
Computers in Biology and Medicine 167 (2023) 107696

Available online 11 November 2023
0010-4825/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Advancing prognostic precision in pulmonary embolism: A clinical and 
laboratory-based artificial intelligence approach for enhanced early 
mortality risk stratification☆ 

Seyed-Ali Sadegh-Zadeh a,*, Hanie Sakha a, Sobhan Movahedi b, Aniseh Fasihi Harandi b, 
Samad Ghaffari c, Elnaz Javanshir c, Syed Ahsan Ali d, Zahra Hooshanginezhad e, 
Reza Hajizadeh f 

a Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent, England, United Kingdom 
b Azad University, Science and Research, Tehran, Iran 
c Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran 
d Health Education England West Midlands, Birmingham, England, United Kingdom 
e Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 
f Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran   

A R T I C L E  I N F O   

Keywords: 
Pulmonary embolism 
Early mortality prediction 
Machine learning algorithms 
Oversampling techniques 

A B S T R A C T   

Background: Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identifi
cation and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated 
risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) algorithms hold 
promise for enhancing the precision of early mortality prediction in PE patients. 
Objective: To devise an ML algorithm for early mortality prediction in PE patients by employing clinical and 
laboratory variables. 
Methods: This study utilized diverse oversampling techniques to improve the performance of various machine 
learning models including ANN, SVM, DT, RF, and AdaBoost for early mortality prediction. Appropriate over
sampling methods were chosen for each model based on algorithm characteristics and dataset properties. Pre
dictor variables included four lab tests, eight physiological time series indicators, and two general descriptors. 
Evaluation used metrics like accuracy, F1_score, precision, recall, Area Under the Curve (AUC) and Receiver 
Operating Characteristic (ROC) curves, providing a comprehensive view of models’ predictive abilities. 
Results: The findings indicated that the RF model with random oversampling exhibited superior performance 
among the five models assessed, achieving elevated accuracy and precision alongside high recall for predicting 
the death class. The oversampling approaches effectively equalized the sample distribution among the classes 
and enhanced the models’ performance. 
Conclusions: The suggested ML technique can efficiently prognosticate mortality in patients afflicted with acute 
PE. The RF model with random oversampling can aid healthcare professionals in making well-informed decisions 
regarding the treatment of patients with acute PE. The study underscores the significance of oversampling 
methods in managing imbalanced data and emphasizes the potential of ML algorithms in refining early mortality 
prediction for PE patients.   
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1. Introduction 

An occlusion of a blood vessel in the main or branching arteries of the 
lung by clot is known as a pulmonary embolism (PE) [1]. The emboli
zation usually origins from veins of lower and upper extremities results 
in pulmonary artery blockage [2]. Untreated PE is expected to have a 
mortality rate of 30% while treated PE is estimated to have a mortality 
rate of 8%. PE is a life-threatening condition [3]. Resources and staffing 
are frequently constrained in medical centers due to congestion. Addi
tionally, early in the medical procedure, there is very little clinical data 
accessible [4]. When a patient is at risk of developing a pulmonary 
embolism or possibly death unexpectedly, it can be challenging for cli
nicians to appropriately monitor all patient conditions. As a result, 
precise triage methods that can spot high-risk individuals are being 
taken into consideration [5–7]. 

Based on Electronic Health Record (EHR) data, which primarily 
contains demographic data, physiological measurements, laboratory 
tests, clinical observations, and therapeutic options, the primary moti
vation for predicting mortality among this group of patients is to 
compare the effectiveness of medications, care recommendations, sur
gery, and other interventions [8,9]. As a result, a number of scoring 
techniques were suggested for the patient’s illness severity assessment 
and outcome prediction, including the Emergency Severity Index [10], 
Acute Physiologic Assessment and Chronic Health Evaluation [11], 
Mortality Probability Models [12], and the Sequential Organ Failure 
Assessment [13]. Although widely used, they had a rather low accuracy 
and were typically employed for benchmarking [14,15]. 

