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Abstract
This systematic review aimed to synthesize and summarize the use of simula-
tion of radiotherapy pathways. The objective was to establish the suitability of
those simulations in modeling the potential introduction of processes and tech-
nologies to speed up radiotherapy pathways.A systematic literature search was
carried out using PubMed and Scopus databases to evaluate the use of simula-
tion in radiotherapy pathways. Full journal articles and conference proceedings
were considered,and the search was limited to the English language only.To be
eligible for inclusion, articles had to model multiple sequential processes in the
radiotherapy pathway concurrently to demonstrate the suitability of simulation
modeling in typical pathways. Papers solely modeling scheduling, capacity, or
queuing strategies were excluded. In total, 151 potential studies were identified
and screened to find 18 relevant studies in October 2022. Studies showed that
various pathways could be modeled, including the entire pathway from referral
to end of treatment or the constituent phases such as pre-treatment, treat-
ment, or other subcomponents. The data required to generate models varied
from study to study, but at least 3 months of data were needed. This review
demonstrates that modeling and simulation of radiotherapy pathways are fea-
sible and that model output matches real-world systems. Validated models
give researchers confidence to modify models with potential workflow enhance-
ments to assess their potential effect on real-world systems. It is recommended
that researchers follow best practice guidelines when building models to ensure
that they are fit for purpose and to enable decision makers to have confidence
in their results.
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1 BACKGROUND

Radiotherapy is the treatment of disease using ioniz-
ing radiation. In the UK, approximately 20% of patients
diagnosed with cancer will receive radiotherapy as
part of their treatment.1 Optimal utilization of radio-
therapy varies by cancer type, but it is estimated to
be at least 40% and potentially over 50%.2,3 Some of
this under-utilization may be attributed to a perception
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the original work is properly cited.
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that radiotherapy is not a modern cancer treatment,4

fears from media coverage of overexposures, and other
misperceptions.5 By 2025 there would need to be
around 211,000 courses of radiotherapy in the UK
annually to reach optimal utilization.3

In the UK, the NHS constitution outlines operational
standards for diagnosing and treating cancers following
a referral for suspected cancer. These are expressed as
percentages of patients that start treatment within 31
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days from the decision to treat (DTT) or earliest clini-
cally appropriate date (ECAD) of second or subsequent
treatments and percentages of patients receiving first
treatment within 62 days following an urgent referral for
suspected cancer from a GP or NHS Cancer Screening
Program.

Whilst compliance with national targets is highly desir-
able, the underlying reasons for complying with or
performing better than these targets can have many
facets. The time taken from DTT to treatment has
been reviewed in the literature,6–8 suggesting poorer
outcomes with the increased time between DTT and
treatment.7 Meta-analyses have shown a significant link
between delay and the risk of local occurrence in head,
neck, and breast cancer9; the authors of this study
suggest that until further studies have been performed
that it is assumed that a similar relationship would be
observed for all cancer types. A more recent analy-
sis by Hanna et al. across different clinical indications
showed that for a 4-week delay in cancer treatment,
there is an increase in mortality of approximately 10%.10

Increasing the time between DTT and treatment may
allow the spread of cancer beyond the original treat-
ment volume (i.e., metastasise). However, it is difficult
to model and quantify the increased risk of metastatic
disease as a function of the time between DTT and
treatment6 at both the patient and population levels.
In addition to the potential clinical benefits of short
waiting times (i.e., the patient’s perceived waiting time
from DTT to treatment), short waiting times for diag-
nosis and treatment are important to patients,11 with
extended times potentially contributing to anxiety.Health
systems are increasingly using quality indicators in radi-
ation oncology, with waiting times being one of them,
so waiting times should be as short as is reasonably
achievable.12,13

In the wake of the COVID-19 pandemic, the UK’s
National Health Service (NHS) is under increased pres-
sure due to cancer patients delaying their diagnosis and
treatment during the various national lockdowns and
restrictions. An estimated 40,000 fewer cases of cancer
than anticipated were diagnosed in 2020,14 and esti-
mates of years of life lost have been predicted to be
in the order of 60,000 for patients with delayed diagno-
sis and treatment due to 12 months’ worth of physical
distancing measures since March 2020.15 In the UK,
radiotherapy fractions delivered have decreased by
11.4% compared to 2017,16 mainly due to the increased
use of hypofractionation and a shift towards earlier diag-
nosis.A nationwide reduction in the number of treatment
fractions would only directly ease issues associated with
treatment machine capacity; radiotherapy instances still
contribute to pre-treatment resource utilization (such as
CT imaging, clinical oncologist target definition, radio-
therapy planning, etc.), even if the required treatment
machine capacity has been reduced.

