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ABSTRACT Due to the technological advancements in wireless communication and their continuously
increasing applications in collaborative and cooperative smart infrastructures, energy efficient data collection
using wireless devices, has gained significant importance recently. Modern wireless sensor networks refer to
network of low-powered and energy-constrained Internet of Things (IoT) devices. Although data collection
using hierarchical routing with clustered network improves energy efficiency but introduces energy holes in
the region closer to the data gathering center due to heavy relaying load on cluster heads. In this paper, first
an improved data gathering center deployment technique for heterogeneous networks has been proposed.
Technique for Order of Preference by Similarity to Ideal Solutions (TOPSIS), a multi-criteria decision-
making technique, is used to determine the optimal location for the deployment of data gathering center. The
proposed technique is adaptive to various shaped networks as required by IoT and increases energy efficiency.
Secondly, an unequal clustering based on transmission distances has been proposed. Moreover, cubical, and
spherical segmentation schemes for 3D heterogeneous networks have been proposed that assist the formation
of unequal clusters. Finally, a shape independent data rate-based segmentation has been proposed that further
extends the adaptability and scalability of the proposed unequal clustering. The results demonstrate that the
proposed data traffic-based shape independent adaptive clustering scheme increases network lifetime up
to 14.2% and 18.8% as compared to Fuzzy Logic based unequal clustering and IUCR respectively. It also
reduces the overall network energy consumption up to 61.4% as compared to the state-of-the art unequal
clustering methods.

INDEX TERMS Balanced energy routing, energy holes, Internet of Things, shape independent clustering,
Scalable clustering protocol, unequal clustering, 3D wireless sensor network.

I. INTRODUCTION
Wireless sensor network (WSN) with the help of Internet of
Things (IoT), allows accessibility of sensor data to be used
for cooperative and collaborative operations with minimum
human intervention. It is a smart self-organizing network of
low-power sensor nodes that can inform about the events
and changes in environment and can also perform data sens-
ing, storage, processing and wireless communication for IoT
applications [1], [2]. With the advancements in microelec-
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tromechanical devices and communication technologies not
only people but things can communicate anytime, with any-
thing and anyone using any network and service [3]. Wireless
sensors are a critical component of IoT systems and allow
such systems to perform informed operations and in a flexible
manner. An important role of wireless sensors is the transmis-
sion of the sensed data to a base station (BS). Hierarchical
routing using clustering of wireless sensor nodes has been
proven to be energy efficient method for transmission of
sensed information.

Due to the increasing applications of IoT in modern
interconnected smart cities, the number of IoT devices is
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increasing day by day. According to Ericson’s forecasts,
this number will reach 5.5 B by 2027 [4]. With a growing
number of devices, there are challenges of increased energy
consumption in the transmission and storage of this huge data.
International Data Corporation (IDC) forecasts that IoT con-
nected devices are anticipated to contribute 79.4 ZB towards
overall data in 2025 [5]. Moreover, with the steady increase
in the global population, that is currently projected to reach
almost 10 billion by 2050, there is an intuitive need for energy
supply to align with the demand [6].
Generally, clustering of the devices and hierarchical

routing is used for energy efficient data collection from
these low-powered devices. However, hierarchical routing
uses multi-hop communication between cluster heads which
implies heavy relaying load on the nearest cluster heads to
data gathering center. This results in early energy depletion
of the cluster heads closer to data gathering center due to
excessive transmission load and introduces energy holes. Sev-
eral energy hole mitigating techniques have been proposed by
authors in [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], and
[49]. However, most of these techniques are designed for 2D
planar networks [7], [9], [11], [19], [22], [34]. Whereas most
of real-life applications of wirelessly connected devices are
3D, such as marine pollutionmonitoring, multi-floor building
data collection and forecast disaster prevention [50]. More-
over, the energy hole mitigating techniques found in literature
are network shape specific [11], [16], [19], [24], [25], [38]
and have limitations in terms of adaptability, scalability, and
flexibility in operation.

To overcome these limitations according to the above-
mentioned quality of service (QoS) criterion, this work has
the following contributions:
1. Two algorithms for the optimal deployment of data gather-

ing center have been proposed. The proposed algorithms
utilize heterogeneous device characteristics such as initial
energies, data rates, and locations etc., to determine an
energy efficient location of data gathering center. The
first algorithm uses an iterative approach to calculate
energy consumption of each location whereas the second
algorithm uses a multi-criterion decision-making tech-
nique TOPSIS, to evaluate alternative locations within
the network. The location with best rank output is
then selected as optimal location of the data gathering
center.

2. Two scalable segmentation techniques have been pro-
posed for 3D cubical and spherical shape heterogeneous
networks. These segmentation techniques are designed
to determine the distribution of heterogeneous charac-
teristics across different regions of the network. These
techniques are then used to produce unequal clusters of
devices across the network considering their resources
and distances from the data gathering center. Finally,

a centroid based calculation for the choice of cluster head
in the unequal clusters is determined.

3. To enhance the adaptivity, scalability and flexibility of the
fixed shape unequal clustering techniques, a shape inde-
pendent network segmentation technique has been devel-
oped. This technique divides the network into regions of
equal data rate and forms unequal clusters of devices by
calculating number of cluster heads in a region according
to its distance from data gathering center. In addition,
a balanced network operation and increased network life-
time has been achieved with this design.

4. A unified clustering and routing method has been pro-
posed that is adaptive, scalable and energy efficient
for large scale networks of heterogeneous devices. This
method incorporates the computation of a suitable next
hop for inter cluster multi-hop communication.

The rest of this paper is organized as follows: Section II
introduces related works in energy efficient WSN routing
protocols. In section III, the various deployment techniques
of data gathering center are evaluated in comparison to
proposed optimal deployment of DGC. Section IV presents
the main design criteria for proposed cubical and spheri-
cal segmentation based unequal clustering. In section V a
shape independent adaptive network segmentation scheme
has been proposed. Section VI examines the network and
radio models. Section VII explains simulation results in
terms of DGC deployment, scalability and adaptability, bal-
anced energy operation and increased lifetime of the network.
Finally, a conclusion and future work has been described in
section VIII.

II. RELATED WORK
Effective utilization of the limited energy resources on
devices in WSN assisted IoT is an important and contem-
porary goal. This goal can be achieved either by using
lightweight communication protocols or by limiting energy
consumption within devices [51]. The devices consume
energy in sensing, processing, storing, transmission, and
reception operations. The dominant consumer of energy is
the network node’s radio operations [52], [53]. Recent tech-
niques to limit energy consumption in radio operations can
be classified as: improved transceiver circuit design, trans-
mission power control, cognitive radios and energy-efficient
routing [54]. Energy-efficient topology and routing methods
have proven to be an emerging area for WSN energy man-
agement. Although some applications use flat routing, but
hierarchical routing ismore promising due to advantages such
as increased lifetime, low end-to-end delay and scalability
of operation [55]. A disadvantage of hierarchical routing
is imbalance between the energy consumption of individ-
ual devices due to different roles. Cluster heads consume
more energy as compared to normal devices. A significant
rationale of initial energy, approximately 90% is still unused
when network lifetime is over [56]. Stability and efficient
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FIGURE 1. Classification of energy hole mitigating methods based on network shape considered.

utilization of energy in network operation is achieved by
minimizing time duration between the death of first and last
node [57].