Machine learning is effective at uncovering useful patterns from vast 
amounts of data. It may investigate the complex relationships between 
many components and forecast shifting patterns. Clinical EHR data in 
abundance and publicly accessible datasets like Mimic-iv [16] and 
HiRID [17] have aided in the development and implementation of ma
chine learning in the study of medical data. The effectiveness and 
adaptability of machine learning in the critical care setting were 
demonstrated by the PhysioNet Computing in Cardiology Challenge 
2012 [18] and the WiDS (Women in Data Science) Datathon 2020 [19], 
both of which sought to predict mortality of patients in intensive care 
units (ICUs). 

Clinical decision support systems have become more prevalent in 
recent years thanks to the use of various machine learning algorithms 
[20,21]. The majority of research to date have shown that machine 
learning models perform better than clinical grading systems [22,23]. 
For instance, Klug et al. [24] used gradient boosting and logistic 
regression models for both short-term mortality prediction and early 
mortality prediction (up to 2 days after hospital registration) (2–30 days 
post hospital registration). In comparison to severity scores like the 
Shock Index, Modified Shock Index, and Aged Shock Index, higher AUC 
might be attained [25]. Deep learning models were taken into consid
eration for postoperative in-hospital mortality prediction by Lee et al. 
[26] and Hofer et al. [27]. 

Despite the growing interest in utilizing machine learning algorithms 
for predictive medical analysis, there remains a noticeable gap in the 
literature when it comes to early mortality prediction specifically for 
patients with pulmonary embolism. While various studies have explored 
mortality prediction in other medical contexts, the unique characteris
tics of pulmonary embolism, its rapid onset, and the complexity of 
physiological responses have not been adequately addressed using these 
advanced techniques. Moreover, existing methodologies often rely on 
simplified representations of time series data, neglecting the intricate 
temporal dynamics that could hold crucial predictive information. This 
research aims to bridge this gap by introducing a comprehensive 
approach that integrates a wide array of clinical and laboratory vari
ables, enabling a more accurate assessment of early mortality risk. By 
leveraging the power of machine learning, this study endeavors to 
enhance the precision of prognostic outcomes for patients with pulmo
nary embolism, ultimately contributing to improved clinical decision- 

making and patient care. 
In contrast to conventional approaches that often rely on traditional 

statistical methods and limited variables to predict mortality in cases of 
pulmonary embolism, our research introduces a novel and comprehen
sive perspective. We acknowledge that existing models frequently 
overlook the intricate temporal patterns inherent in time series-based 
variables, potentially leading to the loss of critical information. 
Furthermore, previous studies have tended to incorporate only a 
restricted set of easily quantifiable parameters, neglecting the broader 
spectrum of potential predictors. Remarkably, our study pioneers the 
application of machine learning techniques for early mortality predic
tion in patients with pulmonary embolism, a pioneering avenue that, to 
our knowledge, remains unexplored in the current literature. We 
leverage an extensive array of raw features sourced from diverse clinical 
contexts, allowing for a more holistic representation of the patient’s 
condition. These novel predictors not only expand the scope of mortality 
prediction but also have the potential to complement existing method
ologies. By extensively detailing the performance of applied models, our 
study provides invaluable insights into their capabilities and effective
ness, contributing to the advancement of prognostic precision in the 
realm of pulmonary embolism. 

The remainder of the paper is set up as follows. Section 3 discusses 
the study’s conceptual framework, which aims to develop a framework 
for predicting hospital mortality in patients with pulmonary embolism 
using and machine learning theory. The dataset description, as well as 
the tools and techniques used in this work, are described in Section 3. 
The experimental findings on a testing device are presented in Section 4, 
which is followed by a discussion and closing remarks in Section 5. 

2. Literature review 

Acute PE is a critical medical emergency with potentially severe 
consequences [28]. Early and accurate prediction of mortality risk in 
patients with PE is of paramount importance for timely intervention and 
optimal patient care. Traditional scoring systems and severity assess
ment models, while widely used, often lack the desired accuracy and fail 
to capture the intricate temporal dynamics and comprehend’sive range 
of predictors inherent in the condition [29]. 

The landscape of predictive modelling in medical contexts has been 
undergoing a transformation with the advent of ML techniques [30]. 
Machine learning approaches have demonstrated remarkable potential 
in extracting meaningful patterns and relationships from complex 
medical data. This potential has been showcased in various medical 
domains, including intensive care units (ICUs) and postoperative set
tings, where ML models have outperformed traditional scoring systems 
[31]. 