The radiotherapy pre-treatment pathway from DTT to
the patient starting treatment consists of many discrete
tasks performed by multiple staff groups. Generally,
each task depends on its predecessor and cannot be
completed in parallel. These tasks include but are not
limited to initial consultation and DTT, performing a
CT scan and other secondary imaging that is used
to identify what to treat and organs at risk (OARs),
radiotherapy plan generation, plan authorization, plan
checking, pre-treatment patient specific quality control,
and other pre-treatment checks.

As with many scenarios in healthcare, waiting times
can generally be reduced in two ways: either by utilizing
additional resources (e.g.,staff) or process changes that
utilize better use of existing resources.17 Work has been
performed on the capacity of departments to receive
referrals and treatment machine capacity.18,19 However,
increasing treatment machine capacity (such as extend-
ing the operational time of linear accelerators) may not
necessarily improve throughput time if there is a rate-
limiting step earlier in the process (such as treatment
planning).

As such, and with the increasing financial strain on
public health systems, any aid to improving capacity
through the efficiency of radiotherapy treatment path-
ways should be explored.It was previously identified that
operational research (OR) could be used for resource
planning in radiotherapy in the following ways20:

∙ Patient scheduling: To maximize efficiencies through
existing pathways through scheduling decisions.

∙ Strategic decision making: Exploring best practices to
enhance the long-term operation of a radiotherapy
center.

∙ Resource capacity planning: Exploring ways to utilize
existing resources.

∙ Patient prioritization: Optimizing access to patient
groups whose disease benefits most from shorter
access times.

It was also found that computer simulations (including
Discrete Event Simulations [DES]) were the predom-
inant methodology for strategic managerial decision-
making.20 Once a model of a system is built,a simulation
can be run and compared against key performance
indicators (KPIs) of a real system. If the model and
real-world KPIs are the same, decision-makers can
be confident that perturbations to the system can be
accurately modeled. This allows so-called “what-if ” sce-
narios to be performed in the model to find potential
improvements in the real-world system.

This review aimed to synthesize and summarize the
use of computer simulation of radiotherapy pathways.
The objective was to assess the suitability of simulation
for determining the potential introduction of workflow
enhancements to the radiotherapy pathway.
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F IGURE 1 PRISMA flowchart.

2 METHODS

2.1 Search strategy

A systematic review followed the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines.21 Searches were carried out
using PubMed and Scopus databases. Full journal
articles and the conference proceedings were con-
sidered; additional grey literature was not included
as it does not necessarily meet the quality of peer-
reviewed literature.22 The search was limited to English,
and no geographical restrictions were applied. The
search was made on 23 October 2022. No limit was
placed on the publication date. Manual searches of
reference lists were also performed.Full search method-
ology, including database-specific search terms and a
PRISMA checklist, are available on reasonable request.
Database-appropriate search strategies were devel-
oped around radiotherapy, pathways, and simulation.
The search criteria used for PubMed were as follows:

(“radiotherapy” OR “radiation oncology”) AND (“wait-
ing list”OR “waiting time”OR “throughput”OR “resource
planning”) AND (“simulation” OR “DES” OR “modelling”)

2.2 Eligibility criteria

To be eligible for inclusion, the articles had to model mul-
tiple sequential processes in the radiotherapy pathway

concurrently to demonstrate the suitability of simulation
modeling in typical pathway processes. Articles will be
included regardless of which aspect of the radiotherapy
pathway they model.Papers solely modeling scheduling,
capacity, or queuing strategies were excluded.

2.3 Study selection and quality

Duplicate studies were removed, and the titles of the
remaining articles were assessed for eligibility. Two
authors independently screened the abstracts of all
studies from the initial search to select articles for data
extraction based on inclusion criteria. The quality of
studies was assessed by two authors using the reporting
checklist developed by Zhang et al.23 Any differences
were discussed between the two authors to agree on a
consensus.

