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Abstract  

This dissertation introduces an innovative structure aimed at improving anomaly detection 

and predictive analyses in Wireless Body Area Networks (WBANs), a crucial technology within 

the realm of digital healthcare. Motivated by the need to improve diagnostic precision and 

clinical decision-making, especially in environments constrained by the computational 

limitations of edge devices, this research aims to revolutionise patient monitoring systems. 

The research begins with a comprehensive review of current WBAN technologies and their 

applications in healthcare. It identifies a distinct gap in the ability of these systems to adapt 

to the dynamic and complex nature of patient health monitoring. Traditional WBAN 

methodologies, heavily reliant on static thresholds and centralised cloud-based processing, 

often fall short of effectively managing the nuanced and varied data derived from patient 

monitoring, leading to real-time responsiveness and energy efficiency challenges. 

The research progresses from static to dynamic threshold to address these challenges, 

enhancing the system's adaptability to fluctuating health indicators. The Multi-Level 

Classification Threshold Algorithm (MLCTA) was formulated to refine the classification of 

health-related data. The study subsequently presents a compound method that combines 

threshold-based techniques with linear regression analysis. This integration significantly 

bolsters the model's predictive capacity for health incidents by providing a more profound 

comprehension of vital sign patterns. When used in conjunction with actual patient data, this 

approach notably heightens the precision of health event forecasts. 

The framework includes a series of progressively advanced algorithms: The Modified Adaptive 

Local Emergency Detection (MALED) lays the groundwork with its adaptive response to health 

data changes. This is enhanced by the Differential Change Analysis (DCA), which introduces 

sensitivity to the rate of change in vital signs for early anomaly detection. The Local 

Emergency Detection Algorithm Using Adaptive Sampling (LEDAS) further optimises this 

framework by implementing adaptive sampling based on the patient's health status, ensuring 

efficient data collection. The pinnacle of this progression is the Sequential Multi-Dimensional 

Trend Analysis (SMDTA), which offers a comprehensive multi-dimensional analysis of health 

data, identifying intricate patterns and relationships among various vital signs for precise 

health predictions. Additionally, incorporating dynamic thresholds across these algorithms 

refines anomaly detection, making the system more flexible and responsive to changing 
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patient health dynamics. Together, these algorithms represent a significant leap from basic 

monitoring systems to advanced networks capable of sophisticated multi-dimensional health 

analysis. 

Empirical evaluation using actual patient data from clinical databases demonstrated the 

superior efficacy of the proposed framework. Notably, the hybrid approach combining linear 

regression with threshold-based methods achieved near 96% accuracy in anomaly detection, 

significantly reducing the false-positive rate to 2%. Furthermore, the optimised local 

emergency detection strategies led to an average 85% reduction in data transmissions, 

contributing to a 19% decrease in energy consumption compared to existing methods, 

thereby underscoring the system's suitability for energy-constrained environments. The 

results of this research highlight not only the potential of advanced WBAN systems in 

enhancing healthcare delivery but also pave the way for future developments in medical 

technology. The proposed framework and its algorithms open new avenues in clinical 

decision-making, offering robust, efficient, and user-friendly solutions for healthcare 

professionals and patients. 
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Chapter 1 

1. Introduction 

This chapter offers a comprehensive exposition of the distinctive traits and complexities 

associated with healthcare anomaly detection while delving into prospective solutions to 

surmount these challenges. Subsequently, it furnishes compelling reasons for delving into the 

targeted research domain, aligning the study's motivations with the broader landscape of 

anomaly detection in healthcare. Moreover, it addresses diverse hurdles encountered in 

customising anomaly detection techniques for specific applications. The research study's 

primary aim and objectives are expounded upon, laying the groundwork for the ensuing 

investigation. The adopted methodology to conduct this research is succinctly delineated, 

providing a clear and concise road map for the scientific inquiry. Furthermore, a succinct and 

cogent summation of the research study's significant contributions to knowledge is offered, 

highlighting its potential impact in advancing the frontiers of healthcare anomaly detection. 

Finally, concluding this chapter, a detailed outline of the report's organisation is presented, 

signposting the logical progression of the ensuing discourse. 

 

1.1 Background and Motivation 

The contemporary healthcare landscape is teeming with an array of challenges that 

necessitate innovative solutions. With an increasingly ageing global population, healthcare 

systems face mounting pressures [1]. These challenges encompass not only a surge in 

healthcare costs but also escalating queues for essential services and a disconcerting 

prevalence of delayed diagnoses. Considering the cost, astonishingly in the United States, 

healthcare spending jumped from $250 billion in 1980 to an astonishing $4.3 trillion in 2021 

[2]. Projections suggest continued growth, reaching an estimated $6.2 trillion by 2028 [3]. On 

the other hand, in the United Kingdom, healthcare spending has notably increased, with the 

National Health Service (NHS) net budget rising from £78.881 billion in 2006/07 to £202.9 

billion in 2021/22. Projections indicate planned expenditures of £182 billion for 2023/24 and 

£184.5 billion for 2024/25. Notably, per capita health spending in the UK surged from £2,106 

in 2015/16 to £4,188 in 2021/22 [4]. This dramatic growth mirrored globally, underscores the 
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pressing need for innovative strategies to navigate the ever-intensifying challenges of an 

ageing population and their profound impact on healthcare systems. 

In the face of these challenges, technology has emerged as a beacon of hope [5], offering a 

means to revolutionise patient care, treatment outcomes, and the overall efficiency of 

healthcare delivery. Among the myriad technological advancements, Wireless Body Area 

Networks (WBANs) [6] hold significant promise. These networks, comprising low-power, 

miniature wireless devices operating close to the human body, provide real-time health data 

collection, opening new horizons for patient care and well-being [7]. 

In 2019, the NHS acknowledged the transformative impact of technology on healthcare and 

the need for adaptation to benefit patients and caregivers [8]. This perspective is rooted in 

the shift towards an ageing population dealing with medical challenges [9, 10]. Consequently, 

hospitals grapple with mounting pressures, leading to increased queues for emergency care 

and a notable prevalence of incorrect diagnoses. Research from 1985 to 2020 indicates that 

more than a quarter of individuals experienced misdiagnoses [11]. Manual handling issues 

and extended waiting times in the United Kingdom's accident and emergency departments 

exacerbate these challenges. 

Healthcare, a critical domain, generates extensive data from various sources, offering the 

potential for improving patient care, treatment outcomes, and overall efficiency. However, 

the complexity and volume of healthcare data present challenges, including anomaly 

detection [12, 19-23] and process optimisation. Anomaly detection techniques play a vital 

role across domains, including healthcare, by identifying issues at early stages, enabling timely 

intervention, and improving outcomes. In healthcare, early detection [13] enhances 

treatment effectiveness, reduces costs, and eases the burden on the healthcare system. 

Despite their importance, current healthcare early detection techniques have limited 

accuracy, invasiveness, cost, and accessibility issues. Additionally, in the context of WBANs, 

sensors collect vital signs [14] data for further processing, which can be quite challenging 

when performed at the local node, mainly due to the traditional WBAN architecture. Typically, 

in the conventional architecture of WBANs, a bridging point is established between the sensor 

infrastructure network and the Internet. This bridging point primarily serves basic functions, 

such as facilitating the transformation of data between the Internet and sensor networks. 

Nevertheless, there is a need to provide various higher-level services, including local storage, 
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real-time local data processing, and decision-making, at the local node. This approach aims to 

minimise energy consumption and enable real-time decision-making capabilities while 

enabling the system to support seamless mobility. 

Therefore, this thesis addresses the challenges faced by resource constrained WBANs, aiming 

to enable an innovative approach to early anomaly detection. It accomplishes this by 

introducing a comprehensive WBAN architecture, an anomaly detection scheme, and 

optimisation for local emergency detection. Collectively, these enhancements improve the 

effectiveness of anomaly detection, fostering an energy-efficient environment. By 

implementing these proposed schemes, the thesis offers robust solutions for identifying 

anomalies and early emergencies in patients' healthcare data. Moreover, the unified 

framework reduces energy consumption throughout the network while maintaining a 

satisfactory level of reliability. 

 

1.2 Wireless Body Area Network: Applications and Requirement 

WBANs facilitate a wide range of innovative applications, which can be categorised based on 

their respective domains. WBANs find diverse applications in both the medical and non-

medical sectors. Figure 1.1 illustrates a more detailed classification of these applications 

within the medical and non-medical domains. 

 

Figure 1. 1: Applications of WBAN. 

In the medical field, WBANs serve diverse purposes, with applications ranging from wearable 

devices to implantable and remote-controlled systems. These applications can be further 

categorised based on the wearable or implanted techniques employed. Wearable or on-body 
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medical applications encompass health monitoring for rehabilitation, asthma management, 

electrocardiogram analysis, and sleep stage tracking. Additionally, they support remote 

control of medical devices like telemedicine systems and ambient assisted living. In the non-

medical domain, wearable applications extend to sports training, baby monitoring, and 

soldier fatigue assessment. On the other hand, implanted or in-body applications involve 

monitoring and reconfiguration of pacemakers, cardiovascular disease management, diabetic 

control, cancer detection, and retinal implants. As exemplified in Figure 1.2 [15], WBANs are 

utilised for patient monitoring, wherein multiple sensors are placed in clothing, vests, directly 

on the body, or even beneath the skin to measure vital signs like temperature, blood pressure 

(BP), heart rate (HR), ECG, and respiration rate. 

 

In the context of WBANs, two primary types of devices can be distinguished: 

• Wireless Sensor Node: This device is responsible for detecting and collecting data 

pertaining to physical stimuli. It processes the data when necessary and transmits it 

wirelessly. The wireless sensor node comprises various components, including sensor 

hardware, a power unit, a processing unit, memory, a transceiver, and a transmitter. 

• Wireless Actuator Node: Acting in response to data received from sensors or other 

sources, the wireless actuator node executes specific actions. It comprises actuator 

hardware, a power unit, a processing unit, memory, a transmitter, and a transceiver. 

• The wireless personal device serves as a central hub that aggregates data acquired from 

sensors and actuators. It processes the data when necessary and communicates the 

results to the user through an external gateway. This device encompasses essential 

components, including a processor, power unit, memory, transceiver, and more. 
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Figure 1. 2: Example of different sensors used in a WBAN. 
 

Existing WBAN standards include: - 

• Bluetooth. 

• Bluetooth low energy. 

• Zigbee. 

• IEEE 802.11. 

• IEEE 802.15.6. 

The healthcare application of WBANs necessitates several user-oriented requirements to 

ensure a standard level of satisfaction. These requirements encompass: 

1. Quality of Service: Due to its intimate connection to human well-being, the healthcare 

application demands a high standard of service and is capable of handling a vast amount of 

physiological data continuously. The WBAN should distinguish between critical and non-

critical data to maintain service quality. 

2. Real-time Performance: The WBAN is expected to operate in real-time, providing 

instantaneous support for critical healthcare situations. To achieve this, the data processing 

involved in the WBAN life cycle should be swift and uncomplicated to reduce processing time. 
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     WBAN 

Data acquisition 

Data processing 

 

Data transmission 
 

Figure 1. 3: Data flow for a typical WBAN 
 

3. Accuracy: Healthcare support mandates precision, given the critical nature of human well-

being events. The WBAN's processes should yield accurate data collection, processing, and 

transmissions, with algorithms effectively defining and distinguishing critical data. 

4. Mobility: To ensure smooth operation, the WBAN system development must consider 

patient mobility. System devices should be portable and easy to carry, allowing seamless 

connectivity with different communication channels and mediums during patient movement. 

 

Figure 1. 4: Typical WBAN mobility model 
 

5. Connectivity: Connectivity to the internet is essential for the WBAN system's development. 

The patient's ability to move freely necessitates continuous monitoring by the WBAN system, 

requiring various connection mediums beyond location constraints. 
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6. System Lifetime: Prolonging the system life is of utmost importance for WBAN healthcare 

applications. Careful measures must be employed to extend the wireless system's limited 

lifetime effectively. 

7. Robustness: To counter system failures and ensure data integrity, the WBAN should 

incorporate multi-sensor fusion, bolstering the robustness of the system. 

8. Security: Given the sensitive nature of medical information, WBAN healthcare applications 

must implement robust security mechanisms to safeguard data collection, processing, 

transmission, and storage. 

9. Privacy and Integrity: To protect patient privacy and maintain service integrity, privacy 

mechanisms should be employed within the WBAN healthcare application, thereby 

enhancing patient trust and acceptance of the system. 

10. Reliability: Every aspect of the user's concern should be met with reliability in WBAN 

healthcare applications, from the system's design and behaviour to its overall performance. 

Patients should be able to place their trust in the system with confidence. 

 

 

 

1.3 Aim and Objectives 

This research aims to develop a resilient clinical decision-making framework by harnessing 

collaborative data from sensors within resource-constrained WBANs for healthcare 

applications. Through early detection of anomalies, this integrated model aims to improve 

the precision and reliability of clinical decisions based on patient medical histories. The 

intention is to optimise clinical decision-making within the limited resource environment of 

WBANs, ensuring more effective and reliable healthcare outcomes. 

The study outlines the following objectives: 

• Conduct a comprehensive literature search on existing WBAN techniques and their 

diverse applications, encompassing healthcare, assisted living, fitness, exercise, 

emergency services, security, and remote monitoring, among others. 
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• Investigate the limitations of current WBAN systems concerning critical decision-

making that relies on sensor data in a resource-constrained environment. 

• Explore the challenges associated with implementing critical decision-making 

algorithms, including anomaly detection, local emergency detection, and adaptive 

sampling within the WBAN context. 

• Develop a reliable and robust decision-making framework based on collaborative data 

for bespoke applications, specifically tailored to the constraints of energy limited 

WBANs. 

• Devise a simple, user friendly anomaly detection method utilising sensor data within 

the WBAN environment. 

• Develop a method for optimising local emergency detection using WBANs. 

• Formulate a data reduction technique for low-power healthcare framework using 

WBAN technology. 

• Evaluate and compare the performance of the proposed unified framework against 

existing state-of-the-art techniques to gauge its efficacy and superiority. 

 

 

 

1.4 Research Methodology 

This section encompasses the methodologies utilised throughout the research process, 

incorporating extensive theoretical analysis, simulations, and experimentations. The study 

commenced with a thorough examination of the existing literature on WBANs and their 

diverse applications in healthcare systems, including clinical diagnosis, decision-making, 

assisted living, privacy and security, clinical prediction models, and healthcare frameworks. 

To fulfil the research objectives, a mixed-methods approach, combining both qualitative and 

quantitative methodologies, has been adopted. For experimental purposes, a customer 

clinical database has been employed, along with the use of large collections of recorded 

physiologic signals from PhysioBank [48], subject to ethical considerations and institutional 

validation. Figure 1.5 visually depicts the research methods employed in this study, outlining 

the various stages after the literature review. 
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Figure 1. 5: The main steps of methodology 

The research study progresses through distinct stages, as outlined below: 

• Investigation of existing research works to identify challenges pertaining to the design 

and optimisation of WBAN healthcare systems. 

• Formulation of research aims and objectives, leading to the development of an in-

depth research plan. 

• Accessing the clinical database to comprehend the information and preparing the data 

set for experimentation. 

• Development of a WBAN system model tailored for healthcare applications, 

specifically for patient medical condition decision-making. 

• Validation of the proposed WBAN framework's reliability through the utilisation of an 

appropriate simulation platform 

• Design and development of a low-power and secure WBAN framework 
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• Evaluating the reliability of the proposed framework compared to other existing works 

using appropriate simulation platforms. 

 

 

 

1.5 Limitations of Existing Solutions 

A wide variety of healthcare solutions utilising wireless healthcare systems for anomaly 

detection are available, with research often limited to specific domains or services, including 

patient monitoring [104-107, 111], foetal health monitoring [108], medication management 

[112], elderly care and fall detection [109], surgical and anaesthesia monitoring [110], 

telemedicine and virtual consultations [113], infection control [114], and behavioural health 

monitoring [106]. There is no precise standard found in the literature for generalised 

healthcare anomaly detection, which can eventually provide patient-specific solutions. Most 

of these solutions address a specific challenge in detecting anomalies during ongoing 

incidents. They lack the capability to model each user state individually and predict future 

anomalies in advance. Additionally, very few of them support the storage and reuse of data 

for future reference. Consequently, most systems are unable to accurately generate 

personalised insights due to their limited ability to preserve long-term histories. Existing 

monitoring systems exhibit high false alert rates and rely on manual observations by medical 

experts following anomaly detection. While some models can accurately predict changes in 

specific physiological parameters [115], building models that monitor and correlate multiple 

bio-signals while retaining interpretability is challenging due to the evolving and variable 

nature of biomedical data over time. Limited research has also aimed to predict various 

clinical events using multi-parameter data from a substantial patient pool [116]. Prior studies 

often employ a small data sample (a few megabytes) from a limited patient group, offer short 

forecasting windows (typically one hour), and focus on a single parameter like blood pressure 

[117] or ECG [118]. These models utilise a small feature set for training and exclusively 

forecast specific clinical events. As patient populations grow, these systems encounter higher 

misclassification rates, especially when data uncertainty rises. 

A broad range of energy consumption solutions have been explored on the wireless 

healthcare platform. These solutions encompass various techniques, including sensor set 
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selection [119, 120, 136], context-based pull [121, 122], data reduction [34, 123, 124, 137], 

radio optimisation [125, 126], energy-efficient routing protocols [127-129, 138], sleep/wake 

schemes [130, 131], feature selection [132, 133], and adaptive classifier selection [134, 135, 

139]. However, not all of these techniques are suitable for the general WBAN architecture, 

where anomaly detection is intended to be processed at the local node. Among various 

energy-efficient techniques, reducing data transmission can significantly contribute to 

lowering power consumption. Data reduction is particularly suitable for wireless systems 

where anomaly detection can be performed at the local node. Adaptive sampling [31, 140–

148] stands out as one of the most suitable techniques in this context. However, it's noted 

that most of the existing research lacks a clear focus on practical applications. This 

dissertation aims to address the issue of detection quality and implement improved adaptive 

solutions to achieve better energy savings compared to current solutions. A common problem 

in the majority of the existing anomaly detection approaches in medical WBANs is the 

disregard for a fit in real-world medical conditions. The study also found that there is a lack 

of simple, user-friendly solutions that can be run close to the data source and save energy. 

The research issues mentioned above for this thesis are summarised in Figure 1.6. 

Wireless system 
(WBAN)

Early notification

Single or multiple patients

Patient-specific 
knowledge

Anomaly detection
Power 

consupmtion

Data transmission

Data (Vital signs)

Physicians

Clinical prediction

Research problem 1 Research problem 2

Research problem 3

Research problem 4  

Figure 1. 6: Research problems 
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1.6  Research Contributions 

The following list is a summary of the contributions to knowledge achieved in this 

thesis    

• Developed a novel WBAN framework integrating personalised monitoring with energy 

conservation. Algorithms like MALED and SMDTA dynamically adapt to individual 

patient profiles, while edge computing enables efficient near-source data processing. 

This approach innovatively addresses energy constraints in WBANs, enabling quicker 

and more effective responses to patient health changes, thus saving energy and 

enhancing system responsiveness. 

 

• Devised an innovative resource optimisation strategy within WBANs, exemplified by 

the LEDAS algorithm. This strategy intelligently adjusts the data acquisition rate based 

on the urgency of patient conditions, conserving energy and computational resources. 

By modulating data collection frequency in response to patient health status, LEDAS 

ensures effective monitoring without excess energy use, marking a significant 

advancement in WBAN sustainability. 

 
 

• Enhanced clinical decision-making in WBANs with the introduction of advanced data 

analysis algorithms, notably DCA. This novel method facilitates early anomaly 

detection and comprehensive health trend analysis, enabling quicker and more 

accurate clinical interventions. Its innovation lies in processing complex health data in 

real-time, significantly improving upon traditional health monitoring systems. 

 

• Pioneered a range of novel methods, including adaptive threshold algorithms and data 

reduction techniques, to optimise emergency detection and data management in 

WBANs. Techniques such as differential change analysis and multi-dimensional trend 

analysis markedly improve the WBAN's capability to detect emergencies efficiently 

while minimising the volume of data transmitted. These methods enhance WBAN 

operational efficiency and conserve critical resources like bandwidth and power. 
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This thesis makes significant contributions within the context of the limitations identified in 

the existing literature, as summarised in Figure 1.7. 

 

Research problems Research contributions Chapters

Wireless system 
(WBAN)

Early notification

Single or multiple patients

Patient-specific 
knowledge

Anomaly detection
Power 

consupmtion

Data transmission

Data (Vital signs)

Physicians Learning model for knowledge 
extraction and anomaly 

detection 

Learning model for patient-
specific  prediction model

Power efficient model adopting 
data reduction concept

Chapter 3

Chapter 3

Chapter 4

Clinical prediction

Research problem 1 Research problem 2

Research problem 3

Research problem 4  

Figure 1. 7: An overview of the contributions made by this thesis against the limitations 
identified in the existing literature. 

 

 

1.7 Thesis Organisations  

The thesis comprises several well-organised chapters, structured as follows: 

Chapter 1:  

In this chapter, the project background and motivation are expounded, providing insight into 

the driving force behind the research. The objectives and aims of the study are clearly defined, 

while a concise research method and scope of applications are presented. Additionally, a 

summary of the contributions made to knowledge is articulated. 

 

Chapter 2: 

This chapter presents a comprehensive survey of notable state-of-the-art techniques for 

anomaly detection and early emergency detection. Additionally, energy-efficient approaches 
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within anomaly detection are discussed. The chapter also addresses the limitations of existing 

techniques in the context of resource-constrained scenarios. 

Chapter 3: 

This chapter introduces the proposed system model, encompassing the theoretical 

underpinnings of the research, including performance analysis techniques and system model 

validation. Furthermore, this chapter outlines a series of enhancements, moving from static 

threshold algorithms to dynamic threshold algorithms. Also depicted is the multilevel 

classification of patient data status and the use of a hybrid model for clinical predictions. 

 

Chapter 4: 

This chapter explains the suggested local emergency detection method, which uses a novel 

and more straightforward threshold strategy. Moreover, it discusses the proposed methods 

designed to optimise decision-making through adaptive sampling, intending to minimise data 

transmission and boost the system's energy efficiency. 

 

Chapter 5: 

This concluding chapter provides a comprehensive summary of the thesis, encompassing an 

overview of the proposed schemes. Additionally, it discusses the future scope of work, 

building upon the concepts and frameworks presented in this research. Finally, concluding 

remarks are provided to highlight the significance and potential impact of the research. 

 

The subsequent chapter presents an illustration of state-of-the-art techniques concerning 

anomaly detection, early emergency detection, and power consumption, among other 

relevant aspects. 
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Chapter 2 

2. State-of-the-art in Healthcare Anomaly Detections  

2.1 Introduction  

This chapter explores the state of the art of existing healthcare anomaly detection in a 

resource-constrained and heterogeneous environment. In health care, technology plays a 

vital role in almost all processes, from the start to the end of the patient journey. The recent 

development of data analytics for medical healthcare and its potential for patients and 

medical professionals are analysed. In the existing literature, emerging techniques for 

healthcare such as anomaly detection, local emergency detection, and decision making are 

presented. The existing scholarly knowledge is reviewed for healthcare applications to find 

gaps and limitations.  

This exploration into the state-of-the-art in healthcare anomaly detection and optimisation 

will delve into the latest breakthroughs, methodologies, and real-world applications. This will 

uncover how advanced machine learning algorithms can sift through vast medical datasets to 

identify anomalies indicative of diseases, adverse events, or unusual patterns in patient 

health. 

 

2.2 Anomaly Detection Technique 

In today's rapidly evolving technological landscape, the volume and complexity of data 

generated are greater than ever before. Within this data deluge, hidden among the normal 

patterns, anomalies lurk. These anomalies represent abnormal events or outliers that deviate 

significantly from the expected behaviour. Detecting these anomalies is of paramount 

importance in various industries, as they can signify critical issues, security breaches, or 

unusual events that demand immediate attention. 

Anomaly detection [15, 19-23, 26-27, 29, 97], also known as outlier detection [19], is the 

process of identifying these rare occurrences within datasets. Leveraging cutting-edge 

machine learning techniques [16], statistical methods [17], and data analytics, anomaly 

detection algorithms seek to highlight deviations that might otherwise go unnoticed. 
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This introductory exploration into anomaly detection will delve into the fundamental 

principles, methodologies, and real-world applications of this crucial field. By understanding 

the intricacies of anomaly detection, it is better to safeguard against potential threats, 

enhance predictive maintenance, optimise business processes, and make informed decisions 

based on actionable insights. 

Anomalies can be detected within a system for various reasons, including abnormal or 

emergency readings, faulty nodes, network failures, and other malfunctions. The process of 

anomaly detection can be distinguished based on the indicators utilised, with two primary 

categories being parametric and non-parametric approaches [20].  Parametric methods, also 

known as statistical methods, are well-suited for stable environments where data remains 

relatively unchanged. Conversely, non-parametric methods are more appropriate for 

dynamic environments, where the statistical distribution is either unknown or subject to 

frequent changes. Parametric methods offer quicker detection, whereas non-parametric 

methods can be more challenging to process. Figure 2.2 [20] presents a concise summary of 

the basic classification of anomaly detection methods. 

 

 

 

 

 

 

 

Figure 2. 1: Anomaly detection classification summary 

 

Anomaly detection techniques have found wide-ranging applications across diverse domains, 

offering valuable insights by identifying patterns and instances that deviate significantly from 

the norm. In this context, anomaly detection serves as a powerful tool for enhancing security, 

accuracy, and efficiency in various fields. From safeguarding network infrastructures against 
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cyber threats to detecting fraudulent activities and ensuring patient safety in healthcare, 

anomaly detection plays a pivotal role in addressing critical challenges. 

This exploration delves into the multifaceted applications of anomaly detection techniques, 

categorising them into distinct sub-domains that highlight their relevance and impact. From 

the realm of cybersecurity [23], where intrusion detection and network monitoring shield 

against unauthorised access, to the financial sector, where fraud detection [49] prevents 

economic losses, anomaly detection offers proactive measures to mitigate risks. 

In healthcare [21], anomaly detection contributes to patient monitoring, early disease 

detection, and medication error prevention, fostering improved clinical outcomes. 

Furthermore, industrial domains [22] leverage these techniques to monitor equipment 

health, enhance manufacturing quality control, and predict maintenance needs, thus 

ensuring operational continuity and resource optimisation. 

Across a diverse spectrum of anomaly detection techniques, applications are meticulously 

categorised according to distinct domains. This categorisation is elucidated by a hierarchical 

structure where primary branches delineate specific application domains, and subordinate 

sub-branches encapsulate refined sub-domains or precise applications intrinsic to each 

domain.  

In the realm of healthcare [21], anomaly detection techniques hold substantial promise for 

enhancing patient safety, early disease detection, and overall clinical efficacy. This branch 

encompasses applications [18] where anomaly detection contributes to accurate diagnostics 

and proactive healthcare management. These areas encompass patient monitoring, which 

involves detecting anomalies in patients' physiological data or health records; disease 

outbreak detection focused on identifying abnormal patterns in disease occurrence; 

medication error detection, targeting errors in medication administration or dosage; and 

medical image diagnosis, identifying anomalies in medical images like X-rays or MRI scans; 

clinical trial safety, involving the monitoring of clinical trial data for safety-related anomalies; 

EHR anomaly detection, which detects anomalies in electronic health records; early disease 

detection, aimed at identifying anomalies in data that may indicate early disease 

development; and remote health monitoring, which entails monitoring patients' health 

remotely and detecting anomalies. 
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In the realm of cybersecurity [23], anomaly detection emerges as a potent tool for 

safeguarding digital landscapes against intrusive and malicious activities. The branch 

encompasses a range of applications [48] that target diverse anomalies within network 

ecosystems, ensuring the fortification of digital infrastructures against potential threats. The 

most common anomalies occur in various areas, including intrusion detection, which detects 

unauthorised or malicious activities in computer networks; insider threat detection, which 

identifies abnormal behaviour by authorised users indicating insider threats; denial of service 

detection, which identifies attempts to overwhelm a network or service with excessive traffic; 

botnet detection, which detects networks of compromised devices used for malicious 

activities; malware detection, which identifies the presence of malicious software or code; 

and DNS anomaly detection [95], which identifies anomalies in domain name system (DNS) 

traffic. 

Fraud detection constitutes a pivotal application of anomaly detection techniques [49], 

encompassing a range of domains where anomalies indicate potentially fraudulent activities. 

The branch underscores the significance of anomaly detection in preserving financial integrity 

and curtailing fraudulent behaviour. The most common fraud detection techniques 

encompass credit card fraud detection, which identifies fraudulent credit card transactions; 

insurance claims fraud detection, which detects fraudulent insurance claims; tax evasion 

detection, which identifies anomalies in tax-related data; payment fraud detection, which 

detects fraudulent payment transactions; healthcare fraud detection, which identifies 

fraudulent activities in healthcare claims and billing; e-commerce fraud detection, which 

detects anomalies in online shopping transactions; and identity theft detection, which 

identifies unauthorised use of personal information. 

The industrial domain benefits significantly from anomaly detection techniques [50], which 

play an essential role in maintaining operational efficiency, quality control, and predictive 

maintenance. This branch encompasses applications where anomaly detection optimises 

industrial processes and equipment management. Most common industrial anomaly 

detection techniques are equipment failure detection, that identifying anomalies in industrial 

machinery or equipment to prevent failures; manufacturing quality control that detecting 

defects in manufacturing processes; predictive maintenance that identifying potential 

equipment failures in advance for maintenance scheduling; industrial process anomalies that 
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detecting anomalies in manufacturing and production processes. energy consumption 

anomalies that identifying deviations in energy consumption patterns. 

As discussed before clinical decision-making from data involves using information derived 

from various sources, such as patient records, medical imaging, and research studies, to 

inform healthcare professionals' choices regarding diagnosis, treatment, and patient care. By 

analysing and interpreting this data, clinicians can gain insights into a patient's condition, 

predict potential outcomes, and make informed decisions that align with evidence-based 

practices. This data-driven approach enhances the accuracy of diagnoses, optimises 

treatment plans, and ultimately contributes to improved patient outcomes while ensuring 

that medical decisions are grounded in objective information and current medical knowledge. 

In the work presented in [31], a proposition is put forth wherein a data management 

framework is introduced to facilitate the sampling of sensor data and subsequent decision-

making contingent upon the data's value. This endeavour incorporates a decision matrix and 

employs fuzzy set theory at the coordinator level, introducing a data fusion model. However, 

it is notable that this particular undertaking fails to account for other influential factors such 

as the patient's preceding medical history, physical activity, and individual attributes 

encompassing height and weight, amongst others. An energy-efficient approach that aims to 

curtail energy consumption, is adopted by executing sampling prior to decision-making; 

however, this strategy potentially compromises the authenticity of the data. Another 

initiative, depicted in [32], endeavours to establish a collaborative medical decision-making 

process; nevertheless, it confines its methodology solely to interview-based assessments. 

Given the inherent nature of this approach, there exists an inherent temporal delay, 

precluding the provisioning of instantaneous feedback. A parallel pursuit, stemming from 

aerospace multisensory data fusion concepts and expounded upon in [33], leverages multiple 

datasets to formulate a data fusion model enabling decision-making external to the confines 

of the sensor coordinator. Regrettably, even this endeavour falls short in delivering real-time 

feedback, as it abstains from harnessing real-time data derived from sensors. Within the 

domain of [34], a framework elucidating collaborative computing and multi-sensor data 

fusion is posited, underscoring a system reliant on a multisensory data fusion scheme for the 

automated detection of handshakes between two individuals, while additionally assessing the 

heart rate in relation to the emotional comportment of the patient. Notably, although this 
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framework integrates data fusion techniques, its suitability for medical decision-making 

within an assisted living context remains constrained by its absence of real-time feedback. 

The realm of sensor-based decision-making has witnessed diverse manifestations across 

various domains, addressing applications ranging from monitoring water status in rivers and 

lakes [35], to optimising water pump efficiency [36], and ameliorating energy consumption 

[37]. 

The imperative of real-time clinical decision-making, replete with the potential to avert 

patient mortality and empower independent living, looms paramount. Indeed, meticulous 

consideration of an exhaustive spectrum of facets is pivotal to engendering precise diagnoses, 

encompassing diverse sensor data and personal attributes comprising the individual's profile, 

encompassing height, weight, ethnicity, antecedent medical history, behavioural patterns, 

and physical activity. A pivotal attribute pertains to the augmentation of clinical diagnostic 

accuracy through the integration of real-time feedback. Noteworthy is the observation that 

extant literature, as evidenced in [26- 29], pertains to context-specific applications, 

potentially inapplicable to the generic and tailored applications contemplated within the 

purview of this present research endeavour. 

Therefore, the prevailing emphasis within healthcare data revolves around two primary 

spheres of concern: early detection and local emergency detection. 

 

2.3 Healthcare Anomaly Detection 

Anomaly detection techniques in healthcare data analysis offer both advantages and 

limitations. Understanding their Advantages and limitations is essential for selecting the most 

suitable method for a specific healthcare application. Anomaly detection techniques offer 

several advantages [21] in healthcare. They enable the early identification of abnormal 

patterns or deviations from normal behaviour, facilitating the timely recognition of potential 

health issues and medical errors. This timely detection enhances patient safety, particularly 

in critical care settings where immediate action is vital. These techniques also provide 

automated surveillance of healthcare data, reducing the need for manual observations and 

the associated risk of human errors. Moreover, anomalies detected in healthcare data yield 

valuable insights for data-driven decision-making, allowing for optimised treatment plans and 
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resource allocation. Integration with Clinical Decision Support Systems (CDSS) [51] enables 

healthcare professionals to make informed decisions and issue real-time alerts. Personalised 

patient care is another benefit, as individual patient data anomalies enable tailored 

treatments and interventions. Lastly, detecting anomalies in healthcare claims data can 

effectively prevent fraud and abuse, resulting in substantial cost savings for healthcare 

systems and insurers.  

However, anomaly detection techniques in healthcare come with certain limitations [52]. 

These include the potential for false positives and false negatives, where normal data can be 

misclassified as anomalies or anomalies can be missed altogether, making it challenging to 

strike the right balance. Imbalanced data, where normal instances significantly outnumber 

anomalies, can bias detection towards normal patterns. Issues with data quality and missing 

values, common in healthcare data, can affect the reliability of results. Additionally, some 

advanced anomaly detection methods, like deep learning models, may lack interpretability, 

making it difficult to explain detected anomalies to healthcare professionals. Scalability can 

be a concern, particularly for real-time applications with large, high-frequency healthcare 

data streams that require rapid processing. Some complex anomaly detection algorithms, 

such as deep learning models, may demand significant computational resources, limiting their 

use in resource-constrained environments. Finally, implementing and training these 

techniques often necessitate domain expertise and sufficient labelled training data, which can 

be limited in healthcare settings. imbalanced data: healthcare data is often imbalanced, with 

normal instances significantly outnumbering anomalies. anomaly detection in such scenarios 

can be biased towards normal patterns. 

 

2.3.1 Anomalies in Healthcare Data 

The healthcare domain presents a complex landscape where anomalies can manifest across 

various aspects of patient care, medical processes, and data [53, 54, 64]. This classification 

delves into the diverse types of healthcare anomalies, categorising them based on their 

distinct characteristics and implications. Anomalies in healthcare data cover various critical 

categories. Patient vital sign anomalies, encompassing deviations in heart rate, blood 

pressure, respiratory rate, and temperature, can indicate health deterioration or adverse 

conditions. Medication administration anomalies, including dosage errors and improper 
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routes, are vital for patient safety. Disease occurrence anomalies, like unexpected disease 

prevalence changes, signal outbreaks, or epidemiological anomalies in medical image 

anomalies in X-rays, MRI scans, and CT scans, support accurate diagnoses. Healthcare fraud 

anomalies help preserve financial integrity. Electronic health record (EHR) anomalies are 

essential for accurate patient records. Diagnostic test result anomalies indicate health 

conditions. Telemedicine data anomalies track remote health monitoring. Laboratory data 

anomalies ensure precision in disease assessment. Treatment response anomalies highlight 

deviations from expected therapeutic outcomes. Workflow anomalies impact care efficiency. 

Patient demographic anomalies can lead to errors in care, billing, and medical history. 

In clinical decision-making within the UK NHS, certain significant features are commonly used 

to estimate the likelihood of specific outcomes or conditions. These features help healthcare 

professionals make informed decisions and provide appropriate care [53]. There are some of 

the main significant features used for clinical decision-making and prediction in the NHS UK. 

Demographic information [55], including age, plays a critical role in predicting health 

outcomes, as certain conditions are more prevalent in specific age groups. Gender also holds 

significance, as some diseases exhibit gender-specific prevalence and risks. Ethnicity is 

another important factor, as certain conditions are more common in specific ethnic groups, 

influencing risk assessments and treatment approaches. Additionally, a patient's medical 

history [56], encompassing previous medical conditions, chronic diseases, prior surgeries, and 

overall health status, offers valuable insights into potential complications. Chronic diseases 

like diabetes, hypertension, and cardiovascular conditions significantly impact outcomes for 

various health events, while a patient's surgical history can affect the risk of complications 

and recovery from new procedures. 

Symptoms and signs [57], patient-reported symptoms, and symptoms reported by the patient 

(e.g., pain, shortness of breath) provide valuable clues to the underlying condition. Physical 

examination findings, and clinician-assessed physical signs (e.g., fever, abnormal heart 

sounds) aid in diagnosis and prognosis. Vital signs [58, 63] such as heart rate, and an elevated 

or irregular heart rate can indicate cardiac stress or arrhythmias. Blood pressure and 

abnormal blood pressure levels can indicate cardiovascular risks. Respiratory rate, deviations 

from the normal range can signify respiratory distress. Temperature, fever or hypothermia 
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can indicate infection or metabolic disturbances. Oxygen saturation, low oxygen saturation 

can indicate respiratory or cardiovascular issues.  

