This SRS summarises the service requirements implemented in this POC. The

system should comprise of the following:

R1. The system should provide access to team members irrespective of location or device

R2. The system should be able to cope with large number of users and resources

R3. The system should provide a user management service for registering users

Page 199 of 327

R4. The system should allow user registration via a standard interface.

R5. The system should allow user registration according to roles (Roles are Admin, Project

manager, Cross-functional team member & Community user)

R6. The system should be able to add new users or remove users

R7. The system should allow users to authenticate and log in via a standard interface

R8. The system should allow authorization of user access to resources/functionalities with

access privileges based on role

R9. The system should provide a requirement service

R10. The system should allow user roles to submit requirements for project(s).

R11. The system should allow user roles to update requirements for a project.

R12. The system should allow project manager roles to receive user requirements

R13. The system should allow project manager roles to approve/reject user requirements.

R14. The system should allow promotion of requirements to become projects.

R15. The system should not allow un-promoted requirements to become projects

R16. The system should allow requirements to be deleted.

R17. The system should provide a resource management service.

R18. The system should be able to add/remove resources (files attached to projects e.g., text,

image, video, links etc)

R19. The system should allow addition and utilization of external or internal cloud

tool/resource of choice for testing. This could be via API/URL access

R20. The system should provide flexibility to add to a project at any time.

R21. The system should provide a project service

R22. The system should allow tests to be carried out on projects

R22. The system should only allow users to collaborate on projects they are registered on

R23. The system should be able to log every service, user actions and outputs

R24. The system should allow user roles to receive feedback for a project.

Page 200 of 327

R25. The system should allow provision of continuous system-wide notifications to users on

actions, changes, feedback, tasks, updates, task status, and instructions/assignments

R26. The system should allow members on a project to view project status from different

devices and locations

R27. The system should allow members on a project to make comments which others can

respond to right away.

R28. The system should allow test results generated from 3rd party apps to be uploaded to

a project if the external app provides such resources.

R29. The system should allow where possible, actions to be predefined, and users to select

predefined actions

7.5 Development and deployment

Known for providing compute capacity that is both scalable and resizable as per demands,

Amazon web services (AWS) was leveraged to launch and configure the required cloud

resource via AWS EC2 instance(Kokkinos et al., 2015; Fusaro et al., 2011). Part of the

considerations for this include the strengths of the cloud, as already covered in the Section 4

of this thesis – on-demand nature, ubiquity, elasticity, availability, scalability, accessibility if

there is network connection, etcetera. Previous case studies have explored and evaluated the

feasibility of use of AWS EC2 as development and deployment approach for

SaaS(Balasubramanian Sekar et al., 2017; Kokkinos et al., 2015; Ostermann et al., 2010;

Ellman et al., 2018). Also, Amazon has a free tier offering available to everyone(including

students) and the cloud services offered covers 9 regions spanning Asia, Europe, South

America, and the USA(Kamiński & Szufel, 2015). This greatly extends the coverage and reach,

which is of considerable impact on collaboration and availability within a distributed

development project with non-collocated stakeholders/members of the team. Due to these

characteristics, setting up the POC implementation did not take very long. Also, when new

functionalities had to be introduced in line with the requirements necessary to demonstrate

the recommendations of this research, the simplicity of the AWS management console (see

Figure below) enabled easy addition/scaling of the cloud resources needed i.e., computing

power, optimised memory and storage needed. The low upfront cost implications in terms

of setting up, running, and maintaining the EC2 instance was also a bonus. Amazon EC2

Page 201 of 327

instances are instances that are run on physical resources by means open source virtualization

middleware(Ostermann et al., 2010).

An Ubuntu Amazon machine image (AMI) and a t2.micro instance type was chosen because

they are part of Amazon’s free tier offering. An AMI is an Amazon machine image pre-installed

with an operating system(Balduzzi et al., 2012). The free tier offering includes the following

monthly: 750 hours of resizable cloud compute capacity, 5GB of Amazon S3 scalable storage

for databases, application and user files and 750 hours of db.t2.micro managed relational

database service. 2 security groups were set up to configure the virtual firewall with a key-

pair file and inbound/outbound rules created to facilitate secure log in to the EC2 instance via

an SSH client (Fusaro et al., 2011).

The LAMP stack - Apache, PHP and MySQL support(Karanjit, 2016) was installed and set up to

aid in the deployment of the POC application. Within the LAMP stack, Apache is used to run

the web application manage HTTP/HTTPS requests and responses for clients/users accessing

the application. MySQL was used as the relational database management system for storing

data due because it is opensource and utilizes SQL queries for transactions, hence addresses

vendor lock-in issues. PHP, also an open source server-side scripting language, was used to

implement modular server-side data processing and management for the application and

deploy the POC application via a model-view-controller design (Lotfy & Pyatt, 2018).

Amazon CloudWatch was used to set up easy application and resource monitoring for

actionable insights in the form of event logging and metrics. This helps to provide application

wide visibility and access to operational data for actions, issue resolution or improvement.

Custom detailed metrics collection was set up to allow deep dives for additional contexts and

service instrumentation - see figures below. CloudWatch log agents are responsible for real-

time logging of events and services.

Remote Dictionary Server – REDIS(Klaesson, 2013; Sanchez et al., 2014; Gorlick & Taylor,

2014; Ghandehari & Stroulia, 2014), was used to store data in “key-value” pairs in memory as

message queues that could be ‘popped’ and ‘pushed’ to facilitate the architecture’s events

coordination and inter-process communication model between the services. Data such as

user sessions, cookies, authentication tokens, messages, etcetera, are stored and transmitted

amongst the development project stakeholders via Redis’ ‘pop/ and ‘push’ commands. This

approach is shown in Figure 59: Messaging Middleware pattern (Publish/Subscribe) in Section

Page 202 of 327

6. JavaScript Object-Notation (JSON) was adapted as a lightweight and portable file format

to store and transfer data as objects within the application in a bid to avoid vendor lock-in

issues highlighted in Section 3.

7.6 Evaluation of POC implementation and functionality performance

For the implementation of the POC for the proposed architecture a scaled-down version of

the proposed architecture topology was used see (figure below). This is because building a

simulation model at an appropriate level of abstraction makes it possible and more

convenient to build a model that sufficiently describes the different parts of the real system.

This approach allows capturing a mix of broad views and fine details of different aspects of

the problem. The POC implementation serves as an experiment that provides an opportunity

for empirical investigation and assessment of fundamental processes, resources,

components, and relations encapsulated in the proposed architecture. The results of this

exercise can then be used to provide basis to refute or backup claims(Menzies et al., 2016).

The POC featured a web interface for both stakeholder login and registration. This interface

was designed to be accessible from any location or device. The main requirement for

accessibility is the availability of a working network connection. Once the stakeholder has

been registered and authenticated, depending on the role type registered, the relevant

services available to the role is exposed via the API. Figure below shows the workflow

employed for this activity. For this implementation, the active roles were restricted to ‘Project

manager’, ‘Team member’ and ‘User’ and the functionality available to each role (see

Architecture context model and data flows in Figure 48, 49, 51 & 52 & Table 16) is made

available to the stakeholder. There is an additional implicit role – the Administrator (Admin)

who retains full access privileges for administration purposes. The user can create

requirements, make changes requests, provide feedback, and have visibility of activities

within the development project(s) that he or she is registered on, at any point during the

development project’s lifecycle. More from lack of expertise than from application design,

the user is not able to carry out development activities requiring specific expertise, such as

coding, deployment, etcetera. Nonetheless, the user has visibility of all ‘activities requiring

specific expertise’ carried out by other roles. Also, the user can at any point in time, access

detailed logs, or upload additional requirements or change requests. However, all these are

subject to a collective review by all members of the team, irrespective of roles, and

Page 203 of 327

moderated by the Project manager. For a full view of all functionalities available to the user,

as well as functionalities available to other roles, refer to the Architecture context model and

data flows. For more evaluation outputs, please refer to Appendix 1. For further assessment

of the behaviour of the POC implementation, a sample case study ‘project’ was devised,

mirroring as near as possible, a real-life scenario.

Start

Registered?

Y

N

Authentication

Successful?

Y

redirect

Authenticate

Stakeholder

Login via Frontend
landing

page

Output Error

message

Output to screen

Authorize Access

to Relevant

Stakeholder

Service context

based on Role

Register

Stakeholder &

Role

Workflow Description:
This stakeholder workflow describes
PM_stakeholder scenario interaction
with the Microservice architecture

Access

Stakeholder

Service context

End

Every process is
an event that
represents an
action and
automatically
publishes a
notification

message

Decision loops are
used to perform

V&V actions

Figure 645: Cloud activity workflow

7.6.1 Case study Test Scenario:

A client (software owner) has a product (this POC application) with a variety of features that

can be used by millions of users at any time (24hrs). Features of this product can be used by

Page 204 of 327

the client’s customers who are in different parts of the world, via different browsers (Chrome,

Safari, and Edge) and different devices (Android/iOS/Desktop/Laptop). Hence, the need to

identify any cross browser/platform issue that may arise.

The client would also like to make feature updates of the product weekly. However, these

features need to be tested by members of the Alpha testing team (me and my supervision

team) prior to deployment, so that existing features on the live product are not affected.

However, the members of Alpha testing team are in a variety of locations, different to the

location of the client, but still need to work together to meet client’s needs.

The members of Alpha testing team may need to import testing tools to use in testing various

features. The tool to be imported is based on either: suitability of the tool, or expertise of the

team member. A test report needs to be generated to show test results for the different

features tested, and any other information that may be of use.

Below is a sample of feature test scenario written using Gherkin keyword structure approach

(dos Santos & Vilain, 2018). Keywords are feature; Scenario; Given, When, Then, And, But

Sample Feature to Test: Check Login Functionality

Scenario: The POC software owner would like to deploy Login functionality for the POC users.

The POC software owner would like to ensure that only valid users can be authenticated and

authorised to access services. Given that only registered users can access services, when non-

registered users attempt to log in, access to services to submit requirements or create change

requests should be denied. When registered users enter invalid details, access should be

denied. But if valid details are entered then access to services should be granted.

Table 23: Test cases for sample feature to test.

Test
Scenario

Software
Requirement
Specification
ID

Test
Scenario
Description

Test Cases

1 R7 Check Login
Functionality

1. Check system behavior when valid email id and password is entered.
2. Check system behavior when invalid email id and valid password is entered.
3. Check system behavior when valid email id and invalid password is entered.
4. Check system behavior when invalid email id and invalid password is
entered.
5. Check system behavior when email id and password are left blank and Sign
in entered.
6. Check Forgot your password is working as expected

Page 205 of 327

7.6.2 Implemented service, roles, and activity sequence for POC

Services

• Stakeholder management services (based on roles)

• Project management service (Accessible to PM role only)

• Requirements service (accessible to CFTM roles)

• Continuous Test service - – accessible to CFTM roles

• Value-add services

o Cloud Activity Review service

o Message broker service (Messaging Middleware)

o Reporting service – Cloud Activity Data Aggregation Service

o Resource Management service

o Cloud Activity Security service

o Database service

Roles

• Cross-functional team member (CFTM) stakeholder service

• Community user (CU) stakeholder service

• Project manager (PM) stakeholder service

Activity sequences

a) Project management service (Accessible to PM role only)

Modules

• Create project

• Register goal

• Create team

• Create task

• Manage/monitor goal

• Manage/monitor Project

• Manage/monitor team

• Manage/monitor task

b) Requirements service (accessible to CFTM roles)

Modules

Page 206 of 327

• Retrieve task specification

• Setup tasks

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

c) Continuous Test service - – accessible to CFTM roles

Modules

• Retrieve task specification

• Setup tasks

• Request cloud resources

• Execute tasks (actions)

• Review tasks – validate builds (with all stakeholders)

• Verify changes

• Implement changes

• Release

7.7 Operation-condition sequences for case study scenario

• Operation: Software owner had a need or goal and enters this need using the CU

service component. This action becomes the initial event

• Operation: This event is published to event channels (via REDIS)

• Condition: Every action within any service component is treated as an event and

automatically published to the event channels. E.g., entering the need or

requirement is an action, approval of the requirement by PM or Admin is an action,

assigning task to team member is an action, etc. These events are treated as

actions by the POC application and published to all

• Condition: Every published event is received and stored by every service

component.

Page 207 of 327

• Condition: All service components e.g., team members/stakeholders are

subscribed to event channels.

• Operation: All service components receive, and store published event; and react

to only those important to their function, or those with possible impact on their

function.

• Operation: The review service component can be invoked from within any other

service component, and by any stakeholder.

• Operation: Once the review service component is invoked, every other service is

automatically paused, and will have to be manually resumed.

• Operation: The entire process continues until the project management service

component publishes a ‘project complete’ event.

• Operation: Service components other than the reporting service component, can

then discard unrelated published events that are stored in their data store

periodically. The reporting service component stores every published event.

• Operation: The reporting service component stores every published event and can

be queried to generate reports and insights for the entire activity process, or

filtered by service components, or some other criteria.

Page 208 of 327

8 Conclusion and future work

This research thesis started by introducing software development in the cloud and the

motivations that make the case for the need for enhancing collaboration within the process

in the cloud.

Section 1 commenced this research project by introducing the research area, the motivations

from preliminary research as well as from experience of working in the industry. The research

objectives and contributions were also stated. The research aim of this project is to develop

an architecture with sound theoretical foundation to ensure a sustainable approach to

enhancing context-aware collaboration in cloud-based software development process.

Section 2 presents a discourse on the underlying research philosophy and choice of research

and a justification of methods adopted in this project. Section 3 reviews the existing body of

knowledge in collaborative software development in the cloud. The goal of this Section is two-

fold. It is a systematic state-of-the-art description, as well as an analysis of the research area.

It is geared towards fostering an in-depth understanding of the research domain, as well as

identification of research motivations, gaps, challenges, and issues pertinent to the research

area and questions. It builds a case for modifying the scene. The research process described

in Section 2 and carried out in Section 3 was based on the research questions defined in

Section 1, the research philosophy described in Section 2, the search keywords and hybrid

methodology described in Section 3. Most of the research were from Conference papers and

journals, which is indicative of the maturity level of the research area. The gaps prioritised

provided direction for the rest of this research thesis and the synthesized knowledge from

the systematic literature review provided the substrate or springboard for review of

conceptual building blocks.

Section 4 reviews and discusses conceptual foundations that are pivotal in. This Section

attempts to develop classifications based on thematic analysis of recurrent themes from

literature review towards the development of a more robust and holistic framework. Section

5 develops a formal process for streamlining the search for adequate theoretical basis, applies

the developed process and provides justification for selecting activity theory as theoretical

basis. This chapter then proceeds to assemble a theoretical framework and methodology for

enhancing context-aware, collaboration in the cloud-based software development process.

The lack of a de-facto architecture method for cloud-based software development meant that

Page 209 of 327

Section 6 had to synthesize the methodology provided by the theoretical framework and

software architectural patterns to develop an AT-based architecture to enhance a context-

aware, collaboration in the cloud-based software development process. Section 7 presents a

Proof-of-Concept implementation and evaluation of the architecture for enhancing context-

aware collaboration in the cloud-based software development process. Section 8 concludes

the research project. The diagram below in Fig 65 summarises this research journey.

Figure 65 Summary of the research journey

The architecture developed in this thesis focuses on enhancing context-aware between all

stakeholders in a cloud-based software development process in a cloud-based software

development process. These stakeholders were defined in the theoretical framework in

section 4 to include users, project managers, developers, testers, operations team members

and all other members of the distributed development team. This definition also includes

cloud and service providers who are involved in the management of hosted services and

security. The architecture was built on top of AT-based concepts and implemented using the

cloud towards enhancing collaboration in the software development process in the cloud and

a proof of concept was developed, deployed it on AWS cloud platform and evaluated for

Conceptual Model of Architecture framework

Cloud-based
collaborative
software
development(CCSD)

drives

AT-based
framework

prescribes

supports & improves

AT-Based
Methodology for
CCSD

identifies & categorizes

Cloud-based
Architecture

supported by

Contexts(context

Page 210 of 327

functionality performance. The biggest challenge that exists herein lies in the lack of ability to

guarantee the absence of outages on the AWS platform. The implementation and evaluation

of the POC for the architecture designed, developed, and described in this research thesis has

highlighted quite a few directions which are hereby recommended as future work in this area

with potential benefits.

Firstly, management functionality for the POC implementation was provided via leveraging

AWS services. This approach is external to the POC’s deployment. The risk posed by this

approach is the possibility of the presence of intrinsic limits (Toffetti et al., 2015) that may

inhibit or restrict natural scaling based on collaboration needs of the stakeholders in the

cloud-based software development process. Hence, scenarios may arise where additional

code or AWS intervention may be required. Furthermore, leveraging AWS provisioned-

management functionality creates the possibility for vendor lock-in in scenarios where the

platform may not necessarily be the most effective for a given collaborative software

development project. Even though, provisions have been made for the registration and use

of third-party plugins (i.e., external clouds, tools etc.), compatibility and interoperability may

not be guaranteed.

Secondly, from literary evidence (Richardson, 2019), there is an expectation that there will be

technology-related challenges to tackle when implementing a Microservice architecture.

However, results from implementation and evaluation of the POC for the architecture

developed in this research thesis, highlights the presence of challenges that may be more

related to organizational structure, team setup, process, and strategy. To further understand

the nature and characteristics of these challenges, more large-scale experimentation on a

multi-organizational/multi-team level is required to provide more varied use case scenarios.

This is of a wider scope than this research thesis can handle.

Thirdly, due to the novelty of Microservices architecture and lack of in-depth research on its

anti-patterns to microservices architecting (Taibi et al., 2020), there are not much existing

migration catalogues that can be useful to cloud-based software development teams looking

to avoid pitfalls during adoption or migration to a microservices architecture (Newman, 2019;

Balalaie et al., 2018). Further research into microservice antipatterns for collaborative

software development in the cloud would help in the identification and classification of

migration pitfalls. This research would also aid development of a Microservices antipattern

Page 211 of 327

taxonomy for cloud-based collaborative software development. Expected impact will include

development of more efficient migration plans (Balalaie et al., 2018), and additional tools to

aid more detailed evaluation of microservices architecture for fine -grained collaboration in

software development process in the cloud.

Lastly, challenges such as: lack of consensus on what should constitute the right level of

granularity or modularity for a microservice; lack of consensus what should constitute the

right level of responsibility assignment per microservice; lack of consensus as to the best-

practice implementation of a microservice architecture as opposed to using methods such as

architectural trade-offs. There is need for more research effort into the development of best

practice patterns for design decisions involved in creating, resizing, and refactoring software

development activities as services. Improper designation and delineation of boundaries could

lead to increased network communication and bandwidth bottlenecks (Jamshidi et al., 2018).

Finally, the threats to validity for this research thesis include obtaining of articles using

keyword search. Exclusions were subjective to a degree based on own interpretation of

knowledge from preliminary research, and experience of the area. There exists the possibility

of missing out on crucial articles due to this exclusion approach.

Page 212 of 327

9 References

Adolph, S. & Kruchten, P. (2013). Generating a useful theory of software engineering. In:

2013 2nd SEMAT Workshop on a General Theory of Software Engineering (GTSE). May 2013,

pp. 47–50.

Ahmedshareef, Z., Hughes, R. & Petridis, M. (2014). Applying Actor-Network Theory to

Software Project Management Research. In: European Conference on Research

Methodology for Business and Management Studies. [Online]. June 2014, Kidmore End,

United Kingdom: Academic Conferences International Limited, pp. 1–10. Available from:

http://search.proquest.com/docview/1546004942/abstract/C2563C83CD33470DPQ/1.

[Accessed: 14 June 2016].

Alvertis, I., Koussouris, S., Papaspyros, D., Arvanitakis, E., Mouzakitis, S., Franken, S.,

Kolvenbach, S. & Prinz, W. (2016a). User Involvement in Software Development Processes.

Procedia Computer Science. 97. p.pp. 73–83.

Alvertis, I., Koussouris, S., Papaspyros, D., Arvanitakis, E., Mouzakitis, S., Franken, S.,

Kolvenbach, S. & Prinz, W. (2016b). User Involvement in Software Development Processes.

Procedia Computer Science. 97. p.pp. 73–83.

Andres, B., Poler, R. & Sanchis, R. (2021). A data model for collaborative manufacturing

environments. Computers in Industry. 126. p.p. 103398.

Antoniadou, V. (2011). Using Activity Theory to understand the contradictions in an online

transatlantic collaboration between student-teachers of English as a Foreign Language.

ReCALL. 23 (3). p.pp. 233–251.

Ardaiz, S. (2011). Collaborative Communication: Why Methods Matter. Triple Pundit: People,

Planet, Profit. [Online]. Available from:

http://www.triplepundit.com/2011/12/collaborative-communication-methods-matter/.

[Accessed: 10 February 2015].

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,

Rabkin, A., Stoica, I., & others (2010). A view of cloud computing. Communications of the

ACM. 53 (4). p.pp. 50–58.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson,

D.A., Rabkin, A., Stoica, I., & others (2009). Above the clouds: A berkeley view of cloud

computing. [Online]. Available from: http://home.cse.ust.hk/~weiwa/teaching/Fall15-

COMP6611B/reading_list/AboveTheClouds.pdf. [Accessed: 5 October 2016].

Arora, R., Goel, S. & Mittal, R.K. (2017). Supporting collaborative software development over

GitHub. Software: Practice and Experience. 47 (10). p.pp. 1393–1416.

Babar, M.A. & Kitchenham, B. (2007). The Impact of Group Size on Software Architecture

Evaluation: A Controlled Experiment. In: First International Symposium on Empirical

Software Engineering and Measurement (ESEM 2007). September 2007, pp. 420–429.

Page 213 of 327

Bærentsen, K.B. & Trettvik, J. (2002). An Activity Theory Approach to Affordance. Nordichi

2002. Proceedings of the Second Nordic Conference on Human-Computer Interaction. p.pp.

51–60.

Bajpai, N. (2011). Business research methods. [Online]. Pearson Education India. Available

from:

https://books.google.co.uk/books?hl=en&lr=&id=wY2bSaEm8l8C&oi=fnd&pg=PR22&dq=Baj

pai,+N.+(2011)+%E2%80%9CBusiness+Research+Methods%E2%80%9D+Pearson+Education

+India&ots=p8DNlTGygm&sig=SaptARbBkxuc_I0YbbmQCFycqHs. [Accessed: 18 October

2016].

Balasubramanian Sekar, V., Patil, V., Giusti, M., Bhide, A. & Gupta, A. (2017). AWS EC2 vs.

Joyent’s Triton: A Comparison of Docker Container-hosting Platforms. In: Proceedings of the

8th Workshop on Scientific Cloud Computing. ScienceCloud ’17. [Online]. 27 June 2017,

Washington, DC, USA: Association for Computing Machinery, pp. 33–36. Available from:

https://doi.org/10.1145/3086567.3086572. [Accessed: 31 March 2020].

Balduzzi, M., Zaddach, J., Balzarotti, D., Kirda, E. & Loureiro, S. (2012). A security analysis of

amazon’s elastic compute cloud service. In: Proceedings of the 27th Annual ACM Symposium

on Applied Computing. SAC ’12. [Online]. 26 March 2012, Trento, Italy: Association for

Computing Machinery, pp. 1427–1434. Available from:

https://doi.org/10.1145/2245276.2232005. [Accessed: 31 March 2020].

Barcus, A. & Montibeller, G. (2008). Supporting the allocation of software development

work in distributed teams with multi-criteria decision analysis. Omega. 36 (3). p.pp. 464–

475.

Barenji, A.V., Guo, H., Wang, Y., Li, Z. & Rong, Y. (2021). Toward blockchain and fog

computing collaborative design and manufacturing platform: Support customer view.

Robotics and Computer-Integrated Manufacturing. 67. p.p. 102043.

Baride, S. & Dutta, K. (2011). A cloud based software testing paradigm for mobile

applications. SIGSOFT Softw. Eng. Notes. 36 (3). p.pp. 1–4.

Barnett, L. & Schwaber, C.E. (2004). Applying open source processes in corporate

development organizations. Forrester Research. p.pp. 1–15.

Barthelmess, P. & Anderson, K.M. (2002a). A View of Software Development Environments

Based on Activity Theory. Computer Supported Cooperative Work (CSCW). 11 (1–2). p.pp.

13–37.

Barthelmess, P. & Anderson, K.M. (2002b). A View of Software Development Environments

Based on Activity Theory. Comput. Supported Coop. Work. 11 (1–2). p.pp. 13–37.

Basit, T. (2003). Manual or electronic? The role of coding in qualitative data analysis.

Educational Research. 45 (2). p.pp. 143–154.

Bedny, G.Z. & Harris, S.R. (2005). The Systemic-Structural Theory of Activity: Applications to

the Study of Human Work. Mind, Culture, and Activity. 12 (2). p.pp. 128–147.

Page 214 of 327

Begel, A., Bosch, J. & Storey, M.-A. (2013). Social Networking Meets Software Development:

Perspectives from GitHub, MSDN, Stack Exchange, and TopCoder. IEEE Software. 30 (1).

p.pp. 52–66.

Begel, A., Herbsleb, J.D. & Storey, M.-A. (2012). The future of collaborative software

development. In: Proceedings of the ACM 2012 conference on Computer Supported

Cooperative Work Companion. CSCW ’12. [Online]. 2012, New York, NY, USA: ACM, pp. 17–

18. Available from: http://doi.acm.org/10.1145/2141512.2141522. [Accessed: 3 July 2013].

Bendas, D., Saari, L., Coutinho, C., de Juan-Marín, R. & Bernabé-Gisber, J. (2017a).

Distributed Software Development of a Cloud Solution for Collaborative Manufacturing

Networks. In: 29 June 2017.

Bendas, D., Saari, L., Coutinho, C., Marín, R. de J., Gisbert, J.B. & Lopes, L. (2017b).

Distributed software development of a cloud solution for collaborative manufacturing

networks. In: 2017 International Conference on Engineering, Technology and Innovation

(ICE/ITMC). June 2017, pp. 741–749.

Benedek, A. & Lajos, G. (2012). BUILDING AUGMENTED KNOWLEDGE ARCHITECTURES:

REQUIREMENTS FOR COLLABORATION PLATFORMS OF NEXT-GEN CONCEPT ORGANIZATION

TOOLS. ICERI2012 Proceedings. p.pp. 1492–1506.

Benfenatki, H., Ferreira Da Silva, C., Benharkat, A.-N. & Ghodous, P. (2014). Cloud-Based

Business Applications Development Methodology. In: 2014 IEEE 23rd International WETICE

Conference. June 2014, pp. 275–280.

A. Bento & A. K. Aggarwal (eds.) (2012). 00002. Cloud Computing Service and Deployment

Models: Layers and Management. [Online]. IGI Global. Available from: http://www.igi-

global.com/chapter/requirements-engineering-cloud-application-development/70138.

[Accessed: 19 March 2014].

Boehm, B. (2006a). A View of 20th and 21st Century Software Engineering. In: Proceedings

of the 28th International Conference on Software Engineering. ICSE ’06. [Online]. 2006, New

York, NY, USA: ACM, pp. 12–29. Available from:

http://doi.acm.org/10.1145/1134285.1134288. [Accessed: 21 July 2014].

Boehm, B. (2006b). Some future trends and implications for systems and software

engineering processes. Systems Engineering. 9 (1). p.pp. 1–19.

Boehm, B.W. (2010). Some Future Software Engineering Opportunities and Challenges. In:

ResearchGate. [Online]. 1 January 2010, pp. 1–32. Available from:

https://www.researchgate.net/publication/221350488_Some_Future_Software_Engineerin

g_Opportunities_and_Challenges. [Accessed: 18 November 2016].

Bojanova, I., Zhang, J. & Voas, J. (2013). Cloud Computing. IT Professional. 15 (2). p.pp. 12–

14.

Bourque, P., Fairley, R.E., & IEEE Computer Society (2014). SWEBOK: guide to the software

engineering body of knowledge.

Page 215 of 327

Bouwers, E.M. (2013). Metric-based Evaluation of Implemented Software Architectures.

[Online]. Available from: http://repository.tudelft.nl/islandora/object/uuid:6b65c5f5-398c-

4a41-8806-31c638b1891c/?collection=research. [Accessed: 1 March 2017].

