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Abstract

The central question addressed in this research is whether lossless compres-

sion of stellar-field images can be enhanced in terms of compression ratio,

by using image segmentation and region-adaptive bit-allocation which are

based on a suitable image model. Therefore, special properties of stellar-

field images, which compression algorithms could exploit, are studied. The

research proposes and develops novel lossless compression algorithms for the

compaction of stellar-field images. The proposed algorithms are based on

image segmentation coupled to a domain-specific image data model and to a

region-adaptive allocation of pixel bits. The algorithms exploit the distinctive

characteristics of stellar-field images and aim to meet the requirements for

compressing scientific-quality astronomical images. The image data model

used is anchored on the property of a stellar-field image encapsulated in the

characterisation of this type of images as consisting of “dot-like bright ob-

jects on a noisy background”. These novel algorithms segment the dot-like

bright objects, corresponding to the high-dynamic-range areas of the image,

from the noise-like low-dynamic-range background sky areas. Following the

segmentation of the image, the algorithms perform region-adaptive image

compression tuned to each specific component of the image data model.

Besides the development of novel algorithms, the research also presents

a survey of the state-of-the-art of compression algorithms for astronomical

images. It reviews and compares existing methods claimed to be able to

achieve lossless compression of stellar-field images and contributes an evalu-

ation of a set of existing methods. Experiments to evaluate the performance

of the algorithms investigated in this research were conducted using a set of

standard astronomical test images.

The results of the experiments show that the novel algorithms developed

in this research can achieve compression ratios comparable to, and often

better than existing methods. The evaluation results show that a significant

compaction can be achieved by image segmentation and region-adaptive bit-

allocation, anchored on a domain-specific image data model. Based on the

evaluation results, this research suggests application classes for the tested

algorithms.

On the test image set, existing methods which do not explicitly exploit the

special characteristics of astronomical images were shown to lead to average

compression ratios of 1.97 up to 3.92. Great differences were found between
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the results on 16-bit-per-pixel images and those on 32-bit-per-pixel images.

For these existing methods, the average results on 16-bit-per-pixel images

range from 1.37 up to 2.81, and from 3.81 up to 6.42 for 32-bit-per-pixel im-

ages. Therefore, it is concluded that for archiving data, compression methods

may indeed save costs for storage media or data transfer time, especially if a

large part of the raw images is encoded with 32 bits per pixel.

With average compression ratios on the test image set in the range of

3.37 to 3.82, the simplest among the new algorithms developed in this re-

search achieved a result which is comparable to the best existing methods.

These simple algorithms use general-purpose methods, which have limited

performance, for encoding the data streams of separate image regions corre-

sponding to components of a stellar-field image. The most advanced of the

new algorithms, which uses data encoders tuned to each image signal com-

ponent, outperformed existing methods by about 10 percent (average of 4.29

on the test image set), in terms of size efficiency; it can yield a compression

ratio of 7.87. Especially for applications where high volumes of image data

have to be stored, the most advanced of the new algorithms should also be

considered.
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Chapter 1

Introduction

Astronomy provides exciting new findings, which touch and explain funda-

mentals of human origin and life. Modern research in astronomy and its ad-

vances depend heavily on raw data that is collected with complex instruments

like huge telescope systems or even spacecrafts. Since no single university or

research institute can afford operating such facilities, independent service in-

stitutions like the European Southern Observatory1 and the European Space

Agency2 were founded for operating huge telescope plants (in the Chilean

desert mountains, for example), or for performing space-based missions for

astronomical observations. Presently, there are ongoing preparations to set

up observation stations in the Antarctica. With expenditures in the order

of a billion euros a year, these activities in the northern and southern hemi-

sphere are financed by tax proceeds from the European Union. This gives

sufficient reasons for allowing access to the collected astronomical raw data

by a wider spectrum of users than only a selected community of researchers.

The stakeholders – consisting of the general public, professionals from

other fields, hobby researchers, and also education institutions at any level,

like schools – have the right to access electronically this valuable data.

Unfortunately, astronomy faces the problem of high and even accelerating

growth in the amount of the collected raw data (Seaman et al. 2006). This

growth makes the operation of all-embracing public archives a complex prob-

lem. In particular during recent years, a dramatic change in the generation,

storage, and access of data has taken place in astronomy.

In the past, astronomical data used to be collected with a minimal degree

1http://www.eso.org (10.08.2009)
2http://www.esa.int (10.08.2009)
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of automation. Data of a certain astronomical object of interest were col-

lected for a certain purpose and institution, on demand. While in the past

observation tasks had to be scheduled and observers sometimes had to wait

for months or years until access to a telescope was granted, now, generation

of astronomical data has turned into mass production (Szalay et al. 2000).

Automated survey telescopes image the entire sky every night and image

data are often generated continuously in an automated process at observa-

tories and telescope facilities. Furthermore, data sets are available at virtual

observatories. These sources of primary data are linked to grid-like, geo-

graphically distributed sky archives (Golombek 2004, Djorgovski 2003, Sza-

lay et al. 2000). The advent of virtual observatories, which provide high-

quality astronomy data, will enrich astronomy-oriented projects (Quinn and

Gorski 2004).

Data, for use by professional observers and by other people interested in

astronomy, are stored at different locations. About half of all astronomical

data in the world is at least in principle “public” (Szalay et al. 2001), ready

to be analyzed and accessed by astronomers all over the world. With this,

the data for some specific scientific investigation typically are available at

the virtual observatory. The request for certain data can be fulfilled quickly

and without waiting until access to a telescope is granted.

1.1 Context

Virtual observatories require huge data processing and storage capacity for

various reasons. First, the number of large telescope facilities has grown dra-

matically during the past few years (Quinn and Gorski 2004). Also the reso-

lution of imaging devices (such as charge-coupled device cameras) has been

increasing continuously, as detectors with higher resolutions become avail-

able (Howell 2000). In addition to better spatial resolutions, astronomical

projects are no longer limited to one or two wavelengths. Projects typically

involve observations of different wavebands, including gamma-rays, X-rays,

optical, infrared, and radio frequencies (Szalay et al. 2000). These obser-

vations will provide a better understanding of the physics underlying the

observed phenomena, but they will also provide more data than ever before

(Golombek 2004). Furthermore, survey telescopes currently being planned

will image the entire sky continuously, and therefore generate Petabytes of

image data. The growth of the amount of astronomical data even exceeds
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Moore’s law; the size of the data is doubling every year (Szalay et al. 2001).

Despite the falling prices of disk space and network bandwidth (costs per

Gigabyte), high annual investments for replacing and enhancing storage and

network capacity have to be made. It can be argued that an international

virtual observatory with interoperating data centres could only become a suc-

cess if problems of limited storage capacities and limited bandwidth would

be solved. The costs for online storage, archives, and bandwidth could be

reduced to a fraction of the current annual costs by using efficient – in terms

of the compression-ratio that they achieve – compression methods for the

astronomical data sets.

  

Isophot infrared satelite (ESO)

3.6 m Telescope (ESO, La Silla )Antu telescope (ESO, Paranal)

Hubble Space Telescope 
(NASA)

Large Telescopes (ESA, La Silla)

SOFIA airborne infrared 
telescope (DLR, NASA)

Figure 1.1: Different sources of astronomical images: ground- and space-based
telescopes, including equipment for gamma-ray, X-ray, and infrared
data collection (images courtesy of ESA and NASA).

Unfortunately, the requirements for compressing astronomical images dif-

fer greatly from compression requirements for the purpose of entertainment.

For the latter, a loss caused by compression is often accepted for primary

data — as is the case, for example, in every digital camera that creates a
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JPEG image. In most cases this is not even noticed by the user.

The requirements of different users of astronomical images vary, and for

some users lossy compressed astronomical data can be adequate. In his

paper discussing the communication of images from the “New Generation

Astronomical Telescope”, McNerney (2000) identifies three categories of users

and their requirements for astronomical images: the general public, schools

and colleges, and professional astronomers. The general public is mainly

interested in the appearance of astronomical objects on preferably colourful

posters. Schools and colleges require less accurate data than professional

astronomers.

Scientific data analysis usually requires the best quality of data. No in-

formation loss can be accepted for many medical and astronomy archiving

applications, for example. In addition, lossless methods are often needed for

legal reasons, and for backing up statistical databases and experimental re-

sults (Moffat et al. 1997). The possibility of verifying scientific investigations

also drives the need for lossless compression in astronomy. Moreover, lossless

compression is required, because the future value of images is not known and

images are still obtained at high costs.

Professional astronomers often insist that they can only accept lossless

compression for the captured photographs (White 1992); in general, they

require images of high photometric and astrometric accuracy. The need for

lossless compression is also driven by the fact that astronomers are often

disinclined to run their precious data, collected during observations, through

an algorithm which can introduce irreversible artefacts. Still, even for as-

tronomers, lossy compression is an option for fast previewing and selecting

images over networks like the Internet. Nevertheless, careful scientific explo-

rations have to be verified on undegraded data.

Hence, the work presented in this thesis focuses on the lossless com-

pression of original data acquired directly from a telescope, because only

this data will allow the verification of scientific findings. Although they of-

fer only moderate compression rates, lossless techniques guarantee reversible

decoding (Penrose and Dodgson 1999). The research which is presented

here focuses on the compression of stellar-field images, like the Hubble deep

field image (Figure 4.2), which are a common type of astronomical images.

A typical stellar-field or galaxy image consists of a nearly flat background

sprinkled with point sources and occasional extended sources (White and

Percival 1994). A significant area of the image is filled exclusively by the
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background sky (Puetter et al. 2005). Close-ups are, compared to the other

types, rarely used for scientific applications although these images are of-

ten shown, sometimes even coloured, on posters and in presentations geared

towards the general public.

Interoperating data centres

(primary uncompressed data)

Local data centre

Local data centre

Distributed queries
(invoked using the interface)

Unique interface

Observatory

1. Quick view

2. Cross-correlation, source extraction and cross-identification

3. Deep detection and recalibration 

Application classes

Uncompressed data

Compressed 
data

Virtual observatory

(Possibly a web interface)

Unique 
query 
interface

Queries

Data flow: Uncompressed data

VO network connection

Legend:

Data centre (storage)

Observatory

Data flow: Compressed data

Figure 1.2: Data flow model for virtual observatories (application classes of
(Louys, Starck, Mei, Bonarel and Murtagh 1999)).

A virtual observatory consists of sources of primary data, which are

linked to a grid-like, geographically distributed sky archive (Golombek 2004,

Djorgovski 2003). Data are accessible from all observatories, or even from

the Internet and may be stored at different locations (Szalay et al. 2001).

The data are generated at observatories and telescope facilities all over the
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world and stored in centres associated with the observatory (Figure 1.2). Via

a computer interface, an end-user may invoke a query for data of interest,

which generates distributed sub-queries to data archives all over the world.

Based on the application types given in (Louys, Starck, Mei, Bonarel and

Murtagh 1999), different application classes for the usage of astronomical

image data may be defined with respect to the compression requirements:

1. Quick preview: Lossy compressed data can be used for quick inspec-

tion and navigation through vast image repositories.

2. Cross-correlation for catalogue overlay, source extraction, and

cross-identification: Lossy or lossless compressed data may be used

depending on data properties and the precision requirements of astro-

nomical examinations.

3. Deep detection and recalibration: Lossless compressed data has to

be used if high precision requirements for astrometric and photometric

applications exist or recalibration is needed.

Depending on the requirements of the user, it should be possible to re-

trieve data in a compressed or uncompressed format. Non-lossy compressed

primary data should be available for application classes 2 and 3 – even if it is

too large for online access. After the selection of data, and possibly first ten-

tative examinations on lossy compressed data, only the lossless compressed

data of interest has to be retrieved. In that case, a distribution on storage

media is possible as well, especially for the verification of new findings.

The investigation presented in this thesis focuses on the lossless archival

or transfer of primary data. Unprocessed astronomical data only contains

integer values, due to the digitisation process. Hence, lossless compression

techniques for raw integer images are evaluated in this investigation. In

order to meet the key requirements for the archival of primary data, for this

research, five main requirements have been identified:

1. Losslessness: This has to be guaranteed for the archival of scientific-

grade primary data.

2. Size-efficiency: Compression algorithm should lead to high compres-

sion ratios for astronomical images.
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3. Reliability: Compression algorithms have to work with both 16-bit-

per-pixel and 32-bit-per-pixel integer data reliably.

4. Adaptation to data properties: The algorithms should take advan-

tage of the special properties of astronomical images and exploit them

as much as possible.

5. Computational efficiency: High data rates close to disk I/O and

the rate at which the CCD data can be read out, have to be achieved

with the compression algorithms to keep up with the data rate that is

generated by the telescope. Computational complexity should also be

reasonable for online storage of large unsplit images.

The research work presented in this thesis aims to fulfil the first four

requirements. Due to the long exposure times which are required to cap-

ture astronomical images, the computational complexity of the algorithm is

typically less important than its size-efficiency. Also, the computational per-

formance of a compression method depends heavily on the hardware platform

(classical single or multiple processor versus pipeline processors, application-

specific integrated circuits, or FPGAs, ...) and the software implementation

which is used. Therefore, no run-time efficiency measurement is performed

in the investigation reported herein.

1.2 Research Questions

The central research question addressed in this work is: Can lossless compres-

sion, using segmentation and region-adaptive bit-allocation which are based

on image modelling, be applied effectively (in terms of enhancing the com-

pression ratio) to astronomical stellar-field images? A subsidiary question

also considered on the way towards an answer to the central research ques-

tion is: What contribution may existing data compression methods make to

reduce the size of astronomical image data?

1.3 Aim of the Investigation

This research aims to demonstrate that an efficient compression technique,

based on image modelling, segmentation, and region-adaptive bit-allocation,
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meets the requirements of astronomical image storage and transmission. Spe-

cial characteristics of astronomical stellar-field images should be exploited.

Furthermore, the research aims to identify and evaluate existing compres-

sion methods which are capable of fulfilling the requirements for the archival

of astronomical image data.

1.4 Objectives of the Investigation

The objectives of the research are:

1. To perform a thorough literature review of existing compression meth-

ods and identify their strengths and limitations.

2. To conduct a thorough evaluation of some existing methods and analyse

the results.

3. To find a suitable model that describes the properties of astronomical

images. This model shall form the foundation for the development of

segmentation-based and region-adaptive compression algorithms.

4. To develop region-adaptive compression algorithms based on image seg-

mentation and modelling, and implement them into a software proto-

type to measure achievable compression ratios. Lossless compression

techniques shall be used to compress all the information contained in

the images (Weghorn 2002).

5. To evaluate the compression ratios of the algorithms developed in this

research. For this investigation, a representative sample of standard

images shall be used, possible data sets are provided by (ESO 2004,

IRAF 2004).

1.5 Contribution to Knowledge

The thesis extends current knowledge by contributing a study of special

properties of astronomical images and of the data redundancy within stellar-

field images, which compression algorithms could exploit. The thesis also

contributes a set of original methods for astronomical image compression

based on a second-generation image compression approach.

In addition, the thesis contributes the findings of experiments where the

novel methods developed in the thesis work are evaluated against existing
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lossless compression algorithms, which can be applied to the primary data

of virtual observatories without irreversible distortion. The thesis suggests

application classes for the tested algorithms. The thesis also presents a survey

of the state-of-the art of compression algorithms for astronomical images.

1.6 Brief Description of the Methodology

This study follows an experimental method. Research questions and the

corresponding hypotheses are formulated. Existing methods are reviewed

and novel compression algorithms addressing the research questions are de-

veloped. Implementations of the novel algorithms are evaluated based on

controlled experiments and compared to existing methods.

First, a literature survey of existing compression methods, especially loss-

less methods, is conducted. Then, special statistical properties of astronomi-

cal images are determined and described. Based on the analysis of astronom-

ical image data, a model of a typical astronomical image signal is established.

On the basis of this model, algorithms to compress astronomical images are

developed and tested in controlled experiments.

During the development of the novel algorithms, specific properties of

astronomical data are accounted for. Efficient encoding methods, for the

different data components of astronomical images, are studied, and evalua-

tions are conducted to determine the encoders best matched to the distinct

data components within the image. Compression ratios achievable by the

developed algorithms are evaluated.

The performance – in terms of achievable compression ratio – of the newly

developed algorithms is compared to existing methods identified in the liter-

ature survey. Finally, application classes for both, existing methods and the

newly developed algorithms, are defined.

Further methodological details relating to the experimental designs, ma-

terials, and procedures are given in Chapter 6, which reports the performance

evaluation of the compression techniques developed in this research and of

existing compression techniques.
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1.7 Thesis Structure

This thesis consists of seven chapters. After this introduction chapter, Chap-

ter 2 presents an overview of the theoretical foundation of all compression

methods, information theory and a short systematic overview of methods

used in data compression. A range of existing methods for data encoding,

which are related to this work, are discussed. Finally, image compression

methods coupled to properties of visual data are discussed in detail.

Chapter 3 presents a literature survey of compression methods which can

be used for astronomical images. Existing state-of-the art methods for lossy

compression, methods that allow lossless or lossy compression and purely

lossless methods are described in detail. Also, the standard for the com-

paction of images in FITS format, a common file format for astronomical

images, is presented. The methods are categorised according to the decorre-

lation step. This categorisation is derived in Chapter 2.

Then, an overview of astronomical images and image categories is given

in Chapter 4. Models of astronomical stellar field data are discussed based

on mathematical models for CCDs and stellar field image properties. An

image data model used for the segmentation in this research is presented

and its relation to other astronomical image data models is discussed. This

image data property model forms the basis for the new compression algo-

rithms. Detailed knowledge of data properties is required to adapt the novel

compression algorithms closely to the properties of stellar-field images. Fi-

nally, a first sample calculation presented in the same chapter shows that a

significant data reduction is possible by decomposing the image into its basic

components, according to the model proposed.

Chapter 5 introduces three new compression algorithms developed in this

research project, which are based on image segmentation and region-adaptive

bit-allocation and which are underpinned by a stellar-field image model.

They can be considered as second-generation image compression methods

for astronomical images. The three algorithm versions represent algorithmic

options, each with its own trade-off between complexity and optimality of

compression. Details of each algorithm are given, the choices of encoding

methods and segmentation parameters are discussed. As a successive im-

provement – towards more optimal compression ratio – the three algorithmic

options have been conceived in a phased development.

To determine the size-efficiency of existing methods and newly developed
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compression algorithms, a performance evaluation is given in Chapter 6.

A set of test images is presented which is used for the evaluation of both

existing methods and the novel algorithms reported in this thesis. Existing

methods have been – whenever possible – evaluated using the standard set of

astronomical test images to determine their size-compaction efficiency. The

systematic comparison of existing methods alone will be useful to users of

astronomical image data. Despite of the range of different existing methods

available, these are rarely applied in practice.

Chapter 6 also contains the evaluation of the novel compression algo-

rithms. Results from both the evaluation of existing methods and of imple-

mentations of the novel algorithms are compared and the size-efficiency of

the novel algorithms is established.

This thesis ends with Chapter 7, which highlights the key conclusions,

summarises findings for the different algorithms developed and assessed ex-

perimentally, and discusses possible future work.
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Chapter 2

Information Theory and

Compression

“The fundamental problem of communication is that of repro-

ducing at one point either exactly or approximately a message

selected at another point.” (Shannon 1948)

The main aim of this chapter is to provide an overview of existing com-

pression methods, which are related to the work developed in this research,

and to present their theoretical foundation, which is information theory. This

chapter consists of three parts.

Section 2.1 presents a short summary of concepts which are relevant for

the research presented here.

Section 2.2 presents a short overview of methods used in data compres-

sion, which categorises the methods and their purposes. The focus of the sec-

tion is on clarifying the difference between encoders, decorrelation, and data

reduction methods. Samples for all categories of such methods are given, and

their properties, advantages, and disadvantages are discussed. The overview

also presents an existing architecture of compression methods (Figure 2.2)

and assigns a range of modern MP3 and MPEG-4 algorithms (Pereira and

Ebrahimi 2002, Sikora 2003) to it. Different decorrelation methods are criti-

cally reviewed and the discussion highlights that for lossless compression of

scientific-grade stellar-field images, a transform-based decorrelation step is

not a good option. The systematic overview also shows that a close cou-

pling of data properties and compression is essential, especially in the case

of lossless compression.

29
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Finally, a review of some recent developments in image compression is

given in Section 2.3. It highlights two main developments in the area of

compression, the closer-and-closer adaptation of methods to their application

class, and the trend from pixel and pixel-difference-based methods towards

exploiting higher-order redundancy using context adaptive methods, such as

segmentation-based pre-processing.

2.1 Foundation of Data Compression Meth-

ods

This section, presenting the foundation of data compression methods, high-

lights the importance of data models for size-efficient compression. Also,

this section introduces and defines basic compression-related terms, and dis-

cusses data correlation and redundancy, which are relevant for the choice of

encoders of the new algorithms.

2.1.1 Definition of Basic Compression Terms

Prior to discussing compression techniques in detail, the required terms have

to be defined precisely. The definition of the terms and the notation are

inspired by various books on data and image-compression (Salomon 2000,

Sayood 2000, Strutz 2005), in order to follow an easily understandable “stan-

dard”.

Definition 1 (Bit rate) The average number of bits required to represent

a letter with a symbol is called the bit rate. For a given amount of data D

(in bits) consisting of N symbols, the bit rate is:

r =
D

N
[bit/symbol] (2.1)

For images, the bit rate is typically given in bits-per-pixel [bpp].

Definition 2 (Compression ratio) The compression ratio c is used to de-

scribe the reduction of the size of the data. The compression ratio is the

quotient of storage required before and after compression.

c =
Original data size

Compressed size
(2.2)
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Compression ratios c > 1 indicate a reduction of the required storage

space, while compression ratios c < 1 indicate an enlargement rather than a

compaction of the data. Often the compression ratio is written in the form

c:1.

Definition 3 (Reconstruction error) The reconstruction error e, ocas-

sionally called residual, is the difference between the original data o and the

reconstructed data after compression. In Equation 2.3, C(x) stands for the

compression operation, D(x) for the decompression operation.

e = o – D(C(o)) (2.3)

Definition 4 (Near-lossless compression) With a near-lossless compres-

sion method Cn(x), the maximum of the reconstruction error e is limited to

a predefined small value ε. Equation 2.4 holds for near-lossless compression

methods; max(x) stands for a function that determines the maximum:

max( |o – D(Cn(o))| ) ≤ ε (2.4)

For example, JPEG-LS (Weinberger et al. 2000) provides such a near-

lossless mode of operation.

2.1.2 Information and Entropy

“First, this entropy is not known and depends heavily on the

model used for the source, i.e. the digital image.” (Kunt

et al. 1985)

Information theory, introduced by Shannon (1948), provides the theoret-

ical basis for work related to data compression by defining the amount of

information conveyed in a message from a certain source. This amount of

information is commonly referred to as entropy H (Strutz 2007). The term

entropy originates from thermodynamics (Rao and Yip 1990, Johnson 2003).

In information theory, information can be regarded as the amount of

surprise a certain message conveys. The information I(li) contained in a

single letter li of a message is defined by Shannon (1948) as follows: the larger
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the probability P (li) of a letter li within a message is, the less information it

conveys when it occurs.

I(li) = log2
1

P (li)
[bit] (2.5)

First-order entropy (H1), the most common and simple entropy measure,

is the theoretical minimum for the code length when only frequencies of

letters are taken into account (Johnson 2003). The first-order entropy of a

message H1(l) is calculated from the weighted sum of the individual letter

information I(li), where the weights are their probability of occurrence P (li)

(Shannon 1948):

H1(l) =
k∑

i=1

P (li) · I(li) =
k∑

i=1

P (li) · log2
1

P (li)
[bit/symbol] (2.6)

A system with large entropy is characterised by a large amount of un-

certainty and randomness, thus a larger amount of information is required

to describe it. In the case of first-order entropy, this can be derived from

Equation 2.6.

Entropy coding is based on Shannon coding theory (Shannon 1948), where

Shannon proved that the average code length s is always greater than or equal

to the first-order entropy of the message. Additionally, Shannon proved that

there is always an encoding of the message where the average code length s

is smaller than H1 + 1 (Strutz 2005).

The entropy of a certain source is determined using a model of the source.

First-order entropy H1 makes use of a simple model of the source; it is based

on the assumption that all symbols are statistically independent and occur

with a certain probability (Shannon 1948). This is not the case with most

signals; hence first-order entropy is not an optimal measure to determine the

amount of information for a range of everyday signals. Based on “typical”

English texts, Shannon (1951) measured the first-order entropy of English

to be about 4.1 bit/character. He also defined a second-order entropy by

treating digrams as single symbols.

These higher order entropies use a joint density function for the data,

thus the dependency among successive data values (second-order entropy) or
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more data values is accounted for. The joint entropy of two data values l1
and l2 is defined as (Hunt 1998):

H2(l1, l2) = −
k∑

i=1

k∑
j=1

P (l1,i, l2,j)log2(P (l1,i, l2,j)) (2.7)

It can be shown that the second-order entropy is generally lower than,

or in the case where both data values are independent, equal to, the sum of

first-order entropies (Hunt 1998).

H(l1, l2) ≤ H(l1) + H(l2) (2.8)

This higher-order entropy leads to an entropy of 3.3 bits/character (us-

ing trigrams) for the English texts mentioned earlier (Shannon 1951). This

entropy definition takes basic dependencies between different elements into

account.

How efficiently data of a certain source can be compressed depends largely

on the knowledge of the source and the properties of the source (Kunt

et al. 1985). The better the model is and the more special statistical proper-

ties the source has, the better the compression ratios that can be achieved.

While Huffman coding (Huffman 1952) leads to optimal compression of data

where each letter is generated independently, it will not work optimally on

data with a large dependency among neighbouring characters. Other com-

pression techniques, like run-length encoding (RLE) for example, are based

on a model that works much better for data with a strong dependency be-

tween neighbouring characters, e.g. a bi-level image. Shannon (1948) takes

data correlation into account by defining the entropy as the limit of higher-

order entropies as (notation based on (Sayood 2000)):

H(S) = lim
n→∞

1

n
Gn (2.9)

where

Gn = −
k∑

i1=1

k∑
i2=1

· · ·
k∑

in=1

P (l1,i1 · · · ln,in) log P (l1,i1 · · · ln,in)
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Two papers published by Jean-Luc Starck and Fionn Murtagh deal with

the astronomical image signal and the definition of entropy (Starck et al.

2001, Starck and Murtagh 2001). They give criteria for a good “phys-

ical” definition of entropy. According to (Starck et al. 2001, Starck and

Murtagh 2001) the two images shown in Figure 2.1 have the same entropy

using any of the standard entropy definitions. The work developed in this

thesis does not follow this argumentation, since this argument is only true if

none of the higher-order entropy definitions is considered. Both images may

share the same first-order entropy. Higher-order entropy definitions take the

dependency of different values into account and lead to a lower entropy esti-

mate for the left image.

Figure 2.1: Starck and co-workers state that these two images have “the same
entropy using any of the standard entropy definitions”. This thesis
argues that the entropy of the left image is lower than that of the right
image (image from Starck et al. (2001)).

Starck et. al. present their own definition of multiscale entropy which is

intended for the application in image restoration and enhancement (Starck

et al. 2001, Starck and Murtagh 2001). Their entropy definition is not
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intended to provide information on the compressibility. According to the

multiscale entropy definition of Starck et. al., the information content of

the image on the left is higher than that of the image on the right (Starck

et al. 2001, Starck and Murtagh 2001).

The work developed in this thesis is based on the assumption that the

true information content of the image on the left indeed is lower than the

first- and second-order entropy estimate. There is a high spatial coherence

of intensity values within astronomical images, especially within stellar field

images.

Although proposing a different entropy measure for another field of ap-

plication, Starck and Murtagh (2001) are aware of this, as they mention

“for someone working on image transmission, it is clear that the second im-

age will require more bits for lossless transmission, and from this point of

view, he/she will consider that the second image contains more information”

(Starck et al. 2001, Starck and Murtagh 2001). This is also supported by the

theoretical results presented in the work of Gupta and Virdi (1989), which

leads to the results that the information content depends on the size of the

field of view and the objective aperture, the mean level of star brightness,

the spread of brightness values, and the average star density.

Segmentation, which is investigated in this thesis as a pre-processing step

before the usage of encoders, should exploit the spatial coherence and the

high differences in the dynamic range of the image regions which constitute

stellar-field images.

2.1.3 Redundancy Types and Data Correlation

Data compression methods exploit redundancy which results from correlated

data. This discussion aims to establish a linkage of spatial redundancy, en-

tropy, and correlation in order to boost the discussion of Figure 2.1 in the

previous section.

Compression methods for still images may exploit two types of redun-

dancy: spatial and spectral redundancy. Spatial redundancy results from

spatial correlation, some form of dependency or predictability among succes-

sive image pixels (Netravali and Limb 1980). Spectral redundancy is termed

as the “correlation between different colour planes or spectral bands” by Saha

(2000). In audio and video applications additionally temporal redundancy

can be found between successive samples of a digital audio file or different
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frames of video data.

In statistics the linear correlation coefficient is used as a measure to de-

scribe the strength and direction of a linear relationship between two series

X and Y of n values written as xi and yi with i ∈ 1, 2, . . . , n (Freedman

et al. 1998).

Rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy

(2.10)

x̄ and ȳ are the means of the two series X and Y . sx and sy are their

sample standard deviations. Values close to plus one are considered as strong

positive correlation, values close to minus one as strong negative correlation.

The correlation coefficient given in Equation 2.10 can be applied to image

information in different ways. This measurement can be done for two suc-

cessive or two arbitrarily chosen image rows or columns. Alternatively the

dependency of intensity values of a single image data line can be examined.

In (Salomon 2006) a general measure for such cases is given:

R(k) = a1ak + a2ak+1 + . . . + an−kan. (2.11)

R(k) gives the correlation between standardized values ai of one series

separated by a distance of k units (Salomon 2006). With k = 2, the measure

given in Equation 2.11 can be applied to determine the linear correlation be-

tween two successive pixels. Correlation, which can be expressed at a certain

degree with Equation 2.11, is considered as a measure for redundancy in the

data, although this measure does not account for non-linear dependencies or

higher-order dependencies.

For example, if the linear-correlation of neighbour pixel intensities of an

image row is measured, no information on the dependency to intensity values

of other neighbour pixels is obtained.

As the intensity difference of neighbour pixels in the left image in Figure

2.1 is often less than the intensity difference in the right image of Figure 2.1,

the correlation measure R(k) in the scrambled right image will be much lower

than in the original left version. The lower redundancy in the scrambled

image is equivalent to a higher information content, which is not detected if

only the first-order entropy of both images is considered.
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2.2 Systematic Overview of Data Compres-

sion Methods

Starting from lossless methods which exploit basic data properties, the grow-

ing need for compression during the past twenty years has brought about

many compression methods. Especially due to the amount and diversity of

recently developed lossy compression methods, an overview of all methods

has become more and more difficult. Many of the currently developed com-

pression methods are application specific, especially those for image, audio

and video applications. This section is an attempt to provide a short, but

systematic overview of data compression methods and concepts applied.

The presentation mainly follows the taxonomy of (Strutz 2005, Strutz

2007), which is intended to be a guideline for researchers and developers of

new compression systems. The main intention here is to identify and de-

scribe functional blocks of compression algorithms and understand the basic

architecture of both modern lossless and lossy methods. Three functional

blocks are distinguished:

• Coding: Strutz (2007) summarises techniques aiming at reducing the

redundancy in the signal as coding techniques which are fully reversible.

Coding techniques which follow this definition are: basic entropy cod-

ing, arithmetic coding, run-length coding, dictionary coders, and block-

sorting methods like the Burrows-Wheeler Transform (BWT) (Burrows

and Wheeler 1994). The amount of signal specific properties that these

methods exploit is very limited.

• Data reduction: In contrast to coding and decorrelation methods, in

this context data reduction refers to quantisation or sampling methods,

which aim to remove non-essential parts from the signal (Strutz 2007).

• Decorrelation: Decorrelation techniques aim to concentrate the infor-

mation conveyed in the signal into very few signal values (Strutz 2007).

A data decorrelation step is included in many modern, special-purpose

data compression algorithms. Decorrelation is achieved through tech-

niques such as transforms, like the Karhunen-Loève Transform or the

Discrete Cosine Transform (DCT), and predictive coders.

Coding, data reduction, and decorrelation methods are the main building

blocks of modern compression methods. These building blocks are based on
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assumptions about the signal, in terms of a signal model and sets of param-

eters (Barthel 2003, Strutz 2005). Normally, compression is size-efficient if

those assumptions hold true, which means that the compression method is

well adapted to the data properties. The compression result may become

worse if data parameters change (Strutz 2007). Therefore, adaptive methods

have been developed to account for such property changes. Adaptation may

be applied to coding, decorrelation, and data reduction. A well-known adap-

tive coding method is Adaptive Huffman coding, independently developed

first by Faller (1973) and later by Gallager (1978), then finally enhanced by

Knuth (1985). Adaptation may be as well applied to the decorrelation step

in order to enhance its performance.

For example, with segmentation-based compression methods, such as

the one developed in this work, model parameters and data processing are

changed based on the membership of data to certain data components. Dis-

tinct pre-processing, decorrelation, and encoding steps for each data com-

ponent may be better adapted to the specific data component than a single

method which can either be tuned perfectly to the properties of one or the

other data set. Finally, adaptation may also be applied to the data reduction

step for lossy compression. For example, it was already proposed for region-

adaptive medical image compression (Gokturk et al. 2001), where important

regions can be compacted losslessly while a loss of some image information

is tolerated in less significant image areas.

The two basic building blocks, coding and decorrelation, can be found

in virtually any data compression method. With lossless methods, data is

encoded and decoded without degradation, in a way that results in an image

which is identical to the original image.

As lossless methods do not allow any data to be lost during compres-

sion, no data (even if considered non-essential) can be removed in a data

reduction step. If any part of a compression system applies a data-reduction

method, the compression algorithm is normally called lossy due to the fact

that data reduction discards some digital information (Strutz 2007). But,

with the astronomical image compression method Fitspress (Press 1992) and

the pyramidal median transform method of Starck et al. (1995), in the lossless

mode, first data reduction is applied and later the removed data is recovered

by storing a difference image. It captures the image data value differences

generated during the compression step.

With lossy compression schemes, redundant and non-essential informa-
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tion can be lost. The user sometimes is able to influence the trade-off between

compression and data quality.
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More complex data model
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Figure 2.2: Attempt to structure the functions of different compression algorithms
according to the components defined by Strutz (2007). The switch
symbol next to a range of the data blocks means that these blocks can
be bypassed or may not be present in some algorithms.

Figure 2.2 shows a general data flow for a compression system (in the left-

most column). It may serve as a sample for a modern compression system.

Accordingly, Figure 2.2 presents a typical data flow for a general-purpose

compression method, such as the ones used in Zip or Compress. Also, the

figure includes a typical data flow for a transform-based application-specific

compression method such as MP3 and JPEG. Finally, the rightmost col-

umn gives an outline of a modern lossless compression method. It resembles

the predictive methods applied in contemporary general-purpose image com-
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pression methods, like the one used with the PNG format and the JPEG-LS

compression method.

2.2.1 Encoding Methods

An elaborate review on encoding methods such as Huffman, Lempel-Ziv

Welch, Arithmetic-Coding, and Run-Length coding can be found in (Vemuri

et al. 2002). Detailed descriptions are found in the publications given below

and in (Salomon 2000, Sayood 2000, Strutz 2005).

The most common coding methods are entropy coding methods. These

methods reduce the coding redundancy by exploiting the letter distribution,

using variable length codes. Variable length codes have to satisfy the Kraft

inequality (Kraft 1949, Fano 1949, McMillan 1956). On the basis of the al-

phabet size and the codeword lengths, it provides the information whether

or not a code is uniquely decodeable. The widely used Huffman algorithm

can be proven to generate optimal variable length codes with an integer

number of bits (Huffman 1952). Huffman coding can only be efficient un-

der two conditions: Firstly, the frequency table of the data – or at least

a good estimate – has to be known in advance. Secondly, P (li) the prob-

ability of the occurrence of the individual letters li should be P (li) = 2−j

where j is an integer and positive number (Strutz 2005). Arithmetic cod-

ing (Abramson 1963, Witten et al. 1987) poses a more efficient alternative

to Huffman coding, if the occurrence probability of letters is not a power

of 0.5. Predefined codes, such as Rice or Golomb-Rice codes (Rice and

Plaunt 1971, Rice 1979, Rice 1983, Rice 1991, Golomb 1966), provide a faster

alternative to arithmetic coding if the value distribution follows a geometric

distribution. Exponential Golomb codes by Teuhola (1978), (punctured-)

Elias codes (Elias 1975, Fenwick 1996), and the recently proposed Hybrid

Golomb codes (Xue et al. 2003) are examples of predefined codes which are

better adapted to other – non-geometric – distributions. But still all these

methods are only efficient, regarding the achievable compression ratio, if the

data follows the distribution the method is designed for.

Dictionary based compression methods, for example algorithms from the

Lempel-Ziv group (Ziv and Lempel 1977, Lempel and Ziv 1978, Welch 1984),

are other commonly used encoding methods with limited capability for data

decorrelation.

Berg and Mikhael (1994) mention that for signal compression Lempel-Ziv-
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Welch compression methods were applied with limited success only. They

also state that Lempel-Ziv-Welch based techniques are unacceptable for high

performance applications as the dictionary has to increase rapidly with the

sample resolution to ensure frequent matches.

This is one cause, why Lempel-Ziv-Welch based methods should not be

directly applied with the 16- and 32-bit-per-pixel astronomical data.

But those methods can be applied successfully, if the source data symbol

set cardinality is limited for a certain data. As Lempel-Ziv-Welch exploits

the correlation among different source data symbols, at a certain degree,

and not only the letter distribution, it is still an option to be tested for

data with limited source alphabet and correlated data. This also holds for

the application of Burrows-Wheeler Transform based methods (Burrows and

Wheeler 1994).

2.2.2 Data Reduction Methods

Typical data reduction methods are quantisation and sub-sampling (Strutz

2005). Quantisation decreases the number of distinct signal values (found

in many lossy compression methods used in astronomy, discussed in Section

3.2.2). Sub-sampling decreases the temporal or spatial resolution of signals

(Strutz 2007). Quantisation can be performed on each individual coefficient,

this is known as “scalar quantisation”. Quantisation can also be performed

on a group of coefficients together, this is known as “vector quantisation”

(Saha 2000). Details on quantisation methods are not discussed here, as

they are merely used for lossy methods and therefore the research work here

cannot benefit from them. Details on quantisation methods can be found in

(Gersho and Gray 1991) and (Ramakrishnan et al. 1998).

Often, with very advanced methods, the data reduction steps are highly

adapted to the properties of the signal receiver to remove only unnoticeable

properties of the data. Compression methods like JPEG and MP3 are highly

adapted to properties of the human visual and auditory system. Therefore, a

key aim when developing a new compression system is to identify data prop-

erties and select or develop new algorithms which fit well to these properties

and the user requirements.
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2.2.3 Decorrelation Methods

“Most of the lossy techniques could be adapted to become

lossless since it is normally the introduction of an error stage

in the process that provides the facility for compression. How-

ever, if these methods were converted to a lossless mode, com-

pression would almost certainly not occur.” (Reid et al. 1997)

Many techniques for data decorrelation can be classified into two main

categories, transform-based methods and predictive methods. Both key decor-

relation method groups are discussed here with respect to their properties,

especially their advantages and disadvantages regarding the usage in a loss-

less compression method, such as the one developed in this thesis.

In the past, unfortunately, a majority of the publications on data com-

pression concentrated on lossy compression (Berg and Mikhael 1994). This

may be due to two main reasons: Lossy methods may lead to higher com-

pression ratios compared to lossless methods, and they are sufficient for a

wide range of applications.