Low Energy Adaptive Clustering Hierarchy (LEACH) [58]
is a prominent protocol due to rotation of cluster head
role between network nodes. However, randomized selec-
tion of cluster heads, and consideration of homogeneous
devices limit LEACH from achieving best performance.
Attempts have been made in LEACH Centralized (LEACH-
C) [59] and Hybrid Energy-Efficient Distributed (HEED)
[60] clustering to improve the performance. However, these
methods use huge number of cluster heads and are suitable
only for small scale networks. Cluster-Chain Mobile Agent
Routing (CCMAR) [10] improves the energy efficiency by
combining advantages of LEACH [58] and Power Effi-
cient Energy Gathering Sensor Information Systems PEGA-
SIS [61]. Wireless Sensor Network Energy Hole Alleviating
(WSNEHA) algorithm [40] uses adaptive transceiver range
adjustment strategy to enhance network lifetime. To extend
the WSNEHA algorithm, authors in [18] proposed a Bal-
anced Energy Consuming and Hole Alleviating (BECHA)
algorithm, that balances the load distribution of the entire
network. A further improvement of BECHA is Energy Aware
BECHA (EA-BECHA), which was proposed later in [21],
to reduce the packet drop and further increase the energy
efficiency. These efforts do not address end-to-end delay
and are not adaptable to varying requirements of WSN
assisted IoT. Balanced Energy Adaptive Routing (BEAR)
[23] is another similar attempt that only focuses on a specific
network shape.

Due to numerous applications of WSN assisted IoT a scal-
able, and adaptive energy efficient routing scheme is required.
Most of existing methods that increase network lifetime and
stability are network shape specific. The operation of these
methods is also limited to only two-dimensional networks.
Whereas most of the real-life applications of sensing devices
are 3D. Taxonomy in Figure 1 shows classification of the
balanced energy routing techniques with respect to the net-
work shape considered. These techniques use principles of
divide and rule. Divide and rule assist in breaking network
into smaller segments, network attributes in smaller segments
are used to devise balanced routing mechanism. For varying
shape and multidimensional network requirements in WSN
assisted IoT existing methods have limitations in terms of
scalability, and adaptability.

A range of balanced energy routing techniques for
two-dimensional circular area have been developed [10],
[11], [18], [21], [40], [59], [60], [61], [62]. WEMER [11]
is a recent balanced energy routing method suitable for
a circular network. It segments the network into circular
coronas. Based on the transmission distance each corona
segment computes unequal clusters. Soon as the node’s ener-
gies in a sector reduces below a given threshold, wedges
of corresponding sector merge with the nearby sector to
increase candidate nodes for cluster head role. Authors in
[19] proposed a Virtual Force-Based Energy Hole Mitigating
(VFEM) method and divided network into annulus. Relay
nodes in each annulus have been deployed. Another method
to balance load in a circular area network is Immune Clone
Selection-Based Power Control (ICSPC) [22]. It is suitable
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for large scale circular networks and reduces energy holes
but at the expense of decreased overall network lifetime.
Energy Efficient and Coverage Guaranteed Unequal-Sized
Clustering (ECUC) [27] computes optimal cluster range and
assigns cluster head role to a node near the centroid in the
cluster but angle of sectors is fixed and static in nature.
Authors in [26] proposed forwarder nodes in a corona-based
segmentation but two-level heterogeneity i.e., normal nodes
and super nodes, has been exploited to gain network life-
time. A two-stage genetic algorithm has been employed to
determine optimal interval of cluster size in Circular Motion
of Mobile-Sink with Varied Velocity algorithm (CM2SV2)
[31]. Several mobile sinks have been used for the data col-
lection at a single stationary data gathering center. Authors
in [24] proposed zonal clustering algorithm with geo-cluster
heads. Primary cluster heads are supported with one or more
assisting cluster heads. Balanced Energy Consuming and
Hole-AlleviatingAlgorithm (BECHA) [21] does not use clus-
tering but multi-hop communication between nodes at several
corona segments and reduces holes. An Optimal Distance
Based Transmission Strategy (ODTS) [32] divides the cir-
cular network area into disjoint concentric coronas and uses
ant colony optimization to balance load with the transmission
distance.

Since WSN applications are not limited to circular area
a lot of work has also been carried out to increase network
lifetime of square area Wireless Networks [12], [13], [14],
[15], [16], [17], [20], [25], [33], [34], [35], [36], [37], [38],
[39], [63]. Amulti-layer networkmode [25] shows scalability
with both random and controlled deployment of devices.
It does not use multi-hop communication between clusters
and is unsuitable for large-scale networks.

Multi-Objective Fuzzy Clustering Algorithm (MOFCA)
uses fuzzy logic and multi mobile sinks to balance energy
consumption in network nodes [41]. Grey Wolf Optimiza-
tion (GWO) [33], [64] chooses cluster heads by calculating
fitness function based on residual energy and distance from
the base station. Modified Salp Swarm Algorithm (SSA)
has been used in [65] to perform clustering and routing
functions in a centralized manner. Three tier communica-
tion architecture has been used in Sector-based Energy Hole
Reduction (SEHR) [20] to balance load among network nodes
in a square field. However, it uses controlled deployment of
homogeneous nodes to achieve better performance. Energy
and Traffic Aware Sleep-Awake (ETASA) [34] reduces
redundancy and balances load but uses penalty to nodes with
different energies. Three-layer hierarchy has been proposed
in Energy-Efficient Scalable Routing Algorithm (EESRA)
[16] that improves the quality of service of square network
with homogeneous and stationary nodes. However, extra
assistant nodes have been deployed to achieve gain in energy
consumption. This introduces high latency in data collection.
In Game Theoretic Approach for Balancing (GTAB) [35] an
integrated solution with energy harvesting has been proposed.
Although it considers heterogeneous nodes, but high energy

nodes are penalized. Limited network size is also a disad-
vantage of this method. Enhanced Energy Efficient Network
Integrated Super Heterogeneous (EBEENISH) [36] allows
up to four levels of energy heterogeneity among network
nodes but network delay due to high complexity of algorithm,
jitter and only single hop communication considered makes
it unsuitable for large-scale applications. Authors in [37]
proposed Distributed Efficient Adaptive Clustering Protocol
(DEACP) that gathers data with a load balancing advantage
but only considers homogeneous nodes without calculation
of optimal number of nodes. Improved Distributed Energy
Efficient Clustering (IDEEC) [39] also uses advance and
super nodes as second and third level of heterogeneity.

A computational intelligence based worked deployment
scheme of [15] increases coverage and reduces energy holes
by using controlled deployment of homogeneous nodes.
Energy Balanced Distributed Clustering Protocol (EBDCP)
[17] is another energy balancing approach for square area
network and achieves reduced latency for static homoge-
neous deployment. The disadvantage is added latency due to
mobile sink and energy spent on mobile sink. Authors in [14]
divide the network area into equal cells; firefly algorithm is
used for scheduling of nodes in area with desired sufficient
coverage. It considers both static and mobile homogeneous
energy nodes in a square area. To reduce latency mobile
sink with 4 or 8 sojourn location path patterns have been
proposed in [12]. Additional nodes with relaying function
are chosen in [13] and are termed as RN. The scheme ini-
tially allows 10 fixed clusters and then dynamically works
cluster numbers. Recently researchers in [7] proposed a new
hybrid protocol Mobile Data Collectors-Travelling Salesman
Problem-Low Energy Adaptive Hierarchy-K-Means (MDC-
TSP-LEACH-K). This protocol used grid and k-means
algorithm to minimize energy consumption in CH election
phase. Furthermore, it used Mobile Data Collector (MDC)
as an intermediary between CH and base station to enhance
QoS of large-scale networks. It reduced latency by controlling
speed of mobile data collector and extended network lifetime.
Another grid based clustered routing research in [8] proposed
Grid-Based K-means (GBK) clustering and Grid-Based K-
means clustering with node scoring mechanism (GBK-R).
These efforts although provide good results but pose limi-
tations in terms of scalability and adaptability of operation.
Moreover, most of methods are considered to be limited to
homogeneous device deployment.