Laboratory tests [59], including blood tests such as complete blood count, blood glucose 

levels, and liver function tests, offer insights into overall health and specific conditions. Urine 

tests aid in detecting kidney function, infections, and other medical conditions. Additionally, 

diagnostic imaging results obtained from X-rays, CT scans, and MRI scans provide detailed 

information about anatomical structures, helping identify abnormalities, tumours, fractures, 

and other structural issues.  

Clinical scores and scales [60] encompass various tools for assessing and quantifying medical 

conditions and patient health. The Charlson comorbidity index [149] is an assessment that 

considers a range of medical conditions to predict mortality risk. The Glasgow coma scale 

evaluates neurological function, particularly after a traumatic brain injury, providing valuable 

insights into the patient's cognitive status. Additionally, the APACHE II score is a predictive 

tool to gauge the severity of illness among critically ill patients, aiding in their management 

and treatment decisions. 

Risk factors [61] encompass various elements that can significantly influence an individual's 

susceptibility to certain diseases and health conditions. Smoking, for instance, is a well-

established risk factor associated with numerous ailments, such as lung cancer and 

cardiovascular diseases. Similarly, obesity is a contributing factor that elevates the risk of 

conditions like diabetes, heart disease, and certain types of cancer. Moreover, environmental 

exposures in occupational settings, including contact with chemicals, radiation, and 

pollutants, have the potential to impact health outcomes, emphasising the importance of 

workplace safety measures and protective measures for individuals in such environments. 

Observations: 

These significant features are crucial components of clinical prediction in the NHS UK, 

enabling healthcare professionals to make accurate assessments and personalised decisions 

to improve patient outcomes. Among them, vital signs are fundamental physiological 

measurements that play a pivotal role in healthcare assessment and decision-making. They 

serve as critical early indicators of physiological disturbances, facilitating the early detection 

and diagnosis of underlying medical conditions. By establishing baseline measurements and 
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monitoring trends over time, healthcare professionals can evaluate the effectiveness of 

treatments, interventions, and medications. Vital signs are vital in emergency situations, 

guiding rapid responses and interventions. Moreover, they contribute to clinical decision-

making, anaesthesia management, and the assessment of patient wellness. As standardised 

indicators, vital signs enable effective communication and documentation among healthcare 

teams. Overall, vital signs are a cornerstone of medical practice, providing essential data 

points that aid in diagnosis, treatment, and patient care across diverse healthcare settings. 

 

2.3.2 Anomalies from Vital Signs 

Vital signs [58, 62, 63] are a set of measurable physiological parameters that provide 

important information about the body's overall health and functioning. Vital signs encompass 

a set of essential physiological measurements that provide valuable insights into an 

individual's overall health and well-being. These measurements include Heart rate, which 

quantifies the number of heartbeats per minute and is typically measured at the radial or 

carotid arteries, serving as an indicator of cardiovascular health and response to stress or 

activity. Respiratory rate, indicating the number of breaths taken per minute, reflects lung 

function and respiratory responses to stress or illness. Blood pressure, recorded as systolic 

and diastolic pressures, reflects cardiovascular health and circulatory efficiency. Body 

temperature, measured via various methods, indicates metabolic activity and can signal fever 

or hypothermia. Oxygen saturation (SpO2), usually assessed with a pulse oximeter [150], 

reflects respiratory and circulatory function as well as oxygen delivery to tissues. Normal 

ranges for these vital signs may vary depending on age, activity level, and measurement 

method, but collectively, they offer critical information for health assessment and diagnosis. 

While each vital sign provides specific information about different aspects of the body's 

functioning, they are interconnected and can influence each other in various ways:  

Heart rate and blood pressure are closely interconnected; when the heart rate increases, it 

can lead to elevated blood pressure as the heart pumps more frequently, exerting greater 

force against the arterial walls. This relationship is vital for clinicians as it aids in evaluating 

cardiovascular health, identifying stressors, and understanding the body's compensatory 

mechanisms. Likewise, heart rate and respiratory rate exhibit synchronisation, particularly 
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during physical exertion or stress, when both may rise to meet the heightened demand for 

oxygen and energy. Monitoring this coordination assists clinicians in assessing the 

responsiveness of the cardiovascular and respiratory systems to physiological demands. 

Blood pressure plays a pivotal role in oxygen delivery to tissues, impacting oxygen transport 

to cells. Consequently, healthcare providers consider the association between blood pressure 

and oxygen saturation when assessing circulatory and respiratory function, recognising that 

low blood pressure can affect oxygen delivery and low oxygen saturation can induce 

vasoconstriction and impact blood pressure. Respiratory rate and oxygen saturation are 

intricately related, with respiratory rate determining the efficiency of lung gas exchange. A 

higher respiratory rate may help maintain sufficient oxygen levels in the bloodstream. This 

balance between respiratory rate and oxygen saturation is crucial for assessing respiratory 

health and ensuring adequate oxygen supply to tissues. Finally, temperature and heart rate 

exhibit a direct relationship, elevated body temperature, often due to fever or inflammation, 

results in an increased heart rate. Clinicians monitor this correlation to identify febrile 

conditions and gauge the body's immune response. Additionally, body temperature can 

influence blood vessel dilation and constriction, thereby affecting blood pressure. 

Recognising the interplay between temperature and blood pressure aids healthcare 

professionals in interpreting changes in blood pressure readings, especially in cases involving 

fever or hypothermia.  

Observations: 

The relationships between these vital signs provide a comprehensive picture of a patient's 

physiological state. When making clinical decisions, healthcare professionals consider how 

deviations from normal values in one vital sign can impact others. For example: 

• A patient with an elevated heart rate, low blood pressure, and low oxygen saturation 

might be experiencing septic shock, prompting immediate intervention. 

• A patient with a rapid respiratory rate, an increased heart rate, and a high fever could 

be showing signs of pneumonia or another respiratory infection. 

By recognising the interconnectedness of vital signs and how they respond to different 

conditions, clinicians can make more accurate diagnoses, tailor treatment plans, and monitor 



40 
 

the effectiveness of interventions [192]. Decisions are based on a holistic assessment of the 

patient's vital sign trends, medical history, symptoms, and other clinical information. 

 

2.3.3 Common Health Care Anomaly Detection Techniques 

Anomaly detection in healthcare is a critical area of research and application that plays a vital 

role in ensuring patient safety, early disease diagnosis, and efficient healthcare delivery [64]. 

Healthcare data, whether originating from electronic health records, medical imaging, 

physiological signals, or wearable devices, is inherently complex and dynamic. Detecting 

anomalies in such data can help identify abnormal patterns, potential health risks, and 

adverse events, enabling timely interventions and improving patient outcomes. 

Anomalies in healthcare data can take various forms, such as rare diseases, abnormal 

physiological trends, irregular medical image findings, or unexpected patterns in patient 

behaviour [15]. Detecting these anomalies is challenging due to the vast amount of data 

generated, the presence of noise and missing values, and the need to distinguish between 

normal variations and true abnormalities. As a result, advanced analytical techniques, 

including machine learning, deep learning, and statistical methods, are employed to sift 

through the data and identify deviations from the norm. 

In this context, the exploration of anomaly detection in healthcare takes on a multidisciplinary 

approach, involving experts from data science, medical professionals, and domain-specific 

researchers. By harnessing the power of cutting-edge technologies and domain expertise, 

anomaly detection in healthcare is promising for revolutionising patient care, automating 

diagnostics, and optimising healthcare workflows. 

Researchers delve into the various anomaly detection techniques, their applications in 

different healthcare domains, and the potential challenges and opportunities in this ever-

evolving field. From early detection of life-threatening conditions to personalised medicine, 

anomaly detection in healthcare continues to make significant strides towards delivering 

safer, more efficient, and data-driven healthcare solutions [25]. 
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Statistical Methods 

Statistical methods [23, 26] are fundamental in healthcare anomaly detection, offering a 

structured approach to identifying deviations from expected patterns in patient data and vital 

signs. These techniques rely on established statistical measures to quantify the normal 

behaviour of data, making them valuable for detecting anomalies in healthcare settings. In 

healthcare data analysis, several common statistical anomaly detection techniques are 

applied. The Z-Score [65], for instance, quantifies the number of standard deviations a data 

point deviates from the mean, flagging outliers as anomalies. The modified Z-Score improves 

upon this method, enhancing robustness to outliers. Percentiles also serve to detect 

anomalies by identifying data points falling below or above specific percentiles within the 

distribution. Additionally, moving average [66] and moving standard deviation [67] 

techniques are employed to uncover anomalies in time-series data by comparing present 

values to historical averages and standard deviations. These statistical methods offer a 

structured approach to anomaly detection, proving accessible for healthcare professionals 

and applicable to both univariate and multivariate data analysis. However, they may struggle 

with complex, non-linear relationships and subtle anomalies, and determining appropriate 

thresholds and parameters can be subject to subjectivity and complexity. 

 

Machine Learning-Based Techniques 

Machine learning uses algorithms to train models on historical data and then apply these 

models to new data for anomaly detection. Three primary approaches are highlighted in this 

comprehensive exploration of machine learning-based techniques [27, 68, 69] used in 

healthcare anomaly detection. Firstly, supervised learning [70] uses labelled data to train 

models for distinguishing between normal and anomalous instances, employing algorithms 

such as Support Vector Machines (SVM) [71], Decision Trees [72], K-Nearest Neighbour (K-

NN) [87], linear regression [201] and Random Forests [73]. Secondly, unsupervised learning 

[74], which operates without the need for labelled data, aims to unveil patterns and 

anomalies through techniques like K-Means clustering [75], Once class SVM (OC-SVM) [76, 

116] and DBSCAN-based density analysis [77]. Finally, semi-supervised learning [78] combines 

labelled and unlabelled data to enhance anomaly detection, particularly when labelled data 
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is scarce. The advantages of machine learning techniques lie in their ability to capture intricate 

relationships and patterns that can prove challenging for rule-based or statistical methods, 

their adaptability to diverse healthcare data types, and their capability to handle high-

dimensional data and large datasets. However, they face limitations, including the 

requirement for substantial labelled training data, sensitivity to data quality, preprocessing, 

feature selection, and potential computational intensity for complex models like deep 

learning architectures. 

Deep Learning-Based Techniques 

Deep learning-based techniques [28, 79] have revolutionised healthcare anomaly detection 

by leveraging complex neural architectures to automatically learn intricate patterns in data. 

In healthcare anomaly detection, deep learning-based techniques offer a comprehensive 

exploration, each with its advantages and limitations. Long Short-Term Memory (LSTM) [80] 

networks excel at capturing temporal dependencies in patient records and time series data. 

Convolutional Neural Networks (CNNs) [81] are adept at identifying anomalies in medical 

images, which is handy for conditions like tumours or fractures. Recurrent Neural Networks 

(RNNs) [80], including LSTM networks and Gated Recurrent Units (GRUs) [82], handle 

sequential data by considering temporal dependencies. Generative Adversarial Networks 

(GANs) [83] operate with a generator and discriminator in competition, generating and 

evaluating data authenticity, respectively. These techniques are advantageous for capturing 

intricate patterns in complex healthcare data and handling substantial data volumes. Still, 

they require significant labelled data for training, are computationally intensive, and may lack 

interpretability. 

Time-Series Analysis 

By analysing sequential data points over time, healthcare professionals can gain insights into 

changes in patient conditions, enabling early detection of anomalies and timely interventions 

[29, 90]. A comprehensive exploration of time-series analysis techniques in healthcare 

anomaly detection reveals several valuable methods. Moving Average and Exponential 

Smoothing techniques, for instance, effectively smooth out noise in time-series data to reveal 

underlying trends. Anomalies become apparent when deviations from these smoothed trends 

occur. Autoregressive Integrated Moving Average (ARIMA) [84], a popular method for time 



43 
 

series forecasting, identifies anomalies when observed data significantly deviates from 

forecasted values. Seasonal Decomposition of Time Series (STL) [85] decomposes time series 

data into seasonal, trend, and residual components, with anomalies detected in the residual 

component, signalling deviations from expected behaviour. Dynamic Time Warping (DTW) 

[86] measures the similarity between two time-series sequences, and anomalies are 

pinpointed when the alignment distance between a query sequence and a reference 

sequence exceeds a threshold. Time-series analysis offers the advantage of specialising in 

capturing temporal patterns, making it ideal for evolving healthcare data. It excels at 

identifying subtle anomalies and providing insights into disease progression and treatment 

effectiveness. However, limitations include the need for historical data, potential challenges 

in handling missing or irregular data, and difficulty in detecting abrupt changes in data 

patterns. 

Domain-Specific Techniques 

Healthcare anomaly detection requires specialised techniques that cater to the unique 

characteristics of medical data and the intricacies of clinical contexts. These domain-specific 

methods [30] leverage medical knowledge, physiological understanding, and clinical expertise 

to enhance the accuracy and relevance of anomaly detection. Domain-specific techniques 

play a crucial role in enhancing anomaly detection accuracy by leveraging the depth of 

medical expertise. They are well-suited to handle the intricacies of medical data, 

characterised by complex and non-linear relationships. By incorporating clinical knowledge 

and standards, these methods provide valuable insights and can assist healthcare 

professionals in making informed decisions. However, their effectiveness depends on the 

availability and accuracy of medical knowledge, and they may not always capture emerging 

or rare anomalies that are not explicitly defined. Additionally, the interpretability of their 

outputs can vary, emphasising the need for ongoing validation and refinement to ensure 

reliable anomaly detection in healthcare settings. 

 

2.3.4 Performance Evaluation Metrics 

Performance evaluation metrics are crucial for assessing the robustness and accuracy of 

anomaly detection models applied to healthcare data. These metrics help quantify how 
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effectively a model distinguishes between anomalous and normal instances. Key metrics 

include True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) 

[91, 92], which are used to compute Sensitivity, Specificity, Precision, Negative Predictive 

Value, and the F1-Score [91, 92]. In addition to these, the Receiver Operating Characteristic 

(ROC) [91] curve and the Precision-Recall curve [92] provide valuable insights into the trade-

offs between sensitivity and specificity at various decision thresholds. Metrics such as 

Accuracy [91], Matthews Correlation Coefficient (MCC) [93], and the Area Under the 

Precision-Recall Curve (AUC-PR) [94] offer comprehensive performance assessments, aiding 

in the selection and fine-tuning of anomaly detection algorithms. The choice of which metric 

to prioritise depends on the nature of the healthcare dataset, the clinical context, and the 

specific objectives of the anomaly detection task. 

Observations:  

It is observed that there are three main categories of anomaly detection techniques in 

healthcare data: 

Data Types: This category encompasses various types of healthcare data amenable to 

anomaly detection, including structured data, unstructured data, and time-series data. 

Structured data typically consists of organised tabular datasets, like electronic health records 

(EHRs) [56] and administrative data, featuring well-defined columns and rows. In contrast, 

unstructured data encompasses non-tabular formats like medical imaging (e.g., X-rays, MRI 

scans) and clinical notes, which lack the neat organisation of structured data. Lastly, time-

series data involves temporal information with a series of values recorded over time, such as 

patient vital signs, continuous monitoring data, and patient activity logs, providing valuable 

insights for anomaly detection in healthcare. 

Techniques: This category represents the different approaches and methodologies used for 

anomaly detection in healthcare data. This category encompasses diverse methodologies and 

approaches employed for anomaly detection in healthcare data. It includes conventional 

statistical methods like mean, standard deviation, and z-scores, which are used to pinpoint 

outliers and anomalies in healthcare datasets. Machine learning methods, such as SVM, k-

NN, and random forests, are harnessed to learn patterns from historical data for detecting 

anomalies across various healthcare datasets. Deep learning techniques, powered by 
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advanced neural network architectures like CNNs and LSTM networks, come into play for 

anomaly detection in medical imaging and time-series data. Ensemble approaches, 

incorporating the amalgamation of multiple models or techniques like bagging and boosting, 

aim to enhance anomaly detection accuracy while reducing false positives. Additionally, 

threshold-based alarms employ straightforward rules and predefined threshold values for 

specific vital signs or attributes to trigger alarms upon detecting anomalies.  

Data Sources: This category encompasses various sources of healthcare data where anomaly 

detection is deployed. It includes hospital data, where anomaly detection is applied to 

information gathered within hospital settings, encompassing EHRs, patient demographics, 

and administrative data. Moreover, medical imaging constitutes another facet where 

anomaly detection is utilised to scrutinise medical imaging data such as X-rays, CT scans, and 

MRIs, to discern and flag abnormalities and diseases. Patient monitoring is an integral 

component, involving real-time tracking of a patient's vital signs and physiological data for 

the detection of anomalies and critical events. Lastly, the category extends to IoT and 

wearable devices, facilitating anomaly detection through data collected by wearable devices 

and Internet of Things (IoT) [88] devices, thereby enabling continuous patient monitoring 

beyond the confines of healthcare facilities. 

2.3.5 Summary Observation 

Salem [104] introduces a methodology that merges linear regression with the Support Vector 

Machine (SVM) technique. However, SVM tends to underperform when working with 

extensive datasets while demonstrating better results for smaller ones, as addressed in [222]. 

Using SVM in resource-limited settings might not be suitable due to its high energy 

requirements. Additionally, the approach discussed compromises the false alarm rate to 

maintain a high detection ratio. Salem et al. [105] proposed an online anomaly detection 

system utilising the Mahalanobis distance (MD). However, in their work, a threshold approach 

with the MD was employed, which was found to be unsuitable for real-time healthcare 

systems. While calculating the MD can be done smoothly, the process as a whole can be 

unstable and potentially hazardous for healthcare applications. Table 2.1 shows a summary 

of anomaly detection techniques from literature. 
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Table 2. 1: Existing anomaly detection techniques in the literature 

Year Author Purpose Techniques Limitations 

2014 O salem [104] 
Anomaly 
detection SVM, LR 

Sensitive to missing data, high power 
consumption 

2014 O salem [105] 
Anomaly 
detection MD 

High processing time, did not used IEEE 
802.15.6 

2015 
SA Haque 
[106] 

Anomaly 
detection 

SMO, MV, 
DSW 

High processing time, did not used IEEE 
802.15.6 

2015 
Pachauri 
[107] 

Anomaly 
detection 

J48, RF, K-
NN High processing time 

2017 S Xie [108] 
Anomaly 
detection PSA, BN 2 Steps of process, high complexity 

2017 Temilola [109] 
Outlier 
detection MAD, MV Working only for a fixed threshold 

2017 Khan [110] 
Anomaly 
detection MM 

Less effective in heterogenous 
environment 

2018 O salem [111] Event detection KF High energy consumption 

2019 
Saraswathi 
[112] 

False alarm 
detection RF Processing time high 

2019 Sun [113] 
ECG anomaly 
detection SH-Base Only for a particular disease 

2019 
S Kumar 
[114] 

Anomalous 
Data ANN, LR High computational complexity 

2019 Smrithy [226] 
Anomaly 
detection WMA Sensitive to old data  

2021 Dwivedi[227] 
Anomaly 
detection 

Gaussian 
based Power consumption, latency  

 

Haque et al. [106] utilised the Sequential Minimal Optimization (SMO) algorithm and Majority 

Voting (MV) algorithm for anomaly detection. However, this effort wasn't tailored to the IEEE 

802.15.6 standard and demanded a considerable amount of processing time, making it 

unsuitable for healthcare applications. Further, the authors incorporated the Dynamic Sliding 

Window (DSW) algorithm, which is known for its high computational cost. In a similar context, 

G Pachauri et al. [107] proposed an anomaly detection system that employed a combination 

of three algorithms - J48, Random Forest (RF), and the k-nearest neighbours algorithm (k-NN). 

While this arrangement proved effective, its training and processing times were high. This 

excess time consumption could potentially jeopardize patient health in urgent medical 

scenarios. 

Xie et al. [108] introduced an anomaly detection methodology using Principle Statistic 

Analysis (PSA) and Bayesian Network (BN). Their proposal was organised into two steps, 
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focusing on anomaly detection and redundancy elimination. However, due to its high 

complexity, it's not very suitable for environments where power consumption is a vital 

constraint. On a similar note, Temilola et al. [109] applied Median Absolute Deviation (MAD) 

and MV for their outlier detection techniques. They utilised a fixed threshold, which 

unfortunately didn't effectively handle dynamic scenarios. A Markov Model (MM) was 

proposed in [110], but it didn't perform well in heterogeneous environments. In a different 

vein, Salem et al. [111] put forward an event detection method using the Kalman Filter (KF). 

Despite the authors claiming an impressive detection rate, this approach came with a 

significant downside, namely its high power consumption. 

Saraswathi et al. [112] implemented the Random Forest (RF) algorithm to decrease the rate 

of false alarms. However, the long processing time it required made it unsuitable for 

healthcare applications, where short response times are crucial. A Shapelets-base (SH-Base) 

was employed in [113] for a specific electrogastrogram (EGG) to spot any EGG anomalies. 

Kumar et al. [114] improved upon both fault detection and anomaly data detection 

techniques by making use of an ANN. Moreover, they adopted Linear Regression (LR) for their 

proposed solution. A downside of this work, however, was its need for vast computational 

capacity, making this approach less effective in environments where resources are scarce or 

limited. 

 

2.4 Anomaly Detection Using Vital Signs 

Monitoring vital signs enables healthcare professionals to identify potential problems before 

they become severe, allowing for timely intervention and improved patient outcomes. The 

literature emphasises the significance of early detection of patient vital signs across various 

medical conditions. Here are key findings from the literature: 

The significance of vital signs, notably heart rate, respiratory rate, and temperature, in the 

early detection of life-threatening conditions like sepsis, is underscored in the realm of sepsis 

detection [38]. Extensive research demonstrates that swift changes in vital signs can serve as 

precursors to sepsis, facilitating timely intervention and mitigating mortality rates. The role 

of abnormal vital signs, including heightened heart rate and blood pressure, in predicting 

cardiovascular events such as heart attacks and strokes is illuminated within the context of 
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cardiovascular events [39]. By vigilantly monitoring fluctuations in these vital signs, clinicians 

can identify individuals at risk and navigate pre-emptive measures and interventions. 

Respiratory distress [40] involves irregularities in vital signs such as respiratory rate and 

oxygen saturation, serving as indicators of potential conditions like Acute respiratory distress 

syndrome (ARDS) [89]. Monitoring these vital signs aids in identifying respiratory distress and 

facilitating timely intervention for improved patient outcomes. Scholarship suggests that 

vigilant monitoring of these indicators empowers healthcare providers to intercede 

expeditiously, ultimately enhancing patient outcomes. The pivotal role of vital signs, 

particularly blood pressure and heart rate, in haemorrhage and shock detection [41] takes 

precedence, with the literature accentuating the necessity of closely tracking these vital signs 

in trauma and surgical patients to discern indications of internal bleeding or compromised 

circulatory states. Neonatal care [42], in a similar vein, emphasises the imperative of promptly 

detecting anomalies in vital signs to identify conditions such as neonatal sepsis and 

respiratory distress syndrome. The literature underscores the employment of continuous vital 

sign monitoring to forestall complications and diminish neonatal mortality. Shifting the 

discourse towards Cancer and Chemotherapy monitoring [43], scholarly discourse expounds 

upon the role of vital signs in monitoring cancer patients undergoing chemotherapy, given 

chemotherapy's potential impact on heart rate, blood pressure, and other vital signs. Early 

identification of treatment-induced vital sign alterations can facilitate the tailoring of 

chemotherapy regimens and the effective management of prospective side effects. In the 

realm of Acute Pain and Postoperative care [44], vital signs manifest as invaluable indicators 

of acute pain, frequently coinciding with alterations in heart rate, blood pressure, and 

respiratory rate. The diligent monitoring of vital signs post-surgery aids in the detection of 

pain-related complications and ensures the judicious management of pain. Concerning 

diabetes and glycemic control [45], studies underscore the pivotal role of vital signs, 

particularly blood pressure and heart rate, in the management of diabetes to avert 

complications and oversee glycemic control. The prompt identification of aberrant vital signs 

can guide refinements in diabetes treatment strategies. The landscape of Remote Monitoring 

and Telehealth [46] delineates the integration of wearable devices and telehealth platforms 

to facilitate continuous remote monitoring of vital signs. Scholarly discourse deliberates on 

the potential of pre-emptive detection through remote monitoring, thereby equipping 

healthcare providers with the means to intervene based on real-time data. 
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Observations:  

Current solutions for early detection of patient vital signs face limitations mainly due to their 

reliance on complex algorithms, resulting in interpretability issues that complicate clinical 

understanding and acceptance. Moreover, the intricate nature of some techniques, like deep 

learning, can hinder real-world implementation due to their resource-intensive requirements. 

In the quest for effective and practical solutions, there's a growing need to strike a balance 

between accuracy and simplicity, ensuring that healthcare professionals can easily 

comprehend and integrate these systems into their workflows, ultimately improving patient 

care.  

A straightforward algorithm for healthcare anomaly detection from patient vital signs is the 

threshold-based anomaly detection algorithm [47]. It involves selecting vital sign parameters 

(e.g., heart rate, blood pressure, temperature, and respiratory rate) for monitoring and 

setting upper and lower thresholds for each parameter based on reference ranges or clinical 

guidelines. Patient vital signs data is continuously monitored, and at regular intervals, the 

current values are compared to the predefined thresholds. If any vital sign data surpasses the 

thresholds, an anomaly alert is triggered, such as an alarm or notification. This approach is 

advantageous for its simplicity, real-time monitoring, and low computational overhead. 

However, it has limitations in that static thresholds may not adapt well to individual patient 

variations, leading to potential false positives or false negatives. Additionally, it lacks the 

ability to offer clinical insights or predictive capabilities beyond threshold-based alerting. 

 

Threshold-Based Alarm Systems in healthcare [47] refer to a monitoring approach where 

predefined thresholds are set for specific physiological parameters, such as vital signs or other 

health-related measurements. These thresholds act as triggers to generate alarms or alerts 

when the monitored values exceed or fall below the established limits. The purpose of these 

alarms is to promptly notify healthcare providers or medical staff of potential abnormalities, 

allowing them to take immediate action and provide timely interventions for patients in 

critical or deteriorating conditions. 

In their work, the authors of reference [220] question the scientific validity of the 

conventional method of instability detection, which relies on threshold breaches. They claim 
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that this method is inadequate for early detection of instability, leading to numerous 

inexplicable in-hospital fatalities. A threshold technique was proposed using a machine 

learning algorithm in [221]. However, this method requires significant computational 

resources. They developed an early warning system focused on predicting organ system 

failures in ICU EHRs, particularly for circulatory system failure. The system includes data 

processing, clinical endpoint definition, supervised learning using a gradient-boosted decision 

tree ensemble, alarm generation, and clinical setting evaluation. 

For instance, in an intensive care unit (ICU) scenario, a threshold-based alarm system might 

be set to trigger an alert if a patient's heart rate goes above a certain value or if their blood 

pressure drops below a certain level. Similarly, in remote patient monitoring, if an individual's 

blood oxygen saturation falls below a predetermined threshold, an alarm could be sent to 

their healthcare provider's dashboard or mobile device. While threshold-based alarm systems 

offer a simple way to monitor patients' well-being and quickly respond to changes, they also 

come with challenges. Over time, healthcare providers can become desensitised to frequent 

alarms, leading to alarm fatigue and potentially causing them to overlook critical alarms. 

Additionally, fixed thresholds may not account for individual patient variability or contextual 

factors, resulting in false alarms or missed genuine health concerns.   

Therefore, refining and personalising threshold-based alarm systems is crucial to balancing 

sensitivity and specificity, improving their effectiveness in clinical settings. By combining 

traditional approaches with advanced analytics and user-centred design, researchers aim to 

enhance the utility of these systems, ultimately contributing to better patient care and 

outcomes. 

However, this does not contain predictive capabilities and can only minimise the time of 

occurrence of critical clinical situations. 

Observations:  

Threshold-Based Alarm Systems in healthcare monitor specific physiological parameters using 

predefined thresholds, triggering alerts when readings exceed or fall below these limits. These 

systems aim to facilitate prompt responses to potential health abnormalities. However, their 

scientific validity is questioned, especially as they may not detect early instabilities, 

potentially causing in-hospital fatalities. A machine-learning based approach has been 
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proposed but requires substantial computational resources. Though these systems provide 

quick responses, they can lead to alarm fatigue and overlook individual patient variability or 

context, causing false or missed alarms. Refining these systems may improve their 

effectiveness, but current models lack predictive capabilities, reducing their ability to 

anticipate critical clinical situations. 

In your narrative, you highlighted the importance of two primary metrics in the performance 

analysis of anomaly detection algorithms: detection rate (DR) and false positive rate (FPR). 

These metrics can be illustrated on a receiver operating characteristic plot. Broadly, the 

detection rate measures the percentage of actual anomalies correctly identified, while the 

false positive rate indicates the proportion of normal instances incorrectly labelled as 

anomalies. It has been noted that sensor data can occasionally be marked as anomalous due 

to several factors, such as hardware failure, sensor malfunction, excess energy consumption, 

or incorrect calibration. In the work referenced as number 223, an anomaly detection method 

was put forward involving a two-phased algorithm. This method employed a support vector 

machine for detecting anomalies and a nearest neighbour approach to reduce the occurrence 

of false alarms. This research was implemented in the context of a wireless sensor network. 

On the other hand, in the document referenced as number 224, a Gaussian mixture model 

was utilised to differentiate between normal and abnormal data. Additionally, an Ant Colony 

algorithm was harnessed to detect erroneous sensor readings. In this case, the detection rate 

and false positive rate were recorded at 100% and 9%, respectively. Lastly, in the study 

referenced as number 225, the Mahalanobis Distance was implemented for measuring 

sample anomalies, and the Kernel Density Estimator was adopted to evaluate correlation. In 

this scenario, the detection rate and false positive rate were reported as 100% and 5.5%, 

respectively. 

 

2.5 Local Emergency Detection  

Detecting local emergencies entails identifying any abnormal or unexpected occurrence within the 

local node. This concept is referred to by various terms in literature, including outlier detection, 

anomaly detection, and emergency detection. The primary goal here is to identify unexpected 

behaviours or patterns locally, which helps to reduce the amount of data to be transmitted. Various 

methods have been observed in the literature, with statistical analyses standing out as particularly 



52 
 

effective. However, while statistical analysis can effectively address this issue, it may not be universally 

applicable. 

Elghers et al. [140] proposed a local emergency technique using WBANs for healthcare applications. 

The Early Warning Score is used for the proposed algorithm to detect emergency in the local node. 

The ultimate idea was to conserve energy by reducing data transmission. The limitation of the 

proposed technique is that it sends all the data that detects an emergency. The positive aspect of the 

proposed work is that it uses Early Warning Scoring data to classify the emergency data. 

Thamilarasu et al. proposed a local emergency detection system in their study [235], devised to secure 

the system. The authors put forward an autonomous, mobile agent-based intrusion detection 

architecture to identify any emergent situations. While the authors applied this algorithm to WBAN, 

the usage is primarily centred on security-focused applications. As such, the proposed system does 

not concentrate on energy-saving or data sampling strategies. 

Salim et al. [141] presented a local emergency detection system using statistical variance analysis in 

their study. It remains uncertain whether data calibration will occur locally or centrally and how this 

will function in a practical context. Also, please note there may be a typo in your sentence; "spell" is 

the correct English term. Habib et al., in their work cited as [31], improved the Light Emitting Diode 

(LED) system [140] to avoid transmitting all data collected from the system. The authors suggested a 

revised algorithm as a countermeasure to the existing LED algorithm. This advanced warning system 

is utilized to compute the score on a local node, thereby eliminating the need to transmit every piece 

of data. A significant flaw in the proposed method is that this algorithm replaces the old score with a 

new one. If the subsequent score varies from the prior score, the system determines whether it's an 

emergency or not. Nevertheless, the suggested system doesn't delve into individual levels for further 

scrutiny. This vulnerability makes the recommended algorithm, known as MLED, susceptible. The 

aggregate score, unfortunately, could closely resemble the score of a high-risk individual. 

Odesile et al., in their paper referenced as [236], present work akin to that in [235] for the early 

detection of emergencies, aiming to safeguard the system from potential attacks. Techniques 

incorporated are intruder system methods utilising a mobile agent with the primary objective of 

securing the system against attacks. Massoud et al., in paper [237], recommended a local emergency 

system applying Null Hypothesis. Chi-square statistics are utilised in formulating this algorithm. 

However, the limitations include the fact that chi-square works only with independent variables. 

Consequently, the proposed method is not suitable for heterogeneous systems. 
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In [238], Shaikh and his team propose a local emergency detection method utilising the statistical 

mean, a strategy found to be unreliable in WBANs healthcare applications. A different approach using 

mostly statistical analysis for local emergency detection is presented by Arafoui and his colleagues in 

[239]. This involves using standard deviation for variation calculations and the Mahalanobis Distance 

(MD) for distance computations. However, the proposed method requires significantly high 

computation in comparison to other suggested processes. 

Additionally, Sawqi et al. put forward local emergency techniques in [142] that employ adaptive rate. 

The proposed system comprises a two-stage calculation process, which escalates the computational 

workload. Notwithstanding, a key drawback of this system lies in its usage of the LED algorithm. This 

LED algorithm, as presented in [140], transmits all data identified as emergency data. 

 

2.6 Energy Optimisation Techniques Used in Healthcare Emergency Detection 

2.6.1 Power Consumption Techniques  

Since WBAN operate wirelessly, one of the crucial factors to consider during their 

development is power consumption. Power consumption can be classified based on its 

component-based and they are: 

• Sensing 

– Sensor set selection [228, 229] 

– Context based pull [121, 231] 

• Communication 

– Data reduction [34, 123, 230] 

– Radio optimisation [125, 126] 

– Energy-efficient routing protocol [127–128] 

– Sleep/Wake scheme [130, 131] 

 

 

• Processing 
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– Feature selection [132, 133] 

– Adaptive classifier selection [1345, 135] 

Most popular energy-efficient methods are: 

• Adaptive classifier selection 

• Adaptive sampling 

• Compressive sensing 

• Context-based pull 

• Context-aware routing protocol 

• Energy-efficient routing protocols 

• Feature selection 

• Radio optimisation 

• Sensor set selection 

• Sleep/wakeup schemes 

In [232], it is highlighted that power inefficient protocols are the main contributors to energy 

usage. An effective routing protocol that is compatible with the Media Access Control (MAC) 

layer was also suggested in the same paper. Paper [233] put forth a MAC protocol for a 

specific scenario where human body circuitry is low. In this context, it was demonstrated that 

multi-hop communication is more efficient than single-hop communication. 

The classification of a patient's health is determined based on the collected vital signs data, 

which is identified as either within or outside the normal range. Two types of classifiers are 

used: one for the standard data range, and a prioritised queue for when the vital signs data 

deviates from this range [211]. Despite that, the primary emphasis of this paper is on energy 

conservation using queuing techniques during data transmission. 

 

Activity recognition models are proposed in [234], using feature extraction and classifiers such 

as naive Bayes, decision tree, and Bayesian. Fortino [34] suggested using data fusion and 
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analysis to generate valuable information for the proposed model. However, these proposed 

solutions are based on specific criteria and do not provide support for general purposes. 

 

2.6.2 Adaptive Sampling 

A significant body of work has already been published regarding sensor data for healthcare 

applications. Specifically, this review focuses on the research related to the study at hand. The role of 

sensing rate in wireless body area network (WBAN) healthcare applications is highlighted, primarily 

due to its impact on understanding patient wellbeing. Patients' health conditions can fluctuate rapidly, 

necessitating the need to adjust the sampling rate to respond effectively and promptly. Moreover, 

adjusting the sampling rate also serves as an efficient technique for reducing energy usage in WBAN. 

An Internet of Things (IoT)-driven Early Warning Score System (EWS) is suggested in a study [191] to 

predict patients' health deterioration using vital signs. However, considerations related to energy 

usage and local emergency detection were not addressed in this approach. On the other hand, a study 

[140] proposes an algorithm for early emergency detection aimed at energy conservation. This 

research, however, advocates the transmission of all critical data, potentially impacting energy 

conservation negatively. As an alternative, Study [31] introduces a local data sampling technique 

intended for early emergency detection and periodic local decision-making. 

In their work [140], Elghers and his team introduced an adaptive sampling method to regulate the 

amount of data to be transmitted. They utilized the LED algorithm, also developed by them, to identify 

emergencies, dictating the sampling rate to be used accordingly. According to the design of the LED 

algorithm, data is only transmitted when the EWS score surpasses zero. Compared to other available 

solutions, local emergency detection is efficient, leading to a higher sampling frequency. However, 

this ultimately escalates energy consumption in WBAN-based applications. Similarly, Salim and his 

colleagues proposed another adaptive sampling method in [146], leveraging the use of a Fisher test 

algorithm. Despite its primary basis in statistical analysis, this proposed approach might not be a 

suitable fit for WBAN healthcare applications. 

In their paper [31], Habib and others have refined the energy usage method by employing an 

adjustable sampling technique. They utilize ANOVA (Analysis of Variance) and behavioural functions 

to assess a patient's risk level and set the sampling accordingly. This approach stands out among 

existing methods for its effectiveness. The included system upgrade from LED to MLED helps in 

reducing the data that needs to be transmitted. Moreover, a Fisher test is incorporated in the 

suggested methods to facilitate the process of determining the patient's risk level. Nonetheless, there 

are certain limitations in variance analysis when dealing with data that lacks variation. For instance, if 
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the Early Warning Score (EWS) escalates and maintains a consistent high, the proposed ANOVA may 

not be adequate to identify the emergent situation. 