Transform-Based Methods

Most of the techniques which have been researched, standardised and im-

plemented in image compression can be assigned to the family of transform-

based compression methods (Ragab et al. 1998). Transform-based methods

are often used for lossy compression.

Ragab et al. (1998) summarise the principle of transform-based data

decorrelation as follows: “The choice of the transform matrix would pro-

duce a transformed image matrix that is sparse and with most of its large

magnitude elements concentrated in a small region of the transformed image

matrix”. This principle is often referred to as energy compaction.

One transform-based compression method has gained popularity. JPEG

compression (ISO/IEC 1994, Pennebaker and Mitchell 1992), already stan-

dardised in 1992 and used for natural digital images, is based on the Discrete

Cosine Transform. JPEG is probably up to now the most common compres-

sion method for natural images, as it is applied automatically in many digital

cameras.

In addition to the Discrete Cosine Transform a range of other transforms

has been proposed, and compared regarding their properties. A range of them
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has also been tested for the special case of astronomical image compression

(see Chapter 3).

Ragab et al. (1998) compare the performance of the Karhunen-Loève

Transform, Discrete Cosine Transform, Discrete Hartley Transform, Discrete

Gabor Transform, and Discrete Wavelet Transform. They find that, de-

pending on the objective to achieve a low peak signal-to-noise ratio or high

compression rates, no unique transform can be selected.

Saha (2000) highlights the advantages of the Discrete Wavelet Transform

for mainly two reasons: firstly, the basis function (wavelet) has a limited

extent; secondly, the wavelet coefficients often allow efficient quantisation

and encoding strategies.

In addition to the lossy methods, lossless transform-based compression

methods have been developed, like the integer wavelet-based approach of

Calderbank et al. (1997) and the lossless JPEG mode.

But transform-based methods may not be optimal for computational size-

and time-efficient lossless compression. “The transform alone does not lead to

compression. On the contrary, the original signal is transferred into another

representation, whereas in general, the data amount is even enlarged, as the

transform coefficients are real-valued, while the original image is integer-

valued” (Strutz 2005). This problem is also discussed by Berg and Mikhael

(1994) who add that transform coefficients might even be complex-valued.

This leads to two basic problems in the context of lossless compres-

sion. Firstly, transforms based on floating-point values are inherently lossy

(Barthel 2003). Secondly, the transform coefficients may, depending on their

properties and their amount, not always provide the optimal basis for further

compaction.

Additionally, transforms are computational time-intensive. Saha (2000)

states that “this [transform-based] method provides greater data compres-

sion compared to predictive methods’, although at the expense of greater

computation”.

The first problem, the inherent lossiness of transforms using floating-point

values, can be reduced by the calculation and transmission of the difference

between the transform compressed data and the original. Residual image

creation has been applied for astronomical data compression (Press 1992,

Starck et al. 1995), but much earlier for medical image compression purposes

(Roos and Viergever 1988). The lossiness of the transform can as well be

solved without the need of creating a residual image. According to (Strutz
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2005) there are also transforms, which can be solely implemented in integer-

arithmetic, but the resolution of the transform coefficients requires more bits

than the original data. Therefore, the second problem even remains with

integer-based transforms such as the one developed by Calderbank et al.

(1997) or the one of Said and Pearlman (1996). A detailed discussion of the

latter can be found in (Vemuri et al. 2002).

The second problem also appears with some of the transform compres-

sion methods proposed for astronomical image compression, such as the

ones presented in (White 1992, White and Percival 1994, Louys, Starck and

Murtagh 1999). Whether these methods achieve an efficient size compaction

of the data depends on the properties of the transform coefficients. Lossy

methods benefit from the fact that for most transforms, a vast majority of the

coefficients is small or zero (Strutz 2005), and the important image features

are captured in a few coefficients. Finer and finest details are encoded in the

rest of the coefficients, thus the information degradation can be controlled by

the coarseness, and the number, of coefficients stored. Lossless methods can-

not reduce the discretisation and the number of transform coefficients, but

still in some cases the transform coefficients can be encoded very efficiently.

White (1992) reported that for very smooth or constant images, trans-

form coefficients may be zero over large regions. Unfortunately, astronomical

images are typically noisy. That means the coefficients might be small but

not zero. Moreover they capture important fine details and remain noise-like

just as the original data. Therefore, transforms may not be the best choice

for the decorrelation of astronomical image data.

Many contemporary lossless general-purpose image compression methods

such as JPEG-LS and PNG do not rely on a transform-based decorrelation

method, which further encourages considering other decorrelation methods

when developing a lossless image compression algorithm. JPEG-LS and PNG

rely on predictive coding, which is discussed in the next section.

Prediction

“Lossless compression of 2-D images has been performed very successfully us-

ing prediction-based methods” (Mielikainen 2006). Predictive coding meth-

ods aim to exploit local redundancy in the data by guessing the pixel intensity

of a sample from a set of past data values. Probably the simplest possible

scheme is thereby the differential pulse code modulation, where the last in-
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tensity value is used to predict the succeeding, and the difference between

both samples is transmitted. Berg and Mikhael (1994) highlight that the pre-

diction residual “generally has much lower entropy than the original data”. A

range of different methods for signal-prediction has been developed (Dawson-

Howe 1996, Paeth 1991) and compared (Memon and Wu 1997, Weinberger

et al. 2000).

Linear prediction has been researched for the compression of medical

images in (Hu et al. 1997) and straightforward prediction schemes are widely

used in lossless contemporary image format standards, such as the Portable

Network Graphics standard (ISO/IEC 2004), and lossless JPEG. A table with

the different lossless JPEG predictors can be found in (Memon and Wu 1997).

Vemuri et al. (2002) discuss details of the algorithm and its different modes.

With PNG, for example, four filter types use predictive coding methods to

decorrelate the data. Two versions use the left, respectively the above pixel

value, to predict the current pixel (ISO/IEC 2004).

The type 3 filter of PNG is an advanced higher-order linear predictor.

With PNG, also the most advanced filter type, named after its inventor

Paeth (1991), can be used. It uses a linear function of three neighbouring

pixels on the left, above, and the upper left pixel for prediction. The Paeth

filter chooses one of several possible predictor rules based on local gradients

in the local surroundings of the currently processed value (Paeth 1991).

These methods are static methods which neither adapt to individual im-

age properties nor do they selectively treat distinct image regions. Still, these

more advanced prediction schemes can compete with lossless transform-based

compression methods. Memon and Wu (1997) highlight that during attempts

to develop a successor for lossless JPEG compression, “right from the first-

round evaluations it was clear that the transform-coding-based proposals did

not provide as good compression ratios” as predictive methods.

Savakis (2002) compares a range of contemporary lossless compression al-

gorithms, including among others lossless JPEG, JPEG-LS, an S + P trans-

form based method, and the algorithm used with the PNG standard and

finds that the CALIC and the JPEG-LS outperform other methods.

Clunie (2000) compares the performance of traditional and state-of-the

art lossless methods for the compression of medical images. He highlights

that most modern methods involve prediction schemes with statistical mod-

elling. He finds that new international standards like JPEG-LS or lossless

JPEG 2000 perform better than existing JPEG and proprietary transform-
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based methods such as CREW (Zandi et al. 1995) and the S + P transform

in combination with arithmetic coding (Said and Pearlman 1993).

Weinberger and co-workers (Weinberger et al. 2000) highlight that the

CALIC algorithm obtains some compression gains by tuning the model more

carefully to the image compression application. The observations of Wein-

berger et al. (2000), regarding the number of parameters of models, entropy

savings and model costs, “suggest that the choice of model should be guided

by the use, whenever possible, of available prior knowledge on the data to

be modelled, thus avoiding unnecessary ‘learning costs’”. Weinberger et al.

(2000) mention that “lower entropies can be achieved through higher order

conditioning (larger contexts)”.

With predictive coding, the predictor applied is a part of the image

model. Dawson-Howe (1996) highlights that in general, “the model is based

on the preceding neighbouring points in some static fashion”, while for their

method, the model weights are adaptively determined from the whole image

using a least-squared-error solution. The adaptive determination and choice

of optimal parameter sets for non-stationary signals has been discussed in

(Strutz 2002, Memon and Wu 1997). These works link predictive coding

with region-based compression methods discussed in Section 2.3.

Other Pre-Processing Methods

Fractal data compression (Fisher 1995, Mandelbrot 1982) uses a fractal trans-

form to decorrelate the data prior to its encoding. In this thesis, fractal

methods are treated as a separate group of compression methods. They are

not assigned to transform-based methods, as the fractal transform requires

search and matching operations during compression, which are not required

with methods based on transforms such as the Discrete Cosine Transform or

wavelets. An early review of the fractal image compression literature is given

in (Saupe and Hamzaoui 1994). A more recent presentation can be found in

(Zhao and Liu 2005).

With fractal compression, first the fractal transform is applied to the

original data, which aims to represent the image using parts of itself by

an iterated function system (Fisher 1995, Jacquin 1992). The description

for generating the image is encoded. Fractal compression is often lossy as

it includes a data reduction step. For a better size-efficiency, the number

of iterations can be chosen to obtain a good approximation of the image
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(Fisher 1995). Iterations which would be required to obtain a pixel-by-pixel

identical copy of the image are omitted.

Compressing data using fractal methods is typically very time-intensive

(Jacquin 1992, Saupe and Hamzaoui 1994, Hu et al. 2004).

2.3 Specific Compression Methods for Vi-

sual Data

Reid et al. (1997) state that till the 1980s image compression methods relied

on encoding methods based on classical information theory (such as those

discussed in Section 2.2.1) which exploit the redundancy in the images in

order to achieve compression ratios of up to two on the data.

Even with lossy techniques, such as the ones based on the Discrete Cosine

Transform (Wallace 1991) and a subsequent data reduction step, the higher

compression ratios are typically only be achieved at the expense of image

quality (Reid et al. 1997).

Therefore, in addition to these methods, a range of attempts was made to

overcome the compression performance limitation of existing approaches by

specialising the methods to distinct fields of application, or using adaptive

methods which selectively treat distinct types of data.

2.3.1 Specialisation on Image Data Properties

One attempt to overcome the compression performance limitation is the

specialisation of image compression methods to highly specific applications.

That specialisation works can be seen with a simple comparison of the size

of a Zip compressed BMP image, to its copy stored in PNG format. There,

typically the PNG version is smaller than the Zip compressed counterpart.

The predictive pre-processing step specific to image data properties is per-

formed only with the PNG version of the image. It typically leads to a higher

compression ratio.

The dependency between the tight coupling of data properties and the

performance of the compression method – found as well for lossless prediction-

based methods in Section 2.2.3 – can also be seen from a range of lossy special

purpose methods, which have enabled the exchange of video, image, and au-

dio information over world-wide computer networks during the last decade.
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Carpentieri et al. (2000) emphasise that a compression method has to be

closely coupled to the image data; in the best case, it incorporates prior

knowledge about the data. This implies that in order to achieve a high

compression ratio: a) image source properties have to be known, b) the com-

pression method has to be highly adapted to those source properties. The

close coupling of requirements, source properties, and compression method

are probably the most outstanding research challenges for the compression of

images, especially for lossless methods. In their survey of lossless compres-

sion methods, Berg and Mikhael (1994) highlight that “improvements are

likely to require more complex and demanding source models”. This sup-

ports the compression approach adopted in this research, aiming to adapt

the compression method closely to the physical properties of the source.

2.3.2 Adaptive Methods

Another attempt to enhance the compression ratios includes adaptive meth-

ods. Adaptive methods can again be grouped into methods which adapt

their prediction based on a local image area, and methods that truly divide

the image into distinct areas and process them independently.

Adaptation based on the local area is applied with a range of meth-

ods which have already become widely used in some fields, for example the

LOCO-I compression standard, which was standardised into the JPEG-LS

standard (Strutz 2005). JPEG-LS bases its adaptation to distinct contexts

on a gradient detector, which derives from a set of local gradients to which

contexts the actually processed pixel belongs. JPEG-LS distinguishes be-

tween four contexts, which are encoded using different predictors (non-linear

prediction), context-specific offsets, and choices of the Golomb-Rice encoder

parameter (Strutz 2005).

Weinberger et al. (2000) highlight that JPEG-LS “is conceived as a low

complexity projection of the universal context modelling paradigm, matching

its modelling unit to a simple coding unit.”

In contrast to methods that only adapt their prediction, JPEG-LS also

includes a special encoding method, which is applied to flat image regions.

Therefore, JPEG-LS even applies a sort of “segmentation” to the data. Al-

though JPEG-LS is often discussed as an example for a very successful pre-

dictive lossless compression method, the performance gain of JPEG-LS com-

pared to other predictive methods results partly from the adaptive choice of
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efficient encoding strategies. Figure 2.3 shows the data flow of the lossless

LOCO-I/JPEG-LS compression method.

Figure 2.3: Data flow of the lossless LOCO-I/JPEG-LS compression method (im-
age from Weinberger et al. (2000)).

2.3.3 Segmentation-Based Methods

Object-based methods or segmentation-based methods are an option to adapt

a method even more closely to the data properties and the application class.

The research direction, which is based on higher-order source models

and combines existing approaches with advanced methods, has been named

second-generation methods by Reid et al. (1997), following Kunt et al. (1985),

and Kunt (1988). Schmalz (2005) calls it “the convergence of image compres-

sion and object recognition” and highlights that “compression has progressed

from entropy coding of a bit or pixel stream, to transform coding applied to

rectangular encoding blocks, to feature-based compression that employs seg-

mentation of isospectral or isotextural regions”. With JPEG-LS, the use of

some kind of segmentation was already touched in the previous section.

The adaptive determination and choice of optimal parameter sets for non-

stationary signals has been discussed by Strutz (2002). The author highlights

that the context-based approach is a variant of composite source modelling,

which treats the signal as an interleaved sequence generated by multiple

sources (Strutz 2002). Each of the subsources has its own model (context)

and associated parameters. The method developed in this thesis follows a

similar approach, distinguishing between different regions in the image, which

are encoded optimally with respect to their properties.
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A range of different methods has been developed to segment the images.

Reid et al. (1997) discuss region growing as a method to subdivide an image

into a set of regions with a limited intensity variation. Split and merge

algorithms (Reid et al. 1997, Pavlidis 1981) segment the image starting from

a coarse predefined subdivision by merging adjacent regions with similar grey-

level and splitting regions with large variations. K-means clustering methods

minimise the sum of squared distances from all points in a cluster to its cluster

centre (Reid et al. 1997). Segmentation using graphs can be achieved by using

Shortest Spanning Trees (SSTs) or by applying a threshold to the fractal

dimension of the image surface (Reid et al. 1997). Other recent methods

make use of neural networks for the segmentation or combine segmentation

with transform-based methods (Engel and Uhl 2002). A review of neural

networks in image compression applications is presented in (Egmont-Petersen

et al. 2002) and in Dony and Haykin (1995).

In addition to the segmentation method which is applied, segmentation-

based methods can also be classified based on the content of the regions which

are generated. According to the classification given in (Reid et al. 1997),

visual pattern-based techniques divide the image into a set of visual patterns

that contain visually important information. Reid et al. (1997) discuss the

method of Biggar et al. (1988) as an example of another category of methods

which are based on homogeneous regions. With these methods, the image is

segmented into different regions of similar content.

The method of Ratakonda and Ahuja (1996) belongs to the category of

methods based on homogeneous regions. The lossless method for natural or

general-purpose grey scale images is based on a decomposition of the image

into closed subregions “which are intrinsically similar and extrinsically dis-

similar (with respect to adjacent regions)” (Ratakonda and Ahuja 1996). The

method of Ratakonda and Ahuja (1996) can be summarized as follows: Visu-

ally important contour information is extracted with the method of Kundu

et al. (1985), where detected contours are stored using contour coding. A lin-

ear prediction-based method is used to encode the residual data that remains

after the edge structure removal. The authors highlight that their method

gives a 15 to 20 % improvement compared to lossless JPEG.

Segmentation into different regions is also done with highly adapted com-

pression methods for bi-level images, which incorporate features of object-

recognition and image segmentation (Ono et al. 2000).

The method of Bai et al. (2004) classifies image regions based on their
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importance. The lossless medical image compression method is based on seg-

menting the image using unseeded region growing to extract diagnostically

important regions of interest and encode them using the Burrows-Wheeler

Transform. In the context of lossy compression, (Du et al. 2001) distin-

guish between content- and object-based compression. Their object-based

lossy compression methods allocate more data volume to important regions

than to less important regions. Also, segmentation-based hybrid compression

methods have been proposed for the storage of medical images (Strom and

Cosman 1997, Gokturk et al. 2001).

Regarding the application classes, segmentation, in combination with

suitable encoders for decorrelating the data components generated by the

decomposition, might be well suited for computer generated content such as

rendered two- or three-dimensional vector graphics. Decomposition of nat-

ural images may be difficult and lead to a large number of small regions

with complex textures (Jang and Rajala 1990, Jang and Rajala 1991, Reid

et al. 1997). That this finding is still true can be seen from the conclusion of

Schmalz (2005) that “neither the object-based compression nor image-based

object recognition problem has been solved, although more progress is ev-

ident in the former case”. Strutz (2002) discusses the problem that it is

difficult to find a limited number of contexts containing textures with similar

properties. This thesis argues that in the special case of stellar field images

this problem can be solved.

2.4 Summary

This chapter presents information theory concepts which underpin data com-

pression, and it gives a systematic overview of compression methods. The

chapter highlights that information theory states that the possible degree of

compression for data depends on its entropy. Higher-order entropy, or more

precise models of the data, can lead to estimates of information content which

are lower than simpler models of the data.

The work of other researchers, such as in (Carpentieri et al. 2000) and

(Barthel 2003), supports the argument adopted in this thesis that – in general

– the better the compression method is tuned to the specific data content,

the higher the possible compression ratio, especially in the case of lossless

compression. This thesis adopts the position that the knowledge of data prop-

erties may be exploited to change the entropy of the data, by pre-processing
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the data into a form with lower entropy. This pre-processed data can be

compressed into a size lower than the original data.

The data compression literature asserts that a key challenge for all com-

pression methods is to remove the redundancy contained within the data.

Berg and Mikhael (1994) noted that despite relying “on the same funda-

mental concepts, the implications [of lossless compression techniques] vary

greatly”, compared to lossy compression. While the performance of lossy

methods also benefits from the removal of potentially non-essential informa-

tion, lossless methods may only apply techniques which transform the input

data into a representation which can be encoded with fewer symbols. In his

taxonomy of data compression methods, Strutz (2007) identifies coding, data

reduction and decorrelation techniques as the three main functional blocks

of modern compression methods.

The overview presented in this chapter also argues that a combination

of simple approaches (such as entropy coders), sensibly combined with pre-

processing steps to yield a highly tuned compression method, can lead to

effective compression. A model of the source can be used to describe the

source properties and hold prior knowledge about the source. The review

of methods for lossless compression from other fields also confirms this. It

further reveals that, in order to achieve high lossless compression ratios, a

central research challenge is the identification, description, and exploitation

of data specific properties. This is also an outstanding research challenge

for stellar-field image compression; hence results the need for research to

identify the visual characteristics of stellar fields and the image properties

introduced by the specific image capture devices (as investigated in Chapter

4). Therefore, a core objective of the work presented here is to adapt or

develop an image data model tightly coupled to the data properties of stellar-

field images.

While this chapter focused on the general architecture of compression

methods and on image specific methods working on arbitrary types of image

data, the focus of the next chapter is more specific. Chapter 3 gives a review

of astronomy-specific image compression methods.



Chapter 3

Compression Methods for

Astronomical Images

Compared to the number of general-purpose image compression methods (see

also Chapter 2), astronomical image compression has been investigated much

less by researchers in the field of image compression.

One cause for this could be that astronomical image compression is a

specific area. This thesis argues that to maximise compression of astronomi-

cal images, standard image compression methods cannot be applied without

adaptation, because of the special properties of astronomical images. How

astronomical images differ from other images is discussed in detail in Chapter

4. Another cause that inhibits the direct application of a range of general-

purpose image compression methods to astronomical images is the special

requirement for lossless or at least near-lossless compression. While users

of typical picture manipulation programmes can tolerate a loss of some in-

formation (which may be invisible), astronomers often require undegraded

data. This requirement is due to the need for accurate photometric and

astrometric measurements in astronomy. Lossless compression achieves less

data reduction than lossy compression as only redundancy from the data

may be removed in the case of lossless compression. Thus, it is especially

important that the applied lossless method closely matches the properties of

the data: No universal method works effectively and efficiently on all types

of data.

This chapter presents a review of existing methods for compressing astro-

nomical images; it highlights their strengths and limitations, and identifies

the research gap addressed by this thesis. First, a categorisation of com-

53
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pression methods according to their data decorrelation method is given in

Section 3.1. Then the existing methods are discussed more in detail. This

presentation is split into three different categories: lossy methods (Section

3.2), methods supporting lossless as well as lossy compression (Section 3.3),

and purely lossless methods (Section 3.4). Within these categories, publica-

tions are discussed according to the method applied. The latest attempt to

include basic compression functionality into the FITS standard is discussed

separately in Section 3.5, although it could have been included in the loss-

less methods section. It is highlighted in a separate section as its focus is

not only on presenting a method for compressing astronomical images, but

to show how compression functionality can be integrated into the FITS file

standard. A performance evaluation of the astronomy specific compression

methods discussed in this chapter is presented in Chapter 6.

3.1 General Categorisation

The systematic overview of compression methods, presented in Chapter 2,

shows that a key feature that distinguishes compression methods is the decor-

relation method which is applied. The discussion shows that, for image

compression, mainly two basic decorrelation methods were used up to now:

predictive methods and transform-based methods. In addition to these two,

there are at least three further types of compression methods: firstly, those

that make use of no data decorrelation step; secondly, those which use a

limited data decorrelation process through general-purpose encoders such as

Lempel-Ziv-Welch and the Burrows-Wheeler Transform, and finally fractal

methods which are considered as a separate group of methods in this thesis

(see also Section 2.2.3).

This section presents a categorisation of astronomy specific compression

methods regarding the decorrelation method applied. The basic decorre-

lation categories distinguished are: no or limited decorrelation, predictive

decorrelation methods, and transform-based methods. Fractal methods have

not been proposed for the compression of astronomical images so far, to the

knowledge of the author.

To account for the results of the discussion of methods closely coupled to

properties of the visual data (see Section 2.3), which highlights that current

methods often employ region-adaptive, object-based or segmentation-based

methods, the decorrelation categories are further subdivided according to the
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level of adaptation to different image regions that the method uses.

Table 3.1: Categorisation of compression methods for astronomical images, ac-
cording to their decorrelation step, their region-adaptivity, and their
preservation or loss of data.

  

Limited 
decorrelation 
(entropy 
coders)

Prediction- 
based   
decorrelation

Transform- 
based
decorrelation

No region adaptation Region adaptation

Legend:

Lossless method

Lossy method
Method providing both, a lossless and a lossy mode

Huang and Bijaoui (1991)

Pardas (1997)

FITS/PLIO 

Dong et al. (2003)
Press (1992)

White (1992)

Starck et al. (1995)

Louys, et. al (1999)

McNerney (2000)Nieto-Santis. et al.(1999)

FITS/Rice 

FITS/GZIP

Weghorn et al. (1996)

White and Greenf. (1998) 
Square root prescaling 

Linear quantisation 

Daubechies wavelet

H - Transform

Pyramidal Median Transform

Veran and Wright (1994)
Bit-plane based preprocessing 

Integer to Integer Transfrom

Sabbey et al. (1998)
Linear prediction

Signed Huffman coding

Deflate Algorithm

Variable Length Coding

IRAF Pixel List compression algorithm`

Segmentation plus wavelet

Recursive segmentation, contour 
and texture coding 

Morphological pre-processingB

Thresholding

Boussalis et al. (2004)
Object segm., wavelets, prediction

Segmentation 

The method for the classification was inspired by the taxonomy of im-

age processing algorithms of (Egmont-Petersen et al. 2002), who distinguish

between the methods by their level of abstraction of the input data, into

six different categories: pixel level, local feature level, structure level, object

level, object set level, and scene characterisation.

The categorisation given in Table 3.1 includes three categories for the

level of adaptation to different image regions. The first category consists of
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methods that do not treat image regions differently. Region-adaptive meth-

ods include those that use parameters to vary the encoding and decorrela-

tion step within the image. Furthermore, segmentation-based methods which

segment images and choose different encoders and pre-processing steps for

distinct areas were identified as a promising direction of image compression

research in Section 2.3. These methods allow the exploitation of a very high

level of redundancy with the image. Pyramidal decompositions do not really

segment the image into distinct regions. Pyramidal decompositions such as

those described in (Mueller 1999) and Salomon (2000) subsample the image

and produce successively smaller images with fewer details.

The method of Sabbey et al. (1998), which is used to store image stamps

from raw images, includes region adaptation. The method uses switched

linear prediction based on a set of predefined rules. The residuals are encoded

using a combination of Rice coding (for the high-order part of the residual)

and binary coding (for the low-order part of the residual). It is region-

adaptive insofar as the partitioning of the residual value and its encoding

are varied. The change in the partitioning is performed to keep the encoding

combination of binary and Rice encoding optimal. The core decorrelation

method of Sabbey et al. (1998) is the prediction step.

One core statement emerging from the two-dimensional classification given

in Table 3.1 is that the majority of existing methods do not employ region-

adaptive processing of the data or even segmentation. As astronomical im-

ages, which are predominantly stellar-field images, consist of regions with

very diverse properties, this may be an opportunity for further enhancements.

Furthermore, most of the existing region-adaptive or segmentation-based

methods are lossy (Huang and Bijaoui 1990, Pardas 1997, Dong et al. 2003).

This applies also for the method of McNerney (2000) that applies segmen-

tation insofar, as pixels with an intensity value below the image median are

removed before the encoding. In addition to the method of Sabbey et al.

(1998), another dedicated lossless method, PLIO (Pence 1994), exists that

could be called region-oriented.

Most existing compression methods belong to the group of entropy coders

with limited or no decorrelation. The lossy methods among them (Nieto-

Santisteban et al. 1999, White and Greenfield 1998) apply different styles of

quantisation, while the lossless methods mainly rely on entropy coding, like

the Rice and Zip based method of White et al. (1999) and Weghorn et al.

(1996).
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Transform-based compression has been researched as well for astronomy

applications, mainly with the aim to provide both lossless and lossy compres-

sion (Press 1992, White 1992, Starck et al. 1995), while only one attempt

to develop a method based on prediction has been found in the literature

(Sabbey et al. 1998). The method of Boussalis et al. (2004) employs predic-

tion as well, but only for some image parts after segmentation, while the other

parts are compressed using transform-based methods. Hence, the method of

Boussalis et al. (2004) is classified between the two decorrelation methods.

3.2 Methods Providing Only Lossy Compres-

sion

Many of the multimedia applications, which evolved throughout the 1990s,

are based on lossy compression. Indeed, lossy compression has made many

of the revolutionary applications possible which have made computers the

central entertainment platform in our homes. Lossy compression techniques

have had a great impact on computer applications, for example by enabling

the storage of previously large music files in small MP3 files, or large bitmap

pictures in small JPEG files. This probably has encouraged many researchers

to consider adapting lossy compression techniques for astronomical applica-

tions. Many of the techniques that have been reported for compressing astro-

nomical images are lossy; few techniques allow lossless compression. Purely

lossy approaches are presented in this section. Methods which are capable to

work in either a lossy or a lossless mode are discussed separately in Section

3.3. Finally, methods for strict lossless compression are discussed in Section

3.4.

3.2.1 Object-Based Compression Methods

This section starts with a set of four object-based methods which use different

techniques. While the first two, which have been developed in 1991 and 1997,

are based on morphological pre-processing, the third method proposed by

Dong et al. (2003) uses thresholding-based segmentation and wavelet-based

compression to store the different image objects. The fourth, more recent

method of Boussalis et al. (2004) is discussed at the end of this section.

The first lossy compression method for astronomical images, based on
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the morphological skeleton transform, was proposed by Huang and Bijaoui

(1990). The main idea is to detect structures above the background and en-

code them in compact form after pre-processing the data using morphological

operations (Heijmans 1994, d’Ornellas 2001). All structures at a certain level

above the background are compressed, while the background is discarded us-

ing a technique called “3-sigma clipping” by Huang and Bijaoui. Huang and

Bijaoui (1990) examine two different compression methods, one based on the

binary morphological skeleton transform, the other based on an extension

of the morphological skeleton transform to grey-scale images. This exten-

sion is called the grey-tone morphological skeleton transform. An attempt

to a precise mathematical description of morphological image operators is

provided in (Heijmans 1994). Algorithmic patterns for morphological image

processing are discussed and presented in (d’Ornellas 2001).

Figure 3.1: Data flow of the binary morphological skeleton transform compression
algorithm (Huang and Bijaoui 1990).

Huang and Bijaoui (1990) use the binary morphological skeleton to de-

scribe a grey-scale astronomical image as follows. First, the image is se-

parated into two parts:

1. The intensity values of the detected foreground pixels.

2. A binary image that contains the positions of those pixels.
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The intensity values are stored sequentially in an array and encoded using

Huffman code. The binary image that contains the pixel positions is reduced

by the binary morphological transform. Again, skeleton positions and values

are separated. The positions are coded using a hierarchical 4-bit code, while

the values are encoded sequentially by Huffman code. Figure 3.1 shows the

data flow of the compression method in detail. A detailed description of

the second algorithm using grey-scale morphological skeleton transform is

presented in the original paper.

Both methods presented in the paper of Huang and Bijaoui (1990) are

tested using three sample images. The authors compare their methods to

the following seven simple compression methods:

1. Huffman coding: The whole image is compressed using plain Huffman

encoding.

2. Successive difference encoding: First, the difference between two suc-

cessive image data columns is taken, then the resulting data is encoded

using Huffman coding.

3. Bit plane method: The pixel values are separated into bit-planes, which

are encoded separately using the hierarchical 4-bit coding technique.

4. Run length coding: The original detected data values are stored se-

quentially in a one-dimensional array and Huffman coding is applied to

the data. The binary image with the positions of the detected values

is compressed using run-length coding.

5. Contour coding: The contour of each field is coded using the chain code

of Freeman (1974).

6. Improved contour coding: Successive differences of modulo 8 are used

for the contour chain code. The starting points of the contours are

stored using the hierarchical 4-bit coding technique.

7. Morphological skeleton transform: The whole image is compressed us-

ing the morphological skeleton transform with the optimal structuring

element for the image.

Huang and Bijaoui (1990) compare the results which the above-listed

seven compression methods achieve on the thresholded images to the best
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results achieved by the best version of the morphological skeleton transform

on the particular image. The results of Huang and Bijaoui (1990) can be

summarised as follows:

For the “Coma stars” image, a stellar-field image, the compression ratio

of the morphological skeleton transform is approximately three times higher

than Huffman encoding. For the “Coma galaxies” image, an image contain-

ing a smaller cluster of galaxies, the compression ratio of the morphological

method obtains approximately 6.5 times the compression ratio of Huffman

encoding. Finally, for the third image, a large-scale elliptical galaxy, the

compression ratio may be enhanced by a factor of three if the morphological

skeleton transform is used instead of Huffman encoding. The comparison

of the grey-scale morphological skeleton transform to the binary morpho-

logical skeleton transform leads to equal compression ratios for the “Coma

star” image, slightly higher compression ratios of the binary morphological

transform on the galaxy image, and by a factor of up to two improved com-

pression ratios for the grey-scale morphological skeleton transform in case of

the large-scale galaxy image (Huang and Bijaoui 1990).

One of the main advantages of the method based on morphological de-

composition, compared to other lossy compression methods, is that it does

not introduce a global distortion that affects each pixel of the image as may

be the case with transform-based approaches (Huang and Bijaoui 1990). All

structures at a certain level above the background are compressed without

distortion. Nevertheless, the method is lossy because the image background

is discarded completely (“3-sigma clipping”). The morphology pre-processing

based compression method is compared to a method using the H-transform

for pre-processing in (Bijaoui et al. 1996). The H-transform based approach is

almost similar to the one of White (1992), but in order to avoid blocking arte-

facts which appear in the restored image (Bijaoui et al. 1996, White 1992),

it uses an image restoration method based on a priori knowledge.

With their comparison, Bijaoui et al. (1996) come to the conclusion that

both the morphological method and the H-transform based method lead to

high compression ratios on classical astronomical images although the com-

parison relies solely on the lossy compression rates achieved on the different

images. The evaluation does not include a measure for the distortion intro-

duced to the compressed data. Hence Bijaoui et al. (1996) conclude that “no

perfect solution exists for image compression, we must take into account the

image texture and future use”.
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The second object-based compression method is proposed in (Pardas

1997). Pardas (1997) highlights that his method belongs to the family of

second generation image compression methods (Reid et al. 1997). The im-

age is described as a set of regions (partitions) and information about the

region content. Therefore, the compression algorithm consists of a two-stage

process. Pardas (1997) proposes a general multiresolution top-down segmen-

tation algorithm based on morphological tools. Figure 3.2 shows the data

flow of the iterative process.

Figure 3.2: Data flow of the algorithm proposed by Pardas (1997).

The method of Pardas (1997) works as follows: During each iteration

step, a model of the image – based on the information gathered from pre-

vious compression steps – is generated to obtain information of the regions

that are not correctly represented in the current stage. The difference of the

original image and the model is calculated. The residual image is simplified

by applying morphological filters. Markers that identify the segmented re-

gions are extracted. The “uncertainty area” – area which is not yet assigned

to markers – is assigned to some region with nearly similar characteristics.

Finally, the region borders and textures are encoded. Pardas (1997) mentions

chain coding techniques and skeleton decompositions for contour coding.

Different techniques may be applied to code the region texture. A range of

techniques from simply storing the mean value of every region to using shape

adaptive Discrete Cosine Transform or region-oriented wavelet transform are
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mentioned by Pardas (1997).

Pardas (1997) includes an example for the discussed compression method

using three successive segmentation levels. If the contours are coded with the

chain code method, a compression ratio of 60 is achieved when the region

textures are coded using a generalized orthogonal transform.

The image compression technique presented by Pardas (1997) remains

more of a proposal for a technique to consider when developing an astro-

nomical image compression method rather than a technique that can readily

be used. Before the method can be used in astronomy, an optimal texture

coding technique has to be determined.

Zerotree-based 
Wavelet-
coding

Original file Lossy
compressed file

Object segmentation 
by thresholding

Foreground map

Filling the 
rectangular area

Connectivity analysis

Object Re-classification

Background Entities 1 ... n 

Figure 3.3: Data flow of the object-based compression algorithm (Dong et al.
2003).

A third content-based lossy method for the compression and transmission

of astronomical images is presented by Dong et al. (2003) as an extension

of their previous research on effective error control for video streaming. The

content-based method requires the segmentation of the astronomical image

into individual entities and the independent encoding of the entities using

wavelets. Similar to the work presented in this thesis, Dong et al. (2003) focus

on the compression of typical astronomical deep-field images – images with

point like bright sources on a dark background – and adopt the classification

of astronomical images also presented in (McNerney 2000). A comparison

of the compression results of a large-scale object with a deep-field image

shows that the SPHIT compression algorithm (Said and Pearlman 1996) has
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difficulties with typical astronomical deep-field images. Thus the authors

conclude that a big challenge in astronomical image compression is how to

compress deep-field images (Dong et al. 2003). An overview of the method

proposed by (Dong et al. 2003) is given in Figure 3.3. The steps involved in

the algorithm are:

1. Object segmentation: The segmentation of objects is done by thresh-

olding. According to Dong et al. (2003) this is relatively easy due to

the huge intensity contrast between foreground and background.

2. Connected components analysis: The image is scanned and the con-

nected pixel regions are labelled.

3. Object re-classification: Objects are classified based on their area, and

small ones are merged into the background. The result of this step is a

list of astronomical entities and a background with insignificant entities

(according to Dong et al. (2003)).

4. Wavelet coding: All entities are encoded individually using wavelet cod-

ing. The available bits are divided into the number of bits required for

the background and those available for the foreground. The number of

bits available for the background depends on the quality requirements.

The number of foreground bits assigned to a single foreground entity

depends on its area. Wavelet coding is applied to the smallest regular

area that covers the whole entity, to bypass the problem of having to

represent the shape of each entity accurately.

Dong et al. (2003) also present a robust packaging technique and a trans-

mission scheme to prevent error propagation in case of packet loss on a net-

work and to optimize the visual quality of the data in such a case.

The evaluation of the possible compression rate does not include any

discussion of the influence that the compression method has on astronomy

applications. Therefore it remains unclear for which application classes the

method might be used. The authors evaluate their robust packaging tech-

nique, and report a good streaming quality on lossy networks in their ex-

perimental results. This is an important feature for transmission based on

the user datagram protocol (UDP). But for the transmission and retrieval

of astronomical images from image databases often the hypertext transfer

protocol (HTTP) and file transfer protocol (FTP) are used. They are based
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on the transmission control protocol over internet protocol (TCP/IP), which

guarantees a lossless transmission by re-transmitting lost packages.

Boussalis et al. (2004) recently proposed an object based lossy compres-

sion method, combining object segmentation with wavelet and predictive

coding. The object analysis classifies objects into clear and faint, and ap-

plies predictive coding for the latter. Zero-tree wavelet-based compression is

used for the clear objects. The objective of the method is to enhance the

detection of faint objects in astronomy while providing a good overall visual

effect (Boussalis et al. 2004).

3.2.2 Quantisation-Based Methods

Methods presented in this section are based on quantisation or thresholding.

Both methods lead to the reduction of the number of bits required to encode

the intensity values of every pixel. Quantisation can be applied as a first

step for the lossy compression of astronomical images as it leads to a lossy

approximation of the original signal. In addition to scalar and vector quanti-

sation (see also Section 2.2.2) quantisation methods can also be characterised

by their level spacing. For astronomical images, uniform and non-uniform

scalar quantisation methods have been discussed. Square root prescaling

has been proposed by Nieto-Santisteban et al. (1999) to reduce the size of

astronomical images generated by the “Next Generation Space Telescope”.

Linear quantisation was first proposed by White and Greenfield (1998) for

compressing floating point images as well as integer images. Watson (2002)

also presents a method for quantising astronomical integer images in order

to remove oversampling of the noise.

Another lossy method, which can be used for the distribution of lossy

compressed images, is proposed in (McNerney 2000). The key aim for de-

veloping the method is to transmit images over a low-bit-rate link, which

required 1024 by 1024 16-bit-per-pixel images to have a size of less than

30 kilobytes. Also McNerney (2000) mentions that the method targets the

needs of astronomers, schools and colleges, and ‘Public Understanding of the

Science and Technology’ (PUST) displays. Tools and services for accessing

astronomical data for educational purposes are discussed in detail in Chris-

tian (2006).

As discussed earlier and in other papers, for example (White 1992), as-

tronomers accept lossy compression only for previewing and selection pur-



3.2. METHODS PROVIDING ONLY LOSSY COMPRESSION 65

poses. Like all lossy methods, the method of McNerney (2000) might be used

for schools, colleges, and planetariums. Lossy methods might not be used for

scientific grade investigations, especially as the paper discusses reduction of

the signal-to-noise ratio, during image generation, to meet time constraints

for the data transfer to public displays.

The key idea of this method is to threshold the image data to remove

all the background data below the image median. According to McNerney

(2000), then run-length encoding, and a lossless encoding method are ap-

plied. The latter was developed by the same author earlier. The key idea of

this method is to remove the dark and noisy background, whose presence in

the images makes compression of astronomical images difficult. While this

approach may lead to high compression ratios, the thresholding may also

cripple faint sources. This is also highlighted by White (1992), who dis-

cusses thresholding in combination with run-length encoding as well. Also,

thresholding might lead to problems if the image background is not totally

plain.

The method is compared to other lossy compression methods in (McNerney

2000). The results show that faint stars are disregarded (see Figure 3.4). It

is also unclear what causes the noise in the background area, given that the

dark area is segmented by thresholding (see Figure 3.4).