Wireless Sensor Networks have increasing applications in
linear or rectangular area networks for example applications
in agriculture, railway, and utility supply networks. Balanced
operation of network devices is also important in rectangular
shape networks to achieve energy efficiency and increased
network lifetime. Appropriate Rank-Order Wireless Sen-
sor Networks (ARO-WSN) [42] is a combined hierarchical
and distance-based clustering method. Another method that
used balanced operation of network nodes in a rectangular
shape is Affinity Based Self-Adaptive (APSA) clustering
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FIGURE 2. Heterogeneous devices deployed in network with varying terrains/shapes.

method [43]. This method uses k-medoids with affinity prop-
agation to increase network lifetime. APSA is limited in
terms of scalability and is suitable for homogeneous networks
only. A Mobile Data Collector (MDC) [44] uses adjustable
transmission range for sensor nodes to increase network life-
time. An optimal speed of mobile data collector has been
calculated but latency is high and adaptability to heteroge-
neous networks has not been considered. Authors in [45]
proposed an unequal clustering-based routing for homoge-
neous nodes in a large-scale rectangular network. Energy
Efficient Unequal Sector Clustering (EEUSC) [46] divides
the network into multiple sectors with a single base station
and balances energy consumption but at the cost of overall
network lifetime. Multi energy balancing approach achieved
good results by calculating distance to traffic load ratios of
each device [47]. This was due to removal of extra overhead.

Most of the above methods consider two-dimensional net-
work structure and utilize shape specific network parameters.
This limits the adaptability of these methods in multiple
applications. Due to the requirements of flexibility and inter-
operability in a 3D network of heterogeneous devices such
as IoT, existing methods do not perform well. This work
addresses the challenges of limited scalability, adaptability,
and flexibility in energy efficient hierarchical routing meth-
ods. The proposed work also enhances network lifetime and
improves network stability.

III. SINK NODE DEPLOYMENT
Due to the increasing applications of WSN assisted IoT,
scalability and adaptivity of the energy efficient hierarchical
routing methods are important quality of service criteri-
ons [54]. Typically, sensing devices are deployed arbitrarily
or in a pre-planned manner in a region of interest [19].

However, non-uniform deployment methods [66] result in
stable and energy efficient network operation. This is as a
result of the increase in number of sensing devices in a
geometric progression from outer to inner fragment of the
network [67].
In addition to 2D, 3D deployment of microelectromechan-

ical devices is used in applications such as sea surfaces,
mountains, smart farming, and precision agriculture [46] as
shown in Figure 2. Such applications have varying surface
terrains for devices to be deployed and are sometimes located
in remote areas. Therefore, controlled deployment is not
always achievable and is unrealistic.

Moreover, heterogeneous devices are deployed at vari-
ous locations in three-dimensional space to serve multiple
applications. For an energy efficient data collection, the
transceivers are shared between these devices. Although
many approaches have been developed for energy efficient
data collection in such networks, there is no distinct mecha-
nism for choosing the optimal location of base station [68].
Consequently, most of the network topology approaches
locate base station either in the center or at boundary of the
region of interest [69].

Therefore, instead of assuming a complete control over
device deployment, it is more realistic to determine a suitable
location for data gathering center (DGC) in densely pop-
ulated large-scale networks. Considering adaptability, first
step in the proposed system is efficient deployment of data
gathering center as shown in Figure 3. In order to maintain
an adaptable process, the proposed model starts with an
effective deployment of data gathering center as shown in
Figure 3. Sensing devices can either be deployed in a 2D
or 3D space depending on application and available surface
terrain.
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FIGURE 3. A system model proposed for adaptable flexible and scalable energy efficient hierarchical routing.

For this reason, adaptability of the proposed system is
tested in prominent network geometries. Data gathering
center is commonly located at the center of the network.
Whereas energy efficiency and balanced load distribution
can be achieved by determining an efficient location of data
gathering center. Keeping energy efficiency as objective three
other cases for the deployment of data gathering center in
addition to commonly used centered deployment have been
evaluated as shown in Figure 3.

A. CASE I
Traditionally, DGC is deployed at the center of the network.
This case reflects a common deployment location of data
gathering center. For a 3D network, the rectangular coordi-
nates

(
Gx ,Gy,Gz

)
of center of the network for DGC location

can be mathematically determined by:


Gx = 0.5 ∗ xmax
Gy = 0.5 ∗ ymax
Gz = 0.5 ∗ zmax

(1)

where, (xmax × ymax × zmax) represents the 3D network vol-
ume. If the network is 2D the third coordinate in eq. 1 is not
required and the network area reduces to (xmax × ymax).

B. CASE II
In the second case an average of rectangular coordinates of
devices in each dimension is calculated and DGC is deployed

at the average coordinates as determined by:


Gxmean =

∑n
i=1 Six
n

Gymean =
∑n

i=1 Siy
n

Gzmean =
∑n

i=1 Siz
n

(2)

where,
(
Gxmean ,Gymean ,Gzmean

)
are the rectangular coordi-

nates of the fixed DGC for a 3D network and reduces to(
Gxmean ,Gymean

)
for a 2D network.

C. CASE III
In a network of heterogeneous devices centrality may not be
exactly at the mean of the coordinates. The device density
in some regions may be different to the others. Similarly,
devices in one region may be more energy rich than other
regions. Therefore, to determine a common centrality point
in terms of multiple parameters overall energy consumption
is considered as ultimate objective.

In this 3rd case a region surrounding the point located at
mean

(
Gxmean ,Gymean ,Gzmean

)
or

(
Gxmean ,Gymean

)
depending

upon 3D or 2D networkwas considered. All the points located
in this region are considered as alternatives for the deploy-
ment of data gathering center. The point offering minimum
overall energy consumption is considered as optimal initial
location of the data gathering center.

Let ‘r’ be the radius of the region containing all the points
considered as alternatives for the location of data gathering
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center. Then coordinates of alternatives can be determined as:
Galt,X = (Gxmean − 0)+

X
2
|X = 0, 1, 2, . . . , 20

Galt,Y = (Gymean − 0)+
Y
2
|Y = 0, 1, 2, . . . , 20

Galt,Z = (Gzmean − 0)+
Z
2
|Z = 0, 1, 2, . . . , 20

(3)

The total number of alternative locations ‘F’ can be calcu-
lated as:

F = (20 + 1)3 (4)

The set of alternatives adjusts according to the network
dimensions. Overall energy consumption of the network is
computed for each alternative location. Let ECON1 be the
array containing information about energy consumption of
each device from each alternative.

idx1 = argminijkECON1[i, j, k] (5)
GxOpt = Galt,i
GyOpt = Galt,j
GzOpt = Galt,k

(6)

The procedure for computation of optimal location of data
gathering center is explained in algorithm 1.

The alternative from the set of candidate locations with
minimum overall energy consumption is chosen as optimal
location for the deployment of data gathering center. How-
ever, the bigger the network the complexity of this method
increases with the increasing number of alternatives.