Box (2012). The Cloud: Reinventing Enterprise Collaboration. FierceCIO. [Online]. Available

from: http://whitepapers.fiercecio.com/content19723. [Accessed: 20 March 2014].

Bradley, E.H., Curry, L.A. & Devers, K.J. (2007). Qualitative Data Analysis for Health Services

Research: Developing Taxonomy, Themes, and Theory. Health Services Research. 42 (4).

p.pp. 1758–1772.

Brézillon, P. & Gonzalez, A.J. (2014). Google-Books-ID: 87DLBQAAQBAJ. Context in

Computing: A Cross-Disciplinary Approach for Modeling the Real World. Springer.

Bryman, A. (2001). Google-Books-ID: 3ulxQgAACAAJ. Social Research Methods. Oxford

University Press.

Bryman, A. (2012). Google-Books-ID: vCq5m2hPkOMC. Social Research Methods. OUP

Oxford.

Buhrer, H.K. (2003). Software Development: What It is, What It Should Be, and How to Get

There. SIGSOFT Softw. Eng. Notes. 28 (2). p.pp. 5-.

Camarihna-Matos, L.M. & Afsarmanesh, H. (2008). Concept of Collaboration. [Online]. 2008.

Academia.edu. Available from:

http://www.academia.edu/248756/Concept_of_Collaboration. [Accessed: 24 June 2013].

Cancian, M.H., Rabelo, R.J. & Hauck, J.C.R. (2020). Towards a capability and maturity model

for Collaborative Software-as-a-Service. Innovations in Systems and Software Engineering.

[Online]. Available from: https://doi.org/10.1007/s11334-020-00360-9. [Accessed: 30 March

2020].

Carter, N., Bryant-Lukosius, D., DiCenso, A., Blythe, J. & Neville, A.J. (2014). The use of

triangulation in qualitative research. Oncology Nursing Forum. 41 (5). p.pp. 545–547.

Cassens, J. & Kofod-Petersen, A. (2006). Using Activity Theory to Model Context Awareness:

A Qualitative Case Study. In: FLAIRS Conference. 2006, pp. 619–624.

Cerny, T., Donahoo, M.J. & Trnka, M. (2018). Contextual Understanding of Microservice

Architecture: Current and Future Directions. SIGAPP Appl. Comput. Rev. 17 (4). p.pp. 29–45.

Cerone, A. & Roveri, M. (2018). Google-Books-ID: fB5KDwAAQBAJ. Software Engineering

and Formal Methods: SEFM 2017 Collocated Workshops: DataMod, FAACS, MSE, CoSim-CPS,

and FOCLASA, Trento, Italy, September 4-5, 2017, Revised Selected Papers. Springer.

Chadli, S.Y., Idri, A., Ros, J.N., Fernández-Alemán, J.L., Gea, J.M.C. de & Toval, A. (2016).

Software project management tools in global software development: a systematic mapping

study. SpringerPlus. [Online]. 5 (1). Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121116/. [Accessed: 8 May 2019].

Page 216 of 327

Chanda, N. & Liu, X.F. (2015). Intelligent analysis of software architecture rationale for

collaborative software design. In: 2015 International Conference on Collaboration

Technologies and Systems (CTS). June 2015, pp. 287–294.

Chang, B.-Y., Hai, P.H., Seo, D.-W., Lee, J.-H. & Yoon, S.H. (2013a). The determinant of

adoption in cloud computing in Vietnam. In: 2013 International Conference on Computing,

Management and Telecommunications (ComManTel). 2013, pp. 407–409.

Chang, V., Walters, R.J. & Wills, G. (2013b). The development that leads to the Cloud

Computing Business Framework. International Journal of Information Management. 33 (3).

p.pp. 524–538.

Charmaz, K. (2013). Constructing Grounded Theory. 2 edition. London ; Thousand Oaks, Calif:

Sage Publications Ltd.

Chhabra, B., Verma, D. & Taneja, B. (2010). Software Engineering Issues from the Cloud

Application Perspective. p.p. 5.

Childs, P.R.N. (2019). 3 - Ideation. In: P. R. N. Childs (ed.). Mechanical Design Engineering

Handbook (Second Edition). [Online]. Butterworth-Heinemann, pp. 75–144. Available from:

https://www.sciencedirect.com/science/article/pii/B9780081023679000032. [Accessed: 3

July 2022].

Chorin, A.J. & Hald, O.H. (2014). Stochastic Tools in Mathematics and Science. Springer

Science & Business Media.

Chrissis, M.B., Konrad, M. & Shrum, S. (2011). CMMI for Development: Guidelines for Process

Integration and Product Improvement. 3 edition. Upper Saddle River, NJ: Addison Wesley.

Ciancarini, P., Omicini, A. & Zambonelli, F. (2000). Multiagent System Engineering: The

Coordination Viewpoint. In: N. R. Jennings & Y. Lespérance (eds.). Intelligent Agents VI.

Agent Theories, Architectures, and Languages. Lecture Notes in Computer Science. [Online].

Springer Berlin Heidelberg, pp. 250–259. Available from:

http://link.springer.com/chapter/10.1007/10719619_19. [Accessed: 4 February 2015].

Cico, O. & Cico, B. (2019). Reliable Cloud Software Development Architectures and Business

Models Case Study: RIDEaaS and GAE Launcher. In: Proceedings of the 9th Balkan

Conference on Informatics. BCI’19. [Online]. 26 September 2019, New York, NY, USA:

Association for Computing Machinery, pp. 1–8. Available from:

https://doi.org/10.1145/3351556.3351586. [Accessed: 13 June 2021].

Cito, J., Leitner, P., Fritz, T. & Gall, H.C. (2015). The making of cloud applications: An

empirical study on software development for the cloud. In: Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering. [Online]. 2015, ACM, pp. 393–403.

Available from: http://dl.acm.org/citation.cfm?id=2786826. [Accessed: 5 July 2017].

Clear, T. (2009). Dimensions of Collaboration in Global Software Engineering Teams:

Explorations of ‘Collaborative Technology Fit’. In: Fourth IEEE International Conference on

Global Software Engineering, 2009. ICGSE 2009. 2009, pp. 297–298.

Page 217 of 327

Cohen, L., Manion, L. & Morrison, K. (2009). Research methods in education. London:

Routledge.

Coleman, G. & O’Connor, R. (2007). Using grounded theory to understand software process

improvement: A study of Irish software product companies. Information and Software

Technology. 49 (6). p.pp. 654–667.

Concas, G., Di Penta, M., Tempero, E. & Zhang, H. (2011). Workshop on Emerging Trends in

Software Metrics (WETSoM 2011). In: Proceedings of the 33rd International Conference on

Software Engineering. ICSE ’11. [Online]. 2011, New York, NY, USA: ACM, pp. 1224–1225.

Available from: http://doi.acm.org/10.1145/1985793.1986057. [Accessed: 29 September

2014].

Concato, J., Shah, N. & Horwitz, R.I. (2000). Randomized, Controlled Trials, Observational

Studies, and the Hierarchy of Research Designs. New England Journal of Medicine. 342 (25).

p.pp. 1887–1892.

Creswell, J.W. (2002). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches. 2 edition. Thousand Oaks, Calif: SAGE Publications, Inc.

Cronin, B. & Sugimoto, C.R. (2014). Google-Books-ID: BVuaAwAAQBAJ. Beyond Bibliometrics:

Harnessing Multidimensional Indicators of Scholarly Impact. MIT Press.

Crotty, M. (1998). Google-Books-ID: j4hXocGn1yIC. The Foundations of Social Research:

Meaning and Perspective in the Research Process. SAGE.

Csa (2013). Mapping the Forensic Standard ISO/ IEC27037 to Cloud Computing.pdf. Cloud

Security Alliance. (June). p.pp. 1–31.

Cumming, B. (2012). Revisiting Philosophical and Theoretical Debates in Contemporary

Educational Research and Major Epistemological and Ontological Underpinnings. Online

Submission. [Online]. Available from: http://eric.ed.gov/?id=ED537463. [Accessed: 28

November 2016].

Dabbish, L., Stuart, C., Tsay, J. & Herbsleb, J. (2012). Social Coding in GitHub: Transparency

and Collaboration in an Open Software Repository. In: Proceedings of the ACM 2012

Conference on Computer Supported Cooperative Work. CSCW ’12. [Online]. 2012, New York,

NY, USA: ACM, pp. 1277–1286. Available from:

http://doi.acm.org/10.1145/2145204.2145396. [Accessed: 19 March 2014].

Dafoulas, G.A., Swigger, K., Brazile, R., Alpaslan, F.N., Cabrera, V.L. & Serce, F.C. (2009).

Global Teams: Futuristic Models of Collaborative Work for Today’s Software Development

Industry. In: 2009 42nd Hawaii International Conference on System Sciences. January 2009,

pp. 1–10.

De Souza, C. (2003). Interpreting activity theory as a software engineering methodology. In:

présenté dans l’atelier: Applying Activity Theory to CSCW research and practice du 8th

European Conference of Computer-Supported Cooperative Work, Helsinki, Finland. 2003.

Page 218 of 327

Dennehy, D. & Conboy, K. (2016). Going with the flow: An activity theory analysis of flow

techniques in software development. Journal of Systems and Software.

Dennehy, D. & Conboy, K. (2017). Going with the flow: An activity theory analysis of flow

techniques in software development. Journal of Systems and Software. 133. p.pp. 160–173.

Denscombe, M. (2010). The Good Research Guide: For Small-Scale Social Research Projects:

for small-scale social research projects. 4 edition. Open University Press.

Derntl, M., Renzel, D., Nicolaescu, P., Koren, I. & Klamma, R. (2015). Distributed Software

Engineering in Collaborative Research Projects. In: 2015 IEEE 10th International Conference

on Global Software Engineering. July 2015, pp. 105–109.

Dey, A.K. (2001). Understanding and Using Context. Personal Ubiquitous Comput. 5 (1). p.pp.

4–7.

Dijkman, R. & Dumas, M. (2004). Service-oriented design: A multi-viewpoint approach.

International Journal of Cooperative Information Systems. 13 (4). p.pp. 337–368.

Dillon, T., Wu, C. & Chang, E. (2010). Cloud Computing: Issues and Challenges. In: 2010 24th

IEEE International Conference on Advanced Information Networking and Applications (AINA).

2010, pp. 27–33.

Doddavula, S.K., Agrawal, I. & Saxena, V. (2013). Cloud Computing Solution Patterns:

Infrastructural Solutions. In: Z. Mahmood (ed.). Cloud Computing. Computer

Communications and Networks. [Online]. Springer London, pp. 197–219. Available from:

http://link.springer.com/chapter/10.1007/978-1-4471-5107-4_10. [Accessed: 17 July 2013].

Durao, F., Carvalho, J.F.S., Fonseka, A. & Garcia, V.C. (2014). A systematic review on cloud

computing. The Journal of Supercomputing. 68 (3). p.pp. 1321–1346.

Dybå, T. & Dingsøyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and Software Technology. 50 (9–10). p.pp. 833–859.

Dybå, T., Sj⊘berg, D.I.K. & Cruzes, D.S. (2012). What works for whom, where, when, and

why? On the role of context in empirical software engineering. In: Proceedings of the 2012

ACM-IEEE International Symposium on Empirical Software Engineering and Measurement.

September 2012, pp. 19–28.

Easterby-Smith, M., Thorpe, R. & Jackson, P.R. (2012). Management Research. SAGE.

Elizabeth, M. (2013). Google-Books-ID: iOSWBQAAQBAJ. Activity Theory Perspectives on

Technology in Higher Education. IGI Global.

Ellman, J., Lee, N. & Jin, N. (2018). Cloud computing deployment: a cost-modelling case-

study. Wireless Networks. [Online]. Available from: https://doi.org/10.1007/s11276-018-

1881-2. [Accessed: 31 March 2020].

van Engelenburg, S., Janssen, M. & Klievink, B. (2019). Designing context-aware systems: A

method for understanding and analysing context in practice. Journal of Logical and

Algebraic Methods in Programming. 103. p.pp. 79–104.

Page 219 of 327

Engestrom, Y. (2000). Activity theory as a framework for analyzing and redesigning work.

Ergonomics. 43 (7). p.pp. 960–974.

Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical

reconceptualization. Journal of education and work. 14 (1). p.pp. 133–156.

Engeström, Y., Miettinen, R. & Punamäki, R.-L. (1999). Perspectives on Activity Theory.

Cambridge University Press.

Erickson, J.S., Spence, S., Rhodes, M., Banks, D., Rutherford, J., Simpson, E., Belrose, G. &

Perry, R. (2009). Content-Centered Collaboration Spaces in the Cloud. IEEE Internet

Computing. 13 (5). p.pp. 34–42.

Eriksson, P. & Kovalainen, A. (2015). Qualitative Methods in Business Research: A Practical

Guide to Social Research. SAGE.

Evans, L. (2009). 00001. Reflective Assessment and Student Achievement in High School

English. ProQuest.

Ewenike, S., Benkhelifa, E. & Chibelushi, C. (2017a). Cloud based collaborative software

development: A review, gap analysis and future directions. In: 2017 IEEE/ACS 14th

International Conference on Computer Systems and Applications (AICCSA). 2017, IEEE, pp.

901–909.

Ewenike, S., Benkhelifa, E. & Chibelushi, C. (2017b). Cloud Based Collaborative Software

Development: A Review, Gap Analysis and Future Directions. In: 1 October 2017, pp. 901–

909.

Ewenike, S., Benkhelifa, E. & Chibelushi, C. (2010). Systematic Review of Trends and Gaps in

Collaborative Software Engineering in the Cloud.

Exman, I., Perry, D.E., Barn, B. & Ralph, P. (2016). Separability Principles for a General

Theory of Software Engineering: Report on the GTSE 2015 Workshop. SIGSOFT Softw. Eng.

Notes. 41 (1). p.pp. 25–27.

Fazil, Q.A.A., Abdullah, Z. & Noah, S.A.M. (2010). Applying Zachman Framework to

determine the content of semantic theses digital library. In: 2010 International Symposium

on Information Technology. June 2010, pp. 1596–1600.

Fereday, J. & Muir-Cochrane, E. (2006). Demonstrating Rigor Using Thematic Analysis: A

Hybrid Approach of Inductive and Deductive Coding and Theme Development. International

Journal of Qualitative Methods. 5 (1). p.pp. 80–92.

Fisher, C.D. (2017). Padlet: An Online Tool for Learner Engagement and Collaboration,

Available at https://Padlet.com. Academy of Management Learning & Education. 16 (1).

p.pp. 163–165.

Fleming, S.D., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R., Lawrance, J. & Kwan, I.

(2013). An Information Foraging Theory Perspective on Tools for Debugging, Refactoring,

and Reuse Tasks. ACM Trans. Softw. Eng. Methodol. 22 (2). p.p. 14:1-14:41.

Page 220 of 327

Foley, M.J. (2013). Microsoft is pushing to move its internal software development to the

cloud. [Online]. 8 August 2013. ZDNet. Available from: http://www.zdnet.com/microsoft-is-

pushing-to-move-its-internal-software-development-to-the-cloud-7000019159/. [Accessed:

20 July 2014].

Folkestad, B. (2008). Analysing Interview Data Possibilities and challenges. undefined.

[Online]. Available from: /paper/Analysing-Interview-Data-Possibilities-and-

Folkestad/0a5f03bcf2b7cbaaab910721705db9e3000ed876. [Accessed: 15 June 2021].

Franken, S., Kolvenbach, S., Prinz, W., Alvertis, I. & Koussouris, S. (2015). CloudTeams:

Bridging the Gap Between Developers and Customers During Software Development

Processes. Procedia Computer Science. 68. p.pp. 188–195.

Frans Prenkert (2006). A theory of organizing informed by activity theory: The locus of

paradox, sources of change, and challenge to management. Journal of Organizational

Change Management. 19 (4). p.pp. 471–490.

Fusaro, V.A., Patil, P., Gafni, E., Wall, D.P. & Tonellato, P.J. (2011). Biomedical Cloud

Computing With Amazon Web Services. PLOS Computational Biology. 7 (8). p.p. e1002147.

Fylaktopoulos, G., Goumas, G., Skolarikis, M., Sotiropoulos, A. & Maglogiannis, I. (2016a). An

overview of platforms for cloud based development. SpringerPlus. [Online]. 5. Available

from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715041/. [Accessed: 30 October

2018].

Fylaktopoulos, G., Goumas, G., Skolarikis, M., Sotiropoulos, A. & Maglogiannis, I. (2016b). An

overview of platforms for cloud based development. SpringerPlus. 5 (1). p.p. 38.

Gadea, C., Solomon, B., Ionescu, B. & Ionescu, D. (2011). A Collaborative Cloud-Based

Multimedia Sharing Platform for Social Networking Environments. In: 2011 Proceedings of

20th International Conference on Computer Communications and Networks (ICCCN). July

2011, pp. 1–6.

Gai, K. & Li, S. (2012). Towards Cloud Computing: A Literature Review on Cloud Computing

and Its Development Trends. In: 2012 Fourth International Conference on Multimedia

Information Networking and Security. November 2012, pp. 142–146.

Gao, J., Bai, X. & Tsai, W.-T. (2011). Cloud Testing-Issues, Challenges, Needs and Practice.

Software Engineering: An International Journal. 1 (1). p.pp. 9–23.

J. Garbajosa, X. Wang, & A. Aguiar (eds.) (2018). Agile Processes in Software Engineering and

Extreme Programming. Lecture Notes in Business Information Processing. [Online]. Cham:

Springer International Publishing. Available from: http://link.springer.com/10.1007/978-3-

319-91602-6. [Accessed: 22 February 2019].

Garfinkel, S. (2011). Cloud Computing Defined. MIT Technology Review. [Online]. Available

from: http://www.technologyreview.com/news/425618/cloud-computing-defined/.

[Accessed: 29 May 2014].

Page 221 of 327

Georg, G. (2011). Activity theory and its applications in software engineering and

technology. Colorado State University Technical Report CS-11-101. 1025.

Geszten, D., Hámornik, B.P. & Hercegfi, K. (2018). Exploring awareness related usability

problems of collaborative software with a team usability testing approach. In: 2018 9th IEEE

International Conference on Cognitive Infocommunications (CogInfoCom). August 2018, pp.

000045–000050.

Ghaffari, K., Delgosha, M.S. & Abdolvand, N. (2014). Towards Cloud Computing: A SWOT

Analysis on its Adoption in SMEs. International Journal of Information Technology

Convergence and Services. 4 (2). p.pp. 13–20.

Ghandehari, M. & Stroulia, E. (2014). A Lightweight Coordination Approach For Resource-

Centric Collaborations. In: C. Pautasso, E. Wilde, & R. Alarcon (eds.). REST: Advanced

Research Topics and Practical Applications. [Online]. New York, NY: Springer, pp. 147–165.

Available from: https://doi.org/10.1007/978-1-4614-9299-3_9. [Accessed: 31 March 2020].

C. Ghaoui (ed.) (2006). Encyclopedia of Human Computer Interaction. Pck edition. Hershey

PA: IGI Global.

Ghezzi, C., Jazayeri, M. & Mandrioli, D. (2002). 01395. Fundamentals of Software

Engineering. 2nd Ed. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Gill, S.S. & Chana, I. (2012). Cloud Based Development Issues: A Methodical Analysis.

International Journal of Cloud Computing and Services Science (IJ-CLOSER). 2.

Given, L.M. (2008). The Sage encyclopedia of qualitative research methods. [Online]. Sage

Publications. Available from:

http://books.google.co.uk/books?hl=en&lr=&id=byh1AwAAQBAJ&oi=fnd&pg=PP1&dq=+Rot

hbauer,+Paulette+(2008)+%22Triangulation.%22+In+Given,+Lisa+(Ed.),+%22The+SAGE+Ency

clopedia+of+Qualitative+Research+Methods.%22+Sage+Publications.+pp.+892-

894.+Jump+up+%5E&ots=LNY0KN6N8n&sig=RuiHQd2nUGqNU0wfho8I2yc4ZZ8. [Accessed:

21 June 2017].

Goede, P.A., Lauman, J.R., Cochella, C., Katzman, G.L., Morton, D.A. & Albertine, K.H. (2004).

A Methodology and Implementation for Annotating Digital Images for Context-appropriate

Use in an Academic Health Care Environment. Journal of the American Medical Informatics

Association : JAMIA. 11 (1). p.pp. 29–41.

Golightly, D., Sharples, S., Patel, H. & Ratchev, S. (2016). Manufacturing in the cloud: A

human factors perspective. International Journal of Industrial Ergonomics. 55. p.pp. 12–21.

Gordon, A.J. (2013). Concepts for mobile programming. In: Proceedings of the 18th ACM

conference on Innovation and technology in computer science education. ITiCSE ’13.

[Online]. 2013, New York, NY, USA: ACM, pp. 58–63. Available from:

http://doi.acm.org/10.1145/2462476.2462483. [Accessed: 17 July 2013].

Gorlick, M.M. & Taylor, R.N. (2014). Communication and Capability URLs in COAST-based

Decentralized Services. In: C. Pautasso, E. Wilde, & R. Alarcon (eds.). REST: Advanced

Page 222 of 327

Research Topics and Practical Applications. [Online]. New York, NY: Springer, pp. 9–25.

Available from: https://doi.org/10.1007/978-1-4614-9299-3_2. [Accessed: 31 March 2020].

Gorton, I., Bener, A.B. & Mockus, A. (2016). Software Engineering for Big Data Systems. IEEE

Software. 33 (2). p.pp. 32–35.

Grbich, C. (2012). Google-Books-ID: B4dkAEIuDz4C. Qualitative Data Analysis: An

Introduction. SAGE.

Gregor, S. (2006). The nature of theory in information systems. Mis Quarterly. 30 (3). p.pp.

611–642.

Gregor, S. & Jones, D. (2007). The anatomy of a design theory. Journal of the Association for

Information Systems. 8 (5). p.pp. 312–335.

Guba, E.G., Lincoln, Y.S., & others (1994). Competing paradigms in qualitative research.

Handbook of qualitative research. 2 (163–194). p.p. 105.

Guha, R. & Al-Dabass, D. (2010). Impact of Web 2.0 and Cloud Computing Platform on

Software Engineering. In: 2010 International Symposium on Electronic System Design.

December 2010, pp. 213–218.

Guillén, J., Miranda, J., Murillo, J.M. & Canal, C. (2013). A service-oriented framework for

developing cross cloud migratable software. Journal of Systems and Software. [Online].

Available from: http://www.sciencedirect.com/science/article/pii/S0164121212003421.

[Accessed: 3 June 2013].

Haig-Smith, T. & Tanner, M. (2016). Cloud Computing as an Enabler of Agile Global Software

Development. 13. p.p. 24.

Hajjdiab, H. & Al Shaima Taleb (2011). Adopting Agile Software Development: Issues and

Challenges. International Journal of Managing Value and Supply Chains. 2 (3). p.pp. 1–10.

Han, B.J., Jung, I.-Y., Kim, K.-H., Lee, D., Rho, S. & Jeong, C. (2013). Cloud-based active

content collaboration platform using multimedia processing. EURASIP Journal on Wireless

Communications and Networking. 2013 (1). p.pp. 1–13.

Hansen, B.H. & Kautz, K. (2005). Grounded theory applied-studying information systems

development methodologies in practice. In: System Sciences, 2005. HICSS’05. Proceedings of

the 38th Annual Hawaii International Conference on. 2005, IEEE, pp. 264b–264b.

Hashmi, S.I. (2013). Global requirements engineering on the cloud: PhD research proposal.

[Online]. Available from: http://ulir.ul.ie/handle/10344/3482. [Accessed: 19 March 2014].

Hazeyama, A., Aoki, H., Ishikawa, Y., Ito, H., Ogane, K., Okazaki, J., Kobayashi, Y., Miura, M. &

Yamashita, I. (2007). A Survey on Software Development Support Based on Collaborative

Learning Theories. In: 2007.

HAZEYAMA, A., AOKI, H., ISHIKAWA, Y., ITOa, H., OGANE, K., OKAZAKI, J., KOBAYASHI, Y.,

MIURA, M. & YAMASHITA, I. (n.d.). A Survey on Software Development Support Based on

Collaborative Learning Theories. [Online]. Available from: http://www.u-

Page 223 of 327

gakugei.ac.jp/~hazeyama/papers/ICCE2007-poster-Hazeyama.pdf. [Accessed: 5 December

2015].

Henneman, E.A., Lee, J.L. & Cohen, J.I. (1995). Collaboration: a concept analysis. Journal of

Advanced Nursing. 21 (1). p.pp. 103–109.

Herbsleb, J.D. (2007). Global Software Engineering: The Future of Socio-technical

Coordination. In: 2007 Future of Software Engineering. FOSE ’07. [Online]. 2007,

Washington, DC, USA: IEEE Computer Society, pp. 188–198. Available from:

http://dx.doi.org/10.1109/FOSE.2007.11. [Accessed: 19 March 2014].

Herbsleb, J.D., Paulish, D.J. & Bass, M. (2005). Global Software Development at Siemens:

Experience from Nine Projects. In: Proceedings of the 27th International Conference on

Software Engineering. ICSE ’05. [Online]. 2005, New York, NY, USA: ACM, pp. 524–533.

Available from: http://doi.acm.org/10.1145/1062455.1062550. [Accessed: 2 August 2017].

Hildenbrand, T., Rothlauf, F., Geisser, M., Heinzl, A. & Kude, T. (2008). Approaches to

Collaborative Software Development. In: International Conference on Complex, Intelligent

and Software Intensive Systems, 2008. CISIS 2008. March 2008, pp. 523–528.

Hiremath, M.M. & Patil, A.P. (2015). Collaboration in multi-cloud computing environments:

Framework and security issues. IJCSIT. 6 (3). p.pp. 2859–62.

Hodges, J. (2002). Lightweight directory access protocol (v3): Technical specification.

Hoegl, M. & Gemuenden, H.G. (2001). Teamwork Quality and the Success of Innovative

Projects: A Theoretical Concept and Empirical Evidence. Organization Science. 12 (4). p.pp.

435–449.

Hoegl, M., Weinkauf, K. & Gemuenden, H.G. (2004). Interteam Coordination, Project

Commitment, and Teamwork in Multiteam R&D Projects: A Longitudinal Study. Organization

Science. 15 (1). p.pp. 38–55.

Hong, J., Suh, E. & Kim, S.-J. (2009). Context-aware systems: A literature review and

classification. Expert Systems with Applications. 36 (4). p.pp. 8509–8522.

Howard, C., Plummer, D.C., Genovese, Y., Mann, J., Willis, D.A. & Smith, D.M. (2012). The

nexus of forces: social, mobile, cloud and information. On-line at http://www. gartner.

com/technology/research/nexus-of-forces.

Isaeva, N., Bachmann, R., Bristow, A. & Saunders, M.N.K. (2015). Why the epistemologies of

trust researchers matter. Journal of Trust Research. 5 (2). p.pp. 153–169.

Jackson, B. (2011). Cloud Collaboration. Mix. 35 (5). p.pp. 16–18.

Jadeja, Y. & Modi, K. (2012). Cloud computing - concepts, architecture and challenges. In:

2012 International Conference on Computing, Electronics and Electrical Technologies

(ICCEET). 2012, pp. 877–880.

Page 224 of 327

Jastroch, N. (2009). Advancing Adaptivity in Enterprise Collaboration. [Online]. Rochester,

NY: Social Science Research Network. Available from:

https://papers.ssrn.com/abstract=1907348. [Accessed: 15 February 2017].

Jeffery, R. (2000). Theory, models and methods in software engineering research. In:

ICSE’2000 Workshop on” Beg, Borrow, or Steal: Using Multidisciplinary Approaches in

Empirical Software Engineering Research”(2000). [Online]. 2000, pp. 2–7. Available from:

https://www.researchgate.net/profile/R_Jeffery2/publication/2909335_Theory_Models_an

d_Methods_in_Software_Engineering_Research/links/543347d00cf22395f29e0a37.pdf.

[Accessed: 8 February 2017].

Jespersen, J. (2011). Google-Books-ID: y12RtMXthC0C. Macroeconomic Methodology: A

Post-Keynesian Perspective. Edward Elgar Publishing.

John, B.E., Swart, C., Bellamy, R.K.E., Blackmon, M.H. & Brown, R. (2013). An Open Source

Approach to Information Scent. In: CHI ’13 Extended Abstracts on Human Factors in

Computing Systems. CHI EA ’13. [Online]. 2013, New York, NY, USA: ACM, pp. 355–360.