Figure 3.4: Comparison of the original image (a) and an image compressed using
the method of McNerney (d). It can be seen that faint objects present
in (a) are lost in (d), while Hcompress and Fitspress, images (c) and
(b) keep these objects (figure from (McNerney 2000)).
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The core idea of the method of McNerney (2000) is that fainter objects

and the background of astronomical images are not important and can be

discarded before compression. As the method of McNerney (2000) is in-

tended for educational purposes, not for scientific grade investigations, these

requirements do not match with the requirements for this investigation. For

scientific applications astronomers often have to know how the sky back-

ground exactly looked like before an event, thus it cannot be considered

unimportant and discarded.

Another quantisation method, square root prescaling, attempts to retain

as many bits of noise of the original data as possible (Nieto-Santisteban

et al. 1999). The scaled square root of the original data is calculated and

truncated to reduce the dynamic range of the data. The scaling, which is

derived from the readout variance R and the gain G of the imaging device,

preserves a desired number of noisy bits. The formula used for prescaling

and rounding is:

Dquant = bNB ·
√

G ·
√

D +
R

4G
+ 0.5c (3.1)

NB is multiplied with the number of noise bits that have to be saved.

Nieto-Santisteban et al. (1999) suggest to use NB ≈ 2; it leads to a quan-

tisation step close to the digitisation noise. Nieto-Santisteban et al. (1999)

report that following the square root prescaling, the Rice, Compress, and

Gzip algorithms1 achieve similar results, with overall compression ratios of 4

(retaining 4 noise bits), up to as much as 8 (retaining 1 noise bit).

Square root prescaling with truncation leads to a non-uniform quanti-

sation where smaller signal values are quantised more precisely than larger

signals. The prescaling that is applied with the square root quantisation can

be used to preserve a portion of the noise.

The problem of compressing floating point images is addressed by White

and Greenfield (1998). The authors propose a scheme for compressing this

type of images by quantising the data and encoding the resulting data stream

of integer values. The compression method is lossy as the original data can

not be recovered exactly. The method proposed by White and Greenfield

(1998) consists of three steps:

1Gzip is a general-purpose compression method which is widely used for compressing
all kinds of binary data.
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1. Noise estimation: First, the noise value σ is defined as 1.483 times

the median absolute value of the differences of successive pixels. If the

median absolute difference is zero, σ is defined as the root mean square

that is computed after sigma-clipping to reject outliers.

2. Quantization: Secondly, the floating point values are converted to in-

teger values by quantizing them. The quantization step size is chosen

with respect to σ. The step size is 2−Bσ. B is a user-chosen parameter

that is, according to the given definition, directly related to the com-

pressed file size. Increasing B by one increases the number of bits used

per pixel by one bit.

3. Rice coding: Finally, the integer data generated by quantization is

encoded using Rice coding.

Due to its straightforward design and the Rice coding method, the com-

pression method is fast and as the image lines are compressed separately,

not the whole image has to be decompressed when accessing only parts of it

(White and Greenfield 1998).

According to the evaluation reported by the authors, compression ratios

of 3 are possible using conservative settings for the permitted level of changes.

The authors claim that their method has only a scientifically negligible effect

on the data although the method is lossy. The compression method of White

and Greenfield (1998) could also be applied to integer images, although the

authors mention that quantisation may be omitted for integer images in order

to losslessly encode the data. Rice encoding is also available as a standard

compression method for FITS images.

A method which comprises linear quantisation is also proposed by Wat-

son (2002). This method involves the same three steps, noise estimation,

quantisation, and encoding, as the method of White and Greenfield (1998)

discussed above. The lossy quantisation of the image data in the FITS file

is followed by lossless compression using general-purpose compression tools

such as Gzip. The key advantage of this method, compared to the one of

White and Greenfield (1998), is that the quantised FITS file can easily be

recovered using the same general-purpose compression/decompression tool

that was used when compressing the file. The quantum used by Watson

(2002) for resampling is chosen as a fraction of the estimated background

noise in order to reduce the over-sampling of the noise. Also, the resampling
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quantum is chosen to be an integer multiple of the original encoding. Certain

special values like “blank” pixels are not changed as those values are often

used to flag saturated data or implicitly blank pixels.

After quantisation, the FITS image is not smaller than the original file,

but the amount of different data values has been minimized. Therefore, as

(Watson 2002) reports, general-purpose compression tools perform better on

the quantised data.

In general, with all quantisation-based methods, it remains questionable

when taking into account how data of typical raw images is distributed, if

compression methods based on a look-up table could not lead to nearly equal

results without introducing a distortion to the data (Weghorn 2002). A look-

up table based approach is a lossless alternative to quantisation.

If lossy compression is used, non-uniform quantisation preserves small sig-

nals from darker objects better than a uniform quantisation, as the quantum

sizes for smaller values are smaller than the ones for large signals. But even

with non-uniform quantisation it remains uncertain in which astronomical

application classes the introduced distortion is tolerable.

3.3 Hybrid Methods Providing Both Lossy

and Lossless Compression

Many of the compression methods proposed for astronomy applications pro-

vide a lossless mode and a lossy one. These methods – called hybrid here –

typically rely on transform-based compression methods widely used for au-

dio and image compression. Many of the methods presented here seem to

work perfectly both for fast previewing and selection of material as well as

for archival storage. However, they typically suffer from the high computa-

tional complexity associated with the transform-based approach which the

lossy system kernel includes.

3.3.1 Wavelet-Based Methods

One of the earliest methods for the compression of astronomical images is

Fitspress (Press 1992). Fitspress is based on a two-dimensional wavelet trans-

form, using the Daubechies wavelet with four coefficients. A description of

the Daubechies wavelet transform can be found in (Salomon 2002). Com-
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pression methods based on the wavelet transform can provide both lossless

and lossy compression.

Fitspress includes an interesting residual image generation method to

provide both lossless and lossy compression. In one run, Fitspress outputs

two result files – a lossy compressed image file and a residual file that contains

the “noise” information. If both files are stored, the original image can be

reconstructed exactly (lossless compression).

Wavelet- 
transform.Original file Lossy

compressed 
file

Extract bright pixels 
(user-defined 
percentage) Run length encode

Locations 

Huffman

Brightness

Convert to float, 
clip bright,

subtract median

Inverse 
wavelet-transf.

Discretise Run length encode

Huffman

Coefficients 

Additional file 
for lossless 

compression

Get Residuals

Figure 3.5: Data flow of the Fitspress compression algorithm (Press 1992).

The Fitspress algorithm attempts to store only the important informa-

tion within the image through the following procedure (Press 1992): First, a

user-chosen fraction of the brightest – hence regarded as the most important

– pixels are extracted and stored exactly. Second, the whole image is com-

pressed using the Daubechies wavelet transform. The wavelet coefficients are

discretised again and a fraction of the wavelet coefficients is stored. Both,

the extracted bright values, selection coordinates, and the wavelet coefficients

from step two are compressed independently using run-length encoding fol-

lowed by Huffman coding. Both encoded components are stored within the

file containing the lossy compressed image. Finally, the pixel values for the

residual file are determined by reversing the wavelet transform and subtract-
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ing the result from the original image values. Figure 3.5 shows the data

flow.

Typical lossless compression ratios achieved range in the order of 1.5 to 5

(Press 1992). According to the measurements reported by Press (1992), Fit-

spress produces good results, in terms of utility for astronomical images, at

compression ratios between 10 and 30. A range of example images is shown

in (Press 1992). The tested release (Version 0.8) of the Fitspress software

processes 2-dimensional, 16-bit-per-pixel, single-plane images. In a compar-

ison of the Daubechies transform with the Haar transform, discussed for

astronomical image compression in the following subsection, Salomon (2002)

argues that the Daubechies wavelet produces a better energy compaction

than the Haar transform.

Interestingly, the idea of Fitspress, which was first published for astro-

nomical images in 1992, was re-published later as a new general-purpose

image compression algorithm in (Mandyam et al. 1995). Like Fitspress, the

paper presents the idea of using the Discrete Cosine Transform, discretise the

coefficients, inverse the transform and calculate a residual image. Finally, the

discretised coefficients and the residual should be stored.

Hcompress is an image compression package presented by R.L. White

(White 1992, White and Percival 1994) which is based on the H-transform,

a two-dimensional generalisation of the Haar wavelet transform. Apart from

the encoding step that includes two stages, Hcompress follows the typical

design of a transform-based image compression method. Like Fitspress, it

provides both a lossy and a lossless mode. The H-transform based method

relies completely on integer arithmetic; hence there are no losses due to

rounding, which occur when floating-point arithmetic is used. Thus, during

compression, the lossless mode does not require an inverse wavelet transform

and a difference image to account for numeric errors.

The lossless Hcompress relies on the assumption that the coefficients of

the H-transform are easier to compress than the original pixel data. As the

H-transform is based on the differences between adjacent pixels, this is true

for nearly noiseless data (White 1992). The author mentions that for very

smooth or constant images, transform coefficients may be zero over large

regions. In the lossy mode, transform coefficients are quantised as indicated

in Figure 3.6, which shows the data flow. The quantisation step, as it is only

applied in the lossy mode, is surrounded by a dotted line. Quantised or non-

quantised wavelet coefficients finally are coded with a method first proposed
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by Huang and Bijaoui (1990). First, the bit-planes of the coefficients are

separated and individually coded by quadtree encoding, thereafter Huffman

encoding is applied to the quadtree coefficients. In case the quadtree coding

causes an enlargement of the bit-plane data, the bit-plane is transcribed

verbatim to the output file.

Wavelet 
transform

Original file Compressed file 
Discretise

Separate bit-planes

Coefficients 

Quadtree coding of 
every bit-plane

Huffman encoding 
of the quadtree values

Hierarchic 4-bit coding method 
of (Huang and Bijaoui 1991) 

Figure 3.6: Data flow of the Hcompress compression algorithm (White 1992).

According to (White 1992), Hcompress achieves lossy compression ratios

of at least 10 without a noticeable loss in the astrometric and photometric

properties of the image. White (1992) also includes a discussion about the

properties of the H-transform for adaptively filtering the image by discarding

information at certain scales. White (1992) mentions lossless compression

ratios for CCD generated images of factors from 3 to 30 depending on the

CCD characteristics. The only characteristic given by White (1992) is the

read-out noise of the CCD.

In their second paper, White and Percival (1994) stress a possible applica-

tion of Hcompress as the basis for a progressive image transmission system for

remote observation and visual inspection of data from remote image archives.

In an evaluation of lossy compression for astrometry applications, White and

Percival (1994) come to the conclusion that astrometry is hardly affected by

compression for modest compression factors of up to 20, for digitised photo-

graphic plates.
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3.3.2 Other Transforms

Astronomical image compression based on the pyramidal median transform is

proposed by Starck et al. (1995). The pyramidal median transform (PMT)

is introduced as an alternative to a wavelet transform, for example used

in the Hcompress approach. The authors argue that the PMT has several

advantages over the wavelet transform:

• Robust smoothing: The nonlinear PMT consists of a series of smooth-

ings of the input image, each successive smoothing with a broader ker-

nel leads to a new resolution scale. Starck et al. (1995) argue that

unlike with the wavelet transform, stellar objects are not present at

each resolution scale.

• No zero mean property: The mean of the coefficients of the different

resolution scales of the PMT is not necessarily zero, as is the case with

the wavelet transform. Negative values, which can create artefacts, are

not present with the PMT.

• Integer arithmetic: The PMT can be carried out in integer arith-

metic that leads to significant computing time savings compared to

floating-point arithmetic. Even today, with fast floating-point units

included in standard desktop CPUs integer arithmetic is still faster on

a range of embedded CPUs. These are commonly used on space-based

telescope systems (Starck et al. 1995).

The proposed PMT compression method is capable of both lossy and loss-

less compression. As with Fitspress, the lossless mode relies on the compu-

tation of the residual between the compressed image and the original image.

In the lossless mode, the compression ratio is about 3 to 4, according to the

measurements of Starck et al. (1995).

Figure 3.7 shows the data flow of the PMT compression method. First,

the PMT is applied to the input data. Then, the obtained coefficients are

quantised to obtain a filtered image. The encoding of each resolution level

relies on the Huang-Bijaoui method (Huang and Bijaoui 1990), just like in

Hcompress. In the lossless mode, the residual noise between the image and

the inverse transform of the quantised coefficients is calculated. The authors

do not mention the method used to compress the residual noise. The intended

area of application of the PMT based compression method is to provide

preview functionality in large image databases, such as sky surveys.
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Figure 3.7: Data flow of the PMT compression algorithm (Starck et al. 1995).

3.3.3 Bit-Plane Separation With Greycode Encoding

Compfits (Véran and Wright 1994) is a utility program to analyze and pre-

process astronomical images. It does not include its own compression routines

but it is intended to work as a filter program to separate the compressible

and less compressible bitplanes of a 16-bit-per-pixel integer image (Véran

and Wright 1994). It sends the compressible part to a user-chosen external

lossless compression program (e.g. Gzip, compress,...).

The main idea of Compfits is to separate compressible and incompress-

ible bitplanes of astronomical images. While the low-order partition – the

low-order bitplanes of astronomical images – is due to noise inherently in-

compressible and likely to grow in its overall size during “compression”, the

high-order partition can be compressed (Véran and Wright 1994).

Compfits works as follows. First, the input data is converted to grey

code to increase the coherence of each bit-plane (see Figure 3.8). Second,

the first-order entropy of every bit-plane is calculated. Compfits uses the

entropy to separate the high from the low-order bit-planes. The bit-plane, for

which the first-order entropy becomes slightly different from 1 bit-per-pixel

defines the limit between low-order and high-order partition. This limit is
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taken to mean that the bit-plane does not consist of pure noise anymore.

Finally, the high-order partition is padded to 16-bits-per-pixel and sent to

an external compression program. The incompressible low-order partition is

stored uncompressed.

  

Bit-plane (4) Bit-plane (3) Bit-plane (2) Low-order bit-plane (1)
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Figure 3.8: Bit-planes of a small astronomical image, encoded only with a bit
depth of 8 bits. The upper eight images (a) show the original image
(b) encoded in normal binary encoding. The lower eight images (c)
show the image data encoded in grey code.

Figure 3.9 shows the bit-planes of an astronomical image which has been

encoded with a bit depth of eight bits, in binary and grey code, to demon-

strate that grey encoding leads to larger coherence of each bit-plane. While

Compfits might also be used in a lossy mode, the focus lies on lossless com-

pression.

Comparing the lossless modes, Compfits achieves nearly the same as or

slightly better compression ratios than Fitspress, according to Véran and

Wright (1994). Véran and Wright (1994) report that on typical images,

Compfits combined with Compact 1.0 is three times faster than Fitspress.

An enhanced version of the non-lossy compression method, Compfits is

presented by Gaudet et al. (2000) to address the challenge of archiving data

generated by CCD mosaics. While the basic algorithm remains unchanged,
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the implementation is enhanced. The only change of the algorithm is a new

sampling method to determine the LSB (least significant bit) - MSB (most

significant bit) threshold. Compfits 2 makes use of the FITSIO library

(Pence 1992) to read and write FITS files.

The comparison given in (Gaudet et al. 2000) of a variety of lossless com-

pression programs shows that Compfits 2 (used in combination with Compact

or Compress) is about ten times faster than Gzip or Bzip2 alone.
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first-order entropy 
of every bit-plane

Separate bit-planes

Entropy below 1 bit/pixel
(compressible)  
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program

Entropy close to 1 bit/pixel 

Gray code bit-planes 

Figure 3.9: Data flow of the Compfits algorithm (Véran and Wright 1994).

3.4 Methods Providing Only Lossless Com-

pression

Although, as shown in the previous section, a range of methods for the

lossy compression of astronomical images has been developed and compared

(Louys, Starck, Mei, Bonarel and Murtagh 1999), lossless compression meth-

ods, especially those that are efficient in terms of the computational load,

are quite rare.

In general, the hybrid methods presented in the last section generate a

high computational load because they follow the transform-based approach,

especially if – as with the method of (Press 1992) and (Starck et al. 1995) –
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both the transform and the inverse transform have to be calculated for using

the lossless mode.

3.4.1 Transform-Based Methods

An integer compressor based on Swelden’s lifting scheme (Swelden 1996), a

framework for various wavelet transforms, is presented by Louys, Starck and

Murtagh (1999). The scheme is compared to Gzip compression and lossless

JPEG mode.

For the lossless compression method, Louys, Starck and Murtagh (1999)

adapted the low-pass and band-pass operations used in the Haar wavelet

transform, to achieve an integer-to-integer transform. The predictor and

update operators use, where necessary, a floor truncation function (Louys,

Starck and Murtagh 1999).

The compression method based on Swelden’s lifting scheme achieves higher

compression ratios than Gzip and lossless JPEG compression on a scanned

plate image of size 1024 x 1024 (Louys, Starck and Murtagh 1999). Louys,

Starck and Murtagh (1999) find that the lifting scheme based compression

method is about four times faster than Gzip and lossless JPEG compression

is about two times faster than the lifting scheme, but “lossless” JPEG suffers

from rounding errors and therefore the lossless JPEG compression cannot be

regarded as a truly lossless compression method. Lossless compression ratios

range in the order of 1.4 (Gzip) to 1.7 (lifting scheme).

Louys, Starck and Murtagh (1999) highlight that the decompression of

an image, compressed using the lifting scheme, takes more than four times

longer than lossless JPEG compression and more than twice the time of Gzip.

Louys, Starck and Murtagh (1999) mention that one of the appealing

properties of the Haar wavelet transform is that lower resolution versions of

the image are exactly two-fold rebinned versions of the next higher resolution

level. Therefore, one major advantage of this method is that lower resolution

images can be generated using the transform and transmitted with low trans-

mission time requirements. The reconstruction of the high resolution version

of the image is possible using update data for the higher resolution levels, a re-

transmission of the whole image data is not necessary. The integer-to-integer

transform compression method is implemented in the routine “mr lcomp” of

the MR/1 package (Murtagh 2006).
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3.4.2 Prediction-Based Methods

A lossless compression method which is based on switched linear prediction

with Rice coding (Rice and Plaunt 1971, Rice 1979, Rice 1983, Rice 1991)

is presented in (Sabbey 1999). Rice coding was discussed in Section 2.2.1.

More details on the compression algorithm and the sky survey system for

which it was developed can also be found in (Sabbey et al. 1998). This

compression method achieves high data throughput, as it does not require

computationally expensive transforms.

Figure 3.10: Data flow of the adaptive compression algorithm proposed by Sabbey
(1999).

Figure 3.10 shows the dataflow and the steps involved in this compression

method. Based on (Sabbey 1999), the method can be summarised as follows:

1. Linear prediction: First, the difference between each pixel value x

and its prediction p is calculated. The prediction used is a linear com-

bination of the already-transmitted consecutive pixel values. The kind

of linear combination is chosen according to a set of predefined rules. A

modified version of Graham’s rules (Netravali and Limb 1980) is used

to select one of the linear combinations based on a comparison of the

local gradient approximations to a noise threshold. In flat regions, the

mean of several neighbouring pixels is selected as the predictor. Other-

wise the direction and order of a predictor is selected based on the local

correlation (Sabbey 1999).
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2. Prediction residuals mapping: The prediction residual ∆ = (x−p)

is mapped onto non-negative integer values δ:

δ =

{
−2∆− 1 if ∆ < 0

2∆ if ∆ ≥ 0

3. Residual partitioning: The residuals δ are then partitioned into N

low-entropy (noise) and (16−N) high-entropy bits.

4. High-order bits encoding: The (16−N) high-order bits are encoded

using Rice coding, a less optimal but faster method than Huffman

coding. If the Rice code exceeds a length of 12 bits, uncompressed

pixels are transmitted instead. The N low-order bits are transcribed

verbatim to the output stream.

5. Adaptation of the encoding: The partition size N that is used

to separate the residual is adapted by two varying terms Ns and Nr

with N = Nr + Ns (Sabbey et al. 1998). The slowly varying term Ns

is changed by −1, 0 or +1 every image block (for example of 16 ×
16 pixels). The rapid changing component of N , Nr is typically zero

but increases in bright zones, when large prediction residuals become

probable.

The evaluation of the proposed algorithm included in (Sabbey 1999), us-

ing 25 test images, shows that the Rice based compression algorithm achieves,

in nearly all cases, at least the same compression ratio as Hcompress, Fits-

press, or Compfits + Compact. The encoding program is found to be about

ten times faster, in most cases, than the other compression programs. An-

other approach to include the Rice compression technique exists, but has

never been published2. It is almost similar to the method of Sabbey (1999)

using Rice encoding or sending uncompressed data in bright regions when

the prediction residual exceed a certain size.

3.4.3 Entropy Coding

A special lossless and computationally time-efficient coding technique for as-

tronomical interferograms, introducing a new scheme called Signed Huffman

2http://stupendous.cis.rit.edu/richmond/rice/rice.html (20.02.2007)
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Coding (SHC), is proposed by Weghorn et al. (1996). This coding scheme

takes the probability distribution of the pixel-to-pixel variations of astronom-

ical interferograms into account and codes negative and positive variations

with the same Huffman coding sequence. An extra sign bit is used to en-

code the up/down information for all non zero variations. A pixel difference

of zero is encoded as one single zero bit while a pixel difference other than

zero is encoded with the following pattern: a leading 1, the sign bit and the

Huffman coded absolute value of the pixel difference (Weghorn et al. 1996).

The developer of the method demonstrates that this coding scheme re-

quires less bits for all variations larger than ±1. Measurements using sample

interferometric data show that SHC yields compression rates of about 4.8

and therefore outperforms Huffman coding and Lempel-Ziv coding which

achieved a compression rate of approximately 4.6. Weghorn et al. (1996)

mention that de-biasing the images further improves the compression ratio

of the SHC method up to about 10, for sample interferograms taken with a

special CCD camera at the ESO Danish 1.5-m telescope in La Silla, Chile.

Weghorn et al. (1996) highlight that the computing complexity of SHC is

linear with respect to the number of image pixels and report that SHC runs

about five times faster than Lempel-Ziv. The Lempel-Ziv method belongs to

the set of already standardised FITS file format compression methods that

are discussed in the following section.

3.5 Proposed FITS Compression Standard

A FITS compression standard is proposed by White et al. (1999), presenting

a general technique for storing compressed images in FITS binary tables.

FITS image compression using variable length binary tables is first pro-

posed by Pence (1994). First, the image is divided into several rectangular

sub-images or tiles. Then, each sub-image is compressed into a binary data

stream. The binary data stream is stored in the FITS file specific data

structure, where each of the sub-image data streams is accessible by random

access (Pence 1992). The FITS compression proposal does not specify the

compression algorithms to be supported, it provides a general framework how

compression methods should be included within the FITS standard. Current

implementations of the FITSIO library, the standard library for reading and

writing FITS files, include three different compression methods, Gzip, Rice,

and PLIO (PLIO stands for the IRAF Pixel List I/O compression algorithm)
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(Pence 2007). Floating-point or double-precision images are quantised prior

to the compression, using the scheme first proposed by White and Greenfield

(1998).

One advantage of dividing the image into regular tiles is that reading

programs may randomly access sub-images without having to decompress the

entire image. Also, compression methods can adapt better to the data as the

smaller image subset has more special properties to exploit. In principle, any

kind of compression algorithm can be supported within the FITS standard.

3.6 Existing Methods and Compression Re-

quirements

Section 1.1 of this thesis identified two research challenges for the compres-

sion of astronomical images: lossy compression of data for preview and pos-

sibly catalogue overlay, and lossless compression for data transmission and

archival. With the second challenge, this thesis highlighted that a potential

method should be highly adapted to the properties of the data.

With the diverse set of existing methods working in a lossy mode (11

out of 17), the first challenge was resolved satisfactorily, for example by the

method of McNerney (2000) for public access to lossy compressed data, or

by the method of White (1992). White (1992) explicitly suggests in (White

and Percival 1994) a possible application of their method as the basis of a

progressive image transmission system.

The research challenge which has not been successfully addressed yet

is the second challenge, to develop a lossless highly adapted compression

method tailored for data transmission and archival. Section 1.1 summarised

details of the requirements for the compression of primary astronomical image

data. The literature review showed that the existing methods, which work

losslessly and are closely adapted to the properties of astronomical data, are

few.

Many of the lossless methods are entropy coders with limited or no ability

to decorrelate the data. Most of these methods, like the Rice and Zip based

method of White et al. (1999) exploit only the signal value distribution of

the data. The method of Weghorn et al. (1996) exploits the distribution of

the pixel-to-pixel variations.

Higher-order dependency of the data pixels and from local features are
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exploited with conventional prediction (Sabbey et al. 1998) and transform-

based methods (Press 1992, White 1992, Starck et al. 1995, Louys, Starck

and Murtagh 1999). But the majority of these methods are based on poten-

tially time-consuming transforms, and their ability to exploit data-specific

properties remains limited. Features at object or region level are not directly

addressed with transform-based methods.

Many astronomical images are stellar-field images, though, which con-

sist of regions with diverse properties. Therefore a discriminative choice of

compaction methods would adapt compression methods better to this type

of data source. Composite source modelling, which treats the signal as an

interleaved sequence generated by multiple sources (Strutz 2002), could ex-

ploit this different-regions-with-diverse-properties feature, as well as a seg-

mentation-based or object-oriented method. Most of the existing region-

adaptive, object-based or content-based approaches are lossy (Huang and

Bijaoui 1990, Pardas 1997, Dong et al. 2003).

Dong et al. (2003) highlight that a big challenge in astronomical image

compression is how to compress deep-field images. Existing research has

not yet successfully addressed the challenge of developing a lossless method

which is highly adapted to the distinct properties of astronomical stellar-field

images, such as deep-field images. Existing methods, such as the lossless

integer-to-integer-based compression method, do not adapt to the distinct

properties of astronomical stellar-field images or the adaptation is limited to

changing coding step parameters as with the Rice based method of (Sabbey

et al. 1998).

Examining the compression methods which have been proposed, mainly

during the past eighteen years, the literature review showed that most of

them are not suited for the lossless archival of astronomical image data. Only

three basic compression methods were included in the FITSIO library, the

commonly used library for generating and reading astronomical image data.

The data archival problem is tackled by investing huge sums of money in

establishing – and even more important – continuously enlarging the storage

capacity of data centres for astronomical data.

Data size and rates have increased tremendously in recent years. For

example Axelrod (2006) highlights that the Large Synoptic Survey Telescope

– with its 3 Gpixel imager and high observing frequency – produces roughly

17 TB per clear night, which drives the need for a method to reduce the size

of the data generated. Typical spatial resolutions of single imaging devices
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used in astronomy nowadays are in the order of 8000 by 8000 greyscale pixels,

and the resolution of imaging devices is still increasing and detectors with

even higher resolutions3 are becoming available (Howell 2000). This growth

even exceeds the growth of available storage space that can be obtained with

fixed or only moderately growing budgets. Also, the larger CCD mosaics

that have come into use (Baltay et al. 2002, Kuijken et al. 2004) increase

the data amount generated. Besides the planar size of the images, the high

dynamic range of astronomical images also contributes to increase the storage

requirements of astronomical data sets. Image sensors used in consumer-

market digital cameras typically generate low dynamic-range colour images,

using colour filters at chip level. Unlike them, astronomical imaging devices

generate high dynamic-range greyscale images. An astronomical image is

usually recorded using a well-defined optical colour filter to generate an image

at a certain frequency band of the light spectrum.

This increasing size of the data sets drives the need for size-efficient com-

pression methods if the data which is generated at high cost shall be archived

for future use.

3.7 Summary

This chapter gave a survey of compression methods for astronomical images.

The detailed discussion of existing methods for lossy and lossless compression

and of methods working in both modes showed that a variety of methods has

already been proposed and tested for the compression of astronomical image

data.

Two basic research challenges were identified for the compression of astro-

nomical data: firstly, the lossy compression for preview and catalogue overlay,

and secondly, lossless compression for transmission and archival. The first of

these challenges was successfully addressed. As shown in this survey, a wide

range of methods has been examined and some of the proposed methods are

used for practical applications (White and Greenfield 1998, McNerney 2000)

such as the public dissemination of lossy compressed data for educational

purposes (McNerney 2000).

3In the year 2007, the University of Bonn presented a 10-by-10 centime-
tres large 111 mega-pixel CCD. Details can be found on http://www.astro.uni-
bonn.de/english/show news.php?number=23 (01.04.2007).
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But, with regard to the second research challenge, the review showed that

the existing methods follow the design of a transform-based method such as

those of Press (1992), White (1992), and Starck et al. (1995) or in one case a

typical prediction-based approach (Sabbey et al. 1998). The overview given

in Table 3.1 showed that the majority of existing methods does not employ

region-adaptive processing of the data or even segmentation. The existing

research has not yet successfully addressed the challenge of developing a

lossless compression method highly adapted to the particular properties of

astronomical images.

The work presented in this thesis aims at producing such a method. Thus,

the next chapter discusses in detail the special properties of stellar-field im-

ages, and models which describe them. In particular, the chapter introduces

the stellar-field image data model which is used at the core of the novel

compression technique proposed in this thesis.
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Chapter 4

Special Properties and Models

of Stellar-Field Images

“If you have ever looked through popular astronomical publi-

cations, and at some time you must have, you will know that

they are generally full of richly luminous colour photos of dis-

tant nebulae and the like – fairy-lit clouds of celestial light

of the most delicate and moving splendour. Evan’s working

images are nothing like that. They are just blurry black-and-

white photos with little points of haloed brightness.”

Bill Bryson (2004). A Short History of Nearly Everything.

Lossless compression methods attempt to identify and exploit properties

of the data (Salomon 2000, Salomon 2002, Barthel 2003). Using a model

of the data, a priori knowledge about the data can be used to exploit the

properties of the image for highly efficient compression. One of the main

thrusts of this work is to identify and exploit as comprehensively as possible

the signal properties specific to stellar-field images (SFI).

This chapter presents an overview of the special properties of stellar-

field images. The first section of the chapter describes different categories of

astronomical images which can be distinguished by their content. Typical

examples of these groups are shown and their use is explained.

Based on mathematical models of astronomical image capture hardware

and of stellar-field data, Section 4.2 discusses existing image data models

and introduces a model of astronomical stellar-field images. Details of the

stellar-field image model used in this research are given in Section 4.2.3. The

stellar-field image model is the basis for the development of the compression

85
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algorithms which exploit the redundancy in the image signal. In the novel

algorithms proposed in this investigation, the model of the image signal is

used to segment the image signal into its components, and the image area

into two different regions.

The general feasibility of the segmentation-based region-adaptive com-

pression approach and the resulting potential data size reduction are demon-

strated in Section 4.3 with a first sample calculation using a typical stellar-

field image.

4.1 Categories of Astronomical Images

Astronomical images, which are used for most astronomical observations (as-

trometry, photometry, and spectroscopy), can be classified into two main

groups: photographs and spectra.

Mainly noisy background 
with spot-like white objects.

Astronomical images

SpectraPhotographs

Close-ups and surfaces Stellar-fields

Absorption lines 
on background.

Close-ups of objects 
like galaxies and planets.

Figure 4.1: Astronomical image types: two types of astrophotographs and a spec-
trum.

Photographs are used for astrometry and photometry. Astrometry is the

science of determining the exact location and possible movement of astronom-

ical sources, it deals with measuring information on positions and distances,

motions, and parallaxes of astronomical objects (Howell 2000). Photometry

is the science of determining the amount and temporal variation of the flux

emitted by an object as a function of the wavelength (Howell 2000). Narrow-
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or broad-band filters are used to generate photographs in different wavebands

for photometry.

Spectra are observations of the intensity distribution of the energy which

is emitted by astronomical objects, sampled by the wavelength (Howell 2000).

Like photometry, spectroscopy deals with the amount of flux emitted by an

object. A spectrum shows the intensity distribution of the emission, but it

does typically not include the spatial distribution of the energy (Howell 2000).

Spectroscopy is used in astronomy to derive the physical properties of the

observed objects; the absorption lines, which appear in a spectrum, can be

used to determine the chemical composition of the stars, but information

derived by spectroscopy includes the temperature and motion of the object

as well (Howell 2000). This information is of great relevance for astrophysics,

the study of physics of the universe.

In addition to the differentiation of spectra and photographs, further

distinction into different categories of astronomical photographs is possible.

Two important categories for the work presented in this thesis are stellar

fields and close-ups:

• Stellar-field images show mainly an empty dark background with spot-

like foreground objects. Stellar-field images are typically used for sci-

entific applications.

• Close-ups are large-scale images showing close-up views with details of

astronomical objects, such as surfaces and large-scale galaxies. Close-

up images are often used to determine details of the exact structure of

an object.

Figure 4.1 shows the main types of astronomical images. The stellar-field

image which is shown in Figure 4.1 is part of the test images used for the

evaluation of the compression methods developed in this research.

Astronomers often try to observe a small field of view at the highest

possible magnification, and to obtain information about the furthest and

oldest galaxies in order to take a look back to the origins of mankind (Villard

and Williams 2006) (Figure 4.2). Although Figure 4.2 only shows a very

small sample of the heavens, it can be considered representative of the typical

distribution of galaxies in space. Statistically, the universe looks largely the

same in all directions (Villard and Williams 2006).

A classification almost similar to the one presented here, appears in Mc-

Nerney (2000), designating stellar fields and galaxies as “Type 0” images and
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local planets and surfaces as “Type 1” images. Compared to the classification

presented by McNerney (2000), the one presented here discerns more strictly

between images with large scale objects and stellar fields. McNerney (2000)

assigns galaxy images to Type 0 images, while the corresponding category

here only includes stellar fields without spatially extended objects.

Figure 4.2: Hubble deep-field infrared image ((Villard and Williams 2006), image
courtesy of NASA).

The work presented here focuses on the compression of stellar-field images

like the Hubble deep-field images, which are the most common astronomical

images. Close-ups are, compared to the other types, rarely used for scientific

applications although these images are often shown, sometimes even coloured,

on posters and in presentations.
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4.2 Image Data Models

The characteristics of stellar-field images result mainly from two sources:

the properties of the imaging system and the incoming radiation from stellar

objects which is processed.

This section discusses models for CCDs presented by Withagen et al.

(2007) and Healey and Kondepudy (1994), and their application to stellar

field images. The properties of stellar-field images are also discussed. Models

for stellar-field images proposed by Fusco et al. (1999) and Diolaiti et al.

(2000) are also considered.

The stellar-field image model which is used in this research is derived

starting from a general model of a CCD detector and incorporating features

of an established model of stellar-field images.

4.2.1 Data Models for Imaging Devices

A key component of the imaging system in astronomy is a CCD or similar

semiconductor device. Noise is an important component of astronomical

images. Healey and Kondepudy (1994) state that “the various noise sources

that corrupt digital pixel values can be quantified, by studying the operation

of a CCD camera imaging system”. This is done in (Withagen et al. 2007)

for different camera types, “ranging from a high-end 10-bit digital camera

to a consumer webcam”. The model of Withagen et al. (2007) relies on the

model of Healey and Kondepudy (1994). It gives the pixel intensity it at the

time t as:

it = gt · (i0 + µDC + NS + NR) + NQ (4.1)

The measured pixel intensity results from six components: the true scene

intensity i0, the dark current µDC , the shot noise NS, the readout noise

NR, the camera gain gt and the quantisation noise NQ which results from the

digital-to-analogue converter. The quantisation noise has a uniform distribu-

tion U(−q/2, q/2), where q is the smallest pixel value (Withagen et al. 2007).

A schematic of a typical signal processing chain used with an astronomical

CCD detector can be found in (Mackay 1986).

The different noise types given in the model of Withagen et al. (2007)

and Healey and Kondepudy (1994) are important for astronomical applica-

tions. In order to conserve even the faintest objects, the sampling of the
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signal is typically chosen to preserve the noisiness of astronomical images.

“The gain should be chosen to make the root mean square readout noise

equal to a few bits of the analogue-digital converter” (Mackay 1986). While

typical consumer-application images profit from a high signal-to-noise ratio,

the signal-to-noise ratio in astronomical images may be low in certain image

areas. The reason is that the input – which may consist of a few photons

from a faint source – itself is very weak.

In (Healey and Kondepudy 1994), the authors show the contribution of

different noise parts, as a fraction of the total noise variance. This is also

analysed for astronomical CCDs by Mackay (1986). He shows that for low

signal levels the read out noise dominates the signal. But for higher signal

levels the shot noise dominates.

This result is also supported by Withagen et al. (2007), who summarise

their experiments as follows: “Our Experiments show that the additive noise

contributions (NR and NQ) are equal to or smaller than the multiplicative

noise contribution for sufficiently large intensity values (larger than 10−30%

of the intensity range)” (Withagen et al. 2007).

In addition to the different noise types, dark current may impose an

uncertainty to the signal measured with a CCD. Mackay (1986) reports that

the dark current µDC of CCDs follows the well-known diode law, where A

and B are constant, k is the Boltzmann’s constant and T the temperature.

µDC = A · e−
B
kT (4.2)

As Equation 4.2 shows, dark current can be efficiently reduced by cooling,

which is done down to temperatures of -60◦ C to -160◦ C (Mackay 1986)

for astronomical applications. Withagen et al. (2007) report that for the

consumer cameras that they examined, “the dark current is for all cameras

lower than the additive noise, so we conclude that for pixels with a sufficient

large intensity we can neglect dark current”. With the weak irradiation

input processed in astronomy, and tremendously longer exposure times than

other CCD-based imaging systems, cooling is often necessary for astronomical

applications. “In photon-counting systems at the lowest light levels, dark

current is often significant in long exposure times” (Mackay 1986).

But dark current is not the only almost constant additive component

which contributes to the signal in the case of astronomical CCDs. “To avoid

negative numbers in the output image, CCD electronics are set up to provide
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a positive offset value for each accumulated image” (Howell 2000). The

author Howell (2000) mentions that a typical bias level may be 400 units

of the analogue-digital converter, which were especially required in the past,

due to higher read-out noise, temporal drifts of the CCD, and poor stability

of the electronics.

With the results of (Mackay 1986), that dark current can be almost com-

pletely removed by appropriate measures, µDC can be neglected. It can be

disregarded in Equation 4.1 especially if an additional bias level bt is intro-

duced to the model. It may be (to a certain degree) time- and position-

dependent, thus it is denoted bt.

it = gt · (i0 + NS + NR) + NQ + bt (4.3)

Now, with respect to the discussion given above that at low signal levels

the readout noise dominates the signal and at high levels the shot noise

dominates, the pixel intensity it at time t is given by Equation 4.4. The

quantisation noise is omitted, as it is much smaller than the read-out noise.

it =

{
gt · (i0 + NR) + bt, if i0 ≈ NR

gt · (i0 + NS) + bt, if i0 � NR
(4.4)

Therefore, the characteristics and the amount of noise present in an image

depend on the measured intensity. The shot noise NS, which dominates in

bright image regions is Poisson-distributed noise. Its standard deviation

depends on the square root of the intensity. “The read out noise NR has

a Gaussian distribution” (Withagen et al. 2007). For his instrument Bolte

(2006) shows that at new moon in the R-band [where the dependency to the

moon is high], the read out noise is equal to just one second of integration

time.

4.2.2 Data Models for Stellar-Field Images

The observed intensity i0 (Equation 4.4) in the case of astronomical images

consists of two sources, sky background and background emissions (which

are apparent in all pixels), plus in some cases true irradiation from stellar

objects. How dark the background intensity is depends on the sky brightness.

“Sky brightness is different at different sites, in different band-passes and
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of course varies with the phase of the moon and distance from the moon”

(Bolte 2006). Data models for stellar-field images describe the irradiation

from stellar objects more precisely.

A deconvolution method for adaptive optics images of stellar fields is

presented in (Fusco et al. 1999). Adaptive optics compensates, to a certain

degree, for the angular resolution limits of ground-based telescopes. The

deconvolution method is used to restore star parameters such as the positions

and photometric properties.