Despite the growing interest in applying machine learning to medical 
prognostication, there remains a noticeable gap in the literature when it 
comes to early mortality prediction specifically in the context of acute 
pulmonary embolism. While some studies have explored mortality 
prediction in other medical scenarios [32–36], the unique characteris
tics of PE, such as its rapid onset and intricate physiological responses, 
present challenges that have yet to be comprehensively addressed by 
advanced techniques. 

Traditional approaches to mortality prediction often rely on simpli
fied representations of time series data and a limited set of easily 
quantifiable variables [37]. This approach, though practical for clinical 
implementation, risks overlooking critical temporal patterns and 
broader predictive factors. Consequently, there is a need for a more 
comprehensive and accurate approach that leverages the full potential 
of machine learning algorithms [38]. 

In this context, the present study introduces a pioneering approach 
that integrates a wide array of clinical and laboratory variables for 
enhanced early mortality prediction in PE patients. By employing ma
chine learning algorithms, this study aims to bridge the gap between 
traditional scoring systems and the untapped potential of machine 
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learning, enabling a more accurate assessment of mortality risk. The 
proposed study not only expands the range of predictors used for early 
mortality prediction but also acknowledges the challenges posed by 
imbalanced data distribution in the death class. Imbalanced data dis
tribution can undermine model performance, which necessitates the 
application of oversampling techniques to achieve a more balanced 
representation of classes [39]. 

The current literature underscores the potential of machine learning 
algorithms in advancing prognostic precision for patients with acute 
pulmonary embolism. This study fills a crucial gap by introducing a 
comprehensive approach that leverages a diverse range of predictors 
and oversampling techniques to enhance early mortality risk stratifica
tion. The findings of this study could revolutionize clinical decision- 
making and patient care in the context of acute PE. 

3. Framework of study 

Fig. 1 illustrates the process of converting the clinical data to deci
sion using machine learning and Fig. 2 demonstrates a paradigm for 
predicting hospital mortality that was suggested based on the principles 
of machine learning. 

A heatmap in machine learning is a graphical representation of data 
where individual values contained in a matrix are represented as colors. 
It’s an effective way to visualize complex data sets, enabling easy 
identification of patterns, correlations, and trends. Heatmaps are 
particularly useful in machine learning for exploring the relationship 
between features or understanding the distribution of data. In the 
context of the study you’re referring to, the heatmap of the dataset in 
Fig. 3 would provide a visual representation of the data’s structure and 
relationships. It could show how different variables interact with each 
other, highlight areas of high and low density, or illustrate other key 
insights drawn from the data. To get a detailed understanding of the 
specific insights from this heatmap, it’s essential to view Fig. 3 directly, 
as it would contain the specific color-coded information pertinent to this 
study’s dataset. To begin with, data cleaning was used to address issues 
with the patient’s original data, including data format inconsistencies, 
missing data, outliers, and duplicate data. Second, the features were 
chosen. Third, once the dataset was randomly split into a training set 
(80%) and testing set (20%), 5 machine learning models were created. 
By randomly rearranging the data in each independent run, 5-fold cross 
validation was carried out ten times to produce a more reliable model 
evaluation. 

4. Materials and methods 

This section outlines the foundational components of the research 
process, detailing the materials and methodologies employed to address 
the research objectives. The successful execution of a scientific study 
depends heavily on the careful selection of materials and the meticulous 
application of appropriate methods. 

4.1. Dataset description 

Between July 2013 and December 2020 the list of all inpatients aging 
at least 18 years old, admitted with definite diagnosis of acute pulmo
nary embolism in two tertiary centers in northwest of Iran were 
abstracted. (Shahid Madani Heart Hospital and Ayatollah Taleghani 
hospital, two university-affiliated referral centers in Tabriz and Urmia 
respectively, in Iran). We used International Classification of Diseases 
(ICD) appropriate codes by a computer-assisted search. Patients with 
chronic pulmonary embolism or non-thrombotic pulmonary embolism 
were excluded from this study. Finally, 604 consecutive patients with 
acute PE, diagnosed by computerized tomography (CT) angiography 
(Siemens 32 and 64 slice computed tomography scanners) were 
included in this study. In-hospital mortality was defined as any death in 
patients admitted with pulmonary embolism during hospital course, 
after excluding mortality due to other causes such as bleeding or stroke. 
Heat-map correlation for dataset features is represented in Fig. 2. 