D. CASE IV
Due to the increasing computational complexity of energy
efficient deployment as discussed in case iii, a multi criterion
decision making technique TOPSIS [70] has been proposed.
Distribution of heterogeneous attributes such as initial energy,
data rate, and device density is considered to determine opti-
mal location for the deployment of data gathering center.
The set of alternative locations of data gathering center is
computed using eq. 3.
Let ‘E’ be a set containing information on heterogeneous

energies of the ‘n’ number of devices such that:

E = {E1,E2,E3, . . .En} (7)

Energy of the mth device can be calculated as:

Em = Eo (1+ ℶ) (8)

where, Eo is the minimum initial energy of a device and
‘ℶ’ is a random number between 0 and 1. Similarly, Tm is
the heterogeneous data traffic of each device calculated in a
similar fashion as energy but in range 1000− 4000 packets.
An optimum location for the deployment of DGC has been

considered as a multi-criterion problem based on distance,
energy, device density, and available data traffic of each
device. As the values of resources are measured in different

Algorithm 1 Location of Data Gathering Center Based on
Minimum Energy Consumption
Require:
The number of devices n deployed within a network, their
coordinates (xi, yi, zi) ; i = 1, 2, 3, . . . , n of each sensor node,
their heterogeneous initial energies denoted as SEi , their het-
erogeneous data rate denoted as STi , radius ‘r’ from the point
at mean of device coordinates in which alternative locations
for the deployment of DGC are considered. Total number of
clusters ‘k’. Total number of alternative DGC locations as;
f = 1, 2, 3, . . . ,F and their coordinates in three-dimensional
space using eq. 3.
Ensure: GOpt(.) ← (GxOpt ,GyOpt ,GzOpt )
1: SEi ← Eo (1+ ℶ)

2: STi ← To (1+ τ)

3: for i← 1 to n do
4: for j← 1 to k do
5: if (i← index(j))
6: S typei =

′ CH ′

7: else S typei =
′ NN ′

8: end if

9: Dij←

√(
Sxi − G

x
j

)2
+

(
Syi − G

y
j

)2
+

(
Szi − G

z
j

)2
10: end for
11: Sclusteri ← argminij(Dij)
12: end for
13: for i← 1 to n do
14: for j← 1 to k do
15: if (S typei = NN & Sclusteri = j)
16: ECONi ← Energy from ith node to jth CH
17: elseif (S typei = CH )
18: ECONi ← Reception energy from all members
19: end if
20: end for
21: end for
22: for j← 1 to k do
23: for f ← 1 to F do

24: Djf ←

√(
Sxj − G

x
f

)2
+

(
Syj − G

y
f

)2
+

(
Szj − G

z
f

)2
25: ECONjf ← Energy from jth CH to f th location
26: end for
27: Ef =

∑k
j=1(ECONjf )

28: end for
29 : Opt = argminf (Ef )

30:
(
GxOpt ,G

x
Opt ,G

x
Opt

)
←

(
GxOpt ,G

x
Opt ,G

x
Opt

)

scales, the min-max normalization technique has been used
to obtain normalized values between a range [0 1] as follows:

ϑo =
θo − θmin

θmax − θmin
(9)

where, ϑO is the normalized value of the parameter, ‘‘o’’,
θo is the current value, θmax and θmin are the maximum and
minimum values of a resource ‘‘o’’.
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It is assumed that the suitable location for the DGC is
within the central segment of the network such that its coordi-
nates can be ranging from (0, 0, 0) to (0, 0, 0). To compute
the impact of each parameter within this range let ′ζ ’ be a
matrix containing normalized values of all resources and its
impact in energy calculation for each alternative location of
DGC.

ζ =


ζ(1,1) ζ(1,2) ζ(1,3) . . . ζ(1,β)

ζ(2,1) ζ(2,2) ζ(2,3) . . . ζ(2,β)

ζ(3,1) ζ(3,2) ζ(3,3) . . . ζ(3,β)

...
...

... . . .
...

ζ(α,1) ζ(α,2) ζ(α,3) . . . ζ(α,β)

 (10)

where, ζα,β is the value of βth parameter of each device
calculated from αth alternative location of the DGC.
Parameters where high value is desired such as initial

energy and density of the devices are declared as ideal posi-
tive solution IPS+ and is computed as:

IPS+ = max
{(

ζ(1,µ)

)
,
(
ζ(2,µ)

)
, . . . ,

(
ζ(α,µ)

)}
,∀µ ∈ β

(11)

Parameters where low value is desired such as data traffic,
and distance of devices are declared as ideal negative solution
INS− and is computed as:

INS− = min
{(

ζ(1,µ)

)
,
(
ζ(2,µ)

)
, . . . ,

(
ζ(α,µ)

)}
,∀µ ∈ β

(12)

For each parameter, the difference of the values from IPS+

and INS− for each candidate location of DGC are calculated
as follows:

ζ+p =

√∑β

µ=1
(ζ(p,µ) − IPS+)

2
where p = 1, 2, 3 . . . α

(13)

ζ−p =

√∑β

µ=1
(ζ(p,µ) − INS−)

2

where p = 1, 2, 3 . . . α

(14)

where, ζ+p and ζ−p represent the difference of potential loca-
tion of DGC from IPS+ and INS− respectively. Rank of each
potential location for the deployment of DGC in the central
segment is then calculated as:

ℵp =
ζ−p

ζ−p − ζ+p
where p = 1, 2, 3 . . . α (15)

Location with the best rank can be chosen as optimum
deployment location for the data gathering center.

The alternative location with best value of rank ℵp is cho-
sen as optimal location for the deployment of data gathering
center. Due to constraints in some locations as a result of
varying terrains if data gathering center cannot be deployed
at the alternative with best rank the alternative with second
best value is chosen as the next optimum location.

Algorithm 2 Optimal Location for the Deployment of Data
Gathering Center Using a Multi-Criterion Decision Making
Technique TOPSIS
Require:
The number of devices n deployed within the 3D network, the
coordinates (xi, yi, zi) ; i = 1, 2, 3, . . . , n of each sensor node, their
heterogeneous energies denoted as SEi , their heterogeneous data
traffic denoted as STi , radius ‘r’ from the point at mean of device
coordinates in which alternative locations for the deployment of
DGC are considered. Total number of clusters ‘k’. Total number
of alternative DGC locations as; f = 1, 2, 3, . . . ,F and their
coordinates in three-dimensional space using eq. 3.
Ensure: GTOPSIS(.) ← αwithmax

{
ℵp

}
1: SEi ← Eo (1+ ℶ)

2: STi ← To (1+ τ)
3: for j← 1 to k do
4: for f ← 1 to F do

5: Djf ←

√(
Sxj − G

x
f

)2
+

(
Syj − G

y
f

)2
+

(
Szj − G

z
f

)2
6: end for
7: end for
8: minθEn ← min SEi
9: maxθEn ← max SEi
10: minθTr ← min STi
11: maxθTr ← max STi
12: minθDist ← minDjf
13: maxθDist ← maxDjf
14: Normalize SEi
11: Normalize STi
12: Normalize DKi
13: for i← 1 to α do
14: for j← 1 to β do
15: ζ ← ζα,β

16: IPS+ ← max
{
ζ(α,µ)

}
, ∀ µ∈β

17: INS− ← max
{
ζ(α,µ)

}
, ∀ µ∈β

18: ζ+p =

√√√√ β∑
µ=1

(ζ(p,µ) − IPS+)2wherep = 1, 2, 3 . . . α

19: ζ−p =

√√√√ β∑
µ=1

(ζ(p,µ) − INS−)2wherep = 1, 2, 3 . . . α

20: ℵp =
ζ−p

ζ−p −ζ+p
where p = 1, 2, 3 . . . α

21: end for
22: end for
23: return ℵp

IV. PROPOSED NETWORK SEGMENTATION
In this section network segmentation has been discussed.
For an adaptive scheme considering deployment of hetero-
geneous devices in 2D or 3D space, the network can take any
shape. A range of popular network shapes in both 2D and 3D
spaces have been shown in Figure 4.
In this work we consider two prominent segmentations in

cubical and spherical 3D networks. For a spherical shape
network, a 3D corona and sectors-based segmentation is
developed and for a cubical shape network a cubical virtual
subdivision of network is developed. These segmentation
schemes help in obtaining the information about distribution
of device parameters in smaller regions using divide-and-rule
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FIGURE 4. Common network shapes in 2D and 3D environments.