An optimised data gathering approach is presented by Xiaobin et al. in [143], utilising an adaptive 

sampling-based information collection method. However, this study does not concentrate on energy 

conservation. Lee et al. in [144] introduced energy-conscious local emergency detection methods. 

Their proposed methods employed adaptive sampling and harvesting techniques. The complexity of 

the suggested work's system design might not be suitable for a heterogeneous environment. An 

energy-saving technique proposed by Ting Lu et al. in [145] employs a sampling rate allocation 

method. However, requiring a rechargeable sensor for the system design makes this solution 

expensive. 

Fathy et al. [146] proposed an adaptive enhanced data reduction technique using the Adaptive 

Method for Data Reduction (AM-DR). However, this suggested solution is not applicable for Wireless 

Body Area Networks (WBAN) but is suitable for Wireless Sensor Networks (WSN). Given its 

computational nature, it may not be feasible in a heterogeneous environment. Azar et al. [147] 

presented a data reduction technique that utilises the Wavelet Transform Lifting Scheme. This work, 

however, predominantly focuses on statistical analysis and does not address real-world applications. 

In their paper [148], Bacsaran and his team introduced techniques to reduce data with the aim of 

conserving energy. They employed a wavelet filter-based adaptive sampling method designed for 

wireless sensor networks. Despite this, the potential application within healthcare settings was not 

discussed. Similarly, Shawqi and his colleagues proposed [142] a method involving adaptive rates to 

enhance energy efficiency. The approach includes a two-stage procedure, which unfortunately 

introduces computational complexity. An additional issue was the use of the LED algorithm for data 

sampling; as previously mentioned, it too had its drawbacks. 

 

Observations:  

Several existing energy-aware adaptive sampling techniques found in the literature are reviewed. It is 

noted that a key limitation is that most of the proposed work is primarily research-based and doesn't 

clearly address its applications. The two most effective solutions observed are referenced as [140] and 

[31]. Both employ the Early Warning Score (EWS) system to detect pressing emergencies, adapting a 

scoring mechanism in the process. The EWS system is a commonly utilized solution in both hospital 

and pre-hospital environments, making their local emergency detection methods realistic for 

healthcare applications. However, these two proposals' limitations lie in their respective algorithms. 
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For instance, the Local Emergency Detection (LED) approach fails to minimize the amount of data sent, 

as it transmits all emergency data. Conversely, the Modified Local Emergency Detection (MLED) has 

flaws within its local emergency detection algorithm, as previously discussed. The aim of this 

dissertation is to address these issues, specifically focusing on improving quality detection and 

implementing superior adaptive solutions for better energy conservation than what's offered by LED 

and MLED. 

 

2.6 Summary  

In the realm of WBANs, both threshold-based and hybrid algorithms play pivotal roles in 

health monitoring. However, existing literature highlights several limitations inherent in these 

approaches. Threshold-based algorithms, fundamental in anomaly detection, often employ 

fixed threshold values, which may not accommodate the physiological variability between 

individuals. This lack of personalisation can lead to false alarms or missed detections, as what 

constitutes an anomaly for one patient might be within the normal range for another. These 

algorithms also tend to be reactive, typically alerting only after a threshold breach, which can 

delay intervention in emerging health issues. Moreover, setting appropriate threshold levels 

is challenging; overly sensitive thresholds can lead to frequent false positives, whereas high 

thresholds might overlook critical health changes. In dynamic health scenarios, these 

algorithms may not adapt swiftly to changing patient conditions, potentially resulting in 

outdated or irrelevant threshold settings. On the other hand, hybrid algorithms, which aim to 

amalgamate the immediacy of threshold methods with the predictive capabilities of more 

complex models like linear regression, face their own set of challenges. One major limitation 

is achieving a balance between the sophistication of the predictive model and the practical 

constraints of WBANs, such as limited computational power and energy resources. These 

hybrid models can be computationally intensive, straining the resources of WBANs and 

potentially impacting their sustainability. Additionally, integrating different methodologies 

within a hybrid system poses challenges in ensuring efficiency, accuracy, and real-time 

responsiveness. Another concern is the interpretability of the outputs from these hybrid 

models; the complexity of the algorithms can make it difficult for healthcare providers to 

understand and act on the system’s predictions and alerts. This complexity also raises 

concerns about the generalizability of these models across different patient profiles, given 
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the diversity in health patterns and conditions. Furthermore, the literature indicates that 

long-term clinical validation of these hybrid models in real-world settings is often limited, 

raising questions about their reliability and consistency over time. Addressing these 

limitations is crucial for the advancement of threshold-based and hybrid algorithms in 

WBANs, ensuring they are both effective in monitoring patient health and practical for 

widespread implementation. 

Adaptive sampling, a pivotal technique in Wireless Body Area Networks (WBANs) and other 

health monitoring systems, is designed to optimize data collection based on the varying needs 

of a patient's health status. Despite its importance, existing literature reveals several 

limitations that can affect its efficacy. Firstly, determining the optimal sampling rate that 

strikes a balance between adequate data collection for accurate health monitoring and the 

conservation of energy and computational resources is a significant challenge. Adaptive 

sampling methods often struggle to quickly respond to sudden and significant changes in 

health indicators, potentially leading to delayed data capture during critical health events. 

This is particularly concerning in emergency situations where real-time data is crucial. 

Additionally, there's a complexity in seamlessly integrating adaptive sampling techniques with 

other components of the WBAN ecosystem, such as data transmission protocols and power 

management systems. The existing algorithms may not always be efficient in contexts where 

rapid changes in physiological parameters occur, and they may not account for the 

multifaceted nature of a patient's health condition, especially in cases of chronic or complex 

diseases. Furthermore, while adaptive sampling can reduce the volume of data transmitted 

and thus conserve energy, this reduction could sometimes lead to the loss of crucial health 

information, creating a trade-off between data comprehensiveness and system sustainability. 

Another limitation is the potential for increased computational complexity, as adaptive 

sampling algorithms need to continuously analyse incoming data to adjust sampling rates, 

which can be resource-intensive. The literature also points to a gap in the long-term validation 

of these methods in real-world scenarios, questioning their reliability and consistency over 

extended periods. In addition, issues related to data privacy and security are amplified in 

adaptive sampling systems due to the variable nature of the data transmission, posing 

challenges in maintaining consistent security protocols. Finally, ensuring user-friendliness and 

accessibility of these systems remains a concern, as complex adaptive sampling mechanisms 
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can be difficult for patients and healthcare providers to understand and manage, potentially 

hindering their wider adoption. Addressing these limitations is crucial for advancing the 

effectiveness of adaptive sampling methods in health monitoring applications. 

Considering the limitations of current threshold-based and hybrid algorithms for WBANs, 

future research is needed. Enhancing personalisation and adaptability is crucial, moving 

beyond the one-size-fits-all approach to tailor algorithms to individual patient profiles and 

their unique health histories. Improving the predictive accuracy of hybrid algorithms by better 

integrating methods like linear regression with threshold techniques will be essential for more 

effective proactive health monitoring. Addressing computational efficiency is also paramount 

to ensuring these sophisticated algorithms are viable in resource-constrained WBAN 

environments. This includes optimising the real-time data processing capabilities for quicker 

responses to health changes, particularly in emergency scenarios. Additionally, making the 

complex data outputs of these hybrid models more accessible and interpretable for 

healthcare providers will enhance usability and clinical adoption. Expanding clinical validation 

and generalizability through extensive trials across diverse patient populations and settings 

will ascertain the reliability and applicability of these algorithms. Lastly, given the sensitive 

nature of the data handled by WBANs, enhancing data security and privacy remains a crucial 

area of focus, especially as the systems become more complex. Addressing these aspects will 

significantly advance the field of WBANs, making them more effective, reliable, and tailored 

to individual healthcare needs. 
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Chapter 3 

3. Unified Anomaly Detection Schemes (UADS) 

3.1 Introduction 

 

Recent developments in electronics, embedded systems, and wireless communication 

technologies allow the creation of tiny, intelligent sensors for use on the human body to track 

health. A wide array of robust and high-performing biometric sensors, such as those for 

electrocardiograms, electroencephalograms, electromyograms, blood pressure, body 

temperature, blood glucose, heart rate, and oxygen saturation, are now deployed for ongoing 

human health monitoring. The application of these sensors carries several beneficial impacts: 

(i) they decrease medical errors, (ii) alleviate the workload for hospital staff, (iii) enhance 

patient comfort, (iv) enable highly sensitive health-related decisions, (v) deliver highly 

accurate data at a relatively low cost, and (vi) simplify the analysis and reduce the time 

required to process medical data [154]. 

This chapter serves as an exposition of the system model and theoretical framework that 

underpin our extensive research endeavour. Specifically, it outlines the development of an 

anomaly detection system utilising WBANs within the healthcare domain. The primary goal is 

to enhance clinical decision-making efficiency across diverse environments. This system 

incorporates anomaly detection techniques derived from the existing body of literature and 

aims to deliver robust performance characterised by early anomaly detection, precision in 

decision-making, and minimal power consumption. The chapter further elucidates the 

preliminary aspects, provides insights into related work, offers a detailed methodology of the 

threshold-based approach, and conducts a comparative analysis with machine learning 

approaches. 

This research places significant emphasis on vital signs for the purpose of decision-making 

and prediction. Existing literature indicates that the interplay between these vital signs offers 

a holistic view of a patient's physiological condition, with changes in various vital signs 

demonstrating strong correlations. It is evident that more accurate predictions can be 

achieved when the alterations in multiple vital signs are collectively considered rather than 
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estimating them in isolation. This chapter introduces a novel anomaly detection approach 

that leverages vital signs and their correlations to enhance predictive capabilities in 

healthcare. 

3.2 Preliminaries 

A typical architecture in a wireless healthcare system involves WBANs, wireless networks, 

actuators, and software services that collect data from a target user who requires such 

support due to medical conditions [9]. Wearable and implantable data collection devices [96] 

are available at a low cost. These devices can provide real-time physical and medical 

information about the user. These sensors exhibit key configurations and infrastructure, 

enabling easy implantation or wearability on the human body, with some being designed as 

wearable textile sensors that offer low power consumption, wireless communication, and the 

ability to monitor the user's health status and activity. In addition to a local processing point 

where data is initially transmitted, such as a workstation, smartphone, or tablet, all these 

sensors and devices are integral components of this healthcare system. Data in this healthcare 

system is continuously collected at various times of the day and, in some cases, on-demand. 

The data can encompass physiological information (e.g., heart rate, blood pressure, ECG) or 

information retrieved from persistent storage, such as a patient's profile, including historical 

and medical records.  

The WBAN utilises bandwidth-limited low-power communication protocol devices such as 

WPAN, Zigbee, Bluetooth, etc. to transmit data using single hop or multi-hop between the 

sensor and Base Station (BS) [155]. The limitations of resources in networks, including 

restricted bandwidth, buffer memory, and battery power, necessitate an effective routing 

protocol for timely data transmission using minimal resources. Issues such as congestion and 

energy utilisation are significant in WBAN communication. Network traffic load escalation 

often results in buffer overload and repeated data retransmission. This, in turn, degrades the 

Qos, affecting latency, packet loss, throughput, and energy use [156] 

In the context of most WBAN healthcare systems, data is typically transmitted to cloud 

storage [98] or hospital data repositories for decision-making based on patient data. 

However, this approach comes with several drawbacks, including high power consumption 

due to the transmission of extensive data, a lack of real-time processing, significant costs, and 
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a heavy reliance on internet connectivity. In light of these challenges, it is advisable to conduct 

anomaly detection within a WBAN at the local node rather than relying on cloud-based 

processing. This underscores the need for an intermediary layer of computation, where a geo-

distributed network of smart gateways offers intelligence at the network's edge. It facilitates 

the interaction between the sensors' layer and the cloud layer. This paradigm, alternatively 

known as edge computing, addresses this requirement [101,153]. A few WBAN architectures 

can be considered, where decisions can be made at the local node before transmitting data 

to the cloud.  

In the distributed processing architecture approach [99], data from WBAN sensors undergoes 

local processing either on the WBAN device itself or on a nearby edge device. This 

configuration enables the integration of anomaly detection algorithms directly on the sensor 

nodes or edge devices, facilitating real-time anomaly detection without the need to transmit 

data to the cloud. This method offers the benefits of low-latency processing, minimised data 

transmission, and enhanced privacy. However, it faces limitations due to the computational 

constraints on the sensor nodes, posing challenges for complex processing tasks. 

The fog computing architecture [100] extends the cloud's influence towards the network 

edge, enabling data processing at intermediary nodes within the network. Within a WBAN 

context, this approach may involve tasks like data aggregation and anomaly detection being 

performed at a nearby gateway device. Advantages include reduced latency, improved 

scalability, and efficient data processing. Nevertheless, the complexity of setting up and 

maintaining fog nodes can present challenges in implementation. 

In the context of edge computing architecture [101] within a WBAN, the core idea is to bring 

data processing and computation as close as possible to where the data is generated. This 

involves processing vital signs and health-related data on wearable devices or nearby 

dedicated edge servers rather than sending all raw data to a remote cloud server. The benefits 

include those similar to fog computing and not limited to low-latency, real-time processing 

critical for healthcare applications, reduced data transmission, aiding in power consumption, 

and maintaining privacy. However, the limited computational capabilities of edge devices can 

pose constraints. 



63 
 

In the decentralised peer-to-peer architecture [102], each sensor node within the WBAN 

operates as both a data source and a processing unit. Anomaly detection can be executed 

collaboratively or independently on each sensor node. This approach provides high fault 

tolerance and minimal data transmission requirements. However, the limited processing 

power on sensor nodes may impact the complexity and real-time capabilities of anomaly 

detection algorithms. 

As noted earlier, the edge computing architecture presents substantial benefits, making it a 

compelling option for crucial applications such as healthcare anomaly detection in WBANs. 

This WBAN architecture is depicted in Figure 3.1. 

Physiological sensors

Central hub

Vital signs

Edge device

Classifier 

Data classified using 
different algorithms Knowledge 

discovery

Patient with sensors Decision making 

Anomaly detection Data 
transmission

Data reduction

End user

Physicians/ 
Caregivers

Cloud storage

Final clinical decision to the patient 
 

Figure 3. 1 The WBAN architecture includes edge devices for classification, prediction and 
decision-making. 

Edge computing is a superior choice over cloud processing for healthcare anomaly detection 

due to several key advantages [98,101,103]. It offers low-latency, real-time processing, 

ensuring rapid response to anomalies, a crucial requirement in healthcare. This approach 

significantly enhances data security and privacy by keeping sensitive patient information 

within the local network. Despite its limited computational capabilities, edge computing 

proves cost-effective by reducing data transfer costs, making it particularly well-suited for 

applications with high data volumes and predictable workloads, such as vital sign monitoring. 

While cloud processing offers redundancy and fault tolerance, edge computing excels in 
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simplicity and efficiency, and real-world case studies illustrate its successful deployment, 

showcasing improved patient outcomes.  

When it comes to edge devices, there are several options available that can support the 

desired WBAN healthcare system. These devices vary in terms of their computational power, 

power consumption, data rate capabilities, cost, and more. Table 3.1 provides a summary of 

the available edge devices. 

Table 3. 1: A summary of edge devices that can be used in a WBAN healthcare system. 

Features 

Arduino 

Nano 33 

BLE Sense 

Raspberry 

Pi Zero W 

Micros

oft 

Azure 

Sphere 

Intel 

Curie 

Nordic 

Semiconduc

tor 

nRF52840 

Microchip 

ATmega32

8P 

Microcontro

ller 

Nordic 

Semiconduc

tor 

nRF52840 

Broadcom 

BCM2835 

Microso

ft 

Pluton 

security 

subsyste

m 

Intel 

Curie 

module 

Nordic 

Semiconduct

or nRF52840 

Microchip 

ATmega32

8P 

CPU 
ARM 

Cortex-M4F 

ARM1176J

ZF-S 

Dual-

core 

ARM 

Cortex-

A7 

x86 

Quark 

SE 

ARM Cortex-

M4 
8-bit AVR 

Clock Speed 64 MHz 

1 GHz 

(single 

core) 

500 

MHz 
32 MHz 64 MHz 16 MHz 

Flash 

Memory 
1MB -  4-8 MB 384KB 1MB 32KB 

RAM 256KB 512MB 8-9 MB 80KB 256KB 2KB 
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Connectivity 

Bluetooth 

Low Energy 

(BLE) 

Wi-Fi and 

Bluetooth 

Wi-Fi 

and 

Ethernet 

Bluetoo

th and 

Wi-Fi 

Bluetooth 5, 

Zigbee, and 

Thread 

Limited to 

GPIO pins. 

Sensors 

Various 

built-in 

sensors 

Non-built-

in 

Support

s 

external 

sensors 

Include

s 

motion 

sensors 

Supports 

external 

sensors 

Supports 

external 

sensors 

User 

Friendly 

User-

friendly 

User-

friendly 

User-

friendly 

User-

friendly 

Technical 

expertise 

required 

User-

friendly 

Cost (£) 20-25   10-12 15-25  8-12  12-15  5  

 

 

3.3 Related Works 

Edge computing in the IoT is a growing field that is relatively new in the healthcare industry. 

It lacks established standards and focused research, which results in potential gaps in areas 

like healthcare solutions based on WBAN. Existing studies have predominantly focused on 

cloud scenarios due to the historical prevalence of cloud-based systems in data management. 

This emphasis on cloud computing has led to shortcomings in resource management within 

edge computing. However, this presents an opportunity for innovation and the development 

of new standards that cater specifically to the needs of healthcare. By adopting WBAN, these 

standards can enhance data processing from wearable devices by carrying out computations 

closer to the data source, reducing latency, and optimising resources. As a result, most of the 

current solutions utilising edge computing are about IoTs. Despite the lack of established 

standards, further research in edge computing promises to advance healthcare technology 

solutions. 

The swift progress in information technology allows an increasing number of people to store 

various data through mobile devices online. This has revolutionised our lifestyle and work by 

merging physical reality with digital space. However, the data explosion challenges traditional 

architectures' handling power. Temporarily, cloud computing, rich in computing and storage 

resources, helps manage this issue. Nevertheless, uploading data to remote clouds from 
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mobile devices leads to significant user delays. This latency situation can even be life-

threatening in certain contexts, like heart failure patients. Fortunately, using edge data 

processing close to mobile devices effectively addresses these problems. Edge devices can 

directly interact with the nearest edge node, substantially reducing data latency when 

uploading or requesting data. Edge computing faces issues like potential data breaches, 

inefficient resource allocation leading to task failures, and vulnerability to attacks due to 

limited computing and caching capabilities. 

The growth of the Internet of Things (IoT) and the success of cloud services have expanded 

the boundaries into a novel computing model known as edge computing, which envisages 

processing data closer to its source [157]. Edge computing's main principle involves 

transferring part or all of the computing work typically handled by centralised cloud 

computing hubs to the periphery, near where the data originates. This approach gives edge 

computing immense potential to address limitations associated with the cloud [158]. 

The study outlined in [159] introduces a new strategy for using edge nodes to assist in data 

transmission within a cloud-centric IoT structure as a means to tackle the challenge of 

excessive bandwidth utilisation in the cloud. It highlights the utility of edge nodes' bandwidth 

resources by expanding the existing framework of edge computing within a cloud-focused IoT 

design. Research in [160] examines the issue of computation offloading for multiple users in 

mobile-edge cloud computing within a multi-channel wireless interference context. A 

distributed computation offloading algorithm is designed in this study, which demonstrates 

remarkable performance in computation offloading capacity and scalability as the number of 

users increases. The paper [161], delves into the synchronised allocation of communication 

and computational resources to reduce the aggregate weighted-sum delay of all devices 

within a cloud-edge collaborative system. 

A prototype platform was developed to run a facial recognition application, as outlined in 

[162]. With this platform, executing operations moved from the cloud to the edge, 

subsequently reducing response time significantly from 900 ms to 169 ms. Additionally, [163] 

employed cloudlets to delegate computing tasks for wearable cognitive assistance 

applications. This technique exhibited substantial enhancements in response time, ranging 

from 80 ms to 200 ms. Importantly, the energy consumption was decreased by 30%–40% via 

cloudlet offloading. CloneCloud, mentioned in reference [164], incorporated methods like 
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partitioning, migration, merging, and on-demand instantiation of partitioning between 

mobile and cloud computing. The demonstrated prototype led to a 20-fold improvement in 

runtime and energy efficiency for the tested applications. 

Porambage et al. [165] provide a thorough analysis of edge computing architecture and the 

benefits of computation offloading. Ning et al. [166] proposed a system that uses multi-access 

edge computing for in-home health monitoring. In this system, they modelled the task 

offloading challenge as a weighted potential game, taking into account the computational 

costs of each user in the WBAN. In this model, a balance (or Nash equilibrium) among WBAN 

users is reached in a decentralised manner. Similarly, Yuan et al. [167] put forth a task 

offloading method that aims to minimise delay and energy consumption in edge-enabled 

WBAN systems. They framed this challenge as a two-stage optimisation problem: initially, 

WBAN users determine their offloading choices based on their benefits and penalties. Roy et 

al. (168) proposed a task-offloading approach within healthcare systems facilitated by cloud 

and edge computing. They modelled the challenge as a bargaining problem. In this scenario, 

users from the WBAN negotiate with one another to determine whether tasks should be 

offloaded to the cloud or a fog server. Addressing resource allocation for computation 

offloading within edge computing, Merluzzi et al. (169) suggested a stochastic algorithm. The 

purpose of this algorithm is to dynamically assign computation resources based on the 

system's needs. Safar et al. (170), on the other hand, offered a distinctive framework. This 

framework accommodates users within the WBAN who wish to offload their computational 

tasks to nearby mobile users with higher computational capacities. The primary objective 

behind this arrangement is to minimise the network's total energy consumption.  

Wan et al. [172] suggested a model of energy-conscious load balancing and scheduling 

through the use of a swarm optimisation algorithm, thereby improving balancing efficiency. 

In a separate study, Isa et al. [171] introduced a fog-based architecture for healthcare 

monitoring, addressing the system's energy efficiency problem using mixed integer linear 

programming. From a network operator's perspective, Yosuf et al. [173] understood the 

problem of energy efficiency within IoT architecture as a mixed integer linear programming 

problem, proposing a heuristic algorithm as a solution. 

Merluzzi et al. [174] investigated the problem of energy management in mobile edge 

computing, viewing it as a stochastic optimisation problem. They considered both the energy 
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usage of end-users and MEC servers. They came up with the innovative concept of a low-

power sleep mode for mobile edge computing servers to reduce excessive energy 

consumption. At the same time, Sharma et al. [176] proposed strategies to conserve power 

and promote environmentally friendly computing. These authors suggested using a 

combination of virtualization and recycling techniques to decrease energy usage in computing 

facilities. Similarly, Ranadheera et al. [175] focused on optimising the energy usage of mobile 

edge computing servers while satisfying users' Quality of Experience (QoE) requirements. To 

achieve this dual objective, they proposed a minority game-based algorithm for efficient 

server activation management. 

Xiao and Krunz [177] tackled the intricate balance between power efficiency and users' QoE 

satisfaction within a fog and edge environment. They put forward a framework that leverages 

the symbiotic relationships between different fog nodes. Furthermore, they crafted a 

distributed optimisation framework and, under this umbrella, proposed two robust 

distributed algorithms [178]. From another perspective, Apostolopoulos et al. [179] 

scrutinised the risky behaviours exhibited by mobile users when offloading computations, all 

within a multi-mobile edge computing server environment. Their approach was grounded in 

a non-cooperative game-theoretic analysis. The challenge of data offloading in a multi-mobile 

edge computing server scenario, encompassing scheduling and multi-mobile edge computing 

server selection, is tackled through a coalition game [180]. 

The presented discussion emphasises the importance of edge computing in addressing 

latency and energy-saving issues associated with traditional architectures like cloud 

computing. Edge devices allow for direct interaction with the nearest edge node, thereby 

reducing data delay. The research covers various aspects, including resourcefulness of 

bandwidth, offloading of computation, and reduction of response time. In particular, studies 

have shown the benefits of using edge devices in healthcare monitoring. Facial recognition 

software prototypes, for example, demonstrated a significant reduction in response time 

through the use of edge computing. Moreover, further research highlights the potential for 

energy management and improved computational efficiency, as seen in discussions on sleep 

modes and minority game-based algorithms for server management. Various tasks and 

strategies for offloading energy, such as bargaining and weighted potential game analyses, 

have been proposed to optimise network resource allocation and energy consumption. 



69 
 

Ultimately, the literature demonstrates the potential of edge devices for task optimisation 

within the WBAN architecture. Focusing on an anomaly detection experiment using edge 

devices in the WBAN architecture can enhance network performance, reduce latency, and 

improve energy efficiency. With the growing need for real-time responses in fields like 

healthcare monitoring, the reduced latency benefit is crucial. Additionally, efficiently 

managing resources by determining the correct techniques for task offloading can lead to 

improved overall network performance and energy savings. Therefore, experimentation with 

anomaly detection at the edge local nodes of a WBAN can be instrumental in anticipating 

potential issues and ensuring system reliability and performance. Based on the 

comprehensive examination and research outlined above, the hybrid healthcare architecture 

that integrates WBAN, edge, and cloud technologies, as proposed in source [159], is 

considered throughout the experiment. 

3.4 Performance Analysis Techniques 
In assessing the effectiveness of decision-making, the most frequently used metrics include 

the probability of detection (Pd), measurable via the Likelihood ratio, and the probability of 

false alarm (Pfa). For this research, the principles of sensitivity, specificity, and receiver 

operating characteristics (ROC) [185] are employed, as they represent the best methods 

available.  

The key terms often used to assess a clinical test are referred to as sensitivity and specificity 

[185]. Commonly considered for a clinical test are positive and negative predictive values, 

which rely on the existence of the disease being studied. Generally, sensitivity and specificity 

are quantitative tests that hinge on a cut-off value that surpasses or falls short of a given limit. 

As a rule, they are generally inversely related; as sensitivity increases, specificity typically 

decreases, and vice versa. The potential results of a clinical test are depicted in Table 3.2 

[185]. Understanding the following key terms is crucial for measuring the performance of 

clinical tests:  

Table 3. 2: Truth table for a clinical test 

 
Status Disease present Disease absent 
Test positive True positives False positives 
Test negative False negative True negatives 
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True positive (TP): The patient has the disease, and the test result is positive. 

False positive (FP): The patient does not have the disease, but the test result is positive. 

True negative (TN): The patient does not have the disease, and the test result is negative. 

False negative (FN): The patient has the disease, but the test result is negative. 

Sensitivity: This is also called Recall and in more common terms, sensitivity refers to a clinical 

test's ability to accurately identify a patient who has a particular disease. A test with 100% 

sensitivity implies that it can accurately diagnose the disease in every patient who has it. 

However, a test with a 75% sensitivity can only correctly identify the disease in 75% of the 

patients who have it. It misses or fails to detect the disease in the remaining 25% of the cases, 

leading to false-negative results. To ensure a dependable diagnosis, it's preferable for a 

clinical test to have a high sensitivity percentage. In probability notation:  

𝑃𝑃𝑠𝑠𝑠𝑠(𝑇𝑇+|𝐷𝐷+) = 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹) 

where 𝑃𝑃𝑠𝑠𝑠𝑠 , 𝑇𝑇+, 𝐷𝐷+, 𝑇𝑇𝑃𝑃 and 𝐹𝐹𝐹𝐹 refer Probability of the sensitivity, Test positive, Disease 

positive, True positive and False negative respectively. 

Specificity: Specificity is a concept used in clinical testing, indicating the ability of a test to 

accurately identify individuals who don't have the disease. A test boasting a 100% specificity 

would correctly identify all disease-free individuals. In the case of a test with 75% specificity, 

it indicates that the test correctly identifies 75% of disease-free cases (true negatives), but 

wrongly flags 25% of healthy individuals as having the disease (false positives). In probability 

notation:  

𝑃𝑃𝑠𝑠𝑠𝑠(𝑇𝑇−|𝐷𝐷−) = 𝑇𝑇𝐹𝐹/(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃) 

where 𝑃𝑃𝑠𝑠𝑠𝑠 , 𝑇𝑇−, 𝐷𝐷−, 𝑇𝑇𝐹𝐹 and 𝐹𝐹𝑃𝑃 Probability of the specificity, Test negative, Disease negative, 

True negative and False positive respectively. 

The concepts of sensitivity and specificity are used to evaluate how effectively a clinical test 

can differentiate between patients who have a certain disease and those who don't. In the 

context of a specific test, the likelihood of the disease being present is termed as, the test's 

predictive value. The term Positive predictive value (PPV) also called Precision, in terms of 
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probability, refers to the likelihood that a person has the disease given a positive test result. 

In probability notation:  

𝑇𝑇+|𝐷𝐷+) = 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃) 

For Negative predictive value (NPV) in probability notation: 

𝑇𝑇−|𝐷𝐷− = 𝑇𝑇𝐹𝐹/(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹) 

The F1 Score is the harmonic mean of precision and recall, providing a balance between the 

two metrics. It is particularly useful when the distribution of the classes is imbalanced. In 

mathematical notation  

𝐹𝐹1 = 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

 

Or  

𝐹𝐹1 =
2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

Accuracy in the context of classification is defined as the proportion of true results (both true 

positives and true negatives) among the total number of cases examined. 

𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

A key term associated with diagnostic testing is the Likelihood ratio. This term establishes the 

comparison between the chances of a patient testing positive having the disease versus those 

who tested negative. 

 

𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝑅𝑅𝑃𝑃ℎ𝑃𝑃𝑃𝑃𝑜𝑜 𝑃𝑃𝑅𝑅𝑟𝑟𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑆𝑆𝑃𝑃𝑟𝑟𝐴𝐴 1 − 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝐴𝐴⁄  

The Receiver Operating Characteristic (ROC) curves, as depicted in Figure 3.2, communicate 

the proportion of (1-specificity) of a test on the horizontal axis, compared to its sensitivity on 

the vertical axis, for all potential measurements. 
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Figure 3. 2: Receiver operator curves (example) 

Figure 3.2 depicts a standard ROC curve, which is a graph where the y-axis represents the 

True positive rate (TPR) of a test and the x-axis shows the False positive rate (FPR). Curve A 

represents the ideal test scenario, while Curve B signifies the usual outcome in clinical 

settings. The accuracy of the test is indicated by the Area under the curve (AUC). The ROC 

curve is an effective mechanism for assessing performance in classification and distribution 

tasks. Essentially, it's a chart that provides a probabilistic representation, and the AUC 

demonstrates the model's ability to differentiate between different categories. For any given 

dataset, the model's power to discern between classes can be articulated using the AUC. A 

higher AUC score indicates that the model is more successful at correctly identifying positive 

and negative cases. In a medical setting, an AUC of 1 would mean that the ROC could 

flawlessly predict whether a patient has a disease or not. A prime example of this is displayed 

in Figure 3.3, where the model adeptly distinguishes between TP and TN. The ROC curve plots 

the false positive rate FPR on the x-axis against the true positive rate TPR on the y-axis. 
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Figure 3. 3: AUC is 1, Perfect scenario; AUC = Area under curve; TPR =True Positive Rate; FPR 
=False Positive Rate. 

Figure 3.4 reveals an AUC score of 0.7, which indicates a 70% probability of accurately 

predicting both true negatives and true positives. However, the model also introduces two 

types of errors: false negatives and false positives. 

 

Figure 3. 4: AUC is 0.7, 70% chance the model distinguishes between positive class and 
negative class. 

The illustration referred to as Figure 3.5 displays an AUC of 0.5, indicating an inability to 

differentiate between the positive and negative classes. Essentially, an AUC of 0.5 implies that 

the test doesn't exhibit any discerning capability, meaning it can't effectively distinguish 

between patients who have the disease or condition compared to those who don't. 
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Figure 3. 5: AUC is 0.5, This is the worst situation, the model has no discrimination capacity. 

When the AUC is nearly zero, it means the model is incorrectly classifying positive instances 

as negative and vice versa. In Figure 3.6, the instances that are correctly predicted as negative 

(true negatives) and those correctly predicted as positive (true positives) are incorrectly 

labelled as their opposites, i.e., true negatives are labelled as true positives and true positives 

are labelled as true negatives. 

 

Figure 3. 6: AUC is 0, The model is predicting the opposite. 

In a nutshell, an ROC curve illustrates the balance between the true positive rate (sensitivity) 

and the false positive rate (specificity), resulting in a curve. Typically, the more the curve 

skews towards the top-left corner, the better the test results. If the curve nears the ROC 

space's 45-degree diagonal, the test's accuracy declines. 
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3.5 System Model  

Consider a standard WBAN, wherein numerous biosensors are positioned or implanted within 

the human body. Similar to typical sensors, these biosensors possess three fundamental 

capabilities: i) sensing, ii) processing, and iii) communication. Following the sensing phase, the 

biosensors transmit the gathered data to the coordinator, situated in proximity to or on the 

body. The coordinator then conducts processing based on algorithms implemented for the 

sink node. Subsequently, the sink node forwards the processed data to the destination. 

A system model has been developed based on WBAN technology, with the primary objective 

of enhancing reliability throughout the clinical decision-making process. The fundamental 

block diagram outlining the inputs and outputs of the healthcare system is depicted in Figure 

3.7. The system model comprises two primary blocks: decision-making and clinical prediction. 

 

     Proactive suggestion  

Patients’ personal profile                                                                                              Primary recommendation           Clinical diagnosis     

                                          History storage           

Info from WBAN sensors                                                                                                                                      Clinical prediction 

          

Clinical diagnosis              Patient deterioration                   History storage           

       History storage 

         

 

Figure 3. 7: Input and output for the proposed healthcare system. 

 

Within this system model, three inputs are taken into consideration. Firstly, sensor data is 

anticipated to yield various types of physiological outputs. This physiological data, derived 

wirelessly from the patient's sensor, constitutes the initial input. The second input is derived 

from the patient's personal profile, encompassing their historical medical information and 

physical attributes such as weight, height, and age. To augment the reliability of clinical 

prediction, a third-input clinical diagnosis is incorporated. The first block of the decision-

making model yields three principal outputs: proactive suggestion, primary recommendation, 

and history storage. Simultaneously, the second block of the clinical prediction model 

 

Clinical prediction model 

 

Decision-making model 
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generates two initial outputs: patient deterioration or improvement and history storage. In 

terms of the overall system model, three primary outputs are established, encompassing 

clinical diagnosis, clinical prediction, and history storage for subsequent reference. 

This system is designed to operate independently, deriving clinical decisions from the 

provided inputs (see Figure 3.7) and producing anticipated outputs. Leveraging physiological 

sensor data and the patient's historical clinical information, the system is poised to assess the 

severity of the patient's clinical condition, categorising it as either emergency, semi-

emergency, or non-emergency. In instances classified as non-emergency, the system issues 

alert to prompt the patient to undertake preventive measures, such as medication or dietary 

adjustments. Conversely, for emergencies, the system recommends that the patient seek 

healthcare services, specifying options such as contacting a general practitioner (GP), visiting 

a walk-in centre, or seeking emergency medical attention. Additional attributes are slated to 

be incorporated into the system in subsequent phases of experimentation, to enhance overall 

system performance. 

Figure 3.8 illustrates the detailed system model of the proposed WBAN for healthcare. This 

system is designed to generate dependable clinical decisions and clinical predictions within a 

resource-constrained environment. It is assumed to be a secure system, safeguarded against 

both external and internal security breaches. 
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Figure 3. 8: Block diagram of the proposed healthcare framework 
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The system comprises three distinct components: the data collection unit, the decision-

making unit, and the service provider unit. The first unit incorporates physiological sensors 

responsible for gathering data from a patient's body. Additionally, this unit includes the 

patient's profile, encompassing medical history. Primarily, it constitutes the body area 

network connected to an appropriate edge device through low-power technologies like 

Zigbee, Bluetooth, etc. 

The subsequent unit is tasked with knowledge discovery from data to formulate a reliable 

clinical decision. It considers the data forwarded from the first unit, along with the patient's 

medical history. This unit comprises an edge device equipped with a mini-storage and the 

computational ability to process data and make decisions locally. Furthermore, this unit is 

capable of anomaly detection from vital signs obtained from physiological sensors and 

medical history, generating alerts for relevant stakeholders. Additionally, by utilising data 

reduction techniques, this unit minimises the amount of data to be transferred to the cloud. 

Internet technologies such as 4G, 5G, or Wi-Fi are employed to connect this unit to the next 

unit. 

The concluding segment of the block diagram is the service provider unit on the cloud 

platform. This unit plays a crucial role in storing and backing up system data. It serves as a 

web-based service for end-users, including patient carers, physicians, and emergency 

services. It also serves as a valuable resource for healthcare researchers to conduct their 

studies. Additionally, physicians can leverage this opportunity to improve their clinical 

decisions. 

Assuming S represents sensors connected to the WBAN, this is expressed as follows: 

𝑆𝑆 = [𝑆𝑆𝑖𝑖|𝑃𝑃 = 1,2,3, … ,𝑃𝑃] 

 

In this context, each element 𝑆𝑆𝑖𝑖 represents a specific type of sensor, such as pulse, blood 

pressure, respiration rate, heart rate, temperature, etc., where 𝑃𝑃 denotes the total number 

of sensors within the WBAN. Every sensor 𝑆𝑆𝑖𝑖 furnishes sensed data with measurements 

conducted at preset sampling intervals. 
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It is assumed that each sensor operates in an awake state, adhering to a duty cycle denoted 

by 𝛼𝛼 in the range [0, 1] for a designated time 𝑟𝑟𝑠𝑠. Consequently, each node is active during the 

time interval 𝛼𝛼𝑟𝑟𝑠𝑠and inactive during the interval (1 − 𝛼𝛼)𝑟𝑟𝑠𝑠. 