4.2. Study features and outcome 

The study included four laboratory tests, 12 physiological time series 
vital indicators, including heart rate, blood pressure, oxygen saturation, 
and a history of heart failure, chronic obstructive pulmonary embolism, 
syncope, right ventricular enlargement, and S1T3Q3 in the patient’s 
electrocardiogram, taking fibrinolytic therapy, in hospital death, 
admission days and embolectomy treatment and finally home mortality, 
as well as 2 general descriptors (age and gender). When the patient was 
admitted to the hospital, demographic data was gathered. The moni
toring equipment in the ICU took automatic measurements of the vital 
signs continuously, and the medical personnel checked the accuracy of 
the readings. Multiple observations were made during laboratory 

Fig. 1. Process of converting the clinical data to decision using ma
chine learning. 

Fig. 2. The framework of early death mortality prediction.  

S.-A. Sadegh-Zadeh et al.                                                                                                                                                                                                                     



Computers in Biology and Medicine 167 (2023) 107696

4

testing, and in some situations, these observations were made only once, 
more than once, or not at all. Each observation had a time-stamp 
attached to it that showed the time it was made in hours and minutes. 
The clinically significant factors in the dataset are displayed in Table 1. 
Univariate and multivariable logistic regression analysis for Mortality is 
represented in Table 2. 

4.3. Data pre-processing 

Data pre-processing has been shown to begin with data cleaning, 
which corrects inaccurate, noisy, or inconsistent initial records [40–42]. 
The data format was standardised, redundant or mismatched elements 
were deleted, and outright outliers were given null values. The volume 
of numerical data can be intuitively understood using visualisation ap
proaches. The predictor variables were represented graphically using a 

boxplot approach, which also revealed whether any data still fell outside 
the upper and lower quartiles and, if so, replaced any such outliers with 
the maximum and minimum values of the normal range. Real data al
ways has a high rate of missing data. While the data from the prior time 
was used to pad the current missing data in time series vital signs, the 
median was utilized to fill in the gaps in laboratory tests. 

To transform category values into numerical types is the goal of data 
encoding, gender was encoded as a binary variable in this study (0 =
female, 1 = male). The binary class (0 = patient died, 1 = patient sur
vived) used to describe the model output’s representation of patient 
mortality. The min-max normalising approach was used to rescale the 
range in for each feature. 

Fig. 3. Heat-map correlation for dataset features.  

Table 1 
Variables of pulmonary embolism mortality prediction.  

Variables Total (n = 604) No mortality (n = 542) Mortality (n = 62) p-value Missing (%) 

age 61.90 ± 17.18 65.56 ± 17.46 61.48 ± 17.11 0.076a 0(0%) 
Lymphocyte 19.22 ± 8.96 19.45 ± 8.39 17.20 ± 12.83 0.182a 0(0%) 
Neutrophil to lymphocyte ratio 5.92 ± 5.08 8.76 ± 8.09 5.59 ± 4.52 0.003a 0(0%) 
Mean platelet volume 9.98 ± 0.91 10.30 ± 0.93 9.94 ± 0.90 0.003a 0(0%) 
Oxygen saturation 85.93 ± 9.22 86.40 ± 8.63 81.81 ± 12.70 0.007a 0(0%) 
Smoking 81 (13.4%) 72(13.3%) 9(14.5%) 0.787b 0(0%) 
Neutrophil 73.94 ± 9.65 73.51 ± 9.39 77.68 ± 11.06 0.001a 0(0%) 
Hypertension 244 (40.4%) 215(39.7%) 29(46.8%) 0.280b 0(0%) 
Gender(F/M) 297/307 259/283 38/24 0.044b 0(0%) 
Congestive heart failure 52(8.6%) 45(8.3%) 7(11.3%) 0.427b 0(0%) 
Chronic obstructive pulmonary disease 55(9.1%) 51(9.4%) 4(6.5%) 0.640c 0(0%) 
Syncope 66(10.9%) 62(11.4%) 4(6.5%) 0.287c 0(0%) 
S1T3Q3 213(35.3%) 187(34.5%) 26(41.9%) 0.246b 0(0%) 
Right ventricular enlargement 403(66.7%) 352(64.9%) 51(82.3%) 0.006b 0(0%) 
Blood pressure ≤90 47(7.8%) 35(6.5%) 12(19.4%) <0.001b 0(0%) 