FIGURE 5. 3D cubical network segmented into sub-cubes.

approach. In the next sub sections a discussion on the two
segmentation schemes has been made:

A. CUBICAL SEGMENTATION
In this segmentation the whole network is divided into ‘N ’
non-overlapping uniform virtual sub-cubes of dimensions
(a× a× a) each as shown in Figure 5.

Where, q = 3
√
N is the number of divisions in each

dimension so that,

a =
l
q

(16)

where, ‘l’ is the length of each side of the cube.
Let ‘Q’ be the set of all the virtual sub-cubes within the

network which is defined as:

Q =
{
Qhjk |h, j, k = 1, 2, . . . , q

}
(17)

Therefore, for a given virtual sub-cube Qhjk the boundary
coordinates

(
ah−1 × aj−1 × ak−1

)
and

(
ah × aj × ak

)
of the

virtual sub cube can be computed as:

ah−1 =
h− 1
q
∗ l and ah =

h
q
∗ l (18.1)

aj−1 =
j− 1
q
∗ l and aj =

j
q
∗ l (18.2)

ck−1 =
k − 1
q
∗ l and (18.3)

So that Q is a 3D matrix of dimensions (h× j× k). For a
sensing node ‘S(m)’ such that m is a real number and 1 ≤
m ≤ n.

{Sm ∈ Qhjk |ah−1 ≤ Shx ≤ ah and aj−1 ≤ Sjy
≤ aj and ak−1 ≤ Skz ≤ ak (19)

Let Nhjk be 3D matrix containing information about number
of nodes in each virtual sub cube such that:

Nhj1 =

N111 · · · N1j1
...

. . .
...

Nh11 · · · Nij1

 for h, j = 1, 2, . . . , q

Nhj2 =

N112 · · · N1j2
...

. . .
...

Nh12 · · · Nhj2

 for h, j = 1, 2, . . . , q

.

.

.

.

. k = 1, 2, . . . , q

Nhjk =

N11k · · · N1jk
...

. . .
...

Nh1k · · · N1jk

 for h, j = 1, 2, . . . , q (20)

Segmentation provides the advantage of obtaining local infor-
mation about several regions of the network such as density,
data traffic and energies.

Let ‘T ’ be 3D array containing information about data rate
in each virtual sub-cube of the network such that:

Thj1 =

 T111 · · · T1j1
...

. . .
...

Th11 · · · Thj1

 for h, j = 1, 2, . . . , q

Thj2 =

 T112 · · · T1j2
...

. . .
...

Th12 · · · Thj2

 for h, j = 1, 2, . . . , q

.

.

.

.

. k = 1, 2, . . . , q
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Thjk =

 T11k · · · T1jk
...

. . .
...

Th1k · · · T1jk

 for h, j = 1, 2, . . . , q (21)

Similarly, E is a (h× j×k) array with information on residual
energies of devices within the corresponding virtual sub-
cube.

Once the virtual sub-cubes-based segmentation is config-
ured and information on nodes in each virtual sub-cube is
obtained, a centroid on the basis of distribution function in
each sub-cube is calculated. The choice of cluster head is
made according to the distance from the centroid. Based on
the distance of a virtual sub-cube from the data gathering
center the number of cluster heads is calculated using geomet-
ric progression such that NCH1 = 1; NCH2 = 2 (NCH1);
NCH3 = 4 (NCH1) and NCH = 2 −1 (NCH1). Where,
NCH is the number of cluster heads in each sub-cube and
is the level of the virtual sub-cube based on the distance

from the inner most sub-cube. A distribution centroid based
on the parameters of devices in a sub-cube is calculated
using:

Xc =

∑N
i=1

EiTi
EoTo

.Xi

N

Yc =

∑N
i=1

EiTi
EoTo

.Yi

N

Zc =

∑N
i=1

EiTi
EoTo

.Zi

N
(22)

According to number of cluster heads ‘NCH ’ in each sub-
cube, devices with maximum energy closest to the centroid
are selected as cluster heads. Coordinates of centroid in
each sub-cube are calculated using eq. (22) where, N is the
total number of devices in each sub-cube and Ei and Ti
are the residual energies and data rate of ith device in the
sub-cube.

Algorithm 3 Cubical Network Segmentation Scheme and Cluster
Head Selection Based on Centroid of Distribution of Devices
Parameters in Each Segment
Require:

The number of devices n deployed within the 3D network, their
coordinates (xi, yi, zi) ; i = 1, 2, 3, . . . , n of each sensor node, their
heterogeneous energies denoted as SEi , their heterogeneous data
traffic denoted as STi . Total number of sub-cubes ‘N ’ and length ‘l’
of each side of 3D network.

Ensure:
Sch−subcube(.) ← deviceswith min

{
DiChjk

}
& max

{
Ehjk

}
1: l ← length of each side of the network
2: N ← Total number of sub− cubes
3: q← 3√N
4: for i← 1 to n do
5: SEi ← Eo (1+ ℶ)

6: STi ← To (1+ τ)
7: for h← 1 to q
8: for j← 1 to q
9: for k ← 1 to q
10: ah−1 ←

h−1
q ∗ l

11: ah ← h
q ∗ l

12: aj−1 ←
j−1
q ∗ l

13: aj ←
j
q ∗ l

14: ck−1 ←
k−1
q ∗ l

15: ck ← k
q ∗ l

16: if (ah−1≤Sxi ≤ah)
17: if (aj−1≤S

y
i ≤aj)

18: if
(
ak−1≤S

y
i ≤ak

)
19: Nhjk ← Nhjk + 1
20: Thjk ← Thjk + Ti
21: Ehjk ← Ehjk + Ei

22: XChjk ←
∑Nhjk

i=1
EiTi
EoTo

.Xi
Nhjk

23: YChjk ←
∑Nhjk

i=1
EiTi
EoTo

.Yi
Nhjk

24: ZChjk ←
∑Nhjk

i=1
EiTi
EoTo

.Zi
Nhjk

25: DiChjk ← Distance of node in each cube to
the centroid

26: end if
27: end if
28: end if
29: end for
30: end for
31: end for
32: end for
33: for h← 1 to q
34: for j← 1 to q
35: for k ← 1 to q
36: DCmin ← min

{
DiChjk

}
37: Emax ← max

{
Ehjk

}
38: for i← 1 to n
39: if

(
DCmin ← DiChjk && Emax ← Ei

)
40: S typei ← CH
41: end if
42: end for
43: end for
44: end for
45: end for
46: Return S type(.)

The proposed segmentation determines the resources and
calculates a centroid of distribution in each sub cube. Devices
with minimum distance and maximum residual energy are
chosen as cluster head of the cub cube region. The number of
cluster heads in a sub-cube is computed based on the distance
of the sub-cube from DGC.

B. SPHERICAL SEGMENTATION
For a spherical shape network, the network is divided into
‘ ’ non-overlapping concentric spherical coronas of equal
volume as shown in Figure 6, such that the radius of each
sphere from origin can be calculated as:

=
3

√
3q
4π

(23)

The range of each corona segment can be determined as:

= − −1 (24)
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FIGURE 6. Spherical network segmentation.

FIGURE 7. Sectors of 3D coronas and their boundaries.

The volume of each corona segment can be calculated as:

V =
4
3
π

[
3
−

3
−1

]
(25)

‘ 1’ is the radius of the inner most spherical corona using eq.
(24) such that 1 ≤ Transmin, and Transmin is the minimum
transmission range. Let m be the radius of mth corona then
equal volume condition for each concentric corona implies
that:

4
3
π ( m)3 −

4
3
π ( m−1)

3
=

4
3
π ( m−1)

3

Thus m can be computed as:

( m)3 = ( m−1)
3
+ ( m−1)

3

m =
3√2 ∗ m−1 (26)

Therefore, based on the maximum radius max , which is
the boundary of the spherical network DGC calculates the
volumes and boundaries of each spherical corona using eq.
(26) until it reaches Transmin which is the radius of first
spherical corona.