Using the Zhang et al. reporting checklist, items
were scored as being present or not and expressed
as a percentage for each of the four categories
(model conceptualization, parameterization and uncer-
tainty assessment, validation, and generalizability and
stakeholder involvement) and as a total over the four cat-
egories to generate an overall study quality percentage.
Due to the binary nature of the scoring, study qual-
ity was not used to exclude papers but to indicate an
individual paper’s compliance with modeling best prac-
tices. Figure 1 shows a PRISMA flow diagram and the
identification and screening performed.
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TABLE 1 Summary of software used to simulate and pathways
modeled.

Characteristic
All studies
(N = 18)

Software used

Arena 4 (22.2 %)

Simul8 3 (16.7 %)

Bespoke/open source 3 (16.7 %)

Other commercial 2 (11.1 %)

FlexSim 2 (11.1 %)

Stella architect 2 (11.1 %)

Spreadsheet 2 (11.1 %)

Pathway

Full 7 (38.8 %)

Pre-treatment 5 (27.8 %)

Treatment 5 (27.8 %)

Partial pre-treatment 1 (5.6 %)

3 RESULTS

3.1 Study selection and quality

A PubMed and Scopus databases search yielded 151
articles, and 23 were identified after initial screen-
ing. After reference checking, which identified six more
studies, and further screening, 18 articles met the eli-
gibility criteria for this systematic review. The study
characteristics are shown in Table 1, an assessment
of the percentage of studies that addressed specific
questions from the Zhang et al. reporting checklist is
shown in Table 2, and the details of studies included
in this systematic review are shown in Table 3. The
average study quality was 63.6% (SD 14.1%). This
compares well with Zhang et al., who, over 211 DES
simulation studies, found the average rate to be 63.7%
(SD 11.0%).

Across all the studies identified in this review, model
conceptualization scored well, with the lowest scoring
question being whether the model’s time horizon is
described (77.8% of studies described this). Valida-
tion was the weakest area, with no studies performing
true cross-validation and only one (5.6%) perform-
ing external validation. Table two breaks down the
overall score for each question across all the studies
identified.

3.2 Publication data

The first paper identified in this review to model radio-
therapy pathways using simulation was published in
1994.24 The first study to use commercial software was
performed in 2007. Since then, 81% of all simulation

TABLE 2 Percentage of studies that addressed the quality tools’
questions.

Model conceptualization %

1. Is the focused health-related decision problem clarified? 100.0

2. Is the modeled healthcare setting/health condition
clarified?

100.0

3. Is the model structure described? 88.9

4. Is the time horizon given? 77.8

5. Are all simulated strategies/scenarios specified? 94.4

6. Is the target population described? 94.4

Parameterization and uncertainty assessment

7. Are data sources informing parameter estimations
provided?

88.9

8. Are the parameters used to populate model frameworks
specified?

66.7

9. Are model uncertainties discussed? 50.0

10. Are sensitivity analyses performed and reported? 33.3

Validation

11. Is face validity evaluated and reported? 66.7

12. Is cross validation performed and reported 0.0

13. Is external validation performed and reported? 5.6

14. Is predictive validation performed or attempted? 66.7

Generalizability and stakeholder involvement

15. Is the model generalizability issue discussed? 44.4

16. Are decision makers or other stakeholders involved in
modeling?

66.7

17. Is the source of funding stated? 38.9

18. Are model limitations discussed? 61.1

studies have used commercial software to perform
simulations on radiotherapy pathways.

Most of the research into simulating radiotherapy
pathways has been performed in the last 10 years
(∼67%). This is probably due to the availability of
commercial systems to perform DES to perform sim-
ulations, enabling a broader base of users to perform
simulations.

3.3 Pathways simulated

The following pathways were identified:

∙ Entire pathway:The pathway from seeing a Radiother-
apist/Clinical Oncologist to the end of treatment

∙ Pre-treatment: The pathway from seeing Radiothera-
pist/Clinical Oncologist to starting treatment

∙ Partial pre-treatment: The pathway from a point in the
pre-treatment pathway to the beginning treatment

∙ Treatment workflow: The pathway from a patient
entering the department through to the completion of
a treatment fraction
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Table 1 shows the split of software used to simulate
and the pathways modeled from the studies identi-
fied. There has been a roughly even split between
pre-treatment and treatment pathway simulations, with
pre-treatment and treatment pathways being subsets of
the full pathway, which has been the subject of most
research.