≥100 520(86.1%) 481(88.7%) 39(62.9%) 
90–100 37(6.1%) 26(4.8%) 11(17.7%) 

Heart rate <100 313(51.8%) 280(51.7%) 33(53.2%) 0.815b 0(0%) 
≥100 291(48.2%) 262(48.3%) 29(46.8%) 

Fibrinolytic 124(20.5%) 105(19.4%) 19(30.6%) 0.037b 0(0%) 
Embolectomy 29(4.8%) 21(3.9%) 8(12.9%) 0.002b 0(0%) 
Admission days 9.75 ± 6.52 8.31 ± 13.79 9.91 ± 5.07 0.366a 0(0%)  

a Independent Samples Test. 
b Chi-Square Tests. 
c Fisher’s Exact Test. 
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4.4. Machine learning algorithms 

Artificial Neural Networks, Support Vector Machines, Decision 
Trees, Random Forests, and Adaptive Boosting were five machine 
learning methods that we used in this study to predict the mortality of 
pulmonary embolism. These algorithms were chosen due to their 
effective implementation and simple performance [43,44]. 

Cross validation has been used to evaluate and find the best hyper
parameters, and the most data (80% of the total data) was divided into 
four parts and finally the test data was measured with the best hyper
parameters. A simple MLP was used for neural networks and it had a 
hidden layer. MLPs may consist of several layers and each layer has a 
certain number of perceptron’s. In each perceptron, the values of the 
previous columns are multiplied by their weights and finally added 
together, and the final value may be included in an activation function. 
Scikit-learn and TensorFlow were used for implementation. 

The SVM algorithm looks for the best decision boundary with the 
largest margin. Margin is the distance of the closest data points to the 
decision boundary. One of the most important parameters of this algo
rithm is Kernel. In this study, it is only from RBF or Radial basis function, 
Polynomial and Linear kernels. Kernel is a mathematical method to in
crease the dimensions of the dataset so that calcification can be done 
with a decision boundary. Decision trees are made by nodes and leaves. 
During the training of the model, a feature is measured in each node, so 
that the node is divided into two parts based on that, so that the data 
points go to a certain path. Finally, each path reaches a leaf where 
classification is done [45]. 

Random forest is called ensemble algorithm and belongs to the 
category of bagging algorithms. In simple words, random forest includes 
a wide network of decision trees, which explains the name of this al
gorithm. To train each of these decision trees, parts of the data are 
selected randomly. Finally, for the prediction of a data point, the result 
of each decision tree is aggregated. Adaboost stands for Adaptive 
boosting, and this algorithm, like random forest, is an ensemble algo
rithm, and the only difference with Random forest algorithm is that 
when training the model, the data is not randomly separated, but the 
entire dataset is given to each model. Each model is called a weak 
learner and the consensus of these models includes the Adaboost algo
rithm. In each iteration when the dataset is used to train weak learners, 
the weights of the data are updated [46]. 

Also, due to the lack of data balance, data augmentation is felt. In this 
study, three methods were used for this purpose: oversampling, under- 
sampling, and oversampling and under-sampling combined. For 

oversampling, the ADASYN algorithm was used, which obtained the best 
result. Random under-sampling was used for under-sampling. For 
combined oversampling and under-sampling, SMOTEENN algorithm is 
used, where SMOTE is used for oversampling and ENN is used for under- 
sampling. In the following, these algorithms are described. 

ADASYN and SMOTE algorithms are similar in that they add syn
thetic data to the minority class, but their functions are different. 
SMOTE considers a new data point between two data points and de
termines the class of that new data point based on the neighbouring data 
points. The difference with SMOTE is that ADASYN considers the 
dispersion of minority class data points to perform oversampling. 
Because of this, ADASYN is suitable for datasets that have a lot of out
liers, and our dataset has a small amount of this problem. The random 
under sampler algorithm randomly removes data points of the majority 
class. The ENN or Edited nearest neighbour algorithm removes data 
points close to the decision boundary in the majority class. 