The next step is division of each corona segment into 3D
sectors as shown in Figure 7 and creating unequal clusters
within each segment. Sectors formation starts from the center
of the spherical network and corners of each sector can be
worked using eq. IV-B:

Let
(
Gx ,Gy,Gz

)
be the center of the sphere.

xfgh = f cos
(
ϕg

)
cos

(
ϑh

)
(27.1)

fgh = f cos
(
ϕg

)
sin

(
ϑh

)
(27.2)

fgh = f sin
(
ϕg

)
(27.3)

where f, ϕg and ϕh can be determined as:

f = 1, 2, . . . , max (28.1)

ϕg = {0,
π

4
,
π

2
,
3π
4

, π,
5π
4

,
3π
2

,
7π
4

, 2π} (28.2)

ϕh = {0,
π

4
,
π

2
,
3π
4

, π,
5π
4

,
3π
2

,
7π
4

, 2π} (28.3)

Centroid of each sector is calculated and the nearest device
to centroid point with maximum energy is selected as cluster
head.

Algorithm 4 Spherical Corona-Based Segmentation and 3D
Sectoring for Unequal Clustering and Centroid Based Choice of
Cluster Heads in Each Sector
Require:

The number of devices ‘n’ deployed within the 3D spherical
network, their coordinates (xi, yi, zi) ; i = 1, 2, 3, . . . , n of each
sensor node, their heterogeneous energies denoted as SEi , their het-
erogeneous data traffic denoted as STi . Radius max of spherical
shape 3D network.

Ensure: Sch−sphere(.) ← devices with min
{
Dicfgh

}
and max {Ęi}

1: max ← maximum radius of network
2: m ← Radius of mth spherical corona segment (It will start

from m ← max )
3: if ( m < Transmin) do
4: m ←

3√2 ∗ m−1
5: m← m+ 1
6: end if
7: for i← 1 to n do
8: SEi ← Eo (1+ ℶ)

9: STi ← To (1+ τ)
10: end for
11: ϑo ← 0
12: ϕo ←−π

2
13: for f← 1 to m
14: for g← 1 to 9
15: for h← 1 to 9
16: f ← m
17: ϕg ← ϕg +

π
4

18: ϑh ← ϑh +
π
4

19: xfgh ← f cos
(
ϕg

)
cos

(
ϑh

)
20: fgh ← f cos

(
ϕg

)
sin

(
ϑh

)
21 : fgh ← f sin

(
ϕg

)
22: end for
23: end for
24: end for
25: for i← 1 to n do
26: for f← 1 to m
27: for g← 1 to 9
28: for h← 1 to 9
29: if (xf−1,g−1,h−1≤Sxi ≤xfgh)
30: if ( f−1,g−1,h−1≤S

y
i ≤ fgh)

31: if ( f−1,g−1,h−1≤S
z
i≤ fgh)

32: fgh ← fgh + 1
33: fgh ← fgh + 1
34: Ęfgh ← Ęfgh + 1
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FIGURE 8. Equal data traffic-based segmentation and unequal cluster
formation for balanced energy hierarchical routing.

35: xc−fgh ←

∑ fgh
i=1

EiTi
EoTo

.x

fgh

36: c−fgh ←

∑ fgh
i=1

EiTi
EoTo

.

fgh

37: c−fgh ←

∑ fgh
i=1

EiTi
EoTo

.

fgh

38: Dicfgh
← Distance of nodes in each sector

to centroid
39: end if
40: end if
41: end if
42: end for
43: end for
44: end for
45: end for
46: for i← 1 to n do
47: for f← 1 to m
48: for g← 1 to 9
49: for h← 1 to 9
50: Distmin← min

{
Dicfgh

}
51: Ęmax ← max

{
Ęfgh

}
52: if

(
Distmin← Dicfgh

&& Ęmax ← Ęi
)

53: S typei ← CH
54: end if
55: end for
56: end for
57: end for
58: end for
59: Return S type(.)

The proposed segmentation determines the resources and
calculates a centroid of distribution in each 3D sector. Devices
with minimum distance and maximum residual energy are
chosen as cluster head of the 3D sector. The number of cluster
heads in a sub-cube is computed based on the distance of the
sub-cube from DGC.

V. ADAPTIVE UNEQUAL CLUSTERUNG TECHNIQUE
Although proposed unequal clustering techniques based on
shape specific segmentation produce good results in terms of
increased network lifetime and balanced energy operation but

are not adaptable to networks with varying shapes. Therefore,
a shape independent unequal clustering algorithm is proposed
in this section. Network is divided into layers of equal trans-
mission rate instead of shape-based segments.

Let ‘Di’ be the distance of ith device from data gather-
ing center

(
Gx ,Gy,Gz

)
. All the devices have heterogeneous

initial energies and data traffic rates in a given range. Data
gathering center obtains information about locations, ini-
tial energies, and data rates of all devices. The devices are
grouped into layers of equal data rate based on their dis-
tance from data gathering center. Figure 8 shows the layer
boundaries of a 3-layer network structure. If T/L1 is the data
traffic in the outermost layer. The adaptive unequal clustering
algorithm continues to add traffic rate and add devices in
first layer starting from the farthest device until the condition
T/L1 ≥

∑
T

4 is reached. The distance of last device from the
data gathering center is considered as the radial boundary
of the layer 1. The algorithm continues to divide devices in
concentric 3D layers until the first device at Transmin distance
from data gathering center is reached.

Each layer is then divided into eight sectors of equal data
rate. A centroid of distribution is determined in each sector
and the devices with abundant resources closer to the centroid
are chosen as cluster heads. The total number of cluster heads
in each sector is computed based on its layer number. The
operation of shape independent adaptive unequal clustering
has been presented in algorithm 5.

Algorithm 5 Adaptive Unequal Clustering for Shape Independent
3D Network of Heterogeneous Devices
Require:

The number of devices n deployed within any shape network,
their coordinates (xi, yi, zi) ; i = 1, 2, 3, . . . , n of each sensor node,
their heterogeneous energies denoted as SEi , their heterogeneous
data traffic denoted as STi . The total number of layers of data
traffic .

Ensure: Sch−dynamic(.) ← devices with min
{
Dic

}
& maxĘi(.)

