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Abstract

This study addresses the challenge of differentiating between bipolar disorder II (BD II) and

borderline personality disorder (BPD), which is complicated by overlapping symptoms. To

overcome this, a multimodal machine learning approach was employed, incorporating both

electroencephalography (EEG) patterns and cognitive abnormalities for enhanced classifi-

cation. Data were collected from 45 participants, including 20 with BD II and 25 with BPD.

Analysis involved utilizing EEG signals and cognitive tests, specifically the Wisconsin Card

Sorting Test and Integrated Cognitive Assessment. The k-nearest neighbors (KNN) algo-

rithm achieved a balanced accuracy of 93%, with EEG features proving to be crucial, while

cognitive features had a lesser impact. Despite the strengths, such as diverse model usage,

it’s important to note limitations, including a small sample size and reliance on DSM diagno-

ses. The study suggests that future research should explore multimodal data integration

and employ advanced techniques to improve classification accuracy and gain a better

understanding of the neurobiological distinctions between BD II and BPD.

1. Introduction

Borderline personality disorder (BPD) is characterized by hypersensitivity to rejection, result-

ing in instability in interpersonal relationships, self-image and behavior [1]. BPD has a preva-

lence of 2.7% in the general population [2]. On the other hand, BD involves recurrent mood
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episodes that range from depression to mania (BD I) or hypomania (BD II) [3]. BD affects 2%

of the general population [4]. While both disorders cause significant impairment in the daily

life of the affected individuals, the underlying mechanisms and treatment approaches differ.

BPD is primarily treated with psychotherapy, whereas BD often requires a combination of

medication and therapeutic interventions to manage mood fluctuations. As these two disor-

ders significantly overlap in their features, accurately differentiating the two disorders has

always been a diagnostic challenge. The initial diagnosis traditionally relies on a combination

of comprehensive history taking and clinical symptoms, and there are currently no specific

paraclinical tests available for definitively diagnosing these disorders [1–6].

By assessing the functional integrity of the brain, electroencephalography (EEG) may reveal

potential distinctions between BPD and BD. However, no conclusive evidence exists for

whether the two disorders can be differentiated by EEG features [5,7–12]. Nonetheless, studies

have reported specific EEG findings in patients with BPD, such as intermittent rhythmic delta

and theta activity observed during severe dissociative states characterized by inner tension and

auto aggressive behaviour [13]. Additionally, the presence of slow-wave activity and dysrhyth-

mia has been documented in some BPD patients [14]. A correlation between positive spikes

and heightened impulsivity has been identified [13,15]. While these EEG observations provide

intriguing insights, further research is necessary to establish their diagnostic utility.

Cognitive impairment is a prevalent feature observed in both BD II and BPD, significantly

impacting crucial cognitive functions such as attention, memory, and executive function

[16,17]. These impairments can disrupt patients’ daily lives, necessitating targeted interven-

tions to address their specific cognitive challenges. Notably, cognitive impairment in these dis-

orders’ manifests in various ways, including impulsivity, emotional dysregulation, impaired

social cognition, problem-solving, decision-making impairments, processing speed reduction,

and visuospatial processing deficits [18,19]. It has been reported that patients with BD II or

BPD exhibit poor performance across multiple neurocognitive domains, similar in cognitive

flexibility and set-shifting, decision-making, sustained and selective attention, and problem-

solving [20]. Furthermore, it has been observed that patients with BPD tend to display more

pronounced inhibition deficits and exhibit poorer performance in planning and attentional

bias tasks when compared to individuals with BD II [20–22].

A growing body of research indicates the potential of machine learning techniques in dis-

tinguishing between BD II and BPD, holding promise in improving diagnostic accuracy and

treatment outcomes. However, the number of studies on this topic remains limited [23–25].

Machine learning algorithms can extract patterns and identify the variations between the two

conditions by leveraging large datasets comprising clinical profiles, genetic markers, and neu-

roimaging data. However, continued research and validation are essential to ensure the reli-

ability and generalizability of these models. Therefore, we aimed to evaluate the application of

machine learning for differentiating BD II and BPD based on cognitive abnormalities and

EEG features.