Fusco et al. (1999) model the signal of stellar-field images as the con-

volution of the object named o(r) with a point-spread function h(r) which

characterises the telescope and the atmospheric turbulence plus noise. The

detected intensity distribution d(r) of the image is given by Fusco et al.

(1999):

d(r) = o(r) · h(r) + n(r) (4.5)

This model includes the noise n(r), which is according to Fusco et al.

(1999) an additive zero-mean random process resulting from photon and de-

tector noise. That fits well with the more precise treatment of CCD detector

noise by Withagen et al. (2007) and Healey and Kondepudy (1994). Fusco

et al. (1999) model the observed stellar field as a sum of Dirac functions as

follows:

o(r) =
n∑
i

αiδ(r − ai) (4.6)

αi and ai are the intensity and the position vector of star number i, n is

the number of stars. Fusco et al. (1999) state that to this model “a constant

or slowly variable parameter can also be added to account for sky background

and underlying emission”.

A very advanced data model, for the analysis of isoplanatic high resolution

stellar-field images, is presented in Diolaiti et al. (2000). This data model is

used for high precision astrometry and photometry of crowded fields acquired

under the assumptions of accurate point-spread function knowledge, isopla-

natism, and correct sampling of the input data. Although the StarFinder

image analysis algorithm aims at different goals, it uses a data model which

is very similar to the one used in this work. The stellar-field is assumed to
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consist of a superposition of shifted and scaled point-spread functions lying

on a smooth slowly varying background, which results from faint undetected

stars, possible faint diffuse objects and noise.

For deblending stars Lupton (2004) uses a stellar-field model similar to

the one of Diolaiti et al. (2000). “The image is made up of a set of δ-functions

convolved with a known point-spread function, ϕ” (Lupton 2004):

I = S +
∑

r

Frδ(x− xr)⊗ φ + n (4.7)

Where I is the observed intensity, S the sky level, δ is the delta-function,

Fr the flux of the star r, φ the point-spread function and n the noise.

4.2.3 Simplified Integrated Data Model Suitable for

Segmentation-Based and Region-Adaptive Com-

pression of Stellar-Field Images

In this section, a simplified model for stellar-field image data is derived by

integrating the relevant elements of models of CCD imaging detectors and

of stellar-field images which were presented in the preceding sections. Here,

the intensity i0 which is measured for a stellar-field image may be composed

as follows:

i0 = bg + s0 (4.8)

where bg is an almost constant component due to sky emission and s0 is

the result from the convolution of the Dirac function with the point-spread

function. The insertion of Equation 4.8 into Equation 4.4 results in:

it =


gt · (bg + NR) + bt, if bg ≈ NR and s0 = 0

gt · (bg + NS) + bt, if bg � NR and s0 = 0

gt · (bg + s0 + NS) + bt, if bg + s0 � NR

(4.9)
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This can be simplified to:

it = gt · bg + bt︸ ︷︷ ︸
b(x)

+


gt ·NR, if bg ≈ NR and s0 = 0

gt ·NS, if bg � NR and s0 = 0

gt · s0︸ ︷︷ ︸
s(x)

+ gt ·NS, if bg + s0 � NR
(4.10)

As gt · bg + bt are almost constant throughout the whole image, from the

perspective of the final image signal, they are termed as a bias level b(x).

Still, this signal component which is registered on the CCD in the absence of

exposure to direct light sources, typically leads to a smooth variation of the

image background, which typically manifests itself as a smooth, ramp-like

variation of the background.

In addition to sensor-specific background variations mainly affecting bt,

the background region may contain light diffusion from large nearby astro-

nomical sources or terrestrial man-made light pollution (which affect bg).

Figure 4.3 shows a section of a stellar-field image, with such a varying back-

ground. Therefore, the bias which is termed b(x) in Equation 4.11 is position

dependent. The vector x states the position within the two-dimensional im-

age.

The final image signal is denoted i(x). In any of the cases listed above,

we find that the signal consists of three components: The bias b(x) which

was already discussed, some sort of noise which may be Poisson or Gaus-

sian distributed, and a signal component s(x) resulting from stellar object

irradiation, which may be zero in certain regions.

Depending on the almost constant sky background emission bg, the noise

component, which is termed n(x) from the perspective of the final measured

signal, consists of shot noise or readout noise.

Alternatively, and this case is not explicitly listed separately in Equation

4.10, it is a combination of both. Now we can summarise the results into a

simplified model of stellar-field CCD data, which is used for segmentation-

based and region-adaptive compression of stellar-field images, as devised in

this thesis (see Equation 4.11).

i(x) = s(x) + n(x) + b(x) (4.11)
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Figure 4.3: Three dimensional plot of the signal i(x) of image “com0001” which
shows a strongly varying background. This image is part of the test
image set used in this investigation.



96 CHAPTER 4. SPECIAL PROPERTIES AND MODELS OF SFI

4.3 Potential Data Reduction Resulting from

the Stellar Field Image Model Used in

this Research

In the previous section, based on properties of charge-coupled devices and

stellar-fields, a basic model of astronomical image data was formulated. In

this section the focus lies on the discussion of how data conform to this

model can be compressed. Unlike the last section, where the key objective

was to give a definition of signal components, here the data is treated from

the perspective of the final digitised measurement read out from the charge-

coupled device.

4.3.1 Key Idea

The key idea behind segmentation-based and region-adaptive compression of

stellar-field images, anchored on signal modelling, is that typical stellar-field

images consist of a dark, in a first approximation nearly constant background,

covered with white, small, bright, point-like objects such as stars or cosmic

ray hits. The high dynamic range is, especially in stellar-field images, only

required in specific image areas, as “the astronomical image has the charac-

teristic of being a set of astronomical sources in the sky background whose

values are not zero” (Huang and Bijaoui 1990).

The bright area, where a high dynamic range is required to encode the

data, is typically very small, compared to the dark background region where

only a very modest dynamic range is used (Figure 4.4). In astronomical pho-

tographs, the dark area containing mainly plain noise fills about 90 percent

of the entire image (Sabbey et al. 1998). As the background noise, in pro-

fessional astronomical images, typically has a low dynamic range, it requires

only a low bit rate.

As seen in Section 4.2, the dark background region has a nearly constant

level overlaid with noise, which can be considered as Gaussian or Poisson

distributed (Howell 2000, Starck and Murtagh 2001). A conjoined encoding

of both image regions (bright regions and the background regions) leads to

additional encoding overhead on the large background data, where even a

few bits per pixel may worsen the compression ratio.

Due to the very different properties of the two image areas and the lower
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dynamic range of the dark areas compared to the bright areas, algorithms

based on segmentation and region-adaptive bit allocation may outperform

other approaches which work well on images with other or less region-specific

properties.

With region-adaptive bit allocation, pixels can be encoded using the min-

imum number of bits that corresponds to the dynamic range, at the cost of

transferring the information about the region affiliation of the pixels as side

information.

Figure 4.4: Three dimensional plot of the image signal i(x) of image “gal0002”.
This image is part of the test image set used in this investigation.

The image is split into to two disjoint regions: region-of-stellar-objects

and background region. The different regions are defined by the size of signal

components in the model of stellar-field CCD data given in Equation 4.11.

Definition 5 (Region-of-Stellar-Objects) In the region-of-stellar-objects,

the image signal component s(x), which results from the incident of irradia-

tion from astronomical sources, is not zero and sufficiently large to be distin-
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guished from the background noise n(x). All image signal components from

Equation 4.11 are present.

Definition 6 (Background Region) In the background region, the image

signal component s(x), which results from the incident of irradiation from

astronomical sources, is zero or too small to be distinguished from the back-

ground noise n(x). The observed image signal i(x) consists only of the image

background level b(x) and noise n(x).

Using a sample image from the Near Earth Asteroid Tracking (NEAT)

project1, this section shows that segmentation and region-adaptive bit al-

location alone may already lead to a significant reduction of the required

storage space. The sample image contains relatively large objects compared

to typical stellar-field images.

Section 4.3.2 includes a sample calculation which shows that high com-

pression ratios – compared to other lossless methods – are possible through

image segmentation followed by region-adaptive bit allocation. The first sam-

ple calculation to show the basic feasibility of the approach of compression-

by-segmentation and signal modelling is based on the image data model given

in Equation 4.11, using only a single background estimate for the whole im-

age.

During the imaging process, parameters have to be chosen carefully by the

astronomer for obtaining a good signal-to-noise ratio (SNR). In Equation 4.11

the image signal component s(x), which is generated by the incident light,

should be large compared to the noise n(x), but the noise has to be preserved

as well. The noise within professional astronomical photography typically

influences only a few of the lower bits of the intensity value (Mackay 1986).

The image signal i(x) of a sample line section (white line in Figure 4.5.a) is

shown in Figure 4.5.b, in which a background level estimate and the dynamic

range of the noise portion are marked. Figure 4.5.b clearly indicates that the

whole dynamic range of 32 bits is required only within the bright areas of

the image. Separating the background regions from regions of stellar objects,

and coding both parts differently has the potential to lead to a significant

reduction of the required storage space; this potential is estimated using the

sample calculation presented in the next section.

1The Near Earth Asteroid Tracking (NEAT) project homepage can be found at:
http://neat.jpl.nasa.gov/ (28.02.2005). Images from the NEAT project can be downloaded
from: http://skyview.gsfc.nasa.gov/cgi-bin/skvbasic.pl (28.02.2005).
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4.3.2 Sample Calculation

In this section, a sample calculation of compression ratio shows that even

when only two basic properties are exploited, high compression ratios com-

parable to those obtained with existing methods can be achieved.
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Figure 4.5: (a) Astronomical photograph sample. (b) Plot for an image scan line
which is denoted by the blue line within the photograph given in (a).
(c) The decision map for background and region-of-stellar-objects pix-
els.

An estimate of the possible compression, achievable by separating back-

ground regions from regions of stellar objects, can be obtained by analysing

the number of necessary bits for the different regions. Regions of stellar
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objects and background regions are identified by analysing the image signal

shown in Figure 4.5.b. A constant background level of 24 is used throughout

the whole image, while the noise portion has got a dynamic range of 3 bits.

Therefore, it can be encoded with 4 bits, including one sign bit.

In this sample measurement, 79.2 percent of the image is background

region, and 20.8 percent form the so-called region-of-stellar-objects.

The calculation given in Equation 4.12 estimates the fraction of the data

size which will remain if the number of bits per pixel is allocated according

to the dynamic range of the region containing the pixel. The calculation is

based on the assumption that background noise and region-of-stellar-objects

data are stored with simple binary encoding using the maximum number of

bits required for the individual data component (3+1 bits for the background

noise and 32 bits for the region-of-stellar-objects data). The last component

of the sum shown in Equation 4.12 corresponds to a binary region demarca-

tion information mask, encoded as a 1 bit-per-pixel array which is included

to indicate which of the two regions the individual pixel belongs to.

0.792 · 3 + 1

32
+ 0.208 · 32

32
+

1

32
= 0.338 (4.12)

The estimated compression ratio for the sample image is nearly 3, even

without using well known compression methods. Applying appropriate com-

pression methods to the data of both regions can lead to further compaction.

Another possibility to enhance the compression is to use more efficient meth-

ods to describe the region demarcation information. Such methods could

further reduce the image size by reducing the last addend in Equation 4.12.

4.4 Summary

This chapter gave an overview of common categories of astronomical images.

Stellar-field images are an important category of astronomy data, which is ex-

tensively used for photometric applications, in particular. Stellar-field images

show mainly an empty dark background with spot-like foreground objects.

Luminous colour photos of impressive and large astronomical objects, like

clouds and nebulae, which are often shown on posters and illustrations, are

mainly used for presentation purposes. The chapter identified the main rele-

vant features of “real” stellar-field data. These are: the relatively small and
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localised image areas with high dynamic range, the large areas containing

additive noise which is of low dynamic range and typically is Gaussian-

distributed, and the spatial segregation of these two image components.

These features offer the potential for appreciable lossless data compression.

The spatial segregation of the two types of image components and the

spatial compactness of the high dynamic range areas underpin the idea for

the algorithms, based on segmentation and region-adaptive bit allocation,

which are developed in this work.

Data models for CCD sensors presented by Withagen et al. (2007) and

Healey and Kondepudy (1994) were discussed, as well as data models for-

mulated by Fusco et al. (1999) and Diolaiti et al. (2000) for astronomical

stellar-field images. As the astronomical image data results from a com-

bination of both CCD sensor properties and stellar-field data properties, a

combined model was derived for the data under investigation in this thesis.

The model consists of three additive components: a component repre-

senting the spot-like stellar objects, a bias level representing the empty sky

background and the dark current of the imaging device, and a noise compo-

nent representing the shot noise or readout noise of the imaging device.

The model is an important part of the compression algorithms developed

in this research, as detailed knowledge of data properties is required to de-

velop algorithms closely adapted to the properties of stellar-field images. A

sample calculation, applied to a stellar-field image, presented in the last sec-

tion, showed that a significant reduction of the required storage space can be

achieved as a result of image segmentation followed by region-adaptive bit

allocation.

The next chapter uses the integrated stellar-field image model, presented

in this chapter, at the core of the new compression algorithms which are pro-

posed in this thesis. Three gradually refined compression algorithms based

on image segmentation and signal modelling are devised in the next chapter

to achieve increasingly higher lossless compression capability.
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Chapter 5

Region-Adaptive Image

Compression Based on

Segmentation and Image

Modelling

A relatively young idea in data compression, which is just at the moment find-

ing its way into newer standards (see Chapter 2), is adaptation of the com-

pression to local features, which can lead to higher compression ratios if the

data shows different properties in different regions. Following the observation

that stellar-field images are an outstanding example of data with properties

that are highly area dependent, novel compression algorithms based on seg-

mentation and region-adaptive bit allocation are developed in this chapter.

Also, the sample calculation, given in Chapter 4, showed that segmentation-

based compression, which incorporates region-adaptive bit allocation, may

lead to a significant lossless compression of the data.

The basic image model discussed in Chapter 4 is used, and a set of al-

gorithms is presented, in this chapter. Three alternative versions of the

compression algorithm are presented here; they cover different algorithmic

options, each with its own trade-off between complexity and optimality of

compression. The proposed three algorithmic options mainly differ with re-

spect to their choice of encoder and the choice of signal decomposition pa-

rameters. The algorithmic options are numbered sequentially, the first image

compression by segmentation and signal modelling (ICSSM), called ICSSM

1, is presented in Section 5.1. The data model and most decomposition

103
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details included in ICSSM 1 apply with minor variations for the other algo-

rithm variants as well. ICSSM is based on the image data model presented

in Section 4.2.3. ICSSM 1 makes use of the data model to efficiently separate

image data components, and it applies only very basic and simple encoding

methods for all data components. The ICSSM 1 version mainly serves as a

proof-of-concept algorithm.

The second algorithmic option (ICSSM 2), presented in Section 5.2, pro-

cesses the image components differently but uses a common final encoding

step. ICSSM 2 keeps the image intensity values in region-of-stellar-objects

pixels verbatim, whereas noise values are encoded relative to the estimated

background. For the common final encoding step for all data components,

methods which are typically used in state-of-the art methods for general-

purpose compression of binary data are evaluated.

Finally, for highest compression performance, ICSSM 3 selectively ap-

plies data compaction methods best matched to the properties of each data

component. ICSSM 3 is discussed in Section 5.3. It is intended to be the

most size-efficient version of the image compression algorithm based on seg-

mentation and region-adaptive encoding. Evaluation of different methods for

treating each data component specifically is performed for ICSSM 3 in order

to determine good choices of encoders for each data component.

While this chapter presents the different algorithm versions, the perfor-

mance evaluation of all algorithm versions is discussed in Chapter 6, where

empirical results obtained using the standard test image set are reported.

5.1 Proof-of-Concept Compression Algorithm

Using Binary and Huffman Coding (IC-

SSM 1)

ICSSM 1, the first variant of the compression algorithms based on segmen-

tation and region-adaptive bit allocation, aims to provide a simple algorithm

for the decomposition and encoding of the image data. It relies on the image

data model presented in Chapter 4, and applies a histogram-based segmen-

tation method – which is also used in all other ICSSM algorithm variants

– for the decomposition of the image data. The segmentation includes a

tile generation step and estimation of local background levels. The tile- and
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histogram-based image segmentation algorithm is discussed in Section 5.1.1.

Section 5.1.2 discusses the relation of the data decomposition applied

in the ICSSM compression algorithms to image component extraction tech-

niques used in tools like StarFinder (Diolaiti et al. 2000). Section 5.1.3 dis-

cusses the relation of the novel algorithm to existing methods for compressing

stellar-field images. The details of the proof-of-concept algorithm and its pa-

rameters are discussed in Section 5.1.4. Finally, to ensure the losslessness

and efficiency of the segmentation step, the validity of the segmentation step

is discussed in Section 5.1.5.

5.1.1 Tile- and Histogram-Based Image Segmentation

In stellar-field images, such as the one shown in Figure 5.1, the noise typically

has a low dynamic range; therefore it requires only a low bit-rate.
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Figure 5.1: Illustrative example of pixel distributions (two local histograms and a
global histogram) from the background of a stellar-field image. The
global histogram has a wider noise range due to different centre-points
of the local histograms.
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The background variation widens the noise range in the histogram of the

whole image and leads to high estimated noise bit-rates. Figure 5.1 shows

two local histograms and a cumulative histogram of the image “com0001”.

The background variation has a low frequency, it can thus be neglected in

a local image area, and the additive noise which is superimposed on the

background can still be considered as approximately Gaussian. But in a

larger area, the cumulative histogram which in effect is a superposition of

all “local histograms” with different centre-points, will become much wider

than the local histograms.

Region-of-stellar-
objects data

Region demarcation 
information
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Summation

Alternative
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Figure 5.2: Data components generated and used by the image segmentation and
region-adaptive bit-allocation based algorithm.

Encoding the data relative to a local background estimate would reduce

the amount of data that has to be spent for encoding the noise. A histogram-

based method for estimating the image background within regular image tiles

(Seaman et al. 2006) is included in the segmentation and region-adaptive bit

allocation-based image compression algorithm. Figure 5.2 shows the data

components used with the segmentation-based method. Depending on the

region demarcation information, image pixels are either associated to the

region-of-stellar-objects or to the background region. Pixel data from the

background region consists of a sum of the background level plus the noise.

Different methods were investigated to estimate the local background level

b(x) of the image. Straightforward techniques to estimate the background
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by applying smoothing operations, like median filtering, which replaces each

pixel with the median computed over a suitable neighbourhood, failed. Ex-

ploratory experiments, which were conducted in early stages of the research

reported in this thesis, support what Diolaiti et al. (2000) report as well.

Namely, that these smoothing methods over-estimate the background level

underneath strong peaks. Therefore, the method devised for segmenting the

image, in the ICSSM algorithms, is based on the local histogram of the data.

An estimate of the mean background noise can be obtained by means of his-

togram fitting techniques (Almoznino et al. 1993, Bijaoui 1980) and (Diolaiti

et al. 2000). Assuming that the intensity of the sky radiation is distributed

normally around a typical value, the histogram of the observed intensity

levels should be quite similar to a Gaussian distribution, whose mode and

standard deviation represent respectively the sky level and the associated

noise (Diolaiti et al. 2000).

Therefore, in the ICSSM algorithms, the background level b(x) of a small

square image tile is determined as the mode of the image-tile histogram.

The size of the tile determines the size of the neighbourhood that is used

to determine the histogram; hence, it also determines the coarseness of the

estimates of background levels in the image.

5.1.2 Region Segmentation Versus Detection of Point

Spread Functions

As discussed in Section 4.2, the image signal of astronomical images can be

modelled as the convolution of the object named o(r) with a point-spread

function h(r) which characterises the telescope and the atmospheric turbu-

lence. In addition to the image segmentation into region-of-stellar-objects

and background region, at the first glance, the decomposition of the im-

age into stellar object basis-functions convolved with a point-spread function

seems to be a further option to simplify the region-of-stellar-objects data

representation.

A decomposition into a point-spread function superposition is applied in

the StarFinder image analysis tool of Diolaiti et al. (2000). This StarFinder

data model is very similar to the one used for the ICSSM algorithms. Diolaiti

et al. (2000) apply segmentation in a different way and with different aims

to the ICSSM algorithms. The procedure of Diolaiti et al. (2000) derives

first a point-spread function digital template from the brightest isolated field
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stars; then a catalogue of presumed objects is formed, searching for the rel-

ative intensity maxima in the image frame (Diolaiti et al. 2000). Suspected

objects in the original list are accepted successively on the basis of their cor-

relation with the point-spread function template (Diolaiti et al. 2000). A

synthetic field consisting of already detected objects is created successively.

The synthetic field becomes more and more similar to the observed image,

and fainter and fainter remaining objects can be detected. StarFinder aims

to generate high precision relative astronometric and photometric measure-

ments automatically (Diolaiti et al. 2000).

A number of limitations argue against a decomposition of the image data

into superpositions of point-spread function for the purpose of compression.

Firstly, a point-spread function based segmentation method requires a

precise knowledge of the point-spread function. Very precise point-spread

function models would be needed for subtracting the bright objects without

or with small residuals. But a precise knowledge of the point-spread function

cannot be guaranteed for a stellar-field image compression method, which

should work with arbitrary stellar-field images. Precise point-spread function

models are – if at all – only contrivable with prior knowledge of the optical

properties of the instrumentation used or with high computational costs.

Secondly, depending on instrumentation, observation angle, and CCD

positioning of the observing instrument, the point-spread function may vary

extremely, depending on its position on the image. The image decomposition

of Diolaiti et al. (2000) is much more difficult, if not impossible, in the case

of space-variant point-spread functions.

Thirdly, the residuals from the subtraction of the point-spread function

would vary in their size depending on their position on the noise data stream.

Region-of-stellar-objects data includes Poisson distributed shot noise (Howell

2000, Pool et al. 1998, Cohn 2006), which results from the discrete nature of

light and random photon fluctuations. Shot noise increases with the intensity

of the pixel. Therefore, a potential residual data stream would be hard to

compress because the resulting noise data would not be stationary.

Finally, the idea of segmenting the image into a superposition of scaled

point-spread functions and background is not advisable for a stellar-field im-

age compression algorithm, if time-efficiency is required. Identifying precisely

the point-spread function parameters would render an integration of the IC-

SSM algorithm into the storage and archival pipeline of virtual observatories

difficult due to the computational complexity of the decomposition. The it-
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erative segmentation and calculation of the correlation coefficients is quite

time consuming. Diolaiti et al. (2000) report that the StarFinder code con-

sumes five to ten minutes, for a 386-by-386 pixel image, on a 350 MHz PC.

The basic idea of the model of Diolaiti et al. (2000) is similar to the one used

here for segmentation-based compression in so far as the image data is mod-

elled as a superposition of noise and the signal component resulting from the

incident of stellar object irradiation. However, unlike Diolaiti et al. (2000),

the ICSSM decomposition does not decompose regions of stellar objects into

point-spread function superpositions plus noise.

5.1.3 Relation of Existing Compression Methods to

those Developed in this Thesis

This section examines the relation of the novel compression method, based on

image segmentation and a region-adaptive bit allocation, to existing methods

which were discussed in the literature review (Chapter 3).

The main thrust of the research conducted for this thesis is on the devel-

opment of a lossless segmentation-based method, which primarily relies on

properties of stellar-field images for transforming the data into a representa-

tion which can be further compacted efficiently. As can be seen in Table 3.1,

there has not been much contribution in the area of a segmentation-based

compression methods specific for astronomy images.

Existing methods are lossy (McNerney 2000, Huang and Bijaoui 1990,

Boussalis et al. 2004, Pardas 1997, Dong et al. 2003) or like the PLIO

method – which could as well be classified in this category – are very specific

and not well suited for stellar-field image compression. Although they are

lossy, two of the more recent methods (McNerney 2000, Boussalis et al. 2004)

are interesting candidates, regarding a comparison. The recently proposed

lossy compression method by Boussalis et al. (2004) proposes an object-

based method, which classifies objects into two categories. This supports the

approach adopted in the method developed in this thesis, which follows a

segmentation-based approach for lossless compression.

The method proposed by McNerney (2000) differs from the ICSSM method

developed in this research, as it is not intended for the archival of scientific

grade data. The method of McNerney is a lossy approach, while the newly

developed ICSSM method is lossless. It could be argued, that the method of

McNerney is based on a simple model of astronomical stellar-field data, which
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is not discussed in the paper of McNerney (2000). The model of McNerney

(2000) is based on the assumption that fainter objects and the background

of astronomical images are not important and can be discarded before com-

pression. But this is often not the case for scientific applications, where

astronomers often have to know how the sky background exactly looked like

before an event. Unlike the McNerney method, the data model of the new

ICSSM method accounts for this. Developed for a different purpose, the Mc-

Nerney method can be considered as a simplified version of the new method.

Background levels – which solve the problem of non-planar backgrounds –

and noise data are just discarded during compression and lost.

Comparing the newly developed ICSSM method with existing methods

that incorporate lossless compression (see Table 3.1), it turns out that most

of the methods providing a lossless mode rely on transforms as the central

pre-processing step. But transform-based methods are computationally time

consuming. Furthermore, transforms are excellent for lossy compression as

many transform coefficients are zero or close to zero, and thus they can be

efficiently compressed by entropy coders, but the noisiness of astronomical

images impairs this effect.

Other existing methods, like the FITSIO methods, rely on encoders such

as Rice-entropy encoder and Zip compression; the method of Sabbey (1999)

uses a prediction-based approach. These methods, prediction-based decorre-

lation, dictionary-based, and entropy-based encoders, are examined in this

investigation for encoding the data after the core pre-processing step, the

segmentation. Although Lempel-Ziv-Welch based methods are not optimal

to be applied directly to the 16- and 32-bit-per-pixel astronomical data (Sec-

tion 2.2.1), this method is still considered for the data components generated

through segmentation, because with the pre-processed data components data

symbol set cardinality is limited. As Lempel-Ziv-Welch exploits the correla-

tion among different source data symbols, at a certain degree, and not only

the letter distribution, it is still an option to be tested.

In contrast to the Compfits method (Véran and Wright 1994), which

only divides the image into different horizontal bit planes, the novel method

presented in this thesis divides the image into distinct areas. As a result of

the segmentation, the ICSSM methods remove unused bits in the background

region prior to the final encoding, while Compfits keeps them and sends them

to the external compression program. Compfits does not make use of the

distinctiveness features in different image areas, thus it is not a segmentation-
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based method according to the definition used in this thesis.

Fractal methods – the last decorrelation method identified in the review of

decorrelation methods in Section 2.2.3 – have not been used, to the knowledge

of the author, for the compression of astronomical image data. Although at

the first glance the main required property for fractal compression – self sim-

ilarity – may be found in astronomical stellar field images1, fractal methods

are not examined here when developing the new method.

Carpentieri et al. (2000) argue that an image compression method should

be tightly coupled to the data properties. The most distinguishing data prop-

erty of stellar field images is probably the “noisy-background with bright-

objects” property. Stellar-field images feature a noisy-background with bright-

objects in the foreground; these images consist of noise-like regions with low

correlation among adjacent pixels (Boussalis et al. 2004), sprinkled with spot-

like bright and vague points. To the knowledge of the author, this special

nature of stellar-field images has not been exploited by other researchers for

segmentation-based lossless compression. The compression algorithms devel-

oped in this thesis differ from other existing lossless algorithms by using a

decomposition of the image into distinct data areas as a core processing step,

before applying other pre-processing and decorrelation methods.

5.1.4 Algorithm Outline

Figure 5.3 shows a data flow for the ICSSM 1 algorithm. The different steps

(data decorrelation and encoding) which were used to classify compression

algorithms in Section 2.2, are also included in the ICSSM 1 algorithm. First,

segmentation is applied to obtain an image representation which would allow

encoding into a smaller size. This process is followed by different encoders

which apply efficient encoding to the different data components.

1. Tile generation: The whole image is split into equal-size square tiles

of pixels using a user-chosen size parameter.

2. Segmentation: Each image tile is segmented into the regions of stellar

objects and the background region, which is represented by a constant

1The self similarity within stellar field images is probably lower than one would expect
at the first glance. The point-spread function differs depending on the position of the
stellar object (Howell 2000). Therefore, to obtain a lossless representation of the image,
with every “stellar object dot” a residual image would have to be stored after compression
using fractal methods.



112 CHAPTER 5. ICSSM

level b(x) = bl across the tile. The segmentation2 is based on the

histogram of the tile. Assuming that the tile size (in pixels) is typically

larger than the size of the bright objects, the background level bl is

approximated by the mode of the tile histogram. Under the assumption

that the background noise n(x) has a zero-mean Gaussian distribution,

the noise amplitude Nl, for a tile is defined as the difference between

the lowest intensity value and the histogram mode.

Nl = bl −min(i(x)) where x ∈ Xl (5.1)

Xl represents the set of all pixel positions in a tile.

Segmentation into two region types uses a threshold set to the upper

range limit for the combined background and noise components, nupp =

bl+Nl. Pixels with intensity value i(x) ≥ nupp are assumed to belong to

the regions of stellar objects, the other pixels are assumed to belong to

the background region. A binary image is generated to serve as region

labelling and demarcation mask. The mask called region demarcation

information in the following is used to indicate which of the two regions

each pixel belongs to.

3. Encoding: The different image components are encoded as described

below.

(a) Background noise n(x): The pixel intensity values of the back-

ground region are encoded relative to the estimated background

level in order to reduce the required dynamic range. The back-

ground noise data is stored in a single data stream. Huffman

encoding is adopted for coding the background noise.

(b) Background level bl: The assumption is that this value is encoded

without compaction, using the full dynamic range of intensity val-

ues in the original image. As the background level is modelled as

constant for the whole tile, only one background level has to be

stored for each tile. Due to its small size, the background level

data is encoded without further compaction using the same dy-

namic range as the original pixel data.

2The validity of this segmentation step is discussed in Section 5.1.5.
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(c) Region-of-stellar-objects s(x): This component is encoded using

Huffman coding, like the background noise. Again, as with the

background noise data, here the aim is to use a method which

only exploits the statistical distribution of pixel values but does

not apply further processing for redundancy reduction.

(d) The region demarcation information is encoded using a binary

image without applying further compression. With this encoding,

the size of the side information, which has to be stored due to the

segmentation, is readily identifiable.
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Figure 5.3: Overview of the ICSSM 1 algorithm.

For decoding the data, first the Huffman encoded of background noise

data and the region-of-stellar-objects data have to be decompressed. Then

the segmentation has to be inverted; according to the region demarcation

information, the original value for each pixel can be restored. The data



114 CHAPTER 5. ICSSM

has to be processed in the same order as during compression; then for each

pixel assigned to the region-of-stellar-objects, the intensity value from the

corresponding data stream can be put back into place. For each background

region value, the original intensity value can be recalculated by summing up

the background level and the background noise data.

5.1.5 Validity of the Segmentation Step

To ensure the losslessness and efficiency of the segmentation step, possible

cases which may affect it are analysed in this section. Four cases in which

the segmentation may be affected are identified and discussed. The first case

discussed analyses whether an object which straddles on a tile border affects

the segmentation. It is called the “part of object case”. In the second case,

which is discussed with reference to its impact on losslessness and compres-

sion performance, a tile contains a very high amount of bright foreground

pixels. This case is called the “large object case”.

Tile contents

Regular case Part of object case Too many/large object case 

Resulting histogram
(schematically)

Impairs compression 
           performance

Impairs losslessness No No No

No No Yes

  Noise range estimate  Histogram mode  Lowest data valueLegend:

 

Figure 5.4: Schematic presentation of special cases which might occur during the
image segmentation step: resulting histogram and its impact on com-
pression performance and losslessness.

Figure 5.4 shows the regular case, the “part of object case” and the “large

object case”, in which segmentation may be affected. A third difficulty which
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may arise with the segmentation step, is the decreasing expressiveness of the

histogram with decreasing tile size t. This issue and the fourth case, dark

outlier pixels, are discussed last in this section.

With an image histogram, which shows the distribution of the single grey-

scale intensity values within an image tile, it is irrelevant how the stellar

objects are distributed spatially on the tile. Only their contribution to the

image area is important. Also, it is irrelevant for the histogram whether a

tile contains a complete foreground object or not. The important feature

that is used to distinguish the areas is the intensity contrast. The posture of

an object on a tile border does not affect the image histogram, thus it has no

effect on segmentation. Hence, the first case neither impairs the losslessness

of compression nor the compression performance.

The “large object” case, in which the image tile area is dominated by

bright objects, impacts the image histogram. As huge objects are typically

brighter than small objects, the histogram may have an exaggerated dynamic

range. This is not directly visible in the schematic black-and-white tile con-

tents drawing in Figure 5.4. The resulting histogram below the tile contains

both possible cases. The exaggerated and the unexaggerated dynamic range

case are shown in dotted lines. The possibly exaggerated dynamic range

in the histogram is not important for the noise range determination, as the

noise range determination is based on the mode and the lowest intensity

value. But with a sufficiently large amount of bright objects it is possible

that the histogram mode does not represent a valid image background level

estimate, although this should rarely be the case, as discussed in Chapter 4.

Even in this case, as the noise range is determined as the difference be-

tween the mode and the lowest intensity value of the image, a very high noise

range is predicted for this image tile, typically above eight bits. The segmen-

tation still remains lossless. A pixel is either assigned to the background

area, encoded as difference to the (non-optimally chosen) background level,

or it is encoded as region-of-stellar-objects value with its absolute value. A

non-optimal segmentation may therefore occur in the case where the bright

area dominates the background area within a tile. While this could affect

the performance (compression ratio) of the algorithm, it would not affect its

losslessness. As large noise values within the noise data stream will impair

the statistics of the noise data stream and affect its compressibility, with

ICSSM 2 and ICSSM 3 an upper limit for the noise range is applied before

segmentation (Section 5.2).
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The diminishing expressiveness of the histogram with decreasing tile size

t is the third problem that might arise during segmentation. Determining the

noise-amplitude and background estimate correctly becomes more and more

difficult when the tile size t decreases to very low values. This occurs for two

main reasons. Firstly, the significance of the intensity histogram diminishes

drastically with a smaller tile size parameter. While 100 pixels contribute

to the histogram in case of tile size t set to 10, only a quarter of the pixels

contribute to it if t is set to 5. The number of pixels that contribute to the

intensity histogram decreases as a quadratic function of the tile size.
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Figure 5.5: Influence of tile size on compression ratio. On the four 32-bit-per-
pixel images, the compression ratio is significantly higher than on the
16-bit-per-pixel images.

This effect is directly related to the “large object” case. With the smaller

image area that contributes to the histogram, bright stellar objects may affect

the histogram shape more severely. If the tile size is not significantly larger

than the largest object on that tile, the determination based on histogram-

mode may find an excessively large noise amplitude.
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Too large a noise amplitude in some image areas may lead to sequences of

large “non-noise” values in the background noise data. In the case of ICSSM

1, that reduces the performance of the Huffman encoder; it increases the

data rate for the noise data stream. Due to the growing Huffman tree, the

increase of the codeword size does affect the size of all data values during

encoding. It does not only enlarge the codeword size of the small portion of

large “non-noise” values.

A solution to this problem may be to re-examine the plausibility of the

noise-amplitude and background level estimates in the case of small tile sizes.

This effect, in combination with the simple encoding method for the back-

ground model and the flatness of some images, may be responsible for the

still increasing algorithm performance with tile sizes t larger than 100 pixels

on several of the test images (Figure 5.5) with ICSSM 1.
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Figure 5.6: Three-dimensional plot of the image “ngc0002”, where dark outlier
pixels can be observed in the left part of the image. Short, downward
oriented spikes are visible at the left front border.
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Finally, a fourth effect may also lead to excessive noise estimates. The

method used with ICSSM to estimate the noise range Nij is only optimal for

typical noise distributions which are Gaussian shaped, centred around the

mode and which do not contain low outlier intensity values.

The rule for estimating Nij can lead to high estimated noise ranges in the

case of dark outlier-pixels present in the image (Figure 5.6). In the worst

case, one outlier pixel can lead to an encoding overhead of several bits for

each pixel in the whole tile. More optimally, a few outlier pixels could be

treated as region-of-stellar-objects pixels. One possibility to enhance the

quality of the noise amplitude and background level estimations would be to

use more distribution parameters for their detection. But any distribution

parameter may become unreliable for small tiles. Alternatively, an upper

limit for the noise range can be applied before segmentation to prevent this

effect completely. This approach is chosen with ICSSM 2 and ICSSM 3.

5.1.6 Summary

This section presented ICSSM 1, the first version of the segmentation and

region-adaptive compression algorithms. The algorithm decomposes the data

of a stellar field, based on the statistical distribution of the pixel intensity

into two distinct areas, regions of stellar objects and background regions,

based on information carried by the intensity contrast (Figure 5.7). The

segmentation of the data into different areas and signal components allows

a region- and component-adaptive encoding of the data. Simple encoding

methods which allow fast computation, although there is still potential for

better compaction, are applied in ICSSM 1. The background noise compo-

nent and the region-of-stellar-objects data are encoded independently using

Huffman coding; background level data and the region demarcation informa-

tion are encoded directly as binary information.

Finally, special cases that might arise during segmentation and their im-

pact on losslessness and the size-efficiency of the method were analysed.
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a)

b)

Figure 5.7: (a) Region demarcation information sample of image “for0001” seg-
mented with a tilesize of 30. The black region is the region-of-stellar-
objects. (b) Original “for0001” image: The white vertical line in the
original image is due to defective CCD columns.
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5.2 Compression Algorithm Using the Same

Encoder for all Image Data Components

(ICSSM 2)

The aim of the ICSSM 2 algorithm is to obtain another trade-off between

simplicity of the data compression algorithm and coding efficiency. With

ICSSM 2, only one encoder is applied to the data generated through seg-

mentation, to keep the encoding step as simple as possible. Although the

same encoder is used for all image components, the idea of region-adaptive

bit-allocation is still present in this approach. This is because prior to the

final encoding, region-of-stellar-objects pixels are encoded verbatim, whereas

noise values are encoded relative to the estimated background.

Section 5.2.1 discusses details of the segmentation step applied with the

ICSSM 2 algorithm. A range of methods are tested for the final encoding.

These methods implement state-of-the art methods for general-purpose com-

pression of binary data, such as the LZ77 variant called Deflation, a method

based on the Burrows-Wheeler Transform, and an improved version of the

prediction by partial matching compression algorithm. Here, general-purpose

compression refers to compression applied to an image, without reference to

its pictorial content. The file is processed, by the compression software, as a

mere symbol stream. Implementations of the data encoding methods listed

above are available as standard encoding tools such as Zip, Bzip2 or 7-Zip.

They are discussed and their compression performance is analysed using

sample image data in Section 5.2.2.

Finally, Section 5.2.3 outlines the method chosen with ICSSM 2.

5.2.1 Segmentation Step

The segmentation step used with ICSSM 1 is adopted with minor changes,

into ICSSM 2. As discussed in Section 5.1.5, it is possible that a large

noise amplitude is produced by the histogram-based detection of image data

components, if the tile size is not significantly larger than the largest object

in that tile. While this effect does not affect the losslessness of the whole

algorithm, it may impair the encoding performance. This detoriation could

be especially severe in the case where general-purpose file compression tools

are applied. These tools typically work byte-wise on the data. Hence, they
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can exploit the data statistics in the case where each noise value3 is encoded

within a single byte in the input stream of the external tool.

  

a) b)

Figure 5.8: (a) Original image. (b) Region demarcation information after segmen-
tation with ICSSM 2. The black region is the region-of-stellar-objects.

If the noise-range prediction indicates a range requiring more than eight

bits, the data is no longer aligned to byte borders. This may – by changing the

data statistics – impair the performance of the general-purpose compression

tool.