1: for i← 1 to n do
2: SEi ← Eo (1+ ℶ)

3: STi ← To (1+ τ)

4: Di ←
√(

Sxi − Gx
)2
+

(
Syi − Gy

)2
+

(
Szi − Gz

)2
5: end for
6: I ← index(sort{D})
7: T/← T (I )
8: ÐL0 ← max{D}
9: for i← 1 to n do
10: if (T/L1≤

∑
T

4 ) do
11: T/L1 ← T/L1 + T (i)
12: elseif (

∑
T

4 ≤T/L1≤
∑
T )

13: if (T/L2≤
∑
T

4 ) do
14: T/L2 ← T/L2 + T (i)
15: elseif (

∑
T

2 ≤T/L2≤
3

∑
T

4 ) do

16: if (T/L3≤
∑
T

4 ) do
17: T/L3 ← T/L3 + T (i)
18: else do
19: T/L4 ← T/L4 + T (i)
20: end if
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21: end if
22: end if
23: end for
24: θo = 0
25: 8o = −

π
2

26: for i← 1 to n do
27: for ← 1 to 5
28: for ← 1 to 9
29: for ← 1 to 9
30:

−1
← Ð

L( −1)
31: ← Ð

L

32: if (T/
sec−

≤

∑
T/
L
8 ) do

33: T/
sec−

= T/
sec−

+ T (i)
34: 8 = 8 ++

35: θ = θ ++

36: x = cos
(
8

)
cos

(
θ

)
37: = cos

(
8

)
sin

(
θ

)
38: = sin

(
8

)
39: end if
40: end for
41: end for
42: end for
43: end for
44: for i← 1 to n do
45: for ← 1 to 5
46: for ← 1 to 9
47: for ← 1 to 9
48: if (x

−1, −1, −1
≤Sxi ≤x )

49: if (
−1, −1, −1

≤Syi ≤ )

50: if (
−1, −1, −1

≤Szi≤ )
51: ← + 1

52: ← + T (i)
53: Ę ← Ę + E(i)

54: xc ←

∑
i=1

EiTi
EoTo

.x

f

55: c ←

∑
i=1

EiTi
EoTo

.

f

56: c ←

∑
i=1

EiTi
EoTo

.

f

57: Dic ← Distance of nodes in each

sector to centroid
58: end if
59: end if
60: end if
61: end for
62: end for
63: end for
64: end for
65: for i← 1 to n do
66: for ← 1 to 5
67: for ← 1 to 9
68: for ← 1 to 9

69: Distmin← min
{
Dic

}
70: Ęmax ← max

{
Ę

}

FIGURE 9. First order radio model.

TABLE 1. Simulation parameters.

71: if
(
Distmin← Dic && Ęmax ← Ęi

)
72: S typei ← CH
73: end if
74: end for
75: end for
76: end for
77: end for
78: Return(S

type)
(.)

VI. ENERGY MODEL
First order radio model is used to evaluate the proposed
techniques [57]. This radiomodel usesEelec as energy used by
transmitter or receiver electronics in the transceiver circuit as
shown in Figure 9. Both channel models i.e., free space with
d2 power loss, and multi-path fading with d4 power loss are
used by the transmitter amplifier. The radio of each device
is equipped with power control capabilities and can adjust to
minimum energy spent to reach the required recipient. Thus,
to transmit k-bit message at a distance ‘d’ using this model
the radio of each device expends:

ETrans (k, d) =

{
k × Eelec + k × εfs×d2; d < do
k × Eelec + k × εmp×d4; d ≥ do

(29.1)

Similarly, to receive this message, the device radio expends:

Erec(k) = k × Eelec (29.2)

Here, Eelec is the unit energy dissipation for transmitter elec-
tronics or receiver electronics. εfs is the amplifier energy in
the free space model, while εmp is the amplifier energy in the
multi-path model, and dois the threshold defined as:

do =
√

εfs
/
εmp

(29.3)

VII. RESULTS AND DISCUSSIONS
In this section, the performance of proposed techniques
has been evaluated using MATLAB simulations. The pro-
posed techniques have been evaluated in various phases
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FIGURE 10. Total energy consumption of network in each round (flat network).

TABLE 2. Summary of total energy consumption in each round (flat network).

in terms of various QoS parameters. Following evaluation
indicators have been used to analyze the performance of
proposed techniques: network lifetime, energy consumption,
balanced network operation, scalability, and adaptability.
Table 1 shows the list of simulation parameters throughout
the experiments.

A. ENERGY EFFICIENT DEPLOYMENT OF DGC
To evaluate the performance of energy efficient data gathering
center (DGC) deployment, simulation experiments have been

carried out in MATLAB. Simulation parameters have been
shown in Table 1. To verify adaptability of the proposed
deployment schemes the experiments have been conducted
in four network shapes. Total energy consumption of the
network during each round of operation is computed for the
proposed deployment schemes. The results from proposed
schemes are compared with the total energy consumption
of network during each round when DGC is deployed at
center of the network as well as when deployed at the mean
location. To confirm the reliability of proposed schemes,
Figures 10 and 11 correspond to the results of total energy
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TABLE 3. Summary of total energy consumption in each round (clustered network).

FIGURE 11. Total energy consumption of network in each round (clustered network).

TABLE 4. Comparison of state of the total energy consumption of STATE-OF-THE-ART sink deployment methods.
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FIGURE 12. Comparison of overall energy consumption of different sink node deployment algorithms.

FIGURE 13. Overall energy consumption of varying network sizes.

consumption during one round of operation in the network
with direct communication to the DGC and with multi-hop
communication to DGC through cluster heads using k-means
clustering. In each network geometry the proposed TOPSIS
based deployment results in energy savings as compared to
traditional deployment i.e., DGC at center and DGC at mean
coordinates.

Network with hierarchical communication using k-means
clustering consumes a lot less energy as compared to that with
direct communication. Table 2 and 3 summarize the results
of Figure 10 and 11. Proposed iterative method demonstrates
a minimum and maximum of 2.78% and 24.12% decrease
in total energy consumption. Whereas proposed TOPSIS
based deployment method shows a minimum of 4.65% and
maximum of 29.1% decrease in total energy consumption.
Table 3 confirms that due to small energy consumption in
clustered communication proposed iterative and proposed
TOPSIS based deployment produce almost similar results.

The performance of proposed methods has been compared
against seven well-known algorithms, such as PSO [71], FPA

[72], GWO [73], SCA [74], MVO [75], WOA [76], and
HHO [69]. The proposed methods have been tested in 10 dif-
ferent network sizes based on number of nodes. The results
are compared with the power consumption of counterpart
DGC deployment algorithms. In this experiment the overall
energy consumption of all the algorithms is captured in a
fixed number of iterations. Table 4 shows the total energy
consumption for nine algorithms with respect to each size
of the network. This is obvious from table 4 that proposed
iterative method onsumes less overall energy compared to
eight other methods whereas proposed TOPSIS method con-
sumes least overall energy consumption in each scenario of
network size. Figure 12 shows consistent decrease in energy
consumption of proposed methods against seven methods in
varying network sizes.

Figure 13 shows comparison of seven different deployment
methods against two proposed methods graphically. It can
be clearly seen that proposed iterative and TOPSIS methods
demonstrate reduction in energy consumption consistently
with each network size.
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FIGURE 14. Balanced residual energies of devices.

Simulation experiments confirm that proposed TOPSIS
based deployment of DGC outperforms not only traditional
deployment schemes i.e., DGC at center and DGC at mean
coordinates but also seven well-known deployment methods.
It can be concluded from experiments that the results are
consistent and reliable for each network shape considered and
are also valid for both direct and clustered communication.

B. BALANCED ENERGY OPERATION OF NETWORK
In this work residual energies of the devices are aimed to
be balanced with the network operation, while keeping the
overall energy consumption minimum. Figure 14 demon-
strates the range of device residual energies with the network
operation, using proposed unequal clustering. The difference
in energies was initially high. The difference of residual
energies minimizes with increase in rounds of operation
and therefore confirms the balanced operation of proposed
unequal clustering. This result has been taken from the sim-
ulation of a cubical shape network of 100 × 100 × 100 m3

dimensions.
For a spherical segmentation and unequal clustering using

the proposed algorithm 4, balanced operation of both normal
nodes and cluster heads has been shown in Figure 15. It can
be seen that difference in energy consumption of each type of
nodes is almost smooth.

C. AVERAGE RESIDUAL ENERGY
The aim of this experiment is to demonstrate performance of
proposed method in terms of residual energy of the network
in comparison to other state-of-the-art methods. This section
shows achievements of proposed adaptive clustering method
of algorithm 5 independently. For comparison with state-of-
the-art Fuzzy Logic based unequal clustering [77] and other
important LEACH based clustering methods, the proposed
method is tested in a similar simulation set up. 1000 devices
are deployed in a 1000m∗1000m monitoring area and initial
energy of the devices is kept fixed (0.5J) for this experiment.