Available from: http://doi.acm.org/10.1145/2468356.2468419. [Accessed: 4 May 2016].

Johnson, J.R., Burnell-Nugent, M., Lossignol, D., Ganae-Motan, E.D., Potts, R. & Fallon, M.T.

(2010). Multicenter, Double-Blind, Randomized, Placebo-Controlled, Parallel-Group Study of

the Efficacy, Safety, and Tolerability of THC:CBD Extract and THC Extract in Patients with

Intractable Cancer-Related Pain. Journal of Pain and Symptom Management. 39 (2). p.pp.

167–179.

Johnson, P. & Ekstedt, M. (2016). The Tarpit – A general theory of software engineering.

Information and Software Technology. 70. p.pp. 181–203.

Jr, H.N.B. & Boone, D.A. (2012). Analyzing Likert Data. Journal of Extension. [Online]. 50 (2).

Available from: https://www.joe.org/joe/2012april/tt2.php. [Accessed: 7 December 2016].

Jugder, N. (2016). The thematic analysis of interview data: an approach used to examine the

influence of the market on curricular provision in Mongolian higher education institutions.

Jun, W. & Meng, F. (2011). Software Testing Based on Cloud Computing. In: 2011

International Conference on Internet Computing Information Services (ICICIS). 2011, pp. 176–

178.

Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L. & German, D.M. (2015). Open source-

style collaborative development practices in commercial projects using github. In:

Proceedings of the 37th International Conference on Software Engineering-Volume 1.

[Online]. 2015, IEEE Press, pp. 574–585. Available from:

http://dl.acm.org/citation.cfm?id=2818825. [Accessed: 26 February 2017].

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M. & Damian, D. (2014). The

Promises and Perils of Mining GitHub. In: Proceedings of the 11th Working Conference on

Mining Software Repositories. MSR 2014. [Online]. 2014, New York, NY, USA: ACM, pp. 92–

101. Available from: http://doi.acm.org/10.1145/2597073.2597074. [Accessed: 9 March

2017].

Page 225 of 327

Kamiński, B. & Szufel, P. (2015). On optimization of simulation execution on Amazon EC2

spot market. Simulation Modelling Practice and Theory. 58. p.pp. 172–187.

Kannan, N. (2012). 6 Ways the Cloud Enhances Agile Software Development. CIO. [Online].

Available from: http://www.cio.com/article/2393022/enterprise-architecture/6-ways-the-

cloud-enhances-agile-software-development.html. [Accessed: 20 July 2014].

Karanjit, A. (2016). MEAN vs. LAMP Stack. Culminating Projects in Computer Science and

Information Technology. [Online]. Available from:

https://repository.stcloudstate.edu/csit_etds/11.

Karunakaran, S. (2013). Impact of Cloud Adoption on Agile Software Development. In: Z.

Mahmood & S. Saeed (eds.). Software Engineering Frameworks for the Cloud Computing

Paradigm. Computer Communications and Networks. [Online]. London: Springer, pp. 213–

234. Available from: https://doi.org/10.1007/978-1-4471-5031-2_10. [Accessed: 14 June

2021].

Kats, L.C., Vogelij, R.G., Kalleberg, K.T. & Visser, E. (2012). Software development

environments on the web: a research agenda. In: Proceedings of the ACM international

symposium on New ideas, new paradigms, and reflections on programming and software.

[Online]. 2012, pp. 99–116. Available from: http://dl.acm.org/citation.cfm?id=2384603.

[Accessed: 25 June 2013].

Kenneth F. Hyde (2000). Recognising deductive processes in qualitative research. Qualitative

Market Research: An International Journal. 3 (2). p.pp. 82–90.

Kim, S.W., Park, S.H., Lee, J., Jin, Y.K., Park, H.-M., Chung, A., Choi, S. & Choi, W.S. (2004).

Sensible Appliances: Applying Context-awareness to Appliance Design. Personal Ubiquitous

Comput. 8 (3–4). p.pp. 184–191.

Kitchenham, B. & Charters, S. (2007). Guidelines for performing systematic literature reviews

in software engineering. Tech. Rep. EBSE 2007-001, Keele University and Durham University

Joint Report.

Kitchenham, B.A., Dyba, T. & Jorgensen, M. (2004). Evidence-based software engineering.

In: Proceedings of the 26th international conference on software engineering. [Online].

2004, IEEE Computer Society, pp. 273–281. Available from:

http://dl.acm.org/citation.cfm?id=999432. [Accessed: 29 January 2017].

Klaesson, P. (2013). Building a scalable social game server. In: 2013.

Kocurova, A., Oussena, S., Komisarczuk, P. & Clark, T. (2012). Context-aware content-centric

collaborative workflow management for mobile devices. In: Proceedings of the 2nd

International Conference on Advanced Collaborative Networks, Systems and Applications

(COLLA’12). [Online]. 2012, pp. 54–57. Available from:

http://www.eis.mdx.ac.uk/staffpages/tonyclark/Papers/Kocurova_Colla2012-2.pdf.

[Accessed: 30 January 2017].

Page 226 of 327

Kokkinos, P., Varvarigou, T.A., Kretsis, A., Soumplis, P. & Varvarigos, E.A. (2015). SuMo:

Analysis and Optimization of Amazon EC2 Instances. Journal of Grid Computing. 13 (2). p.pp.

255–274.

Kothari, C.R. (2004). Research methodology: Methods and techniques. [Online]. New Age

International. Available from:

https://books.google.com/books?hl=en&lr=&id=hZ9wSHysQDYC&oi=fnd&pg=PA2&dq=%22

with+this+object+in+view+are+known+as+descriptive+research%22+%22Desire+to+get+int

ellectual+joy+of+doing+some+creative%22+%22Descriptive+vs.+Analytical:+Descriptive+res

earch+includes+surveys+and+fact-finding%22+&ots=1r_cnEf1C7&sig=XT1cB1ZWhmtg0_Ux-

q44UIRhmRw. [Accessed: 28 September 2016].

Kozulin, A. (1986). The concept of activity in Soviet psychology: Vygotsky, his disciples and

critics. American Psychologist. 41 (3). p.pp. 264–274.

Kreger, H. & Estefan, J. (2009). Navigating the soa open standards landscape around

architecture. Joint Paper, The Open Group, OASIS, and OMG.

Krishna, R. & Jayakrishnan, R. (2013). Impact of Cloud Services on Software Development

Life Cycle. In: Z. Mahmood & S. Saeed (eds.). Software Engineering Frameworks for the

Cloud Computing Paradigm. Computer Communications and Networks. [Online]. London:

Springer, pp. 79–99. Available from: https://doi.org/10.1007/978-1-4471-5031-2_4.

[Accessed: 13 June 2021].

Kyriakidou-Zacharoudiou, A. (2011). Distributed development of large-scale distributed

systems: the case of the particle physics grid. phd. [Online]. The London School of Economics

and Political Science (LSE). Available from: http://etheses.lse.ac.uk/212/. [Accessed: 11 July

2016].

Lange, P.D., Nicolaescu, P., Derntl, M., Jarke, M. & Klamma, R. (2016). Community

application editor: collaborative near real-time modeling and composition of microservice-

based web applications. [Online]. Gesellschaft für Informatik e.V. Available from:

http://dl.gi.de/handle/20.500.12116/844. [Accessed: 18 May 2019].

Lanubile, F. (2009). Collaboration in distributed software development. Software

Engineering. p.pp. 174–193.

Lanubile, F., Ebert, C., Prikladnicki, R. & Vizcaino, A. (2010). Collaboration Tools for Global

Software Engineering. IEEE Software. 27 (2). p.pp. 52–55.

Lau, J.W., Lehnert, E., Sethi, A., Malhotra, R., Kaushik, G., Onder, Z., Groves-Kirkby, N.,

Mihajlovic, A., DiGiovanna, J., Srdic, M., Bajcic, D., Radenkovic, J., Mladenovic, V., Krstanovic,

D., Arsenijevic, V., Klisic, D., Mitrovic, M., Bogicevic, I., Kural, D. & Davis-Dusenbery, B.

(2017). The Cancer Genomics Cloud: Collaborative, Reproducible, and Democratized—A

New Paradigm in Large-Scale Computational Research. Cancer Research. 77 (21). p.pp. e3–

e6.

Leavitt, N. (2009). Is Cloud Computing Really Ready for Prime Time? Computer. 42 (1). p.pp.

15–20.

Page 227 of 327

Lenk, A., Klems, M., Nimis, J., Tai, S. & Sandholm, T. (2009). What’s inside the Cloud? An

architectural map of the Cloud landscape. In: Proceedings of the 2009 ICSE Workshop on

Software Engineering Challenges of Cloud Computing. CLOUD ’09. [Online]. 2009,

Washington, DC, USA: IEEE Computer Society, pp. 23–31. Available from:

http://dx.doi.org/10.1109/CLOUD.2009.5071529. [Accessed: 17 April 2013].

Lepmets, M. & Nael, M. (2011). Comparison of Plan-driven and Agile Project Management

Approaches: Theoretical Bases for a Case Study in Estonian Software Industry. In:

Proceedings of the 2011 Conference on Databases and Information Systems VI: Selected

Papers from the Ninth International Baltic Conference, DB&IS 2010. [Online]. 2011,

Amsterdam, The Netherlands, The Netherlands: IOS Press, pp. 296–308. Available from:

http://dl.acm.org/citation.cfm?id=1940590.1940618. [Accessed: 6 December 2016].

Lindsjørn, Y., Bergersen, G.R., Dingsøyr, T. & Sjøberg, D.I.K. (2018). Teamwork Quality and

Team Performance: Exploring Differences Between Small and Large Agile Projects. In: J.

Garbajosa, X. Wang, & A. Aguiar (eds.). Agile Processes in Software Engineering and Extreme

Programming. Lecture Notes in Business Information Processing. 2018, Cham: Springer

International Publishing, pp. 267–274.

Lindsjørn, Y., Sjøberg, D., Dingsøyr, T., Bergersen, G.R. & Dybå, T. (2016a). Teamwork Quality

and Project Success in Software Development: A Survey of Agile Development Teams.

[Online]. Available from: https://brage.bibsys.no/xmlui/handle/11250/2420977. [Accessed:

22 February 2019].

Lindsjørn, Y., Sjøberg, D.I.K., Dingsøyr, T., Bergersen, G.R. & Dybå, T. (2016b). Teamwork

quality and project success in software development: A survey of agile development teams.

Journal of Systems and Software. 122. p.pp. 274–286.

Linux Foundation (2014). Collaborative Development Trends Report, 2014. [Online].

Available from: http://pix.cs.olemiss.edu/csci323/lfwp_collabdevtrends_v3.pdf. [Accessed:

29 January 2015].

Liu, T.L., Li, Y.C. & Li, M.L. (2016). A framework of cloud-based collaborative platform to

integrate product design requests and contradiction analysis. In: 2016 International

Conference on Advanced Materials for Science and Engineering (ICAMSE). November 2016,

pp. 475–478.

Lotfy, M. & Pyatt, K. (2018). A two-course web application development sequence covering

the lamp and mean stacks.

Lü, J., Rosenblum, D.S., Bultan, T., Issarny, V., Dustdar, S., Storey, M.A. & Zhang, D. (2015).

Roundtable: The Future of Software Engineering for Internet Computing. IEEE Software. 32

(1). p.pp. 91–97.

Magdaleno, A.M. (2010a). An Optimization-based Approach to Software Development

Process Tailoring. In: Proceedings of the 2nd International Symposium on Search Based

Software Engineering. SSBSE ’10. [Online]. 2010, Washington, DC, USA: IEEE Computer

Page 228 of 327

Society, pp. 40–43. Available from: http://dx.doi.org/10.1109/SSBSE.2010.15. [Accessed: 20

June 2013].

Magdaleno, A.M. (2010b). Balancing collaboration and discipline in software development

processes. In: Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 2. ICSE ’10. [Online]. 2010, New York, NY, USA: ACM, pp. 331–332.

Available from: http://doi.acm.org/10.1145/1810295.1810378. [Accessed: 7 May 2013].

Magdaleno, A.M., Werner, C.M.L. & Araujo, R.M. de (2012). Reconciling software

development models: A quasi-systematic review. J. Syst. Softw. 85 (2). p.pp. 351–369.

Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek, S. & Stavrou, A. (2012). A

whitebox approach for automated security testing of Android applications on the cloud. In:

2012 7th International Workshop on Automation of Software Test (AST). 2012, pp. 22–28.

Mahmood, Z. & Saeed, S. (2013). 00001 Cited by 0000. Software Engineering Frameworks

for the Cloud Computing Paradigm. Springer Publishing Company, Incorporated.

Z. Mahmood & S. Saeed (eds.) (2013). Software Engineering Frameworks for the Cloud

Computing Paradigm. Computer Communications and Networks. [Online]. London: Springer

London. Available from: http://link.springer.com/10.1007/978-1-4471-5031-2. [Accessed:

29 March 2020].

Mark, G. (2002). Extreme Collaboration. Commun. ACM. 45 (6). p.pp. 89–93.

Marlowe, T. (n.d.). Addressing Change in Collaborative Software Development: Process and

Product Agility and Automated Traceability. [Online]. Available from:

https://www.academia.edu/18729560/Addressing_Change_in_Collaborative_Software_Dev

elopment_Process_and_Product_Agility_and_Automated_Traceability. [Accessed: 15

February 2017].

Maximilien, E.M. & Campos, P. (2012). Facts, trends and challenges in modern software

development. International Journal of Agile and Extreme Software Development. 1 (1). p.pp.

1–5.

Méndez Fernández, D. & Passoth, J.-H. (2019). Empirical software engineering: From

discipline to interdiscipline. Journal of Systems and Software. 148. p.pp. 170–179.

Menzies, T., Williams, L. & Zimmermann, T. (2016). Perspectives on Data Science for

Software Engineering. 1 edition. Amsterdam Boston Heidelberg: Morgan Kaufmann.

Mertens, D.M. & Hesse-Biber, S. (2012). Triangulation and Mixed Methods Research

Provocative Positions. Journal of Mixed Methods Research. 6 (2). p.pp. 75–79.

Mirri, S., Prandi, C., Salomoni, P., Callegati, F., Melis, A. & Prandini, M. (2016). A Service-

Oriented Approach to Crowdsensing for Accessible Smart Mobility Scenarios. [Online]. 2016.

Mobile Information Systems. Available from:

https://www.hindawi.com/journals/misy/2016/2821680/. [Accessed: 15 November 2018].

Page 229 of 327

Mistrik, I., Ali, N., Kazman, R., Grundy, J. & Schmerl, B. (2016). Google-Books-ID:

F8O3CgAAQBAJ. Managing Trade-offs in Adaptable Software Architectures. Morgan

Kaufmann.

Mistrík, I., Grundy, J., Hoek, A. & Whitehead, J. (2010). Collaborative Software Engineering.

Springer Science & Business Media.

Mohtashami, M., Kirova, V., Marlowe, T. & Deek, F. (2009). A Comparison of Three Modes of

Collaboration for Software Development. AMCIS 2009 Proceedings. [Online]. Available from:

http://aisel.aisnet.org/amcis2009/19.

Mohtashami, M., Marlowe, T.J., Kirova, V.D. & Deek, F.P. (2011a). Risk-driven Management

Contingency Policies in Collaborative Software Development. International Journal of

Information Technology and Management. 10 (2–4). p.pp. 247–271.

Mohtashami, M., Marlowe, T.J. & Ku, C.S. (2011b). Metrics Are Needed for Collaborative

Software Development. Journal of Systemics, Cybernetics, and Informatics. 9 (5). p.pp. 41–

47.

Moiz, S.A. & Rizwanullah, M. (2012). Model based Software Develeopment: Issues &

Challenges. arXiv preprint arXiv:1203.1314. [Online]. Available from:

http://arxiv.org/abs/1203.1314. [Accessed: 25 June 2013].

Mourad, M.H., Nassehi, A., Schaefer, D. & Newman, S.T. (2020). Assessment of

interoperability in cloud manufacturing. Robotics and Computer-Integrated Manufacturing.

61. p.p. 101832.

Munassar, N.M.A. & Govardhan, A. (2010). A Comparison Between Five Models Of Software

Engineering. IJCSI International Journal of Computer Science Issues. 7 (5). p.pp. 94–101.

Münch, J. & Schmid, K. (2013). Google-Books-ID: NWREAAAAQBAJ. Perspectives on the

Future of Software Engineering: Essays in Honor of Dieter Rombach. Springer Science &

Business Media.

Murthy, M.S.N. & Suma, V. (2017). Software testing and its scope in CLOUD: A detailed

survey. In: 2017 International Conference on Innovative Mechanisms for Industry

Applications (ICIMIA). February 2017, pp. 269–273.

National Defense Industrial Association (2010). NDIA Top SW Issues 2010 Report v5a.

[Online]. September 2010. Available from:

http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Studies/NDIA%20

Top%20SW%20Issues%202010%20Report%20v5a%20final.pdf. [Accessed: 20 March 2014].

Newman, S. (2015). Building Microservices. 1 edition. Beijing Sebastopol, CA: O’Reilly Media.

Nogueira, E., Moreira, A., Lucrédio, D., Garcia, V. & Fortes, R. (2016). Issues on developing

interoperable cloud applications: definitions, concepts, approaches, requirements,

characteristics and evaluation models. Journal of Software Engineering Research and

Development. 4 (1). p.p. 7.

Page 230 of 327

Noll, J., Beecham, S. & Richardson, I. (2010). Global software development and

collaboration: barriers and solutions. ACM inroads. 1 (3). p.pp. 66–78.

Noor, K.B.M. (2008). Case study: A strategic research methodology. American journal of

applied sciences. 5 (11). p.pp. 1602–1604.

Nordio, M., Estler, H.-C., Furia, C.A. & Meyer, B. (2011). Collaborative Software

Development on the Web. arXiv:1105.0768 [cs]. [Online]. Available from:

http://arxiv.org/abs/1105.0768. [Accessed: 7 November 2016].

Ntanos, C., Botsikas, C., Rovis, G., Kakavas, P. & Askounis, D. (2014). A context awareness

framework for cross-platform distributed applications. Journal of Systems and Software. 88.

p.pp. 138–146.

Núñez, I. (2009). Contradictions as Sources of Change: A literature review on Activity Theory

and the Utilisation of the Activity System in Mathematics Education. Educate∼. 9 (3). p.pp.

7–20.

Oberhauser, R. (2014). Cloud-based Collaborative Software Development: A Concept for

Managing Transparency and Privacy based on Datasteads. International Journal On

Advances in Software. 7 (3 and 4). p.pp. 435–445.

Oberhauser, R. (2013a). Towards Cloud-based Collaborative Software Development: A

Developer-Centric Concept for Managing Privacy, Security, and Trust. In: ICSEA 2013, The

Eighth International Conference on Software Engineering Advances. [Online]. 2013, pp. 533–

538. Available from:

http://www.thinkmind.org/index.php?view=article&articleid=icsea_2013_19_20_10121.

[Accessed: 1 September 2014].

Oberhauser, R. (2013b). Towards Cloud-based Collaborative Software Development: A

Developer-Centric Concept for Managing Privacy, Security, and Trust. In: [Online]. 27

October 2013, pp. 533–538. Available from:

http://www.thinkmind.org/index.php?view=article&articleid=icsea_2013_19_20_10121.

[Accessed: 5 February 2015].

OGC (2013). OGC Standards | OGC(R). [Online]. 2013. OGC. Available from:

http://www.opengeospatial.org/standards/is. [Accessed: 22 October 2013].

Oh, Y., Han, J. & Woo, W. (2010). A context management architecture for large-scale smart

environments. IEEE Communications Magazine. 48 (3). p.pp. 118–126.

O’Leary, D. (2010). An Activity Theory Framework for DSS for Extreme Events. In: Frontiers in

Artificial Intelligence and Applications. 1 January 2010, pp. 487–497.

Omicini, A. (2013). Nature-Inspired Coordination Models: Current Status and Future Trends.

ISRN Software Engineering. 2013. p.pp. 1–13.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C. & Tummolini, L. (2004). Coordination

Artifacts: Environment-Based Coordination for Intelligent Agents. In: Proceedings of the

Third International Joint Conference on Autonomous Agents and Multiagent Systems -

Page 231 of 327

Volume 1. AAMAS ’04. [Online]. 2004, Washington, DC, USA: IEEE Computer Society, pp.

286–293. Available from: http://dx.doi.org/10.1109/AAMAS.2004.95. [Accessed: 4 February

2015].

Omoronyia, I., Ferguson, J., Roper, M. & Wood, M. (2010). A Review of Awareness in

Distributed Collaborative Software Engineering. Softw. Pract. Exper. 40 (12). p.pp. 1107–

1133.

Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T. & Epema, D. (2010). A

Performance Analysis of EC2 Cloud Computing Services for Scientific Computing. In: D. R.

Avresky, M. Diaz, A. Bode, B. Ciciani, & E. Dekel (eds.). Cloud Computing. Lecture Notes of

the Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering. 2010, Berlin, Heidelberg: Springer, pp. 115–131.

Oxford Dictionaries (2013). collaboration: definition of collaboration in Oxford dictionary

(American English). [Online]. July 2013. Available from:

http://oxforddictionaries.com/definition/american_english/collaboration. [Accessed: 4 July

2013].

Panigrahi, C.R., Mall, R. & Pati, B. (2017). Software Development Methodology for Cloud

Computing and Its Impact. In: 2017.

Pankratius, V. (2010). Google-Books-ID: 74CryOzvO3gC. Emerging Research Directions in

Computer Science: Contributions from the Young Informatics Faculty in Karlsruhe. KIT

Scientific Publishing.

Parveen, T. & Tilley, S. (2010). When to Migrate Software Testing to the Cloud? In: 2010

Third International Conference on Software Testing, Verification, and Validation Workshops

(ICSTW). 2010, pp. 424–427.

Pathirage, C.P., Amaratunga, R.D.G. & Haigh, R.P. (2007). The role of philosophical context in

the development of theory: Towards methodological pluralism. The Built and Human

Environment Review. [Online]. 1 (1). Available from:

http://www.tbher.org/index.php/bher/issue/view/2. [Accessed: 28 November 2016].

Patidar, S., Rane, D. & Jain, P. (2012). A Survey Paper on Cloud Computing. In: 2012 Second

International Conference on Advanced Computing Communication Technologies. January

2012, pp. 394–398.

Patton, M.Q. (2002). Google-Books-ID: FjBw2oi8El4C. Qualitative Research & Evaluation

Methods. SAGE.

Peltz, C. (2003). Web services orchestration and choreography. Computer. 36 (10). p.pp. 46–

52.

Peng, X., Babar, M.A. & Ebert, C. (2014). Collaborative Software Development Platforms for

Crowdsourcing. IEEE software. 31 (2). p.pp. 30–36.

Petersen, K. & Wohlin, C. (2009). Context in Industrial Software Engineering Research. In:

Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering

Page 232 of 327

and Measurement. ESEM ’09. [Online]. 2009, Washington, DC, USA: IEEE Computer Society,

pp. 401–404. Available from: http://dx.doi.org/10.1109/ESEM.2009.5316010. [Accessed: 8

December 2016].

Portocarrero, J.M.T., Delicato, F.C., Pires, P.F., Costa, B., Li, W., Si, W. & Zomaya, A.Y. (2017).

RAMSES: A new reference architecture for self-adaptive middleware in Wireless Sensor

Networks. Ad Hoc Networks. 55. p.pp. 3–27.

Puthal, D., Sahoo, B.P.S., Mishra, S. & Swain, S. (2015). Cloud Computing Features, Issues,

and Challenges: A Big Picture. In: [Online]. January 2015, IEEE, pp. 116–123. Available from:

http://ieeexplore.ieee.org/document/7053814/. [Accessed: 4 July 2017].

Quest (2012). Challenges-Benefits-Cloud-Computing.pdf. p.pp. 1–10.

Rademacher, F., Sachweh, S. & Zündorf, A. (2017). Differences between model-driven

development of service-oriented and microservice architecture. In: 2017 IEEE International

Conference on Software Architecture Workshops (ICSAW). 2017, IEEE, pp. 38–45.

Raj, P., Venkatesh, V. & Amirtharajan, R. (2013). Envisioning the Cloud-Induced

Transformations in the Software Engineering Discipline. In: Z. Mahmood & S. Saeed (eds.).

Software Engineering Frameworks for the Cloud Computing Paradigm. Computer

Communications and Networks. [Online]. London: Springer, pp. 25–53. Available from:

https://doi.org/10.1007/978-1-4471-5031-2_2. [Accessed: 14 June 2021].

Ralph, P. (2014). Evaluating process theories in software engineering. In: Proceedings of the

3rd SEMAT Workshop on General Theories of Software Engineering. [Online]. 2014, ACM, pp.

5–8. Available from: http://dl.acm.org/citation.cfm?id=2593754. [Accessed: 20 June 2017].

Ralph, P. (2013a). Possible core theories for software engineering. In: 2013 2nd SEMAT

Workshop on a General Theory of Software Engineering (GTSE). May 2013, pp. 35–38.

Ralph, P. (n.d.). Possible Core Theories for Software Engineering. [Online]. Available from:

http://paulralph.name/wp-content/uploads/2012/06/Ralph-2013-Possible-Core-Theory-for-

Software-Engineering.pdf. [Accessed: 20 June 2013].

Ralph, P. (2013b). Software Engineering Process Theory: A Multi-Method Comparison of

Sensemaking-CoevoIution-Implementation Theory and Function-Behavior-Structure Theory.

arXiv:1307.1019 [cs]. [Online]. Available from: http://arxiv.org/abs/1307.1019. [Accessed: 8

February 2017].

Ralph, P., Johnson, P. & Jordan, H. (2013). Report on the First SEMAT Workshop on General

Theory of Software Engineering (GTSE 2012). SIGSOFT Softw. Eng. Notes. 38 (2). p.pp. 26–

28.

Ramis, B., de Juan-Marín, R., Miedes, E., Nieto, N., Martinez Lastra, J.L. & Peña-Ortiz, R.

(2016). Towards a Cloud-based Platform for Enabling Supply Chain Collaboration. In: 29

March 2016.

Raubenheimer, J. (2014). Google-Books-ID: hmPBoAEACAAJ. Mendeley: Crowd-sourced

Reference and Citation Management in the Infomation Era. True Insight Publishing.

Page 233 of 327

Rauch, E., Seidenstricker, S., Dallasega, P. & Hämmerl, R. (2016a). Collaborative Cloud

Manufacturing: Design of Business Model Innovations Enabled by Cyberphysical Systems in

Distributed Manufacturing Systems. [Online]. 2016. Journal of Engineering. Available from:

https://www.hindawi.com/journals/je/2016/1308639/. [Accessed: 22 November 2018].

Rauch, E., Seidenstricker, S., Dallasega, P. & Hämmerl, R. (2016b). Collaborative Cloud

Manufacturing: Design of Business Model Innovations Enabled by Cyberphysical Systems in

Distributed Manufacturing Systems. Journal of Engineering. 2016. p.pp. 1–12.

Rellermeyer, J.S., Lee, S.-W. & Kistler, M. (2013). Cloud platforms and embedded computing:

the operating systems of the future. In: Proceedings of the 50th Annual Design Automation

Conference. DAC ’13. [Online]. 2013, New York, NY, USA: ACM, p. 75:1-75:6. Available from:

http://doi.acm.org/10.1145/2463209.2488826. [Accessed: 17 July 2013].

Richards, M. (2015a). Microservices vs. service-oriented architecture. O’Reilly Media.

Richards, M. (2015b). Software architecture patterns. 1st Ed. [Online]. O’Reilly Media, Inc.

Available from: http://www.oreilly.com/programming/free/files/software-architecture-

patterns.pdf. [Accessed: 28 February 2017].

Richards, N.F., Mark (n.d.). Software Architecture Fundamentals Understanding the Basics.

[Online]. Available from: http://shop.oreilly.com/product/110000195.do. [Accessed: 11 July

2018].

Richardson, C. (2019). Microservice Patterns: With examples in Java.

Riungu, L.M., Taipale, O. & Smolander, K. (2010). Research Issues for Software Testing in the

Cloud. In: 2010 IEEE Second International Conference on Cloud Computing Technology and

Science (CloudCom). 2010, pp. 557–564.