3.4 Data sources

Oncology Information Systems (OIS) such as Aria and
Mosaiq were typically used to acquire the data required
to build/verify/validate simulation models. Typical input
data needed to be included:

∙ Cancer category
∙ Treatment technique
∙ Dates pathway components were completed

As well as quantitative data from the treatment
pathway, qualitative and semi-quantitative data in staff
survey data and interview feedback may have been
used. Data describing the arrival process, task times,
percentage of re-work (e.g., replans), and resource
availability could also be included.17

3.5 Motivation for simulation

Although the specifics varied, almost all of the reasons
for simulating pathways were to perform sensitivity anal-
ysis (e.g., how the system reacts to perturbations) or
scenario analysis (e.g., changes to pathways or work-
flows). The following generic changes to the pathways
were modeled:

∙ Increase/decrease in referrals
∙ Increase/decrease in staff resource
∙ Increase/decrease in equipment resource
∙ Increase/decrease in efficiency
∙ Changes to schedules
∙ Machine breakdown
∙ Severe staffing changes

Regarding output from the simulations, average wait-
ing time was a standard metric and the percentage of
patients moving through the pathway in a certain period.
The utilization of pathway resources was also a feature
of some studies.

4 DISCUSSION

This review has identified vital literature for simulating
radiotherapy patient pathways. Key themes are dis-
cussed below: pathway philosophy, simulation construc-

tion, model validation, situations modeled, limitations,
and implications for future research.

4.1 Pathway philosophy

There are several overarching strategies for schedul-
ing patients, which determine how the pathways are
modeled. A pull strategy (also known as a Kanban sys-
tem) is where the patient’s first treatment appointment
is scheduled at the beginning of the pathway (typi-
cally after their first consultation),31 which affords some
certainty to the patient about when their treatment will
commence. A push strategy is when the patient’s first
fraction is scheduled after some pre-treatment activi-
ties have been completed. As identified by Vieira et al.,
where a push strategy is utilized, this can reduce the
number of appointments rebooked (e.g., if a task takes
longer than expected),35 but this may be at the expense
of certainty for all parties. Crop et al. simulated a “con-
stant work in progress”system,where new work can only
enter the pathway when other work exits the system, the
idea being to keep the workload constant (i.e. removing
peaks and troughs).31 This pathway method increased
the number of treatments per day but did not shorten
the pathway length.

Radiotherapy departments often use ICD-10 coding
to classify cancer diagnosis.41 For each classification
used in radiotherapy, there will be at least one radiother-
apy pathway.Still, there are likely to be multiple pathways
for each ICD-10 diagnosis that consider clinical stag-
ing and other patient-dependent factors. This can lead
to each department having tens, if not hundreds, of
pathways.Rather than building every radiotherapy path-
way into their simulation, Lindberg et al. performed
some novel analysis using the Pareto principle42 and
grouped pathways by the similarity of resources.37 They
reduced the number of pathways from 128 to 14/8/21
groups for curative/palliative/no treatment intent using
the Pareto method and 7−40/4-36/7-82 groups using
the grouping strategy, depending on the correlation cut-
off. This demonstrates that simulation performance is
not adversely affected by appropriate simplification.The
number of pathways was also highlighted by Werker
et al., with there being 52 in their study.17 It is worth not-
ing that in 2009 when this work was published,the use of
IMRT and VMAT techniques for conventional or stereo-
tactic radiotherapy was likely to be less prevalent than
today, and that pathway complexity may have increased
since then.

One study that had a modest number of pathways
was that of Huang et al,40 where they modeled 17 path-
ways, with the four most common pathways being brain
CNS, head and neck, prostate, and breast (50 out of 92
cases per day), and 80% of their patients coming from
7 of their 17 (41%) pathways.40
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4.2 Simulation construction

Approximately two-thirds of the studies used commer-
cial modeling software to perform their simulations. This
is unsurprising, as scheduling the radiotherapy process
is a complex problem.43 This may be because devel-
oping in-house simulations can be time-consuming and
require specialist knowledge that may only be available
in some facilities and was explicitly acknowledged by
Werker et al.17

The commercial systems identified in this review were:
Arena, FlexSim, Medmodel, Simul8, Stella Architect, and
Tecnomatix. A commercial system has the advantages
of manufacturer user support, resources to support
inexperienced modelers and a user base that enables
collaboration.