2. Methods and materials

2.1. Participants and data collection

This cross-sectional study was conducted in the Brain and Cognition Clinic (affiliated with

Institute for Cognitive Sciences Studies and Iran University of Medical Sciences, Tehran, Iran)

from June 2022 to March 2023. It was approved by the Ethics Committee of the Iran Univer-

sity of Medical Sciences Institutional Review Board (IR.IUMS.REC.1401.129) and carried out

based on the Declaration of Helsinki and subsequent revisions. Written informed consent was

obtained from all participants, and their data was used anonymously.
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We included 45 participants, aged between 18 and 50 years, diagnosed with either BD II or

BPD, based on the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-

5) criteria [26]. In order to avoid bias in the cognitive assessment of the patients, exclusion cri-

teria were life-threatening psychiatric conditions (e.g., suicidal thoughts), any other comorbid

psychiatric disorders above the diagnostic threshold (e.g., schizophrenia), intellectual disability

(based on clinical judgment), comorbid severe medical conditions (e.g., neurological disor-

ders), and history of head trauma and brain injury, and history of neurosurgery.

All patients were assessed by a board-certified psychiatrist using a structured clinical inter-

view designed based on a semi-structured clinical interview according to DSM-5 (SCID-1 for

BD II and SCID-2 for BPD). EEG was used to record the brain’s spontaneous electrical activity.

The computerized versions of the Wisconsin Card Sorting Test (WCST) and Integrated Cog-

nitive Assessment (ICA) test were used to assess cognition [27–30]

2.2. Tools

2.2.1. EEG signal recording and data preprocessing. The EEG signals were recorded for

10 minutes (5 minutes of eye-close (EC) followed by 5 minutes of eye-open (EO)) using a

21-channel EEG cap. The EEG electrodes were placed according to the standard for high-reso-

lution EEG: (1) Fp1 and Fp2: frontopolar (prefrontal) (2) F3 and F4: frontal (3) F7 and F8:

frontotemporal (4) Fz: frontal midline (5) C3 and C4: central (6) Cz: central midline (7) T3

and T4: temporal (8) T5 and T6: temporoparietal (9) P3 and P4: parietal (10) Pz: parietal mid-

line (11) O1 and O2: occipital, and (12) M1 and M2: mastoid [31].

The noises resulting from the city electricity, blinking and muscle movements were initially

removed using the Matlab’s EEGlab toolbox and its IClabel and MARA plugins [32]. Data was

filtered within the frequency range of 0.5 Hz to 32.5 Hz. Furthermore, to address other poten-

tial artifacts, independent component analysis (ICA) was employed.

2.2.2. Cognitive tests. WCST, first used by Grant and Berg in 1948, evaluates persevera-

tion vs. flexibility, working memory, and abstraction, executive function (frontal lobe dysfunc-

tion) [27]. The Persian version of the test was used in the study [28]. The standard WSCT

consists of 128 cards (two sets of 64 cards) different in shape (triangle, cross, circle, and star),

color (green, blue, red, and yellow), and number (one, two, three, four). The participant is

asked to sort the cards based on a pattern they find. However, the sorting pattern changes

throughout the test, and the participant must figure out the new pattern through trial and

error. After each answer, they receive feedback as ’correct’ or ’incorrect.’ WCST variables

include total errors, total correct responses, perseverative errors (participant starts the test with

an initial incorrect guess and answers based on that guess or the number of times the partici-

pant persisted in using a previously successful sorting rule even though it was no longer cor-

rect), non-perseverative errors, categories completed, conceptual level response (the number of

times the participant shifts to a new sorting rule without feedback from the examiner), trials to
first complete category, learning to learn, and failure to maintain set. In addition, the time test is

measured [27,28,32,33].

ICA test is a rapid cognitive assessment tool based on humans’ strong responses to animal

stimuli. It consists of a rapid categorization task designed to evaluate the function of the

higher-level visual cortex. In the learning phase, participants are presented with ten animal

images [29]. The Persian version of the test was used in the study [30]. If participants perform

above the chance level (greater than 50% accuracy), they proceed to the main task. However, if

their performance falls below 50%, the test instructions are reiterated, and a new set of ten

training pictures is presented. They will progress to the main task if they perform above chance

on this second attempt. The test will be aborted if they perform below chance for the second
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time. Ultimately, the first ten images are later removed from further analysis. Overall, one hun-

dred natural images (50 animal and 50 non-animal) with various difficulty levels are presented

to the participant, each for 100 ms, followed by a 20 ms interstimulus interval and a dynamic,

noisy mask for 250 ms. Variables consist of accuracy (of categorization), speed (participant’s

reaction time in trials they have responded correctly), and ICA index (incorporating accuracy

and speed’s raw test results) [29,30,34,35].