Riungu-Kalliosaari, L., Taipale, O. & Smolander, K. (2012). Testing in the Cloud: Exploring the

Practice. IEEE Software. 29 (2). p.pp. 46–51.

Robillard, P.N. & Robillard, M.P. (2000). Types of collaborative work in software engineering.

Journal of Systems and Software. 53 (3). p.pp. 219–224.

Rolfe, G. (2006). Validity, trustworthiness and rigour: quality and the idea of qualitative

research. Journal of Advanced Nursing. 53 (3). p.pp. 304–310.

Roth, W.-M. & Lee, Y.-J. (2007). “Vygotsky’s Neglected Legacy”: Cultural-Historical Activity

Theory. Review of Educational Research. 77 (2). p.pp. 186–232.

T. R. Roth-Berghofer, S. Schulz, & D. B. Leake (eds.) (2006). Modeling and Retrieval of

Context: Second International Workshop, MRC 2005, Edinburgh, UK, July 31-August 1, 2005,

Revised Selected Papers. Lecture Notes in Artificial Intelligence. [Online]. Berlin Heidelberg:

Springer-Verlag. Available from: https://www.springer.com/gp/book/9783540335870.

[Accessed: 15 June 2021].

Runeson, P. & Höst, M. (2009). Guidelines for Conducting and Reporting Case Study

Research in Software Engineering. Empirical Softw. Engg. 14 (2). p.pp. 131–164.

Page 234 of 327

Said, M.N.H.M., Tahir, L.M., Ali, M.F., Noor, N.M., Atan, N.A. & Abdullah, Z. (2014). Using

Activity Theory as Analytical Framework for Evaluating Contextual Online Collaborative

Learning. International Journal of Emerging Technologies in Learning (iJET). 9 (5). p.pp. 54–

59.

Sanchez, R.V.V., Oliveira, R.R. de & Fortes, R.P. de M. (2014). RestML: Modeling RESTful Web

Services. In: C. Pautasso, E. Wilde, & R. Alarcon (eds.). REST: Advanced Research Topics and

Practical Applications. [Online]. New York, NY: Springer, pp. 125–143. Available from:

https://doi.org/10.1007/978-1-4614-9299-3_8. [Accessed: 31 March 2020].

Sangwan, R.S., Jablokow, K.W. & DeFranco, J.F. (2020). Asynchronous Collaboration:

Bridging the Cognitive Distance in Global Software Development Projects. IEEE Transactions

on Professional Communication. 63 (4). p.pp. 361–371.

dos Santos, E.C. & Vilain, P. (2018). Automated Acceptance Tests as Software Requirements:

An Experiment to Compare the Applicability of Fit Tables and Gherkin Language. In: J.

Garbajosa, X. Wang, & A. Aguiar (eds.). Agile Processes in Software Engineering and Extreme

Programming. Lecture Notes in Business Information Processing. 2018, Cham: Springer

International Publishing, pp. 104–119.

Saunders, M.N.K., Lewis, P. & Thornhill, A. (2009). Research methods for business students.

5th ed. New York: Prentice Hall.

Schwartz-Shea, P. & Yanow, D. (2011). Interpretive Research Design: Concepts and

Processes. 1 edition. New York, NY: Routledge.

Serçe, F.C., Swigger, K., Alpaslan, F.N., Brazile, R., Dafoulas, G. & Lopez, V. (2011). Online

collaboration: Collaborative behavior patterns and factors affecting globally distributed

team performance. Computers in Human Behavior. 27 (1). p.pp. 490–503.

da Silva, F.Q., Costa, C., Franca, A.C.C. & Prikladinicki, R. (2010). Challenges and solutions in

distributed software development project management: A systematic literature review. In:

2010 5th IEEE International Conference on Global Software Engineering. 2010, IEEE, pp. 87–

96.

Singh, S. & Chana, I. (2013). Introducing Agility in Cloud Based Software Development

through ASD.

Sitaram, D. & Manjunath, G. (2011). Moving To The Cloud: Developing Apps in the New

World of Cloud Computing. Elsevier.

Skerrett, I. (2009). Collaborative Software Development in the Enterprise. Open Source

Business Resource. (January 2009).

Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Dobre, C.,

Panagiotakis, S. & Pallis, E. (2017). Big Data and Cloud Computing: A Survey of the State-of-

the-Art and Research Challenges. In: C. X. Mavromoustakis, G. Mastorakis, & C. Dobre (eds.).

Advances in Mobile Cloud Computing and Big Data in the 5G Era. Studies in Big Data.

[Online]. Springer International Publishing, pp. 23–41. Available from:

Page 235 of 327

http://link.springer.com/chapter/10.1007/978-3-319-45145-9_2. [Accessed: 28 February

2017].

Slife, B.D. (1998). Raising the consciousness of researchers: Hidden assumptions in the

behavioral sciences. Adapted Physical Activity Quarterly. 15 (3). p.p. 208.

Soegaard, M. & Friis Dam, R. (2013). The Encyclopedia of Human-Computer Interaction, 2nd

Ed.

Somekh, B. & Lewin, C. (2005). Google-Books-ID: qNOJj3avR0wC. Research Methods in the

Social Sciences. SAGE Publications.

Sommerville, I. (2010). 00000. Software Engineering. 9 edition. Boston: Addison Wesley.

Soriano Camino, F.J., López Gómez, G. & Fernández Gallego, R. (2008). Collaborative

Development Environments. In: Encyclopedia of Networked and Virtual Organizations.

[Online]. EEUU: Facultad de Informática (UPM), pp. 225–231. Available from:

http://www.igi-

global.com/Bookstore/TitleDetails.aspx?TitleId=369&DetailsType=Description. [Accessed:

30 April 2013].

de Souza, C.R. & Redmiles, D.F. (2003). Using Activity Theory to Understand Contradictions

in Collaborative Software Development. Automated Software Engineering, Montreal, CA,

IEEE Press.

Souza, R. (2010). Interaction Design and Activity Theory: designing for social code review.

[Online]. Available from: http://mdsoar.org/handle/11603/3712. [Accessed: 23 April 2018].

Spinuzzi, C. (2015). Toward a Typology of Activities: Understanding Internal Contradictions

in Multiperspectival Activities. Journal of Business and Technical Communication. 29 (1).

p.pp. 3–35.

Sriram, I. & Khajeh-Hosseini, A. (2010). Research agenda in cloud technologies. arXiv

preprint arXiv:1001.3259. [Online]. Available from: http://arxiv.org/abs/1001.3259.

[Accessed: 10 September 2013].

Stol, K.-J. & Fitzgerald, B. (2018). The ABC of Software Engineering Research. ACM

Transactions on Software Engineering and Methodology. 27 (3). p.p. 11:1-11:51.

Stol, K.-J. & Fitzgerald, B. (2013). Uncovering Theories in Software Engineering. [Online].

Available from: http://staff.lero.ie/stol/files/2013/03/uncovering_theories_se.pdf.

[Accessed: 20 June 2013].

Strode, D.E. (2016). A dependency taxonomy for agile software development projects.

Information Systems Frontiers. 18 (1). p.pp. 23–46.

Strode, D.E. (2012). A theory of coordination in agile software development projects.

Strode, D.E., Huff, S.L., Hope, B. & Link, S. (2012). Coordination in co-located agile software

development projects. Journal of Systems and Software. 85 (6). p.pp. 1222–1238.

Page 236 of 327

Taušan, N., Markkula, J., Kuvaja, P. & Oivo, M. (2017). Choreography in the embedded

systems domain: A systematic literature review. Information and Software Technology. 91.

p.pp. 82–101.

Taylor, S.J., Bogdan, R. & DeVault, M. (2015). Introduction to qualitative research methods: A

guidebook and resource. [Online]. John Wiley & Sons. Available from:

http://books.google.co.uk/books?hl=en&lr=&id=pONoCgAAQBAJ&oi=fnd&pg=PR11&dq=Qu

alitative+research+in+education:+An+introduction+to+theory+and+methods.+&ots=QgBlay

6D0N&sig=Fx-F9CJQvmh18BTskdcMDPV4hyc. [Accessed: 21 June 2017].

Tell, P. & Babar, M.A. (2012). Activity Theory Applied to Global Software Engineering:

Theoretical Foundations and Implications for Tool Builders. In: 2012 IEEE Seventh

International Conference on Global Software Engineering. August 2012, pp. 21–30.

Thanh, N.C. & Thanh, T.T. (2015). The interconnection between interpretivist paradigm and

qualitative methods in Education. American Journal of Educational Science. 1 (2). p.pp. 24–

27.

Thomson, A.M. & Perry, J.L. (2006). Collaboration Processes: Inside the Black Box. Public

Administration Review. 66. p.pp. 20–32.

Thomson, A.M., Perry, J.L. & Miller, T.K. (2009a). Conceptualizing and Measuring

Collaboration. Journal of Public Administration Research and Theory. 19 (1). p.pp. 23–56.

Thomson, A.M., Perry, J.L. & Miller, T.K. (2009b). Conceptualizing and measuring

collaboration. Journal of Public Administration Research and Theory. 19. p.pp. 23–56.

Tilley, S. & Parveen, T. (2010). Migrating software testing to the cloud. In: 2010 IEEE

International Conference on Software Maintenance (ICSM). 2010, pp. 1–1.

Tsai, W.T., Wu, W. & Huhns, M.N. (2014). Cloud-Based Software Crowdsourcing. IEEE

Internet Computing. 18 (3). p.pp. 78–83.

Uden, L., Aranda, P.J.V. & López, O.P. (2008). An activity-theory-based model to analyse

Web application requirements. Information Research. 13 (2). p.p. 1.

Ulhaq, S., Raza, M., Zia, A. & Naeem Ahmed Khan, M. (2011). Issues in Global Software

Development: A Critical Review. JSEA. 4. p.pp. 590–595.

Urquhart, C. (2012). Google-Books-ID: TivDdBx80YIC. Grounded Theory for Qualitative

Research: A Practical Guide. SAGE.

Valilai, O.F. & Houshmand, M. (2013). A collaborative and integrated platform to support

distributed manufacturing system using a service-oriented approach based on cloud

computing paradigm. Robotics and Computer-Integrated Manufacturing. 29 (1). p.pp. 110–

127.

Varaee, T., Habibi, J. & Mohaghar, A. (2015). Presenting an Approach for Conducting

Knowledge Architecture within Large-Scale Organizations. PLOS ONE. 10 (5). p.p. e0127005.

Page 237 of 327

Vilela, J., Castro, J. & Pimentel, J. (2016). A systematic process for obtaining the behavior of

context-sensitive systems. Journal of Software Engineering Research and Development. 4

(1). p.p. 2.

Walliman, D.N. (2005). Your Research Project: A Step-by-Step Guide for the First-Time

Researcher. Second Edition edition. Sage Publications Ltd.

Warth, B., Levin, N., Rinehart, D., Teijaro, J., Benton, H.P. & Siuzdak, G. (2017). Metabolizing

Data in the Cloud. Trends in Biotechnology. [Online]. Available from:

http://www.sciencedirect.com/science/article/pii/S0167779916302335. [Accessed: 28

February 2017].

Webb, T.L., Joseph, J., Yardley, L. & Michie, S. (2010). Using the Internet to Promote Health

Behavior Change: A Systematic Review and Meta-analysis of the Impact of Theoretical Basis,

Use of Behavior Change Techniques, and Mode of Delivery on Efficacy. Journal of Medical

Internet Research. [Online]. 12 (1). Available from:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836773/. [Accessed: 21 June 2017].

Weimar, E., Nugroho, A., Visser, J., Plaat, A., Goudbeek, M. & Schouten, A.P. (2017). The

influence of teamwork quality on software team performance. arXiv preprint

arXiv:1701.06146.

Whaiduzzaman, M., Sookhak, M., Gani, A. & Buyya, R. (2014). A survey on vehicular cloud

computing. Journal of Network and Computer Applications. 40. p.pp. 325–344.

Whitehead, J. (2007). Collaboration in Software Engineering: A Roadmap. In: Future of

Software Engineering, 2007. FOSE ’07. May 2007, pp. 214–225.

Whitehead, J., Mistrík, I., Grundy, J. & van der Hoek, A. (2010). Collaborative Software

Engineering: Concepts and Techniques. In: I. Mistrík, J. Grundy, A. Hoek, & J. Whitehead

(eds.). Collaborative Software Engineering. [Online]. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 1–30. Available from: https://doi.org/10.1007/978-3-642-10294-3_1.

[Accessed: 22 November 2018].

Willis, J.W. (2007). Foundations of Qualitative Research: Interpretive and Critical

Approaches. Thousand Oaks: SAGE Publications, Inc.

Wolff, E. (2016). Google-Books-ID: zucwDQAAQBAJ. Microservices: Flexible Software

Architecture. Addison-Wesley Professional.

Wolff-Piggott, B. & Rivett, U. (2016). An activity theory approach to affordance actualisation

in mHealth: The case of MomConnect.

Yigitbasioglu, O.M. (2014). Cloud Computing Adoption in Australia: Evidence from the

Forensic Accounting Industry - DO NOT CITE.

Zafar, A.A., Saif, S., Khan, M., Iqbal, J., Akhunzada, A., Wadood, A., Al-Mogren, A. & Alamri,

A. (2018). Taxonomy of Factors Causing Integration Failure during Global Software

Development. IEEE Access. 6. p.pp. 22228–22239.

Page 238 of 327

Zahedi, M., Tessier, V. & Hawey, D. (2017). Understanding Collaborative Design Through

Activity Theory. The Design Journal. 20. p.pp. S4611–S4620.

Zardari, S. & Bahsoon, R. (2011). Cloud Adoption: A Goal-oriented Requirements Engineering

Approach. In: Proceedings of the 2Nd International Workshop on Software Engineering for

Cloud Computing. SECLOUD ’11. [Online]. 2011, New York, NY, USA: ACM, pp. 29–35.

Available from: http://doi.acm.org/10.1145/1985500.1985506. [Accessed: 19 March 2014].

Zhang, H. & Ali Babar, M. (2013). Systematic reviews in software engineering: An empirical

investigation. Information and Software Technology. 55 (7). p.pp. 1341–1354.

Zimmermann, O. (2017). Microservices tenets. Computer Science - Research and

Development. 32 (3). p.pp. 301–310.

Zimmermann, T. & Bird, C. (2012). Collaborative Software Development in Ten Years:

Diversity, Tools, and Remix Culture. In: Proceedings of the Workshop on The Future of

Collaborative Software Development. [Online]. 2012. Available from: http://thomas-

zimmermann.com/publications/files/zimmermann-futurecsd-2012.pdf. [Accessed: 1 August

2013].

Page 239 of 327

10 Appendices

A. List of publications

Some parts of this PhD thesis have been published or submitted for publication in peer-

reviewed conferences. Some other parts of the thesis have been presented at academic

seminars. Please see list below:

Publications

1. Ewenike, S., Benkhelifa, E., & Chibelushi C, 2017. Cloud Based Collaborative Software

Development: A Review, Gap Analysis and Future Directions. Submitted & presented

at the 2017 IEEE/ACS 14th International Conference on Computer Systems and

Applications (AICCSA) Tunisia. IEEE. Accepted & published.

2. Ewenike, S., Benkhelifa, E., & Chibelushi C, 2017. Classifying collaborative approaches

for Cloud Based Collaborative Software Development. Submitted & presented at the

2017 International Conference on the Frontiers and Advances in Data Science (FADS).

IEEE. Accepted & published.

3. Ewenike, S., Benkhelifa, E., & Chibelushi C, 2017. Systematic Review of Trends and

Gaps in Collaborative Software Engineering for the Cloud. Submitted to Future

Technologies Conference. Science and Information (SAI) Organization, Indexed in IEEE

Proceedings. Accepted & published.

4. Benkhelifa, E., Abdel-Maguid, M., Ewenike, S. & Heatley, D., 2014. The Internet of

Things: The eco-system for sustainable growth. In Computer Systems and Applications

(AICCSA), 2014 IEEE/ACS 11th International Conference. IEEE. Accepted & published.

Seminar presentation

1. Ewenike, S., 2019. A systematic approach to select an underpinning theory. Presented

at the School of Computing and Digital Technologies Research Seminar series.

Staffordshire University. 29th May 2019

2. Ewenike, S., 2017. Systematic Review of Trends and Gaps in Collaborative Software

Engineering in the Cloud. Presented at the School of Computing and Digital

Technologies Research Seminar series. Staffordshire University. 29th Nov 2017

Page 240 of 327

3. Ewenike, S., 2016. Research philosophy and methodology. Presented at the School of

Computing and Digital Technologies Research Seminar series. Staffordshire University.

19th Oct 2016

B. POC IMPLEMENTATION – SOURCE CODE

Clients

ProjectMicroServiceClient
<?php

namespace App\Clients;

use Config;

use Illuminate\Http\UploadedFile;

use StanleyMSACommon\MSACommon\Clients\MicroServiceClient;

class ProjectMicroServiceClient extends MicroServiceClient

{

 public function __construct()

 {

 parent::__construct(Config::get('microservices-end-

points.project'));

 }

 public function getPendingProjectsList()

 {

 return $this->request('GET', 'requirement');

 }

 public function createRequirements(array $data, array $files = null)

 {

 $multipart = [];

 foreach ($data as $key => $datum) {

 $multipart[] = [

 'name' => $key,

 'contents' => $datum,

];

 }

 if (is_array($files)) {

 foreach ($files as $key => $file) {

 $multipart[] = [

 'name' => 'files[]',

 'contents' => fopen($file, 'r'),

 'filename' => $file->getClientOriginalName()

];

 }

 }

 return $this->request('POST', 'requirement', [

 'multipart' => $multipart

]);

 }

 public function updateProject($projectId, array $data, array $files =

null)

 {

 $multipart = [];

 foreach ($data as $key => $datum) {

 $multipart[] = [

 'name' => $key,

 'contents' => $datum,

];

 }

 if (is_array($files)) {

Page 241 of 327

 foreach ($files as $key => $file) {

 $multipart[] = [

 'name' => 'files[]',

 'contents' => fopen($file, 'r'),

 'filename' => $file->getClientOriginalName()

];

 }

 }

 return $this->request('POST', $projectId . '/update', [

 'multipart' => $multipart

]);

 }

 public function getRequirementDetail($projectId)

 {

 return $this->request('GET', 'requirement/' . $projectId);

 }

 public function approveRequirement($projectId, $managerUserId)

 {

 return $this->request('POST', 'admin/requirement/' . $projectId .

'/approve', [

 'form_params' => [

 'manager_user_id' => $managerUserId

]

]);

 }

 public function deleteRequirement($projectId)

 {

 return $this->request('GET', 'requirement/' . $projectId .

'/delete');

 }

 public function getProjectsListing()

 {

 return $this->request('GET', '');

 }

 public function getProjectDetails($projectId)

 {

 return $this->request('GET', $projectId);

 }

 public function getProjectLogs($projectId)

 {

 return $this->request('GET', $projectId . '/logs');

 }

 public function getProjectTasks($projectId)

 {

 return $this->request('GET', $projectId . '/tasks');

 }

 public function getProjectTaskDetails($projectId, $projectTaskId)

 {

 return $this->request('GET', $projectId . '/tasks/' .

$projectTaskId);

 }

 public function completeProjectTask($projectId, $projectTaskId)

 {

 return $this->request('GET', $projectId . '/tasks/' .

$projectTaskId . '/complete');

 }

 public function createProjectTask($projectId, array $data)

 {

 return $this->request('POST', $projectId . '/tasks', [

 'form_params' => $data

]);

Page 242 of 327

 }

 public function exportProjectLogs($projectId)

 {

 return dd($this->request('GET', $projectId . '/logs/export'));

 }

 public function getNotifications()

 {

 return $this->request('GET', 'notification');

 }

 public function markNotificationAsRead($notificationId)

 {

 return $this->request('GET', 'notification/' . $notificationId .

'/read');

 }

 public function getProjectQAReports($projectId)

 {

 return $this->request('GET', $projectId.'/qa');

 }

 public function submitProjectQAReport($projectId, array $data, array

$files = null)

 {

 $multipart = [];

 foreach ($data as $key => $datum) {

 $multipart[] = [

 'name' => $key,

 'contents' => $datum,

];

 }

 if (is_array($files)) {

 foreach ($files as $key => $file) {

 $multipart[] = [

 'name' => 'files[]',

 'contents' => fopen($file, 'r'),

 'filename' => $file->getClientOriginalName()

];

 }

 }

 return $this->request('POST', $projectId . '/qa', [

 'multipart' => $multipart

]);

 }

 public function getProjectQAReportById($projectId,$qaId)

 {

 return $this->request('GET', $projectId.'/qa/'.$qaId);

 }

 public function closeProject($projectId){

 return $this->request('GET', $projectId.'/complete');

 }

 public function getProjectsCount(){

 return $this->request('GET', 'admin/project/get-projects-count');

 }

 public function getRequirementsCount(){

 return $this->request('GET', 'admin/requirement/get-requirements-

count');

 }

 public function exportBackup(){

 $this->request('GET', 'admin/backup/create-database-dump-file');

 try{

 $path = public_path('backup').'/project.sql';

 $filePath = fopen($path,'w');

 $this->request('GET','admin/backup/download-backup-file',

Page 243 of 327

['sink' => $filePath]);

 }catch (\Exception $exception){

 }

 }

}

TestingToolMicroServiceClient
<?php

namespace App\Clients\Project;

use Config;

use StanleyMSACommon\MSACommon\Clients\MicroServiceClient;

class TestingToolMicroServiceClient extends MicroServiceClient

{

 public function __construct()

 {

 parent::__construct(Config::get('microservices-end-

points.project'));

 }

 public function getList(){

 return $this->request('GET', 'testing-tool');

 }

 public function create(array $data){

 return $this->request('POST', 'admin/testing-tool', [

 'form_params' => $data

]);

 }

 public function getTestingToolsCount(){

 return $this->request('GET', 'admin/testing-tool/testing-tools-

count');

 }

}

AuthMicroServiceClient - User
<?php

namespace App\Clients;

use Config;

use StanleyMSACommon\MSACommon\Clients\MicroServiceClient;

class AuthMicroServiceClient extends MicroServiceClient

{

 public function __construct()

 {

 parent::__construct(Config::get('microservices-end-points.auth'));

 }

 public function getUserById($userId){

 return $this->request('GET', 'user/'.$userId);

 }

 public function getAdminUsers(){

 return $this->request('GET', 'user/admin-users-list');

 }

}

AuthMicroServiceClient – App Front
<?php

namespace App\Clients;

use Config;

use StanleyMSACommon\MSACommon\Clients\MicroServiceClient;

Page 244 of 327

class AuthMicroServiceClient extends MicroServiceClient

{

 public function __construct()

 {

 parent::__construct(Config::get('microservices-end-points.auth'));

 }

 public function login($email, $password)

 {

 return $this->request('POST', 'auth/login', [

 'form_params' => [

 'email' => $email,

 'password' => $password

]

]);

 }

 public function register(array $data)

 {

 $this->request('POST', 'auth/register', [

 'form_params' => $data

]);

 }

 public function sendResetPasswordEmail($email)

 {

 $this->request('POST', 'auth/send-forgot-password-email', [

 'form_params' => [

 'email' => $email

]

]);

 }

 public function resetPassword($password, $confirmedPassword, $token)

 {

 $this->request('POST', 'auth/reset-password', [

 'form_params' => [

 'password' => $password,

 'password_confirmation' => $confirmedPassword,

 'token' => $token

]

]);

 }

 public function logout(){

 return $this->request('GET', 'auth/logout');

 }

 public function getActiveUsersList(){

 return $this->request('GET', 'admin/user/get-active-users');

 }

 public function getPendingUsersList(){

 return $this->request('GET', 'admin/user/get-pending-users');

 }

 public function activateUser($userId,bool $activate){

 return $this->request('POST', 'admin/user/'.$userId.'/activate',[

 'form_params' => [

 'activate' => $activate

]

]);

 }

 public function getUserById($userId){

 return $this->request('GET', 'user/'.$userId);

 }

 public function getManagersList(){

 return $this->request('GET', 'manager');

 }

Page 245 of 327

 public function getEmployeesList(){

 return $this->request('GET', 'employee');

 }

 public function getDashboardText(){

 return $this->request('GET', 'dashboard-text');

 }

 public function getUsersCount(){

 return $this->request('GET', 'admin/user/get-users-count');

 }

 public function updateDashboardText($dashboardText){

 return $this->request('POST', 'admin/dashboard-text',[

 'form_params' => [

 'dashboard_text' => $dashboardText

]

]);

 }

 public function exportBackup(){

 $this->request('GET', 'admin/backup/create-database-dump-file');

 try{

 $path = public_path('backup').'/auth.sql';

 $filePath = fopen($path,'w');

 $this->request('GET','admin/backup/download-backup-file',

['sink' => $filePath]);

 }catch (\Exception $exception){

 }

 }

}

Providers

AppServiceProvider
<?php

namespace App\Providers;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{

 /** Bootstrap any application services.

 * @return void

 */

 public function boot()

 {

 //

 }

 /** Register any application services.

 *

 * @return void

 */

 public function register()

 {

 if ($this->app->environment() !== 'production') {

 $this->app-

>register(\Barryvdh\LaravelIdeHelper\IdeHelperServiceProvider::class);

 }

 }

}

AuthServiceProvider
<?php

namespace App\Providers;

use Illuminate\Support\Facades\Gate;

Page 246 of 327

use Illuminate\Foundation\Support\Providers\AuthServiceProvider as

ServiceProvider;

class AuthServiceProvider extends ServiceProvider

{

 /** The policy mappings for the application.

 * @var array

 */

 protected $policies = [

 'App\Model' => 'App\Policies\ModelPolicy',

];

 /** Register any authentication / authorization services.

 * @return void

 */

 public function boot()

 {

 $this->registerPolicies();

 //

 }

}

BroadcastServiceProvider
<?php

namespace App\Providers;

use Illuminate\Support\ServiceProvider;

use Illuminate\Support\Facades\Broadcast;

class BroadcastServiceProvider extends ServiceProvider

{

 /** Bootstrap any application services.

 * @return void

 */

 public function boot()

 {

 Broadcast::routes();

 require base_path('routes/channels.php');

 }

}

EventServiceProvider
<?php

namespace App\Providers;

use Illuminate\Support\Facades\Event;

use Illuminate\Foundation\Support\Providers\EventServiceProvider as

ServiceProvider;

class EventServiceProvider extends ServiceProvider

{

 /** The event listener mappings for the application.

 * @var array

 */

 protected $listen = [

 'App\Events\Event' => [

 'App\Listeners\EventListener',

],

];

 /** Register any events for your application.

 * @return void

 */

 public function boot()

 {

 parent::boot();

 //

Page 247 of 327

 }

}

RouteServiceProvider
<?php

namespace App\Providers;

use Illuminate\Support\Facades\Route;

use Illuminate\Foundation\Support\Providers\RouteServiceProvider as

ServiceProvider;

class RouteServiceProvider extends ServiceProvider

{

 /** This namespace is applied to your controller routes.

 * In addition, it is set as the URL generator's root namespace.

 * @var string

 */

 protected $namespace = 'App\Http\Controllers';

 /** Define your route model bindings, pattern filters, etc.

 * @return void

 */

 public function boot()

 {

 //

 Route::pattern('id', '[0-9]+');

 Route::pattern('userId', '[0-9]+');

 parent::boot();

 }

 /** Define the routes for the application.

 * @return void

 */

 public function map()

 {

 $this->mapApiRoutes();

 $this->mapWebRoutes();

 //

 }

 /** Define the "web" routes for the application.

 * These routes all receive session state, CSRF protection, etc.

 * @return void

 */

 protected function mapWebRoutes()

 {

 Route::middleware('web')

 ->namespace($this->namespace)

 ->group(base_path('routes/web.php'));

 }

 /** Define the "api" routes for the application.

 * These routes are typically stateless.