The data generated varied from study to study; not all
studies reported the number of patients’ records used to
create or validate their models. Some studies used less
than a year’s worth of data. Whilst this might equate to
many patients in a large center, some referral patterns
might not be captured. The minimum number reported
was 233 patients.39

In the UK, the modal birth date is the 26th Septem-
ber,corresponding to a peak in an above-average period
of births of approximately 6 weeks (i.e., between the
end of August to mid-October).44 If national cancer
screening programs are synchronized with birth dates,
and these screening programs translate into cancers
and radiotherapy referrals, this would require a whole
year’s worth of data to build a model to minimize the
chance of artificial homogeneity being introduced.Addi-
tionally, if any process changes are introduced into a
pathway during a data collection period, this could intro-
duce undesirable heterogeneities into a model. When
looking at seasonal trends, Werker et al. found no
significant trends once weekends and holidays were
removed.17

Some studies included breakdown times.26 Break-
downs are inevitable when using complex machinery,
and modeling the effect of these on radiotherapy deliv-
ery may help develop strategies to minimize disruption.

How patients arrive in the simulations varied slightly
from study to study. Proctor et al. had patients arrive in
one batch at the beginning of the day, with character-
istics such as diagnosis being assigned from probability
distributions.26 They also utilized a feature of the Simul8
software called “travel time”, which they shortened for
urgent cases going through the system. They also
assigned priorities for queuing, ranked on the system’s
characteristics.

Input data for models varied on what aspect of the
pathway was being modeled.Still, they tended to include
arrival process, tasks times, percentage of rework (if
applicable) and resource availability, as identified by
Werker et al.17 They also highlighted that historical data

collected from the center’s information systems typically
incorporate task time with waiting time in one measure.
To overcome this, they included the results from a staff
survey to estimate the time taken on tasks. This led to
the input to the model assigning tasks times randomly
based on uniform distributions.

One factor that models need to incorporate potentially
is the skill mix of treatment planning staff; for example,
less experienced staff might only be able to work on
more straightforward tasks, whereas more experienced
staff can perform simple and complex tasks. Werker
et al. attributed four staff skill levels. In the UK, as an
approximation, this could be translated into pay bands
(e.g., 4−7) to account for increased responsibility with
more senior staff.

Oncologist availability for their associated tasks will
have different complexities. Oncologists in the UK gen-
erally treat one or two cancer types,but not all their work
time will be dedicated to radiotherapy pathway tasks
(such as contouring). In the studies identified, Oncolo-
gists are typically modeled in shifts associated with their
availability for radiotherapy tasks.17

One staff group’s availability that may have changed
since earlier literature is that of the Medical Physicist.
As identified by Werker et al., like Oncologists, Medical
Physicists have other responsibilities (i.e. only a pro-
portion of their time is spent on radiotherapy pathway
tasks).17 Within a Medical Physicist team,some Medical
Physicists may devote more time to treatment pathway
tasks than others, but this can be modeled by utilizing
simulation software shifts and availability patterns.

4.3 Validation of models

Face validation was performed in 66.7% of studies.
When models were validated, validation methods were
broadly similar. A model was created after a run-up
period, its output was run over some time interval (typ-
ically 3−6 months), and its output was compared to
the real-world system. A comparison could have been
any KPIs of the real-world system (e.g. time between
different points in the pathway).

As highlighted by Werker et al., once a simulation
model has been validated,decision-makers can perform
“what if ” analyses to examine how their process might
react to changes that may be undesirable to perform.17

Their validation approach was calculating the average
time to create a plan; their model predicted 5.71 days
compared to a real-world 5.67 days.They also looked at
the average time for specific plan types, noticing differ-
ences of up to 5% between the model and the real world
for brain radiotherapy plans.