ICSSM 2 reduces the problem of wrongly estimated noise values by ap-

plying an upper limit for the possible noise estimate. As discussed in Section

4.2, the noise of astronomical images typically influences only the last few

bits. Because the general-purpose data compression tools work byte-wise on

3The noise value is typically much smaller than eight bits, see Chapter 4.
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the data, the upper bound allowed for the noise estimate is chosen to be eight

bits. With the fixed upper limit on the noise range the areas that require a

larger dynamic range than one byte are treated as regions of stellar objects.

Figure 5.8 shows the region demarcation information after segmentation

with a tile size parameter of five, which is the lowest tile size that was tested

with the ICSSM algorithms. Inspecting the region demarcation information

shown in Figure 5.8 shows that in this sample data segmentation problems

are quite rare, even at low tile sizes of only five pixels.

5.2.2 Encoder Choice

ICSSM 2 uses state-of-the art methods for general-purpose compression of

binary data to encode all the data streams generated through image seg-

mentation. Efficient implementations of a range of general-purpose methods

exist and are tested for ICSSM 2. In the following, tools for general-purpose

compression of binary data are referred to as external file compression tools.

Experiments with the following general-purpose file compression tools

were conducted to determine whether there are differences in the size-efficiency

and to find out which method gives the most promising results for all four

data components (region-of-stellar-objects data, background noise data, back-

ground levels and the region demarcation information).

• Zip: Zip is an implementation of the LZ77 variant called Deflation4.

• Bzip2: Bzip2 is an implementation of the Burrows-Wheeler Transform

based method5.

• 7zip: 7zip supports several data compression methods. It is used to

test an improved version of the 1984 prediction by partial matching

(PPM) compression algorithm6.

A test image “gal0004” was segmented into its data components, which

were exported into individual binary files to determine which of the methods

most efficiently compacts all of them into a single archive. The results are

given in Table 5.1.

4Source code and binaries are available from: http://www.gzip.org/ (01.02.2007).
5Source code and binaries are available from: http://www.bzip.org/ (01.02.2007).
6Source code and binaries are available from: http://www.7-zip.org/ (01.02.2007).
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The compression ratio of all three tested methods lies in the range 2.02

to 2.15. 7zip and Bzip2 lead to slightly higher compression rates than Zip on

the sample data. Although the results from a single sample image can not

be generalized, only a small performance difference was found for the three

methods. Zip compression is chosen for ICSSM 2 given its popularity and

given the small performance gain obtained for the less common methods.

Table 5.1: Compression ratios of general-purpose methods for all data components
generated through segmentation (Image “gal0004” with tile size param-
eter set to 150 pixels). The size of the uncompressed image is 1144320
byte.

Compr. method Data size (byte) Compr. ratio

Zip 566359 2.02

Bzip2 539959 2.11

7zip 530271 2.15

5.2.3 Algorithm Outline

As with ICSSM 1, a similar diagram for the data flow is given for ICSSM 2

in Figure 5.9. The segmentation step exports all data components in binary

form as intermediate files to the encoder.

Zip, an implementation of the LZ77 variant called Deflation, is used in

ICSSM 2 to further compact the data into a single output file which contains

all data components.

As only the data encoding step and the determination of the noise range

was changed compared to ICSSM 1, the decoding procedure is similar to

the one in ICSSM 1. First, the encoding of the data components has to

be reversed by “unzipping” the whole data archive. Then, the segmentation

step can be reversed as with ICSSM 1. The noise range limit has no influence

on the encoding and decoding procedure, it only changes the assignment of

pixels to the image areas labelled as region-of-stellar-objects and background

region.
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5.2.4 Summary

With ICSSM 2, the same encoder is applied to the data generated through

segmentation in order to keep the encoding step as simple as possible. Fol-

lowing the aim to derive a version of ICSSM which couples simplicity – by

requiring only a single encoder – with size efficiency, choices for possible en-

coders were analysed. As the results obtained with the different methods

differ only a little (Table 5.1), the most widely used and common method

Zip is chosen for ICSSM 2 data component encoding. The implications of the

segmentation step were analysed and the step was enhanced by introducing

an upper limit for the possible noise range. In short, the ICSSM 2 algorithm

is an ICSSM variant that combines a general-purpose encoding method with

the segmentation step to achieve a straightforward and size-efficient algo-

rithm.
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Figure 5.9: Overview of the ICSSM 2 algorithm.
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5.3 Compression Algorithm Using Encoders

Best Matched to Each Image Data Com-

ponent (ICSSM 3)

Finally, data compaction methods best matched to the properties of each

data component are applied in ICSSM 3. Possibilities for enhancing the

compression ratio of the ICSSM algorithms are identified and investigated

to determine the most promising data encoding approaches. With ICSSM

3, the focus lies on maximising the compression ratio of the individual data

components.

Individually and optimally chosen encoding and decorrelation methods

for the different data components are evaluated to enhance the compression

ratio of the segmentation-based and region-adaptive compression algorithm.

Using pre-segmented sample data, possible candidates for the encoding of

each data component are evaluated: encoding of background noise data

(Section 5.3.1), encoding of background levels (Section 5.3.2), encoding of

region-of-stellar-objects data (Section 5.3.3), and finally encoding of region

demarcation information (Section 5.3.4). Suitable candidates for compres-

sion ratio enhancements are identified, and using example data for each of

the data components, optimized solutions for their further compaction are

determined. A set of data samples (four images) was chosen for the ex-

periments to identify optimal solutions. Experiments were conducted on all

data samples from the test image set since the objective was to adapt the

algorithm to stellar fields in general and not to include too many properties

specific for a given test set.

Algorithm details are presented in Sections 5.3.5. Like the other ICSSM

versions, the size-efficiency of the ICSSM 3 algorithm is evaluated and dis-

cussed in Chapter 6.

5.3.1 Encoding of the Background Noise

Possible methods to reduce the size of the background noise data component

are analysed in this section to investigate the potential for a further size-

reduction of this data component.

The properties of the background noise data are analysed in the first part

of this section. It is shown that this signal component resembles Gaussian
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distributed white noise, as expected. Then, based on the work of Romeo

et al. (1999), a theoretical limit for the compression of the background noise

data – under the assumption it is pure white noise – is established. It is found

that the entropy of the real background noise data is only slightly lower than

that predicted for white noise.

Finally, in practical experiments, an optimal encoder is determined using

real sample background noise data. Based on results of the practical exper-

iments, the encoder is chosen for encoding the background data with the

ICSSM 3 algorithm.

Background Noise Properties

If segmentation worked perfectly, the background data should be a noise data

stream which is Gaussian-like distributed, stationary7, and centred around

zero. Furthermore, the data stream values should be uncorrelated and resem-

ble white noise (Section 5.3.3). Therefore, the background noise data should

have a flat spectrum. Taking a sample noise data stream, first of all, the

distribution of the data values was examined. The background noise data

from image “gal0004” was chosen due to its size and the image properties: It

is a rather typical example of a stellar-field image. It was segmented using a

tile-size parameter t of 50. This is neither a very small value nor does it lie

at the upper end of the examined tile-size range.

Figure 5.10 shows that the probability density function of the background

noise data resembles a normal distribution. As the data is centred on zero,

the offset components from the data were removed successfully.

While the histogram given in Figure 5.10 shows that the noise data values

resemble Gaussian noise, it does not show anything about whether the noise

data is white noise. The fast Fourier transform function in Matlab was used

for examining the frequency spectrum of the noise. The resulting spectrum

is shown in Figure 5.11. Although some of the very low frequencies have a

slightly increased intensity, the overall spectrum is quite flat, as is expected

for white noise. Therefore, it can be concluded that the segmentation step

almost successfully separated background noise data and background level

data. With the minor limitations discussed, it generates a Gaussian white

noise data stream.

7The probability distribution parameters remain fixed at different positions in the data
stream.
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Figure 5.10: Gaussian-like distribution of data values within a noise sample stream
of image “gal0004” segmented using a tile-size parameter t of 50.

Theoretical Limit for Data Compression

A theoretical approach which discusses the information content of uniformly

discretised Gaussian noise is presented in (Romeo et al. 1999). Romeo et al.

(1999) address different types of noise, including white noise. The possible

compression ratio and the entropy are shown to depend on two factors: the

shape of the noise power spectrum and the discretisation of the noise. If

noise is discretised to a high resolution (as compared to its variance), the

resulting distribution of amplitude of noise samples approaches a uniform

distribution (Romeo et al. 1999). They find that the compression ratio de-

creases logarithmically with the amplitude of the frequency spectrum P (f)

of the noise. For zero-mean Gaussian white noise, Romeo et al. (1999) find

that the entropy is given by Equation 5.2.

h = log2

[√
2πe · σ

∆n

]
+ O

(
2πσ2

(∆n)2
· e−

2π2∆2

(∆n)2

)
(5.2)
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The second part of the equation, given in big O notation, provides an

upper bound for the last addend of the entropy equation. The function was

approximated with a series by Romeo et al. (1999).

The entropy, as given in Equation 5.2, depends on the quantisation step

∆n and the variance of the probability density σ. The dimensionless quotient
∆n
σ

= λ can be considered as a discretisation parameter. With the values

σ = 7 and ∆n = 1, extracted manually from Figure 5.10 Equation 5.2

predicts an entropy of 4.85 bits per data value for our noise sample data

stream. This would result in a compression ratio of 1.65 compared to the

raw encoding, which uses one byte per data value.
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Figure 5.11: Frequency spectrum of the noise data sample from the image
“gal0004”.

As white noise data is uncorrelated, the only data property a compression

algorithm can exploit in theory is the distribution of data values. Therefore,

an optimal entropy encoder (with certain restrictions discussed in Section

2.2.1), such as the Huffman encoder, should lead to the highest possible

compression ratios. That the segmentation step works well can also be seen

from the fact that the first-order entropy calculated from the data (4.35) is
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only slightly lower than the theoretical limit for zero-mean Gaussian white

noise (4.85) estimated using Equation 5.2.

As no correlation is found among the data values, data decorrelation

methods such as differential encoding, or prediction-based methods, may not

lead to a further size reduction of this data.

In order to verify that differential encoding of the sample data of image

“gal0004” does not enhance the compression ratio, the sample noise data was

encoded using differential encoding and the first-order entropy was measured.

The first-order data entropy increases from 4.35 bits to 4.86 bits per data

value.

Practical Experiments to Assess the Compression of Background

Noise

Despite the theoretical results presented in the last section, which indicate

that no significant further size reduction is possible compared to entropy

encoding methods, still a practical evaluation was performed to determine

how other encoders behave in practice on the background noise data.

In addition to two different versions of arithmetic coding, a set of general-

purpose compression methods including Zip compression and a Burrows-

Wheeler Transform based approach was tested. Compression ratios of the

four tested encoders on the background noise data of the images “com0001”,

“for0002”, “gal0001”, and “gal0004” were measured.

The image test set that was chosen includes images of different character-

istics in order to prevent optimising the algorithm to a set of properties which

is too specific. All images from the test image set are shown in Appendix C

along with their pixel intensity histograms. The image “for0002” is a sample

of a rather typical crowded star-field, while the image “com0001” was chosen

because it includes some large scale background intensity variations. Al-

though “gal0001” shows the typical point-like source on a dark background,

it is a galaxy cluster image. Finally, image “gal0004” was chosen to include

an example with a large image area compared to other test images. Further-

more, it was originally encoded with the higher 32-bit-per-pixel bit rate. For

each of the images, the background noise data after segmentation with a tile

size parameter t of 20 and 50 pixels was examined.

The entropy coders tested are different versions of a range-coder, which

is a time-efficient arithmetic encoder implementation. A version based on
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order 0 probability modelling (“RangeCoder 0”) and a version based on or-

der 1 adaptive probability modelling (“RangeCoder 1”) were tested on the

background noise data of the image set described in the last section. The

implementation of arithmetic coding is available from (Schindler 1999) under

the conditions of the GNU general public license. Initial results showing the

performance of this method were presented in (Schindler 1998). Addition-

ally, Zip compression and the Burrows-Wheeler Transform based method,

implemented in Bzip2, were evaluated as well. Results are summarised in

Table 5.2.

Table 5.2: Compression ratios of four tested encoders on the background noise
data of the images “com0001”, “for0002”, “gal0001”, and “gal0004”.
Fore each of the images, the background noise data after segmentation
with a tile size parameter t of 20 and 50 pixels was examined. Ar.(0)
stands for the arithmetic coder order zero, Ar.(1) for arithmetic coder
order one.

Encoder

Image Zip Bzip2 Ar. (0) Ar. (1) c

com0001 (t=20) 1.08 1.05 1.08 1.04 1.06

com0001 (t=50) 1.06 1.05 1.07 1.03 1.05

for0002 (t=20) 2.14 2.37 2.13 2.53 2.29

for0002 (t=50) 2.09 2.34 2.34 2.47 2.31

gal0001 (t=20) 1.43 1.43 1.49 1.46 1.45

gal0001 (t=50) 1.43 1.43 1.48 1.45 1.45

gal0004 (t=20) 1.68 1.78 1.79 1.87 1.78

gal0004 (t=50) 1.72 1.82 1.85 1.91 1.83

c 1.58 1.66 1.65 1.72

The first result of the practical evaluation listed in Table 5.2, is that the

theoretical results determined for an entropy encoder in Section 5.3.1 were

very close, but still slightly lower than the experimentally determined results

for arithmetic entropy encoder (order 0). The theoretical results determined

with the formula of Romeo et al. (1999) suggested a slightly lower compres-

sion ratio of 1.65 than those experimentally determined for the arithmetic

entropy (order 0) encoder (1.85).

But, as expected after the examination of the data correlation, entropy

encoders proved to be the best choice for encoding the noise data. The
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arithmetic coder led in all tested cases to the best result values although in

one case Zip reached the same compression ratio value. Both, the order 0

version and the order 1 version, led to the best result in four of the eight tested

cases. The highest average compression ratio on the tested images produced

by the arithmetic order 1 encoder was followed by Bzip2 compression and

arithmetic order 0 encoder. Accordingly, order 1 arithmetic compression is

used with ICSSM 3. Zip compression led to the lowest average compression

ratio, a compression ratio enhancement can thus be expected for ICSSM

3 compared to ICSSM 2 which uses Zip as the encoder for all image data

components.

5.3.2 Encoding of the Background Level

Although the background level data often contributes only little to the size

of the compressed data as there are only few background levels to store, this

section analyses options for a size-efficient compression of this component.

First, properties of the background level data are analysed. Then, the

possibility to exploit possible redundancy in this data component by using a

simple prediction is tested and rejected using an illustrative example. Finally,

four promising encoders are evaluated to determine the best choice for the

background level data.

A three-dimensional plot of the background levels is shown in Figure 5.12.

The background level data is highly correlated across the image. Typically,

the differences among neighbour background levels are very small. Only three

background levels are apparent with a too high background level estimate, as

discussed under the “too many/large object case” in Section 5.1.5. Depend-

ing on the tile size and the image size, the background level data component,

which can be considered as a small smoothed version of the original image,

reaches a size which makes its compression necessary.

The background level data can be considered as a discrete signal generated

through a process. The signal x[n] generated by an arbitrary process is

predictable if the current signal value x[n] can be determined from a linear

combination of previous signal values x[n− k] (Hunt 1998).

x[n] =
∞∑

k=1

hkx[n− k] (5.3)
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The question which is addressed here is whether the background level

data can be successfully considered to consist of a predictable part plus an

offset. Linear prediction decorrelates a signal by subtracting an estimate

of the current data value from the actual value, leaving a whitened signal

(Hunt 1998). The estimate of the current signal value thereby may consist

of previously submitted data values x[n − k] in the one-dimensional case,

or already submitted data values from a two-dimensional surrounding (Hunt

1998).
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Figure 5.12: Three-dimensional plot of the estimated background levels for the
image “gal0004” segmented using a tile size of 20 pixels.

Figure 5.12 suggests that there is a strong dependency among neighbour

background levels. Therefore, the use of prediction-based methods to decor-

relate the data, exploiting the dependency among neighbour background lev-

els, is examined here. One possible solution to decorrelate the data is the

application of a one-dimensional differential encoding, to exploit the depen-
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dency within the background level rows. The residual r[n] is calculated as:

r[n] = x[n]− x[n− 1] (5.4)

If the differential encoding is applied row-wise, followed by differential en-

coding of the first column, all but one image pixel are differentially encoded.

But this simple method only exploits the dependency between successive

pixels in a row, without choosing the best possible linear prediction from

a larger neighbourhood. Figure 5.13 shows a residual distribution of the

background levels from test image “gal0004” after linear prediction. This

simple differential encoding is also applied by one of the filters used for the

PNG file format (see also Section 2.2.3).

Figure 5.13: Distribution of the linear prediction residual from the background
levels of test image “gal0004” segmented using a tile size of 20 pixels.

As an illustrative example, the first-order entropy of the raw background

levels was measured and compared to the entropy of the data after applying

difference encoding as described above.
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The measurements of the first-order entropy of the raw background levels

of image “gal0004” gave a value of 2.32 bits-per-pixel. The total number

of different data values was increased through difference encoding of the

background level data values. First-order entropy increased to 3.13 bits-per-

pixel, with the application of difference encoding, despite of the estimated

dependency among neighbour values.

The compression performance on the background level data stream is only

important for smaller tiles as the contribution of the background levels to

the whole file decreases rapidly with larger tiles. This effect can be derived

mathematically. If an image with the size x by y pixels is divided into equally

sized tiles of a tile size t, n tiles are generated.

n(t) =
⌈x

t

⌉
·
⌈y

t

⌉
(5.5)

The number of tiles n(t) defined in Equation 5.5 is a whole number. The

special brackets used in Equation 5.5 stand for the ceiling function to account

for cases where tile size does not divide the image size without a fractional

part.

n(t) decreases extremely fast asymptotically to zero with a growing tile

size. For example with ICSSM 1, the average size of the background level data

for all images studied is less than four percent of the compressed image data,

even if a small tile size of ten is chosen. Still, for optimal compression, the

performance of possible background level compression methods for smaller

tile size parameters is evaluated in the next section.

Practical Experiments to Assess the Compression of the Back-

ground Level

Different encoders were evaluated for the background level stream of four

images, both segmented with tile sizes of 20 and 5 pixels. The two tile size

parameters were chosen to evaluate both a very small tile size and a larger

choice.

The tile size of 5 pixels was included in this evaluation because at small

tile sizes, the background level compression becomes especially important.

The background level data becomes almost unimportant with tile sizes larger

than 20 pixels as the amount of stored data corresponding to the background

level decreases to an almost negligible size.



5.3. COMPRESSION USING ENC. BEST MATCHED (ICSSM 3) 135

The same image set which was used to evaluate the performance of back-

ground noise compression methods was used in this evaluation. Here, the

results on image “com0001” would be particularly interesting as the image

includes some large scale intensity variations in the background area, in con-

trast to the other three images “for0002”, “gal0001”, and “gal0004” which

have a relatively flat background.

For the image “gal0004”, especially high compression rates on the back-

ground levels should be possible since the background level data is – like the

original image – encoded with a high bit depth.

Four different encoders were tested for ICSSM 3 on the background level

data stream: the arithmetic coder using order zero and order one coding, Zip

compression and Bzip2. The measured compression rates on the background

level data streams are given in Table 5.3.

Table 5.3: Compression ratios of four tested encoders on the background level data
of the images “com0001”,“for0002”, “gal0001”, and “gal0004”. For each
of the images, the background level data, after image segmentation with
a tile size parameter t set to 5 and 20 pixels, was examined. Ar.(0)
stands for the arithmetic coder order zero, Ar.(1) for arithmetic coder
order one.

Encoder

Image Zip Bzip2 Ar.(0) Ar.(1) c

com0001 (t=5) 1.54 1.84 1.43 1.11 1.48

com0001 (t=20) 1.27 1.58 1.30 1.03 1.30

for0002 (t=5) 2.67 3.44 2.55 2.68 2.84

for0002 (t=20) 1.76 3.72 2.49 1.71 2.42

gal0001 (t=5) 2.21 2.85 2.20 2.22 2.37

gal0001 (t=20) 1.51 2.83 2.17 1.28 1.95

gal0004 (t=5) 6.48 9.42 4.84 5.07 6.45

gal0004 (t=20) 7.06 11.51 5.19 4.61 7.09

c 3.06 4.65 2.77 2.46

In the evaluation, the Bzip2 compression method led to the highest com-

pression ratios on all tested cases (Table 5.3). Especially with the high bit

depth image “gal0004”, Bzip2 achieved high compression ratios, approxi-

mately 1.5 times higher than Zip. Bzip2 is therefore used in ICSSM 3 to

compact the background level information.
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Typically, the optimal tile size parameter is above 20 pixels, where the

background level information occupies less than one percent of the image

data. Hence, compression of this information will not increase the overall

performance of ICSSM 3 compared to ICSSM 2, but the identified possibility

for compression was exploited.

5.3.3 Encoding of the Region of Stellar Objects

The regions of stellar objects, which typically contain elliptical images of

stars, are encoded using plain Huffman encoding in ICSSM 1 and using Zip

compression in ICSSM 2.
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Figure 5.14: Five successive region-of-stellar-objects data rows as they are aligned
in the original image (figure generated from image “gal0004”).

Options that possibly offer a more size-efficient compression of this com-

ponent are analysed in this section. As in previous sections, first, proper-

ties of the data component are analysed. Then, for this data component,

which shows some redundancy, prediction-based redundancy reduction is ex-

amined using an illustrative example. As this example does not lead to a
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size-efficiency increase, the option to use a predictive decorrelation step prior

to the final encoding is rejected. Finally, four promising encoders are evalu-

ated to determine the best choice for encoding the region of stellar objects.

As the background levels, the pixels in the region of stellar objects should

typically be correlated to a certain degree. The region-of-stellar-objects data

consists primarily of slices through the point-spread function, with different

sizes and different heights.

Figure 5.14 plots several successive region-of-stellar-objects image lines to

show the dependency among them. Figure 5.15 shows a three-dimensional

plot of the region-of-stellar-objects data from image “gal0004” rearranged to

an almost square data block.
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Figure 5.15: Three-dimensional plot of the region-of-stellar-objects data from im-
age “gal0004” rearranged to an almost square data block.

For encoding the region-of-stellar-objects data, in theory it is possible

to identify the parameters of the point-spread function within the region-

of-stellar-objects data, subtract a model of the point-spread function and

encode only the residuals. Although algorithms for the identification of such
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source parameters exist (Diolaiti et al. 2000), this approach is not chosen

with the ICSSM algorithm as justified in Section 5.1.2.

Alternatively, compression methods which can be attributed to three

main categories are examined for the compaction of the region-of-stellar-

objects data:

• Standard entropy coders: Standard entropy coders such as arith-

metic coding (order 0 and order 1 model) are examined.

• General-purpose compression methods: As for other data com-

ponents, the Zip and Bzip2 methods, which are not adapted to specific

data, are tested to examine the performance of the Deflate algorithm

and the Burrows-Wheeler Transform.

• Prediction-based methods: Prediction-based methods may help re-

duce the overall size of the region-of-stellar-objects data, as there is

some dependency among different data rows (Figure 5.14). The usage

of a Paeth-predictior based decorrelation step is examined in the next

section.

• Existing astronomy-specific methods: As an alternative to the

options discussed above, astronomy-specific methods which were dis-

cussed in Chapter 3 could be tested for the compression of the region-

of-stellar-objects data. For example, using wavelet-based approaches

such as the one of Press (1992), White (1992), White and Percival

(1994), Starck et al. (1995) or Louys, Starck and Murtagh (1999) can

lead to a high energy compaction without losing too much run-time

efficiency. The regions of stellar objects are typically small (compared

to the overall size of the file), therefore such methods might not re-

duce the run-time efficiency of the method severely. Applying existing

astronomy-specific methods would mix the approaches segmentation

and image modelling with transform-based methods. Therefore, this

possibility is not examined.

Paeth Predictor Sample

The Paeth predictor (Paeth 1991), which is applied in PNG (ISO/IEC 2004),

was examined here for decorrelating the region-of-stellar-objects data. Paeth-

based decorrelation was examined in combination with Arithmetic encoding
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(order 0 and order 1), Zip, and Bzip2 compression of the generated data.

To keep the spatial grouping of data values, which is essential for the Paeth

predictor, the predictor was applied to the complete raw image data before

image segmentation.

In this experiment, after the segmentation, the Paeth predicted data was

stored only for the regions of stellar objects. Although the Paeth predictor

relies on upper, upper-left, and left pixel values during decompression (Paeth

1991), it could be successfully inverted during decompression, as the data

surrounding the regions of stellar objects could be fully recovered from the

background levels and the noise data stream.
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Figure 5.16: Three-dimensional plot of the region-of-stellar-objects data from Fig-
ure 5.15 after decorrelation using Paeth predictor.

Special measures had to be taken only for the first pixel row and the left-

most pixel column as they form the image border. In this case, for simplicity,

the pixels outside the image border are assumed to have a value of zero.

This choice does not affect the losslessness of the encoding, but it leads

to the high prediction residuals visible in Figure 5.16. Figure 5.16 shows the
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region-of-stellar-objects residuals from applying the Paeth predictor to the

data. The data stream generated through Paeth prediction and segmentation

finally has to be further compressed by other methods.

As an illustrative examination of the Paeth prediction for the region-of-

stellar-objects data, here the Paeth prediction in combination with methods

for further data compression was compared to the compression of the data

without Paeth prediction. The same methods for compression were tested

with and without Paeth prediction: arithmetic coders of order 0 and order 1

and the general-purpose compression methods Zip and Bzip2.

The measurement results obtained using the region-of-stellar-objects data

stream of image “gal0004” are given in Table 5.4.

Table 5.4: Compression ratios of different encoders achieved on the region-of-
stellar-objects data stream (image “gal0004”, tile size parameter t set
to 50 pixels).

Compr. method Compr. ratio

Arithmetic (order 0) 2.81

Arithmetic (order 1) 2.42

Gzip 3.54

Bzip2 5.31

Paeth + Arith. (order 0) 2.42

Paeth + Arith. (order 1) 2.15

Paeth + Gzip 2.84

Paeth + Bzip2 3.63

As Table 5.4 shows, on the examined data, the performance of Paeth

prediction plus the tested encoders was lower than the performance of the

encoders without pre-processing. Therefore, Paeth prediction is not applied

in ICSSM 3, although this merely illustrative experiment cannot guarantee

that a true decorrelation using some special predictor does not lead to an

enhancement of the possible compression rates. The Paeth predictor ex-

periments should not be construed as proof that there would not be other

options for better decorrelation. The compression method used with ICSSM

3 is determined in the next section, using a larger sample image set.
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Practical Experiments to Assess the Compression of Stellar Objects

Again, for the choice of the region-of-stellar-objects encoder, the same four

test images were chosen as for the measurements to select the encoder for the

other image data components. Again, due to the higher bit depth of the orig-

inal data, higher compression rates were expected for the image “gal0004”.

The region-of-stellar-objects data segmented with a tile size parameter t set

to 20 and 50 pixels was examined.

As with the evaluation of background noise and background level data

compression, four different encoders were tested for ICSSM 3. Arithmetic

coder, using order zero and order one coding, Zip compression and Bzip2

were tested on the region-of-stellar-objects data streams of the test images.

The measured compression rates on the region-of-stellar-objects data streams

are given in Table 5.5.

Table 5.5: Compression ratios of four tested encoders on the region-of-stellar-
objects data of images “com0001”, “for0002”, “gal0001”, and
“gal0004”. For each image, the region-of-stellar-objects data after seg-
mentation with a tile size parameter t set to 20 and 50 pixels was
examined. Ar.(0) stands for the arithmetic coder order zero, Ar.(1) for
arithmetic coder order one.

Encoder

Image Zip Bzip2 Ar.(0) Ar.(1) c

com0001 (t=20) 1.42 1.64 1.32 1.08 1.38

com0001 (t=50) 1.43 1.70 1.35 1.12 1.40

for0002 (t=20) 2.14 2.92 1.96 2.08 2.28

for0002 (t=50) 2.08 2.82 1.96 2.01 2.22

gal0001 (t=20) 1.45 1.68 1.50 1.09 1.43

gal0001 (t=50) 1.38 1.58 1.48 1.02 1.37

gal0004 (t=20) 3.60 5.45 2.93 2.58 3.64

gal0004 (t=50) 3.48 5.31 2.81 2.42 3.51

c 2.12 2.89 1.91 1.68

The best performing method in the evaluation given in Table 5.5 was in

all cases the Bzip2 method. Surprisingly even though “com0001” includes

some large scale intensity variations in the background region – which lead

to a relatively large portion of region-of-stellar-objects data for a large tile
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size parameter t of 50 pixels – the results matched for “com0001” and the

other three images. As expected, the performance of the compression on the

32-bit-per-pixel image “gal0004” was approximately twice a high as for the

other images.

The region-of-stellar-objects data is, especially after segmentation, the

most image specific data. It captures the data from the bright image areas.

As the evaluation showed that Bzip2 compression leads to the best results

on all tested image data samples, Bzip2 is used for further compacting the

region-of-stellar-objects data after segmenting the image data with ICSSM 3.

5.3.4 Encoding the Region Demarcation Information

A further increase of the overall compression ratio of the ICSSM algorithm is

possible by using more efficient encoding methods for the region demarcation

information. A simple bitmap was used with ICSSM 1 and a Zip compressed

bitmap was used with the ICSSM 2 algorithm. This section discusses pos-

sibly more size-efficient alternatives for the region demarcation information

compression and reports an illustrative examination of a lossy geometrical

region demarcation description. Finally, three promising encoders are eval-

uated to determine the best choice for the region demarcation information

encoding.

The achievable compression ratio enhancement, due to more size-efficient

region demarcation information encoding, remains limited because the region

demarcation information contributes only about 1/16 or 1/32 of the raw

image data, depending on the bit depth of the image. Nevertheless, especially

for 16-bit-per-pixel images the enhancement may be worth the effort. Other

methods than Zip compression, which are possibly better adapted to the data

properties, include:

• Other general-purpose compression methods: Other general-

purpose compression methods, like algorithms based on the Burrows-

Wheeler Transform, can be used for compressing the region demarca-

tion information.

• Bi-level image compression algorithms: Efficient methods to com-

press bi-level images (Hobby 1997, Fränti and Nevalainen 1995, Fränti

1994) are well-suited candidates for further compressing the region de-
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marcation information. JBIG8, a highly efficient compression method

for bi-level images, is evaluated because of its high compression perfor-

mance.

• Vector-based description: Vector-based methods might be used to

describe the circular regions of stellar objects within the background

region. Utilising the vector features in context-based compression of

raster images has already been examined (Fränti et al. 2002). A method

which is especially adapted to describe the elliptical regions within

the data has been developed and tested to determine how far such a

method may outperform the other candidates for the compaction of

region demarcation information. A discussion of the algorithm and its

properties is given below. Further details on the algorithm are found

in Appendix A.

• Morphological methods and tree coding: Morphological methods,

such as the ones used by Huang and Bijaoui (1990) (discussed in Section

3.2), might be another option, as well as approaches based on tree

coding (Martins and Forchhammer 1996).

For the ICSSM 3 algorithm, the most promising possibilities – the first

three listed above – were examined. First, the general-purpose compression

methods Zip compression and the Burrows-Wheeler Transform based Bzip2

were tested. Therefore, the binary data streams of the region demarcation

information of four of the test images were exported as 1 bit-per-pixel image

matrix in the Portable Bitmap (PBM) format. External tools were used

to measure the size-efficiency of the Bzip2 method in comparison to Zip

compression.

Secondly, an implementation of the JBIG compression method was eval-

uated to determine the size-efficiency of this highly size-efficient state-of-the

art method. To evaluate JBIG compression, the JBIG-KIT, a portable li-

brary of compression and decompression functions with a simple command

line interface, was used9. The JBIG-KIT implements the JBIG 1 method,

which is standardised in (ISO/IEC 2001).

Finally, a dedicated lossy vector-based method was developed and con-

sidered for compressing the region demarcation information. Although this

8http://www.jpeg.org/jbig/jbigpt2.html (25.03.2008)
9http://www.cl.cam.ac.uk/∼mgk25/jbigkit/ (03.04.2008)
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investigation deals with lossless compression, for the region demarcation in-

formation it would be possible as well – without impinging the losslessness of

the whole method – to use a lossy method, if the data is re-segmented after

generating the final region demarcation map.

Geometrical Region Demarcation Information Description

Instead of using a lossless compression algorithm for the region demarcation

information, one could represent the areas with an approximate geometrical

description that might need far less data for the region demarcation informa-

tion. But, in that case some background region pixels would be assigned to

the regions of stellar objects and therefore would require more coding space.

The algorithm would have to balance the data stream sizes for an optimal

size reduction and it would require a re-segmentation step. Still, to evaluate

a wide variety of different methods, and to get to know how compact a lossy

description could be on the region demarcation information, this alternative

approach was examined in an illustrative examination.

Figure 5.17: Size-efficient lossy geometrical description of the region demarcation
information of image “gal0001”.
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The lossy region demarcation description method segments the image

into elliptical regions. Using an iterative geometrical approach, the exam-

ined method identifies potential midpoints of elliptical objects within the

region demarcation information. After the removal of double and redundant

hypothetical ellipsoid objects, a size-efficient lossy geometrical description of

the region demarcation information is generated.

A sample of an automatically generated geometrical description of the

region demarcation information of image “gal0001” is shown in Figure 5.17.

This lossy approach to describe the region demarcation information data

required less than five percent of the size of the original bitmap in a range of

tested cases. But this positive effect on the region demarcation information

would be reduced by its negative effect on the segmentation.

Unfortunately, the lossy geometrical description would require a second

re-segmentation pass for a lossless compression of the whole image, with-

out leading to a significant improvement of the overall compression ratio.

Therefore, this method did not prove to be an optimal method for the re-

gion demarcation information compression and was not included in the final

evaluation.

Practical Experiments to Assess the Compression of the Region

Demarcation Information

Due to the disadvantages of the lossy geometrical description, the final ex-

amination to determine the encoder choice for ICSSM 3 did only include

Zip compression (for comparison to ICSSM 2), Bzip2 compression, and the

dedicated lossless bi-level image compression method JBIG. Results from

measurements using images segmented with a tile size parameter t of 10 and

of 50 pixels, and the region demarcation information encoders are shown in

Table 5.610.

The first result shown by these measurements is that the possible com-

pression rate typically increased tremendously for the region demarcation

information with a larger tile size. The larger tiles led to higher noise esti-

mates, that means more pixels are assigned to the background region. Hence,

less spots of region-of-stellar-objects data appeared within the background

10The smaller tile size parameter t = 10 pixels was chosen for this component, as –
unlike the other components where t = 20 was used – the region demarcation information
becomes much more complex with very small tile sizes for some of the images. See also
Figures 5.7 and 5.8.
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region and the region demarcation information became simpler, and better

compressible. This effect was particularly noticeable for flat and large im-

ages such as “gal0001” and “gal0004”, in contrast to “com0001” with its

large-scale intensity variations.

Table 5.6: Compression ratios of four tested encoders on the region demarca-
tion information data of images “com0001”, “for0002”, “gal0001”, and
“gal0004”. For each of the images, the region demarcation information
was examined using images segmented with a tile size parameter t set
to 10 and 50 pixels.

Encoder

Image Zip Bzip2 JBIG c

com0001 (t=10) 5.22 5.70 7.89 6.27

com0001 (t=50) 4.97 5.28 6.97 5.74

for0002 (t=10) 2.17 2.15 3.44 2.59

for0002 (t=50) 3.40 3.59 6.34 4.44

gal0001 (t=10) 5.47 6.35 8.95 6.92

gal0001 (t=50) 12.62 16.53 23.99 17.71

gal0004 (t=10) 6.36 7.78 10.18 8.11

gal0004 (t=50) 25.88 35.89 48.89 36.89

c 8.26 10.41 14.58

With an average compression ratio of almost 8.26, even the general-

purpose Zip compression algorithm achieved high compression ratios on the

region demarcation information data sample. The usage of Bzip2 enhanceed

the compression ratio only a little compared to Zip. On the test set, Bzip2

achieved an average compression ratio of 10.41. On the image “for0002”, seg-

mented with tile size parameter t set to 10, the performance was even a bit

worse than the one of Zip. The dedicated bi-level image compression algo-

rithm JBIG outperformed the general-purpose compression tools by a factor

of approximately 1.5 and higher. Therefore, JBIG is chosen for ICSSM 3.

Compression ratio enhancements are especially expected for 16-bit-per-pixel

images, where the region demarcation information contributes a higher pro-

portion of data to the whole compressed image, in contrast to 32-bit-per-pixel

images.

The possible size reduction through region demarcation information com-

pression is almost completely exploited at this level, as the region demarca-
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tion information only contributes very little to the size of the compressed

image. Therefore, the geometrical method is not examined further. Even

if the geometrical method could further enhance the compression ratio, this

would have almost no measureable effect on the overall compression ratio.

5.3.5 Algorithm Outline

The ICSSM 3 algorithm differs from ICSSM 2 (see Section 5.2.3) with regard

to the encoders which are applied to the different data components. Com-

pared to the Zip compression method which is used with ICSSM 2 for all

data components, according to the measurements on the test image set in

Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4, for ICSSM 3 enhancements regarding

size-efficiency are possible for the individual data components.

Background noise data
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Figure 5.18: Overview of the ICSSM 3 algorithm.

As only the data encoding step was changed compared to ICSSM 2

and the segmentation method was kept unchanged, decoding works as with
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ICSSM 2 or ICSSM 1. The dataflow for ICSSM 3 is given in Figure 5.18. A

detailed performance evaluation of ICSSM 3 is presented in Section 6.5.

5.3.6 Summary

For optimum compression performance with the ICSSM 3 algorithm, charac-

teristic properties such as the value distribution, noisiness and predictability

of successive values of the data components, generated through segmentation,

were determined. Then, compression methods adapted to the properties of

each data component were evaluated in experiments and the best performing

method was chosen for compressing the data component. The evaluations

showed that arithmetic compression has to be used for the noise data, Bzip2

compression for both the region-of-stellar-objects data and the background

levels, and JBIG for the region demarcation information mask.

ICSSM 3 can be considered as an optimised version of the ICSSM algo-

rithms, with the following restrictions. The possibility to use other existing

astronomy-specific compression methods, such as the wavelet based method

of (Press 1992, White 1992, White and Percival 1994, Starck et al. 1995,

Louys, Starck and Murtagh 1999) for the region-adaptive compression in

combination with the segmentation method, was not examined. This might

be an option for future research. Furthermore, the tile size remains a seg-

mentation parameter which is not automatically determined.

5.4 Summary

In this chapter, three algorithm versions of the novel image compression

method, ICSSM, were presented. The novel algorithms are based on image

segmentation and region-adaptive bit allocation in order to exploit the dif-

ferences in the dynamic range of different image regions. Different types of

region-adaptive bit allocation schemes are used for the different algorithms

proposed.

The decomposition of the data is based on the image model which was

presented in Chapter 4. It consists of the three components background level,

background noise and the signal component resulting from stellar-object ir-

radiation, which may be zero in certain regions.

Using an estimate of the dynamic range of the Gaussian noise component,

determined for a local image tile (of a predefined size), the image is split into
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two distinct areas: background region and regions of stellar objects. The

background level is stored, and information about the spatial extent of the

regions into which the image is decomposed is stored as a region demarcation

information mask.

In regions of stellar objects, the intensity level is kept unchanged, prior to

the final encoding. For background regions, the background noise component

is determined by subtracting the background level from the detected CCD

signal i(x). The three algorithmic options of the ICSSM algorithm mainly

differ with respect to the encoding applied to the data components, namely

the region-of-stellar-objects data, the background level data, the background

noise data, and the region demarcation information of the image.

With ICSSM 1, the background noise component and the region-of-stellar-

objects data are encoded independently using Huffman coding; background

level data and the region demarcation information are encoded directly in

binary format. The ICSSM 1 version serves primarily as a proof-of-concept

algorithm version to demonstrate what compaction can be achieved if only

encoders of limited capability are applied for compacting the data compo-

nents generated through segmentation.