2.2.3 Feature extraction. The data extraction process involved the utilization of statistical,

spectral, and wavelet features, which were enhanced through the Synthetic Minority Over-

sampling Technique (SMOTE) method [36]. Subsequently, classification was performed using

the K-Nearest Neighbor (KNN) classifier. MATLAB software was employed for the extraction

of statistical characteristics and spectral features from the EEG signals, as well as for conduct-

ing wavelet analysis. KNN classification is often considered a favorable option for classifying

EEG data due to its simplicity, ease of implementation, and ability to capture complex patterns

in high-dimensional feature spaces. EEG signals, which represent the electrical activity of the

brain, exhibit intricate temporal and spatial patterns that may not be easily modeled by more

rigid algorithms. KNN’s non-parametric nature allows it to adapt to the varying and nuanced

nature of EEG data without making strong assumptions about the underlying distribution.

Additionally, KNN excels in handling noisy data and can effectively discern subtle differences

in EEG patterns, making it a versatile and reliable choice for EEG classification tasks where

interpretability and adaptability are crucial [37].

To evaluate the EEG signal within each channel, statistical characteristics were utilized to

assess central tendency, asymmetry, and peakedness. Spectral features were obtained by ana-

lyzing the frequency content of the EEG signals, with a specific focus on four frequency bands:

delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–32 Hz). Features reflecting the

relative energy distribution across different frequency ranges were derived by computing

power or spectral density within each frequency band.

Wavelet analysis was employed to capture additional information about the EEG signals.

This involved using both the continuous wavelet transform (CWT) and the discrete wavelet

transform (DWT). The CWT entails convolving the EEG signal with a continuous mother

wavelet that is scaled and shifted. In contrast, the DWT is obtained through a filter bank

approach, where the signal is passed through a series of high-pass and low-pass filters to

decompose it into approximation and detail coefficients at different resolution levels.

2.2.4. Feature selection. In the context of dealing with high-dimensional data, feature

selection has become an essential component of the learning process. Proper feature selection

can lead to improvements in learning speed, generalization capacity, and the simplicity of the

inferred model. For this study, we employed a feature selection method known as Univariate

Feature Selection [38]. The Univariate Feature Selection method calculates the ANOVA F-

value for each feature about the target vector. This statistical measure helps identify the most

critical features that exhibit significant relationships with the target variable. These selected

features can provide valuable information for the classification task.

The utilization of the Univariate Feature Selection method in this study is justified by its

effectiveness in handling high-dimensional data and identifying the most relevant features for

the classification task [39]. This method calculates the ANOVA F-value for each feature with

respect to the target variable, enabling the selection of features that exhibit significant relation-

ships. By employing univariate feature selection, the study aims to streamline the feature set,

reduce dimensionality, and enhance the interpretability and generalization capacity of the

machine learning model [40]. This approach is particularly crucial in the context of EEG signal

analysis and cognitive tests, where a multitude of features are extracted, ensuring that only the

most discriminative and informative features contribute to the classification of bipolar
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disorder type II (BD II) and borderline personality disorder (BPD). The choice of Univariate

Feature Selection aligns with the technical goal of improving learning speed, model simplicity,

and generalization performance [39,40].

In our analysis, we utilized the scikit-learn 1.2.1 library for performing the feature selection

process. This widely-used library provides a comprehensive set of tools and functions for

machine learning tasks, including feature selection techniques.

Our dataset consisted of a total of 318 features, including 84 spectral features, 84 statistical

features, 126 wavelet features, 12 features derived from WCST, and 5 features from the ICA

test. Each type of feature provided unique insights into the characteristics and patterns present

in the data.

However, after applying the feature selection process, the number of features was signifi-

cantly reduced to 11. This reduction in feature dimensionality aimed to retain only the most

informative and relevant features for the classification task. By selecting these 11 features, we

aimed to streamline the dataset and focus on the most discriminative attributes that contribute

significantly to the classification of BPD and BD.

