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Automation has contributed to different agriculture 
applications such as planting, harvesting, disease 
recognition, production estimation, quality control, water 
management, crop monitoring, control of insecticides, 
and soil quality and pesticides. Among these applications, 
harvesting is the process that has received the least amount 
of technological development for satisfactory automation, 
until now most fruit and vegetable harvesting is based on 
manual techniques (Jimenez et al., 2000).

In some European Mediterranean countries such as 
Spain, Italy, Greece, and Turkey, olive fruit has strong 
agricultural importance, being a big part of the economy. 
Currently, Spain is the leading producer of olives and 
produces 5,276,899 metric tons of olives on more than 
2.4 million hectares of dedicated land. However, despite 
worldwide production tripling in the last 60 years, the 
worldwide olive oil consumption rate has kept pace with the 
production rate, as stated in the last blog of the International 
Olive Council (International Olive Council, 2021). This is 
unsurprising, as olive oil represents an important dietary 
source that has currently entered the production of other 
foods. Additionally, olive planting is a traditional part of 
the social, economic, and environmental importance to 
agriculture in many regions. 

Accordingly, one of the important factors that could 
affect olive oil productivity is the harvesting method. 

Normally, olive harvesting is done by hand, which is a time-
consuming, tedious, and costly process. It involves a large 
number of employees and, therefore, high labour costs. 
Mechanical olive harvesters can be used to minimize the 
time and cost of production. However, during processing, 
mechanical harvesters can cause damage such as local tissue 
degradation, combined with intracellular water output and 
the oxidation of phenolic compounds after impact. A vision 
system could be applied to help configure mechanical 
harvesters to support and sustain quality, time, and cost. To 
the best of authors’ knowledge, an AI-based or smart and 
automated olive fruit harvester has not been investigated, 
although this technique has had success in harvesting other 
kinds of fruits.

Recently, agricultural autonomous robots, namely 
Agrobots, have emerged with several agricultural 
applications to increase productivity and operation safety 
(Mavridou et al., 2019). They mainly deploy computer vision 
and machine learning techniques in fruit detection, weed 
detection, plant disease detection, fruit quality prediction, 
and fruit maturity prediction (Koirala et al., 2019; Zhang et 
al., 2020; Bah et al., 2018). Robotic vision, based on feature 
algorithms or deep learning algorithms, is required in fruit 
detection to guide the robot arm to detach the fruit (Kang 
and Chen, 2020b).
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Several studies have been conducted on image features’ 
categorization for fruit/vegetable detection. The proposed 
scheme in Bolle et al. (1996) represents the first attempt 
to develop a system which can analyse the fruit‘s colour, 
texture, and density for supermarket applications. In Nguyen 
et al. (2016), colour and geometric features have been 
deployed in a clustering algorithm for red apple detection. 
In Wang and Xu (2018), multiple image features and the 
Latent Dirichlet Allocation (LDA) model were deployed for 
unsupervised instance segmentation of the fruit.

Deep learning algorithms have been used extensively 
in fruit detection because of their higher performance 
accuracy. In Kang and Chen (2020a), researchers developed 
a framework of a deep learning-based fruit detection 
algorithm and clustering-based classifier to assist fast 
labelling of training data. In Bresilla et al. (2019), an approach 
for fruit detection, based on state-of-the-art deep neural 
networks techniques using single-shot YOLO detectors 
to detect apples and pears in the tree canopy, has been 
presented. The results have shown that modifications to 
the input grid on the standard model of YOLO yield better 
detection. 

A considerable number of studies have focused on 
evaluating the trees’ health, disease, trees detection, trees 
counting and olive trees quality testing. In Beyaz and Ozturk 
(2016), the olive cultivars were identified using image 
processing techniques based on the genetic identification 
method. In Di Nisio et al. (2020), a hybrid approach 
(combination of multispectral information and spatial data) 
was presented to monitor the spread of olive quick decline 
syndrome (OQDS) in olive trees. In Martinelli et al. (2019), 
an image processing-based technique using iTRAQ method 
was introduced to detect and classify the spot disease based 
on using the analysis of olive tree leaf textures. A multi-step 
algorithm to automatically detect and count the olive trees 
in satellite images has been presented in Khan et al. (2018). 