With ICSSM 2, a trade-off between simplicity and coding efficiency is ap-

plied; all data components are compressed using Zip. This algorithm version

is intended as a practically simple but useable segmentation-based compres-

sion method.

Finally, for highest compression performance, ICSSM 3 applies data com-

paction methods best matched to the properties of each data component.

Arithmetic compression is used for the noise data, Bzip2 compression for

both the region-of-stellar-objects data and background level data, and JBIG

is used for the region demarcation information.

While the focus of this chapter was on introducing the versions of the

ICSSM algorithm, the focus of the next chapter lies on evaluating the novel

algorithms with respect to their size-reduction performance. The chapter

also assesses the performance of some existing astronomy-specific lossless

compression methods.
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Chapter 6

Performance Evaluation

This chapter presents a performance evaluation of the newly developed loss-

less compression algorithms based on signal modelling, segmentation and

region-adaptive bit allocation (proposed in Chapter 5), and of existing astro-

nomy-specific lossless compression methods, discussed in the literature review

(Chapter 3).

The evaluation of existing methods includes all methods from the FIT-

SIO package, the Zip, Rice, and the PLIO method. Also, the Fitspress

and Hcompress methods are included, as well as six wavelet based methods

which are using the Pyramidal Median Transform, Haar wavelet, a Min-

Max transform, Mallat-Daubechies, Feauveau transform, and a combination

of methods. The set of evaluated existing methods is completed with a

method based on mathematical morphology and five lifting scheme based

methods using median prediction, integer Haar wavelet transform, integer

Cohen-Daubechies-Feauveau wavelet transform, integer (4, 2) interpolating

transform, and an integer 7/9 wavelet transform. The newly developed al-

gorithms and the existing approaches are compared empirically using a test

image set.

Section 6.1, which presents methodological considerations regarding the

performance evaluation, consists of two parts.

First, the comparability of compression rates measured with existing algo-

rithms and the ones determined experimentally for the three new algorithms

is discussed in detail in Section 6.1.1. Section 6.1.1 highlights that in order to

guarantee the comparability of ICSSM results to results from the evaluation

of existing methods, with all results reported for the ICSSM algorithms, the

overhead for including the compressed data in a FITS file is accounted for.

151
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Second, Section 6.1.2 presents the astronomical test image set used by

other researches (Grosbol et al. 1989, Sabbey 1999) for the evaluation of

astronomical image compression methods. It serves as the test set for the

evaluations of existing and newly developed methods.

Section 6.2, the first evaluation section in this chapter, discusses existing

state-of-the art compression methods developed by other authors. First, a

brief review of some results reported by other authors is presented. Then,

available implementations of some methods presented in Chapter 3 are re-

viewed, and the evaluation procedure is defined. Finally, results from the

evaluation of these methods, conducted in this investigation, are presented

and discussed in detail. In one case, where no implementation of the method

was available, existing results reported by the original author of the method

are included in the comparison – these were obtained with the same test

image set as the one used in this research.

After comparing state-of-the-art astronomy-specific methods, the follow-

ing sections focus on the newly developed segmentation and region adaptive

bit-allocation based algorithms. The size-efficiency of ICSSM 1, ICSSM 2,

and ICSSM 3 is examined in Sections 6.3, 6.4, and 6.5 respectively. The

ICSSM 2 and ICSSM 3 algorithms are evaluated using software implemen-

tations; the implementation is in each case discussed prior to reporting the

measured results.

A detailed comparison of all ICSSM algorithms and existing methods,

including the discussion of application classes, is given in Section 6.6. The

chapter ends with a summary in Section 6.7, highlighting and summarizing

the most important findings.

6.1 Some Methodological Considerations

Methodological considerations regarding the performance evaluation are the

focus of this section.

The first one of its two parts, Section 6.1.1, discusses measures taken to

ensure the comparability of compression rates measured with existing algo-

rithms to the ones determined experimentally for the three new algorithms.

The second one, Section 6.1.2, presents the astronomical test image set used

for the evaluations of existing and newly developed methods.
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6.1.1 Comparability of File and Data Compression Mea-

surements

If the compression ratios measured with different methods shall be compared,

measurement comparability has to be assured between the methods under

evaluation. For the existing methods, this topic is discussed in Section 6.2.3.

It is ensured that for existing methods the file-based compression ratio, which

includes the data header, has been measured. The file based compression

ratio cf is defined in Equation 6.1, where R is the size of the uncompressed

file, while C(R) stands for the compressed file:

cf =
R

C(R)
(6.1)

The comparability of ICSSM results to those for existing method is dis-

cussed and assured in this section; two causes that might impinge the com-

parability are examined. First of all, the difference between the file-based

and the data-based compression ratio is discussed and accounted for. After

that, another possible source of overhead that might have to be accounted

for with the ICSSM methods is discussed.

For the ICSSM methods, primarily the ratio of the uncompressed and

compressed image data was determined. With this primary result, the data

header is not accounted for, neither with the raw nor with the compressed

data. Thus, in order to ensure the comparability of the ICSSM results and the

results determined for existing methods, the primary results for the ICSSM

methods were corrected to include the data header overhead.

First of all, the question which arises is how the file-based compression

ratio cf , measured for existing methods, differs from the one measured for

the image data only, cd. cf shall be calculated from cd. cd is defined as

cd =
D

C(D)
(6.2)

where D is the size of the raw uncompressed image data and C(D) is the

size of the image data after compression.

Given the data header size H, the file based compression ratio cf can be

calculated from the uncompressed data and the compressed image data as
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follows:

cf =
H + D

H + D
cd

(6.3)

As H � D and H � C(D), C(D) = D
cd

, cf and cd should be almost sim-

ilar in size. For the worst case, the image “tuc0003” with the biggest header

size compared to the image data, the header size H is 1.6 KByte compared to

a data size D of 203.7 KBytes. The compression ratio cd which was measured

is 2.51, with ICSSM 1 and a tile size of 50 pixels, the compression ratio cf is:

cf =
1.6KB + 203.7KB

1.6KB + 203.7KB
2.51

= 2.48 (6.4)

Disregarding the header would lead to an error of 0.03, for a compression

ratio of 2.48.

To ensure that the adjustment factor is accounted for when comparing the

ICSSM measurements to those of other available methods, the adjustment

factor cd

cf
was measured for all thirteen test images. The file-based compres-

sion ratio cf was calculated from the data-based one, which was measured

directly in the experiments with the ICSSM methods (described in Sections

6.3, 6.4, and 6.5).

After accounting for the file header overhead with the measurements for

the ICSSM algorithms, one other possible cause that might impinge on the

comparability of the results of ICSSM methods and existing methods re-

mains. For the ICSSM methods, the size of the compressed data was de-

termined by summing up the sizes of the compressed data streams. The

question remains whether no additional storage is required for embedding

the data streams into the output file.

If the data is encoded into a FITS file1, no additional overhead is required

to combine the data streams into a single file if the following method is used

for storing the data.

First, the region demarcation information is stored in the file, followed by

region-of-stellar-objects data values, background noise data values and the

background levels. Decoding works as follows: The overall size of the first

data component, the region demarcation information, is already known from

1This overhead is already accounted for with the adjustment factor discussed earlier.
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(FITS-) header information. From the region demarcation information, the

decompression algorithm is able to derive the amount of region-of-stellar-

objects data values and the amount of noise values to decode. After decod-

ing these components successively to memory, the current reading position

within the file arrives at the last data component, the background level data.

Reading it until the end of file discriminator and decoding it reveals the back-

ground level data stored. The tile size parameter can be stored in a standard

FITS header entry, which was already accounted for with the adjustment

factor discussed earlier.

With the decoded and separated components, the algorithm then may

restore the image by adding the background noise to the background levels,

in background regions and outputting the signal values successively into the

region-of-stellar-objects values. No further measures have to be taken to

ensure the comparability of measurements.

With all measurement results reported for ICSSM methods, the compres-

sion ratios given in this thesis incorporate the performance loss due to the

uncompressed FITS file header. Therefore, there is still an option for further

improvements – not only for the ICSSM methods, but for existing methods

as well.

The difference between cf and cd, discussed above, is small but it can be

further reduced by more efficient encoding methods for the header. With

its fixed length data format and the keyword-to-value assignment scheme,

FITS header data compression is a specific subject which should be dealt

with separately.

Even if the header is kept uncompressed after conversion, the header size

may be reduced by converting it to a XML-representation instead of using

the fixed-block size format. Also, using XML for the header data would

be an option for the future, as parsers and compression methods for XML

data (Green et al. 2004, Cheney 2001, Liefke and Suciu. 2000) already exist.

The integration of the header data into an XML format may be useful for

the integration of image meta-data into databases (Debray 2002). Further

details about the evaluation procedure are given later in this chapter.

6.1.2 Test Images

This section discusses the astronomical test image set, which is used in this

research to evaluate the existing and the newly developed compression meth-
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ods. The test image set was chosen to fulfil the following criteria:

1. The test image set shall be freely available in order to allow the repro-

ducibility of results obtained.

2. If possible, the test image set shall be accepted by other researchers on

astronomical image compression techniques or other researches dealing

with astronomical image properties.

3. The test image set shall contain integer stellar field image data, as the

research presented here focuses on this type of data.

4. The test set shall contain images of 16-bit-per-pixel and of 32-bit-per-

pixel bit depth as both data formats are used nowadays.

5. The test image data set shall contain a sufficient amount of test images.

6. The test image set shall contain a diverse range of images, regard-

ing their properties (exposure time, content, typical imperfections, and

size).

Sample sets for astronomical image processing packages were analysed if

they could meet the requirements listed above.

One particular image set, which is referred to as IRAF test images (IRAF

2005), was chosen as it meets the requirements listed above. In addition to

being freely available, the test image set has previously been used by other

researchers to evaluate astronomical image compression methods (Grosbol

et al. 1989, Sabbey 1999). Therefore, reproducibility of the experiments and

the acceptance of the test image set are possible, and the first two require-

ments listed above are fulfilled.

Also, the test image set contains a sufficiently large number of integer

stellar field images for the research discussed here. The test images are listed

in Table 6.1. Thus, the second and the fourth requirements are fulfilled.

The image test set also contains images encoded with a bit depth of 16-bit-

per-pixel and of 32-bit-per-pixel, thus the third requirement is fulfilled as

well.

Finally, the image set – despite comprising the stellar field images only

and not interferograms – contains a diverse set of image properties. Dif-

ferent exposure times are for example found on the images “ngc0001” and
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“ngc0002”. The long exposure version “ngc0001” even contains a typical ef-

fect called blooming, which occurs with bright sources on images with a long

exposure time. Charge from very bright image areas exceeds the capacity of

the respective CCD pixels and flows to surrounding pixels. Typically, pixels

of the same column are affected, which leads to bright strokes through the

brightest image areas. Additionally, another typical image particularity, a

bright CCD column, is found in image “for0001”, and the image “com0001”

contains large-scale variations in the background region. The required image

content is found within the data test set, as stellar field images, a crowded

starfield, and galaxy clusters are present.

Table 6.1: Thirteen astronomical images used to evaluate the compression meth-
ods and their properties. The dynamic range of the image data is given
in the column labelled “bpp.” for bit-per-pixel.

Test image set
No. Name Description bpp. Image size

1 com0001.fits NGC4874 coma field, strong image gradients 16 500 x 500
2 for0001.fits Fornax dwarf in V, a crowded starfield 16 305 x 512
3 for0002.fits Fornax dwarf in B, a crowded starfield 16 305 x 497
4 gal0001.fits Galaxy cluster 601/0637-53/R/CL 16 320 x 503
5 gal0002.fits Galaxy cluster coadded 727/0637-53/R/CL 16 264 x 427
6 gal0003.fits SA 68 (MPF3869 SA68-1 T) 32 1000 x 1000
7 gal0004.fits SA 68 (MPF3869 SA68-2 T) 32 1000 x 1000
8 ngc0001.fits NGC 3201 in V 16 321 x 507
9 ngc0002.fits NGC 3201 in V, shorter exposure 16 322 x 508

10 sgp0001.fits SGP J: Composite 32 234 x 441
11 sgp0002.fits SGP R: Composite 32 234 x 441
12 tuc0003.fits 47 Tuc off-center in V (47T/V15,F1,ROT) 16 420 x 246
13 tuc0004.fits 47 Tuc off-center in B (47T/B30,F1,ROT) 16 420 x 246

Table 6.1 shows a complete list of the images, a short description of their

content and technical information related to the images. This information

includes the image size and the bit depth. The description of the content is

partly based on (Grosbol et al. 1989). Preview images and image histograms

for the complete set of test images are included in Appendix C.
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6.2 Comparison of Existing State-of-the Art

Methods

An overview of all compression techniques, which have been applied in as-

tronomy for lossy and lossless compression, was given in Chapter 3. The

main aim of the comparison of astronomy-specific compression methods pre-

sented here is to evaluate what compression ratios can be expected for lossless

methods. A detailed evaluation of lossy methods, in terms of achievable com-

pression ratios and their computational complexity, is not the focus of this

evaluation. Lossy methods are no option for archiving raw scientific-quality

data in astronomy. Also, such a comparison would require an investigation

of the photometric and astronometric properties of lossily compressed images

as well as a qualitative examination of the visual quality of the results.

Lossless compression methods found in the open literature, for which

implementations were available, are included in this evaluation. In a few

cases, where no software was available for testing, the discussion has to rely

on results reported in the literature. Interesting results from some pertinent

investigations reported in the literature are summarized in Section 6.2.1.

The methods which were available for the evaluation are discussed in

Section 6.2.2. Details of the evaluation procedure, which focus on the com-

pression ratio achieved by existing methods, are given in Section 6.2.3.

Finally, the evaluation results are discussed and summarized to highlight

which methods can be used for the compression of raw scientific-quality astro-

nomical data, which is the intended application of the compression methods

developed in this thesis.

6.2.1 Summary of Published Results from Some Per-

tinent Investigations

As summarized in Sections 3.3 and 3.4, a range of astronomy-specific hybrid

and lossless compression methods has already been proposed. With exper-

iments on FITS data, Weghorn (2002) measured the efficiency of standard

compression methods applied to astronomical images. Using a small set of

sample images, he measured data compression ratios of approximately two,

using classical methods like Huffman or Lempel-Ziv coding. General-purpose

methods like those from the Lempel-Ziv group have the advantage that im-

plementations are available for virtually all computer platforms used today.



6.2. COMPARISON OF EXIST. STATE-OF-THE ART METHODS 159

Weghorn (2002) also examined straightforward astronomy-specific methods,

like using a look-up-table and allowing any bit depth of data. Possible com-

pression ratios measured with those specific methods exceed those achieved

using classical methods. An early comparison of lossless JPEG, a wavelet

based method, and Zip compression was published by Louys, Starck and

Murtagh (1999). The wavelet transform achieves slightly higher compression

rates than lossless JPEG, which additionally suffers from rounding errors.

Therefore, “lossless JPEG” is not truly lossless. Examining data compres-

sion for the “Next Generation Space Telescope”, Nieto-Santisteban et al.

come to the conclusion that it is difficult to compress astronomical data us-

ing lossless compression algorithms such as Huffman, Lempel-Ziv, run-length

or arithmetic coding (Nieto-Santisteban et al. 1999). They report that this

difficulty is due to the noise present in astronomical images. They report

that techniques such as the Rice algorithm and its derivatives (White and

Becker 1998) would probably perform better than other methods in exploit-

ing the “almost similar value” property of adjacent pixels.

6.2.2 Methods Evaluated Experimentally in this Re-

search

Following the aim to provide an evaluation of all fully-documented methods

found in the literature, a concise overview of lossless methods for compressing

astronomical images is given here.

The overview presented below summarizes methods identified in litera-

ture, which are claimed to work in a lossless mode.

• Fitspress: The method, discussed in Section 3.3.1, is one of the first

astronomy-specific methods; it is based on the Daubechies wavelet

transform.

• Hcompress: Hcompress is another wavelet-based method which was

also discussed in Section 3.3.1.

• PMT: The Pyramidal Median Transform, introduced as an alterna-

tive to the wavelet transform by Starck et al. (1995), was discussed in

Section 3.3.2.

• Integer-to-Integer Transform: An integer-based lossless compressor us-

ing Sweldens lifting scheme was proposed in (Louys, Starck and Murtagh
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1999) for lossless compression. It was discussed in Section 3.4.1.

• Compfits: This method, discussed in Section 3.3.3, attempts to sep-

arate compressible and incompressible image bit-planes. Compfits is

reported to achieve compression rates comparable to Fitspress (Véran

and Wright 1994).

• Switched Linear Prediction with Rice Coding: This is a prediction and

entropy encoding method, which was discussed in Section 3.4.2.

• Signed Huffman Coding: The entropy encoding scheme, dedicated for

the compression of interferograms, exploits the distribution of pixel-to-

pixel differences. It was discussed in Section 3.4.3.

• FITSIO Compression Standard: Current implementations of the FIT-

SIO library for reading and writing FITS files include three compression

methods:

– Zip: an implementation of the Deflate algorithm, which is a com-

bination of LZ77 with Huffman coding.

– PLIO: an algorithm for storing compressed image masks.

– Rice: an entropy encoding method.

All FITSIO methods were discussed in detail in Section 3.5.

The above list of methods can be assigned to three different categories.

Fitspress, Hcompress, PMT, and the lifting scheme methods are transform-

based methods that follow the typical design of transform-based compression

methods. Zip, a popular data compression and archival format, and Rice

coding are general-purpose compression methods like Signed Huffman cod-

ing, which is an entropy coding method especially designed for astronomical

interferograms. Compfits, Switched Linear Prediction, and PLIO can be as-

signed to model-based compression methods which exploit – to a degree –

special characteristics of the data to compress.

For some of the compression methods listed above, there was no software

implementation available to be used for an experimental evaluation. Fitspress

and Hcompress are available as standalone software. The MR/1 software

package provides a range of wavelet-based methods for image analysis and

compression, which have been published and compared in (Louys, Starck and
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Murtagh 1999) and (Louys, Starck, Mei, Bonarel and Murtagh 1999). The

methods provided by the package include the Pyramidal Median Transform,

the Haar wavelet, a Min-Max transform, the Mallat-Daubechies transform,

and the Feauveau transform. The MR/1 software package also provides a

range of dedicated lossless wavelet-based methods which use integer arith-

metic. The MR/1 function “mr lcomp” compresses an image using an integer

wavelet transform via the lifting scheme. The coefficients are encoded loss-

lessly for integer-valued images. Five different lifting schemes are available

for lossless compression: median prediction, integer Haar wavelet transform,

integer Cohen-Daubechies-Feauveau wavelet transform, integer (4, 2) inter-

polating transform, and an integer 7/9 wavelet transform. A detailed docu-

mentation of all different transform and lifting scheme methods is given in

(Murtagh 2006).

Unfortunately, the FTP sites for Compfits and for the method of Sabbey

et al. (1998) are closed and the software is not available in public domain. As

Compfits is reported to achieve compression ratios comparable to Fitspress,

the evaluation of Fitspress gives an estimate of what can be expected from

Compfits (Véran and Wright 1994). Sabbey (1999) report that their method,

on 25 sample test images in nearly all cases, achieves at least the same

compression ratio as Hcompress, Fitspress, or Compfits + Compact.

As (Sabbey 1999) reports that he uses the same images (Grosbol et al.

1989) as the research presented here, his results can be compared with the

ones measured in this research. The results of Sabbey (1999) were extracted

from his publication. Due to the non-availability of a software implementa-

tion of the method, the rigid testing for losslessness performed with all other

methods could not be applied for this method. This has to be kept in mind

when comparing the results to the other methods.

The Signed Huffman Coding scheme of Weghorn et al. (1996) is not in-

cluded in the tests as it is intended for astronomical interferograms rather

than for stellar-field images. The FITSIO library provides sample programs

that use its Zip, PLIO, and Rice compression methods. All three methods

are included in the evaluation. Table 6.2 lists all tested methods and the

parameters which have to be used for lossless compression.
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Table 6.2: Tested lossless compression methods

Method name Function parameters used

Hcompress ./fcompress -s 1 x.fits

Fitspress ./fitspress -c x.fits

FITSIO Zip ./compress fits x.fits outfile g 32 32

FITSIO PLIO ./compress fits x.fits outfile p 32 32

FITSIO Rice ./compress fits centaur outfile

PMT ./mr comp -m 1 -r -l -f -v x.fits

Mathematical Morphology ./mr comp -m 2 -r -l -f -v x.fits

Haar wavelet ./mr comp -m 3 -r -l -f -v x.fits

Min-Max Transform ./mr comp -m 4 -r -l -f -v x.fits

Mallat-Daubechies Transform ./mr comp -m 5 -r -l -f -v x.fits

Feauveau Transform ./mr comp -m 6 -r -l -f -v x.fits

Mixed WT and PMT Method ./mr comp -m 7 -r -l -f -v x.fits

Lifting: Median Prediction ./mr lcomp -m 1 -f -v x.fits

Lifting: Int. Haar wavelet ./mr lcomp -m 2 -f -v x.fits

Lifting: Int. CDF wavelet ./mr lcomp -m 3 -f -v x.fits

Lifting: Int. (4,2) interpol. transf. ./mr lcomp -m 4 -f -v x.fits

Lifting: Int. 7/9 wavelet ./mr lcomp -m 5 -f -v x.fits

6.2.3 Evaluation Procedure

A comparison of the compression ratio is not as trivial as it seems on first

impression. Measures have to be taken to ensure that all compression meth-

ods treat the different data components header and image data in the same

way. The comparison is based on the file compression ratio cf , defined in

Equation 6.1.

In order to allow the comparability of compression measurements, all

methods under evaluation were studied carefully. First of all, it was ascer-

tained that all methods treat the data header the same way.

Hcompress, Fitspress, and the FITSIO methods do not remove header

data from the file; neither do they compress the data header. Other than

these methods, the MR/1 compression method normally removes data from

the header which could be meaningful to the astronomer. But using the

appropriate option of the MR/1 software, it can be ensured that no header

data is removed. During compression, MR/1 includes a single additional line
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in the header to indicate the compression method which was used. Thus,

with all methods under evaluation it was ensured that the header data is

kept uncompressed and complete.

To ensure that all tested algorithms really work losslessly on the data,

the tool “fitsdiff” was used to compare the original FITS file with the version

obtained from decompressing a compressed file. “fitsdiff” reports the number

of different pixels, the maximum and mean absolute difference and the root-

mean-square difference of pixels (Hsu and Hodge 2003). The evaluation was

performed using three shell scripts for each compression method.

1. The first script compresses all test images using the compression method

under evaluation.

2. The second one decompresses and renames the files.

3. The third one compares the original file to the processed version using

“fitsdiff”.

All compression methods were applied to the thirteen integer-valued test

images described in Section 6.1.2.

6.2.4 Results

The compression ratios measured in the experiment to evaluate existing

methods are listed in Table 6.3. For layout reasons, the images are listed as

a numbered sequence corresponding to an alphabetical ordering of file names

(com0001, for0001, for0002, gal0001, gal0002, gal0003, gal0004, ngc0001,

ngc0002, sgp0001, sgp0002, tuc0003, and tuc0004). In the table, the ‘–’

symbol denotes that compression was lossy according to verification with

“fitsdiff”, the ‘�’ symbol denotes that compression was not possible due

to documented software limitations. No measurement results are given for

the MR/1 method labelled “mathematical morphology” (Huang and Bijaoui

1991) because it is a purely lossy method. In this section, the most apparent

general outcomes are discussed first; each single method is discussed in de-

tail later. A diagram presenting the average compression ratios achieved by

individual methods is given in Figure 6.1. Hcompress compressed only one

image losslessly, thus no range is given in Figure 6.1.

One very important outcome of this evaluation was that not all compres-

sion methods that claim to be “lossless” truly produce lossless compression.
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The evaluation showed that there were not only differences in the achievable

compression ratio on the different images, but that there were also differences

in the “losslessness” of compression methods. From the 221 method-image

pairs which were used for the compression ratio measurements, only 168 com-

pression attempts succeeded and led to a truly losslessly compressed output

image. One cause for this are limits in the data format that the evaluation

software could process; this is normally specified in the software documen-

tation. Some compression attempts gave an error message if an attempt to

compress a wrong data type was made. For example, Fitspress could not

compress some of the images, because it is limited to 16-bit-per-pixel files,

while all FITSIO methods succeeded in compressing all images losslessly.
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Figure 6.1: Measured average compression ratio of available, ready-to-use lossless
compression tools for astronomical images.

Some methods processed the data and returned a “losslessly” compressed

file which cannot be used for a truly identical reconstruction of the origi-

nal data. The MR/1 standard method and Hcompress did not satisfy the

losslessness criteria on a range of the thirteen test images. Hence, both meth-
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ods are not an option for archiving original astronomical images of scientific

grade.

The first performance evaluation candidate, Hcompress, is claimed to

work losslessly on 16-bit-per-pixel integer FITS images in the software doc-

umentation. Therefore, the evaluation was only performed on these images.

Despite using the program parameter setting which should lead to lossless

compression, the “fitsdiff” routine reported a range of differences in nearly all

images. In most cases, the measured pixel intensity differences were small –

ranging from minus 2 to plus 2 intensity levels – but there were also some im-

ages where larger intensity differences were found, up to a value of nearly 0.3

times the dynamic range of the image. Hcompress reported successful com-

pression attempts on all images, which led to compression ratios between

1 and 3.9. Despite being lossy, this range was far below the compression

rates from 3 up to 30 reported by the author of the Hcompress software

(White 1992). The remarkably large compression ratios White (1992) men-

tioned for lossless methods could not be verified in the evaluation. The

resulting compression ratio, which is not truly lossless, was a bit higher than

the results which were achieved by the almost similar standard MR/1 Haar

transform method.

Like Hcompress, Fitspress compresses only 16-bit-per-pixel, single-plane

images. Therefore, as can be seen in Table 6.3, only those images were used

for the investigation. The performance evaluation supports the statement

of the Fitspress manual, which reports that the size of the compressed files

should be significantly (typically a factor 2.5) smaller than the original file.

The average compression ratio achieved on nine test images was approxi-

mately 2.2. The reconstruction was exact in these nine cases.

The FITSIO compression methods, Zip, PLIO, and Rice, succeeded in

compressing all images losslessly. PLIO is a dedicated algorithm for storing

compressed image masks for an image processing package which is called

Image Reduction and Analysis Facility.

PLIO achieved the worst average compression ratio. On most 16-bit-per-

pixel images, it could not achieve any compression at all. The files were even

enlarged a bit with compression ratios of 0.93 up to 0.97. On 32-bit-per-pixel

images, compression ratios of up to approximately 2 could be achieved using

PLIO.
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Table 6.3: Compression ratios for existing state-of-the art methods. The ‘–’ sym-
bol indicates that compression was lossy according to verification with
“fitsdiff”, the ‘�’ symbol indicates that compression was not possi-
ble due to documented software limitations. The table row labelled
“Pred.+Rice”, lists the unverified results extracted from Sabbey (1999).
They are only given for information. The last column (symbol c) de-
notes the average compression ratio achieved on the whole image set for
the respective method. For layout reasons, the test images are listed as
a numbered sequence corresponding to an alphabetical ordering of file
names.

Image 1 2 3 4 5 6 7

Bit depth 16 16 16 16 16 32 32

Hcompr. − − − 2.78 − � �
Fitspr. 2.03 2.62 3.24 2.57 2.05 � �
F-IO Zip 1.14 1.51 1.75 1.43 1.18 4.48 4.50

F-IO PLIO 0.97 1.00 1.00 0.96 0.95 1.99 1.99

F-IO Rice 1.92 2.75 3.45 2.40 2.00 5.97 5.91

Pred.+Rice 2.10 3.45 4.35 2.85 2.40 4.40 3.35

M:PMT 1.85 2.44 2.80 2.42 1.95 − −
M:Math.Mor. � � � � � � �
M:Haar-Wavel. 1.92 2.54 3.00 2.44 2.01 − −
M:Min-Max 1.92 2.33 2.46 1.85 1.64 − −
M:Mall.-Daub. 1.87 2.53 3.31 2.42 2.00 − −
M:Feauveau 1.85 2.38 3.05 2.39 1.98 − −
M:WT&PMT 1.86 2.38 2.71 2.41 1.95 − −
ML:Med.pre. 1.91 2.57 3.16 2.45 2.02 5.63 5.58

ML:Int.Haar 2.10 3.01 3.94 2.79 2.26 6.60 6.54

ML:Int.CDF 2.10 3.17 4.55 2.79 2.30 6.53 6.47

ML:Int.(4.2) 2.09 3.17 4.68 2.78 2.30 6.50 6.43

ML:Int.7/9 2.10 3.07 4.18 2.78 2.30 6.43 6.37

Image 8 9 10 11 12 13 c

Bit depth 16 16 32 32 16 16

Hcompr. − − � � − − 2.78

Fitspr. 1.35 1.83 � � 1.97 2.08 2.19

F-IO Zip 1.02 1.35 2.96 3.30 1.43 1.49 2.12

F-IO PLIO 0.93 0.96 1.88 1.88 0.97 0.97 1.27

F-IO Rice 1.58 2.17 4.83 5.58 2.52 2.61 3.36

Pred.+Rice 1.90 2.80 3.15 3.80 3.35 3.50 3.18

M:PMT 1.61 2.20 − − 2.35 2.46 2.23

M:Math.Mor. � � � � � � �
M:Haar-Wavel. 1.55 2.16 − − 2.35 2.50 2.27

M:Min-Max 1.62 1.88 − − 1.99 2.03 1.97

M:Mall.-Daub. 1.37 1.85 − − 2.27 2.41 2.23

M:Feauveau 1.36 1.82 − − 2.15 2.28 2.14

M:WT&PMT 1.60 2.18 − − 2.33 2.45 2.21

ML:Med.pre. 1.57 2.13 4.88 5.67 2.37 2.48 3.26

ML:Int.Haar 1.70 2.40 5.68 6.71 2.74 2.87 3.80

ML:Int.CDF 1.70 2.46 5.81 6.86 3.00 3.17 3.92

ML:Int.(4.2) 1.66 2.41 5.81 6.84 3.03 3.21 3.92

ML:Int.7/9 1.64 2.34 5.72 6.63 2.89 3.04 3.81
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The Zip and Rice compression methods led to much better average com-

pression ratios of 2.12 and 3.36 respectively. These methods are a good, if

not the best option at the moment for safely archiving astronomical images.

These methods are well standardized and available free of charge. In partic-

ular, the compression ratio achieved by Rice compression is among the best

of the available methods.

The MR/1 methods, which implement a range of mostly transform-based

compression methods, are separated into two functions, standard and lifting

scheme methods. While both functions should work in a lossless mode, the

MR/1 lifting scheme methods are dedicated to lossless compression. The

standard MR/1 method, labelled “mathematical morphology”, is based on

a morphological decomposition of the data. It was presented in a very early

paper of Huang and Bijaoui (1990) and is implemented as a lossless method

only. Lossless compression was not possible in this case due to documented

software limitations (Murtagh 2006).

The average compression ratios of the standard MR/1 methods did not

differ very much. Average compression ratios ranged from about 1.97 up

to 2.27. The problem that images were not compressed truly losslessly oc-

curred with the standard MR/1 methods applied to images with a bit depth

of 32 bits per pixel. Thus, these methods should not be recommended for

the archival of scientific-grade astronomical images. Even when comparing

only 16-bit-per-pixel images, great performance differences between the hy-

brid standard MR/1 methods and the dedicated lossless MR/1 lifting scheme

methods could be found. Typically, the wavelet-based methods gave higher

compression ratios than standard methods. Even on the image “ngc0001”,

which is apparently the most difficult to compress, the best wavelet-based

method – the integer Haar wavelet – led to a compression ratio of 1.7, while

the best standard method gave a compression ratio of 1.62. Differences were

even larger on images where both methods achieved better compression ra-

tios. Typical average compression ratios, which can be expected with the

lifting scheme MR/1 methods, were in the order of 3.75 or even above.

Although this is roughly 1.5 times the compression ratio that the MR/1

standard methods achieve, it has to be kept in mind that the standard meth-

ods fail on 32-bit-per-pixel images, where high compression ratios are possi-

ble.
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6.2.5 Summary

Judging from the average compression ratios achieved in the performance

evaluation for available methods, the best performing methods, which com-

pressed all test images losslessly, are the MR/1 Lifting Scheme and the FIT-

SIO Rice method.

Taking only the existing and tested methods into account, only the FIT-

SIO compression methods and the MR/1 lifting scheme are an option for

reliably archiving scientific-grade astronomical images in compacted format.

The most efficient method, which is standardized and can be included in any

software, is a straightforward entropy encoder. On average, only the lossless

MR/1 methods slightly outperformed the Rice compression method on all

test images. Comparing the average results measured on the test images

to those from Sabbey (1999) for his own method (based on prediction and

Rice coding), which averaged at 3.18, would place Sabbey’s method after the

MR/1 lifting scheme based methods and the FITSIO Rice method, under

the supposition that the method works perfectly lossless in all cases.

For the examined existing methods, the average compression ratios of

all methods for 32-bit-per-pixel images ranged from 3.81 (FITSIO Zip) up to

6.42 (the MR/1 integer Cohen-Daubechies-Feauveau wavelet transform based

method). The average results on 16-bit-per-pixel images ranged from 1.37

(FITSIO Zip) up to 2.81 (the MR/1 integer (4, 2) interpolating transform

based method), ignoring the low performing PLIO method in both cases.

This shows that the compression results achievable for 32-bit-per-pixel

stellar field images are at least twice as high as for 16-bit-per-pixel images.

This finding further strengthens the argument that compression becomes

even more important and successful with the currently increasing bit depths

of astronomical images. Current discussions on upgrading the FITS file spec-

ification include the introduction of 64-bit-per-pixel images.

The compression ratio increase by a factor of two, between 16-bit-per-

pixel and 32-bit-per-pixel images, is only surprising at first glance. As dis-

cussed in Chapter 4, the largest image area is the background region. This

image area only contains background noise information, which does not dif-

fer greatly depending on the bit depth the image is encoded with. Hence,

with 32-bit-per-pixel images, for the background region more than twice the

amount of bits of a single background region intensity value is unaffected

by noise than in the case of a 16-bit-per-pixel image. As the compression



6.3. EVALUATION OF ICSSM 1 169

algorithms remove this overhead, the compression ratio increase by two is

not surprising. Possibly, the compression ratio will almost double again with

64-bit-per-pixel images.

6.3 Evaluation of ICSSM 1

To determine the size-efficiency of the ICSSM 1 method, a software imple-

mentation of the compression method was developed according to the de-

scription given in Chapter 5. With the implementation used for ICSSM 1,

the achievable compression ratio using Huffman coding was, for practical

purposes, calculated rather than measured for two of the data components.

This approach was chosen because the size of data compressed by Huffman

coding can be easily predicted using first-order entropy. ICSSM 1 serves

merely as a proof-of-concept algorithm during the development of ICSSM 2

and ICSSM 3. Hence, a full implementation of the method is not required.

The calculation considers the number of symbols, the first-order entropy

of the data and the required data space for encoding the Huffman table.

6.3.1 Implementation

The segmentation step was implemented in Matlab2. The image was seg-

mented automatically using the software prototype and different parameters

for the tile generation step. The size of the data components after com-

pression was measured for the binary encoded components. For Huffman

encoded components, the size Hs was estimated using first-order entropy

plus the required data space for encoding the Huffman table.

Hs =
k∑

i=1

(P (li) · log2
1

P (li)
) + k · (b + f) + 2 · 8 + 16 Bit (6.5)

Formula 6.5 accounts for the overhead due to a required frequency table.

The frequency table consists of k letters, which require as many bits as the

original image bit depth b, plus the amount of bits required to store the

frequency information f . f is derived from a histogram of the data. The last

two addends account for the side information on the frequency table layout.

2Available from: http://www.mathworks.com (03.04.2008).
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Three components are needed for this: the bit depth of the original letters

(8 bits), the bit depth of the frequency specification (another 8 bits), and

the length of the table (16 bits). This formula does not account for possible

imperfections of the Huffman algorithm for certain distributions, where the

optimality of Huffman encoding may be reduced in the worst case to the

first-order entropy plus one bit per symbol.

The overall required size for the ICSSM 1 compressed image data was es-

timated by summing up the sizes of all data components after the encoding

step and adding the overhead for including the data components in a FITS

file. As discussed in Section 6.1.1, no additional overhead is required to com-

bine the data streams to a single file, if the FITS file overhead is accounted

for already.

The estimated results obtained by applying the ICSSM 1 compression

algorithm to the test data are presented and discussed in the next section.

6.3.2 Results

Despite the relatively simple encoder used, the compression ratios estimated

with ICSSM 1 are promising; results estimated for the achievable compaction

on the FITS files data component are listed in Table 6.4.

The highest average compression ratio on all images was achieved with

a tile size parameter of 30 pixels. The influence of the tile size on the com-

pression ratios for the thirteen test images is discussed in detail in the next

section. The average compression ratio cf of 3.37 estimated for ICSSM 1

on all images is at par with Rice compression ratio of 3.36 (see Table 6.3).

The ICSSM 1 results are only 16% lower than the best available method,

the lifting scheme integer CDF wavelet method, which reaches a compres-

sion ratio of 3.92 (see Table 6.3). The ICSSM 1 compression method, based

on segmentation, region-adaptive bit-allocation, and signal modelling, could

compete with the existing Rice coding method, which is already included in

the FITS standard.

6.3.3 Influence of Tile Size on Compression Perfor-

mance

The only parameter which can be chosen with the ICSSM 1 algorithm is the

tile size parameter t. The first question to be answered is whether there is
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an optimal tile size that leads to optimal compression ratios for each image.

Therefore, the effect of tile size on the compression ratio was measured for

the ICSSM 1 algorithm.

Table 6.4: Compression ratios cf estimated for the ICSSM 1 method. The last
column (symbol c) denotes the mean compression ratio for the corre-
sponding image, the last row (denoted set c) gives the mean compression
ratio for a certain tile size.

ICSSM 1

Tile size

Image 5 10 15 20 30 50 100 150 c

com0001 1.75 1.82 1.82 1.82 1.80 1.77 1.68 1.64 1.78

for0001 2.34 2.55 2.57 2.58 2.58 2.53 2.46 2.46 2.52

for0002 2.76 3.01 3.04 3.05 3.06 3.02 2.91 2.89 2.99

gal0001 2.21 2.38 2.42 2.43 2.45 2.44 2.43 2.43 2.40

gal0002 1.76 1.90 1.94 1.94 1.94 1.98 1.96 1.94 1.93

gal0003 4.81 5.52 5.68 5.74 5.78 5.81 5.85 5.85 5.64

gal0004 4.81 5.53 5.70 5.78 5.87 5.90 6.07 6.13 5.72

ngc0001 1.35 1.53 1.58 1.57 1.57 1.56 1.51 1.57 1.53

ngc0002 2.04 2.26 2.29 2.30 2.28 2.26 2.21 2.20 2.24

sgp0001 4.41 5.14 5.37 5.37 5.46 5.55 5.60 5.71 5.33

sgp0002 4.85 5.68 5.91 5.91 6.04 6.01 6.02 6.02 5.82

tuc0003 2.12 2.39 2.45 2.46 2.45 2.44 2.41 2.39 2.40

tuc0004 2.21 2.50 2.55 2.56 2.54 2.52 2.45 2.39 2.48

Set c 2.88 3.25 3.33 3.35 3.37 3.37 3.35 3.36

Table 6.4 shows that for most 16-bit-per-pixel images (the compression

ratios range between 1.35 and 3.06), the optimal tile size t ranges from 15 up

to 50 pixels. Only for two 16-bit-per-pixel images (“gal0002” and “tuc0003”),

a higher compression ratio is achieved with a much larger tile size. Other

than for the 16-bit-per-pixel images, the compression ratio for 32-bit-per-

pixel images (“gal0003”, “gal0004”, “sgp0001”, and “sgp0002”) still increases

with tile sizes larger than 150 pixels, because the image background region

of those images is almost completely flat.

