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a b s t r a c t

The complexity of human gait patterns has become a topic of major interest in motor control and
biomechanics. Range of motion is still the preferred method to quantify movement impairment,
however, within these traditional linear measures, the inter-segmental coordination and movement
variability is normally ignored. A dynamical systems approach using vector coding and circular statistics
provides non-linear techniques to quantify coordination and variability. This study provides compre-
hensive vector coding and circular statistics calculations. Additionally, pelvis–lumbar coordination and
coordination variability data obtained from ten healthy young male participants during five walking
trials using an optoelectronic system is provided. This novel data can form the baseline information for
future studies in this area of research. Finally, a new illustration to present coordination and coordination
variability information of gait kinematics, combining the output from the modified vector coding
technique with traditional time-series segmental angle data is presented. This technique, when applied
to single patients can be beneficial to assess the effect of an intervention on the patient-specific inter-
segmental coordination pattern with implications to clinical setting.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Static postural obseQ3 rvations and dynamic assessment in a
standing position are common examination techniques used by
clinicians to determine the severity of spQ2 inal dysfunctiQ4 on (Cox
et al., 2010). Furthermore, range of motion (ROM) is still the
preferred method to quantify impaired movements, with subse-
quent information used to guide treatment and to assess an
individual0s progress (Hindle et al., 1990; Intolo et al., 2009).
Conventional measures such as ROM do not take into account
inter-segmental coordination, movement variability and the dif-
ferent control mechanisms experienced during routine daily
activities. From a dynamical systems perspective of motor control,
a movement pattern is arranged from constraints imposed from
the complex relationships between control parameters; task,
organism and environment (Bernstein, 1967; Turvey, 1990). Dyna-
mical system can have implications in assessment of coordination,
and Vector Coding (VC) and Continuous Relative Phase (CRP) are
common non-linear techniques employed by dynamical system
theorists to quantify coordination and variability.

During gait coordination and variability have been linked to the
health of biological systems (Harbourne and Stergiou, 2009). Using
healthy participants and CRP technique, Lamoth et al. (2002)
reported pelvic–trunk coordination is generally in-phase (when

the pelvis and trunk are moving in the same direction) at lower
walking speeds with transition to anti-phase at higher speeds. In
contrast, individuals with chronic low back pain (LBP) have a
reduced ability to transfer pelvic–trunk coordination from in-
phase to Q5anti-phase as walking speed increases (Lamoth et al.,
2006; Selles et al., 2001). Recently using a VC technique, Seay et al.
(2011) investigated pelvic–trunk coordination and reported similar
findings to studies that employed CRP, indicating that individuals
with low back pain (LBP) spent more time in an in-phase relation-
ship as walking speed increases. The authors further concluded
that this increase in the in-phase relationship resulted from an
increase in pelvis frontal plane ROM. Although the technique
utilised to assess coordination and variability should be based on
the question asked in the study (Hamill et al., 2012) the use of CRP
limits the analysis of coordination to the phase relationship
between two segments. On the other hand, vector coding and
the proposed four coordination phases (Chang et al., 2008)
provides an additional insight to the dominancy of one segment
over another and this can offer more valuable information in a
clinical setting (Seay et al., 2011). Analysis of coordination varia-
bility also reveals important information regarding changes in
motor strategies. While there is conflicting evidence to suggest
greater variability emerges before the transition from one stable
coordination phase to another (Diedrich and Warren, 1995; Haken
et al., 1985; Kao et al., 2003; Miller et al., 2010; Seay et al., 2006),
recently Miller et al. (2010) associated greater variability with a
functional event such as toe-off during gait. However, there is
paucity of research regarding coordination and coordination
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variability with other known phases of gait (Perry and Burnfield,
2010; Levine et al., 2012). Therefore, a new illustration combining
coordination, coordination variability, ROM and the phases of gait
can allow for easier interpretation of the biomechanical data.