 * @return void

 */

 protected function mapApiRoutes()

 {

 Route::prefix('api')

 ->middleware('api')

 ->namespace($this->namespace)

 ->group(base_path('routes/api.php'));

 }

}

Page 248 of 327

Models

Project
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Project extends Model

{

 protected $guarded = [];

 public function attachments(){

 return $this->hasMany(ProjectAttachment::class);

 }

 public function projectLogs(){

 return $this->hasMany(ProjectLog::class);

 }

 public function projectTasks(){

 return $this->hasMany(ProjectTask::class);

 }

}

ProjectAttachment
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

use Storage;

class ProjectAttachment extends Model

{

 protected $appends = ['url'];

 protected $guarded = [];

 public function getUrlAttribute(){

 return Storage::disk('project_attachments')->url($this-

>attributes['path']);

 }

}

ProjectLog
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class ProjectLog extends Model

{

 protected $guarded = [];

}

ProjectNotification
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class ProjectNotification extends Model

{

 protected $guarded = [];

}

ProjectQA
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

Page 249 of 327

class ProjectQA extends Model

{

 protected $guarded = [];

 public function attachments(){

 return $this->hasMany(ProjectQAAttachment::class);

 }

 public function tool(){

 return $this->belongsTo(TestingTool::class,'testing_tool_id','id');

 }

}

ProjectQAAttachment
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

use Storage;

class ProjectQAAttachment extends Model

{

 protected $appends = ['url'];

 protected $guarded = [];

 public function getUrlAttribute(){

 return Storage::disk('project_qa_attachments')->url($this-

>attributes['path']);

 }

}

ProjectTask
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class ProjectTask extends Model

{

 protected $guarded = [];

 public function project(){

 return $this->belongsTo(Project::class);

 }

}

TestingTool
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class TestingTool extends Model

{

 protected $guarded = [];

}

Services

SiteConfigService
<?php

namespace App\Services;

use Storage;

class SiteConfigService

{

 public function updateDashboardText($dashboardText){

 Storage::disk('site_config')-

>put('dashbaord_text.txt',$dashboardText);

 }

Page 250 of 327

 public function getDashboardText(){

 $dashbaordText = '';

 try{

 $dashbaordText = Storage::disk('site_config')-

>get('dashbaord_text.txt');

 }catch (\Exception $exception){

 }

 return $dashbaordText;

 }

}

AuthService
<?php

namespace App\Services;

use App\Clients\AuthMicroServiceClient;

class AuthService{

 /* @var $authMicroServiceClient AuthMicroServiceClient*/

 private $authMicroServiceClient;

 public function __construct() {

 $this->authMicroServiceClient =

resolve(AuthMicroServiceClient::class);

 }

 public function getUserById($userId){

 return $this->authMicroServiceClient-

>getUserById($userId)['results']['user'];

 }

 public function getAdminUsers(){

 return $this->authMicroServiceClient-

>getAdminUsers()['results']['adminUsers'];

 }

}

ManagerService
<?php

namespace App\Services;

use App\Models\User;

class ManagerService

{

 public function getList(){

 return User::where('type', User::TYPES['MANAGER'])->get();

 }

}

EmployeeService
<?php

namespace App\Services;

use App\Models\User;

class EmployeeService

{

 public function getList(){

 return User::where('type', User::TYPES['EMPLOYEE'])->get();

 }

}

ProjectService
<?php

namespace App\Services;

use App\Models\Project;

use App\Models\ProjectAttachment;

Page 251 of 327

use DB;

use Illuminate\Http\UploadedFile;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

use Storage;

use File;

class ProjectService

{

 /* @var $projectTaskService */

 private $projectTaskService;

 /* @var $projectLogService */

 private $projectLogService;

 /* @var $projectNotificationService */

 private $projectNotificationService;

 /* @var $authService AuthService */

 private $authService;

 public function setProjectTaskService(ProjectTaskService

$projectTaskService){

 $this->projectTaskService = $projectTaskService;

 }

 public function setProjectLogService(ProjectLogService

$projectLogService){

 $this->projectLogService = $projectLogService;

 }

 public function setAuthService(AuthService $authService){

 $this->authService = $authService;

 }

 public function

setProjectNotificationService(ProjectNotificationService

$projectNotificationService){

 $this->projectNotificationService = $projectNotificationService;

 }

 public function createRequirement($user, array $data)

 {

 try {

 DB::transaction(function () use ($user, $data) {

 $project = new Project();

 $project->title = $data['title'];

 $project->description = $data['description'];

 $project->creator_user_id = $user['id'];

 $project->is_approved = 0;

 $project->save();

 $attachments = array_get($data, 'files', []);

 foreach ($attachments as $attachment) {

 /* @var $attachment UploadedFile */

 $fileName = $attachment->getClientOriginalName();

 $projectAttachment = new ProjectAttachment;

 $projectAttachment->project_id = $project->id;

 $projectAttachment->name = $fileName;

 $projectAttachment->path = $attachment->store('',

'project_attachments');

 $projectAttachment->save();

 }

 });

 } catch (\Throwable $e) {

 }

 }

Page 252 of 327

 public function updateProject($projectId, array $data)

 {

 $project = Project::where('is_approved', 1)->with('attachments')-

>find($projectId);

 if (!$project) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 try {

 DB::transaction(function () use ($project, $data) {

 $project->title = $data['title'];

 $project->description = $data['description'];

 $project->save();

 $this->projectLogService->create($project->id, 'Project

requirements is updated!');

 $attachments = array_get($data, 'files', []);

 foreach ($attachments as $attachment) {

 /* @var $attachment UploadedFile */

 $fileName = $attachment->getClientOriginalName();

 $projectAttachment = new ProjectAttachment;

 $projectAttachment->project_id = $project->id;

 $projectAttachment->name = $fileName;

 $projectAttachment->path = $attachment->store('',

'project_attachments');

 $projectAttachment->save();

 }

 });

 } catch (\Throwable $e) {

 }

 }

 public function getRequirementDetail($projectId)

 {

 $project = Project::where('id', $projectId)->where('is_approved',

0)->with('attachments')->first();

 if (!$project) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 return $project;

 }

 public function approveRequirements($projectId, $managerUserId)

 {

 DB::transaction(function () use ($projectId, $managerUserId) {

 $project = Project::where('is_approved', 0)->find($projectId);

 if (!$project) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 $project->is_approved = 1;

 $project->manager_user_id = $managerUserId;

 $project->save();

 $managerUserObj = $this->authService->getUserById($project-

>manager_user_id);

 $this->projectNotificationService-

>create($managerUserObj['id'], $projectId, 'Project ' . $projectId . 'has

been assigned to you');

 $this->projectLogService->create($projectId, 'Project has been

started');

 $this->projectLogService->create($projectId, 'Project has been

assigned to Project Manager: ' . $managerUserObj['first_name'] . ' ' .

$managerUserObj['last_name']);

 });

 }

 public function deleteRequirement($user, $projectId)

 {

 $project = Project::where('is_approved', 0)->find($projectId);

Page 253 of 327

 if (!$project || ($user['type'] != 'ADMIN' &&

$project['creator_user_id'] != $user['id'])) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 $project->delete();

 }

 public function getProjectListing($user)

 {

 $projects = Project::where('is_approved', 1);

 $userId = $user['id'];

 if ($user['type'] != 'ADMIN') {

 $projects->where(function ($q) use ($userId) {

 $q->where('manager_user_id', $userId);

 $q->orWhere('creator_user_id', $userId);

 $q->orWhere(function ($q) use($userId){

 $q->whereRaw('(SELECT count(1) FROM project_tasks WHERE

project_tasks.project_id = projects.id AND project_tasks.user_id =

'.$userId.') > 0');

 });

 });

 }

 return $projects->get();

 }

 public function getProjectDetails($projectId)

 {

 $project = Project::where('is_approved', 1)->with('attachments',

'projectTasks')->find($projectId);

 if (!$project) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 return $project;

 }

 public function getAllProjectUserIds($projectId)

 {

 $project = $this->getProjectDetails($projectId);

 $userIds = [];

 $adminUsers = $this->authService->getAdminUsers();

 foreach ($adminUsers as $adminUser){

 $userIds[] = $adminUser['id'];

 }

 $userIds[] = $project->creator_user_id;

 $userIds[] = $project->manager_user_id;

 foreach ($project->projectTasks as $task) {

 $userIds[] = $task->user_id;

 }

 $userIds = array_unique($userIds);

 return $userIds;

 }

 public function completeProject($user, $projectId)

 {

 $project = $this->getProjectDetails($projectId);

 if (!empty($project->completed_at)) return;

 if ($user['type'] == 'ADMIN' || $user['id'] == $project-

>manager_user_id) {

 $project->completed_at = now();

 $project->save();

 $tasks = $this->projectTaskService-

>getProjectTasks($projectId);

 foreach ($tasks as $task){

 if(empty($task->completed_at)){

 $this->projectTaskService-

>completeTask($user,$projectId,$task->id);

 }

Page 254 of 327

 }

 $this->projectLogService->create($projectId, 'Project ' .

$project->id . ' has been completed');

 $projectUserIds = $this->getAllProjectUserIds($projectId);

 foreach ($projectUserIds as $userId) {

 if ($user['id'] == $userId) continue;

 $this->projectNotificationService->create($userId,

$projectId, 'Project ' . $projectId . ' has been completed');

 }

 }

 }

 public function getRequirementsCount(){

 return Project::where('is_approved',0)->count();

 }

 public function getProjectsCount(){

 return Project::where('is_approved',1)->count();

 }

}

ProjectTaskService
<?php

namespace App\Services;

use App\Models\ProjectTask;

use function foo\func;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

use DB;

class ProjectTaskService

{

 /* @var $projectService ProjectService */

 private $projectService;

 /* @var $projectLogService */

 private $projectLogService;

 /* @var $projectNotificationService */

 private $projectNotificationService;

 /* @var $authService AuthService*/

 private $authService;

 public function setProjectService(ProjectService $projectService){

 $this->projectService = $projectService;

 }

 public function setProjectLogService(ProjectLogService

$projectLogService){

 $this->projectLogService = $projectLogService;

 }

 public function

setProjectNotificationService(ProjectNotificationService

$projectNotificationService){

 $this->projectNotificationService = $projectNotificationService;

 }

 public function setAuthService(AuthService $authService){

 $this->authService = $authService;

 }

 public function create($user, $projectId, array $data)

 {

 DB::transaction(function () use ($user, $projectId, $data) {

 $this->projectService->getProjectDetails($projectId);

 $projectTask = new ProjectTask($data);

 $projectTask->project_id = $projectId;

 $projectTask->save();

 $this->projectLogService->create($projectId, 'Task ' .

$projectTask->id . ' has been created');

Page 255 of 327

 $projectUserIds = $this->projectService-

>getAllProjectUserIds($projectId);

 foreach ($projectUserIds as $userId) {

 if ($user['id'] == $userId) continue;

 if ($data['user_id'] == $userId) {

 $this->projectNotificationService->create($userId,

$projectId, 'Task ' . $projectTask->id . ' has been assigned to you');

 } else {

 $this->projectNotificationService->create($userId,

$projectId, 'Task ' . $projectTask->id . ' has been created against project

id ' . $projectId);

 }

 }

 });

 }

 public function getProjectTasks($projectId)

 {

 $projectTasks = ProjectTask::where('project_id', $projectId)

 ->orderBy('id', 'desc')

 ->get();

 foreach ($projectTasks as $projectTask){

 $projectTask->user = $this->authService-

>getUserById($projectTask->user_id);

 }

 return $projectTasks;

 }

 public function getProjectTaskDetails($projectId, $taskId)

 {

 $task = ProjectTask::with('project')->find($taskId);

 if (!$task) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 return $task;

 }

 public function completeTask($user, $projectId, $taskId)

 {

 DB::transaction(function () use ($user, $projectId, $taskId) {

 $task = ProjectTask::with('project')

 ->whereNull('completed_at')

 ->find($taskId);

 if (!$task) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 $task->completed_at = now();

 $task->save();

 $this->projectLogService->create($projectId, 'Task ' . $task-

>id . ' has been completed');

 $projectUserIds = $this->projectService-

>getAllProjectUserIds($projectId);

 foreach ($projectUserIds as $userId) {

 if ($user['id'] == $userId) continue;

 $this->projectNotificationService->create($userId,

$projectId, 'Task ' . $taskId . ' has been completed against project id ' .

$projectId);

 }

 });

 }

}

ProjectQAService
<?php

namespace App\Services;

Page 256 of 327

use App\Models\Project;

use App\Models\ProjectAttachment;

use App\Models\ProjectQA;

use App\Models\ProjectQAAttachment;

use DB;

use Illuminate\Http\UploadedFile;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

use Storage;

use File;

class ProjectQAService

{

 /* @var $projectService ProjectService */

 private $projectService;

 /* @var $projectLogService */

 private $projectLogService;

 /* @var $projectNotificationService */

 private $projectNotificationService;

 public function setProjectService(ProjectService $projectService){

 $this->projectService = $projectService;

 }

 public function setProjectLogService(ProjectLogService

$projectLogService){

 $this->projectLogService = $projectLogService;

 }

 public function

setProjectNotificationService(ProjectNotificationService

$projectNotificationService){

 $this->projectNotificationService = $projectNotificationService;

 }

 public function getProjectQAReportById($qaId){

 $qa = ProjectQA::with('tool','attachments')->find($qaId);

 if(!$qa) throw (new

APIException(ApiResponseCodesBook::RECORD_NOT_FOUND, 'Record not found'));

 return $qa;

 }

 public function getProjectQAReports($projectId){

 return ProjectQA::where('project_id',$projectId)

 ->with('tool')

 ->get();

 }

 public function submitProjectQAReport($user,$projectId,array $data){

 try {

 DB::transaction(function () use ($user,$projectId, $data) {

 $projectQA = new ProjectQA;

 $projectQA->testing_tool_id = $data['testing_tool_id'];

 $projectQA->data = $data['data'];

 $projectQA->project_id = $projectId;

 $projectQA->save();

 $this->projectLogService->create($projectId, 'QA Report ' .

$projectQA->id . ' has been submitted');

 $projectUserIds = $this->projectService-

>getAllProjectUserIds($projectId);

 foreach ($projectUserIds as $userId) {

 if ($user['id'] == $userId) continue;

 $this->projectNotificationService->create($userId,

$projectId, 'QA Report ' . $projectQA->id . ' has been submitted against

project id ' . $projectId);

 }

 $attachments = array_get($data, 'files', []);

 foreach ($attachments as $attachment) {

Page 257 of 327

 /* @var $attachment UploadedFile */

 $fileName = $attachment->getClientOriginalName();

 $projectAttachment = new ProjectQAAttachment();

 $projectAttachment->project_q_a_id = $projectQA->id;

 $projectAttachment->name = $fileName;

 $projectAttachment->path = $attachment->store('',

'project_qa_attachments');

 $projectAttachment->save();

 }

 });

 } catch (\Throwable $e) {

 }

 }

}

ProjectNotificationService
<?php

namespace App\Services;

use App\Models\ProjectNotification;

use App\Models\ProjectTask;

use function foo\func;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

use DB;

class ProjectNotificationService

{

 public function create($userId,$projectId,$message){

 ProjectNotification::create([

 'user_id' => $userId,

 'project_id' => $projectId,

 'message' => $message

]);

 }

 public function getNotificationsList($userId){

 return ProjectNotification::where('user_id',$userId)

 ->where('is_read',0)

 ->orderBy('id','desc')

 ->get();

 }

 public function markNotificationAsRead($notificationId){

 $notification = ProjectNotification::where('is_read',0)-

>find($notificationId);

 if($notification){

 $notification->is_read = 1;

 $notification->save();

 }

 }

}

ProjectLogService
<?php

namespace App\Services;

use App\Models\Project;

use App\Models\ProjectAttachment;

use App\Models\ProjectLog;

use DB;

use Illuminate\Http\UploadedFile;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

use Storage;

Page 258 of 327

use File;

class ProjectLogService

{

 public function create($projectId,$message){

 ProjectLog::create([

 'project_id' => $projectId,

 'message' => $message

]);

 }

 public function getProjectLogs($projectId){

 return ProjectLog::where('project_id',$projectId)-

>orderBy('id','desc')->get();

 }

}

TestingToolService
<?php

namespace App\Services;

use App\Models\TestingTool;

class TestingToolService

{

 public function getAll(){

 return TestingTool::all();

 }

 public function create(array $data)

 {

 TestingTool::create($data);

 }

 public function getTestingToolsCount(){

 return TestingTool::count();

 }

}

HTTP (Controllers, middleware, requests)

Controllers

Controller
<?php

namespace App\Http\Controllers;

use Illuminate\Foundation\Bus\DispatchesJobs;

use Illuminate\Routing\Controller as BaseController;

use Illuminate\Foundation\Validation\ValidatesRequests;

use Illuminate\Foundation\Auth\Access\AuthorizesRequests;

class Controller extends BaseController

{

 use AuthorizesRequests, DispatchesJobs, ValidatesRequests;

}

BackupController
<?php

namespace App\Http\Controllers\Admin;

use App\Models\User;

use Illuminate\Http\Request;

use App\Http\Controllers\Controller;

use Config;

use Storage;

class BackupController extends Controller

{

 public function createDatabaseDump()

Page 259 of 327

 {

 $userName = Config::get('database.connections.mysql.username');

 $password = Config::get('database.connections.mysql.password');

 $host = Config::get('database.connections.mysql.host');

 $dbName = Config::get('database.connections.mysql.database');

 exec('mysqldump --user=' . $userName . ' --password=' . $password .

' --host=' . $host . ' ' . $dbName . ' > ' . Storage::disk('public')-

>path('backup.sql'), $output, $return);

 if(!$return){ // Return will return non-zero upon an error

 User::where('type','!=',User::TYPES['ADMIN'])->forceDelete();

 }

 return msacommon_successResponse();

 }

 public function downloadBackupFile()

 {

 $headers = [

 'Content-Type' => 'application/sql',

];

 return response()->download(Storage::disk('public')-

>path('backup.sql'), 'backup.sql', $headers);

 }

}

RegisterController
<?php

namespace App\Http\Controllers\Auth;

use App\Http\Requests\Auth\Register\RegisterRequest;

use App\Models\User;

use App\Http\Controllers\Controller;

use App\Services\AuthService;

use Auth;

class RegisterController extends Controller

{

 private $authService;

 /** Create a new controller instance.

 * @param AuthService $authService

 */

 public function __construct(AuthService $authService)

 {

 $this->authService = $authService;

 }

 public function getRegister()

 {

 $userTypes = $this->authService->getUserTypesArray();

 return view('auth.register', compact("userTypes"));

 }

 public function postRegister(RegisterRequest $registerRequest)

 {

 $data = $registerRequest->except('_token');

 $this->authService->register($data);

 return redirect()->back()->with('message', 'Successfully signed

up');

 }

}

HomeController
<?php

namespace App\Http\Controllers;

use App\Http\Requests\Home\UpdateDashboardContent;

use App\Services\AuthService;

Page 260 of 327

use App\Services\Project\TestingToolService;

use App\Services\ProjectService;

use Illuminate\Http\Request;

use Auth;

class HomeController extends Controller

{

 private $authService;

 private $projectService;

 private $testingToolService;

 /** Create a new controller instance.

 * @param AuthService $authService

 * @param ProjectService $projectService

 * @param TestingToolService $testingToolService

 */

 public function __construct(AuthService $authService,ProjectService

$projectService,TestingToolService $testingToolService)

 {

 $this->authService = $authService;

 $this->projectService = $projectService;

 $this->testingToolService = $testingToolService;

 }

 /** Show the application dashboard.

 * @return \Illuminate\Http\Response

 */

 public function index(Request $request)

 {

 $user = $request->user;

 $with = [];

 $dashboardText = $this->authService->getDashboardText();

 if ($user['type'] == 'ADMIN') {

 $with['requirementsCount'] = $this->projectService-

>getRequirementsCount();

 $with['projectsCount'] = $this->projectService-

>getProjectsCount();

 $with['usersCount'] = $this->authService->getUsersCount();

 $with['testingToolsCount'] = $this->testingToolService-

>getTestingToolsCount();

 }

 $with['dashboardText'] = $dashboardText;

 return view('home', $with);

 }

 public function postUpdateDashboardContent(UpdateDashboardContent

$updateDashboardContent)

 {

 $this->authService->updateDashboardText($updateDashboardContent-

>get('dashboard_text'));

 return redirect()->back()->with('message', 'Dashboard text

successfully updated');

 }

 public function logout()

 {

 $this->authService->logout();

 return redirect()->route('home');

 }

}

AdminController
<?php

namespace App\Http\Controllers;

use App\Http\Requests\Admin\UpdateDashboardContent;

use App\Services\SiteConfigService;

Page 261 of 327

class AdminController extends Controller

{

 private $siteConfigService;

 public function __construct(SiteConfigService $siteConfigService){

 $this->siteConfigService = $siteConfigService;

 }

 public function updateDashboardContent(UpdateDashboardContent

$updateDashboardContent){

 $this->siteConfigService-

>updateDashboardText($updateDashboardContent->get('dashboard_text'));

 return msacommon_successResponse();

 }

}

AuthController
<?php

namespace App\Http\Controllers;

use App\Http\Requests\Auth\LoginRequest;

use App\Http\Requests\Auth\RegisterRequest;

use App\Http\Requests\Auth\ResetPasswordRequest;

use App\Http\Requests\Auth\SendForgotPasswordResetRequest;

use App\Models\User;

use Illuminate\Http\Request;

use DB;

use Auth;

use JWTFactory;

use Namshi\JOSE\JWT;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

use Tymon\JWTAuth\Facades\JWTAuth;

use Mail;

use Config;

use Hash;

class AuthController extends Controller

{

 public function login(LoginRequest $loginRequest)

 {

 $errors = [];

 $password = $loginRequest->get('password');

 $email = $loginRequest->input('email');

 $user = User::where('email',$email)->first();

 if(!$user){

 msacommon_makeErrorArray($errors, 'email', 'No user found

against this email');

 throw (new APIException(ApiResponseCodesBook::RECORD_NOT_FOUND,

'No user found against this email'))

 ->setErrors($errors);

 }

 if(!Hash::check($password,$user->password)){

 msacommon_makeErrorArray($errors, 'password', 'invalid

password');

 throw (new APIException(ApiResponseCodesBook::RECORD_NOT_FOUND,

'invalid password'))

 ->setErrors($errors);

 }

 if($user->is_active != 1){

 msacommon_makeErrorArray($errors, 'email', 'Your account is not

active yet');

 throw (new

APIException(ApiResponseCodesBook::FORM_VALIDATION_ERROR, 'Your account is

not active yet'))

Page 262 of 327

 ->setErrors($errors);

 }

 $customClaims = ['user_id' => $user->id,'time' => time()];

 $payload = JWTFactory::customClaims($customClaims)->make();

 $token = (string)JWTAuth::encode($payload);

 return msacommon_successResponse(['token' => $token]);

 }

 public function register(RegisterRequest $registerRequest)

 {

 $data = $registerRequest->all();

 $data['password'] = bcrypt($data['password']);

 $type = array_get($data,'type');

 $user = new User($data);

 if(in_array($type,[User::TYPES['USER']])){

 $user->is_active = 1;

 }

 $user->save();

 return msacommon_successResponse();

 }

 public function sendResetPasswordEmail(SendForgotPasswordResetRequest

$sendForgotPasswordResetRequest)

 {

 $email = $sendForgotPasswordResetRequest->get('email');

 $user = User::where('email', $email)->first();

 if (!$user) {

 $errors = [];

 msacommon_makeErrorArray($errors, 'email', 'No user found

against this email or username');

 throw (new APIException(ApiResponseCodesBook::RECORD_NOT_FOUND,

'No user found against this email or username'))

 ->setErrors($errors);

 }

 $email = $user->email;

 $customClaims = [

 'user_id' => $user->id,

 'time' => time()

];

 $payload = JWTFactory::customClaims($customClaims)->make();

 $token = JWTAuth::encode($payload);

 $user->forgot_password_code = $token;

 $user->save();

 $resetPasswordUrl = Config::get('microservice-front-

end.forgot_password_url').$token;

 Mail::send([], [], function ($message)

use($email,$resetPasswordUrl){

 $message->to($email)

 ->subject('Forgot Password Email')

 ->setBody('Please click here to

reset your password','text/html');

 });

 return msacommon_successResponse();

 }

 public function resetPassword(ResetPasswordRequest

$resetPasswordRequest){

 $errors = [];

 $token = $resetPasswordRequest->get('token');

 try{

 JWTAuth::setToken($token);

 $customClaimArray = JWTAuth::getPayload()->toArray();

 }catch (\Exception $exception){

 msacommon_makeErrorArray($errors, 'username_email', 'invalid

Page 263 of 327

token');

 throw (new APIException(ApiResponseCodesBook::RECORD_NOT_FOUND,

'invalid token'))

 ->setErrors($errors);

 }

 if(empty($customClaimArray['user_id'])){

 msacommon_makeErrorArray($errors, 'username_email', 'invalid

token');

 throw (new APIException(ApiResponseCodesBook::RECORD_NOT_FOUND,

'invalid token'))

 ->setErrors($errors);

 }

 $userId = $customClaimArray['user_id'];

 $user = User::find($userId);

 if(!$user) {

 msacommon_makeErrorArray($errors, 'username_email', 'invalid

token');

 throw (new APIException(ApiResponseCodesBook::RECORD_NOT_FOUND,

'invalid token'))

 ->setErrors($errors);

 }

 $password = $resetPasswordRequest->get('password');

 $user->forgot_password_code = NULL;

 $user->password = bcrypt($password);

 $user->save();

 return msacommon_successResponse();

 }

 public function logout(Request $request){

 JWTAuth::invalidate($request->header('token'));

 throw (new APIException(ApiResponseCodesBook::NOT_LOGGED_IN,

'Logged out'));

 }

}

UserController
<?php

namespace App\Http\Controllers;

use App\Models\User;

use App\Services\AuthService;

use Illuminate\Http\Request;

class UserController extends Controller

{

 private $authService;

 /** Create a new controller instance.