2.2.5. Data augmentation. Data augmentation is a crucial technique in data science that

involves increasing the size and diversity of a dataset. By generating new samples from existing

data, data augmentation aims to enhance the performance and generalizability of machine

learning models. Having a larger and more comprehensive dataset can help mitigate issues

such as overfitting and improve the model’s ability to capture underlying patterns.

In this study, SMOTE and imbalanced-learn 0.10.1 library for data augmentation, to

address imbalanced datasets, where the number of samples in different classes is uneven. By

oversampling the minority class and synthesizing new samples, SMOTE helps to balance the

dataset and prevent.

2.2.6. Classification techniques. A range of classification algorithms such as Support

Vector Machines (SVM), KNN, Random Forests (RF), Neural Networks (NN), and etc. were

evaluated for accuracy (ACC), balanced accuracy and F1 Score. The validity of the classifica-

tion algorithms were assessed by the following formulas:

TP ¼ true positive ðthe correctly predicted positive class outcome of the modelÞ;

TN ¼ true negative ðthe correctly predicted negative class outcome of the modelÞ;

FP ¼ false positive ðthe incorrectly predicted positive class outcome of the modelÞ;

FN ¼ false negative ðthe incorrectly predicted negative class outcome of the modelÞ:

ACC ¼
TP þ TN

TP þ FN þ TN þ FN
;

F1 ¼
2TP

2TPþ FP þ FN
;

Balanced Accurancy ¼
TP

TPþFN þ
TN

TNþFP

2
:

The F1 score and balanced accuracy are particularly valuable when dealing with imbalanced

datasets [41–43]. The F1 score, which combines precision and recall, provides a balanced mea-

sure that accounts for both false positives and false negatives. It offers a more comprehensive

assessment of the model’s ability to correctly classify both classes, giving equal importance to

both precision and recall [44–48].
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Balanced accuracy is another metric that is commonly used to evaluate classification mod-

els, particularly in imbalanced datasets. It is calculated as the average of sensitivity (true posi-

tive rate) and specificity (true negative rate) [49]. By considering both the model’s ability to

correctly identify positive instances and its ability to correctly identify negative instances, bal-

anced accuracy provides a more equitable evaluation of the model’s performance. It gives

equal weight to both classes and helps in assessing the model’s overall effectiveness in classify-

ing instances from both classes.

3. Results

3.1. Demographics

A total of 45 participants were included in the study: 25 with BPD and 20 with BD. The BPD

group was female dominant (N = 21, 84%) and the BD group was male dominant (N = 13,

65%). Baseline characteristics of the participants are presented in Table 1

3.2. Prediction accuracy

Distribution of results highlights the effectiveness of KNN in handling the dataset and the

potential challenges faced by other algorithms, suggesting that the choice of algorithm is criti-

cal for accurate classification in this context. Table 2 in the study evaluates the performance of

various classification algorithms used to differentiate between bipolar disorder type II (BD II)

and borderline personality disorder (BPD). The table provides metrics for accuracy, balanced

accuracy, and F1 score for each algorithm. The K-Nearest Neighbors (KNN) algorithm dem-

onstrated the highest performance, achieving an accuracy of 89%, a balanced accuracy of 93%,

and an F1 score of 90. This indicates that KNN was particularly effective at accurately classify-

ing the data. Algorithms such as Label Propagation, Linear Discriminant Analysis, Extra

Trees, and Label Spreading showed identical performance with 78% accuracy, 86% balanced

accuracy, and an F1 score of 80. These algorithms performed well but were less effective than

KNN. Support Vector Machine (SVM) and the Passive Aggressive Classifier displayed moder-

ate performance, with SVM achieving 67% accuracy, 79% balanced accuracy, and an F1 score

of 69, while the Passive Aggressive Classifier had 78% accuracy, 68% balanced accuracy, and

an F1 score of 78.

Table 1. Baseline characteristics of the participants.