Vector coding measures the continuous dynamic interaction
between segments by determining the vector orientation between
two adjacent data points in time on an angle–angle diagram relative to
the right horizontal (Fig. 1b). The outcome measure is referred to as
the coupling angle (γi) (Fig. 1c) and is represented by a value between
01 and 3601 (Sparrow et al., 1987; Hamill et al., 2000). Due to the γi
being directional in nature circular statistics (Batschelet, 1981; Hamill
et al., 2000) are applied to calculate mean γi and coordination angle
variability (CAVi) from multiple cycles. Recently it has been proposed
the γi can be classified into one of four coordination patterns (Chang
et al., 2008). Although previous investigations have examined γi and
CAVi in healthy and/or pathological groups (Dierks and Davis, 2007;
Ferber et al., 2005; Pollard et al., 2005; Pohl and Buckley, 2008; Seay
et al., 2011) a lack of clarity in the employed mathematical equations
makes between study comparisons difficult and represents possible
clinical misinterpretations. This paper aims to (1) present a step by
step approach for calculating γi and CAVi (2) provide pelvis–lumbar
coordination information during gait in healthy individuals (3) provide
new a illustration to present γi and CAVi data.

2. Methodology

Ten male participants (mean7SD age: 22.472.46 years, height: 180.37
7.18 cm, mass: 74.97711.02 kg) with no history of musculoskeletal impairments
gave written consent to participate in the study. Ethical Approval was sought and
received from the University Research Ethics Committee.

3. Protocol

Prior to kinematic data collection and to allow familiarisation to
the laboratory environment each participant performed walking
trials to determine their starting position and preferred walking
speed (PWS). Timing gates (Brower Timing Systems, USA) were used
during data collection to ensure PWS was achieved. Recording at 100
frames per second, an 8 camera motion capture system (VICON,
Oxford, UK) was used to collect pelvis and lumbar segment angular
position during five walking trials. Two AMTI-OR6 force platforms

(AMTI, USA) collected kinetic data (1000 Hz) to assist in the identi-
fication of gait events (heel strike and toe off).

4. Pelvis and lumbar segment coordinate systems

Using double sided adhesive tape reflective markers (14 mm) were
attached to the following anatomical landmarks: right and left
anterior-superior-iliac spine (ASIS), right and left post-superior-iliac
spine (PSIS), sacrum (S1) and spinous process of L1. The lumbar cluster
was placed over the spinous process of L3 (Konz et al., 2006).

The global coordinate system (GCS) was defined with the X-axis
corresponding to the anterio-posterior direction (positive x-direction
indicated forward progression). The Y-axis was defined as medio-
lateral direction perpendicular to the X-axis parallel to the ground
(positive y-direction pointing to the left). The Z-axis corresponded to
the vertical direction (positive z-direction pointing upwards). The
origin of the pelvis segment coordinate system was the mid-point
between the 2 ASIS markers that defined the Y-axis. The X-axis was
directed in an anterior direction perpendicular to the Y-axis from the
mid-point of the ASIS markers and mid-point between the PSIS
markers. The Z-axis was formed by the cross product of the X- and
Y-axis. The lumbar coordinate system was defined using the three
markers on the rigid cluster (Fig. 2). The Y-axis was defined as a line
passing through the two markers mounted on the lateral ends of the
rigid cluster, with its positive direction to the left. The Z-axis was
defined from the mid-point of the horizontal markers and the vertical
marker with its positive direction aligned with L1. The X-axis was the
cross product of the Y- and Z-axis with its positive direction forwards
(Needham et al., 2012).

5. Data reduction

Three-dimensional pelvis and lumbar segment kinematic
angles relative to the global coordinative system were processed
in Visual3D (C-motion-Inc, MD) using a low-pass Butterworth
filter with a cut-off frequ Q6ency of 6 Hz (Winter et al., 1974).
Segment angles were normalised and time scaled to 100% of the
gait cycle, from right heel strike to consecutive right heel strike.
Angle–angle diagrams were created for all three planes of motion
with the proximal oscillator on the horizontal axis and the distal
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Fig. 1. (a) Classification of coordination pattern from the coupling angle (Chang et al., 2008). (b) Angle–angle diagram of pelvis–lumbar coordination in the transverse plane
representing mean data from 10 participants. (c) Coupling angle ðγiÞ determined by the vector orientation between two adjacent data points in time on an angle–angle
diagram relative to the right horizontal.
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oscillator on the vertical axis (Fig. 1b). A modified vector coding
technique was then employed to quantify inter-segmental coordi-
nation. Mean γi and CAVi for each participant over five trials and
across all ten participants were calculated using circular statistics.
Mean γi were classified into one of four coordination patterns
(Fig. 1a) (Chang et al., 2008). Coupling angle and CAVi calculations
are described in detail below. To assist in the interpretation of the
time-series waveforms and coordination patterns, the phases of
gait were adapted as IC – Initial Contact, LR – Loading Response,
MS – Midstance, PS – PreSwing and Swing phase (Perry and
Burnfield, 2010; Levine et al., 2012).