4.5. Model evaluation 

The most logical statistic for assessing classification model perfor
mance is predictive accuracy [47]. To assess the overall model perfor
mance, we also employed AUC, recall, F1-score, and precision. 
Considering that medical research usually has imbalanced datasets and 
hospital death is important for us, we have to use AUC, recall, f1_score, 
and precision measurement techniques. Precision is a measure of hos
pital deaths that are correctly predicted. 

precision=
Number of hospital death correctly predicted

Number of people predicted to die 

Recall is a measure of hospital deaths that are correctly predicted on 
the total number of people who actually died. 

recall=
Number of hospital death correctly predicted

Number of hospital death at the dataset 

F1_score is a measure that tries to maintain a middle ground between 
precision and recall. 

f 1 score= 2 *
recall*precision

recall + precision 

Area under the ROC Curve is referred to as AUC. roc is the graph of 
the ratio of FPR (false positive rate) to TPR (true positive rate), where 
positive is hospital death. TPR is the rate of Recall and FPR is the 
complementary measure of specificity. specificity is the measure of 

Table 2 
Univariate and multivariable logistic regression analysis for Mortality.  

Variable Univariate multivariate 

Unadjusted OR 95% CI P-valuea Adjusted OR 95% CI P-valuea 

Neutrophil count 1.052 1.020–1.085 0.001 1.002 0.958–1.047 0.944 
Lymphocyte count 0.968 0.937–1.001 0.060  
Neutrophil to lymphocyte ratio 1.083 1.037–1.131 <0.001 1.081 1.006–1.161 0.034 
Mean platelet volume 1.492 1.141–1.950 0.003 1.509 1.123–2.027 0.006 
Smoking 1.108 0.524–2.34 0.787  
Hypertension 1.337 0.789–2.266 0.281 
Age 1.015 0.998–1.032 0.078 
Gender(female) 1.730 1.010–2.963 0.046 2.610 1.429–4.766 0.002 
Congestive heart failure 1.406 0.605–3.268 0.429  
Chronic obstructive pulmonary disease 0.664 0.232–1.904 0.446 
Syncope 0.534 0.187–1.521 0.240 
Heart rate 1.065 0.629–1.803 0.815 
bloodPressure (≥100) 0.192 0.088–0.417 <0.001 0.233 0.101–0.539 0.001 
ST3Q3 1.371 0.803–2.340 0.247  
Oxygen saturation .961 0.940–0.983 <0.001 0.964 0.941–0.987 0.002 
Right ventricular enlargement 2.503 1.274–4.915 0.008 3.287 1.520–7.107 0.002 

+Chi-Square Tests. 
#Fisher’s Exact Test. 

a Logistic Regression. 
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people who are correctly predicted to be alive to the total number of 
people who are predicted to be alive. auc tells us how likely the model is 
to correctly distinguish hospital death from survival. 

5. Results 

The study aimed to predict hospital deaths using machine learning 
models, including decision trees, random forests, adaptive boosting, 
support vector machines (SVM), and neural networks using multilayer 
perceptron (MLP). The dataset used had a high imbalance of hospital 
death class, and different oversampling techniques were explored. The 
random-over-sampler, ADASYN, and SVM-Smote techniques were cho
sen, as they showed the best results in overcoming the dataset’s class 
imbalance. The hyperparameters for each model were identified using 
grid search. 

The decision tree model was trained with hyperparameters, 
including max_depth = 5, max_leaf_nodes = 13, and min_samples_leaf =
9. The SVM model’s hyperparameters included C = 1, gamma = 1, and 
kernel = "poly." The neural network model using MLP had 20 layers, 
with eight neurons per layer, solver Adam, and a maximum of 1000 it
erations. The adaptive boosting approach used n_estimates = 50. 
Finally, the random forest model had hyperparameters max_features =
14 and n_estimaters = 14, which yielded the best accuracy in predicting 
death. 

The modelling outcomes were displayed in Fig. 4, showing the per
formance of each machine learning model used. The results indicated 
that the random forest model had the best accuracy in predicting hos
pital deaths. 

The ROC curve was used to evaluate the performance of each ma
chine learning model, as shown in Fig. 5. The AUC values for the 
decision-tree model, MLP, adaptive boosting, and SVM were 0.771, 
0.794, 0.872, and 0.846, respectively. The adaptive boosting model 
showed the highest AUC value of 0.872, indicating the best predictive 
performance in comparison to other models. 