There is no existing research concerning olives detection 
for harvesting applications based on Deep Learning (DL) 
techniques. The main reason for the lack of research in this 
area is the existing challenges. This includes the olives’ small 
fruit size that means the acquired images may contain fruit 
with any number, different sizes, colours, random position, 
and shape. In this study, working in a real-life environment 
created additional challenges that should be considered, 
such as olive fruits occlusion with themselves or with other 
parts of the tree (leaves or/and branches), shadows, and 
lighting conditions. These challenges show the importance 
of selecting a suitable machine learning model that has 
high detection accuracy and achieves real-time detection 
for on-edge applications.

The smart system of olive harvesting should have the 
ability to detect and localize olive fruit from digital images. 
The proposed design aims to guarantee the efficiency and 
consistency of the method of olive harvesting. This paper 
builds a dataset of 1200 source images of olive fruit on the 
tree and evaluates the latest object detection algorithms 
focusing on variants of YOLOv5 and YOLOR. The results of 
the YOLOv5 models show that the YOLOv5 new network 
models are able to extract rich olive features from images 
and detect the olive fruit with a high precision of higher 
than 0.7 mAP_0.5.

The rest of the paper is organized as follows: Section 2 
gives a brief background on YOLO approaches and the olive 
detection model implementation. Section 3 demonstrates 
and discusses the results while section 4 concludes the 
paper along with future work.

YOLO 
You Only Look Once (YOLO) is a new approach for object 
detection (Redmon and Farhadi, 2017). In YOLO, objects 
can be detected and located at one glance (Du, 2018). 
YOLO divides the input image into N grids, each with 
equal dimensions of S×S. Each grid is responsible for the 
detection and localization of the object it contains. YOLO 
predicts the coordinates of bounding boxes directly using 
fully connected layers on the top of the convolutional 
feature extractor. Several versions of YOLO have been 
developed to enhance its performance, YOLO, YOLOv2 and 
YOLO9000, YOLOv3, YOLOv4, and YOLOv5. YOLO models 
have a high performance and are appropriate for on-device 
deployment.

In 2020, Glenn Jocher introduced YOLOv5 (Jocher, 2020), 
whilst the model architecture remains close to YOLOv4, it 
derives most of its performance improvement from PyTorch 
training procedures. The major YOLOv5 improvements 
include mosaic data augmentation and auto-learning 
bounding box anchors. The  release of YOLOv5  includes 
different models’ sizes: YOLOv5s, YOLOv5m, YOLOv5l, and 
YOLOv5x. YOLOv5 is superior to YOLOv4 in terms of speed, 
accuracy, and size (Nelson and Solawetzet, 2020). 

YOLOR was published in May 2021 (Wang et al., 2021) 
and stands for “You Only Learn One Representation”. It is 
proposed as a unified network to encode implicit knowledge 
and explicit knowledge together. YOLOR aims to implement 
a technique that can serve many tasks for a given one input. 
YOLOR is designed to be specifically for object detection, 
rather than other machine learning use cases such as object 
identification or analysis. 

Olive detection model implementation
To simplify the implementation of the olive detection 
model, Fig. 1 shows the main and detailed steps of the 
implementation process. The process includes three main 
steps: 

1.	 Data preparation: in which olive trees’ images 
are collected, pre-processed, annotated, and 
augmented to build the dataset for training, 
evaluating, and testing the YOLO model. 

2.	 Model implementation: in which a deep learning 
model is selected and trained on both the training 
and validation datasets and then, evaluated on the 
test dataset. 

3.	 Model inference: in which the detection model is 
deployed on real-life olive images. 

Data preparation
The proposed detection model aimed to detect the olive 
fruit on twigs and branches. This model was implemented 
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and trained on real olive fruit images that are acquired 
under different circumstances. Thus, it can be deployed 
on-edge to detect olive fruits on the tree using a digital 
camera. This sub-section demonstrated the image 
acquisition process of olive trees and branches, in addition 
to steps followed to annotate olive fruit and implementing 
a state-of-art dataset.