Choosing an optimal image-specific tile size could only enhance the av-

erage compression ratio cf of the ICSSM 1 algorithm on the test image set
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from 3.37 to 3.42. Choosing a fixed optimal tile size for each bit depth group,

16-bit-per-pixel images and for 32-bit-per-pixel images, would lead to almost

no enhancement.

For reliable segmentation, each tile should include a significant amount

of background region; thus, the tile size should be larger than the diameter

of the largest object – otherwise the segmentation, based on the statisti-

cal distribution of pixel intensity, will fail. Therefore, as a lower bound for

the tile size, the diameter of the largest object can be used. This can be

done manually, for example when integrating the segmentation, modelling

and region-adaptive bit allocation based compression method into the data

reduction and data archiving pipeline of a certain instrument. Other possi-

bilities are to determine the object diameter using transform-based methods

or to calculate the diameter of the point-spread function from the geometrical

and optical properties of telescope and sensor device.

6.3.4 Summary

Comparing the results on the whole set of 16- and 32-bit-per-pixel test im-

ages, with an average compression ratio of 3.37 (including header influence),

the proof-of-concept algorithm ICSSM 1 could achieve a performance that is

comparable to the best standardised FITSIO Rice compression method. It

was only outperformed by four dedicated lossless wavelet-based MR/1 meth-

ods, which reached average compression ratios of 3.79 up to 3.92, depending

on the tile size.

On 32-bit-per-pixel images, the average compression ratio that ICSSM 1

could achieve for a tile size t of 100 pixels was 5.93. This exceeds the average

compression ratio 4.69 obtained with the existing methods on 32-bit-per-pixel

images. Comparing images of this bit depth only, the compression ratio of

5.93 that the ICSSM 1 method could achieve is even closer to the values of

6.42 and 6.40 – the average compression ratio of the best performing MR/1

methods (CDF and Int. (4.2) wavelet) – than to the average (4.69) of existing

and tested methods.

One major advantage of the newly developed method over the lossless

wavelet based MR/1 is that no pyramidal data representation has to be gen-

erated through iterative steps, as is required by the wavelet-based methods.

Even with the limited encoding methods which were used in ICSSM 1,

the influence of the tile size remains limited. The choice of the optimal tile
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size for an image could only enhance the average compression ratio cf of the

ICSSM method on the test image set from 3.37 to 3.42. Therefore, a fixed

tile size can be used with ICSSM 1.

6.4 Evaluation of ICSSM 2

With the ICSSM 2 variant, only a single encoder is applied to the data

generated through segmentation to keep the encoding step as simple as pos-

sible. The LZ77 variant called Deflate, which is used in the well known Zip

compression tool, was chosen.

Again, as in the previous section, first the implementation and testing of

the ICSSM 2 method is described here. Then, the measured results on the

test image set are presented and analysed in detail.

6.4.1 Implementation

The image segmentation software, which was used for ICSSM 1, was modified

to conduct the experiments using external compression for all data compo-

nents for ICSSM 2. Segmentation is performed automatically without user

interaction. In comparison to ICSSM 1, the segmentation step in ICSSM 2 is

modified to limit the noise range to eight bits. In addition to enhancing the

segmentation, the eight-bit valued noise stream can be efficiently processed

with the external tools for data compression, which assume that each input

data item is stored in a byte. The Matlab software prototype saves into files

the binary data streams for each image data component generated through

segmentation. For each image and tile size measured, one folder is gener-

ated, containing the image data components. The software then invokes the

application of external Zip compression on this folder, leading to a single

compressed output file that contains all the image data from the original im-

age. As the external Zip compression includes some additional information

such as file names and folder location in the compressed file, a small com-

pression performance enhancement might be possible when removing such

information and storing the data directly in a FITS file.

The decoding algorithm for the data was implemented as a Matlab script,

in order to verify the losslessness experimentally. The decompression script

reverses the encoding. First, it decompresses the data using the external Zip

tool. Then, the segmentation is reversed in order to restore the original data.
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For all test images, the decompressed image data was compared to the

original image data in order to ensure the losslessness of the whole procedure.

No difference was found between the original data and the uncompressed data

recovered after compression.

The script also allows decompressing only the background level data and

the region-of-stellar-objects values without adding the extracted image back-

ground noise. This is shown as an example in Figure 6.2. For fast preview

and quick inspection, a transmission of the shown image parts can be suf-

ficient. In such a case, appropriate interpolation methods, such as linear

interpolation, should be applied to the background level data, instead of the

box-like approach displayed to avoid visual artefacts at the tile borders.

  x
y

In
te
ns
ity

Figure 6.2: Partial decompression of the image “com0001” without adding the
background noise. As the background noise component typically con-
sumes about 66% of the compressed image data, decompression with-
out noise may be used for quick inspection and preview purposes.

It has to be kept in mind, as with all lossy compression methods, that

it cannot be guaranteed that no relevant information is disregarded by this
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partial decompression process. Removing the component treated as noise

turns the ICSSM algorithm into a lossy compression algorithm. With the

ICSSM algorithm and the preview without noise, faint sources will be disre-

garded, for example. Furthermore, details in very bright image areas might

be omitted (compare to the “bright object” case in Section 5.1.5). In order

to generate the preview image, only 16 percent of the original data were

required with the 16-bit-per-pixel image “com0001”. With 32-bit-per-pixel

images, comparable images could be generated with less than 10 percent of

the data.

6.4.2 Results

The measured results from compressing the test image set using the ICSSM

2 algorithm, for a range of tile sizes, are listed in Table 6.5.

Table 6.5: Compression ratios cf measured for the ICSSM 2 method. The last
column (symbol c) denotes the mean compression ratio achieved for
the corresponding image, the last row (denoted set c) gives the mean
compression ratio achieved for a certain tile size.

ICSSM 2

Tile size

Image 5 10 15 20 30 50 100 150 c

com0001 1.97 2.06 2.07 2.06 2.04 2.01 1.92 1.88 2.00

for0001 2.55 2.69 2.74 2.77 2.78 2.81 2.83 2.86 2.75

for0002 2.96 3.22 3.33 3.37 3.44 3.45 3.51 3.55 3.35

gal0001 2.48 2.65 2.71 2.73 2.74 2.74 2.75 2.75 2.69

gal0002 2.09 2.20 2.24 2.24 2.25 2.26 2.26 2.27 2.23

gal0003 5.82 6.26 6.43 6.51 6.58 6.70 6.82 6.86 6.50

gal0004 5.86 6.29 6.45 6.55 6.66 6.75 6.97 7.03 6.57

ngc0001 1.69 1.77 1.81 1.78 1.81 1.82 1.82 1.85 1.80

ngc0002 2.27 2.41 2.45 2.48 2.50 2.51 2.56 2.59 2.47

sgp0001 5.06 5.40 5.60 5.52 5.72 5.84 5.93 6.01 5.63

sgp0002 5.30 5.70 5.94 5.93 6.13 6.28 6.51 6.58 6.05

tuc0003 2.35 2.51 2.56 2.58 2.59 2.62 2.66 2.66 2.57

tuc0004 2.45 2.62 2.66 2.69 2.69 2.71 2.74 2.80 2.67

Set c 3.30 3.52 3.62 3.63 3.69 3.73 3.79 3.82
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The measurements show that when Zip general-purpose compression was

applied, the size-efficiency was enhanced on each of the images compared

to ICSSM 1. For example, using a tile size parameter t of 10 pixels, the

compression ratio of ICSSM 2 reached 3.52, while ICSSM 1 could achieve an

8.31 percent lower compression ratio of 3.25 (on average over the entire test

image set).

The proof-of-concept ICSSM 1 algorithm already produced the same aver-

age compression ratio as the second best existing measured method, FITSIO

Rice compression; the improved results obtained with ICSSM 2 exceed those

of the best standardised FITS compression methods and are close to those

of the best available wavelet-based methods.

The measurements conducted with ICSSM 2 proved that segmentation-

based region-adaptive compression can give results as good as wavelet-based

methods. Only the lifting scheme integer CDF wavelet and the integer (4,2)

wavelet methods, which both reached a compression ratio of 3.92, exceed the

best average results of ICSSM 2 which is a compression ratio cf of 3.82 a bit.

With ICSSM 2, the optimal tile size parameter (t set to 150 pixels) (see

Table 6.5), observed for the average compression ratio over the test image

set, was much higher than with ICSSM 1 (t set to 30 pixels) (see Table 6.4).

With a larger tile size parameter, typically the noise data increased with

ICSSM 1. The introduction of an upper noise limit in ICSSM 2 prevents the

growth of the noise component beyond 8 bits-per-pixel. This limit on the

growth of the noise component is achieved at the cost of a growth of the size

of the region-of-stellar-objects data.

That ICSSM 2 achieved higher compression ratios than ICSSM 1 has to

be attributed mainly to the enhanced encoder for region-of-stellar-objects

data components and to the newly introduced compression of the region

demarcation information. With ICSSM 1, the background level values were

encoded verbatim into binary numbers, using no compression. This encoding

does not exploit the correlation of background level estimates for adjacent

tiles. This may be one cause why the compression performance of the IC-

SSM 1 algorithm still increases with tile size parameters larger than 50 pixels

(the evaluation results are given in Table 6.4). ICSSM 2 showed a similar

behaviour, while the performance of the Zip compression on this particular

data component within the archive cannot be measured exactly and linked
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to the data distribution3. Smaller tile sizes still may lead to higher compres-

sion ratios in the case of images with strongly-varying background region

intensities, for example “com0001”.

Table 6.6: Compression ratios of the FITSIO Zip (cZ) method in comparison with
the ICSSM 2 results (cI2). The last row gives the quotient cZ

cI2
. For

layout reasons, the test images are listed as a numbered sequence cor-
responding to an alphabetical ordering of file names.

Image 1 2 3 4 5 6 7

F-IO Zip 1.14 1.51 1.75 1.43 1.18 4.48 4.50

ICSSM 2 t=150 1.88 2.86 3.55 2.75 2.27 6.86 7.03
cZ
cI2

1.65 1.89 2.03 1.92 1.92 1.53 1.56

Image 8 9 10 11 12 13 c

F-IO Zip 1.02 1.35 2.96 3.30 1.43 1.49 2.12

ICSSM 2 t=150 1.85 2.59 6.01 6.58 2.66 2.80 3.82
cZ
cI2

1.81 1.92 2.03 1.99 1.86 1.88 1.80

Finally, comparison of ICSSM 2 to Zip compression also showed that seg-

mentation plus external compression methods are more effective than the

application of Zip compression, which is often used for external file compres-

sion. The results from the application of Zip compression using the FITS

Zip method are given in Table 6.6, in comparison to the average compression

ratio that ICSSM 2 achieved on the test image set (as detailed in Table 6.5).

With a tile size parameter t of 150 pixels, ICSSM 2 achieved results that are

on average 80 percent better than those of the FITSIO Zip method. In the

worst case, ICSSM 2 was 1.53 times as effective as the FITSIO Zip method;

in the best cases ICSSM 2 was 2.03 times as effective as the FITSIO Zip

method alone. This means that the application of the segmentation step

prior to the Zip encoding step led to a performance increase of 1.53 up to

2.03 compared to the application of the FITSIO Zip compression alone.

6.4.3 Summary

In the evaluation reported in the preceding section, using a sample imple-

mentation of the ICSSM 2 method, the achievable compression ratio was

3The compression ratio that Zip achieves on a certain data component within an archive
of several components may be influenced by the characteristics of the other data, which is
as well included in the same archive.
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measured and the losslessness of the method was ensured. With an average

compression ratio cf on the test image set of up to 3.82, ICSSM 2 yielded a

compression ratio comparable to the best existing methods under evaluation.

The performance of ICSSM 2 was at par with the best four lossless wavelet

based MR/1 methods for compressing astronomical images, which reach av-

erage compression ratios of 3.26 up to 3.92. Hence, ICSSM 2 proved that

segmentation-based compression leads to results as good as wavelet-based

methods for stellar-field images, as it allows region-adaptive allocation of

bits to pixel data.

Finally, a particularly interesting result which can be shown with ICSSM

2 is that segmentation plus the general-purpose coding method lead to up

to more than twice the compression ratio achieved with the external Zip

compression method alone. This proves that the segmentation is a valid

pre-processing step for stellar-field image data as it allows region-adaptive

allocation of bits to pixel data.

6.5 Evaluation of ICSSM 3

The evaluation of ICSSM 2 discussed in the last section showed that high

compression ratios, comparable even to the best existing wavelet-based meth-

ods, are possible with the segmentation-based region-adaptive approach.

With ICSSM 3, the focus is on maximising the compression ratio of the

individual data components. Therefore, further possibilities to enhance the

compression ratio of the ICSSM method were identified and investigated

in Chapter 5 to determine the most promising compression approaches for

each data component. Fitting compression methods for the individual data

component were chosen (see Chapter 5.3).

6.5.1 Implementation

To measure the size-efficiency of ICSSM 3, the image segmentation software,

which was developed and used for previous experiments with ICSSM 2, was

adapted. As with ICSSM 2, binary data was exported and encoded using

the external data compression tools, which were chosen in the experiments

described in Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4. Similar to the ICSSM

2 prototype, a script invokes the external tools which compact each data

component. As the segmentation step itself is lossless, and the external tools
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used do not introduce any change to the data, the whole ICSSM 3 method is

lossless. The losslessness of the segmentation and compression was verified

as with ICSSM 2.

6.5.2 Results

The investigation to determine component-specific methods for compaction

(described in Section 5.3) suggested that a performance increase of ICSSM 3

compared to ICSSM 2 would be possible if the performance on the complete

test image set behaved as in the experiments reported in Sections 5.3.1, 5.3.2,

5.3.3, and 5.3.4.

Table 6.7: Compression ratios cf measured for the ICSSM 3 method. The last
column (symbol c) denotes the mean compression ratio achieved for
the corresponding image, the last row (denoted set c) gives the mean
compression ratio achieved for a certain tile size.

ICSSM 3

Tile size

Image 5 10 15 20 30 50 100 150 c

com0001 1.96 1.97 1.89 2.03 2.01 1.99 1.95 1.94 1.97

for0001 2.96 3.15 3.20 3.23 3.25 3.24 3.23 3.26 3.19

for0002 3.62 4.04 4.17 4.23 4.29 4.32 4.31 4.33 4.16

gal0001 2.65 2.77 2.81 2.82 2.83 2.83 2.83 2.83 2.80

gal0002 2.13 2.21 2.24 2.24 2.25 2.25 2.25 2.26 2.23

gal0003 6.73 7.09 7.23 7.30 7.38 7.50 7.64 7.69 7.32

gal0004 6.76 7.12 7.26 7.35 7.46 7.55 7.77 7.87 7.39

ngc0001 1.82 1.89 1.92 1.91 1.93 1.94 1.93 1.95 1.91

ngc0002 2.65 2.82 2.87 2.89 2.91 2.90 2.92 2.94 2.86

sgp0001 5.94 6.26 6.45 6.45 6.51 6.64 6.73 6.88 6.48

sgp0002 6.54 6.90 7.08 7.10 7.20 7.28 7.27 7.38 7.09

tuc0003 2.81 3.03 3.10 3.12 3.13 3.15 3.14 3.13 3.07

tuc0004 2.94 3.20 3.27 3.30 3.31 3.31 3.31 3.32 3.25

Set c 3.81 4.03 4.11 4.15 4.19 4.22 4.25 4.29

The listing of the experimental results given in Table 6.7 shows that the

goal could be reached with the ICSSM 3 method. The best average result
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that ICSSM 3 achieved, with a fixed tile size for all images, was about 4.29.

Under the same conditions, ICSSM 2 attained only a compression ratio of

3.82. This means that, compared to ICSSM 2, ICSSM 3 achieved an average

performance increase by a factor of 1.12 on the test image set.

As the measured compression ratio for 32-bit-per-pixel images increased

with larger tile size, the optimal choice for these images is a tile size value of

150 pixels. For 16-bit-per-pixel images the average performance reached its

limit (compression ratio of 2.88) for t = 50. Given that for the 16-bit-per-

pixel images the compression ratio remains nearly constant with t ranging

from 30 up to 150, different choices of t for 32- and 16-bit-per-pixel images

are not necessary to reach the optimal average compression ratio.

Comparing the average compression ratio on all images in the test set,

with an optimal or near optimal choice of the tile size, the newly developed

method was approximately 11% more efficient than the best existing method.

A comparison of all ICSSM methods and the existing methods is given in

the next section.

6.5.3 Summary

The size efficiency increase of ICSSM 3 compared to ICSSM 2 was approxi-

mately 12%. ICSSM 3 outperformed, in terms of average compression ratio

on the test image set, all existing methods reported in research papers and

tested in Section 6.2. A final comparison of the average compression ratio of

available ready-to-use lossless compression tools to ICSSM 1, ICSSM 2, and

ICSSM 3 is given in the next section.
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6.6 Comparison of ICSSM and Existing Com-

pression Methods

A final overall comparison of existing compression methods reported in re-

search papers (discussed in Chapter 3) and the novel algorithms proposed in

this thesis, is given in this section.

This comparison consists of six parts. First, the average compression

ratio of each method on the whole test image set is discussed. Then, the

influence of the image bit depth on compression performance is discussed.

Additionally, each of the bit depth categories, 16- and 32-bit-per-pixel im-

ages, is analysed separately; within each category, the performance of the

different methods is compared. Finally, after analysing the number of best

results per compression method, an overall summary is given and practical

implications of the findings are discussed.

As discussed in Section 6.1.1, the file-based compression ratio cf , in-

cluding the influence of the FITS file header on the data, was used for the

comparison of performance measurements of the ICSSM algorithms and the

existing methods.

6.6.1 Compression Ratio on the Whole Test Image Set

Comparing the average compression ratios of ICSSM algorithms and exist-

ing methods on the whole test image set, Figure 6.3 clearly shows that the

average compression ratio of ICSSM 3 exceeded those of existing methods.

The method of Sabbey et al. (1998), which could not be made available for

testing, achieves an average compression ratio of 3.184. Thus, ICSSM 3 also

outperformed this method, on average on all images in the test set.

Even the ICSSM 2 method, which did not apply encoder specially chosen

for each data component, led to average results on all images in the test set

at par with the best methods under evaluation, which are based on a lifting

scheme. These MR/1 lifting scheme methods are labelled ‘ML’ in Figure

6.3. ICSSM 1, the proof-of-concept variant of ICSSM, gave average results

on all images in the test set at par with the existing Rice-based compression

method included in the FITSIO library.

4As this result was not measured in the experiments reported in this thesis, it is only
given for information and not included in Figure 6.3.
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These findings validate the hypothesis that a data-specific compression

method based on image segmentation can exceed the results of wavelet-based

methods, in the case of astronomical images.
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Figure 6.3: Comparison of the average, minimum, and maximum compression ra-
tios of existing ready-to-use lossless compression tools, and ICSSM on
all test images.

6.6.2 16- Versus 32-bit-per-pixel Images

In Figure 6.3, great differences in the span between the minimum and maxi-

mum compression performance can be found. This effect is especially visible

when comparing the MR/1 standard methods (labelled M in the figure) and

the lifting scheme-based methods (labelled ML). The lifting scheme methods

are capable to compress 32-bit-per-pixel images, where high compression ra-

tios can be achieved, while these high results are missing with methods that
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only worked losslessly on 16-bit-per-pixel images. Therefore, in the following

both data categories 16- and 32-bit-per-pixel images are looked at separately.

Figures 6.4 and 6.5 show that the compression achievable on 32-bit-per-

pixel astronomical images is at least twice higher than on 16-bit-per-pixel

images.
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Figure 6.4: Comparison of the average, minimum, and maximum compression ra-
tios of existing ready-to-use lossless compression tools, and ICSSM on
16-bit-per-pixel test images.

Efficient methods proved capable of reducing the size of 16-bit-per-pixel

images typically by a factor of three, while typically a factor of six up to

nearly eight could be achieved on the 32-bit-per-pixel images of the test set.

6.6.3 Results for 16-bit-per-pixel Images in Detail

For 16-bit-per-pixel images, a range of different methods led to almost the

same average results. Ignoring PLIO, where no compression could be achieved,
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the average compression ratio ranged from 1.37 up to 2.88. The performance

of the best method given in Figure 6.4 reaches nearly the same as the results

reported for the method of Sabbey (2.96) in (Sabbey 1999), which could not

be verified experimentally.

On average, the best performing method, ICSSM 3 also slightly outper-

formed the best method from the evaluation of existing methods, the integer

(4,2) lifting scheme method from the MR/1 package (which achieved a com-

pression ratio of 2.81 on average). The best compression ratio on a single

16-bit-per-pixel image was produced by one of the integer lifting scheme

methods. Comparing the minimum compression ratio, the ICSSM 3 method

also achieved the best result.

6.6.4 Results for 32-bit-per-pixel Images in Detail

For 32-bit-per-pixel images (Figure 6.5), the ICSSM 3 algorithm achieved the

best average compression ratio (7.46), followed by ICSSM 2 and several meth-

ods based on a lifting scheme. The gradual performance improvement, which

results from the gradually better adaptation of the compression method to

the data properties, stood out with the ICSSM methods.

As with the 16-bit-per-pixel images, the performance of ICSSM 3 method

was followed by some of the lifting scheme methods. Again, as found for 16-

bit-per-pixel images, the integer CDF and integer (4.2) method stood out

in terms of yielding a high compression ratio. The standard FITSIO/Rice

method gave a higher average compression ratio than the integer lifting

scheme method with the lowest average compression ratio. Therefore, using

a lifting scheme method does not always guarantee better compression than

using a less-advanced entropy encoder-based method. As discussed earlier,

the method of Sabbey (Sabbey 1999), which was not tested experimentally,

has a published result (4.88) which is lower than that of the FITSIO/Rice

method on 32-bit-per-pixel images.

6.6.5 Number of Best Results per Method

A comparison of the results for individual images showed that ICSSM 3 is

the method with the highest number of best results (Table 6.8). This mainly

results from its high performance on 32-bit-per-pixel images, although there

are only four 32-bit-per-pixel images within the data set. It is followed by
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the method of Sabbey, which according to (Sabbey 1999) achieves five best

results on 16-bit-per-pixel images.
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Figure 6.5: Comparison of the average, minimum, and maximum compression ra-
tios of existing ready-to-use lossless compression tools, and ICSSM on
32-bit-per-pixel test images.

These results do only imply, at first glance, that either a predictive

method or the newly developed segmentation-based method should be cho-

sen if high compression performance is required. In many cases, the lifting

scheme transform-based methods lead to the second or third best results. In

two cases, the lifting scheme-based methods achieve the best results.
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Table 6.8: Compression ratios cf for state-of-the art methods for compressing as-
tronomical images and the ICSSM algorithms. The ‘–’ symbol indicates
that compression was lossy according to verification with Fitsdiff, the
‘�’ symbol indicates that compression was not possible due to docu-
mented software limitations. The last column (symbol c) denotes the
mean compression ratio achieved on the whole image set for the given
method. For layout reasons, the images are listed as a numbered se-
quence corresponding to an alphabetical ordering of file names.

Image 1 2 3 4 5 6 7

Bit depth 16 16 16 16 16 32 32

Hcompr. − − − 2.78 − � �
Fitspr. 2.03 2.62 3.24 2.57 2.05 � �
F-IO Zip 1.14 1.51 1.75 1.43 1.18 4.48 4.50

F-IO PLIO 0.97 1.00 1.00 0.96 0.95 1.99 1.99

F-IO Rice 1.92 2.75 3.45 2.40 2.00 5.97 5.91

Pred.+Rice 2.10 3.40 4.30 2.85 2.40 4.40 3.30

M:PMT 1.85 2.44 2.80 2.42 1.95 − −
M:Math.Mor. � � � � � � �
M:Haar-Wavel. 1.92 2.54 3.00 2.44 2.01 − −
M:Min-Max 1.92 2.33 2.46 1.85 1.64 − −
M:Mall.-Daub. 1.87 2.53 3.31 2.42 2.00 − −
M:Feauveau 1.85 2.38 3.05 2.39 1.98 − −
M:WT&PMT 1.86 2.38 2.71 2.41 1.95 − −
ML:Med.pre. 1.91 2.57 3.16 2.45 2.02 5.63 5.58

ML:Int.Haar 2.10 3.01 3.94 2.79 2.26 6.60 6.54

ML:Int.CDF 2.10 3.17 4.55 2.79 2.30 6.53 6.47

ML:Int.(4.2) 2.09 3.17 4.68 2.78 2.30 6.50 6.43

ML:Int.7/9 2.10 3.07 4.18 2.78 2.30 6.43 6.37

ICSSM 1 t=30 1.80 2.58 3.06 2.45 1.94 5.78 5.87

ICSSM 2 t=150 1.88 2.86 3.55 2.75 2.27 6.86 7.03

ICSSM 3 t=150 1.95 3.25 4.33 2.83 2.26 7.69 7.87

Image 8 9 10 11 12 13 c

Bit depth 16 16 32 32 16 16

Hcompr. − − � � − − 2.78

Fitspr. 1.35 1.83 � � 1.97 2.08 2.19

F-IO Zip 1.02 1.35 2.96 3.30 1.43 1.49 2.12

F-IO PLIO 0.93 0.96 1.88 1.88 0.97 0.97 1.27

F-IO Rice 1.58 2.17 4.83 5.58 2.52 2.61 3.36

Pred.+Rice 1.88 2.80 3.17 3.80 3.34 3.50 3.17

M:PMT 1.61 2.20 − − 2.35 2.46 2.23

M:Math.Mor. � � � � � � �
M:Haar-Wavel. 1.55 2.16 − − 2.35 2.50 2.27

M:Min-Max 1.62 1.88 − − 1.99 2.03 1.97

M:Mall.-Daub. 1.37 1.85 − − 2.27 2.41 2.23

M:Feauveau 1.36 1.82 − − 2.15 2.28 2.14

M:WT&PMT 1.60 2.18 − − 2.33 2.45 2.21

ML:Med.pre. 1.57 2.13 4.88 5.67 2.37 2.48 3.26

ML:Int.Haar 1.70 2.40 5.68 6.71 2.74 2.87 3.80

ML:Int.CDF 1.70 2.46 5.81 6.86 3.00 3.17 3.92

ML:Int.(4.2) 1.66 2.41 5.81 6.84 3.03 3.21 3.92

ML:Int.7/9 1.64 2.34 5.72 6.63 2.89 3.04 3.81

ICSSM 1 t=30 1.57 2.28 5.46 6.04 2.45 2.54 3.37

ICSSM 2 t=150 1.85 2.59 6.01 6.58 2.66 2.80 3.82

ICSSM 3 t=150 1.95 2.94 6.87 7.37 3.13 3.32 4.29
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6.6.6 Implications

These results have the following implications for practical applications. Com-

pression methods for stellar-field images may lead to a lossless compaction

by a factor of three or even up to nearly eight, depending on the bit depth

of the original image.

Therefore, for archiving data, compression methods may indeed save costs

for storage media or data transfer time, especially if a large part of the raw

images is encoded with 32 bits per pixel.

The best available and standardized method, implemented in the FITSIO

file reading and writing library, is the FITSIO/Rice compression method. It

can be used without additional effort by any astronomer exporting data in

FITS format. Using this method, typically a 16-bit-per-pixel image may be

compressed by a factor of 2 up to 2.75, while a 32-bit-per-pixel image can be

compacted to about one fifth up to nearly one sixth of its original size.

For higher compression ratios on 16-bit-per-pixel images as well as on

32-bit-per-pixel images, the novel ICSSM 2 or ICSSM 3 algorithms should

be used. On 16-bit-per-pixel images, the performance gain of ICSSM 3 com-

pared to the FITSIO/Rice method is a factor of 1.21. This means that

approximately 21% more image data can be stored.

For applications where high volumes of image data have to be stored,

the novel ICSSM 3 algorithm should also be considered, especially if a large

number of 32-bit-per-pixel images are included in the data. There, the aver-

age performance gain of ICSSM 3 relative to the FITSIO/Rice method of a

factor of 1.28 is worth the effort. 28 percent more image data can be stored

with the novel method. If computational time is not important, and ready

availability of an implementation of the method is required, then the lifting

scheme methods from the MR/1 package, especially the integer CDF wavelet

and the integer (4.2) wavelet, can be applied.

6.7 Summary

The experimental comparison presented in this chapter showed what com-

pression ratios can be expected from existing astronomy-specific lossless im-

age compression methods.

On the test image set, reasonable existing methods5 were shown to lead to

5The PLIO method is ignored here due to its low performance.



188 CHAPTER 6. PERFORMANCE EVALUATION

average compression ratios from 1.97 (a Min-Max transform based method)

up to 3.92 (two of the lifting scheme integer wavelet based methods). For the

examined existing methods, the average results of existing methods on 16-

bit-per-pixel images ranged from 1.37 (FITSIO Zip) up to 2.81 (the integer

(4.2) wavelet transform based method). The average compression ratios of

all methods on 32-bit-per-pixel images ranged from 3.81 (FITSIO Zip) up

to 6.42 (the lifting scheme integer CDF wavelet transform based method),

ignoring the lower performing PLIO method in both cases.

This big difference between the higher bit depth images compared to the

lower bit depth images shows the potential of data compression methods to

reduce data storage problems in astronomy. As current analogue-to-digital

converters can exceed a dynamic range of 16 bits, 32-bit images are a quite

common data format today. A data storage space reduction by a factor

of 4 and above could significantly reduce the costs for data storage and

transmission. The bit depth of astronomical images is still increasing.

Currently, there are ongoing discussions about standardizing 64 bit-per-

pixel images. Even higher compression ratios might thus be possible in the

future on those high bit depth images.

With ICSSM 1 and ICSSM 2, no highly adapted encoders where applied

for encoding the data streams after segmentation. Even without using highly

adapted encoders, the model-based segmentation and region-adaptive com-

pression methods ICSSM 1 and ICSSM 2 achieved compression ratios which

are at par with contemporary methods. The average compression ratio of

3.37 on the test image set obtained with the proof-of-concept ICSSM 1 al-

gorithm is at par with the Rice compression ratio of 3.36; Rice compression

is the best freely available and standardized method. With an average com-

pression ratio of 3.82 (on the whole test image set), the ICSSM 2 algorithm,

which is intended for practical use, almost reached the compression ratio of

the best available method, which is the lifting scheme integer CDF wavelet

method (compression ratio of 3.92).

As the lifting scheme integer CDF wavelet method has not been stan-

dardized and included in the FITSIO library, the ICSSM 2, and ICSSM 3

algorithms are valid candidates for an enhanced FITS image compression

standard. The performance evaluation results measured on the test image

set showed that the optimized ICSSM 3 algorithm, developed in this research,

in average on the whole sample image set outperformed all existing methods

which were evaluated.
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With an average compression ratio of 4.29 on the whole test image set,

the ICSSM 3 algorithm reached an average which is nearly 1.1 times the

average compression ratio of the best existing method included in the com-

parison. Looking at the bit depth categories 16-bit-per-pixel images (2.88)

and 32-bit-per-pixel images (7.45) separately, in both categories ICSSM 3

achieved better results than existing evaluated methods. The performance

evaluation of the ICSSM 3 algorithm showed that a method adapted to as-

tronomical image data can outperform even the modern methods based on

wavelet transform and lifting scheme.

The next chapter summarises the findings of the research reported in

this thesis. It recapitulates the performance and limitations of existing com-

pression methods and the effectiveness and drawbacks of the novel approach

adapted to stellar-field images which has been developed in this investigation.

Conclusions are drawn and options for further work are presented.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

Astronomy faces a high increase of data amounts, which exceeds the growth of

computer data storage and transmission capacity. Therefore, the aim of the

research presented in this thesis was to answer the following main question

related to the specific field of astronomical image compression:

Can lossless compression, which is based on image modelling, segmen-

tation and region-adaptive bit-allocation, be applied effectively (in terms of

compression ratio) to astronomical stellar-field images?

A subsidiary question also addressed in the research is: What contri-

bution may existing data compression methods make to reduce the size of

astronomical image data?

While both research questions are timely and have practical relevance,

especially for the astronomical community, which is in search of solutions to

handle its data archival, storage and transmission requirements, the second

research question also has implications in a broader context. In effect, the

second question can be said to address the general issue of whether lossless

compression methods, which are adapted to the characteristics of the primary

data, may exceed the compression performance of less adapted methods.

Research, which was conducted worldwide mainly during the last ten

years, showed that great performance increases are possible in the case of

lossy compression regarding achievable compression-ratios at comparable vi-

sual or audible quality. An example in the area of lossy image compression

is JPEG compression (Wallace 1991, Strutz 2005); similarly, MP3 and the

different versions of MPEG compression are also common examples for audio

191
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and video content respectively.

These methods typically achieve a lot of their performance increase by

removing parts of the data which are less noticeable, deemed irrelevant or

unimportant. This approach is not possible in the case of scientific-grade as-

tronomical data, due to the requirement of preserving the original data. But,

further research has also shown that lossless methods adapted to the data

may also increase performance compared to less adapted methods, within

the limits of the data reduction ratio achievable by lossless compression.

Whether this is also possible in the case of astronomical stellar-field im-

ages – a very common and important data type in astronomy – is the issue

addressed by the main research question of the investigation reported in this

thesis.

To answer the main research question, first, special properties of astro-

nomical images were discussed and an overview of different types of astronom-

ical images was given. It was found that stellar-field images are an important

category of astronomical images. To identify options for data redundancy re-

duction, the main features of stellar-field images were determined. These are:

the relatively small and localised image areas with high dynamic range, the

large areas containing background noise, and the spatial segregation of these

two image components.

7.1.1 Performance of Existing Compression Methods

In order to answer the question of the possible contribution of existing com-

pression methods to reduce the size of astronomical image data, methods

for the compression of astronomical images were reviewed and classified into

lossy, hybrid, and lossless methods.

The thesis presented a survey of existing compression algorithms for astro-

nomical images and showed that the existing methods often follow the typical

design of a transform-based method or in one case a typical prediction-based

approach. The survey also showed that the majority of existing methods

does not employ region-adaptive processing of the data or even segmenta-

tion. Many of the existing methods are lossy; hence, they can be used for

fast previewing and quick selection of images, but not for the storage or

transfer of scientific grade data. Hence, objective number one, to perform a

thorough literature review of existing compression methods for astronomical

images, was achieved.
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Existing methods which are capable to work in a lossless mode were as-

sessed regarding their compression size-efficiency through experiments using

a standard astronomical test data set.

The evaluation showed that although only few of the existing compression

methods can be used for strictly lossless compression, these methods can yield

a significant reduction of the data size. Implementations of lossless methods

exist, but available implementations include mainly methods that follow the

typical design of transform-based methods like Hcompress, Fitspress and the

lossless wavelet based MR/1 methods, or methods like Zip and Rice compres-

sion. The existing compression methods, which were – on average – found to

be most effective on the test set used in this thesis, are the Rice compression

method (compression ratio of 3.36) and various MR/1 lifting schemes (aver-

age compression ratios ranging from 3.26 to 3.92). They offer data reduction

which may reduce data transmission times and storage requirements signif-

icantly. For the increasingly common 32-bit-per-pixel images, compression

ratios are much higher than for 16-bit-per-pixel images. The average results

of existing methods on 16-bit-per-pixel images range from 1.37 (FITSIO Zip)

up to 2.81 (the integer (4.2) wavelet transform based method). The average

compression ratios of all methods on 32-bit-per-pixel images range from 3.81

(FITSIO Zip) up to 6.42 (the lifting scheme integer CDF wavelet transform

based method), ignoring the PLIO method in both cases. Therefore, also

objective number two, to perform an evaluation of existing lossless methods

which could be made available, was achieved.

The question, whether such methods can be included in the pipelines of

archival systems, depends on several factors beyond this research, such as

availability of sufficient computational power, further reduction of the cost

of processing and storage hardware, system architecture and other project-

specific circumstances.

However, most existing methods do not explicitly exploit the special char-

acteristics of astronomical images in order to provide a dedicated lossless

method for astronomical image storage and transmission. Most existing

methods typically follow the common design of transform-based compres-

sion methods, which have conquered image compression applications in re-

cent years. Often, the lossless mode of operation has been implemented as

an additional function to lossy compression techniques. Few of the existing

methods adapt to the distinct properties of stellar-field images.

To the knowledge of the author, no lossless method, which is based on
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region-segmentation and image modelling for exploiting the redundancy in

the distribution of pixel intensity levels in stellar-field images, was published

before although some region-based lossy techniques were proposed. The only

astronomy-data-specific method, called PLIO, failed completely to compress

the data in many of the experiments conducted in this research.

7.1.2 Effectiveness of Lossless Compression Adapted

to Stellar-Field Images

In order to determine whether a dedicated compression method adapted to

the properties of astronomical stellar fields may boost the compression ratio

compared to existing methods, this work introduced a set of novel com-

pression algorithms, called image compression by segmentation and signal

modelling (ICSSM) algorithms.

As a foundation for the development of the ICSSM algorithms, a model

describing properties of astronomical stellar-field data was established. Be-

cause the astronomical image data results from a combination of both imag-

ing device properties and stellar-field data properties, the data model in-

cludes properties of both imaging devices and stellar fields. With this data

model, objective number three – to find a suitable model that describes the

properties of astronomical images – was achieved.

A set of three lossless region-adaptive compression algorithms based on

image segmentation and modelling was developed. While for the proof-of-

concept algorithm ICSSM 1 achievable compression ratios were estimated,

the performance of the more advanced ICSSM 2 and ICSSM 3 algorithms

was measured using software implementations. Hence, also objective number

four – to develop region-adaptive compression algorithms based on image

segmentation and modelling – was achieved.

Finally, to achieve objective five – to evaluate the compression ratios

of the algorithms developed – as well, the compression ratios achieveable

with the ICSSM algorithms developed in this research were measured and

compared to existing methods. The experiment-based evaluation on a set of

standard test images showed that a significant compaction can be achieved

by segmentation and region-adaptive bit allocation anchored on a domain-

specific image data model. Furthermore, the proposed algorithms achieved

compression ratios comparable to – and often better than – the existing

methods which were investigated.
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First, the investigation showed the feasibility of compression based on

image segmentation and signal modelling, using a straightforward method

called ICSSM 1. It demonstrated that a simple segmentation step, coupled

to region-adaptive allocation of bits encoding pixels, may lead to compression

ratios comparable to existing lossless methods for astronomical images. With

an average compression ratio of 3.37 on the test image set, the ICSSM 1

algorithm was for example at par with the Rice compression ratio of 3.36.

Successive enhancements (ICSSM 2 and ICSSM 3) of the initial ICSSM 1

algorithm were evaluated. With an average result on the test set of 3.82,

the ICSSM 2 algorithm reached almost the compression ratio of the best

available existing method, the lifting scheme integer CDF wavelet (3.92).

The evaluation of ICSSM 3 showed – with an average compression ratio

of 4.29 on the test image set – that it can outperform existing methods

by about 10%, in terms of size reduction. On 32-bit-per-pixel images, the

ICSSM 3 algorithm achieved a maximum compression ratio of 7.87, while the

maximum of existing methods was 6.86 (the integer CDF wavelet transform

based method).

The performance of ICSSM 3 shows that an adapted compression algo-

rithm may outperform less adapted methods, at the cost of its adaptation to

the distinct properties of the primary data. This result boosts the expecta-

tion that well adapted compression methods could also improve compression

performance in other areas.

Examples of such areas are the storage of medical data, where similar

adaptation approaches have been examined by some researchers, or the stor-

age of telemetric and measurement data. An example of the latter is the

compression of test bed data, such as engine test beds and data from me-

chanical engineering dynamometers, where higher clock speeds and finer res-

olutions lead to higher correlated data throughout the largest part of the

measurement. Typically, within engine test data, for example, interesting

data with particular properties is found only in a small time frame before or

during an incident.