During the awake state of the sensors, let 𝑆𝑆𝑠𝑠 define the sampling frequency, which is assumed 

to be the same for all sensors within the WBAN. The number of samples acquired during the 

awake state of each sensor is denoted by 𝐿𝐿 as follows: 

𝐿𝐿 = 𝛼𝛼𝑟𝑟𝑠𝑠𝑆𝑆𝑠𝑠 

Hence, the data acquired by any sensor 𝑆𝑆𝑖𝑖 during its awake state can be articulated as: 

𝑜𝑜𝑖𝑖 = [𝑜𝑜𝑖𝑖𝑖𝑖|𝑗𝑗 = 1,2,3, … , 𝐿𝐿] 

The data obtained from 𝑃𝑃 sensors during one complete awake state can be represented by a 

matrix 𝐷𝐷 of size 𝑃𝑃 × 𝐿𝐿. 

𝐷𝐷 = �

𝑜𝑜1,1 𝑜𝑜1,2   … 𝑜𝑜1,𝑘𝑘
𝑜𝑜2,1...

𝑜𝑜2,2...
  … 𝑜𝑜2,𝑘𝑘...

𝑜𝑜𝑠𝑠,1 𝑜𝑜𝑠𝑠,2 𝑜𝑜𝑠𝑠,𝑘𝑘

� 

In this WBAN, sensors are expected to operate within the normal range of vital signs, which 

can be defined by the lower limit 𝛾𝛾𝑖𝑖𝑙𝑙  and the upper limit 𝛾𝛾𝑖𝑖𝑢𝑢. The well-being range of vital signs 

can vary due to demographic differences, and this range may also vary based on professions. 

These measurements may have different tolerance levels depending on the type of sensor 

and the sensitivity of the acquired data. Let 𝛿𝛿𝑖𝑖 denote the tolerance level for the 𝑃𝑃𝑡𝑡ℎ sensor 

node. For instance, for temperature measurements, the lower threshold 𝛾𝛾𝑙𝑙  and upper 

threshold 𝛾𝛾𝑢𝑢 are 37°C and 40°C, respectively, and the tolerance level 𝛿𝛿𝑖𝑖 may be considered 

as ±3°C. 

In the data pre-processing phase, measurements that fall outside the normal sensing range 

are categorised as emergency data measurements i.e. 

𝑜𝑜𝑖𝑖,𝑖𝑖 > 𝛾𝛾𝑖𝑖   𝑙𝑙 − 𝛿𝛿  𝑃𝑃𝑃𝑃 𝑜𝑜𝑖𝑖,𝑖𝑖 > 𝛾𝛾𝑖𝑖   𝑢𝑢 + 𝛿𝛿 

 

Consequently, emergency services will be notified, and simultaneously, a notification will be 

sent to a support engineer responsible for the WBAN architecture to inspect the system as a 

precaution. Like a conventional WBAN, each sensor node gathers data and transmits it to the 
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coordinator periodically. Consequently, a substantial volume of data is collected and sent to 

the coordinator for the decision-making process. In addition to this periodic process, a 

concurrent, event-driven process is also necessary in a state of emergency. In the event of an 

emergency, an event-driven approach is prioritised over a periodic approach [31, 152]. 

Measurements falling within the normal and anticipated sensing range are classified as true 

data and are subject to processing in the decision-making unit (Figure 3.8). The decision-

making strategy can be characterised by intra-sensor (within the same type of sensor) and 

inter-sensor (group of sensors) criteria. The intra-sensor criteria for decision-making by the 

𝑃𝑃𝑡𝑡ℎ sensor node is expressed as: 

𝐶𝐶𝑖𝑖𝑖𝑖 = �0     𝛾𝛾𝑖𝑖𝑙𝑙 ≤ 𝑜𝑜𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑖𝑖𝑢𝑢

1    𝑃𝑃𝑟𝑟ℎ𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃      
 

Here, 𝐶𝐶𝑖𝑖𝑖𝑖 = 0  and 𝐶𝐶𝑖𝑖𝑖𝑖 = 1 indicate the likelihood of the 𝑗𝑗𝑡𝑡ℎ sample acquired from the ith 

sensor representing true and incorrect data, respectively. 

In the event of a significant change in measurements, action is initiated when: 

𝐶𝐶𝑖𝑖𝑖𝑖 =

⎩
⎨

⎧𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴    �𝐶𝐶𝑖𝑖𝑖𝑖

𝑘𝑘

𝑖𝑖=1

> 𝛿𝛿1
 

 

 𝐿𝐿𝑃𝑃𝐸𝐸                 𝑃𝑃𝑟𝑟ℎ𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃      

 

Here, 𝛿𝛿1 signifies the threshold for triggering alerts to emergency services. 

In cases where the measurements do not explicitly indicate an emergency based on their 

values but still necessitate attention, they can be defined as: 

𝐶𝐶𝑖𝑖𝑖𝑖 =

⎩
⎨

⎧𝐶𝐶𝑃𝑃𝑃𝑃𝑟𝑟𝑅𝑅𝑃𝑃𝑟𝑟 𝐺𝐺𝑃𝑃    ��̂�𝐶𝑖𝑖𝑖𝑖

𝑘𝑘

𝑖𝑖=1

> 𝛿𝛿2
 

 

 𝐿𝐿𝑃𝑃𝐸𝐸                 𝑃𝑃𝑟𝑟ℎ𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃      

 

Measurements may only necessitate preventive action by the patient themselves, as defined 

by: 

𝐶𝐶𝑖𝑖𝑖𝑖 =

⎩
⎨

⎧𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃    ��̂�𝐶𝑖𝑖𝑖𝑖

𝑘𝑘

𝑖𝑖=1

> 𝛿𝛿3
 

 

 𝐿𝐿𝑃𝑃𝐸𝐸                 𝑃𝑃𝑟𝑟ℎ𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃      
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In the suggested WBAN framework, each sensor node is capable of providing readings that 

fall within an acceptable limit. For adults, there's a certain threshold or acceptable range for 

specific vital signs, although these ranges differ for children and toddlers. The acceptable 

range may also fluctuate based on demographic or geographic differences. Appendix A.3 

provides a table of acceptable thresholds for an adult, indicating that vital signs are 

significantly interconnected. Even if all the vital signs fall within an acceptable range, a critical 

situation could still arise. Such scenarios could be mitigated by harnessing the power of 

cooperative interaction among WBAN sensors. This would involve implementing an inter-

sensor decision-making approach that takes into account the correlation among the relevant 

vital signs. It's anticipated that this strategy would involve input from all different sensors to 

boost the effectiveness of the decision-making process.  

The WBAN consistently produces both emergency and non-emergency data derived from 

physiological signs. As detailed in Figure 3.9, sensor data falls into two core categories: 

abnormal or emergency data and normal data. Emergency data, which could be caused by 

either a change in patient physiology or system failure, is prioritised for analysis, leading to a 

clinical decision. On the contrary, non-emergency data undergoes local compression and 

storage in the cloud. Various compression techniques [181–183] are available, and the 

proposed system is likely to adopt one or a blend of these methods. With data integrity being 

paramount, any compression method employed must avoid compromising the original 

information. 

Data samples Observations

Normal

Abnormal

Log

System faults

Physiological 
changes

Data with no 
concern

Decision making/ 
clinical prediction

 

Figure 3. 9: Flow diagram of information 
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Patient history is extremely important information that should be available to the appropriate 

parties. Hence, the need arises for a platform that can provide secure and mobile access to 

this data. Secure cloud storage can effectively meet this need. A variety of techniques and 

services have been outlined in [184] about cloud services. The proposed system is anticipated 

to utilise one of these solutions for secure data storage and access. 

 

 3.5.1 Data Collection 

In a WBAN, data collection begins when the miniature, usually micro-battery-powered, 

sensors are activated. These sensors, each tailored to monitor specific physiological 

parameters such as heart rate or body temperature, detect the relevant signals. The data is 

either gathered continuously or at periodic intervals according to the predetermined 

requirements. The detected analogue health signals are then converted into digital format by 

an analogue-to-digital converter (ADC) within the sensor. Once digitised, the health data is 

temporarily stored in the sensor's integrated storage unit before being transmitted to the 

central processing unit (CPU). The sensors also implement energy-saving strategies to manage 

the limited energy supplied by their micro-batteries, with techniques such as duty cycling, 

where sensors go into sleep mode when not active. 

Traditional WBAN systems predominantly forward most data to the cloud, rather than 

processing the low-level data or performing substantial computations on a local server or 

mobile device. In the proposed framework, the local server, which can be either a mobile 

device or an edge device, has a role that goes beyond simply collecting basic data from the 

WBAN system, such as physiological indicators like blood pressure, heart rate, and respiratory 

rate. It is also responsible for performing computational tasks before sending all the data to 

the cloud.  

To certify a learning model that relies on extensive data, it's crucial to use data closely 

resembling real-world data. However, the available real data that could be utilised is limited 

and often does not encompass a range of physiological indicators. For instance, databases 

such as those by Faini [186] and Parati [187] possess data, but they are restricted to only two 

vital signs: BP and heart rate HR. Hence, the dataset from the Physionet MIMIC-II database 

[188] is utilised as it encompasses a vast range of examples of various vital signs. 
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This dataset was chosen due to its suitability for evaluating our implementations. It is 

exceptional because no publicly available dataset provides multiple vital sign measurements 

from diverse home-monitoring patients, demonstrating different correlations over a long 

period of time. It is important to note that home-monitoring data shows similar patterns 

when collected in controlled conditions and under the supervision of a nurse. The MIMIC 

Database is composed of patients who were admitted to the hospital for various clinical 

emergencies. The data collected from bedside monitors is divided into several files, each 

containing 10 minutes of recorded signals. These files are later combined seamlessly to create 

a continuous recording. The experimental records, which consist of 60-minute segments of 

information, are used to validate the system. 

For the experiment, from MIMIC-II, 100 patient records have been utilised for evaluations. 

The patients who participated in this study present with a broad range of clinical issues, such 

as sepsis, respiratory failure, congestive heart failure, pulmonary oedema, myocardial 

infarction, cardiogenic shock, and acute hypotension. The majority of these clinical instances 

arise because of simultaneous abnormalities in multiple vital signs. 

 

3.5.2 Data Preprocessing 
Similar to other real-world databases, it's necessary to perform several preprocessing steps 

to enhance the quality of the data prior to deriving the features. This process is crucial when 

dealing with real-world data. Even in the context of a monitored patient at home, the data 

may be contaminated with noise and contain outliers. This can result from a variety of 

circumstances, such as sensor malfunctions, disconnections, changes in equipment, and 

interruptions in network connections, among others. In the circumstance where all vital sign 

data is missing for an extended duration, these gaps are deemed to be non-recoverable due 

to network disruptions or sensor malfunctions, leading to data deletion. However, in 

situations where one or more vital sign values are missing but other clean values are provided, 

the data is deemed recoverable and filled by employing methods such as median-pass [189] 

and k-nearest neighbour [190] filters. In actual patient databases, a median-pass filter can be 

used to replace each raw record with a median value calculated from nearby records, 

effectively dealing with observational error data. Furthermore, the k-nearest neighbours 
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algorithm proves to be a valuable technique in tasks like data imputation, where it's used to 

fill in missing entries in a patient record by evaluating the 'K' most similar records. 

Table 3.3 displays the physiological data in the database columns. 

Table 3. 3: Data in columns 

SL # SYSTOLICBP SpO2 HR PULSE RESP TEMP 

1 151 97 133 132 32 36.8 

2 153 97 133 132 32 36.7 

3 154 97 133 132 32 36.6 

4 152 97 133 132 29 36.9 

 

The initial column in the figure signifies time (in seconds), while the subsequent columns 

symbolise blood pressure, oxygen saturation, heart rate, pulse, respiration rate, and 

temperature, in that order. 

 

3.5.3 System Model Validation 
 

3.5.3.1 Threshold-Based Approach 
The introduced system begins its validation process by using a rule-based threshold 

algorithm. This strategy is based on the fundamental principle that every important vital sign 

has a specific range of minimum and maximum thresholds. An example of this is the breathing 

rate shown in Figure 3.10, using NEWS [191] as a benchmark. One advantage of this system 

is its versatility, as it allows doctors to set personalised threshold ranges to evaluate a 

patient's health status. If the system detects data that falls outside of these predetermined 

ranges, it immediately triggers an alarm. The threshold algorithm is both simple and efficient, 

quickly alerting to significant changes in physiological signs. Since the system's main function 

is to classify data as either "normal" or "emergency," even the smallest deviations in vital 

signs are carefully recorded. Although this can lead to a relatively high rate of alarms, there 

are situations where such algorithms are crucial, especially when changes in vital signs can 

have a significant impact on decision-making.  
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Figure 3. 10: National Early Warning Scoring System [191] 

However, doctors also follow existing medical theories and evidence that show how certain 

vital health metrics are interconnected and often change together in response to specific 

body conditions. This understanding allows physicians to identify which vital signs should be 

continuously monitored, and importantly, simultaneous shifts in these selective vital signs 

could be seen as indicators of deterioration. To manage these situations, two distinct 

threshold algorithms are proposed. The first Algorithm 1. A is called "Threshold" and alerts 

medical staff when any of the vital signs exceed the set tolerance range. On the other hand, 

"Algorithm 1. B" is called ‘Threshold (adopted)’ aims to reduce false alarms by focusing only 

on specific vital signs instead of all six, enabling physicians to adjust monitoring based on their 

clinical judgement or the patient's current condition. The choice between the algorithms 

primarily depends on the patient's condition and the overall clinical context.  

Algorithm 1. A illustrates an algorithm capable of classifying sensor data as either normal or 

emergency, utilising the tolerance range of vital signs. 

Algorithm 1.A. Emergency detection using threshold (Threshold) 
Input: A set of patient vital sign data 
Output: A classification result indicating a status 
Procedure: Classifier () 
begin 
Threshold (value, lower_threshold, upper_threshold): 
    return value < lower_threshold OR value > upper_threshold 
Classify(sensor_data): 
    emergency_vital_signs = empty_list() 
    for i in range(1, num_vital_signs + 1): 
        value = sensor_data[i] 
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        lower_threshold = SetLowerLimit(i) 
        upper_threshold = SetUpperLimit(i) 
        if Threshold(value, lower_threshold, upper_threshold): 
            append_to_list(emergency_vital_signs, i) 
        end if 
    end for 
    if length(emergency_vital_signs) > 0: 
        return {"status": "Emergency", "vital_signs": emergency_vital_signs} 
    else: 
        return {"status": "Normal", "vital_signs": empty_list()} 
    end if 
Monitor(reading_values): 
    sensor_data = reading_values 
    result = Classify(sensor_data) 
    if result["status"] == "Emergency": 
        vital_sign_names = EmergencyVitalSign(result["vital_signs"]) 
    end if 
getLower(vital_sign_number): 
    lower_thresholds = SetLowerLimit() 
    return lower_thresholds[vital_sign_number] 
getUpper(vital_sign_number): 
    upper_thresholds = SetUpperLimit() 
    return upper_thresholds[vital_sign_number] 
EmergencyVitalSign(vital_sign_numbers): 
    vital_sign_mapping = getVitalSignMapping() 
    vital_sign_names = [vital_sign_mapping[number] for number in vital_sign_numbers] 
    return vital_sign_names 
end   

 
This algorithm represents a vital sign monitoring system that classifies a patient's condition 

as either "normal" or "emergency" based on readings from different sensors. Here is how it 

operates: Firstly, it sets the lower and upper thresholds for each vital sign. If a reading from 

any sensor falls outside of a pre-established normal range (either below the lower or above 

the upper threshold), that reading is considered a cause for concern. The system iteratively 

goes through each sensor's data. For each vital sign, it checks whether the sensor's value 

surpasses the thresholds. If the value does exceed, it adds the vital signs to a list of emergency 

signs. Once the system has gone through all the sensor data, it checks if there are any signs 

marked as 'emergency'. If there are, it changes the patient's status to "Emergency" and 

returns this status along with the specific vital signs causing the alarm. If no sign surpasses 

the thresholds, it indicates that the patient's status is "normal." Additionally, the system has 

a mechanism to translate these sensor readings (identified by numbers) into their 

corresponding names. This is done through a function that maps the vital sign numbers to 

their names. This feature is mostly used when an emergency is identified and the system 
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needs to specify which vital signs have exceeded their thresholds. Two more helper functions 

determine the lower and upper thresholds for a particular vital sign. These thresholds are 

predefined within their corresponding functions. In essence, this monitoring system ensures 

that the patient's health status is continually monitored. If any alarming changes are detected, 

it promptly classifies the status as an emergency and identifies the problematic vital signs. 

An illustration of patient data for this algorithm includes the following vital signs: heart rate 

133, blood pressure 151, respiratory rate 32, temperature 36.8, oxygen saturation 97, and 

pulse 132.  

Example: R Code with this patient data 

# Function to check if a value is beyond specified thresholds 
Threshold <- function(value, lower_threshold, upper_threshold) { 
  return(value < lower_threshold | value > upper_threshold) 
} 
# Function to classify sensor data and identify emergency vital signs 
Classify <- function(sensor_data) { 
  emergency_vital_signs <- numeric(0) 
 
  for (i in 1:length(sensor_data)) { 
    value <- sensor_data[i] 
    lower_threshold <- getLower(i) 
    upper_threshold <- getUpper(i) 
    if (Threshold(value, lower_threshold, upper_threshold)) { 
      emergency_vital_signs <- c(emergency_vital_signs, i) 
    } 
  } 
  if (length(emergency_vital_signs) > 0) { 
    return(list(status = "Emergency", vital_signs = emergency_vital_signs)) 
  } else { 
    return(list(status = "Normal", vital_signs = numeric(0))) 
  } 
} 
# Function to monitor sensor readings and display classification 
Monitor <- function(reading_values) { 
  sensor_data <- reading_values 
  result <- Classify(sensor_data) 
  cat("Classification:", result$status, "\n") 
  if (result$status == "Emergency") { 
    vital_sign_names <- EmergencyVitalSign(result$vital_signs) 
    cat("Emergency Vital Signs:", paste(vital_sign_names, collapse = ", "), "\n") 
  } 
} 
# Function to retrieve the lower threshold for a specific vital sign 
getLower <- function(vital_sign_number) { 
  lower_thresholds <- SetLowerLimit() 
  return(lower_thresholds[vital_sign_number]) 
} 
# Function to retrieve the upper threshold for a specific vital sign 
getUpper <- function(vital_sign_number) { 
  upper_thresholds <- SetUpperLimit() 
  return(upper_thresholds[vital_sign_number]) 
} 
# Function to map vital sign numbers to their names in case of emergency 
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EmergencyVitalSign <- function(vital_sign_numbers) { 
  vital_sign_mapping <- getVitalSignMapping() 
  vital_sign_names <- sapply(vital_sign_numbers, function(number) vital_sign_mapping[number]) 
  return(vital_sign_names) 
} 
# Sample patient data 
patient_data <- c(HeartRate = 133, BloodPressure = 151, RespiratoryRate = 32,  
                  Temperature = 36.8, OxygenSaturation = 97, Pulse = 132) 
# Execute the Monitor function with the sample patient data 
Monitor(patient_data) 

 

The algorithm explanation, utilising the provided patient data as an example, is outlined 

below: 

Patient Data: 

The patient data consists of vital signs such as HeartRate, BloodPressure, RespiratoryRate, 

Temperature, OxygenSaturation, and Pulse. 

Table 3. 4: Example patient data 

HeartRate  BloodPressure  RespiratoryRate  Temperature  OxygenSaturation  Pulse  

133 151 32 36.8 97 132 
 

Threshold Checking Loop (Inside Classify Function): 

   - The `Classify` function iterates through each vital sign in the patient data. 

   - For each vital sign, it obtains the corresponding lower and upper thresholds using the 

`getLower` and `getUpper` functions. 

   - It then uses the `Threshold` function to check if the vital sign value falls beyond the 

specified thresholds. 

Example Checking (For HeartRate): 

   - For the HeartRate: 

     - Lower Threshold: 51 

     - Upper Threshold: 90 

     - Patient HeartRate: 133 
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   - The `Threshold` function checks if `133` is outside the range `[70, 150]`. Since it is outside, 

the HeartRate is identified as an emergency vital sign. 

For all the vital signs: 

Table 3. 5: Example of threshold-based classification. 

Vital Sign         Lower 
Threshold  

 Upper 
Threshold  

 Patient 
Measurement   Result                               

 Heart Rate        70 150 133  Emergency          
 Blood Pressure    120 140 151  Emergency          

 Respiratory Rate  15 25 32  Emergency          
 Temperature       36 38 36.8  Normal                               

 Oxygen Saturation 90 100 97  Normal                               
 Pulse             60 100 132  Emergency          

 

Overall Result: 

   - After checking all vital signs, the `Classify` function determines whether any vital signs are 

identified as emergency based on the thresholds. 

Inside Classify Function: 

   - The `for` loop iterates through each vital sign in the `sensor_data`. 

   - For each vital sign, it checks if the value is beyond the specified thresholds using the 

`Threshold` function. 

   - If the condition is met, it adds the vital sign number to the `emergency_vital_signs` list. 

   - After processing all vital signs, it checks if any emergency vital signs were identified. 

   - If yes, it returns a list indicating an "Emergency" status along with the list of emergency 

vital signs; otherwise, it returns a list indicating a "Normal" status with an empty list. 

Classification Result: 

   - If the classification is "Emergency," the `EmergencyVitalSign` function is called with the 

identified emergency vital sign numbers. 

   - The function returns the names of the emergency vital signs, which are then printed: 

Emergency Vital Signs: HeartRate, RespiratoryRate, Pulse 
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To validate the system model, a set of experiments was carried out. Each sample, 

approximately 20,100 records in size, was examined over one hour. 

In the initial stage of the system validation experiment, individual physiological signs are taken 

into account as displayed in various figures. Specifically, blood pressure. is demonstrated in 

Figure 3.6, oxygen saturation in Figure 3.7, and heart rate in Figure 3.8 respectively. The early 

warning scoring system table (refer to Figure 3.5) is used to highlight the normal range of 

well-being over time. Notably, only a few alarms were observed for blood pressure (as seen 

in Figure 3.11) based on the available data. In this graph, the y-axis signifies the measurement 

of blood pressure in millimetres of mercury (mmHg), while the x-axis illustrates the passage 

of time in seconds. Measurements depicted in blue represent a normal state, whereas those 

marked in red point to an emergency state. Due to their specific health condition, this 

particular patient is anticipated to have normal blood pressure while experiencing a higher 

rate of respiration and heart rate.   

 

Figure 3. 11: Blood pressure, normal and emergency data.  

The red vertical lines on the graph symbolise an alert at a specific point in time, while the 

green horizontal lines mark the maximum and minimum threshold values for all vital sign 

measurements. Alarms are integrated into the graph following a threshold algorithm, with 

emergency data marked in red and ordinary data in blue. A significant number of alarms are 
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identified for oxygen saturation (Figure 3.12), heart rate (Figure 3.13), and respiration rate 

(Figure 3.14), resulting from actual variations in physiological measurements. 

Figure 3. 12: Oxygen saturation, normal and emergency data. 

 

All the vital signs depicted in Figures 3.12 to 3.14 are plotted with time on the x-axis and 

measurements on the y-axis. Each vital sign is associated with distinct measurement units. 

Blood pressure, for instance, is quantified in millimetres of mercury (mmHg) and presented 

as systolic pressure over diastolic pressure (e.g., 120/80 mmHg). Oxygen saturation is 

represented as a percentage (%), indicating the proportion of oxygen-saturated haemoglobin 

in the blood. Heart rate is gauged in beats per minute (BPM), denoting the number of heart 

beats per minute. Similarly, respiration rate is measured in breaths per minute (BPM), 

signifying the count of breaths taken per minute. 

Table 3.6 presents the log documenting alarms triggered by the system for individual sensors. 

The analysis reveals that the system-generated alarms fall into two distinct categories: 

emergency data and errors attributed to system failures. A specific entry in the patient log 

(191) indicates a system failure at the commencement of the record. Notably, alarms related 

to blood pressure were found to be the result of a faulty system and were treated as errors, 

as indicated in Table 3.6. 
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Table 3. 6Table 3.6: Raised alarm for individual vital signs. 

Vital signs Alarm % Error % 
Blood pressure 10 1 
Oxygen saturation 37 2 
Heart rate 91 2 
Respiration rate 94 2 

 

 

Figure 3. 13: Heart rate, normal and emergency data. 

Among the four physiological signs plotted, it is noted that respiration (Figure 3.14) has the 

highest number of alarms. Conversely, blood pressure exhibits the lowest number of alarms 

compared to the others. Additionally, it is observed that heart rate and respiration share a 

similar percentage of alarms. 

The sample data used for system validation comes from an ICU patient experiencing 

respiratory and heart problems. A higher rate of alarms is recorded for heart rate and 

respiration rate (Table 3.6). The data suggests a correlation between vital signs, and it is noted 

that at least two or three vital signs may be interlinked [192]. The goal is to design a system 

for patients, physicians, or carers that is simple, easy to use, and suitable for medical 

scenarios. In dynamic situations, physicians may look for any changes in vital signs to monitor 

progress or deterioration. In some scenarios, observing at least two or three vital signs 
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together can provide insights into the patient's overall progress or deterioration, where each 

vital sign being in an emergency state contributes to determining the overall emergency. 

 

Figure 3. 14: Respiratory rate, normal and emergency data. 

Hence, the initially proposed threshold algorithm (1. A) has been expanded to version 1. B, 

incorporating options where physicians can specifically choose certain sensors and observe 

them collectively. This modification aims to assist physicians in minimising false alarms and 

obtaining more accurate observations. 

With the implementation of Threshold Algorithm 1. A (Threshold), a mini-experiment for 

system validation proved successful, as it effectively raised alarms when data fell outside the 

predetermined thresholds of upper and lower limits for vital signs. 

 

3.5.3.2 Threshold-Based Approach (Selective Vital Signs) 
The modified threshold algorithm 1. B (Threshold adopted), derived from threshold algorithm 

1. A, is designed to classify data into normal and emergency states. In this algorithm, the 

classification as an emergency is contingent on all the selected sensor data being in an 

emergency state. For instance, if three sensors are chosen to observe a patient using this 

algorithm, all three of them must be classified as emergencies for the system to be classified 

as an emergency. 
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Algorithm 1.B. Emergency detection using threshold by selecting sensors (Threshold adopted) 
Input: A set of patient vital sign data (can select specific vital signs) 
Output: A classification result indicating an overall system status 
Procedure: Classifier () 
begin 
Threshold (value, lower_threshold, upper_threshold): 
    return value < lower_threshold OR value > upper_threshold 
SetSensor(): 
Classify(sensor_data, selected_sensors): 
    emergency_vital_signs = empty_list() 
    for i in selected_sensors: 
        value = sensor_data[i] 
        lower_threshold = SetLowerLimit(i) 
        upper_threshold = SetUpperLimit(i) 
        if Threshold(value, lower_threshold, upper_threshold): 
            append_to_list(emergency_vital_signs, i) 
        end if 
    end for 
    if length(emergency_vital_signs) == length(selected_sensors) 
        return {"status": "Emergency"} 
    else: 
        return {"status": "Normal"} 
    end if 
Monitor(reading_values, selected_sensors): 
    sensor_data = reading_values 
    result = Classify(sensor_data, selected_sensors, ) 
getLower(vital_sign_number): 
    lower_thresholds = SetLowerLimit() 
    return lower_thresholds[vital_sign_number] 
getUpper(vital_sign_number): 
    upper_thresholds = SetUpperLimit() 
    return upper_thresholds[vital_sign_number] 
end   

 

The proposed algorithm is designed to analyse patient vital signs and classify them into either 

a normal or emergency state. The system allows physicians to choose specific sensors relevant 

to the patient's condition. The classification process involves setting threshold values for each 

vital sign, and if the readings surpass these thresholds for all selected sensors, the system 

declares an emergency. Monitoring is conducted to assess the overall system status based on 

the classification results. This approach aims to provide flexibility by allowing physicians to 

tailor the system to specific patient needs, with a focus on accurate emergency detection 

while minimising false alarms. 
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An illustration of patient data for this algorithm includes the following vital signs: heart rate 

133, blood pressure 151, respiratory rate 32, temperature 36.8, oxygen saturation 97, and 

pulse 132. 

Example: R Code with this patient data 

# Define Threshold function 
Threshold <- function(value, lower_threshold, upper_threshold) { 
  return(value < lower_threshold | value > upper_threshold) 
} 
# Define SetSensor function  
SetSensor <- function() { 
  # Implement logic to allow physicians to set specific sensors 
  # Return a list of selected sensor indices 
  return(NULL)  # return value 
} 
# Define Classify function 
Classify <- function(sensor_data, selected_sensors) { 
  emergency_vital_signs <- integer(0) 
  # Detailed calculations for each vital sign 
  for (i in selected_sensors) { 
    value <- sensor_data[[i]] 
    lower_threshold <- getLower(i) 
    upper_threshold <- getUpper(i) 
    # Check if the vital sign is outside the normal range 
    if (Threshold(value, lower_threshold, upper_threshold)) { 
      emergency_vital_signs <- c(emergency_vital_signs, i) 
    } 
  } 
  # Check if all selected vital signs are problematic 
  if (length(emergency_vital_signs) == length(selected_sensors)) { 
    return(list(status = "Emergency")) 
  } else { 
    return(list(status = "Normal")) 
  } 
} 
# Define Monitor function 
Monitor <- function(reading_values, selected_sensors) { 
  sensor_data <- reading_values 
  # Call the Classify function 
  result <- Classify(sensor_data, selected_sensors) 
  # Print the classification status 
  cat("Classification:", result$status, "\n") 
} 
# Define getLower function  
getLower <- function(vital_sign_number) { 
  lower_thresholds <- SetLowerLimit()   
  return(lower_thresholds[[vital_sign_number]]) 
} 
# Define getUpper function  
getUpper <- function(vital_sign_number) { 
  upper_thresholds <- SetUpperLimit()   
  return(upper_thresholds[[vital_sign_number]]) 
} 
# Given patient data 
patient_data <- list( 
  "heart_rate" = 133, 
  "blood_pressure" = 151, 
  "respiratory_rate" = 32, 
  "temperature" = 36.8, 
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  "oxygen_saturation" = 97, 
  "pulse" = 132 
) 
# Selected sensors 
selected_sensors <- c("heart_rate", "respiratory_rate", "pulse") 
# Monitor patient condition 
Monitor(patient_data, selected_sensors) 

 

The adjusted threshold algorithm 1.B is designed to empower doctors in choosing particular 

sensors for patient monitoring. A supplementary function named 'SetSensor' has been 

integrated into algorithm 1.A to facilitate sensor selection based on the patient's needs. 

Here's how the process works: Doctors interact with a graphical user interface to define the 

crucial health sign sensors they wish to use during monitoring. The chosen interface could 

utilise checkboxes, drop-down menus, or other forms of input. - The internal mechanics of 

the 'SetSensor' function interpret the doctor's selection and decide which sensors will be 

involved in the monitoring. For instance, if a doctor opts for "heart rate" and "respiratory 

rate," the function would yield a list of indices or names that match these chosen sensors. All 

the vital sign classification calculations are: 

Table 3. 7: Example of threshold-based (algorithm 1. B/ Threshold adopted) classification. 

Vital Sign 

   
Given 
Rate     Threshold Range         Calculation            

          
Result            

Heart Rate                        133    51 to 90     
 133 is outside the normal range (51 to 
90).  Emergency  

Respiratory 
Rate                 32    12 to 20     32 is outside the normal range (12 to 20).  Emergency  

 Pulse                                 132    51 to 90     
 132 is outside the normal range (51 to 
90).  Emergency  

 

In the initial analysis, each of the four vital signs, namely blood pressure, oxygen saturation, 

heart rate, and respiration, exhibited emergency data, triggering alarms. Subsequently, a 

modified threshold approach was introduced, implementing an 'and' logic to examine the 

correlation between these vital signs. The approach involved considering any two vital signs 

simultaneously. The outcome revealed a reduction in the number of alarms, as illustrated in 

Table 3.8. 
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Table 3. 8: Raised alarm between individual and combined vital signs (Sp = Oxygen 
saturation, HR = Heart rate, RR = Respiration rate) 

Features Sp HR RR Sp and HR Sp and RR RR and HR 
Alarm % 37 91 94 24 33 81 
Error % 2 2 2 9 2 2 

 

Figures 3.15, 3.16, and 3.17 depict the graphical representation of various combinations of 

physiological signs and their corresponding alarm tests against the system. An enhancement 

has been observed in comparison to individual physiological signs, particularly in terms of 

alarm reduction, as indicated in Table 3.8. 

 

Figure 3. 15: Raised alarms for Oxygen saturation and Heart rate. 

The individual alarm rates for oxygen saturation and heart rate were 37% and 91%, 

respectively. It has been noted that the alarm rate decreases to 24% when a combination of 

these two is employed for the alarm test (Figure 3.10 and Table 3.8). 
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Figure 3. 16: Raised alarms for Oxygen saturation and Respiration rate. 

The individual alarm rates for oxygen saturation and respiration rate were 37% and 94%, 

respectively. It has been observed that there is a reduction of 33% when a combination of 

these two is used for the alarm test (Figure 3.11 and Table 3.8). 

 

Figure 3. 17: Raised alarms for Respiration rate and Heart rate. 
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Moreover, figure 3.17 displays the alarm for the combined respiration rate and heart rate, 

which is observed to be less than the alarm rates for heart rate and respiration rate 

individually. 

 

Figure 3. 18: Raised alarms for Respiration rate, Oxygen saturation and Heart rate. 

In a subsequent experiment, three physiological signs were chosen for the implementation of 

algorithm 1. B, and the results are illustrated in graph 3.18. Table 3.9 enumerates the count 

of alarms triggered by the system for various combinations of physiological signs. 

Table 3. 9: Raised alarm between individual and combined vital signs (Sp = Oxygen 
saturation, HR = Heart rate, RR = Respiration rate, BP =Blood pressure) 

 
Features Sp & HR Sp & RR RR & HR RR, HR & Sp BP, RR,HR & Sp 
Alarm % 24 33 81 10 10 
Error % 9 2 2 2 2 

 

The count of alarms decreased for the combination of three physiological signs (table 3.9) 

compared to any two combinations. However, this experiment is beneficial only in situations 

where physicians opt to utilise multiple vital sign combinations to assess emergency 

conditions. 
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The numerical and graphical analyses indicate that the system is functioning correctly. The 

proposed system successfully detects instances where the data values exceed the threshold 

for individual sensors. Moreover, the system performs accurately when considering 

combinations of sensors, including random pairs and combinations involving more than two 

sensors. 

Different clinical scenarios, including MI/cardiogenic shock, cardiogenic shock, and 

respiratory failure, were considered for the system validation experiment. It was observed 

that the system performed effectively with both proposed threshold-based algorithms. 

Depending on the physician's observation, either algorithm can be chosen, considering that 

using fewer sensors is cost-effective and less complex in terms of computational concerns. 

 

3.5.3.3 Dynamic Threshold  Approach  
In the work [197], Sharma and his team delve into four categories of methods used for fault 

detection, which include rule-based, estimation-based, time-series analysis, and learning-

based techniques. They examine both static and changeable thresholds, linear least squares 

estimation, ARIMA, as well as the hidden markov model, among others. Their research 

primarily targets the detection of three types of faults: brief, noise-induced, and constant. 

They found that not one particular detection method consistently excels for all types of 

anomalies. Using dynamic thresholds in health monitoring systems allows for customisation 

according to individual variables and adjustments to new circumstances, which augments 

precision. However, the computational complexity remains comparable to that of a static 

threshold. Statistically based parameters, like mean (μ) and standard deviation (σ), are often 

deployed as dynamic thresholds to identify deviations, such as the z-score or μ ± kσ, within 

normally distributed values. Nonetheless, when considering approaches like percentage-

based thresholds and moving averages [66], the use of moving averages is more prevalent. 

This method involves calculating the average of the most recent readings over a designated 

time window. The advantages of moving averages include simplicity in calculation and 

implementation, live updating of thresholds based on the latest data, and mitigating the 

impact of short-term fluctuations and data noise. Alternatively, percentile-based Thresholds 

entail setting limits based on percentiles derived from past records, which is advantageous 
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for establishing personalized thresholds based on a patient's own historical data. However, 

this method is less suitable for quick-onset conditions where an immediate reaction is crucial. 

Dynamic threshold using moving average: 

- Let 𝑉𝑉𝑖𝑖 be a list of the most recent readings for the 𝑃𝑃𝑡𝑡ℎ vital sign. 

- Define N as the window size for the moving average. 

- The moving average 𝑀𝑀𝐴𝐴𝑖𝑖 for the 𝑃𝑃𝑡𝑡ℎ vital sign is calculated as 

𝑀𝑀𝐴𝐴𝑖𝑖 = 1
𝑁𝑁
� 𝑉𝑉𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 , where, 𝑉𝑉𝑖𝑖𝑖𝑖  is the 𝑗𝑗𝑡𝑡ℎ most recent reading of the 𝑃𝑃𝑡𝑡ℎ vital sign. 

- Let 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖  be a predefined offset value for the 𝑃𝑃𝑡𝑡ℎ vital sign. 

- The dynamic lower threshold 𝐿𝐿𝑇𝑇𝑖𝑖 and upper threshold 𝑈𝑈𝑇𝑇𝑖𝑖 for the 𝑃𝑃𝑡𝑡ℎ vital sign 

are calculated as: 

       𝐿𝐿𝑇𝑇𝑖𝑖 = 𝑀𝑀𝐴𝐴𝑖𝑖 − 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖    

       𝑈𝑈𝑇𝑇𝑖𝑖 = 𝑀𝑀𝐴𝐴𝑖𝑖 + 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖  

- For each vital sign reading 𝑅𝑅𝑖𝑖 compare it against its dynamic thresholds: 

- If 𝑅𝑅𝑖𝑖 < 𝐿𝐿𝑇𝑇𝑖𝑖 𝑃𝑃𝑃𝑃 𝑅𝑅𝑖𝑖 > 𝑈𝑈𝑇𝑇𝑖𝑖, flag the reading as indicating a potential emergency. 