Variable BPD (N, %) BD II (N, %)

Sex

Female 21 (84%) 7 (35%)

Male 4 (16%) 13 (65%)

Age 30.64 (±11.42) 31.9 (±9.82)

Education level

Illiterate 5 (20%) 4 (20%)

Primary 8 (32%) 8 (40%)

High School 1 (4%) 2 (10%)

Associate 7 (28%) 4 (20%)

Bachelor 3 (12%) 1 (5%)

Master 1 (4%) 0

Doctorate 0 1 (5%)

https://doi.org/10.1371/journal.pone.0303699.t001
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The Calibrated Classifier had lower performance with 56% accuracy, 71% balanced accu-

racy, and an F1 score of 58. Other algorithms like Nearest Centroid, Bagging Classifier, Ridge

Classifier, and Random Forest had similar moderate performance metrics with 67% accuracy,

61% balanced accuracy, and an F1 score of 69. Several algorithms, including Logistic Regres-

sion, XGBClassifier, and Linear SVM, showed lower performance with 56% accuracy, 54% bal-

anced accuracy, and an F1 score of 59. The Quadratic Discriminant Analysis and AdaBoost

had particularly low performance, with accuracy of around 44%, balanced accuracy of 46%,

and F1 scores below 50. The Decision Tree and Stochastic Gradient Descent classifiers per-

formed the worst, with accuracies of 33% and 44%, respectively, and the lowest balanced accu-

racies and F1 scores among all algorithms. The table highlights that the KNN algorithm is the

most effective for this classification task, while several other algorithms show varying degrees

of effectiveness. The choice of algorithm significantly impacts the classification accuracy, indi-

cating the importance of selecting an appropriate model for differentiating between BD II and

BPD using EEG and cognitive data.

3.3. Feature importance

3.3.1. EEG signals. The following features significantly contributed to differentiating BD

and BPD: CZ RWE_k = 4 (P = 0.002), C3 RWE_k = 4 (P = 0.002), P3 WE_k = 1 (P = 0.002),

T3 RWE_k = 4 (P = 0.002), M1 RWE_k = 4 (P = 0.002), C4 RWE_k = 3 (P = 0.004), P3 P_Beta

(P = 0.005), F4 RWE_k = 2 (P = 0.005), FZ RWE_k = 2 (P = 0.005), and C3 RWE_k = 5

(P = 0.006) (Table 3) (Fig 1).

Table 2. The tested classification algorithms in the study.

Algorithm Accuracy Balanced accuracy F1 score

KNN 89% 93% 90

Label propagation 78% 86% 80

Linear discriminant analysis 78% 86% 80

Extra trees 78% 86% 80

Label spreading 78% 86% 80

SVM 67% 79% 69

Calibrated classifier 56% 71% 58

Passive aggressive classifier 78% 68% 78

Nearest centroid 67% 61% 69

Bagging classifier 67% 61% 69

Ridge classifier 67% 61% 69

Random forest 67% 61% 69

Perceptron 33% 57% 28

Logistic regression 56% 54% 59

Xgbclassifier 56% 54% 59

Linear SVM 56% 54% 59

Lgbmclassifier 78% 54% 68

Gaussiannb 78% 50% 68

Dummy classifier 78% 50% 68

Quadratic discriminant analysis 44% 46% 49

Ada boost 44% 46% 49

Decision tree 33% 39% 37

Stochastic gradient descent 44% 29% 48

https://doi.org/10.1371/journal.pone.0303699.t002
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3.3.2. WCST. No significant differences were found on the variables of the WCST

between the groups. In addition, education level was not significantly associated with any of

the variables of WCST (Table 4).

3.3.3. ICA test. The ICA index was significantly different between the two groups

(P = 0.001) (Fig 2). The difference of other variables between the groups was non-significant

(Table 5).

Table 3. Comparison of the EEG features between the groups.

EEG feature BPD BD II P-Value

P3 P_Beta 6.78+4.28 3.74+1.81 0.005

P3 WE_k = 1 -0.99+0.22 -0.74+0.28 0.002

FZ RWE_k = 2 0.71+0.10 0.80+0.09 0.005

F4 RWE_k = 2 0.72+0.10 0.80+0.09 0.005

C4 RWE_k = 3 0.81+0.08 0.87+0.08 0.004

M1 RWE_k = 4 0.67+0.09 0.76+0.10 0.002

T3 RWE_k = 4 0.67+0.09 0.76+0.10 0.002

C3 RWE_k = 4 0.68+0.09 0.77+0.09 0.002

Cz RWE_k = 4 0.75+0.08 0.83+0.08 0.002

C3 RWE_k = 5 0.70+0.11 0.79+0.10 0.006

https://doi.org/10.1371/journal.pone.0303699.t003

Fig 1. EEG features for differentiating BD II and BPD.

https://doi.org/10.1371/journal.pone.0303699.g001

Table 4. Comparison of the WCST features between the groups.