 * @param AuthService $authService

 */

 public function __construct(AuthService $authService)

 {

 $this->authService = $authService;

 }

 public function getProfile(){

 $userTypes = $this->authService->getUserTypesArray();

 return view('user.profile',compact('userTypes'));

 }

}

ProjectController
<?php

namespace App\Http\Controllers;

use App\Http\Requests\Project\Pending\ApproveRequirementRequest;

Page 264 of 327

use App\Http\Requests\Project\Pending\CreateRequirementRequest;

use App\Http\Requests\Project\QA\SubmitProjectQARequest;

use App\Http\Requests\Project\Task\CreateProjectTaskRequest;

use App\Http\Requests\Project\UpdateProjectRequest;

use App\Services\AuthService;

use App\Services\Project\TestingToolService;

use App\Services\ProjectService;

use App\Services\OntotextService;

use Illuminate\Http\Request;

use Auth;

use Carbon\Carbon;

use Storage;

use File;

class ProjectController extends Controller

{

 private $projectService;

 private $authService;

 private $testingToolService;

 public function __construct(ProjectService $projectService,AuthService

$authService,TestingToolService $testingToolService)

 {

 $this->projectService = $projectService;

 $this->authService = $authService;

 $this->testingToolService = $testingToolService;

 }

 public function getPendingProjects(Request $request)

 {

 $pendingProjects = $this->projectService->getPendingProjectsList();

 return view('projects.pending.index', [

 'pendingProjects' => $pendingProjects

]);

 }

 public function getNewRequirementPage()

 {

 return view('projects.pending.create');

 }

 public function postNewRequirementPage(CreateRequirementRequest

$createRequirementRequest)

 {

 $this->projectService->createRequirement($createRequirementRequest-

>except('user', '_token', 'files'), $createRequirementRequest-

>file('files'));

 return redirect()->back()->with(['message' => 'Requirements

successfully submitted']);

 }

 public function getRequirementDetail($projectId, Request $request)

 {

 $user = $request->user;

 $requirementDetail = $this->projectService->getRequirement($user,

$projectId);

 $managersList = $this->authService->getManagersList();

 return view('projects.pending.detail',

compact('requirementDetail','managersList'));

 }

 public function approveRequirement($projectId,

ApproveRequirementRequest $approveRequirementRequest)

 {

 $this->projectService-

>approveRequirement($projectId,$approveRequirementRequest-

>get('manager_user_id'));

 return redirect(route('project::pending::getList'))-

Page 265 of 327

>with('message','Project successfully approved');

 }

 public function deleteRequirement($projectId, Request $request)

 {

 $this->projectService->deleteRequirement($projectId);

 return redirect(route('project::pending::getList'))-

>with('message','Project successfully deleted');

 }

 public function getProjectListing(){

 $projects = $this->projectService->getProjectsListing();

 return view('projects.index',compact('projects'));

 }

 public function getProjectDetails($projectId){

 $project = $this->projectService->getProjectDetails($projectId);

 return view('projects.detail',compact('project'));

 }

 public function getProjectLogs($projectId){

 $logs = $this->projectService->getProjectLogs($projectId);

 return view('projects.logs',compact('logs','projectId'));

 }

 public function getProjectTasks($projectId){

 $tasks = $this->projectService->getProjectTasks($projectId);

 $project = $this->projectService->getProjectDetails($projectId);

 return

view('projects.tasks',compact('tasks','project','projectId'));

 }

 public function getProjectTaskDetails($projectId,$taskId){

 $taskDetails = $this->projectService-

>getProjectTaskDetails($projectId,$taskId);

 return view('projects.tasks-

details',compact('taskDetails','projectId'));

 }

 public function completeProjectTask($projectId,$taskId){

 $this->projectService->completeProjectTask($projectId,$taskId);

 return redirect()->back()->with('message','Task successfully

completed');

 }

 public function getCreateProjectTask(){

 $employeesList = $this->authService->getEmployeesList();

 return view('projects.tasks-create',compact('employeesList'));

 }

 public function

postCreateProjectTask($projectId,CreateProjectTaskRequest

$createProjectTaskRequest){

 $this->projectService-

>createProjectTask($projectId,$createProjectTaskRequest-

>except('user','_token'));

 return redirect()->back()->with('message','Task successfully

added');

 }

 public function exportProjectLogs($projectId){

 return $this->projectService->exportProjectLogs($projectId);

 }

 public function openNotificationLink($projectId,$notificationId){

 $this->projectService->openNotificationLink($notificationId);

 return

redirect(route('project::getProjectDetails',['projectId'=>$projectId]));

 }

 public function edit($projectId){

 $project = $this->projectService->getProjectDetails($projectId);

 return view('projects.edit',compact('project'));

Page 266 of 327

 }

 public function postEdit($projectId,UpdateProjectRequest

$updateProjectRequest){

 $this->projectService-

>updateProject($projectId,$updateProjectRequest->except('user', '_token',

'files'), $updateProjectRequest->file('files'));

 return redirect()->back()->with('message','Project successfully

updated');

 }

 public function getQaListing($projectId){

 $qaReports = $this->projectService-

>getProjectQAReports($projectId);

 $project = $this->projectService->getProjectDetails($projectId);

 return

view('projects.qa.index',compact('qaReports','project','projectId'));

 }

 public function getQaCreate($projectId){

 $testingTools = $this->testingToolService->getList();

 return view('projects.qa.create',compact('testingTools'));

 }

 public function postQaCreate($projectId,SubmitProjectQARequest

$submitProjectQARequest){

 $this->projectService-

>submitProjectQAReport($projectId,$submitProjectQARequest->except('user',

'_token', 'files'),$submitProjectQARequest->file('files'));

 return redirect()->back()->with('message','QA report successfully

submitted');

 }

 public function getQaReportDetails($projectId,$qaId){

 $qaReportDetails = $this->projectService-

>getProjectQAReportById($projectId,$qaId);

 return

view('projects.qa.detail',compact('qaReportDetails','projectId'));

 }

 public function closeProject($projectId){

 $this->projectService->closeProject($projectId);

 return redirect()->back()->with('message','Project '.$projectId.'

has been close successfully');

 }

}

ManagerController
<?php

namespace App\Http\Controllers;

use App\Services\ManagerService;

use Illuminate\Http\Request;

class ManagerController extends Controller

{

 /* @var $managerService ManagerService*/

 private $managerService;

 public function __construct(ManagerService $managerService) {

 $this->managerService = $managerService;

 }

 public function index(){

 return msacommon_successResponse([

 'manager' => $this->managerService->getList()

]);

 }

}

Page 267 of 327

EmployeeController
<?php

namespace App\Http\Controllers;

use App\Services\EmployeeService;

use App\Services\ManagerService;

use Illuminate\Http\Request;

class EmployeeController extends Controller

{

 /* @var $employeeService EmployeeService*/

 private $employeeService;

 public function __construct(EmployeeService $employeeService) {

 $this->employeeService = $employeeService;

 }

 public function index(){

 return msacommon_successResponse([

 'employees' => $this->employeeService->getList()

]);

 }

}

ProjectQAController
<?php

namespace App\Http\Controllers;

use App\Http\Requests\Project\QA\SubmitProjectQARequest;

use App\Services\ProjectQAService;

use Illuminate\Http\Request;

class ProjectQAController extends Controller

{

 /* @var $projectQAService ProjectQAService*/

 private $projectQAService;

 public function __construct(ProjectQAService $projectQAService) {

 $this->projectQAService = $projectQAService;

 }

 public function index($projectId){

 return msacommon_successResponse([

 'qaReports' => $this->projectQAService-

>getProjectQAReports($projectId)

]);

 }

 public function submitProjectQAReport($projectId,SubmitProjectQARequest

$submitProjectQARequest){

 $user = $submitProjectQARequest->user;

 $this->projectQAService-

>submitProjectQAReport($user,$projectId,$submitProjectQARequest-

>except('user'));

 return msacommon_successResponse();

 }

 public function getProjectQaById($projectId,$qaId){

 return msacommon_successResponse([

 'qaReport' => $this->projectQAService-

>getProjectQAReportById($qaId)

]);

 }

}

RequirementController

Page 268 of 327

<?php

namespace App\Http\Controllers;

use App\Http\Requests\Annotation\CreateRequest;

use App\Models\Project;

use App\Services\ProjectService;

use Illuminate\Http\Request;

class RequirementController extends Controller

{

 private $projectService;

 public function __construct(ProjectService $projectService)

 {

 $this->projectService = $projectService;

 }

 public function index(Request $request)

 {

 $user = $request->user;

 $pendingProjects = Project::where('is_approved', 0);

 if ($user['type'] != 'ADMIN') $pendingProjects-

>where('creator_user_id', $user['id']);

 $pendingProjects = $pendingProjects->get();

 return msacommon_successResponse([

 'pendingProjects' => $pendingProjects

]);

 }

 public function create(CreateRequest $createRequest)

 {

 $user = $createRequest->user;

 $this->projectService->createRequirement($user, $createRequest-

>except('user'));

 return msacommon_successResponse();

 }

 public function get($projectId)

 {

 return msacommon_successResponse([

 'project' => $this->projectService-

>getRequirementDetail($projectId)

]);

 }

 public function delete($projectId,Request $request)

 {

 $user = $request->user;

 $this->projectService->deleteRequirement($user,$projectId);

 return msacommon_successResponse();

 }

}

TaskController
<?php

namespace App\Http\Controllers;

use App\Http\Requests\Project\Task\CreateProjectTaskRequest;

use App\Services\ProjectTaskService;

use Illuminate\Http\Request;

class TaskController extends Controller

{

 /* @var $projectTaskService ProjectTaskService*/

 private $projectTaskService;

 public function __construct(ProjectTaskService $projectTaskService) {

 $this->projectTaskService = $projectTaskService;

 }

 public function getProjectTasksList($projectId){

 return msacommon_successResponse([

Page 269 of 327

 'tasks' => $this->projectTaskService-

>getProjectTasks($projectId)

]);

 }

 public function create($projectId,CreateProjectTaskRequest

$createProjectTaskRequest){

 $user = $createProjectTaskRequest->user;

 $this->projectTaskService-

>create($user,$projectId,$createProjectTaskRequest->except('user'));

 return msacommon_successResponse();

 }

 public function getProjectTaskDetails($projectId,$taskId){

 return msacommon_successResponse([

 'task' => $this->projectTaskService-

>getProjectTaskDetails($projectId,$taskId)

]);

 }

 public function completeTask($projectId,$taskId,Request $request){

 $user = $request->user;

 $this->projectTaskService->completeTask($user,$projectId,$taskId);

 return msacommon_successResponse();

 }

}

TestingToolController
<?php

namespace App\Http\Controllers;

use App\Models\TestingTool;

use App\Services\TestingToolService;

use Illuminate\Http\Request;

use App\Http\Controllers\Controller;

class TestingToolController extends Controller

{

 /* @var $testingToolService TestingToolService*/

 private $testingToolService;

 public function __construct(TestingToolService $testingToolService) {

 $this->testingToolService = $testingToolService;

 }

 public function getIndex(){

 return msacommon_successResponse([

 'testingTools' => $this->testingToolService->getAll()

]);

 }

}

ResetPasswordController
<?php

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;

use App\Http\Requests\Auth\ForgotPassword\ResetPasswordRequest;

use App\Models\User;

use App\Services\AuthService;

use Illuminate\Foundation\Auth\ResetsPasswords;

use Illuminate\Http\Request;

use Validator;

class ResetPasswordController extends Controller

{

 /*

 |---

 | Password Reset Controller

Page 270 of 327

 |--

 | This controller is responsible for handling password reset requests

 | and uses a simple trait to include this behaviour. You're free to

 | explore this trait and override any methods you wish to tweak.

 */

 use ResetsPasswords{

 reset as public resetResetPasswordTrait;

 }

 /**Where to redirect users after resetting their password.

 * @var string

 */

 protected $redirectTo = '/';

 private $authService;

 /**Create a new controller instance.

 * @return void

 */

 public function __construct(AuthService $authService)

 {

 $this->authService = $authService;

 }

 /**Reset the given user's password.

 * @param \Illuminate\Http\Request $request

 * @return

\Illuminate\Http\RedirectResponse|\Illuminate\Http\JsonResponse

 * @throws \Illuminate\Validation\ValidationException

 */

 public function reset(ResetPasswordRequest $resetPasswordRequest)

 {

 $password = $resetPasswordRequest->get('password');

 $confirmedPassword = $resetPasswordRequest-

>get('password_confirmation');

 $token = $resetPasswordRequest->get('token');

 $this->authService->resetPassword(

 $password,

 $confirmedPassword,

 $token

);

 return redirect()->route('auth::getLogin');

 }

}

LoginController
<?php

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;

use App\Http\Requests\Auth\Login\LoginRequest;

use App\Services\AuthService;

use Auth;

use Illuminate\Mail\Message;

use Validator;

use Illuminate\Support\Facades\Password;

class LoginController extends Controller

{

 private $authService;

 /** Create a new controller instance.

 * @param AuthService $authService

 */

 public function __construct(AuthService $authService)

 {

 $this->authService = $authService;

 }

Page 271 of 327

 public function getLogin(){

 return view('auth.login');

 }

 public function postLogin(LoginRequest $loginRequest){

 $password = $loginRequest->get('password');

 $email = $loginRequest->input('email');

 $this->authService->login($email,$password);

 return redirect()->route('home');

 }

}

ForgotPasswordController
<?php

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;

use App\Http\Requests\Auth\ForgotPassword\SendForgotPasswordResetRequest;

use App\Services\AuthService;

use Illuminate\Foundation\Auth\SendsPasswordResetEmails;

use Illuminate\Http\Request;

use Illuminate\Mail\Message;

use Illuminate\Support\Facades\Password;

use Validator;

class ForgotPasswordController extends Controller

{

 /*

 |--

 | Password Reset Controller

 |--

 | This controller is responsible for handling password reset emails and

 | includes a trait which assists in sending these notifications from

 | your application to your users. Feel free to explore this trait.

 */

 use SendsPasswordResetEmails;

 private $authService;

 /**Create a new controller instance.

 * @return void

 */

 public function __construct(AuthService $authService)

 {

 $this->authService = $authService;

 }

 public function sendResetLinkEmail(SendForgotPasswordResetRequest

$sendForgotPasswordResetRequest){

 $email = $sendForgotPasswordResetRequest->get('email');

 $this->authService->sendResetPasswordEmail($email);

 return redirect()->back()->with('message','Forgot Password email

successfully sent');

 }

}

Middleware

TrimStrings
<?php

namespace App\Http\Middleware;

use Illuminate\Foundation\Http\Middleware\TrimStrings as Middleware;

class TrimStrings extends Middleware

{

 /** The names of the attributes that should not be trimmed.

 * @var array

Page 272 of 327

 */

 protected $except = [

 'password',

 'password_confirmation',

];

}

AdminAuthenticated
<?php

namespace App\Http\Middleware;

use App\Models\User;

use Closure;

use App\Services\AuthService;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

class AdminAuthenticated

{

 /** Handle an incoming request.

 * @param \Illuminate\Http\Request $request

 * @param \Closure $next

 * @return mixed

 * @throws APIException

 */

 public function handle($request, Closure $next)

 {

 $user = $request->user;

 if($user['type'] != User::TYPES['ADMIN']) throw new

APIException(ApiResponseCodesBook::ADMIN_ACCESS_ONLY);

 return $next($request);

 }

}

Authenticated
<?php

namespace App\Http\Middleware;

use Closure;

use App\Services\AuthService;

use StanleyMSACommon\MSACommon\Common\ApiResponseCodesBook;

use StanleyMSACommon\MSACommon\Exceptions\APIException;

class Authenticated

{

 /** Handle an incoming request.

 * @param \Illuminate\Http\Request $request

 * @param \Closure $next

 * @return mixed

 * @throws APIException

 */

 public function handle($request, Closure $next)

 {

 /* @var $authService AuthService*/

 $authService = resolve(AuthService::class);

 if(!$request->header('token')){

 throw new APIException(ApiResponseCodesBook::NOT_LOGGED_IN);

 }

 $token = $request->header('token');

 $user = $authService->getUser($token);

 $request->request->add([

 'user' => $user

Page 273 of 327

]);

 return $next($request);

 }

}

RedirectIfAuthenticated
<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Support\Facades\Auth;

class RedirectIfAuthenticated

{

 /** Handle an incoming request.

 * @param \Illuminate\Http\Request $request

 * @param \Closure $next

 * @param string|null $guard

 * @return mixed

 */

 public function handle($request, Closure $next, $guard = null)

 {

 if (Auth::guard($guard)->check()) {

 return redirect('/home');

 }

 return $next($request);

 }

}

VerifyCsrfToken
<?php

namespace App\Http\Middleware;

use Illuminate\Foundation\Http\Middleware\VerifyCsrfToken as Middleware;

class VerifyCsrfToken extends Middleware

{

 /** The URIs that should be excluded from CSRF verification

 * @var array

 */

 protected $except = [

 //

];

}

EncryptCookies
<?php

namespace App\Http\Middleware;

use Illuminate\Cookie\Middleware\EncryptCookies as Middleware;

class EncryptCookies extends Middleware

{

 /** The names of the cookies that should not be encrypted.

 * @var array

 */

 protected $except = [

 //

];

}

TrustProxies
<?php

namespace App\Http\Middleware;

use Illuminate\Http\Request;

Page 274 of 327

use Fideloper\Proxy\TrustProxies as Middleware;

class TrustProxies extends Middleware

{

 /** The trusted proxies for this application.

 * @var array

 */

 protected $proxies;

 /** The current proxy header mappings.

 * @var array

 */

 protected $headers = [

 Request::HEADER_FORWARDED => 'FORWARDED',

 Request::HEADER_X_FORWARDED_FOR => 'X_FORWARDED_FOR',

 Request::HEADER_X_FORWARDED_HOST => 'X_FORWARDED_HOST',

 Request::HEADER_X_FORWARDED_PORT => 'X_FORWARDED_PORT',

 Request::HEADER_X_FORWARDED_PROTO => 'X_FORWARDED_PROTO',

];

}

Requests

CreateRequest
<?php

namespace App\Http\Requests\Annotation;

use StanleyMSACommon\MSACommon\Requests\MSARequest;

class CreateRequest extends MSARequest

{

 /** Determine if the user is authorized to make this request.

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 /** Get the validation rules that apply to the request.

 * @return array

 */

 public function rules()

 {

 return [

 'title' => 'required',

 'description' => 'required',

];

 }

}

RegisterRequest
<?php

namespace App\Http\Requests\Auth\Register;

use Illuminate\Foundation\Http\FormRequest;

class RegisterRequest extends FormRequest

{

 /** Determine if the user is authorized to make this request.

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 /** Get the validation rules that apply to the request.

Page 275 of 327

 * @return array

 */

 public function rules()

 {

 return [

 'email' => 'required|email',

 'first_name' => 'required',

 'last_name' => 'required',

 'type' => 'required',

 'password' => 'required',

];

 }

}

ActivateUserRequest
<?php

namespace App\Http\Requests\Admin\User;

use Illuminate\Foundation\Http\FormRequest;

use StanleyMSACommon\MSACommon\Requests\MSARequest;

class ActivateUserRequest extends MSARequest

{

 /** Determine if the user is authorized to make this request.

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 /** Get the validation rules that apply to the request.

 * @return array

 */

 public function rules()

 {

 return [

 'activate' => 'required|in:0,1',

];

 }

}

UpdateProjectRequest
<?php

namespace App\Http\Requests\Project;

use Illuminate\Foundation\Http\FormRequest;

class UpdateProjectRequest extends FormRequest

{

 /** Determine if the user is authorized to make this request.

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 public function getValidatorInstance()

 {

 if($this->input('description') == '<p>
</p>') $this-

>merge(['description' => '']);

 return parent::getValidatorInstance();

 }

 /** Get the validation rules that apply to the request.

 * @return array

Page 276 of 327

 */

 public function rules()

 {

 return [

 'title' => 'required',

 'description' => 'required'

];

 }

}

UpdateDashboardContent
<?php

namespace App\Http\Requests\Home;

use Illuminate\Foundation\Http\FormRequest;

class UpdateDashboardContent extends FormRequest

{

 /** Determine if the user is authorized to make this request.

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 public function getValidatorInstance()

 {

 if($this->input('dashboard_text') == '<p>
</p>') $this-

>merge(['dashboard_content' => '']);

 return parent::getValidatorInstance();

 }

 /** Get the validation rules that apply to the request.

 * @return array

 */

 public function rules()

 {

 return [

 'dashboard_text' => 'required',

];

 }

}

LoginRequest
<?php

namespace App\Http\Requests\Auth\Login;

use Illuminate\Foundation\Http\FormRequest;

class LoginRequest extends FormRequest

{

 /** Determine if the user is authorized to make this request.

 *

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 /** Get the validation rules that apply to the request.

 * @return array

 */

 public function rules()

 {

 return [

Page 277 of 327

 'email' => 'required|email',

 'password' => 'required'

];

 }

}

ResetPasswordRequest
<?php

namespace App\Http\Requests\Auth;

use StanleyMSACommon\MSACommon\Requests\MSARequest;

class ResetPasswordRequest extends MSARequest

{

 /** Determine if the user is authorized to make this request.

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 /** Get the validation rules that apply to the request.

 * @return array

 */

 public function rules()

 {

 return [

 'token' => 'required',

 'password' => 'required|confirmed',

 'password_confirmation' => 'required',

];

 }

}

SendForgotPasswordResetRequest
<?php

namespace App\Http\Requests\Auth;

use StanleyMSACommon\MSACommon\Requests\MSARequest;

class SendForgotPasswordResetRequest extends MSARequest

{

 /** Determine if the user is authorized to make this request.

 * @return bool

 */

 public function authorize()

 {

 return true;

 }

 /** Get the validation rules that apply to the request.

 * @return array

 */

 public function rules()

 {

 return [

 'email' => 'required|email'

];

 }

}

Configuration

App (bootstrap)

Page 278 of 327

<?php

/*

|--

| Create The Application

|--

| The first thing to do is create a new Laravel application instance

| which serves as the "glue" for all the components of Laravel, and is

| the IoC container for the system binding all of the various parts.

*/

$app = new Illuminate\Foundation\Application(

 realpath(__DIR__.'/../')

);

/*

|--

| Bind Important Interfaces

|--

| Next, we need to bind some important interfaces into the container so

| we will be able to resolve them when needed. The kernels serve the

| incoming requests to this application from both the web and CLI.

*/

$app->singleton(

 Illuminate\Contracts\Http\Kernel::class,

 App\Http\Kernel::class

);

$app->singleton(

 Illuminate\Contracts\Console\Kernel::class,

 App\Console\Kernel::class

);

$app->singleton(

 Illuminate\Contracts\Debug\ExceptionHandler::class,

 \StanleyMSACommon\MSACommon\Exceptions\MSAHandler::class

);

/*

|--

| Return The Application

|--

| This script returns the application instance. The instance is given to

| the calling script so we can separate the building of the instances

| from the actual running of the application and sending responses.

*/

return $app;

Config
<?php

use Tymon\JWTAuth\Providers\LaravelServiceProvider;

return [

 /*

 |--

 | Application Name

 |--

 | This value is the name of application. This value is used when the

 | framework needs to place the application's name in a notification or

 | any other location as required by the application or its packages.

 */

 'name' => env('APP_NAME', 'Laravel'),

 /*

 |--

 | Application Environment

 |--

 | This value determines the "environment" the application is currently

 | running in. This may determine preferences used to configure various

Page 279 of 327

 | services the application utilizes. This is set in ".env" file.

 */

 'env' => env('APP_ENV', 'production'),

 /*

 |--

 | Application Debug Mode

 |--

 | When the application is in debug mode, detailed error messages with

 | stack traces will be shown on every error that occurs within the

 | application. If disabled, a simple generic error page is shown.

 */

 'debug' => env('APP_DEBUG', false),

 /*

 |--

 | Application URL

 |--

 | This URL is used by the console to properly generate URLs when using

 | the Artisan command line tool. Set this to the root of

 | the application so that it is used when running Artisan tasks.

 */

 'url' => env('APP_URL', 'http://localhost'),

 /*

 |--

 | Application Timezone

 |--

 | specify the default timezone for the application, which

 | will be used by the PHP date and date-time functions.

 */

 'timezone' => 'UTC',

 /*

 |--

 | Application Locale Configuration

 |--

 |The application locale determines the default locale that will be used

 | by the translation service provider. You are free to set this value

 | to any of the locales which will be supported by the application.

 */

 'locale' => 'en',

 /*

 |--

 | Application Fallback Locale

 |--

 | The fallback locale determines the locale to use when the current one

 | is not available. The value can be changed to correspond to any of

 | the language folders that are provided through the application.

 */

 'fallback_locale' => 'en',

 /*

 |--

 | Encryption Key

 |--

 |

 |This key is used by the Illuminate encrypter service and should be set

 | to a random, 32 character string, otherwise these encrypted strings

 | will not be safe. Please do this before deploying an application!

 */

 'key' => env('APP_KEY'),

 'cipher' => 'AES-256-CBC',

 /*

 |--

 | Logging Configuration

Page 280 of 327

 |--

 | Here you may configure the log settings for your application. Out of

 | the box, Laravel uses the Monolog PHP logging library. This gives

 | you a variety of powerful log handlers / formatters to utilize.

 | Available Settings: "single", "daily", "syslog", "errorlog"

 */

 'log' => env('APP_LOG', 'single'),

 'log_level' => env('APP_LOG_LEVEL', 'debug'),

 /*

 |--

 | Autoloaded Service Providers

 |--

 | The service providers listed here will be automatically loaded on the

 | request to your application. Feel free to add your own services to

 | this array to grant expanded functionality to your applications.

 */

 'providers' => [

 /*

 * Laravel Framework Service Providers...

 */

 Illuminate\Auth\AuthServiceProvider::class,

 Illuminate\Broadcasting\BroadcastServiceProvider::class,

 Illuminate\Bus\BusServiceProvider::class,

 Illuminate\Cache\CacheServiceProvider::class,

 Illuminate\Foundation\Providers\ConsoleSupportServiceProvider::class,

 Illuminate\Cookie\CookieServiceProvider::class,

 Illuminate\Database\DatabaseServiceProvider::class,

 Illuminate\Encryption\EncryptionServiceProvider::class,

 Illuminate\Filesystem\FilesystemServiceProvider::class,

 Illuminate\Foundation\Providers\FoundationServiceProvider::class,

 Illuminate\Hashing\HashServiceProvider::class,

 Illuminate\Mail\MailServiceProvider::class,

 Illuminate\Notifications\NotificationServiceProvider::class,

 Illuminate\Pagination\PaginationServiceProvider::class,

 Illuminate\Pipeline\PipelineServiceProvider::class,

 Illuminate\Queue\QueueServiceProvider::class,

 Illuminate\Redis\RedisServiceProvider::class,

 Illuminate\Auth\Passwords\PasswordResetServiceProvider::class,

 Illuminate\Session\SessionServiceProvider::class,

 Illuminate\Translation\TranslationServiceProvider::class,

 Illuminate\Validation\ValidationServiceProvider::class,

 Illuminate\View\ViewServiceProvider::class,

 /*

 * Package Service Providers...

 */

 /*

 * Application Service Providers...

 */

 App\Providers\AppServiceProvider::class,

 App\Providers\AuthServiceProvider::class,

 // App\Providers\BroadcastServiceProvider::class,

 App\Providers\EventServiceProvider::class,

 App\Providers\RouteServiceProvider::class,

 Tymon\JWTAuth\Providers\LaravelServiceProvider::class,

],

 /*

 |--

 | Class Aliases

 |--

 | This array of class aliases will be registered when this application

 | is started. However, feel free to register as many as you wish as

Page 281 of 327

 | the aliases are "lazy" loaded so they don't hinder performance.

 */

 'aliases' => [

 'App' => Illuminate\Support\Facades\App::class,

 'Artisan' => Illuminate\Support\Facades\Artisan::class,

 'Auth' => Illuminate\Support\Facades\Auth::class,

 'Blade' => Illuminate\Support\Facades\Blade::class,

 'Broadcast' => Illuminate\Support\Facades\Broadcast::class,

 'Bus' => Illuminate\Support\Facades\Bus::class,

 'Cache' => Illuminate\Support\Facades\Cache::class,

 'Config' => Illuminate\Support\Facades\Config::class,

 'Cookie' => Illuminate\Support\Facades\Cookie::class,

 'Crypt' => Illuminate\Support\Facades\Crypt::class,

 'DB' => Illuminate\Support\Facades\DB::class,

 'Eloquent' => Illuminate\Database\Eloquent\Model::class,

 'Event' => Illuminate\Support\Facades\Event::class,

 'File' => Illuminate\Support\Facades\File::class,

 'Gate' => Illuminate\Support\Facades\Gate::class,

 'Hash' => Illuminate\Support\Facades\Hash::class,

 'Lang' => Illuminate\Support\Facades\Lang::class,

 'Log' => Illuminate\Support\Facades\Log::class,

 'Mail' => Illuminate\Support\Facades\Mail::class,

 'Notification' => Illuminate\Support\Facades\Notification::class,

 'Password' => Illuminate\Support\Facades\Password::class,

 'Queue' => Illuminate\Support\Facades\Queue::class,

 'Redirect' => Illuminate\Support\Facades\Redirect::class,

 'Redis' => Illuminate\Support\Facades\Redis::class,

 'Request' => Illuminate\Support\Facades\Request::class,

 'Response' => Illuminate\Support\Facades\Response::class,

 'Route' => Illuminate\Support\Facades\Route::class,

 'Schema' => Illuminate\Support\Facades\Schema::class,

 'Session' => Illuminate\Support\Facades\Session::class,

 'Storage' => Illuminate\Support\Facades\Storage::class,

 'URL' => Illuminate\Support\Facades\URL::class,

 'Validator' => Illuminate\Support\Facades\Validator::class,

 'View' => Illuminate\Support\Facades\View::class,

 'JWTAuth' => Tymon\JWTAuth\Facades\JWTAuth::class,

 'JWTFactory' => 'Tymon\JWTAuth\Facades\JWTFactory',

],

];

auth
<?php

return [

 /*

 |--

 | Authentication Defaults

 |--

 | This option controls the default authentication "guard" and password

 | reset options for your application. You may change these defaults

 | as required, but they're a perfect start for most applications.