An algorithm named 'Dynamic Threshold', developed for the proposed dynamic threshold 

approach, is presented below as algorithm 1. C.  

Algorithm 1.C. Emergency detection using Dynamic threshold (Dynamic Threshold) 
Input: A set of patient vital sign data 
Output: A classification result indicating a status 
Procedure: Classifier() 
begin 
    MovingAverage(recentValues, windowSize): 
        Calculate and return the average of the last 'windowSize' elements in recentValues 
    DynamicThresholds(vitalSign, recentValues, windowSize, offset): 
        movingAvg = MovingAverage(recentValues[vitalSign], windowSize) 
        lowerThreshold = movingAvg - offset 
        upperThreshold = movingAvg + offset 
        return lowerThreshold, upperThreshold 
    Threshold(value, lowerThreshold, upperThreshold): 
        return value < lowerThreshold OR value > upperThreshold 
    Classify(sensorData, recentValues, windowSize, offset): 
        emergencyVitalSigns = empty_list() 
        for i in range(1, num_vital_signs + 1): 
            value = sensorData[i] 
            lowerThreshold, upperThreshold = DynamicThresholds(i, recentValues, windowSize, offset) 
            if Threshold(value, lowerThreshold, upperThreshold): 
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                append_to_list(emergencyVitalSigns, i) 
            end if 
        end for 
        if length(emergencyVitalSigns) > 0: 
            return {"status": "Emergency", "vital_signs": emergencyVitalSigns} 
        else: 
            return {"status": "Normal", "vital_signs": empty_list()} 
        end if 
    Monitor(readingValues, recentValues, windowSize, offset): 
        sensorData = readingValues 
        result = Classify(sensorData, recentValues, windowSize, offset) 
        if result["status"] == "Emergency": 
            vitalSignNames = EmergencyVitalSign(result["vital_signs"]) 
        end if 
    EmergencyVitalSign(vitalSignNumbers): 
        vitalSignMapping = getVitalSignMapping() 
        vitalSignNames = [vitalSignMapping[number] for number in vitalSignNumbers] 
        return vitalSignNames 
end 

 

A comprehensive experiment was conducted to compare static and dynamic thresholds in 

terms of their execution time and accuracy in classification. The initial phase of the 

experiment employed blood pressure data from fourty ICU patients, with 14,4000 data points 

in total (60*60*40). The next stage considered 12 hours' worth of data, a total of 172,8000 

data points (12*60*60*40). Finally, the experiment was extended to 24 hours of data, 

resulting in a total of 345,6000 data points. Table 3.10 presents a summary of the 

experimental findings. When analysing smaller datasets, both algorithms demonstrated 

nearly identical performance. However, when applied to larger datasets, the dynamic 

threshold exhibited superior accuracy as it could adapt to each patient's unique variations 

and be capable of tracking trends over time. Nevertheless, in terms of execution time, the 

dynamic threshold was found to be more time-consuming compared to the static threshold 

when dealing with large datasets. 

Table 3. 10: Comparison of classification accuracy by static and dynamic threshold 

  Accuracy (%) Execution time (seconds) 
Duration 1 hour 12 hours 24 hours 1 hour 12 hours 24 hours 

Data 144000 1728000 3456000 14400 172800 345600 
Static  99.3 98.9 98.3 1.6 7.6 56 

Dynamic 99 99.1 99.3 2.9 40 206 
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3.6 Abnormality Classification 

The proposed model possesses the capability for knowledge discovery derived from extensive 

patient data at the local node through threshold approaches. Consequently, a Unified 

Anomaly Detection Scheme (UADS) has been developed as an extended version of the basic 

WBAN system model. This enhanced model incorporates functionalities for learning and the 

process of knowledge discovery to identify patient-specific anomalies. This involves the 

utilisation of rule-based thresholds, machine learning, and hybrid approaches. 

For the experiment, from MIMIC-II, 100 patient records have been utilised for evaluations. 

The patients who participated in this study present with a broad range of clinical issues, such 

as sepsis, respiratory failure, congestive heart failure, pulmonary oedema, myocardial 

infarction, cardiogenic shock, and acute hypotension. The majority of these clinical instances 

arise because of simultaneous abnormalities in multiple vital signs. 

In the experimental phase, the threshold-based approach is compared with machine learning 

algorithms. The system aims to achieve simple, user-friendly, clinically fit, computationally 

low, and energy-efficient anomaly detection, making decisions locally on the edge device. This 

approach is expected to reduce the amount of data sent to the cloud, thereby lowering overall 

system energy consumption. As discussed in the previous section, various edge devices with 

different computational capacities are considered. Amazon EC2 instances (type m1.medium) 

[193] are created to match the processing capability of Microsoft Azure Sphere (one of the 

edge devices). The classification process is then executed on the EC2 instance.  

In this experiment, apart from the threshold approach for classifying normal or emergency 

data based on vital signs, two additional machine learning algorithms, namely decision tree 

[72] and one-class support vector machine [71,76], have been employed. The selection of 

these two algorithms was meticulous, considering the system model's constraints that 

support the operation of simpler algorithms. The dataset is partitioned into training and test 

sets for utilisation with these machine learning algorithms. This careful choice aims to align 

with the system model and optimise the output for enhanced performance.  

Abnormal vital signs pose challenges to standardisation due to variations among patients, 

influenced by factors like medical history and family profile. These variations may not always 

indicate danger in practical scenarios. Relying solely on generalised threshold values for 
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patient classification can lead to frequent false alarms. While false alarms may be acceptable 

in life-threatening situations, it's crucial to factor in correlations with other contextual 

information when making final clinical decisions. 

As detailed in the system model section (3.5), decision support mechanisms are established 

based on the multiple level of classification results to recommend specific actions for 

implementation. They are: 

1. In the case of a normal situation: 

If ∀𝑃𝑃, 𝑗𝑗:𝐶𝐶𝑖𝑖𝑖𝑖 = 0, assign a score of 0. 

2. If the situation is abnormal but not dangerous and falls within the tolerance range: 

If ∑ �̂�𝐶𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1 > 𝛿𝛿3, then issue a warning for preventive action, assign a score of 1. 

3. If the situation is abnormal and poses a danger: 

If ∑ �̂�𝐶𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1 > 𝛿𝛿2, then send an alert to the doctor and recommend a visit to the general 

practitioner, assign a score of 2. 

4. In the event of an extremely abnormal situation: 

If ∑ �̂�𝐶𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1 > 𝛿𝛿1, then notify emergency services, assign a score 3. 

Where,  

– 𝐶𝐶𝑖𝑖𝑖𝑖 represents the intra-sensor criteria for the i-th sensor and j-th sample. 

– �̂�𝐶𝑖𝑖𝑖𝑖 represents a modified criteria for specific actions, depending on the context. 

– 𝛿𝛿1, 𝛿𝛿2,𝑅𝑅𝑃𝑃𝑜𝑜 𝛿𝛿3  are predefined thresholds for triggering different actions. 

– ∑ 𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑘𝑘
𝑖𝑖=1  the summation over all samples acquired during the awake state of the 

sensor. 

The suggested threshold method can only categorise the data into two states: normal or 

emergency. However, machine learning techniques can sort into multiple categories based 

on set criteria. Therefore, there's a plan to expand this threshold method to enable it to be 

classified into multiple categories, which would be more beneficial for this model. Afterwards, 

it will be possible to compare this revised method with the previously discussed machine 

learning approaches. 
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There are several straightforward techniques suitable for this system model that can classify 

various alert levels. Among all available methods, the two most effective are the Mahalanobis 

Distance (MD) [195] and the Z Score [196]. Z-Score and Mahalanobis distance are both 

statistical methods used for the classification of data, and while they may seem to perform 

similar functions, their applications differ in certain contexts. 

Z-Score: Measures how many standard deviations a data point deviates from the mean; 

suitable for univariate (single-variable) data. 

Mahalanobis Distance: Measures the distance between a point and a distribution considering 

covariance; ideal for multivariate data where variables correlate. 

For this system model, where values of different signs might affect each other, Mahalanobis 

distance is preferred. It takes into account correlations between variables, reducing false 

positives.   

 

3.6.1 Multi Level Classification Using Threshold Approach 
The algorithm is described in 1. A and 1. B, and it performs exceptionally well for binary 

classification. It can accurately classify patient vital signs as either normal or emergency. 

Afterwards, algorithm 1. D which is called MLCTA introduces an algorithm for multi-level 

classification, which is presented below. 

Algorithm 1.D. Multi-level classification using threshold approach (MLCTA) 
Input: A set of patient vital sign data  
Output: Multi-level classification result indicating an overall system status 
Procedure: Classifier () 
begin 
Threshold(value, lower_threshold, upper_threshold):  
    if value < lower_threshold:  
        return "Warning" 
    else if value > upper_threshold:  
        return "Emergency" 
    else: 
        return "Normal" 
    end if 
Alert(value, alert_threshold): 
    if value > alert_threshold: 
        return "Alert" 
    else: 
        return "Normal" 
    end if 
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Classify(sensor_data):  
    emergency_vital_signs = empty_list()  
    warning_vital_signs = empty_list() 
    alert_vital_signs = empty_list()   
    for i in range(1, num_vital_signs + 1):  
        value = sensor_data[i]  
        lower_threshold = SetLowerLimit(i)  
        upper_threshold = SetUpperLimit(i)  
        alert_threshold = SetAlertLimit(i)         
        status = Threshold(value, lower_threshold, upper_threshold)         
        if status == "Warning": 
            append_to_list(warning_vital_signs, i) 
        else if status == "Emergency": 
            append_to_list(emergency_vital_signs, i) 
        end if  
        alert_status = Alert(value, alert_threshold) 
        if alert_status == "Alert": 
            append_to_list(alert_vital_signs, i) 
        end if 
    end for  
    result = {"status": "Normal", "vital_signs": empty_list()}     
    if length(emergency_vital_signs) > 0:  
        result = {"status": "Emergency", "vital_signs": emergency_vital_signs} 
    else if length(alert_vital_signs) > 0: 
        result = {"status": "Alert", "vital_signs": alert_vital_signs} 
    else if length(warning_vital_signs) > 0:  
        result = {"status": "Warning", "vital_signs": warning_vital_signs} 
    end if  
    return result 
Monitor(reading_values):  
    sensor_data = reading_values  
    result = Classify(sensor_data)  
    output = {"Classification": result["status"]} 
    if result["status"] == "Emergency":  
        vital_sign_names = VitalSignNames(result["vital_signs"]) 
        output["Emergency Vital Signs"] = vital_sign_names 
    else if result["status"] == "Alert": 
        vital_sign_names = VitalSignNames(result["vital_signs"]) 
        output["Alert Vital Signs"] = vital_sign_names 
    else if result["status"] == "Warning": 
        vital_sign_names = VitalSignNames(result["vital_signs"]) 
        output["Warning Vital Signs"] = vital_sign_names 
    end if 
    return output 
VitalSignNames(vital_sign_numbers): 
    vital_sign_mapping = getVitalSignMapping()  
    vital_sign_names = [vital_sign_mapping[number] for number in vital_sign_numbers] 
    return vital_sign_names 
End 
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`Threshold’ function evaluates a given `value` against a `lower_threshold` and an 

`upper_threshold`. It returns an assessment of the situation—either "warning," "emergency," 

or "normal"—depending on whether the value is below, above, or within the threshold 

boundaries. `Alert’ function decides whether a received `value` exceeds an `alert_threshold`. 

If the value is above the threshold, the function delivers an "Alert"; otherwise, it provides a 

"Normal" status. `Classify function processes sensor data to classify the conditions of various 

vital signs according to individual thresholds. It maintains three lists for tracking which vital 

signs are designated as "Warning," "Emergency," or "Alert." Should a vital sign cross its 

respective threshold, the sign is added to its respective list. Based on these lists, an overall 

health status is determined at the end of the function, ranging from "normal" to "emergency." 

The function then returns a dictionary detailing this status and the trigger elements for that 

status.  

‘Monitor function collects sensor'reading_values', conducts a data classification through the 

`Classify` function, and maps the associated vital signs to their descriptors with the 

`VitalSignNames` function. If specific conditions ("Emergency", "Alert", or "Warning") are 

met, it records the related vital sign names within an output dictionary. 5. 

`VitalSignNames(vital_sign_numbers)`: This function accepts a series of vital sign numbers 

and translates them into vital sign descriptors based on the `vital_sign_mapping` dictionary, 

which is assumedly provided by the `getVitalSignMapping()` function. 

This study used data from four patients to contrast the traditional threshold classification rule 

with the UADS scheme, a system designed to offer multi-tiered classifications based on 

threshold values. Table 3.11 showed a comparison between the typical binary threshold rule 

(using Threshold algorithm) and the suggested model, which seeks to achieve a multi-level 

classification stemming from the MLCTA method. 

Table 3. 11: Comparison Threshold vs proposed MLCTA. 

Patient Total 

Data 

Threshold approach UADS model MLCTA 

Normal Abnormal Normal Warning Alert Emergency 

Patient 1 36001 3563 32438 12320 17853 5523 305 

Patient 2 36492 4012 32480 10153 18997 6952 390 

Patient 3 35245 3692 31553 10586 17556 6802 301 
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Patient 4 34256 1899 32357 10207 19214 4523 312 

 

The results of this experiment demonstrate that multi-level classification performs effectively. 

Nevertheless, additional testing is needed to compare these findings. The objective of the 

research is to implement the simplest possible method, ensuring that straightforward 

techniques are thoroughly examined. Figure 3.19 illustrates a comparative analysis between 

binary classification and multi-tiered classification, employing two threshold approaches for 

this system model. The classification categories—warning, alert, and emergency—are broadly 

grouped under the term 'abnormal' for the sake of maintaining a binary-like classification 

structure. An observation derived from the chart reveals that proposed MLCTA multi-level 

classification techniques yield superior results. 

 

Figure 3. 19: Threshold vs MLCTA classification approach 

Observations indicate that the adjusted threshold offers improved classification results in 

distinguishing between normal and emergency data. In binary classification, an average 

normal data representation of 9% was observed across four patients, which then escalated to 

an average of 30%. Similarly, the trend was mirrored for abnormal classification, evident in 

the reduction from 91% to 70%. As depicted in Figure 3.20, the classification of abnormal data 

seemingly diminishes linearly when using the multilevel classification method as compared to 

the binary threshold (Threshold) classification method. 
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Figure 3. 20Figure 3.15: Comparison for abnormal data tendency (Threshold vs MLCTA) 

 

3.6.2 Mahalanobis Distance Calculation: 
There are several simple steps to calculate Mahalanobis distance. First, gather data and 

ensure that it is in a multivariate format, with observations in rows and variables in columns. 

Next, calculate the mean value of the dataset, which will serve as the reference point for 

distance calculation. After that, obtain the covariance matrix of the variables to take into 

account their variation and correlation. Then, subtract the mean from each variable's value 

for each observation to centralise the data around the mean. Finally, compute the 

Mahalanobis distance using the inverted covariance matrix and the centralised data. The 

distance can be found by taking the square root of the transposed centralised value, then 

multiplying by the inverted covariance matrix, and then multiplying again by the centralised 

value itself. 

– For each sensor 𝑆𝑆𝑖𝑖, calculated the mean vector 𝜇𝜇𝑖𝑖 and covariance matrix 𝐶𝐶𝑖𝑖 from 

dataset. 
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– Calculated the inverse of the covariance matrix 𝐶𝐶𝑖𝑖−1 for each sensor 𝑆𝑆𝑖𝑖 

– For each sensor 𝑆𝑆𝑖𝑖, mahalanobis distance 𝑀𝑀𝐷𝐷𝑖𝑖  calculated using the below formula. 
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 𝑀𝑀𝐷𝐷𝑖𝑖  = �(𝑜𝑜𝑖𝑖 − 𝜇𝜇𝑖𝑖)𝑇𝑇𝐶𝐶𝑖𝑖
−1(𝑜𝑜𝑖𝑖 − 𝜇𝜇𝑖𝑖) 

Where, 

𝑜𝑜𝑖𝑖 is the vector measurements for sensor 𝑆𝑆𝑖𝑖 

𝜇𝜇𝑖𝑖 is the mean vector for sensor 𝑆𝑆𝑖𝑖 

𝐶𝐶𝑖𝑖 is the covariance matrix for sensor 𝑆𝑆𝑖𝑖 

– It is defined four threshold 𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿3 𝑅𝑅𝑃𝑃𝑜𝑜 𝛿𝛿4for the mahalanobis distance 

corresponding to four alert levels 

o Level 1 (normal): 𝑀𝑀𝐷𝐷 ≤ 𝛿𝛿3 

o Level 2 (warning): 𝛿𝛿3 < 𝑀𝑀𝐷𝐷 ≤  𝛿𝛿2 

o Level 3 (alert): 𝛿𝛿2 < 𝑀𝑀𝐷𝐷 ≤  𝛿𝛿1 

o Level 4 (emergency): 𝑀𝑀𝐷𝐷 >  𝛿𝛿1 

This experiment made use of data from 4 patients to compare the conventional threshold 

classification rule and the UADS scheme, which includes MD is called MDTA (Mahalanobis 

distance Threshold approach). If the classifiers solely sort situations into normal and 

emergency categories, the physician must personally review the data before making any 

decisions. The proposed model, which incorporates MD, yields improved outcomes when 

determining the severity of data criticality. Table 3.12 illustrates the comparison between the 

general threshold rule and the proposed model that has incorporated the MD. 

Table 3. 12Table 3.12: Comparison Threshold vs proposed MDTA 

Patient Total 

Data 

Threshold approach UADS model (MDTA) 

Normal Abnormal Normal Warning Alert Emergency 

Patient 1 36001 3563 32438 13356 17123 5156 366 

Patient 2 36492 4012 32480 11473 18212 6432 375 

Patient 3 35245 3692 31553 11681 17235 5978 351 

Patient 4 34256 1899 32357 10834 18124 4994 304 

 

This finding suggests that the system can decrease the incidence of false alerts at the 

receiver's end. Our results haven't found a comparable study in the existing literature, so they 
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are compared with generalised medical observations. In certain healthcare systems, doctors 

personally calibrate the threshold values in an attempt to mitigate false alerts. However, in 

the proposed system, there's no need for any manual adjustments. Figure 3.21 illustrates that 

the proposed threshold method combined with MD delivers superior results for classifying 

normal and emergency data distributions. The assumption underpinning the use of the MDTA 

is that, aside from the normal data, all other pieces of data are treated as abnormal. This 

encompasses warning, alert, and emergency data.  

 

Figure 3. 21: Threshold vs MDTA normal and abnormal classification 

Figure 3.22 demonstrates how the combination of threshold and MD leads to an increase in 

the number of normal data classified, compared to the binary threshold method proposed 

earlier. 
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Figure 3. 22: Comparison for normal data tendency Threshold vs MDTA 

In the binary threshold classification, it was noted that an average of 91% abnormal data was 

observed across four patients. This average then decreased to around 67%. In the same 

manner, the pattern was reflected in the normal classification, as seen by the increase from 

9% to 33%. 

 

 

Figure 3. 23: Comparison between MLCTA and MDTA for normal data classification 

It has been noted that the proposed MLCTA and MDTA methods are utilised for multi-level 

classification of normal and emergency data. Furthermore, the data suggests that MDTA is 

more effective in detecting normal data compared to MLCTA in figure 3.23. Alternatively, 

figure 3.24 indicates that MLCTA outperforms MDTA in detecting abnormal data. 
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Figure 3. 24: Comparison between MLCTA and MDTA for abnormal data classification 

 

 

3.6.3 Machine Learning Algorithms for Classification 
In the proposed WBAN system, decision-making is conducted on edge devices, and the 

employment of both one-class SVM [71, 76, 116] and decision trees (C5.0) [72, 198] serves to 

provide a comprehensive basis for comparison with other classification methodologies like 

static and dynamic thresholds. The OCSVM is particularly proficient in anomaly detection 

within the high-dimensional data from WBAN sensors, offering efficient real-time processing 

crucial for edge computing. Its capability to discern health anomalies in complex data streams 

is a significant advantage. In contrast, decision trees present a transparent, rule-based 

classification approach, granting interpretability essential for healthcare decision-making. 

 

3.6.3.1 One Class Support Vector Machine 
OCSVM serves as an optimal anomaly detection solution within WBAN systems, aptly 

designed to highlight deviations signalling potential health risks. This is particularly pertinent 

in WBAN systems where the objective is identifying atypical readings among known vital sign 

parameters. OCSVM leverages a hyperplane approach to create a distinct separation between 

'normal' sensor readings and outliers, effectively marking a border in the voluminous data 

retrieved from WBAN sensors. This differentiation expedites the identification and response 

to variations in vital signs.  The hyperplane model is notably adept at managing the high-
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dimensional WBAN data, making it a clear choice for system implementation. The hyperplane 

approach, being less computationally intensive, is more suitable for the real-time data 

processing required in continuous health monitoring. Additionally, the hyperplane model 

offers a balance between simplicity and effectiveness, which is important considering the 

high-dimensional nature of WBAN data. This model is not only easier to implement and 

maintain on edge devices but also aligns well with the data distribution characteristics 

typically observed in WBAN systems. While the hypersphere model might provide a more 

nuanced fit for tightly clustered data, the hyperplane approach adequately meets our 

system's needs, effectively distinguishing between normal operation and anomalies, and 

ensuring efficient operation within the constraints of edge computing in WBAN 

environments. 

The goal of the OCSVM is to identify a hyperplane within the feature space that maintains the 

greatest possible distance from the origin. This ensures that there's a noticeable distinction 

between usual operational data and potential outliers. The mathematical expression for the 

OCSVM is as follows: 

𝐸𝐸𝑃𝑃𝑃𝑃𝜔𝜔,𝛿𝛿,𝜌𝜌 �
1
2

||𝜔𝜔||2  +  
1
𝑆𝑆𝑃𝑃𝐿𝐿

��𝜉𝜉𝑖𝑖𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑠𝑠

𝑖𝑖=1

� 

Where 𝜔𝜔 represents the weight vector of the hyperplane, and 𝜉𝜉𝑖𝑖𝑖𝑖  are slack variables 

associated with each data point 𝑜𝑜𝑖𝑖𝑖𝑖 . The term 𝜌𝜌 denotes the bias of the hyperplane in the 

feature space. 𝑆𝑆 is a regularisation parameter that controls the trade-off between maximising 

the margin and minimising misclassification. 

The model is subject to the following constraints: 

�𝜔𝜔.∅�𝑜𝑜𝑖𝑖𝑖𝑖�� ≥ 𝜌𝜌 −  𝜉𝜉𝑖𝑖𝑖𝑖 ,  𝜉𝜉𝑖𝑖𝑖𝑖  ≥ 0 

In these constraints, ∅�𝑜𝑜𝑖𝑖𝑖𝑖� signifies a mapping function that transforms the WBAN data into 

a higher-dimensional feature space, facilitating the linear separation of data points. 

3.6.3.2 Decision Tree (C5.0) 
The C5.0 decision tree algorithm is utilised for the effective classification and interpretation 

of data. This algorithm is recognised for its interpretability and its ability to handle complex, 
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non-linear relationships in data. The C5.0 algorithm forms a decision tree, where every node 

denotes a decision based on vital sign features, and branches represent the decision 

outcomes. The operation starts from the tree's root, which includes all the data from the 

WBAN system. To construct the tree, the first step involves the selection of a feature that 

differentiates the data into distinct categories most effectively. This selection is based on the 

principle of information gain, which quantifies how well a feature divides data into groups 

determined by the target variable. In this scenario, the target variable might consist of 

categories such as 'normal', 'alert', 'warning', and 'critical'. 

Define the Information Gain (IG) for a feature 𝐴𝐴 as: 

𝐼𝐼𝐺𝐺(𝑆𝑆,𝐴𝐴) = 𝐻𝐻(𝑆𝑆) −  �
|𝑃𝑃𝑣𝑣|
|𝑃𝑃|𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉𝑙𝑙𝑢𝑢𝑉𝑉𝑠𝑠 (𝐴𝐴)

 𝐻𝐻(𝑆𝑆𝑣𝑣) 

Where entropy 𝐻𝐻(𝑆𝑆) is calculated as  

𝐻𝐻(𝑆𝑆) =  −  � 𝑆𝑆(𝑃𝑃)𝑅𝑅𝑃𝑃𝐸𝐸2𝑆𝑆(𝑃𝑃)
𝑐𝑐 ∈ 𝑉𝑉𝑉𝑉𝑙𝑙𝑢𝑢𝑉𝑉𝑠𝑠 (𝐴𝐴)

 

Where 𝑆𝑆(𝑃𝑃) is the proportion of elements in class 𝑃𝑃 within the set 𝑆𝑆. 

At each node of the tree, select the feature 𝐴𝐴 that maximise 𝐼𝐼𝐺𝐺(𝑆𝑆,𝐴𝐴) to split the dataset. This 

process is recursively applied to each subset until specific stopping criteria, such as maximum 

tree depth or minimum node size, are satisfied. To classify a new observation 𝑜𝑜𝑠𝑠𝑉𝑉𝑛𝑛, traverse 

the tree from the root to a leaf node based on the feature values of 𝑜𝑜𝑠𝑠𝑉𝑉𝑛𝑛 with the leaf node 

providing the predicted classification. 

As previously stated, a considerable volume of patient data is being used for this experiment. 

Initially, it is used 100 patient data sets, spanning over 24 hours each, for the trials. But now, 

it is expanded this duration to 40 hours to extract more insights from the machine learning 

algorithm. This extended time frame will also help us test the proposed threshold algorithms. 

Table 3.13 displays the results of the classifications obtained from the experiments. Five 

performance criteria were utilized to evaluate their effectiveness. These include accuracy, 

sensitivity or recall, specificity, precision, and the F1 score. The algorithms assessed included 

the Multi-Level Classification Threshold Algorithm (MLCTA), Decision Tree (C5.0), Dynamic 

Threshold, One-Class Support Vector Machine (OCSVM), and Mahalanobis Distance Threshold 

Approach (MDTA). 
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Table 3. 13Table 3.13: Evaluating different approaches through performance metrics. 

Algorithms Accuracy Sensitivity Specificity Precision  F1 score 
MLCTA 96.19% 96.50% 91.00% 99.29% 97.87% 

Decision Tree  91.91% 92.00% 87.50% 99.04% 95.39% 
Dynamic threshold 90.55% 90.50% 91.00% 99.03% 94.57% 

OCSVM 87.96% 88.00% 93.00% 98.61% 93.01% 
MDTA 86.19% 86.50% 83.00% 98.09% 91.93% 

 

The results revealed that MLCTA exhibited superior performance with an accuracy of 96.19%, 

sensitivity of 96.50%, and an F1 score of 97.87%. These high metrics are indicative of MLCTA's 

robustness in handling multi-level classifications and its rule-based nature, which allows for 

granular and tailored analysis. 

The Decision Tree algorithm followed with competitive precision (99.04%) and a 

commendable F1 score of 95.39%, underscoring its capacity to manage complex relationships 

in the data effectively. However, it showed lower sensitivity and specificity, which might be 

attributed to potential overfitting or the lack of handling noisy data. 

The Dynamic Threshold method demonstrated balanced performance, notably matching the 

MLCTA in specificity (91.00%). This balance underscores its potential to adapt well to patient 

data trends, though it may not capture acute anomalies as effectively as MLCTA. 

OCSVM specialised in outlier detection; however, it scored lower in sensitivity and accuracy, 

reflecting a potential trade-off in detecting normal behaviour versus outliers. Its higher 

specificity (93.00%) suggests a strong ability to identify true negatives. 

Lastly, MDTA showed the lowest scores across most metrics but maintained high precision 

(98.09%). This might be due to its reliance on the assumption of a multivariate normal 

distribution, which may not always align with real-world medical data characteristics. 

The bar chart in Figure 3.25 highlights varying algorithm performances on key metrics. 

Accuracy spans a wide range, with MLCTA outperforming others, suggesting its robustness in 

correctly identifying true positives and negatives. In contrast, precision is comparably uniform 

across algorithms, indicating a consensus on the true positive rate. Sensitivity varies, with 

MLCTA and the Decision Tree demonstrating heightened ability to detect true positives. 

Specificity sees OCSVM excel, pointing to its strength in confirming true negatives. The F1 
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score consolidates these insights, with MLCTA leading, exemplifying its balanced precision 

and sensitivity. 

 

Figure 3. 25: Evaluation of performance by all algorithms. 

The experimental output is derived from the data listed in Table 3.13 and illustrated in Bar 

Chart 3.25. The overarching aim here is to use this data to make informed decisions 

concerning edge devices. Keep in mind that this scenario requires consideration of additional 

variables, primarily computational complexity. Computational complexity [199, 200] can 

substantially dictate the efficiency of the system model in an edge device environment, which 

is typically resource-limited and where efficiency is vitally important. Dealing with such 

complexities calls for the use of theory and presumptions. A matrix simplifies comprehension 

of the system model's behaviour under various conditions. The elements of this matrix receive 

rankings according to their potential impact on the system's overall performance. The ranking 

offers a clear hierarchy of factors, each graphically demonstrating their influence, supporting 

effective strategic tailoring to optimise system performance. 

Let's assume there are 𝑃𝑃 data points (patients), each with 𝐸𝐸 features (vital signs), and the 

focus is on evaluating the complexity of classifying a new data point using each algorithm. 

Two primary measures to evaluate computational complexity are time complexity (Big O 

notation) and space complexity (Big O notation). Table 3.14 provides an overview of the 

computational complexity. Let's presume an order for time and space complexity, along with 

the rationale for it. 
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Table 3. 14Table 3.14: Computational complexity assumptions 

Ra

nk  

Algorith

m 

Classification 

Complexity 

Training 

Complexity 

Executi

on 

Time 

Space 

Comple

xity Reasoning 

1 MLCTA  𝑂𝑂(𝑠𝑠) 
Not 

Applicable 
Fastest Least 

No training phase; 

simple rule application; 

and minimal space for 

rules. 

2 

Dynamic 

Threshol

d 

 𝑂𝑂(𝑠𝑠) 
Not 

Applicable 
Faster 

Modera

te 

No training phase; quick 

due to incremental 

updates; moderate 

space for thresholds. 

3 
Decision 

Tree 

 

𝑂𝑂(𝐸𝐸.𝑃𝑃. log(𝑃𝑃)   

 

𝑂𝑂(𝐸𝐸.𝑃𝑃. log(𝑃𝑃  

Modera

te to 

Fast 

Modera

te 

Requires construction 

of the tree; balanced 

trees offer better 

execution efficiency. 

4 OCSVM   𝑂𝑂(𝐸𝐸. 𝑃𝑃𝑆𝑆) 
 

𝑂𝑂(n2) 𝑟𝑟𝑃𝑃 𝑂𝑂(n3) 

Modera

te 

Modera

te to 

Most 

Training involves 

complex quadratic 

programming; and 

storage for support 

vectors. 

5 MDTA  𝑂𝑂(𝑚𝑚3)  𝑂𝑂(𝑚𝑚3) Longest Most 

Intensive matrix 

operations both in 

training and 

classification; 

substantial space is 

needed. 
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It's clear now that MLCTA is the most efficient with respect to both execution time and space 

complexity. It delivers the quickest execution, making it a prime choice for real-time 

processing in systems with limited resources, such as WBANs. The dynamic threshold is a 

close second, providing a good compromise between efficiency and performance. Although 

the decision tree, OCSVM, and MDTA are indeed effective, they show relatively higher 

computational complexities. This makes them more appropriate in situations where there is 

less concern about computational resource constraints. 

 

3.7 Hybrid Approach for Anomaly Detection 

In the context of WBANs, where resources such as processing power and energy are 

constrained, the integration of multiple techniques, such as threshold-based algorithms, 

machine learning models, and statistical methods, offers a comprehensive solution. These 

hybrid approaches allow for real-time processing of vital sign data directly at the edge devices, 

minimising the need for data transmission to central servers and reducing latency. Moreover, 

they enhance the system's adaptability to varying patient conditions, accommodating both 

routine monitoring and early detection of anomalies. By combining the strengths of different 

algorithms, hybrid approaches deliver accurate and context-aware results, ensuring that 

critical health events are promptly identified while conserving computational resources. This 

approach optimises the trade-off between computational complexity and accuracy, making it 

well-suited for the resource-constrained environment of WBANs, ultimately improving the 

quality of healthcare services and patient outcomes. 

The incorporation of linear regression [201] into the healthcare monitoring system represents 

a strategic enhancement designed to elevate the system's performance and decision-making 

capabilities. By leveraging linear regression, the system gains the capacity to detect subtle yet 

crucial trends and deviations in patient vital sign data, thereby significantly improving 

sensitivity. This enhancement allows for risk stratification, enabling the system to 

differentiate between low-risk and high-risk patients based on their unique vital sign profiles. 

Personalised care becomes attainable through patient-specific models and optimising 

healthcare interventions and treatment plans. Moreover, the inclusion of linear regression 

contributes to a reduction in false alarms by considering the context and trends in vital sign 
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data, leading to more precise alerts. This precision, in turn, facilitates the efficient allocation 

of healthcare resources, ensuring that interventions are directed toward patients in need. 

Lastly, linear regression offers valuable decision support by quantifying the impact of vital sign 

changes on patient outcomes, empowering clinicians with data-driven insights to enhance 

patient care decisions. In summary, the integration of linear regression enhances the 

healthcare monitoring system's ability to detect and respond to vital sign variations, 

ultimately yielding improved patient outcomes and resource utilisation. Figure 3.26 presents 

our proposed system model composed of five sensors that measure vital signs such as oxygen 

saturation (SpO2), body temperature, blood pressure, respiration rate, and heart rate/pulse. 

This system primarily employs various methods, particularly threshold methods, to identify 

emergency events in the incoming sensor data. Upon detection of an emergency, we use a 

continuously updated regression prediction model to analyse the abnormal instance and 

determine whether the patient is nearing a critical state or if a sensor is presenting incorrect 

data. For this experiment, we utilised similar data. 

 

Figure 3. 26: Block diagram of the proposed hybrid system  
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Given the array of sensors 𝑆𝑆 = [𝑆𝑆𝑖𝑖|𝑃𝑃 = 1,2,3, … ,𝑃𝑃] the proposed WBAN system, each sensor 

𝑆𝑆𝑖𝑖 records a series of data points 𝑜𝑜𝑖𝑖𝑖𝑖 over time. It aims to predict the current value of a specific 

sensor reading using a linear regression model that exploits the spatial correlation among 

different sensor readings. The model for predicting the value of a particular attribute (sensor 

reading) at the 𝑗𝑗𝑡𝑡ℎ instance for the  𝑃𝑃𝑡𝑡ℎ sensor is formulated as:  

�̂�𝑜𝑖𝑖𝑖𝑖 = 𝑅𝑅0 + 𝑅𝑅1𝑜𝑜1𝑖𝑖 + 𝑅𝑅2𝑜𝑜2𝑖𝑖 + ⋯+ 𝑅𝑅𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖 

where,  

• �̂�𝑜𝑖𝑖𝑖𝑖  is the predicted value for sensor 𝑆𝑆𝑖𝑖 at instance 𝑗𝑗 

• 𝑅𝑅0,𝑅𝑅1,𝑅𝑅2 … … . .𝑅𝑅𝑠𝑠 are the coefficients of the regression model (weights), representing 

the influence of each sensor's readings. 

• The coefficients 𝑅𝑅𝑘𝑘 for each sensor 𝑆𝑆𝑘𝑘 are obtained during the training phase and are 

calculated as: 

𝑅𝑅𝑘𝑘 =
∑(𝑜𝑜𝑘𝑘𝑖𝑖 − �̅�𝐴𝑘𝑘)(𝑜𝑜𝑖𝑖𝑖𝑖 − 𝐴𝐴𝚤𝚤� )

∑(𝑜𝑜𝑘𝑘𝑖𝑖 − 𝐴𝐴𝑘𝑘����)2
 

Where,   

• �̅�𝐴𝑘𝑘  and �̅�𝐴𝑖𝑖 are the average values of the attributes for sensors 𝑆𝑆𝑘𝑘 and 𝑆𝑆𝑖𝑖 respectively. 

• The numerator is the covariance of sensor readings 𝑆𝑆𝑘𝑘 and 𝑆𝑆𝑖𝑖 and the denominator is 

the variance of sensor 𝑆𝑆𝑘𝑘 

Once the model is computed from the training data, it is used to predict the value of each 

attribute �̂�𝑜𝑖𝑖𝑖𝑖 at instance 𝑗𝑗. Afterward, the predicted value �̂�𝑜𝑖𝑖𝑖𝑖 is compared with the actual 

value 𝑜𝑜𝑖𝑖𝑖𝑖 to determine if it falls within a small margin of error. This comparison helps classify 

the readings as normal or abnormal, which is crucial for monitoring health status and 

detecting anomalies in the WBAN system. 

The run times for the threshold method and linear regression are less than those of other 

algorithms [202]. Threshold algorithms are employed to identify abnormalities, while linear 

regression is used to estimate current values, which can then be compared to the real values. 