This research has answered the question regarding the potential size re-

duction and size reduction enhancement by an algorithm well-adapted to the

properties of stellar-field images.

However, for a practical application of both existing methods and the

newly developed algorithms, the computational complexity of the compres-

sion method should be evaluated. ICSSM 3 does not rely on potentially
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time-consuming transforms. The chances are high that it would additionally

outperform transform-based methods, in terms of lower computational cost.

Given the different types of encoders applied, however, it may fall behind

the less size-efficient FITSIO Rice method. Therefore, ICSSM 3 may pro-

vide an algorithm for astronomical image compression in cases where a very

high compression ratio is needed, and computational complexity is not a key

consideration.

Regarding application classes for compression methods under evaluation,

this thesis suggests for applications where high compression ratios are re-

quired, the application of the novel ICSSM 3 algorithm, especially if a large

number of 32-bit-per-pixel images are included in the data. In cases where

the ready availability of an implementation of the method is needed, then

the lifting scheme methods from the MR/1 package, especially the integer

CDF wavelet and the integer (4.2) wavelet, can be applied.

No computational time analysis was performed in this study because due

to the long exposure times of astronomical images, this aspect is less crit-

ical for the archival of primary data than the compression ratio. For this

reason the results of this study are limited to a classification regarding the

size-efficiency of the methods. Further work may concentrate on adding in-

formation on the computational complexity of the method, and possibly the

achievable run-time performance of the different methods on certain types of

hardware or software implementations.

As some sort of fundamental limitation of the outcomes of this research,

it cannot be proven that there are no better encoders, or no further or al-

ternative decorrelation or pre-processing methods that could lead to higher

compression ratios on the data under investigation.

It has to be stated further that the results achieved in this thesis are

limited with respect to the selected set of compression algorithms that are

applied after the segmentation step. Typically, a limited set of four methods

was tested. These options were considered to provide an appropriate choice

of encoders.

It cannot be proven that there are no be better choices for the encoders

than those applied with ICSSM 3. Therefore, based on the segmentation-

based approach, further versions of the algorithms may be developed in the

future. For example, the region demarcation information could be com-

pressed more effectively with the JBIG 2 method, that is claimed to be “the

ultimate bi-level image coding standard” (Ono et al. 2000). JBIG 2 com-
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presses typically 3 up to 5 times smaller than Fax Group 4 compression, and

2 to 4 times smaller than the original JBIG, which is used with ICSSM 3

(JBIG Committee 1999). JBIG 2 was adopted as an international standard

(ISO/IEC 2001). Also, predefined codes may provide an alternative to arith-

metic coding for the background noise information. Rice or Golomb-Rice

codes (Rice and Plaunt 1971, Rice 1979, Rice 1983, Rice 1991, Golomb 1966)

were not investigated within the new segmentation-based algorithm, as the

pixel value distribution typically does not follow a geometric distribution.

Predefined codes may be another option to adapt the developed algorithms

to even lower computational requirements. Special predefined codes for ge-

ometric distributions exist as well, but with the key requirement of high

compression ratios, these methods were not examined in this work.

Another limitation, which however does not affect the practical usability

of the method developed in this research, is that no automatic detection of

the tile size parameter is performed. The evaluation suggests suitable tile

size choices for the different ICSSM algorithms. As the choice of an optimal

tile size parameter is a potentially complex optimisation problem, it cannot

be answered generically. The choice of the tile size parameter involves some

trade-off between the different data components generated.

Finally, the method is – due to the special requirements it was developed

for – limited to the particular image type of stellar field images. As the study

presented here does not examine compression performance on astronomical

interferograms, for example, it is possible that different methods may be

better for other image types.

The limitations discussed here can be tackled by further work. Sugges-

tions for future research are discussed in Section 7.2.

7.2 Further Work

The research presented in this thesis showed that a close coupling of the

compression algorithm to data features can lead to an effective compression

in terms of compression ratio. ICSSM 3 can be considered as an optimised

version of the ICSSM algorithms, with certain restrictions. For example,

the possibility to use other existing astronomy-specific compression meth-

ods, such as the wavelet-based method of (Press 1992, White 1992, White

and Percival 1994, Starck et al. 1995, Louys, Starck and Murtagh 1999)

in combination with the segmentation, has not been examined yet. The
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wavelet-based method could be applied to the regions of stellar objects to

further enhance the compression-ratio on this image component.

For a wide acceptance of the work in the astronomical community, an

implementation of the work into a standard software package and the in-

tegration into the FITS file standard shall be aspired to. The algorithms

developed in this research could as well be extended with a near-lossless,

region-adaptive version by linear or non-linear noise quantisation (such as

the methods discussed in Section 3.2.2). The advantage thereby gained –

compared to other proposed quantisation-based lossy compression methods

for astronomical images – is that if region segmentation works perfectly, the

bright image regions could still be recovered losslessly.

Additionally, the results obtained on astronomical stellar-field images en-

courage two future research directions to pursue and continue the track cho-

sen in this work. Specific examples of future research work, given below,

could focus on one of these directions or a combination of both.

The first direction is to follow a similar content-based approach in other

areas, where distinctive image properties can be identified and exploited.

This direction focuses on finding new fields of application for the method

devised for astronomical stellar-field images.

The second direction is to aim at further enhancing compression ratio by

exploiting redundancy types other than spatial redundancy within a certain

type of data. Compression methods for still images may exploit two different

types of redundancy, spatial and spectral redundancy. Spectral redundancy is

termed as the “correlation between different colour planes or spectral bands”

by Saha (2000). It cannot be exploited for the images considered in this

research, as these are not always produced in different wavebands, at the

same time and location, using the same instruments. Still, taking advantage

of this type of correlation may be a future direction of research with respect

to astronomical images, especially with space-based photography.

With space-based instruments, data transfer capacities are an even more

important concern than the network capacities of ground-based instruments

and the same instruments are often used to capture data within several wave-

bands. The exploitation of temporal redundancy found in captured sequences

of the same image area may also be an option in possible future applications if

image sequences are stored in a format which allows a reference to previously

collected data.

With regard to extending the adaptation-based approach to other areas,
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astronomy offers another type of images to target. The research work pre-

sented here did not explicitly tackle another class of important astronomical

images: interferograms. Interferograms, as the one shown in Figure 4.1, may

as well be effectively compressed with the ICSSM 3 algorithm. As these

images typically do not contain very small, complex shaped region-of-stellar-

objects areas, a dedicated ICSSM version for interferograms could possibly

enhance size-efficiency on interferograms by using a geometrical description

of the region demarcation information such as the one examined experimen-

tally for stellar-field images. Rectangular regions could be examined instead

of circular regions for an optimal reduction of the data size.

Another area of future research on the segmentation-based compression

lies outside the application field of astronomical images. There are recent

efforts to overcome the colour and contrast limitations of “standard” im-

age acquisition and display hardware (Debevec et al. 2004). Segmentation-

based compression techniques, as the one developed here, may become more

important in this field of image processing as well. With High Dynamic

Range Images (HDRI), pictures captured with a dynamic scale of more than

10000:1, the bit depth of an uncompressed image (per primitive colour plane)

is almost twice as high as with the currently common 8-bit-per-colour-plane

images generated by consumer cameras. Segmentation of the image planes

into distinct areas and the relative encoding of textures in such regions may

be an option as well for such images, although the image content will have

more diverse characteristics. While HDRI images will require other segmen-

tation methods than the ones used in this work, they could also allow lossy

encoding techniques for the region textures, whenever the primary purpose

of the encoding is to preserve the visual impression.
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Chapter 8

Glossary

adaptive compression method A compression method that changes pa-

rameters based on local image area properties

astrometry Science of determining information on positions, distances and

movements of astronomical objects

astrophotography Photographs of astronomical objects acquired using

telescopes. Astrophotographs are taken in different wavebands.

arithmetic coding An efficient entropy coding method in terms of achiev-

able compression ratio

background level With the ICSSM compression algorithms, the back-

ground level captures the intensity mode within a local image area, the tile.

background level data A data component generated through the segmen-

tation step of the ICSSM compression methods. It consists of all background

levels of the image.

background noise data A data component generated through the seg-

mentation step of the ICSSM compression methods; for pixels assigned to

the background it stores the low-dynamic noise

background region With the ICSSM compression algorithms, in the back-

ground region, the image signal component, which results from the incident of

irradiation from astronomical sources, is zero or too small to be distinguished

from the background noise.

bit rate Average number of bits required to represent a letter. For images,

the bit rate is typically given in bits-per-pixel [bpp].

blocksorting methods Coding methods such as the Burrows-Wheeler

Transform that use sorting techniques to process the data

blooming An effect which may occur when images are captured using
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CCDs. Charge from very bright image areas exceeds the capacity of the

respective CCD pixels and flows to surrounding pixels.

Burrows-Wheeler Transform A blocksorting-based compression method

coding Reversible techniques for redundancy reduction

compression ratio The quotient of storage required before and after com-

pression

dark current A temperature dependent component of the astronomical

image signal which is almost constant throughout the whole image

data reduction methods Methods which remove information from a sig-

nal, for example by quantisation or sampling

decorrelation methods Methods that transfer data into a representation

which can be more efficiently compressed

dictionary coders Encoding methods that use dictionaries and references

to dictionary entries to achieve compression

differential encoding Encoding of the differences between successive sig-

nal values

entropy A measure for the amount of information in a certain message

entropy coding Encoding methods that rely on the distribution of letters

within the data

external file compression tools In this thesis, tools for general-purpose

compression of binary data are referred to as external file compression tools.

first-order entropy A common and simple entropy measure. It takes only

the distribution of letters within the data into account.

fractal compression methods Compression methods which exploit the

self-similarity within the data

general-purpose file compression tools Implementations of general-

purpose encoders

general-purpose encoders In the context of this research, the term

general-purpose encoders refers to encoding methods such as Lempel-Ziv-

Welch and the Burrows-Wheeler Transform, which are not image data spe-

cific.

general-purpose image compression methods In the context of this

research, the term general-purpose image compression methods refers to im-

age compression methods which are not astronomy specific.

higher-order entropy Entropy definitions which do not only take the

distribution of letters into account. With higher-order entropy, also depen-

dencies to other data values are accounted for.
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image compression by segmentation and signal modelling (ICSSM)

The novel compression algorithm presented in this research. It is based on a

model of the stellar-field image data and the segmentation of the image into

two regions: region-of-stellar-objects and background region.

image tile Size of the edge of the square image section used with the

ICSSM algorithms to determine the background level (in pixels). The image

tile size also determines the coarseness of the estimates of background levels

in the image.

image histogram A diagram presenting the amount of image pixels as a

function of the brightness

interferogram An image type that shows the intensity distribution of the

radiation emitted by astronomical objects.

joint entropy An entropy measure for pairs of values.

lifting scheme An – in terms of computational-complexity – efficient

method for the implementation of wavelet transforms.

near-lossless compression For such a compression method, the maxi-

mum of the reconstruction error is limited to a predefined small value.

photometry Science of determining the intensity of the radiation of as-

tronomical objects

point-spread function Function that describes how a distant, point-like

object is transformed through the telescope and capture equipment into a

representation within an image.

prediction-based compression method Compression methods that ex-

ploit local redundancy in the data by predicting data values from already

transmitted data values.

quantisation noise A noise component which results from the analogue-

to-digital conversion process due to the limited amount of quantization levels

and rounding.

reconstruction error Also called residual, is the difference between the

original and the reconstructed data after compression. For lossless compres-

sion methods this reconstruction error is zero.

region demarcation information With the ICSSM compression algo-

rithms, pixels are either assigned to the region-of-stellar-objects or the back-

ground region. The region demarcation information indicates to which of the

two regions a certain pixel belongs.

region demarcation information mask A 1 bit-per-pixel array which

stores the region demarcation information
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region-of-stellar-objects With the ICSSM compression algorithms, pix-

els are either assigned to the region-of-stellar-objects or to the background

region. In the region-of-stellar-objects, the image signal component which

results from the incident of irradiation from astronomical sources is not zero

and sufficiently large to be distinguished from the background noise.

residual See reconstruction error

run-length coding Encoding methods that exploit runs of similar data

values for compression

segmentation-based methods Methods that segment the image into dif-

ferent regions, which are encoded separately

shot noise Poisson-distributed noise component in astronomical image

data, which dominates in bright image regions. It results from the discrete

nature of light and random photon fluctuations.

spatial redundancy Dependency or predictability among successive im-

age pixels

spectral redundancy Dependency or predictability among images taken

in different wavebands

spectroscopy Observations of the intensity distribution of the radiation

emitted by astronomical objects. It provides information on composition,

movement and temperature of astronomical objects.

stellar-field image A common type of astronomical images. Stellar-field

images feature a noisy-background with bright objects in the foreground.

temporal redundancy Dependency or predictability among successive

images in image sequences like videos

tile size Size of an image tile used with the ICSSM algorithms to determine

the background level

transform-based compression method Methods that use transforms

such as the Discrete Cosine Transform in their decorrelation step to concen-

trate the information

wavelet-based compression methods Compression methods which are

based on a special type of transform, the wavelet transform
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ing Hough Transform for Context-Based Image Compression in Hybrid

Raster/Vector Applications. Journal of Electronic Imaging. 11(2): 236

– 245.
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Appendix A

Geometrical Region

Demarcation Information

Description

With this algorithm, the aim is to generate an ellipse based lossy descrip-

tion of the region demarcation information by using an object detection-like

approach. Ellipse-like structures in the bi-level image region demarcation in-

formation are described by elliptical objects represented by their parameters

midpoint position and the size of their major- and minor-axis. This approach

uses ellipses with major- and minor-axis aligned to x- and y-axis of the bi-

nary image containing the region demarcation information. The algorithm

first generates a set of ellipse parameter hypotheses.

A.1 Midpoint Hypotheses Generation

Successively, a range of hypotheses of possible ellipse positions in the whole

image is generated by applying an algorithm that estimates the midpoint

and the axes size using geometrical symmetry properties. Any region-of-

stellar-objects point is considered to be a potential midpoint of an elliptical

stellar object region. The midpoint estimate Mi is determined iteratively

from this starting point. A secant (aligned to the x-axis) is drawn through

the stellar object region and the midpoint of it – relative to the stellar-

object-region-to-background border – is determined. Then, a secant which is

oriented orthographically to the first one is drawn and the midpoint of this
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second secant is used as a new midpoint estimate Mi+1. For a convex region,

the point Mi successively converges to the midpoint of the region. The

iteration is stopped if the distance between successive midpoint estimates

di+1 = Mi+1 − Mi falls below a predefined limit. Estimates for the size of

both main axes are determined as well as from the size of the secants.

Figure A.1: Midpoint hypotheses (white dots) generated through the iterative ge-
ometrical approach.

This method determines possible midpoint estimates for all region-of-

stellar-objects areas. The midpoint estimates are shown as white dots in

Figure A.1. Due to the large amount of starting points, far too many mid-

point estimates are found. For example, about 2800 are found in the image

shown in Figure A.1. The chosen approach ensures that every ellipse is found.

Redundant ellipse property estimates are removed during the next processing

steps.
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A.2 Removal of Replicated Ellipses

Due to the midpoint hypotheses generation algorithm used, a range of ellipse

property estimates are found more than once. Doubles are removed from the

list of ellipse hypotheses. For the sample image shown above, the amount of

ellipse hypotheses is reduced from about 2800 to less than 300.

A.3 Single Region-of-Stellar-Objects Pixel Re-

moval

As can also be seen from Figure A.1, a range of very simple ellipses is present

in the image: elliptical objects with a minor and major axis of size one. These

“ellipses” are single pixels assigned to the region-of-stellar-objects.

Figure A.2: Remaining identified elliptical objects after removal of single pixels
assigned to the region-of-stellar-objects.

These can be stored very efficiently separately as a list of single pixel
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coordinates, without storing the minor- and major-axis parameters. In the

examined image, 74 of such single pixel objects are present. 203 hypotheses

for elliptical objects remain. These ellipses are shown in Figure A.2.

A.4 Completely Contained Ellipses Removal

Furthermore, in the sample figure, the removal of ellipses which are com-

pletely contained in other ellipses reduces the amount of objects to 125 re-

maining ellipse estimates (Figure A.3).

Figure A.3: Remaining identified elliptical objects after removal of single pixels
assigned to the region-of-stellar-objects and ellipses completely con-
tained in other ellipses.

After these steps, removing single pixels and redundant ellipse estimates,

the region demarcation information comprises of 125 ellipse estimates (each

requires 4 parameters which can be encoded with 9 bits each) and 74 single

dot objects (which require two 9-bit parameters). Disregarding required ad-

ditional overhead, that data can be encoded using approximately 5832 bits.
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The original size of the region demarcation information (binary image) was

503 by 320 pixels, each encoded using one bit-per-pixel (160960 bits). That

results in a compression ratio of almost 27.5 for the lossy compression of the

region demarcation information data. Unfortunately, this does not exceed

the results of other – non lossy – methods very much.

A.5 Performance of an Optimal Method for

Generating a Geometrical Region Demar-

cation Information Description

Counting the ellipses in Figure A.3 leads to the assumption that with an

optimal geometrical method, the whole data could be described with only

65 elliptical objects. These 65 elliptical objects could be described with

approximately 2340 bits, leading to an overall size requirement of 3672 bits for

the whole region demarcation information, including the single pixels. This

result leads to a compression ratio for the region demarcation information of

approximately 44.

Although this could lead to an enhancement of the compression ratio

for the region demarcation information compared to other methods, fur-

ther examinations in this direction are not conducted. The gain by using

a lossy region information description is too small to justify an additional

re-segmentation step.
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Appendix B

Fitsdiff Sample Output

Python Fitsdiff is called in a Python1 interpreter session.

>>> fitsdiff.fitsdiff("sgp0001.fits", "sgp0001.unc.fits")

fitsdiff: 1.3 (22 July, 2004)

file1 = sgp0001.fits

file2 = sgp0001.unc.fits

Keyword(s) not to be compared: [’’]

Keyword(s) whose comments not to be compared: [’’]

Column(s) not to be compared: [’’]

Maximum number of different pixels to be reported: 10

Data comparison level: 0.0

Primary HDU:

Extra keyword HISTORY in sgp0001.unc.fits

Extra keyword CTYPE2 in sgp0001.unc.fits

Extra keyword CTYPE1 in sgp0001.unc.fits

Data differ at [1, 1], file 1: 2312 file 2: 2311

Data differ at [2, 1], file 1: 2329 file 2: 2328

...

Data differ at [12, 1], file 1: 2513 file 2: 2512

Data differ at [15, 1], file 1: 2348 file 2: 2347

There are 51425 different data points.

0

>>>

1http://www.python.org (23.03.2007)
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Appendix C

Test Image Set

This section shows the test images used in performance assessment experi-

ments, along with their histograms. Detailed information about the images

and their origin can be found in Section 6.1.2.

Figure C.1: Plot and histogram of image “com0001”.
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Figure C.2: Plot and histogram of image “for0001”.

Figure C.3: Plot and histogram of image “for0002”.
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Figure C.4: Plot and histogram of image “gal0001”.

Figure C.5: Plot and histogram of image “gal0002”.
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Figure C.6: Plot and histogram of image “gal0003”.

Figure C.7: Plot and histogram of image “gal0004”.
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Figure C.8: Plot and histogram of image “ngc0001”.

Figure C.9: Plot and histogram of image “ngc0002”.
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Figure C.10: Plot and histogram of image “sgp0001”.
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Figure C.11: Plot and histogram of image “sgp0002”.

Figure C.12: Plot and histogram of image “tuc0003”.
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Figure C.13: Plot and histogram of image “tuc0004”.
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Abstract. Sky surveys and virtual observatories provide astronomic data at data-

rates that exceed available storage capacities. Only compression of the vast data 

volumes will enable effective scientific exploration of the generated data. A com-

putationally efficient method is proposed in this paper. 

1   Introduction 

Virtual observatories (VOs), which provide high-quality astronomy data, will make it 

possible for astronomers to access digital data instead of waiting until access to a tele-

scope is granted [1]. Valuable data will be accessible to more astronomers as sources of 

different data sets will be linked. VOs need huge data processing and storage capacity 

for several reasons: the number of large telescope facilities has grown dramatically [7], 

the resolution of imaging devices is increasing steadily [3], and astronomical projects 

nowadays involve observations of several wavebands. Furthermore, survey telescopes, 

which are currently being planned, will image the entire sky continuously every night 

and therefore generate Petabytes of image data. An international VO will only become a 

success, if the problems of limited storage capacity and bandwidth can be solved. The 

research work described here targets this problem by compressing the raw images stored 

in astronomical archives. 

2   Previous Work: Methods for Lossy and Lossless Compression  

Several approaches for lossy compression of astronomical images using transform-based 

methods exist [13],[6],[5], but lossless compression techniques, which preserve astro-

metric and photometric attributes, are needed to encode precious primary data. Gener-

ally, it has to be possible to verify the results of investigations on undegraded data, espe-

cially if the results present new and revolutionary findings. Lossless compression tools, 



15

for astronomical data are quite rare. Some transform-based lossy approaches also 

provide a lossless mode, but still use computationally expensive transforms, which have 

a processor load that is too high for storing the data stream from the telescope. Three 

purely lossless compression methods exist: Véran and Wright [11] proposed an approach 

that accounts for the noise in astronomical images as it separates high-order bits from 

noisy - and by implication, less compressible - low order bits. Sabbey describes an adap-

tation of the RICE compression method [8] using linear prediction, for compressing 

astronomical images [9]. Finally, Weghorn et al. [12] describe a method for applying 

lossless compression in astronomy to interferometric data using a scheme called Signed 

Huffman Coding. The commonly used image format in astronomy - the FITS (Flexible 

Image Transport System) format [2] - currently includes only limited support for size 

compaction techniques. The work described here aims to develop a lossless and compu-

tationally efficient compression method by segmenting the image into regions, which are 

compressed adaptively by different methods. As a result, the overall-size of the stored 

image shall be minimized.  

3   Compression by separation and region-adaptive bit allocation   

Lossless compression techniques attempt to identify and exploit properties of the data for 

compaction [10]. The properties are described using a model of the data. One straight-

forward model is presented here to show the possible compression by describing the data 

using this model. The image-signal i(x) of an astronomical image, in general consists of 

three additive, independent parts: the signal s(x), which is generated by photons ab-

sorbed and detected by the light sensor, electronic or thermal noise n(x), and a constant 

signal offset value b, which is called bias. 

b.n(x)s(x)i(x) �� (1) 

The positive bias is required to avoid negative output values in the dark areas of the 

image, as the noise includes negative values. Ideally, the signal generated by the incident 

light s(x), should be large compared to the noise, for obtaining a good signal-to-noise 

ratio (SNR). The noise in professional astronomical photography typically influences 

fewer than the lower 4 bits of a 20-bit value generated by the digitizer of the imaging 

device. Hence, depending on the signal s(x), two image areas can be distinguished: re-

gions of signal (ROS), where s(x) is significantly larger than n(x), and background re-

gions, where s(x) carries values close to zero. 

Pixel values along a sample line section (grey line in Fig. 1(a)) through the image are 

shown in Fig. 1(b), where the constant bias and the dynamic range of the noise portion 

are marked. Fig. 1(b) clearly indicates that the full dynamic range, provided by the FITS 

file format, is only required within the bright areas of the image where the signal com-

ponent s(x) is large. Separating the background areas from ROS, and coding both parts 

differently leads to a significant reduction of the storage space. In typical astronomical 

photographs, the dark area, which can be coded with very few bits, fills about 90 percent 

of the image. A sample calculation, using the raw data presented in Fig. 1(a) shows that 

with a region-adaptive bit allocation, a significant reduction of the required storage space 
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is achievable. ROS and background regions have to be identified by analysing the image 

signal shown in Fig. 1(b); the bias of this image is 24, while the noise portion has a dy-

namic range smaller than ± 8 intensity steps. Therefore, the background noise can be 

coded with 3 + 1 bits of the original 32 bits. Regions of signal have to be coded by the 

full dynamic range of 32 bits (second term in formula (2)). 79.2 percent of the image 

corresponds to background while 20.8 percent form the ROS. Even if a bitmap - requir-

ing 1 bit of the original 32 bits/pixel for the whole image (third term in formula (2)) - is 

used to describe the different image regions, the size compaction that can be achieved in 

this example is nearly 3:1. 

0.338=
32

1
+

32

32
0.208+

32

1+3
0.792 ¸

¹

·
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©
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¹

·
¨
©

§
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¹

·
¨
©

§
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The compression ratio estimated in formula (2) is achieved even without using well 

known compression methods. Applying compression to both regions will lead to further 

size reduction. Another possibility for enhancing the compression is to use more effi-

cient methods to describe the different image regions. Such methods [4, 14, 15] could 

further reduce the image size by reducing the last term in formula (2). Hence, a range of 

standard and astronomy specific techniques, as well as techniques from second genera-

tion image compression will be examined to efficiently code the data of both areas. 

Therefore this method can be considered to be a version of second generation image 

coding.  

Fig. 1: a) Astronomical photograph sample. b) Signal plot of an image scan line (denoted by the 

grey line within the photograph given in a). c) The decision map for background noise and signal 

pixels.

4   Conclusion and further work   

The sample calculation presented here, shows that a significant compaction can be 

achieved by segmentation and region-adaptive bit allocation. Future work will focus on 
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the development of a computationally efficient compression algorithm, which deter-

mines the image bias, the regions of signal and the background area, and encodes these 

different parts separately. To develop a compression technique that takes advantage of 

image properties, first the determination of the image bias has to be automated. This 

work appears complicated by the fact that the bias in general has a tiled and non-uniform 

shape. Additionally, a range of image peculiarities have to be considered.  Hence, in the 

first working steps, an automated compensation method for the bias will be developed 

before the core work on efficient compression can start.  
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ABSTRACT 

Most of the scientific facilities in Europe are funded from public revenue collected through taxation. For this and also due 
to a general interest of the broad public in outcomes of research, efficient use of these resources is required. This all 
applies especially to the exciting research field of astronomy. With the growing volume of astronomical data that is 
partially provoked by automated telescope facilities, the storage, archiving and distribution of these vast data amounts in 
data centres becomes more and more expensive. Image compression can reduce the data size and hence cut some of the 
costs. This paper introduces a lossless compression method based on image segmentation coupled to a domain-specific 
image data model. The proposed method exploits the distinctive characteristics of astronomical images, and aims to meet 
the requirements for compressing scientific-quality astronomical images. An evaluation of the method has shown that it 
can achieve promising compression ratios comparable to, and often better than existing methods. 
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1. INTRODUCTION

Astronomy provides exciting new findings, which touch and explain fundamentals of human origin and life. 
Modern research in astronomy and its advance depends heavily on raw data that is collected with complex 
instruments like huge telescope systems or even spacecrafts. Since no single university or research institute 
can afford operating such facilities, independent service institutions like the European Southern Observatory 
(www.eso.org) and the European Space Agency (www.esa.int) were founded for operating huge telescope 
plants, e.g., in the Chilean desert mountains, or for performing space-based missions for observations. With 
expenditures in the order of a billion euro a year, these activities on the northern and southern hemisphere are 
financed from tax proceeds of the European Union. This all provides more than good reasons that the entire 
society consisting of private persons and other professional of all fields, hobby researchers, and also 
education institutions like schools have valid rights for having an electronic access to this valuable data. 
Unfortunately, astronomy faces the problem of an extreme and even accelerating growth in amounts of the 
collected raw data, which makes the operation of all-embracing public archives accessible by the e-society a 
complex problem. In particular during the recent years, a dramatic change in the generation, storage, and 
access of data has taken place in astronomy. Astronomical data used to be collected with a minimal degree of 
automation. Data of a certain object of interest was collected for a certain purpose upon demand. Now, 
astronomical data generation has turned into mass production. Automated survey telescopes image the entire 
sky every night and image data is often generated continuously in an automated process. Furthermore, data 
sets are available at grid-like, geographically distributed sky archives. Data for use by professional observers 
and the astronomical community – about half of all astronomical data in the world is at least in principle 
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"public" (Szalay 2001) – is stored at different locations, ready to be analysed and accessed by astronomers. 
With this the request for certain data can be fulfilled in real-time.  

Figure 1. a) Overview on the three basic categories of astronomical images [Images courtesy of ESA]. b) A stellar field 
image shown as a three-dimensional plot (pixel values represented as height).  [Image from the ESO sample package] 

As data generation in astronomy has changed, the amount of available data is increasing dramatically. 
During the last 25 years, the number of camera pixels has grown over three-thousand-fold (Szalay, 2001). 
The data growth rate is even getting steeper, as projects nowadays involve observations of different 
wavebands, including gamma-rays, X-rays, optical, infrared, and radio frequencies. As the growth even 
exceeds Moore's law – the size of the data is doubling every year (Szalay, 2001) – despite the falling prices 
of disk space and network bandwidth, high annual investments for replacing and enhancing storage and 
network capacity have to be made. The costs for online-storage, archives and bandwidth could be reduced to 
a fraction of the current annual costs by using efficient compression methods.  

Table 1. Overview of the differences between astronomical images and consumer market images.  

Consumer market images  Astronomical images 
Size (pixels)  1 to 7 M pixels per CCD and camera  60 M pixels and larger for new cameras (per CCD) 
Size (MB/image)  0.3 - 5 MB Up to several 100 MB per image  
Image sensor  1 Color  CCD/CMOS up to 1 inch Greyscale CCD-like image sensors, several inches 
Colour  RGB(A) mode colour Greyscale (optically band filtered) 
Data type  Integer  Integer (raw images) or float 
Bit depth  Typically 3 x 8 bits/pixel  Up to 1 x 64 bits/pixel 
Content Continuous tone or line art images  Stellar field photographs or spectrograms  
Future use  Visual inspection Stringent quantitative analysis  
Lossy storage poss.? Yes, even for storage of originals Not for original images, since future value unknown 
Types of practical 
compression methods

Rich variety of lossy and lossless 
transform based methods.  

Some entropy coders that work on arbitrary data and 
transform based methods. 

The requirements for compressing astronomical images differ greatly from those for the purpose of 
manipulating video or still images in consumer and mass market applications. Scientific data analysis usually 
requires high quality images. Lossless compression is required in astronomy, because the future value of 
images is not known and images are still obtained at high costs (Carpentieri et al., 2000). The distinctive 
characteristics of typical astronomical images are listed in Table 1. Astronomical images can be classified 
into two main groups, which are used for the three mainstays of astronomical observations: photometry, 
astrometry and spectroscopy (Fig. 1a). Photographs of astronomical objects collected by telescopes are used 
for photometry and astrometry. Spectra are used for observations of the intensity distribution of the energy 
emitted by astronomical objects. With these, for example extra-solar planets are going to be detected. Stellar 
field and spectroscopic images are suitable images for scientific explorations while close-ups are rarely used 
for scientific applications. A typical stellar field or galaxy image consists of a nearly flat background 
sprinkled with point sources and occasional extended sources (White, 1992). This is mainly caused by the 
fact that astronomers often try to observe a small field of view at the highest possible magnification and to 
obtain information about the most distant, furthest and oldest galaxies, to take a look back to the origins of 
Universe. Professional astronomers in general require images of high photometric accuracy, and therefore 
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they accept only lossless compression (White, 1992). Low computational complexity of the algorithm is 
required because it should be possible to compress data at the same high data rate as it is collected. As the 
astronomy community has standardized on the FITS file format (Wells, 1981) for data interchange (Szalay, 
2001), the compression method should be integrated into this standard.  

2. COMPRESSION METHODS FOR ASTRONOMICAL IMAGES 

A range of lossless compression methods have been published for astronomical images as well as lossy 
methods, which can be used for transmission and fast previewing purposes. Several comparisons of lossless 
compression methods have been published. Initial results on lossless astronomical image compression were 
published in (Louys, 1999); the performance of lossless JPEG was compared to the Haar wavelet transform 
and the Zip compression. It was found that the wavelet transform achieved slightly higher compression ratios 
than lossless JPEG, which was not truly lossless due to rounding problems (Louys, 1999). Weghorn (2002) 
found that general purpose compression methods lead to a significant storage space reduction for astro-
nomical images. Nieto-Santisteban et al. (1998) found that difficulties during compression of astronomical 
images results from the noise. They report as well that techniques – such as Rice's algorithms (Rice, 1971) 
and its derivatives – probably perform better in exploiting the “almost similar value” property of adjacent 
pixels than other methods. A concise, partly chronological, overview and a comparison of lossless methods 
for com-pressing astronomical images is provided in (Grünler et al., 2005). Ready availability of 
implementations was used as criterion for selecting the algorithms to be compared to the newly developed 
method here. Hcompress (White, 1992), Fitspress (Press, 1992), the FITS IO-library methods and the MR/1 
methods (Louys, 1999) were compared to the new method using a standard set of 13 test images. 
(http://iraf.anu.edu.au/iraf/ftp/iraf/extern/ focas.std.tar.Z). It was found that the FITS-IO Rice compression 
method and the MR/1 wavelet based method are the most size-efficient existing algorithms.  

2.1 Image Compression by Segmentation and Signal Modelling (ICSSM)

General purpose compression programs can be used for compressing any kind of data losslessly. These tools 
exploit very basic properties of data, for example the probability distribution or repeating sequences of 
symbols. Application-specific methods exploit special properties of the data; taking advantage of them can 
lead to higher compression ratios – even in a lossless mode. In lossless compression, nothing is considered 
irrelevant and disregarded. Lossless compression techniques attempt to identify and exploit particular 
properties of the data for compaction (Salomon, 2000). The properties are described using a model of the 
data (Carpentieri, 2000). The closer the model adapts to the source, the better the redundancy resulting from 
signal properties can be exploited. The idea for developing a new lossless compression algorithm is to 
identify, and exploit as much as possible, signal properties specific to stellar fields. In contrast to general 
purpose data compression and general purpose image compression algorithms (typically adapted to 
continuous-tone grey scale images, like JPEG), a dedicated astronomy-specific method is under development 
by the authors.  

Data de-correlation using a stellar field imaging model 
In this paper, ICSSM is focussed on astronomical photographs. The underpinning idea of compression 

coupled to image segmentation is that stellar field images consist of a dark background, corresponding to the 
empty sky, covered with white stars. In general, the background of such images can be considered to be 
nearly constant and overlaid with electronic noise which can be modelled as Gaussian noise (Howell, 2000). 
Although the background is nearly constant and varies only smoothly, it is not even throughout the whole 
image. Due to thermal generated electrical charges (dark current) in the sensing device, the background 
forms an inclined plane (Fig. 1b). Stellar field photographs typically are sparse images, in which dark area, 
containing mainly noise, fills roughly 90 percent of the entire image (Sabbey, 1998). The background has 
low amplitude and the associated noise typically influences fewer than the lower 4 bits of a pixel value 
(Howell, 2000). With region-adaptive bit allocation, pixels can be encoded using the minimum number of 
bits that corresponds to the given dynamic range. A model of the image is used to segment the image into 
two different regions. It accounts for the image content as well as the imaging process and device, which 
both give rise to the special properties of astronomical images. The two-dimensional image signal i(x), where 
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x denotes the pixel coordinate, consists of three additive, independent parts. These are the signal s(x), which 
is generated by absorbed photons emanating from stars, the imaging noise n(x), and a background level b(x)
which is a kind of almost constant bias value. The image i(x), which is read out from the imaging device, is a 
superposition of all these components; however the superposition is in a form that makes accurate separation 
into distinct components impossible. But the characteristics of the image components can still be used for an 
approximate estimation of the signal components, and for the segmentation of the image into different 
regions. The image can be segmented into two regions: The background area that contains very little or no 
signal, and the regions of signal, where s(x) is significantly larger than n(x). For a given maximal noise level 
N, pixels where |i(x) – b(x)| > N can be treated as signal-pixels. In background regions, only n(x) and the 
background level b(x) have to be stored. 

Outline of the ICSSM compression algorithm  
Using the properties identified in the last paragraph, we have developed a first implementation of a 

compression method based on segmentation. The segmentation step is executed automatically using a 
software prototype, which sequentially performs the following steps: 

Tile generation: The whole image is split into tiles of pixels for compensating first the low-
frequency components in b(x). With this, the background level can be considered constant bl = b(x) across 
each tile. The background level bl is approximated by the mode of the tile’s intensity histogram. 

Segmentation: Each image tile is segmented into region of signal s(x) and background noise 
components. Under the assumption that the background noise n(x) has zero-mean Gaussian distribution, the 
noise amplitude Nl for a tile, is defined as the difference between the lowest signal value and the mode of the 
tile’s intensity histogram: Nl = bl – min(i(x)) for all x  tile number l. The pixel assignment is derived from 
the comparison i(x) > bl + Nl, and binary map is built up from this that indicates, to which of the two 
regions each tile pixel belongs. 

Encoding: The different image components can be encoded in a first approach in the following 
manner: 

1. Background noise n(x): The pixel intensity values of the background region are encoded relative to 
the estimated background level for reducing the required dynamic range. The background-noise data is stored 
in a single data stream. Huffman encoding has been adopted for the background noise.  

2. Background level bl: This scalar is encoded as binary integer value, because only one level is to be 
stored for each tile. 

3. Region of signal s(x): This component is encoded using Huffman coding. 
4. The region information is encoded using a binary image. 
For measuring the efficiency of the ICSSM compression approach, it is assumed that the four encoding 

data packages are concatenated and saved to a file, without further compaction. 

2.2 Evaluation and Comparison of the ICSSM Method to Existing Methods

The main objective of the evaluation of this first implementation of the ICSSM method is to verify that – 
despite the basic nature of the data encoding used in ICSSM – the coupling of image segmentation and 
domain-specific image data model leads to compression ratios which are comparable to ratios achieved by 
existing approaches. The ICSSM method is evaluated here by comparing it to the best existing methods, for 
which implementations are readily available. To measure the compression ratio for the ICSSM algorithm, the 
size of the encoded data is calculated by summing up the individual sizes of all its output components. The 
existing methods, which have been assessed, are Hcompress, Fitspress, the FITS IO-library methods, and the 
MR/1 methods. The applied performance assessment measure is the image file compression ratio. For the 
evaluation, the set of 13 test images described in section 2 was used. 

Comparing the average compression ratios, which ICSSM achieved on all test images, to the best 
available methods: With an average compression ratio on all images of 3.37, ICSSM comes close to the best 
available Rice-based methods, which achieves 3.36, and the lifting scheme integer CDF wavelet method, 
which reaches 3.92. On 32 bit-per-pixel images, ICSSM obtained an average compression ratio of 
approximately 5.8, depending on the “tilesize” parameter. This exceeds the average compression ratio of 
4.69, which existing methods yield, and it comes close to the average compression ratio of 6.4, which is 
achieved by the best performing existing MR/1 methods. 
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3. CONCLUSION AND FUTURE WORK 

Image compression yields a significant reduction of storage size in particular for raw astronomical data, to 
the benefits of producers and users of astronomical data. In addition to providing a short overview of lossless 
compression methods for astronomical images, this paper has introduced a compression method based on 
image segmentation coupled to an image data model for the compaction of stellar field images. The paper has 
demonstrated the feasibility of the proposed approach through experimental comparison against some 
existing methods. The described evaluation has shown that a significant compaction can be achieved by 
segmentation and region-adaptive bit allocation anchored on a domain-specific image data model. Further-
more, the proposed method obtained promising compression ratios comparable to existing methods under 
investigation. This result was achieved despite the fact that the here implemented, adopted data encoding is 
of preliminary performance only. The method presented in this paper can be combined with suitable existing 
compression techniques to reach even higher compression ratios. The aim of current and future research is to 
enhance the automated segmentation, to identify and evaluate optimal compression techniques for the 
individual signal components, and to extend the region-based approach to other kinds of astronomical image 
data such as spectroscopic data. With these enhancements, a wider range of scientific quality astronomical 
images can be stored efficiently, and these valuable data sets can be made available not only to professional 
astronomers, but also to the whole society. 
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