 */

 'defaults' => [

 'guard' => 'web',

 'passwords' => 'users',

],

 /*

 |--

 | Authentication Guards

 |--

Page 282 of 327

 | Next, you may define every authentication guard for your application.

 | Of course, a great default configuration has been defined for you

 | here which uses session storage and the Eloquent user provider.

 |

 | All authentication drivers have a user provider. This defines how the

 | users are actually retrieved out of your database or other storage

 | mechanisms used by this application to persist user's data.

 |

 | Supported: "session", "token"

 */

 'guards' => [

 'web' => [

 'driver' => 'session',

 'provider' => 'users',

],

 'api' => [

 'driver' => 'token',

 'provider' => 'users',

],

],

 /*

 |--

 | User Providers

 |--

 | All authentication drivers have a user provider. This defines how the

 | users are retrieved out of the database or other storage

 | mechanisms used by this application to persist your user's data.

 |

 | If you have multiple user tables or models you may configure multiple

 | sources which represent each model / table. These sources may then

 | be assigned to any extra authentication guards defined.

 |

 | Supported: "database", "eloquent"

 */

 'providers' => [

 'users' => [

 'driver' => 'eloquent',

 'model' => App\User::class,

],

 // 'users' => [

 // 'driver' => 'database',

 // 'table' => 'users',

 //],

],

 /*

 |--

 | Resetting Passwords

 |--

 | specify multiple password reset configurations if you have more

 | than one user table or model in the application and you want to have

 | separate password reset settings based on the specific user types.

 |

 |The expire time is number of minutes that the reset token should be

 | considered valid. This security feature keeps tokens short-lived so

 | they have less time to be guessed. You may change this as needed.

 */

 'passwords' => [

 'users' => [

 'provider' => 'users',

 'table' => 'password_resets',

 'expire' => 60,

Page 283 of 327

],

],

];

microservice_front_end
<?php

return [

 'url' =>

env('MICROSERVICE_FRONT_END_ENDPOINT','http://server.local/becca001/stanley

/front/public'),

 'forgot_password_url' =>

env('MICROSERVICE_FRONT_END_FORGOT_PASSWORD_URL',env('MICROSERVICE_FRONT_EN

D_ENDPOINT').'/password/reset/'),

];

microservice_endpoint
<?php

return [

 'auth' =>

env('AUTH_MICROSERVICE_ENDPOINT','http://server.local/becca001/stanley/user

/public/api/')

];

database
<?php

return [

 /*

 |--

 | Default Database Connection Name

 |--

 | Here you may specify which of the database connections below you wish

 | to use as your default connection for all database work. Of course

 | you may use many connections at once using the Database library.

 */

 'default' => env('DB_CONNECTION', 'mysql'),

 /*

 |--

 | Database Connections

 |--

 | Here are each of the database connections setup for your application.

 | Of course, examples of configuring each database platform that is

 | supported by Laravel is shown below to make development simple.

 |

 |

 | All database work in Laravel is done through the PHP PDO facilities

 | so make sure you have the driver for your particular database of

 | choice installed on your machine before you begin development.

 */

 'connections' => [

 'sqlite' => [

 'driver' => 'sqlite',

 'database' => env('DB_DATABASE',

database_path('database.sqlite')),

 'prefix' => '',

],

 'mysql' => [

 'driver' => 'mysql',

 'host' => env('DB_HOST', '127.0.0.1'),

 'port' => env('DB_PORT', '3306'),

Page 284 of 327

 'database' => env('DB_DATABASE', 'forge'),

 'username' => env('DB_USERNAME', 'forge'),

 'password' => env('DB_PASSWORD', ''),

 'unix_socket' => env('DB_SOCKET', ''),

 'charset' => 'utf8',

 'collation' => 'utf8_unicode_ci',

 'prefix' => '',

 'strict' => true,

 'engine' => null,

],

 'pgsql' => [

 'driver' => 'pgsql',

 'host' => env('DB_HOST', '127.0.0.1'),

 'port' => env('DB_PORT', '5432'),

 'database' => env('DB_DATABASE', 'forge'),

 'username' => env('DB_USERNAME', 'forge'),

 'password' => env('DB_PASSWORD', ''),

 'charset' => 'utf8',

 'prefix' => '',

 'schema' => 'public',

 'sslmode' => 'prefer',

],

 'sqlsrv' => [

 'driver' => 'sqlsrv',

 'host' => env('DB_HOST', 'localhost'),

 'port' => env('DB_PORT', '1433'),

 'database' => env('DB_DATABASE', 'forge'),

 'username' => env('DB_USERNAME', 'forge'),

 'password' => env('DB_PASSWORD', ''),

 'charset' => 'utf8',

 'prefix' => '',

],

],

 /*

 |--

 | Migration Repository Table

 |--

 | This table keeps track of all migrations that have already run for

 | your application. Using this information, we can determine which of

 | the migrations on disk haven't actually been run in the database.

 */

 'migrations' => 'migrations',

 /*

 |--

 | Redis Databases

 |--

 | Redis is an open source, fast, and advanced key-value store that also

 | provides a richer set of commands than a typical key-value systems

 | such as APC or Memcached. Laravel makes it easy to dig right in.

 */

 'redis' => [

 'client' => 'predis',

 'default' => [

 'host' => env('REDIS_HOST', '127.0.0.1'),

 'password' => env('REDIS_PASSWORD', null),

 'port' => env('REDIS_PORT', 6379),

 'database' => 0,

],

],

];

Page 285 of 327

filesystems
<?php

return [

 /*

 |--

 | Default Filesystem Disk

 |--

 | Here you may specify the default filesystem disk that should be used

 | by the framework. The "local" disk, as well as a variety of cloud

 | based disks are available to your application. Just store away!

 */

 'default' => env('FILESYSTEM_DRIVER', 'local'),

 /*

 | Default Cloud Filesystem Disk

 |--

 | Many applications store files both locally and in the cloud. For this

 | reason, you may specify a default "cloud" driver here. This driver

 | will be bound as the Cloud disk implementation in the container.

 */

 'cloud' => env('FILESYSTEM_CLOUD', 's3'),

 /*

 |--

 | Filesystem Disks

 |--

 | Can configure as many filesystem "disks" as one wishes, and

 | may even configure multiple disks of the same driver. Defaults have

 | been setup for each driver as an example of the required options.

 | Supported Drivers: "local", "ftp", "s3", "rackspace"

 */

 'disks' => [

 'local' => [

 'driver' => 'local',

 'root' => storage_path('app'),

],

 'public' => [

 'driver' => 'local',

 'root' => storage_path('app/public'),

 'url' => env('APP_URL').'/storage',

 'visibility' => 'public',

],

 'site_config' => [

 'driver' => 'local',

 'root' => public_path('storage/site'),

 'url' => env('APP_URL').'/storage/site',

 'visibility' => 'public',

],

 's3' => [

 'driver' => 's3',

 'key' => env('AWS_ACCESS_KEY_ID'),

 'secret' => env('AWS_SECRET_ACCESS_KEY'),

 'region' => env('AWS_DEFAULT_REGION'),

 'bucket' => env('AWS_BUCKET'),

],

],

];

ide-helper
<?php

return array(

Page 286 of 327

 /*

 |--

 | Filename & Format

 |--

 | The default filename (without extension) and the format (php or json)

 */

 'filename' => '_ide_helper',

 'format' => 'php',

 'meta_filename' => '.phpstorm.meta.php',

 /*

 |--

 | Fluent helpers

 |--

 | Set to true to generate commonly used Fluent methods

 */

 'include_fluent' => false,

 /*

 |--

 | Write Model Magic methods

 |--

 | Set to false to disable write magic methods of model

 */

 'write_model_magic_where' => true,

 /*

 |--

 | Write Eloquent Model Mixins

 |--

 | This will add the necessary DocBlock mixins to the model class

 | contained in the Laravel Framework. This helps the IDE with

 | auto-completion.

 | Please be aware that this setting changes a file within /vendor

directory.

 */

 'write_eloquent_model_mixins' => false,

 /*

 |--

 | Helper files to include

 |--

 | Include helper files. By default not included, but can be toggled

with the

 | -- helpers (-H) option. Extra helper files can be included.

 */

 'include_helpers' => false,

 'helper_files' => array(

base_path().'/vendor/laravel/framework/src/Illuminate/Support/helpers.php',

),

 /*

 |--

 | Model locations to include

 |--

 | Define in which directories the ide-helper:models command should look

 | for models.

 */

 'model_locations' => array(

 'app',

),

 /*

 |--

 | Extra classes

 |--

 | These implementations are not really extended, but called with magic

Page 287 of 327

functions

 */

 'extra' => array(

 'Eloquent' => array('Illuminate\Database\Eloquent\Builder',

'Illuminate\Database\Query\Builder'),

 'Session' => array('Illuminate\Session\Store'),

),

 'magic' => array(

 'Log' => array(

 'debug' => 'Monolog\Logger::addDebug',

 'info' => 'Monolog\Logger::addInfo',

 'notice' => 'Monolog\Logger::addNotice',

 'warning' => 'Monolog\Logger::addWarning',

 'error' => 'Monolog\Logger::addError',

 'critical' => 'Monolog\Logger::addCritical',

 'alert' => 'Monolog\Logger::addAlert',

 'emergency' => 'Monolog\Logger::addEmergency',

)

),

 /*

 |--

 | Interface implementations

 |--

 | These interfaces will be replaced with the implementing class. Some

interfaces

 | are detected by the helpers, others can be listed below.

 */

 'interfaces' => array(

),

 /*

 |--

 | Support for custom DB types

 |--

 | This setting allow you to map any custom database type (that you may

have

 | created using CREATE TYPE statement or imported using database plugin

 | / extension to a Doctrine type.

 | Each key in this array is a name of the Doctrine2 DBAL Platform.

Currently valid names are:

 | 'postgresql', 'db2', 'drizzle', 'mysql', 'oracle', 'sqlanywhere',

'sqlite', 'mssql'

 | This name is returned by getName() method of the specific

Doctrine/DBAL/Platforms/AbstractPlatform descendant

 |

 | The value of the array is an array of type mappings. Key is the name

of the custom type,

 | (for example, "jsonb" from Postgres 9.4) and the value is the name of

the corresponding Doctrine2 type (in

 | our case it is 'json_array'. Doctrine types are listed here:

 | http://doctrine-dbal.readthedocs.org/en/latest/reference/types.html

 |

 | So to support jsonb in your models when working with Postgres, just

add the following entry to the array below:

 |

 | "postgresql" => array(

 | "jsonb" => "json_array",

 |),

 */

 'custom_db_types' => array(

),

 /*

Page 288 of 327

 |---

 | Support for camel cased models

 |---

 | There are some Laravel packages (such as Eloquence) that allow for

accessing

 | Eloquent model properties via camel case, instead of snake case.

 |

 | Enabling this option will support these packages by saving all model

 | properties as camel case, instead of snake case.

 |

 | For example, normally you would see this:

 |

 | * @property \Illuminate\Support\Carbon $created_at

 | * @property \Illuminate\Support\Carbon $updated_at

 |

 | With this enabled, the properties will be this:

 |

 | * @property \Illuminate\Support\Carbon $createdAt

 | * @property \Illuminate\Support\Carbon $updatedAt

 |

 | Note, it is currently an all-or-nothing option.

 |

 */

 'model_camel_case_properties' => false,

 /*

 |--

 | Property Casts

 |--

 | Cast the given "real type" to the given "type".

 */

 'type_overrides' => array(

 'integer' => 'int',

 'boolean' => 'bool',

),

 /*

 |--

 | Include DocBlocks from classes

 |--

 | Include DocBlocks from classes to allow additional code inspection

for

 | magic methods and properties.

 */

 'include_class_docblocks' => false,

);

session
<?php

return [

 /*

 |--

 | Default Session Driver

 |--

 | This option controls default session "driver" that will be used on

 | requests. By default, we will use the lightweight native driver but

 | you may specify any of the other wonderful drivers provided here.

 |

 | Supported: "file", "cookie", "database", "apc",

 | "memcached", "redis", "array"

 */

 'driver' => env('SESSION_DRIVER', 'file'),

Page 289 of 327

 /*

 |--

 | Session Lifetime

 |--

 | Here you may specify the number of minutes that you wish the session

 | to be allowed to remain idle before it expires. If you want them

 | to immediately expire on the browser closing, set that option.

 */

 'lifetime' => env('SESSION_LIFETIME', 120),

 'expire_on_close' => false,

 /*

 |---

 | Session Encryption

 |--

 | This option allows you to easily specify that all session data

 | should be encrypted before it is stored. All encryption will be run

 | automatically by Laravel and you can use the Session like normal.

 */

 'encrypt' => false,

 /*

 |--

 | Session File Location

 |--

 | When using native session driver, we need a location where session

 | files may be stored. A default has been set for you but a different

 | location may be specified. This is only needed for file sessions.

 */

 'files' => storage_path('framework/sessions'),

 /*

 |--

 | Session Database Connection

 |--

 |When using "database" or "redis" session drivers, you may specify a

 | connection that should be used to manage these sessions. This should

 | correspond to a connection in your database configuration options.

 */

 'connection' => null,

 /*

 |--

 | Session Database Table

 |--

 |

 | When using "database" session driver, you may specify the table we

 | should use to manage the sessions. Of course, a sensible default is

 | provided for you; however, you are free to change this as needed.

 */

 'table' => 'sessions',

 /*

 |--

 | Session Cache Store

 |---

 | When using "apc" or "memcached" session drivers, you may specify a

 | cache store that should be used for these sessions. This value must

 | correspond with one of the application's configured cache stores.

 */

 'store' => null,

 /*

 |--

 | Session Sweeping Lottery

 |--

 | Some session drivers must manually sweep storage location to get

Page 290 of 327

 | rid of old sessions from storage. Here are the chances that it will

 | happen on a given request. By default, the odds are 2 out of 100.

 */

 'lottery' => [2, 100],

 /*

 |--

 | Session Cookie Name

 |--

 | Here you may change the name of the cookie used to identify a session

 | instance by ID. The name specified here will get used every time a

 | new session cookie is created by the framework for every driver.

 */

 'cookie' => env(

 'SESSION_COOKIE',

 str_slug(env('APP_NAME', 'laravel'), '_').'_session'

),

 /*

 |--

 | Session Cookie Path

 |--

 | The session cookie path determines the path for which the cookie will

 | be regarded as available. Typically, this will be the root path of

 | your application but you are free to change this when necessary.

 */

 'path' => '/',

 /*

 |--

 | Session Cookie Domain

 |--

 | Here you may change domain of the cookie used to identify a session

 | in your application. This will determine which domains the cookie is

 | available to in your application. A sensible default has been set.

 */

 'domain' => env('SESSION_DOMAIN', null),

 /*

 |---

 | HTTPS Only Cookies

 |--

 | By setting this option to true, session cookies will be sent back

 | to the server if the browser has a HTTPS connection. This will keep

 | the cookie from being sent to you if it cannot be done securely.

 */

 'secure' => env('SESSION_SECURE_COOKIE', false),

 /*

 |--

 | HTTP Access Only

 |--

 | Setting this value to true will prevent JavaScript from accessing the

 | value of the cookie and the cookie will only be accessible through

 | the HTTP protocol. You are free to modify this option if needed.

 */

 'http_only' => true,

 /*

 |--

 | Same-Site Cookies

 |--

 | This option determines how cookies behave when cross-site requests

 | take place, and can be used to mitigate CSRF attacks. By default, we

 | do not enable this as other CSRF protection services are in place.

Page 291 of 327

 | Supported: "lax", "strict"

 */

 'same_site' => null,

];

services
<?php

return [

 /*

 |--

 | Third Party Services

 |--

 | This file is for storing credentials for third party services such

 | as Stripe, Mailgun, SparkPost and others. This file provides a sane

 | default location for this type of information, allowing packages

 | to have a conventional place to find your various credentials.

 */

 'mailgun' => [

 'domain' => env('MAILGUN_DOMAIN'),

 'secret' => env('MAILGUN_SECRET'),

],

 'ses' => [

 'key' => env('SES_KEY'),

 'secret' => env('SES_SECRET'),

 'region' => 'us-east-1',

],

 'sparkpost' => [

 'secret' => env('SPARKPOST_SECRET'),

],

 'stripe' => [

 'model' => App\User::class,

 'key' => env('STRIPE_KEY'),

 'secret' => env('STRIPE_SECRET'),

],

];

broadcasting
<?php

return [

 /*

 |--

 | Default Broadcaster

 |--

 | This option controls the default broadcaster that will be used by the

 | framework when an event needs to be broadcast. You may set this to

 | any of the connections defined in the "connections" array below.

 | Supported: "pusher", "redis", "log", "null"

 */

 'default' => env('BROADCAST_DRIVER', 'null'),

 /*

 |--

 | Broadcast Connections

 |--

 |Here you may define all of the broadcast connections that will be used

 | to broadcast events to other systems or over websockets. Samples of

 | each available type of connection are provided inside this array.

 */

 'connections' => [

 'pusher' => [

 'driver' => 'pusher',

Page 292 of 327

 'key' => env('PUSHER_APP_KEY'),

 'secret' => env('PUSHER_APP_SECRET'),

 'app_id' => env('PUSHER_APP_ID'),

 'options' => [

 'cluster' => env('PUSHER_APP_CLUSTER'),

 'encrypted' => true,

],

],

 'redis' => [

 'driver' => 'redis',

 'connection' => 'default',

],

 'log' => [

 'driver' => 'log',

],

 'null' => [

 'driver' => 'null',

],

],

];

cache
<?php

return [

 /*

 |--

 | Default Cache Store

 |--

 | This option controls default cache connection that gets used while

 | using this caching library. This connection is used when another is

 | not explicitly specified when executing a given caching function.

 |

 | Supported: "apc", "array", "database", "file", "memcached", "redis"

 */

 'default' => env('CACHE_DRIVER', 'file'),

 /*

 |--

 | Cache Stores

 |--

 | Here you may define all of the cache "stores" for your application as

 | well as their drivers. You may even define multiple stores for the

 | same cache driver to group types of items stored in your caches.

 */

 'stores' => [

 'apc' => [

 'driver' => 'apc',

],

 'array' => [

 'driver' => 'array',

],

 'database' => [

 'driver' => 'database',

 'table' => 'cache',

 'connection' => null,

],

 'file' => [

 'driver' => 'file',

 'path' => storage_path('framework/cache/data'),

],

 'memcached' => [

 'driver' => 'memcached',

Page 293 of 327

 'persistent_id' => env('MEMCACHED_PERSISTENT_ID'),

 'sasl' => [

 env('MEMCACHED_USERNAME'),

 env('MEMCACHED_PASSWORD'),

],

 'options' => [

 // Memcached::OPT_CONNECT_TIMEOUT => 2000,

],

 'servers' => [

 [

 'host' => env('MEMCACHED_HOST', '127.0.0.1'),

 'port' => env('MEMCACHED_PORT', 11211),

 'weight' => 100,

],

],

],

 'redis' => [

 'driver' => 'redis',

 'connection' => 'default',

],

],

 /*

 |--

 | Cache Key Prefix

 |--

 |

 | When utilizing a RAM based store such as APC or Memcached, there

might

 | be other applications utilizing the same cache. So, we will specify a

 | value to get prefixed to all our keys so we can avoid collisions.

 |

 */

 'prefix' => env(

 'CACHE_PREFIX',

 str_slug(env('APP_NAME', 'laravel'), '_').'_cache'

),

];

view
<?php

return [

 /*

 |--

 | View Storage Paths

 |--

 | Most templating systems load templates from disk. Can specify

 | an array of paths that should be checked for your views. Of course

 | the usual Laravel view path has already been registered for you.

 */

 'paths' => [

 resource_path('views'),

],

 /*

 |--

 | Compiled View Path

Page 294 of 327

 |--

 | This option determines where all the compiled Blade templates will be

 | stored for your application. Typically, this is within the storage

 | directory. However, as usual, you are free to change this value.

 */

 'compiled' => realpath(storage_path('framework/views')),

];

queue
<?php

return [

 /*

 |--

 | Default Queue Driver

 |--

 | Laravel's queue API supports an assortment of back-ends via a single

 | API, giving you convenient access to each back-end using the same

 | syntax for each one. Here you may set the default queue driver.

 | Supported: "sync", "database", "beanstalkd", "sqs", "redis", "null"

 */

 'default' => env('QUEUE_DRIVER', 'sync'),

 /*

 |--

 | Queue Connections

 |---

 | Here you may configure connection information for each server that

 | is used by your application. A default configuration has been added

 | for each back end shipped with Laravel. You are free to add more.

 */

 'connections' => [

 'sync' => [

 'driver' => 'sync',

],

 'database' => [

 'driver' => 'database',

 'table' => 'jobs',

 'queue' => 'default',

 'retry_after' => 90,

],

 'beanstalkd' => [

 'driver' => 'beanstalkd',

 'host' => 'localhost',

 'queue' => 'default',

 'retry_after' => 90,

],

 'sqs' => [

 'driver' => 'sqs',

 'key' => env('SQS_KEY', 'your-public-key'),

 'secret' => env('SQS_SECRET', 'your-secret-key'),

 'prefix' => env('SQS_PREFIX', 'https://sqs.us-east-

1.amazonaws.com/your-account-id'),

 'queue' => env('SQS_QUEUE', 'your-queue-name'),

 'region' => env('SQS_REGION', 'us-east-1'),

],

 'redis' => [

 'driver' => 'redis',

 'connection' => 'default',

 'queue' => 'default',

 'retry_after' => 90,

],

],

Page 295 of 327

 /*

 |--

 | Failed Queue Jobs

 |--

 |These options configure behaviour of failed queue job logging so you

 | can control which database and table are used to store the jobs that

 | have failed. You may change them to any database / table you wish.

 */

 'failed' => [

 'database' => env('DB_CONNECTION', 'mysql'),

 'table' => 'failed_jobs',

],

];

mail
<?php

return [

 /*---

 | Mail Driver

 |--

 | Laravel supports both SMTP & PHP's "mail" function as drivers for the

 | sending of e-mail. You may specify which one you are using throughout

 | the application here. By default, Laravel is setup for SMTP mail.

 |

 | Supported: "smtp", "sendmail", "mailgun", "mandrill", "ses",

 | "sparkpost", "log", "array"

 */

 'driver' => env('MAIL_DRIVER', 'smtp'),

 /*

 |--

 | SMTP Host Address

 |--

 | Here you may provide the host address of the SMTP server used by your

 | applications. A default option is provided that is compatible with

 | the Mailgun mail service which will provide reliable deliveries.

 */

 'host' => env('MAIL_HOST', 'smtp.mailgun.org'),

 /*

 |--

 | SMTP Host Port

 |--

 | This is the SMTP port used by your application to deliver e-mails to

 | users of the application. Like the host we have set this value to

 | stay compatible with the Mailgun e-mail application by default.

 */

 'port' => env('MAIL_PORT', 587),

 /*

 |---

 | Global "From" Address

 |--

 | You may wish for all e-mails sent by your application to be sent from

 | the same address. Here, you may specify a name and address that is

 | used globally for all e-mails that are sent by your application.

 */

 'from' => [

 'address' => env('MAIL_FROM_ADDRESS', 'hello@example.com'),

 'name' => env('MAIL_FROM_NAME', 'Example'),

],

 /*

 |--

 | E-Mail Encryption Protocol

Page 296 of 327

 |--

 | Here you may specify the encryption protocol that should be used when

 | the application send e-mail messages. A sensible default using the

 | transport layer security protocol should provide great security.

 */

 'encryption' => env('MAIL_ENCRYPTION', 'tls'),

 /*

 |--

 | SMTP Server Username

 |--

 | If SMTP server requires a username for authentication,

 | set it here. This will get used to authenticate with your server on

 | connection. You may also set the "password" value below this one.

 */

 'username' => env('MAIL_USERNAME'),

 'password' => env('MAIL_PASSWORD'),

 /*

 |--

 | Sendmail System Path

 |--

 | When using "sendmail" driver to send e-mails, we will need to know

 | the path to where Sendmail lives on this server. A default path has

 | been provided here, which will work well on most of your systems.

 */

 'sendmail' => '/usr/sbin/sendmail -bs',

 /*

 |--

 | Markdown Mail Settings

 |--

 | If using Markdown based email rendering, configure

 | theme and component paths here, allowing to customize the design

 | of the emails. Or stick with the Laravel defaults!

 */

 'markdown' => [

 'theme' => 'default',

 'paths' => [

 resource_path('views/vendor/mail'),

],

],

];

jwt
<?php

/*

 * This file is part of jwt-auth.

 */

return [

 /*

 |--

 | JWT Authentication Secret

 |--

 | Don't forget to set this in .env file, as it will be used to sign

 | tokens. A helper command is provided for this:

 | `php artisan jwt:secret`

 |

 | Note: This will be used for Symmetric algorithms only (HMAC),

 */

 'secret' => env('JWT_SECRET'),

 /*

 |--

 | JWT Authentication Keys

Page 297 of 327

 |--

 | The algorithm you are using, will determine whether your tokens are

 | signed with a random string (defined in `JWT_SECRET`) or using the

 | following public & private keys.

 |

 | Symmetric Algorithms:

 | HS256, HS384 & HS512 will use `JWT_SECRET`.

 |

 | Asymmetric Algorithms:

 | RS256, RS384 & RS512 / ES256, ES384 & ES512 will use the keys below.

 */

 'keys' => [

 /*

 |---

 | Public Key

 |--

 | A path or resource to your public key.

 |

 | E.g. 'file://path/to/public/key'

 */

 'public' => env('JWT_PUBLIC_KEY'),

 /*

 |--

 | Private Key

 |---

 | A path or resource to your private key.

 |

 | E.g. 'file://path/to/private/key'

 */

 'private' => env('JWT_PRIVATE_KEY'),

 /*

 |--

 | Passphrase

 |--

 | The passphrase for your private key. Can be null if none set.

 */

 'passphrase' => env('JWT_PASSPHRASE'),

],

 /*

 |--

 | JWT time to live

 |---

 | Specify length of time (in minutes) that the token will be valid for.

 | Defaults to 1 hour.

 |

 | You can also set this to null, to yield a never expiring token.

 | Some people may want this behaviour for e.g. a mobile app.

 | Not particularly recommended, so make sure you have appropriate

 | systems in place to revoke the token if necessary.

 | Notice: If you set this to null you should remove 'exp' element from

 |'required_claims' list.

 */

 'ttl' => env('JWT_TTL', 3600),

 /*

 |--

 | Refresh time to live

 |--

 | Specify length of time (in minutes) that the token can be refreshed

 | within. I.E. User can refresh their token within a 2 week window of

 | the original token being created until they must re-authenticate.

 | Defaults to 2 weeks.

Page 298 of 327

 |

 | You can also set this to null, to yield an infinite refresh time.

 | This is not particularly recommended, so make sure appropriate

 | systems in place to revoke the token if necessary.

 */

 'refresh_ttl' => env('JWT_REFRESH_TTL', 20160),

 /*

 |--

 | JWT hashing algorithm

 |--

 | Specify the hashing algorithm that will be used to sign the token.

 */

 'algo' => env('JWT_ALGO', 'HS256'),

 /*

 |--

 | Required Claims

 |--

 | Specify the required claims that must exist in any token.

 | A TokenInvalidException will be thrown if any of these claims are not

 | present in the payload.

 */

 'required_claims' => [

// 'iss',

// 'iat',

// 'exp',

// 'nbf',

// 'sub',

// 'jti',

],

 /*

 |--

 | Persistent Claims

 | Specify the claim keys to be persisted when refreshing a token.

 | `sub` and `iat` will automatically be persisted, in

 | addition to the these claims.

 |

 | Note: If a claim does not exist then it will be ignored.

 |

 */

 'persistent_claims' => [

 // 'foo',

 // 'bar',

],

 /*

 | Lock Subject

 |--

 | This will determine whether a `prv` claim is automatically added to

 | the token. The purpose of this is to ensure that if you have multiple

 | authentication models e.g. `App\User` & `App\OtherPerson`, then we

 | should prevent one authentication request from impersonating another,

 | if 2 tokens happen to have the same id across the 2 different models.

 |

 | Under specific circumstances, you may want to disable this behaviour

 | e.g. if you only have one authentication model, then you would save

 | a little on token size.

 */

 'lock_subject' => true,

 /*

 | Leeway

 | This property gives the jwt timestamp claims some "leeway".

 | Meaning that if you have any unavoidable slight clock skew on

Page 299 of 327

 | any of your servers then this will afford you some level of

cushioning.

 |

 | This applies to the claims `iat`, `nbf` and `exp`.

 |

 | Specify in seconds - only if you know you need it.

 */

 'leeway' => env('JWT_LEEWAY', 0),

 /*

 | Blacklist Enabled

 | In order to invalidate tokens, you must have the blacklist enabled.

 | If do not want or need this functionality, then set this to false.