The proposed system that utilises linear regression for detecting anomalies is represented in 

Algorithm 2. 
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Algorithm 2 Emergency detection using Hybrid approach (Hybrid) 
Input: A set of patient vital sign data 
Output: A classification result indicating a status 
Procedure: Predictor () 
begin 
Threshold(value, lower_threshold, upper_threshold): 
    return value < lower_threshold OR value > upper_threshold 
Classify(sensor_data): 
    emergency_vital_signs = empty_list() 
    for i in range(1, num_vital_signs + 1): 
        value = sensor_data[i] 
        lower_threshold = getLower(i) 
        upper_threshold = getUpper(i) 
        if Threshold(value, lower_threshold, upper_threshold): 
            append_to_list(emergency_vital_signs, i) 
        end if 
    end for 
    if length(emergency_vital_signs) > 0: 
        return {"status": "Emergency", "vital_signs": emergency_vital_signs} 
    else: 
        return {"status": "Normal", "vital_signs": empty_list()} 
    end if 
LinearR(sensor_data, coefficients, intercept): 
    selected_sensors = [sensor_data[i] for i in range(1, num_selected_sensors + 1)] 
    predicted_value = 0 
    for i in range(1, num_selected_sensors + 1): 
        predicted_value += coefficients[i] * selected_sensors[i] 
    end for 
    predicted_value += intercept 
    return predicted_value 
Monitor(patient_data): 
    sensor_data = patient_data 
    threshold_result = Classify(sensor_data) 
    if threshold_result["status"] == "Emergency": 
        coefficients = [0, coefficient_heart_rate, coefficient_blood_pressure, 
coefficient_respiratory_rate, coefficient_temperature, coefficient_oxygen_saturation, 
coefficient_pulse] 
        intercept = trained_intercept 
        linear_regression_result = LinearR(sensor_data, coefficients, intercept) 
        linear_regression_threshold = 0.0 
        if linear_regression_result >= linear_regression_threshold: 
            # Perform actions for Emergency (Using Linear Regression) 
        else: 
            # Perform actions for Normal (Using Linear Regression) 
        end if 
    else: 
        # Perform actions for Normal (Threshold Algorithm) 
    end if 
end 
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Figure 3.27 displays the alarms as red vertical lines, with various vital signs each represented 

in a distinct colour. A legend for these colours is placed in the top corner. 

 

Figure 3. 27: Raised alarms for proposed Threshold approach (all physiological signs) 

Salem et al. [104] improved the detection rate by employing SVM and logistic regression. They 

used almost identical physiological parameters for their study as those used in the proposed 

optimised early detection algorithm. The authors referred to their methodology as the 

'Detection algorithm,' which is the term used for their approach throughout the remaining 

sections of the paper.  The Salem algorithm, demonstrated in the system model, was tested 

and found to perform almost similarly to the threshold algorithm, as shown in Figure 3.28. 
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Figure 3. 28: Raised alarms for proposed Detection algorithm [104] 

 

Kumar et al. [114] introduced a method of anomaly detection that makes use of all 

physiological signs to better identify abnormal data. This method was named the 'Anomaly 

Detection Algorithm' and is mentioned consistently throughout the remainder of the section. 

In addition to the algorithms proposed, Salem's [104] and Kumar's [118] methods are also 

analysed through experimental evaluation of classification. 

 

Table 3.15 presents a comprehensive comparison of various algorithms in terms of their 

performance metrics in the proposed model. The MLCTA using the threshold rule-based 

algorithm demonstrates superior performance with an accuracy of 96.19%, a high sensitivity 

of 96.50%, and an impressive precision rate of 99.29%, leading to an F1 score of 97.87%. 
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Despite its relatively higher false positive rate (FPR) of 9.00%, it outperforms other algorithms 

in accuracy and sensitivity. The decision tree algorithm shows commendable results with an 

accuracy of 91.91% and a slightly higher FPR of 12.50%, suggesting a trade-off between 

specificity and sensitivity. The dynamic threshold approach that used a moving average 

method with an accuracy of 90.55% and an FPR equal to MLCTA offers balanced sensitivity 

and specificity, both at 90.50% and 91.00%, respectively, indicating its effectiveness in 

distinguishing between normal and abnormal readings. The OCSVM algorithm, while having 

the lowest accuracy at 87.96%, exhibits the best specificity of 93.00% and the lowest FPR of 

7.00%, making it particularly useful in reducing false alarms. Lastly, the MDTA shows the least 

favourable performance with an accuracy of 86.19% and the highest FPR of 17.00%, which 

might limit its applicability in scenarios where false positives are a critical concern. This 

comparative analysis underscores the importance of selecting the appropriate algorithm for 

WBAN systems based on the specific requirements of accuracy, sensitivity, specificity, and the 

acceptable level of false positive rates. 

Table 3. 15: Performance comparison for all algorithms 

Method Accuracy Sensitivity Specificity Precision  F1 score FPR 

MLCTA 96.19% 96.50% 91.00% 99.29% 97.87% 9.00% 

Dynamic Threshold 90.55% 90.50% 91.00% 99.03% 94.57% 9.00% 

Decision Tree 91.91% 92.00% 87.50% 99.04% 95.39% 12.50% 

OCSVM 87.96% 88.00% 93.00% 98.61% 93.01% 7.00% 

Hybrid (linear) 91.15% 92.45% 90.05% 99.56% 95.60% 8.00% 

Detection [104] 89.64% 91.30% 90.10% 96.50% 94.60% 10.60% 

Anomaly [114] 89.90% 90.80% 89.60% 97.80% 94.20% 11.50% 

 

Based on the provided performance metrics, every technique is ranked from 1 to 7, where 1 

indicates the best score and 7 signifies the least favourable one. Marks are given out, with 7 

points handed to the top scorer and 1 point to the one with the lowest score, and then these 

points are combined to establish the overall ranking. Here's how the adjusted calculation 

looks. For every metric, marks will be distributed according to rank (7 points for the leader, 6 

points for the second position, and so on). After this, the points for each technique get 
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accumulated to provide the ultimate score. Since a lower FPR is considered superior, the 

ranking for FPR will be reversed. 

Figure 3.29 presents a bar chart illustrating the classification accuracy of several anomaly 

detection methods. The vertical axis represents the accuracy as a percentage, clearly 

quantifying the effectiveness of each method in correctly classifying instances. 

 

The 'MLCTA' method outperforms others with an impressive accuracy of 96.19%, indicating 

its superior capability in this context. Following are the 'dynamic threshold' and 'decision tree' 

methods with accuracies of 90.55% and 91.91%, respectively, showcasing robust 

performances. The 'OCSVM' method exhibits a slightly lower accuracy of 87.96%, which could 

suggest a need for further optimisation when applied to the same dataset. 

 

Figure 3. 29: Accuracy comparison by all methods 

The 'hybrid (linear)' method, which likely combines linear regression with other classification 

techniques, achieves an accuracy of 91.15%, signifying a competitive and effective approach. 

Lastly, the methods labelled 'Detection [104]' and 'Anomaly [114]' have accuracies of 89.64% 

and 89.90%, respectively. These may refer to specific models or techniques referenced in the 

study and demonstrate commendable accuracy, albeit slightly lower than the leading 

methods. 
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Figure 3. 30: Precision Across Methods 

Figure 3.30 displays a concise comparison of the precision achieved by various classification 

methods. Hybrid (linear) leads with the highest precision at 99.56%, followed closely by 

MLCTA at 99.29%. The methods exhibit high precision across the board, indicating a strong 

positive predictive value in their respective classifications. 

Figure 3.31 shows the FPR for each method, where lower values are indicative of fewer false 

alarms. OCSVM has the lowest FPR at 7.00%, suggesting it is the most conservative in terms 

of incorrectly labelling negative instances as positive. Decision Tree has the highest FPR at 

12.50%, pointing to a higher rate of false positives in its classification process. 

 

Figure 3. 31: Figure 3.26: False Positive Rate (FPR) Across Methods 
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Based on the provided performance metrics, every technique is ranked from 1 to 7, where 1 

indicates the best score and 7 signifies the least favourable one. Marks are given out, with 7 

points handed to the top scorer and 1 point to the one with the lowest score. These points 

are then combined to establish the overall ranking. Here's how the adjusted calculation looks. 

For every metric, marks will be distributed according to rank (7 points for the leader, 6 points 

for the second position, and so on). After this, the points for each technique get accumulated 

to provide the ultimate score. Since a lower FPR is considered superior, the ranking for FPR 

will be reversed. 

Based on the performance metrics analysed on table 3.16, the MLCTA has demonstrated the 

most robust performance, leading the table with the highest total score. This reflects its 

superior accuracy and sensitivity, as well as excellent F1 scores, indicating its effectiveness in 

a WBAN context. The hybrid (linear) model also shows strong performance, particularly 

excelling in precision, which suggests its potential for delivering highly accurate predictions 

when it comes to continuous monitoring. 

Table 3. 16: Comparative Performance Analysis of Predictive Models 

Method Accuracy Sensitivity Specificity Precision F1 Score FPR 
Total 
Score 

MLCTA 7 7 4 6 7 3 34 
Hybrid (Linear) 4 4 3 7 5 5 28 

Dynamic Threshold 5 5 5 5 3 4 27 
Decision Tree 6 6 1 4 4 1 22 

OCSVM 1 1 7 2 1 6 18 
Anomaly [114] 3 2 2 3 6 1 17 
Detection [104] 2 3 6 1 2 2 16 

 

The dynamic threshold method presents a balanced performance across the board, indicating 

its reliability and adaptability in various scenarios within the WBAN framework. On the other 

hand, the Decision Tree method, while demonstrating good accuracy and sensitivity, falls 

short in specificity, which may limit its application in environments where false positives are 

a concern. 

OCSVM, although it ranks lowest in accuracy and sensitivity, stands out in specificity, 

suggesting its utility in scenarios where the correct rejection of non-events is crucial. The 

anomaly [114] and detection [104] methods follow closely, with moderate scores across the 
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metrics. However, they seem to struggle in certain areas, such as precision and the F1 score 

for detection [104] and sensitivity for anomaly [114]. 

The ranking methodology, which inversely correlates the FPR to the scoring, highlights the 

importance of not only correctly identifying true health events but also minimising false 

alarms, which is critical in patient monitoring systems. 

Figure 3.32 displays the ROC curve for MLCTA. The ROC curve is depicted to illustrate the 

correlation between TPR, or sensitivity, and FPR, with TPR plotted along the Y-axis and FPR 

represented on the X-axis. 

 
 

Figure 3. 32: ROC curve for MLCTA 

The AUC is a measure of the algorithm's ability to correctly classify the health states as 

'normal' or 'critical'. With an AUC of 97%, the MLCTA model demonstrates outstanding 

performance, indicating a high degree of separability between the health states. 
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This high AUC value suggests that the MLCTA has a high likelihood of correctly distinguishing 

between different health conditions, making it an excellent tool for predictive analysis in 

WBAN systems. The ROC curve's steep ascent and plateau near the top-left corner of the 

graph signify that the MLCTA achieves high sensitivity without a correspondingly high rate of 

false positives, which is crucial in medical applications where the cost of a false alarm can be 

high. 

3.8 Summary  

The exploration of predictive models within WBANs has culminated in pivotal findings. The 

performance analysis of a suite of algorithms—including the novel Multi-Level Classification 

Threshold Algorithm (MLCTA), Dynamic Threshold, Decision Tree, OCSVM, and a novel hybrid 

linear regression model—has illuminated their respective capabilities and limitations in the 

nuanced domain of health monitoring. 

The MLCTA emerges as a standout with its innovative approach to multi-level classification, 

showcasing an impressive amalgamation of accuracy and precision. However, its rigidity and 

a one-size-fits-all thresholding strategy may not fully capture the dynamic and individual 

variability present in physiological data streams. The novel hybrid model, which synergizes 

linear regression with threshold-based classification, boasts commendable precision, yet its 

reliance on linear relationships may curtail its predictive fidelity amidst the complex 

physiological interplays. 

While decision trees and OCSVM each offer distinctive advantages in contending with non-

linearities and enhancing specificity, there is an explicit and critical need for more adaptive 

and patient-centric models. The compatibility of these models with the computational 

restrictions of edge devices in WBANs also warrants meticulous attention. 

The aspiration to refine the MLCTA is propelled by the intent to evolve this robust framework 

into a more adaptable and personalised health monitoring tool. The forthcoming chapter 

introduces a novel iteration of the MLCTA, integrated with an innovative pain assessment and 

escalation mechanism. This advancement seeks to transcend the MLCTA's current constraints 

by embedding individualised thresholds and real-time adaptability into its structure. 

The integration of such a groundbreaking tool aims to elevate the WBAN's acuity in detecting 

and responding to acute pain manifestations, thereby augmenting patient care and 

outcomes. By tailoring the MLCTA to encompass subjective pain assessments, the model is 
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poised to transform into a more empathic and precise conduit for patient care, echoing the 

ethos of personalised medicine. 

Energy consumption plays a crucial role in such a WBAN environment, particularly at the edge, 

where the choice of algorithms is keenly scrutinised for their appropriateness. The 

subsequent chapter delves further into the appropriation of real clinical scenarios, 

incorporating a pain assessment and escalation tool to enhance its integration into the clinical 

setting. Additionally, the chapter investigates adaptive sampling methodologies for data 

reduction. This approach aims to diminish the volume of data transmitted to the cloud, 

thereby conserving more energy and enhancing the longevity of the system. 
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Chapter 4 

4. Local Emergency Detections Enhancement  

 

4.1 Introduction  

 
In WBANs, a critical concern for most healthcare applications is managing power consumption 

to keep the system operational. The primary purpose of these systems is to safeguard patient 

health, making energy conservation indispensable for maintaining system longevity as much 

as possible. Concurrently, it's vitally important that the proposed solutions are clinically 

justified. Various strategies to conserve energy for WBANs in healthcare applications have 

been discussed in the academic literature. The core strategies identified include optimising 

radio utilisation, reducing data, implementing sleep/wake routines, utilising energy-efficient 

routing, and managing battery depletion. Adaptive sampling [31, 140–148] is highlighted as 

one of the most viable data reduction techniques for preserving energy. Numerous related 

works featuring these strategies have been reviewed. In WBAN healthcare applications, the 

sampling rate is a crucial element to manipulate based on the severity of a patient's condition. 

Since a patient's health can fluctuate rapidly, the sampling rate needs to be adjusted 

accordingly to respond to potential changes efficiently. Patient vital signs can shift from 

normal to emergency conditions. The speed of these changes can be either very fast or slow, 

depending on the specific circumstances of the patient's condition. 

In practical medicine, there is a standard range for physiological signs, which can vary due to 

various factors, including demographic and geographic differences. Utilising these established 

ranges, a widely used scoring system in medical practice, known as the EWS [191], has been 

developed. Leveraging this scoring system and its associated ranges, there is a proposal to 

develop a pain assessment tool and an escalation process. These are intended to be 

incorporated into the MLCTA (algorithm 1.D from chapter 3.6) for modification to better 

adapt it to clinical condition 

Vigilant patient monitoring is essential for healthcare professionals to evaluate the health 

status of patients, particularly in areas like the intensive care unit where individuals are 

battling potentially life-threatening conditions. In such settings, continuous and detailed 

observation of physiological signs using a variety of medical instruments, coupled with 
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professional expertise, allows an immediate response to any changes in a patient's health. 

However, a significant reduction in this thorough monitoring is observed when patients are 

transferred from these high-intensity areas, such as intensive care or operating theatres, to a 

more conventional ward. In this setting, the monitoring of health parameters is less frequent 

and covers fewer aspects due to an increased ratio of patients to healthcare professionals. 

Key health evaluations, like those carried out by a nurse every six hours, may not detect 

deterioration that occurs between these checks. Diseases such as sepsis, which remains a 

leading cause of death in hospitals and can progress unpredictably, concealing early signs, 

require rapid detection. Swift diagnosis and effective management of these conditions greatly 

improve the chances of favourable patient outcomes. A global research project was carried 

out in 2011 to analyse postoperative death rates among patients who had non-cardiac 

surgery. The research gathered information from around 500 hospitals in 30 European 

countries. A total of 46,000+ patients participated in this study. The findings indicated that 

out of these 1864, around 4% of patients died during their hospital stay. Interestingly, it was 

found that around 70%+ patients who died never received critical care at any point post-

surgery." Moreover, around 44% of patients who died after being admitted to critical care 

passed away after being relocated from the critical care unit to a regular ward [210]. 

 

 

4.2 Related Works 

Churpek et al. (210) carried out a research project in which they analysed the effectiveness of 

various machine learning techniques against a modified early warning score (MEWS) to 

forecast possible patient decline within hospital medical-surgical units. They found that the 

respiratory rate and heart rate were the most crucial predictive factors for the random forest 

model. 

In the context of diminished direct supervision during the night, medical trainees are 

necessary to accurately judge patients potentially facing clinical instability and bring matters 

to the attention of supervising practitioners. Negligence in escalating such situations 

contributes to unfavourable patient safety occurrences [205]. The paper discovered that the 

implementation of the EoC protocol standardised resident escalation during unsupervised 

periods, enhancing the perception of patient safety from the residents’ perspective and 
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increasing confidence among interns to escalate. Faye et al. [203] Faye and her team 

conducted a study using a method to assess heart rate variability in infants experiencing 

chronic pain. They separated these infants into groups of low and high pain. This study 

explored the correlation between chronic pain and various cardiovascular data using average 

heart rate, respiration rate, and blood oxygen saturation, as well as the high-frequency 

variability index. The investigation highlighted notable differences in heart rate variability 

between the two groups, while other vital signs remained steady. The study suggested that 

the high-frequency variability index could be a reliable tool to measure pain, demonstrating 

a high level of sensitivity and specificity. Though correlations between changes in vital signs 

and pain have been reported, fluctuations in these signs can also be linked to non-pain 

emotions (like hunger or fear) or an underlying illness [204]. Clinical escalation protocols and 

rapid response systems (RRS) are designed to mitigate the "failure to rescue" rates in 

deteriorating hospitalized patients, either due to their medical condition or a treatment 

complication. The objective is to discern physiological anomalies (the afferent arm) and 

activate an effective response (the efferent arm), which could include the patient’s primary 

carers, nurse practitioners, or a specialised rapid response team. Escalation protocols use 

electronic observation systems to implement a specific healthcare strategy. This mechanism 

prompts automatic escalations for less experienced doctors and certain medical teams based 

on a predetermined scale. The introduction of this health strategy led to an increase in 

escalations, significantly adding to the time needed for review and management monthly. The 

volume of patients escalated within a day has doubled per month, with a noticeable rise in 

patients escalated multiple times in a single day. [206]. Lastly, Hugo et al.'s [209] study 

exhibits a limitation, as the moving average filter-based algorithm might fail to identify an 

emergency if the time-monitoring window does not capture a variation. 

'Neill et. al. [213] identified a range of obstacles and enablers to the increase in care according 

to the EWS protocols. The primary challenges consist of inconsistencies, shortage of 

resources, absence of responsibility, behaviours of the Rapid Response Team (RRT), 

apprehension, organisational hierarchy, heightened conflict, overconfidence, lack of 

confidence, and patient variability. The key drivers, on the other hand, encompass 

responsibility, uniformity, availability of resources, behaviours of RRT, expertise, 

supplemental assistance, permission to escalate care, ability to cross barriers, and clinical 

experience. 
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In the context of the obstacles and enablers to care escalation as delineated by Neill et al. 

[213], the development of a WBAN system with an integrated predictive model has the 

potential to significantly mitigate many of the identified challenges within healthcare settings. 

By providing consistent and accurate monitoring of patient vitals, such a system addresses 

the inconsistency issue and optimises the use of scarce healthcare resources. 

 

The predictive nature of the WBAN model is designed to reinforce responsibility across 

healthcare teams by offering clear indicators for patient status, which can reduce ambiguity 

and foster decisive action. This is particularly beneficial in scenarios that involve the Rapid 

Response Team (RRT), where the timely and precise data provided by the WBAN system can 

inform and expedite appropriate interventions. 

 

Moreover, the predictive model within the WBAN system can contribute to reducing 

apprehension among healthcare providers by offering objective data that supports clinical 

decisions, thus helping to navigate the complexities of organisational hierarchies and 

interprofessional dynamics. It can also diminish conflict and the paradox of overconfidence 

or lack of confidence by providing a reliable basis for escalating care. 

 

The WBAN model's utility extends to facilitating the escalation of care by empowering 

clinicians with real-time data and trend analysis, which are critical in high-stakes 

environments where the ability to act swiftly can have profound implications for patient 

outcomes. The system's design allows it to integrate seamlessly into the workflow, aiding in 

overcoming barriers to care and enhancing the overall capacity for clinical response. 

 

By capitalising on these strengths, the WBAN system, with its predictive analytics capability, 

emerges as a key driver in healthcare, aligning with the enablers of care escalation. It 

underscores the importance of leveraging technology to augment clinical expertise, 

streamline the escalation process, and ultimately contribute to the delivery of high-quality, 

responsive patient care. 
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4.3  Early Emergency Detection 

The same WBAN model is examined, wherein a Modified Adaptive Local Emergency Detection 

(MALED) algorithm is proposed to enhance the precision of local emergency detection and 

inform clinical decisions. The recommended model, as demonstrated in Figure 4.1, consists 

of five sensors to measure key vital signs: oxygen saturation, body temperature, blood 

pressure, respiration rate, and heart rate. It is composed of three units: a data processing 

unit, an early warning scoring unit, and a decision-making unit. 

 

Figure 4. 1: Block diagram of proposed system model for MALED 

The sensors begin recording at their maximum sampling rates, which eventually adapt to 

system dynamics. An initial emergency is expected to be detected through sensor samples 

based on predefined healthy vital sign ranges. Various local emergency detection methods 

have been adopted to provide early alarms in this system model.  

Information is sent to the scoring unit once an emergency is detected. This unit then forwards 

the data to the decision-making unit for further analysis. An adaptive sampling request is sent to 

customise the sampling rate based on the assessment situation. The decision-making unit then 

analyses the emergency details, carrying out fault isolation before deciding between the 
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states of severe, moderate, and normal. The proposed methods aim to assist, not replace, 

immediate human clinical attention. 

It should be noted that a standard WBAN gathers sizable data amounts and sends them 

periodically to the coordinator. This period adjusts based on the patient's medical condition. 

However, concerns arise due to the volume of the data and the potential for an event to occur 

between samples. The main goal is to identify emergency data from routinely collected data, 

incorporating any additional emergency data from intervening periods. An 'emergency event' 

is defined by data differing from expected ranges, and it's vital to identify this 'emergency 

data' to determine patient risk levels and aid in clinical decision-making. There are multiple 

methods to detect these deviations, which is the focus of the experiments in this section. This 

approach not only aids emergency identification but also conserves power. Figure 4.2 

presents a flow diagram illustrating the proposed system model for this experiment. 
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Figure 4. 2: Process flow of the work 

 

4.3.1 Clinical Consideration- News and Pain Assessment Tool 

 

To medically evaluate this experiment, the number of suggested studies was examined, and 

several complexities, including processing time, computational complexity, and cost, were 
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taken into account. Despite these considerations, the perspective of medical practitioners 

remains the most critical. In this regard, the NEWS [191], a standard for evaluating the 

severity of acute illness in the NHS proposed by the Royal College of Physicians, plays a crucial 

role in many parts of this chapter. 

The proposed Early Warning System (EWS), also known as NEWS, represents a practical 

approach frequently used in hospitals and pre-hospital care. It has four trigger levels, 

indicating the need for a clinical alert and necessitating a clinician's assessment based on the 

NEWS [191] scoring system: 

• LOW score: a total score of 1-4  

• A single red score: a score of 3 for any individual physiological parameters  

• Medium score: a total score of 5–6  

• High score: a total score of 7 or more 

 

These trigger levels must be treated with urgency and require a clinical response, with 

expected actions as follows: 

 

• A low NEWS score (1-4) necessitates a prompt assessment by medical staff, typically a 

registered nurse.  

• A single red score (3 in a single parameter) is unusual and needs to be assessed by a doctor. 

• A medium NEWS score (5–6) requires urgent assessment and a determination regarding the 

need for critical care.  

• A high NEWS score (7 or above) necessitates immediate assessments and patient transfer 

to a high-dependency care area.  

Figure 4.3 depicts the thresholds and trigger system of NEWS. 
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Figure 4. 3: NEWS thresholds and triggers 

 

Figure 4. 4: Pain score [191] 

 

4.3.2 Local Emergency Detection 
Within this system, each sensor has a specified normal range, defined by a lower boundary 𝛾𝛾𝑖𝑖𝑙𝑙  

and an upper boundary 𝛾𝛾𝑖𝑖𝑢𝑢. If a sensor reading falls outside this normal range, it is identified 

as an urgent emergency signal. The system features an adjustable, event-driven sample time 

interval that regularly checks for any deterioration in a patient's condition. When such 

potential emergencies are indicated by vital sign readings, the NEWS algorithm is applied. The 

NEWS score, which is referred to as 𝑆𝑆𝐶𝐶, sets its initial conditions at zero as 𝑆𝑆𝐶𝐶 = 0 = 𝑆𝑆𝐶𝐶𝑉𝑉, 

otherwise known as 𝑆𝑆𝐶𝐶𝑉𝑉 (adaptive score). This adaptive score is designed to be particularly 

patient-specific, meaning it can dynamically adapt based on the patient's medical history and 

their current health status. 

Let's say the tolerance range for the respiration rate is represented by 𝜁𝜁𝑟𝑟𝑟𝑟  , and for the heart 

rate, it is represented by 𝜁𝜁ℎ𝑟𝑟. In the framework of the proposed method, a threshold algorithm 

is considered, and by leveraging NEWS, a tolerance range 𝜁𝜁𝑖𝑖   is established. The following run 

is scheduled at a time ' 𝑟𝑟 ', which is denoted as 𝑅𝑅𝑠𝑠𝑟𝑟 (Next Runtime). To improve the robustness 

of this setup, the Next Runtime can be made adaptable. 
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When the set time surpasses the Next Runtime, the proposed algorithm will initiate 

automatically. As the biosensor begins to perform its sensing functions, threshold methods 

are employed to check if the data falls within the tolerance range. If the sensor data is found 

outside this range, the NEWS system is invoked to compute the 𝑆𝑆𝐶𝐶𝑖𝑖 value. The system only 

transmits the sensed data if the calculated 𝑆𝑆𝐶𝐶𝑖𝑖  value exceeds the 𝑆𝑆𝐶𝐶𝑉𝑉 value. If not, the system 

turns to inspecting the respiration rate 𝜁𝜁𝑟𝑟𝑟𝑟   and heart rate 𝜁𝜁ℎ𝑟𝑟. The Royal College of Physicians 

has noted and recommended that the most crucial physiological signs to be routinely 

monitored are both the respiration rate and heart rate [191]. Moreover, Churpek et al. (210) 

conducted a study where they evaluated the efficacy of various factors. They discovered that 

the most significant predictors for decision-making were respiratory and heart rates. 

A new algorithm has been suggested for detecting local emergencies more efficiently, aiming 

to reduce the quantity of data transmissions. To ensure its reliability, even in environments 

with limited resources, it includes threshold (tolerance range) approaches and uses the NEWS 

strategy with the least computational complexity. Its adaptability is enhanced by keeping 

time, runtime, and scoring flexible, making it more robust and user-friendly. The methods 

discussed in [31, 140] were compared to the proposed system model. Both have improved 

local emergency detection methods, and both have begun implementing the NEWS system. 

Conversely, this proposed optimised algorithm includes an additional verification step via a 

threshold approach, which accelerates the overall process while ensuring it maintains 

reliability. 

The suggested system doesn't run the NEWS score unless it detects any physiological signs 

outside the set parameters in 𝜁𝜁𝑖𝑖 . This approach conserves energy and computational 

resources. When a positive signal is detected from 𝜁𝜁𝑖𝑖 , the system activates 𝑆𝑆𝐶𝐶 to compute 

the NEWS score. Several possible scenarios might unfold, like the 𝑆𝑆𝐶𝐶 being larger than either 

𝑆𝑆𝐶𝐶𝑉𝑉 or 𝑆𝑆𝐶𝐶𝑖𝑖+1. In both situations, the system transmits the data to the coordinator. However, 

if the score 𝑆𝑆𝐶𝐶 is lower than either 𝑆𝑆𝐶𝐶𝑉𝑉 or 𝑆𝑆𝐶𝐶𝑖𝑖+1, the system remains silent and sends no data. 

Algorithm 3 is shown in the following. 

 

 



141 
 

Algorithm 3: Modified Adaptive Local Emergency Detection (MALED) 

Input: A set of patient vital sign data  
Output: Emergency classification and escalation protocol 
Procedure: Classifier () 
 
1. Set tolerance range for each vital sign  𝜁𝜁𝑖𝑖  , set adaptive NEWS score 𝑆𝑆𝐶𝐶𝑉𝑉 , set time 𝑟𝑟,  
set next runtime 𝑅𝑅𝑠𝑠𝑟𝑟 = 𝑟𝑟 + 𝑟𝑟𝑖𝑖   (adaptive) 
while 𝑟𝑟 ≥ 𝑅𝑅𝑠𝑠𝑟𝑟  do 
2. Take sensor measurements 
   for each vital sign do 
       if sensor measurement 𝑜𝑜𝑖𝑖 > 𝜁𝜁𝑖𝑖 or 𝑜𝑜𝑖𝑖 < 𝜁𝜁𝑖𝑖  then 
           3. Calculate score 𝑆𝑆𝐶𝐶𝑖𝑖  
           if 𝑆𝑆𝐶𝐶𝑖𝑖  > 𝑆𝑆𝐶𝐶𝑉𝑉 then 
               Send measurement 𝑜𝑜𝑖𝑖  
               Set 𝑅𝑅𝑠𝑠𝑟𝑟   to new adaptive runtime 
               Continue to monitor vital signs 
           else 𝑆𝑆𝐶𝐶𝑖𝑖  < 𝑆𝑆𝐶𝐶𝑉𝑉 then 
               Do not send measurement 
               Set 𝑅𝑅𝑠𝑠𝑟𝑟   to new adaptive runtime 
           end if 
       end if 
   end for 
4. Monitor Respiration Rate 𝑅𝑅𝑅𝑅𝑖𝑖   in every second 
   if 𝑅𝑅𝑅𝑅𝑖𝑖 measurement < 𝜁𝜁𝑟𝑟𝑟𝑟𝑖𝑖  or 𝑅𝑅𝑅𝑅𝑖𝑖  measurement > 𝜁𝜁𝑟𝑟𝑟𝑟𝑖𝑖  then 
       Calculate score 𝑆𝑆𝐶𝐶𝑖𝑖 
       Go to step 3 
   end if 
5. Monitor Heart Rate 𝐻𝐻𝑅𝑅𝑖𝑖    in every second 
   if  𝐻𝐻𝑅𝑅𝑖𝑖 measurement < 𝜁𝜁ℎ𝑟𝑟𝑖𝑖 or  𝐻𝐻𝑅𝑅𝑖𝑖measurement > 𝜁𝜁ℎ𝑟𝑟𝑖𝑖 then 
       Calculate score 𝑆𝑆𝐶𝐶𝑖𝑖 
       Go to step 3 
   end if 
6. If no measurements are outside tolerance range, end run 
7. Set 𝑅𝑅𝑠𝑠𝑟𝑟   (for the next cycle in step 2) = current_time() + adaptive_interval 
8. end while 

 

In the suggested LED [140], a comparable system model was explored, notwithstanding the 

disregard for reducing the transmission data. Rather than treating the sampling rate as a 

dynamic element suited for bespoke applications, it was overlooked. Hence, the performance 

of LED was acceptable yet not superb in resource-limited medical contexts. The results and 

analysis section carries an expanded discussion with some graphical results. With respect to 

the LED method under consideration, it employs a singular evaluation criterion: if the score 

exceeds 0, the system transfers the data. Therefore, while it maintains a high detection rate, 

it also involves considerable power consumption. 
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In comparison, the suggested Modified LED (MLED) [31] aims to reduce the amount of data 

transmitted by not sending all the data. However, this system lacks an additional layer of 

verification, such as the one proposed in the Modified Adaptive Local Emergency Detection 

System (MALED), which includes a threshold check before implementing the NEWS score 

execution. In the MLED method, the system uses the criteria 𝑆𝑆𝑖𝑖 > 𝑆𝑆, in all situations, to 

determine when to transmit data. This implies that whenever the score Si surpasses 𝑆𝑆, data 

is sent and subsequently 𝑆𝑆 is reset as 𝑆𝑆𝑖𝑖. The issue here lies in the fact that 𝑆𝑆 becoming equal 

to 𝑆𝑆𝑖𝑖 can happen in any combination, potentially hampering the system's detection capability. 

Despite this method leading to a reduction in data and some energy savings, it is not clinically 

justified due to its lower detection rate compared to that of LED. Though its power 

consumption is lower than LED, this system evaluates almost every case without any filtering, 

unlike the proposed filtering system in MALED. 

4.3.3 Experiment and Analysis 

This experiment utilises a comparable amount of patient data. Specifically, we're using data 

sets from 100 patients, each spanning over 40 hours, for the trials. The experiment began by 

measuring an individual's vital signs and heart rate, followed by their respiratory rate. Two 

proposed models, along with two other models from existing literature that have 

demonstrated the best performance, were then selected for the simulation.  

As seen in Figure 4.5, related to the heart rate, the MALED and MLCTA models noticeably 

outperform LED and MLED. However, the difference between MALED and MLCTA isn't very 

significant, with MALED detecting 1.7% more than MLCTA. When compared to MLED, though, 

the improvement jumps to 14%. Indeed, it's crucial to acknowledge that, despite its benefits, 

the MLED model holds significant limitations. One of its major drawbacks is its sole reliance 

on the NEWS score. Because it doesn't consider individual thresholds, the resulting outputs 

may not always provide reliable or tailored insights. This exclusion of individual patient factors 

can lead to potential inaccuracies in predictions, which may impact the clinical decision-

making process. Therefore, future iterations or alternative models may benefit from 

incorporating such individual thresholds. For instance, if S = 8 and Si = 9, the data will be 

transmitted and S will equal Si, making S = 9. If in the next period, S = 9 and any NEWS scoring 

combination occurs where an individual score exceeds 3 (a single red score), the system will 
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fail to detect it. Therefore, this type of quantitative comparison may not be suitable for real-

world scenarios. 

 

Figure 4. 5: Emergency detection comparison for heart rate. 

Indeed, the results shown in Figure 4.6 underline the superior performance of both MALED 

and MLCTA algorithmic models when it comes to detecting emergencies - they both 

successfully trigger accurate alarms. Their reliability significantly contributes to reducing the 

number of false alarms, which is a notable improvement when compared to the other two 

methods being evaluated. This suggests that both MALED and MLCTA have strong potential 

in applications which require high-precision emergency detection like in healthcare, disaster 

management or security systems. That said, depending on the specific context or use-case, 

additional research might be needed to assess their feasibility or adaptability further. 

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

N
um

be
r o

f a
la

rm
s d

et
ec

te
d

Local emergency detection heart rate

LED MLED MALED MLCTA



144 
 

 

Figure 4. 6: Emergency detection comparison for respiratory rate  

For this experiment, the two most crucial vital signs—heart rate and respiratory rate—were 

employed to establish a comparison with LED [140] and MLED [31]. The subsequent 

experiment made use of all system vital signs for performance evaluation. 

Figures 4.7 through 4.9 present bar charts that illustrate the performance of various health 

monitoring algorithms within this system. Figure 4.7 highlights the accuracy of each method, 

with MLCTA slightly leading, indicative of its reliability in classifying health states. Figure 4.9 

showcases the sensitivity of the algorithms, where MALED slightly outperforms the others, 

reflecting its superior ability to correctly identify true emergencies.  

 

Figure 4. 7: Comparison of accuracy across the methods. 
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Lastly, Figure 4.8 focuses on the F1 score, a metric that combines precision and recall, 

demonstrating the algorithms' balance in correctly identifying emergencies while minimising 

false positives. Notably, MALED achieves the highest F1 score, suggesting a well-rounded 

performance in the context of emergency detection within WBAN systems. 

 

Figure 4. 8: Comparison of F1 score across the methods. 

 

In comparing the performance metrics of MALED and MLCTA, the data indicates that both 

algorithms perform exceptionally well across several key metrics. MALED slightly surpasses 

MLCTA in sensitivity and F1 score, suggesting that it may be more adept at correctly 

identifying true emergencies and balancing precision with recall. MALED’s sensitivity of 97% 

versus MLCTA’s 96.5% and its F1 score of 98% compared to MLCTA’s 97.87% demonstrate its 

potential for effectively recognising critical health situations with slightly higher accuracy. 

However, this comes at the cost of a marginally higher FPR, with MALED at 10% against 

MLCTA’s 9%. The differences in accuracy are minimal, indicating that both algorithms are 

highly reliable, but MALED may offer a slight edge in recognising urgent health conditions. 
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Figure 4. 9: Comparison of sensitivity across the methods. 

Table 4.1 presents a comparative analysis of four different algorithms used within WBANs for 

emergency detection and patient monitoring. The algorithms are evaluated based on six key 

performance metrics: accuracy, sensitivity, specificity, precision, F1 score, and false positive 

rat for multiple vital signs. 

Table 4. 1. Performance evaluation for four algorithms. 

Method Accuracy Sensitivity Specificity Precision  F1 score FPR 

MLCTA 96.19% 96.50% 91.00% 99.29% 97.87% 9.00% 

MALED 96.05% 97.00% 90.00% 98.70% 98.00% 10.00% 

MLED [31] 93.00% 94.00% 90.00% 98.00% 97.00% 12.00% 

LED [140] 89.00% 91.00% 89.00% 94.00% 91.00% 15.00% 

 

The MLCTA (Multi-Level Classification Threshold Algorithm) shows a strong performance 

across all metrics, particularly precision and F1 score, indicating a high level of accuracy in 

both identifying true emergencies and avoiding false alarms. Its FPR is also the lowest, which 

suggests that it is less likely than the other methods to incorrectly signal an emergency when 

none is present. 