The experiments found that the random forest model with hyper
parameters max_features = 14 and n_estimaters = 14 provided the best 
accuracy in predicting hospital deaths. The study also identified the 
usefulness of oversampling techniques such as random-over-sampler, 
ADASYN, and SVM-Smote in handling the high class imbalance in the 
dataset. These findings can be valuable for healthcare professionals in 
improving patient care and management by providing early predictions 
of hospital mortality. 

Fig. 6 presents the results of these experiments performed without 
implementing oversampling, enabling readers to perform a comparative 
analysis with the findings shown in Fig. 4, which leveraged the advan
tages of oversampling. Importantly, the outcomes achieved through 
oversampling demonstrate a significant improvement, highlighting its 
substantial contribution to enhancing our results. 

6. Discussion 

In this study, multiple oversampling techniques were applied to 
different machine learning models to improve the performance of the 
models in the task of early mortality prediction in pulmonary embolism. 
The choice of oversampling technique for each model was based on the 
characteristics of the algorithm and the nature of the data. For instance, 
the decision tree model was trained using SVM-SMOTE, a hybrid method 
that combines the Support Vector Machine (SVM) algorithm with Syn
thetic Minority Over-sampling Technique (SMOTE), while random 
oversampling was used for neural networks. The evaluation results 
showed that each oversampling technique had a different impact on the 
performance of the models, highlighting the importance of selecting the 
appropriate technique for each algorithm. 

One of the challenges in the early mortality prediction task is the 
imbalance of the death class, which can affect the performance of the 
models. To address this issue, the oversampling technique was applied 
to balance the distribution of samples among the classes. The results 
showed that the random forest model with random oversampling had 
the best performance among the five models evaluated. The evaluation 
metrics, such as accuracy, f1_score, precision, and recall, indicated that 
the model with oversampling was highly reliable for predicting the 
death class. The high accuracy and precision, combined with high recall, 
suggest that the model can predict the death class with a high degree of 
accuracy, while minimizing the false positives and false negatives. Fig. 4. The accuracy value and the f1-score value for the output of the models 

using oversampling. 

Fig. 5. ROC curve for five machine learning models: decision tree, random 
forest, adaptive boosting, svm and neural network. 

Fig. 6. The accuracy value and the f1-score value for the output of the models 
without oversampling. 
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The observed disparity in accuracy values between Fig. 4, which 
represents models with oversampling, and Fig. 6, which portrays models 
without oversampling, raises important insights into the impact of 
oversampling techniques in the context of machine learning. Firstly, it’s 
essential to acknowledge that oversampling is primarily employed to 
address class imbalance issues within datasets, ensuring that the mi
nority class has a sufficient number of instances for the model to learn 
from. However, it’s evident from the results that oversampling hasn’t 
universally improved the models’ predictive accuracy. In the case of the 
decision tree, adaptive boosting, and artificial neural network, accuracy 
values have deteriorated with oversampling. This counterintuitive 
outcome suggests that oversampling may have introduced noise or 
increased the complexity of the datasets, thereby hampering the models’ 
ability to generalize effectively. It also emphasizes that addressing class 
imbalance is not a one-size-fits-all solution and should be applied judi
ciously, considering the specific characteristics of the data and the 
learning algorithms. 

Secondly, this discrepancy between oversampling and non- 
oversampling results highlights the importance of evaluating machine 
learning models in a comprehensive and context-specific manner. Ac
curacy alone may not be the sole performance metric to rely on. It’s 
imperative to consider other evaluation metrics such as precision, recall, 
F1-score, or area under the ROC curve, as well as conducting a thorough 
analysis of false positives and false negatives. In some cases, even if 
accuracy declines with oversampling, the model’s ability to correctly 
classify the minority class, as reflected in precision and recall, might 
significantly improve. Therefore, the decision to employ oversampling 
should be guided by a more nuanced understanding of the dataset and 
the specific objectives of the machine learning task, rather than a simple 
reliance on accuracy as the ultimate performance measure. 