6. Calculation of coupling angle

For each instant (i) during the normalised gait cycle, the
coupling angle (γi) was calculated based on the consecutive
proximal segmental angles (θP(i), θP(iþ1)) and consecutive distal
segmental angles (θD, θD(iþ1)) according to Eqs. (1) and (2):

γi ¼ Atan
θD iþ1ð Þ �θDi
θP iþ1ð Þ �θPi

� �
:
180
π

θPðiþ1Þ �θPi40 ð1Þ

γi ¼ Atan
θD iþ1ð Þ �θDi
θP iþ1ð Þ �θPi

� �
:
180
π

þ180 θPðiþ1Þ �θPio0 ð2Þ

The following conditions (3) were applied:

γi ¼

γi ¼ 90 θPðiþ1Þ �θPi ¼ 0 and θDðiþ1Þ �θDi40
γi ¼ �90 θPðiþ1Þ �θPi ¼ 0 and θDðiþ1Þ �θDio0
γi ¼ �180 θPðiþ1Þ �θPio0 and θDðiþ1Þ �θDi ¼ 0

γi ¼Undefined θPðiþ1Þ �θPi ¼ 0 and θDðiþ1Þ �θDi ¼ 0

8>>>><
>>>>:

ð3Þ
Coupling angle (γi) was corrected to present a value between 01
and 3601 according to (4) (Sparrow et al., 1987; Chang et al., 2008).

γi ¼
γiþ360 γio0
γi γiZ0

(
: ð4Þ

7. Averaging and variability calculation

Due to directional nature of coupling angle, the average
coupling angle (yi) were calculated based on the average horizon-
tal (xi) and vertical (yi) components at each instant using circular
statistics (Batschelet, 1981; Hamill et al., 2000).

xi ¼
1
n

∑
n

i ¼ 1
cos γi ð5Þ

yi ¼
1
n

∑
n

i ¼ 1
sin γi ð6Þ

The following (7) were applied to correct for the average coupling
angle (yi) to present a value between 01 and 3601.

yi ¼

Atan yi
xi

� �
:180π xi40; yi40

Atan yi
xi

� �
:180π þ180 xio0

Atan yi
xi

� �
:180π þ 360 xi40; yio0

90 xi ¼ 0; yi40
�90 xi ¼ 0; yio0
undef ined xi ¼ 0; yi ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

The length of average coupling angle yi was calculated according
to (8)

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi

2þyi
2

q
ð8Þ

Coupling angle variability CAVi was calculated according to (9)

CAVi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:ð1�riÞ

p
:
180
π

: ð9Þ

8. Results

8.1. Illustration description

In Fig. 3a traditional time-series global angular data for the
pelvis and lumbar segment in the transverse plane is represented
by the black and grey solid lines, with associated axial rotation
ROM information on the right vertical axis of the illustration. The
yi, (black dot) lies within a row that represents the associated
coordination pattern (lumbar, pelvis, in-phase, anti-phase) pre-
senting the coordinated relationship between pelvis and lumbar
segment global angular data at each time frame during the gait
cycle. The γi will also lie within a column that represents a phase of
gait. The grey shaded area at the bottom of the illustration
represents CAVi. Both γi and CAVi outcome measures are quantified
in degrees with associated information on the left vertical axis of
the illustration.

Fig. 3b represents frequency distribution and coincides with
the number of times the yi lies within one of the four coordination
patterns during the gait cycle (Chang et al., 2008).

8.2. Pelvis and lumbar segment coordination and coordination
variability

Pelvis and lumbar segment coordination in the transverse plane
predominantly exhibited in-phase coordination (Fig. 3b) at the end of
MS through TS and during mid to late swing phase (Fig. 3a). The high
frequency distribution of pelvis coordination (Fig. 3b) is associated
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Fig. 2. Marker set configuration.