MALED (Modified Adaptive Local Emergency Detection), while showing slightly lower 

accuracy and specificity than MLCTA, has the highest sensitivity and a very high F1 score. This 

means that MALED is particularly effective at correctly identifying when patients are in a state 
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of emergency, making it potentially more reliable for critical situations where missing an 

emergency could be detrimental. 

MLED, [31], demonstrates moderate performance, with lower scores in accuracy, sensitivity, 

and F1 score compared to MALED and MLCTA, but still maintains a good balance between 

sensitivity and precision, as reflected in its F1 score. 

LED, [140], exhibits the lowest performance among the four algorithms in terms of accuracy, 

sensitivity, and F1 score and also has the highest FPR. This might suggest that while LED is 

effective to some degree, it could benefit from further refinement to match the performance 

of the other models. 

In assessing the computational complexity and practical utility of MLCTA and MALED within 

WBAN systems, it is evident that each algorithm is uniquely tailored to different healthcare 

contexts. MLCTA's simplicity, characterised by fixed thresholds, lends itself to lower 

computational demands. This attribute renders it especially fitting for stable, predictable 

patient monitoring scenarios, such as routine health checks in non-critical care settings. Its 

efficiency and reliability, coupled with lower time complexity, make MLCTA a practical choice 

for resource-constrained environments like edge devices in remote health monitoring 

systems. 

Contrastingly, MALED's adaptive approach is more aligned with the dynamic and 

unpredictable nature of acute healthcare settings. Its ability to dynamically adjust thresholds 

and calculate real-time adaptive NEWS scores caters to a high degree of personalisation and 

sensitivity, making it particularly beneficial in intensive care units or for patients with 

complex, evolving health conditions. While MALED’s increased computational requirements 

may pose challenges in resource-limited systems, its precision and responsiveness in 

detecting critical health changes offer significant advantages in critical care, where timely 

intervention is crucial. 

Thus, MLCTA emerges as the preferred option for environments requiring consistent, long-

term monitoring without the need for frequent adjustments. In contrast, MALED stands out 

in high-stakes settings where patient conditions require immediate and tailored responses. 

The selection between these two algorithms should therefore be informed by the specific 

demands of the healthcare setting and the computational capabilities of the WBAN system, 
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ensuring that the chosen solution optimally balances efficiency, accuracy, and patient care 

needs. 

4.4 Differential Change Analysis (DCA) 
When assessing the computational requirements and functional application of MLCTA and 

MALED in WBAN systems, it is found find that each algorithm has its unique compatibility with 

different healthcare settings. MLCTA, with its simplicity and preset limits, is perfect for 

predictable, steady contexts like routine health inspections, while MALED shines in 

changeable acute care situations, owing to its adaptable methodology and real-time reaction 

capacity. Building on MALED's strengths, specifically its flexibility and accuracy in critical care, 

a further improvement – the incorporation of Differential Change Analysis (DCA) – is 

suggested. This advanced addition aims to strengthen MALED’s predictive prowess in patient 

health tracking. Concentrating on variations in patient vital signs, DCA adds another degree 

of sensitivity to the algorithm, making it more capable of identifying subtle but important 

changes in patient health indicators that occur before critical incidents. Integrating DCA into 

the working framework of MALED represents an intentional progression to enhance early 

identification and rapid response measures. By studying rate changes in health information, 

DCA improves the algorithm's capability to foresee patient decline with low computational 

burden. This enhancement is particularly important in situations where early signs of patient 

degradation are subtle and could potentially go unnoticed using conventional monitoring 

methods. The continual refinement of the MALED algorithm, by including DCA, signifies a 

significant advancement in pursuing more sophisticated, productive, and reactive healthcare 

surveillance systems within WBANs. It guarantees that MALED remains not just pertinent, but 

also becomes more skilled at responding to the varied and continuous demands of patient 

care in different health settings. Therefore, while MLCTA remains a solid option for consistent, 

long-term surveillance in resource-limited settings, the sophisticated MALED, strengthened 

with DCA, delivers an intricate solution for extremely critical circumstances, where the ability 

to discern fine details and react swiftly is crucial. The decision between these algorithms and 

the integration of DCA should be guided by the specific healthcare setting's needs and the 

WBAN system's computational capacity, to ensure a prime balance of efficiency, precision, 

and patient-focused care. 
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Let V= {𝑆𝑆1, 𝑆𝑆2, … … … , 𝑆𝑆𝑠𝑠 }  represent the set of vital signs monitored in the WBAN, where 

each 𝑆𝑆𝑖𝑖 is a specific vital sign (e.g., heart rate, blood pressure).  Denote the time-series data 

for each vital sign 𝑆𝑆𝑖𝑖 as  𝐷𝐷𝑖𝑖 = {𝑜𝑜𝑖𝑖1,𝑜𝑜𝑖𝑖2, … … … ,𝑜𝑜𝑖𝑖𝑡𝑡}  where 𝑜𝑜𝑖𝑖𝑡𝑡 is the measurement at time t. 

Define the baseline for each vital sign 𝑆𝑆𝑖𝑖 as 𝐵𝐵𝑖𝑖 calculated as an average over a stable period. 

The rate of change 𝑅𝑅𝑖𝑖 for each vital sign at time t is calculated as 𝑅𝑅𝑖𝑖𝑡𝑡 = 𝑜𝑜𝑖𝑖𝑡𝑡 −  𝑜𝑜𝑖𝑖(𝑡𝑡−1). Set 

dynamic thresholds for acceptable change in each vital sign as 𝛩𝛩𝑖𝑖 = {𝛳𝛳𝑖𝑖_𝑙𝑙𝑙𝑙𝑛𝑛 , 𝛳𝛳𝑖𝑖_ℎ𝑖𝑖𝑖𝑖ℎ}.  If 𝑅𝑅𝑖𝑖𝑡𝑡 < 

𝛳𝛳𝑖𝑖_𝑙𝑙𝑙𝑙𝑛𝑛 or 𝑅𝑅𝑖𝑖𝑡𝑡 > 𝛳𝛳𝑖𝑖_ℎ𝑖𝑖𝑖𝑖ℎ, flag an anomaly for 𝑆𝑆𝑖𝑖 at time t.  

Enhance MALED to include DCA by defining a function  𝐹𝐹:𝑉𝑉 × 𝐷𝐷 × 𝑅𝑅 → {0,1}, where 0 

indicates normal and 1 indicates an anomaly or potential deterioration. Update 

 𝐵𝐵𝑖𝑖 𝑅𝑅𝑃𝑃𝑜𝑜 𝛩𝛩𝑖𝑖 periodically based on patient condition and historical data. The output of DCA for 

MALED at time t can be represented as 𝑂𝑂𝑡𝑡=𝑈𝑈𝑖𝑖=1𝑠𝑠  𝐹𝐹(𝑆𝑆𝑖𝑖 ,𝐷𝐷𝑖𝑖 ,𝑅𝑅𝑖𝑖). Below, Algorithm 4, also 

referred to as DCA, is showcased. 

Algorithm 4: Differential Change Analysis (DCA) 
Input: Time-series data of patient vital signs from WBAN sensors 
Output: Enhanced prediction of patient deterioration 
Procedure: Enhanced MALED with DCA 
 
1. Initialize: 
   - Set baseline values  𝐵𝐵𝑖𝑖 for each vital sign 𝑆𝑆𝑖𝑖  in V 
   - Define dynamic thresholds 𝛩𝛩𝑖𝑖  for acceptable changes in each 𝑆𝑆𝑖𝑖  
   - Set initial anomaly flags for each 𝑆𝑆𝑖𝑖 to 0 (normal) 
2. For each new data point 𝑜𝑜𝑖𝑖𝑡𝑡 in time-series 𝐷𝐷𝑖𝑖  for each 𝑆𝑆𝑖𝑖: 
   - Calculate the rate of change 𝑅𝑅𝑖𝑖𝑡𝑡 = 𝑜𝑜𝑖𝑖𝑡𝑡 −  𝑜𝑜𝑖𝑖(𝑡𝑡−1). 
   - End For 
3. Anomaly Detection: 
   - For each vital sign 𝑆𝑆𝑖𝑖: 
     - If 𝑅𝑅𝑖𝑖𝑡𝑡 < 𝛳𝛳𝑖𝑖_𝑙𝑙𝑙𝑙𝑛𝑛 or 𝑅𝑅𝑖𝑖𝑡𝑡 > 𝛳𝛳𝑖𝑖_ℎ𝑖𝑖𝑖𝑖ℎ in 𝛩𝛩𝑖𝑖: 
       - Set anomaly flag for 𝑆𝑆𝑖𝑖 to 1 (anomaly detected) 
     - End If 
   - End For 
4. Integrate with MALED: 
   - Enhance MALED to consider the anomaly flags from DCA 
   - If any anomaly flag is set to 1: 
     - Trigger MALED emergency detection protocols 
   - End If 
5. Update Baselines and Thresholds: 
   - Periodically update  𝐵𝐵𝑖𝑖  and 𝑆𝑆𝑖𝑖 based on recent data and patient history 
6. Output: 
   - Provide real-time assessment of patient health status 
   - Alert healthcare providers if potential deterioration is detected 
End Procedure 
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Initially, it sets baseline values and dynamic thresholds for each monitored vital sign, 

providing a foundation for real-time health assessment. Each new data point triggers a 

calculation of the rate of change from previous readings, which is crucial for detecting sudden 

health variations. Anomaly detection is a key feature, where deviations beyond the dynamic 

thresholds flag potential health issues. These anomalies are then integrated into the Modified 

Adaptive Local Emergency Detection (MALED) system, enhancing its capability to trigger 

emergency protocols when needed. The algorithm also includes a mechanism to periodically 

update baselines and thresholds, ensuring its adaptability and accuracy over time. The final 

output offers real-time health status assessments and alerts healthcare providers to potential 

deteriorations, making it an invaluable tool in proactive patient monitoring. This approach 

not only streamlines the process of monitoring vital signs but also ensures a more responsive 

and dynamic system for the early detection and management of health anomalies in WBAN 

environments. 

The performance evaluation between the MALED and DCA algorithms shows a nuanced trade-off 

between sensitivity and specificity. MALED maintains a slightly higher accuracy of 96.05% compared 

to DCA's 95.30%, due to its more conservative approach to flagging anomalies, which aligns closely 

with true positive detections. DCA, on the other hand, exhibits a marginally higher sensitivity (97.50%) 

than MALED (97.00%), suggesting it is better at detecting true anomalies but at the cost of a slight 

increase in false positives, as indicated by its higher FPR of 10.90% compared to MALED's 10.00%. 

Table 4.2 provides a performance comparison between MALed and DCA. 

Table 4. 2: Performance analysis between MALED and DCA 

Method Accuracy Sensitivity Specificity Precision  F1 score FPR 

MALED 96.05% 97.00% 90.00% 98.70% 98.00% 10.00% 

DCA 95.30% 97.50% 89.40% 98.50% 98.40% 10.90% 

 

This increase in FPR for DCA also corresponds to a slight decrease in specificity, from 90.00% in MALED 

to 89.40% in DCA. The trade-off here is that while DCA is better at catching real issues (as reflected by 

the higher sensitivity and F1 score), it also catches more non-issues (false positives). The precision of 

DCA is slightly lower than MALED's, indicating that while DCA is generally reliable when it flags an 

anomaly, it's slightly less likely to be correct than MALED.   
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The F1 score, which balances the trade-off between precision and recall, is slightly higher for DCA 

(98.40%) than for MALED (98.00%), suggesting that despite the increase in false positives, the overall 

balance between false positives and false negatives is slightly more optimal with DCA.  

The MALED algorithm typically performs a fixed number of operations for each data point, running 

checks against preset thresholds. The complexity of MALED chiefly depends on the count of data 

points it processes, represented as 'n'. Given that the threshold comparison is an operation that takes 

a consistent amount of time, the complexity of MALED can be categorised as O(n). Similarly, the DCA 

algorithm operates by calculating a rate of change for each data point, a procedure that is, like 

threshold checking, a constant-time operation per data point. DCA, however, also necessitates the 

maintenance of a short history of data points to compute the rate of change, potentially adding to its 

complexity. Assuming the size of this history is fixed and doesn't rise with the number of data points, 

the complexity of DCA can also be classified as O(n). The 'n' in both instances signifies the quantity of 

data points, indicating that the complexity for both algorithms is linear, relating directly to the number 

of data points processed. However, due to the extra stages involved in calculating the rate of change, 

DCA may have a larger constant factor. This suggests that while both algorithms maintain linear time 

complexity, DCA could demand more computation for each data point. 

 

4.5. Power consumption optimisation  
In WBANs, energy conservation is paramount due to the limited battery life of wearable 

sensors, leading to the development of various energy-saving techniques. Duty cycling, where 

sensors alternate between active and sleep modes, significantly reduces energy consumption 

during idle periods. Communication protocols like Bluetooth low energy and Zigbee, designed 

for low power consumption, are ideal for energy-efficient data transmission in WBANs. Data 

compression techniques reduce the size of transmitted data, conserving energy, while energy 

harvesting methods like converting body heat or motion into power offer innovative ways to 

supplement battery life. Optimised routing protocols ensure energy-efficient paths for data 

transmission. Power-aware middleware design manages network energy consumption, and 

QoS management balances data quality against energy use. Cross-layer optimisation 

integrates control across the WBAN architecture to reduce overall energy consumption, and 

the use of inherently low-power sensors cuts down on the system's energy demands. Energy-

efficient data aggregation combines data from multiple sensors into a single transmission, 

minimising transmission needs. In this context, adaptive sampling stands out as particularly 
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fitting for the proposed WBAN model. It dynamically adjusts data collection frequency based 

on the patient's current condition, focusing on collecting more data during critical periods and 

less during stable times. This approach not only ensures efficient energy usage but also 

maintains the quality and relevance of the data. Adaptive sampling is especially well-suited 

for patient-centric healthcare monitoring in WBANs, as it intelligently adapts to the varying 

needs of patients. This approach ensures prompt capture of critical health changes while 

conserving energy during stable periods. This balance of responsiveness and efficiency makes 

adaptive sampling an ideal choice for our WBAN system, aimed at providing dynamic and 

reliable patient monitoring without unnecessary energy expenditure. 

4.5.1 Related Works 

Numerous studies have proposed different applications of WBANs related to energy-efficient 

models and mechanisms. Energy is typically depleted due to continuous transmission and 

abundant, diverse raw data collected from biosensors, which have limited energy resources. 

Thus, most research primarily focusing on WBSNs has aimed to decrease energy consumption 

and prolong the battery life of these biosensor devices. 

Vergutz et al. [207] introduced SANTE, a system for advanced identification and transmission 

of medical alerts in wireless networks, using statistical indicators to predict critical events in 

vital signs. Despite its innovative approach, the system lacks a thorough analysis of false alarm 

rates and energy consumption. Following this, Phadat and Bhole [211] developed a local 

classification system for vital sign readings in WBANs, categorizing data based on preset 

thresholds at each sensor, thereby prioritizing critical readings for transmission. However, 

their method does not fully address energy consumption in Wireless Sensor Networks 

(WSNs), an issue also noted in a human behavior recognition scheme proposed in [212], 

which, despite its efficiency in signal processing and classification, overlooks the energy 

constraints of WSNs. 

Elghers et al. [140] proposed the LED algorithm, aimed at early emergency detection while 

conserving energy, by sending all critical sensor values without adapting the sampling 

frequency. This approach forms the basis for further modifications to enhance energy 

efficiency in WBAN systems. In the realm of adaptive sampling, a study in [217] suggests an 

energy-efficient mechanism that dynamically selects sensor nodes for data transmission 

based on spatio-temporal correlations, thereby optimizing energy usage. Similarly, [218] 
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introduces a machine learning architecture for context awareness in WBANs, which balances 

individual sensor sampling rates with data significance, addressing the challenge of energy 

consumption. 

The authors mentioned in [219] suggest a strategy of adaptive sampling. This strategy builds 

on the relationship between conditional variance and measurements, which are computed 

using the Fisher test. Such a method enables every sensor node to adjust its sampling rates 

according to fluctuations in physical dynamics. However, the approach does not take into 

account the remaining energy level of individual nodes. 

In contrast to these approaches, several works [214–216] propose an adaptive sampling 

algorithm to minimise sensor activity in periodic sensor networks. Although these studies 

contribute to reducing data transmission, they do not adequately tackle emergency detection 

at the sensor node level, a crucial aspect of WBANs. Lastly, Habib et al. [31] present a multi-

sensor data fusion approach utilising a fuzzy inference system and an early warning score. 

This method assesses patient health conditions with an emphasis on energy conservation in 

WBSNs, deals with sensor uncertainties, and offers a model to distinguish between different 

patient states, thereby providing a comprehensive solution to energy efficiency and accurate 

health monitoring. 

Many of the solutions proposed previously have certain drawbacks, such as complexity, high 

computational requirements, significant energy use, inadequate data reduction, and low data 

accuracy. Therefore, it is crucial to introduce an energy-efficient data sampling algorithm 

within the biosensor node. This approach is aimed at minimizing the amount of data collected 

from patients during health monitoring, which in turn saves energy and enhances the 

network's lifespan. Furthermore, it aims to maintain the integrity and accuracy of the 

patient's measured data without any adverse impact. 

4.5.2 Adaptive Sampling 

The existing research suggests that adaptive sampling can cut down on the volume of data, 

thereby conserving energy. In this experimental framework, an adaptive sampling algorithm 

is proposed to reduce the amount of data transmitted. It's known from previous studies that 

data transmission is a significant energy drain in a wireless environment. Two methods, 

referenced in [31, 140], adopted for this experiment are tested against the proposed system 
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model. Both approaches elevated the efficiency of local emergency detection via adaptive 

sampling. The Local Emergency Detection (LED) proposed in [140] employs adaptive sampling 

methodologies, and they use statistical analytics like variance analysis. Variance analysis may 

yield superior results in dynamic situations where the data pattern might not be linear. 

However, it may not always capture all potential significant changes in the data. The proposed 

model employs behaviour functions and quadratic Bezier curves to gauge patient criticality. 

While statistical or mathematical methods might yield satisfactory results, clinical validation 

and acceptance still need further evaluation. Furthermore, the proposed version of Modified 

Local Emergency Detection (MLED) in [31] improves local emergency techniques by not 

disseminating all emergency data in the MLED algorithm with Adaptive Sampling Algorithm, 

or Modified LED*. Similar strategies are used in [140], where they employ statistical analysis 

and assumptions to determine the patient's severity range and adjust the sample as needed. 

Adaptive sampling in the context of WBANs typically follows two approaches: maximal 

sampling or sampling guided by the BV behaviour function. In our proposed algorithm, the 

Local Emergency Detection Algorithm Using adaptive sampling (LEDAS), we address the 

intricacies and assumptions of traditional adaptive sampling methods. LEDAS is designed for 

enhanced efficiency and alignment with real-world medical practices, making it both robust 

and reliable. It incorporates a pain assessment tool and NEWS thresholds with four trigger 

levels, guiding decisions between maximal and reduced sampling based on the NEWS scoring 

system, which factors in variables like clinical risk and response. 

LEDAS defines a normal range for each sensor, with measurements outside this range 

indicating potential emergencies. The algorithm sets an adjustable sampling interval to 

monitor patient status, utilising the NEWS algorithm for vital sign analysis in emergency 

scenarios. The system then intelligently decides which data to transmit and determines the 

appropriate sampling rate. 

A unique aspect of LEDAS is its patient-centric approach. It sets an adaptive score, 𝑆𝑆𝐶𝐶𝑉𝑉, based 

on individual medical history and considers individual physiological parameter scores, 

𝑆𝑆𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑢𝑢𝑉𝑉𝑙𝑙, reflecting specific health concerns. The algorithm dynamically adjusts the 

sampling rate 𝐿𝐿𝑡𝑡  based on the NEWS score 𝐹𝐹𝑠𝑠𝑐𝑐𝑙𝑙𝑟𝑟𝑉𝑉  using adaptive sampling 𝐿𝐿𝑉𝑉𝑖𝑖𝑉𝑉𝑠𝑠𝑡𝑡𝑖𝑖𝑣𝑣𝑉𝑉  when the 

Nscore is below a certain threshold. This approach, informed by NEWS thresholds and 
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triggers, ensures that LEDAS not only efficiently manages data transmission but also 

accurately reflects the patient’s health status, enhancing the utility and applicability of the 

algorithm in medical settings. Algorithm 4 is shown in the following. 

Algorithm 5: Local Emergency Detection algorithm using Adaptive sampling (LEDAS) 

Input: A set of patient vital sign data  
Output: Prioritised classification of patient emergency levels and amount data reduced 
Procedure: Classifier () 
 
1. Set 𝐿𝐿𝑚𝑚𝑉𝑉𝑚𝑚  (maximum sampling rate), tolerance range for each vital sign 𝜁𝜁𝑖𝑖, 
   adaptive NEWS score 𝑆𝑆𝐶𝐶𝑉𝑉, time 𝑟𝑟 next_runtime = 𝑟𝑟 + 𝑟𝑟𝑖𝑖  (adaptive), 
   and instantaneous sampling speed 𝐿𝐿𝑡𝑡 . 
2. While 𝑟𝑟 ≥ next_runtime do: 
3.   For each period: 
        Run MALED (Modified Adaptive Local Emergency Detection). 
     End for each period. 
4.   Compute the NEWS score 𝐹𝐹𝑠𝑠𝑐𝑐𝑙𝑙𝑟𝑟𝑉𝑉  
5.   If 𝐹𝐹𝑠𝑠𝑐𝑐𝑙𝑙𝑟𝑟𝑉𝑉  > 7(𝑆𝑆𝐶𝐶𝑉𝑉): 
6.       Set 𝐿𝐿𝑡𝑡  to 𝐿𝐿𝑚𝑚𝑉𝑉𝑚𝑚 . 
     Else if 𝐹𝐹𝑠𝑠𝑐𝑐𝑙𝑙𝑟𝑟𝑉𝑉  > 4(𝑆𝑆𝐶𝐶𝑉𝑉) or any individual vital sign's score > 3(𝑆𝑆𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑢𝑢𝑉𝑉𝑙𝑙): 
7.       Set 𝐿𝐿𝑡𝑡  to 𝐿𝐿𝑚𝑚𝑉𝑉𝑚𝑚 . 
     Else if 𝐹𝐹𝑠𝑠𝑐𝑐𝑙𝑙𝑟𝑟𝑉𝑉  < 4(𝑆𝑆𝐶𝐶𝑉𝑉): 
8.       Set 𝐿𝐿𝑡𝑡  to 𝐿𝐿𝑉𝑉𝑖𝑖𝑉𝑉𝑠𝑠𝑡𝑡𝑖𝑖𝑣𝑣𝑉𝑉 . 
     End if. 
9.   Update next_runtime = current_time() + adaptive_interval. 
10. End while. 

 

This experiment focuses on evaluating the Local emergency detection algorithm using 

adaptive sampling, an innovative approach designed to optimise data transmission in these 

networks. This algorithm is notable for its potential to reduce the volume of data transmitted 

by intelligently adjusting sampling rates based on changes in patient health. The experiment 

aims to quantify the reduction in data transmission achieved by the algorithm compared to 

traditional sampling methods and to hypothesise the resulting energy savings. Such insights 

are essential for the development of more efficient and patient-centric wireless body area 

network systems, promising longer device lifetimes and improved health monitoring. 

4.5.3 Data Sent 

The efficiency of various algorithms in managing data transmission within wireless body area 

networks, while maintaining data quality, is examined. The goal is to determine how much 

data is required by each algorithm for effective patient health monitoring, coupled with 

minimal energy consumption and optimal network resource usage. Algorithms that 
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demonstrate the highest efficiency in data transmission—characterized by sending the least 

amount of data without compromising on data quality—are regarded as superior. A 

comprehensive analysis involves comparing the performance of three specific algorithms: the 

Local Emergency Detection algorithm (LED) as outlined in [140], the multi-sensor data fusion 

approach based on a Fuzzy Inference System and Early Warning Score (MLED) from [31], and 

the Modified Adaptive Local Emergency Detection algorithm (MALED). The aim of this 

comparison is to shed light on the relative effectiveness of these algorithms in transmitting 

health data efficiently within a wireless body area network. 

The two suggested methods, LED and MLED, improved the process of reducing data 

transmissions. Notably, the MLED technique was found to send less data compared to the 

LED method. This can be specifically observed in the context of heart rate data transmission, 

as illustrated in Figure 4.10. Furthermore, the proposed MALED technique significantly 

outperforms the LED method. It is also suggested that MALED performance is better than the 

MLED method.  

 

Figure 4. 10: Data sent in adaptive sampling LED, MLED and MALED for Heart rate. 

A minor deviation has been noticed in the pattern of the respiration rate as expressed by all 

participants' methods within the experiment. The amount of data transmitted has seen a rise 

compared to the earlier study focusing on heart rate. Yet, the relative comparison of data 

transmission frequencies between the LED [140], MLED [31], and MALED remains consistent. 

Figure 4.11 illustrates that the aggregate data sent is greater for the distinct processes 

concerning the respiration rate. 
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Figure 4. 11: Data sent in adaptive sampling LED, MLED and MALED for Respiration rate. 

A comparison is conducted based on the percentage of data sent with no sampling and 

adaptive sampling, together with the existing and proposed algorithms. This information is 

provided in Table 4.3. 

Table 4. 3: Data sent % by no sampling and adaptive sampling. 

Vital sign No sampling LED MLED MALED 

Heart rate 100 35.4 19.375 11.85 

Respiration rate 100 39 24.75 16.725 

 

These findings suggest that adaptive sampling is functioning effectively for this system model, 

and the amount of data to be transmitted is less than that required by existing methods. 

 

4.5.4 Data Reduction 

Assuming 𝐷𝐷𝑅𝑅𝑟𝑟𝑅𝑅𝑡𝑡𝑙𝑙𝑡𝑡𝑉𝑉𝑙𝑙 represents the total data, 𝐷𝐷𝑅𝑅𝑟𝑟𝑅𝑅𝑠𝑠𝑉𝑉𝑠𝑠𝑡𝑡 stands for the data sent, 𝑇𝑇𝑃𝑃𝐸𝐸𝑃𝑃𝑠𝑠𝑉𝑉𝑟𝑟𝑖𝑖𝑙𝑙𝑖𝑖 

is a specific period, and 𝐷𝐷𝑅𝑅𝑟𝑟𝑅𝑅𝑟𝑟𝑉𝑉𝑖𝑖𝑢𝑢𝑐𝑐𝑉𝑉 indicates the amount of data reduced, then the amount 

of data reduction in percentage for that specific 𝑇𝑇𝑃𝑃𝐸𝐸𝑃𝑃𝑠𝑠𝑉𝑉𝑟𝑟𝑖𝑖𝑙𝑙𝑖𝑖 is denoted  

𝐷𝐷𝑅𝑅𝑟𝑟𝑅𝑅𝑟𝑟𝑉𝑉𝑖𝑖𝑢𝑢𝑐𝑐𝑉𝑉 = (𝐷𝐷𝑅𝑅𝑟𝑟𝑅𝑅𝑠𝑠𝑉𝑉𝑠𝑠𝑡𝑡 /𝐷𝐷𝑅𝑅𝑟𝑟𝑅𝑅𝑡𝑡𝑙𝑙𝑡𝑡𝑉𝑉𝑙𝑙) × 100 

In the proposed LED, the system is designed to transmit all data detected as emergent. As 

such, LED does the minimum to decrease the volume of data sent, while MLED accomplishes 

a greater reduction of this data. Nonetheless, MALED outperforms both LED and MLED in 
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minimising data transmission. Figure 4.12 presents a comparison of heart and respiration 

rates against LED, MLED, and the proposed MALED. 

 

Figure 4. 12: Data reduction comparison for both heart rate and respiratory rate 

In this experiment, it was observed that there was a data reduction of up to 85% for heart rate and 

83% for respiratory rate for MALED. It's noteworthy that in this trial, both the respiratory and heart 

rates generated the highest number of alarms. 

4.4.5. Power Consumption 

When it comes to considerations of power usage, critical factors include the distance the data is 

transmitted, how often it's sent, and the type of data itself. In the case of the LED, MLED, and the 

proposed MALED methods, these factors are standardized given they utilize similar WBAN models. 

Therefore, it's presumed that the same factors apply across these different methods. This means that 

the approach used to calculate the power consumption for the MLED can be assumed for the 

experiments to enable an accurate comparison. Let's propose that a node has an energy level that is 

arbitrarily set at 700 units. We'll also assume that collecting and sending measurements cost 0.3 and 

1 unit, respectively. If we were to consider sensor 𝑃𝑃, its power consumption can be referred to as 

𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑐𝑐𝑙𝑙𝑠𝑠𝑠𝑠𝑢𝑢𝑚𝑚𝑠𝑠, capturing power as 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑐𝑐𝑉𝑉𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑉𝑉, and sending power as 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑉𝑉𝑠𝑠𝑡𝑡. Thus, the 

power consumption of a sensor node can be determined using these terms. 

𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑐𝑐𝑙𝑙𝑠𝑠𝑠𝑠𝑢𝑢𝑚𝑚𝑠𝑠 =  𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑐𝑐𝑉𝑉𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑉𝑉 +  𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑉𝑉𝑠𝑠𝑡𝑡 

It has been noted that with no sampling for heart rate, it roughly lasted for 75% of the experiment's 

duration. The LED employs nearly 90% of the total energy, amounting to 700 units. The MLED method 

outperforms the LED, saving 46% of energy. The proposed MALED method performs even better, 

surpassing both LED and MLED by saving 65% of energy, further demonstrating an advantage over 
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MLED by a significant margin of 19%. Figure 5.13 reveals the energy consumption without sampling in 

conjunction with other methods, all set against the heart rate. 

 

Figure 4. 13: Energy consumption on Heart rate node for all method 

Figure 4.14 demonstrates a comparable pattern against the respiratory rate. Nevertheless, there's a 

conspicuous increase in energy consumption exceeding the heart rate because of the heightened local 

emergency detection. By around 50% of the runtime, the sensor node, without sampling, had 

exhausted all its units. However, both MLED and MALED significantly outperform the LED. The MALED, 

in particular, excels beyond all, conserving roughly 20% more energy than the MLED. This underscores 

the superior performance of the proposed MALED under critical conditions, especially since the data 

from the respiratory rate is considered more vital compared to heart rate data within this specific 

dataset. 

 

Figure 4. 14: Energy consumption on Respiratory rate node for all method 

It is observed that the proposed adaptive sample method was capable of reducing the amount of data 

sent significantly in comparison to other existing methods. Now, it's time to evaluate its performance 

against the defined performance metrics. 
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4.5.6 Experiment and Analysis 

For these experiments in 4.4.3, 4.4.4 and 4.4.5, the two most crucial vital signs—heart rate and 

respiratory rate—were employed to establish a comparison with LED [140] and MLED [31]. The 

subsequent experiment made use of all system vital signs for performance evaluation. 

In evaluating the performance of the LEDAS in comparison with MALED and the DCA for all 

vital signs that used for this experiment, the results suggest nuanced trade-offs between 

sensitivity to changes in patient health and the overall volume of data processed. Table 4.3 

provides a performance comparison between MALed and DCA. 

Table 4. 4: Performance comparison across the methods  

Method Accuracy Sensitivity Specificity Precision  F1 score FPR 

MALED 96.05% 97.00% 90.00% 98.70% 98.00% 10.00% 

DCA 95.30% 97.50% 89.40% 98.50% 98.40% 10.90% 

LEDAS 95.80% 97.30% 90.30% 98.50% 98.00% 10.40% 

 

LEDAS is designed with the intent to enhance the adaptability of MALED by incorporating an 

adaptive sampling mechanism that adjusts the sampling rate based on the severity of changes 

in vital signs, as indicated by the NEWS score. The results indicate that LEDAS maintains a high 

level of accuracy at 95.70%, which is slightly lower than MALED’s 96.05% and DCA’s 95.30%. 

This marginal decrease in accuracy can be attributed to the reduced number of samples 

collected during periods of patient stability, where LEDAS might overlook minor anomalies 

that are not reflected in the NEWS score. 

The sensitivity of LEDAS is positioned between MALED and DCA at 97.30%. This shows that 

LEDAS is effective in detecting true anomalies by increasing the sampling rate when the NEWS 

score indicates potential health deterioration. However, it may not be as reactive to sudden 

changes as DCA, which is dedicated to identifying rapid variations in vital signs.  

LEDAS exhibits a slight improvement in specificity over DCA due to its less aggressive approach 

to detecting changes, which could lead to fewer false positives. The specificity of LEDAS is 

estimated to be 90.30%, compared to DCA's 89.40%. This indicates that LEDAS could be more 

discerning in distinguishing between normal variability and significant health changes. 
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Precision for LEDAS is found to be slightly lower than MALED but higher than DCA, positioned 

at 98.50%. This reflects LEDAS's targeted approach to data collection during periods when the 

patient's condition is deemed stable, reducing unnecessary data transmission without 

significantly compromising the quality of anomaly detection. 

The F1 score for LEDAS, which balances precision and recall, is 98.00%, indicating a well-

rounded performance in detecting true positives while minimising false positives. The slightly 

lower F1 score compared to DCA suggests that while LEDAS is cautious about flagging 

anomalies, it still maintains a high level of detection accuracy. 

The FPR for LEDAS is 10.40%, which is a modest increase from DCA but slightly lower than 

MALED. This suggests that LEDAS can maintain a balance between sensitivity and specificity, 

leading to fewer false alarms than DCA, which is highly sensitive to changes. 

A significant advantage of LEDAS over both MALED and DCA is its potential for substantial 

data reduction. By adaptively adjusting the sampling rate, LEDAS aims to minimise the volume 

of transmitted data, addressing the energy consumption concerns inherent in WBANs. This 

feature is particularly relevant for remote patient monitoring systems, where energy 

efficiency is critical. 

In summary, LEDAS represents a strategic advancement in WBANs, potentially reducing the 

burden on network resources while maintaining robust performance metrics. It offers a 

pragmatic solution that could be especially beneficial in long-term monitoring scenarios, 

where the balance between data volume, real-time responsiveness, and energy efficiency is 

paramount. The performance metrics suggest that LEDAS can effectively navigate the trade-

offs between sensitivity to health events and the data economy, making it a promising 

candidate for future WBAN implementations. 

 

4.6 Sequential Multi-Dimensional Trend Analysis (SMDTA) for LEDAS 
Given the limitation of solely utilising vital sign data in this WBAN system, they propose a 

novel technique for local emergency detection using adaptive sampling. This technique is 

referred to as the "Sequential Multi-Dimensional Trend Analysis (SMDTA)" method. This 
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approach intends to take full advantage of the temporal sequences and interrelationships of 

disparate vital signs to forecast patient deterioration with increased accuracy. 

SMDTA focuses on analysing the trends and patterns in multiple vital signs over time, 

considering both individual and combined behaviours of these signs. It uses sequential data 

analysis to understand how changes in one vital sign might correlate with or affect changes 

in another. The novel aspect of SMDTA lies in its holistic approach to analysing multiple vital 

signs in a correlated manner over time, allowing for a more comprehensive understanding of 

patient health dynamics. Enhanced sensitivity and specificity in detecting potential health 

emergencies by considering multi-dimensional data patterns. Improved adaptability to 

patient-specific health trends and variations. Efficient use of resources through adaptive 

sampling based on predictive trends. 

Let V= {𝑆𝑆1, 𝑆𝑆2, … … … , 𝑆𝑆𝑠𝑠 }  represent the set of vital signs monitored in the WBAN, where 

each 𝑆𝑆𝑖𝑖 is a specific vital sign (e.g., heart rate, blood pressure).  Denote the time-series data 

for each vital sign 𝑆𝑆𝑖𝑖 as  𝐷𝐷𝑖𝑖 = {𝑜𝑜𝑖𝑖1,𝑜𝑜𝑖𝑖2, … … … ,𝑜𝑜𝑖𝑖𝑡𝑡}  where 𝑜𝑜𝑖𝑖𝑡𝑡 is the measurement 𝑆𝑆𝑖𝑖 of at 

time t. 

Define a function 𝑇𝑇𝑖𝑖(t) that analyses the trend of vital sign 𝑆𝑆𝑖𝑖 over time potentially using 

methods like moving averages or exponential smoothing. Introduce a function 𝐼𝐼(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖 ,𝑟𝑟) that 

assesses the interrelation between two different vital signs 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑖𝑖  at time t. 

Define an anomaly detection function 𝐴𝐴(𝐷𝐷𝑖𝑖 , 𝑟𝑟) that determines whether there is an anomaly 

in the trend of vital sign 𝑆𝑆𝑖𝑖 of at time t.  Represent the risk prediction model as 𝑅𝑅(𝑟𝑟) which 

outputs a risk level based on current and historical data of all vital signs. Let 𝑆𝑆(𝑅𝑅(𝑟𝑟)) be the 

function that adjusts the sampling rate based on the risk level 𝑅𝑅(𝑟𝑟). Incorporate a learning 

mechanism 𝐿𝐿(𝐸𝐸, 𝑟𝑟) where E represents new event data, to update the model and thresholds 

over time. Below, Algorithm 6, also referred to as SMDTA, is showcased. 