WCST feature BPD (Mean±SD) BD II (Mean±SD) P-value

Perseverative errors 3.68±4.07 5.30±4.71 0.223

Correct responses 38.72±5.70 37.25±6.93 0.439

Errors responses 17.96±7.67 20.95±8.39 0.219

Trials 56.68±5.07 58.20±3.66 0.250

Non-perseverative errors 14.28±4.30 15.65±4.63 0.311

Time test 227.80±107.79 242.00±71.54 0.615

Trials to complete first category 12.04±7.78 14.50±16.01 0.503

https://doi.org/10.1371/journal.pone.0303699.t004
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4. Discussion

Our findings indicated that the KNN algorithm had a high balanced accuracy. In the classifica-

tion process, EEG signals were identified as significant features, and cognitive features were

given less weight.

4.1. Literature review and comparison with previous studies

4.1.1. EEG-based diagnoses. Numerous studies have delved into the classification and

diagnosis of mental disorders and neurological conditions through the utilization of EEG

[34,50–55]. In a study on BD, a machine learning approach based on EEG signals and XGB

demonstrated remarkable performance, achieving a high prediction accuracy of 94%, precision

exceeding 94%, and recall surpassing 94% [34]. In the realm of epilepsy, EEG-based methodolo-

gies have shown promise in seizure detection [50]. One study proposed a real-time EEG-based

approach utilizing discrete wavelet transform, attaining an accuracy of 97% and a sensitivity of

96.67% in the UB dataset. In the CHB-MIT dataset, the method achieved an accuracy of 96.38%,

a sensitivity of 96.15%, and a low false positive rate of 3.24% [51]. Another study focused on

severe psychiatric disorders detection using EEG signals. The machine learning model incorpo-

rated Quantum Local Binary Pattern (QLBP) functions and wavelet packet decomposition,

achieving high accuracy rates of 97.47%, 94.36%, and 93.49% for detecting intellectual disability,

schizophrenia spectrum disorders, and depressive disorders, respectively [52].

Fig 2. Values of the features of ICA test.

https://doi.org/10.1371/journal.pone.0303699.g002

Table 5. Comparison of the ICA test variables between the groups.

ICA test feature BPD (Mean±SD) BD II (Mean±SD) P-value

ICA index 65.1±16.17 67.05±13.88 0.001

Accuracy 88.64±12.17 87.9±13.26 0.595

Speed 72.04±16.04 76.23±10.11 0.280

Probability of impairment 0.18±0.31 0.20±0.34 0.540

AI label Healthy 22(88%) 17(85%) 0.678

Impaired 3(12%) 3(15%)

https://doi.org/10.1371/journal.pone.0303699.t005
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In the field of neurological disorders, an automatic seizure detection method was proposed,

employing signal decomposition representations, feature extraction using discrete wavelet

decomposition, and machine learning techniques. The classification accuracy reached up to

100% using Support Vector Machine (SVM), KNN, and Linear Discriminant Analysis (LDA)

[53]. Additionally, another study presented a method for automatically diagnosing epileptic

seizures using EEG signals, utilizing data mining and machine learning techniques such as dis-

crete wavelet transform and ANOVA-based feature ranking. The method, employing Least

Squared SVM (LS-SVM), KNN, and Naive Bayes (NB), achieved an average accuracy of 99.5%,

a sensitivity of 99.01%, and a specificity of 100%, proving effective in diagnosing epileptic sei-

zures [54]. Recently, a study introduced a Radial Basis Function Neural Network (RBFNN) for

classifying EEG signals related to epileptic seizures, utilizing discrete wavelet decomposition as

the feature extraction method. The proposed method, optimized using a modified Particle

Swarm Optimization (PSO) algorithm, outperformed other techniques, reaching a maximum

accuracy of 99% [55].