Image acquisition 
The images of olive twigs and branches were captured using 
an RGB camera with a resolution of 2736 × 3648 pixels from 
10 olive farms in Jordan. A set of 1200 source images was 
collected of different olive trees (Nabali, Rasie Nassohi and 
Souri) in Irbid, Tafila, Madaba, and Karak cities. All  images 
were captured under natural daylight from 10:00 am 
to 6:00  pm to obtain varying illumination conditions. 
The digital camera was mounted at a height between 
0.5  and 1.5 m with a distance range to tree of between 
0.5 and 1.5 m. These distances were selected to simulate the 
camera mounted on a robotic arm in the final phase of the 
system. This should assist a future automated harvesting 
robot in locating and harvesting the designated areas. 
Images were categorized based on capturing illumination 
and shadowing as 820 images under high illumination 
(collection time from 10:00 am to 3:00 pm) and 380 under 
low illumination (collection time from 3:00 pm to 6:00 pm). 
Additional categorization was also based on olive fruit 
colours, using 750 and 450 images of green and black olives, 
respectively. These variations of source images increased 
the detection efficiency and made the detection model 
invariant to scale, colour, and illumination. All images were 
resized to a resolution of 1094 × 1459 pixels. Figure 2 shows 
the samples of olive images.

Fig. 2	 Sample examples of olive images

Fig. 1	 Flowchart of the olive detection model implementation
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Annotation, preprocessing, augmentation, and dataset 
preparation
Olive fruit in the original images was labelled using LabelMe, 
an open access annotation tool (Russell et al., 2008). A number 
of 40,834 different olive fruits were annotated with class 
“olive” across the 1200 images. These annotations include 
partially occluded and clearly visible olive fruits. Figure 
3 shows some annotations of olive fruits on the original 
images. Images were uploaded to Roboflow, a computer 
vision platform to construct the dataset, and divided into 
training, validation, and test datasets. All images were resized 
to 800×600 pixels, augmented to increase the size of image 
dataset to 4800 images. Three augmentation parameters 
were applied to the source images: Rotation:  between 
-18° and +18°; Brightness:  between -19% and +19%, and 
Blurring: up to 1.25 px. 

Model implementation 
The performance of object detection improved considerably 
after the advent of the YOLO and R-CNN families. 
Convolutional layers are employed in most image-related 
neural networks. Convolutional Neural Networks (CNNs) 
learn image representations by performing a sliding window 
approach. The selection of a detection model, training and 
evaluation are described in this section.

Model selection
YOLOv5s was selected as the olive object detection model 
after trialling and comparing it with YOLOv5x and YOLOR 
for accuracy and speed. For the real-time application 
discussed in the paper, speed is more critical than accuracy. 
Different YOLO variants models such as Yolo 5 X, S and YoloR 
were tested on the olive dataset which has 1200 source 
images. The source images were augmented to generate 

4800 images using the Roboflow platform. The dataset was 
divided into three subsets: a set of 4000 training images, 
a  set of 400 validation images, and a set of 400 testing 
images. 

The network architecture of YOLOv5s, as shown in Fig. 
4, consists of three parts: (1) Backbone: CSPDarknet, (2) 
Neck: PANet, and (3) Detect: YOLO Layer. The image was 
first inputted to CSPDarknet for feature extraction, and then 
fed to PANet for feature fusion. Finally, YOLO Layer outputs 
detection results (class, score, location, size).

Model hyperparameters optimization 
The use of network architecture, such as YOLOv5s, and 
optimizing hyperparameters are both effective and 
robust in detecting and localizing olives as an object. 
Hyperparameters are variables that determine the network 
topology for example, how the network is trained (e.g., 
Learning Rate). Initially, hyper parameters were selected 
before training and optimizing the network parameters 
(weights and bias).

Tuning hyperparameters of the YOLO model to improve 
model performance and precision is a challenging job, 
because of the time required to train models based on 
different hyperparameters such as Anchor, Learning Rate, 
and Weight Decay with wide range of values. Table 1 
illustrates four different hyperparameter combinations (A, B, 
C, and D) for olive detection model performance evaluation. 