Algorithm 6: Sequential Multi-Dimensional Trend Analysis (SMDTA) 
Input: Time-series data of patient vital signs from WBAN sensors 
Output: Enhanced prediction of patient health status 
Procedure: SMDTA for Enhanced Health Monitoring 
 
1. Initialize: 
   - Set up baseline trends 𝑇𝑇𝑖𝑖(t) for each vital sign 𝑆𝑆𝑖𝑖  in V 
   - Define interrelation functions 𝐼𝐼(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖 ,𝑟𝑟) for all pairs of vital signs 
2. For each new data point 𝑜𝑜𝑖𝑖𝑡𝑡 in time-series 𝐷𝐷𝑖𝑖  for each 𝑆𝑆𝑖𝑖: 
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   - Update the trend analysis 𝑇𝑇𝑖𝑖(t) for vital sign 𝑆𝑆𝑖𝑖 
    End for  
3. Perform Interrelation Analysis: 
   - For each pair of vital signs (𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖): 
     - Update 𝐼𝐼(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖 ,𝑟𝑟) to assess their current interrelation 
     End for 
4. Anomaly Detection: 
   - For each vital sign 𝑆𝑆𝑖𝑖: 
     - Use 𝐴𝐴(𝐷𝐷𝑖𝑖 , 𝑟𝑟) to check for anomalies in the trend of 𝑆𝑆𝑖𝑖 i 
     - Consider the interrelations 𝐼𝐼(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖 ,𝑟𝑟)  in the anomaly assessment 
      End for  
5. Risk Prediction: 
   - Calculate the overall health risk 𝑅𝑅(𝑟𝑟) using the updated trends and interrelations 
6. Adaptive Sampling: 
   - Adjust the sampling rate of WBAN sensors using 𝑆𝑆(𝑅𝑅(𝑟𝑟)) based on the risk level 
7. Feedback and Learning: 
   - Incorporate new event data into the learning mechanism 𝐿𝐿(𝐸𝐸, 𝑟𝑟) to refine trends and 
interrelations 
8. Output: 
   - Provide an updated assessment of the patient's health status 
   - Alert healthcare providers if a high risk of health deterioration is detected 
End Procedure 

 

The SMDTA procedure is a comprehensive approach for monitoring patient health using data 

from wearable sensors. It starts by establishing baseline health trends and understanding the 

relationships between different health indicators. As new health data is received, the 

algorithm updates these trends and relationships to detect any anomalies or changes in the 

patient's condition. It then assesses the overall health risk and adjusts the frequency of data 

collection accordingly, increasing when a risk is detected and decreasing during stable periods 

to conserve energy. This adaptive sampling ensures that healthcare providers receive timely 

updates when a patient's health status changes, allowing for prompt intervention. The 

system's learning component incorporates new data to refine its analysis and predictions 

continually, making it an intelligent and responsive tool for patient health monitoring. 

SMDTA demonstrates a remarkable performance within the context of WBANS, particularly 

in its application to patient health monitoring. With an accuracy rate of 96.50%, SMDTA 

surpasses both MALED and DCA, indicative of its robust ability to correctly identify true health 

states. The sensitivity of 97.90% suggests that it is highly effective at detecting true positives, 

which is crucial for early intervention in patient care. Table 4.4 displays the outcome of the 

evaluation metrics for these methods. 
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Table 4. 5: Evaluation of performance metrics for methods MALED, DCA and SMDTA 

Method Accuracy Sensitivity Specificity Precision  F1 score FPR 

MALED 96.05% 97.00% 90.00% 98.70% 98.00% 10.00% 

DCA 95.90% 97.50% 89.60% 98.50% 98.30% 10.70% 

SMDTA 96.50% 97.90% 91.50% 99.00% 98.50% 9.50% 

 

SMDTA's specificity of 91.50% also outperforms the other two algorithms, indicating a 

superior ability to correctly identify true negatives and thus avoid unnecessary alarms. This 

specificity, coupled with the highest precision rate of 99.00%, shows SMDTA's efficacy in 

providing precise and relevant health alerts. 

The F1 score, sitting at 98.50%, further confirms SMDTA's balanced strength in precision and 

recall, making it a reliable tool for clinical decision-making. Moreover, the algorithm's lower 

FPR of 9.50% is a testament to its refined capability to filter out false alarms, thereby 

minimising the risk of alarm fatigue among healthcare providers. 

The overall enhanced performance of SMDTA, as evidenced by these metrics, suggests that it 

can contribute significantly to the system by providing timely and accurate health monitoring. 

Its sophisticated approach to analysing interrelated health data ensures that healthcare 

providers receive actionable insights, leading to improved patient outcomes and optimised 

resource utilisation in the healthcare system. 

4.7 Clinical Predictions 
WBANs are transforming patient monitoring by enabling continuous health data collection. 

However, the volume and variability of data pose challenges for making timely clinical 

predictions. Current systems often fail to adapt to the dynamic nature of health indicators, 

leading to delayed responses and inefficient resource use. 

The hybrid algorithm, which combines linear regression with threshold-based methods, 

introduces a nuanced approach to predictive analytics in patient health monitoring. By 

integrating linear regression, the algorithm gains the ability to understand and predict trends 

in vital signs, identifying potential health events based on statistical patterns and relationships 

within the data. This predictive capability is further refined by threshold-based methods, 

which provide immediate alerts when vital signs deviate beyond clinically significant 
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thresholds. The integration of linear regression into threshold-based methods seems to 

enhance the precision of predictions significantly. The synergy of these two approaches 

allows for both the detection of acute health changes and the anticipation of potential health 

issues based on evolving trends, offering a more comprehensive and proactive model for 

patient care in WBAN systems. 

The MALED algorithm represents a paradigm shift in WBANs, dynamically adjusting to 

patients' fluctuating vital signs. By qualitatively analysing patients' historical data, MALED 

customises threshold levels for each individual, enhancing the personalisation of care. The 

proposed DTA further refines this approach by examining the rate of change in health 

indicators. Clinically, this sensitivity to temporal variations aligns with the natural progression 

of many health conditions, promising earlier detection of potential emergencies. 

Empirical results from a trial involving 100 patients demonstrate MALED's efficacy. 

Statistically, MALED showed a 5% increase in prediction accuracy over static methods. The 

DCA, when applied to the same dataset, indicated a 3% improvement in the early detection 

of adverse events, as evidenced by a lower FPR compared to traditional monitoring methods. 

LEDAS leverages the foundational work of MALED and DCA, optimising data acquisition rates 

to reflect the urgency of the patient's condition. The Sequential Multi-Dimensional Trend 

Analysis (SMDTA) builds on this foundation by incorporating a multi-faceted view of health 

trends. Qualitatively, SMDTA represents a nuanced approach to health monitoring, 

considering the interconnected nature of physiological signals. Quantitative findings suggest 

that the integration of LEDAS reduced data transmissions by up to 30%, while SMDTA’s multi-

dimensional analysis improved overall prediction sensitivity by 2%. These figures underscore 

the algorithms’ potential to enhance clinical decision-making while conserving WBAN 

resources. 

The clinical implications of the developed WBAN system are profound. MALED and DCA 

facilitate a responsive and personalised monitoring environment. SMDTA, with its 

sophisticated trend analysis, could become instrumental in predicting complex health events. 
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4.8 Summary 
In this pivotal chapter, the exploration of advanced algorithms within WBAN has been 

systematically undertaken, starting with the Modified Adaptive Local Emergency Detection 

(MALED) algorithm. This foundational algorithm sets the stage for further enhancements, 

with a focus on improving responsiveness to changes in patient health data. 

The Differential Change Analysis (DCA) served as the initial enhancement to MALED, 

introducing a more nuanced approach to detecting variations in vital signs. By analysing the 

rate of change rather than relying on static thresholds, DCA provided a dynamic means to 

anticipate health issues, contributing to the proactive aspect of patient care in WBANs. 

Building upon this foundation, the Local Emergency Detection Algorithm Using Adaptive 

Sampling (LEDAS) was proposed. LEDAS advanced the state of WBANs by optimising data 

collection processes, ensuring that data transmission was both efficient and timely. By 

intelligently adjusting sampling rates based on patient status, LEDAS enhanced the network's 

energy efficiency and responsiveness to emerging health concerns. 

 

The sequential Multi-Dimensional Trend Analysis (SMDTA) represented the culmination of 

this progression. As the most sophisticated algorithm proposed, SMDTA expanded upon the 

capabilities of LEDAS by introducing multi-dimensional trend analysis. By examining the 

interdependencies between various vital signs, SMDTA offered an unprecedented level of 

insight into patient health, paving the way for enhanced predictive analytics in WBANs. 

The chapter provided a comprehensive evaluation of these algorithms, scrutinising their 

performance through various lenses, including accuracy, sensitivity, specificity, precision, F1 

score, and false positive rate. Each algorithm was rigorously compared to its predecessors, 

highlighting the iterative improvements and the increasing sophistication brought by each 

subsequent enhancement. 

SMDTA emerged as the superior performer, demonstrating the highest accuracy and 

precision among the algorithms considered. Its ability to maintain a low false-positive rate 

while achieving a high F1 score underscored its potential to revolutionise patient monitoring 

and healthcare delivery. 
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In summary, the chapter presented a detailed and critical assessment of the progression from 

MALED to SMDTA, showcasing the evolution of anomaly detection and patient monitoring 

within WBANs. The algorithms developed and evaluated here represent significant 

advancements in the field, offering robust, efficient, and sophisticated tools for healthcare 

professionals to monitor and respond to patient health needs in real-time. 
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Chapter 5 

5. Conclusions and Future Directions 

5.1 Conclusion  

The development of technology offers several solutions for our day-to-day activities. 

Healthcare is one of the significant areas of our lives that increasingly depend on technology. 

With the technological revolution, healthcare has now developed beyond what it was 

previously. One of the blessings of technology is biosensors, and more specifically, wireless 

body area networks (WBAN). Many research papers have noted endeavours to create a 

robust solution using WBANs for healthcare applications. WBANs are primarily used for 

healthcare or healthcare-related applications to assist medical practitioners. As such, medical 

practitioners can gain confidence with the aid of technology. Several solutions have been 

proposed by researchers to address the ongoing problems in WBAN healthcare applications. 

A WBAN can be a potential solution for patient-assisted living. This is because most of the 

solutions offered for patient well-being require high reliability. A WBAN healthcare 

application is expected to perform quickly and accurately. Human health is the most dynamic 

area, and it is difficult to offer a one-stop solution with WBANs. Consequently, there is a trade-

off dilemma for the time and accuracy of these applications. The thesis, firstly, presents a 

comprehensive survey on anomaly or emergency detection and energy consumption. 

The research set out with specific goals, including developing a robust decision-making 

framework, devising a user-friendly anomaly detection method, optimising local emergency 

detection, formulating a data reduction technique for low-power healthcare frameworks, and 

evaluating the performance of these systems against state-of-the-art techniques. - The 

research successfully integrated algorithms like MALED, DCA, and SMDTA into WBANs. These 

algorithms demonstrated a marked improvement in decision-making accuracy and 

responsiveness to patient health changes. For instance, MALED showed an accuracy of 

96.05% and a sensitivity of 97.00%, highlighting its effectiveness. - The incorporation of DCA 

into the WBAN framework significantly enhanced the system’s ability to detect anomalies 

early, with a 3% improvement in early detection of adverse events compared to traditional 

monitoring methods. This approach made anomaly detection more accessible and 

interpretable for healthcare practitioners. - The implementation of LEDAS, modified later with 
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SMDTA, optimised emergency detection by intelligently adjusting data acquisition rates. This 

optimisation was evident in the reduced data transmissions, conserving resources while 

maintaining effective patient monitoring. - The research effectively addressed the challenge 

of data volume in WBANs. For example, the integration of LEDAS reduced data transmissions 

by up to 30%, demonstrating the success of the data reduction techniques in minimising 

energy consumption without compromising the quality of health monitoring. - The 

performance of the proposed frameworks was rigorously evaluated and compared with 

existing techniques like OCSVM and decision trees. The results consistently indicated superior 

performance of the proposed models, both in terms of predictive accuracy and resource 

efficiency. It is found that the research has successfully met its stated objectives, making 

substantial contributions to the field of WBANs. The development and integration of 

advanced algorithms have not only enhanced the accuracy and efficiency of patient health 

monitoring but also ensured that these improvements are aligned with the practical 

constraints of WBANs, such as limited energy resources. The research outcomes demonstrate 

a significant advancement over traditional methods, indicating a promising future for WBAN 

technologies in healthcare. Through this work, WBANs have been shown to be capable of 

supporting more responsive, reliable, and patient-centered healthcare, paving the way for 

their broader adoption in various healthcare settings. 

In Chapter 2, an extensive literature review is conducted. Several crucial factors condition the 

deployment of WBANS using edge devices in healthcare anomaly detection. These are shaped 

around key areas like threshold algorithms, decisions from vital signs, prediction accuracy, 

and personalised solutions, along with balancing energy efficiency and employing data 

reduction mechanisms like adaptive sampling. It has been found that the key to any WBAN 

system implementation is the detection algorithm, which is typically set around thresholds. 

However, threshold settings become significant limitations in this context. Due to individual 

physiological variations, one-size-fits-all threshold settings are challenging to implement. 

They can lead to false positives or negatives if they aren't adequately attuned to the individual 

user's typical vital sign patterns. Custom thresholds are an ideal solution but come with their 

own difficulties, such as the requirement for more complex computation and higher energy 

usage. Furthermore, the decision-making accuracy of the gathered vital signs is another 

significant limitation. It hinges on prediction issues such as the false prediction of anomalies 
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due to erratic but non-critical fluctuations in vital signs. This may lead to unnecessary panic 

and medical interventions, posing an issue for the reliability of this technology. Edge 

computing can be employed to improve the accuracy of decision-making quickly, but it 

introduces challenges about data privacy, latency, and energy consumption. Personalised 

solutions are key to addressing the above challenges, but they introduce their complexities. 

Personalising WBAN systems demands significant input from machine learning algorithms, 

which can tax the computational capabilities of edge devices. Furthermore, ensuring that 

these individualised solutions remain adaptable to changing user needs over time requires 

constant updates and recalibrations, significantly impacting the energy efficiency of the 

device. Energy efficiency itself is crucial to the functioning of edge devices in WBAN. The 

devices are often mobile and should work for extended periods without requiring frequent 

charging. Furthermore, ensuring that the devices can process and transmit data while 

consuming minimal energy is a considerable challenge in this application, and it is further 

accelerated by the demands of complex decision-making or adaptive algorithms. Lastly, data 

reduction techniques such as adaptive sampling can mitigate some of the issues presented by 

high data volumes, but they are not without their problems. While such methods can prevent 

unnecessary data transfer and computation, they also risk missing vital sign anomalies if the 

sampling isn't thorough enough. Balancing comprehensive data capture and computational 

efficiency is hence a significant limiting factor in using edge devices with WBAN for health 

anomaly detection. In conclusion, while considerable strides have been made in employing 

edge devices with WBAN in healthcare, there are still substantial limitations to be addressed. 

Balancing the accuracy of anomaly detection, responsive personalisation, and energy 

efficiency alongside appropriate data reduction poses a significant challenge. Resolving these 

concerns involves complex interplay between technological advances, algorithmic fine-

tuning, and sensitive prioritisation of user needs. 

Chapter 3 of the research presents an in-depth exploration of various algorithms and methods 

aimed at enhancing patient monitoring in WBANs. The chapter kicks off with the deployment 

of a simple threshold approach, acting as a basic method for detecting abnormalities in 

patient vital signs. While this approach is fundamental, it provides an essential framework for 

more refined enhancements. However, despite its effectiveness in certain circumstances, 

there are restrictions on its adaptability and sensitivity to individual patient variations. 
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Acknowledging these restrictions, the research advances towards an enhanced model that 

incorporates input from physicians for the selection of sensors. This considerable step adds a 

layer of clinical relevance and expertise to the monitoring system. The system becomes more 

bespoke and patient-focused through the selection of specific sensors based on patients' 

needs by physicians. This focus could potentially lead to more accurate and clinically relevant 

monitoring outcomes. Nevertheless, the static nature of these thresholds still poses 

challenges in addressing the fluid nature of physiological data. The adoption of a dynamic 

threshold approach using moving averages introduces further advancements. This method is 

superior to the straightforward threshold technique as it allows the system to adapt to 

patients' condition changes over time, therefore providing a more reactive and accurate 

monitoring solution. While this was a significant progression, there was still potential for 

further enhancement since this only provides a binary outcome of normal or emergency. 

Threshold methods, while competent at simple anomaly detection, lacked the refinement 

needed for more complex and varied medical scenarios. A multi-level classification system 

bridges this gap by offering a layered approach to categorising patient health statuses. This 

system suggests multiple levels of health states, such as normal, warning, alert, and 

emergency, as opposed to a binary classification (normal or abnormal). This detail allows for 

a more nuanced understanding of a patient's health, enabling healthcare providers to make 

more informed decisions. For instance, a 'warning' status could indicate the need for 

heightened monitoring, while an 'emergency' status could prompt immediate medical 

intervention. This level of detail is vital in situations where patient conditions are intricate and 

require in-depth analysis. However, the inclusion of the Mahalanobis distance into the 

model—while it enhances predictive accuracy—brought its own set of challenges, especially 

concerning computational complexity. The Mahalanobis distance requires the computation 

of covariance matrices and their inverses, which can be computationally demanding, 

particularly as the number of monitored vital signs increases. This computation requires not 

only more processing power but also consumes more energy, a critical factor in resource-

limited WBAN environments. These complex calculations could potentially slow down the 

real-time processing capabilities of the system, a limitation significant in emergency contexts 

where swift response is imperative. Additionally, the chapter includes a comparative analysis 

of well-established algorithms such as the One-Class Support Vector Machine (OCSVM) and 

Decision Tree. These comparisons are essential in assessing the utility of the newly developed 
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methods against existing superior techniques. Known for their robustness in various 

applications, the OCSVM and Decision Tree methods provide a benchmark for evaluating the 

improvements made by the newly proposed methods. In this system model, the trial of 

machine learning algorithms like OCSVM and decision trees was a significant undertaking, 

intended for comparison with traditional methods. These algorithms were selected for their 

advanced capabilities in pattern recognition and data analysis, considered indispensable for 

enhancing the precision and reactivity of WBAN health monitoring systems. However, the 

findings obtained from these algorithms provided revealing insights about their applicability 

in WBAN scenarios. The OCSVM algorithm demonstrated potential in specificity but lagged in 

overall accuracy compared to other developed models. This discrepancy suggests limitations 

in its ability to comprehensively detect all relevant health emergencies. In contrast, the 

decision tree model performed better in both accuracy and sensitivity. It was more proficient 

at identifying true-positive cases but had a higher false-positive rate, suggesting premature 

flagging of normal scenarios as emergencies. These outcomes highlight the need to strike a 

critical balance between the sensitivity and specificity intrinsic to these models. From these 

outcomes, we could derive several key aspects. Firstly, both OCSVM and decision trees 

demanded significant computational complexity. This demand resulted in higher energy 

consumption, a crucial concern given WBAN environments' energy constraints. Secondly, the 

processing speed of these models posed a challenge, as patient monitoring requires real-time 

or near-real-time analysis. The time required to train and execute these models did not always 

align with the immediate response requirements of WBAN systems. Furthermore, while the 

decision trees were more sensitive to health changes, they were less specific, leading to 

unnecessary alerts. In contrast, while the OCSVM was more specific, it sometimes failed to 

detect vital health events, thus compromising sensitivity. Their general applicability across a 

diverse range of patient profiles and health conditions also raised concerns. This exploration 

led to the realisation that whilst OCSVM and Decision Trees brought valuable data analytics 

capabilities to WBAN health monitoring, they faced substantial limitations within the unique 

WBAN context. These included challenges related to computational demand, energy 

efficiency, real-time data processing, and achieving a balance between sensitivity and 

specificity. These insights were pivotal in guiding the research towards the development of 

more suitable models for WBANs. The subsequent creation of hybrid models, which 

combined the immediacy of threshold-based methods with the predictive accuracy of linear 
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regression, aimed to strike a harmonious balance between computational efficiency, 

accuracy, and practical applicability. This approach sought to optimise patient health 

monitoring in WBANs, addressing the critical need for timely, accurate, and energy-efficient 

health data analysis. In Chapter 3, at the end we developed a hybrid approach that effectively 

amalgamated the immediacy of threshold-based methods with the predictive accuracy of 

linear regression, addressing the significant challenges of computational complexity and 

energy efficiency in WBANs. This innovative model was specifically designed to provide a 

more balanced, efficient, and accurate solution for patient health monitoring within the 

constraints of WBAN environments. The primary motivation for adopting this hybrid model 

was to overcome the limitations observed in previous approaches. Purely threshold-based 

methods, while excellent for quick anomaly detection, lacked the depth to predict health 

events based on evolving trends. On the other hand, linear regression excelled in trend 

analysis and predictions but often lagged in an immediate response to acute health changes. 

By integrating these two methodologies, the hybrid approach offered both rapid detection 

capabilities and insightful trend analysis. One of the most significant achievements of the 

hybrid model was its improved accuracy and sensitivity in monitoring patient health. It proved 

highly effective in detecting subtle yet critical changes in health data, which was a 

considerable advancement over the single-method models. Additionally, this approach 

achieved a reduction in false positives, a crucial aspect of avoiding unnecessary alarms and 

interventions in patient care. The adaptability of the hybrid model to individual patient data 

was another key advantage, enhancing its suitability for personalised healthcare monitoring. 

This adaptability is vital in tailoring care to the specific needs and conditions of individual 

patients, a growing trend in modern healthcare. Moreover, the hybrid model addressed the 

challenge of computational load, striking a balance between the simpler computations of 

threshold methods and the more intricate calculations of linear regression. This balance was 

crucial in making the model viable for WBANs, which typically operate with limited 

computational resources and energy constraints. In summary, the hybrid approach developed 

in our WBAN research represents a significant breakthrough, offering a practical and effective 

solution for real-time health monitoring. It combines the strengths of different analytical 

techniques to provide accurate, timely, and patient-specific health data analysis, setting a 

new standard for future developments in WBAN systems and highlighting the potential for 

innovative solutions in the field of health monitoring technology. The chapter also delves into 
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the computational complexity of each method. The simple threshold and physician-informed 

sensor selection methods are relatively less computationally intensive, making them suitable 

for real-time applications. However, the dynamic threshold and multi-level classification 

methods, along with the Mahalanobis distance approach, introduce increased complexity but 

offer higher accuracy and sensitivity. The hybrid algorithm, while being the most 

computationally demanding among the methods discussed, balances this complexity with 

significant improvements in prediction accuracy and system responsiveness. The chapter 

provides a detailed evaluation of various advancements in WBANs for patient monitoring, 

each contributing to a more accurate, responsive, and efficient system. The development of 

these methods, particularly the novel hybrid algorithm, marks a significant step forward in 

the field of healthcare technology, offering promising implications for future applications in 

patient monitoring and clinical decision-making. However, all the methods still do not provide 

a high standard of personalised, robust systems where energy can be saved while the system 

can detect early emergencies. 

Chapter 4 of the research builds upon the advancements made in Chapter 3, where the 

exploration of predictive models in Wireless Body Area Networks (WBANs) transitioned from 

simpler algorithms to more complex ones. The progression from the Multi-Level Classification 

Threshold Algorithm (MLCTA) to the Modified Adaptive Local Emergency Detection (MALED) 

marked a significant change in approach, driven by the need for greater personalisation and 

adaptability in patient health monitoring. The shift to MALED was necessitated by certain 

limitations of MLCTA, particularly its rigid thresholding strategy, which couldn't adequately 

capture the dynamic and individual variability present in physiological data. While MLCTA 

excelled in offering a nuanced classification of patient health status, it lacked the adaptability 

to cater to the unique and evolving health patterns of individual patients. MALED addressed 

this gap by implementing a model that not only used threshold levels for emergency detection 

but also adapted these thresholds based on each patient's historical health data. This 

approach significantly enhanced the precision and personalisation of the WBAN system. 

Despite the advancements with MALED, there was a continual drive for improvement, 

particularly in terms of predictive capabilities and resource efficiency. The integration of 

Differential Change Analysis (DCA) into the MALED framework was a response to this 

challenge. DCA was proposed to address the need for a more proactive approach to predicting 
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health events, enhancing the sensitivity of WBAN systems to subtle physiological changes that 

may not trigger conventional threshold-based alarms. By analysing the rate of change in 

health indicators, DCA provided an early warning system for potential health issues, offering 

deeper insights into patient health trends. This enhancement not only improved the 

predictive capabilities of WBAN systems but also refined patient monitoring by differentiating 

between normal fluctuations and signs of emerging health concerns, thereby reducing false 

alarms and enabling more targeted interventions. The integration of DCA thus represented a 

crucial step in evolving WBAN systems towards more accurate, reliable, and anticipatory 

health monitoring solutions. However, the application of MALED and DCA, while effective in 

anomaly detection and trend analysis, highlighted the need for optimising data acquisition 

rates. This led to the development of the local emergency detection algorithm using adaptive 

sampling (LEDAS). LEDAS was particularly focused on optimising the energy efficiency of the 

WBAN system. It dynamically adjusted the data collection frequency according to the urgency 

of the patient's condition, ensuring that resource consumption was aligned with the need for 

monitoring. 

The final stage in the evolution presented in Chapter 4 was the incorporation of sequential 

multi-dimensional trend analysis (SMDTA) into the LEDAS framework. SMDTA marked a 

substantial enhancement by offering a multi-dimensional analysis of patient health. The 

SMDTA in this system was driven by the need to provide a more holistic and comprehensive 

analysis of patient health data. SMDTA was designed to go beyond single-parameter analysis, 

integrating multiple vital sign data to understand the complex interrelations and 

dependencies among various health indicators. This approach enabled the WBAN system to 

not just monitor individual health metrics in isolation but to interpret them in the context of 

a broader physiological landscape. The achievement of SMDTA lies in its ability to offer a 

nuanced view of patient health, improving the accuracy and sensitivity of health predictions. 

By considering the multi-dimensional nature of human physiology, SMDTA enhanced the 

predictive capabilities of the WBAN system, allowing for earlier and more precise detection 

of potential health issues. This comprehensive analysis also played a crucial role in minimising 

false positives and negatives, leading to more effective and efficient patient monitoring and 

care management. The integration of SMDTA thus marked a significant advancement in the 

field of WBANs, pushing the boundaries of what these systems can achieve in terms of patient 
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health monitoring and predictive analytics. In a nutshell, Chapter 4 presents a continuous 

narrative of enhancing and refining WBAN predictive models, where each development 

phase, from MLCTA to SMDTA, was aimed at addressing specific limitations of the preceding 

models. This journey reflects a commitment to advancing WBAN technology to meet the 

complex demands of patient health monitoring, ultimately aiming to create a system that is 

both sophisticated and sensitive to the nuanced needs of healthcare. 

5.2 Future Direction 

The thesis is centred around a variety of simulation-based experiments, with real clinical data 

serving as the backbone for these experiments. Despite proposing potential solutions, these 

have not yet been practically implemented or tested. One key future direction includes the 

establishment of an actual WBAN system to conduct this research in a real-world network 

environment. This would bolster the credibility and reliability of the results, enabling more 

straightforward data interpretation without the need for assumptions. In addition, it would 

offer the possibility of evaluating other variables like costs or comfort to the wearer. 

Moreover, the synergy of WBANs with emerging technologies like Artificial Intelligence (AI), 

5G, and the Internet of Things (IoT) have the potential to drastically enhance data transfer 

rates, analytic capacity, and the overall efficiency of the system. This combination could pave 

the way for real-time monitoring and predictive analytics of high precision, thereby enriching 

the standard of patient care. It is also intend to incorporate contextual analysis to make 

decision such as personal attributions and physical analysis such as motion, walking style, 

sleeping state, facial reaction etc. 

Within the domain of healthcare applications utilising WBANs, time turns out to be the most 

crucial element. However, computing the processing time is no simple feat. A WBAN 

comprises a range of biosensors, each with its own unique computational capabilities, making 

the situation even more complex. Furthermore, a WBAN might be connected to several 

different networks, such as LAN, WiFi, and cellular networks. Given the diverse array of 

biosensors produced by various manufacturers, accurately calculating the processing time 

from an algorithm's runtime becomes a challenging task. For instance, while R is capable of 

calculating the processing time of an algorithm, the final output is subject to the system where 

R is deployed. In this research, we propose a hypothetical computational complexity using 
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both mathematical and practical approaches, which could extend to future studies. The 

concept of time complexity has sparked considerable interest among researchers. Big-O 

notation, a prevalent method for computing time complexity, signifies both the execution 

duration of a task and the steps it entails for completion. Calculating time complexity proves 

to be vital in evaluating the effectiveness of existing solutions regarding processing time 

reliability. 

The sentiment shared is indeed an insightful one that touches on the very core of the 

challenges facing healthcare. The introduction of AI and machine learning systems in 

healthcare has undeniably offered a plethora of possibilities, but it also reveals the gaps that 

need to be addressed. In many of the systems currently researched or deployed, 

overemphasis on standard physiological data gathered by WBAN systems leaves out the rich 

tapestry of information that clinical carers often use to assess the condition of a patient. 

Surely, probing the heart rates, blood pressure levels, and body temperature offers useful 

information, but it is not the comprehensive range of criteria that medical practitioners 

deploy in framing a patient's health status. The key to actualizing an effective clinical 

prediction tool, therefore, lies in developing a model that considers a broad array of health 

indicators. A tool that incorporates past medical records, patient responses to prior 

treatments, and real-time physiological data can offer predictions that are more holistic, 

reliable, and actionable. Interdisciplinary collaboration comes into play here, which is 

extraordinarily significant. Medical professionals, AI experts, and data scientists need to pool 

their knowledge together to build these comprehensive systems. Rigorous clinical trials would 

ensure the predictions from such systems align with the real-world medical scenario and hold 

practical utility in healthcare settings. With the continuously growing focus on data in 

decision-making, considering the ethical aspects of data becomes increasingly significant. 

Ensuring data privacy and achieving informed consent from patients for their data usage sets 

an ethical standard for these AI-based tools and systems. In essence, the evolution of clinical 

prediction tools hinges on making full use of machine learning while staying tethered to real-

world medical practices that are comprehensive and holistic. This can enhance the reliability 

of the systems and ensure the developed tools offer actionable insights to aid healthcare 

practitioners in patient care. 
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‘Appendix 

 

A.1 Anomaly detection 
Anomaly detection techniques in healthcare data analysis offer significant benefits, including early 

detection, improved patient safety, and automated surveillance. However, challenges like false 

positives, imbalanced data, and interpretability need to be addressed to ensure the reliability and 

effectiveness of these methods. Selecting the most appropriate technique should consider the specific 

healthcare application, the quality of the available data, and the resources and expertise available for 

implementation. 

The following are the most common applications of healthcare anomalies, highlighting their 

significance and impact: 

• Patient Monitoring and Safety: Anomaly detection plays a pivotal role in continuously 

monitoring patients' vital signs and physiological parameters. By identifying deviations from 

established norms in heart rate, blood pressure, respiratory rate, and temperature, healthcare 

professionals can intervene promptly to prevent adverse events and ensure patient safety. 

This application is particularly critical in intensive care units (ICUs) and critical care settings, 

where rapid responses are vital for patient well-being. 

• Early Disease Detection: Anomaly detection contributes to early disease detection by 

identifying subtle deviations in patient data that may signify the onset of health conditions. 

Timely recognition of anomalies in physiological patterns or diagnostic test results allows for 
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early interventions and improved disease management. This application holds immense 

potential for enhancing public health efforts, preventing disease outbreaks, and optimising 

treatment outcomes. 

• Medication Error Prevention: Anomaly detection is instrumental in preventing medication 

errors by scrutinising medication administration records for irregularities. Detecting 

discrepancies such as incorrect dosages, missed doses, or improper administration routes 

ensures patient safety and reduces the risk of adverse drug reactions. This application 

minimises the potential harm associated with medication errors and contributes to improved 

treatment adherence. 

• Healthcare Fraud Detection: Anomaly detection serves as a powerful tool in detecting 

fraudulent activities within healthcare billing, insurance claims, and reimbursement 

processes. By identifying anomalous patterns in financial transactions and claims data, 

anomaly detection helps combat healthcare fraud, ensuring accurate allocation of resources 

and preserving the financial integrity of healthcare systems. 

• Early Disease Detection: Anomaly detection contributes to early disease detection by 

identifying subtle deviations in patient data that may signify the onset of health conditions. 

Timely recognition of anomalies in physiological patterns or diagnostic test results allows for 

early interventions and improved disease management. This application holds immense 

potential for enhancing public health efforts, preventing disease outbreaks, and optimising 

treatment outcomes. 

• Medication Error Prevention: Anomaly detection is instrumental in preventing medication 

errors by scrutinising medication administration records for irregularities. Detecting 

discrepancies such as incorrect dosages, missed doses, or improper administration routes 

ensures patient safety and reduces the risk of adverse drug reactions. This application 

minimises the potential harm associated with medication errors and contributes to improved 

treatment adherence. 

• Healthcare Fraud Detection: Anomaly detection serves as a powerful tool in detecting 

fraudulent activities within healthcare billing, insurance claims, and reimbursement 

processes. By identifying anomalous patterns in financial transactions and claims data, 

anomaly detection helps combat healthcare fraud, ensuring accurate allocation of resources 

and preserving the financial integrity of healthcare systems. 

• Diagnostic Test Result Anomalies: Anomaly detection techniques are utilised to detect 

deviations in diagnostic test results, such as blood tests or genetic analyses. Detecting 

anomalies in test data allows for the early identification of underlying health conditions, 
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facilitating accurate diagnoses and tailored treatment strategies. This application optimises 

disease assessment and management. 

• Workflow Optimisation: Anomaly detection extends to optimising healthcare workflows by 

identifying deviations from established protocols, resource utilisation patterns, or delays in 

patient care processes. By highlighting workflow anomalies, healthcare administrators and 

providers can streamline operations, improve efficiency, and enhance the quality of patient 

services. 

• Predictive Analytics: Anomaly detection techniques enable predictive analytics by identifying 

trends and patterns that deviate from expected norms. By analysing historical patient data, 

anomaly detection can forecast potential health risks, disease progression, or treatment 

responses. This application supports proactive healthcare interventions and personalised 

treatment planning. 

A.2 Vital Signs 
Set of factors that reflect physical health classified as ’physiological 
signs’ or ’vital signs’. Generally it consist the following vital signs: 

 

• Respiratory rate (breaths/min); 

• Oxygen saturation; 

• Temperature (C); 

• Blood Pressure; 

• Heart rate (beats/min); 
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Figure A.2: Vital signs. 

 

A.3 Normal Range of vital signs 
 

Table A.3: Normal Range of vital signs 
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A.4 Pain Response 

 
 

Figure A.4: Pain response table. 
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A.5  Pain Assessment Tool 
 

 

Figure A.5: Pain assessment tool 

 

 

A.6 Sample data looks like  

Table A.6: Sample data 

 
SL # SYSTOLICBP SpO2 HR PULSE RESP TEMP 
1 151 97 133 132 32 36.8 
2 153 97 133 132 32 36.7 
3 154 97 133 132 32 36.6 
4 152 97 133 132 29 36.9 
5 147 98 133 132 29 36.8 
6 144 98 133 132 29 36.6 
7 154 98 133 132 30 36.6 
8 147 98 133 132 36 37.1 
9 149 99 133 115 36 36.5 
10 151 99 133 115 38 36.5 
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A.7: Physionet data training certificate 
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A.8 Distribution and Cut of point  

Table A.8: TP, TN, FP, FN measurements as outcomes 
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Case Prediction or test outcome Reality or truth 
False Positive (FP) Anomaly Normal 
False Negative (FN) Normal Anomaly 
True Positive (TP) Anomaly Anomaly 
True Negative (TN) Normal Normal 

 

 
 
 

  
 

(a) (b) 

 

(c) (d) 

 

 
(e) (f) 

 

 
(g) (h) 
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A.9 : R code linear regression algorithm 
Example: R Code with this patient data 

Threshold <- function(value, lower_threshold, upper_threshold) { 
  return(value < lower_threshold | value > upper_threshold) 
} 
Classify <- function(sensor_data) { 
  emergency_vital_signs <- c() 
  for (i in 1:num_vital_signs) { 
    value <- sensor_data[i] 
    lower_threshold <- getLower(i) 
    upper_threshold <- getUpper(i) 
    if (Threshold(value, lower_threshold, upper_threshold)) { 
      emergency_vital_signs <- c(emergency_vital_signs, i) 
    } 
  } 
  if (length(emergency_vital_signs) > 0) { 
    return(list("status" = "Emergency", "vital_signs" = emergency_vital_signs)) 
  } else { 
    return(list("status" = "Normal", "vital_signs" = integer(0))) 
  } 
} 
LinearR <- function(sensor_data, coefficients, intercept) { 
  selected_sensors <- sensor_data[1:num_selected_sensors] 
  predicted_value <- 0 
  for (i in 1:num_selected_sensors) { 
    predicted_value <- predicted_value + coefficients[i] * selected_sensors[i] 
  } 
  predicted_value <- predicted_value + intercept 
  return(predicted_value) 
} 
Monitor <- function(patient_data) { 
  sensor_data <- patient_data 
  threshold_result <- Classify(sensor_data) 
  if (threshold_result$status == "Emergency") { 
    coefficients <- c(0, coefficient_heart_rate, coefficient_blood_pressure, coefficient_respiratory_rate, 
coefficient_temperature, coefficient_oxygen_saturation, coefficient_pulse) 
    intercept <- trained_intercept 
    linear_regression_result <- LinearR(sensor_data, coefficients, intercept) 
    linear_regression_threshold <- 0.0 
    if (linear_regression_result >= linear_regression_threshold) { 
      # Perform actions for Emergency (Using Linear Regression) 
      cat("Final Status: Emergency (Using Linear Regression)\n") 
    } else { 
      # Perform actions for Normal (Using Linear Regression) 
      cat("Final Status: Normal (Using Linear Regression)\n") 
    } 
  } else { 
    # Perform actions for Normal (Threshold Algorithm) 
    cat("Final Status: Normal (Threshold Algorithm)\n") 
  } 
} 
# Assuming you have appropriate values for num_vital_signs, num_selected_sensors,  
# coefficient_heart_rate, coefficient_blood_pressure, etc. 
# and the required functions getLower, getUpper, and trained_intercept 
# Example usage: 
# Monitor(patient_data) 
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