Figure 16 shows the results of average residual energy of
nodes after the network has executed 50, 100, and 150 rounds.

FIGURE 15. Average energy consumption of the devices.

FIGURE 16. Average residual energies of devices.

FIGURE 17. Network lifetime in different scale circular networks.

The bar chart in Figure 16 confirms that proposed algorithm
is always higher than other algorithms in large scale deploy-
ment.

D. SCALABILITY AND IMPROVED LIFETIME
This section establishes a comparison of the proposed adap-
tive clustering described in algorithm 5 with the existing
unequal clustering methods found in literature. Although
there is lack of adaptive network shape independent clus-
tering and routing protocols. Improved Unequal Clustering
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FIGURE 18. Network lifetime under different device densities.

FIGURE 19. Network lifetime in different scale square networks.

Routing (IUCR) [78] and Energy efficient and Coverage-
guaranteed Unequal-size Clustering (ECUC) [27] are recent
unequal clustering methods for circular shape network. Mea-
surements are taken to reveal how proposed method not only
increases network lifetime on the first node death (FND), half
node death (HND), and last node death (LND) scales, but also
confirm the results are consistent for different sizes of the
network. Figure 17 shows comparison of network lifetime
achieved by proposed algorithm as compared to IUCR and
ECUC. The simulation results in Figure 17, inform that the
proposed adaptive unequal clustering method consistently
outperforms both IUCR and ECUC on all network lifetime
scales and across varying network sizes.

Furthermore, the proposed method also demonstrates sta-
bility in the achievements with different levels of node
density as compared to IUCR and ECUC as shown in
Figure 18. Proposed method shows superior performance
within a small-scale network with 50 devices and achieves
almost 45% and 12% improvement in network lifetime as
compared to ECUC and IUCR respectively. These results are
consistent for a large-scale network of 300 devices demon-
strating 46% and 10.7% gain in network lifetime against
ECUC and IUCR respectively.

In addition to unequal clustering methods for circular
shape networks, recently many Harris Hawk Optimization
and Fuzzy Logic based techniques have been used to optimize

FIGURE 20. Comparison of network lifetime in fixed segmentations
against proposed shape independent unequal clustering method with
gateway at the center of the network.

FIGURE 21. Comparison of network lifetime in two fixed segmentations
against proposed adaptive unequal clustering method when DGC is at the
mean location of the network.

FIGURE 22. Comparison of network lifetime in fixed segmentations
against proposed shape independent unequal clustering with gateway at
TOPSIS based optimum location.

the performance of unequal clustering methods for square
shape networks. To demonstrate the adaptability of pro-
posed unequal clustering in shape varying networks, the
network lifetime of proposed method is also compared
against state-of-the-art techniques for square shape net-
works. The results in Figure 19 show network lifetime of
proposed method against Harris Harks Optimization Clus-
tering with Fuzzy Routing (HHOCFR) [79], Harris Hawk
Optimization based Unequal Clustering Routing Algorithm
(HHO-UCRA) [80], Improved Harris Hawk Algorithm with
Fuzzy (IHHO-F) [81], Distributed clustering routing protocol
combined Affinity Propagation with Fuzzy Logic (DAPFL)
[82], and Improved Balanced Residual Energy LEACH,
(IBRE-LEACH) [83].
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FIGURE 23. Summary of results with fixed shape segmentations and
shape independent unequal clustering.

The results in Figure 19, confirm that the proposed method
demonstrate 101%, 61% 186%, 59% and 24% increase in
network lifetime on FND scale and 45%, 29%, 13%, 41% and
23% increase on LND scale as compared to IBRE-LEACH,
DAPFL, IHHO-F, HHO-UCRA, and HHOCFR respectively.

E. ADAPTIVITY
In this section a comparison of shape specific 3D unequal
clustering schemes of algorithm 3 and 4 has been presented
against shape independent unequal clustering method of
algorithm 5. The comparison has also been evaluated against
all different deployment cases considered in algorithm 2.
Results in Figures 20-23 show different scenarios to discover
adaptability of the proposed methods. All three methods i.e.,
cubical segmentation, spherical segmentation and shape inde-
pendent adaptive unequal clustering are evaluated in terms of
network lifetime for three deployment cases of DGC. Results
demonstrate that the increase in network lifetime is stable
through different cases and best achievement is when TOPSIS
based deployment of DGC is used with shape independent
adaptive unequal clustering.

Figures 20-22 show gain in network lifetime on three
scales: First NodeDead (FND), Half NodesDead (HND), and
Last Node Dead (LND). Proposed adaptive unequal cluster-
ing demonstrates better performance as compared to cubical
and spherical segmentation schemes due to the shape specific
divisions.

Figure 20 shows when DGC is deployed at the center of
the network regardless of the distribution of energies and
data rate among devices, the cubical segmentation reaches
1599 round when the first node dies, 1723 round when half
of the nodes are dead and 1998 rounds when all the devices
have zero residual energy. Circular segmentation performs
relatively better and shows that first node dies in 1603rd round
and last node dies in 2019th round of network operation,
whereas adaptive unequal clustering demonstrates a signif-
icant rise in network lifetime such that first node dies in
1998th round, which is when all the nodes would have died
in cubical segmentation. It reaches 2329 rounds of operation
to have network completely dis-functional. Figures 21 and 22
confirm similar results when DGC is placed at the mean coor-
dinates and TOPSIS based optimum locations, respectively.

FIGURE 24. Overall energy consumption of the network.

Figure 23 summarizes the results of Figures 20-22 and
demonstrates consistency and adaptability of the adaptive
unequal clustering. It is observed that the network lifetime
enhances by 32% and 27% with shape independent unequal
clustering and optimum DGC deployment as compared to
cubical and spherical segmentation based traditional unequal
clustering respectively.

F. OVERALL ENERGY CONSUMPTION
In this section a comparison of overall energy consump-
tion in proposed method has been developed with IBRE-
LEACH [83], DAPFL [82], IHHO-F [81], HHO-UCRA [80],
and HHOCFR [79], Fuzzy Logic based unequal cluster-
ing [77], IUCR [78], and ECUC [27]. Results demonstrate
that after 1200 rounds of operation there is around 12.8%,
16.2%, 39.6%, 48.9%, 53.1%, 56.7%, 58.3%, and 61.4%
decrease in overall energy consumption by using the pro-
posed method as compared to FL based clustering, IUCR,
ECUC, HHOCFR, HHO-UCRA, IHHO-F, DAPFL, and
IBRE-LEACH respectively.

VIII. CONCLUSION
Cooperative operations in modern infrastructures such as
Smart Cities and Internet of Things result in a huge num-
ber of interconnected devices as high as 4.1B. An energy
balanced operation of devices with increased overall net-
work lifetime using hierarchical routing has been explored.
Firstly, an optimum deployment location of data gathering
center using an iterative method and then using TOPSIS have
been proposed. Then two fixed shape 3D network segmen-
tation based unequal clustering schemes, namely cubical and
spherical segmentations have been proposed. Finally, a shape
independent adaptive unequal clustering technique has been
developed. The results demonstrate that the proposed unequal
clustering technique results in significant reduction of overall
network energy consumption as compared to state-of-the-art
methods. The decrease in energy consumption ranges from
up to 12.8% as compared to FL based clustering to 61.4%
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that in IBRE-LEACH. It is also concluded that the proposed
schemes demonstrate consistent results in varying network
sizes and device densities and are also adaptable to various
2D and 3D shape networks. In future it is intended to explore
performance of proposed techniques with varying levels of
device mobility.
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