To best of our knowledge, this is the first study comparing different 
models to find best method to predict mortality among patients with 
acute pulmonary embolism. We used different machine learning models 
to find which model could predict an adverse outcome according to data 
gathered from real population. In current predictive models, used in 
emergency rooms, because doctors have limited time and using many 
items for a scoring system can be complex and sophisticated, it interferes 
with on-time decision making, and could affect medical care adversely. 
Hence, only limited items are used for outcome prediction, so that 
physicians could use it simply and correctly. By development of machine 
learning based on artificial intelligence, we can use all items, affecting 
patients’ health, without any mistake and time wasting. In this situation 
we can have good control on all aspects of patient’s health, the main 
disease and comorbidities could be aggravated during hospital course. 
On the other hand, medical data has its own characteristics which could 
be totally different from data gathered in physics and mathematics. So, it 
is important to find best models in each situation. 

In this study, by using different machine learning models, we used 
four laboratory tests, eleven physiological time series vital indicators, 
past medical history, and treatment data; including heart rate, blood 
pressure, oxygen saturation, and a history of heart failure, chronic 
obstructive pulmonary embolism, syncope, right ventricular enlarge
ment, and S1T3Q3 in the patient’s electrocardiogram, taking fibrinolytic 
therapy, admission days and embolectomy treatment, as well as 2 gen
eral descriptors (age and gender), totally 17 items to predict in-hospital 
mortality. 

Artificial Neural Networks, Support Vector Machines, Decision 
Trees, Random Forests, and Adaptive Boosting were five machine 
learning methods that we used in this study to predict the mortality of 
pulmonary embolism. Our results showed that Random Forests model 
was the best model in predicting mortality of patient with acute pul
monary embolism. Rigatti showed that the Random Forest technique as 
a regression tree technique could achieve an excellent predictive accu
racy. By using colon cancer data from 66,807 patients, a Cox model and 
a random forest models were developed and were compared to find their 
predictive power. This study showed that both models performance was 

the same [48]. Li et al. also used a random forest model. By using a large 
colorectal cancer datasets from the US and China, this study showed that 
proposed random forest model had excellent prediction power in 
discrimination and calibration of patients using multicenter clinical data 
[49]. Velazquez et al. used nine clinical features including demographic 
data, information about brain volume, and cognitive testing. They also 
used oversampling to balance the initially imbalanced classes then 
started training the model with 1000 estimators. They showed that a 
random forest model had a 93.6% accuracy in predicting progression of 
early mild cognitive impairment to Alzheimer’s Disease [50]. Mbo
nyinshuti et al. used a random forest model to predict the pattern of 
medicine consumption for treating non-communicable diseases man
agement by using historical consumption data. This study showed that 
this model had seventy-eight percent accuracy rate for the training set 
and a 71% accuracy rate for the testing set [51]. 

The proposed machine learning approach can effectively predict the 
mortality of patients with acute pulmonary embolism. The authors 
achieved promising results with Random Forests model and demon
strated the importance of oversampling techniques in handling imbal
anced data. The research findings have practical implications in the 
medical field and can assist clinicians in making informed decisions 
about the treatment of patients with acute pulmonary embolism. 

7. Conclusion 

In conclusion, this study has advanced our understanding of pre
dicting early mortality in pulmonary embolism patients through the 
application of oversampling techniques and diverse machine learning 
models. The findings underscore the significance of tailoring over
sampling methods to the specific characteristics of each algorithm and 
dataset. Importantly, this research highlights the potential of machine 
learning in enhancing the accuracy of mortality predictions for patients 
with acute pulmonary embolism, providing valuable insights for clinical 
decision-making. Among the models explored, the Random Forests 
model emerged as a standout performer, demonstrating its ability to 
effectively predict mortality by achieving high accuracy, precision, and 
recall rates. This success not only emphasizes the utility of machine 
learning techniques in prognostication but also holds promise for 
refining existing predictive models used in emergency medical settings. 
By leveraging the power of machine learning, healthcare professionals 
can harness a broader range of data to make more informed and accurate 
decisions regarding the management of patients with acute pulmonary 
embolism. Looking ahead, future research endeavours could delve into 
the exploration of alternative machine learning algorithms and novel 
oversampling techniques, with the aim of further enhancing the preci
sion of mortality predictions in this patient population. Moreover, the 
insights garnered from this study underscore the potential for machine 
learning to revolutionize healthcare decision support systems, paving 
the way for more personalized and effective patient care strategies. 
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