Anchor: is a predefined boundary defined boxes with 
a  set of height and size. They are used to improve the 
accuracy and speed of the model.  

Learning Rate: is a tuned parameter determining the 
step size of each iteration to minimize loss function. 

Weight Decay: is a regularization technique used to 
avoid the overfitting of the model.

Fig. 3	 Examples of annotated images including occluded and non-occluded olive fruits
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Table 1	 Optimized hyperparameters

Anchor Learning rate Weight decay

A 4 0.01 0.0005

B 6 0.01 0.0005

C 3 0.001 0.0005

D 4 0.01 0.05

Experimental results of object detection models are 
shown in Table 2. These results are based on augmented 
dataset which was trained using hyperparameter 
optimization and transfer learning. The mean average 
precision (mAP_0.5) was compared for the different models 
to evaluate accuracy. In addition, the precision parameter 
is an additional parameter calculating the accuracy of the 
models. The hyperparameter group A has the best precision 

compared to the other hyperparameter groups. Comparing 
the models in the group A, the YOLOv5x model seems to 
provide higher precision compared to the YOLOv5s model. 

Different hyperparameter combinations were evaluated 
using the YOLOv5s model for the olive images dataset. 
This evaluation process took approximately 96 hours using 
a  high-performance computer with 2X Nvidia A100 GPUs, 
2 TB memory, and approximately 4800 images. The patch 
was set to 64 and epoch to 300 for evaluation. 

The output results illustrated in Fig. 5 show the best 
hyperparameter found from the evaluation training on olive 
images using YOLOv5s. 

The training box loss was compared for different models 
with different combination of hyperparameters (A, B, C, 
and D), as shown in Fig. 6. The YOLOv5 model S with the 
hyperparameter optimized categories D and C shows low 
loss compared to the categories A and B (Fig. 6a), which 

Fig. 4	 YOLOv5s architecture
CSP – cross stage partial tetwork; CBL – convolution-batch normalization – leak ReLU; SPP – spatial pyramid pooling; Concat – 
concatenation function; Conv – convolutional layer

 

Table 2	 The difference in precision between the A, B, C, and D categories once models have been trained

Name Hyperparameter mAP_0.5 Precision Box_loss Obj_loss

YOLOv5x
D

0.7708 0.4279 0.0605 0.2696

YOLOv5s 0.7265 0.3871 0.0639 0.2818

YOLOv5x
C

0.7116 0.3991 0.0463 0.2104

YOLOv5s 0.6827 0.3794 0.0517 0.2269

YOLOv5x
B

0.7330 0.4873 0.0619 0.2574

YOLOv5s 0.7384 0.4045 0.0703 0.3066

YOLOv5x
A

0.7559 0.4675 0.0507 0.2255

YOLOv5s 0.7413 0.4366 0.0565 0.2538
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Fig. 5	 Best olive training hyperparameters evaluated by the YOLOv5s model. The hyperparameters evolution has one subplot 
per hyperparameter. The X-axis shows the hyperparameter value vs Y-axis shows the fitness value. The higher concentration 
value is shown in yellow; the vertical distribution illustrates the deactivated hyperparameters and does not mutate
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Fig. 6	 YOLOv5 Box\Loss curves of the two models YOLOv5s and YOLOv5x and the combinations of hyperparameters settings A, 
B, C, and D vs epochs. Figure (a) is for YOLOv5s, and figure (b) is for YOLOv5x

 

(a)

(b)
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least one object; Fn – images containing an object 
where the method failed to produce a BB

Training loss is the error cost of bad prediction based 
on the difference between the predicted value and the true 
value.

		  (6)

Validation loss is the same metric as training loss, but it 
is not used to update the weights. However, it is used to find 
the best combination of hyperparameters in order to ensure 
better model generalization and avoid overfitting.