Vieira et al.’s. model validation compared very favor-
ably to the real system, finding that model versus real
system (with 95% confidence interval) waiting time in
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days was 7.8 (7.5–8.1) versus 7.9 overall, 5.6 (5.4–5.9)
versus 5.9 for pull strategies, and 9.7 (9.4–10) versus
9.7 for push strategies.35

Babashov et al.’s model validation also demonstrated
that their initial model showed similar performance to
the real-world system, finding that model (with 95%
confidence interval) versus real system mean wait-
ing time was 10.83 (10.61–11.05) versus 10.82.33

Patients meeting the 14-day waiting time threshold was
82.25% versus 83.59%. The 90th percentile days were
19.87 versus 21. Their warm-up analysis indicated that
the system reached a steady state after 208 days.This is
interesting because other studies had varying warm-up
times.For example,Werker et al. used a warm-up period
of five days followed by a run length of 100 days 17,and
Proctor et al. had a two-week warm-up.26

Werker et al.’s approach to validation was to build
simple versions in small steps, adding to the model as
individual pieces were validated.17

To determine variability, models were run multiple
times. Proctor et al. ran their model five times, with each
run lasting 13-weeks (only analyzing weeks 3−10 due to
warm-up). Werker et al. utilized 30 replications.17 Huang
et al. ran 300 simulations for each scenario, although
they did not explain their reasoning for doing so.40

Warm-up periods are desirable in simulations to allow
a steady state to be reached before starting statistical
counters.45

Miranda et al. calculated the number of replications
required for their model using a method by Law et al.,45

requiring 10 for their “exit time of the last patient” (ET)
metric and 24 for their “process delay” (PD) metric. In
terms of model performance, they found their model
generated an ET of 871.55 min versus 869.42 min in the
real system, and for their PD metric, 11.47 min for their
model and 12.77 min in the real system. No statistically
significant difference was found between the results.

4.4 Situations modeled

As identified by Vieira et al., discrete event simulation is
a powerful tool to model interventions to improve work-
flows in radiotherapy.35 A typical scenario modeled is
the introduction of perturbations to the pathway, such
as a sudden increase in referrals or unavailability of
resources (physical or personnel). In addition to the
effects of perturbations on the system regarding wait-
ing times, some studies also built financial analysis in
their models. This allowed trade-offs to be evaluated,
such as increased staff costs versus increased income
(due to more patients being treated) and whether treat-
ing patient types that attract higher revenue (versus an
increase in complexity) is worthwhile.

Werker et al. define sensitivity analysis as “varying
an input and measuring the extent to which the model
outputs are affected”, and the purpose is to “deter-

mine for which inputs it is critical to be confident in the
accuracy”.17 They found that increasing task time has an
enormous effect and increases the number of arrivals.
They also found that increasing or decreasing oncologist
productivity had little effect. They make the distinction
between sensitivity analysis and “what-if ” scenarios in
that they model “…what would happen to the system if
different types of changes were made.”, but stress that
results from “what-if ” scenarios should not be taken as
fact, but that they may identify scenarios that may be
promising to investigate further.One of the main conclu-
sions from their study was that delays associated with
oncologists’ tasks were the main impediment to faster
planning times.

Lindberg et al. followed up their initial study by mod-
eling different policies to accommodate an interesting
facet of Swedish law: employees have a legal right
to four successive weeks’ vacation between June and
August.37,38 They noted, without simulation, that since
this occurrence only happens once a year, it might take
many years of trial and error to find an optimal strategy
to accommodate patients over this period.

Babashov et al.’s modeling showed that their system
was susceptible to several scenarios.33 One was a staff
group with one fewer member (physicist), and the other
had a 15% increase in arrivals. The positive change that
had the most effect was adding one more dosimetrist to
the team (with less than one day’s reduction in average
waiting time).