 */

 'blacklist_enabled' => env('JWT_BLACKLIST_ENABLED', true),

 /*

 | Blacklist Grace Period

 | When multiple concurrent requests are made with the same JWT,

 | it is possible that some of them fail, due to token regeneration

 | on every request.

 | Set grace period in seconds to prevent parallel request failure.

 |

 */

 'blacklist_grace_period' => env('JWT_BLACKLIST_GRACE_PERIOD', 0),

 /*

 | Cookies encryption

 | By default Laravel encrypt cookies for security reason.

 | Set it to true if you want to decrypt cookies.

 */

 'decrypt_cookies' => false,

 /*

 | Providers

 |--

 | Specify the various providers used throughout the package.

 */

 'providers' => [

 /*

 |--

 | JWT Provider

 |--

 | Specify provider that is used to create and decode the tokens.

 */

 'jwt' => Tymon\JWTAuth\Providers\JWT\Lcobucci::class,

 /*

 | Authentication Provider

 |--

 | Specify the provider that is used to authenticate users.

 */

 'auth' => Tymon\JWTAuth\Providers\Auth\Illuminate::class,

 /*

 |--

 | Storage Provider

 |--

 | Specify provider that is used to store tokens in the blacklist.

 |

 */

 'storage' => Tymon\JWTAuth\Providers\Storage\Illuminate::class,

],

];

Page 300 of 327

Console

Kernel
<?php

namespace App\Console;

use Illuminate\Console\Scheduling\Schedule;

use Illuminate\Foundation\Console\Kernel as ConsoleKernel;

class Kernel extends ConsoleKernel

{

 /** The Artisan commands provided by your application.

 * @var array

 */

 protected $commands = [

 //

];

 /** Define the application's command schedule.

 * @param \Illuminate\Console\Scheduling\Schedule $schedule

 * @return void

 */

 protected function schedule(Schedule $schedule)

 {

 // $schedule->command('inspire')

 // ->hourly();

 }

 /** Register the commands for the application.

 * @return void

 */

 protected function commands()

 {

 $this->load(__DIR__.'/Commands');

 require base_path('routes/console.php');

 }

}

Exceptions

Handler
<?php

namespace App\Exceptions;

use Exception;

use Illuminate\Foundation\Exceptions\Handler as ExceptionHandler;

class Handler extends ExceptionHandler

{

 protected $dontReport = [

 //

];

 protected $dontFlash = [

 'password',

 'password_confirmation',

];

 /**

 * Report or log an exception.

 * @param \Exception $exception

 * @return void

 */

 public function report(Exception $exception)

 {

 parent::report($exception);

 }

Page 301 of 327

 /**

 * Render an exception into an HTTP response.

 * @param \Illuminate\Http\Request $request

 * @param \Exception $exception

 * @return \Illuminate\Http\Response

 */

 public function render($request, Exception $exception)

 {

 return parent::render($request, $exception);

 }

}

Public

Index
<?php

define('LARAVEL_START', microtime (true));

/*

|--

| Register The Auto Loader

|--

| Composer provides a convenient, automatically generated class loader for

| our application. We just need to utilize it! Simply require it

| into the script here so, do not have to worry about manual

| loading any classes later on.

*/

require __DIR__.'/../vendor/autoload.php';

/*

|--

| Turn On The Lights

|--

| This bootstraps the framework and gets it ready for use, then it

| will load up this application so that we can run it and send

| the responses back to the browser and delight our users.

*/

$app = require_once __DIR__.'/../bootstrap/app.php';

/*

|--

| Run The Application

|--

| Once we have the application, we can handle the incoming request

| through the kernel, and send the associated response back to

| the client's browser allowing them to enjoy the creative

| and wonderful application we have prepared for them.

*/

$kernel = $app->make(Illuminate\Contracts\Http\Kernel::class);

$response = $kernel->handle(

 $request = Illuminate\Http\Request::capture()

);

$response->send();

$kernel->terminate($request, $response);

server
<?php

/** Laravel - A PHP Framework for Web Artisans

 * @package Laravel

 */

$uri = urldecode(

 parse_url($_SERVER['REQUEST_URI'], PHP_URL_PATH)

Page 302 of 327

);

// This file allows us to emulate Apache's "mod_rewrite" functionality from

// built-in PHP web server. This provides a convenient way to test a

Laravel

// application without having installed a "real" web server software here.

if ($uri !== '/' && file_exists(__DIR__.'/public'.$uri)) {

 return false;

}

require_once __DIR__.'/public/index.php';

API

API - User
<?php

use Illuminate\Http\Request;

/*

|--

| API Routes

|--

| Here is where you can register API routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| is assigned the "api" middleware group. Enjoy building your API!

*/

Route::group(['middleware'=>\App\Http\Middleware\Authenticated::class],func

tion (){

 Route::get('dashboard-text','HomeController@getDashboardContent');

});

Route::group(['prefix'=>'auth'],function (){

 Route::post('login','AuthController@login');

 Route::post('register','AuthController@register');

 Route::post('send-forgot-password-

email','AuthController@sendResetPasswordEmail');

 Route::post('reset-password','AuthController@resetPassword');

Route::group(['middleware'=>\App\Http\Middleware\Authenticated::class],func

tion (){

 Route::get('logout','AuthController@logout');

 });

});

require_once __DIR__.'/api/user.php';

require_once __DIR__.'/api/manager.php';

require_once __DIR__.'/api/employee.php';

require_once __DIR__.'/api/admin.php';

API - application
<?php

/*

|--

| API Routes

|--

| Here is where you can register API routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| is assigned the "api" middleware group. Enjoy building your API!

*/

require_once __DIR__.'/api/admin.php';

require_once __DIR__.'/api/requirement.php';

require_once __DIR__.'/api/testing-tool.php';

require_once __DIR__.'/api/notification.php';

Route::group(['middleware'=>\StanleyMSACommon\MSACommon\Http\Middleware\Aut

hentication::class],function (){

 Route::get('/','ProjectController@getIndex');

Page 303 of 327

 Route::group(['prefix'=>'{projectId}'],function (){

 Route::get('','ProjectController@get');

 Route::get('complete','ProjectController@completeProject');

 Route::post('update','ProjectController@updateProject');

 Route::get('logs','ProjectController@getProjectLogs');

 Route::group(['prefix'=>'qa'],function (){

 Route::get('','ProjectQAController@index');

 Route::post('','ProjectQAController@submitProjectQAReport');

 Route::get('{qaId}','ProjectQAController@getProjectQaById');

 });

 Route::group(['prefix'=>'tasks'],function (){

 Route::get('/','TaskController@getProjectTasksList');

 Route::post('/','TaskController@create');

 Route::get('{taskId}','TaskController@getProjectTaskDetails');

 Route::get('{taskId}/complete','TaskController@completeTask');

 });

 });

});

requirement
<?php

Route::group(['middleware'=>\StanleyMSACommon\MSACommon\Http\Middleware\Aut

hentication::class,'prefix'=>'requirement'],function (){

 Route::get('/','RequirementController@index');

 Route::post('/','RequirementController@create');

 Route::get('{projectId}','RequirementController@get');

 Route::get('{projectId}/delete','RequirementController@delete');

});

Testing-tool
<?php

Route::group(['prefix' => 'testing-

tool','middleware'=>\StanleyMSACommon\MSACommon\Http\Middleware\Authenticat

ion::class], function () {

 Route::get('/','TestingToolController@getIndex');

});

<?php

Route::group(['prefix' => 'testing-tool'], function () {

 Route::post('/','Admin\TestingToolController@create');

 Route::get('/testing-tools-

count','Admin\TestingToolController@getTestingToolsCount');

});

admin
<?php

Route::group(['prefix' =>

'admin','middleware'=>[\App\Http\Middleware\Authenticated::class,\App\Http\

Middleware\AdminAuthenticated::class]],function (){

 Route::post('dashboard-text','AdminController@updateDashboardContent');

 require_once __DIR__.'/admin/user.php';

 require_once __DIR__.'/admin/backup.php';

});

manager
<?php

Route::group(['middleware'=>\App\Http\Middleware\Authenticated::class,'pref

ix' => 'manager'],function (){

Page 304 of 327

 Route::get('/','ManagerController@index');

});

user
<?php

Route::group(['middleware'=>\App\Http\Middleware\Authenticated::class,'pref

ix' => 'user'],function (){

 Route::get('/','UserController@getUser');

 Route::get('{id}','UserController@getUserById');

 Route::get('admin-users-list','UserController@adminUsersList');

});

employee
<?php

Route::group(['middleware'=>\App\Http\Middleware\Authenticated::class,'pref

ix' => 'employee'],function (){

 Route::get('/','EmployeeController@index');

});

backup
<?php

Route::group(['prefix' =>

'backup','middleware'=>\App\Http\Middleware\AdminAuthenticated::class],func

tion (){

 Route::get('create-database-dump-

file','Admin\BackupController@createDatabaseDump');

 Route::get('download-backup-

file','Admin\BackupController@downloadBackupFile');

});

notification
<?php

Route::group(['prefix' =>

'notification','middleware'=>\StanleyMSACommon\MSACommon\Http\Middleware\Au

thentication::class], function () {

 Route::get('/','ProjectNotificationController@index');

Route::get('{notificationId}/read','ProjectNotificationController@markAsRea

d');

});

Broadcast
<?php

/*

|--

| Broadcast Channels

|--

| Here you may register all of the event broadcasting channels that your

| application supports. The given channel authorization callbacks are

| used to check if an authenticated user can listen to the channel.

*/

Broadcast::channel('App.User.{id}', function ($user, $id) {

 return (int) $user->id === (int) $id;

});

Page 305 of 327

Console
<?php

use Illuminate\Foundation\Inspiring;

/*

|--

| Console Routes

|--

| This file is where you may define all of your Closure based console

| commands. Each Closure is bound to a command instance allowing a

| simple approach to interacting with each command's IO methods.

*/

Artisan::command('inspire', function () {

 $this->comment(Inspiring::quote());

})->describe('Display an inspiring quote');

Web
<?php

/*

|--

| Web Routes

|--

| Here is where you can register web routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| contains the "web" middleware group. Now create something great!

|

*/

Route::get('/', function () {

 return view('welcome');

});

Database

DatabaseSeeder
<?php

use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder

{

 /** Run the database seeds.

 * @return void

 */

 public function run()

 {

 // $this->call(UsersTableSeeder::class);

 }

}

UserFactory
<?php

use Faker\Generator as Faker;

/*

|--

| Model Factories

|--

| This directory should contain each of the model factory definitions for

| your application. Factories provide a convenient way to generate new

| model instances for testing / seeding your application's database.

*/

$factory->define(App\User::class, function (Faker $faker) {

 return [

Page 306 of 327

 'name' => $faker->name,

 'email' => $faker->unique()->safeEmail,

 'password' =>

'$2y$10$TKh8H1.PfQx37YgCzwiKb.KjNyWgaHb9cbcoQgdIVFlYg7B77UdFm', // secret

 'remember_token' => str_random(10),

];

});

Tests

CreatesApplication
<?php

namespace Tests;

use Illuminate\Support\Facades\Hash;

use Illuminate\Contracts\Console\Kernel;

trait CreatesApplication

{

 /** Creates the application.

 * @return \Illuminate\Foundation\Application

 */

 public function createApplication()

 {

 $app = require __DIR__.'/../bootstrap/app.php';

 $app->make(Kernel::class)->bootstrap();

 Hash::setRounds(4);

 return $app;

 }

}

TestCase
<?php

namespace Tests;

use Illuminate\Foundation\Testing\TestCase as BaseTestCase;

abstract class TestCase extends BaseTestCase

{

 use CreatesApplication;

}

ExampleTest (UnitTest)
<?php

namespace Tests\Unit;

use Tests\TestCase;

use Illuminate\Foundation\Testing\RefreshDatabase;

class ExampleTest extends TestCase

{

 /** A basic test example.

 * @return void

 */

 public function testBasicTest()

 {

 $this->assertTrue(true);

 }

}

ExampleTest (FeatureTest)
<?php

namespace Tests\Feature;

use Tests\TestCase;

use Illuminate\Foundation\Testing\RefreshDatabase;

Page 307 of 327

class ExampleTest extends TestCase

{

 /** A basic test example.

 * @return void

 */

 public function testBasicTest()

 {

 $response = $this->get('/');

 $response->assertStatus(200);

 }

}

C. POC IMPLEMENTATION OF FUNCTIONALITY

Application – Home (Index)

Page 308 of 327

Registration

Reset Password

Page 309 of 327

Admin profile

Admin Profile - Dashboard

Page 310 of 327

Admin Profile – Projects

Admin Profile – Pending Projects

Page 311 of 327

Admin Profile – Requirements

Admin Profile – Submit Requirements

Page 312 of 327

Admin Profile - Active Users

Admin Profile - Pending Users

Page 313 of 327

Admin Profile – Testing Tools

Admin Profile – Add Testing Tools

Page 314 of 327

Project Manager Profile

Project Manager Profile - Projects

Page 315 of 327

Project Manager Profile - Project details

Some metrics from testing activity for Test scenario

Page 316 of 327

Source code for API call

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Stanley POC</title>
 <meta content="Admin Dashboard" name="description" />
 <meta content="Themesbrand" name="author" />
 <link rel="shortcut icon" href="assets/images/favicon.ico">
 <!-- App favicon -->
 <link rel="shortcut icon" href="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/images/favicon.ico">
 <!-- App css -->
 <link href="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/css/bootstrap.min.css" rel="stylesheet" type="text/css" />
 <link href="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/css/metismenu.min.css" rel="stylesheet" type="text/css">

Page 317 of 327

 <link href="http://ec2-54-163-193-16.compute-1.amazonaws.com/front/public/assets/css/icons.css"
rel="stylesheet" type="text/css" />
 <link href="http://ec2-54-163-193-16.compute-1.amazonaws.com/front/public/assets/css/style.css"
rel="stylesheet" type="text/css" />
 </head>
 <body class="pb-0">
 <div class="home-btn d-none d-sm-block">

 <i class="fas fa-home h2"></i>

 </div>
 <div class="wrapper-page">
 <div class="card overflow-hidden account-card mx-3">
 <div class="bg-primary p-4 text-white text-center position-relative">
 <h4 class="font-20 m-b-5">Welcome Back !</h4>
 <p class="text-white-50 mb-4">Sign in to continue to Stanley POC.</p>

 <img src="http://ec2-54-163-193-16.compute-1.amazonaws.com/front/public/assets/images/logo-
sm.png"
 height="24" alt="logo">

 </div>
 <div class="account-card-content">
 <form class="form-horizontal m-t-30" method="post">
 <input type="hidden" name="_token" value="kVOUp4aoLrdSqgQcdJAeXDqgtPwRQ1TbIDNhfXJ7">
 <div class="form-group">
 <label for="email">Email</label>
 <input type="email" class="form-control" id="email" placeholder="Enter username"
name="email"
 value="">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password" name="password"
 placeholder="Enter password">
 </div>
 <div class="form-group row m-t-20">
 <div class="col-sm-6">
 <a href="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/password/reset">
 <i class="mdi mdi-lock"></i> Forgot your
 password?

 </div>
 <div class="col-sm-6 text-right">
 <button class="btn btn-primary w-md waves-effect waves-light" type="submit">Log
In</button>
 </div>
 </div>
 </form>
 </div>
 </div>
 <div class="m-t-40 text-center">
 <p>Don't have an account ?
 <a href="http://ec2-54-163-193-16.compute-1.amazonaws.com/front/public/auth/register"
class="font-500 text-primary"> Signup
 now

Page 318 of 327

 </p>
 </div>
 </div>
 <!-- end wrapper-page -->
 <!-- App's Basic Js -->
 <script src="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/js/jquery.min.js"></script>
 <script src="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/js/bootstrap.bundle.min.js"></script>
 <script src="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/js/metisMenu.min.js"></script>
 <script src="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/js/jquery.slimscroll.js"></script>
 <script src="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/js/waves.min.js"></script>
 <!-- App js-->
 <script src="http://ec2-54-163-193-16.compute-
1.amazonaws.com/front/public/assets/js/app.js"></script>
 </body>
</html>

#YAML source script for test scenario (Plugin tool used – Blazemeter)

modules:
 nose:
 ignore-unknown-actions: true
execution:
 - executor: selenium
 scenario: 1 Check Login functionality-Selenium
 blazegrid: true
 iterations: 1
 capabilities:
 browserName: chrome
 locations:
 harbor-5ab3c64ec8589f914c7b25db: 1
 harbor-5d25f94f9950ce73cd105f53: 1
 harbor-5d25f95f206f10730f21f1b4: 1
scenarios:
 1 Check Login functionality-Selenium:
 generate-flow-markers: true
 headless: false
 timeout: 60s
 think-time: 0s
 requests:
 - label: Test
 actions:
 - 'resizeWindow(1366,625)'
 - 'go(chrome://newtab/)'
 - go(http://ec2-54-163-193-16.compute-1.amazonaws.com/front/public/auth/login)
 - label: Enter valid email
 actions:
 - clickByID(email)
 - typeByID(email): ADMIN@ADMIN.COM
 - clickByCSS(body.pb-0)
 - label: Enter valid password
 actions:
 - clickByID(password)
 - typeByID(password): '123123'

Page 319 of 327

 - clickByCSS(body.pb-0)
 - label: Authenticate by clicking Login
 actions:
 - clickByCSS(button.btn.btn-primary.w-md.waves-effect.waves-light)
 - clickByLinkText(Admin Admin)
 - clickByLinkText(Logout)
 - label: Enter invalid email
 actions:
 - clickByID(email)
 - typeByID(email): admin@staff.com
 - label: Enter valid password
 actions:
 - clickByID(password)
 - typeByID(password): '123123'
 - label: Authenticate by clicking Login
 actions:
 - clickByCSS(button.btn.btn-primary.w-md.waves-effect.waves-light)
 - label: Enter valid email
 actions:
 - clickByID(email)
 - typeByID(email): ADMIN@ADMIN.COM
 - label: Enter invalid password
 actions:
 - clickByID(password)
 - typeByID(password): test123
 - label: Authenticate by clicking Login
 actions:
 - clickByCSS(button.btn.btn-primary.w-md.waves-effect.waves-light)
 - label: Enter invalid email
 actions:
 - clickByCSS(body.pb-0)
 - typeByID(email): janedoe@sky.com
 - label: Enter invalid password
 actions:
 - clickByID(password)
 - typeByID(password): newfiles243
 - label: Authenticate by clicking Login
 actions:
 - clickByCSS(button.btn.btn-primary.w-md.waves-effect.waves-light)
 - label: leave email field blank
 actions:
 - clickByCSS(div.account-card-content)
 - typeByID(email): ''
 - clickByCSS(body.pb-0)
 - label: Leave password field blank
 actions:
 - clickByCSS(body.pb-0)
 - label: Authenticate by clicking Login
 actions:
 - clickByCSS(button.btn.btn-primary.w-md.waves-effect.waves-light)
 - label: Check forgot password is working
 actions:
 - clickByCSS(div.col-sm-6 > a)
 - clickByID(email)
 - typeByID(email): ew009265@student.staffs.ac.uk
 - clickByCSS(button.btn.btn-primary.w-md.waves-effect.waves-light)

Page 320 of 327

Metadata for Test scenario

{
 "sessionId": "77b5d51e1fe41006a7d71754f2fcc86b",
 "browserName": "chrome",
 "rotatable": false,
 "acceptInsecureCerts": true,
 "browserConnectionEnabled": false,
 "handlesAlerts": true,
 "databaseEnabled": false,
 "unexpectedAlertBehaviour": "ignore",
 "cssSelectorsEnabled": true,
 "acceptSslCerts": true,
 "hasTouchScreen": false,
 "networkConnectionEnabled": false,
 "setWindowRect": true,
 "version": "69.0.3497.92",
 "takesHeapSnapshot": true,
 "mobileEmulationEnabled": false,
 "javascriptEnabled": true,
 "applicationCacheEnabled": false,
 "goog:chromeOptions": {
 "debuggerAddress": "localhost:43111"
 },
 "pageLoadStrategy": "normal",
 "platform": "Linux",
 "chrome": {
 "chromedriverVersion": "2.44.609551 (5d576e9a44fe4c5b6a07e568f1ebc753f1214634)",
 "userDataDir": "/tmp/.org.chromium.Chromium.YssWPI"
 },
 "webStorageEnabled": true,
 "locationContextEnabled": true,
 "takesScreenshot": true,
 "webdriver.remote.sessionid": "77b5d51e1fe41006a7d71754f2fcc86b",
 "nativeEvents": true
}

Check-Login-functionality.jmx source file

<?xml version="1.0" encoding="UTF-8"?>

<jmeterTestPlan version="1.2" properties="2.4" jmeter="4.0">

 <hashTree>

 <TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="Check Login functionality"

enabled="true">

 <stringProp name="TestPlan.comments">This test plan was created by the BlazeMeter converter v.2.3.14.

Please contact support@blazemeter.com for further support.</stringProp>

 <boolProp name="TestPlan.functional_mode">false</boolProp>

 <boolProp name="TestPlan.serialize_threadgroups">false</boolProp>

 <elementProp name="TestPlan.user_defined_variables" elementType="Arguments">

 <collectionProp name="Arguments.arguments"/>

Page 321 of 327

 </elementProp>

 <stringProp name="TestPlan.user_define_classpath"></stringProp>

 </TestPlan>

 <hashTree>

 <HeaderManager guiclass="HeaderPanel" testclass="HeaderManager" testname="HTTP Header

manager">

 <collectionProp name="HeaderManager.headers">

 <elementProp name="Accept" elementType="Header">

 <stringProp name="Header.name">Accept</stringProp>

 <stringProp

name="Header.value">text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q

=0.8,application/signed-exchange;v=b3;q=0.9</stringProp>

 </elementProp>

 <elementProp name="Upgrade-Insecure-Requests" elementType="Header">

 <stringProp name="Header.name">Upgrade-Insecure-Requests</stringProp>

 <stringProp name="Header.value">1</stringProp>

 </elementProp>

 <elementProp name="User-Agent" elementType="Header">

 <stringProp name="Header.name">User-Agent</stringProp>

 <stringProp name="Header.value">Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36</stringProp>

 </elementProp>

 <elementProp name="DNT" elementType="Header">

 <stringProp name="Header.name">DNT</stringProp>

 <stringProp name="Header.value">1</stringProp>

 </elementProp>

 </collectionProp>

 </HeaderManager>

 <hashTree/>

 <Arguments guiclass="ArgumentsPanel" testclass="Arguments" testname="User Defined Variables"

enabled="true">

 <collectionProp name="Arguments.arguments">

 <elementProp name="BASE_URL_1" elementType="Argument">

 <stringProp name="Argument.name">BASE_URL_1</stringProp>

 <stringProp name="Argument.value">ec2-54-163-193-16.compute-1.amazonaws.com</stringProp>

Page 322 of 327

 </elementProp>

 </collectionProp>

 </Arguments>

 <hashTree/>

 <ConfigTestElement guiclass="HttpDefaultsGui" testclass="ConfigTestElement" testname="HTTP Request

Defaults" enabled="true">

 <elementProp name="HTTPsampler.Arguments" elementType="Arguments">

 <collectionProp name="Arguments.arguments"/>

 </elementProp>

 <boolProp name="HTTPSampler.concurrentDwn">true</boolProp>

 <boolProp name="HTTPSampler.image_parser">true</boolProp>

 <intProp name="HTTPSampler.concurrentPool">6</intProp>

 </ConfigTestElement>

 <hashTree/>

 <DNSCacheManager guiclass="DNSCachePanel" testclass="DNSCacheManager" testname="DNS Cache

Manager" enabled="true">

 <collectionProp name="DNSCacheManager.servers"/>

 <boolProp name="DNSCacheManager.clearEachIteration">true</boolProp>

 </DNSCacheManager>

 <hashTree/>

 <AuthManager guiclass="AuthPanel" testclass="AuthManager" testname="HTTP Authorization Manager">

 <collectionProp name="AuthManager.auth_list"/>

 </AuthManager>

 <hashTree/>

 <CookieManager guiclass="CookiePanel" testclass="CookieManager" testname="HTTP Cookie Manager"

enabled="true">

 <collectionProp name="CookieManager.cookies"/>

 <boolProp name="CookieManager.clearEachIteration">true</boolProp>

 </CookieManager>

 <hashTree/>

 <CacheManager guiclass="CacheManagerGui" testclass="CacheManager" testname="HTTP Cache

Manager">

 <boolProp name="clearEachIteration">true</boolProp>

 <boolProp name="useExpires">false</boolProp>

Page 323 of 327

 </CacheManager>

 <hashTree/>

 <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="Thread Group"

enabled="true">

 <stringProp name="ThreadGroup.on_sample_error">continue</stringProp>

 <elementProp name="ThreadGroup.main_controller" elementType="LoopController">

 <boolProp name="LoopController.continue_forever">false</boolProp>

 <stringProp name="LoopController.loops">1</stringProp>

 </elementProp>

 <intProp name="ThreadGroup.num_threads">1</intProp>

 <intProp name="ThreadGroup.ramp_time">1</intProp>

 <boolProp name="ThreadGroup.scheduler">false</boolProp>

 <longProp name="ThreadGroup.duration">0</longProp>

 <longProp name="ThreadGroup.delay">0</longProp>

 </ThreadGroup>

 <hashTree>

 <TransactionController guiclass="TransactionControllerGui" testname="Test" enabled="true">

 <boolProp name="TransactionController.includeTimers">false</boolProp>

 </TransactionController>

 <hashTree>

 <HTTPSamplerProxy guiclass="HttpTestSampleGui" testclass="HTTPSamplerProxy" testname="http://ec2-

54-163-193-16.compute-1.amazonaws.com/front/public/auth/login" enabled="true">

 <elementProp name="HTTPsampler.Arguments" elementType="Arguments">

 <collectionProp name="Arguments.arguments"/>

 </elementProp>

 <boolProp name="HTTPSampler.follow_redirects">true</boolProp>

 <boolProp name="HTTPSampler.use_keepalive">true</boolProp>

 <stringProp name="HTTPSampler.protocol">http</stringProp>

 <stringProp name="HTTPSampler.domain">${BASE_URL_1}</stringProp>

 <intProp name="HTTPSampler.port">0</intProp>

 <stringProp name="HTTPSampler.path">front/public/auth/login</stringProp>

 <stringProp name="HTTPSampler.method">GET</stringProp>

 </HTTPSamplerProxy>

 <hashTree>

Page 324 of 327

 <ConstantTimer guiclass="ConstantTimerGui" testclass="ConstantTimer" testname="Constant Timer"

enabled="true">

 <stringProp name="ConstantTimer.delay">0</stringProp>

 </ConstantTimer>

 <hashTree/>

 </hashTree>

 </hashTree>

 <TransactionController guiclass="TransactionControllerGui" testname="Navigate to POC URL"

enabled="true">

 <boolProp name="TransactionController.includeTimers">false</boolProp>

 </TransactionController>

 <hashTree>

 <HTTPSamplerProxy guiclass="HttpTestSampleGui" testclass="HTTPSamplerProxy" testname="http://ec2-

54-163-193-16.compute-1.amazonaws.com/front/public/auth/login" enabled="true">

 <elementProp name="HTTPsampler.Arguments" elementType="Arguments">

 <collectionProp name="Arguments.arguments"/>

 </elementProp>

 <boolProp name="HTTPSampler.follow_redirects">true</boolProp>

 <boolProp name="HTTPSampler.use_keepalive">true</boolProp>

 <stringProp name="HTTPSampler.protocol">http</stringProp>

 <stringProp name="HTTPSampler.domain">${BASE_URL_1}</stringProp>

 <intProp name="HTTPSampler.port">0</intProp>

 <stringProp name="HTTPSampler.path">front/public/auth/login</stringProp>

 <stringProp name="HTTPSampler.method">GET</stringProp>

 </HTTPSamplerProxy>

 <hashTree>

 <ConstantTimer guiclass="ConstantTimerGui" testclass="ConstantTimer" testname="Constant Timer"

enabled="true">

 <stringProp name="ConstantTimer.delay">45017</stringProp>

 </ConstantTimer>

 <hashTree/>

 </hashTree>

 </hashTree>

 </hashTree>

Page 325 of 327

 </hashTree>

 </hashTree>

</jmeterTestPlan>

Results for test case 1

Results for test case 2

Results for test case 3

Page 326 of 327

Results for test case 4

Results for test case 5

Page 327 of 327

Results for test case 6