R. Needham et al. / Journal of Biomechanics ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: Needham, R., et al., Quantifying lumbar–pelvis coordination during gait using a modified vector
coding technique. Journal of Biomechanics (2014), http://dx.doi.org/10.1016/j.jbiomech.2013.12.032i

http://dx.doi.org/10.1016/j.jbiomech.2013.12.032
http://dx.doi.org/10.1016/j.jbiomech.2013.12.032
http://dx.doi.org/10.1016/j.jbiomech.2013.12.032
Original Text
Levine et al., 2012

Original Text
P\(i\),

Original Text
P\(i+1\)

Original Text
D,

Original Text
D\(i+1\)

Original Text
\)

Original Text
al.



with the pelvis segment preceding lumbar motion towards the contra-
lateral side during MS and early swing phase while lumbar segment
movement remained relatively unchanged (Fig. 3a). High CAVi

between participants was related to changes in coordination patterns
with peak variability occurring at the initial stage of each phase of the
gait cycle apart from the transition between MS and TS (Fig. 3a).
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Fig. 3. MeanQ9 coupling angle, coupling angle variability (CAVi) and coordination pattern frequency for pelvis–lumbar coordination in the transverse (a and b), frontal (c and d)
and sagittal (e and f) planes.
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In the frontal plane pelvis coordination was predominant
(Fig. 3d) during IC/LR, mid to late MS, through PS and during early
swing phase (Fig. 3c). This was attributed to greater pelvic ROM as
evident from the angular data presented in Fig. 3c. An equal
distribution of in-phase and anti-coordination was highlighted
(Fig. 3d). High CAVi was associated with changes in coordination
patterns towards the end of LR and PS. High CAVi during TS and
late sing phase was related to a directional change in the move-
ment patterns of the pelvis and lumbar segment (Fig. 3c). Fig. 4a
and b highlights the capability of this technique to detect indivi-
dual differences in a case series analysis.

Pelvis and lumbar segment coordination in the sagittal plane
was predominantly in-phase during MS and from early to mid
swing phase, with lumbar coordination dominant through TS
(Fig. 3f). High CAVi was associated with changes in coordination
patterns towards the end of LR and MS. High CAVi during the
swing phase was related to a directional change in the movement
patterns of the pelvis and lumbar segment (Fig. 3e).

9. Discussion

The γi is directional in nature and therefore must be reported
within a range of 0–3601 (Sparrow et al., 1987; Hamill et al., 2000).
Subsequently, circular statistics are utilised to provide a mean
value from multiple trials (Hamill et al., 2000). However, recent
studies have adapted the outcome measure to fall within a range
of 0–901 (Ferber et al., 2005; Pollard et al., 2005; Pohl and Buckley,
2008), although a justification for this adjustment was not pro-
vided. Constraining the γi between 01 and 901 can compress
coordination information and may result in a loss of directional
sensitivity of movement between two segments (Dubbeldam et al.,
2013). Whilst the usability, comprehensibility and the consistency
of our approach have not been tested, the vector coding technique
and new illustration presented in this paper highlights the
reported coupling angle results clearly matches the global data.

Dynamical systems techniques that have employed by investi-
gations to quantify coordination and coordination variability
between the pelvis and trunk during gait in healthy individuals
and those who suffer from LBP (Lamoth et al., 2006; Seay et al.,
2011; Selles et al., 2001). However, these studies modelled the
trunk as a single rigid segment which offers little information to
the biomechanical influence of LBP on lumbar movement.

Quantifying lumbar–pelvis coordination can offer an objective
measure of spinal dysfunction and provide an understanding to
the underlying mechanisms of a clinical condition (Newman et al.,
1996; Cox et al., 2010; Gracovetsky, 2010). Although there is
currently no research to compare the results of this study, this
paper presents three-dimensional pelvis and lumbar coordination
information and the related kinematic variability in healthy young
males during gait. This novel data can form the baseline informa-
tion for future studies in this area and can contribute to research
design and sample size calculations for larger clinical trials invol-
ving patients with lumbar–pelvic pathologies and other related
clinical conditions.

While it is accepted variability is present in all biological
systems (Harbourne and Stergiou, 2009) a recent study (Miller
et al., 2010) highlighted CAVi values can be affected by walking
speed. Therefore, a number of methodological considerations must
be controlled for to ensure no confounding factors influence CAVi