Validation loss is calculated by comparing the output Y of 
the validation set with ground truth Yt using a loss function:  

		  (7)

where:	 L – the individual loss function based on the 
difference between predicted value and target

This paper builds a dataset of 1.2 K source images of olive 
fruit on the tree and evaluates the latest object detection 
algorithms focusing on the variants of YOLOv5 and YOLOR. 
The results of the YOLOv5 models show that the YOLOv5 
new network models can extract rich olive features from 
images and detect the olive fruit with a high precision above 
0.75 mAP_0.5. YOLOv5s performs the best for real-time 
olive fruit detection on the tree over other YOLOv5 variants 
and YOLOR. Furthermore, the latency will be compared 
for different object detection models that have adequate 
precision.

Models’ precision comparison 
To evaluate the final detections, mAP_0.5 was measured 
with averaging over IoU thresholds at [0.5: 0.05: 0.95] for 
the hyperparameter category A. The mAP_0.5 results in 
this system were compared for YOLOv5s with the original 
YOLOv5s results. The mAP_0.5 results were also compared 

implies the categories D and C demonstrated a better 
performance in classifying input data and output targets. 
However, Fig. 6b represents the model X, which shows 
slightly lower loss for the hyperparameter categories A and 
C compared to the model S categories A and C. 

Experimental platform and model training
The model was trained using the YOLOv5 variants (YOLOv5s, 
YOLOv5x) and YOLOR. These models are evaluated in this 
work for olive fruit detection for only one class named “olive”.

Model evaluation indicators 
The model detection performance was evaluated using 
mean average precision (mAP), recall, precision, train and 
validation bounding box loss, and object classification loss 
metrics. The evaluation metrics that were used to evaluate 
the model are explained as follows:

Precision is a measure of a network’s ability to accurately 
identify targets at a single threshold, calculated by:

		  (1)

Recall is a measure of the network’s ability to detect its 
target, calculated by:

		  (2)

Intersection over Union (IoU) is a method used to 
compare two arbitrary shapes, i.e., object widths, heights, 
and location of two boxes into the original region. This will 
evaluate the precision of the object detector on particular 
data set (Rezatofighi et al., 2019), as in Eq. (3). Figure 7 shows 
how IoU is calculated diagrammatically.

		  (3)

Average precision is a method combining recall and 
precision for the entire ranking. It is the average of precision 
in a single ranking (Everingham et al., 2010):

		  (4)

Mean average precision (mAP) is the average of precision 
values at the rank where there is a relevant document. It is 
calculated from precision, recall, and interception over 
union IOU.  

		  (5)

where:	 Tp – are the Bounding Boxes (BB) that have the 
intersection over union (IoU) with the ground truth 
(GT) above 0.5; Fp – two cases – (a) BB that have 
IoU with GT below 0.5, (b) BB that have IoU with GT 
that has already been detected; Tn – there are no 
true negatives, the image is expected to contain at 

Results and discussion

Fig. 7	 Diagrammatic example intersection over union 
calculation
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for YOLOv5s, YOLOv5x, and YOLOR when trained on the 
olive dataset.

In this section, the mAP_0.5 value was compared for 
the two variants of YOLOv5, named YOLOv5s and YOLOv5x. 
These two variants were specifically chosen because 
YOLOv5x is the largest and YOLOv5s is the smallest. Hence, 
there was no need to compare mAP_0.5 with other YOLOv5 
variants. Figure 8 shows mAP_0.5 for the model YOLOv5x 
and YOLOv5s. As shown in Fig. 8, the steady-state mAP_0.5 
value is approximately 0.75 for both models. The mAP_0.5 
value is considered high compared with the mAP_0.5 value 

of the original YOLOv5s, as shown in Table 3. This mAP_0.5 
value indicates high detection precision for the olive 
harvesting application.

The original YOLOv5  is a family of object detection 
architectures and models pre-trained on the COCO dataset. 
YOLOv5s was trained using a V100 GPU. 

Recently developed YOLOR was also tested and 
compared with YOLOv5s using the olive dataset. Figure 9 
shows that the mAP_0.5 values of both YOLOv5s and YOLOR 
after sufficient training are 0.75 and 0.7, respectively. There 
is approximately 0.05 mAP_0.5 difference between YOLOR 

Fig. 8	 Mean average precision (mAP_0.5) curve for the model YOLOv5x and YOLOv5s
 

Fig. 9	 mAP_0.5 comparison between YOLOv5s and YOLOR
 

 YOLOv5x  YOLOv5s

 YOLOR

 YOLOv5s
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and YOLOv5s. Therefore, YOLOv5s outperforms YOLOR in 
terms of precision.