Whilst models can identify potential efficiencies, cen-
ters must be mindful of the increasing complexity of
techniques which can increase the time taken to per-
form processes, as sometimes the impact of additional
complexity can be neglected from the scheduled time
allocated to tasks, which increases workload.46

As previously identified,approximately 67% of articles
were generated in the last 10 years, likely coinciding with
the current IGRT and IMRT/VMAT paradigm. However,
recent literature is not UK-based and may not include
service techniques like SRS, SABR, etc. Additionally,
the UK now has two national proton therapy centers,
although earlier modeling by Aitkenhead et al.did model
proton radiotherapy treatment processes.30

4.5 Limitations found

Model limitations were reported in only 61.1% of studies.
Simple models,such as early work by Munro et al.,could
only be used with a single treatment category.24 When
a simpler treatment completes, such as a palliative, it
does not free up all the necessary capacity for a longer
or more complicated course of treatment. Munro et al.
defined three types of treatment: simple, intermediate,
and complex. Each has properties such as the number
of fractions, time taken per fraction, available machine
hours per week, patients currently waiting, etc.
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Werker et al. highlights that models can never per-
fectly mimic an existing system and that a model
might always apply to similar situations without
modifications.17

Statistician George Box is associated with the apho-
rism “All models are wrong”,47 as any model is only a
representation of a real-world system and will never be
entirely correct. This is not to say that models are not
useful, something else that Box asserts, and this is why
validation of models is such an essential step of any
modeling process.

5 IMPLICATIONS FOR FUTURE
RESEARCH

It was noted that only 28% of studies scored over 70%
using a quality assessment tool. This quality assess-
ment tool was created after guidance was issued on
modeling good research practices.48 Quality assess-
ment tool scores are just one metric to judge a study.
However, future modeling studies should consider fol-
lowing published guidance to ensure that studies follow
a sound methodology.

No literature was found modeling the introduction of
AI-based auto-segmentation or knowledge-based plan-
ning (KBP), two tools gaining considerable interest in
radiation oncology. What-if scenarios can model the
introduction of processes designed to speed up the
pathway’s manual or traditionally lengthy processes.
Multiple reviews have identified studies utilizing AI-
based auto-segmentation and KBP, showing potential
time savings for these technologies.49–51 To establish if
these technologies’ introduction is likely to speed up the
overall pathway or generate bottlenecks elsewhere is an
area that further modeling research should be under-
taken, potentially combined with financial modeling to
help judge the cost versus benefit of introducing such
systems.

Radiotherapy pathways have likely become too com-
plex for non-commercial software to perform the simu-
lation unless a group with considerable experience and
knowledge in simulation is conducting the research.

As highlighted by other authors, health system pro-
fessionals can learn significantly from modeling tools to
help understand complex dynamic systems.52 As high-
lighted in the pathway philosophy section, researchers
need to balance the need for a generalizable model that
is not infinitely complex with a model that adequately
represents the system they are modeling.

Most studies identified in this review were from
European countries (66%), and there is likely to be
a significant degree of heterogeneity in the pathway
designs employed across all studies (i.e., publicly
funded vs. insurance-based or self -pay may have dif-
ferent ways of operating, and therefore, pathways).
Geographical factors may intrinsically influence how

healthcare is accessed, and therefore the pathway, in
specific healthcare systems (such as rural commu-
nities or accessing national services, such as proton
radiotherapy in the UK).

6 CONCLUSION

This review has demonstrated that modeling and simu-
lation of radiotherapy pathways are feasible, and those
correctly modeled systems generate outputs (such
as average waiting times) that match real-world sys-
tems. Validated models give researchers and hospital
decision-makers confidence that they can modify mod-
els with potential workflow enhancements to assess
their effect and that the model output would represent
what would happen in the real-world system.

Simulations are typically performed to examine the
effects of perturbations on average wait times or to
assess the percentage of patients starting treatment
within a specific period. However, financial modeling
can also be built into some models. Financial model-
ing allows trade-offs to be assessed, such as increasing
staffing to facilitate treating more patients or ensuring
that departments can treat referral types with desirable
tariffs.

Models cannot easily factor in human nature—some
“give and take” might be intrinsically buffered by the
system being modeled, for example, by people working
additional hours unofficially that are not considered.This
may have been exacerbated by increased working from
home in the post-COVID era. Researchers should be
mindful of this when making decisions based on sim-
ulations. It is recommended that researchers follow best
practice guidelines when building models to ensure that
they are fit for purpose and to enable decision makers
to have confidence in their results.

The introduction of AI-based auto-segmentation and
KBP, two techniques that reduce the time taken for crit-
ical steps in the radiotherapy pathway is an important
recent development. The simulation of the introduction
of such techniques in the radiotherapy pathway would
be helpful to decision-makers, especially if financial
modeling and timesaving are also modeled.
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