Finally, a machine learning framework was developed for diagnosing Major Depressive

Disorder (MDD) using EEG signals. The framework integrated various feature extraction

methods employing discrete wavelet decomposition and the Sequential Backward Floating

Search (SBFS) algorithm. This method achieved impressive results, with an average accuracy

of 99%, a sensitivity of 98.4%, a specificity of 99.6%, an F1 score of 98.9%, and an insignificant

false discovery rate of 0.4%, suggesting its potential as a diagnostic tool for MDD [34].

The application of machine learning methods, particularly those involving EEG signals, in

distinguishing psychiatric disorders has yielded varied outcomes in prior research. For exam-

ple, Arikan et al. (2019) examined resting EEG recordings of healthy individuals, BD II

patients, and BPD patients and found no significant differences between the two clinical

groups, suggesting biological similarity between BD II and BPD [13]. However, our study’s

success in achieving a high accuracy rate indicates that distinctive EEG patterns can indeed be

identified with the application of appropriate analytical techniques.

Comparing our results to studies by Bayes et al. in 2021 and 2022, we observed a substantial

enhancement in classification accuracy. While their studies reported accuracy rates ranging

from 73.1% to 73.9%, our model achieved an accuracy of 93% [21,23]. This notable improve-

ment can be attributed to the incorporation of EEG signals, providing deeper insights into the

neurological aspects of these disorders. Additionally, the use of a diverse set of machine learn-

ing techniques, such as KNN, SVM, Decision Trees (DT), and XGB, as discussed by Baker

et al. in 2023, plays a crucial role in achieving accurate predictions. It is noteworthy that our

study outperformed the XGB algorithm reported by Baker et al., indicating that the KNN algo-

rithm we employed is particularly well-suited for this specific classification task [56].

4.1.2. Cognitive tests in mental disorder diagnosis. Recent research has highlighted the

significance of self-awareness in the treatment of psychiatric disorders, such as schizophrenia,

BD and BPD [57–60]. One Study (Martin, 2023) emphasizes incorporating clinical and cogni-

tive measures in psychotherapy [57]. Identifying key pathological personality traits and/or

symptoms associated with psychotic features in BPD and BD, a study found shared predictors

like detachment, negative affectivity, psychoticism, depressiveness, grandiosity, suspiciousness,

and interpersonal sensitivity symptoms. Paranoid ideation stood out in BPD. The study sug-

gests an overlap between BPD and schizoaffective/psychosis spectra [58]. In a study یاربدراو
ندرکنتمرداجنیاکیلکدینک . investigated attentional bias in patients with BD and BPD. Patients

with BD II exhibited higher attentional bias scores than those with BPD and controls. This

approach sheds light on cognitive differences distinguishing the two disorders [25].

The contrasting outcomes between cognitive features and EEG signals in our study warrant

further exploration. Our findings indicated that cognitive features were not as influential as
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EEG signals in distinguishing between BD II and BPD, as the applied feature selection meth-

ods removed cognitive features while retaining EEG features. This result is consistent with the

argument that cognitive features alone might not be sufficient to differentiate between these

two disorders effectively. Rather, the underlying neurological patterns captured through EEG

provide more discriminative information. This underscores the importance of leveraging

neurobiological data to enhance the accuracy of diagnostic differentiation, aligning with the

assertion made by that mood prediction was most accurate when considering interrelation-

ships between different mood elements captured through signature-based learning [24].

4.2. Strengths and limitations

Integration of multiple machine learning algorithms enhances the reliability of the classifica-

tion system, minimizing overreliance on a single approach. However, our study does have cer-

tain limitations that should be acknowledged. The most prominent limitation is the small

sample size, and not including patients with BD I, which might affect the generalizability of

our findings. Additionally, patients with comorbid of BD II and BPD were not included.

Moreover, our study was reliant on interviews based on DSM-5 criteria, and therefore

machine learning approaches still remain a preliminary step in separating the disorders until

objective biomarkers are identified.

4.3. Implications for policy, practice and future research

Future research should focus on incorporating additional data sources, such as genetic and

neuroimaging data, to improve diagnostic accuracy. Furthermore, the integration of deep

learning and other advanced machine learning techniques could offer additional improve-

ments in classification.

5. Conclusions

We found that KNN algorithm had a high balanced accuracy, and machine learning method is

a promising tool in differentiating BD II and BPD based on EEG signalling and ICA test, and

not WCST. Further research is needed to strengthen the body of evidence on this matter.
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