Models’ latency comparison
The main purpose of this research is to process the real-
time streaming video for the olive harvesting process. 
The detection of olives on the tree should be real-time 
and on edge as well; therefore, low latency is crucial for 

olive harvesting application. In this subsection, latency is 
compared for the YOLOv5s, YOLOv5x, and YOLOR models 
that achieved an adequate precision as shown in the 
previous section.

Object detection models were tested on 50 images to 
compare the detection speed, which is the opposite of the 
model latency. Table 4 shows a comparison of detection 
latency among the YOLOv5s, YOLOv5x, and YOLOR models. 

Table 3	 Comparison between the original YOLOv5s trained on COCO dataset (Jocher, 2020) and YOLOv5s model trained on 
olive dataset

Model Dataset Dataset size No. of 
classes

Size 
(pixels)

mAP_0.5 GPU Speed 
(ms)

Params 
(M)

Original 
YOLOv5s COCO 5000 80 640 × 640 55.4 V100 2.0 7.3

YOLOv5s in 
this paper Olive 4800 1 600 × 800 75.0 A100 16.0 7.3

Table 4	 Detection speed comparison between YOLOR, YOLOv5x, and YOLOv5s

YOLOv5s YOLOv5x YOLOR

Latency 0.016s 0.031s 0.039s

Speed 62 FPS 32 FPS 25 FPS

Fig. 10	 a) Hardware setup of the real-time olive detection model implementation; b) Artificial olive tree

(a) (b)
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As shown in Table 4, YOLOv5s outperforms the other two 
models in olive detection speed. An image took an average 
of 0.016 seconds. Therefore, YOLOv5s can achieve 62 frames 
per second (FPS).

Real-time implementation
The detection model was also deployed on edge to validate 
its real-time performance. The hardware (as shown in Fig. 
10a) has been setup using the following components:

1.	 Lenovo Thinkcentre M710Q PC is equipped with an 
Intel Core i3-6100T processor and 8 GB Memory on 
Ubuntu 20.0;

2.	 Microsoft LifeCam Studio Webcam;
3.	 Husky A200 UGV;
4.	 Velodyne LiDAR 3d;
 5.	 digital screen.

The experiment was performed at AMRC North West labs on 
an artificial olive tree (shown in Fig. 10b).

Object detection inference time depends on the 
hardware specifications where the model is implemented. 
Moreover, inference time also depends on images size. 

The Husky robot moves around the tree capturing a real-
time video using the mounted webcam, as shown in Fig. 10. 
The size of each captured image is 415 × 289 pixels. Real-
time olive fruit detection and recognition is performed on 
the captured images and recognition results are displayed 
on the digital screen.

Inference time is proportionally dependent on the 
number of detected olive fruits. The actual range of inference 
time per image ranges between 56 ms and 3.395 s. 

Conclusion 
The need for agricultural revolution is well recognized and 
the application of real-time systems in various aspects of 
the farming industry is a necessity. Artificial intelligence and 
data analysis play a key role in real-time systems and many 
opportunities for its application exist within the agriculture 
harvesting chain. Yet there are areas of the farming industry 
considered to be challenging for the current digitalization 
revolution such as olive harvesting. This project, novel olive 
harvesting is focused on researching the best practices to 
improve olive harvesting and farm productivity. 

The use of a real-time compatible system with high 
speed (YOLOv5) capabilities to localize olives on the tree as 
an object has been discussed in this paper. This application 
helps improve the quality and productivity of olive farms 
and could provide the required data for forecasting futuristic 
yielding.

Considering multiple versions of AI algorithms taking 
into account real-time speed, accuracy, and model size, the 
YOLOv5 model satisfied all olive project requirements. The 
YOLOv5 model is small in size (i.e., requires less processing) 
with high speed (i.e., best suited for real-time applications) 
compared to the other models such as the YOLOv5 model 
x. Notwithstanding that, the model is able to localize more 
than 95% of the olives on the tree. 
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