measures. The present study determined the PWS of the partici-
pants from 6 un-paced trials over 30-m (Callaghan et al., 1999) and
the use of wireless timing gates seemed an appropriate method to
control PWS during data collection, However, during learning of a
new motor task, variability may be a way to explore and challenge
motor strategies (Armour Smith et al., 2011) and due to the
sensitivity of CAVi measures (Miller et al., 2010) more in-depth
procedures may be required to ensure participants become famil-
iar with the laboratory and the equipment. For instance, treadmills
are commonly used by researchers in clinical gait analysis (Lamoth
et al., 2006; Seay et al., 2011; Selles et al., 2001), because of the
ease to maintain a constant walking speed. Neverthetheless, there
is a growing body of literature that suggests there are kinematic
differences between over-ground and t Q7readmill walking (Alton
et al., 1998; Vogt et al., 2002; Warabi et al., 2005; Chockalingam
et al., 2010). While over-ground walking is an everyday activity for
most, walking on a treadmill may be a challenging experience for
others, i.e. elderly or individuals with pathology. In addition to the
above, biomechanical studies often collect data in a single session
and/or record a low number of trials (3–5); this potentially
increases the likelihood of increased variability which further
highlights the importance for familiarisation, particularly when
incorporating a dynamical systems analysis. Coordination varia-
bility may also be influenced by gender and age of the participant,
therefore, further research into the influence of such factors on
CAVi measures is warranted.
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Fig. 4. (a) Mean coupling angle for pelvis–lumbar coordination in the frontal plane for participants 1–5. (b) Mean coupling angle for pelvis–lumbar coordination in the
frontal plane for participants 6–10.
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Coupling angle and CAVi data representing gait kinematics is
often presented in a traditional time-series format and reported in
separate figures. This approach leads to a lack of detail being
presented. If one considers some of the results within the litera-
ture, they provide limited information on gait events or phases of
gait, making the interpretation of the results difficult. This is
particularly complex when the reader is unfamiliar with dynamical
systems theory. The present study offered a new illustration
(Fig. 3a, c, and e) to present coordination and coordination
variability information of gait kinematics, combining the output
from the modified vector coding technique with traditional time-
series segmental angle data and recognised phases of gait (Perry
and Burnfield, 2010; Levine et al., 2012). The advantage of this
approach is evident in the results of this study. While γi provides an
accurate indication of the coordination pattern (Chang et al., 2008),
it does not provide explicit information on the directional move-
ment of the two segments. In Fig. 3c pelvis coordination is
dominant during IC/LR and this is due to greater pelvis ROM as
outlined by the inclusion of the segmental angular data. Addition-
ally, global angular data revealed an anti-phase relationship
between the pelvis and lumbar segment. Fig. 4a and b demon-
strates the capability of this technique to identify the individual
coordination pattern differences and highlights the importance of
single subject analysis. In Fig. 4a for instance, four out of the five
participants display pelvis coordination in the frontal plane during
IC/LR while only one participant exhibited anti-phase coordination.
Without global angular data it is difficult to explain the reason for
the anti-phase coordination during IC/LR. The results of this study
support the concept that high CAVi can be associated with the
transition between coordination patterns (Diedrich and Warren,
1995; Haken et al., 1985) and corresponds to a functional event
during gait such as toe off (Miller et al., 2010). Additionally, this
investigation has demonstrated that in healthy young males, high
CAVi can also occur at the beginning of MS, TS, PS and IC, although
this is not representative in all planes of movement.

While experimental errors may be instrumental or associated
with anatomical landmark identification, it is important to recog-
nise the influence of skin motion artefact which can have affected
pelvis and lumbar global angular data in this study. However, ROM
data presented in the illustrations (Fig. 3a, c, and e) are consistent
with those previous reported (Konz et al., 2006). Pelvis–lumbar
coordination and coordination variability data in this study was
collected from a small sample size consisting of ten healthy young
males. Increased participant numbers are required to further
confirm the findings of this study along with the analysis of
female and clinical populations.

10. Conclusion

This paper has provided a comprehensive vector coding and
circular statistics calculations that allow for a detailed under-
standing of coordination and coordination variability associated
with human movement. The phases of gait included in the data
analysis represent a normative range for healthy adults that were
applied to the data collected from the healthy young males in this
study. In addition, the new illustration clearly highlighted that not
all participants displayed the same coordination pattern during
the gait cycle, leading to a considerable variation of coordination
between individuals. These inter-individual variations represented
in this study justify the need for single subject analysis in which a
dynamical systems method is combined with the individualised
kinematic measures. Furthermore since the coordination patterns
can be adversely influenced by pathology, the use of the new
illustration provided in this paper when applied to single patients
can be beneficial to assess the effect of an intervention on the

patient-specific inter-segmental coordination pattern with impli-
cations to clinical setting.
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